
Oracle® TimesTen In-Memory
Database
Kubernetes Operator User's Guide

Release 22.1
F35390-11
June 2025

Oracle TimesTen In-Memory Database Kubernetes Operator User's Guide, Release 22.1

F35390-11

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 What's New

New Features in Release 22.1.1.34.0 xv

New Features in Release 22.1.1.30.0 xvi

New Features in Release 22.1.1.27.0 xvi

New Features in Release 22.1.1.19.0 xviii

New features in Release 22.1.1.9.0 xviii

New features in Release 22.1.1.3.0 xix

New features in Release 22.1.1.1.0 xix

1 Overview of the Oracle TimesTen Kubernetes Operator

Overview of Containers and Kubernetes 1-1

Custom Resource Definition 1-2

Kubernetes Operator 1-2

About the TimesTen Kubernetes Operator 1-2

About TimesTenClassic and TimesTenScaleout Objects 1-3

About Provisioning Active Standby Pairs 1-3

About Deploying a Replicated TimesTenClassic Object 1-4

About Objects Created by the TimesTen Operator 1-5

StatefulSet 1-6

Service 1-6

Secret 1-6

Pods 1-6

Events 1-7

About the TimesTen Containers and the TimesTen Agent 1-7

Simple Deployment 1-7

About Deploying a TimesTen Scaleout Grid and Database 1-8

StatefulSets 1-8

Services 1-9

Secret 1-9

Persistent Volume Claims and Pods 1-9

Password-less ssh 1-9

iii

Quick Rollout 1-9

2 Prepare to Use the TimesTen Kubernetes Operator

About TimesTen Container Images and Container Registry Options 2-1

Before You Begin 2-2

Choose a TimesTen Container Image 2-4

Option 1: Use a Container Image from Oracle Container Registry 2-4

Create Auth Token 2-4

Accept the Oracle License Agreement 2-4

Configure Your Development Host and Kubernetes Cluster 2-5

Option 2: Use a Container Image from Oracle Cloud Marketplace 2-6

Option 3: Build a Container Image and Push It to a Container Registry of Your Choice 2-6

Configure Your Development Host and Kubernetes Cluster 2-7

Download and Unpack a TimesTen Distribution 2-7

Build a TimesTen Container Image 2-9

Tag and Push the Container Image to Your Container Registry 2-9

Obtain TimesTen YAML Manifest Files and Helm Charts 2-10

3 Install TimesTen Custom Resource Definitions

About TimesTen CRDs 3-1

Install TimesTen CRDs 3-1

4 Learn About and Install the TimesTen Kubernetes Operator

About Kubernetes Operators 4-1

About the TimesTen Operator 4-1

About Deploying in a Multi-Architecture Kubernetes Cluster 4-2

About the Default Kubernetes Security Context for the TimesTen Operator 4-4

About Readiness and Liveness Probes 4-4

About Privileges 4-4

About Installing the TimesTen Operator 4-5

About Customizations for a TimesTen Operator Deployment 4-7

Install the TimesTen Operator 4-7

Install the TimesTen Operator at Namespace-Scope 4-8

Before You Begin 4-8

Install in Namespace One 4-10

Install in Namespace Two 4-14

Verify Installation 4-18

Install the TimesTen Operator at Cluster-Scope 4-19

iv

5 Use Configuration Metadata

Overview of Configuration Metadata and Kubernetes Facilities 5-1

List of Configuration Metadata 5-1

About Configuration Metadata Details 5-3

adminUser 5-3

cachegroups.sql 5-3

cacheUser 5-4

csWallet 5-5

db.ini 5-5

epilog.sql 5-6

replicationWallet 5-6

schema.sql 5-6

sqlnet.ora 5-7

testUser 5-7

tnsnames.ora 5-7

*.connect 5-8

*.csconnect 5-8

Populate the /ttconfig Directory 5-9

Using ConfigMaps and Secrets 5-9

Example Using One ConfigMap 5-10

Example Using One ConfigMap and One Secret 5-12

Example Using One ConfigMap for a TimesTenScaleout Object 5-15

Using an init container 5-18

Additional Configuration Options 5-19

Persistent Storage 5-19

Additional Resource Specifications 5-21

About the Default Affinity and Anti-Affinity Settings for TimesTenClassic Objects 5-22

About the Default Kubernetes Security Context for TimesTen Pods 5-23

About Readiness Probes for TimesTen Containers 5-23

About Readiness Probes for Replicated Configurations 5-24

About the /tmp/active Readiness Probe 5-24

About the /tmp/readiness Readiness Probe 5-25

About Disabling Readiness Probes 5-26

About Readiness Probes for Non-Replicated Configurations 5-26

6 Specify CPU and Memory Requests and Limits

About Resource Requests and Limits 6-1

About TimesTen Containerized Deployments 6-2

About Specifying Requests and Limits for TimesTen Containers 6-4

Approach 1: Use Specific Datum for Requests and Limits 6-5

v

Approach 2: Use Templates for Requests and Limits 6-8

About Specifying Requests and Limits to Kubernetes 6-9

About Verifying databaseMemorySize 6-10

About Runtime Memory Monitoring 6-10

7 Create TimesTen Classic Databases

About Defining TimesTenClassic Objects 7-1

About the Deployment Process 7-3

About the Examples 7-4

Create Replicated TimesTen Classic Databases 7-5

Create Non-Replicated TimesTen Classic Databases 7-9

Modify the Number of Replicas in Non-Replicated Environments 7-15

8 Deploy TimesTen Scaleout Databases

About Deploying a Grid 8-1

About Planning a Grid 8-2

About Configuring a Grid 8-2

About Provisioning a Grid 8-3

About ssh 8-4

About Creating a Grid 8-4

Deploy a Grid 8-5

Create Configuration Metadata and a Kubernetes ConfigMap for a Grid 8-5

Define and Deploy a TimesTenScaleout Object 8-8

Monitor the High Level State of a TimesTenScaleout Object 8-10

Verify Underlying Objects 8-11

Connect to the Database 8-14

Manage a Grid and Its Database 8-15

9 Use Helm in Your TimesTen Kubernetes Operator Environment

Overview of Helm and TimesTen Helm Charts 9-1

About Helm 9-1

About a Helm Chart 9-2

About Helm Charts for TimesTen 9-2

About Installing and Testing a Release 9-3

About Versions in a Chart.yaml File 9-3

About the Helm Substitution Engine and Language 9-4

Install the TimesTen CRDs and the TimesTen Operator 9-4

Install the TimesTen CRDs 9-4

Install the TimesTen Operator 9-5

vi

Test the TimesTen Operator 9-8

Create TimesTen Databases and Test TimesTen 9-9

About Creating TimesTen Databases 9-10

About Using the ttclassic Helm Chart 9-11

Create Replicated TimesTen Databases 9-13

Test TimesTen for a Replicated Configuration 9-17

Create Non-Replicated TimesTen Databases 9-18

Test TimesTen for a Non-Replicated Configuration 9-22

Upgrade 9-23

About Upgrading 9-23

Upgrade the TimesTen CRDs 9-24

Upgrade the TimesTen Operator 9-25

Upgrade Replicated TimesTen Databases 9-29

Upgrade Non-Replicated TimesTen Databases 9-36

Roll Back an Upgrade 9-42

Roll Back a Replicated TimesTen Upgrade 9-43

Roll back a Non-Replicated TimesTen Upgrade 9-48

Roll Back a TimesTen Operator Upgrade 9-54

Clean Up 9-57

About Uninstalling a Release 9-57

Delete TimesTen Databases 9-57

Delete the TimesTen Operator 9-60

Delete the TimesTen CRDs 9-61

10

Use TimesTen Databases

About Using Direct Mode Applications 10-1

About Using Client/Server Drivers 10-3

11

Manage and Monitor TimesTen Classic Databases

About the High Level State of TimesTenClassic Objects 11-1

ActiveDown 11-2

ActiveTakeover 11-2

AllReplicasReady 11-2

BothDown 11-2

ConfiguringActive 11-2

Failed 11-3

Initializing 11-3

ManualInterventionRequired 11-3

NoReplicasReady 11-3

Normal 11-3

vii

Reexamine 11-3

SomeReplicasReady 11-4

StandbyCatchup 11-4

StandbyDown 11-4

StandbyStarting 11-4

WaitingForActive 11-4

About the High Level State of TimesTen Pods 11-4

CatchingUp 11-5

Down 11-5

Healthy 11-5

HealthyActive 11-5

HealthyStandby 11-5

Initializing 11-6

ManualInterventionRequired 11-6

Normal 11-6

OtherDown 11-6

Reexamine 11-7

Terminal 11-7

Unknown 11-7

UpgradeFailed 11-7

About the BothDown State 11-7

About the ManualInterventionRequired State for Replicated Objects 11-9

About Bringing Up One Database 11-10

Verify Conditions Are Met for the Database 11-11

Set the reexamine Value 11-12

About Suspending Management of a TimesTenClassic Object 11-17

Suspend Management 11-18

Resume Management 11-21

About Manual Operations 11-22

Manually Invoke TimesTen Utilities 11-23

Revert to Manual Control 11-23

Delete TimesTen Databases 11-25

Locate the TimesTen Operator 11-26

Modify TimesTen Connection Attributes 11-26

Manually Edit the db.ini File 11-27

Modify First Connection Attributes 11-29

Modify General Connection Attributes 11-31

12

Manage TimesTen Scaleout

About Managing TimesTen Scaleout 12-1

About Single Data Instance Failure 12-2

viii

About Management Instance Failure 12-2

About the waiting for seed State 12-2

About Failure of All Data Instances 12-3

About High Level States 12-3

DatabaseDown 12-3

DatabaseImpeded 12-3

DatabasePartial 12-4

DatabaseRestarting 12-4

DatabaseRestartRequired 12-4

Failed 12-4

Initializing 12-4

ManualInterventionRequired 12-4

Normal 12-4

Reexamine 12-4

Unmanaged 12-5

About Management States 12-5

ActiveAgentUp 12-5

ActiveDaemonUp 12-5

ActiveDown 12-5

Error 12-6

Normal 12-6

Unknown 12-6

About Database and Element States 12-6

About the ManualInterventionRequired State 12-7

About Suspending Management 12-7

Simulate Single Data Instance Failure 12-8

Simulate Management Instance Failure 12-9

Simulate Replica Set Failure with Restart 12-10

Simulate Replica Set Failure with Manual 12-12

Suspend Management 12-14

Set reexamine Datum 12-16

13

Optimize Client/Server Performance

About Client/Server Challenges 13-1

About NodePort Services 13-1

About the Connection Manager 13-2

How to Use the Connection Manager 13-3

About Accessing the Endpoint from Inside the Cluster 13-4

About Accessing the Endpoint from Outside the Cluster 13-4

About Accessing TimesTen 13-5

About Handling Failures 13-5

ix

About the NodePort Service for the Connection Manager 13-5

About the TimesTen Operator Configuration 13-5

14

Expose TimesTen Metrics with the TimesTen Kubernetes Operator

Overview of TimesTen Metrics 14-1

Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter 14-2

About the Prometheus Operator 14-2

About Exposing TimesTen Metrics 14-3

About Using http or https for TimesTen Metrics 14-5

About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics 14-6

About Creating PodMonitor Objects 14-7

About the TimesTen Metrics Service 14-8

About Choosing to Expose TimesTen Metrics 14-8

Expose TimesTen Metrics Automatically 14-9

15

Expose Metrics from the TimesTen Kubernetes Operator

About Exposing Metrics from the TimesTen Kubernetes Operator 15-1

About Using http or https 15-3

About Transport Layer Security (mutual TLS) Certificates 15-3

About Creating ServiceMonitor Objects 15-4

About the TimesTen Kubernetes Operator's Metrics Service 15-4

About TimesTen Operator Metrics 15-4

Demonstrate How to Expose TimesTen Kubernetes Operator Metrics 15-5

16

Work with TimesTen Cache

About Using TimesTen Cache 16-1

17

Use Encryption for Data Transmission

Create TLS Certificates for Replication and Client/Server 17-1

Configure TLS for Replication 17-3

Create Metadata Files and Kubernetes Facilities 17-3

Create a Kubernetes Secret 17-4

Create a ConfigMap 17-5

Create a TimesTenClassic Object 17-6

Monitor Deployment of a TimesTenClassic Object 17-7

Verify TLS Is Being Used for Replication 17-9

Automatically Configure Client/Server TLS 17-10

About Configuring a TimesTenClassic Object for Automatic Client/Server TLS Encryption 17-11

x

About the Automation Process 17-12

How-to Example 17-14

Before You Begin 17-14

Configure and Deploy the TimesTenClassic Object 17-16

Configure TLS for Client/Server 17-21

Configuration Requirements for the Server 17-21

Overview of Metadata Files and Kubernetes Facilities 17-21

Create a Kubernetes Secret for the csWallet Metadata File 17-22

Create a ConfigMap for the Server-Side Attributes 17-23

Create a TimesTenClassic Object 17-25

Monitor Deployment of the TimesTenClassic Object 17-26

Configuration Requirements for the Client 17-27

Copy a Client Wallet 17-27

Configure Client-Side Attributes 17-28

18

Handle Failover and Recovery in TimesTen Classic

About Node Failure in Kubernetes 18-1

How Kubernetes Reports Node Status 18-1

How the TimesTen Kubernetes Operator Handles Node Failure 18-2

About Specifying the .spec.ttspec.deleteDbOnNotReadyNode Datum 18-3

About Kubernetes Events and TimesTen Operator Metrics 18-3

About Handling Failover and Recovery 18-4

Illustrate the Failover and Recovery Process 18-4

19

Perform Upgrades

About Obtaining Container Images for the Upgrade 19-1

About Upgrading from Previous Releases 19-2

Upgrade the TimesTen CRDs 19-2

About Upgrading the TimesTen Operator 19-3

Upgrade the TimesTen Operator 19-4

Upgrade the TimesTen Operator at Namespace-Scope 19-4

Before You Begin 19-4

Upgrade in Namespace One 19-5

Upgrade in Namespace Two 19-10

Upgrade the TimesTen Operator at Cluster-Scope 19-14

About Upgrading TimesTen Classic Databases 19-17

About the Upgrade Process for Replicated Configurations 19-17

About the Upgrade Process for Non-Replicated Configurations 19-18

Perform an Automated Upgrade of a Replicated TimesTenClassic Object 19-19

Perform a Manual Upgrade of a Replicated TimesTenClassic Object 19-24

xi

Modify a Replicated TimesTenClassic Object 19-24

Upgrade the Standby Database 19-25

Fail Over 19-27

Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object 19-31

Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object 19-37

About Upgrading Direct Mode Applications 19-42

About Failures During an Upgrade 19-42

20

TimesTen Kubernetes Operator Object Types

Overview of the TimesTen Kubernetes Operator Object Types 20-1

About the TimesTenClassic Object Type 20-1

TimesTenClassic 20-2

TimesTenClassicSpec 20-2

TimesTenClassicSpecSpec 20-3

TimesTenClassicSpecSpecClientTLS 20-23

TimesTenClassicSpecSpecPrometheus 20-27

TimesTenClassicStatus 20-29

About the TimesTenScaleout Object Type 20-30

TimesTen Scaleout 20-30

TimesTenScaleoutSpec 20-31

TimesTenScaleoutSpecSpec 20-32

TimesTenScaleoutSpecSpecPrometheus 20-42

TimesTenScaleoutStatus 20-44

21

Helm Charts for the TimesTen Kubernetes Operator

The ttoperator Chart 21-1

The ttclusteroperator Chart 21-11

The ttclassic Chart 21-21

22

TimesTen Kubernetes Operator Metrics

23

TimesTen Kubernetes Operator Environment Variables

24

Dockerfile ARGs

xii

A Active Standby Pair Example

Before You Begin A-1

Create a ConfigMap Object A-1

Create a TimesTenClassic Object A-3

Monitor Deployment A-4

Verify Existence of Underlying Objects A-9

Verify Connection to the Active TimesTen Database A-9

Recover from Failure A-10

Clean Up A-11

B TimesTen Cache in TimesTen Classic Example

Set Up the Oracle Database to Cache Data B-1

Create the Oracle Database Users B-1

Grant Privileges to the Cache Administration User B-2

Create the Oracle Database Tables to Be Cached B-3

Create Metadata Files and a Kubernetes Facility B-5

Create a TimesTenClassic Object B-10

Monitor Deployment of a TimesTenClassic Object B-11

Verify TimesTen Cache Configuration B-13

Perform Operations On Cache Group Tables B-15

Perform Operations on the oratt.readtab Table B-15

Perform Operations on the oratt.writetab Table B-16

Clean Up Cache Metadata on the Oracle Database B-17

C Create Your Own Oracle Wallet, Certificates, and Secrets for Exposing
TimesTen Metrics

About Creating Your Own Oracle Wallet, Certificates, and Kubernetes Secrets C-1

Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets C-2

Before You Begin C-3

Create Certificates C-4

Create a Kubernetes Secret Containing an Oracle Wallet C-7

Define and Deploy a TimesTenClassic Object C-7

xiii

About This Content

This document covers TimesTen support for the TimesTen Kubernetes Operator.

Audience

This document is intended for anyone who wants to use the TimesTen Kubernetes Operator in
a Kubernetes environment.

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation. The
Oracle TimesTen Kubernetes Operator (TimesTen Operator) is a Kubernetes Operator that
provides the ability to do the following:

• Create and deploy highly available replicated pairs of TimesTen Classic databases to a
Kubernetes cluster with minimal effort. It also provides the ability to automate failure
detection and recovery.

• Create and deploy TimesTen Scaleout grids and their associated databases to a
Kubernetes cluster with minimal effort.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

14

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

This section summarizes the new features of Oracle TimesTen In-Memory Database Release
22.1 that are documented in this guide. It provides links to more information.

New Features in Release 22.1.1.34.0
• In previous releases, you could install the TimesTen Operator in one or more namespaces

in your Kubernetes cluster at namespace-scope. In this release, you also have the option
to install the TimesTen Operator in the timesten-operator namespace at cluster-scope.
Specifically, you now have two options for installing the TimesTen Operator. See About the
TimesTen Operator.

• To optimize client/server performance, the TimesTen Operator creates NodePort Services
and provides a new feature, called the Connection Manager. The Connection Manager
functions as an https server. It adds several new endpoints to the /metrics server. These
new endpoints allow client/server applications to retrieve a connection string that can then
be used to access TimesTen databases optimally. See Optimize Client/Server
Performance. The TimesTen Operator provides the following syntax for the Connection
Manager:

– If you are using YAML manifest files to install the TimesTen Operator, see the
TT_CONNECTION_MANAGER, TT_CONNECTION_MANAGER_NODEPORT, and TT_OPERATOR_SAN
environment variables in TimesTen Kubernetes Operator Environment Variables.

– If you are using either the ttoperator or ttclusteroperator Helm chart to install the
TimesTen Operator, see connectionManager, operatorNodePort, and operatorSAN in
The ttoperator Chart or The ttclusteroperator Chart.

• The TimesTen Operator can automatically create self-signed certificates and configure
TimesTen to use those certificates for client/server TLS encryption. See Automatically
Configure Client/Server TLS. The TimesTen Operator provides the following syntax for this
feature:

– If you are using YAML manifest files, see clientTLS in TimesTenClassicSpecSpec.

– If you are using Helm charts, see clientTLS in The ttclassic Chart.

• You can set the number of TimesTenClassic objects that the TimesTen Operator processes
concurrently:

– If using YAML manifest files to install the TimesTen Operator, see the
TT_MAX_RECONCILES environment variable in TimesTen Kubernetes Operator
Environment Variables.

– If you are using either the ttoperator or ttclusteroperator Helm chart to install the
TimesTen Operator, see maxReconciles in The ttoperator Chart or The
ttclusteroperator Chart.

• The TimesTen Operator adds a default security context, including the Kubernetes default
seccomp profile to the Pods it creates. In addition, the TimesTen Operator runs with a
default security context and includes the Kubernetes default seccomp profile. See About

xv

https://kubernetes.io/docs/reference/node/seccomp/
https://kubernetes.io/docs/reference/node/seccomp/

the Default Kubernetes Security Context for TimesTen Pods and About the Default
Kubernetes Security Context for the TimesTen Operator.

• By default, the TimesTen Operator adds affinity and anti-affinity settings to Pods that are
created when deploying a TimesTenClassic object. See About the Default Affinity and Anti-
Affinity Settings for TimesTenClassic Objects.

• The TimesTen Operator stores its security certificates in Java Keystores. In order to create
and use Java Keystores, they must be secured with a known password:

– If you are using YAML manifest files, see storePassword in
TimesTenClassicSpecSpec.

– If you are using Helm charts, see storePassword in The ttclassic Chart.

• There is support for the v4 schema version of the TimesTenClassic Custom Resource
Definition (CRD). The v2 schema version of the TimesTenClassic CRD is deprecated. The
v2 schema version is fully supported in this release, but will be removed in a future
release. See About TimesTen CRDs.

New Features in Release 22.1.1.30.0
• For non-replicated configurations, you can increase or decrease the number of databases

deployed in your Kubernetes namespace. To make this change, modify the number of
replicas associated with one or more of your TimesTenClassic objects. See Modify the
Number of Replicas in Non-Replicated Environments.

• In both replicated and non-replicated configurations, the TimesTen Operator can detect
and take action in situations where a Kubernetes Node is not ready (or unknown) for a
specific period of time. To direct the TimesTen Operator to detect and take action, specify
the .spec.ttspec.deleteDbOnNotReadyNode datum in a TimesTenClassic object definition.
See How the TimesTen Kubernetes Operator Handles Node Failure and About Specifying
the .spec.ttspec.deleteDbOnNotReadyNode Datum.

In order to use this feature, the TimesTen Operator requires additional privileges and
permissions. See Install the TimesTen Operator at Namespace-Scope.

• The TimesTen Operator generates the following new metrics:

– timesten_pods_deleted_unschedulable
– timesten_pods_unschedulable
– timesten_pvcs_deleted_unschedulable

For more information, see About Kubernetes Events and TimesTen Operator Metrics.

• The v1 schema version of the TimesTenClassic Custom Resource Definition (CRD) is
deprecated. The v1 schema version is fully supported in this release, but will be removed
in a future release. For more information, see About TimesTen CRDs.

New Features in Release 22.1.1.27.0
• The TimesTen Kubernetes Operator (TimesTen Operator) provides full support for non-

replicated TimesTenClassic objects. Databases in this configuration operate independently
and have no relationship to each other:

– The TimesTen Operator creates, manages, and monitors TimesTenClassic objects and
associated databases in this configuration. See Create TimesTen Classic Databases.

What's New

xvi

– There is full support for upgrading (and downgrading) non-replicated TimesTenClassic
objects to a new patch or patchset. See About Upgrading TimesTen Classic
Databases.

– There are TimesTen Operator metrics for monitoring the overall status of non-
replicated TimesTenClassic objects. See TimesTen Kubernetes Operator Metrics.

– The TimesTen Operator provides and maintains high level states for TimesTenClassic
objects and TimesTen Pods in non-replicated configurations. These states describe the
health of TimesTenClassic objects and the health of TimesTen databases in Pods. See
About the High Level State of TimesTenClassic Objects and About the High Level
State of TimesTen Pods.

• There are metrics for monitoring the memory used by the TimesTen Operator and the
TimesTen Agent. See TimesTen Kubernetes Operator Metrics.

• The TimesTen Operator uses Kubernetes Custom Resource Definition (CRD) versioning to
provide two different schema versions for the TimesTenClassic CRD. The TimesTen
Operator creates, monitors, and manages TimesTenClassic objects in both schema
versions. See About TimesTen CRDs.

• The TimesTen Operator provides and enables by default readiness probes for TimesTen
containers in replicated and non-replicated configurations. See About Readiness Probes
for TimesTen Containers.

• The TimesTen Operator runs in single and multi-architecture Kubernetes clusters. Pods
that are created by the TimesTen Operator run on nodes of the same node type as the
TimesTen Operator. For example, if the TimesTen Operator runs on arm64 nodes, Pods
created by this TimesTen Operator also run on arm64 nodes. If you are using a multi-
architecture Kubernetes cluster, you have to make customizations to the provided
operator.yaml YAML manifest file and the ttoperator Helm charts. See About Deploying
in a Multi-Architecture Kubernetes Cluster.

• TimesTen provides an additional option for obtaining container images that you can use in
your TimesTen Kubernetes Operator environment. You can use the Oracle TimesTen In-
Memory Database for Kubernetes - BYOL on Oracle Cloud Marketplace container listing to
export a TimesTen container image into a repository in Oracle Cloud Infrastructure Registry
(Container Registry). See Prepare to Use the TimesTen Kubernetes Operator.

• To support the new features, the .spec.ttspec section of the TimesTenClassic object type
includes the following datum:

– createASReadinessProbe
– readOnlyRootFilesystem
– replicas
– replicationTopology
– rollingUpdatePartition
– terminationGracePeriod
See TimesTenClassicSpecSpec.

• Helm and the associated ttcrd, ttoperator, and ttclassic Helm charts are extended to
support the new features. See Use Helm in Your TimesTen Kubernetes Operator
Environment and Helm Charts for the TimesTen Kubernetes Operator.

What's New

xvii

New Features in Release 22.1.1.19.0
• The TimesTen Kubernetes Operator (TimesTen Operator) provides TimesTen-specific

Helm charts. These charts let you use Helm to install the TimesTen CRDs, TimesTen
Operator, and TimesTenClassic objects in your Kubernetes cluster. See Use Helm in Your
TimesTen Kubernetes Operator Environment.

• By default, the TimesTen Operator automatically exports and exposes TimesTen metrics to
Prometheus. See Expose TimesTen Metrics with the TimesTen Kubernetes Operator.

You can control how TimesTen metrics are exported and exposed by using specific datum
in your TimesTenClassic and TimesTenScaleout object YAML manifest files. See About
Exposing TimesTen Metrics and TimesTenClassicSpecSpecPrometheus and
TimesTenScaleoutSpecSpecPrometheus.

• The TimesTen Operator automatically exposes metrics about its own functionality as well
as the status of TimesTenClassic and TimesTenScaleout objects that it manages to
Prometheus. See Expose Metrics from the TimesTen Kubernetes Operator.

You can control how these metrics are exposed by unsetting or setting TimesTen Operator
environment variables located in the operator.yaml YAML manifest file of your TimesTen
Operator deployment. See About Exposing Metrics from the TimesTen Kubernetes
Operator and TimesTen Kubernetes Operator Environment Variables.

• The TimesTen Operator provides readiness and liveness probes so that Kubernetes can
determine the health of the TimesTen Operator. See About Readiness and Liveness
Probes.

• The TimesTen Operator creates and manages readiness probes for TimesTen containers.
See About Readiness Probes for TimesTen Containers.

New features in Release 22.1.1.9.0
• The TimesTen Operator monitors and manages TimesTen Scaleout objects that are

deployed in your Kubernetes cluster. It also detects, repairs, and recovers from failures in
your grid and associated database. See Manage TimesTen Scaleout.

• The Operator supports TimesTen Cache in TimesTen Scaleout. See Work with TimesTen
Cache.

• It is essential to specify memory requests and limits to Kubernetes. TimesTen recommends
that CPU requests and limits be specified as well. See Specify CPU and Memory Requests
and Limits. To support this functionality, there are new datum added to the .spec.ttspec
fields of the TimesTenClassic and TimesTenScaleout object custom resource definitions.
See TimesTenClassicSpecSpec and TimesTenScaleoutSpecSpec.

• TimesTen container images use the Oracle Linux base image. Oracle Java is installed into
the TimesTen images using JDK script friendly URLs and Dockerfile techniques. For details
about setting up your environment, see Prepare to Use the TimesTen Kubernetes
Operator. For specific information about TimesTen container images, see About TimesTen
Container Images and Container Registry Options. For information about Dockerfile
ARGS, see Dockerfile ARGs.

What's New

xviii

New features in Release 22.1.1.3.0
• The TimesTen Operator can deploy TimesTen Scaleout grids and their associated

TimesTen databases in your Kubernetes cluster. See Deploy TimesTen Scaleout
Databases.

The TimesTen Operator supports the TimesTenScaleout object type. This object type
provides the syntax you need to deploy a TimesTen Scaleout grid and database. See
About the TimesTenScaleout Object Type.

• In previous releases, the TimesTen Operator required the creation of two container images,
one for the Operator and one for TimesTen. In this release, one container image is used for
both the Operator and TimesTen. You can create this container image or pull it from the
Oracle Container Registry at container-registry.oracle.com. See Prepare to Use the
TimesTen Kubernetes Operator.

• When using the TimesTen Operator, the name of the Linux user that is created in the
container image is timesten with a numeric UID of 3429. The name of the Linux group that
is created in the container image is timesten with a GID of 3429. The timesten user is the
user who runs TimesTen and the timesten group is the TimesTen users group. You can
override these defaults. This lets you tailor attributes of the image to meet your
requirements. See Dockerfile ARGs.

• The TimesTen Operator supports the TimesTen Prometheus Exporter. You can configure
your TimesTenClassic and your TimesTenScaleout objects to use the Exporter. The
Exporter can then collect metrics from the TimesTen databases that are running in your
Kubernetes cluster, and expose these metrics to Prometheus. See Create Your Own
Oracle Wallet, Certificates, and Secrets for Exposing TimesTen Metrics.

The TimesTen Operator provides the prometheus object type as part of the
TimesTenClassic and TimesTenScaleout object type definitions. Use the prometheus object
type to configure the Exporter to meet your Prometheus requirements. See
TimesTenClassicSpecSpecPrometheus and TimesTenScaleoutSpecSpecPrometheus.

New features in Release 22.1.1.1.0
You can define a readiness probe to tell Kubernetes that a TimesTen (tt) container is ready.
See About Readiness Probes for TimesTen Containers.

What's New

xix

1
Overview of the Oracle TimesTen Kubernetes
Operator

This chapter provides an overview of containers and Kubernetes. It also gives an overview of
the TimesTen Kubernetes Operator. It discusses the TimesTenClassic and TimesTenScaleout
Custom Resource Definitions (CRDs) and the TimesTen Operator. The chapter details the role
the TimesTen Operator plays in deploying, managing, and monitoring active standby pairs of
TimesTen Classic databases as well as in deploying TimesTen Scaleout grids and their
associated databases in your Kubernetes cluster.

Topics:

• Overview of Containers and Kubernetes

• About the TimesTen Kubernetes Operator

• About TimesTenClassic and TimesTenScaleout Objects

• About Provisioning Active Standby Pairs

• About Deploying a Replicated TimesTenClassic Object

• About Deploying a TimesTen Scaleout Grid and Database

Overview of Containers and Kubernetes
A container is a lightweight virtual machine, running the Linux operating system. A container
usually runs one application that is started from an image. Files that are created and modified
are usually not persistent. However, persistent storage is available. Containers are a key
component of cloud computing environments.

Kubernetes is a portable, extensible, open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and automation.
Kubernetes has the ability to manage the resources of multiple hosts (called Nodes) in a
cluster, and to run containers as required across these nodes. It can automatically spawn
containers to react to various failures. Kubernetes also manages the networking among the
containers and to the outside world. Kubernetes is portable across many cloud and on-
premises environments.

Key Kubernetes concepts include:

• Pod: One or more containers that share an IP address. For more information on Pods, see:

https://kubernetes.io/docs/concepts/workloads/pods/pod/
• Deployment: A named collection of n identical Pods (where n is the number of Pods).

Kubernetes ensures that n identical Pods are running. For more information on
Deployments, see:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
• PersistentVolume: Storage that can be mounted to a Pod and is persistent beyond the

lifetime of Pod. For more information on Persistent Volumes, see:

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

1-1

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

• StatefulSet: Similar to a Deployment, but each Pod has an associated PersistentVolume.
For more information on StatefulSets, see:

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
• Service: A network endpoint for a Deployment or StatefulSet. It defines the set of

addresses and ports that should be exposed to applications in the Kubernetes cluster. For
more information on a Service, see:

https://kubernetes.io/docs/concepts/services-networking/service/
Kubernetes provides the facilities for the provisioning of Pods and other Kubernetes resources
that are required to deploy applications. Once deployed, the objects must be monitored and
managed.

Kubernetes does some monitoring and managing of applications, but not all. It does handle
problems at the Pod level automatically. For example, if a container fails, Kubernetes restarts it
automatically. If an entire Node fails, Kubernetes starts replacement Pods on the other Nodes.
However, Kubernetes has no knowledge about problems inside a container. This is not
problematic for stateless applications, but for databases (which are stateful), Kubernetes
needs help managing what is inside the containers.

This help comes in the form of:

• Custom Resource Definition

• Kubernetes Operator

Custom Resource Definition
A Custom Resource Definition (commonly known as a CRD) extends the Kubernetes' object
model. It adds a new object type to the Kubernetes cluster, similar to the Pod, the StatefulSet,
and the Service object types that it natively supports.

Kubernetes Operator
A Kubernetes Operator (also called Operator) is the brains behind a CRD. An Operator is an
application that performs the functions of a human computer operator. It starts, stops, monitors,
and manages other applications.

An Operator runs in one or more Pods, one active and the others idle. The active Operator
performs the work. The remaining Operators are idle and remain idle until the active Operator
fails. The active Operator manages all objects of a particular type and when combined with a
CRD enables you to add custom facilities to Kubernetes.

About the TimesTen Kubernetes Operator
The TimesTen Kubernetes Operator provides the ability for you to deploy both active standby
pairs of TimesTen Classic databases as well as TimesTen Scaleout grids and their associated
databases in your Kubernetes cluster.

The TimesTen Kubernetes Operator consists of these interrelated components:

• Custom Resource Definitions (CRDs): There are two CRDs. The TimesTenClassic CRD
defines an object of type TimesTenClassic to Kubernetes. This TimesTenClassic object
type provides the metadata for deploying active standby pairs of TimesTen Classic
databases. The TimesTenScaleout CRD defines an object of type TimesTenScaleout to
Kubernetes. This TimesTenScaleout object type provides the metadata for deploying
TimesTen Scaleout grids and their associated databases.

Chapter 1
About the TimesTen Kubernetes Operator

1-2

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/services-networking/service/

• TimesTen Operator: There is one TimesTen Operator. The Operator monitors the
TimesTenClassic and TimesTenScaleout objects and properly handles both. It deploys,
manages, and monitors active standby pairs of TimesTen Classic database. This same
Operator deploys TimesTen Scaleout grids and their associated databases.

• TimesTen Agent: There is one TimesTen agent. This agent runs inside each container that
runs TimesTen. The TimesTen Operator communicates with these agents both to
determine the state of TimesTen insides of the container as well as to create, start, stop,
and control TimesTen instances. The agent does not know how to manage TimesTen. It
gives information to the Operator and the Operator provides the instructions for the agent.
This agent knows how to work with TimesTen Classic and TimesTen Scaleout.

About TimesTenClassic and TimesTenScaleout Objects
The TimesTen Operator distribution provides the file you need to deploy the TimesTenClassic
and TimesTenScaleout CRDs in the Kubernetes cluster. Once deployed, Kubernetes
understands the TimesTenClassic and TimesTenScaleout object types, just as it understands
Pods, Secrets, and Services.

You can define objects of type TimesTenClassic or of type TimesTenScaleout or both. This lets
you define the specific attributes for your TimesTen configuration and TimesTen database.

Objects in Kubernetes are named and typed. You can define a TimesTenClassic object named
sample and another TimesTenClassic object named sample2. Similarly, you can define a
TimesTenScaleout object named sample and another TimesTenScaleout object named
sample2. You can have as many of these Kubernetes objects as you want, limited only by the
available resources in your Kubernetes cluster.

Objects of different types have different meanings. For example, an object of type
TimesTenClassic has a different meaning than an object of type ConfigMap. Therefore, you
can define a sample TimesTenClassic object and a sample ConfigMap. The same is true for
TimesTenScaleout objects.

Kubernetes supports namespaces. Namespaces split a cluster into multiple independent ones.
Each namespace has a completely independent set of names. There can be an object of type
a called x in namespace1 and a different object of type a called x in namespace2. For example,
you can define an object of type TimesTenClassic called sample in the namespace1
namespace, and a different object of type TimesTenClassic called sample in the namespace2
namespace. The same is true for TimesTenScaleout objects.

Note:

CRDs are cluster-scoped, not namespace-scoped.

Kubernetes object definitions are expressed in JSON or YAML. The examples in this book use
YAML.

About Provisioning Active Standby Pairs
TimesTen Classic databases almost always run in active standby pairs. Figure 1-1 illustrates
an active standby pair replication scheme. There are two databases. One database is the
active, and the second database is the standby. Applications update the active database. The
standby database is read-only and receives replicated updates from the active database. Only
one of the two databases function as the active database at any one time. If the active

Chapter 1
About TimesTenClassic and TimesTenScaleout Objects

1-3

database fails, the standby database is promoted to be the active. After the failed (active)
database is recovered, it becomes the standby database. See Types of Replication Schemes
in the Oracle TimesTen In-Memory Database Replication Guide for more information on the
active standby pair replication scheme.

Figure 1-1 Active standby pair of TimesTen databases

Checkpoint and
Transaction Log Files

TimesTen IMDB

Standby

Application
Transactions

Application Reads on
Hot Standby

Checkpoint and
Transaction Log Files

TimesTen IMDB

Active

An active standby pair replication scheme is a good fit for Kubernetes. Specifically, consider a
pair of Pods, each with persistent storage, that are running an active standby pair of TimesTen
databases. If the Pod containing the active database fails, Kubernetes automatically spawns
another Pod to take its place, and attaches the appropriate storage to it.

But, since Kubernetes doesn't know anything about TimesTen, it will not automatically perform
the necessary operations to cause the standby database on the surviving Pod to become the
active database. This is where the TimesTen Operator comes in.

TimesTen provides a CRD that adds the TimesTenClassic object type to Kubernetes as well as
an Operator for managing TimesTen databases. The Operator automates setup and initial
configuration, manages databases and replication, and automates failover and recovery.

When you define a TimesTenClassic object, you can specify the configuration of your
TimesTen deployment using Kubernetes facilities. When you create a TimesTenClassic object
in a Kubernetes cluster, a pair of Pods are created, each running TimesTen. Each Pod contains
a TimesTen instance. Each instance provides one TimesTen database. Database replication,
through active standby pairs, is automatically configured. In short, you can deploy highly
available replicated pairs of TimesTen databases and manage them by issuing a small number
of commands.

A Kubernetes Operator manages objects of a particular type. TimesTen provides an Operator
that manages Kubernetes objects of type TimesTenClassic. In so doing, TimesTen can be
deployed, monitored, managed, and controlled in an automated manner with no required
human intervention.

About Deploying a Replicated TimesTenClassic Object
When you create a replicated TimesTenClassic object in the Kubernetes cluster, the process to
create and configure your active standby pair of databases begins. The Operator is invoked

Chapter 1
About Deploying a Replicated TimesTenClassic Object

1-4

and creates several Kubernetes objects that are required to run TimesTen. After the objects
are created and linked together, the TimesTen containers run a script to configure and start the
TimesTen agent. The Operator communicates with the TimesTen agent that is running in each
Pod in order to monitor and control TimesTen. The Operator configures one database as the
active database, copies the active database to the standby, and then configures the active
standby pair replication scheme. The process is described in detail in these sections:

• About Objects Created by the TimesTen Operator

• About the TimesTen Containers and the TimesTen Agent

• Simple Deployment

About Objects Created by the TimesTen Operator
The Operator creates a number of Kubernetes objects that are required to run TimesTen,
including a StatefulSet, a Service, and a Secret. These objects in turn create other objects. All
of these objects are linked together by Kubernetes and are associated with the
TimesTenClassic object you created. Figure 1-2 shows the objects that are created and how
they are linked together.

Figure 1-2 Creating the TimesTenClassic object

TimesTenClassic

Secret StatefulSet Service

Persistent Volume Pod Pod Persistent Volume

TimesTen Container

Log Container

Direct Mode
App Containers

TimesTen Container

Log Container

Direct Mode
App Containers

The objects that are created are described in the following sections:

• StatefulSet

• Service

• Secret

• Pods

Chapter 1
About Deploying a Replicated TimesTenClassic Object

1-5

• Events

StatefulSet
The Operator creates a StatefulSet consisting of two Pods to run TimesTen. Each Pod has one
or more PersistentVolumes (persistent storage), that are mounted in the TimesTen containers.
This is where your TimesTen databases are stored. Applications running in the containers with
PersistentVolumes mounted can create files that live beyond the lifetime of the container. (By
default, all files that containers create and modify automatically vanish when the container
exits. Containers are ephemeral.)

One attribute of a StatefulSet is the number of replicas that can be provisioned. Each
TimesTenClassic object has an associated StatefulSet with two replicas. If one Pod fails,
Kubernetes automatically creates a new one to replace it, and automatically mounts the
appropriate PersistentVolume(s) to it.

For example, for a TimesTenClassic object called sample, the Operator creates a StatefulSet
called sample in the same Kubernetes namespace. The StatefulSet, in turn, creates two Pods
in the namespace, called sample-0 and sample-1.

Service
A Kubernetes Service defines the set of network addresses and ports that should be exposed
to applications in the cluster.

The Operator automatically creates a headless Service when you create the TimesTenClassic
object. It automatically associates this Service with the StatefulSet. This causes Kubernetes to
define entries in the Kubernetes cluster's DNS for the Pods in the StatefulSet, and to keep
those DNS entries up to date.

A headless Service is used such that the DNS name/address entry for the active database is
different than the DNS name/address entry for the standby database. This enables incoming
client connections to be routed to the database that is active. For more information on a
headless Service, see:

https://kubernetes.io/docs/concepts/services-networking/service/#headless-
services/
For a TimesTenClassic object called sample, a headless Service called sample is also created
in the same Kubernetes namespace. This results in entries in the cluster's DNS for
sample-0.sample.namespace.svc.cluster.local and
sample-1.sample.namespace.svc.cluster.local.

Secret
The TimesTen Operator creates a Secret to inject an SSL certificate into the TimesTen
containers. This secures the communication between the TimesTen Operator and the
TimesTen Agent.

Pods
The StatefulSet creates two pods. Each Pod contains three containers:

• The tt container. This TimesTen container is always present in the Pods. It executes the
TimesTen agent and runs TimesTen.

Chapter 1
About Deploying a Replicated TimesTenClassic Object

1-6

https://kubernetes.io/docs/concepts/services-networking/service/#headless-services/
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services/

• The daemonlog container: This container copies the contents of the TimesTen ttmesg.log
file to stdout, resulting in Kubernetes logging the file. This enables the daemon log of the
TimesTen instances to be recorded by the Kubernetes infrastructure.

• The exporter container: This container runs the TimesTen exporter. The TimesTen
exporter is a utility that exports TimesTen metrics to Prometheus or some other scraping
mechanism.

Events
The Operator creates a Kubernetes event whenever important changes occur.

About the TimesTen Containers and the TimesTen Agent
After the objects are created, the TimesTen containers run a script that configures and starts
the TimesTen agent. The Operator communicates with the TimesTen agent running in each
Pod, in order to configure, manage, and monitor TimesTen in that Pod. The agent provides an
HTTPS endpoint in the Pod that the Operator uses to query and control the tt container in the
Pod. If the TimesTen agent fails, the tt container automatically terminates and is re-spawned
by Kubernetes. Figure 1-3 illustrates the two way communication between the Operator and
the TimesTen agent.

Figure 1-3 The Operator and the TimesTen agent

Checkpoint and
Transaction Log Files

TimesTen IMDB

Standby

Checkpoint and
Transaction Log Files

TimesTen IMDB

Active

TimesTen Agent TimesTen Agent

TimesTen Operator

The TimesTen agent starts TimesTen and thus runs as the instance administrator user. It has
full control over TimesTen.

Simple Deployment
The TimesTen Operator is designed for simple deployment of your active standby pairs of
TimesTen Classic databases and for automated failure detection and recovery. For example,

• You decide you want to deploy a new replicated pair of TimesTen databases.

Chapter 1
About Deploying a Replicated TimesTenClassic Object

1-7

• You decide the attributes of those databases.

• You create the configuration files for those attributes.

• You use the kubectl create command to create a TimesTenClassic object to represent the
replicated pair.

• You use the kubectl get and kubectl describe commands to observe the provisioning of
the active standby pair.

• Applications that run in other Pods use TimesTen's standard client/server drivers to access
TimesTen databases.

You do not have to monitor the TimesTen databases continually, configure replication, perform
failover, or re-duplicate a database after failure. The TimesTen Operator performs all these
functions and works to keep the databases up and running with minimal effort on your part.

About Deploying a TimesTen Scaleout Grid and Database
When you create a TimesTenScaleout object in the Kubernetes cluster, the process to create
and configure the TimesTen Scaleout grid and its associated database begins. Kubernetes
informs the TimesTen Operator that a TimesTenScaleout object has been created. The
Operator begins the process of creating several Kubernetes objects that are required to deploy
the grid.

Topics:

• StatefulSets

• Services

• Secret

• Persistent Volume Claims and Pods

• Password-less ssh

• Quick Rollout

StatefulSets
The TimesTen Operator creates the following StatefulSets:

• One StatefulSet that provides the management instance for the grid. The underlying Pod
for this management instance is also created.

• One StatefulSet that provides one or more ZooKeeper instances. There is one StatefulSet
replica for each Zookeeper instance. For example, if there are three ZooKeeper instances,
there is one StatefulSet and this one StatefulSet has three replicas.

• One or more additional StatefulSets, the number of which is determined by your K-Safety
(k) value. For example, a k value of 2 means that there are two copies of your TimesTen
database. One copy of your database resides in data space one, and the second copy in
data space two. In the Kubernetes environment, the TimesTen Operator creates k
StatefulSets. Using the previous example, if k is set to 2, the Operator creates two
StatefulSets. Each of the k StatefulSets provides Pods to implement a single data space in
the resultant grid.

The number of replicas for each StatefulSet is determined by the number of replica sets
you want in your grid. A replica set contains k elements, where each element in the replica
set is an exact copy of the other elements in the replica set. For example, if you want three
replica sets in your grid, each StatefulSet has three replicas. Each replica contains a Pod

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-8

for one data instance. Therefore, in this example, one StatefulSet has three Pods each of
which contain one data instance. The second StatefulSet (assuming k=2) also has three
replicas and each replica also contains a Pod for one data instance. Therefore, the second
StatefulSet has three Pods each of which contain one data instance.

In summary, in a case where k is set to 2 and the number of replica sets is 3, the Operator
creates two StatefulSets, each with three replicas. Each StatefulSet provides the Pods to
implement a single data space. There are a total of six Pods created for the six data
instances.

Services
The TimesTen Operator creates the following headless Services:

• One headless Service that provides DNS names for the Pods that contain the
management and data instances. This Service enables client/server access to the Pods
using the TimesTen client/server port 6625.

• One headless Service that provides DNS names for the Pods that contain the ZooKeeper
instances. This Service enables access to the Zookeeper internal ports 2888 and 3888, as
well as the external port 2181.

Secret
The TimesTen Operator creates a Secret to inject an SSL certificate into the TimesTen
containers. This secures the communication between the TimesTen Operator and the
TimesTen Agent.

Persistent Volume Claims and Pods
The TimesTen Operator creates Persistent Volume Claims (PVCs) for the TimesTen and
ZooKeeper Pods. These PVCs cause persistent volumes to be allocated by Kubernetes and
attached to the TimesTen and ZooKeeper Pods. See Persistent Storage.

Each Pod that runs a ZooKeeper instance consists of a single container called zookeeper.

Each Pod that runs TimesTen consists of at least two containers:

• tt container: Runs the TimesTen Agent and TimesTen.

• daemonlog container: Writes the TimesTen daemonlog to stdout. This enables the daemon
log of the TimesTen instances to be recorded by the Kubernetes infrastructure.

As the tt containers in the TimesTen Pods start, the Operator assembles them into a working
grid.

Password-less ssh
A TimesTen Scaleout grid relies on password-less ssh among the instances of the grid. The
TimesTen Operator automatically configures password-less ssh among the tt containers in the
grid in your Kubernetes environment. There is no intervention that you need to do.

Quick Rollout
The TimesTen Kubernetes Operator provides the functionality for deploying TimesTen Scaleout
grids and their associated databases. The TimesTen Operator rolls out the grid quickly and
proficiently.

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-9

The Operator creates the StatefulSets and Services that are required to deploy the grid. It
creates the ZooKeeper Pods. When the TimesTen Agent in the management Pod starts up, the
Operator instructs the agent to create a TimesTen instance and grid. The Operator waits for all
of the TimesTen agents in all of the Pods to start. Once all of the agents have started, the
Operator instructs the agent in the management instance to create the hosts, the installations,
and the instances in the grid's model for the data instances in the grid. The DbDef is created as
are any direct and client/server connectables. The model is applied and the data instances of
the grid are created.

The Operator instructs the management instance to create the database and to create the
initial distribution map. The Operator then instructs the TimesTen agent in one data instance to
run the TimesTen ttIsql utility to create initial database users and objects.

The grid and databases are created. The TimesTen agent opens the database for connections.

The grid rollout is quick and proficient with little or no intervention from you. Once the grid is
rolled out, the TimesTen Operator does not manage the grid or database or perform
maintenance operations.

Here is additional information:

• For information about TimesTen Scaleout: See Overview of TimesTen Scaleout in the
Oracle TimesTen In-Memory Database Scaleout User's Guide.

• For information about deploying a TimesTen Scaleout grid and database in Kubernetes:
See Deploy TimesTen Scaleout Databases in this book.

Chapter 1
About Deploying a TimesTen Scaleout Grid and Database

1-10

2
Prepare to Use the TimesTen Kubernetes
Operator

Before you can use the TimesTen Kubernetes Operator (TimesTen Operator), you must choose
a container image that contains TimesTen and a container registry that contains TimesTen
container images. You must also obtain TimesTen YAML manifest files and Helm charts. These
files and charts are necessary to deploy the TimesTen Operator.

This chapter discusses your options and then shows you how to perform the tasks for each
option.

Topics:

• About TimesTen Container Images and Container Registry Options

• Before You Begin

• Choose a TimesTen Container Image

• Obtain TimesTen YAML Manifest Files and Helm Charts

About TimesTen Container Images and Container Registry
Options

A TimesTen container image contains everything that is needed to run the TimesTen Operator
and TimesTen containers in the TimesTen Pods created by this Operator. You can acquire
these container images from a number of container registries. In addition, TimesTen provides a
Dockerfile that lets you build your own TimesTen container image that you can then store in a
container registry of your choice.

A TimesTen container image stored in a container registry is necessary to run TimesTen and
the TimesTen Operator in your Kubernetes cluster.

TimesTen provides several options for obtaining a TimesTen container image for use in your
Kubernetes environment:

• Container images on Oracle Container Registry (container-registry.oracle.com):
TimesTen publishes official TimesTen container images to two TimesTen repositories on
Oracle Container Registry:

– timesten: Contains TimesTen container images for Oracle TimesTen In-Memory
Database (TimesTen). This repository contains container images that run a licensed
copy of TimesTen. Using container images in this repository require that you accept
the Oracle license agreement.

For information about TimesTen, see Overview for the Oracle TimesTen In-Memory
Database in Oracle TimesTen In-Memory Database Introduction.

– timesten-xe: Contains TimesTen container images for Oracle TimesTen In-Memory
Database Express Edition (TimesTen XE). The TimesTen XE license enables free of
charge usage of TimesTen and is subject to Oracle Free Use Terms and Conditions.
You do not need to accept an Oracle license agreement to use TimesTen container
images in this repository.

2-1

https://container-registry.oracle.com/ords/ocr/ba/timesten
http://www.oracle.com/pls/topic/lookup?ctx=en/database/other-databases/timesten/22.1&id=oracle-free-licensing

For information about TimesTen XE, see Overview in Oracle TimesTen In-Memory
Database Quick Start Guide for Express Edition.

A TimesTen container image on Oracle Container Registry corresponds to a specific
TimesTen release. For example, the container-registry.oracle.com/timesten/
timesten/22.1.1.34.0 container image contains TimesTen release 22.1.1.34.0. Simply
scroll through the list of container images on Oracle Container Registry to identify a
container image that you want to use when deploying the TimesTen Operator and
TimesTen databases in your Kubernetes environment.

• Container images on Oracle Cloud Marketplace: TimesTen provides a container listing
called Oracle TimesTen In-Memory Database for Kubernetes - BYOL. You use this listing
to export a TimesTen container image into a repository in Oracle Cloud Infrastructure
Registry (Container Registry). See Introduction in the Oracle TimesTen In-Memory
Database Using Oracle Cloud Marketplace to Obtain a TimesTen Container Image (BYOL)
guide.

• Build your own TimesTen container image: If you have a TimesTen distribution, you can
use the Dockerfile file provided in this distribution to build a TimesTen container image. You
can then tag and push this container image to a container registry of your choice.

Before You Begin
Ensure to set up the following:

• A working Kubernetes cluster:

– Your cluster must provide a StorageClass that is used to request Persistent Volumes.
You must know the name of this storage class. For example, in Oracle Cloud
Infrastructure Container Engine for Kubernetes (OKE), you can use the oci-bv storage
class. The examples in this book use this oci-bv storage class.

– The nodes in your cluster must have their clocks synchronized through NTP, or
equivalent.

Note:

For a list of supported Kubernetes releases, see the Oracle TimesTen In-Memory
Database Release Notes.

• A development host to access the Kubernetes cluster. For this host, ensure the following:

– The host resides outside the Kubernetes cluster.

– You can control and access the Kubernetes cluster from this host.

– You install the following command line tools on the host:

* kubectl: You use kubectl to communicate with the Kubernetes cluster.

* docker or podman: You use docker or podman when working with TimesTen
container images on your local development host.

Chapter 2
Before You Begin

2-2

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/reference/kubectl/

Note:

The podman tool has a command that mimics docker. Examples in this
guide use the docker command. See podman in the Podman
documentation.

* helm: You can use TimesTen Helm charts to deploy the TimesTen Kubernetes
Operator and create TimesTen databases, If you plan on using TimesTen Helm
charts, install the helm command line utility.

Let's run through a quick test to verify you have docker and kubectl pre-installed and
configured on your development host.

1. On your development host, run docker hello-world.

docker run hello-world

The output is similar to the following:

!... Hello Podman World ...!

 .--"--.
 / - - \
 / (O) (O) \
   ~~~| -=(,Y,)=- |
    .---. /`  \   |~~
 ~/  o  o \~~~~.----. ~~
  | =(X)= |~  / (O (O) \
   ~~~~~~~  ~| =(Y_)=-  |
  ~~~~    ~~~|   U      |~~

Project:   https://github.com/containers/podman
Website:   https://podman.io
Desktop:   https://podman-desktop.io
Documents: https://docs.podman.io
YouTube:   https://youtube.com/@Podman
X/Twitter: @Podman_io
Mastodon:  @Podman_io@fosstodon.org

2. Confirm kubectl returns the nodes in your Kubernetes cluster.

kubectl get nodes

The output is similar to the following:

NAME          STATUS   ROLES   AGE    VERSION
192.0.2.1     Ready    node    32d    v1.27.2
192.0.2.2     Ready    node    31d    v1.27.2
192.0.2.4     Ready    node    101d   v1.27.2
192.0.2.6     Ready    node    101d   v1.27.2
192.0.2.10    Ready    node    32d    v1.27.2

Chapter 2
Before You Begin

2-3

https://podman.io/
https://helm.sh/


Choose a TimesTen Container Image
As discussed in About TimesTen Container Images and Container Registry Options, you have
several options for obtaining TimesTen container images for use in your Kubernetes
environment. Choose one of the following options and complete the tasks for the option.

• Option 1: Use a Container Image from Oracle Container Registry

• Option 2: Use a Container Image from Oracle Cloud Marketplace

• Option 3: Build a Container Image and Push It to a Container Registry of Your Choice

Option 1: Use a Container Image from Oracle Container Registry
Here are the tasks to use a TimesTen container image from Oracle Container Registry:

• Create Auth Token

• Accept the Oracle License Agreement

• Configure Your Development Host and Kubernetes Cluster

Create Auth Token
1. From a web browser, log in to the Oracle Container Registry web interface using your

Oracle account.

2. In the upper right hand corner next to your Oracle login, expand the down arrow, and
choose Auth Token.

3. On the Auth Token page, choose Generate Key.

4. Copy and save the generated key (auth token) in a safe location. You need it later.

Accept the Oracle License Agreement
1. If you are not already on Oracle Container Registry, log in to the Oracle Container Registry

web interface using your Oracle account.

2. From the TimesTen Repositories page, in the Repository column, choose either the
timesten or timesten-xe repository. The timesten repository contains container images
for running TimesTen, whereas the timesten-xe repository contains container images for
running TimesTen XE.

3. Accept the Oracle license agreement. Complete this step only if you choose container
images in the timesten repository. Since TimesTen is a licensed Oracle product, you must
accept the Oracle license agreement to use a container image in this repository. You only
need to complete this step once.

a. On the Official container images for the Oracle TimesTen In-Memory Database
page, to the right of the Quick Reference Description, locate the Select Language
drop down list. In the Select Language drop down list, choose your language. Then,
review the text before the Continue button and click Continue.

The text that is displayed before the Continue button is similar to the following: "You
must agree to and accept the Oracle Standard Terms and Restrictions prior to
downloading from the Oracle Container Registry. Please read the license agreement
on the following page carefully."

Chapter 2
Choose a TimesTen Container Image

2-4

https://container-registry.oracle.com/ords/ocr/ba/timesten
https://container-registry.oracle.com/ords/ocr/ba/timesten
https://container-registry.oracle.com/ords/ocr/ba/timesten
https://container-registry.oracle.com/ords/ocr/ba/timesten


b. On the Oracle Standard Terms and Restrictions page, review the information on the
page, then at the bottom of the page, click Accept.

The Official container images for the Oracle TimesTen In-Memory Database page
displays for a second time. To the right of the Quick Reference Description, look for a
green check mark with text similar to the following: "You last accepted the Oracle
Standard Terms and Restrictions on 01/08/2025 at 01:28 PM Coordinated Universal Time
(UTC)."

4. Choose a TimesTen container image.

On either the timesten or timesten-xe repository page, scroll through the list of container
images to identify a TimesTen container image that you want to use for deploying the
TimesTen Kubernetes Operator in your Kubernetes cluster.

For example, let's choose container-registry.oracle.com/timesten/
timesten:22.1.1.34.0.

Here's a summary sheet of the information obtained. Save it for future reference.

Item Example

Your Oracle Container Registry user name john.smith@example.com
Generated auth token z1SbLO4JgwqzLEn1ZxJ
Container image container-registry.oracle.com/timesten/

timesten:22.1.1.34.0

Configure Your Development Host and Kubernetes Cluster
1. On your development host, use the docker login command to log in to Oracle Container

Registry.

docker login container-registry.oracle.com

At the prompt, enter the following:

• username: Enter the username you use to sign in to the Oracle Container Registry web
interface. This example uses john.smith@example.com.

• password: Enter the auth token you previously generated and saved.

Username: john.smith@example.com
Password: auth token
Login Succeeded!

If you are using docker, the docker login operation creates or updates
the $HOME/.docker/config.json file with the auth token you provided when you were
prompted for your password. You now can use docker to access and pull TimesTen
container images from Oracle Container Registry to your local development host.

If you are using podman, the credentials may be stored in a different location. See https://
docs.podman.io/en/v4.3/markdown/podman-login.1.html.

Chapter 2
Choose a TimesTen Container Image

2-5

https://docs.podman.io/en/v4.3/markdown/podman-login.1.html
https://docs.podman.io/en/v4.3/markdown/podman-login.1.html


2. (Optional): Confirm the credentials are stored in the config.json file. This example
assumes the credentials are located in $HOME/.docker/config.json.

cat $HOME/.docker/config.json

The output contains the auth token for container-registry.oracle.com.

{
        "auths": {
                "container-registry.oracle.com": {
                        "auth": "z1SbLO4JgwqzLEn1ZxJ"}
                
                 }
}

3. Pull the TimesTen container image from Oracle Container Registry.

docker pull container-registry.oracle.com/timesten/timesten:22.1.1.34.0

4. Create the image pull secret. This example creates the sekret secret. You can use any
name.

kubectl create secret generic sekret \
--from-file=.dockerconfigjson=$HOME/.docker/config.json \
--type=kubernetes.io/dockerconfigjson

5. (Optional): Confirm the Secret is created in your Kubernetes cluster.

kubectl get secrets
NAME                               TYPE                             DATA   
AGE
sekret                             kubernetes.io/dockerconfigjson   1      
1d

For more information, see Pulling Images from Registry during Deployment in the
Kubernetes documentation.

6. Save the name of the image pull secret. You need it later.

Congratulations! You obtained a TimesTen container image from Oracle Container Registry.

Next Steps

Proceed to Obtain TimesTen YAML Manifest Files and Helm Charts.

Option 2: Use a Container Image from Oracle Cloud Marketplace
See Introduction in the Oracle TimesTen In-Memory Database Using Oracle Cloud
Marketplace to Obtain a TimesTen Container Image (BYOL) guide.

Option 3: Build a Container Image and Push It to a Container Registry of
Your Choice

Here are the tasks to build a TimesTen container image and push it to a registry of your choice:

Chapter 2
Choose a TimesTen Container Image

2-6



• Configure Your Development Host and Kubernetes Cluster

• Download and Unpack a TimesTen Distribution

• Build a TimesTen Container Image

• Tag and Push the Container Image to Your Container Registry

Configure Your Development Host and Kubernetes Cluster
Let's choose container-registry.visioncorp.com/repo for the registry and repository of
your choice.

1. On your development host, use the docker login command to log in to your container-
registry.visioncorp.com container registry. At the prompt, enter your credentials for your
container registry.

docker login container-registry.visioncorp.com

If you are using docker, the docker login operation creates or updates
the $HOME/.docker/config.json file with the auth token you provided when you were
prompted for your password.

If you are using podman, the credentials may be stored in a different location. See https://
docs.podman.io/en/v4.3/markdown/podman-login.1.html

2. On your development host, create an image pull secret.

A Kubernetes Secret takes a copy of your credentials from the docker login command
and makes them available to your Kubernetes cluster.

This example creates a Secret called sekret. You can use any name.

kubectl create secret generic sekret \
--from-file=.dockerconfigjson=$HOME/.docker/config.json \
--type=kubernetes.io/dockerconfigjson

For more information, see Pulling Images from Registry during Deployment in the
Kubernetes documentation.

3. Save the name of the image pull secret. You need it later.

Download and Unpack a TimesTen Distribution
1. Download a TimesTen distribution to a download_location.

2. On your development host, from the directory of your choice:

• Create one subdirectory for the TimesTen distribution. This example creates the
installation_dir subdirectory.

• Create a second subdirectory for the TimesTen Operator distribution. This example
creates the kube_files subdirectory.

mkdir -p installation_dir
mkdir -p kube_files

Chapter 2
Choose a TimesTen Container Image

2-7

https://docs.podman.io/en/v4.3/markdown/podman-login.1.html
https://docs.podman.io/en/v4.3/markdown/podman-login.1.html


3. Change to the TimesTen distribution subdirectory. Next, copy the TimesTen distribution that
you previously downloaded into this subdirectory.

cd installation_dir
cp download_location/timesten2211340.server.linux8664.zip .

4. Unpack the TimesTen distribution.

unzip timesten2211340.server.linux8664.zip

The output is similar to the following:

Archive:  timesten2211340.server.linux8664.zip
   creating: tt22.1.1.34.0/
   ...
   creating: tt22.1.1.34.0/kubernetes/
 extracting: tt22.1.1.34.0/kubernetes/operator.zip
...

The TimesTen Kubernetes Operator distribution is installation_dir/tt22.1.1.34.0/
kubernetes/operator.zip.

Note:

Do not delete the TimesTen distribution. You need it later.

5. Change to the TimesTen Kubernetes Operator subdirectory you created in a previous step.
(In this example, kube_files.) Next, unpack the TimesTen Kubernetes Operator
distribution.

cd kube_files
unzip installation_dir/tt22.1.1.34.0/kubernetes/operator.zip

The output is similar to the following:

Archive:  installation_dir/tt22.1.1.34.0/kubernetes/operator.zip
   ...
   creating: helm/
   creating: helm/ttclassic/
   ...
   creating: helm/ttcrd/
   ...
   creating: helm/ttoperator/
   ...
   creating: deploy/
  inflating: deploy/crd.yaml
  inflating: deploy/service_account.yaml 
  inflating: deploy/service_account_cluster.yaml
  inflating: deploy/operator.yaml
   creating: image/
  inflating: image/Dockerfile

Chapter 2
Choose a TimesTen Container Image

2-8



   creating: operator/
  ...

Build a TimesTen Container Image
TimesTen provides the files you need to build a TimesTen container image in its TimesTen
Kubernetes Operator distribution. In this example, the directory that contains the unzipped
TimesTen Kubernetes Operator distribution is kube_files.

1. On your development host, change to the image directory of the unzipped TimesTen
Kubernetes Operator distribution (kube_files/image, in this example).

cd kube_files/image

2. Copy the TimesTen distribution into the directory. In a previous example, you created the
installation_dir directory. This directory contains the TimesTen distribution.

cp installation_dir/timesten2211340.server.linux8664.zip .

3. On your development host, change to the kube_files/image directory if you are not in that
directory. Next, use the docker build command to build a TimesTen container image.

This example specifies the following Dockerfile ARGs on the command line.

• TT_DISTRO: The name of the file containing the TimesTen distribution
(timesten2211340.server.linux8664.zip, in this example).

• TT_RELEASE: The name of the TimesTen release in dotted format (22.1.1.34.0, in this
example).

docker build -t ttimage:22.1.1.34.0 \
--build-arg TT_DISTRO=timesten2211250.server.linux8664.zip \
--build-arg TT_RELEASE=22.1.1.34.0 .

The build process starts. When completed, output similar to the following displays:

Successfully tagged ttimage:22.1.1.34.0

The name of the container image is ttimage:22.1.1.34.0.

4. Save the name of the container image. You need it later.

Congratulations! You successfully built a TimesTen container image.

Tag and Push the Container Image to Your Container Registry
Let's use the container image you built in Build a TimesTen Container Image. In the example,
the name of the image is ttimage:22.1.1.34.0.

1. On your development host, tag the TimesTen container image.

docker tag ttimage:22.1.1.34.0 container-registry.visioncorp.com/
repo:ttimage22.1.1.34.0

Chapter 2
Choose a TimesTen Container Image

2-9



2. Push the TimesTen container image to your container registry.

docker push container-registry.visioncorp.com/repo:ttimage22.1.1.34.0

Note:

To reduce the size of the final TimesTen container image, the Dockerfile uses a
multi-stage build. This results in a dangling image left behind. To locate dangling
images, use the docker command with the -f filter flag with a value of
dangling=true. Once you locate the dangling image, you can use the docker
image prune command to remove it. This example removes all dangling images.

docker images -f dangling=true
docker image prune

Congratulations! You successfully tagged and pushed a TimesTen container image to a registry
of your choice.

Next Steps

Proceed to Obtain TimesTen YAML Manifest Files and Helm Charts.

Obtain TimesTen YAML Manifest Files and Helm Charts
TimesTen provides YAML manifest files and Helm charts in TimesTen container images. You
use these files and charts to install the TimesTen Operator and create TimesTen databases in
your Kubernetes cluster.

Now that you have completed the tasks to obtain and use a TimesTen container image in your
Kubernetes environment, you can use this container image to obtain TimesTen YAML manifest
files and Helm charts. To do so, you create a container from the container image and copy the
TimesTen YAML manifest files and Helm charts from the container to a location on your
development host.

In this example, let's use a container image located on Oracle Container Registry. If you are
using a container image in another location, use it instead. Let's walk through the steps to copy
the TimesTen YAML manifest files and Helm charts from this container image to a directory on
your development host. This example uses container-registry.oracle.com/timesten/
timesten:22.1.1.34.0.

1. On your development host, from a directory of your choice, create a subdirectory for the
TimesTen YAML manifest files and Helm charts. This example creates the kube_files
subdirectory.

mkdir -p kube_files

2. Create a new container from the container-registry.oracle.com/timesten/
timesten:22.1.1.34.0 image, supplying a name for the new container. In this example,
the name of the container is ttoper.

docker create --name ttoper container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

Chapter 2
Obtain TimesTen YAML Manifest Files and Helm Charts

2-10



3. Copy the YAML manifest files and Helm charts from the ttoper container to the
kube_files directory on your development host. The ttoper:/timesten/operator/deploy
directory contains the YAML manifest files and the ttoper:/timesten/operator/helm
directory contains the Helm charts.

docker cp ttoper:/timesten/operator/deploy kube_files
docker cp ttoper:/timesten/operator/helm kube_files

Verify the directories exist on your development host.

ls kube_files/*

The output is the following:

kube_files/deploy:
crd.yaml  operator.yaml  service_account.yaml service_account_cluster.yaml

kube_files/helm:
ttclassic  ttcrd  ttoperator

The deploy directory contains the TimesTen YAML manifest files and the helm directory
contains the TimesTen Helm charts. You use these files later to deploy the TimesTen
Operator and create TimesTen databases.

4. Remove the ttoper container.

docker rm ttoper

5. Remove the TimesTen container image.

docker image rm container-registry.oracle.com/timesten/timesten:22.1.1.34.0

Congratulations! You successfully obtained the TimesTen YAML manifest files and Helm
charts.

Next Steps

You are now ready to install the TimesTen Custom Resource Definitions (CRDs). See the next
chapter Install TimesTen Custom Resource Definitions.

Chapter 2
Obtain TimesTen YAML Manifest Files and Helm Charts

2-11



3
Install TimesTen Custom Resource Definitions

Learn about TimesTen Custom Resource Definitions (CRDs) and how to install them.

Topics:

• About TimesTen CRDs

• Install TimesTen CRDs

About TimesTen CRDs
Kubernetes operates on objects of various built-in object types, including Pods, Services, and
StatefulSets. One way to extend Kubernetes is with CRDs. CRDs define new object types to
Kubernetes. Once installed, Kubernetes understands these object types just like it understands
Pods, Services, StatefulSets, and all other built-in object types.

The TimesTen Kubernetes Operator (TimesTen Operator) provides two CRDs,
TimesTenClassic and TimesTenScaleout. The TimesTenClassic CRD defines the attributes and
metadata for TimesTen Classic databases while the TimesTenScaleout CRD defines the
attributes and metadata for TimesTenScaleout grids and associated databases.

The CRD definition, including the object type and its set of attributes, is referred to as a
schema.

Kubernetes supports CRD versioning whereby different versions of the same CRD are
supported simultaneously and each version can provide a different schema. This enables the
attributes of a CRD to be extended from release to release.

The TimesTen Operator provides different versions of the TimesTenClassic CRD. The v4
schema version is the most current. It provides the attributes of the v2 schema version plus
additional attributes specific to the latest release of the TimesTen Operator. When defining new
TimesTenClassic objects, use the v4 schema version. The v3 and v2 schema versions are
available to facilitate compatibility with previous releases of the TimesTen Operator. No
additional changes are made to these schema versions.

Note:

The v2 schema version is deprecated. It is fully supported in this release. However, it
will be removed in a future release.

For more information about the TimesTenClassic CRD, see About the TimesTenClassic Object
Type.

Install TimesTen CRDs
CRDs are cluster-scoped. When you install CRDs in your Kubernetes cluster, the installation
affects all namespaces within the cluster.

3-1



Let's walk-through an example showing you how to install the TimesTen CRDs using a
TimesTen YAML manifest file. If you want to use TimesTen Helm charts, see Use Helm in Your
TimesTen Kubernetes Operator Environment.

Before you begin the following steps, ensure you complete the tasks in Prepare to Use the
TimesTen Kubernetes Operator. After completing the tasks, the TimesTen YAML manifest files
and Helm charts reside in a location on your development host. In this example, the location is
kube_files/deploy.

1. On your development host, change to the kube_files/deploy directory.

cd kube_files/deploy

2. Install the TimesTen CRDs.

kubectl create -f crd.yaml

The output is the following:

customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com created

3. Verify installation.

kubectl get crds | grep timesten

The output is similar to the following:

timestenclassics.timesten.oracle.com                  2025-01-17T14:41:03Z

Congratulations! You successfully installed the TimesTen CRDs. You are now ready to install
the TimesTen Kubernetes Operator. Proceed to Learn About and Install the TimesTen
Kubernetes Operator.

Chapter 3
Install TimesTen CRDs

3-2



4
Learn About and Install the TimesTen
Kubernetes Operator

The TimesTen Kubernetes Operator (TimesTen Operator) creates, manages, and monitors
TimesTenClassic objects (and associated databases) in your Kubernetes environment. Let's
learn about the TimesTen Operator and walk through the steps to install it.

Topics:

• About Kubernetes Operators

• About the TimesTen Operator

• About Deploying in a Multi-Architecture Kubernetes Cluster

• About the Default Kubernetes Security Context for the TimesTen Operator

• About Readiness and Liveness Probes

• About Privileges

• About Installing the TimesTen Operator

• About Customizations for a TimesTen Operator Deployment

• Install the TimesTen Operator

About Kubernetes Operators
Kubernetes Operators monitor a Kubernetes cluster for the creation of objects of specified
types. When you create an object of a supported type, a Kubernetes Operator takes action to
implement the object. Kubernetes Operators can be namespace-scoped or cluster-scoped.
Namespace-scoped Operators monitor a Kubernetes cluster looking for supported objects in
the namespace in which the Operator is running whereas cluster-scoped Operators monitor a
Kubernetes cluster looking for supported objects in any namespace in the cluster.

TimesTen provides a customized Kubernetes Operator called the TimesTen Kubernetes
Operator.

About the TimesTen Operator
The TimesTen Operator is an application that functions like a human operator. It creates,
monitors, and manages TimesTen databases in a Kubernetes cluster. It configures a database,
configures the database's users and schema, and if applicable, configures cache and
replication. The TimesTen Operator automatically manages and monitors the health of
TimesTen databases and takes action to fix problems. For example, in an active standby pair
replication scheme, if the active database fails, the TimesTen Operator takes automatic action
by promoting the standby to the new active. Kubernetes replaces the failed Pod that contains
the active database. The TimesTen Operator brings TimesTen back up as the new standby in
this replaced Pod. The TimesTen Operator performs these operations automatically and there
is no human intervention needed. This TimesTen Operator can create and manage many
TimesTen databases simultaneously.

4-1

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/


You can install the TimesTen Operator in either of the following ways:

• In one or more namespaces in your Kubernetes cluster at namespace-scope (namespace-
scoped).

• In the timesten-operator namespace in your Kubernetes cluster at cluster-scope (cluster-
scoped). The timesten-operator namespace is non-configurable and is reserved for
internal use. This namespace is explained in later sections.

You have the option of deciding which is best. Let's look at these options in further detail.

• If you install the TimesTen Operator in a namespace in your Kubernetes cluster at
namespace-scope, you can then create TimesTenClassic objects in that same namespace.
The TimesTen Operator provisions Pods, Services, and other Kubernetes resources
necessary to deploy TimesTen databases in this same namespace. If you want to deploy
TimesTen databases in multiple namespaces, you must install multiple copies of the
TimesTen Operator, one in each namespace. While this adds complexity, it also adds
flexibility. For example, since it is possible to run different versions of the TimesTen
Operator in each namespace, test and production environments can share a single cluster.

• If you install the TimesTen Operator in a Kubernetes cluster at cluster-scope, a new
namespace called timesten-operator is created in the cluster. The TimesTen Operator
runs in this timesten-operator namespace. All other namespaces in the Kubernetes
cluster can create TimesTenClassic objects. These objects are handled by this TimesTen
Operator. The Pods, Services, and other Kubernetes resources that are used to provision
these databases reside in the namespace of the associated TimesTenClassic object. Since
there is only one TimesTen Operator that manages all TimesTenClassic objects, this option
adds a less complex environment. However, this environment is less flexible. For example,
there can only be one version of the TimesTen Operator, so test and production
environments may not be able to share a single cluster if these environments require
different versions of the TimesTen Operator.

Note:

The timesten-operator namespace is reserved for internal use. You must not
run anything in the timesten-operator namespace. In addition, you must create
TimesTenClassic objects in your own namespaces.

Regardless of which scope you use, when you create a TimesTenClassic object in a
namespace (X, for example), any references to other Kubernetes objects included in that object
also refer to objects in namespace X. This includes dbConfigMap, dbSecret, imagePullSecret,
and all other object references. A TimesTenClassic object in namespace X cannot refer to such
objects in other namespaces.

About Deploying in a Multi-Architecture Kubernetes Cluster
Kubernetes supports single architecture and multi-architecture clusters. A single architecture
cluster is a cluster in which nodes within the cluster use the same computer instruction set. For
example, a single-architecture cluster could consist of all arm64 nodes or all amd64 nodes. A
multi-architecture cluster is a Kubernetes cluster in which nodes within the cluster may be of
different computer instruction sets. For example, a multi-architecture cluster could consist of
both amd64 and arm64 nodes.

The TimesTen Operator runs in single and multi-architecture Kubernetes clusters. Pods that
are created by the TimesTen Operator run on nodes of the same node type as the TimesTen

Chapter 4
About Deploying in a Multi-Architecture Kubernetes Cluster

4-2



Operator. For example, if the TimesTen Operator runs on amd64 nodes, Pods created by this
TimesTen Operator also run on amd64 nodes.

If you are running the TimesTen Operator in a namespace-scoped environment, you can
deploy the TimesTen Operator in one namespace on arm64 nodes (and have it provision and
manage TimesTen on arm64 nodes) and you can deploy a second TimesTen Operator in a
different namespace on amd64 nodes (and have it provision and manage TimesTen on amd64
nodes). However, if you are running the TimesTen Operator in a cluster-scoped environment,
you must use the same node type. For more information about namespace-scoped and
cluster-scoped Operators, see About Kubernetes Operators and About the TimesTen Operator.

The affinity settings of both the TimesTen Operator YAML manifest files and the TimesTen
Operator helm charts control whether the Operator and the objects it manages uses arm64 or
amd64 nodes. For example, here is a snippet of the affinity section of a TimesTen Operator
YAML manifest file:

# An example affinity definition; this pod will only be assigned to a node
# running on amd64 (the default)
#
#     affinity:
#       nodeAffinity:
#         requiredDuringSchedulingIgnoredDuringExecution:
#           nodeSelectorTerms:
#             - matchExpressions:
#               - key: "kubernetes.io/arch"
#                 operator: In
#                 values: ["amd64"]
...

If your Kubernetes cluster consists of a single architecture, you do not need to change the
affinity section. However, if you are using a multi-architecture cluster, you must instruct
Kubernetes to deploy the TimesTen Operator on a specific architecture. Here's how:

• Uncomment the .affinity.nodeAffinity section.

• In the .affinity.nodeAffinity.nodeSelectorTerms section where key has the value
"kubernetes-io/arch", specify either "amd64" or "arm64" for values.

For example, to instruct Kubernetes to deploy the TimesTen Operator and the objects it
manages on amd64 nodes, do the following:

# An example affinity definition; this pod will only be assigned to a node
# running on amd64 (the default)
#
      affinity:
       nodeAffinity:
         requiredDuringSchedulingIgnoredDuringExecution:
           nodeSelectorTerms:
             - matchExpressions:
               - key: "kubernetes.io/arch"
                 operator: In
                 values: ["amd64"]
...

Valid values are as follows:

Chapter 4
About Deploying in a Multi-Architecture Kubernetes Cluster

4-3



• "amd64": Use this for TimesTen Operators that you want to run on amd64 nodes.

• "arm64": Use this for TimesTen Operators that you want to run on arm64 nodes.

About the Default Kubernetes Security Context for the TimesTen
Operator

A Kubernetes security context defines privilege and access control settings for a Pod or
Container. There are several security context settings. See Configure a Security Context for a
Pod or Container in the Kubernetes documentation.

The TimesTen Operator runs with a default security context and includes the Kubernetes
default seccomp profile.

The following snippet shows the default security context for the TimesTen Operator.

    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop:
        - ALL
      privileged: false
      readOnlyRootFilesystem: true
      runAsNonRoot: true
      seccompProfile:
        type: RuntimeDefault

About Readiness and Liveness Probes
The TimesTen Operator provides readiness and liveness probes so that Kubernetes can
determine the health of the TimesTen Operator.

The TimesTen Operator exposes these probes to applications in the Kubernetes cluster by
creating a Kubernetes Service called timesten-operator. Although we do not recommend it,
you can choose to not expose these probes by setting the TimesTen Operator EXPOSE_PROBES
environment variable to "0" or by modifying the TimesTen Operator helm charts.

For information about the TimesTen Operator environment variables, see TimesTen
Kubernetes Operator Environment Variables. For information about helm charts, see Use Helm
in Your TimesTen Kubernetes Operator Environment.

About Privileges
The TimesTen Operator needs different privileges depending on whether you install the
TimesTen Operator at namespace-scoped or at cluster-scoped.

• When the TimesTen Operator runs in a namespace in your cluster at namespace-scope, it
only needs privileges within the namespace where you installed it. The TimesTen Operator
does not require privileges in any other namespace in the cluster.

• When the TimesTen Operator runs in the timesten-operator namespace in your cluster at
cluster-scope, it needs privileges within the namespace it runs in as well as in every
namespace in the cluster.

Chapter 4
About the Default Kubernetes Security Context for the TimesTen Operator

4-4

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/reference/node/seccomp/


Kubernetes uses Roles and RoleBindings to specify privileges within a single namespace and
uses ClusterRoles and ClusterRoleBindings to specify privileges across all namespaces. For
more information about Kubernetes Roles, RoleBindings, ClusterRoles, and
ClusterRoleBindings, see https://kubernetes.io/docs/reference/access-authn-authz/rbac/ in the
Kubernetes documentation.

When the TimesTen Operator runs at namespace-scope, it requires Roles and RoleBindings to
operate. Specifically, when you install the TimesTen Operator in a namespace at namespace-
scope, a ServiceAccount called timesten-operator is created in this namespace and a
RoleBinding is created and used to give the timesten-operator service account the
necessary privileges. These privileges are defined in the timesten-operator Role.

When the TimesTen Operator runs at cluster-scope, it requires Roles, RoleBindings,
ClusterRoles, and ClusterRoleBindings to operate. Since the TimesTen Operator needs
privileges in every namespace and needs additional privileges just in its namespace, the
following objects are provisioned:

• ClusterRole called timesten-operator: Defines the privileges that the TimesTen Operator
requires in each namespace in the cluster.

• ClusterRoleBinding called timesten-operator: Gives the timesten-operator service
account in the timesten-operator namespace the privileges in the timesten-operator
cluster role.

• Namespace timesten-operator: Is the namespace in which the TimesTen Operator runs.
This namespace is non-configurable. In this namespace, the following objects are created:

– ServiceAccount called timesten-operator: The TimesTen Operator runs with the
privileges of this service account.

– Role called timesten-operator: Defines the privileges the TimesTen Operator
requires in the timesten-operator namespace.

– RoleBinding called timesten-operator: Gives the timesten-operator service account
in the timesten-operator namespace the privileges in the timesten-operator role.

In summary, when you install the TimesTen Operator in a namespace in your cluster at
namespace-scope, a ServiceAccount called timesten-operator is created in that namespace
and a RoleBinding is used to give the service account the necessary privileges. In contrast,
when you install the TimesTen Operator in your cluster at cluster-scope, the timesten-
operator namespace is created. In addition, a ServiceAccount is created in this timesten-
operator namespace and RoleBindings and ClusterRoleBindings are used to give the service
account the necessary privileges. There are examples later in the chapter that illustrate the
creation of these objects.

About Installing the TimesTen Operator
There are YAML manifest files and Helm charts for installing the TimesTen Operator. A
TimesTen container image contains these files and charts. To find out how to obtain these files
and charts, see Obtain TimesTen YAML Manifest Files and Helm Charts.

The YAML manifest files and Helm charts for installing the TimesTen Operator in a namespace
in your Kubernetes cluster at namespace-scope are different than the files for installing the
TimesTen Operator in the timesten-operator namespace in your Kubernetes cluster at
cluster-scope. For information about these scopes, see About the TimesTen Operator.

Chapter 4
About Installing the TimesTen Operator

4-5

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Note:

You must install the TimesTen Operator in either one or more namespaces in your
cluster at namespace-scope or in the timesten-operator namespace in your cluster
at cluster-scope. You cannot install in both scopes.

To install the TimesTen Operator in a namespace in your Kubernetes cluster at namespace-
scope, you can use either YAML manifest files or a Helm chart:

• To install using YAML manifest files, use the following files:

– service_account.yaml: Defines the RoleBinding, Role, and ServiceAccount objects
that are necessary for the TimesTen Operator to run properly in a namespace in your
cluster at namespace-scope. The service account requires a set of defined privileges
and permissions, which are granted through a role. A role binding assigns a role to a
service account. See About Privileges.

– service_account_cluster.yaml: Defines additional privileges and permissions for the
TimesTen Operator. Although not mandatory, we recommend that you install this file. It
defines the privileges and permissions that are required if you want the TimesTen
Operator to delete TimesTen Pods and PVCs when detecting a node failure. For more
information about this feature, see How the TimesTen Kubernetes Operator Handles
Node Failure.

– operator.yaml: Defines the Deployment that is used to run the TimesTen Operator in
a namespace in your cluster at namespace-scope. There are customizations for this
Deployment. See About Customizations for a TimesTen Operator Deployment.

• To install using a Helm chart, use the ttoperator Helm chart. See Use Helm in Your
TimesTen Kubernetes Operator Environment and The ttoperator Chart.

To install the TimesTen Operator in the timesten-operator namespace in your Kubernetes
cluster at cluster-scope, you can use either YAML manifest files or a Helm chart:

• To install using YAML manifest files, use the following files:

– cluster_config.yaml: Defines the timesten-operator namespace as well as the
ServiceAccount, Role, RoleBinding, ClusterRole, and ClusterRoleBinding objects
necessary to run the TimesTen Operator in the timesten-operator namespace at
cluster-scope. For more information about these objects, see About Privileges.

– cluster_operator.yaml: Defines the Deployment that is used to run the TimesTen
Operator in the timesten-operator namespace in your cluster at cluster-scope. There
are customizations for this Deployment. See About Customizations for a TimesTen
Operator Deployment.

• To install using a Helm chart, use the ttclusteroperator Helm chart. See Use Helm in
Your TimesTen Kubernetes Operator Environment and The ttclusteroperator Chart.

There are examples in this chapter that show you how to install the TimesTen Operator in a
namespace in your Kubernetes cluster at namespace-scope and in the timesten-operator
namespace in your Kubernetes cluster at cluster-scope using YAML manifest files. To install
using Helm charts, see Use Helm in Your TimesTen Kubernetes Operator Environment.

Chapter 4
About Installing the TimesTen Operator

4-6



Note:

Most of the examples in the book assume you have installed the TimesTen Operator
in a namespace in your Kubernetes cluster at namespace-scope. If there are cases
where the TimesTen Operator is installed in the timesten-operator namespace in
your Kubernetes cluster at cluster-scope, the documentation points this out.

About Customizations for a TimesTen Operator Deployment
The operator.yaml YAML file defines the Deployment to run the TimesTen Operator in a
namespace-scoped environment and the cluster_operator.yaml YAML file defines the
Deployment to run the TimesTen Operator in a cluster-scoped environment. These files provide
customizations that you can make for your specific environment. The customizations that you
can make are the same for namespace-scoped and cluster-scoped ennvironments.

The ttoperator and ttclusteroperator Helm charts define the TimesTen Operator
deployments using Helm. If you are using Helm, see Use Helm in Your TimesTen Kubernetes
Operator Environment.

The following information is specific to YAML manifest files:

To customize the TimesTen Operator, modify either the operator.yaml or
cluster_operator.yaml file (modify operator.yaml for namespace-scoped environments or
cluster_operator.yaml for cluster-scoped environments). The modifications are as follows:

• image: Container image to run.

• imagePullSecrets: Image pull secret that contains the credentials to access the image
registry for the image.

• replicas: Number of TimesTen Operator Pods to run.

• affinity: Section that allows you to define whether the TimesTen Operator runs on amd64
or arm64 Nodes. These Node settings are specific to running in a multi-architecture
Kubernetes environment. See About Deploying in a Multi-Architecture Kubernetes Cluster.

• Environment variables for the TimesTen Operator. Even though we recommend that you
do not change the default settings, these are the environment variables that are
customizable if you so choose:

– CREATE_SERVICEMONITOR: See Expose Metrics from the TimesTen Kubernetes
Operator.

– EXPOSE_METRICS: See Expose Metrics from the TimesTen Kubernetes Operator.

– EXPOSE_PROBES: See About Readiness and Liveness Probes.

– METRICS_SCHEME: See Expose Metrics from the TimesTen Kubernetes Operator.

– TT_MAX_RECONCILES: See TimesTen Kubernetes Operator Environment Variables.

For more information about the TimesTen Operator environment variables, see TimesTen
Kubernetes Operator Environment Variables.

Install the TimesTen Operator
Let's walk through some examples that show you how to install the TimesTen Operator in two
namespaces in a Kubernetes cluster at namespace-scope and in the timesten-operator

Chapter 4
About Customizations for a TimesTen Operator Deployment

4-7



namespace in a Kubernetes cluster at cluster-scope. These examples assume you are using
YAML manifest files. If you are using Helm charts, see Use Helm in Your TimesTen Kubernetes
Operator Environment.

• Install the TimesTen Operator at Namespace-Scope

• Install the TimesTen Operator at Cluster-Scope

Install the TimesTen Operator at Namespace-Scope
The examples in this section assume you have obtained the YAML manifest files. See Obtain
TimesTen YAML Manifest Files and Helm Charts.

There is one example for installing the TimesTen Operator in one namespace in your cluster at
namespace-scope. There is a second example for installing the TimesTen Operator into a
second namespace in your cluster at namespace-scope. The examples illustrate that you must
install the TimesTen Operator in each namespace. Once installed, the TimesTen Operator that
you installed in namespace one services TimesTenClassic objects in namespace one while the
TimesTen Operator that you installed in namespace two services TimesTenClassic objects in
namespace two.

To complete the installation, perform the steps in the following sections:

• Before You Begin

• Install in Namespace One

• Install in Namespace Two

• Verify Installation

Before You Begin
Let's confirm our current namespace in the Kubernetes cluster. Next, let's create a new
namespace and a new Kubernetes Secret in that namespace. The examples use these two
namespaces.

1. Confirm the current namespace and review the Secrets in the namespace.

a. Confirm the current namespace.

kubectl config view | grep namespace

The output is similar to the following:

    namespace: mynamespace

The current namespace is mynamespace.

b. Confirm the Secret in the namespace.

kubectl get secrets

The output is similar to the following:

NAME                                                                
TYPE                             DATA   AGE
...

Chapter 4
Install the TimesTen Operator

4-8



sekret                                                              
kubernetes.io/dockerconfigjson   1      15d
...

The sekret Secret exists in the mynamespace namespace.

2. Create a new namespace and create a Kubernetes Secret in the namespace.

a. Create a new namespace.

kubectl create namespace mynamespace2

The output is similar to the following:

namespace/mynamespace2 created

b. Switch to the new namespace.

kubectl config set-context --current --namespace=mynamespace2

The output is similar to the following:

Context "default" modified.

c. Confirm the current namespace.

kubectl config view | grep namespace

The output is similar to the following:

    namespace: mynamespace2

d. Create a Kubernetes Secret in this namespace.

kubectl create secret generic sekret --from-
file=.dockerconfigjson=$HOME/.docker/config.json --type=kubernetes.io/
dockerconfigjson

The output is the following:

secret/sekret created

3. Confirm the namespaces.

kubectl get namespaces

The output is similar to the following:

NAME              STATUS   AGE
mynamespace       Active   15d
...
mynamespace2      Active   49m

Chapter 4
Install the TimesTen Operator

4-9



You confirmed the namespaces in your Kubernetes cluster.

Install in Namespace One
Let's install the TimesTen Operator in a namespace called mynamespace in your Kubernetes
cluster at namespace-scoped.

1. Switch to namespace one (mynamespace, in this example).

kubectl config set-context --current --namespace=mynamespace

The output is similar to the following:

Context "default" modified.

2. Change to the directory that contains the YAML manifest files. In this example, the
kube_files/deploy contains the files.

cd kube_files/deploy

3. Install the required service account, role, and role binding.

kubectl create -f service_account.yaml

The output is similar to the following:

role.rbac.authorization.k8s.io/timesten-operator created
serviceaccount/timesten-operator created
rolebinding.rbac.authorization.k8s.io/timesten-operator created

4. Make a copy of the service_account_cluster.yaml file for the first namespace
(service_account_cluster_n1.yaml, in this example).

cp service_account_cluster.yaml service_account_cluster_n1.yaml

5. Install the service_account_cluster_n1.yaml YAML file by doing the following:

a. (Optional): Display the contents of the service_account_cluster_n1.yaml file.

cat service_account_cluster_n1.yaml

The output is similar to the following:

# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
rules:
- apiGroups:
  - ""
  resources:

Chapter 4
Install the TimesTen Operator

4-10



  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
subjects:
- kind: ServiceAccount
  name: timesten-operator
  #namespace: <NAMESPACE>
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
  apiGroup: rbac.authorization.k8s.io

b. Use a text editor to modify the service_account_cluster_n1.yaml file.

Make the following changes:

• Locate #namespace, remove #, and replace <NAMESPACE> with the name of your
namespace (mynamespace, in this example).

• Locate the three occurrences of #name, remove #, and replace <NAMESPACE> with
the name of your namespace (mynamespace, in this example).

vi service_account_cluster_n1.yaml

# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:

Chapter 4
Install the TimesTen Operator

4-11



  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace
subjects:
- kind: ServiceAccount
  name: timesten-operator
  namespace: mynamespace
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace
  apiGroup: rbac.authorization.k8s.io

c. Save and close the service_account_cluster_n1.yaml file.

d. Install the service_account_cluster_n1.yaml file.

kubectl create -f service_account_cluster_n1.yaml

The output is similar to the following:

clusterrole.rbac.authorization.k8s.io/timesten-operator created
clusterrolebinding.rbac.authorization.k8s.io/timesten-operator created

6. Modify the operator.yaml file by doing the following:

a. Use a text editor to modify the operator.yaml file.

Replace the following:

• image: Replace container-registry.oracle.com/timesten/timesten:latest
with the name of your image. In this example, the name of the image is
container-registry.oracle.com/timesten/timesten:22.1.1.34.0.

• imagePullSecrets: Replace sekret with the name of your image pull secret. In
this example, the name of the image pull secret is sekret.

Chapter 4
Install the TimesTen Operator

4-12



• If you are running in a multi-architecture environment, modify the affinity
section, and specify either amd64 or arm64. This example assumes you are running
in a multi-architecture environment and sets nodes to amd64.

vi operator.yaml

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
  replicas: 1
...
    spec:
      serviceAccountName: timesten-operator
      imagePullSecrets:
      - name: sekret
      containers:
        - name: timesten-operator
          image: container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
...
# An example affinity definition; this pod will only be assigned to a 
node
# running on amd64 (the default)
#
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "kubernetes.io/arch"
                  operator: In
                  values: ["amd64"]

b. Save and close the operator.yaml file.

7. Install the TimesTen Operator.

kubectl create -f operator.yaml

The output is the following:

deployment.apps/timesten-operator created

8. Verify the TimesTen Operator is running.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
timesten-operator-577f7fbc6f-tbr7m   1/1     Running   0          61s

Chapter 4
Install the TimesTen Operator

4-13



Congratulations! You installed the TimesTen Operator into a namespace (called mynamespace)
in your Kubernetes cluster at namespace-scope.

Install in Namespace Two
Let's install the TimesTen Operator in a namespace called mynamespace2 in your Kubernetes
cluster at namespace-scoped.

1. Confirm the namespaces.

kubectl get namespaces

The output is similar to the following:

NAME              STATUS   AGE
mynamespace       Active   16d
...
mynamespace2      Active   19h

2. Switch to namespace two (mynamespace2, in this example).

kubectl config set-context --current --namespace=mynamespace2

The output is similar to the following:

Context "default" modified.

3. Change to the directory that contains the YAML manifest files. In this example, the
kube_files/deploy contains the files.

cd kube_files/deploy

4. Install the required service account, role, and role binding.

kubectl create -f service_account.yaml

The output is similar to the following:

role.rbac.authorization.k8s.io/timesten-operator created
serviceaccount/timesten-operator created
rolebinding.rbac.authorization.k8s.io/timesten-operator created

5. Make a copy of the service_account_cluster.yaml file for the second namespace
(service_account_cluster_n2.yaml, in this example).

cp service_account_cluster.yaml service_account_cluster_n2.yaml

6. Install the service_account_cluster_n2.yaml YAML file by doing the following:

a. (Optional): Display the contents of the service_account_cluster_n2.yaml file.

cat service_account_cluster_n2.yaml

Chapter 4
Install the TimesTen Operator

4-14



The output is similar to the following:

# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
subjects:
- kind: ServiceAccount
  name: timesten-operator
  #namespace: <NAMESPACE>
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
  apiGroup: rbac.authorization.k8s.io

b. Use a text editor to modify the service_account_cluster_n2.yaml file.

Make the following changes:

• Locate #namespace, remove #, and replace <NAMESPACE> with the name of your
namespace (mynamespace2, in this example).

• Locate the three occurrences of #name, remove #, and replace <NAMESPACE> with
the name of your namespace (mynamespace2, in this example).

vi service_account_cluster_n2.yaml

Chapter 4
Install the TimesTen Operator

4-15



# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace2
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace2
subjects:
- kind: ServiceAccount
  name: timesten-operator
  namespace: mynamespace2
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace2
  apiGroup: rbac.authorization.k8s.io

c. Save and close the service_account_cluster_n2.yaml file.

d. Install the service_account_cluster_n2.yaml file.

kubectl create -f service_account_cluster_n2.yaml

The output is similar to the following:

clusterrole.rbac.authorization.k8s.io/timesten-operator created
clusterrolebinding.rbac.authorization.k8s.io/timesten-operator created

Chapter 4
Install the TimesTen Operator

4-16



7. Modify the operator.yaml file. In this example, the modifications are the same as the
operator.yaml file in namespace one. However, these modifications do not need to be the
same as the modifications for namespace one. For example, you can use a different
container image:

a. Use a text editor to modify the operator.yaml file.

Replace the following:

• image: Replace container-registry.oracle.com/timesten/timesten:latest
with the name of your image. In this example, the name of the image is
container-registry.oracle.com/timesten/timesten:22.1.1.34.0.

• imagePullSecrets: Replace sekret with the name of your image pull secret. In
this example, the name of the image pull secret is sekret.

• If you are running in a multi-architecture environment, modify the affinity
section, and specify either amd64 or arm64. This example assumes you are running
in a multi-architecture environment and sets nodes to amd64.

vi operator.yaml

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
  replicas: 1
...
    spec:
      serviceAccountName: timesten-operator
      imagePullSecrets:
      - name: sekret
      containers:
        - name: timesten-operator
          image: container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
...
# An example affinity definition; this pod will only be assigned to a 
node
# running on amd64 (the default)
#
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "kubernetes.io/arch"
                  operator: In
                  values: ["amd64"]

b. Save and close the operator.yaml file.

8. Install the TimesTen Operator.

kubectl create -f operator.yaml

Chapter 4
Install the TimesTen Operator

4-17



The output is the following:

deployment.apps/timesten-operator created

9. Verify the TimesTen Operator is running.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
timesten-operator-577f7fbc6f-h8hj8   1/1     Running   0          61s

Congratulations! You installed the TimesTen Operator into a namespace (called mynamespace2)
in your Kubernetes cluster at namespace-scope.

Verify Installation
Let's verify there is one TimesTen Operator running in mynamespace and a second TimesTen
Operator running in mynamespace2 in a Kubernetes cluster in a namespace-scoped
environment. The TimesTen Operator in mynamespace services TimesTenClassic objects in
mynamespace while the TimesTen Operator in mynamespace2 services TimesTenClassic objects
in mynamespace2.

1. Review the namespaces.

kubectl get namespaces

The output is similar to the following:

NAME              STATUS   AGE
mynamespace       Active   16d
mynamespace2      Active   19h

2. Confirm there is a TimesTen Operator running in the mynamespace namespace.

kubectl get pods -n mynamespace

The output is similar to the following:

NAME                                                      READY   
STATUS    RESTARTS   AGE
...
timesten-operator-577f7fbc6f-tbr7m                        1/1     
Running   0          53m

3. Confirm there is a TimesTen Operator running in the mynamespace2 namespace.

kubectl get pods -n mynamespace2

Chapter 4
Install the TimesTen Operator

4-18



The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
timesten-operator-577f7fbc6f-h8hj8   1/1     Running   0          8m27s

Congratulations! You successfully installed the TimesTen Operator in two namespaces in your
Kubernetes cluster in a namespace-scoped environment. The TimesTen Operator in the
mynamespace namespace services TimesTenClassic objects in the mynamespace namespace
while the TimesTen Operator in the mynamespace2 namespace services TimesTenClassic
objects in the mynamespace2 namespace.

You are now ready to create TimesTen databases in either namespace. See Create TimesTen
Classic Databases.

Install the TimesTen Operator at Cluster-Scope
The examples in this section assume you have obtained the YAML manifest files. See Obtain
TimesTen YAML Manifest Files and Helm Charts.

Let's install the TimesTen Operator at cluster-scope. As part of the installation, the timesten-
operator namespace is created. The TimesTen Operator runs in this namespace in your
Kubernetes cluster at cluster-scope. Once installed, this TimesTen Operator services
TimesTenClassic objects in all namespaces in your cluster.

1. Change to the directory that contains the YAML manifest files. In this example, the
kube_files/deploy contains the files.

cd kube_files/deploy

2. Create the necessary privileges to run the TimesTen Operator.

kubectl create -f cluster_config.yaml

The output is similar to the following

namespace/timesten-operator created
clusterrole.rbac.authorization.k8s.io/timesten-operator created
serviceaccount/timesten-operator created
clusterrolebinding.rbac.authorization.k8s.io/timesten-operator created

Installing this file results in the creation of the timesten-operator namespace.

3. Create a Kubernetes Secret in the timesten-operator namespace. This Kubernetes
Secret is used as an image pull secret and is required so that the TimesTen Operator can
pull a TimesTen container image from an image registry. This example creates the sekret
Secret.

kubectl create secret generic sekret --from-
file=.dockerconfigjson=$HOME/.docker/config.json --type=kubernetes.io/
dockerconfigjson -n timesten-operator

The output is the following:

secret/sekret created

Chapter 4
Install the TimesTen Operator

4-19



For more information about creating Kubernetes Secrets, see Pulling Images from Registry
during Deployment in the Kubernetes documentation.

4. Modify the cluster_operator.yaml file by doing the following:

a. Use a text editor to modify the cluster_operator.yaml file.

Replace the following:

• image: Replace container-registry.oracle.com/timesten/timesten:latest
with the name of your image. In this example, the name of the image is
container-registry.oracle.com/timesten/timesten:22.1.1.34.0.

• imagePullSecrets: Replace sekret with the name of your image pull secret you
created in the prior step. In this example, the name of the image pull secret is
sekret.

• If you are running in a multi-architecture environment, modify the affinity
section, and specify either amd64 or arm64. This example assumes you are running
in a multi-architecture environment and sets nodes to amd64.

vi cluster_operator.yaml

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
  replicas: 1
...
    spec:
      serviceAccountName: timesten-operator
      imagePullSecrets:
      - name: sekret
      containers:
        - name: timesten-operator
          image: container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
...
# An example affinity definition; this pod will only be assigned to a 
node
# running on amd64 (the default)
#
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "kubernetes.io/arch"
                  operator: In
                  values: ["amd64"]

b. Save and close the cluster_operator.yaml file.

5. Install the TimesTen Operator.

kubectl create -f cluster_operator.yaml

Chapter 4
Install the TimesTen Operator

4-20



The output is the following:

deployment.apps/timesten-operator created

6. Verify the TimesTen Operator is running in the timesten-operator namespace .

kubectl get pods -n timesten-operator

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
timesten-operator-6bf76dd84b-c8j59   1/1     Running   0          51s

Congratulations! You installed the TimesTen Operator. It is running in the timesten-operator
namespace in your Kubernetes cluster at cluster-scope. The TimesTen Operator services
TimesTenClassic objects in all namespaces in your Kubernetes cluster.

You are now ready to create TimesTen databases in your namespaces. See Create TimesTen
Classic Databases.

Chapter 4
Install the TimesTen Operator

4-21



5
Use Configuration Metadata

This chapter gives an overview of the configuration metadata that is supported in the TimesTen
Operator. It also discusses the Kubernetes facilities that you can use to get the configuration
metadata into your TimesTen containers. The chapter then discusses additional configuration
options. There are examples throughout.

Topics:

• Overview of Configuration Metadata and Kubernetes Facilities

• List of Configuration Metadata

• About Configuration Metadata Details

• Populate the /ttconfig Directory

• Additional Configuration Options

Overview of Configuration Metadata and Kubernetes Facilities
Configuration metadata lets you define the attributes of your TimesTen database and how that
database is to interact with other applications and components. The TimesTen Operator
supports several metadata files that contain the configuration metadata. Each metadata file
has a specific name. You use a text editor to create the metadata file with the specific name
and then add the appropriate metadata to it. For example, the TimesTen Operator supports the
db.ini metadata file. You use your editor to create the db.ini file and in it you define
attributes for you database.

Kubernetes supports various facilities that places the metadata files into the /ttconfig
directory of the TimesTen containers. See Populate the /ttconfig Directory.

List of Configuration Metadata
Table 5-1 lists the metadata files that are supported by the TimesTen Operator. The table
provides a description for each of the metadata files and indicates if the metadata file is
supported in TimesTen Classic, in TimesTen Scaleout, or in both.

Table 5-1    TimesTen Operator metadata files

Name Description TimesTen
Classic support

TimesTen
Scaleout
support

adminUser Defines an initial user in the database and
assigns this user ADMIN privileges.

Optional.

Yes Yes

cachegroups.sql Defines the cache groups in the database. This
file is specific to TimesTen Cache.

Required if using TimesTen Cache.

Yes No

5-1



Table 5-1    (Cont.) TimesTen Operator metadata files

Name Description TimesTen
Classic support

TimesTen
Scaleout
support

cacheUser Defines the cache administration user in the
database. This file is specific to TimesTen
Cache.

Required if using TimesTen Cache.

Yes No

csWallet Defines the credentials that are used for
Transport Layer Security (TLS) encryption of
client/server communications.

Required if using TLS.

Yes Yes

db.ini Defines the connection attributes of the
database. See List of Connection Attributes in
the Oracle TimesTen In-Memory Database
Reference.

Required if using TimesTen Cache. Otherwise,
optional.

Yes Yes

epilog.sql Performs operations after the replication scheme
is created.

Optional.

Yes No

replicationWallet Defines the credentials that are used for
Transport Layer Security (TLS) encryption of
replication traffic between the TimesTen
databases.

Required if using TLS.

Yes No

schema.sql Defines an initial schema for the database.

Optional.

Yes Yes

sqlnet.ora Defines how client applications communicate
with an Oracle database. This file is specific to
TimesTen Cache.

Optional.

Yes No

testUser Defines a test user in the database. This user
is used for testing TimesTen using Helm. The
user is assigned CONNECT privileges.

Optional.

Yes No

tnsnames.ora Defines the Oracle Database service that
TimesTen Cache uses to connect to Oracle
Database.

Required if using TimesTen Cache.

Yes No

*.connect Defines one or more direct connectables for the
database in TimesTen Scaleout.

Optional.

No Yes

*.csconnect Defines one or more client/server connectables
for the database in TimesTen Scaleout.

Optional.

No Yes

Chapter 5
List of Configuration Metadata

5-2



About Configuration Metadata Details
Metadata files let you specify the attributes and the metadata for your TimesTen database.
After you create these files, and you choose a facility to get these files in your TimesTen
containers, TimesTen accesses them to determine the attributes and the metadata that is
specific to your database.

adminUser
The adminUser file creates an initial user with ADMIN privileges in the TimesTen database. If you
provide this file, this user is created after the database is created. This file must contain one
line of the form:

user/password

cachegroups.sql
The cachegroups.sql file contains the create cache group definitions and the cache group
operations for your database. You can specify the following cache group definitions and cache
operations in this file:

• (Required): CREATE CACHE GROUP statements to create TimesTen cache groups

• (Optional): LOAD CACHE GROUP statements to load data from the Oracle database into your
cache groups

• (Optional): ttOptUpdateStats or ttOptEstimateStats TimesTen built-in procedures to
update statistics on the cache tables

The cachegroups.sql file is required if you are using TimesTen Cache in your
TimesTenClassic deployment. This requirement ensures cache groups are created before
replication is configured. Note: The instance administrator uses the ttIsql utility to run the
cachegroups.sql file.

See:

• CREATE CACHE GROUP and LOAD CACHE GROUP in the Oracle TimesTen In-Memory
Database SQL Reference

• Cache Group Types in the Oracle TimesTen In-Memory Database Cache Guide

• ttOptUpdateStats and ttOptEstimateStats in the Oracle TimesTen In-Memory Database
Reference

Here is an example of a cachegroups.sql file. The file defines two cache groups and loads
data into one cache group.

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
  pk NUMBER NOT NULL PRIMARY KEY,
  attr VARCHAR2(40)
);
 
CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
  INTERVAL 5 SECONDS
FROM oratt.readtab (
  keyval NUMBER NOT NULL PRIMARY KEY,
  str VARCHAR2(32)

Chapter 5
About Configuration Metadata Details

5-3



);
 
LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

cacheUser
The cacheUser file lets you create the TimesTen cache manager user. This user must have the
same name as the cache administration user in the Oracle database, and must already exist in
the Oracle database. See Create the Oracle Database Users and Default Tablespace in the
Oracle TimesTen In-Memory Database Cache Guide.

This file must contain one line of the form,

cacheUser/ttPassword/oraPassword

where cacheUser is the TimesTen cache manager user, ttPassword is the TimesTen password
for the TimesTen cacheUser user, and oraPassword is the Oracle database password you
specified when you created the cacheUser user in the Oracle database.

For example, assume you have created the cacheuser2 cache administration user in the
Oracle Database with password oraclepwd. Assume you designate this cacheuser2 user as
the TimesTen cache manager user with a TimesTen password of ttpwd. In this example, the
cacheUser metadata file contains this one line:

cacheuser2/ttpwd/oraclepwd

The TimesTen Operator creates the cacheuser2 user with the ttpwd in the TimesTen database.
This cacheuser2 user then serves as the cache manager user in your TimesTen database. You
do not need to create this TimesTen user. The Operator does it for you.

See Create the TimesTen Users in the Oracle TimesTen In-Memory Database Cache Guide.

The Operator grants privileges to the TimesTen cacheUser user (cacheuser2, in this example)
that are appropriate for this user's role as the cache manager. These privileges are:

• CREATE SESSION
• CACHE MANAGER
• CREATE ANY TABLE
• LOAD ANY CACHE GROUP
• REFRESH ANY CACHE GROUP
• FLUSH ANY CACHE GROUP
• DROP ANY CACHE GROUP
• ALTER ANY CACHE GROUP
• UNLOAD ANY CACHE GROUP
• SELECT ANY TABLE
• INSERT ANY TABLE
• UPDATE ANY TABLE
• DELETE ANY TABLE

Chapter 5
About Configuration Metadata Details

5-4



csWallet
In a TimesTen Client/Server environment, data is transmitted between your client applications
and your TimesTen database unencrypted by default. However, you can configure TLS for
Client/Server to ensure secure network communication between TimesTen clients and servers.
To encrypt Client/Server traffic, specify the /ttconfig/csWallet file. This file contains the
Oracle wallet for the server, which contains the credentials that are used for configuring TLS
encryption between your TimesTen database and your Client/Server applications. The file will
be available in the containers of your TimesTen databases in the directory /tt/home/
timesten/csWallet. You can reference this directory in your db.ini file (by specifying the
wallet connection attribute). See Create TLS Certificates for Replication and Client/Server and 
Create TLS Certificates for Replication and Client/Server.

The client wallet must also be available to your client applications. See Create TLS Certificates
for Replication and Client/Server and Configure TLS for Client/Server.

db.ini
The db.ini file contains the TimesTen DSN definition for your database.

In TimesTen Classic, the db.ini file contains the connection attributes for your database. This
file is used to to generate the sys.odbc.ini file for the instances. You can specify data store
attributes, first connection attributes, and general connection attributes in the db.ini file. The
name of the DSN is the name of the TimesTenClassic object. For example, if your
TimesTenClassic object is called sample, the name of your DSN is sample.

In TimesTenScaleout, the db.ini file contains the connection attributes for each element of
your database in the grid. The database definition file (dbDef) and its contents are used to
create a TimesTen Scaleout database definition. The name of the database definition is the
name of the TimesTenScaleout object. For example, if the name of your TimesTenScaleout
object is sample, the name of the database definition is sample. The TimesTen Scaleout
database is created based on the database definition. For information about creating a
database and creating a database definition in TimesTen Scaleout, see Creating a Database in
the Oracle TimesTen In-Memory Database Scaleout User's Guide.

If you are using TimesTen Cache in your TimesTenClassic deployment, you must specify the
OracleNetServiceName and the DatabaseCharacterSet connection attributes in the db.ini file.
The DatabaseCharacterSet value must match the value of the database character set in the
Oracle Database.

Do not specify the the DataStore or the LogDir connection attributes in the db.ini file. The
Operator sets these attributes, placing the database files in Kubernetes Persistent Volumes.

See List of Connection Attributes in the Oracle TimesTen In-Memory Database Reference for
information on the TimesTen connection attributes.

Note:

If the /ttconfig/db.ini file is not present in a TimesTen container, TimesTen
creates a default sys.odbc.ini file. For this default sys.odbc.ini, the connection
attributes are: Permsize=200 and DatabaseCharacterSet=AL32UTF8.

Chapter 5
About Configuration Metadata Details

5-5



This example shows a sample db.ini file that contains various connection attributes for
TimesTen databases in TimesTen Classic or TimesTen Scaleout.

PermSize=500
LogFileSize=1024
LogBufMB=1024
DatabaseCharacterSet=AL32UTF8

Here is an example that shows a sample db.ini file that contains the OracleNetServiceName
for TimesTen databases that use TimesTen Cache in TimesTen Classic.

PermSize=500
LogFileSize=1024
LogBufMB=1024
DatabaseCharacterSet=AL32UTF8 
OracleNetServiceName=OraCache

epilog.sql
In TimesTen Classic, the epilog.sql file includes operations that occur after the replication
scheme has been created and the replication agent has been started. For example, if you want
to create replicated bookmarks in XLA, you can include the ttXlaBookmarkCreate TimesTen
built-in procedure in this file.

The Operator instructs the instance administrator to run the epilog.sql file using the ttIsql
utility.

Here is an example of an epilog.sql file. The example calls the ttXlaBookmarkCreate
TimesTen built-in procedure to create XLA bookmarks.

call ttXlaBookmarkCreate('mybookmark',0x01);

For information about replicated bookmarks, see the ttXlaBookmarkCreate TimesTen built-in
procedure in the Oracle TimesTen In-Memory Database Reference.

replicationWallet
In TimesTen Classic, TimesTen replication transmits data between your TimesTen databases
unencrypted by default. However, you can configure TLS for replication to ensure secure
network communication between your replicated TimesTen databases. To do this, specify the /
ttconfig/replicationWallet file. This file contains an Oracle wallet, which contains the
credentials that are used by TimesTen replication for configuring TLS encryption between your
active standby pair of TimesTen databases. See Create TLS Certificates for Replication and
Client/Server and Configure TLS for Replication.

If you specify this file, you must include the replicationCipherSuite field and optionally
include the replicationSSLMandatory field in your TimesTenClassic object definition. See the
replicationCipherSuite entry and the replicationSSLMandatory entry in 
TimesTenClassicSpecSpec and Configure TLS for Replication.

schema.sql
The TimesTen Operator can automatically initialize your database with schema objects, such
as users, tables, and sequences. To have the Operator do this, create the schema.sql file.

Chapter 5
About Configuration Metadata Details

5-6



The Operator directs the instance administrator to use the ttIsql utility to run the schema.sql
file immediately after the database is created. This operation occurs before the Operator
configures replication or cache in your TimesTen database.

In TimesTen Cache, one or more cache table users own the cache tables. If this cache table
user is not the cache manager user, then you must specify the schema.sql file and in it you
must include the schema user and assign the appropriate privileges to this schema user. For
example, if the oratt schema user was created in the Oracle database, and this user is not the
TimesTen cache manager user, you must create the TimesTen oratt user in this file. See 
Create the Oracle Database Users.

Do not include cache definitions in this file. Instead, use the cachegroups.sql metadata file.
See cachegroups.sql.

sqlnet.ora
The Oracle Database sqlnet.ora file defines the options for how client applications
communicate with the Oracle Database. To use TimesTen Cache or to use tools like
ttLoadFromOracle, define a sqlnet.ora file. This file describes how applications, including
TimesTen, can connect to your Oracle database. Note: If you define a sqlnet.ora file, you
must define a tnsnames.ora file. See tnsnames.ora.

This is an example of a sqlnet.ora file:

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

testUser
The testUser file defines a test user. This user is used for testing TimesTen with the helm
test command. The user is granted CONNECT privileges. The test connects to a TimesTen
database as the test user. The test verifies your TimesTen Classic databases are up and
running.

The testUser file must contain one line of the form:

testuser/testuserpassword

where testuser is the name of your test user and testuserpassword is the password for this
test user.

For more information about using Helm and using the helm test command to test TimesTen,
see Use Helm in Your TimesTen Kubernetes Operator Environment and Test TimesTen for a
Replicated Configuration.

tnsnames.ora
The Oracle Database tnsnames.ora file defines Oracle Net Services to which applications
connect. You need to use tnsnames.ora (and perhaps a sqlnet.ora file, described in 
sqlnet.ora) if you are using:

• TimesTen Cache

• SQL APIs, such as Pro*C, OCI, or ODPI-C

Chapter 5
About Configuration Metadata Details

5-7



• The ttLoadFromOracle feature

For information about the ttLoadFromOracle TimesTen built-in procedure, see 
ttLoadFromOracle in the Oracle TimesTen In-Memory Database Reference.

Here is an example of a tnsnames.ora file:

OraTest =   
 (DESCRIPTION = 
   (ADDRESS = (PROTOCOL = TCP)(HOST = database.mynamespace.svc.cluster.local)
     (PORT = 1521))     
   (CONNECT_DATA =       
     (SERVER = DEDICATED)       
     (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =  
 (DESCRIPTION =   
   (ADDRESS = (PROTOCOL = TCP)(HOST = database.mynamespace.svc.cluster.local)
     (PORT = 1521))     
   (CONNECT_DATA =       
     (SERVER = DEDICATED)       
     (SERVICE_NAME = OraCache.my.sample.com)))

*.connect
Files with names that end with the .connect extension define one or more direct connectables
for direct mode access to a database in TimesTen Scaleout. You can create as many direct
connectables as you like. A direct connectable specifies a set of general connection attribute
settings for the database. You can choose any name for the direct connectable as long as it is
a valid DSN name. The TimesTen Operator creates one direct connectable for each direct
connectable file you create. The .connect extension denotes a direct connectable. Ensure
the .connect extension is in lowercase.

The following example creates one direct connectable. The name of the file is sample.connect.
The TimesTen Operator creates the sample direct connectable based on the contents of the
sample.connect file.

ConnectionCharacterSet=AL32UTF8

For more information about direct connectables, see Connectable Operations in the Oracle
TimesTen In-Memory Database Reference and Connecting to a Database in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

*.csconnect
Files with names that end with the .csconnect extension define one or more client/server
connectables for client/server access to a database in TimesTen Scaleout. You can create as
many client/server connectables as you like. A client/server connectable specifies a set of
general connection attribute settings for the database. You can choose any name for the client/
server connectable as long as it is a valid DSN name. The TimesTen Operator creates one
client/server connectable for each client/server connectable file you create. The .csconnect
extension denotes a client/server connectable. Ensure the .csconnect extension is in
lowercase.

Chapter 5
About Configuration Metadata Details

5-8



The following example creates one client/server connectable. The name of the file is
samplecs.csconnect. The TimesTen Operator creates the samplecs client/server connectable
based on the contents of the samplecs.csconnect file.

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

For more information about client/server connectables, see Connectable Operations in the
Oracle TimesTen In-Memory Database Reference and Connecting to a Database in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

Populate the /ttconfig Directory
You can use different methods to ensure metadata files are placed in the /ttconfig directory
of TimesTen containers. There is no requirement as to which method to use. Kubernetes
provides such facilities as ConfigMaps, Secrets, and init containers for you to consider.

• Using ConfigMaps and Secrets

• Using an init container

Using ConfigMaps and Secrets
You can use one or more ConfigMaps and one or more Secrets to incorporate metadata files
into the TimesTen containers. This lets you specify different TimesTen metadata for different
deployments. In addition, you can use Secrets for metadata that contains sensitive data, like
passwords and certificates.

The use of a ConfigMap to populate the metadata into Pods is a standard Kubernetes
technique. One benefit is that you can modify the ConfigMap after it is created, which results in
the immediate update of the files that are in the Pod.

Note:

TimesTen may not immediately notice and act on the changed content of the files.

When you use ConfigMaps and Secrets to hold your metadata and then reference them in the
TimesTenClassic object definition, the TimesTen Operator creates a Projected Volume called
tt-config. This tt-config volume contains the contents of all the ConfigMaps and all the
Secrets specified in the dbConfigMap and the dbSecret fields of your TimesTenClassic or your
TimesTenScaleout object. This volume is mounted as /ttconfig in the TimesTen containers.

Chapter 5
Populate the /ttconfig Directory

5-9



Note:

You can specify one or more ConfigMaps and/or Secrets in your TimesTenClassic or
TimesTenScaleout object using the dbConfigMap and dbSecret datum. The result is
that these ConfigMaps and/or Secrets are mounted read-only at /ttconfig. Since
such a mount is read-only, you cannot write into it from an init container. Alternatively,
you can use an emptydir volume and use an init container to write files into it.
However, you cannot combine ConfigMaps and Secrets with an init container. For
information about using an init container, see Using an init container.

To use ConfigMaps and Secrets, follow this process:

• Decide what facilities will contain what metadata files. For example, you can use one
ConfigMap for all the metadata files. Or, for example, you can use one ConfigMap for the
db.ini metadata file and one Secret for the adminUser and the schema.sql metadata files.
There is no specific requirement.

• Create the directory (or directories) that will contain the metadata files.

• Use the kubectl create command to create the ConfigMap and the Secrets in the
Kubernetes cluster.

• Include the ConfigMaps and Secrets in your TimesTenClassic or your TimesTenScaleout
object definition.

The following examples illustrate how to use ConfigMaps and Secrets for a TimesTenClassic or
a TimesTenScaleout object.

• Example Using One ConfigMap

• Example Using One ConfigMap and One Secret

• Example Using One ConfigMap for a TimesTenScaleout Object

Example Using One ConfigMap
This example uses one ConfigMap (called sample) for the db.ini, the adminUser, and the
schema.sql metadata files.

You can use this ConfigMap for a TimesTenClassic or a TimesTenScaleout object.

1. On your development host, from the directory of your choice, create an empty subdirectory
for the metadata files. This example creates the cm_sample subdirectory. (The cm_sample
directory is used in the remainder of this example to denote this directory.)

mkdir -p cm_sample
2. Change to the ConfigMap directory.

cd cm_sample
3. Create the db.ini file. In this db.ini file, define the PermSize and DatabaseCharacterSet

connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

Chapter 5
Populate the /ttconfig Directory

5-10



4. Create the adminUser file. In this adminUser file, create the sampleuser user with the
samplepw password.

vi adminUser

sampleuser/samplepw
5. Create the schema.sql file. In this schema.sql file, define the s sequence and the emp table

for the sampleuser user. The Operator automatically initializes your database with these
object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

6. Create the ConfigMap. The files in the cm_sample directory are included in the ConfigMap.
These files are later available in the TimesTen containers.

In this example:

• The name of the ConfigMap is sample. Replace sample with a name of your choosing.

• This example uses cm_sample as the directory where the files that will be copied into
the ConfigMap reside. If you use a different directory, replace cm_sample with the name
of your directory.

kubectl create configmap sample --from-file=cm_sample

The output is the following:

configmap/sample created

7. Verify the contents of the ConfigMap.

kubectl describe configmap sample

The output is the following:

Name:         sample
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
adminUser:
----
sampleuser/samplepw
 
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
 
schema.sql:
----

Chapter 5
Populate the /ttconfig Directory

5-11



create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

Events:  <none>

8. Include the ConfigMap in the object definition. In the dbConfigMap field, specify the name
of the your ConfigMap (sample, in this example).

Note this example uses a storageSize of 250Gi (suitable for a production environment).
For demonstration purposes, a storageSize of 50Gi is adequate.

This is an example of using the ConfigMap for a TimesTenClassic object.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - sample

This is an example of using the ConfigMap for a TimesTenScaleout object.

apiVersion: timesten.oracle.com/v4
kind: TimesTenScaleout
metadata:
  name: sample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    k: 2
    nReplicaSets: 3
    nZookeeper: 3
    dbConfigMap:
    - sample

The sample ConfigMap holds the metadata files. The tt-config volume contains the
contents of the sample ConfigMap.

Example Using One ConfigMap and One Secret
This example uses one ConfigMap (called myconfig) for the db.ini metadata file and one
Secret (called mysecret) for the adminUser and the schema.sql metadata files.

You can use this ConfigMap and Secret for a TimesTenClassic or a TimesTenScaleout object.

1. On your development host, from the directory of your choice:

Chapter 5
Populate the /ttconfig Directory

5-12



• Create one empty subdirectory for the ConfigMap. This example creates the
cm_myconfig subdirectory. (The cm_myconfig directory is used in the remainder of this
example to denote this directory.) This directory will contain the db.ini metadata file.

• Create a second empty subdirectory for the Secret. This example creates the
secret_mysecret subdirectory. (The secret_mysecret directory is used in the
remainder of this example to denote this directory.) This directory will contain the
adminUser and the schema.sql metadata files.

mkdir -p cm_myconfig
mkdir -p secret_mysecret

2. Change to the ConfigMap directory.

cd cm_myconfig
3. Create the db.ini file in this ConfigMap directory (cm_myconf, in this example). In this

db.ini file, define the PermSize and DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

4. Change to the Secret directory.

cd secret_mysecret
5. Create the adminUser file in this Secret directory (secret_mysecret in this example). In this

adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw
6. Create the schema.sql file in this Secret directory (secret_mysecret in this example). In

this schema.sql file, define the s sequence and the emp table for the sampleuser user. The
Operator automatically initializes your database with these object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

7. Create the ConfigMap. The files in the cm_myconfig directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is myconfig. Replace myconfig with a name of your
choosing.

• This example uses cm_myconfig as the directory where the files that will be copied
into the ConfigMap reside. If you use a different directory, replace cm_myconfig with
the name of your directory.

Create the ConfigMap.

kubectl create configmap myconfig --from-file=cm_myconfig

Chapter 5
Populate the /ttconfig Directory

5-13



The output is the following:

configmap/myconfig created

8. Verify the contents of the ConfigMap.

kubectl describe configmap myconf

The output is the following:

Name:         myconfig
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
 
Events:  <none>

9. Create the Secret. The files in the secret_mysecret directory are included in the Secret
and, later, will be available in the TimesTen containers.

In this example:

• The name of the Secret is mysecret. Replace mysecret with a name of your choosing.

• This example uses secret_mysecret as the directory where the files that will be copied
into the Secret reside. If you use a different directory, replace secret_mysecret with
the name of your directory.

kubectl create secret generic mysecret --from-file=secret_mysecret

The output is the following:

secret/mysecret created

10. Verify the Secret. Note the contents of the adminUser and the schema.sql files are not
displayed.

kubectl describe secret mysecret

The output is the following:

Name:         mysecret
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Type:  Opaque
 
Data

Chapter 5
Populate the /ttconfig Directory

5-14



====
adminUser:   12 bytes
schema.sql:  98 bytes

11. Include the ConfigMap and the Secret in the object definition.

• In the dbConfigMap field, specify the name of the your ConfigMap.

• In the dbSecret field, specify the name of the your Secret.

This is an example of using the ConfigMap and the Secret for a TimesTenClassic object.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - myconfig
    dbSecret:
    - mysecret

This is an example of using the ConfigMap and the Secret for a TimesTenScaleout object.

apiVersion: timesten.oracle.com/v4
kind: TimesTenScaleout
metadata:
  name: sample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    k: 2
    nReplicaSets: 3
    nZookeeper: 3
    dbConfigMap:
    - myconfig
    dbSecret:
    - mysecret

The myconfig ConfigMap and the mysecret Secret holds the metadata files. The tt-
config volume contains the contents of the myconfig ConfigMap and the mysecret Secret.

Example Using One ConfigMap for a TimesTenScaleout Object
This example shows you how to create a metadata file for a direct connectable and a metadata
file for a client/server connectable. It then shows you how to include these connectables in a
ConfigMap for a TimesTenScaleout object. The ConfigMap also includes the db.ini,
adminUser, and schema.sql metadata files.

Chapter 5
Populate the /ttconfig Directory

5-15



1. On your development host, from the directory of your choice, create an empty subdirectory
for the metadata files. This example creates the cm_samplescaleout subdirectory. (The
cm_samplescaleout directory is used in the remainder of this example to denote this
directory.)

mkdir -p cm_samplescaleout
2. Change to the ConfigMap directory.

cd cm_samplescaleout
3. Create the direct connectable.

vi samplescaleout.connect

ConnectionCharacterSet=AL32UTF8

4. Create the client/server connectable.

vi samplecsscaleout.csconnect

ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

5. Create the db.ini file. In this db.ini file, define the PermSize and DatabaseCharacterSet
connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

6. Create the adminUser file. In this adminUser file, create the sampleuser user with the
samplepw password.

vi adminUser

sampleuser/samplepw
7. Create the schema.sql file. In this schema.sql file, define the s sequence and the emp table

for the sampleuser user. The Operator automatically initializes your database with these
object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

8. Create the ConfigMap. The files in the cm_samplescaleout directory are included in the
ConfigMap. These files are later available in the TimesTen containers.

In this example:

• The name of the ConfigMap is samplescaleout. Replace samplescaleout with a name
of your choosing.

• This example uses cm_samplescaleout as the directory where the files that will be
copied into the ConfigMap reside. If you use a different directory, replace
cm_samplescaleout with the name of your directory.

Chapter 5
Populate the /ttconfig Directory

5-16



kubectl create configmap samplescaleout --from-file=cm_samplescaleout

The output is the following:

configmap/samplescaleout created

9. Verify the contents of the ConfigMap.

kubectl describe configmap samplescaleout

The output is the following:

Name:         samplescaleout
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
adminUser:
----
sampleuser/samplepw
 
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8

sampleconnectable.connect:
----
ConnectionCharacterSet=AL32UTF8

samplecsconnectable.csconnect:
----
ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30
 
schema.sql:
----
create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

Events:  <none>

10. Include the ConfigMap in the object definition.

Note this example uses a storageSize of 250Gi (suitable for a production environment).
For demonstration purposes, a storageSize of 50Gi is adequate.

apiVersion: timesten.oracle.com/v4
kind: TimesTenScaleout
metadata:
  name: samplescaleout
spec:

Chapter 5
Populate the /ttconfig Directory

5-17



  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    k: 2
    nReplicaSets: 3
    nZookeeper: 3
    dbConfigMap:
    - samplescaleout

Using an init container
You can use an init container to place your metadata files into the /ttconfig directory of the
TimesTen containers. An init container lets you to create your own scripts to populate the /
ttconfig directory. You can use an init container for TimesTenClassic and for
TimesTenScaleout objects. For more information about init containers, see:

https://kubernetes.io/docs/concepts/workloads/pods/init-containers

Note:

You can specify one or more ConfigMaps and/or Secrets in your TimesTenClassic or
TimesTenScaleout object using the dbConfigMap and dbSecret datum. The result is
that these ConfigMaps and/or Secrets are mounted read-only at /ttconfig. Since
such a mount is read-only, you cannot write into it from an init container. Alternatively,
you can use an emptydir volume and use an init container to write files into it.
However, you cannot combine ConfigMaps and Secrets with an init container. For
information about using ConfigMaps and Secrets, see Using ConfigMaps and
Secrets.

Here is an example that illustrates how to use an init container for a TimesTenClassic object.
The template element is required. This element is applied to Pods that contain the TimesTen
Classic instances. The example shows you where to specify the script that populates the /
ttconfig directory. It also uses the tt-config volume name in the volumes field of the
TimesTenClassic object. If you specify a volume with the tt-config name, it is automatically
mounted at /ttconfig in your TimesTen containers.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: init1
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
  template:
    spec:
      imagePullSecrets: 
      - name: sekret
      initContainers:
      - name: initclassic
        image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0

Chapter 5
Populate the /ttconfig Directory

5-18

https://kubernetes.io/docs/concepts/workloads/pods/init-containers


        command:
        - sh
        - "-c"
        - |
          /bin/bash <<'EOF'
          Your script to populate /ttconfig goes here
          EOF
        volumeMounts:
        - name: tt-config
          mountPath: /ttconfig
      volumes:
      - name: tt-config
        emptyDir: {}

When using an init container for a TimesTenScaleout object, the metadata files must be placed
in both the dataTemplate and the mgmtTemplate elements.

Additional Configuration Options
This section discusses additional configuration options. These are optional configurations for
your environment:

• Persistent Storage

• Additional Resource Specifications

Persistent Storage
When you create a TimesTenClassic object, the Operator automatically creates one or two
Persistent Volume Claims (PVCs) per Pod. These PVCs cause Persistent Volumes (PVs) to be
allocated by Kubernetes and to be attached to the TimesTen Pods. TimesTen uses the PVs to
hold the TimesTen instance and the TimesTen database. If you specify two PVCs, one PV
holds the instance and the checkpoint files and the second PV holds the transaction log files.

When you create a TimesTenScaleout object, the same mechanism is used to provision
persistent storage for the data instances, the management instance, and the ZooKeeper
instances:

• For the data instances: The Operator creates one or two PVCs per Pod. TimesTen uses
the PVs to hold the TimesTen instance and the TimesTen database. If you specify two
PVCs, one PV holds the instance and the checkpoint files and the second PV holds the
transaction log files.

• For the management instance: The Operator creates one PVC for the Pod that contains
the management instance. The PV holds the the TimesTen management instance and the
grid database.

• For the ZooKeeper instances: The Operator creates one PVC for each Pod that runs a
ZooKeeper instance. The PV holds ZooKeeper's persistent data.

When you create a TimesTenClassic object, you must specify storageClassName and you may
specify storageSize. These attributes determine the characteristics of the Persistent Volumes.
The storageClassName must be one that is provided in your Kubernetes environment. For
example, in Oracle Kubernetes Environment (OKE), you may use oci-bv.

The default storage is 50Gi. Use the storageSize attribute to request a different size. A
storage size of 50Gi may be adequate for demonstration purposes, but in production
environments, you should consider greater storage.

Chapter 5
Additional Configuration Options

5-19



TimesTen places the TimesTen installation, the instance, and the database in this storage. It is
mounted in each container, in each Pod, as /tt. The TimesTen instance is located at /tt/
home/timesten/instances/instance1.

When you create a TimesTenScaleout object, the following attributes are supported:

• Storage class name:

– dataStorageClassName: Name of the storage class that is used to request persistent
volumes for the elements of the TimesTen database in the grid. If not specified, the
default is the value of storageClassName.

– mgmtStorageClassName: Name of the storage class that is used to request persistent
volumes for the database of the management instance. If not specified, the default is
the value of storageClassName.

– zookeeperStorageClassName: Name of the storage class that is used to request
persistent volumes for ZooKeeper's persistent data. If not specified, the default is the
value of storageClassName.

– storageClassName: If the data storage class name, the management storage class
name, and the zookeeper storage class name are the same, you can just specify
storageClassName.

• Storage size:

– dataStorageSize: Amount of storage to be provisioned for each element of the
TimesTen database in the grid. The default is 50Gi.

– mgmtStorageSize: Amount of storage to be provisioned for the database of the
management instance. The default is 50Gi.

– zookeeperStorageSize: Amount of storage to be provisioned for ZooKeeper's
persistent data. The default is 50Gi.

– storageSize: If the data storage size, the management storage size, and the
zookeeper storage size are the same, you can just specify storageSize. For example,
if the dataStorageSize is 75Gi, and the mgmtStorageSize is 75Gi, and the
zookeeperStorageSize is 75Gi, you can specify storageSize with a value of 75Gi. The
value for dataStorageSize, for mgmtStorageSize, and for zookeeperStorageSize is
set to the value of storageSize.

For the TimesTen databases (using TimesTen Classic) and for the TimesTen database (using
TimesTen Scaleout):

• TimesTen best practices recommends that the transaction log files associated with a
TimesTen database be located on a different storage volume than the checkpoint files for
the database. This provides separate paths to storage for the checkpoint and the
transaction log operations. For example, you can store the transaction log files in a high
performance storage, while storing the checkpoint files in a slower storage. See Locate
Checkpoint and Transaction Log Files on Separate Physical Device in the Oracle
TimesTen In-Memory Database Operations Guide for more information.

• To locate the checkpoint files and the transaction log files on a separate path of storage,
provide a value for a second persistent storage that is used only for the transaction log
files. Use the logStorageSize attribute for this and control its placement by using the
logStorageClassName attribute. This causes a second PVC to be created for each Pod,
which will then be available in each container at /ttlog. (This second storage volume has
a /ttlog mount point.)

Here is an example for a TimesTenClassic object. The same example can be used for a
TimesTenScaleout object:

Chapter 5
Additional Configuration Options

5-20



apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  ttspec:
    storageClassName: slower
    storageSize: 750Gi
    logStorageClassName: faster
    logStorageSize: 200G

Additional Resource Specifications
Kubernetes supports affinity and anti-affinity settings that let applications control their
placement within the Kubernetes cluster. These settings can be used to ensure all replicas do
not reside on a single physical host.

You can specify affinity settings, node selectors, additional containers, tolerations, resource
requirements, and other Kubernetes attributes for the TimesTen Pods and the containers within
these Pods that are created by the TimesTen Operator.

In a TimesTenClassic deployment, you specify these resource specifications in the
TimesTenClassic object's .spec.template datum. The TimesTen Operator passes this
template to the StatefulSet. For example, when you deploy a TimesTenClassic object, the
Operator configures a replicated pair of TimesTen databases that provide high availability.
However, since the Operator does not control the placement of Pods, you can achieve an even
greater level of high availability by controlling the placement of the TimesTen Pods. TimesTen
Pods can then be available in different availability zones or are on different Kubernetes nodes.
To do this, you specify the affinity option in the .spec.template datum for the
TimesTenClassic object.

Similar to a TimesTenClassic deployment, you can specify the same resource specifications for
a TimesTenScaleout object. The TimesTenScaleout object supports
the .spec.mgmtTemplate, .spec.dataTemplate and .spec.zookeeperTemplate attributes. You
can use these attributes to pass affinity and other settings to Kubernetes. These are of type
PodTemplateSpec:

• mgmtTemplate: Applied to the Pod that contains the TimesTen Scaleout management
instance. Consists of a single PodTemplateSpec.

• dataTemplate: Applied to the Pods that contain the TimesTen Scaleout data instances.
Consists of an array of PodTemplateSpec. If specified, there must be one entry in the array
for each data space in the grid (k entries in the array). This lets you specify a different
placement for each data space. For example, you can have data space one reside in
availability zone 1 and data space two reside in availability zone 2.

• zookeeperTemplate: Applied to the Pods that contain the ZooKeeper instances used by
Scaleout. Consists of a single PodTemplateSpec.

For information about PodTemplateSpec see, https://kubernetes.io/docs/reference/
kubernetes-api/
Here is an example of specifying the affinity setting for a TimesTenClassic object.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  …

Chapter 5
Additional Configuration Options

5-21

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/


  template:
    affinity:
      podAntiAffinity:
        preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 1
            podAffinityTerm:
             labelSelector:
              matchExpressions: 
               - key: "app"
                 operator: In
                 values:
                  - ds1
             topologyKey: "kubernetes.io/hostname"

About the Default Affinity and Anti-Affinity Settings for
TimesTenClassic Objects

Kubernetes affinity and anti-affinity settings constrain how Pods are scheduled on a Node. See 
Affinity and anti-affinity in the Kubernetes documentation.

By default, the TimesTen Operator adds the following affinity and anti-affinity settings to Pods
that are created when deploying a TimesTenClassic object:

• A nodeAffinity setting that instructs Kubernetes to provision TimesTen Pods on nodes
with the proper architecture (either amd64 or arm64). For more information about these
architectures, see About Deploying in a Multi-Architecture Kubernetes Cluster in this book.
This architecture setting is required.

• A podAntiAffinity section that instructs Kubernetes to schedule Pods for a
TimesTenClassic object on different nodes, if possible. This section is preferred. Because
the anti-affinity setting is preferred (a lesser constraint), Kubernetes can schedule multiple
Pods on the same Node if resource constraints make it necessary. For example, although
not recommended, an active standby pair of TimesTen databases can be provisioned in a
one Node cluster. However, if two or more Nodes are available, Kubernetes attempts to
schedule TimesTen Pods on different Nodes.

If you provide your own affinity section in a TimesTenClassic object definition, the TimesTen
Operator uses your affinity section and does not modify it.

Note:

If you specify a nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution
section, the TimesTen Operator adds the arch clause to it.

The following snippet shows the default affinity and anti-affinity settings for a TimesTenClassic
object named sample.

      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/arch
                operator: In
                values:

Chapter 5
About the Default Affinity and Anti-Affinity Settings for TimesTenClassic Objects

5-22

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity


                - amd64
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - podAffinityTerm:
              labelSelector:
                matchLabels:
                  database.timesten.oracle.com: sample
              topologyKey: kubernetes.io/hostname
            weight: 50

About the Default Kubernetes Security Context for TimesTen
Pods

A Kubernetes security context defines privilege and access control settings for a Pod or
Container. There are several security context settings. See Configure a Security Context for a
Pod or Container in the Kubernetes documentation.

The TimesTen Operator adds a default security context, including the Kubernetes default 
seccomp profile to the Pods it creates. This security context defines the privileges and
capabilities in which TimesTen containers run. If you provide your own security context for
TimesTen Pods, the TimesTen Operator uses your provided security context and does not
make any changes to it.

The following snippet shows the default security context for TimesTen containers.

    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop:
        - ALL
      privileged: false
      readOnlyRootFilesystem: true
      runAsNonRoot: true
      seccompProfile:
        type: RuntimeDefault

About Readiness Probes for TimesTen Containers
A Kubernetes readiness probe enables Kubernetes to determine whether a particular
application is ready. For example, consider an application that has to perform a lengthy startup
procedure. When the application is first started by Kubernetes, it is not immediately ready. It
cannot handle requests or workloads until the startup procedure is complete.

The TimesTen Kubernetes Operator (TimesTen Operator) provides different definitions of
ready for TimesTen (tt) containers and defines readiness probes based on these definitions.
This applies to replicated and non-replicated configurations. The following sections discuss
these readiness probes for replicated and non-replicated configurations:

• About Readiness Probes for Replicated Configurations

• About Readiness Probes for Non-Replicated Configurations

Chapter 5
About the Default Kubernetes Security Context for TimesTen Pods

5-23

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/reference/node/seccomp/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/


About Readiness Probes for Replicated Configurations
For active/standby pair replication configurations, the TimesTen Operator provides two different
definitions of ready along with two associated readiness probes. They are as follows:

• A TimesTen database is considered ready if it is the active database in an active/standby
pair replication scheme. The TimesTen Operator provides the /tmp/active readiness
probe for this definition of ready.

• A TimesTen database is considered ready if it is loaded and open for connections. The
TimesTen Operator provides the /tmp/readiness readiness probe for this definition of
ready.

These two definitions of ready fulfill different and incompatible requirements. You must decide
what definition of ready is best for your environment.

You also have the option of defining your own readiness probe. If you do so, the TimesTen
Operator uses your readiness probe rather than one of the provided ones.

To learn about the readiness probes that the TimesTen Operator provides:

• About the /tmp/active Readiness Probe

• About the /tmp/readiness Readiness Probe

About the /tmp/active Readiness Probe
This section discusses the definition of ready whereby the tt container providing the active
database is the one considered ready.

The TimesTen Operator creates and manages a file called /tmp/active in the tt container's
file system to determines if the tt container is ready. If the /tmp/active file exists, the tt
container is ready. If the file does not exist, the tt container is not ready.

The TimesTen Operator provides and defines the /tmp/active readiness probe for this
definition of ready. The TimesTen Operator enables this readiness probe by default for
replicated TimesTenClassic objects. The definition is in YAML format and is as follows:

readinessProbe:
 exec:
   command: 
   - cat
   - /tmp/active
 failureThreshold: 1
 periodSeconds: 10
 successThreshold: 1

In this example, Kubernetes runs the cat command in the tt container every 10 seconds. If the
command exits with a return code of 0, the container is ready. If the command returns any
other value, the container is not ready.

Defining a readiness probe in this manner ensures that Kubernetes Services routes incoming
client/server connections to databases that are working and that can be read and written. For
more information about client/server connections, see About Using Client/Server Drivers.

Chapter 5
About Readiness Probes for TimesTen Containers

5-24



About the /tmp/readiness Readiness Probe
This section discusses the definition of ready whereby a tt container providing a TimesTen
database that is loaded and open for connections is considered ready.

The TimesTen Operator creates and manages a file called /tmp/readiness in the tt
container's file system to determines if the container is ready. If the /tmp/readiness file exists,
the tt container is considered ready. If the file does not exist, the tt container is considered
not ready.

The TimesTen Operator provides and defines the /tmp/readiness readiness probe for this
definition of ready. The definition is in YAML format and is as follows:

readinessProbe:
 exec:
   command: 
   - cat
   - /tmp/readiness
 failureThreshold: 1
 periodSeconds: 10
 successThreshold: 1

In this example, Kubernetes runs the cat command in the tt container every 10 seconds. If the
command exits with a return code of 0, the container is ready. If the command returns any
other value, the container is not ready.

This readiness probe is useful if you want to replace one or more Nodes in your Kubernetes
cluster. In this case, you can cause Kubernetes to drain the workload from the Node. This
causes Kubernetes to evict any Pods that are running on that Node and create new Pods on
other Nodes in the cluster to replace them. Kubernetes supports a Pod disruption budget
whereby you specify a budget for your application. This budget tells Kubernetes how many
evicted Pods in a given Deployment can be tolerated. For example, assume you configure a
Deployment with 20 replicas of your application. You could tell Kubernetes to tolerate up to 5 of
the replicas being down at a time. When moving a workload from one Node to another,
Kubernetes is careful not to delete more than 5 replicas at a time, and waits for their
replacements to become ready before deleting more.

In the case of the TimesTen Operator, you can use the /tmp/readiness readiness probe to
prevent Kubernetes from terminating both the active and standby TimesTen Classic databases
simultaneously while draining Kubernetes Nodes.

If you use a Pod disruption budget of 1 on TimesTen, you can drain the workload from one or
more Nodes without creating a total TimesTen outage. When Kubernetes deletes a Pod that is
running TimesTen in TimesTen Classic, Kubernetes does not know if the Pod contains an
active or a standby database. Therefore, it may choose to delete the Pod that contains the
active database. This causes a failover to the standby, which disrupts applications if performed
during normal hours. There is no way to prevent this. However, Kubernetes does not proceed
to delete the other database until the one that was deleted comes back up and is completely in
the Healthy state.

For more information on the health of a Pod and the Healthy state, see About the High Level
State of TimesTen Pods.

Chapter 5
About Readiness Probes for TimesTen Containers

5-25



For information on Kubernetes Pod disruption budgets, see https://kubernetes.io/docs/
concepts/workloads/pods/disruptions/ and https://kubernetes.io/docs/tasks/run-
application/configure-pdb/.

About Disabling Readiness Probes
We recommend that you do not disable readiness probes. However, if do not want to use a
readiness probe for replicated objects, you can instruct the TimesTen Operator not to provision
one. Here's how:

In your TimesTenClassic object definition, specify a value of false for
the .spec.ttspec.createASReadinessProbe datum. For example:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  ttspec:
...
    createASReadinessProbe: false

For information about the .spec.ttspec.createASReadinessProbe datum, see 
TimesTenClassicSpecSpec.

About Readiness Probes for Non-Replicated Configurations
For non-replicated configurations, the TimesTen Operator provides one definition of ready and
one associated readiness probe. The definition is as follows: A TimesTen database is
considered ready if it is loaded and open for connections. The TimesTen Operator provides
the /tmp/readiness readiness probe for this definition of ready.

The TimesTen Operator creates and manages a file called /tmp/readiness in the tt
container's file system to determines if the container is ready. If the /tmp/readiness file exists,
the tt container is ready. If the file does not exist, the tt container is not ready.

By default, the TimesTen Operator provides and defines this /tmp/readiness readiness probe
for non-replicated TimesTenClassic objects. The definition is in YAML format and is as follows:

readinessProbe:
 exec:
   command: 
   - cat
   - /tmp/readiness
 failureThreshold: 1
 periodSeconds: 10
 successThreshold: 1

In this example, Kubernetes runs the cat command in the tt container every 10 seconds. If the
command exits with a return code of 0, the container is ready. If the command returns any
other value, the container is not ready.

Chapter 5
About Readiness Probes for TimesTen Containers

5-26

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/


Defining a readiness probe in this manner ensures that Kubernetes Services routes incoming
client/server connections to databases that are working and that can be read and written. For
more information about client/server connections, see About Using Client/Server Drivers.

You have the option of defining your own readiness probe. If you do so, the TimesTen Operator
uses your readiness probe rather than the provided one.

Chapter 5
About Readiness Probes for TimesTen Containers

5-27



6
Specify CPU and Memory Requests and
Limits

This chapter discusses the importance of specifying CPU and memory requests and limits for
TimesTen Classic and TimesTenScaleout objects. It also provides an understanding of Linux
cgroups and gives background information about the Linux out of memory (OOM) killer.

Topics:

• About Resource Requests and Limits

• About TimesTen Containerized Deployments

• About Specifying Requests and Limits for TimesTen Containers

• Approach 1: Use Specific Datum for Requests and Limits

• Approach 2: Use Templates for Requests and Limits

• About Specifying Requests and Limits to Kubernetes

• About Verifying databaseMemorySize

• About Runtime Memory Monitoring

About Resource Requests and Limits
One of the core Linux technologies that is used to implement containers is cgroups. Cgroups
can be used to enforce CPU and memory use limitations on a process or processes.

Kubernetes provides facilities that let you specify the amount of CPU and memory that a
container consumes. When specified, Kubernetes uses your requests to do the following:

• Determine the node a particular Pod should be created on: Kubernetes determines which
nodes have enough free resources to satisfy your request.

• Enforce these limits at runtime: Kubernetes ensures that applications do not exceed their
requests.

Kubernetes chooses which node of the cluster to run a Pod on based on the Pod's resource
requests, and the resources available on each node in the cluster. But once a Pod is
scheduled onto a node, Kubernetes does not directly enforce limits at runtime. Rather,
Kubernetes passes requests to Linux through cgroups. The node's Linux kernel then enforces
the limits on Kubernetes behalf.

Let's look at an example of a Pod with the following definition:

apiVersion: v1
kind: Pod
metadata:
  name: samplePod
spec:
  containers:
  - image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    name: sample

6-1



    resources:
      limits:
        cpu: 20
        memory: 200Gi
      requests:
        cpu: 20
        memory: 200Gi

Kubernetes determines which node it will run the Pod on. It does this by examining the Pod's
resources requests to determine which node has enough free resources to accommodate the
Pod.

Once the node is determined, Kubernetes creates a cpu cgroup for the container (sample in
this example) and configures the cgroup to have a limit of 20 CPUs. Kubernetes also creates a
memory cgroup for the container and configures it to have a limit of 200 gigabytes. Kubernetes
then forks off the lead process of the newly created container, and associates the initial
process with the cpu and memory cgroups.

Since the lead process is associated with or running under these cgroups, that process and all
its children are subject to the limits that the cgroups define. The Linux kernel on the node
where the container is running automatically enforces these limits without any involvement
from Kubernetes.

CPU limits are easily enforced by Linux. If an application wants to use more CPU than its limit,
the kernel can choose not to dispatch the application for a period of time to keep its usage
under control.

Memory limit enforcement is different than CPU enforcement. Linux has a component called
the out of memory (OOM) killer. If processes exceed their intended memory usage, or if the
system gets stressed, the OOM killer terminates processes abruptly.

Next, let's consider a Pod with this definition:

apiVersion: v1
kind: Pod
metadata:
  name: samplePod
spec:
  containers:
  - image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    name: sample

In this Pod, there are no specified memory limits. The container runs in default cgroups with
infinite limits. This cgroup is shared by all processes on the node that have no specified
memory limit, whether the processes are running in containers or not. In this case, if the Linux
node becomes memory constrained, the OOM killer chooses processes from the entire node to
terminate. The victim might be TimesTen, it might be the Kubernetes kubelet, it might be some
other process, or it might be all of them.

About TimesTen Containerized Deployments
As an in-memory database, TimesTen uses a large amount of memory by design. Processes
that run TimesTen may be the largest memory users on a given node. If the operating system
gets stressed, TimesTen is likely a prime candidate to get terminated by the Linux OOM killer.
Therefore, it is crucial that memory requests and limits be specified for your TimesTen
containers. TimesTen also recommends that CPU requests and limits be specified.

Chapter 6
About TimesTen Containerized Deployments

6-2



Note:

Ensure the value of a request and the value of a limit for a resource is the same. For
example, if the memory request for the daemonlog container has a value of 30Mi
ensure the memory limit for this daemonlog container also has a value of 30Mi. There
are examples later in the chapter that illusrate this.

The memory request and memory limit for the tt container is the most essential and crucial to
specify. The value is dependent on the memory required to hold the TimesTen database as
well as the memory required for the TimesTen daemon, subdaemons, cache and replication
agents, Client/Server server, and so on. The memory required to hold the database is
dependent on the size of your database.

The TimesTen Operator provides functionality to accurately size your TimesTen database. This
functionality is discussed later. The additional memory required for the TimesTen daemon,
subdaemons, Client/Server server is dependent on your SQL and PL/SQL usage and the
memory requirements vary with your workload. The TimesTen Operator provides a default of
2Gi for this additional memory. You can use this default or change it. How to change it is
discussed later.

Let’s take a look at the defaults for the TimesTen containers. In all cases, you have the option
of changing the default.

• tt container:

– memory: This value is discussed in detail throughout this chapter.

– cpu: The value is dependent on how much CPU the tt container requires. This
includes CPU used by the TimesTen daemon, subdaemons, replication agents, cache
agents, and by the Client/Server server. The Client/Server server executes SQL on
behalf of your applications, so the value depends on the workload. There is no default.

• daemonlog container:

– memory: The default is 200Mi.

– cpu: The default is 200m.

• exporter container (if provisioned):

– memory: The default is 200Mi.

– cpu: The default is 200m.

In addition, if you are using TimesTen Scaleout, there are additional TimesTen containers to
consider:

• tt container of the management instance:

– memory: The default is 3Gi.

– cpu: The default is 1.

• zookeeper container:

– memory: The default is 1Gi.

– cpu: The default is 500m.

Chapter 6
About TimesTen Containerized Deployments

6-3



About Specifying Requests and Limits for TimesTen Containers
For TimesTen Classic and TimesTen Scaleout, the TimesTen Operator provides default values
for memory and CPU requests for the daemonlog and exporter containers. For TimesTen
Scaleout specifically, the TimesTen Operator provides default values for CPU and memory
requests for the tt container of the management instance and for the zookeeper container.
You can override these defaults by specifying specific datum in the .spec.ttspec section of
your TimesTenClassic and TimesTenScaleout object definitions.

These datum are as follows:

• daemonLogMemoryRequest
• daemonLogCPURequest
• exporterMemoryRequest
• exporterCPURequest
• mgmtMemoryRequest: (TimesTen Scaleout)

• mgmtCPURequest: (TimesTenScaleout)

• zookeeperMemoryRequest: (TimesTen Scaleout)

• zookeeperCPURequest: (TimesTen Scaleout)

The TimesTen Operator does not provide a default value for the CPU request of a tt container.
If you want to specify a value for this CPU request, use
the .spec.ttspec.databaseCPURequest datum in your TimesTenClassic and
TimesTenScaleout object definitions.

For details about these datum, see TimesTenClassicSpecSpec and 
TimesTenScaleoutSpecSpec.

Let's explore how the TimesTen Operator gathers information for memory and CPU requests
and limits and passes the information to Kubernetes. There are two approaches:

• Use specific datum in .spec.ttspec for requests and limits: This is the default approach
and the approach we recommend. The TimesTen Operator provides specific datum in
the .spec.ttspec section of your TimesTenClassic and TimesTenScaleout object
definitions and passes the information in these datum to Kubernetes. The TimesTen
Operator also automatically determines an appropriate memory request and limit for your
tt containers.

• Use templates for requests and limits: This approach uses memory and CPU requests and
limits information in templates. In this approach, you specify values for memory and CPU
requests for the TimesTen containers. The TimesTen Operator passes this information to
Kubernetes.

The specific datum are discussed in detail in subsequent sections in this chapter.

Here is a summary list of the datum:

• automaticMemoryRequests
• databaseCPURequest
• databaseMemorySize
• additionalMemoryRequest

Chapter 6
About Specifying Requests and Limits for TimesTen Containers

6-4



• memoryWarningPercent
For details about these datum, see TimesTenClassicSpecSpec and 
TimesTenScaleoutSpecSpec.

Approach 1: Use Specific Datum for Requests and Limits
In this approach, the TimesTen Operator automatically determines the appropriate memory
request and limit for the tt containers. This is the default behavior
(.spec.ttspec.automaticMemoryRequests is set to true by default) for a TimesTenClassic or
TimesTenScaleout object.

For the remaining TimesTen containers, the TimesTen Operator uses specific datum in
the .spec.ttspec section of the TimesTenClassic and TimesTenScaleout object definitions to
determine the memory request and limit and the CPU request and limit for each of the
TimesTen containers. The TimesTen Operator either uses the default values for the datum or
uses a value that you specify. The exception is the CPU request and limit for the tt container.
Since there is no default, if you want to define a CPU request and limit, you must manually
specify a value in the .spec.ttspec.databaseCPURequest datum of your TimesTenClassic and
TimesTenScaleout objects. The TimesTen Operator then supplies all this information for
memory and CPU requests and limits to Kubernetes.

For details about these datum, including defaults, see TimesTenClassicSpecSpec and 
TimesTenScaleoutSpecSpec.

It is essential that the value for the memory request for the tt container that holds the TimesTen
database be accurate.

Recall that the memory request for the tt container is based on:

• Shared memory for the database: This is dependent on the size of the database.

• Additional memory: This is the memory required in addition to the database. It includes
memory that is used for the TimesTen daemon, subdaemons, agents, Client/Server server.

The TimesTen Operator provides the .spec.ttspec.databaseMemorySize
and .spec.ttspec.additionalMemoryRequest datum for these specific memory requirements.
The .spec.ttspec.databaseMemorySize is used to specify the size of the database and
the .spec.ttspec.additionalMemoryRequest is used for the additional memory.

The TimesTen Operator adds the value of .spec.ttspec.additionalMemoryRequest to the
value of .spec.ttspec.databaseMemorySize. The sum is the memory request and memory limit
to Kubernetes.

You do not have to specifically specify the .spec.ttspec.databaseMemorySize datum for a
TimesTenClassic or TimesTenScaleout object. If not specified, the TimesTen Operator attempts
to determine the appropriate value.

TimesTen provides the ttShmSize utility to determine the shared memory requirements of a
database, given its sys.odbc.ini entry. For information about ttShmSize, see ttShmSize in the
Oracle TimesTen In-Memory Database Reference.

The equivalent for a TimesTen sys.odbc.ini file is the TimesTen Operator db.ini metadata
file. You can provide the db.ini file in several ways:

• Embed in a ConfigMap referenced in .spec.ttspec.dbConfigMap.

• Embed in a Secret referenced in .spec.ttspec.dbSecret.

• Use an init container.

Chapter 6
Approach 1: Use Specific Datum for Requests and Limits

6-5



For details about the facilities that you can use to provide metadata files, see Populate the /
ttconfig Directory.

TimesTen recommends that you provide the db.ini metadata file in either a ConfigMap or a
Secret. The TimesTen Operator examines the Configmaps and Secrets, if any, in your
TimesTenClassic or TimesTenScaleout objects. If the db.ini is found in a Configmap or
Secret, the TimesTen Operator uses the TimesTen ttShmSize utility to determine the
appropriate amount of shared memory to request based on your database definition. This
value is then used for the .spec.ttspec.databaseMemorySize value. With this approach, the
TimesTen Operator does the database sizing for you.

Let's look at an example:

kind: ConfigMap
metadata:
  name: resource9
data:
  adminUser: |
    adminuser/adminuserpwd
  schema.sql: |
    create user sampleuser identified by sampleuserpwd;
    grant admin to sampleuser;
    create table sampleuser.a (b number not null primary key, c number, d 
timestamp);  
    insert into sampleuser.a values(-1, -1, sysdate);
  db.ini: |
    Permsize=32768
    TempSize=4096
    LogBufMB=1024
    Connections=2048
    DatabaseCharacterSet=AL32UTF8
---
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: recommendedoption
spec:
  ttspec:
    dbConfigMap:
    - option1
    storageClassName: standard
    storageSize: 200Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    prometheus:
      insecure: true

In this case, the TimesTen Operator runs ttShmSize against your provided db.ini file and
determines the value for .spec.ttspec.databaseMemorySize automatically. The TimesTen
Operator then adds this value to the value for .spec.ttspec.additionalMemoryRequest. The
sum is the memory request and memory limit to Kubernetes.

If you provide the db.ini file by using an init container or other mechanism, the TimesTen
Operator cannot determine the value for .spec.ttspec.databaseMemorySize. By the time the
Pod is provisioned and the init container is executed, the Pod has already been created and its

Chapter 6
Approach 1: Use Specific Datum for Requests and Limits

6-6



memory requirements defined. In such cases, you must manually provide
the .spec.ttspec.databaseMemorySize as part of your YAML.

TimesTen recommends that you use the ttShmSize utility in a TimesTen instance outside of
Kubernetes to determine the appropriate value for .spec.ttspec.databaseMemorySize. You do
not need to create the database.

This example assumes you have created a TimesTen instance outside of Kubernetes and have
created a DSN in your sys.odbc.ini file with the name database1. Use the ttShmSize utility
based on provided values for the PermSize, TempSize, LogBufMB, and Connections connection
attributes.

ttShmSize -connstr 
"DSN=database1;PermSize=32768;TempSize=4096;LogBufMB=1024;Connections=2048" 
The required shared memory size is 39991547720 bytes.

Specify this value in the .spec.ttspec.databaseMemorySize datum.

Let's look at an example that uses an init container and uses the calculated value
for .spec.ttspec.databaseMemorySize.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: init1
spec:
  ttspec:
    databaseMemorySize: 41Gi
    storageClassName: standard
    storageSize: 200Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    prometheus:
      insecure: true
  template:
    spec:
      initContainers:
      - name: init1a
         command:
        - sh
        - "-c"
        - |
          /bin/bash <<'EOF'
          echo adminuser/adminuserpwd > /ttconfig/adminUser
          echo PermSize=32768 > /ttconfig/db.ini
          echo TempSize=4096 > /ttconfig/db.ini
          echo LogBufMB=1024 > /ttconfig/db.ini
          echo Connections=2048 > /ttconfig/db.ini
          echo DatabaseCharacterSet=AL32UTF8 >> /ttconfig/db.ini
          ls -l /ttconfig
          EOF
        volumeMounts:
        - name: tt-config
          mountPath: /ttconfig
      volumes:

Chapter 6
Approach 1: Use Specific Datum for Requests and Limits

6-7



      - name: tt-config
        emptyDir: {}  

In this case, the TimesTen Operator uses the value you specified
for .spec.ttspec.databaseMemorySize to determine the size of the shared memory segment
to hold the TimesTen database. The TimesTen Operator then adds this value to the value
for .spec.ttspec.additionalMemoryRequest. The sum is the memory request and memory limit
to Kubernetes.

Note:

In TimesTen Scaleout, the sys.odbc.ini file (and corresponding db.ini file) define
the size of a single element of the database, not the entire database. When
provisioning a TimesTenScaleout object, the TimesTen Operator uses the provided
data in the same manner as it does for a TimesTenClassic object.

Approach 2: Use Templates for Requests and Limits
This approach uses a template for specifying resource requests and limits. To enable this
behavior, set the .spec.ttspec.automaticMemoryRequests datum to false for your
TimesTenClassic or TimesTenScaleout object.

In your YAML for TimesTenClassic and TimesTenScaleout objects, you can specify a template
for Pods. In this template, you specify attributes of various containers in the Pods, including
the tt container. If you specify a template for one or more containers, the resource requests
and limits for the containers are used by Kubernetes.

TimesTen recommends that you use the ttShmSize utility in a TimesTen instance outside of
Kubernetes to determine the appropriate value for the memory request and limit for the tt
container. You do not need to create the database.

This example assumes you have created a TimesTen instance outside of Kubernetes and have
created a DSN in your sys.odbc.ini file with the name database1. Use the ttShmSize utility
based on provided values for the PermSize, TempSize, LogBufMB, and Connections connection
attributes.

ttShmSize -connstr 
"DSN=database1;PermSize=32768;TempSize=4096;LogBufMB=1024;Connections=2048" 
The required shared memory size is 39991547720 bytes.

For information about ttShmSize, see ttShmSize in the Oracle TimesTen In-Memory Database
Reference.

Let's look at an example:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: resource1
spec:
  ttspec:
    storageClassName: standard
    storageSize: 100Gi

Chapter 6
Approach 2: Use Templates for Requests and Limits

6-8



    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    prometheus:
      insecure: true
  template:
    spec:
      containers:
      - name: tt
        resources:
          requests:
            memory: "41Gi"
            cpu:    "20"
          limits:
            memory: "41Gi"
            cpu:    "20"
      - name: daemonlog
        resources:
          requests:
            memory: "30Mi"
            cpu:    "210"
          limits:
            memory: "30Mi"
            cpu:    "210"
      - name: exporter
        resources:
          requests:
            memory: "22Mi"
            cpu:    "310m"
          limits:
            memory: "22Mi"
            cpu:    "310m"

In this example, cpu and memory requests and limits for the tt, daemonlog, and exporter
containers are included in the template. These resources are specified to Kubernetes.

About Specifying Requests and Limits to Kubernetes
The TimesTen Operator follows a specific order in determining the cpu and memory request and
limits to Kubernetes:

• For the tt container that holds your TimesTen database, the TimesTen Operator looks for
the following in this order:

– If you specify a template, the TimesTen Operator uses the values in it.

– If you specify .spec.ttspec.databaseMemorySize, the TimesTen Operator uses its
value.

– If there is a db.ini file, the TimesTen Operator uses the values in it.

– If none of the above are true, the TimesTen Operator uses the default.

In addition, if you specified a value for .spec.ttspec.databaseCPURequest, that value is
used as the cpu request and cpu limit to Kubernetes.

• If you specify resource requests or limits for the daemonlog container in your container
templates in your TimesTenClassic or TimesTenScaleout object, the TimesTen Operator
honors those requests. If you do not, the TimesTen Operator uses the values you supply in

Chapter 6
About Specifying Requests and Limits to Kubernetes

6-9



your object's .spec.ttspec.daemonLogMemoryRequest
and .spec.ttspec.daemonLogCPURequest datum.

• If you specify resource requests or limits for the exporter container in your container
templates in your TimesTenClassic or TimesTenScaleout object, the TimesTen Operator
honors those requests. If you do not, the TimesTen Operator uses the values you supply in
your object's .spec.ttspec.exporterMemoryRequest
and .spec.ttspec.exporterCPURequest datum.

• If you specify a template for the tt container in the mgmtTemplate in a TimesTenScaleout
object, the TimesTen Operator uses the resource data in that template. If you do not, the
TimesTen Operator uses the values you supply in your
object's .spec.ttspec.mgmtMemoryRequest and .spec.ttspec.mgmtCPURequest datum.

• If you specify a template for the zookeeper container in the zookeeperTemplate in a
TimesTenScaleout object, the TimesTen Operator uses the resource data in that template.
If you do not, the TimesTen Operator uses the values you supply in your
object's .spec.ttspec.zookeeperMemoryRequest
and .spec.ttspec.zookeeperCPURequest datum.

About Verifying databaseMemorySize
Whether specified by you or determined by the TimesTen Operator, before a database is
created, the TimesTen Operator and the TimesTen agent checks that the tt containers in the
relevant TimesTen Pods have the memory resources required to create the database. The
TimesTen Operator accomplishes this by running the TimesTen ttShmSize utility and
comparing it with the memory quotas in the tt container's cgroup.

If the required resources are not available, the TimesTen Operator returns an error message
(as an Event) and moves the TimesTenClassic or TimesTenScaleout object to the Failed state.

This checking is performed even if the value of .spec.ttspec.automaticMemoryRequests is
false.

About Runtime Memory Monitoring
The TimesTen Operator monitors the memory usage of TimesTen Pods at runtime. It informs
you of the following:

• If any tt containers are approaching their specified memory limits.

• If any TimesTen containers have been terminated by the Linux OOM killer.

Kubernetes Events are generated to report on these conditions.

Every .spec.ttspec.pollingInterval seconds, the TimesTen agent in each tt container
queries the container's underlying Linux cgroup to determine the cgroup's
memory.limit_in_bytes and memory.usage_in_bytes and reports these values to the
TimesTen Operator. The Kubernetes status of each container is similarly queried. The
TimesTen Operator uses this data to generate appropriate Events as needed.

If the usage is greater than .spec.ttspec.memoryWarningPercent of the limit, an Event is
generated to notify you. In addition, if the TimesTen Operator observes that one or more of the
TimesTen related containers have been terminated or restarted (by the OOM killer or
otherwise), the TimesTen Operator reports the observation by using appropriate Events.

Chapter 6
About Verifying databaseMemorySize

6-10



7
Create TimesTen Classic Databases

The TimesTen Kubernetes Operator (TimesTen Operator) creates, manages, and monitors
TimesTen Classic databases. It supports the following topologies:

• Replicated active standby pair configurations: The TimesTen Operator configures one
TimesTen database as the active database, copies the active database to the standby, and
configures an active standby pair replication scheme between them.

• Non-replicated configurations: The TimesTen Operator configures one or more TimesTen
Classic databases. Each database is independent and has no relationship to each other.

The TimesTen Operator supports TimesTen cache for both replicated and non-replicated
configurations. See Work with TimesTen Cache.

Let's learn how to define these configurations and how to deploy and create TimesTen
databases in your Kubernetes namespace.

Topics:

• About Defining TimesTenClassic Objects

• About the Deployment Process

• About the Examples

• Create Replicated TimesTen Classic Databases

• Create Non-Replicated TimesTen Classic Databases

• Modify the Number of Replicas in Non-Replicated Environments

About Defining TimesTenClassic Objects
The TimesTenClassic object type provides the metadata and attributes to define and create
TimesTen Classic databases in your Kubernetes namespace. The metadata and attributes are
applicable to replicated and non-replicated configurations. To distinguish the two
configurations, the TimesTenClassic object type provides
the .spec.ttspec.replicationTopology datum. The value of
the .spec.ttspec.replicationTopology datum determines whether the TimesTen Operator
configures a replicated active standby pair configuration or a non-replicated configuration. Valid
values for .spec.ttspec.replicationTopology are as follows:

• activeStandbyPair (or not specified): The TimesTen Operator configures a replicated
active standby pair of TimesTen Classic databases.

• none: The TimesTen Operator configures one or more non-replicated TimesTen Classic
databases. Each database operates independently and there is no TimesTen replication
used.

For non-replicated configurations, with .spec.ttspec.replicationTopology set to none, the
TimesTenClassic object provides additional datum to assist in your customization:

• replicas: Determines the number of Pods to be deployed. For example, if you set replicas
to 3, there are three Pods, each containing a TimesTen database.

7-1



• rollingUpdatePartition: Determines how many databases are upgraded. See Perform
Upgrades.

For more information about the TimesTenClassic object type, see About the TimesTenClassic
Object Type.

Let's review two YAML files that contain definitions for replicated and non-replicated
TimesTenClassic objects. These are simplistic in nature. There are many more customizations
available to you:

• Replicated:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: repsample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - repsample

• Non-replicated:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: norepsample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    replicationTopology: none
    replicas: 3
    dbConfigMap:
    - norepsample

The following customizations apply to both configurations:

– storageClassName and storageSize: Since TimesTen is a database and is persistent,
you have to specify a storage class, which is used to request persistent volumes for
the database. The storageSize datum determines the amount of storage to be
provisioned for TimesTen and its database.

– image: You have to specify the container registry that contains the TimesTen container
image. This image runs a specific release of TimesTen.

– imagePullSecret: You have to specify a Kubernetes Secret that authenticates
Kubernetes to pull a TimesTen container image from the specified container registry.

– dbConfigMap: Optionally, you can specify one or more ConfigMaps that contain the
metadata files for your TimesTen databases. See Use Configuration Metadata.

The following customizations are specific to the type of configuration:

Chapter 7
About Defining TimesTenClassic Objects

7-2



– replicationTopology: A value of none indicates a non-replicated configuration. Since
the default replicationTopology is activeStandbyPair, you do not need to specify
replicationTopology for replicated configurations.

replicas: This datum is specific to non-replicated configurations.

In addition to the many options for customizing your TimesTenClassic object and your
TimesTen configuration, the TimesTen Operator provides metadata files that enable you to
customize and define the configuration for your TimesTen databases. These files include
db.ini, adminUser, cacheUser, schema,sql, cachegroups.sql, and others. The TimesTen
Operator provides several methods for you to make those files available to the TimesTen
Operator and TimesTen. For details, see Use Configuration Metadata.

About the Deployment Process
After you define a TimesTenClassic object for either a replicated or non-replicated
configuration, you deploy the object into your namespace using either the kubectl create or
the helm install command. After the object is deployed in your namespace, the TimesTen
Operator notices and takes action. The process to create and configure TimesTen and its
databases begins:

• StatefulSet: The TimesTen Operator creates a StatefulSet to run TimesTen. The
StatefulSet contains a specified number of replicas:

– For replicated objects, the number of replicas is 2.

– For non-replicated objects, the TimesTen Opertor uses the value you specified
for .spec.ttspec.replicas. If you do not specify a value, the TimesTen Operator uses
the default value of 1.

• Pods: Because the TimesTen Operator creates a StatefulSet, Kubernetes in turn
provisions replicas number of Pods.

For both replicated and non-replicated configurations, each Pod contains several
containers, including tt, daemonlog1, and exporter. If you define additional containers
in .spec.template of your TimesTenClassic object, they are included in the Pod.

• PersistentVolumes: Kubernetes provisions one or more PersistentVolumes (persistent
storage), which are mounted in the TimesTen containers. This is where your TimesTen
databases are stored.

• Service: The TimesTen Operator creates a headless Service, which causes Kubernetes to
issue unique DNS names for each Pod.

When Kubernetes creates and starts a new Pod as part of a TimesTenClassic object's
StatefulSet, the TimesTen Operator interacts with the TimesTen Agent in each Pod to perform
the actions to get TimesTen and its databases up and running.

The Operator performs the following actions:

• Creates a TimesTen installation.

• Creates a TimesTen instance that uses the installation just created.

• Creates TimesTen configuration files in the instance based on your provided metadata files
(such as db.ini).

• Starts the TimesTen instance.

• Creates the TimesTen database.

Chapter 7
About the Deployment Process

7-3



• Create database users based on your provided metadata files (such as adminUser and
cacheUser).

• Creates database schemas, tables, views, procedures, and other database objects based
on your provided metadata files (such as schema.sql, cachegroups.sql, and epilog.sql).

Let's walk through some examples that show you how to define and create replicated and non-
replicated TimesTenClassic objects and how the TimesTen Operator uses the information to
create TimesTen databases.

About the Examples
The following examples show you how to create YAML manifest files that define replicated and
non-replicated configurations. Both examples use the same set of metadata files and both use
Kubernetes ConfigMaps to get the metadata files into the tt containers. The examples show
you how to deploy the TimesTenClassic objects in your Kubernetes namespace. The examples
then show you how to monitor the progress of the TimesTen Operator as it creates TimesTen
databases and gets them up and running and operational. The examples conclude with
showing you how to connect to a TimesTen database and perform operations on it.

The examples use YAML manifest files. If you are using Helm to create TimesTen Classic
databases, see Use Helm in Your TimesTen Kubernetes Operator Environment.

For simplicity, let's create the metadata files and ConfigMaps used in the examples. For
complete details about metadata files, see Use Configuration Metadata and Populate the /
ttconfig Directory.

1. On your development host, from the directory of your choice, create an empty subdirectory
for the metadata files and change to that directory. This example creates the
kube_files/cm subdirectory.

mkdir -p kube_files/cm
cd kube_files/cm

2. Create a db.ini file.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

3. Create an AdminUser file.

vi adminUser

adminuser/adminuserpwd

4. Create a schema.sql file.

vi schema.sql

create table adminuser.emp (id number not null primary key, name char 
(32));

5. Create the ConfigMaps.

Chapter 7
About the Examples

7-4



a. For the replicated object, create the repsample ConfigMap.

kubectl create configmap repsample --from-file .

The output is the following:

configmap/repsample created

b. For the non-replicated object, create the norepsample ConfigMap.

kubectl create configmap norepsample --from-file .

The output is the following:

configmap/norepsample created

The examples show how to specify the preceding ConfigMaps in
the .spec.ttspec.dbConfigMap section of your YAML manifest files.

Create Replicated TimesTen Classic Databases
This example shows you how to create and deploy a replicated TimesTenClassic object in your
Kubernetes namespace. It shows you how to monitor the TimesTen Operator as it uses the
information in the object's definition to create an active standby pair of replicated TimesTen
Classic databases.

1. Create the YAML manifest file for the TimesTenClassic object.

vi repsample.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: repsample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 10Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - repsample

Note the following:

• The storageClassName is oci-bv. Replace oci-bv with the name of your storage
class.

• The storageSize is 10Gi. Replace 10Gi with the amount of storage that needs to be
requested for each Pod to hold TimesTen.

• The image is container-registry.oracle.com/timesten/timesten:22.1.1.34.0.
Replace image with the name and location of your TimesTen container image.

Chapter 7
Create Replicated TimesTen Classic Databases

7-5



• The imagePullSecret is sekret. Replace sekret with the image pull secret that
Kubernetes needs to use to fetch the TimesTen container image.

• The dbConfigMap specifies the repsample ConfigMap created in About the Examples.

2. Deploy the TimesTenClassic object into your namespace.

kubectl create -f repsample.yaml

The output is the following:

timestenclassic.timesten.oracle.com/repsample created

3. Monitor deployment.

a. Check status of object.

kubectl get ttc repsample

The output is similar to the following:

NAME          STATE              ACTIVE   AGE
repsample     Initializing       None     9s

The provisioning starts, but is not completed as indicated by the Initializing state.

b. Wait a few minutes. Then, check status again.

kubectl get ttc repsample

The output is similar to the following:

NAME        STATE    ACTIVE        AGE
repsample   Normal   repsample-0   2m27s

The provisioning process completes. The active and standby databases are up and
running and operational. The TimesTen Operator transitions the repsample object to
the Normal state.

4. (Optional): Review the state transitions.

kubectl get events

The output is similar to the following:

LAST SEEN   TYPE      REASON                   
OBJECT                                              MESSAGE
...

4m46s       Normal    Create                   timestenclassic/
repsample                           Service repsample created
4m46s       Warning   Warning                  timestenclassic/
repsample                           Database CPU limit/request not 
specified

Chapter 7
Create Replicated TimesTen Classic Databases

7-6



4m46s       Normal    Create                   timestenclassic/
repsample                           StatefulSet repsample created
4m46s       Warning   Create                   timestenclassic/
repsample                           PodMonitor repsample created
3m46s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 Agent Up
3m46s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 Release 22.1.1.34.0
3m46s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 Agent Up
3m46s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 Release 22.1.1.34.0
3m46s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 Daemon Up
3m45s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 Daemon Up
3m30s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 Database Loaded
3m30s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 Database Updatable
3m29s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 RepAgent Running
3m29s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-0 RepScheme Exists
3m29s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-0 RepState ACTIVE
2m38s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 Database Loaded
2m38s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 RepScheme Exists
2m38s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-1 RepState IDLE
2m37s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 Database Loaded
2m37s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 RepScheme Exists
2m37s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-1 RepState IDLE
2m32s       Normal    Info                     timestenclassic/
repsample                           Pod repsample-1 RepAgent Running
2m32s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-1 RepState STANDBY
2m31s       Normal    StateChange              timestenclassic/
repsample                           TimesTenClassic was Initializing, now 
Normal
2m26s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-0 is Ready
2m26s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-0 is Active Ready
2m26s       Normal    StateChange              timestenclassic/
repsample                           Pod repsample-1 is Ready

During the provisioning process, the TimesTenClassic object transitions from the
Initializing to the Normal state.

5. Verify the existence of the underlying objects.

Chapter 7
Create Replicated TimesTen Classic Databases

7-7



1. StatefulSet:

kubectl get statefulset repsample

The output is similar to the following:

NAME        READY   AGE
repsample   1/2     7m22s

2. Service:

kubectl get service repsample

The output is similar to the following:

NAME        TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             AGE
repsample   ClusterIP   None         <none>        6625/TCP,8888/TCP   8m2s

3. Pods:

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
repsample-0                          3/3     Running   0          8m31s
repsample-1                          2/3     Running   0          8m31s
...

4. PVCs:

kubectl get pvc

The output is similar to the following:

NAME                          STATUS   
VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
tt-persistent-repsample-0     Bound    csi-f36b2402-9745-46bd-
a023-811839ab518e   250Gi      RWO            oci-bv         8m59s
tt-persistent-repsample-1     Bound    csi-0a0cfd59-b2bf-48b7-
bdef-6ee03794891b   250Gi      RWO            oci-bv         8m59s

6. Connect to the active database.

a. From your development host, establish a shell in the Pod.

kubectl exec -it repsample-0 -c tt -- /bin/bash

Chapter 7
Create Replicated TimesTen Classic Databases

7-8



b. Connect to the active database. Insert a row in a table.

[timesten@repsample-0 ~]$ ttIsql repsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=repsample";
Connection successful: DSN=repsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
repsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCII;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1
;
(Default setting AutoCommit=1)
Command> select * from adminuser.emp;
0 rows found.
Command> describe adminuser.emp;

Table ADMINUSER.EMP:
  Columns:
   *ID                              NUMBER NOT NULL
    NAME                            CHAR (32)
  PRIMARY KEY (ID) RANGE INDEX

1 table found.
(primary key columns are indicated with *)
Command> insert into adminuser.emp values (1,'test');
1 row inserted.
Command> commit;
Command> select * from adminuser.emp;
< 1, test                             >
1 row found.

c. Exit from ttIsql and from the shell.

Command> exit
Disconnecting...
Done.
[timesten@repsample-0 ~]$ exit
exit

Congratulations! You successfully created and deployed a replicated TimesTenClassic object.
The replicated active standby pair of TimesTen Classic databases are up and running and fully
operational.

Create Non-Replicated TimesTen Classic Databases
This example shows you how to create and deploy a non-replicated TimesTenClassic object in
your Kubernetes namespace. It shows you how to monitor the TimesTen Operator as it uses
the information in the object's definition to create independent TimesTen databases.

Chapter 7
Create Non-Replicated TimesTen Classic Databases

7-9



1. Create the YAML manifest file for the TimesTenClassic object.

vi norepsample.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: norepsample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 10Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    replicationTopology: none
    replicas: 3
    dbConfigMap:
    - norepsample

Note the following:

• The storageClassName is oci-bv. Replace oci-bv with the name of your storage
class.

• The storageSize is 10Gi. Replace 10Gi with the amount of storage that needs to be
requested for each Pod to hold TimesTen.

• The image is container-registry.oracle.com/timesten/timesten:22.1.1.34.0.
Replace image with the name and location of your TimesTen container image.

• The imagePullSecret is sekret. Replace sekret with the image pull secret that
Kubernetes needs to use to fetch the TimesTen container image.

• The replicationTopology is none. Do not change this setting for non-replicated
configurations.

• The replicas value is 3. Replace 3 with the number of TimesTen Pods (each
containing a TimesTen database) to provision. The value must be between 1 and 3. If
you omit replicas, the default is 1.

• The dbConfigMap specifies the norepsample ConfigMap created in About the
Examples.

2. Deploy the TimesTenClassic object into your namespace.

kubectl create -f norepsample.yaml

The output is the following:

timestenclassic.timesten.oracle.com/norepsample created

3. Monitor deployment.

a. Check status of object.

kubectl get ttc norepsample

Chapter 7
Create Non-Replicated TimesTen Classic Databases

7-10



The output is similar to the following:

NAME          STATE             ACTIVE   AGE
norepsample   NoReplicasReady   N/A      43s

The provisioning starts, but is not completed as indicated by the NoReplicasReady
state.

b. Wait a few minutes. Then, check status again.

kubectl get ttc norepsample

The output is similar to the following:

NAME          STATE               ACTIVE   AGE
norepsample   SomeReplicasReady   N/A      74s

The provisioning continues. As evidenced by the SomeReplicasReady state, some of
the databases are ready, but not all.

c. Check the status again.

kubectl get ttc norepsample

The output is similar to the following:

NAME          STATE              ACTIVE   AGE
norepsample   AllReplicasReady   N/A      2m54s

The provisioning process completes. Databases are up and running and operational.
The TimesTen Operator transitions the norepsample object to the AllReplicasReady
state.

4. (Optional) Review the state transitions.

kubectl get events

The output is similar to the following:

LAST SEEN   TYPE      REASON                   
OBJECT                                              MESSAGE
...
6m6s        Normal    Create                   timestenclassic/
norepsample                         Service norepsample created
6m6s        Warning   Warning                  timestenclassic/
norepsample                         Database CPU limit/request not 
specified
6m6s        Normal    Create                   timestenclassic/
norepsample                         StatefulSet norepsample created
6m6s        Warning   Create                   timestenclassic/
norepsample                         PodMonitor norepsample created
6m6s        Normal    StateChange              timestenclassic/
norepsample                         TimesTenClassic was Initializing, now 

Chapter 7
Create Non-Replicated TimesTen Classic Databases

7-11



NoReplicasReady
5m10s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Agent Up
5m10s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Release 22.1.1.34.0
5m10s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Instance Exists
5m10s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Daemon Down
5m9s        Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Daemon Up
5m9s        Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Database None
4m59s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Database Loaded
4m58s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 Database Updatable
4m58s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-0 RepAgent Not Running
4m58s       Normal    StateChange              timestenclassic/
norepsample                         Pod norepsample-0 is Ready
4m58s       Normal    StateChange              timestenclassic/
norepsample                         Pod norepsample-0 state was 
Initializing, now Normal
4m58s       Normal    StateChange              timestenclassic/
norepsample                         TimesTenClassic was NoReplicasReady, 
now SomeReplicasReady
4m48s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Agent Up
4m48s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Release 22.1.1.34.0
4m48s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Instance Exists
4m48s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Daemon Down
4m48s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Daemon Up
4m48s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Database None
3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Database Loaded
3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 Database Updatable
3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-2 RepAgent Not Running
3m37s       Normal    StateChange              timestenclassic/
norepsample                         Pod norepsample-2 is Ready
3m37s       Normal    StateChange              timestenclassic/
norepsample                         Pod norepsample-2 state was 
Initializing, now Normal
3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Agent Up
3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Release 22.1.1.34.0
3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Instance Exists

Chapter 7
Create Non-Replicated TimesTen Classic Databases

7-12



3m37s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Daemon Down
3m36s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Daemon Up
3m36s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Database None
3m30s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Database Loaded
3m30s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 Database Updatable
3m30s       Normal    Info                     timestenclassic/
norepsample                         Pod norepsample-1 RepAgent Not Running
3m30s       Normal    StateChange              timestenclassic/
norepsample                         Pod norepsample-1 is Ready
3m30s       Normal    StateChange              timestenclassic/
norepsample                         Pod norepsample-1 state was 
Initializing, now Normal
3m30s       Normal    StateChange              timestenclassic/
norepsample                         TimesTenClassic was SomeReplicasReady, 
now AllReplicasReady

During the provisioning process, the TimesTenClassic object and TimesTen Pods transition
from and to various states.

5. Verify the existence of the underlying objects.

1. StatefulSet:

kubectl get statefulset norepsample

The output is similar to the following:

NAME          READY   AGE
norepsample   3/3     8m30s

2. Service:

kubectl get service norepsample

The output is similar to the following:

NAME          TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)             
AGE
norepsample   ClusterIP   None         <none>        6625/TCP,8888/TCP   
8m58s

3. Pods:

kubectl get pods

Chapter 7
Create Non-Replicated TimesTen Classic Databases

7-13



The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
norepsample-0                        3/3     Running   0          9m15s
norepsample-1                        3/3     Running   0          9m15s
norepsample-2                        3/3     Running   0          9m15s
...

4. PVCs:

kubectl get pvc

The output is similar to the following:

NAME                          STATUS   
VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
tt-persistent-norepsample-0   Bound    csi-00bf2a2e-ef70-4f41-
a3ef-66341f7404ac   250Gi      RWO            oci-bv         9m34s
tt-persistent-norepsample-1   Bound    csi-516d9ef4-9492-4927-
b483-05f7d320cc73   250Gi      RWO            oci-bv         9m34s
tt-persistent-norepsample-2   Bound    csi-99c95d75-
f9d9-4754-9378-0c5a7d288871   250Gi      RWO            oci-bv         
9m34s

6. Connect to one of the databases.

a. From your development host, establish a shell in the Pod.

kubectl exec -it norepsample-0 -c tt -- /bin/bash

b. Connect to the database. Insert a row in a table.

ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=norepsample";
Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)
Command> select * from adminuser.emp;
0 rows found.
Command> describe adminuser.emp;

Table ADMINUSER.EMP:
  Columns:
   *ID                              NUMBER NOT NULL

Chapter 7
Create Non-Replicated TimesTen Classic Databases

7-14



    NAME                            CHAR (32)
  PRIMARY KEY (ID) RANGE INDEX

1 table found.
(primary key columns are indicated with *)
Command> insert into adminuser.emp values (1,'test');
1 row inserted.
Command> commit;
Command> select * from adminuser.emp;
< 1, test                              >
1 row found.

c. Exit from ttIsql and from the shell.

Command> exit
Disconnecting...
Done.
[timesten@norepsample-0 ~]$ exit
exit

Congratulations! You successfully created and deployed a non-replicated TimesTenClassic
object. The non-replicated TimesTen Classic databases are up and running and fully
operational.

Modify the Number of Replicas in Non-Replicated Environments
There may be situations where you want to increase or decrease the number of databases in
your non-replicated environment. For example, you may want to increase the resources during
a peak holiday buying season and then reduce the resources later. You can accomplish this by
modifying the number of replicas for a TimesTenClassic object.

When you increase the number of replicas, Kubernetes provisions TimesTen in the new Pods.

When you decrease the number of replicas:

• Kubernetes deletes the relevant Pods.

• The TimesTen Operator does not delete the PVCs.

Let's walk through an example. In this example, a TimesTenClassic object is deployed in your
namespace. The number of replicas is 3. The example shows you how to decrease the
number of replicas to 1 and then increase the number of replicas back to 3.

1. Confirm there is a TimesTenClassic object deployed in your namespace.

kubectl get ttc

The output is similar to the following:

NAME          STATE              ACTIVE   AGE
norepsample   AllReplicasReady   N/A      17m

The norepsample TimesTenClassic object is deployed and is in the AllReplicasReady
state. All replicas are available and running and the databases are functioning properly.

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-15



2. Confirm the number of replicas.

kubectl describe ttc norepsample | grep 'Replicas'

The output is similar to the following:

    Replicas:                   3

The number of replicas is 3.

3. Confirm the number of Pods.

kubectl get pods

The output is similar to the following

NAME                                 READY   STATUS    RESTARTS   AGE
norepsample-0                        3/3     Running   0          18m
norepsample-1                        3/3     Running   0          18m
norepsample-2                        3/3     Running   0          18m
...

There are three Pods running, corresponding to the number of replicas. Each replica
contains a TimesTen database.

4. Insert data into databases.

a. Database running in the norepsample-0 Pod:

kubectl exec -it norepsample-0 -c tt -- /bin/bash
[timesten@norepsample-0 ~]$ ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=norepsample";
Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)
Command> CREATE TABLE testdata (col1 TT_INTEGER);
Command> INSERT INTO testdata values (0);
1 row inserted.
Command> SELECT * FROM testdata;
< 0 >
1 row found.
Command> exit
Disconnecting...
Done.

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-16



[timesten@norepsample-0 ~]$ exit
exit

There is one row in the testdata table and the value for col1 is 0.

b. Database running in the norepsample-1 Pod:

kubectl exec -it norepsample-1 -c tt -- /bin/bash
[timesten@norepsample-0 ~]$ ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=norepsample";
Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)
Command> CREATE TABLE testdata (col1 TT_INTEGER);
Command> INSERT INTO testdata values (1);
1 row inserted.
Command> SELECT * FROM testdata;
< 1 >
1 row found.
Command> exit
Disconnecting...
Done.
[timesten@norepsample-1 ~]$ exit
exit

There is one row in the testdata table and the value for col1 is 1.

c. Database running in the norepsample-2 Pod:

kubectl exec -it norepsample-2 -c tt -- /bin/bash
[timesten@norepsample-0 ~]$ ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=norepsample";
Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-17



Command> CREATE TABLE testdata (col1 TT_INTEGER);
Command> INSERT INTO testdata values (2);
1 row inserted.
Command> SELECT * FROM testdata;
< 2 >
1 row found.
Command> exit
Disconnecting...
Done.
[timesten@norepsample-2 ~]$ exit
exit

There is one row in the testdata table and the value for col1 is 2.

5. Decrease the number of replicas.

a. Edit the norepsample TimesTenClassic object, changing replicas to 1.

kubectl edit ttc norepsample
# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
spec:
  ttspec:
...
    replicas: 1
...

b. Save your edit.

The output is similar to the following:

timestenclassic.timesten.oracle.com/norepsample edited

6. Verify the TimesTenClassic object is in the AllReplicasReady state.

kubectl get ttc

The output is similar to the following:

NAME          STATE              ACTIVE   AGE
norepsample   AllReplicasReady   N/A      63m

7. Confirm the number of Pods.

kubectl get pods

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-18



The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
norepsample-0                        3/3     Running   0          65m
...

There is one Pod. One TimesTen database is running in the Pod.

8. Confirm the number of PVCs.

kubectl get pvc

The output is similar to the following:

NAME                          STATUS   
VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
tt-persistent-norepsample-0   Bound    csi-836f3962-
cbfa-4f7d-9271-6393167b00bd   50Gi       RWO            oci-bv         67m
tt-persistent-norepsample-1   Bound    csi-b2bfa486-6d09-463f-
a8a3-25a760d1449d   50Gi       RWO            oci-bv         67m
tt-persistent-norepsample-2   Bound    csi-820a206b-1662-4c24-821c-
a947572b618a   50Gi       RWO            oci-bv         67m

There are three PVCs. When you modify the number of replicas, the TimesTen Operator
does not delete the PVCs associated with a TimesTenClassic object.

9. Increase the number of replicas.

a. Edit the norepsample TimesTenClassic object, changing replicas to 3.

kubectl edit ttc norepsample
# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
spec:
  ttspec:
...
    replicas: 3
...

b. Save your edit.

The output is similar to the following:

timestenclassic.timesten.oracle.com/norepsample edited

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-19



10. Verify the TimesTenClassic object is in the AllReplicasReady state.

kubectl get ttc

The output is similar to the following:

NAME          STATE              ACTIVE   AGE
norepsample   AllReplicasReady   N/A      76m

11. Confirm the number of Pods.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
norepsample-0                        3/3     Running   0          77m
norepsample-1                        3/3     Running   0          4m
norepsample-2                        3/3     Running   0          4m

There are three Pods. Each Pod is running a TimesTen database.

12. Confirm the number of PVCs.

kubectl get pvc

The output is similar to the following:

NAME                          STATUS   
VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
tt-persistent-norepsample-0   Bound    csi-836f3962-
cbfa-4f7d-9271-6393167b00bd   50Gi       RWO            oci-bv         79m
tt-persistent-norepsample-1   Bound    csi-b2bfa486-6d09-463f-
a8a3-25a760d1449d   50Gi       RWO            oci-bv         79m
tt-persistent-norepsample-2   Bound    csi-820a206b-1662-4c24-821c-
a947572b618a   50Gi       RWO            oci-bv         79m

There are three PVCs associated with the three TimesTen databases.

13. Verify the data in the databases.

a. Database running in the norepsample-0 Pod:

kubectl exec -it norepsample-0 -c tt -- /bin/bash
[timesten@norepsample-0 ~]$ ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=norepsample";

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-20



Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)
Command> tables;
  TIMESTEN.TESTDATA
1 table found.
Command> SELECT * FROM testdata;
< 0 >
1 row found.

Since this Pod was not deleted when you decreased the number of replicas, the data
in the database has not changed.

b. Database running in the norepsample-1 Pod:

kubectl exec -it norepsample-1 -c tt -- /bin/bash
[timesten@norepsample-1 ~]$ ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=norepsample";
Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)
Command> tables;
0 tables found.
Command> exit
Disconnecting...
Done.
[timesten@norepsample-1 ~]$ exit
exit

The TimesTen Operator correctly provisions TimesTen in the norepsample-1 Pod and
has correctly overwritten the original database.

c. Database running in the norepsample-2 Pod:

kubectl exec -it norepsample-2 -c tt -- /bin/bash
[timesten@norepsample-2 ~]$ ttIsql norepsample

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-21



connect "DSN=norepsample";
Connection successful: DSN=norepsample;UID=timesten;DataStore=/tt/home/
timesten/datastore/
norepsample;DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=US7ASCI
I;AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled
=1;
(Default setting AutoCommit=1)
Command> tables;
0 tables found.
Command> exit
Disconnecting...
Done.
[timesten@norepsample-2 ~]$ exit
exit

The TimesTen Operator correctly provisions TimesTen in the norepsample-2 Pod and
has correctly overwritten the original database.

Congratulations! You successfully modified the number of replicas for a TimesTenClassic
object in a non-replicated environment.

Chapter 7
Modify the Number of Replicas in Non-Replicated Environments

7-22



8
Deploy TimesTen Scaleout Databases

The TimesTen Operator supports the deployment of a TimesTen Scaleout grid and associated
databases in your Kubernetes cluster.

This chapter provides background information about the deployment process. It summarizes
the planning process for configuring a grid and shows you how to apply that plan when
configuring a grid in the Kubernetes environment. It describes the steps the TimesTen Operator
takes to deploy and provision a grid based on the information you provide. Use this information
to gain an understanding of how the Operator functions when deploying your TimesTen
Scaleout grid.

The second part of the chapter provides you with an end-to-end example that shows you the
steps to deploy your grid in the Kubernetes cluster.

If you want to advance directly to the example, see Deploy a Grid.

The TimesTen Operator also supports TimesTen Cache in TimesTen Scaleout. See Work with
TimesTen Cache.

Note:

You cannot use Helm to deploy TimesTen Scaleout databases. Instead, use the
procedures in this chapter.

Topics:

• About Deploying a Grid

• Deploy a Grid

About Deploying a Grid
The information in this section provides background information about configuring and
deploying a grid in the Kubernetes environment.

Topics:

• About Planning a Grid

• About Configuring a Grid

• About Provisioning a Grid

• About ssh

• About Creating a Grid

8-1



About Planning a Grid
One of the features of the TimesTen Operator is the ability for it to provision a TimesTen
Scaleout grid and its database in the Kubernetes cluster. Just like in any other TimesTen
Scaleout environment, you must do some planning for your grid.

Here are some considerations:

• K-Safety (represented by k): How many copies of your TimesTen database? The K-Safety
factor determines the number of data spaces in your grid. For example, if you set k to 2,
there are two copies of your database: one copy resides in data space one and the second
copy in data space two.

• Replica sets: How many replica sets in your grid? A replica set contains k elements, where
each element in the replica set is an exact copy of the other elements in the replica set.
The value of k, combined with the number of replica sets, determines the number of data
instances in the grid. For example, if you set k to 2, and replica sets to 3, then there are six
data instances in the grid.

• ZooKeeper instances: How many ZooKeeper instances for the grid?

• Database definition file (DbDef): What data store and first connection attributes are needed
for the database in the grid?

• Direct connectable: What general connection attributes are needed for the database when
using direct access?

• Client/server connectable: What general connection attributes are needed for the database
when using client/server access?

After you define your configuration, you provide that information to the TimesTen Operator. The
Operator takes over from there. It automatically does the provisioning and the deployment of
the grid and database for you.

About Configuring a Grid
The TimesTen Operator provides the TimesTenScaleout object type and configuration
metadata so that you can define and then deploy your TimesTen Scaleout grid and database.
The TimesTenScaleout object type provides the syntax for configuring your grid. The
configuration metadata lets you define the connection attributes for your database. Taken
together, the Operator has the necessary information to provision your grid and database in the
Kubernetes cluster.

Based on your planned configuration in About Planning a Grid, you can apply that
configuration to the Kubernetes environment:

• K-Safety (k): The Operator provides the .spec.ttspec.k element as part of the syntax for
the TimesTenScaleout object type. You specify k in the YAML manifest file for your
TimesTenScaleout object.

• Replica sets: The Operator provides the .spec.ttspec.nReplicaSets element as part of
the syntax for the TimesTenScaleout object type. You specify nReplicaSets in the YAML
manifest file for your TimesTenScaleout object.

• ZooKeeper instances: The Operator provides the .spec.ttspec.nZookeeper element as
part of the syntax for the TimesTenScaleout object type. You specify nZookeeper in the
YAML manifest file for your TimesTenScaleout object.

Chapter 8
About Deploying a Grid

8-2



• Database definition file (DbDef): The Operator creates a DbDef from the contents of the
db.ini metadata file. You create this metadata file and then use a Kubernetes facility (or
some other means) to place this file in the /ttconfig directory of the tt containers.

• One or more direct connectables: The Operator creates one or more direct connectables
from the contents of the *.connect metadata files. You create one or more of these
*.connect files and then use a Kubernetes facility (or some other means) to place the files
in the /ttconfig directory of the tt containers.

• One or more client/server connectables: The Operator creates one or more client/server
connectables from the contents of the *.csconnect metadata files. You create one or more
of these *.csconnect files and then use a Kubernetes facility (or some other means) to
place the files in the /ttconfig directory of the tt containers.

See TimesTenScaleoutSpecSpec, List of Configuration Metadata, and Populate the /ttconfig
Directory.

After the metadata files are placed in the /ttconfig directory of the tt containers, and you
configure and then deploy your TimesTenScaleout object in the Kubernetes cluster,
Kubernetes informs the Operator that a TimesTenScaleout object has been created. The
Operator begins the process of creating additional Kubernetes objects in order to implement
your grid.

About Provisioning a Grid
The TimesTen Operator gathers the information from the TimesTenScaleout object and begins
instantiating the TimesTen Scaleout grid and database. It creates the following StatefulSets:

• One StatefulSet that provides the management instance for the grid. The Operator
supports one management instance. The underlying Pod for this management instance is
also created.

• One StatefulSet that provides one or more ZooKeeper instances. The Operator determines
the number of ZooKeeper instances by the value you specified for the nZookeeper field in
your TimesTenScaleout object definition. For example, if you specified a value of 3 for
nZookeeper, the Operator creates one StatefulSet with three replicas. The underlying Pods
for these ZooKeeper instances are also created. There is one Pod per ZooKeeper
instance.

• Additional StatefulSets, the number of which is determined by the value you specified for
the k field in your TimesTenScaleout object definition. For example, if you specified a value
of 2 for k, the Operator creates two StatefulSets. These StatefulSets provide data
instances for the grid. Each of the k StatefulSets provides Pods to implement a single data
space in the resultant grid. The StatefulSet has M replicas, the number of which is
determined by the value you specified for the nReplicaSets field in your TimesTenScaleout
object definition. For example, if you set nReplicaSets to 3, each StatefulSet has three
replicas. This number of replicas determines the number of replica sets in the resultant
grid.

In the preceding example, one StatefulSet has three replicas. This one StatefulSet
contains three data instances in data space one. A Pod is created for each data instance,
so there are three Pods created. The second StatefulSet contains three data instances in
data space two. A Pod is created for each data instance, so there are three Pods created.
There are a total of six total Pods created for the six data instances.

In addition, the Operator creates the following Kubernetes headless Services:

Chapter 8
About Deploying a Grid

8-3



• One headless Service that provides DNS names for the Pods that contain the
management and data instances. This service enables client/server access to the Pods
using the TimesTen client/server port 6625.

• One headless Service that provides DNS names for the Pods that contain the ZooKeeper
instances. This service enables access to the ZooKeeper internal ports 2888 and 3888, as
well as the external port 2181.

There is an example of these StatefulSets and headless Services in Verify Underlying Objects.

The Operator also creates Persistent Volume Claims (PVCs) for the Pods. These PVCs cause
persistent volumes to be allocated by Kubernetes and attached to the TimesTen Pods and
ZooKeeper Pods. See Persistent Storage.

Pods that run ZooKeeper consists of a single container called zookeeper. Each Pod that is
running TimesTen consists of at least two containers. The tt container runs the TimesTen
agent and TimesTen. The daemonlog container writes the TimesTen daemon log to stdout.

As the tt containers in the TimesTen Pods start, the Operator assembles them into a working
grid. The grid's model is configured with several objects, including:

• Hosts for the data instances in each of the data space groups

• Each host configured with an installation of TimesTen

• Each host configured with a single TimesTen instance

• A DbDef (the contents of which are from the db.ini file)

• Direct mode connectables, if any, (the contents of which are from the *.connect files)

• Client/server connectables, if any, (the contents of which are from the *.csconnect files)

About ssh
A TimesTen Scaleout grid relies on password-less ssh among the instances of the grid. The
TimesTen Operator automatically configures password-less ssh among the tt containers in the
grid in your Kubernetes environment. There is no intervention that you need to do.

About Creating a Grid
When creating the grid, the TimeTen Operator transitions to and from various High Level
states. Here is an explanation of these states:

After you create your TimesTenScaleout object in the Kubernetes cluster, the TimesTen
Operator creates the StatefulSets and Services that are required to deploy your
TimesTenScaleout grid and database. The Operator assigns a High Level state of
Initializing to the TimesTenScaleout object.

The Operator periodically polls the status of the StatefulSets' objects and their underlying
Pods. When the ZooKeeper Pods are ready, the TimesTenScaleout object transitions from the
Initializing state to the ZooKeeperReady state.

When the TimesTen agent in the management Pod starts up, the Operator instructs the agent
to create a TimesTen instance and grid. The TimesTenScaleout object transitions to the
GridCreated state.

The Operator waits for all of the TimesTen agents in all of the Pods to start. Once all have
started, the Operator instructs the TimesTen agent in the management instance to create the
hosts, the installations, and the instances in the grid's model for the data instances in the grid.

Chapter 8
About Deploying a Grid

8-4



The DbDef is then created from the contents of the db.ini file. The direct connectables are
created from the contents of the *.connect files. The client/server connectables are created
from the contents of the *.csconnect files.

The model is applied and the data instances of the grid are created. The TimesTenScaleout
object transitions to the InstanceCreated state.

The Operator then instructs the management instance to create the database (by using the
TimesTen ttGridAdmin utility with the dbCreate option) and to create the initial distribution map
(by using the TimesTen ttGridAdmin utility with the dbDistribute -add all -apply options).
The TimesTenScaleout object then transitions to the DbCreated state.

The Operator then instructs the TimesTen agent in one data instance to run the TimesTen
ttIsql utility to create the user in the adminUser file and run the schema.sql file (if you
provided these files). The TimesTenScaleout object transitions to the Normal state.

The grid and databases are created. The TimesTen agent then opens the database for
connections.

The Operator manages and monitors the TimesTenScaleout objects after they are deployed in
your Kubernetes cluster. The Operator also detects, repairs, and recovers from failures in your
grid and associated databases. See Manage TimesTen Scaleout.

There is an example showing the Operator transitioning to and from these High Level states in 
Monitor the High Level State of a TimesTenScaleout Object.

Deploy a Grid
This section provides a step by step walk-through that shows you how to create and deploy a
TimesTen Scaleout grid and database in your Kubernetes cluster. The walk-through starts with
an example that shows you how to create metadata files and create a Kubernetes ConfigMap.
It continues with an example that shows you how to create a YAML file that contains the
definitions for your TimesTenScaleout object. It shows you how to deploy that YAML file in your
Kubernetes cluster. You learn how to monitor the provisioning of the TimesTen grid and
database, and verify the underlying Kubernetes objects were created by the TimesTen
Operator. The walk-through completes with one example that shows you how to connect to the
TimesTen database and run operations in it. The final example shows you how to connect to
the management instance to verify the health of the database and its elements.

• Create Configuration Metadata and a Kubernetes ConfigMap for a Grid

• Define and Deploy a TimesTenScaleout Object

• Monitor the High Level State of a TimesTenScaleout Object

• Verify Underlying Objects

• Connect to the Database

• Manage a Grid and Its Database

Create Configuration Metadata and a Kubernetes ConfigMap for a Grid
The following example creates the db.ini, the adminUser, and the schema.sql metadata files
for the TimesTen grid and the database. The example also creates a direct and a client/server
connectable. The example creates a Kubernetes ConfigMap to place these metadata files into
the /ttConfig directory of the TimesTen containers.

Chapter 8
Deploy a Grid

8-5



Note:

You can use any Kubernetes mechanism to place these metadata files into the /
ttConfig directory of the TimesTen containers. See Populate the /ttconfig Directory.

On your development host, complete the following steps:

1. From the directory of your choice, create an empty subdirectory for the metadata files. This
example creates the cm_scaleout subdirectory. (The cm_scaleout directory is used in the
remainder of this example to denote this directory.)

mkdir -p cm_scaleout
2. Change to this ConfigMap directory.

cd cm_scaleout
3. Create the db.ini file in this ConfigMap directory. In this example, define the PermSize and

the DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file.

vi adminUser

adminuser/adminuserpwd

5. Create the schema.sql file. In this schema.sql file, create the sampleuser user, create the
s sequence for the sampleuser user, and the emp table for the sampleuser user. The
Operator automatically initializes each element of the TimesTen database with these object
definitions.

vi schema.sql

create user sampleuser identified by sampleuserpwd;
grant admin to sampleuser;
create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char 
(32));

6. Create the sampledirect direct connectable.

vi sampledirect.connect

ConnectionCharacterSet=AL32UTF8

7. Create the sampleclient client/server connectable.

vi sampleclient.csconnect

Chapter 8
Deploy a Grid

8-6



ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

8. Optional: Verify the metadata files are present in the cm_scaleout ConfigMap directory.

ls

The output is the following:

adminUser
db.ini
sampleclient.csconnect
sampledirect.connect
schema.sql

9. From the cm_scaleout directory, create the samplescaleout ConfigMap. The files in the
cm_scaleout directory are included in the ConfigMap. These files are later available in the
TimesTen containers. Replace samplescaleout with a name of your choosing.

kubectl create configmap samplescaleout --from-file .

The output is the following:

configmap/samplescaleout created

10. Use the kubectl describe command to verify the contents of the samplescaleout
ConfigMap.

kubectl describe configmap samplescaleout

The output is the following:

Name:         samplescaleout
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>

Data
====
adminUser:
----
adminuser/adminuserpwd

db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8

sampleclient.csconnect:
----
ConnectionCharacterSet=AL32UTF8
TTC_Timeout=30

Chapter 8
Deploy a Grid

8-7



sampledirect.connect:
----
ConnectionCharacterSet=AL32UTF8

schema.sql:
----
create user sampleuser identified by sampleuserpwd;
grant admin to sampleuser;
create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char 
(32));

Events:  <none>

You successfully created the metadata files and the ConfigMap.

Define and Deploy a TimesTenScaleout Object
Defining your environment involves creating your TimesTenScaleout object with attributes
customized for your environment. These attributes are described in the steps below. For
additional information on defining objects of type TimesTenScaleout, see TimesTen Scaleout.

To define and create the TimesTenScaleout object, complete the following steps:

1. Create a YAML file. You can choose any name for this YAML file, but you may want to use
the same name you used for the name of the TimesTenScaleout object. (This example
uses samplescaleout.) The YAML file contains the definitions for the TimesTenScaleout
object. In this example, the fields that are specific to a TimesTenScaleout object are as
follows:

• k: Set the value of k to the number of copies of data for your TimesTen database. This
value determines the number of StatefulSets that the TimesTen Operator creates. A
StatefulSet provides the Pods that are used to implement a single data space in the
grid. For example, if you set k to 2, the Operator creates two StatefulSets. One
StatefulSet provides the Pods for the data instances in data space one. The second
StatefulSet provides the Pods for the data instances in data space two.

This example sets k to 2.

For information on K-safety and determining an appropriate value for k, see K-Safety
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

• nReplicaSets: Set the value to the number of replica sets in the grid. A replica set
contains k elements (where each element is an exact copy of the other elements in the
replica set). The nReplicaSets value determines the number of replicas for each
StatefulSet. For example, if you set k to 2, the TimesTen Operator creates two
StatefulSets for the data instances. If you set nReplicaSets to 3, each StatefulSet
contains three replicas, and the total number of replica sets in the database is three.

This example sets nReplicaSets to 3.

For information on replica sets, see Understanding Replica Sets in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

• nZookeeper: Set the value to the number of ZooKeeper Pods to provision in a
StatefulSet. Your options are 1 or 3 or 5.

This example sets nZookeeper to 3.

You also need to specify the following fields:

Chapter 8
Deploy a Grid

8-8



• name: Replace samplescaleout with the name of your TimesTenScaleout object.

• storageClassName: Replace oci-bv with the name of the storage class in your
Kubernetes cluster that is used to allocate Persistent Volumes to hold the TimesTen
database.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. (This example assumes a production environment and
uses 250Gi for storage. For demonstration purposes, you can use 50Gi of storage.)
See the storageSize and the logStorageSize entries in Table 20-8.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.34.0
with the location of the image registry and the name of the image. If you are using the
Oracle container-registry.oracle.com/timesten registry as the image registry and
the timesten:22.1.1.34.0 image as the container image, no replacement is
necessary.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called samplescaleout) for the
db.ini, the adminUser, the schema.sql, the sampledirect.connect, and the
sampleclient.csconnect metadata files. This ConfigMap is included in the Projected
Volume. The volume is mounted as /ttconfig in the TimesTen containers. See Using
ConfigMaps and Secrets.

vi samplescaleout.yaml

kind: TimesTenScaleout
metadata:
  name: samplescaleout
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - samplescaleout
    k: 2
    nReplicaSets: 3
    nZookeeper: 3

2. Create the TimesTenScaleout object from the contents of the YAML file. Doing so begins
the process of creating and provisioning a TimesTen grid and database in your Kubernetes
cluster.

kubectl create -f samplescaleout.yaml

The output is the following:

timestenscaleout.timesten.oracle.com/samplescaleout created

You successfully created the TimesTenScaleout object in the Kubernetes cluster. The process
of provisioning your TimesTen grid and database begins, but is not yet complete.

Chapter 8
Deploy a Grid

8-9



Monitor the High Level State of a TimesTenScaleout Object
Use the kubectl get and the kubectl describe commands to monitor the progress of the grid
and database creation.

Note:

For the kubectl get timestenscaleout command, you can alternatively specify
kubectl get tts. When used in the kubectl get command, timestenscaleout and
tts are synonymous, and return the same results. The first kubectl get examples in
this chapter use timestenscaleout. For simplicity, the remaining examples in this
book use tts.

1. Review the High Level state of the TimesTenScaleout object. Use the kubectl get
command and observe the STATE field. Notice that the value is Initializing. The
Operator has created the Kubernetes StatefulSets and Services. The process to deploy
and provision your grid and database has begun, but is not yet complete. As you issue
additional kubectl get commands, observe how the TimesTenScaleout object transitions
to different states. For more information on these states, see About Creating a Grid.

kubectl get tts samplescaleout

The output is similar to the following:

NAME             OVERALL        MGMT   CREATE   LOAD   OPEN   AGE
samplescaleout   Initializing                                 20s

kubectl get tts samplescaleout

The output is similar to the following:

NAME             OVERALL          MGMT   CREATE   LOAD   OPEN   AGE
samplescaleout   ZookeeperReady                                 2m48s

kubectl get tts samplescaleout

The output is similar to the following:

NAME             OVERALL       MGMT   CREATE   LOAD   OPEN   AGE
samplescaleout   GridCreated                                 3m58s

kubectl get tts samplescaleout

Chapter 8
Deploy a Grid

8-10



The output is similar to the following:

NAME             OVERALL            MGMT   CREATE   LOAD   OPEN   AGE
samplescaleout   InstancesCreated                                 6m4s

kubectl get tts samplescaleout

The output is similar to the following:

NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   DatabaseCreated                                       
6m10s

2. Use the kubectl get command again to observe if the High Level state has transitioned
from DatabaseCreated to Normal. A Normal state indicates the grid and database are
provisioned and the process is complete.

kubectl get tts samplescaleout

The output is similar to the following:

NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   
6m52s

Your TimesTen Scaleout grid and database are successfully created and provisioned in your
Kubernetes cluster. The database is open for connections.

Verify Underlying Objects
The TimesTen Operator creates the following objects for the samplescaleout
TimesTenScaleout object.

1. StatefulSets:

kubectl get statefulsets

The output is the following:

NAME                    READY   AGE
samplescaleout-data-1   3/3     26m
samplescaleout-data-2   3/3     26m
samplescaleout-mgmt     1/1     26m
samplescaleout-zk       3/3     26m

The Operator creates the samplescaleout-data-1 and the samplescaleout-data-2
StatefulSets. Two StatefulSets are created because the value of k is set to 2. Each
StatefulSet provides the Pods for a single data space. There are two data spaces in the
grid. Each of the StatefulSets has three replicas (nReplicaSets is set to 3). Therefore, the
number of replica sets in the grid is three. There are three data instances in data space
one and three data instances in data space two.

Chapter 8
Deploy a Grid

8-11



The samplescaleout-mgmt StatefulSet provides the Pod for the management instance.
There is one management instance.

The samplscaleout-zk StatefulSet provides the Pods for the ZooKeeper instances. There
are three ZooKeeper instances (nZookeeper is set to 3).

2. Pods:

kubectl get pods

The output is the following:

NAME                                 READY   STATUS    RESTARTS   AGE
samplescaleout-data-1-0              2/2     Running   0          27m
samplescaleout-data-1-1              2/2     Running   0          27m
samplescaleout-data-1-2              2/2     Running   0          27m
samplescaleout-data-2-0              2/2     Running   0          27m
samplescaleout-data-2-1              2/2     Running   0          27m
samplescaleout-data-2-2              2/2     Running   0          27m
samplescaleout-mgmt-0                2/2     Running   0          27m
samplescaleout-zk-0                  1/1     Running   0          27m
samplescaleout-zk-1                  1/1     Running   0          26m
samplescaleout-zk-2                  1/1     Running   0          25m
timesten-operator-7677964df9-sp2zp   1/1     Running   0          3d20h

The samplescaleout-data-1 StatefulSet contains the data instances in data space one.
This StatefulSet creates the samplescaleout-data-1-0, samplescaleout-data-1-1, and
samplescaleout-data-1-2 Pods. The samplescaleout-data-2 contains the data
instances in data space two. This StatefulSet creates the samplescaleout-data-2-0,
samplescaleout-data-2-1, and samplescaleout-data-2-2 Pods.

The samplescaleout-mgmt-0 StatefulSet contains the management instance for the grid.
This StatefulSet creates the samplescaleout-mgmt-0 Pod.

Each of the Pods previously mentioned run TimesTen. Each Pod contains at least two
containers. In this example, each Pod contains two containers. The tt container runs the
TimesTen agent and TimesTen. The daemonlog container writes the TimesTen daemon log
to stdout.

The samplescaleout-zk StatefulSet contains the three ZooKeepers instances. This
StatefulSet creates the samplescaleout-zk-1, samplescaleout-zk-2, and
samplescaleout-zk-3 Pods. Each of these Pods contain a single container called
zookeeper.

The TimesTen Operator is running in the timesten-operator-554887b4c-48zwk Pod.

3. Headless Services:

kubectl get services

The output is the following:

NAME                TYPE        CLUSTER-IP      EXTERNAL-IP   
PORT(S)                         AGE
samplescaleout      ClusterIP   None            <none>        
6625/TCP                        28m

Chapter 8
Deploy a Grid

8-12



samplescaleout-zk   ClusterIP   None            <none>        2181/
TCP,2888/TCP,3888/TCP      28m

The Operator creates the samplescaleout Headless Service. This Service provides the
DNS names for the Pods that contain the TimesTen management and data instances. The
Service allows client/server access to the Pods that use the client/server port (6625). The
DNS names are in the format: podname.samplescaleout.namespace.svc.cluster.local.

The following example shows the DNS names for the samplescaleout Headless Service:

samplescaleout-mgmt-0.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-1-0.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-1-1.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-1-2.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-2-0.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-2-1.samplescaleout.mynamespace.svc.cluster.local
samplescaleout-data-2-2.samplescaleout.mynamespace.svc.cluster.local

The Operator creates a second Headless Service called samplescaleout-zk. This Service
allows access to the ZooKeeper internal ports (2888 and 3888) as well as the external port
(2181). The DNS names are in the format: samplescaleout-zk-n.samplescaleout-
zk.namespace.svc.cluster.local.

The following example shows the DNS names for the samplescaleout-zk Headless
Service:

samplescaleout-zk-0.samplescaleout-zk.mynamespace.svc.cluster.local
samplescaleout-zk-1.samplescaleout-zk.mynamespace.svc.cluster.local
samplescaleout-zk-2.samplescaleout-zk.mynamespace.svc.cluster.local

4. Persistent Volume Claims (PVCs):

kubectl get pvc

The output is the following:

NAME                                    STATUS   
VOLUME                                                                     
         CAPACITY      ACCESS MODES   STORAGECLASS   AGE
tt-persistent-samplescaleout-data-1-0   Bound    
ocid1.volume.oc1.phx.abyhqljtl63wgaxd3nvengilkaxs5h2b23kmtinpzmmqt7bkzjdpnf
u2c2fq   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-data-1-1   Bound    
ocid1.volume.oc1.phx.abyhqljthxuwtpqx7rjtwvwsxjjkbgr25amjk7wtk26untbqrealcq
he324q   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-data-1-2   Bound    
ocid1.volume.oc1.phx.abyhqljthtm6frcjtttp6ye7hq4w5vm3jxyay54f4xtcbolv2ercje
ca5khq   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-data-2-0   Bound    
ocid1.volume.oc1.phx.abyhqljtxgzm3raxj5sfoe56aonlh2mqqjre4quva4k3q3zbbe7lft
wqk3xa   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-data-2-1   Bound    
ocid1.volume.oc1.phx.abyhqljtk3htdair4akll5dfrwpkipv3acjtww5hx3x2fz46af7zde

Chapter 8
Deploy a Grid

8-13



w7gsiq   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-data-2-2   Bound    
ocid1.volume.oc1.phx.abyhqljtiekgulpbadtwigehsuml75sngcuqjgqmx77lfpi3wdeecb
ecavfa   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-mgmt-0     Bound    
ocid1.volume.oc1.phx.abyhqljtacxwop7r2wqx6hsvun4haaydnco3y6g3rkgbwp5hq35ala
y7uwaq   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-zk-0       Bound    
ocid1.volume.oc1.phx.abyhqljtyoa5hdchax4sus652jtp665ckaef2cq3lakac2lq52vfbl
s6kkcq   53687091200   RWO            oci-bv            14m
tt-persistent-samplescaleout-zk-1       Bound    
ocid1.volume.oc1.phx.abyhqljtongpcoggzpg2is25vmumijmah5gustwc3avgnijrjigtqp
htrana   53687091200   RWO            oci-bv            13m
tt-persistent-samplescaleout-zk-2       Bound    
ocid1.volume.oc1.phx.abyhqljttmgoljskb2ruawzv365uit7lsln2sbfno5e4vhh6plbgh4
tiblfq   53687091200   RWO            oci-bv            10m

The Operator automatically creates one or two Persistent Volume Claims (PVCs) per Pod.
These PVCs cause Persistent Volumes (PVs) to be allocated by Kubernetes and attached
to the TimesTen Pods. TimesTen uses these PVs to hold the TimesTen instance and
database. If you specify two PVCs, one PV holds the TimesTen instance and the
checkpoint files and the second PV holds the TimesTen transaction logs. In this example,
the Operator creates one PVC for each Pod for a total of six PVCs. Each of the six PVs
hold the TimesTen instance and an element of the database.

The Operator creates one PVC for the Pod that contains the management instance.

The Operator creates one PVC for each Pod that runs a ZooKeeper instance. This PVC
causes a PV to be allocated by Kubernetes and attached to the ZooKeeper Pod. Each PV
holds ZooKeeper's persistent data. In this example, since there are three ZooKeeper
instances, the Operator created three PVCs.

Connect to the Database
You can establish a shell in a TimesTen Pod and connect to the TimesTen database in the grid.
You can then run operations in this TimesTen database.

1. Establish a shell in the TimesTen samplescaleout-data-1-0 Pod.

kubectl exec -it samplescaleout-data-1-0 -c tt -- /bin/bash

2. Connect to the samplescaleout database. Verify the information from the metadata files is
in the database. This example connects to the database as the sampleuser user. (This
user was created in the schema.sql file). The example then calls the ttConfiguration
built-in procedure to check that the PermSize connection attribute has a value of 200 for
this element of the database. The example then verifies the sampleuser.emp table exists.

ttisql -connstr "DSN=samplescaleout;uid=sampleuser;pwd=sampleuserpwd";

The output is similar to the following:

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Chapter 8
Deploy a Grid

8-14



connect "DSN=samplescaleout;uid=sampleuser;pwd=********";
Connection successful: 
DSN=samplescaleout;Durability=0;UID=sampleuser;DataStore=/tt/home/timesten/
datastore/samplescaleout;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
Connections=100;
(Default setting AutoCommit=1)
Command> call ttConfiguration ('PermSize');
< PermSize, 200 >
1 row found.
Command> tables;
  SAMPLEUSER.EMP
1 table found.

Manage a Grid and Its Database
You can establish a shell in the TimesTen Pod of the management instance. You can then use
the ttGridAdmin utility to manage and monitor the grid, including the health of the TimesTen
database and its elements.

1. Establish a shell in the TimesTen samplescaleout-management-0 Pod.

kubectl exec -it samplescaleout-mgmt-0 -c tt -- /bin/bash

2. Run the ttGridAdmin dbStatus -all to check the status of the TimesTen database.

ttGridAdmin dbStatus -all

The output is the following:

Database samplescaleout summary status as of Sun Jan 15 17:00:11 UTC 2025

created,loaded-complete,open
Completely created elements: 6 (of 6)
Completely loaded elements: 6 (of 6)
Completely created replica sets: 3 (of 3)
Completely loaded replica sets: 3 (of 3)

Open elements: 6 (of 6)

Database samplescaleout element level status as of Sun Jan 15 17:00:11 UTC 
2025

Host                    Instance  Elem Status Cache Agent Date/Time of 
Event  Message
----------------------- --------- ---- ------ ----------- 
------------------- -------
samplescaleout-data-1-0 instance1    1 opened stopped     2025-01-15 
16:28:57
samplescaleout-data-1-1 instance1    2 opened stopped     2025-01-15 
16:28:57
samplescaleout-data-1-2 instance1    3 opened stopped     2025-01-15 

Chapter 8
Deploy a Grid

8-15



16:28:56
samplescaleout-data-2-0 instance1    4 opened stopped     2025-01-15 
16:28:57
samplescaleout-data-2-1 instance1    5 opened stopped     2025-01-15 
16:28:56
samplescaleout-data-2-2 instance1    6 opened stopped     2025-01-15 
16:28:56

Database samplescaleout Replica Set status as of Wed Jan 15 17:00:11 UTC 
2025

RS DS Elem Host                    Instance  Status Cache Agent Date/Time 
of Event  Message
-- -- ---- ----------------------- --------- ------ ----------- 
------------------- -------
 1  1    1 samplescaleout-data-1-0 instance1 opened stopped     2025-01-15 
16:28:57       
 1  2    4 samplescaleout-data-2-0 instance1 opened stopped     2025-01-15 
16:28:57       
 2  1    2 samplescaleout-data-1-1 instance1 opened stopped     2025-01-15 
16:28:57       
 2  2    5 samplescaleout-data-2-1 instance1 opened stopped     2025-01-15 
16:28:56       
 3  1    3 samplescaleout-data-1-2 instance1 opened stopped     2025-01-15 
16:28:56       
 3  2    6 samplescaleout-data-2-2 instance1 opened stopped     2025-01-15 
16:28:56       

Database samplescaleout Data Space Group status as of Wed Jan 15 17:00:11 
UTC 2025

DS RS Elem Host                    Instance  Status Cache Agent Date/Time 
of Event  Message
-- -- ---- ----------------------- --------- ------ ----------- 
------------------- -------
 1  1    1 samplescaleout-data-1-0 instance1 opened stopped     2025-01-15 
16:28:57       
 1  2    2 samplescaleout-data-1-1 instance1 opened stopped     2025-01-15 
16:28:57       
 1  3    3 samplescaleout-data-1-2 instance1 opened stopped     2025-01-15 
16:28:56       
 2  1    4 samplescaleout-data-2-0 instance1 opened stopped     2025-01-15 
16:28:57       
 2  2    5 samplescaleout-data-2-1 instance1 opened stopped     2025-01-15 
16:28:56       
 2  3    6 samplescaleout-data-2-2 instance1 opened stopped     2025-01-15 
16:28:56       

Chapter 8
Deploy a Grid

8-16



9
Use Helm in Your TimesTen Kubernetes
Operator Environment

You can use Helm and TimesTen Helm charts to install and upgrade TimesTen CRDs and the
TimesTen Operator. You can also use Helm to create and upgrade TimesTen databases.

Topics:

• Overview of Helm and TimesTen Helm Charts

• Install the TimesTen CRDs and the TimesTen Operator

• Create TimesTen Databases and Test TimesTen

• Upgrade

• Roll Back an Upgrade

• Clean Up

Overview of Helm and TimesTen Helm Charts
This section provides an overview of Helm, discusses Helm charts, and details the Helm charts
for TimesTen. It covers the following topics:

• About Helm

• About a Helm Chart

• About Helm Charts for TimesTen

• About Installing and Testing a Release

• About Versions in a Chart.yaml File

• About the Helm Substitution Engine and Language

About Helm
Helm is the package manager for Kubernetes. It is an open source project by the Cloud Native
Computing Foundation (CNCF).

Kubernetes provides a rich interface for deploying applications through an extensible object
model. Typically, you write manifest YAML files describing objects and then use the kubectl
command to feed the YAML files to Kubernetes. Kubernetes then configures the Kubernetes
cluster to match. Built-in object types include Pods, Services, and Persistent Volumes. The
TimesTen Operator extends the Kubernetes object type system by adding objects of type
TimesTenClassic and TimesTenScaleout.

Helm is an optional layer on top of this architecture. Rather than manually creating YAML files
and using kubectl to apply the files, Helm gives application developers the ability to package a
set of YAML files into a single entity called a chart. Such a chart can be installed into a
Kubernetes cluster using a single command.

9-1

https://www.cncf.io/
https://www.cncf.io/


The YAML files provided in a chart are templates. When installing a chart, you can specify a
set of values to replace into the chart. Helm processes the YAML in the chart, substituting
values provided by you, and submits the final version to Kubernetes through the kubectl
command.

Helm also provides advanced facilities to manage applications:

• Charts can depend on other charts. Helm can assist in maintaining the dependency
relationships. Helm can install an application and its dependencies as a unit.

• You can list charts that have been installed in your Kubernetes cluster and refer to them by
name.

• You can use the helm test command to verify the functioning of the application.

• You can upgrade an installed application by applying a new version of the chart that
installed the application.

• You can delete charts by name.

For more information about Helm, see https://helm.sh/docs/.

About a Helm Chart
A Helm chart is a collection of files in a directory. A chart consists of at minimum the following:

• Chart.yaml: This file contains metadata about the chart, including its name and version.

• templates: This is a directory containing one or more YAML file templates. A sophisticated
templating language allows variables to be substituted into these files. Ultimately, when the
chart is installed, Helm substitutes values into these templates and presents the result to
Kubernetes with the kubectl command.

• values.yaml: This file contains default values for the variables, which are used in the
chart's templates.

About Helm Charts for TimesTen
TimesTen provides TimesTen Helm charts in its container images. You have several options for
obtaining container images and downloading the Helm charts from these container images.
The examples assume that you have downloaded the charts into the kube_files/helm
directory. See Prepare to Use the TimesTen Kubernetes Operator.

The following charts are included in the TimesTen container images's helm directory:

• ttcrd: Install the TimesTen Custom Resource Definitions (CRDs) into the Kubernetes
cluster.

• ttoperator: Installs the TimesTen Operator.

• ttclassic: Creates TimesTen databases.

Each chart requires a different level of authority. As a result, the charts are packaged as
separate charts so they can be installed with appropriate privileges. In addition, a single
TimesTen Operator can simultaneously create and manage multiple TimesTen databases.
Because the relationship between TimesTen Operators and TimesTen databases is not one to
one, there is a ttoperator chart for installing the TimesTen Operator and a separate
ttclassic chart for creating TimesTen databases.

Chapter 9
Overview of Helm and TimesTen Helm Charts

9-2

https://helm.sh/docs/


About Installing and Testing a Release
You use Helm to install the ttcrd, ttoperator, and ttclassic Helm charts.

After installation, you can test the installation of the TimesTen Operator and the creation of
TimesTen databases by running the helm test command. This command creates a test Pod
that runs a command specific to the chart being tested. If the command finishes with exit code
0, the test succeeds and the test Pod is deleted. Any other error code indicates failure. In the
case of failure, the test Pod is not deleted.

The examples in later sections show you how to install the charts and how to use the helm
test command.

About Versions in a Chart.yaml File
Each chart contains metadata in its Chart.yaml file.

As an example, let's look at the Chart.yaml file for the ttoperator chart. In particular, let's look
at the appVersion and version metadata.

apiVersion: v2
name: ttoperator
description: A Helm chart for Kubernetes

# A chart can be either an 'application' or a 'library' chart.
#
# Application charts are a collection of templates that can be packaged into 
versioned archives
# to be deployed.
#
# Library charts provide useful utilities or functions for the chart 
developer. They're included as
# a dependency of application charts to inject those utilities and functions 
into the rendering
# pipeline. Library charts do not define any templates and therefore cannot 
be deployed.
type: application

# This is the chart version. This version number should be incremented each 
time you make changes
# to the chart and its templates, including the app version.
# Versions are expected to follow Semantic Versioning (https://semver.org/)
version: 2211340.1.0

# This is the version number of the application being deployed. This version 
number should be
# incremented each time you make changes to the application. Versions are not 
expected to
# follow Semantic Versioning. They should reflect the version the application 
is using.
# It is recommended to use it with quotes.
appVersion: "22.1.1.34.0"

Chapter 9
Overview of Helm and TimesTen Helm Charts

9-3



The value of version reflects the TimesTen release number without dots (.) followed by .1.0.
For example, for release 22.1.1.34.0, the value of version is 2211340.1.0.

Similarly, the value of appVersion reflects the TimesTen release number, but is in a different
format. For example, for release 22.1.1.34.0, the value of appversion is 22.1.1.34.0.

About the Helm Substitution Engine and Language
Helm has a robust substitution engine and language that lets you specify your own values for
variables in a chart's template YAML manifest files. For more information about chart
templates, see https://helm.sh/docs/chart_template_guide/getting_started/.

For each chart, the TimesTen Operator provides variables specific to that chart. For example,
the ttoperator chart has variables and default values specific to the TimesTen Operator
deployment. Similarly, the ttclassic chart has variables and default values specific to the
deployment of TimesTen Classic databases. You can change the default values for the
provided variables.

You can define variables and values for those variables either on the helm command line or by
providing a YAML file with the values. The values may be strings, lists, arbitrary YAML, or
entire files.

For information about the variables for the TimesTen-specific Helm charts, see Helm Charts for
the TimesTen Kubernetes Operator.

Install the TimesTen CRDs and the TimesTen Operator
This section shows you how to install the TimesTen CRDs and the TimesTen Operator using
TimesTen Helm charts. It covers the following topics:

• Install the TimesTen CRDs

• Install the TimesTen Operator

• Test the TimesTen Operator

Install the TimesTen CRDs
TimesTen provides the ttcrd chart in TimesTen container images. You use this chart to install
the TimesTen CRDs in your cluster. For information about obtaining TimesTen Helm charts
from TimesTen container images, see Obtain TimesTen YAML Manifest Files and Helm Charts.

Note:

Since CRDs are cluster-wide, the CRDs are available to all namespaces in the
cluster after they are installed.

In this example, the location of the ttcrd chart is in the kube_files/helm directory on your
development host. For more information about this directory and obtaining Helm charts, see 
Obtain TimesTen YAML Manifest Files and Helm Charts.

Chapter 9
Install the TimesTen CRDs and the TimesTen Operator

9-4

https://helm.sh/docs/chart_template_guide/getting_started/


Note:

Do not modify this chart.

1. On your development host, change to the helm directory.

cd kube_files/helm

2. Install the ttcrd chart.

helm install ttcrd ./ttcrd

The output is the following.

NAME: ttcrd
LAST DEPLOYED: Thu Jan  16 20:50:47 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Version 22.1.1.34.0.1.0 the ttcrd chart has been installed.

This release is named "ttcrd".

To learn more about the release, try:

  $ helm status ttcrd
  $ helm get all ttcrd
  $ helm history ttcrd

To rollback to a previous version of the chart, run:

  $ helm rollback ttcrd <REVISION>
    - run 'helm history ttcrd' for a list of revisions.

3. Confirm the CRDs are defined in your Kubernetes cluster.

kubectl get crds | grep timesten

The output is the following:

timestenclassics.timesten.oracle.com          2025-01-01T20:50:48Z

Congratulations! You successfully installed the TimesTen CRDs.

Install the TimesTen Operator
TimesTen provides the ttoperator chart in TimesTen container images. You use this chart to
install the TimesTen Operator in your namespace. The chart contains a default configuration
for installing the TimesTen Operator Deployment. The Deployment causes Kubernetes to
create one or more Pods, each of which runs the TimesTen Operator.

Chapter 9
Install the TimesTen CRDs and the TimesTen Operator

9-5



For information about obtaining TimesTen Helm charts from TimesTen container images, see 
Obtain TimesTen YAML Manifest Files and Helm Charts.

The TimesTen Operator requires a TimesTen container image. You need to specify the
TimesTen container image, container registry, and image pull secret that you are using for the
TimesTen Operator. The ttoperator chart provides default settings as well as variables that
enable you to change the defaults. For information about these variables, see The ttoperator
Chart.

Note:

The service account, roles, and role bindings that the TimesTen Operator requires to
run properly are automatically installed when you install the ttoperator chart.

After you decide the variables you want to customize, you have two options:

• Create a YAML file that defines the variables that you want to use to configure your
environment. Next, to install the chart, pass this YAML file to the helm install command
by specifying the -f option.

• Specify the variables on the command line by running the helm install command with the
--set option.

For more information about these options, see https://helm.sh/docs/intro/using_helm/.

The example creates a YAML file. Let's review how to make customizations for the container
image, container registry, and image pull secret using a YAML file:

image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.34.0"
imagePullSecrets:
  - name: sekret

For the image variable, specify the following:

• repository: The name of your container image. This example uses container-
registry.oracle.com/timesten/timesten.

• tag: The name of the image tag. This example uses "22.1.1.34.0", corresponding to
TimesTen release 22.1.1.34.0.

Let's install the TimesTen Operator. Let's assume you have previously created a kube_files/
helm/customyaml directory for your customized YAML file.

Note:

The installation process creates and deploys the service account, role, and
rolebinding objects required to run the TimesTen Operator in your namespace.

1. On your development host, change to the helm directory.

cd kube_files/helm

Chapter 9
Install the TimesTen CRDs and the TimesTen Operator

9-6

https://helm.sh/docs/intro/using_helm/


2. Create a YAML file that defines the variables for your configuration.

vi customyaml/tt_operator.yaml

image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.34.0"
imagePullSecrets:
  - name: sekret

3. Install the TimesTen Operator by installing the ttoperator chart.

helm install -f customyaml/tt_operator.yaml ttoper ./ttoperator

Let's look at this helm install command:

• The -f option is used to pass the customized YAML file to the helm install command.

• The name of the file that contains the customizations is tt_operator.yaml, which is
located in the customyaml directory.

• The name of the release is ttoper.

• The name of the chart that installs the TimesTen Operator is ttoperator.

Let's look at the output from the helm install command.

NAME: ttoper
LAST DEPLOYED: Thu Jan  16 02:54:39 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
Version 2211340.1.0 of the ttoperator chart has been installed.

This release is named "ttoper".

To learn more about the release, try:

  $ helm status ttoper
  $ helm get all ttoper
  $ helm history ttoper

To rollback to a previous version of the chart, run:

  $ helm rollback ttoper <REVISION>
    - run 'helm history ttoper' for a list of revisions.

To test the operator, run:

  $ helm test ttoper

Note the following:

• The ttoperator chart version is 2211340.1.0 corresponding to TimesTen release
22.1.1.34.0.

Chapter 9
Install the TimesTen CRDs and the TimesTen Operator

9-7



• The release name is ttoper.

• The status of the release is deployed.

4. (Optional) Verify the release.

helm list

Output.

NAME    NAMESPACE       REVISION        
UPDATED                                 STATUS   CHART                   
APP VERSION
ttoper  default         1               2025-01-16 02:54:39.916210368 
+0000 UTC deployed ttoperator-2211340.1.0  22.1.1.34.0

The helm list command shows the ttoper release exists and is installed in your
namespace.

5. Confirm the TimesTen Operator is running in your namespace.

kubectl get pods

The output is the following:

NAME                              READY   STATUS    RESTARTS   AGE
timesten-operator-55c6f99-zqlct   1/1     Running   0          10m

Congratulations! You successfully installed the ttoperator chart. The TimesTen Operator is
running in your namespace.

Test the TimesTen Operator
To test the TimesTen Operator, the test Pod uses the curl command to access the TimesTen
Operator's readiness probe endpoint. If the TimesTen Operator self-reports that it is ready, the
test succeeds.

If you previously disabled exposing probes from the TimesTen Operator by setting
probes.expose=0 in your customized YAML file, helm test does not work. We recommend you
do not disable exposing probes.

To test the TimesTen Operator, you test the ttoperator chart release running in your
namespace.

1. Examine the ttoperator chart release.

helm list

The output is similar to the following:

NAME    NAMESPACE       REVISION        
UPDATED                                 STATUS   CHART                   
APP VERSION

Chapter 9
Install the TimesTen CRDs and the TimesTen Operator

9-8



ttoper  default         1               2025-01-16 02:54:39.916210368 
+0000 UTC deployed ttoperator-2211340.1.0  22.1.1.34.0

The ttoper release of the ttoperator chart is installed in your namespace.

2. Test the release.

 helm test ttoper

The output is the following:

NAME: ttoper
LAST DEPLOYED: Thu Jan  16 02:54:39 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE:     ttoper-ttoperator-test
Last Started:   Thu Jan  16 02:55:17 2025
Last Completed: Thu Jan  16 02:55:20 2025
Phase:          Succeeded
NOTES:
Version 2211340.1.0 of the ttoperator chart has been installed.

This release is named "ttoper".

To learn more about the release, try:

  $ helm status ttoper
  $ helm get all ttoper
  $ helm history ttoper

To rollback to a previous version of the chart, run:

  $ helm rollback ttoper <REVISION>
    - run 'helm history ttoper' for a list of revisions.

To test the operator, run:

  $ helm test ttoper

The test for the ttoper release succeeded.

Congratulations! You successfully tested the TimesTen Operator. The test succeeded,
indicating the TimesTen Operator is running in your namespace and operating properly.

Create TimesTen Databases and Test TimesTen
This section shows you how to create replicated and non-replicated TimesTen databases. It
covers the following topics:

• About Creating TimesTen Databases

• About Using the ttclassic Helm Chart

• Create Replicated TimesTen Databases

Chapter 9
Create TimesTen Databases and Test TimesTen

9-9



• Test TimesTen for a Replicated Configuration

• Create Non-Replicated TimesTen Databases

• Test TimesTen for a Non-Replicated Configuration

About Creating TimesTen Databases
The TimesTen Operator creates, manages, and monitors TimesTen Classic databases. It
supports the following topologies:

• Replicated active standby pair configurations: The TimesTen Operator configures one
TimesTen database as the active database, copies the active database to the standby, and
configures an active standby pair replication scheme between them.

• Non-replicated configurations: The TimesTen Operator configures one or more TimesTen
Classic databases. Each database is independent and has no relationship to each other.

You use the ttclassic Helm chart to create TimesTen Classic databases for both replicated
and non-replicated configurations. To distinguish the two configurations, the ttclassic chart
provides the replicationTopology variable. Let's look at an example and then discuss the
specifics.

Here are two YAML files that define the variables for both configurations. How you use these
files to create TimesTen databases is discussed in a later section.

• Replicated:

storageClassName: oci-bv
storageSize: 10Gi
image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.34.0"
imagePullSecret: sekret
replicationTopology: activeStandbyPair
dbConfigMap:
  - name: repsamplehelm
  directory: cm

The replicationTopology variable has a value of activeStandbyPair, indicating a
replicated configuration in which the TimesTen Operator creates an active standby pair of
TimesTen databases. Since the default value for the replicationTopology variable is
activeStandbyPair, you have the option of not specifying the replicationTopology
variable for replicated configurations.

• Non-replicated:

storageClassName: oci-bv
storageSize: 10Gi
image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.34.0"
imagePullSecret: sekret
replicationTopology: none
replicas: 3
rollingUpdatePartition: 2
dbConfigMap:

Chapter 9
Create TimesTen Databases and Test TimesTen

9-10



  - name: norepsamplehelm
  directory: cm

The replicationTopology variable has a value of none, indicating a non-replicated
configuration in which the TimesTen Operator creates one or more non-replicated
TimesTen databases, each of which operates independently without replication configured.
In addition, the ttclassic chart provides additional variables to assist in your
customizations:

– replicas: Determines the number of Pods to be configured. Each Pod contains a
TimesTen database. For example, if replicas is 3, there are three Pods each
containing a TimesTen database. The default is 1.

– rollingUpdatePartition: Determines how many databases are upgraded. The
upgrade procedure is discussed in a later section.

The following customizations apply to both configurations:

– storageClassName and storageSize: Since TimesTen is a database and is persistent,
you have to specify a storage class, which is used to request persistent volumes for
the database. The storageSize datum determines the amount of storage to be
provisioned for TimesTen and its database.

– image: For repository, you must specify the container registry that contains the
TimesTen container image. For tag, you specify an image tag. Taken together, image
in this example represents the container registry that contains the TimesTen container
image along with the image tag representing the release of TimesTen.

– imagePullSecret: You have to specify a Kubernetes Secret that authenticates
Kubernetes to pull a TimesTen container image from the specified container registry.

– dbConfigMap: Optionally, you can specify one or more ConfigMaps that contain the
metadata files for your TimesTen databases. You do not create these ConfigMaps.
Rather, the ttclassic chart installation process creates the ConfigMaps for you. How
this is done is discussed later in this chapter.

There are many more customizations available to you. See The ttclassic Chart. In addition, the
TimesTen Operator provides metadata files that enable you to customize and define the
configuration for your TimesTen databases. These files include testUser, db.ini, adminUser,
cacheUser, schema,sql, cachegroups.sql, and others. The TimesTen Operator provides
several methods for you to make those files available to the TimesTen Operator and TimesTen.
For details, see Use Configuration Metadata.

About Using the ttclassic Helm Chart
The ttclassic Helm chart contains the information needed to deploy replicated and non-
replicated TimesTen database in your Kubernetes namespace. There are many customizations
available to meet your preferred configuration. There are variables specific to the ttclassic
chart for such customizations. The About Creating TimesTen Databases section discusses
some of these customizations. For additional customizations, see The ttclassic Chart.

The TimesTen Operator provides metadata files to further customize your database. One file of
particular interest is testUser. After TimesTen is deployed, you can use the helm test
command to test TimesTen. The test operation requires that a TimesTen test user exist in the
TimesTen database. This user connects to the database as part of the testing process. This

Chapter 9
Create TimesTen Databases and Test TimesTen

9-11



user must be defined before installing the ttclassic chart. The TimesTen Operator provides
the testUser metadata file for this purpose. The file contains one line of the form:

testuser/testuserpassword

where testuser is the name of the TimesTen user to use for testing TimesTen and
testuserpassword is the password for this test user. For details, see Use Configuration
Metadata.

If you are using Kubernetes ConfigMaps or Secrets as the facilities to place metadata files into
the TimesTen containers, you do not need to create them. Instead, when you install the
ttclassic chart, the ConfigMaps and Secrets are automatically created as part of the
installation process. To facilitate the process, you must create a directory within the ttclassic
chart directory tree and create the metadata files in this directory. There are examples later in
this section that show you how to do this.

After you decide your configurations needs and review the variables you are using for these
customizations, you have the following options for supplying these variables as part of the
ttclassic chart's installation process:

• Create a YAML file for the variables. When installing the ttclassic chart, pass this YAML
file to the helm install command by specifying the -f option.

• Specify the variables on the command line by running the helm install command with the
--set option.

The examples use a YAML file. For specifics about these options including the syntax, see 
https://helm.sh/docs/intro/using_helm/ in the Helm documentation.

The examples show you how to use the ttclassic Helm chart to define and deploy replicated
and non-replicated TimesTen databases. Both examples use the same set of metadata files
and both use Kubernetes ConfigMaps to get the metadata files into the tt containers.

For simplicity, let's create the metadata files and ConfigMaps used in the examples. For
complete details about metadata files, see Use Configuration Metadata and Populate the /
ttconfig Directory.

1. On your development host, change to the ttclassic directory. In this example, the
directory location is kube_files/helm/ttclassic.

cd kube_files/helm/ttclassic

2. Create a directory for the metadata files.

mkdir cm

3. Create metadata files in the directory used for the metadata files (cm in this example).
These metadata files are used in the examples throughout the chapter.

a. Create the testUser file.

vi cm/testUser

sampletestuser/sampletestuserpwd1

Chapter 9
Create TimesTen Databases and Test TimesTen

9-12

https://helm.sh/docs/intro/using_helm/


b. Create the db.ini file.

vi cm/db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

c. Create the adminUser file.

vi cm/adminUser

adminuser/adminuserpwd

d. Create the schema.sql file.

vi cm/schema.sql

create table adminuser.emp (id number not null primary key, name char 
(32));

You created the metadata files and the directory for them. Save the location of the directory.
You need it later.

Create Replicated TimesTen Databases
This example shows you how to create replicated TimesTen Classic databases using the
ttclassic Helm chart. The example uses a YAML manifest file and assumes you have created
the kube_files/helm/customyaml directory for the file.

1. On your development host, change to the helm directory.

cd kube_files/helm

2. Create a YAML file that defines the variables for your replicated configuration.

vi customyaml/repsamplehelm.yaml

storageClassName: oci-bv
storageSize: 10Gi
image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.34.0"
imagePullSecret: sekret
replicationTopology: activeStandbyPair
dbConfigMap:
  - name: repsamplehelm
    directory: cm

Note the following:

• The storageClassName is oci-bv. Replace oci-bv with the name of your storage
class.

• The storageSize is 10Gi. Replace 10Gi with the amount of storage that needs to be
requested for each Pod to hold TimesTen.

Chapter 9
Create TimesTen Databases and Test TimesTen

9-13



• For the image variable:

– repository: The repository is container-registry.oracle.com/timesten/
timesten. Replace container-registry.oracle.com/timesten/timesten with the
name and location of your TimesTen container image.

– tag: The tag is 22.1.1.34.0. Replace tag with the tag for the TimesTen release.

• The imagePullSecret is sekret. Replace sekret with the image pull secret that
Kubernetes needs to use to fetch the TimesTen container image.

• The replicationTopology is activeStandbyPair, indicating a replicated configuration
consisting of an active standby pair of TimesTen databases.

• The name of the ConfigMap is repsamplehelm. The location of the metadata files is in
the cm directory, which is located within the kube_file/helm/ttclassic directory tree..

3. Install the ttclassic chart.

helm install -f customyaml/repsamplehelm.yaml repsamplehelm ./ttclassic

Let's look at this helm install command:

• The -f option indicates that a YAML file is passed to the helm install command.

• The name of the YAML file that contains the customizations is repsamplehelm.yaml,
which is located in the customyaml directory.

• The name of the release is repsamplehelm.

• The name of the chart is ttclassic, which is located in the kube_files/helm/
ttclassic directory.

Let's look at the output from the helm install command.

NAME: repsamplehelm
LAST DEPLOYED: Thu Jan  16 14:58:40 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
Version 2211340.1.0 of the ttclassic chart has been installed.

This release is named "repsamplehelm".

To learn more about the release, try:

  $ helm status repsamplehelm
  $ helm get all repsamplehelm
  $ helm history repsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback repsamplehelm <REVISION>
    - run 'helm history repsamplehelm' for a list of revisions.

Note the following:

• The ttclassic chart version is 2211340.1.0, corresponding to TimesTen release
22.1.1.34.0.

Chapter 9
Create TimesTen Databases and Test TimesTen

9-14



• The release name is repsamplehelm.

• The status of the release is deployed.

4. (Optional) Verify the release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
repsamplehelm   default         1               2025-01-16 
14:58:40.109402333 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0
...

The helm list command shows the repsamplehelm release exists and is installed in your
namespace.

5. Monitor the progress.

kubectl get ttc repsamplehelm

The output is similar to the following:

NAME            STATE          ACTIVE   AGE
repsamplehelm   Initializing   None     44s

The provisioning starts, but is not yet complete as indicated by the Initializing state.

Wait a few minutes. Then, check again.

kubectl get ttc repsamplehelm

The output is similar to the following:

NAME            STATE    ACTIVE            AGE
repsamplehelm   Normal   repsamplehelm-0   4m23s

The provisioning process completes. The active standby pair of TimesTen databases are
up and running and operational as indicated by the Normal state.

6. Confirm the ConfigMap and the metadata files exist.

kubectl get configmap repsamplehelm

The output is similar to the following:

NAME            DATA   AGE
repsamplehelm   4      8m50s

Chapter 9
Create TimesTen Databases and Test TimesTen

9-15



Check the metadata files.

kubectl describe configmap repsamplehelm

The output is similar to the following:

Name:         repsamplehelm
Namespace:    default
Labels:       app.kubernetes.io/managed-by=Helm
Annotations:  meta.helm.sh/release-name: repsamplehelm
              meta.helm.sh/release-namespace: default

Data
====
adminUser:
----
adminuser/adminuserpwd

db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:
----
create table adminuser.emp (id number not null primary key, name char 
(32));

testUser:
----
sampletestuser/sampletestuserpwd1

BinaryData
====

Events:  <none>

The repsamplehelm ConfigMap exists and contains the metadata files. Since the testUser
file exists, you can use Helm to test TimesTen. See Test TimesTen for a Replicated
Configuration.

7. (Optional) Confirm the Pods.

kubectl get pods

The output is similar to the following:

NAME                              READY   STATUS    RESTARTS   AGE
repsamplehelm-0                   3/3     Running   0          11m
repsamplehelm-1                   2/3     Running   0          11m
...

Chapter 9
Create TimesTen Databases and Test TimesTen

9-16



The repsamplehelm-0 and repsamplehelm-1 Pods are running in your namespace. Each
Pod is running TimesTen.

Congratulations! You successfully installed the ttclassic chart for a replicated configuration.
An active standby pair of TimesTen Classic databases are up and running and fully
operational.

Test TimesTen for a Replicated Configuration
To test TimesTen, a test Pod is created. It runs a script that attempts to connect to a TimesTen
database by using TimesTen's client/server access. If the script can connect to the database,
the script then looks at internal metadata to verify that the database is functioning properly. If
the test succeeds, the test Pod is deleted.

The test connects to the database as the test user. You define this test user in the testUser
metadata file. This user has CONNECT privileges, but does not have any other privileges. This
limits the test and the test user's access to the database. If you do not define a test user, the
test fails.

The test verifies that the active standby pair of TimesTen Classic databases are up and running
and that replication between them is configured.

Let's test TimesTen.

1. Confirm the ttclassic release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
repsamplehelm   default         1               2025-01-16 
14:58:40.109402333 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0

The repsamplehelm release exists in your namespace.

2. Test TimesTen.

helm test repsamplehelm

The output is similar to the following:

NAME: repsamplehelm
LAST DEPLOYED: Thu Jan  16 14:58:40 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE:     repsamplehelm-ttclassic-test
Last Started:   Thu Jan  16 15:21:45 2025
Last Completed: Thu Jan  16 15:21:49 2025
Phase:          Succeeded
NOTES:

Chapter 9
Create TimesTen Databases and Test TimesTen

9-17



Version 2211340.1.0 of the ttclassic chart has been installed.

This release is named "repsamplehelm".

To learn more about the release, try:

  $ helm status repsamplehelm
  $ helm get all repsamplehelm
  $ helm history repsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback repsamplehelm <REVISION>
    - run 'helm history repsamplehelm' for a list of revisions.

The test for the repsamplehelm release succeeded.

Congratulations! You successfully tested TimesTen. The active and standby databases are up
and running and replication between them is configured.

Create Non-Replicated TimesTen Databases
This example shows you how to create non-replicated TimesTen Classic databases using the
ttclassic Helm chart. The example uses a YAML manifest file and assumes you have created
the kube_files/helm/customyaml directory for the file.

1. On your development host, change to the helm directory.

cd kube_files/helm

2. Create a YAML file that defines the variables for your non-replicated configuration.

vi customyaml/norepsamplehelm.yaml

storageClassName: oci-bv
storageSize: 10Gi
image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.34.0"
imagePullSecret: sekret
replicationTopology: none
replicas: 3
rollingUpdatePartition: 2
dbConfigMap:
  - name: norepsamplehelm
    directory: cm

Note the following:

• The storageClassName is oci-bv. Replace oci-bv with the name of your storage
class.

• The storageSize is 10Gi. Replace 10Gi with the amount of storage that needs to be
requested for each Pod to hold TimesTen.

• For the image variable:

Chapter 9
Create TimesTen Databases and Test TimesTen

9-18



– repository: The repository is container-registry.oracle.com/timesten/
timesten. Replace container-registry.oracle.com/timesten/timesten with the
name and location of your TimesTen container image.

– tag: The tag is 22.1.1.34.0. Replace tag with the tag for the TimesTen release.

• The imagePullSecret is sekret. Replace sekret with the image pull secret that
Kubernetes needs to use to fetch the TimesTen container image.

• For a non-replicated configuration:

– The replicationTopology is none, indicating a non-replicated configuration
consisting of replicas number of Pods. Each Pod contains an independent
TimesTen database.

– The number of replicas is 3, indicating the number of Pods, each of which
contains a TimesTen database. Replace 3 with the number of Pods you want
provisioned. Valid values are between 1 and 3, with 1 being the default.

– The rollingUpdatePartition is 2. This variable is specific to upgrades and
determines the number of TimesTen databases to upgrade. Kubernetes upgrades
Pods with an ordinal value that is greater than or equal to the
rollingUpdatePartition value. For example, if you have three non-replicated
Pods (replicas = 3 and Pods are norepsamplehelm-0, norepsamplehelm-1, and
norepsamplehelm-2) and you set rollingUpdatePartition to 2, the
norepsamplehelm-2 Pods is upgraded, but the norepsamplehelm-1 and
norepsamplehelm-0 Pods are not. There are examples in the upgrade section that
show you how rollingUpdatePartition works. You have the option of changing
the value during the upgrade process.

• The name of the ConfigMap is norepsamplehelm. The location of the metadata files is
in the cm directory, which is located within the kube_file/helm/ttclassic directory
tree..

3. Install the ttclassic chart.

helm install -f customyaml/norepsamplehelm.yaml norepsamplehelm ./ttclassic

Let's look at this helm install command:

• The -f option indicates that a YAML file is passed to the helm install command.

• The name of the YAML file that contains the customizations is norepsamplehelm.yaml,
which is located in the customyaml directory.

• The name of the release is norepsamplehelm.

• The name of the chart is ttclassic, which is located in the kube_files/helm/
ttclassic directory.

Let's look at the output from the helm install command.

NAME: norepsamplehelm
LAST DEPLOYED: Thu Jan  16 17:42:47 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
Version 2211340.1.0 of the ttclassic chart has been installed.

Chapter 9
Create TimesTen Databases and Test TimesTen

9-19



This release is named "norepsamplehelm".

To learn more about the release, try:

  $ helm status norepsamplehelm
  $ helm get all norepsamplehelm
  $ helm history norepsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback norepsamplehelm <REVISION>
    - run 'helm history norepsamplehelm' for a list of revisions.

Note the following:

• The ttclassic chart version is 2211340.1.0, corresponding to TimesTen release
22.1.1.34.0.

• The release name is norepsamplehelm.

• The status of the release is deployed.

4. (Optional) Verify the release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
norepsamplehelm default         1               2025-01-16 
17:42:47.180635098 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.26.0

The helm list command shows the norepsamplehelm release exists and is installed in
your namespace.

5. Monitor the progress.

NAME              STATE             ACTIVE   AGE
norepsamplehelm   NoReplicasReady   N/A      94s

The provisioning starts, but is not yet complete as indicated by the NoReplicasReady state.

Wait a few minutes. Then, check again.

kubectl get ttc norepsamplehelm

The output is similar to the following:

NAME              STATE              ACTIVE   AGE
norepsamplehelm   AllReplicasReady   N/A      12m

Chapter 9
Create TimesTen Databases and Test TimesTen

9-20



The provisioning process completes. Databases are up and running and operational as
indicated by the AllReplicasReady state.

6. Confirm the ConfigMap and the metadata files exist.

kubectl get configmap norepsamplehelm

The output is similar to the following:

NAME              DATA   AGE
norepsamplehelm   4      15m

Check the metadata files.

kubectl describe configmap norepsamplehelm

The output is similar to the following:

Name:         norepsamplehelm
Namespace:    default
Labels:       app.kubernetes.io/managed-by=Helm
Annotations:  meta.helm.sh/release-name: norepsamplehelm
              meta.helm.sh/release-namespace: default

Data
====
testUser:
----
sampletestuser/sampletestuserpwd1

adminUser:
----
adminuser/adminuserpwd

db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8

schema.sql:
----
create table adminuser.emp (id number not null primary key, name char 
(32));

BinaryData
====

Events:  <none>

The norepsamplehelm ConfigMap exists and contains the metadata files. Since the
testUser file exists, you can use Helm to test TimesTen. See Test TimesTen for a Non-
Replicated Configuration.

Chapter 9
Create TimesTen Databases and Test TimesTen

9-21



7. (Optional) Confirm the Pods.

kubectl get pods

The output is similar to the following:

NAME                              READY   STATUS    RESTARTS   AGE
norepsamplehelm-0                 3/3     Running   0          17m
norepsamplehelm-1                 3/3     Running   0          17m
norepsamplehelm-2                 3/3     Running   0          17m
...

There are three Pod running in your namespace, each of which contains an independent
TimesTen database.

Congratulations! You successfully installed the ttclassic chart for a non-replicated
configuration. TimesTen databases are up and running and fully operational.

Test TimesTen for a Non-Replicated Configuration
To test TimesTen, a test Pod is created. It runs a script that attempts to connect to all of the
TimesTen databases (the replicas) by using TimesTen's client/server access. If the script can
connect to the database, the script then looks at internal metadata to verify that the database is
functioning properly. If the test succeeds, the test Pod is deleted.

The test connects to the database as the test user. You define this test user in the testUser
metadata file. This user has CONNECT privileges, but does not have any other privileges. This
limits the test and the test user's access to the database. If you do not define a test user, the
test fails.

The test verifies TimesTen databases are up and running and fully operational.

Let's test TimesTen.

1. Confirm the ttclassic release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
norepsamplehelm default         1               2025-01-16 
17:42:47.180635098 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.26.0

The norepsamplehelm release exists in your namespace.

2. Test TimesTen.

helm test norepsamplehelm

Chapter 9
Create TimesTen Databases and Test TimesTen

9-22



The output is similar to the following:

NAME: norepsamplehelm
LAST DEPLOYED: Thu Jan  16 17:42:47 2025
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE:     norepsamplehelm-ttclassic-test
Last Started:   Thu Jan  16 18:17:22 2025
Last Completed: Thu Jan  16 18:17:26 2025
Phase:          Succeeded
NOTES:
Version 2211340.1.0 of the ttclassic chart has been installed.

This release is named "norepsamplehelm".

To learn more about the release, try:

  $ helm status norepsamplehelm
  $ helm get all norepsamplehelm
  $ helm history norepsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback norepsamplehelm <REVISION>
    - run 'helm history norepsamplehelm' for a list of revisions.

The test for the norepsamplehelm release succeeded.

Congratulations! You successfully tested TimesTen. TimesTen databases are up and running
and fully operational.

Upgrade
This section shows you how to upgrade the TimesTen CRDs, the TimesTen Operator, and both
replicated and non-replicated TimesTenClassic objects and associated TimesTen databases. It
covers the following topics:

• About Upgrading

• Upgrade the TimesTen CRDs

• Upgrade the TimesTen Operator

• Upgrade Replicated TimesTen Databases

• Upgrade Non-Replicated TimesTen Databases

About Upgrading
You can use Helm to upgrade TimesTen CRDs and the TimesTen Operator. You can also use
Helm to perform an automated upgrade of both replicated and non-replicated TimesTen
Classic databases.

TimesTen provides several options for obtaining container images that contain the release of
TimesTen that you want to use for the upgrade. These container images contain the Helm

Chapter 9
Upgrade

9-23



charts for the upgrade. For information about obtaining container images and downloading
Helm charts from a container image, see Prepare to Use the TimesTen Kubernetes Operator.

The upgrade examples make the following assumptions:

• Container image: The container image that contains the new release of TimesTen is
container-registry.oracle.com/timesten/timesten:22.1.1.35.0.

• Download directory: The directory on your development host that contain the Helm charts
for the upgrade is new_kube_files/helm.

Upgrade the TimesTen CRDs
To upgrade the TimesTen CRDs in your cluster, use the ttcrd chart from the new release.

Note the following:

• You cannot downgrade TimesTen CRDs.

• Since CRDs are cluster-scoped, if you delete TimesTen CRDs from your Kubernetes
cluster, all TimesTenClassic objects that are deployed in this cluster are also deleted.

1. Confirm the current ttcrd release.

helm list

The output is similar to the following:

NAME    NAMESPACE       REVISION        
UPDATED                                 STATUS   CHART                   
APP VERSION
ttcrd   default         1               2025-01-16 20:50:47.406557985 
+0000 UTC deployed ttcrd-2211340.1.0       22.1.1.34.0

The ttcrd chart version is 2211340.1.0 and appversion is 22.1.1.34.0 corresponding to
TimesTen release 22.1.1.34.0.

2. On your development host, change to the new_kube_files/helm directory.

cd new_kube_files/helm

3. Upgrade to the new release.

helm upgrade ttcrd ./ttcrd

The output is similar to the following:

Release "ttcrd" has been upgraded. Happy Helming!
NAME: ttcrd
LAST DEPLOYED: Thu Jan  16 19:07:52 2025
NAMESPACE: default
STATUS: deployed
REVISION: 2
TEST SUITE: None
NOTES:
Version 2211350.1.0 the ttcrd chart has been installed.

Chapter 9
Upgrade

9-24



This release is named "ttcrd".

To learn more about the release, try:

  $ helm status ttcrd
  $ helm get all ttcrd
  $ helm history ttcrd

To rollback to a previous version of the chart, run:

  $ helm rollback ttcrd <REVISION>
    - run 'helm history ttcrd' for a list of revisions.

The TimesTen CRDs are upgraded to the new release.

Congratulations! You successfully upgraded the TimesTen CRDs.

Upgrade the TimesTen Operator
You can upgrade the TimesTen Operator while there are TimesTenClassic objects running in
your namespace. To upgrade the TimesTen Operator in your namespace, use the new release
of the ttoperator chart.

The upgrade process requires you to complete the following steps:

• Create a new YAML file. In this file, you specify the container image that contains the new
release of TimesTen.

• Use the helm get values command for the upgrade. The example shows you how to do
this.

The example assumes you have created a new_kube_files/helm/customyaml directory.

1. On your development host, change to the helm directory that contains the new Helm
charts.

cd new_kube_files/helm

2. Create a YAML file and in it specify the name of the TimesTen image you want to use for
the upgrade.

vi customyaml/upgradeoperator.yaml

image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.35.0"

3. Before the upgrade, do the following:

a. Verify that the TimesTen Operator is running.

kubectl get pods

Chapter 9
Upgrade

9-25



The output is the following:

NAME                              READY   STATUS    RESTARTS   AGE
norepsamplehelm-0                 3/3     Running   0          6h19m
norepsamplehelm-1                 3/3     Running   0          6h19m
norepsamplehelm-2                 3/3     Running   0          6h19m
repsamplehelm-0                   3/3     Running   0          9h
repsamplehelm-1                   2/3     Running   0          9h
timesten-operator-55c6f99-zqlct   1/1     Running   0          2d21h

b. Confirm the image that the TimesTen Operator is running.

kubectl describe deployment timesten-operator | grep Image

The output is the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.34.0

c. Confirm the state of the TimesTenClassic objects.

kubectl get ttc

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               6h28m
repsamplehelm     Normal             repsamplehelm-0   9h

The TimesTenClassic objects and associated databases are functioning properly.

4. Confirm the Helm chart release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
...
ttoper          default         1               2025-01-16 
02:54:39.916210368 +0000 UTC deployed        ttoperator-2211340.1.0  
22.1.1.34.0

5. Upgrade the TimesTen Operator to the new release. To upgrade the TimesTen Operator,
use the ttoperator chart from the new release and use the customized YAML file that
references the new image.

Chapter 9
Upgrade

9-26



Note:

We recommend this syntax. This ensures existing customizations are preserved.

helm get values ttoper --all > prev-values-ttop.yaml

helm upgrade -f prev-values-ttop.yaml -f customyaml/upgradeoperator.yaml  
ttoper ./ttoperator

Let's look at this helm upgrade command:

• The get values ttoper Helm command retrieves the values for the current release,
including existing customizations. The result of this command is piped into the prev-
values-ttop.yaml file. You can choose any name for this file.

• The helm upgrade command uses the prev-values-ttop.yaml file with the customized
upgradeoperator.yaml file to do the upgrade. Specifically, the values in the prev-
values-ttop.yaml file are used except when overridden by the values in the
customized upgradeoperator.yaml file. The upgradeoperator.yaml file takes
precedence over the prev-values-ttop.yaml file since it was listed last on the
command line.

Let's look at the output from the helm upgrade command.

Release "ttoper" has been upgraded. Happy Helming!
NAME: ttoper
LAST DEPLOYED: Thu Jan  16 00:20:34 2025
NAMESPACE: default
STATUS: deployed
REVISION: 2
NOTES:
Version 2211350.1.0 of the ttoperator chart has been installed.

This release is named "ttoper".

To learn more about the release, try:

  $ helm status ttoper
  $ helm get all ttoper
  $ helm history ttoper

To rollback to a previous version of the chart, run:

  $ helm rollback ttoper <REVISION>
    - run 'helm history ttoper' for a list of revisions.

To test the operator, run:

Note the following:

• The ttoper release is upgraded. The release revision is 2.

• The status of the release is deployed.

Chapter 9
Upgrade

9-27



• The ttoperator chart version is 2211350.1.0 corresponding to TimesTen release
22.1.1.35.0.

6. Test the TimesTen Operator is running.

helm test ttoper

The output is similar to the following:

NAME: ttoper
LAST DEPLOYED: Thu Jan  16 00:20:34 2025
NAMESPACE: default
STATUS: deployed
REVISION: 2
TEST SUITE:     ttoper-ttoperator-test
Last Started:   Thu Jan  16 00:20:54 2025
Last Completed: Thu Jan  16 00:20:57 2025
Phase:          Succeeded
NOTES:
Version 2211350.1.0 of the ttoperator chart has been installed.

This release is named "ttoper".

To learn more about the release, try:

  $ helm status ttoper
  $ helm get all ttoper
  $ helm history ttoper

To rollback to a previous version of the chart, run:

  $ helm rollback ttoper <REVISION>
    - run 'helm history ttoper' for a list of revisions.

To test the operator, run:

  $ helm test ttoper

7. After the upgrade, do the following:

a. Verify that the TimesTen Operator is running.

kubectl get pods

The output is the following:

NAME                                 READY   STATUS    RESTARTS   AGE
norepsamplehelm-0                    3/3     Running   0          6h38m
norepsamplehelm-1                    3/3     Running   0          6h38m
norepsamplehelm-2                    3/3     Running   0          6h38m
repsamplehelm-0                      3/3     Running   0          9h
repsamplehelm-1                      2/3     Running   0          9h
timesten-operator-57b7949f97-xdlwl   1/1     Running   0          31s

There is a new TimesTen Operator running.

Chapter 9
Upgrade

9-28



b. Confirm the TimesTen Operator is running the new image.

kubectl describe deployment timesten-operator | grep Image

The output is the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The TimesTen Operator is running the new release.

c. Confirm the state of the TimesTenClassic objects.

kubectl get ttc

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               6h39m
repsamplehelm     Normal             repsamplehelm-0   9h

The TimesTen Operator resumes the management and monitoring of the
TimesTenClassic objects. The objects and the associated TimesTen databases are
functioning properly.

Congratulations! You successfully upgraded the ttoperator chart. There is a new TimesTen
Operator that is running in your namespace and it is using the new image.

Upgrade Replicated TimesTen Databases
You can upgrade a replicated TimesTen configuration, consisting of an active standby pair of
TimesTen databases.

The upgrade process requires you to perform the following steps:

• Create a YAML file. In this file, you specify the container image that contains the new
release of TimesTen.

• Uses the helm values command for the upgrade. The example shows you how to do this.

The example assumes you have created a new_kube_files/helm/customyaml directory.

Chapter 9
Upgrade

9-29



Note:

The following actions occur during an upgrade:

• The standby is terminated first. It takes some time for the standby to come back
up. When the standby comes back up, it is upgraded to the new release. During
the upgrade of the standby, depending on your replication configuration, there
may be disruption on the active database.

• Next, the failover from the active to the standby occurs:

– The active is terminated. It takes some time for the former active to come
back up. When the active comes back up, it is upgraded to the new release.

– The standby database is promoted to the active and the former active
becomes the standby.

For more information about how TimesTen performs an upgrade of an active standby
pair of TimesTen databases, see Performing an Upgrade with Active Standby Pair
Replication in the Oracle TimesTen In-Memory Database Installation, Migration, and
Upgrade Guide.

Ensure you perform an upgrade at the appropriate time. We recommend that you do
not perform upgrades at the busiest time of a production day. Applications may
experience short outages and perhaps reduced performance as a result of the
upgrade procedure.

1. On your development host, change to the helm directory that contains the new Helm
charts.

cd new_kube_files/helm

2. Create a YAML file and in it specify the name of the TimesTen image you want to use for
the upgrade.

vi customyaml/upgradereplicated.yaml

image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.35.0"

3. Before the upgrade, do the following:

a. Confirm the replicated TimesTenClassic object exists in your namespace.

kubectl get ttc 

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               8h
repsamplehelm     Normal             repsamplehelm-0   11h

The repsamplehelm TimesTenClassic object exists and is in the Normal state.

Chapter 9
Upgrade

9-30



b. Verify the image.

kubectl describe ttc repsamplehelm | grep Image

The output is similar to the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.34.0
...

4. Confirm the ttclassic chart release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
repsamplehelm   default         1               2025-01-16 
14:58:40.109402333 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0

5. Upgrade to the new release. Use the ttclassic chart from the new release and use the
customized YAML file that references the new image.

Note:

We recommend the following syntax. This ensures existing customizations are
preserved.

helm get values repsamplehelm --all > prev-values-repttc.yaml

helm upgrade -f prev-values-repttc.yaml -f customyaml/
upgradereplicated.yaml  repsamplehelm ./ttclassic

Let's look at this helm upgrade command:

• The get values repsamplehelm Helm command retrieves the values for the current
release, including existing customizations. The result of this command is piped into the
prev-values-repttc.yaml file. You can choose any name for this file.

• The helm upgrade command uses the prev-values-repttc.yaml file with the
customized upgradereplicated.yaml file to do the upgrade.

Let's look at the output from the helm upgrade command.

Release "repsamplehelm" has been upgraded. Happy Helming!
NAME: repsamplehelm
LAST DEPLOYED: Thu Jan  16 02:25:13 2025
NAMESPACE: default
STATUS: deployed

Chapter 9
Upgrade

9-31



REVISION: 2
NOTES:
Version 2211350.1.0 of the ttclassic chart has been installed.

This release is named "repsamplehelm".

To learn more about the release, try:

  $ helm status repsamplehelm
  $ helm get all repsamplehelm
  $ helm history repsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback repsamplehelm <REVISION>
    - run 'helm history repsamplehelm' for a list of revisions.

Note the following:

• The repsamplehelm chart release is upgraded. The release revision is 2.

• The status of the release is deployed.

• The ttclassic chart version is 2211350.1.0 corresponding to TimesTen release
22.1.1.35.0.

6. Observe the automatic upgrade and how the TimesTenClassic object transitions from and
to various states.

 kubectl get events -w

The output is similar to the following:

11m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Image updated, automatic upgrade started
11m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Deleted standby pod repsamplehelm-1 during upgrade
11m         Warning   Failed                   timestenclassic/
repsamplehelm   Pod repsamplehelm-1 was replaced
11m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Not Ready
11m         Warning   StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was Normal, now ActiveTakeover
11m         Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was ActiveTakeover, now StandbyDown
9m26s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Agent Up
9m26s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Instance Exists
9m26s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Daemon Down
9m26s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Daemon Up
9m26s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Unloaded
9m24s       Normal    Info                     timestenclassic/

Chapter 9
Upgrade

9-32



repsamplehelm   Pod repsamplehelm-1 Database None
9m21s       Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 597 secs
9m18s       Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 594 secs
9m15s       Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 591 secs
9m12s       Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 588 secs
9m9s        Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 585 secs
9m6s        Normal    Info                     timestenclassic/
repsamplehelm   RepDuplicate completed in 16 secs
9m5s        Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Loaded
9m5s        Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepAgent Not Running
9m5s        Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepScheme Exists
9m5s        Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepState IDLE
9m          Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Loaded
9m          Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepAgent Running
9m          Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepScheme Exists
9m          Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepState STANDBY
9m          Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Ready
8m59s       Normal    Upgrade                  timestenclassic/
repsamplehelm   Upgrade of standby complete
8m59s       Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was StandbyDown, now Normal
8m28s       Normal    Upgrade                  timestenclassic/
repsamplehelm   Deleted active pod repsamplehelm-0 during upgrade
7m27s       Warning   Error                    timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Unreachable for 119 seconds
7m27s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Not Ready
7m27s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Not Active Ready
7m27s       Warning   StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was Normal, now ActiveDown
7m27s       Warning   Failed                   timestenclassic/
repsamplehelm   Pod repsamplehelm-0 was replaced
7m26s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Updatable
7m26s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepState ACTIVE

Chapter 9
Upgrade

9-33



7m26s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Not Ready
7m26s       Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was ActiveDown, now ActiveTakeover
7m21s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Ready
7m21s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Active Ready
7m21s       Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was ActiveTakeover, now StandbyDown
6m17s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Agent Up
6m17s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Instance Exists
6m17s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Daemon Down
6m16s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Daemon Up
6m16s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Unloaded
6m14s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database None
6m11s       Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 597 secs
6m8s        Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 594 secs
6m5s        Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 591 secs
6m2s        Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 588 secs
5m59s       Normal    Info                     timestenclassic/
repsamplehelm   RepDuplicate completed in 13 secs
5m58s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Loaded
5m58s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepAgent Not Running
5m58s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepScheme Exists
5m58s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepState IDLE
5m53s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Loaded
5m53s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepAgent Running
5m53s       Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepScheme Exists
5m53s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepState STANDBY
5m53s       Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Ready
5m52s       Normal    Upgrade                  timestenclassic/
repsamplehelm   Upgrade of active complete

Chapter 9
Upgrade

9-34



5m52s       Normal    Upgrade                  timestenclassic/
repsamplehelm   Upgrade completed in 350 secs
5m52s       Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was StandbyDown, now Normal

The automated upgrade process completes. The TimesTenClassic object is in the Normal
state. TimesTen databases are up and running and functioning properly. Active standby
pair replication is configured between them.

7. After the upgrade, do the following:

a. Confirm the replicated TimesTenClassic object is in the Normal state and the active is
repsamplehelm-1.

kubectl get ttc 

The output is similar to the following:

NAME            STATE    ACTIVE            AGE
repsamplehelm   Normal   repsamplehelm-1   11h

b. Verify the image.

kubectl describe ttc repsamplehelm | grep Image

The output is similar to the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...

8. (Optional): Use helm test to test TimesTen.

 helm test repsamplehelm

The output is similar to the following:

NAME: repsamplehelm
LAST DEPLOYED: Thu Jan  16 02:25:13 2025
NAMESPACE: default
STATUS: deployed
REVISION: 2
TEST SUITE:     repsamplehelm-ttclassic-test
Last Started:   Thu Jan  16 02:49:22 2025
Last Completed: Thu Jan  16 02:49:26 2025
Phase:          Succeeded
NOTES:
Version 2211350.1.0 of the ttclassic chart has been installed.

This release is named "repsamplehelm".

To learn more about the release, try:

  $ helm status repsamplehelm
  $ helm get all repsamplehelm

Chapter 9
Upgrade

9-35



  $ helm history repsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback repsamplehelm <REVISION>
    - run 'helm history repsamplehelm' for a list of revisions.

The test succeeeds.

Congratulations! You successfully completed an automated upgrade for a replicated
TimesTenClassic object. The TimesTenClassic object is upgraded and is in the Normal state.
The replicated active standby pair of TimesTen databases are running the new release and are
fully operational.

Upgrade Non-Replicated TimesTen Databases
Let's perform an upgrade of a non-replicated TimesTenClassic object consisting of three
independent TimesTen databases.

The upgrade process requires you to perform the following steps:

• Create a YAML file. In this file, you specify the container image that contains the new
release of TimesTen.

• Use the helm values command for the upgrade. The example shows you how to do this.

In addition, the example shows you how to change the value for the rollingUpdatePartition
variable.

1. On your development host, change to the helm directory that contains the new Helm
charts.

cd new_kube_files/helm

2. Create a YAML file and in it specify the name of the TimesTen image you want to use for
the upgrade.

vi customyaml/upgradenonreplicated.yaml

image:
  repository: container-registry.oracle.com/timesten/timesten
  tag: "22.1.1.35.0"

3. Before the upgrade, do the following:

a. Confirm the non-replicated TimesTenClassic object exists in your namespace.

kubectl get ttc 

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               10h
repsamplehelm     Normal             repsamplehelm-1   13h

Chapter 9
Upgrade

9-36



The norepsamplehelm TimesTenClassic object exists and is in the AllReplicasReady
state.

b. Verify the image and the value of rollingUpdatePartition.

kubectl get ttc norepsamplehelm -o yaml | grep 'image\|
rollingUpdatePartition'

The output is similar to the following:

    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
...
    rollingUpdatePartition: 2
...

The value for rollingUpdatePartition is 2, indicating that Kubernetes upgrades Pods
with an ordinal value greater than or equal to 2. For the norepsamplehelm object, since
the value of replicas is 3, there are three Pods named norepsamplehelm-0,
norepsamplehelm-1, and norepsamplehelm-2. Therefore, Kubernetes only upgrades
the norepsamplehelm-2 Pod.

4. Confirm the ttclassic chart release.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
norepsamplehelm default         1               2025-01-16 
17:42:47.180635098 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0

5. Upgrade to the new release. Use the ttclassic chart from the new release and use the
customized YAML file that references the new image.

Note:

We recommend the following syntax. This ensures existing customizations are
preserved.

helm get values norepsamplehelm --all > prev-values-norepttc.yaml

helm upgrade -f prev-values-norepttc.yaml -f customyaml/
upgradenonreplicated.yaml  norepsamplehelm ./ttclassic

Let's look at this helm upgrade command:

Chapter 9
Upgrade

9-37



• The get values norepsamplehelm Helm command retrieves the values for the current
release, including existing customizations. The result of this command is piped into the
prev-values-norepttc.yaml file. You can choose any name for this file.

• The helm upgrade command uses the prev-values-norepttc.yaml file with the
customized upgradenonreplicated.yaml file to do the upgrade.

Let's look at the output from the helm upgrade command.

Release "norepsamplehelm" has been upgraded. Happy Helming!
NAME: norepsamplehelm
LAST DEPLOYED: Thu Jan  16 04:22:15 2025
NAMESPACE: default
STATUS: deployed
REVISION: 2
NOTES:
Version 2211350.1.0 of the ttclassic chart has been installed.

This release is named "norepsamplehelm".

To learn more about the release, try:

  $ helm status norepsamplehelm
  $ helm get all norepsamplehelm
  $ helm history norepsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback norepsamplehelm <REVISION>
    - run 'helm history norepsamplehelm' for a list of revisions.

Note the following:

• The norepsamplehelm chart release is upgraded. The release revision is 2.

• The status of the release is deployed.

• The ttclassic chart version is 2211350.1.0 corresponding to TimesTen release
22.1.1.35.0.

6. Monitor the progress.

kubectl get ttc norepsamplehelm

The output is similar to the following:

NAME              STATE               ACTIVE            AGE
norepsamplehelm   SomeReplicasReady   N/A               10h

The object is in the SomeReplicasReady state.

Wait a few minutes. Then, monitor again.

kubectl get ttc norepsamplehelm

Chapter 9
Upgrade

9-38



The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               10h

The object is in the AllReplicasReady state. All replicas are ready and available.
TimesTen databases are up and running and functioning properly.

7. Check the image that the norepsamplehelm-2 Pod is running.

kubectl describe pod norepsamplehelm-2 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The containers in the Pod are running the new container image.

8. Check the image for the norepsamplehelm-1 and norepsamplehelm-0 Pods.

a. Check the norepsamplehelm-1 Pod.

kubectl describe pod norepsamplehelm-1 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

The containers in the Pod are not running the new image. Due to the
rollingUpdatePartition value of 2, Kubernetes does not upgrade this Pod with the
new image. This is correct behavior.

b. Check the norepsamplehelm-0 Pod.

kubectl describe pod norepsamplehelm-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

Chapter 9
Upgrade

9-39



Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

The containers in the Pod are not running the new image. Due to the
rollingUpdatePartition value of 2, Kubernetes does not upgrade this Pod with the
new image. This is correct behavior.

After you confirm the upgrade is working, you can upgrade the remaining Pods.

9. Create a YAML file and in it specify the rollingUpdatePartition variable and set the
value to 0.

vi customyaml/changerollingupdate.yaml

rollingUpdatePartition: 0

10. Change the rollingUpdatePartition value.

Note:

We recommend the following syntax. This ensures existing customizations are
preserved.

helm get values norepsamplehelm --all > prev-values-noreprolling.yaml && 
helm upgrade -f prev-values-noreprolling.yaml -f customyaml/
changerollingupdate.yaml  norepsamplehelm ./ttclassic

The output is similar to the following:

Release "norepsamplehelm" has been upgraded. Happy Helming!
NAME: norepsamplehelm
LAST DEPLOYED: Thu Jan  16 04:56:32 2025
NAMESPACE: default
STATUS: deployed
REVISION: 3
NOTES:
Version 2211350.1.0 of the ttclassic chart has been installed.

This release is named "norepsamplehelm".

To learn more about the release, try:

  $ helm status norepsamplehelm
  $ helm get all norepsamplehelm
  $ helm history norepsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback norepsamplehelm <REVISION>
    - run 'helm history norepsamplehelm' for a list of revisions.

Chapter 9
Upgrade

9-40



Kubernetes automatically begins to terminate Pods and replace them with new ones.
These new Pods run the new image. Since rollingUpdatePartition is now 0, you should
expect to see the norepsamplehelm-1 and norepsamplehelm-0 Pods upgraded with the
new image.

11. Monitor the progress.

a. TimesTenClassic object:

kubectl get ttc norepsamplehelm

The output is similar to the following

NAME              STATE               ACTIVE   AGE
norepsamplehelm   SomeReplicasReady   N/A      11h

b. Pods:

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS     RESTARTS   AGE
norepsamplehelm-0                    3/3     Running    0          11h
norepsamplehelm-1                    0/3     Init:0/1   0          31s
norepsamplehelm-2                    3/3     Running    0          34m

Kubernetes replaces the norepsamplehelm-1 Pod first. Wait a few minutes. Then
monitor again.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
norepsamplehelm-0                    3/3     Running   0          3m14s
norepsamplehelm-1                    3/3     Running   0          6m8s
norepsamplehelm-2                    3/3     Running   0          40m

Kubernetes replaced the norepsamplehelm-1 and the norepsamplehelm-0 Pods. All
Pods are running.

12. Confirm the Pods are running the new container image.

Pod norepsamplehelm-1:

kubectl describe pod norepsamplehelm-1 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Chapter 9
Upgrade

9-41



Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Pod norepsamplehelm-0:

kubectl describe pod norepsamplehelm-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The Pods are running the new image.

13. Confirm the state of the TimesTenClassic object.

kubectl get ttc norepsamplehelm

The output is similar to the following:

NAME              STATE              ACTIVE   AGE
norepsamplehelm   AllReplicasReady   N/A      11h

Congratulations! You successfully performed an automated upgrade for a non-replicated
TimesTenClassic object. All replicas are ready and available. Pods are running the new
TimesTen container image. TimesTen databases are upgraded and fully operational.

Roll Back an Upgrade
This section shows you how to roll back a TimesTen upgrade as well as a TimesTen Operator
upgrade. You cannot roll back an upgrade of TimesTen CRDs.

The section covers the following topics:

• Roll Back a Replicated TimesTen Upgrade

• Roll back a Non-Replicated TimesTen Upgrade

• Roll Back a TimesTen Operator Upgrade

Chapter 9
Roll Back an Upgrade

9-42



Roll Back a Replicated TimesTen Upgrade
You can use Helm to roll back an upgrade of a replicated TimesTenClassic object. This reverts
the replicated TimesTenClassic object and its associated TimesTen databases to the
downgraded release.

Note:

Ensure you perform a downgrade at the appropriate time. We recommend that you
do not perform a downgrade at the busiest time of a production day. Applications may
experience outages and perhaps reduced performance as a result of the downgrade
procedure.

1. Before the rollback, do the following:

a. Confirm the replicated TimesTenClassic object exists in your namespace.

kubectl get ttc 

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               19h
repsamplehelm     Normal             repsamplehelm-1   22h

The repsamplehelm TimesTenClassic object exists and is in the Normal state.

b. Verify the image.

kubectl describe ttc repsamplehelm | grep Image

The output is similar to the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...

2. Review the revision history.

helm history repsamplehelm

The output is similar to the following:

REVISION        UPDATED                         STATUS          
CHART                   APP VERSION     DESCRIPTION
1               Thu Jan  16 14:58:40 2025        superseded      
ttclassic-2211340.1.0   22.1.1.34.0     Install complete
2               Fri Jan  17 02:25:13 2025        deployed        
ttclassic-2211350.1.0   22.1.1.35.0     Upgrade complete

Chapter 9
Roll Back an Upgrade

9-43



Revision 2 of the repsamplehelm chart is running release 22.1.1.35.0. Revision 1 is
running release 22.1.1.34.0.

3. Roll back to revision 1.

helm rollback repsamplehelm 1

The output is the following:

Rollback was a success! Happy Helming!

4. Observe the downgrade and how the TimesTenClassic object transitions from and to
various states.

 kubectl get events -w

The output is similar to the following:

17m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Image updated, automatic upgrade started
17m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Deleted standby pod repsamplehelm-0 during upgrade
17m         Warning   Failed                   timestenclassic/
repsamplehelm   Pod repsamplehelm-0 was replaced
17m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Not Ready
17m         Warning   StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was Normal, now ActiveTakeover
17m         Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was ActiveTakeover, now StandbyDown
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Agent Up
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Instance Exists
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Daemon Down
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Daemon Up
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Unloaded
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database None
14m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 597 secs
14m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 594 secs
14m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 591 secs
14m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 588 secs
14m         Normal    Info                     timestenclassic/

Chapter 9
Roll Back an Upgrade

9-44



repsamplehelm   RepDuplicate completed in 14 secs
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Loaded
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepAgent Not Running
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepScheme Exists
14m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepState IDLE
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Loaded
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepAgent Running
14m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepScheme Exists
14m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepState STANDBY
14m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Ready
14m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Upgrade of standby complete
14m         Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was StandbyDown, now Normal
14m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Deleted active pod repsamplehelm-1 during upgrade
14m         Warning   Failed                   timestenclassic/
repsamplehelm   Pod repsamplehelm-1 has failed
14m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Not Ready
14m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Not Active Ready
14m         Warning   StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was Normal, now ActiveDown
13m         Warning   Failed                   timestenclassic/
repsamplehelm   Pod repsamplehelm-1 was replaced
13m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-0 Database Updatable
13m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 RepState ACTIVE
13m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Not Ready
13m         Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was ActiveDown, now ActiveTakeover
13m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Ready
13m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-0 is Active Ready
13m         Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was ActiveTakeover, now StandbyDown
12m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Agent Up
12m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Instance Exists
12m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Daemon Down
12m         Normal    Info                     timestenclassic/

Chapter 9
Roll Back an Upgrade

9-45



repsamplehelm   Pod repsamplehelm-1 Daemon Up
12m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Unloaded
12m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database None
12m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 597 secs
12m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 594 secs
11m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 591 secs
11m         Normal    Info                     timestenclassic/
repsamplehelm   pollAsyncStatus: Async polling for RepDuplicate, timeout 
in 588 secs
11m         Normal    Info                     timestenclassic/
repsamplehelm   RepDuplicate completed in 15 secs
11m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Loaded
11m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepAgent Not Running
11m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepScheme Exists
11m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepState IDLE
11m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 Database Loaded
11m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepAgent Running
11m         Normal    Info                     timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepScheme Exists
11m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 RepState STANDBY
11m         Normal    StateChange              timestenclassic/
repsamplehelm   Pod repsamplehelm-1 is Ready
11m         Normal    Upgrade                  timestenclassic/
repsamplehelm   Upgrade completed in 326 secs
11m         Normal    StateChange              timestenclassic/
repsamplehelm   TimesTenClassic was StandbyDown, now Normal

The downgrade process completes. The TimesTenClassic object is in the Normal state.
TimesTen databases are up and running and functioning properly. Active standby pair
replication is configured between them.

5. After the downgrade, do the following:

a. Confirm the replicated TimesTenClassic object is in the Normal state and the active is
repsamplehelm-0.

kubectl get ttc 

Chapter 9
Roll Back an Upgrade

9-46



The output is similar to the following:

NAME            STATE    ACTIVE            AGE
repsamplehelm   Normal   repsamplehelm-0   23h

The object is in the Normal state. The active is repsamplehelm-0.

b. Verify the image.

kubectl describe ttc repsamplehelm | grep Image

The output is similar to the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.34.0
...

6. Check the history.

helm history repsamplehelm

The output is similar to the following:

REVISION        UPDATED                         STATUS          
CHART                   APP VERSION     DESCRIPTION
1               Thu Jan  16 14:58:40 2025        superseded      
ttclassic-2211340.1.0   22.1.1.34.0     Install complete
2               Fri Jan  17 02:25:13 2025        superseded      
ttclassic-2211350.1.0   22.1.1.35.0     Upgrade complete
3               Fri Jan  17 13:54:33 2025        deployed        
ttclassic-2211340.1.0   22.1.1.34.0     Rollback to 1

Revision 3 is downgraded.

7. Confirm the repsamplehelm release is downgraded.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
repsamplehelm   default         3               2025-01-16 
13:54:33.909336613 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0
...

The repsamplehelm chart release is downgraded.

Congratulations! You successfully completed the rollback. The TimesTenClassic object is
downgraded to the desired release and is in the Normal state. The replicated active standby
pair of TimesTen databases are running the downgraded release and are fully operational.

Chapter 9
Roll Back an Upgrade

9-47



Roll back a Non-Replicated TimesTen Upgrade
You can use Helm to roll back an upgrade of a non-replicated TimesTenClassic object. This
reverts the non-replicated TimesTenClassic object and its associated TimesTen databases to
the downgraded release.

1. Before the rollback, do the following:

a. Confirm the non-replicated TimesTenClassic object exists in your namespace.

kubectl get ttc 

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               20h
repsamplehelm     Normal             repsamplehelm-0   23h

The norepsamplehelm TimesTenClassic object exists and is in the AllReplicasReady
state.

b. Verify the image and the value of rollingUpdatePartition.

kubectl get ttc norepsamplehelm -o yaml | grep 'image\|
rollingUpdatePartition'

The output is similar to the following:

    image: container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...
    rollingUpdatePartition: 0
...

The current value for rollingUpdatePartition is 0. However, the value used for the
downgrade is the original value of rollingUpdatePartition. In the example, the
original value is 2. If you roll back to the original chart release in which the
rollingUpdatePartition value is 2, Kubernetes only downgrades the -2 Pod. An
upcoming step illustrates this.

2. Review the revision history.

helm history norepsamplehelm

The output is similar to the following:

REVISION        UPDATED                         STATUS          
CHART                   APP VERSION     DESCRIPTION
1               Thu Jan  16 17:42:47 2025        superseded      
ttclassic-2211340.1.0   22.1.1.34.0     Install complete
2               Fri Jan  17 04:22:15 2025        superseded      
ttclassic-2211350.1.0   22.1.1.35.0     Upgrade complete

Chapter 9
Roll Back an Upgrade

9-48



3               Fri Jan  17 04:56:32 2025        deployed        
ttclassic-2211350.1.0   22.1.1.35.0     Upgrade complete

Revision 3 of the norepsamplehelm chart is running release 22.1.1.35.0. Revision 1 is
running release 22.1.1.34.0.

3. Roll back to revision 1.

helm rollback norepsamplehelm 1

The output is the following:

Rollback was a success! Happy Helming!

4. Monitor the progress.

kubectl get ttc norepsamplehelm

The output is similar to the following:

NAME              STATE               ACTIVE   AGE
norepsamplehelm   SomeReplicasReady   N/A      20h

The object is in the SomeReplicasReady state.

Wait a few minutes. Then, monitor again.

kubectl get ttc norepsamplehelm

The output is similar to the following:

NAME              STATE              ACTIVE   AGE
norepsamplehelm   AllReplicasReady   N/A      20h

The object is in the AllReplicasReady state. All replicas are ready and available.
TimesTen databases are up and running and functioning properly.

5. Check the rollingUpdatePartition value and the image for the Pods.

a. Check the value of rollingUpdatePartition.

kubectl get ttc norepsamplehelm -o yaml | grep rollingUpdatePartition

The output is similar to the following:

rollingUpdatePartition: 2

As part of the downgrade process, the value of rollingUpdatePartition changes to
its original value of 2.

Chapter 9
Roll Back an Upgrade

9-49



b. Check the norepsamplehelm-2 Pod.

kubectl describe pod norepsamplehelm-2 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

The containers in the Pod are running the downgraded image. Due to the
rollingUpdatePartition value of 2, Kubernetes updated this Pod with the
downgraded image. This is correct behavior.

c. Check the norepsamplehelm-1 Pod.

kubectl describe pod norepsamplehelm-1 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0

The containers in the Pod are not running the downgraded image. Due to the
rollingUpdatePartition value of 2, Kubernetes does not update this Pod with the
downgraded image. This is correct behavior.

d. Check the norepsamplehelm-0 Pod.

kubectl describe pod norepsamplehelm-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.35.0

Chapter 9
Roll Back an Upgrade

9-50



The containers in the Pod are not running the downgraded image. Due to the
rollingUpdatePartition value of 2, Kubernetes does not updated this Pod with the
downgraded image. This is correct behavior.

After you confirm the downgrade is working, you can downgrade the remaining Pods.

6. Create a new YAML file and in it specify the rollingUpdatePartition variable and set the
value to 0.

vi customyaml/changerollingupdate0.yaml

rollingUpdatePartition: 0

7. Change the rollingUpdatePartition value.

Note:

We recommend the following syntax. This ensures existing customizations are
preserved.

helm get values norepsamplehelm --all > prev-values-noreprolling0.yaml && 
helm upgrade -f prev-values-noreprolling0.yaml -f customyaml/
changerollingupdate0.yaml  norepsamplehelm ./ttclassic

The output is similar to the following:

Release "norepsamplehelm" has been upgraded. Happy Helming!
NAME: norepsamplehelm
LAST DEPLOYED: Fri Jan  17 15:09:42 2025
NAMESPACE: default
STATUS: deployed
REVISION: 5
NOTES:
Version 2211340.1.0 of the ttclassic chart has been installed.

This release is named "norepsamplehelm".

To learn more about the release, try:

  $ helm status norepsamplehelm
  $ helm get all norepsamplehelm
  $ helm history norepsamplehelm

To rollback to a previous version of the chart, run:

  $ helm rollback norepsamplehelm <REVISION>
    - run 'helm history norepsamplehelm' for a list of revisions.

Kubernetes automatically begins to terminate Pods and replace them with new ones.
These new Pods run the downgraded image. Since rollingUpdatePartition is now 0,
you should expect to see the norepsamplehelm-1 and norepsamplehelm-0 Pods updated
with the downgraded image.

Chapter 9
Roll Back an Upgrade

9-51



8. Monitor the progress.

a. TimesTenClassic object:

kubectl get ttc norepsamplehelm

The output is similar to the following

NAME              STATE               ACTIVE            AGE
norepsamplehelm   SomeReplicasReady   N/A               21h

b. Pods:

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS     RESTARTS        
AGE
norepsamplehelm-0                    3/3     Running    0               
10h
norepsamplehelm-1                    0/3     Init:0/1   0               
73s
norepsamplehelm-2                    3/3     Running    0               
34m

Kubernetes replaces the norepsamplehelm-1 Pod first. Wait a few minutes. Then
monitor again.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS        
AGE
norepsamplehelm-0                    3/3     Running   0               
7m24s
norepsamplehelm-1                    3/3     Running   0               
9m49s
norepsamplehelm-2                    3/3     Running   0               
42m

Kubernetes replaced the norepsamplehelm-1 and the norepsamplehelm-0 Pods. All
Pods are running.

9. Confirm the Pods are running the downgraded container image.

Pod norepsamplehelm-1:

kubectl describe pod norepsamplehelm-1 | grep Image

Chapter 9
Roll Back an Upgrade

9-52



The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0

Pod norepsamplehelm-0:

kubectl describe pod norepsamplehelm-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.34.0

The Pods are running the new image.

10. Confirm the value of rollingUpdatePartition.

kubectl get ttc norepsamplehelm -o yaml | grep rollingUpdatePartition

The output is similar to the following:

rollingUpdatePartition: 0

11. Confirm the state of the TimesTenClassic object.

kubectl get ttc norepsamplehelm

The output is similar to the following:

NAME              STATE              ACTIVE   AGE
norepsamplehelm   AllReplicasReady   N/A      21h

12. Check the history.

helm history norepsamplehelm

The output is similar to the following:

REVISION        UPDATED                         STATUS          
CHART                   APP VERSION     DESCRIPTION
1               Thu Jan  16 17:42:47 2025        superseded      
ttclassic-2211340.1.0   22.1.1.34.0     Install complete
2               Fri Jan  17 04:22:15 2025        superseded      
ttclassic-2211350.1.0   22.1.1.35.0     Upgrade complete
3               Fri Jan  17 04:56:32 2025        superseded      
ttclassic-2211350.1.0   22.1.1.35.0     Upgrade complete
4               Fri Jan  17 14:36:43 2025        superseded      

Chapter 9
Roll Back an Upgrade

9-53



ttclassic-2211340.1.0   22.1.1.34.0     Rollback to 1
5               Fri Jan  17 15:09:42 2025        deployed        
ttclassic-2211340.1.0   22.1.1.34.0     Upgrade complete

Revision 5 is running the 2211340.1.0 chart.

13. Confirm the norepsamplehelm release is downgraded.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
norepsamplehelm default         5               2025-01-07 
15:09:42.959017268 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0

The norepsamplehelm chart release is downgraded.

Congratulations! You successfully completed the rollback. The TimesTenClassic object is
downgraded to the desired release and is in the AllReplicasReady state. All replicas are ready
and available. Pods are running the downgraded TimesTen container image. TimesTen
databases are upgraded and fully operational.

Roll Back a TimesTen Operator Upgrade
You can use Helm to roll back an upgrade of the TimesTen Operator.

1. Before the rollback, do the following:

a. Confirm the TimesTen Operator is running in your namespace.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS        
AGE
...
timesten-operator-57b7949f97-xdlwl   1/1     Running   0               
15h

The TimesTen Operator is running in your namespace.

b. Verify the image.

 kubectl describe deployment timesten-operator | grep Image

Chapter 9
Roll Back an Upgrade

9-54



The output is similar to the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0

2. Review the current release of the TimesTen Operator chart.

helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
...
ttoper          default         2               2025-01-16 
00:20:34.757004974 +0000 UTC deployed        ttoperator-2211350.1.0  
22.1.1.35.0

The chart's release is 22.1.1.35.0.1.0.

3. Review the revision history.

helm history ttoper

The output is similar to the following:

REVISION        UPDATED                         STATUS          
CHART                   APP VERSION     DESCRIPTION
1               Thu Jan  16 02:54:39 2025       superseded      
ttoperator-2211340.1.0  22.1.1.34.0     Install complete
2               Fri Jan  17 00:20:34 2025       deployed        
ttoperator-2211350.1.0  22.1.1.35.0     Upgrade complete

Revision 2 of the ttoper chart is running release 22.1.1.35.0. Revision 1 is running
release 22.1.1.34.0.

4. Roll back to revision 1.

helm rollback ttoper 1

Output.

Rollback was a success! Happy Helming!

5. After the downgrade, do the following:

a. Verify that the TimesTen Operator is running.

kubectl get pods

Chapter 9
Roll Back an Upgrade

9-55



The output is similar to the following:

NAME                              READY   STATUS    RESTARTS   AGE
...
timesten-operator-55c6f99-2djfr   1/1     Running   0          4m13s

There is a new TimesTen Operator running.

b. Confirm the TimesTen Operator is running the downgraded image.

kubectl describe deployment timesten-operator | grep Image

The output is the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.34.0

The TimesTen Operator is running the downgraded release.

c. Confirm the state of the TimesTenClassic objects.

kubectl get ttc

The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               22h
repsamplehelm     Normal             repsamplehelm-0   25h

The TimesTen Operator resumes the management and monitoring of the
TimesTenClassic objects. The objects and the associated TimesTen databases are
functioning properly.

6. Confirm the revision history.

helm history ttoper

The output is similar to the following:

REVISION        UPDATED                         STATUS          
CHART                   APP VERSION     DESCRIPTION
1               Thu Jan  16 02:54:39 2025        superseded      
ttoperator-2211340.1.0  22.1.1.34.0     Install complete
2               Fri Jan  16 00:20:34 2025        superseded      
ttoperator-2211350.1.0  22.1.1.35.0     Upgrade complete
3               Fri Jan  17 16:11:37 2025        deployed        
ttoperator-2211340.1.0  22.1.1.34.0     Rollback to 1

Revision 3 of the chart is running release 2211340.

7. Confirm the chart's release is downgraded.

helm list

Chapter 9
Roll Back an Upgrade

9-56



The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
...
ttoper          default         3               2025-01-17 
16:11:37.408437395 +0000 UTC deployed        ttoperator-2211340.1.0  
22.1.1.34.0

The chart contains the correct release.

Congratulations! You successfully completed the rollback. The TimesTen Operator is using the
downgraded image and is functioning properly. It has resumed management and monitoring of
TimesTenClassic objects.

Clean Up
This section shows you how to delete replicated and non-replicated TimesTenClassic objects
and associated databases from your namespace. It also shows you how to delete the
TimesTen Operator Deployment and TimesTen CRDs. It covers the following topics:

• About Uninstalling a Release

• Delete TimesTen Databases

• Delete the TimesTen Operator

• Delete the TimesTen CRDs

About Uninstalling a Release
You can uninstall a release by using the helm uninstall command. This command deletes the
Kubernetes objects created by the helm install command. Uninstalling a release results in
TimesTen databases being deleted or being unmanaged or both. You can also uninstall the
TimesTen Operator and the TimesTen CRDs. If you uninstall TimesTen CRDs, Kubernetes
deletes the CRDs along with all TimesTenClassic objects associated with the CRDs.

The examples are for demonstration purposes.

Delete TimesTen Databases
You can uninstall replicated and non-replicated TimesTenClassic objects. This results in the
deletion of TimesTen databases associated with the object. Since the Persistent Volume
Claims (PVCs) are not automatically deleted, you must manually delete them. The example
shows you how to do this.

1. Confirm the TimesTenClassic objects that are running in your namespace.

kubectl get ttc

Chapter 9
Clean Up

9-57



The output is similar to the following:

NAME              STATE              ACTIVE            AGE
norepsamplehelm   AllReplicasReady   N/A               24h
repsamplehelm     Normal             repsamplehelm-0   27h

2. List the releases.

 helm list

The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
norepsamplehelm default         5               2025-01-16 
15:09:42.959017268 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0
repsamplehelm   default         3               2025-01-16 
13:54:33.909336613 +0000 UTC deployed        ttclassic-2211340.1.0   
22.1.1.34.0
ttoper          default         3               2025-01-16 
16:11:37.408437395 +0000 UTC deployed        ttoperator-2211340.1.0  
22.1.1.34.0

The norepsamplehelm and repsamplehelm releases exist in your namespace.

3. Uninstall the release for the replicated TimesTenClassic object.

a. Uninstall.

helm uninstall repsamplehelm

The output is the following:

release "repsamplehelm" uninstalled

b. Confirm the TimesTenClassic object no longer exists.

kubectl get ttc repsamplehelm

The output is the following:

Error from server (NotFound): timestenclassics.timesten.oracle.com 
"repsamplehelm" not found

c. Confirm the ConfigMap is deleted.

kubectl get configmap repsamplehelm

Chapter 9
Clean Up

9-58



The output is the following:

Error from server (NotFound): configmaps "repsamplehelm" not found

d. Delete the PVCs.

kubectl get pvc

The output is the following:

NAME                              STATUS   
VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
tt-persistent-repsamplehelm-0     Bound    csi-4ef3c13e-ae49-4604-8586-
b78343142481   50Gi       RWO            oci-bv         28h
tt-persistent-repsamplehelm-1     Bound    
csi-6786e82d-0bde-458f-8acd-047308e391a0   50Gi       RWO            
oci-bv         28h
...

Delete:

kubectl delete pvc tt-persistent-repsamplehelm-0

kubectl delete pvc tt-persistent-repsamplehelm-1

4. Uninstall the release for the non-replicated TimesTenClassic objects.

a. Uninstall.

helm uninstall norepsamplehelm

The output is the following:

release "norepsamplehelm" uninstalled

b. Confirm the TimesTenClassic object no longer exists.

kubectl get ttc norepsamplehelm

The output is the following:

Error from server (NotFound): timestenclassics.timesten.oracle.com 
"norepsamplehelm" not found

c. Confirm the ConfigMap is deleted.

kubectl get configmap repsamplehelm

Chapter 9
Clean Up

9-59



The output is the following:

Error from server (NotFound): configmaps "norepsamplehelm" not found

d. Delete the PVCs.

kubectl get pvc

The output is the following:

NAME                              STATUS   
VOLUME                                     CAPACITY   ACCESS MODES   
STORAGECLASS   AGE
tt-persistent-norepsamplehelm-0   Bound    csi-b5302a0c-f533-418e-a152-
a9399ed2be7b   50Gi       RWO            oci-bv         25h
tt-persistent-norepsamplehelm-1   Bound    csi-cb4b0e04-16f1-4e87-
a952-781ac213ff77   50Gi       RWO            oci-bv         25h
tt-persistent-norepsamplehelm-2   Bound    csi-353d4f18-50fe-4bd6-8d57-
fe17b973e0be   50Gi       RWO            oci-bv         25h

Delete:

kubectl delete pvc tt-persistent-norepsamplehelm-0

kubectl delete pvc tt-persistent-norepsamplehelm-1

kubectl delete pvc tt-persistent-norepsamplehelm-2

You successfully deleted the TimesTenClassic objects and associated databases from your
namespace.

Delete the TimesTen Operator
You can uninstall the TimesTen Operator from your namespace.

1. Confirm the TimesTen Operator is running.

kubectl get pods

The output is similar to the following:

NAME                              READY   STATUS    RESTARTS   AGE
timesten-operator-55c6f99-2djfr   1/1     Running   0          3h1m

2. List the release.

 helm list

Chapter 9
Clean Up

9-60



The output is similar to the following:

NAME            NAMESPACE       REVISION        
UPDATED                                 STATUS          
CHART                   APP VERSION
ttoper          default         3               2025-01-16 
16:11:37.408437395 +0000 UTC deployed        ttoperator-2211340.1.0  
22.1.1.34.0

The ttoper release exists in your namespace.

3. Uninstall.

helm uninstall ttoper

The output is similar to the following:

release "ttoper" uninstalled

4. Confirm the TimesTen Operator Pod is deleted.

kubectl get pods

The output is similar to the following:

No resources found in default namespace.

5. Confirm the TimesTen Operator Deployment is deleted.

kubectl get deployment timesten-operator

The output is similar to the following:

Error from server (NotFound): deployments.apps "timesten-operator" not 
found

You successfully deleted The TimesTen Operator. It is no longer running in your namespace.

Delete the TimesTen CRDs
You can delete TimesTen CRDs from your cluster.

Note:

Use caution when deleting the TimesTen CRDs. This action causes the deletion of all
TimesTenClassic objects and associated databases that are running in all
namespaces.

Chapter 9
Clean Up

9-61



1. List the release.

 helm list

The output is similar to the following:

NAME    NAMESPACE       REVISION        
UPDATED                                 STATUS   CHART                   
APP VERSION
ttcrd   default         2               2025-01-16 19:07:52.249429601 
+0000 UTC deployed ttcrd-2211350.1.0       22.1.1.35.0

2. Uninstall.

helm uninstall ttcrd

The output is similar to the following:

release "ttcrd" uninstalled

3. Confirm the TimesTen CRDs no longer exist in the cluster.

kubectl get crd | grep timesten

You successfully deleted the TimesTen CRDs.

Chapter 9
Clean Up

9-62



10
Use TimesTen Databases

This chapter explains how to use direct mode applications and Client/Server drivers to access
and use TimesTen Classic databases.

Topics:

• About Using Direct Mode Applications

• About Using Client/Server Drivers

About Using Direct Mode Applications
You can run direct mode applications inside of the Pods in your TimesTenClassic and
TimesTenScaleout deployments. For information on direct mode applications, see Managing
TimesTen Databases in the Oracle TimesTen In-Memory Database Operations Guide.

TimesTen Pods are created with the Kubernetes shareProcessNamespace option. This option
allows direct mode applications running in other containers within the same Pod to function
properly.

Note:

The standard security issues that surround direct mode apply in this environment as
in a non-Kubernetes environment. Segregating your applications into separate
containers from TimesTen is intended for ease of management and ease of upgrade.
It is not intended as a security barrier and provides no additional security.

Use the .spec.template.spec.containers attribute of your TimesTenClassic object or
the .spec.dataTemplate.spec.containers of your TimesTenScaleout object to cause one or
more containers to be created within each of the TimesTen Pods that runs the tt container.
Such containers are created in addition to the tt container that runs TimesTen.

This example illustrates how to include the .spec.template.spec.containers attribute in your
TimesTenClassic object definition. For a TimesTenScaleout object, replace template with one
or more dataTemplates.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: directmode
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - directmode
  template:

10-1



    spec:
      containers:
      - name: yourapp
        image: phx.ocir.io/youraccount/yourapplication:2
        command: ["/bin/yourapp"]
      - name: anotherapp
        image: phx.ocir.io/youraccount/anotherapplication:2
        command: ["/bin/anotherapp"]

You can specify any other Kubernetes configuration for these containers.

The Operator automatically adds appropriate mounts to the containers. This gives your
containers the ability to access TimesTen.

To use TimesTen in direct mode, your application containers must know how TimesTen is
configured in the tt container. You must configure your application containers similarly.

In particular:

• You must know the name of the TimesTen users group. If you are using a container image
located at container-registry.oracle.com/timesten, the name of the TimesTen users
group is timesten. If you built the TimesTen container image, and changed the timesten
default, ensure you use the name you used when you built the container image.

• You must know the name of the Linux operating system user that runs TimesTen. The
default is timesten. As was mentioned in the previous bullet, if you changed this default,
ensure you use the name you used when you built the container image.

• You must configure your application containers to run your applications as a member of the
TimesTen users group. Only members of this group can run TimesTen in direct mode.

• You can run your direct mode applications as a user with the same UID as that of the
TimesTen user that runs TimesTen (3429 is the default) . However, this grants the
application instance administrator permissions on the TimesTen instance. Alternatively, you
can create a group with the same GID as that of the TimesTen users group of and then
create a user whose primary or secondary group is that group, but with a UID that is not
the UID of the TimesTen user that is running TimesTen. In this case, you can run your
application as this user and also use TimesTen in direct mode. You can then grant this user
privileges up to and including the ADMIN privilege. For more information on primary and
secondary groups, see Creating an Installation on Linux/UNIX in the Oracle TimesTen In-
Memory Database Installation, Migration, and Upgrade Guide. For information on
TimesTen privileges, see System Privileges and Object Privileges in the Oracle TimesTen
In-Memory Database SQL Reference.

• The direct mode application must use the TimesTen instance that is configured at /tt/
home/timesten/instances/instance1. The scripts to configure the TimesTen environment
variables are located at /tt/home/timesten/instances/instance1/bin/ttenv.*.

• Do not modify any file that is located in the TimesTen instance. In addition, ensure you do
not create any new files in the $TIMESTEN_HOME directory tree of the instance.

• Do not add entries to the /tt/home/timesten/instances/instance1/conf/sys.odbc.ini
file. These files can be overwritten by the Operator. However, you can store your own DSN
entries in the $HOME/.odbc.ini file located in your application container.

• Do not create additional TimesTen databases.

Kubernetes, not the Operator, is responsible for monitoring and managing the life cycle of the
direct mode containers. In particular:

Chapter 10
About Using Direct Mode Applications

10-2



• Applications are started by Kubernetes regardless of the state of TimesTen (located in its
own container). Kubernetes manages the life cycle of containers individually. It does not
sequence. Your application must know how to wait for TimesTen to become available.

• For replicated TimesTenClassic objects, a direct mode application runs in the Pod
containing the active TimesTen database and in the Pod containing the standby TimesTen
database. The application may need to use the ttRepStateGet built-in procedure to
determine whether it is running on the active or on the standby and perhaps quiesce itself
on the standby. For more information on the ttRepStateGet built-in procedure, see 
ttRepStateGet in the Oracle TimesTen In-Memory Database Reference.

• Kubernetes may start the application before the TimesTen database exists or before it is
loaded into memory and ready for use. It is the responsibility of the direct mode application
to verify the state of the TimesTen database in its Pod and to use it appropriately.

• If your application exits, the container terminates, and Kubernetes spawns another
container. This does not impact TimesTen that is running in the tt container.

About Using Client/Server Drivers
Applications that are running in other Pods in your Kubernetes cluster can use your TimesTen
database by using the standard TimesTen Client/Server drivers. You must configure your
application containers with a TimesTen client instance. That instance must contain a
configured $TIMESTEN_HOME/conf/sys.odbc.ini file, or your application must use an
appropriate Client/Server connection string.

In TimesTen Classic, if you chose to configure a sys.odbc.ini file, the contents of
sys.odbc.ini contains a client DSN definition that references the Pods that are running your
TimesTen databases. In TimesTen Scaleout, you can export a sys.odbc.ini file for use by
client/server clients outside of the grid. Use the ttGridAdmin utility with the gridClientExport
or gridClientExportAll for this purpose. See ttGridAdmin in the Oracle TimesTen In-Memory
Database Reference.

This example creates the sample DSN and references the sample TimesTenClassic object in
the mynamespace namespace.

% vi $TIMESTEN_HOME/conf/sys.odbc.ini

[sample]
TTC_SERVER_DSN=sample
TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local
TTC_SERVER2=sample-1.sample.mynamespace.svc.cluster.local

Applications connect to the TimesTen database using this DSN. In a TimesTen Classic active
standby pair configuration, TimesTen automatically routes application connections to the active
database.

Client/Server applications must connect to the database using a defined username and
password. The Operator can create such a user with ADMIN privileges. You can then connect to
the database as that user to create other users and grant those users the CREATE SESSION
privilege. See Overview of Configuration Metadata and Kubernetes Facilities.

In this example, use a connection string to connect to the sample database as the sampleuser
user. (If you use a connection string that requires all the required connection attributes, you do
not need to define them in the sys.odbc.ini file.) The sampleuser user was created by the
Operator and already exists in the sample database. After connecting, you can verify that the
sampleuser.emp table exists. (The Operator also previously created this table. See schema.sql
for information on how the Operator created this table.)

Chapter 10
About Using Client/Server Drivers

10-3



% ttIsqlCS -connstr "TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER2=sample-1.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;UID=sampleuser;PWD=samplepw";

 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "TTC_SERVER1=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;uid=sampleuser;pwd=********";
Connection successful: 
DSN=;TTC_SERVER=sample-0.sample.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=sample;UID=sampleuser;DATASTORE=/tt/home/timesten/datastore/sample;
DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=AL32UTF8;PERMSIZE=200;
DDLREPLICATIONLEVEL=3;
(Default setting AutoCommit=1)
Command> tables;
  SAMPLEUSER.EMP
1 table found.

If you are using TimesTen client/server from applications within your Kubernetes cluster, you
do not have to list all the TimesTen Pods in your connection string. Instead, you can create a
Kubernetes Service that routes incoming client connections to ready instances. For this
Service to work correctly, you need to use a readiness probe.

If you are using TimesTen client/server from applications outside your Kubernetes cluster, you
must use a Kubernetes NodePort Service and a readiness probe.

For more information:

• About readiness probes: See About Readiness Probes for TimesTen Containers in this
book.

• About Kubernetes Services: See Kubernetes Services in the Kubernetes documentation.

• About NodePort Service: See NodePort Service in the Kubernetes documentation.

Chapter 10
About Using Client/Server Drivers

10-4

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport


11
Manage and Monitor TimesTen Classic
Databases

The TimesTen Operator maintains high level states for TimesTenClassic objects and TimesTen
Pods. These states describe the health of TimesTenClassic objects and the health of TimesTen
databases in Pods.

Let's learn about these states and let's learn about some manual operations you can perform.

Topics:

• About the High Level State of TimesTenClassic Objects

• About the High Level State of TimesTen Pods

• About the BothDown State

• About the ManualInterventionRequired State for Replicated Objects

• About Bringing Up One Database

• About Suspending Management of a TimesTenClassic Object

• About Manual Operations

About the High Level State of TimesTenClassic Objects
The TimesTen Operator keeps track of the high level state of TimesTenClassic objects in
replicated and non-replicated configurations. For replicated TimesTenClassic objects, the high
level state describes the TimesTen databases in an active standby pair. Since each TimesTen
database in a non-replicated configuration is independent, the high level state for non-
replicated TimesTenClassic object describes the health of the replicas of TimesTen databases.
For example, if all replicas for the TimesTenClassic object are up and running and functioning
properly, the high level state is AllReplicasReady. Use kubectl get events or kubectl get
ttc to monitor the state of TimesTenClassic objects.

The following table shows the high level states for TimesTenClassic objects and indicates if the
state is supported for replicated or non-replicated objects or both:

State Replicated Objects Non-Replicated Objects

ActiveDown Y N

ActiveTakeover Y N

AllReplicasReady N Y

BothDown Y N

ConfiguringActive Y N

Failed Y Y

Initializing Y Y

ManualInterventionRequired Y Y

NoReplicasReady N Y

11-1



State Replicated Objects Non-Replicated Objects

Normal Y N

Reexamine Y Y

SomeReplicasReady N Y

StandbyCatchup Y N

StandbyDown Y N

StandbyStarting Y N

WaitingForActive Y N

ActiveDown
If the TimesTen Operator detects that TimesTen in the Pod containing the active database has
failed, then the TimesTenClassic object immediately enters the ActiveDown state.

The unreachableTimeout timeout value controls how long the state of the Pod containing the
active database can be Unknown before the TimesTenClassic object's state becomes
ActiveDown.

When the TimesTenClassic object's state becomes ActiveDown, the standby database
immediately becomes the active, and the state of the TimesTenClassic object becomes
StandbyDown.

ActiveTakeover
When the TimesTenClassic object is in the Normal state, and the standby database goes down,
the state briefly changes to ActiveTakeover.

When AWT cache groups are used, the standby is normally responsible for pushing updates
from TimesTen to Oracle Database. However, if the standby fails, the active database takes
over this responsibility. This occurs during the ActiveTakeover state.

AllReplicasReady
For a non-replicated TimesTenClassic object, all replicas are ready and available. The
TimesTen databases are up and running and functioning properly.

BothDown
Neither the active nor the standby database is functioning properly. The TimesTen Operator
attempts to bring up the pair of databases.

If both Pods in the active standby pair fail, the TimesTen Operator uses the information in
TimesTenClassicStatus to minimize data loss. See About the BothDown State.

ConfiguringActive
When the TimesTenClassic object is in the WaitingForActive state, and when the database
that should be the active database comes up, the TimesTenClassic object enters the
ConfiguringActive state. The TimesTen Operator then configures this database to be the

Chapter 11
About the High Level State of TimesTenClassic Objects

11-2



active. Once the database is configured as the active, the TimesTenClassic object enters the
StandbyDown state. See About the BothDown State.

Failed
If a problem occurs while Initializing a TimesTenClassic object, the object transitions to the
Failed state. Once in this state, the TimesTen Operator does not attempt to repair the object.
You must delete it. Use the kubectl get events command to determine the cause of the
problem and then recreate the object.

Initializing
After you create a TimesTenClassic object, the TimesTen Operator creates the Kubernetes
StatefulSets and Secrets that are required for the TimesTenClassic object. As the TimesTen
Pods are starting up, the TimesTen Operator assigns the initializing state to the
TimesTenClassic object.

ManualInterventionRequired
When a TimesTenClassic object enters the ManualInterventionRequired state, the TimesTen
Operator takes no further action for the object. It does not query the TimesTen agents
associated with the object to determine the state of TimesTen and it does not command
TimesTen to do anything.

For replicated TimesTenClassic objects, see About the ManualInterventionRequired State for
Replicated Objects and About Bringing Up One Database.

NoReplicasReady
For a non-replicated TimesTenClassic object, there are no replicas ready or available.
TimesTen databases are not running.

Normal
For replicated objects, the Normal state indicates that TimesTen databases are up and running
and functioning properly.

Reexamine
When a TimesTenClassic object is in the ManualInterventionRequired state, you can specify
the .spec.ttspec.reexamine datum to cause the TimesTen Operator to take over
management of the object. The TimesTen Operator moves the object to the Reexamine state.
The Operator then examines the state of TimesTen.

For a replicated TimesTen Classic object, the TimesTen Operator does the following:

• If you correctly repaired TimesTen, the Operator moves the TimesTenClassic object to
either the Normal or StandbyDown state, depending on the nature of your repair.

• If you did not correctly repair TimesTen, the Operator moves the TimesTenClassic object to
the ManualInterventionRequired state.

For a non-replicated TimesTenClassic object, the TimesTen Operator does the following:

Chapter 11
About the High Level State of TimesTenClassic Objects

11-3



• If you correctly repaired TimesTen, the Operator moves the TimesTenClassic object to the
AllReplicasReady state.

• If you did not correctly repair TimesTen, the Operator moves the TimesTenClassic object to
the ManualInterventionRequired state.

SomeReplicasReady
For a non-replicated TimesTenClassic object, some but not all replicas are ready and available.

StandbyCatchup
This state is entered after the StandbyStarting state. During the StandbyStarting state, the
standby copies the active database to the standby Pod. When the duplicate process is
complete, the state changes from StandbyStarting to StandbyCatchup. See StandbyStarting.
In the StandbyCatchup state, the duplicate process has completed. Transactions that ran
during this duplicate process must now be copied over to the standby. Thus the
StandbyCatchup state is the state when the newly created standby catches up to any
transactions that ran on the active while the duplicate operation was running. Applications can
continue to use the active without restriction.

StandbyDown
The active database is functioning properly, but the standby database is not. The TimesTen
Operator automatically attempts to restart and reconfigure the standby database. Applications
can continue to use the active database without restriction.

StandbyStarting
The standby is duplicating the database from the active. The StandbyStarting state is
complete when the duplicate operation completes. The StandbyCatchup state is then entered.
See StandbyCatchup. Applications can continue to use the active without restriction.

WaitingForActive
When the TimesTenClassic object is in the BothDown state, if the TimesTen Operator can
determine which database contains the most up-to-date data, the TimesTenClassic object
enters the WaitingForActive state. The object remains in this state until the Pod that contains
the database is running, and the TimesTen agent within the tt container (within that Pod) is
responding to the TimesTen Operator. See About the BothDown State.

About the High Level State of TimesTen Pods
The TimesTen Operator keeps track of the individual health and state of each TimesTen Pod.
How often the Operator checks the health is defined by the value of the pollingInterval. For
information on pollingInterval, see TimesTenClassicSpecSpec

The TimesTen Operator maintains similar states for replicated and non-replicated objects.
However, the values for the states may differ. The following table indicates if the state is
supported for replicated or non-replicated objects or both:

Chapter 11
About the High Level State of TimesTen Pods

11-4



State Replicated Objects Non-Replicated Objects

CatchingUp Y N

Down Y Y

Healthy Y N

HealthyActive Y N

HealthyStandby Y N

Initializing Y Y

ManualInterventionRequired N Y

Normal Y Y

OtherDown Y N

Reexamine N Y

Terminal Y Y

Unknown Y Y

UpgradeFailed Y N

CatchingUp
The standby has completed the process of duplicating the database from the active. The newly
created standby is catching up to any transactions that ran on the active while the duplicate
operation was running.

Down
Either the Pod or the TimesTen components within the Pod (or both) are not functioning
properly.

Healthy
The Pod and the TimesTen components within the Pod are in a healthy state, given this Pod's
role in the active standby pair.

HealthyActive
When a TimesTenClassic object is in the Reexamine state, the TimesTen Operator examines
the state of both TimesTen instances. The TimesTen Operator does not know which instance (if
any) contains a properly configured active database (or a properly configured standby
database). The Operator must examine both instances to see. If a healthy instance is found
and that instance contains a properly configured active database, the state of the Pod is
reported as HealthyActive.

HealthyStandby
When a TimesTenClassic object is in the Reexamine state, the TimesTen Operator examines
the state of both TimesTen instances. The TimesTen Operator does not know which instance (if
any) contains a properly configured standby database (or a properly configured active
database). The Operator must examine both instances to see. If a healthy instance is found

Chapter 11
About the High Level State of TimesTen Pods

11-5



and that instance contains a properly configured standby database, the state of the Pod is
reported as HealthyStandby.

Initializing
When a new Pod and PVC are started by Kubernetes as part of a TimesTenClassic object's
StatefulSet, the TimesTen Operator instructs the TimesTen Agent to perform the following
actions in the tt container of the Pod:

• Create a TimesTen installation.

• Create a TimesTen instance. This instance uses the installation that was created.

• Create TimesTen configuration files in the instance.

• Start the TimesTen instance.

• Create a TimesTen database.

• If applicable, create database users.

• If applicable, create database schemas, tables, views, procedures and other database
objects.

While the previous operations are running, the state of the TimesTen Pod is Initializing. If
these operations complete successfully, the TimesTen Operator changes the TimesTen Pod
state to Normal. If any of the operations fail, the TimesTen Operator changes the state to
Terminal.

ManualInterventionRequired
For non-replicated objects, when a TimesTen Pod enters the ManualInterventionRequired
state, the TimesTen Operator does not know the state of TimesTen or the TimesTen databases.
The TimesTen Operator takes no further action. Examine the TimesTen Pods and the
TimesTenClassic object. When you have corrected the problem, you can instruct the TimesTen
Operator to move the object and TimesTen Pods to the Reexamine state.

Normal
When a new Pod and PVC are started by Kubernetes as part of a TimesTenClassic object's
StatefulSet, the TimesTen Operator instructs the TimesTen Agent to perform various actions in
the tt container of the Pod. While these actions are being performed, the state is Initializing. If
the operations complete successfully, the TimesTen Operator changes the TimesTen Pod state
to Normal.

OtherDown
The Pod and the TimesTen components within the Pod are in a healthy state, but TimesTen in
this Pod believes that TimesTen in the other Pod has failed. In particular, the OtherDown state
indicates that this Pod contains an active database, and the database's peer has reached the
failThreshold. The database in this Pod is no longer keeping transaction logs for its peer, as
the peer is too far behind. Recovering the peer requires re-duplicating the active database,
which the TimesTen Operator performs automatically.

Chapter 11
About the High Level State of TimesTen Pods

11-6



Reexamine
For non-replicated objects, when a TimesTen object is in the ManualInterventionRequired
state, you can specify the .spec.ttspec.reexamine datum to cause the TimesTen Operator to
take over management of the object. The TimesTen Operator moves the object to the
Reexamine state. The Operator then examines the state of TimesTen and the TimesTen
databases in the Pods.

Based on the examination, the TimesTen Operator does the following:

• If healthy, the Operator moves the TimesTenClassic object to the AllReplicasReady state
and the TimesTen Pods to the Normal state.

• If not healthy, the Operator moves the TimesTenClassic object and the unhealthy Pods to
the ManualInterventionRequired state.

Terminal
The TimesTen Operator is unable to repair TimesTen in a Pod.

Unknown
The state of this Pod is unknown. Either the Pod is unreachable or the TimesTen agent
contained within the Pod has failed.

UpgradeFailed
For replicated objects, an automated upgrade was attempted on TimesTen in this Pod and the
upgrade failed. See About Upgrading TimesTen Classic Databases.

About the BothDown State
In replicated configurations, the TimesTen Operator provisions, monitors, and manages active
standby pairs of TimesTen databases. It detects and reacts to the failure of the active or the
standby database. For example, when one database in the active standby pair is down, the
TimesTen Operator does the following:

• If the active database fails, the Operator promotes the standby to be the active.

• If the standby database fails, the Operator keeps the active running and repairs the
standby.

However, if both databases fail at the same time, it is essential that the databases are brought
back up appropriately. TimesTen replication does not atomically commit transactions in both
database simultaneously. Transactions are committed in one database and then later are
committed in the other database. (The database on which transactions are committed first is
considered the database that is ahead.) Depending on how replication is configured,
transactions on the active database may be ahead of the standby or the standby may be
ahead of the active. To avoid data loss, the database that is ahead must become the active
database after the failure is corrected.

In most cases, the TimesTen Operator can determine which database was ahead at the time of
the failure. However, there are cases where the Operator cannot determine which database
was ahead. In particular, the Operator cannot determine which database is ahead if all of the
following conditions occur:

Chapter 11
About the BothDown State

11-7



• Both databases failed during the polling interval. Specifically, the Operator examined both
databases and the TimesTen Pods were in the Healthy state. The Operator waited
pollingInterval seconds, and when the Operator examined the databases again (after
this pollingInterval), both databases were down and

• RETURN TWOSAFE replication was configured and

• DISABLE RETURN or LOCAL COMMIT ACTION COMMIT (or both) were configured.

See TimesTenClassicSpecSpec for more information on the .spec.ttspec.pollingInterval
datum and on the RETURN TWOSAFE and DISABLE RETURN replication configurations options. For
information about defining an active standby pair replication scheme, see CREATE ACTIVE
STANDBY PAIR in the Oracle TimesTen In-Memory Database SQL Reference and Defining an
Active Standby Pair Replication Scheme in the Oracle TimesTen In-Memory Database
Replication Guide

This combination of events indicates that some transactions may have committed on the
standby and not on the active and/or some transactions may have committed on the active and
not on the standby. The TimesTen Operator takes no action in this case.

When both databases fail, the TimesTenClassic object enters the BothDown state. The
Operator must then determine the appropriate action to take. The Operator first examines the
value of the .spec.ttspec.bothDownBehavior datum to determine what to do.

If .spec.ttspec.bothDownBehavior is set to Manual, the TimesTenClassic object immediately
enters the ManualInterventionRequired state. The Operator takes no further action even if
either TimesTen container subsequently becomes available. See About the
ManualInterventionRequired State for Replicated Objects.

If .spec.ttspec.bothDownBehavior is set to Best (the default setting), the Operator attempts
to determine which database was ahead at the time of failure.

• If the Operator cannot determine which database is ahead, the TimesTenClassic object
immediately enters the ManualInterventionRequired state. See About the
ManualInterventionRequired State for Replicated Objects.

• If the Operator can determine which database is ahead:

– The TimesTenClassic object enters the WaitingForActive state. The object remains in
this state until the Pod containing that database is running and the TimesTen agent
located in the tt container within that Pod is responding to the Operator. At this point,
the TimesTenClassic object enters the ConfiguringActive state.

– While the TimesTenClassic object is in the ConfiguringActive state, TimesTen in this
Pod is started, the database is loaded and is configured for use as the new active
database. If there are any problems with these steps, the TimesTenClassic object
enters the ManualInterventionRequired state. If the database is successfully loaded
and successfully configured as the new active, the TimesTenClassic object enters the
StandbyDown state. See About the High Level State of TimesTenClassic Objects for
information on the states of your TimesTenClassic object.

– You can specify the maximum amount of time (expressed in seconds) that the
TimesTenClassic object remains in the WaitingForActive state by specifying a value
for the spec.ttspec.waitingForActiveTimeout datum. After this period of time, if the
object is still in the WaitingForActive state, the object automatically transitions to the
ManualInterventionRequired state. The default is 0, which indicates that there is no
timeout, and the object will remain in this state indefinitely. See 
TimesTenClassicSpecSpec for more information on the
spec.ttspec.waitingForActiveTimeout datum.

Chapter 11
About the BothDown State

11-8



– The time to recover the database varies by the size of the database. You should
consider the size of your database when deciding the value for
spec.ttspec.waitingForActiveTimeout.

– If the database that is ahead cannot be loaded, the TimesTenClassic object enters the
ManualInterventionRequired state. See About the ManualInterventionRequired State
for Replicated Objects.

About the ManualInterventionRequired State for Replicated
Objects

When a replicated TimesTenClassic object enters the ManualInterventionRequired state, the
TimesTen Operator takes no further action for this object. It does not query the TimesTen
agents associated with the object to determine the state of TimesTen and does not command
TimesTen to do anything. It is important for you to address why the TimesTenClassic object is
in this state.

If your TimesTenClassic object is in the ManualInterventionRequired state and it is not the
result of it first being in the BothDown state, perform the operations necessary to manually
repair one of the databases. Then, perform the steps to bring up this database. These steps
are covered in About Bringing Up One Database later in this chapter.

If, however, the TimesTenClassic object is in the ManualInterventionRequired state as a
result of it first being in the BothDown state:

• It may be unclear which database, if either, is suitable to be the new active. There may be
transactions that have committed on the active database and not on the standby database,
and simultaneously there may be transactions that have committed on the standby
database and not on the active database.

• You need to manually examine both databases and may need to reconcile the data before
you can choose which database should be the new active.

• If you can reconcile the data, and can manually fix one of the databases, then you can
perform the steps to bring up one database. These steps are covered in About Bringing Up
One Database later in this chapter. If you cannot reconcile the data, contact Oracle
Support for further assistance.

In order for you to direct the Operator to move the TimesTenClassic object out of the
ManualInterventionRequired state, you must either:

• Bring up exactly one database: The Operator treats this database as the active database.
All of these conditions must be met:

– The TimesTen agent in the container is running.

– The TimesTen the instance in the container is running.

– The TimesTen database is loaded.

– There is no replication scheme in the database.

– The replication agent is not running.

– The replication state is IDLE.

If these conditions are met, the Operator moves the TimesTenClassic object to the
StandbyDown state. If any of these conditions are not met, the TimesTenClassic object
remains in the ManualInterventionRequired state. Note that when no replication scheme
exists in the database, the Operator will still create the appropriate replication scheme

Chapter 11
About the ManualInterventionRequired State for Replicated Objects

11-9



based on how it is defined in the TimesTenClassic object definition. See About Bringing Up
One Database for an example of how you can direct the Operator to take action once one
database is up and running.

• Bring up both databases: In this case, you must configure the active standby pair.
Specifically, each database must meet all of the following conditions:

– The TimesTen agent in the container is running.

– The TimesTen instance in the container is running.

– The database is loaded.

– The replication scheme is defined in both databases.

– The replication agents are started and are running.

– One database must be in the ACTIVE state and the other database must be in the
STANDBY state.

If these conditions are met, the Operator moves the TimesTenClassic object to the Normal
state. If any of these conditions are not met, the TimesTenClassic object remains in the
ManualInterventionRequired state.

If you cannot bring up either database, the TimesTenClassic object remains in the
ManualInterventionRequired state.

You direct the Operator to examine the databases by specifying the .spec.ttspec.reexamine
datum. Every .spec.ttspec.pollingInterval, the Operator examines the value
of .spec.ttspec.reexamine. If the value has changed since the last iteration for this
TimesTenClassic object, the Operator examines the state of the TimesTen containers for this
object. See TimesTenClassicSpecSpec for more information on
the .spec.ttspec.pollingInterval and the .spec.ttspec.reexamine datum.

The examination of the databases is performed exactly one time after you change
the .spec.ttspec.reexamine value. If the required conditions were not met, you may again
attempt to meet them. You must then modify the .spec.ttspec.reexamine value again to
cause the Operator to reexamine the databases.

Note that whenever a TimesTenClassic object changes state, a Kubernetes Event is created.
You can monitor these events with the kubectl describe command to be informed of such
state transitions.

About Bringing Up One Database
This section assumes you have manually repaired or have manually performed maintenance
on one of the databases associated with a replicated TimesTenClassic object. The
TimesTenClassic object is currently in the ManualInterventionRequired state. You now want
to direct the TimesTen Operator to treat the repaired database as the active, to perform the
necessary steps to duplicate this database to the standby, and to bring up both databases,
such that both are running and operating successfully.

Recall that all of these conditions must be met for the database:

• TimesTen agent in the container is running.

• TimesTen daemon (the instance) in the container is running.

• TimesTen database is loaded.

• There is no replication scheme in the database.

• The replication agent is not running.

Chapter 11
About Bringing Up One Database

11-10



• The replication state is IDLE.

These sections show you how to verify the conditions are met for the database and how to set
the reexamine value:

• Verify Conditions Are Met for the Database

• Set the reexamine Value

Verify Conditions Are Met for the Database
Perform these steps to ensure the conditions are met for the database (the database to be the
active). In this example, sample-1 will be the new active.

Note: These steps require you to use TimesTen utilities and TimesTen built-in procedures. See 
Utilities and Built-In Procedures in the Oracle TimesTen In-Memory Database Reference for
details.

1. Confirm the TimesTenClassic object (sample, in this example) is in the
ManualInterventionRequired state (represented in bold).

% kubectl get ttc sample
NAME     STATE                        ACTIVE     AGE
sample   ManualInterventionRequired   sample-0   12h

2. Use the kubectl exec -it command to invoke the shell within the sample-1 Pod that
contains the TimesTen database. (This database will be the new active.)

The remaining procedures take place within this shell.

% kubectl exec -it sample-1  -c tt -- /bin/bash
3. Use the ttDaemonAdmin utility to start TimesTen daemon (if not already started). Then use

the ttAdmin utility to load the TimesTen database into memory (if not already loaded).

% ttDaemonAdmin -start
TimesTen Daemon (PID: 5948, port: 6624) startup OK.
% ttAdmin -ramLoad sample
RAM Residence Policy            : manual
Manually Loaded In RAM          : True
Replication Agent Policy        : manual
Replication Manually Started    : False
Cache Agent Policy              : manual
Cache Agent Manually Started    : False
Database State                  : Open

4. Use the ttIsql utility to connect to the sample database. Then, call the ttRepStop built-in
procedure to stop the replication agent.

% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/
sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStop;

Chapter 11
About Bringing Up One Database

11-11



5. From within ttIsql, use the SQL DROP ACTIVE STANDBY PAIR statement to drop the active
standby pair replication scheme. Then use the ttIsql repschemes command to verify
there are no replication schemes in the database. Exit from ttIsql.

Command> DROP ACTIVE STANDBY PAIR;
Command> repschemes;
 
0 replication schemes found.

6. Use the ttStatus utility to verify the TimesTen daemon is running and the replication agent
is not running. Note: The ttStatus output may change from release to release.

% ttStatus
TimesTen status report as of Thu Jan 16 02:14:15 2025
 
Daemon pid 5948 port 6624 instance instance1
TimesTen server pid 5955 started on port 6625
------------------------------------------------------------------------
------------------------------------------------------------------------
Data store /tt/home/timesten/datastore/sample
Daemon pid 5948 port 6624 instance instance1
TimesTen server pid 5955 started on port 6625
There are 15 connections to the data store
Shared Memory KEY 0x0a100c60 ID 196609
PL/SQL Memory Key 0x0b100c60 ID 229378 Address 0x5000000000
Type            PID     Context             Connection Name              ConnID
Process         10418   0x000000000218a6e0  sample                            2
Process         8338    0x0000000001cbb6e0  sample                            1
Subdaemon       5953    0x00000000015075f0  Manager                        2047
Subdaemon       5953    0x0000000001588540  Rollback                       2046
Subdaemon       5953    0x0000000001607210  Checkpoint                     2041
Subdaemon       5953    0x00007f132c0008c0  Flusher                        2045
Subdaemon       5953    0x00007f132c080370  Log Marker                     2040
Subdaemon       5953    0x00007f13340008c0  Monitor                        2044
Subdaemon       5953    0x00007f133407f330  HistGC                         2037
Subdaemon       5953    0x00007f13380008c0  Aging                          2042
Subdaemon       5953    0x00007f133807f330  AsyncMV                        2039
Subdaemon       5953    0x00007f133c0008c0  Deadlock Detector              2043
Subdaemon       5953    0x00007f133c07f330  IndexGC                        2038
Subdaemon       5953    0x00007f135c0008c0  Garbage Collector              2035
Subdaemon       5953    0x00007f13600e8e20  XactId Rollback                2036
Open for user connections
RAM residence policy: Manual
Data store is manually loaded into RAM
Replication policy  : Manual
Cache Agent policy  : Manual
PL/SQL enabled.
------------------------------------------------------------------------
Accessible by group timesten
End of report

You successfully verified the conditions for the database. The database is up and running. The
Operator will treat this database as the active. You are now ready to set the value for
the .spec.ttspec.reexamine datum.

Set the reexamine Value
This example shows you how to set the reexamine value for a replicated TimesTenClassic
object. The example also illustrates the action the TimesTen Operator takes after the
reexamine value has been changed.

Chapter 11
About Bringing Up One Database

11-12



1. Set the reexamine value. The value must be different than the current value for the
TimesTenClassic object. When the TimesTen Operator examines this value and notices it
has changed since the last iteration, it takes appropriate action.

Use the kubectl edit command to edit the TimesTenClassic object.

• If there is a line for reexamine in the file, then modify its value. It must be different than
the current value.

• If there is no line for reexamine in the file, then add a line and specify a value.

In this example, there is no reexamine line. This example adds the reexamine line and sets
the value for reexamine to April22reexamine1 (represented in bold).

Note: Not all output is shown.

% kubectl edit timestenclassic sample
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this 
# file will be reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
...
  name: sample
  namespace: mynamespace
...
repCreateStatement: |
  create active standby pair
    "{{tt-name}}" on "{{tt-node-0}}",
    "{{tt-name}}" on "{{tt-node-1}}"
  RETURN TWOSAFE
  store "{{tt-name}}" on "{{tt-node-0}}"
    PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
  store "{{tt-name}}" on "{{tt-node-1}}"
    PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
spec:
  ttspec:
    bothDownBehavior: Best
    dbConfigMap:
    - sample
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    storageClassName: oci-bv
    storageSize: 250Gi
    reexamine: April22reexamine1
...
timestenclassic.timesten.oracle.com/sample edited

2. Use the kubectl get command to assess the state of the sample TimesTenClassic object.
Observe how the state changes as you issue multiple kubectl get commands. Also note
that the Operator has successfully configured sample-1 to be the active.

% kubectl get ttc sample 
NAME     STATE       ACTIVE   AGE 
sample   Reexamine   None     68m 
% kubectl get ttc sample 
NAME     STATE               ACTIVE   AGE 
sample   ConfiguringActive   None     68m 
% kubectl get ttc sample 
NAME     STATE         ACTIVE     AGE 
sample   StandbyDown   sample-1   68m 
% kubectl get ttc sample 

Chapter 11
About Bringing Up One Database

11-13



NAME     STATE    ACTIVE     AGE
sample   Normal   sample-1   71m

3. Use the kubectl describe command to further review the actions of the Operator
(represented in bold).

Not all output is shown:

% kubectl describe ttc sample
Name:         sample
Namespace:    mynamespace
...
Kind:         TimesTenClassic
...
Rep Create Statement:  create active standby pair
  "{{tt-name}}" on "{{tt-node-0}}",
  "{{tt-name}}" on "{{tt-node-1}}"
RETURN TWOSAFE
store "{{tt-name}}" on "{{tt-node-0}}"
  PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
store "{{tt-name}}" on "{{tt-node-1}}"
  PORT {{tt-rep-port}} FAILTHRESHOLD 0 TIMEOUT 999
 
Spec:
  Ttspec:
    Both Down Behavior:  Best
    Db Config Map:
      sample
    Image:               container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    Image Pull Policy:   Always
    Image Pull Secret:   sekret
    Reexamine:           April22reexamine1
    Stop Managing:       April21Stop1
    Storage Class Name:  oci-bv
    Storage Size:        250Gi
Status:
  Classic Upgrade Status:
    Active Start Time:           0
    Active Status:
    Image Update Pending:        false
    Last Upgrade State Switch:   0
    Prev Reset Upgrade State:
    Prev Upgrade State:
    Standby Start Time:          0
    Standby Status:
    Upgrade Start Time:          0
    Upgrade State:
  Active Pods:                   sample-1
  High Level State:              Normal
  Last Event:                    54
  Last High Level State Switch:  1619230912
  Pod Status:
    Cache Status:
      Cache Agent:        Not Running
      Cache UID Pwd Set:  true
      N Cache Groups:     0
    Db Status:
      Db:                          Loaded
      Db Id:                       475
      Db Updatable:                No
    Initialized:                   true
    Last High Level State Switch:  ?
    Pod Status:

Chapter 11
About Bringing Up One Database

11-14



      Agent:                Up
      Last Time Reachable:  1619231126
      Pod IP:               10.244.7.89
      Pod Phase:            Running
    Prev High Level State:  Healthy
    Prev Image:
    Replication Status:
      Last Time Rep State Changed:  0
      Rep Agent:                    Running
      Rep Peer P State:             start
      Rep Scheme:                   Exists
      Rep State:                    STANDBY
    Times Ten Status:
      Daemon:          Up
      Instance:        Exists
      Release:         22.1.1.34.0
    Admin User File:   false
    Cache User File:   false
    Cg File:           false
    Disable Return:    false
    High Level State:  Healthy
    Intended State:    Standby
    Local Commit:      false
    Name:              sample-0
    Schema File:       false
    Using Twosafe:     false
    Cache Status:
      Cache Agent:        Not Running
      Cache UID Pwd Set:  true
      N Cache Groups:     0
    Db Status:
      Db:                          Loaded
      Db Id:                       476
      Db Updatable:                Yes
    Initialized:                   true
    Last High Level State Switch:  ?
    Pod Status:
      Agent:                Up
      Last Time Reachable:  1619231126
      Pod IP:               10.244.6.149
      Pod Phase:            Running
    Prev High Level State:  Healthy
    Prev Image:
    Replication Status:
      Last Time Rep State Changed:  1619228670
      Rep Agent:                    Running
      Rep Peer P State:             start
      Rep Scheme:                   Exists
      Rep State:                    ACTIVE
    Times Ten Status:
      Daemon:             Up
      Instance:           Exists
      Release:            22.1.1.34.0
    Admin User File:      false
    Cache User File:      false
    Cg File:              false
    Disable Return:       false
    High Level State:     Healthy
    Intended State:       Active
    Local Commit:         false
    Name:                 sample-1
    Schema File:          false

Chapter 11
About Bringing Up One Database

11-15



    Using Twosafe:        false
  Prev High Level State:  StandbyDown
  Prev Reexamine:         April22reexamine1
  Prev Stop Managing:     April21Stop1
  Rep Create Statement:   create active standby pair "sample" on 
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on 
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on 
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0 store 
"sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
  Rep Port:               4444
  Status Version:         1.0
Events:
  Type  Reason       Age    From       Message
  ----  ------       ----   ----       -------
  -     StateChange  58m    ttclassic  TimesTenClassic was Normal, now 
ManualInterventionRequired
  -     StateChange  46m    ttclassic  Pod sample-0 Daemon Down
  -     StateChange  41m    ttclassic  Pod sample-1 Daemon Down
  -     StateChange  41m    ttclassic  Pod sample-1 Daemon Up
  -     StateChange  41m    ttclassic  Pod sample-1 Database Unloaded
  -     StateChange  40m    ttclassic  Pod sample-1 Database Loaded
  -     StateChange  40m    ttclassic  Pod sample-1 RepState IDLE
  -     StateChange  40m    ttclassic  Pod sample-1 RepAgent Not Running
  -     StateChange  17m    ttclassic  Pod sample-1 Database Updatable
  -     StateChange  17m    ttclassic  Pod sample-1 RepScheme None
  -     StateChange  4m21s  ttclassic  TimesTenClassic was 
ManualInterventionRequired, now Reexamine
  -     Error        4m16s  ttclassic  Active error: Daemon Down
  -     StateChange  4m16s  ttclassic  TimesTenClassic was Reexamine, now 
ConfiguringActive
  -     StateChange  4m10s  ttclassic  Pod sample-1 RepState ACTIVE
  -     StateChange  4m10s  ttclassic  Pod sample-1 RepScheme Exists
  -     StateChange  4m10s  ttclassic  Pod sample-1 RepAgent Running
  -     StateChange  4m8s   ttclassic  TimesTenClassic was ConfiguringActive, now 
StandbyDown
  -     StateChange  4m3s   ttclassic  Pod sample-0 Daemon Up
  -     StateChange  4m3s   ttclassic  Pod sample-0 Database Unloaded
  -     StateChange  3m56s  ttclassic  Pod sample-0 Database None
  -     StateChange  3m42s  ttclassic  Pod sample-0 Database Loaded
  -     StateChange  3m42s  ttclassic  Pod sample-0 Database Not Updatable
  -     StateChange  3m42s  ttclassic  Pod sample-0 RepAgent Not Running
  -     StateChange  3m42s  ttclassic  Pod sample-0 RepState IDLE
  -     StateChange  3m36s  ttclassic  Pod sample-0 RepAgent Running
  -     StateChange  3m36s  ttclassic  Pod sample-0 RepState STANDBY
  -     StateChange  3m36s  ttclassic  TimesTenClassic was StandbyDown, now Normal

4. Use the kubectl exec -it command to invoke the shell within the sample-1 Pod that
contains the TimesTen database. Then, verify you can connect to the active database.

% kubectl exec -it sample-1 -c tt -- /bin/bash
$ ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/
sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;PermSize=2
00;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Chapter 11
About Bringing Up One Database

11-16



Command> call ttRepStateGet;
< ACTIVE >
1 row found.

5. Use the kubectl exec -it command to invoke the shell within the sample-0 Pod that
contains the TimesTen database. Then, verify you can connect to the standby database.

% kubectl exec -it sample-0 -c tt -- /bin/bash
% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/
sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)
Command> call ttRepStateGet;
< STANDBY >
1 row found.

The TimesTen Operator is now managing and monitoring your TimesTenClassic object. The
TimesTenClassic object is in the Normal state. Both databases are up and running and ready
for use.

About Suspending Management of a TimesTenClassic Object
The TimesTen Operator examines the state of the TimesTen instances and the databases
associated with each TimesTenClassic object. It takes actions to repair anything that is broken.
You may have a situation in which you want to manually perform maintenance operations. In
such a situation, you do not want the TimesTen Operator to interfere and attempt to perform
repair operations.

You could stop the TimesTen Operator by deleting the timesten-operator Deployment. This
action prevents the Operator from interfering. See Revert to Manual Control. However, if you
have more than one TimesTenClassic object and you delete the TimesTen Operator, this
interferes with the management of all the TimesTenClassic objects, when perhaps only one of
them needs manual intervention.

You can direct the TimesTen Operator to take no action for one or more TimesTenClassic
objects by specifying the .spec.ttspec.stopManaging datum in the TimesTenClassic object's
definition. The TimesTen Operator examines the value of .spec.ttspec.stopManaging and if it
has changed since the last time the Operator examined it, the Operator changes the state of
the TimesTenClassic object to ManualInterventionRequired. This causes the Operator to no
longer examine the status of the TimesTen Pods, the containers, the instances, and the
databases associated with the TimesTenClassic object. The Operator takes no action on the
object or its Pods.

When you want the TimesTen Operator to manage the TimesTenClassic object again, you use
the .spec.ttspec.reexamine datum. These actions enable you to perform manual operations
on TimesTen without deleting the TimesTen Operator.

For an example, see Suspend Management.

Chapter 11
About Suspending Management of a TimesTenClassic Object

11-17



Suspend Management
You can instruct the TimesTen Operator to stop managing one or more TimesTenClassic
objects that are running in your namespace. To do so, use the TimesTenClassic
object's .spec.ttspec.stopManaging datum.

Let's look at an example.

1. Review the TimesTenClassic objects that are running in your namespace.

kubectl get ttc

The output is similar to the following:

NAME             STATE              ACTIVE           AGE
samplenorep      AllReplicasReady   N/A              47h
samplerep        Normal             samplerep-0      2d

There are two TimesTenClassic objects. The samplenorep is a non-replicated object and
all replicas are ready. The samplerep is a replicated object that is in the Normal state.

2. Review the Pods.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
samplenorep-0                        3/3     Running   0          47h
samplenorep-1                        3/3     Running   0          47h
samplenorep-2                        3/3     Running   0          47h
samplerep-0                          3/3     Running   0          2d
samplerep-1                          2/3     Running   0          2d
timesten-operator-6b9b7f8fb4-vvl69   1/1     Running   0          2d1h

For the samplenorep non-replicated object, there are three Pods running representing
three databases (replicas=3). For the samplerep replicated object, there are two Pods
running. One Pod represents the active database (samplerep-0) and one Pod represents
the standby database (samplerep-1).

3. Instruct the TimesTen Operator to stop managing the samplenorep object.

a. Use the kubectl edit command to edit the object.

If there is a line for .spec.ttspec.stopManaging in the file, then modify its value. It
must be different than the current value. If there is no line, add a line and specify a
value.

This example adds the .spec.ttspec.stopManaging datum and sets the value to
stopManagingNow.

kubectl edit ttc samplenorep

# Please edit the object below. Lines beginning with a '#' will be 

Chapter 11
About Suspending Management of a TimesTenClassic Object

11-18



ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
...
spec:
  ttspec:
    additionalMemoryRequest: 2Gi
    automaticMemoryRequests: true
    cacheCleanup: true
    createASReadinessProbe: true
    daemonLogCPURequest: 200m
    daemonLogMemoryRequest: 200Mi
    stopManaging: stopManagingNow
...

b. Save and close the file.

4. Confirm the samplenorep object is in the ManualInterventionRequired state.

kubectl get ttc

The output is similar to the following:

NAME             STATE                        ACTIVE           AGE
samplenorep      ManualInterventionRequired   N/A              2d
samplerep        Normal                       samplerep-0      2d1h

The TimesTen Operator moved the samplenorep object to the
ManualInterventionRequired state.

5. Confirm the TimesTen Operator moved each of the Pods for the samplenorep object to the
ManualInterventionRequired state.

kubectl get events

The output is similar to the following. Not all output is displayed.

LAST SEEN   TYPE      REASON        OBJECT                           
MESSAGE
11m         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-0 state was Normal, now ManualInterventionRequired
11m         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-1 state was Normal, now ManualInterventionRequired
11m         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-2 state was Normal, now ManualInterventionRequired
11m         Normal    StateChange   timestenclassic/samplenorep      
TimesTenClassic was AllReplicasReady, now ManualInterventionRequired

Chapter 11
About Suspending Management of a TimesTenClassic Object

11-19



The TimesTen Operator successfully moved the Pods to the ManualInterventionRequired
state.

6. Instruct the TimesTen Operator to stop managing the samplenorep object.

a. Use the kubectl edit command to edit the object.

If there is a line for .spec.ttspec.stopManaging in the file, then modify its value. It
must be different than the current value. If there is no line, add a line and specify a
value.

This example adds the .spec.ttspec.stopManaging datum and sets the value to
stopManagingNow.

kubectl edit ttc samplerep

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
...
spec:
  ttspec:
    additionalMemoryRequest: 2Gi
    automaticMemoryRequests: true
    cacheCleanup: true
    createASReadinessProbe: true
    daemonLogCPURequest: 200m
    daemonLogMemoryRequest: 200Mi
    stopManaging: stopManagingNow
...

b. Save and close the file.

7. Confirm the samplerep object is in the ManualInterventionRequired state.

kubectl get ttc

The output is similar to the following:

NAME             STATE                        ACTIVE           AGE
samplenorep      ManualInterventionRequired   N/A              2d
samplerep        ManualInterventionRequired   samplerep-0      2d1h

The TimesTen Operator moved the samplerep object to the ManualInterventionRequired
state.

You successfully instructed the TimesTen Operator to move TimesTenClassic objects to the
ManualInterventionRequired state. The TimesTen Operator is no longer monitoring or
managing the objects. It takes no further action on the objects or its Pods. You can now
perform manual operations on your TimesTen databases. When you are ready for the
TimesTen Operator to resume management of one or both objects, do the following:

Chapter 11
About Suspending Management of a TimesTenClassic Object

11-20



• For non-replicated objects, such as samplenorep, proceed to Resume Management.

• For replicated objects, such as samplerep, proceed to About Bringing Up One Database.

Resume Management
If a TimesTenClassic object is in the ManualInterventionRequired state, you can instruct the
TimesTen Operator to examine the state of TimesTen and its databases to see if they are
healthy. For the procedures for replicated objects, proceed to About Bringing Up One
Database.

For non-replicated objects, set the object's .spec.ttspec.reexamine datum. Doing so instructs
the TimesTen Operator to move the object to the Reexamine state. In the Reexamine state, the
TimesTen Operator examines the state of TimesTen and its databases. If healthy, the Operator
returns the object to the AllReplicasReady state. If not healthy, the object re-enters the
ManualInterventionRequired state.

1. Review the TimesTenClassic objects that are running in your namespace.

kubectl get ttc

The output is similar to the following:

NAME             STATE                        ACTIVE           AGE
samplenorep      ManualInterventionRequired   N/A              2d1h
...

The replicated samplenorep object is in the ManualInterventionRequired state.

2. Instruct the TimesTen Operator to resume management of the samplenorep object.

a. Use the kubectl edit command to edit the object.

If there is a line for .spec.ttspec.reexamine in the file, then modify its value. It must
be different than the current value. If there is no line, add a line and specify a value.

This example adds the .spec.ttspec.reexamine datum and sets the value to
reexamineNow.

kubectl edit ttc samplenorep

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
...
spec:
  ttspec:
    additionalMemoryRequest: 2Gi
    automaticMemoryRequests: true
    cacheCleanup: true

Chapter 11
About Suspending Management of a TimesTenClassic Object

11-21



    createASReadinessProbe: true
    daemonLogCPURequest: 200m
    daemonLogMemoryRequest: 200Mi
    reexamine: rexamineNow
...

b. Save and close the file.

3. Observe the behavior.

kubectl get events

The output is similar to the following. Not all output is displayed.

27s         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-0 state was ManualInterventionRequired, now Reexamine
27s         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-1 state was ManualInterventionRequired, now Reexamine
27s         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-2 state was ManualInterventionRequired, now Reexamine
27s         Normal    StateChange   timestenclassic/samplenorep      
TimesTenClassic was ManualInterventionRequired, now Reexamine
22s         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-0 state was Reexamine, now Normal
22s         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-1 state was Reexamine, now Normal
22s         Normal    StateChange   timestenclassic/samplenorep      Pod 
samplenorep-2 state was Reexamine, now Normal
22s         Normal    StateChange   timestenclassic/samplenorep      
TimesTenClassic was Reexamine, now AllReplicasReady

The TimesTen Operator changed the state of each TimesTen Pod from
ManualInterventionRequired to Reexamine and changed the TimesTenClassic object's
state from ManualInterventionRequired to Reexamine. The TimesTen Operator examined
TimesTen and its databases. Since TimesTen and its databases are healthy and
functioning properly, the TimesTen Operator changed the state of the TimesTen Pods to
Normal and the state of the TimesTenClassic object to AllReplicasReady.

About Manual Operations
The TimesTen Operator strives to keep TimesTen databases running once they are deployed.
Kubernetes manages the lifecycle of the Pods. It recreates the Pods if they fail. If the nodes on
which the Pods are running fail, Kubernetes recreates the Pods on available Kubernetes
cluster nodes. The TimesTen Operator monitors TimesTen running in the Pods and initiates the
appropriate operations to keep the databases operational. The TimesTen Operator performs
these operations automatically and there is minimal human intervention required.

If necessary, there are the manual operations you can perform:

• Manually Invoke TimesTen Utilities

• Revert to Manual Control

• Delete TimesTen Databases

• Locate the TimesTen Operator

Chapter 11
About Manual Operations

11-22



• Modify TimesTen Connection Attributes

Manually Invoke TimesTen Utilities
You can manually invoke TimesTen utilities on TimesTen instances. Use the kubectl exec -it
command to invoke a shell in a container in a TimesTen Pod. Once in the container, you can
invoke TimesTen utilities and perform additioanal operations.

Note:

The TimesTen Operator continues to query the status of the Pod and the status of
TimesTen within the Pod. If you invoke a command that disrupts the functioning of
either the Pod or TimesTen, the Operator may act to try to fix what you did.

This example shows how to use the kubectl exec -it command to invoke a shell within the
sample-0 Pod that contains the active TimesTen database in an active standby pair
configuration. The example then runs the ttIsql utility.

% kubectl exec -it sample-0 -c tt -- /bin/bash
% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Revert to Manual Control
If you want to manually operate and control TimesTen databases, you can delete the
timesten-operator Deployment. This causes the TimesTen Operator to stop. It does not
restart. This affects all of the TimesTenClassic objects that are running in your Kubernetes
namespace. If you do not want the TimesTen Operator to stop managing all of the
TimesTenClassic objects, you can suspend the management of individual TimesTenClassic
objects. See About Suspending Management of a TimesTenClassic Object.

A TimesTenClassic object remains in Kubernetes as do other Kubernetes objects associated
with the TimesTenClassic object. You can use the kubectl exec -it command to invoke a shell
in one or more Pods and you can control Timesten running in those Pods.

If a Pod fails, Kubernetes creates new ones to replace them. This is due to the StatefulSet
object that the TimesTen Operator had previously created in Kubernetes. However, since the
TimesTen Operator is not running the new Pods, it cannot automatically start TimesTen. In this
case, your TimesTen databases cannot be configured or started. You are responsible for the
operation of TimesTen in the Pods.

If you want the TimesTen Operator to take control, you must redeploy the Operator. Once the
Operator is redeployed, it automatically identifies the TimesTenClassic objects in your
Kubernetes cluster and attempts to manage them again.

Chapter 11
About Manual Operations

11-23



This example shows you how to manually control TimesTen.

1. Verify the Operator and the TimesTen databases are running.

% kubectl get pods
NAME                                        READY   STATUS    RESTARTS   AGE
sample-0                                    3/3     Running   0          18h
sample-1                                    2/3     Running   0          18h
timesten-operator-5d7dcc7948-pzj58          1/1     Running   0          18h

2. Navigate to the /deploy directory where the operator.yaml resides. (kube_files/deploy,
in this example.)

% cd kube_files/deploy
3. Use the kubectl delete command to delete the Operator. The Operator is stopped and no

longer deployed.

% kubectl delete -f operator.yaml
deployment.apps "timesten-operator" deleted

4. Verify the Operator is no longer running, but the TimesTen databases are.

% kubectl get pods
NAME       READY   STATUS    RESTARTS   AGE
sample-0   3/3     Running   0          19h
sample-1   2/3     Running   0          19h

5. Use the kubectl exec -it command to invoke a shell in a Pod that runs TimesTen.

% kubectl exec -it sample-0 -c tt -- /bin/bash
Last login: Thu Jan  16 14:30:45 UTC 2025 on pts/0

6. Run the ttStatus utility.

% ttStatus
TimesTen status report as of Thu Jan  16 14:36:31 2025
 
Daemon pid 183 port 6624 instance instance1
TimesTen server pid 190 started on port 6625
------------------------------------------------------------------------
------------------------------------------------------------------------
Data store /tt/home/timesten/datastore/sample
Daemon pid 183 port 6624 instance instance1
TimesTen server pid 190 started on port 6625
There are 20 connections to the data store
Shared Memory KEY 0x02200bbc ID 32769
PL/SQL Memory Key 0x03200bbc ID 65538 Address 0x5000000000
Type            PID     Context            Connection Name             ConnID
Replication     263     0x00007f99fc0008c0 LOGFORCE:140299698493184      2029
Replication     263     0x00007f9a040008c0 XLA_PARENT:140300350273280    2031
Replication     263     0x00007f9a080008c0 REPLISTENER:140300347123456   2030
Replication     263     0x00007f9a080acd60 RECEIVER:140299429472000      2028
Replication     263     0x00007f9a0c0008c0 FAILOVER:140300353423104      2032
Replication     263     0x00007f9a2c0009b0 TRANSMITTER(M):140299695343360 2034
Replication     263     0x00007f9a300008c0 REPHOLD:140300356572928        2033
Subdaemon       187     0x00000000023365b0 Manager                        2047
Subdaemon       187     0x00000000023b57f0 Rollback                       2046
Subdaemon       187     0x0000000002432cf0 Log Marker                     2041
Subdaemon       187     0x000000000244fc00 Garbage Collector              2035
Subdaemon       187     0x00007f90c80008c0 Aging                          2038
Subdaemon       187     0x00007f90d00008c0 Deadlock Detector              2044
Subdaemon       187     0x00007f90d001d7d0 HistGC                         2039
Subdaemon       187     0x00007f90d40008c0 Checkpoint                     2042
Subdaemon       187     0x00007f90d401d7d0 AsyncMV                        2036

Chapter 11
About Manual Operations

11-24



Subdaemon       187     0x00007f90d80008c0 Monitor                        2043
Subdaemon       187     0x00007f90f808b360 IndexGC                        2037
Subdaemon       187     0x00007f90fc0008c0 Flusher                        2045
Subdaemon       187     0x00007f910004efd0 XactId Rollback                2040
Open for user connections
RAM residence policy: Always
Replication policy  : Manual
Replication agent is running.
Cache Agent policy  : Manual
PL/SQL enabled.
------------------------------------------------------------------------
Accessible by group timesten
End of report

7. Run the ttIsql utility to connect to the sample database and perform various operations.

% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: 
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
Command> describe sampleuser.emp;
 
Table SAMPLEUSER.EMP:
  Columns:
   *ID                              NUMBER NOT NULL
    NAME                            CHAR (32)
 
1 table found.
(primary key columns are indicated with *)

Command> INSERT INTO sampleuser.emp VALUES (1,'This is a test.');
1 row inserted.
Command> SELECT * FROM sampleuser.emp;
< 1, This is a test.                  >
1 row found.

Delete TimesTen Databases
If you delete a TimesTenClassic object, Kubernetes automatically deletes all of the Kubernetes
objects and the resources it is using, including the StatefulSet, Service, and Pods. However,
Kubernetes does not delete the PersistentVolumeClaims that contain the TimesTen databases.
After you delete a TimesTenClassic object, you must manually delete the
PersistentVolumeClaims (PVCs) associated with the object. After you manually delete the
PVCs, Kubernetes recycles PersistentVolumes that are holding the databases. You may be
able to control the recycling operation by using a Kubernetes volume retention policy. However,
the TimesTen Operator has no control over this process.

The following example deletes PVCs associated with a replicated TimesTenClassic object
called sample.

% kubectl delete pvc tt-persistent-sample-0
persistentvolumeclaim "tt-persistent-sample-0" deleted

Chapter 11
About Manual Operations

11-25



% kubectl delete pvc tt-persistent-sample-1
persistentvolumeclaim "tt-persistent-sample-1" deleted

Locate the TimesTen Operator
The TimesTen Operator is configured in your Kubernetes cluster using a Deployment.
Kubernetes automatically monitors the TimesTen Operator and restarts it if it fails. The
TimesTen Operator runs in a Pod and the name of the Operator begins with timesten-
operator, followed by arbitrary characters to make the name unique. If you specify multiple
replicas when you deploy the Operator, there are multiple Pods. Only one Pod is active at a
time. The remainder of the Pods wait for the active to fail, and if it does, then one of the Pods
becomes active. TimesTenClassic objects continue to function if the Operator fails. When a
new Operator is started by Kubernetes, the Operator automatically monitors and manages
existing TimesTenClassic objects.

To display the Pods that are running the TimesTen Operator, use the kubectl get pods
command. In the following example, there is one Pod that is running the TimesTen Operator.
For more information about the TimesTen Operator, see About the TimesTen Operator.

% kubectl get pods
NAME                                        READY   STATUS    RESTARTS   AGE
timesten-operator-5d7dcc7948-8mnz4          1/1     Running   0          3m21s

Modify TimesTen Connection Attributes
TimesTen uses connection attributes to define the attributes of a database. There are three
types of connection attributes:

• Data store attributes: Define the characteristics of a database that can only be changed by
destroying and recreating the database.

• First connection attributes: Define the characteristics of a database that can be changed by
unloading and reloading the database into memory.

• General connection attributes: Control how applications access the database. These
attributes persist for the duration of the connection.

For more information on TimesTen connection attributes, see List of Connection Attributes in
the Oracle TimesTen In-Memory Database Reference and Connection Attributes for Data
Manager DSNs or Server DSNs in the Oracle TimesTen In-Memory Database Operations
Guide.

In a Kubernetes environment:

• You can only modify data store attributes by deleting the TimesTenClassic object and the
PersistentVolumeClaims associated with the TimesTenClassic object. Doing so results in
the deletion of the TimesTen databases.

• You can modify first connection and general connection attributes without deleting a
TimesTenClassic object (which deletes the databases) and the PersistentVolumeClaims
associated with the TimesTenClassic object. Note that there are TimesTen restrictions
when modifying some of the first connection attributes.

To modify first or general connection attributes:

• You must first edit the db.ini file. Complete the procedure in the Manually Edit the db.ini
File section. This section must be completed first.

Then, take these steps:

Chapter 11
About Manual Operations

11-26



• If you are modifying first connection attributes, follow the procedure in the Modify First
Connection Attributes section.

• If you are modifying general connection attributes, follow the procedure in the Modify
General Connection Attributes section.

Manually Edit the db.ini File
Complete this section if you are modifying first or general connection attributes or both. This
section must be completed before proceeding to the Modify First Connection Attributes or the 
Modify General Connection Attributes sections.

To modify first or general connection attribute requires a change in the sys.odbc.ini file.

If you have already created a TimesTenClassic object and you now want to change one or
more first or general connection attributes in your sys.odbc.ini file, you must change the
db.ini file.

The details as to how you should modify your db.ini file depends on the facility originally used
to contain the db.ini file. (Possible facilities include ConfigMaps, Secrets, or init containers.
See Populate the /ttconfig Directory.)

In this example, the ConfigMap facility was originally used to contain the db.ini file and to
populate the /ttconfig directory of the TimesTen containers. The example modifies the
sample ConfigMap.

The steps are as follows:

1. Use the kubectl describe command to review the contents of the db.ini file (represented
in bold) located in the original sample ConfigMap.

% kubectl describe configmap sample
Name:         sample
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
adminUser:
----
sampleuser/samplepw
 
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8

schema.sql:
----
create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));
 
Events:  <none>

2. Use the kubectl edit command to modify the db.ini file in the original sample
ConfigMap. Change the PermSize first connection attribute to 600 (represented in bold).
Add the TempSize first connection attribute and set its value to 300 (represented in bold).
Add the ConnectionCharacterSet connection attribute.

Chapter 11
About Manual Operations

11-27



% kubectl edit configmap sample
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this 
# file will be reopened with the relevant failures.
#
apiVersion: v1
data:
  adminUser: |
    sampleuser/samplepw
  db.ini: |
    PermSize=600
    TempSize=300
    DatabaseCharacterSet=AL32UTF8
    ConnectionCharacterSet=AL32UTF8
  schema.sql: |
    create sequence sampleuser.s;
    create table sampleuser.emp (id number not null primary key, name char (32));
kind: ConfigMap
metadata:
  creationTimestamp: "2025-01-16T19:23:59Z"
  name: sample
  namespace: mynamespace
  resourceVersion: "71907255"
  selfLink: /api/v1/namespaces/mynamespace/configmaps/sample 
 uid: 0171ff7f-f789-11ea-82ad-0a580aed0453
...
configmap/sample edited

3. Use the kubectl describe command to verify the changes to the sample ConfigMap. (The
changes are represented in bold.)

% kubectl describe configmap sample
Name:         sample
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
schema.sql:
----
create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));
 
adminUser:
----
sampleuser/samplepw
 
db.ini:
----
PermSize=600
TempSize=300
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
 
Events:  <none>

You have successfully changed the sample ConfigMap. If you are modifying first connection
attributes, proceed to the Modify First Connection Attributes section. If you are modifying only
general connection attributes, proceed to the Modify General Connection Attributes section.

Chapter 11
About Manual Operations

11-28



Modify First Connection Attributes
If you have not modified the db.ini file, proceed to the Manually Edit the db.ini File section.
You must now delete the standby Pod and then delete the active Pod. When you delete a Pod
that contains a container running TimesTen, the Operator creates a new Pod to replace the
deleted Pod. This new Pod contains a new sys.odbc.ini file which is created from the
contents of the db.ini file located in the /ttconfig directory.

Perform these steps to delete the standby Pod.

1. Use the kubectl get command to determine which Pod is the standby Pod for the sample
TimesTenClassic object. The active Pod is the Pod represented in the ACTIVE column. The
standby Pod is the other Pod (not represented in the ACTIVE column). Therefore, for the
sample TimesTenClassic object, the active Pod is sample-0, (represented in bold) and the
standby Pod is sample-1.

% kubectl get ttc sample
NAME     STATE    ACTIVE     AGE
sample   Normal   sample-0   47h

2. Delete the standby Pod (sample-1, in this example). This results in the Operator creating a
new standby Pod to replace the deleted Pod. When the new standby Pod is created, it will
use the newly modified sample ConfigMap. (You modified this ConfigMap in the Manually
Edit the db.ini File section.)

% kubectl delete pod sample-1
pod "sample-1" deleted

3. Use the kubectl get command to verify the standby Pod is up and running and the state is
Normal.

Note that the state is StandbyDown (represented in bold).

% kubectl get ttc sample
NAME     STATE         ACTIVE     AGE
sample   StandbyDown   sample-0   47h

Wait a few minutes, then run the command again. Note that the state has changed to
Normal (represented in bold).

% kubectl get ttc sample
NAME     STATE    ACTIVE     AGE
sample   Normal   sample-0   47h

4. Use the kubectl exec -it command to invoke the shell in the standby Pod (sample-1, in
this example). Then, run the ttIsql utility to connect to the sample database. Note the
new PermSize value of 600 and the new TempSize value of 300 in the connection output
(represented in bold).

% kubectl exec -it sample-1 -c tt -- /bin/bash
% ttIsql sample 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved. 
Type ? or "help" for help, type "exit" to quit ttIsql. 
connect "DSN=sample"; 
Connection successful:  
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1; 
(Default setting AutoCommit=1)

Chapter 11
About Manual Operations

11-29



5. Fail over from the active Pod to the standby Pod. See "Fail Over" for details of the fail over
process. Before you begin this step, ensure you quiesce your applications and you use the
ttRepAdmin -wait command to wait until replication is caught up, such that all transactions
that were executed on the active database have been replicated to the standby database.
Once the standby is caught up, fail over from the active database to the standby by
deleting the active Pod. When you delete the active Pod, the Operator automatically
detects the failure and promotes the standby database to be the active.

Delete the active Pod (sample-0, in this example).

% kubectl delete pod sample-0
pod "sample-0" deleted

6. Wait a few minutes, then use the kubectl get command to verify the active Pod is now
sample-1 for the sample TimesTenClassic object and the state is Normal (represented in
bold).

% kubectl get ttc sample
NAME     STATE    ACTIVE     AGE
sample   Normal   sample-1   47h

7. Use the kubectl exec -it command to invoke the shell in the active Pod (sample-1, in this
example). Then, run the ttIsql utility to connect to the sample database. Note the new
PermSize value of 600 and the new TempSize value of 300 in the connection output
(represented in bold).

% kubectl exec -it sample-1 -c tt -- /bin/bash
Last login: Thu Jan 16 15:50:29 UTC 2025 on pts/0
[timesten@sample-1 ~]$ ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: 
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

8. Use the kubectl exec -it command to invoke the shell in the standby Pod (sample-0, in
this example). Then, run the ttIsql utility to connect to the sample database. Note the
new PermSize value of 600 and the new TempSize value of 300 in the connection output
(represented in bold).

% kubectl exec -it sample-0 -c tt -- /bin/bash
% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: 
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=600;TempSize=300;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Chapter 11
About Manual Operations

11-30



You have successfully modified the PermSize and the TempSize first connection attributes.

Modify General Connection Attributes
If you have not modified the db.ini file, proceed to the Manually Edit the db.ini File section.
You can either directly modify the sys.odbc.ini file for the active TimesTen database and the
sys.odbc.ini file for the standby TimesTen database or you can follow the steps in the Modify
First Connection Attributes section. The first approach (modifying the sys.odbc.ini file
directly) is less disruptive.

This section discusses the procedure for directly modifying the sys.odbc.ini files.

The sys.odbc.ini file is located in the TimesTen container of the Pod containing the active
TimesTen database and in the TimesTen container of the Pod containing the standby TimesTen
database. After you complete the modifications to the sys.odbc.ini files, subsequent
applications can connect to the database using these general connection attributes.

This example illustrates how to edit the sys.odbc.ini files.

1. Use the kubectl exec -it command to invoke a shell in the active Pod. (In this example,
sample-0 is the active Pod.)

% kubectl exec -it sample-0 -c tt -- /bin/bash
Last login: Thu Jan 16 22:43:26 UTC 2025 on pts/8

2. Verify the current directory (/tt/home/timesten).

% pwd
/tt/home/timesten

3. Navigate to the directory where the sys.odbc.ini file is located. The sys.odbc.ini file is
located in the /tt/home/timesten/instances/instance1/conf directory. Therefore,
navigate to the instances/instance1/conf directory.

% cd instances/instance1/conf
4. Edit the sys.odbc.ini file, adding, modifying, or deleting the general connection attributes

for your DSN. (sample, in this example.)

Note:

Ensure that you only make modifications to the TimesTen general connection
attributes. Data store attributes and first connection attributes cannot be modified
by directly editing the sys.odbc.ini file.

This example modifies the sample DSN, adding the ConnectionCharacterSet general
connection attribute and setting its value equal to AL32UTF8 (represented in bold).

vi sys.odbc.ini

[ODBC Data Sources]
sample=TimesTen 22.1 Driver
tt=TimesTen 22.1 Driver
 
[sample]
Datastore=/tt/home/timesten/datastore/sample
PermSize=200
DatabaseCharacterSet=AL32UTF8

Chapter 11
About Manual Operations

11-31



ConnectionCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
...

5. Use the ttIsql utility to connect to the sample database and verify the value of the
ConnectionCharacterSet attribute is AL32UTF8 (represented in bold).

% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful: 
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the sys.odbc.ini file located in the TimesTen container of the
active Pod (in this example, sample-0). Use the same procedure to modify the sys.odbc.ini
file located in the TimesTen container of the standby Pod (in this example, sample-1).

For example:

1. Use the kubectl exec -it command to invoke a shell in the standby Pod (sample-1, in this
example).

% kubectl exec -it sample-1 -c tt -- /bin/bash
Last login: Thu Jan 16 23:08:08 UTC 2025 on pts/0

2. Verify the current directory (/tt/home/timesten).

% pwd
/tt/home/timesten

3. Navigate to the directory where the sys.odbc.ini file is located. The sys.odbc.ini file is
located in the /tt/home/timesten/instances/instance1/conf directory. Therefore,
navigate to the instances/instance1/conf directory.

% cd instances/instance1/conf
4. Edit the sys.odbc.ini file, adding, modifying, or deleting the same general connection

attributes that you modified for the active database. Therefore, this example modifies the
sample DSN, adding the ConnectionCharacterSet general connection attribute and setting
its value equal to AL32UTF8 (represented in bold).

vi sys.odbc.ini

[ODBC Data Sources]
sample=TimesTen 22.1 Driver
tt=TimesTen 22.1 Driver
 
[sample]
Datastore=/tt/home/timesten/datastore/sample
PermSize=200
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0

Chapter 11
About Manual Operations

11-32



ForceDisconnectEnabled=1
...

5. Use the ttIsql utility to connect to the sample database and verify the value of the
ConnectionCharacterSet attribute is AL32UTF8 (represented in bold).

% ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;
AutoCreate=0;PermSize=200;DDLReplicationLevel=3;ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

You have successfully modified the sys.odbc.ini file located in the TimesTen container of the
active Pod (sample-0) and the sys.odbc.ini file located in the TimesTen container of the
standby Pod (sample-1). The ConnectionCharacterSet general connection attribute has also
been modified.

Chapter 11
About Manual Operations

11-33



12
Manage TimesTen Scaleout

This chapter discusses how the TimesTen Operator manages and repairs TimesTen Scaleout.

Topics:

• About Managing TimesTen Scaleout

• About Single Data Instance Failure

• About Management Instance Failure

• About the waiting for seed State

• About Failure of All Data Instances

• About High Level States

• About Management States

• About Database and Element States

• About the ManualInterventionRequired State

• About Suspending Management

• Simulate Single Data Instance Failure

• Simulate Management Instance Failure

• Simulate Replica Set Failure with Restart

• Simulate Replica Set Failure with Manual

• Suspend Management

• Set reexamine Datum

About Managing TimesTen Scaleout
TimesTen Scaleout delivers high performance, fault tolerance, and scalability within a highly
available in-memory database that provides persistence and recovery. Since a database is
distributed across multiple hosts, some components of the database may fail while others
continue to operate.

TimesTen Scaleout supports error and failure detection with automatic recovery for many error
and failure situations in order to maintain a continuous operation for all applications.

The TimesTen Operator implements best practices for how to handle failures for TimesTen
Scaleout. For more information about how TimesTen Scaleout handles failures, see 
Recovering from Failure in the Oracle TimesTen In-Memory Database Scaleout User's Guide

In particular, the Operator detects and handles the following failure cases:

• If a TimesTen instance or element fails, the Operator restarts it.

• If an entire replica set fails and if all elements in the replica set reach the waiting for seed
state, the Operator unloads and reloads the database to resolve it (by default). For details
about how TimesTen Scaleout recovers from a down replica set, see Recovering from a
Down Replica Set in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

12-1



• If all data instances fail, the Operator detects and reports the failure.

The Operator communicates to the TimesTen agent running in the tt container in each Pod
running TimesTen. The agent determines information about the state of TimesTen running in
the container and sends that information back to the Operator. The Operator analyzes this
information and determines the health and state of TimesTen. This information is summarized
in well-defined states. The Operator uses state machines to determine the appropriate set of
commands to be executed to detect failures and, if possible, repair TimesTen. These states are
discussed later in the chapter.

Let's take a deeper look at how the Operator detects and repairs TimesTen Scaleout.
Specifically, let's look at how the Operator handles single data instance failure, management
instance failure, entire replica set failure, and total database failure.

About Single Data Instance Failure
TimesTen Scaleout is intended to be resilient to single data instance failures. In your
Kubernetes environment, if a data instance fails, the TimesTen Operator starts it back up. Once
it is restarted, TimesTen Scaleout reloads the element of the database. See Recovering When
a Data Instance Is Down in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

About Management Instance Failure
The TimesTen Operator supports one management instance per TimesTenScaleout object. If
the management instance is down, the Operator ignores the state of the data instances until
the management instance is back up. Without a management instance, the grid and TimesTen
database continue to function. However, should a data instance fail without a working
management instance, it is not possible to repair the data instance.

About the waiting for seed State
In TimesTen Scaleout, there could be a situation where an entire replica set fails
simulataneously. If all elements in a replica set fail at the same time, it may not be possible to
reload any of the elements without unloading the entire database and reloading it. In addition,
a reload may cause TimesTen Scaleout to discard transactions against other replica sets that
were committed prior to the unload operation.

For more information about replica set failure in TimesTen Scaleout, see Recovering from a
Down Replica Set in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

If this case occurs in your Kubernetes environment, the default behavior is for the TimesTen
Operator to detect this situation and forcibly unload and reload the database when the situation
occurs. This operation is triggered when the Operator notices that all elements in a replica set
are in the waiting for seed state.

You have the option of controlling the behavior of the Operator when all elements in a replica
set are in the waiting for seed state. You do this by using a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum, and setting a particular value for the
datum. Accepted values are the following:

• Restart: The Operator forcibly unloads and reloads the database when a total replica set
failure occurs. This is the default.

• Manual: The Operator changes the state of the TimesTenScaleout object to
ManualInterventionRequired when a total replica set failure occurs. The Operator takes

Chapter 12
About Single Data Instance Failure

12-2



no further action to repair the grid. You must repair it. See About the
ManualInterventionRequired State and Set reexamine Datum for details.

For more information on the .spec.ttspec.replicaSetRecovery datum for a
TimesTenScaleout object, see TimesTenScaleoutSpecSpec.

About Failure of All Data Instances
If all elements in a database fail simultaneously, there must be caution taken in reloading the
database. TimesTen Scaleout does not automatically reload a database if all data instances
fail. You must perform this reload. It is essential that all possible data instances are up before a
reload is attempted.

For more information about failure of all data instances in TimesTen Scaleout, see Database
Recovery in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

If this case occurs in a Kubernetes environment, the TimesTen Operator does not attempt to
reload the database after all data instances fail. However, the Operator does detect this case
and changes the state of a TimesTenScaleout object to ManualInterventionRequired. See 
About the ManualInterventionRequired State and Set reexamine Datum.

About High Level States
The TimesTen Operator maintains a High Level state for TimesTenScaleout objects.

These High Level states are as follows:

• DatabaseDown

• DatabaseImpeded

• DatabasePartial

• DatabaseRestarting

• DatabaseRestartRequired

• Failed

• Initializing

• ManualInterventionRequired

• Normal

• Reexamine

• Unmanaged

DatabaseDown
The database is unusable. The Operator attempts to fix it. If it cannot be fixed, the Operator
moves the object to the ManualInterventionRequired state.

DatabaseImpeded
The database within the grid is fully operational, but one or more elements are not functional.
All data in the database is available and all SQL is accepted.

Chapter 12
About Failure of All Data Instances

12-3



DatabasePartial
The database is up, but some data is not available. One or more replica sets are not available.

DatabaseRestarting
The database is in the process of being forcibly unloaded and reloaded after a
DatabaseRestartRequired condition.

DatabaseRestartRequired
While the database is up (at least partially), it must be stopped and restarted (unloaded and
reloaded) in order to restore functionality. This can occur when all elements in a replica set fail
simultaneously and all elements are unloadable due to a waiting for seed condition. When
this occurs, the database must be unloaded and reloaded. During this time, committed
transactions may be lost. See Database Recovery and Recovering from a Down Replica Set in
the Oracle TimesTen In-Memory Database Scaleout User's Guide.

Failed
If a problem occurs while Initializing a TimesTenScaleout object, the object transitions to
the Failed state. Once in this state, the Operator does not attempt to repair the object. You
must delete it. Use the kubectl describe command to examine the Operator logs to determine
the cause of the problem and then recreate the object.

Initializing
After you create a TimesTenScaleout object in your Kubernetes cluster, the Operator creates
the StatefulSets and Services that are required to deploy a TimesTenScaleout grid and
database. The Operator assigns a High Level state of Initializing to the TimesTenScaleout
object.

ManualInterventionRequired
If the Operator encounters a problem that it does not know how to fix, the Operator places a
TimesTenScaleout object into this state. The Operator takes no further action to fix the object.
You can set the object's .spec.ttspec.reexamine datum to cause the Operator to re-engage
with the object. For information about .spec.ttspec.reexamine, see Set reexamine Datum.

Normal
The grid and database are up and operating as they should.

Reexamine
If a TimesTenScaleout object is in the ManualInterventionRequired state, and you modify the
object's .spec.ttspec.reexamine datum, the TimesTen Operator moves the object into the
Reexamine state. The Operator examines the state of grid and database. If healthy, the
Operator returns the object to the Normal state. Otherwise, the object re-enters the
ManualInterventionRequired state.

Chapter 12
About High Level States

12-4



Unmanaged
The grid does not have a functional management instance. Until the management instance is
fixed, the grid cannot be further monitored, managed or controlled. The Operator will attempt to
fix the management instance.

About Management States
The Operator uses the TimesTen ttGridAdmin mgmtExamine utility to determine the health of
the management instance. The Operator also synthesizes a management state that describes
the status of the management instance in a single value.

For information about the TimesTen ttGridAdmin mgmtExamine utility, see Examine
Management Instances (mgmtExamine) in the Oracle TimesTen In-Memory Database
Reference.

For example, you can use the kubectl get tts command to observe the state of a
TimesTenScaleout object.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   10m

Note that the management state is Normal. There are additional examples in the chapter
where you have the opportunity to observe the management state.

Here are the management states:

• ActiveAgentUp

• ActiveDaemonUp

• ActiveDown

• Error

• Normal

• Unknown

ActiveAgentUp
The TimesTen agent in the container that should be running the management instance is up,
but the management instance has not yet been started.

ActiveDaemonUp
The management instance has been started, but is not yet functional.

ActiveDown
The management instance is down.

Chapter 12
About Management States

12-5



Error
There is an unexpected error with the management instance.

Normal
The management instance is functioning normally.

Unknown
The state of the management instance cannot be determined.

About Database and Element States
TimesTen Scaleout defines a set of overall database and element status values to detemine
the status of a database or element. The TimesTen Operator uses these status values to
assess the state of the database represented by a TimesTenScaleout object.

In TimesTen Scaleout, the overall database status is encoded in three strings:

• How created is the database?

• How loaded is the database?

• How open is the database?

This triplet of strings is returned as part of the output of the TimesTen ttGridAdmin dbStatus
utility.

For information about the database states, see Display the Status of the Database and All
Elements in the Oracle TimesTen In-Memory Database Scaleout User's Guide. For information
about the ttGridAdmin dbstatus utility, see Monitor the Status of a Database (dbStatus) in the
Oracle TimesTen In-Memory Database Reference.

The TimesTen Operator uses TimesTen Scaleout database states to report the state of the
database for a TimesTenScaleout object.

For example, this code snippet uses the kubectl get command to return the status for a
deployed TimesTenScaleout object.

kubectl get tts samplescaleout
NAME             OVERALL                   MGMT     CREATE    
LOAD                 OPEN   AGE
samplescaleout   Normal                    Normal   created   loaded-
complete      open   2d

Note the following:

• The High Level state of the TimesTenScaleout object is Normal (as indicated by the
OVERALL field).

• The management instance state is Normal (as indicated by the MGMT field).

• The database creation state is created (as indicated by the CREATE field).

• The database loaded state is loaded-complete (as indicated by the LOAD field).

Chapter 12
About Database and Element States

12-6



• The database open state is open (as indicated by the OPEN field).

TimesTen Scaleout also keeps a state for each element in a database. See Troubleshooting
Based on Element Status in the Oracle TimesTen In-Memory Database Scaleout User's Guide
for details on element states.

The Operator does not monitor these element states. However, if all the elements in a replica
set are in the waiting for seed state, the Operator checks the value of a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum:

• If the value is Restart, the DatabaseRestartRequired High Level state is triggered.

• If the value is Manual, the Operator moves the TimesTenScaleout object to the
ManualInterventionRequired state.

About the ManualInterventionRequired State
If the TimesTen Operator determines it cannot repair a TimesTenScaleout object, the Operator
changes the High Level state of the object to ManualInterventionRequired. The Operator
does not further manage an object in this state. In addition, the Operator makes no attempt to
determine its state nor to repair it.

In TimesTen Scaleout, there are several troubleshooting scenarios that you can review to
identify and possibly fix the problem. For more information about the troubleshooting
scenarios, see Recovering from Failure in the Oracle TimesTen In-Memory Database Scaleout
User's Guide.

If you identify and fix the problem, you can cause the Operator to resume management of a
TimesTenScaleout object. You do this by specifying a TimesTenScaleout object's
spec.ttspec.reexamine datum. When this datum is specified, the Operator moves the object
to the Reexamine state. For information about the Reexamine state, see Set reexamine Datum.

About Suspending Management
There may be a situation in which you want to manually perform maintenance operations. In
such a situation, you do not want the Operator to interfere and attempt to perform repair or
recovery operations on your grid and database.

One alternative is to stop the Operator (by deleting the timesten-operator Deployment). This
action prevents the Operator from interfering or performing repair/recovery operations.
However, if you have more than one TimesTenScaleout object deployed in your Kubernetes
environment and you delete the Operator, this interferes with the management of all the
TimesTenScaleout objects, when perhaps only one of them needs manual intervention.

Another approach is to ask the Operator to take no action for one TimesTenScaleout object. To
do this, specify a TimesTenScaleout object's .spec.ttspec.stopManaging datum. The
Operator examines the value of .spec.ttspec.stopManaging and if it has changed since the
last time the Operator examined it, the Operator changes the state of the TimesTenScaleout
object to ManualInterventionRequired. This causes the Operator to no longer examine the
status of the grid and database. Nor does the Operator examine the Pods, the containers, and
the instances associated with this particular TimesTenScaleout object. For an example
showing how to set the .spec.ttspec.stopManaging datum for a TimesTenScaleout object,
see Suspend Management.

To cause the Operator to resume management of the TimesTenScaleout object, change the
value of the object's .spec.ttspec.reexamine datum. See Set reexamine Datum for details.

Chapter 12
About the ManualInterventionRequired State

12-7



See TimesTenScaleoutSpecSpec for information about the TimesTenScaleout object definition.

Simulate Single Data Instance Failure
Let's simulate a single data instance failure and observe how a TimesTenScaleout object
transitions through various state changes.

Note:

This example is for demonstration purposes only. Do not attempt this example in a
production environment.

In the example, there is a deployed TimesTenScaleout object that is functioning properly.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   10m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

To simulate a single data instance failure, let's delete a Pod that contains a data instance. Here
are the Pods:

kubectl get pods
NAME                                 READY   STATUS    RESTARTS   AGE
samplescaleout-data-1-0              2/2     Running   0          11m
samplescaleout-data-1-1              2/2     Running   0          11m
samplescaleout-data-1-2              2/2     Running   0          11m
samplescaleout-data-2-0              2/2     Running   0          11m
samplescaleout-data-2-1              2/2     Running   0          11m
samplescaleout-data-2-2              2/2     Running   0          11m
samplescaleout-mgmt-0                2/2     Running   0          11m
samplescaleout-zk-0                  1/1     Running   0          11m
samplescaleout-zk-1                  1/1     Running   0          10m
samplescaleout-zk-2                  1/1     Running   0          9m35s
timesten-operator-7677964df9-sp2zp   1/1     Running   0          7d3h

Let's delete the samplescaleout-data-1-0 Pod and observe the behavior.

1. Delete the Pod.

kubectl delete pod samplescaleout-data-1-0
pod "samplescaleout-data-1-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout
NAME             OVERALL           MGMT     CREATE    LOAD                
OPEN   AGE
samplescaleout   DatabaseImpeded   Normal   created   loaded-functional   
open   16m

Chapter 12
Simulate Single Data Instance Failure

12-8



The High Level state is DatabaseImpeded, indicating that the database within the grid is
fully operational, but one or more elements is not functional. The database loaded state is
loaded-functional, indicating loading is in progress and at least one element from each
replica set is loaded.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   18m

The object transitioned to the Normal High Level state, indicating the grid and database are
functioning normally. The database state is loaded-complete, indicating the element
loaded successfully.

Even though there was a single data instance failure, TimesTen Scaleout fully recovered.
There was no manual intervention required.

Simulate Management Instance Failure
Let's simulate a management instance failure. Let's observe how a TimesTenScaleout object
transitions through various state changes.

Note:

This example is for demonstration purposes only. Do not attempt this example in a
production environment.

In the example, there is a deployed TimesTenScaleout object that is functioning properly.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   68m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

To simulate a management instance failure, let's delete the Pod that contains the management
instance. Here are the Pods:

kubectl get pods
NAME                                 READY   STATUS    RESTARTS   AGE
samplescaleout-data-1-0              2/2     Running   0          57m
samplescaleout-data-1-1              2/2     Running   0          73m
samplescaleout-data-1-2              2/2     Running   0          73m
samplescaleout-data-2-0              2/2     Running   0          73m
samplescaleout-data-2-1              2/2     Running   0          73m
samplescaleout-data-2-2              2/2     Running   0          73m
samplescaleout-mgmt-0                2/2     Running   0          73m
samplescaleout-zk-0                  1/1     Running   0          73m
samplescaleout-zk-1                  1/1     Running   0          72m
samplescaleout-zk-2                  1/1     Running   0          71m
timesten-operator-7677964df9-sp2zp   1/1     Running   0          7d4h

Chapter 12
Simulate Management Instance Failure

12-9



Let's delete the samplescaleout-mgmt-0 Pod and observe the behavior.

1. Delete the Pod.

kubectl delete pod samplescaleout-mgmt-0
pod "samplescaleout-mgmt-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout
NAME             OVERALL     MGMT         CREATE    LOAD              
OPEN   AGE
samplescaleout   Unmanaged   ActiveDown   created   loaded-complete   
open   79m

The High Level state is Unmanaged, indicating that the grid has no functional management
instance. As a result, the grid cannot be further managed, monitored, or controlled. The
management instance state is ActiveDown, indicating the management instance is down.
Note that since the management instance is down, the Operator ignores the state of the
data instances until the management instance is back up.

kubectl get tts samplescaleout
NAME             OVERALL     MGMT             CREATE    LOAD              
OPEN   AGE
samplescaleout   Unmanaged   ActiveDaemonUp   created   loaded-complete   
open   81m

The object remains in the Unmanaged High Level state. The management state transitions
to ActiveDaemonUp, indicating the management instance has been started, but is not yet
functional.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   81m

The object transitioned to the Normal High Level state, indicating the grid and database are
functioning normally. The management state is Normal, indicating that management
instance is functioning normally.

Even though there was a management instance failure, TimesTen Scaleout fully recovered.
There was no manual intervention required.

Simulate Replica Set Failure with Restart
Let's simulate a replica set failure. In this example, a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum has not been specified. The default of
Restart is assumed, indicating that the TimesTen Operator forcibly unloads and reloads the
database when a total replica set failure occurs.

Let's observe how a TimesTenScaleout object transitions through various state changes.

Chapter 12
Simulate Replica Set Failure with Restart

12-10



Note:

This example is for demonstration purposes only. Do not attempt this example in a
production environment.

In the example, there is a deployed TimesTenScaleout object that is functioning properly.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   99m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

In this example, there are three replica sets.

kubectl get pods
NAME                                 READY   STATUS    RESTARTS   AGE
samplescaleout-data-1-0              2/2     Running   0          11m
samplescaleout-data-1-1              2/2     Running   0          11m
samplescaleout-data-1-2              2/2     Running   0          11m
samplescaleout-data-2-0              2/2     Running   0          11m
samplescaleout-data-2-1              2/2     Running   0          11m
samplescaleout-data-2-2              2/2     Running   0          11m
samplescaleout-mgmt-0                2/2     Running   0          11m
samplescaleout-zk-0                  1/1     Running   0          11m
samplescaleout-zk-1                  1/1     Running   0          10m
samplescaleout-zk-2                  1/1     Running   0          9m35s
timesten-operator-7677964df9-sp2zp   1/1     Running   0          7d3h

Let's delete the samplescaleout-data-1-0 and samplescaleout-data-2-0 Pods that belong to
one of the replica sets.

1. Delete the Pods.

kubectl delete pod samplescaleout-data-1-0;kubectl delete pod 
samplescaleout-data-2-0
pod "samplescaleout-data-1-0" deleted
pod "samplescaleout-data-2-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout
NAME             OVERALL           MGMT     CREATE    LOAD                
OPEN   AGE
samplescaleout   DatabasePartial   Normal   created   loaded-incomplete   
open   111m

The High Level state is DatabasePartial indicating that the database is up, but some data
is not available. One or more replica sets have failed completely. The database loaded

Chapter 12
Simulate Replica Set Failure with Restart

12-11



state is loaded-incomplete, indicating that at least one replica set has no elements that
finished loading successfully.

kubectl get tts samplescaleout
NAME             OVERALL                   MGMT     CREATE    
LOAD                 OPEN   AGE
samplescaleout   DatabaseRestartRequired   Normal   created   loading-
incomplete   open   112m

The object transitions to the DatabaseRestartRequired High Level state. This state
indicates that while the database is up (at least partially), the database must be stopped
and restarted (unloaded and reloaded) in order to restore functionality. This can occur
when all elements in a replica set fail simultaneously and such elements are unloadable
due to a waiting for seed condition. When this happens the database must be unloaded
and reloaded. At that time, committed transactions may be lost.

kubectl get tts samplescaleout
NAME             OVERALL              MGMT     CREATE    
LOAD                 OPEN   AGE
samplescaleout   DatabaseRestarting   Normal   created   loading-
incomplete   open   114m

The object transitions to the DatabaseRestarting High Level state. This state indicates
that the database is being forcibly unloaded and reloaded after a
DatabaseRestartRequired condition.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN     
AGE
samplescaleout   Normal    Normal   created   loaded-complete   closed   
114m

The object transitions to the Normal High Level state, indicating that the grid and database
are functioning normally. The database loaded state changed to loaded-complete,
indicating every element was loaded successfully. The database open state is closed,
indicating the database is closed for connections.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   114m

The object remains in the Normal High Level state. The database open state changed to
open, indicating the database is now open for connections.

Even though there was a total replica set failure, TimesTen Scaleout forcibly unloaded and
reloaded the database. The Operator returned the grid and database to a Normal state,
indicating both are functioning normally. There was no manual intervention required.

Simulate Replica Set Failure with Manual
Let's simulate a total replica set failure where a TimesTenScaleout
object's .spec.ttspec.replicaSetRecovery datum has a value of Manual.

Chapter 12
Simulate Replica Set Failure with Manual

12-12



Note:

This example is for demonstration purposes only. Do not attempt this example in a
production environment.

Let's take a look at the TimesTenScaleout object definition.

cat samplescaleout2.yaml
apiVersion: timesten.oracle.com/v4
kind: TimesTenScaleout
metadata:
  name: samplescaleout2
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250G
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    replicaSetRecovery: Manual
    dbConfigMap:
    - samplescaleout2
    k: 2
    nReplicaSets: 3
    nMgmt: 1
    nZookeeper: 3

Note the .spec.ttspec.replicaSetRecovery datum for the object has a value of Manual,
indicating that the Operator will set this TimesTenScaleout object's High Level state to
ManualInterventionRequired when a total replica set failure occurs.

Let's simulate a total replica set failure with this object. Before we begin, let's do a quick check
of the state of the object.

kubectl get tts samplescaleout2
NAME              OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout2   Normal    Normal   created   loaded-complete   open   11m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

In this example, there are three replica sets.

kubectl get pods
NAME                                 READY   STATUS    RESTARTS   AGE
samplescaleout2-data-1-0             2/2     Running   0          12m
samplescaleout2-data-1-1             2/2     Running   0          12m
samplescaleout2-data-1-2             2/2     Running   0          12m
samplescaleout2-data-2-0             2/2     Running   0          12m
samplescaleout2-data-2-1             2/2     Running   0          12m
samplescaleout2-data-2-2             2/2     Running   0          12m
samplescaleout2-mgmt-0               2/2     Running   0          13m
samplescaleout2-zk-0                 1/1     Running   0          13m
samplescaleout2-zk-1                 1/1     Running   0          12m

Chapter 12
Simulate Replica Set Failure with Manual

12-13



samplescaleout2-zk-2                 1/1     Running   0          11m
timesten-operator-7677964df9-sp2zp   1/1     Running   0          7d6h

Let's delete the samplescaleout2-data-1-0 and samplescaleout2-data-2-0 Pods that belong
to one of the replica sets.

1. Delete the Pods.

kubectl delete pod samplescaleout2-data-1-0;kubectl delete pod 
samplescaleout2-data-2-0
pod "samplescaleout2-data-1-0" deleted
pod "samplescaleout2-data-2-0" deleted

2. Use the kubectl get command to observe state transitions.

kubectl get tts samplescaleout2
NAME              OVERALL           MGMT     CREATE    LOAD                
OPEN   AGE
samplescaleout2   DatabasePartial   Normal   created   loaded-incomplete   
open   18m

The High Level state is DatabasePartial indicating that the database is up, but some data
is not available. One or more replica sets have failed completely. The database loaded
state is loaded-incomplete, indicating that at least one replica set has no elements that
finished loading successfully.

kubectl get tts samplescaleout2
NAME              OVERALL                      MGMT     CREATE    
LOAD                 OPEN   AGE
samplescaleout2   ManualInterventionRequired   Normal   created   loading-
incomplete   open   20m

The object transitions to the ManualInterventionRequired High Level state. The Operator
takes no further action to fix the object. The database loaded state remains loading-
incomplete. Recall that you can set the .spec.ttspec.reexamine datum to cause the
Operator to re-engage with the object. See Set reexamine Datum for details.

There was a total replica set failure. Because the TimesTen Scaleout
object's .spec.ttspec.replicaSetRecovery datum had a value of Manual, the Operator set
the object to the ManualInterventionRequired state. Review the information in Recovering
from a Down Replica Set in the Oracle TimesTen In-Memory Database Scaleout User's Guide
for details about how to fix this failure. Next, review Set reexamine Datum in this book to give
control back to the Operator.

Suspend Management
Let's walk through an example that shows you how to suspend management of a
TimesTenScaleout object.

Chapter 12
Suspend Management

12-14



In the example, there is a deployed TimesTenScaleout object that is functioning properly.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   3h33m

Note the High Level state is Normal, the management state is Normal, and the database state
is created,loaded-complete,open.

1. Use the kubectl edit command to edit the TimesTenScaleout object, making the following
changes:

• If there is a line for .spec.ttspec.stopManaging in the file, then modify its value. It
must be different than the current value.

• If there is no line for .spec.ttspec.stopManaging in the file, then add a line and
specify a value.

In this example, there is no .spec.ttspec.stopManaging line. This example adds
the .spec.ttspec.stopManaging line and adds a value of Suspend.

kubectl edit timestenscaleout samplescaleout
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving 
this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenScaleout
metadata:
  creationTimestamp: "2024-01-18T23:57:56Z"
  generation: 1
...
spec
...
  ttspec:
    ...
    dbConfigMap:
    - samplescaleout
    ...
    k: 2
    ...
    nReplicaSets: 3
    nZookeeper: 3
    replicaSetRecovery: Restart
    stopManaging: Suspend
...
timestenscaleout.timesten.oracle.com/samplescaleout edited

2. Use the kubectl get command to observe the behavior..

kubectl get tts samplescaleout
NAME             OVERALL                      MGMT     CREATE    
LOAD              OPEN   AGE
samplescaleout   ManualInterventionRequired   Normal   created   loaded-
complete   open   3h33m

Chapter 12
Suspend Management

12-15



The Operator sets the TimesTenScaleout object to the ManualInterventionRequired High
Level state. The Operator takes no further action on the object. You can now perform manual
operations on your grid and database. When you have completed such operations and are
ready for the Operator to resume management, you can set the .spec.ttspec.rexamine
datum for the object. For an example that shows you how to set a TimesTenScaleout
object's .spec.ttspec.rexamine datum, see Set reexamine Datum.

Set reexamine Datum
If a TimesTenScaleout object is in the ManualInterventionRequired state, you can set/modify
the object's .spec.ttspec.reexamine datum to instruct the TimesTen Operator to move the
object into the Reexamine state. In the Reexamine state, the Operator examines the state of
TimesTen and the database. If both are healthy, the Operator returns the object to the High
Level Normal state. If not healthy, the object re-enters the ManualInterventionRequired state.

Let's walk through an example that shows you how to reexamine a TimesTenScaleout object.

1. Verify a TimesTenScaleout object is in the ManualInterventionRequired state.

kubectl get tts samplescaleout
NAME             OVERALL                      MGMT     CREATE    
LOAD              OPEN   AGE
samplescaleout   ManualInterventionRequired   Normal   created   loaded-
complete   open   3h48m

2. Use the kubectl edit command to edit the TimesTenScaleout object, making the following
changes:

• If there is a line for .spec.ttspec.reexamine in the file, then modify its value. It must
be different than the current value.

• If there is no line for .spec.ttspec.reexamine in the file, then add a line and specify a
value.

In this example, there is no .spec.ttspec.reexamine line. This example adds
the .spec.ttspec.reexamine line and assigns a value of Reexamine1.

kubectl edit timestenscaleout samplescaleout
# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving 
this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenScaleout
metadata:
  creationTimestamp: "2024-01-18T23:57:56Z"
  generation: 1
...
spec
...
  ttspec:
    ...
    dbConfigMap:
    - samplescaleout
    ...

Chapter 12
Set reexamine Datum

12-16



    k: 2
    ...
    nReplicaSets: 3
    nZookeeper: 3
    replicaSetRecovery: Restart
    reexamine: Reexamine1
...
timestenscaleout.timesten.oracle.com/samplescaleout edited

3. Use the kubectl get command to observe the behavior..

kubectl get tts samplescaleout
NAME             OVERALL     MGMT     CREATE    LOAD              OPEN   
AGE
samplescaleout   Reexamine   Normal   created   loaded-complete   open   
3h52m

The object is in the Reexamine High Level state. The Operator examines the state of
TimesTen and the database. If healthy, the Operator moves the object to the High Level
Normal state. If not healthy, the object re-enters the ManualInterventionRequired state.

kubectl get tts samplescaleout
NAME             OVERALL   MGMT     CREATE    LOAD              OPEN   AGE
samplescaleout   Normal    Normal   created   loaded-complete   open   
3h53m

The object transitioned to the Normal High Level state, indicating the grid and database are
functioning normally.

Chapter 12
Set reexamine Datum

12-17



13
Optimize Client/Server Performance

This chapter discusses how to optimize client/server performance. It discusses NodePort
Services and the TimesTen Connection Manager.

Topics:

• About Client/Server Challenges

• About NodePort Services

• About the Connection Manager

• How to Use the Connection Manager

• About the NodePort Service for the Connection Manager

• About the TimesTen Operator Configuration

About Client/Server Challenges
You may want to access TimesTen databases that are inside a Kubernetes cluster by using
client/server from outside the cluster. While this is possible, it presents the following
challenges:

• Clients outside the Kubernetes cluster access TimesTen databases inside the cluster by
using a NodePort Service. Client applications can connect to any node in the Kubernetes
cluster. The node that the application connects to may not be a node on which TimesTen is
running. Kubernetes routes the connection to a TimesTen instance in the cluster. This
works seamlessly, but results in additional network round trips and reduced performance.

• If changes from DML operations are coming from client/server applications, it is important
to route those connections to active TimesTen instances as they are the only writable
instances. For read-only applications, it is desirable to route connections to both active and
standby instances, so that standby instances can participate in the workload.

The TimesTen Operator uses NodePort Services and provides a Connection Manager that
provides solutions to these client/server challenges and allows applications to avoid these
issues.

About NodePort Services
To implement this feature, the TimesTen Operator creates additional NodePort Services. The
TimesTen Operator creates one Service for each Pod that the Operator creates.

For example, if you configure a TimesTenClassic object called sample to have three Pods, the
TimesTen Operator creates three NodePort Services called sample-np-0, sample-np-1, and
sample-np-2. Each Service maps to the corresponding Pod. For example, NodePort Service
sample-np-1 maps to Pod sample-1. Kubernetes deletes these Services when you delete a
TimesTenClassic object.

Since these are NodePort Services, Kubernetes automatically assigns a port number on the
cluster's external network that can be used by applications outside the cluster to access it. The
port numbers that Kubernetes assigns are unpredictable. However, after creating NodePort

13-1

https://kubernetes.io/docs/concepts/services-networking/service/


Services, the TimesTen Operator can query the Service to see what external port number
Kubernetes has assigned.

About the Connection Manager
The TimesTen Operator functions as an https server. It provides http and https servers running
on a number of ports, including:

• Metrics (port 8080): Used by Prometheus to scrape metrics about the TimesTen Operator.
The /metrics URL endpoint is available for this purpose. It exposes metrics from the
TimesTen Operator to Prometheus.

• Probe (port 8081): Used by Kubernetes to determine the readiness of the TimesTen
Operator. The /probe URL endpoint is available for this purpose.

This feature adds several new endpoints to the /metrics server. These endpoints allow
applications to query information about the location and health of TimesTen databases, which
are managed by the TimesTen Operator.

These endpoints allow applications to use an https GET to retrieve a TimesTen connection
string that can then be used to access TimesTen databases optimally. Applications can request
connection strings that are usable either from inside the cluster or from outside the cluster.

Here is the syntax:

/connstr/v1/namespace/ttc_name/access_mode/in_or_out

where:

• connstr/v1: Is a hardcoded, constant string that is part of the API. Do not change this
parameter.

• namespace: Is the namespace in which the TimesTenClassic object being queried resides.

• ttc_name: Is the name of the TimesTenClassic object being queried.

• access_mode: Describes the type of access the application wants in order to get to the
TimesTen database. Valid values are as follows:

– readable: Indicates that the application wants to issue reads against the database.

– writable: Indicates that the application wants to make changes to the database.

– readonly: Indicates that the application wants to access a read-only, non-writable
instance of the database.

The difference between readable and readonly is that databases that are writable are
also readable, but they are not readonly.

• in_or_out: Is either:

– internal: Indicates that the application wants to receive a connection string that is
viable from inside the cluster.

– external: Indicates that the application wants to receive a connection string that is
viable from outside the cluster.

The response is a JSON object that includes a TimesTen client/server connection string
containing TTC_SERVERn and TTC_SERVER_DSN connection attributes that can be used to access
the desired database in the desired mode. For more information about these connection

Chapter 13
About the Connection Manager

13-2



attributes, see Client and Server Connection Attributes in the Oracle TimesTen In-Memory
Database Reference.

The TimesTen Operator updates this information and stores it in the TimesTenClassic object's
status field. When an application queries this data, the TimesTen Operator GETs the
TimesTenClassic object from Kubernetes and retrieves the information from the object's
status. The TimesTen Operator then returns the information to the querying application.

How to Use the Connection Manager
Let's look at an example to illustrate how the Connection Manager works.

Consider the following scenario:

• The cluster consists of the following nodes:

– node1: External IP address 1.2.3.4

– node2: External IP address 1.2.3.5

– node3: External IP address 1.2.3.6

• An active/standby TimesTenClassic object called sample in the payroll namespace exists.
The following Pods also exist for this object:

– sample-0:

* Running on node1
* Contains the active database

* Internal IP address: 9.0.0.1

* Associated NodePort Service sample-np-0: Is assigned external port number
32444

– sample-1:

* Running on node3
* Contains the standby database

* Internal IP address: 9.0.0.77

* Associated NodePort Service sample-np-1: Is assigned external port number
32445

If you issue a GET to /connstr/v1/payroll/sample/readable/external, you receive the
following connection string:

TTC_SERVER1=1.2.3.4/32444;TTC_SERVER2=1.2.3.6/32445;TTC_SERVER_DSN=sample

If you issue a GET to /connstr/1/payroll/sample/writable/external, you receive the
following connection string:

TTC_SERVER1=1.2.3.4/32444;TTC_SERVER_DSN=sample

If you issue a GET to /connstr/v1/payroll/sample/readable/internal, you receive the
following connection string:

TTC_SERVER1=9.0.0.1/6625;TTC_SERVER2=9.0.0.77/6625;TTC_SERVER_DSN=sample

Chapter 13
How to Use the Connection Manager

13-3



If you issues a GET to /connstr/v1/payroll/sample/writable/internal, you receive the
following connection string:

TTC_SERVER1=9.0.0.77/6625;TTC_SERVER_DSN=sample

About Accessing the Endpoint from Inside the Cluster
Applications running inside the cluster can access the TimesTen Operator at timesten-
operator.namespace.svc.cluster.local:8080 where namespace is the name of your
namespace.

The metrics endpoint by default uses https, secured with a self-signed certificate created by
the TimesTen Operator. Applications running inside the cluster can get the appropriate
certificate to allow them to access the endpoint by mounting the Kubernetes Secret called
timesten-operator-metrics-client. The TimesTen Operator automatically creates this
Secret.

The Secret contains the following entries:

• ca.crt : Adds the TimesTen Operator's certificate to the list of certificates that the
application accepts (or trusts).

• client.crt: Contains a client certificate that the TimesTen Operator trusts.

• client.key: Contains the private key for the client certificate.

To access the Connection Manager API, applications must authenticate to the TimesTen
Operator using this information.

About Accessing the Endpoint from Outside the Cluster
When the TimesTen Operator starts up, it creates a NodePort Service that maps to the
metrics endpoint. This allows applications outside the cluster to access this information. The
TimesTen Operator attempts to create this NodePort Service on an external port number that
you provide. If successful, applications outside the cluster can then issue GETs to this port
number on any node in the cluster in order to retrieve the TimesTen connection strings. It is up
to you to make the IP addresses of cluster nodes and the external port number available to
applications.

The metrics endpoint by default uses https, secured with a self-signed certificate created by
the TimesTen Operator. Applications running inside the cluster can get the appropriate
certificate to allow them to access the endpoint by mounting the Kubernetes Secret called
timesten-operator-metrics-client. The TimesTen Operator automatically creates this
Secret.

However, applications outside the cluster cannot directly access this Secret or other Secrets
within the cluster. You must manually extract the contents of the timesten-operator-metrics-
client Secret and make it available to applications outside the cluster that want to use the
Connection Manager API.

The Secret contains the following entries:

• ca.crt : Adds the TimesTen Operator's certificate to the list of certificates that the
application accepts (or trusts).

• client.crt: Contains a client certificate that the TimesTen Operator trusts.

• client.key: Contains the private key for the client certificate.

Chapter 13
How to Use the Connection Manager

13-4



To access the Connection Manager API, applications must authenticate to the TimesTen
Operator using this information.

About Accessing TimesTen
Once applications receive a connection string from the Connection Manager, they may then
add additional information to the connection string before presenting it to TimesTen. For
example, the UID and PWD connection attributes can be added to authenticate the database as
well as additional attributes can be added, such as character set, lock timeouts, and so on.

About Handling Failures
Once connected to a database, the application can use TimesTen normally. At some point, the
application's connection to TimesTen may fail. In such circumstances, applications should not
attempt to reconnect to the database using the connection string that applications were
previously using. Rather, applications should request a new connection string from the
Connection Manager and should use it instead.

About the NodePort Service for the Connection Manager
The TimesTen Operator creates a NodePort Service that enables access to the Connection
Manager API from outside the cluster. The Service routes incoming requests to the current
leader Operator instance. The service is called timesten-operator-np.

By default the NodePort Service is configured to use port number 32625. You can override this
port number by using the TT_CONNECTION_MANAGER_NODEPORT environment variable in the
operator.yaml or cluster_operator.yaml YAML files or by using the operatorNodePort value
in the ttoperator or ttclusteroperator Helm charts.

Note:

Kubernetes allows NodePort Services to use only port numbers between 30000 and
32767.

About the TimesTen Operator Configuration
Here is the TimesTen Operator configuration for using the Connection Manager to optimize
client/server performance:

• TT_CONNECTION_MANAGER: If defined and set to 1, this environment variable enables the
Connection Manager. By default, the value is set to 1 in the operator.yaml and
cluster_operator.yaml YAML manifest files.

connectionManager: If defined and set to true in the ttoperator or ttclusteroperator
Helm charts, the Connection Manager is enabled. The default is true and is set in the
ttoperator and ttclusteroperator Helm charts.

If you disable metrics for the TimesTen Operator, or you are not using https for metrics, the
Connection Manager is not enabled. For example, if you set METRICS_SCHEME to http or
EXPOSE_METRICS to 0 (or the equivalent in the Helm charts), then TT_CONNECTION_MANAGER
(and connectionManager) is ignored and treated as 0 (or false).

Chapter 13
About the NodePort Service for the Connection Manager

13-5



• TT_CONNECTION_MANAGER_NODEPORT environment variable (in operator.yaml and
cluster_operator.yaml) and the operatorNodePort value (in the ttoperator and
ttclusteroperator Helm charts): Use to change the port number on which the
Connection Manager API is available for applications outside the cluster. The default is
32625.

• TT_OPERATOR_SAN environment variable (in operator.yaml and cluster_operator.yaml)
and the operatorSAN value (in the ttoperator and ttclusteroperator Helm charts): Use
to add subject alternate names (SANs) to the TLS certificate that the TimesTen Operator
creates to control access to the TimesTen Operator metrics and to the Connection
Manager API.

– If you use metrics and the Connection Manager API from inside the cluster only, you
do not need to define this environment variable in the YAML manifest files (or define
the value in the Helm charts).

– If you use either metrics or the Connection Manager API or both from outside the
cluster, you must define a SAN for the nodes in the cluster. By default, no SAN is
specified.

For more information, see TimesTen Kubernetes Operator Environment Variables and Helm
Charts for the TimesTen Kubernetes Operator.

Normal http error codes indicate if the request is invalid.

If a valid request is received, a JSON object is returned in the following format:

{ "status": 0 [, "error": "the error"] [, "connstr": "TTC_SERVER1=..."]}

where:

• status: Is a numeric indication as to whether the request was successful or not. A value of
0 indicates success.

• error: If status is not equal to 0, this is a string that explains the error.

• connstr: If status is equal to 0, this is the connection string that is returned.

Chapter 13
About the TimesTen Operator Configuration

13-6



14
Expose TimesTen Metrics with the TimesTen
Kubernetes Operator

The TimesTen Kubernetes Operator (TimesTen Operator) can expose TimesTen metrics to
Prometheus or any other scraping mechanism. This chapter shows you how.

Topics:

• Overview of TimesTen Metrics

• Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter

• About the Prometheus Operator

• About Exposing TimesTen Metrics

• About Using http or https for TimesTen Metrics

• About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics

• About Creating PodMonitor Objects

• About the TimesTen Metrics Service

• About Choosing to Expose TimesTen Metrics

• Expose TimesTen Metrics Automatically

Overview of TimesTen Metrics
There are several TimesTen metrics that can be exposed to Prometheus or another scraping
mechanism. These metrics are collected from a variety of sources, including TimesTen system
tables and views and TimesTen built-in procedures and utilities. For more information about
TimesTen metrics, see The Metrics Supported by the TimesTen Exporter in the Oracle
TimesTen In-Memory Database Monitoring and Troubleshooting Guide.

Prometheus is an open source monitoring and alerting toolkit. It collects and stores metrics
from monitored targets by scraping the http (or https) metrics endpoint on these targets.

TimesTen exports TimesTen metrics to Prometheus by using the TimesTen ttExporter
(TimesTen exporter) utility. The TimesTen exporter presents itself as an http or https server.
When the TimesTen exporter receives an http or https request to the /metrics endpoint, it
retrieves the TimesTen metrics from each database that it monitors and prepares a plain text
http or https response with the metrics.

The TimesTen exporter converts TimesTen metrics into a form supported by Prometheus. This
simple integration lets you monitor the health and operation of your TimesTen databases.

The TimesTen exporter is supported in TimesTen Classic and in TimesTen Scaleout. In
TimesTen Scaleout, the TimesTen exporter is deployed on each data instance and on the
management instance.

For information about Prometheus and the TimesTen exporter, see About Prometheus and 
About the TimesTen Exporter in the Oracle TimesTen In-Memory Database Monitoring and
Troubleshooting Guide.

14-1



Overview of the TimesTen Kubernetes Operator and the
TimesTen Exporter

The TimesTen Operator supports the TimesTen exporter and lets you configure
TimesTenClassic and TimesTenScaleout objects to use this TimesTen exporter. Once
configured, the TimesTen Operator starts, stops, and manages the TimesTen exporter. As the
TimesTen exporter collects metrics from the TimesTen databases running in your Kubernetes
environment, the TimesTen Operator works to expose these metrics to Prometheus.

The TimesTen exporter runs in its own exporter container. This container exists in the same
TimesTen Pods as the tt and the daemonlog containers. These TimesTen Pods run in your
Kubernetes cluster.

The TimesTen Operator creates the Pods that are running TimesTen with the Kubernetes
shareProcessNamespace Pod attribute. This attribute allows the TimesTen exporter that is
running in the exporter container to access TimesTen that is running in the tt container, both
of which are in the TimesTen Pod. For more information about the shareProcessNamespace
attribute, see Share Process Namespace between Containers in a Pod in the Kubernetes
documentation.

The TimesTen Operator configures the exporter container with the same TimesTen container
image as the tt and the daemonlog containers. If the TimesTen exporter fails or exits,
Kubernetes destroys the exporter container and creates another one to take its place.
Kubernetes monitors and manages the exporter container. Because the lifecycle of individual
containers in a Pod are independent, the TimesTen Operator ensures that the ttExporter
command starts after TimesTen. The TimesTen Operator waits until the TimesTen agent
creates the TimesTen instance and waits until the TimesTen main daemon is running in the tt
container of the TimesTen Pod. The Operator then starts the TimesTen exporter in the
exporter container of the same TimesTen Pod.

Once configured, the TimesTen exporter functions as an http or https server. It listens for
incoming GET requests and responds to them by gathering a set of metrics from TimesTen. It
then returns these metrics as the response to the GET request.

To facilitate the listening process, the TimesTen Operator creates a Kubernetes headless
Service. This Service exposes the port on which the TimesTen exporter is listening to the
remainder of the Kubernetes cluster. This lets a Prometheus server running in the cluster to
fetch the TimesTen metrics from TimesTen and process them.

About the Prometheus Operator
In Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter, we discussed
how the TimesTen Operator and the TimesTen exporter work together to collect and export
TimesTen metrics. Now let's look at how we can expose these metrics to Prometheus.

Note:

You can expose TimesTen metrics to any scraping target. Our documentation
focuses on Prometheus.

Chapter 14
Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter

14-2

https://kubernetes.io/docs/tasks/configure-pod-container/share-process-namespace/


There are several ways to configure Prometheus in Kubernetes. One of the most popular is the
Prometheus Operator. The Prometheus Operator simplifies the deployment, monitoring, and
management of Prometheus in Kubernetes.

Similar to the TimesTen Kubernetes Operator, the Prometheus Operator add several custom
resource definitions (CRDs) to Kubernetes. Just as you deploy TimesTen by creating an object
of type TimesTenClassic or type TimesTenScaleout, deploying Prometheus in Kubernetes
involves creating an object of type Prometheus. The Prometheus Operator automatically
detects the creation of such an object and responds by starting a server using the configuration
included in the object.

Note:

It is beyond the scope of this book to detail how to create an object of type
Prometheus.

The Prometheus Operator also simplifies the configuration of Prometheus servers that it
deploys. The Prometheus Operator can automatically edit the Prometheus server's
configuration files to include data sources that should be scraped from the /metrics endpoint.
This is done through the creation of Kubernetes objects of type ServiceMonitor and of type
PodMonitor. (The ServiceMonitor object type is discussed in About Creating ServiceMonitor
Objects.)

Let's look at a basic example of a PodMonitor object:

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
  name: sample
spec:
  selector:
    matchLabels:
      app: sample
  podMetricsEndpoints:
  - port: metrics

If you create such a PodMonitor object, the Prometheus Operator automatically responds by
editing the Prometheus server's configuration files to cause the Prometheus server to scrape
metrics from any Pod created with a label of app: sample. All Pods with the specified label
automatically appear as scrape targets in Kubernetes. As Pods matching the selector are
created or deleted, the Prometheus configuration is automatically kept in synchronization.

Using a Prometheus Operator offers a simplified approach to not only deploying, managing,
and monitoring Prometheus, but also configuring Prometheus servers.

About Exposing TimesTen Metrics
The TimesTen Operator supports the TimesTen exporter, providing the ability for TimesTen
databases deployed in your Kubernetes cluster to have TimesTen metrics exported. In
addition, the Prometheus Operator configures and stands up Prometheus servers and creates
and manages configuration files associated with these Prometheus servers. However, there
are additional tasks that Prometheus requires to scrape TimesTen metrics.

For example:

Chapter 14
About Exposing TimesTen Metrics

14-3



• If you are using https to serve TimesTen metrics, an Oracle Wallet and certificates must be
created.

• The certificates must be made available to Prometheus.

• Prometheus configuration files must be edited to cause Prometheus to scrape metrics from
TimesTen. This is true whether TimesTen metrics are served using https or http.

Let's look at these tasks, examine our options for completing these tasks, and discuss how the
TimesTen Operator can automatically perform these tasks for you.

Startung with TimesTen release 22.1, the TimesTen Operator automatically exports and
exposes TimesTen metrics. In addition, if the Prometheus Operator is installed in your
Kubernetes cluster, the TimesTen Operator provides Prometheus with all the information it
needs to scrape TimesTen metrics from TimesTen databases.

Let's look at how the TimesTen Operator does this.

By default, the TimesTen Operator does the following:

• Exports and exposes TimesTen metrics from TimesTen databases deployed in your
Kubernetes cluster.

• Uses https/Transport Layer Security (mutual TLS) to make these metrics available.

• If the Prometheus Operator is installed, creates the necessary objects to cause
Prometheus to be automatically modified, which then causes Prometheus to scrape
TimesTen metrics from the TimesTen databases.

• Exposes TimesTen metrics outside of the TimesTen Pods.

Although this default behavior is recommended, you have the option of changing the default
behavior. Let's examine our options:

• https or http?: TimesTen metrics are available by https (default) or http.

• Create a Kubernetes PodMonitor object?: If the Prometheus Operator is installed in your
Kubernetes cluster, the TimesTen Operator can create a PodMonitor object. This object
contains the information needed by the Prometheus Operator to configure TimesTen
databases as a scrape target. If the Prometheus Operator has been installed in your
Kubernetes cluster, then by default the TimesTen Operator attempts to create a
PodMonitor object.

• Expose TimesTen metrics outside of the TimesTen Pods?: The TimesTen exporter listens
on and accepts GETs on the sampleobject.mynamespace.svc.cluster.local:8080/
metrics endpoint (where sampleobject is the name of a TimesTenClassic or
TimesTenScaleout object and mynamespace is the name of your namespace). By default,
the TimesTen Operator deploys a Kubernetes Service that makes this endpoint available to
other Pods in the Kubernetes cluster.

Note:

Having the TimesTen Operator automatically expose TimesTen metrics is not
available in TimesTen release 18.1. This functionality is available in TimesTen release
22.1 and above.

Now let's look at how we can change this default behavior.

A TimesTenClassic or TimesTenScaleout object that is deployed in your namespace has
specific datum associated with the object. These datum define the characteristics of a

Chapter 14
About Exposing TimesTen Metrics

14-4



TimesTenClassic or TimesTenScaleout object, including the TimesTen databases associated
with the object. You have the option of customizing a TimesTenClassic or TimesTenScaleout
object by specifying values for particular datum in the object's YAML manifest file.

For exposing TimesTen metrics, the TimesTen Operator provides
the .spec.ttspec.prometheus datum/clause and provides specific datum for use within this
clause. This clause and its associated datum determine if and how the TimesTen Operator
exports and exposes TimesTen metrics.

Let's look at the specific datum in the .spec.ttspec.prometheus clause in greater detail:

• .spec.ttspec.prometheus.publish: Determines if the TimesTen Operator provisions an
exporter container for the TimesTen exporter. The default is true. We discuss this in 
About Choosing to Expose TimesTen Metrics.

• .spec.ttspec.prometheus.insecure: Determines if TimesTen metrics are served using
https or http. If the value is false or not specified, TimesTen metrics are served using
https. If the value is true, TimesTen metrics are served using http. For more information,
see About Using http or https for TimesTen Metrics.

• .spec.ttspec.prometheus.certSecret: If specified, contains a Kubernetes Secret that
you have previously created. This Secret contains an Oracle Wallet and the necessary
certificates for https. If not specified, the TimesTen Operator automatically creates an
Oracle Wallet, the necessary certificates, and the Kubernetes Secrets.

We recommend that you do not specify .spec.ttspec.prometheus.certSecret and
instead let the TimesTen Operator automate this process for you. For more information,
see About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics. If you
want to specify .spec.ttspec.prometheus.certSecret, see Create Your Own Oracle
Wallet, Certificates, and Secrets for Exposing TimesTen Metrics.

• .spec.ttspec.prometheus.createPodMonitors: Determines if the TimesTen Operator
should create a PodMonitor object. The default is true. We discuss this in About Creating
PodMonitor Objects.

For additional information about .spec.ttspec.prometheus and its associated datum, see 
TimesTenClassicSpecSpecPrometheus for a TimesTenClassic object and 
TimesTenScaleoutSpecSpecPrometheus for a TimesTen Scaleout object.

About Using http or https for TimesTen Metrics
TimesTen metrics are available by http or https.

The default behavior is https and is discussed in About Transport Layer Security (mutual TLS)
Certificates for TimesTen Metrics.

To cause the TimesTen Operator to use http for TimesTen metrics, specify
the .spec.ttspec.prometheus.insecure datum in a TimesTenClassic or TimesTenScaleout
object YAML manifest file.

Here is a code snippet of a TimesTenClassic object YAML manifest file showing you how to do
this:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: usehttp
spec:
  ttspec:

Chapter 14
About Using http or https for TimesTen Metrics

14-5



…
    prometheus:
      insecure: true
      port: 7777

Note the following:

• The .spec.ttspec.insecure datum is specified in the .spec.ttspec.prometheus clause
of the TimesTenClassic object. This causes the TimesTen Operator to configure the
TimesTen exporter to serve TimesTen metrics using http.

The .spec.ttspec.port datum is specified. This is the port on which the TimesTen
exporter listens. The causes the TimesTen Operator to set up the http server on TCP port
7777 in each TimesTen Pod.

About Transport Layer Security (mutual TLS) Certificates for
TimesTen Metrics

When https is used, the TimesTen Operator automatically creates self-signed certificates. The
TimesTen Operator also creates two Kubernetes Secrets to hold these certificates.

As an example, for a TimesTen object called sample, these Secrets are automatically created:

• sample-metrics: This Secret is automatically mounted in the TimesTen exporter containers
of the TimesTen Pods. It contains an Oracle Wallet, which contains all certificates needed
by the TimesTen exporter for https.

• sample-metrics-client: This Secret contains files that a Prometheus server (or other
scraper) requires to scrape TimesTen metrics. This Secret contains the following three
files:

– ca.crt: The Certificate Authority certificate needed by the client to authenticate the
self-signed certificate used by the TimesTen exporter.

– client.crt: The client certificate that the TimesTen exporter uses to authenticate any
clients that try to scrape metrics from it.

– client.key: The private key that is associated with the client.crt client certificate.

Both Secrets are created with appropriate Kubernetes owner references. If you delete the
associated TimesTenClassic or TimesTenScaleout object, these Secrets are automatically
deleted.

Although not recommended, you have the option of creating your own certificates to serve
TimesTen metrics using https. See Create Your Own Oracle Wallet, Certificates, and Secrets
for Exposing TimesTen Metrics.

Note:

If TimesTen metrics are served by using either http or https whereby you create your
own self-signed certificates, then the TimesTen Operator does not automatically
create certificates, Oracle Wallets, or Kubernetes Secrets.

Chapter 14
About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics

14-6



About Creating PodMonitor Objects
By default, if the Prometheus Operator has been installed in your Kubernetes cluster, the
TimesTen Operator automatically creates PodMonitor objects when it provisions TimesTen in
your namespace. Specifically, the TimesTen Operator automatically creates a PodMonitor
object for each deployed TimesTenClassic or TimesTenScaleout object.

This automates all of the steps required to get TimesTen metrics into Prometheus. As
TimesTen objects are created and deleted, the appropriate scrape targets are automatically
provisioned and removed from the Prometheus configuration without any intervention by you.

Although recommended, this is an optional capability. If you choose not to use the Prometheus
Operator, you can export TimesTen metrics into Prometheus yourself. The Prometheus
Operator is not a prerequisite for using the TimesTen Operator.

If you have installed the Prometheus Operator and you do not want the TimesTen Operator to
automatically create PodMonitor objects, set
the .spec.ttspec.prometheus.createPodMonitors datum of your TimesTenClassic or
TimesTenScaleout object to false.

This capability is available whether a TimesTenClassic or TimesTenScaleout object is using
http or https. It is also available with TimesTen Operator-created certificates and Secrets.

However, this capability is not available if you specify
the .spec.ttspec.prometheus.certSecret datum in a TimesTenClassic or TimesTenScaleout
object definition. If you provide your own Kubernetes Secret that contains your own Oracle
Wallet (and this Oracle Wallet contains the necessary certificates for using https), the
TimesTen Operator cannot automatically produce a PodMonitor object with sufficient
information to allow Prometheus to access TimesTen. In this case, you must create your own
PodMonitor objects, or otherwise edit Prometheus configuration files to access TimesTen and
have TimesTen metrics scraped.

If the TimesTen Operator attempts to create a PodMonitor object and is unable to do so, the
TimesTen Operator generates an appropriate Event and continues on with provisioning and
other normal operations. This can happen if the Prometheus Operator is not installed in your
Kubernetes cluster or if the TimesTen Operator has not been granted appropriate role-based
access control (RBAC) privileges in your Kubernetes cluster. For more information about
RBAC privileges, see https://kubernetes.io/docs/reference/access-authn-authz/rbac/.

A PodMonitor object created by the TimesTen Operator has an owner reference to the
appropriate TimesTenClassic or TimesTenScaleout object. This ensures that the PodMonitor
object is automatically deleted if the TimesTenClassic or TimesTenScaleout object is deleted.

Note:

The .spec.ttspec.prometheus.createPodMonitors datum can be added to new
TimesTenClassic and TimesTenScaleout objects, but cannot be added to existing
TimesTenClassic and TimesTenScaleout objects (by using the kubectl upgrade or
the kubectl patch commands or by other means).

For more information about PodMonitor objects, see https://prometheus-operator.dev/docs/
getting-started/design/#podmonitor.

Chapter 14
About Creating PodMonitor Objects

14-7

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://prometheus-operator.dev/docs/getting-started/design/#podmonitor
https://prometheus-operator.dev/docs/getting-started/design/#podmonitor


About the TimesTen Metrics Service
The TimesTen Operator automatically creates a Kubernetes Service for the TimesTen exporter.
This Service exposes the port on which the TimesTen exporter listens to the Pods in the
Kubernetes cluster. This Service exposes the port at
sample.mynamespace.svc.cluster.local:port/metrics where:

• sample is the name of a TimesTenClassic or TimesTenScaleout object.

• mynamespace is the name of your namespace.

• port is the port number on which the TimesTen exporter listens.

The default port is 8888.

You can change the port on which the TimesTen exporter listens by specifying
the .spec.ttspec.prometheus.port datum in a TimesTenClassic or TimesTenScaleout object
YAML manifest file.

Here is a code snippet of a TimesTenClassic object YAML manifest file showing
the .spec.ttspec.prometheus.port datum.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  ttspec:
…
    prometheus:
      port: 7777

In this snippet, the TimesTen exporter listens on port 7777.

About Choosing to Expose TimesTen Metrics
By default, the TimesTen Operator exposes TimesTen metrics for TimesTenClassic and
TimesTenScaleout objects.

You have the option of not exposing TimesTen metrics by setting
the .spec.ttspec.prometheus.publish datum to false in a TimesTenClassic or
TimesTenScaleout object YAML manifest file. Doing so causes the TimesTen Operator to not
provision an exporter container for the TimesTen exporter. If an exporter container is not
provisioned, the TimesTen exporter is not configured, started, or managed. In this case,
TimesTen metrics for the databases associated with this TimesTenClassic or
TimesTenScaleout object are not exported or exposed.

Here is a code snippet showing how to set the value of
the .spec.ttspec.prometheus.publish datum to false in a TimesTenClassic object YAML
manifest file:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample

Chapter 14
About the TimesTen Metrics Service

14-8



spec:
  ttspec:
…
    prometheus:
      publish: false

In this example, the TimesTen Operator does not provision an exporter container for the
sample TimesTenClassic object.

The default value for the .spec.ttspec.prometheus.publish datum is true. If you want the
TimesTen Operator to provision an exporter container, you can choose the default or you can
specify a value of true for the .spec.ttspec.prometheus.publish datum.

If you do not specify the publish datum, and any other datum is specified in
the .spec.ttspec.prometheus clause, the default value for the publish datum is true.

If you do not specify the .spec.ttspec.prometheus clause and the TimesTen release is 22.1 or
greater, the default value for the publish datum is dependent on the value of the
EXPOSE_METRICS TimesTen Operator environment variable:

• If EXPOSE_METRICS is "1" (or not specified), the TimesTen Operator treats the publish
datum as true.

• If EXPOSE_METRICS is "0", the TimesTen Operator treats the publish datum as false.

For more information about the .spec.ttspec.prometheus clause of a TimesTenClassic or
TimesTenScaleout object, see TimesTenClassicSpecSpecPrometheus or 
TimesTenScaleoutSpecSpecPrometheus respectively.

For information about TimesTen Operator environment variables, see TimesTen Kubernetes
Operator Environment Variables.

We recommend that you let the TimesTen Operator automatically export, expose, and publish
TimesTen metrics. For a complete example, see Expose TimesTen Metrics Automatically.

Expose TimesTen Metrics Automatically
Let's walk through an example showing how the TimesTen Operator automatically exports and
exposes TimesTen metrics. In this example, let's create a TimesTenClassic object and observe
how the TimesTen Operator automatically creates the objects needed to automatically export
and expose TimesTen metrics to Prometheus.

Let's assume you have installed the Prometheus Operator in your Kubernetes cluster and
there is a Prometheus server running in your namespace. Let's also assume you have started
the TimesTen Operator following the steps in About the TimesTen Operator and there are no
TimesTenClassic or TimesTenScaleout objects deployed in your namespace.

1. Create a TimesTenClassic object.

vi samplepublish.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: samplepublish
spec:
  ttspec:

Chapter 14
Expose TimesTen Metrics Automatically

14-9



    storageClassName: oci
    storageSize: 250G
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    prometheus:
      port: 6666

In this example, the port on which the TimesTen exporter listens is 6666.

2. Deploy the TimesTenClassic object.

kubectl create -f samplepublish.yaml

The output is the following:

timestenclassic.timesten.oracle.com/samplepublish created

3. Wait a few minutes, then confirm the TimesTenClassic object is in the Normal state.

kubectl get ttc samplepublish

The output is similar to the following:

NAME            STATE    ACTIVE            AGE
samplepublish   Normal   samplepublish-0   3m56s

4. Confirm the TimesTen Operator provisioned an exporter container in each TimesTen Pod

kubectl get pods

The output is similar to the following:

NAME                                  READY   STATUS    RESTARTS   AGE
...
samplepublish-0                       3/3     Running   0          7m33s
samplepublish-1                       3/3     Running   0          7m33s
...

The TimesTen Operator automatically provisioned 3 containers in each TimesTen Pod.
One of these containers is the exporter container, which is running the TimesTen exporter.

5. Confirm the TimesTen Operator automatically created the appropriate Kubernetes Secrets.

kubectl get secrets

The output is similar to the following:

NAME                                             
TYPE                             DATA   AGE
...
samplepublish-metrics                            
Opaque                           1      15m

Chapter 14
Expose TimesTen Metrics Automatically

14-10



samplepublish-metrics-client                     
Opaque                           3      15m

By default, TimesTen metrics are served using https. As a result, the TimesTen Operator
automatically created an Oracle Wallet, the certificates, and the Kubernetes Secrets
needed for https. For more information, see About Transport Layer Security (mutual TLS)
Certificates for TimesTen Metrics.

6. Confirm the appropriate files are in the samplepublish-metrics-client Kubernetes
Secret.

kubectl describe secret samplepublish-metrics-client

The output is similar to the following:

Name:         samplepublish-metrics-client
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
ca.crt:      1461 bytes
client.crt:  1273 bytes
client.key:  1675 bytes

The TimesTen Operator automatically created the ca.crt, client.crt, and client.key
files. The samplepublish-metrics-client Kubernetes Secret holds these files. See About
Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics.

7. Confirm the TimesTen Operator automatically created the samplepublish PodMonitor
object.

kubectl describe podmonitor samplepublish

The output is similar to the following:

Name:         samplepublish
Namespace:    mynamespace
Labels:       app=samplepublish
              database.timesten.oracle.com=samplepublish
Annotations:  <none>
API Version:  monitoring.coreos.com/v1
Kind:         PodMonitor
Metadata:
  Creation Timestamp:  2025-01-25T15:36:08Z
  Generation:          1
  Owner References:
    API Version:           timesten.oracle.com/v4
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  TimesTenClassic

Chapter 14
Expose TimesTen Metrics Automatically

14-11



    Name:                  samplepublish
    UID:                   d0f46bf7-b1d8-4499-876c-51410a469772
  Resource Version:        284346942
  UID:                     5a61ec9e-df7d-4a98-be47-dce1e7c3d217
Spec:
  Namespace Selector:
  Pod Metrics Endpoints:
    Bearer Token Secret:
      Key:
    Interval:  15s
    Path:      /metrics
    Port:      exporter
    Scheme:    https
    Tls Config:
      Ca:
        Secret:
          Key:   ca.crt
          Name:  samplepublish-metrics-client
      Cert:
        Secret:
          Key:   client.crt
          Name:  samplepublish-metrics-client
      Key Secret:
        Key:        client.key
        Name:       samplepublish-metrics-client
      Server Name:  
samplepublish.samplepublish.mynamespace.svc.cluster.local
  Selector:
    Match Labels:
      database.timesten.oracle.com:  samplepublish
Events:                              <none>

Let's look at the important information in this PodMonitor object:

• There is an app=samplepublish label. If there are Pods with a label that matches
app=samplepublish, Prometheus scrapes metrics from them. The TimesTen Pods
contain the app=samplepublish label. Prometheus will therefore scrape metrics from
these Pods. We will see this later.

• Prometheus scrapes metrics from the /metrics endpoint.

• Metrics are exposed using https.

• The TimesTen Operator placed the samplepublish-metrics and samplepublish-
metrics-client Kubernetes Secrets in the PodMonitor object. These Secrets and
their contents are used by the Prometheus Operator.

The Prometheus Operator edits the Prometheus server configuration files based on the
information in this PodMonitor object.

8. Confirm the TimesTen Operator automatically created the appropriate Kubernetes Service.

kubectl describe service samplepublish

Chapter 14
Expose TimesTen Metrics Automatically

14-12



The output is similar to the following:

Name:              samplepublish
Namespace:         mynamespace
Labels:            app=samplepublish
Annotations:       <none>
Selector:          app=samplepublish
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                None
IPs:               None
Port:              cs  6625/TCP
TargetPort:        6625/TCP
Endpoints:         10.244.0.120:6625,10.244.1.144:6625
Port:              exporter  6666/TCP
TargetPort:        6666/TCP
Endpoints:         10.244.0.120:6666,10.244.1.144:6666
Session Affinity:  None
Events:            <none>

The TimesTen exporter listens on port 6666.

9. Confirm there is a Prometheus server running in your namespace.

kubectl get pods

The output is similar to the following:

NAME                                  READY   STATUS    RESTARTS   AGE
prometheus-sampleprometheusserver-0   2/2     Running   2          18d
...

The prometheus-sampleprometheusserver-0 Prometheus server is running in your
namespace.

10. Confirm the Prometheus Operator edited the Prometheus server configuration file based
on the information in the samplepublish PodMonitor object.

 kubectl exec prometheus-sampleprometheusserver-0 -c prometheus -- 
cat /etc/prometheus/config_out/prometheus.env.yaml

The output is similar to the following:

global:
  evaluation_interval: 30s
  scrape_interval: 30s
  external_labels:
    prometheus: mynamespace/sampleprometheusserver
    prometheus_replica: prometheus-sampleprometheusserver-0
scrape_configs:
- job_name: podMonitor/mynamespace/samplepublish/0
  honor_labels: false
  kubernetes_sd_configs:

Chapter 14
Expose TimesTen Metrics Automatically

14-13



  - role: pod
    namespaces:
      names:
      - mynamespace
  scrape_interval: 15s
  metrics_path: /metrics
  scheme: https
  tls_config:
    insecure_skip_verify: false
    ca_file: /etc/prometheus/certs/secret_mynamespace_samplepublish-
metrics-client_ca.crt
    cert_file: /etc/prometheus/certs/secret_mynamespace_samplepublish-
metrics-client_client.crt
    key_file: /etc/prometheus/certs/secret_mynamespace_samplepublish-
metrics-client_client.key
    server_name: samplepublish.samplepublish.mynamespace.svc.cluster.local
  relabel_configs:
  - source_labels:
    - job
    target_label: __tmp_prometheus_job_name
  - action: drop
    source_labels:
    - __meta_kubernetes_pod_phase
    regex: (Failed|Succeeded)
  - action: keep
    source_labels:
    - __meta_kubernetes_pod_label_database_timesten_oracle_com
    - __meta_kubernetes_pod_labelpresent_database_timesten_oracle_com
    regex: (samplepublish);true
  - action: keep
    source_labels:
    - __meta_kubernetes_pod_container_port_name
    regex: exporter
  - source_labels:
    - __meta_kubernetes_namespace
    target_label: namespace
  - source_labels:
    - __meta_kubernetes_pod_container_name
    target_label: container
  - source_labels:
    - __meta_kubernetes_pod_name
    target_label: pod
  - target_label: job
    replacement: mynamespace/samplepublish
  - target_label: endpoint
    replacement: exporter
  - source_labels:
    - __address__
    target_label: __tmp_hash
    modulus: 1
    action: hashmod
  - source_labels:
    - __tmp_hash
    regex: 0
    action: keep
  metric_relabel_configs: []

Chapter 14
Expose TimesTen Metrics Automatically

14-14



Prometheus has the information it needs to scrape TimesTen metrics.

11. Review some of the TimesTen metrics: In your browser, go to your Prometheus server.

a. In the Prometheus server search bar, type a TimesTen metric. For example,
timesten_databases. Next, click Execute.

The output is similar to the following:

timesten_databases{container="exporter", endpoint="exporter", 
instance="10.244.0.120:6666", instancename="instance1", 
job="mynamespace/samplepublish", 
namespace="mynamespace", pod="samplepublish-0"} 1

timesten_databases{container="exporter", endpoint="exporter", 
instance="10.244.1.144:6666", instancename="instance1", 
job="mynamespace/samplepublish", 
namespace="mynamespace", pod="samplepublish-1"} 1

There is one TimesTen database in the samplepublish-0 Pod and one TimesTen
database in the samplepublish-1 Pod as evidenced by the value of 1 for the metric.

b. In the Prometheus server search bar, type a second TimesTen metric. For example,
timesten_database_loaded. Next, click Execute.

The output is similar to the following:

timesten_database_loaded{container="exporter", dsn="samplepublish", 
endpoint="exporter", instance="10.244.0.120:6666", 
instancename="instance1", 
job="mynamespace/samplepublish", namespace="mynamespace", 
pod="samplepublish-0"} 1

timesten_database_loaded{container="exporter", dsn="samplepublish", 
endpoint="exporter", instance="10.244.1.144:6666", 
instancename="instance1", 
job="mynamespace/samplepublish", namespace="mynamespace", 
pod="samplepublish-1"} 1

The samplepublish database in the samplepublish-0 Pod and the samplepublish
database in the samplepublish-1 Pod are both loaded into memory as evidenced by
the value of 1 for the metric.

Congratulations! You successfully created TimesTen databases whose metrics are collected by
Prometheus.

Chapter 14
Expose TimesTen Metrics Automatically

14-15



15
Expose Metrics from the TimesTen Kubernetes
Operator

The TimesTen Kubernetes Operator (TimesTen Operator) can expose metrics about its own
functionality as well as the status of TimesTenClassic and TimesTenScaleout objects to
Prometheus or any other scraping mechanism.

This chapter shows you how.

Topics:

• About Exposing Metrics from the TimesTen Kubernetes Operator

• About Using http or https

• About Transport Layer Security (mutual TLS) Certificates

• About Creating ServiceMonitor Objects

• About the TimesTen Kubernetes Operator's Metrics Service

• About TimesTen Operator Metrics

• Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

About Exposing Metrics from the TimesTen Kubernetes Operator
By default, the TimesTen Kubernetes Operator exposes metrics about its own functionality as
well as the status of TimesTenClassic and TimesTenScaleout objects it manages.

Let's look at how the TimesTen Operator does this. Let's examine the default behavior and let's
determine how you can change the default behavior if you choose to do so.

By default, the TimesTen Operator does the following:

• Exports and exposes metrics about its own functionality and the overall status of the
TimesTenClassic and TimesTenScaleout objects that it manages.

• Uses https/Transport Layer Security (mutual TLS) to make these metrics available.

• Automatically creates certificates, Oracle Wallets, and Kubernetes Secrets required for
TLS.

• If the Prometheus Operator is installed, creates the appropriate objects to cause
Prometheus to be automatically modified, which then causes Prometheus to scrape
metrics from the TimesTen Operator.

• Exposes metrics outside of the TimesTen Operator Pods.

Although this default behavior is recommended, you have the option of changing the default
behavior. Let's examine our options:

• https or http?: TimesTen Operator metrics are available by https (default) or http.

• Create a Kubernetes ServiceMonitor object?: If the Prometheus Operator is installed in
your Kubernetes cluster, the TimesTen Operator can create a Kubernetes ServiceMonitor
object. This object contains the information needed by the Prometheus Operator to

15-1



configure the TimesTen Operator as a scrape target. If the Prometheus Operator has been
installed in your Kubernetes cluster, then by default the TimesTen Operator creates a
ServiceMonitor object.

• Expose TimesTen Operator metrics outside of the TimesTen Operator Pods?: The
TimesTen Operator listens on and accepts GETs on the timesten-
operator.mynamespace.svc.cluster.local:8080/metrics endpoint (where mynamespace
is the name of your namespace). By default, the TimesTen Operator deploys a Kubernetes
Service that makes this endpoint available to other Pods in the Kubernetes cluster. You
can choose not to create this Service.

Now, let's look at how we can change the default behavior.

The TimesTen Operator is deployed as a Kubernetes Deployment. The provided
operator.yaml and cluster_operator.yaml YAML manifest file that lets you customize this
Deployment. These files are located in the deploy directory of the TimesTen Operator
distribution. For more information, see About the TimesTen Operator.

The operator.yaml file contains various environment variables. Three of these variables
govern if and how the TimesTen Operator exports and exposes metrics about its own operation
and the status of the TimesTenClassic and TimesTenScaleout objects that it manages.

• METRICS_SCHEME: Determines if metrics should be made available by https or http. A setting
of "https" (default) indicates https should be used. A setting of "http" indicates http
should be used.

• CREATE_SERVICEMONITOR: Determines if the TimesTen Operator should create a Kubernetes
ServiceMonitor object (discussed in a later section). A setting of "1" (default) indicates the
TimesTen Operator should create a ServiceMonitor object. A setting of "0" indicates the
TimesTen Operator should not create a ServiceMonitor object.

• EXPOSE_METRICS: Determines if metrics are exposed outside of the TimesTen Operator
Pods. A setting of "1" (default) indicates metrics should be exposed outside of the
TimesTen Operator Pods. A setting of "0" indicates metrics should not be exposed outside
of the TimesTen Operator Pods.

Let's look at a snippet of an operator.yaml file that shows the existence of these environment
variables and the default settings.

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
...          
          env:
            ...
            - name: EXPOSE_METRICS
              value: "1"
            - name: METRICS_SCHEME
              value: "https"
            - name: EXPOSE_PROBES
              value: "1"
            - name: CREATE_SERVICEMONITOR
              value: "1"
...

Chapter 15
About Exposing Metrics from the TimesTen Kubernetes Operator

15-2



For reference information about these variables, see TimesTen Kubernetes Operator
Environment Variables.

Note:

TimesTen Operator metrics are accurate when you have one TimesTen Operator
defined in your TimesTen Operator Deployment (replicas:1 in your operator.yaml
file).

About Using http or https
TimesTen Operator metrics are available by http or https.

The default behavior is https. To cause the TimesTen Operator to use http instead of https, set
the METRICS_SCHEME environment variable to "http" in your operator.yaml YAML manifest file.

Note:

In TimesTen release 18.1, if you specify https for the METRICS_SCHEME environment
variable, the TimesTen Operator acts as though you specified http.

About Transport Layer Security (mutual TLS) Certificates
When https is used, the TimesTen Operator automatically creates self-signed certificates. The
TimesTen Operator also creates two Kubernetes Secrets to hold these certificates:

• timesten-operator-metrics: This Secret is used internally by the TimesTen Operator. It
contains all the certificates needed by the TimesTen Kubernetes Operator for https/TLS.
You do not need to use or examine this Secret.

• timesten-operator-metrics-client: This Secret contains files that a Prometheus server
(or other scraper) requires to scrape metrics from the TimesTen Operator. This Secret
contains the following three files:

– ca.crt: The Certificate Authority certificate needed by the client to authenticate the
self-signed certificate used by the TimesTen Operator.

– client.crt: The client certificate that the TimesTen Operator uses to authenticate any
clients that try to scrape metrics from it.

– client.key: The private key that is associated with the client.crt client certificate.

Both Secrets are created with appropriate Kubernetes owner references. If you delete the
TimesTen Operator deployment, these Secrets are automatically deleted.

Note:

When http is used, these certificates, Wallets, and Secrets are not created.

Chapter 15
About Using http or https

15-3



About Creating ServiceMonitor Objects
By default, if the Prometheus Operator is installed in your Kubernetes cluster, the TimesTen
Operator attempts to create a Kubernetes ServiceMonitor object called timesten-operator.
This object includes the information needed by Prometheus to configure the TimesTen
Operator as a scrape target. If installed in your cluster, the Prometheus Operator responds to
the creation of this object by editing the Prometheus configuration files to scrape metrics from
the corresponding Service. For more information about ServiceMonitor objects, see https://
prometheus-operator.dev/docs/getting-started/design/#servicemonitor.

A ServiceMonitor object created by the TimesTen Operator has an owner reference to the
appropriate TimesTen Operator deployment. This ensures that the ServiceMonitor object is
automatically deleted if the TimesTen Operator deployment is deleted.

The CREATE_SERVICEMONITOR environment variable determines if the TimesTen Operator
creates a ServiceMonitor object. If you do not want the TimesTen Operator to create a
ServiceMonitor object, then set CREATE_SERVICEMONITOR to "0" in your operator.yaml YAML
manifest file..

About the TimesTen Kubernetes Operator's Metrics Service
The TimesTen Operator always makes metrics available. However, you can limit access to the
TimesTen Operator's /metrics endpoint. By default, the TimesTen Operator's /metrics
endpoint is available to other Pods in the Kubernetes cluster. Specifically, the TimesTen
Operator automatically creates a Kubernetes Service called timesten-operator. This Service
exposes the metrics port in the active TimesTen Operator Pod to the rest of the cluster at
timesten-operator.mynamespace.svc.cluster.local:8080/metrics (where mynamespace is
the name of your namespace).

If you choose not to expose TimesTen Operator metrics outside of the TimesTen Operator's
Pods, set the EXPOSE_METRICS environment variable to "0" in your operator.yaml YAML
manifest file. In this case, the metrics port is not exposed by a Kubernetes Service. (You could
still fetch metrics by using the kubectl exec command to run curl or a similar tool within the
TimesTen Operator Pod itself.)

If you set the EXPOSE_METRICS environment variable to "0" and the CREATE_SERVICEMONITOR
environment variable is set to "1" (default), the CREATE_SERVICEMONITOR environment variable
is treated as though it was set to "0".

In addition, if you set the EXPOSE_METRICS environment variable to "0", the value of the
METRICS_SCHEME environment variable is ignored and http is always used.

About TimesTen Operator Metrics
The TimesTen Operator publishes metrics about its own functionality as well as the status of
TimesTenClassic and TimesTenScaleout objects that it manages.

For details about the metrics, see TimesTen Kubernetes Operator Metrics.

Chapter 15
About Creating ServiceMonitor Objects

15-4

https://prometheus-operator.dev/docs/getting-started/design/#servicemonitor
https://prometheus-operator.dev/docs/getting-started/design/#servicemonitor


Demonstrate How to Expose TimesTen Kubernetes Operator
Metrics

Let's walk through an example illustrating how the TimesTen Kubernetes Operator exposes
metrics about its own functionality as well as the status of TimesTenClassic or
TimesTenScaleout objects. Let's assume Prometheus is installed in your Kubernetes cluster
and you have a Prometheus server running in your namespace.

Let's make the following decisions:

• https or http?: Let's choose https. The METRICS_SCHEME environment variable determines if
metrics should be made available by https or http. A setting of "1" (default) indicates https.

• Create a ServiceMonitor object?: Let's have the TimesTen Operator create a
ServiceMonitor object. This object contains the information needed by Prometheus to
configure the TimesTen Operator as a scrape target. The CREATE_SERVICEMONITOR
environment variable determines if the TimesTen Operator should create a ServiceMonitor
object. A setting of "1" (default) indicates the TimesTen Operator should create the object.

• Expose TimesTen Operator metrics outside of the TimesTen Operator Pods?: Let's have
the metrics exposed outside of the TimesTen Operator Pods so that Prometheus can
scrape metrics from it. The EXPOSE_METRICS environment variable determines if metrics are
exposed outside of the TimesTen Operator Pods. A setting of "1" (default) indicates
metrics should be exposed. This means that the TimesTen Operator will create a
Kubernetes Service (called timesten-operator) that allows the /metrics endpoint to be
available to other Pods in the Kubernetes cluster.

Since we have chosen the defaults for the TimesTen Operator environment variables, you do
not have to modify these variables in the operator.yaml YAML manifest file.

1. Start the TimesTen Operator following the steps in About the TimesTen Operator.

2. (Optional) Review the TimesTen Operator deployment running in your namespace.

kubectl describe deployment timesten-operator

Output.

Name:                   timesten-operator
Namespace:              mynamespace
CreationTimestamp:      Thu, 16 Jan 2025 20:48:48 +0000
Labels:                 <none>
Annotations:            deployment.kubernetes.io/revision: 1
Selector:               name=timesten-operator
Replicas:               1 desired | 1 updated | 1 total | 1 available | 0 
unavailable
StrategyType:           RollingUpdate
MinReadySeconds:        0
RollingUpdateStrategy:  25% max unavailable, 25% max surge
Pod Template:
  Labels:           name=timesten-operator
  Service Account:  timesten-operator
  Containers:
   timesten-operator:
    Image:       container-registry.oracle.com/timesten/

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-5



timesten:22.1.1.34.0
    Ports:       8081/TCP, 8080/TCP
    Host Ports:  0/TCP, 0/TCP
    Command:
      /timesten/operator/operator/timesten-operator
    Liveness:   http-get http://:probes/healthz delay=10s timeout=10s 
period=30s #success=1 #failure=3
    Readiness:  http-get http://:probes/healthz delay=10s timeout=10s 
period=10s #success=1 #failure=1
    Environment:
      WATCH_NAMESPACE:         (v1:metadata.namespace)
      POD_NAME:                (v1:metadata.name)
      OPERATOR_NAME:          timesten-operator
      EXPOSE_METRICS:         1
      METRICS_SCHEME:         https
      EXPOSE_PROBES:          1
      CREATE_SERVICEMONITOR:  1
    Mounts:                   <none>
  Volumes:                    <none>
Conditions:
  Type           Status  Reason
  ----           ------  ------
  Available      True    MinimumReplicasAvailable
  Progressing    True    NewReplicaSetAvailable
OldReplicaSets:  <none>
NewReplicaSet:   timesten-operator-7f77c749fd (1/1 replicas created)
Events:
  Type    Reason             Age   From                   Message
  ----    ------             ----  ----                   -------
  Normal  ScalingReplicaSet  73s   deployment-controller  Scaled up 
replica set timesten-operator-7f77c749fd to 1

The EXPOSE_METRICS and CREATE_SERVICEMONITOR TimesTen Operator environment
variables are set to 1 (defaults) and the METRICS_SCHEME is set to https (default).

3. Confirm the TimesTen Operator created the appropriate Kubernetes Secrets.

 kubectl get secrets

Output:

NAME                                             
TYPE                             DATA   AGE
...
timesten-operator-metrics                        
Opaque                           1      11m
timesten-operator-metrics-client                 
Opaque                           3      11m

The TimesTen Operator created the timesten-operator-metrics Kubernetes Secret. This
Secret contains the certificates needed by the TimesTen Operator for https/TLS. This
Secret is used internally by the TimesTen Operator.

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-6



The TimesTen Operator also created the timesten-operator-metrics-client Kubernetes
Secret. This Secret contains the files that a Prometheus server needs to scrape metrics
from the TimesTen Operator Pods.

4. Confirm the appropriate files are in the timesten-operator-metrics-client Kubernetes
Secret.

kubectl describe secret timesten-operator-metrics-client

Output:

Name:         timesten-operator-metrics-client
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
ca.crt:      1465 bytes
client.crt:  1277 bytes
client.key:  1675 bytes

The Secret contains the following files:

• ca.crt: The Certificate Authority file needed by the client to authenticate the self-
signed certificate used by the TimesTen Operator.

• client.crt: The client certificate that the TimesTen Operator uses to authenticate
clients that are attempting to scrape metrics from it.

• client.key: The private key that is associated with the client.crt file.

5. Confirm the TimesTen Operator created the timesten-operator ServiceMonitor object.

kubectl describe servicemonitor timesten-operator

Output:

Name:         timesten-operator
Namespace:    mynamespace
Labels:       app=timesten-operator
              database.timesten.oracle.com=timesten-operator
Annotations:  deployment.kubernetes.io/revision: 1
API Version:  monitoring.coreos.com/v1
Kind:         ServiceMonitor
Metadata:
  Creation Timestamp:  2025-01-24T20:49:33Z
  Generation:          1
  Owner References:
    API Version:           apps/v1
    Block Owner Deletion:  true
    Controller:            true
    Kind:                  Deployment
    Name:                  timesten-operator

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-7



    UID:                   3084af2d-90ca-49d1-874a-cde1174f50b5
  Resource Version:        282625424
  UID:                     6337b813-9d62-43b0-8594-60e387e7a30d
Spec:
  Endpoints:
    Bearer Token Secret:
      Key:
    Interval:  15s
    Path:      /metrics
    Port:      metrics
    Scheme:    https
    Tls Config:
      Ca:
        Secret:
          Key:   ca.crt
          Name:  timesten-operator-metrics-client
      Cert:
        Secret:
          Key:   client.crt
          Name:  timesten-operator-metrics-client
      Key Secret:
        Key:        client.key
        Name:       timesten-operator-metrics-client
      Server Name:  timesten-operator.mynamespace.svc.cluster.local
  Namespace Selector:
  Selector:
    Match Labels:
      App:  timesten-operator
Events:     <none>

Let's look at the important information in this ServiceMonitor object:

• There is an app=timesten-operator label. If there are Pods with a label that matches
app=timesten-operator, Prometheus scrapes metrics from them. The TimesTen
Operator Pod contains the app=timesten-operator label. Prometheus will therefore
scrape metrics from it. We will see this later.

• Prometheus scrapes metrics from the /metrics endpoint.

• Metrics are exposed using https.

• The TimesTen Operator placed the timesten-operator-metrics and timesten-
operator-metrics-client Kubernetes Secrets in the ServiceMonitor object. These
Secrets are used by the Prometheus Operator.

The Prometheus Operator edits the Prometheus server configuration files based on the
information in this ServiceMonitor object.

6. Confirm the TimesTen Operator created the appropriate Kubernetes Service.

kubectl describe service timesten-operator

Output:

Name:              timesten-operator
Namespace:         mynamespace
Labels:            app=timesten-operator

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-8



                   database.timesten.oracle.com=timesten-operator
Annotations:       deployment.kubernetes.io/revision: 1
Selector:          name=timesten-operator
Type:              ClusterIP
IP Family Policy:  SingleStack
IP Families:       IPv4
IP:                10.96.169.59
IPs:               10.96.169.59
Port:              metrics  8080/TCP
TargetPort:        8080/TCP
Endpoints:         10.244.8.180:8080
Port:              probe  8081/TCP
TargetPort:        8081/TCP
Endpoints:         10.244.8.180:8081
Session Affinity:  None
Events:            <none>

7. Confirm there is a Prometheus server running in your namespace.

kubectl get pods

Output.

NAME                                  READY   STATUS    RESTARTS   AGE
prometheus-sampleprometheusserver-0   2/2     Running   0          10d
...

The prometheus-sampleprometheusserver-0 Prometheus server is running in your
namespace.

8. Confirm the Prometheus Operator edited the Prometheus server configuration file based
on the information in the timesten-operator ServiceMonitor object.

 kubectl exec prometheus-sampleprometheusserver-0 -c prometheus -- 
cat /etc/prometheus/config_out/prometheus.env.yaml

Output.

global:
  evaluation_interval: 30s
  scrape_interval: 30s
  external_labels:
    prometheus: mynamespace/sampleprometheusserver
    prometheus_replica: prometheus-sampleprometheusserver-0
scrape_configs:
- job_name: serviceMonitor/mynamespace/timesten-operator/0
  honor_labels: false
  kubernetes_sd_configs:
  - role: endpoints
    namespaces:
      names:
      - mynamespace
  scrape_interval: 15s
  metrics_path: /metrics

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-9



  scheme: https
  tls_config:
    insecure_skip_verify: false
    ca_file: /etc/prometheus/certs/secret_mynamespace_timesten-operator-
metrics-client_ca.crt
    cert_file: /etc/prometheus/certs/secret_mynamespace_timesten-operator-
metrics-client_client.crt
    key_file: /etc/prometheus/certs/secret_mynamespace_timesten-operator-
metrics-client_client.key
    server_name: timesten-operator.mynamespace.svc.cluster.local
  relabel_configs:
  - source_labels:
    - job
    target_label: __tmp_prometheus_job_name
  - action: keep
    source_labels:
    - __meta_kubernetes_service_label_app
    - __meta_kubernetes_service_labelpresent_app
    regex: (timesten-operator);true
  - action: keep
    source_labels:
    - __meta_kubernetes_endpoint_port_name
    regex: metrics
  - source_labels:
    - __meta_kubernetes_endpoint_address_target_kind
    - __meta_kubernetes_endpoint_address_target_name
    separator: ;
    regex: Node;(.*)
    replacement: ${1}
    target_label: node
  - source_labels:
    - __meta_kubernetes_endpoint_address_target_kind
    - __meta_kubernetes_endpoint_address_target_name
    separator: ;
    regex: Pod;(.*)
    replacement: ${1}
    target_label: pod
  - source_labels:
    - __meta_kubernetes_namespace
    target_label: namespace
  - source_labels:
    - __meta_kubernetes_service_name
    target_label: service
  - source_labels:
    - __meta_kubernetes_pod_name
    target_label: pod
  - source_labels:
    - __meta_kubernetes_pod_container_name
    target_label: container
  - action: drop
    source_labels:
    - __meta_kubernetes_pod_phase
    regex: (Failed|Succeeded)
  - source_labels:
    - __meta_kubernetes_service_name
    target_label: job

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-10



    replacement: ${1}
  - target_label: endpoint
    replacement: metrics
  - source_labels:
    - __address__
    target_label: __tmp_hash
    modulus: 1
    action: hashmod
  - source_labels:
    - __tmp_hash
    regex: 0
    action: keep
  metric_relabel_configs: []

Prometheus has the information it needs to scrape TimesTen Operator metrics.

9. Review then deploy a TimesTenClassic object.

Review.

cat sample.yaml

Output.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sample
spec:
  ttspec:
    storageClassName: oci
    storageSize: 250G
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret

Deploy:

kubectl create -f sample.yaml

Output:

timestenclassic.timesten.oracle.com/sample created

10. Wait a few minutes, then confirm the sample TimesTenClassic object is in the Normal state.

kubectl get ttc sample

Output:

NAME     STATE    ACTIVE     AGE
sample   Normal   sample-0   2m37s

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-11



11. Review some of the TimesTen Operator metrics. In your browser, go to your Prometheus
server.

a. In the Prometheus server search bar, type a TimesTen Operator metric. For example,
timesten_classic_state_normal. Next, click Execute.

Output.

timesten_classic_state_normal{container="timesten-operator", 
endpoint="metrics", instance="10.244.8.180:8080", job="timesten-
operator", 
name="sample", namespace="mynamespace", pod="timesten-
operator-7f77c749fd-2lt5x", 
service="timesten-operator"} 1

There is one TimesTenClassic object (sample) and it is in the Normal state.

b. In the Prometheus server search bar, type a second TimesTen Operator metric. For
example, timesten_classic_state_not_normal. Next, click Execute.

Output.

timesten_classic_state_not_normal{container="timesten-operator", 
endpoint="metrics", instance="10.244.8.180:8080", job="timesten-
operator", 
name="sample", namespace="mynamespace", pod="timesten-
operator-7f77c749fd-2lt5x", 
service="timesten-operator"} 0

There is one TimesTenClassic object (sample) and it is in either Normal or
Initializing state. A value of 0 indicates it is not in any other state.

c. In the Prometheus server search bar, type a third TimesTen Operator metric. For
example, timesten_classic_state. Next, click Execute.

Output.

timesten_classic_state{container="timesten-operator", 
endpoint="metrics", 
instance="10.244.8.180:8080", job="timesten-operator", name="sample", 
namespace="mynamespace", pod="timesten-operator-7f77c749fd-2lt5x", 
service="timesten-operator", state="Initializing"} 0

timesten_classic_state{container="timesten-operator", 
endpoint="metrics", 
instance="10.244.8.180:8080", job="timesten-operator", name="sample", 
namespace="mynamespace", pod="timesten-operator-7f77c749fd-2lt5x", 
service="timesten-operator", state="Normal"} 1

The sample TimesTenClassic object is no longer in the Initializing state. It is now in
the Normal state.

Congratulations! You successfully walked through an example demonstrating how TimesTen
Operator metrics are exposed, scraped, and published.

Chapter 15
Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

15-12



16
Work with TimesTen Cache

The TimesTen Operator supports the use of TimesTen Cache in your Kubernetes environment.

About Using TimesTen Cache
The TimesTen Operator provides interfaces that you can use to configure cache groups.

These are the cache-related metadata files that you can provide:

• cacheUser: This file contains the TimesTen cache manager user. Its format is user/ttpwd/
orapwd, containing the username, TimesTen password, and Oracle password for the user.
The Oracle user (called the cache administration user in Oracle Database) must exist prior
to creating and deploying TimesTen Classic or TimesTen Scaleout. The Operator creates
the TimesTen user in the the TimesTen database with the given name and password. The
Operator also grants this user the appropriate privileges.

Here is an example:

cachemanageruser/ttmgrpwd/oramgrpwd

See cacheUser for more information.

• cachegroups.sql: This file may contain CREATE CACHE GROUP statements as well as LOAD
CACHE GROUP statements for the Operator to automatically run when the TimesTen database
is created. The file also contains TimesTen built-in procedures to update statistics on the
cache group tables (such as, ttOptEstimateStats and ttOptUpdateStats).

Here is an example:

CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
  INTERVAL 5 SECONDS
FROM oratt.readtab (
  keyval NUMBER NOT NULL PRIMARY KEY,
  str VARCHAR2(32)
);
 
LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

See cachegroups.sql for more information.

If you provide the cacheUser and cachegroups.sql files, the Operator uses them to provision
TimesTen Cache when a new database is created.

The following metadata files are also relevant for TimesTen Cache:

• tnsnames.ora: This file is required. It defines Oracle Net Services that applications connect
to. For TimesTen Cache, this file configures the connectivity between the TimesTen and
the Oracle Database (from which data is being cached). In this context, TimesTen is the
application that is the connection to the Oracle Database. See tnsnames.ora for details.

16-1



• sqlnet.ora: This file is optional. However, it may be necessary depending on your Oracle
Database configuration. The file defines options for how client applications communicate
with the Oracle Database. In this context, TimesTen is the application. The tnsnames.ora
and sqlnet.ora files together define how an application communicates with the Oracle
Database.

See sqlnet.ora for details.

• db.ini: This file is required. Its contents contain TimesTen connection attributes for your
TimesTen database. The files are included in TimesTen's sys.odbc.ini file in TimesTen
Classic or in the database definition file (dbDef) in TimesTen Scaelout. You must specify
the OracleNetServiceName and the DatabaseCharacterSet connection attributes in this
file. The DatabaseCharacterSet value must match the value of the Oracle database
character set value.

See db.ini for details.

• schema.sql: This file may be required. In TimesTen Cache, one or more cache table users
own the cache tables. If this cache table user is not the cache manager user, then you
must specify the schema.sql file and in it include the schema user. You must also assign
the appropriate privileges to this schema user. For example, if the oratt schema user was
created in the Oracle Database, and this user is not the TimesTen cache manager user,
you must create the TimesTen oratt user in this file.

The instance administrator uses the ttIsql utility to run this file immediately after the
database is created. This file is run before the Operator configures TimesTen Cache, so
ensure there are no cache definitions in this file.

See Create the Oracle Database Users for more information on the schema users in the
Oracle Database. See schema.sql for details about the schema.sql file.

In TimesTen Classic, the contents of the cachegroups.sql file runs on the active database
before it is duplicated to the standby. If there are autorefresh cache groups specified in the
cachegroups.sql file, they are paused by the agent prior to duplicating the active database to
the standby. After the duplication process completes, these autorefresh cache groups are re-
enabled.

In TimesTen Scaleout, the contents of the cachegroups.sql file runs during database creation.

Once created and rolled out, the Operator does not monitor or manage TimesTen Cache.
Specifically, the Operator does not monitor the health of the cache agents, nor does it take
further action to start or stop them. In addition, the Operator does not verify that data is
propagating correctly between the TimesTen database and the Oracle Database.

If you delete your TimesTenClassic or TimesTenScaleout object, the Operator automatically
cleans up the Oracle Database metadata. If, however, you want to retain the Oracle Database
metadata, specify the cacheCleanUp datum in your TimesTenClassic or TimesTen Scaleout
object definition and set its value to false. See cacheCleanup datum in 
TimesTenClassicSpecSpec and TimesTenScaleoutSpecSpec.

For a complete example, see TimesTen Cache in TimesTen Classic Example.

Chapter 16
About Using TimesTen Cache

16-2



17
Use Encryption for Data Transmission

TimesTen replication and TimesTen Client/Server support the use of Transport Layer Security
(TLS) for communication between TimesTen instances.

This chapter details the process for configuring and using TLS in your Kubernetes
environment. This enables encrypted data transmission between your replicated TimesTen
databases and, if in a Client/Server environment, between your TimesTen client applications
and your TimesTen Server (your TimesTen database).

Topics include:

• Create TLS Certificates for Replication and Client/Server

• Configure TLS for Replication

• Configure TLS for Client/Server

Create TLS Certificates for Replication and Client/Server
By default, TimesTen replication transmits data between your TimesTen databases
unencrypted. In addition, in a TimesTen Client/Server environment, by default data is
transmitted unencrypted between your application and your TimesTen database.

You can choose to enable encryption for replication and for Client/Server through the use of
Transport Layer Security (TLS). TimesTen provides the ttCreateCerts utility to generate self-
signed certificates for TLS. For more information on TLS certificates and wallets, see About
Using Certificates with Client/Server in the Oracle TimesTen In-Memory Database Security
Guide.

Note:

Java must be installed on your development host in order for you to use the
ttCertsCreate utility. The utility searches for Java according to the JRE_HOME,
JAVA_HOME, and PATH settings.

The ttCreateCerts utility is located in the /bin directory of a TimesTen instance. The utility
creates three wallets: rootWallet, clientWallet, and serverWallet.

From your Linux development host, perform these steps to create the certificates.

1. Navigate to the bin directory of the installation and run the ttInstanceCreate utility
interactively to create an instance. Recall that the installation_dir directory was created
when you unpacked the TimesTen distribution.

You have to create a TimesTen instance as the ttCreateCerts utility is run from a
TimesTen instance. For more information on the ttInstanceCreate utility, see 
ttInstanceCreate in the Oracle TimesTen In-Memory Database Reference.

17-1



Create the instance directory (/scratch/ttuser/instance_dir, in this example), then run
the ttInstanceCreate utility, supplying the -name and the -location parameters. This
example uses instance1 as the name of the instance and uses /scratch/ttuser/
instance_dir as the location of the instance.

% mkdir /scratch/ttuser/instance_dir

% installation_dir/tt22.1.1.34.0/bin/ttInstanceCreate -name instance1 
-location /scratch/ttuser/instance_dir
Creating instance in /scratch/ttuser/instance_dir/instance1 ...
INFO: Mapping files from the installation to /scratch/ttuser/
instance_dir/instance1/install
 
NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.
 
The startup script is located here :
        '/scratch/ttuser/instance_dir/instance1/startup/tt_instance1'
 
Run the 'setuproot' script :
        /scratch/ttuser/instance_dir/instance1/bin/setuproot -install
This will move the TimesTen startup script into its appropriate location.
 
The 22.1 Release Notes are located here :
  'installation_dir/tt22.1.1.34.0/README.html'

2. Set the TIMESTEN_HOME environment variable. This variable must be set before you run the
ttCertsCreate utility. From the bin directory of the instance, source the ttenv.csh or the
ttenv.sh script.

This example uses the bash Bourne-type shell. (Not all output is shown.)

% . /scratch/ttuser/instance_dir/instance1/bin/ttenv.sh
LD_LIBRARY_PATH set to 
...
PATH set to 
...
CLASSPATH set to 
TIMESTEN_HOME set to /scratch/ttuser/instance_dir/instance1

3. Run the ttCreateCerts utility from the bin directory of the instance. This example uses
the -verbose qualifier to show detailed output. See Using TLS for Client/Server in
TimesTen Classic in the Oracle TimesTen In-Memory Database Security Guide for more
information on the ttCreateCerts utility.

The default wallet directory is timesten_home/conf, where timesten_home is the TimesTen
instance home directory. This example uses this default wallet directory.

% /scratch/ttuser/instance_dir/instance1/bin/ttCreateCerts -verbose
Requested Certificates:
User Certificates:
Subject:        CN=server1,C=US
Trusted Certificates:
Subject:        CN=ecRoot,C=US
Requested Certificates:
User Certificates:
Subject:        CN=client1,C=US
Trusted Certificates:
Subject:        CN=ecRoot,C=US
ttCreateCerts : certificates created in /scratch/ttuser/instance_dir/
instance1/conf

4. Review the wallet locations and the certificates (represented in bold). The cwallet.sso in
the serverWallet directory is the file you will supply as the replicationWallet metadata

Chapter 17
Create TLS Certificates for Replication and Client/Server

17-2



file for replication and for the server in a Client/Server environment. The cwallet.sso in
the clientWallet directory is the file you will use for the client in a Client/Server
environment. See "About Configuration Metadata Details" for information on the
replicationWallet and the clientWallet metadata files. Also see "Configure TLS for
Replication" and "Configure TLS for Client/Server" for information on using these metadata
files.

(These cwallet.sso files are also represented in bold).

% ls $TIMESTEN_HOME/conf
client1.cert  root.cert   server1.cert  snmp.ini      sys.ttconnect.ini
clientWallet  rootWallet  serverWallet  sys.odbc.ini  timesten.conf

% ls $TIMESTEN_HOME/conf/*Wallet*
/scratch/ttuser/instance_dir/instance1/conf/clientWallet:
cwallet.sso  cwallet.sso.lck
 
/scratch/ttuser/instance_dir/instance1/conf/rootWallet:
cwallet.sso  cwallet.sso.lck
 
/scratch/ttuser/instance_dir/instance1/conf/serverWallet:
cwallet.sso  cwallet.sso.lck

You have successfully created the certificates that can be used for TLS for both replication and
TimesTen Client/Server. You are now ready to configure and use TLS for replication, for Client/
Server, or for both replication and Client/Server.

Configure TLS for Replication
You can configure TLS for replication to ensure secure network communication between your
replicated TimesTen databases. See Transport Layer Security for TimesTen Replication in the
Oracle TimesTen In-Memory Database Security Guide for detailed information.

These sections describe how to configure and use TLS for replication:

• Create Metadata Files and Kubernetes Facilities

• Create a TimesTenClassic Object

• Monitor Deployment of a TimesTenClassic Object

• Verify TLS Is Being Used for Replication

Create Metadata Files and Kubernetes Facilities
The /ttconfig/replicationWallet metadata file is required for TLS support for replication.
(The /ttconfig directory is located in the containers of your TimesTen databases.) This file
must contain the cwallet.sso file (the Oracle wallet) that was generated when you created the
TLS certificates. Recall that this file was located in the /scratch/ttuser/instance_dir/
instance1/conf/serverWallet directory. See Create TLS Certificates for Replication and
Client/Server for information on creating these certificates. This wallet contains the credentials
that are used by TimesTen replication for configuring TLS encryption between your active
standby pair of TimesTen databases.

In addition to the /ttconfig/replicationWallet metadata file, you may use the other
supported metadata files. See About Configuration Metadata Details for information on these
supported metadata files.

You can include these metadata files in one or more Kubernetes facilities (for example, in a
Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the metadata files are

Chapter 17
Configure TLS for Replication

17-3



populated in the /ttconfig directory of the TimesTen containers. Note that there is no
requirement as to how to get the metadata files into this /ttconfig directory. See Populate
the /ttconfig Directory for more information.

The example in the following sections illustrates how to include the replicationWallet
metadata file in a Kubernetes Secret. It also creates the db.ini, the adminUser, and the
schema.sql metadata files and includes these metadata files in a ConfigMap:

• Create a Kubernetes Secret

• Create a ConfigMap

Create a Kubernetes Secret
This section creates the repl-tls Kubernetes Secret. The repl-tls Secret will contain the
replicationWallet metadata file.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory. This example creates the
serverWallet subdirectory. (The serverWallet directory is used in the remainder of this
example to denote this directory.)

% mkdir -p serverWallet
2. Copy the /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso

file into the serverWallet directory that you just created. Recall that this file was generated
when you used the ttCreateCerts utility to create the TLS certificates. See "Create TLS
Certificates for Replication and Client/Server" for information.

% cp /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso 
serverWallet/cwallet.sso

3. Create the Kubernetes Secret.

In this example:

• The name of the Secret is repl-tls. Replace repl-tls with a name of your choosing.
(repl-tls is represented in bold.)

• The name of the metadata file required for TLS replication is replicationWallet
(represented in bold).

• The location of the wallet directory is serverWallet (in this example, represented in
bold). If you use a different directory, replace serverWallet with the name of your
directory.

• The name of the Oracle wallet is cwallet.sso (represented in bold).

Use the kubectl create command to create the Secret:

% kubectl create secret generic repl-tls 
--from-file=replicationWallet=serverWallet/cwallet.sso
secret/repl-tls created

You have successfully created and deployed the repl-tls Kubernetes Secret. The
replicationWallet/cwallet.sso file will later be available in the /ttconfig directory of the
TimesTen containers. In addition, the file will be available in the /tt/home/timesten/
replicationWallet directory of the TimesTen containers.

Chapter 17
Configure TLS for Replication

17-4



Create a ConfigMap
This section creates the repl-tls ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files.

These metadata files are not required for TLS, but are included as additional attributes for your
TimesTen databases. See "Overview of Configuration Metadata and Kubernetes Facilities" for
information on the metadata files and the ConfigMap facility.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata files. This
example creates the cm_replTLS subdirectory. (The cm_replTLS directory is used in the
remainder of this example to denote this directory.)

% mkdir -p cm_replTLS
2. Navigate to the ConfigMap directory.

% cd cm_replTLS
3. Create the db.ini file in this ConfigMap directory (cm_replTLS, in this example). In this

db.ini file, define the PermSize and DatabaseCharacterSet connection attributes.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

4. Create the adminUser file in this ConfigMap directory (cm_replTLS, in this example). In this
adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw

5. Create the schema.sql file in this ConfigMap directory (cm_replTLS, in this example). In
this schema.sql file, define the s sequence and the emp table for the sampleuser user. The
Operator will automatically initialize your database with these object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

6. Create the ConfigMap. The files in the cm_replTLS directory are included in the ConfigMap
and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is repl-tls. Replace repl-tls with a name of your
choosing. (repl-tls is represented in bold in this example.)

Chapter 17
Configure TLS for Replication

17-5



• This example uses cm_replTLS as the directory where the files that will be copied into
the ConfigMap reside. If you use a different directory, replace cm_replTLS with the
name of your directory. (cm_replTLS is represented in bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap repl-tls --from-file=cm_replTLS
configmap/repl-tls created

7. Use the kubectl describe command to verify the contents of the ConfigMap. (repl-tls, in
this example.)

% kubectl describe configmap repl-tls
Name:         repl-tls
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
adminUser:
----
sampleuser/samplepw
 
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8
 
schema.sql:
----
create sequence sampleuser.s;
create table sampleuser.emp (id number not null primary key, name char (32));
 
Events:  <none>

You have successfully created and deployed the repl-tls ConfigMap.

Create a TimesTenClassic Object
This section creates the TimesTenClassic object. For detailed information about the
TimesTenClassic object type, see About the TimesTenClassic Object Type.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use the same
name you used for the name of the TimesTenClassic object. (In this example, repltls.)
The YAML file contains the definitions for the TimesTenClassic object. See
"TimesTenClassicSpecSpec" for information on the fields that you must specify in this
YAML file as well as the fields that are optional.

In this example, the fields of particular interest for TLS replication are:

• dbSecret: This example uses one Kubernetes Secret (called repl-tls) for the
replicationWallet metadata file.

• replicationCipherSuite: This field is required for TLS for replication. In this example,
the value is SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256. See Task 3: Configure TLS
for Replication in the Oracle TimesTen In-Memory Database Security Guide and see
the replicationCipherSuite entry in "Table 20-3" in this book for more information.

Chapter 17
Configure TLS for Replication

17-6



• replicationSSLMandatory: This field is optional. In this example, set
replicationSSLMandatory equal to 1. See Task 3: Configure TLS for Replication in the
Oracle TimesTen In-Memory Database Security Guide and see the
replicationSSLMandatory entry in Table 20-3 in this book for more information.

In addition, this example includes:

• name: Replace repltls with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate. See the storageSize and the logStorageSize entries in
"Table 20-3" for information.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.34.0
with the location and the name of image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called repl-tls) for the db.ini, the
adminUser, and the schema.sql metadata files.

% vi repltls.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: repltls
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - repl-tls
    dbSecret:
    - repl-tls
    replicationCipherSuite: SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
    replicationSSLMandatory: 1

2. Use the kubectl create command to create the TimesTenClassic object from the contents
of the YAML file (in this example, repltls.yaml). Doing so begins the process of deploying
your active standby pair of TimesTen databases in the Kubernetes cluster.

% kubectl create -f repltls.yaml
timestenclassic.timesten.oracle.com/repltls created

You have successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitor Deployment of a TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of the
active standby pair as it is provisioned.

Chapter 17
Configure TLS for Replication

17-7



1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet complete.

% kubectl get ttc repltls
NAME      STATE          ACTIVE   AGE
repltls   Initializing   None     50s

2. Use the kubectl get command again to see if value of the STATE field has changed. In this
example, the value is Normal, indicating the active standby pair of databases are now
provisioned and the process is complete.

% kubectl get ttc repltls
NAME      STATE    ACTIVE      AGE
repltls   Normal   repltls-0   3m45s

3. Use the kubectl describe command to view the active standby pair provisioning in detail.

Note the following have been correctly set in the repltls TimesTenClassic object
definition:

• The repl-tls Secret has been correctly referenced in the dbSecret field (represented
in bold).

• The repl-tls Configmap has been correctly referenced in the dbConfigMap field
(represented in bold).

• The replicationCipherSuite field has been correctly set to
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (represented in bold).

• The replicationSSLMandatory field has been correctly set to 1 (represented in bold).

Note: Not all of the output is shown in this example.

% kubectl describe ttc repltls
Name:         repltls
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
API Version:  timesten.oracle.com/v4
Kind:         TimesTenClassic
Metadata:
  Creation Timestamp:  2025-01-16T18:51:43Z
  Generation:          1
  Resource Version:    75029797
  Self Link: 
/apis/timesten.oracle.com/v4/namespaces/mynamespace/timestenclassics/repltls
  UID:                 a2915ef3-0fe0-11eb-8b9a-aaa0151611fe
Spec:
  Ttspec:
    Db Config Map:
      repl-tls
    Db Secret:
      repl-tls
    Image:                      container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
    Image Pull Policy:          Always
    Image Pull Secret:          sekret
    Replication Cipher Suite:   SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
    Replication SSL Mandatory:  1
    Storage Class Name:         oci-bv
    Storage Size:               250Gi
...
Events:
  Type  Reason       Age    From       Message

Chapter 17
Configure TLS for Replication

17-8



  ----  ------       ----   ----       -------
  -     Create       4m17s  ttclassic  Secret tta2915ef3-0fe0-11eb-8b9a-aaa0151611fe 
created
  -     Create       4m17s  ttclassic  Service repltls created
  -     Create       4m17s  ttclassic  StatefulSet repltls created
  -     StateChange  3m10s  ttclassic  Pod repltls-1 Agent Up
  -     StateChange  3m10s  ttclassic  Pod repltls-1 Release 22.1.1.34.0
  -     StateChange  3m10s  ttclassic  Pod repltls-1 Daemon Up
  -     StateChange  2m3s   ttclassic  Pod repltls-0 Agent Up
  -     StateChange  2m3s   ttclassic  Pod repltls-0 Release 22.1.1.34.0
  -     StateChange  2m1s   ttclassic  Pod repltls-0 Daemon Up
  -     StateChange  68s    ttclassic  Pod repltls-0 Database Loaded
  -     StateChange  68s    ttclassic  Pod repltls-0 Database Updatable
  -     StateChange  68s    ttclassic  Pod repltls-0 CacheAgent Not Running
  -     StateChange  68s    ttclassic  Pod repltls-0 RepAgent Not Running
  -     StateChange  67s    ttclassic  Pod repltls-0 RepState IDLE
  -     StateChange  67s    ttclassic  Pod repltls-0 RepScheme None
  -     StateChange  66s    ttclassic  Pod repltls-0 RepAgent Running
  -     StateChange  66s    ttclassic  Pod repltls-0 RepScheme Exists
  -     StateChange  66s    ttclassic  Pod repltls-0 RepState ACTIVE
  -     StateChange  47s    ttclassic  Pod repltls-1 Database Loaded
  -     StateChange  47s    ttclassic  Pod repltls-1 Database Not Updatable
  -     StateChange  47s    ttclassic  Pod repltls-1 CacheAgent Not Running
  -     StateChange  47s    ttclassic  Pod repltls-1 RepAgent Not Running
  -     StateChange  47s    ttclassic  Pod repltls-1 RepScheme Exists
  -     StateChange  47s    ttclassic  Pod repltls-1 RepState IDLE
  -     StateChange  41s    ttclassic  Pod repltls-1 RepAgent Running
  -     StateChange  36s    ttclassic  Pod repltls-1 RepState STANDBY
  -     StateChange  36s    ttclassic  TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.) You are now ready to verify that TLS is being used for replication.

Verify TLS Is Being Used for Replication
To verify TLS is being used for replication, perform the following steps:

1. Review the active (repltls-0, in this example) pod and the standby pod (repltls-1, in
this example).

% kubectl get pods
NAME                                       READY   STATUS    RESTARTS   AGE
repltls-0                                  2/2     Running   0          6m35s
repltls-1                                  2/2     Running   0          6m34s
timesten-operator-f84766548-tch7s          1/1     Running   0          28d

2. Optional: Use the kubectl exec -it command to invoke the shell in the active Pod
(repltls-0, in this example).

% kubectl exec -it repltls-0 -c tt -- /bin/bash
3. Optional: From the shell in the active pod, verify the cwallet.sso file is located in the /tt/

home/timesten/replicationWallet directory.

% ls /tt/home/timesten/replicationWallet
cwallet.sso
 

4. Optional: From the shell in the active pod, verify that the TLS replication-specific values are
correct in the timesten.conf configuration file. (This file is located in the /tt/home/
timesten/instances/instance1/conf directory.)

In particular, note that:

Chapter 17
Configure TLS for Replication

17-9



• replication_wallet is correctly set to /tt/home/timesten/replicationWallet
(represented in bold).

• replication_cipher_suite is correctly set to
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (represented in bold).

• replication_ssl_mandatory is correctly set to 1 (represented in bold).

See Task 3: Configure TLS for Replication in the Oracle TimesTen In-Memory Database
Security Guide for more information on these timesten.conf attributes.

% cat /tt/home/timesten/instances/instance1/conf/timesten.conf
admin_uid=3429
admin_user=timesten
daemon_port=6624
group_name=timesten
hostname=repltls-0
instance_guid=48AC5964-56A1-4C66-AB89-5646A2431EA3
instance_name=instance1
replication_cipher_suite=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
replication_ssl_mandatory=1
replication_wallet=/tt/home/timesten/replicationWallet
server_port=6625
show_date=1
timesten_release=22.1.1
tns_admin=/ttconfig
verbose=1

5. From the shell in the active pod, run the ttRepAdmin utility with the -showstatus -detail
options to verify the replication agent transmitters and receivers are using TLS (as
indicated by SSL, represented in bold). See ttRepAdmin in the Oracle TimesTen In-
Memory Database Reference for information on this utility.

Note: Not all output is shown in this example.

% ttRepAdmin -showstatus -detail repltls
 
Replication Agent Status as of: 2025-01-16 19:01:55
 
DSN                         : repltls
...
TRANSMITTER thread(s) (TRANSMITTER(M):139870727366400):
 For                     : REPLTLS (track 0) (SSL)
   Start/Restart count   : 1
   Current state         : STATE_META_PEER_INFO
 
RECEIVER thread(s) (RECEIVER:139870719887104):
 For                     : REPLTLS (track 0) (SSL)
   Start/Restart count   : 1
   Current state         : STATE_RCVR_READ_NETWORK_LOOP
...

You have successfully verified that TLS for replication is being used.

Automatically Configure Client/Server TLS
The TimesTen Operator can automatically create self-signed certificates and configure
TimesTen to use those certificates for client/server TLS encryption. This automation eliminates
the requirement for you to manually run the TimesTen ttCreateCerts utility to create self-
signed certificates as well to perform additional manual steps to make the resulting certificates
available to TimesTen on TimesTen servers and TimesTen clients.

Chapter 17
Automatically Configure Client/Server TLS

17-10



Topics in this section include the following:

• About Configuring a TimesTenClassic Object for Automatic Client/Server TLS Encryption

• About the Automation Process

• How-to Example

About Configuring a TimesTenClassic Object for Automatic Client/Server
TLS Encryption

You can customize your TimesTenClassic object to enable automatic client/server TLS
encryption by including a .spec.ttspec.clientTLS section in your TimesTenClassic object
definition. When you include the .spec.ttspec.clientTLS section in your TimesTenClassic
object definition and set .spec.ttspec.clientTLS.auto to true, the TimesTen Operator
notices and takes action to create self-signed certificates and configure TimesTen to use those
certificates for client/server encryption.

Here is a snippet of a TimesTenClassic object that uses .spec.ttspec.clientTLS.

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sampletls
spec:
  ttspec:
    storageClassName: oci-bv
    clientTLS:
      auto: true
      ciphersuites: SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
      eccurve: p256
      encryption: required
      signAlg: ecdsasha384
      validity: 365  
    storageSize: 10Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - sampletls

Let's look at .spec.ttspec.clientTLS in more detail:

• auto: Determines if automatic client/server encryption is enabled. Set auto to true to
enable automatic client/server encryption. The default is false. If set to false, there is no
automatic client/server encryption for this TimesTenClassic object.

• ciphersuites: Defines the cipher suite(s) used for client/server communication. You can
specify one or more cipher suites. If there is more than one cipher suite, use a comma-
separated list, and list the cipher suites in order of preference. This example specifies
SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.

The TimesTen Operator first checks to see if there is a ciphersuites entry in the db.ini
file.

– If there is an entry, the TimesTen Operator uses it.

– If there is no entry, the TimesTen Operator uses the value specified
in .spec.ttspec.clientTLS.ciphersuites.

Chapter 17
Automatically Configure Client/Server TLS

17-11



– If .spec.ttspec.clientTLS.auto is true, and there is no value specified in either the
db.ini file or in .spec.ttspec.clientTLS.ciphersuites, the TimesTen Operator sets
the value to SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.

The TimesTen Operator adds the ciphersuites value to the TimesTen Server's
sys.odbc.ini file.

• eccurve: Defines the elliptical curve signing algorithm. This example specifies p256.

When the TimesTen Operator runs the TimesTen ttCreateCerts utility, it supplies
the .spec.ttspec.clientTLS.eccurve value to the -eccurve option of the TimesTen
ttCreateCerts utility. If you do not specify a value, the default is p384. For a list of
supported values, see TimesTenClassicSpecSpecClientTLS.

• encryption: Defines the encryption setting for client/server access. This example specifies
required.

The TimesTen Operator first checks to see if there is an encryption entry in the db.ini file
for the object.

– If there is an entry, the TimesTen Operator uses it.

– If there is no entry, the TimesTen Operator uses the value specified
in .spec.ttspec.clientTLS.encryption.

– If .spec.ttspec.clientTLS.auto is true, and there is no value specified in either the
db.ini file or in .spec.ttspec.clientTLS.encryption, the default is accepted. For a
list of supported values, see TimesTenClassicSpecSpecClientTLS.

The TimesTen Operator adds the encryption value to the TimesTen Server's
sys.odbc.ini file.

• signAlg: Defines the elliptical curve signing algorithm. This example specifies
ecdsasha384.

When the TimesTen Operator runs the TimesTen ttCreateCerts utility, it supplies
the .spec.ttspec.clientTLS.signAlg value to the -sign_alg option of the TimesTen
ttCreateCerts utility. If you do not specify a value, the default is ecdsasha384. For a list of
supported values, see TimesTenClassicSpecSpecClientTLS.

• validity: Defines the number of days the created certificate is valid. This example
specifies 365.

When the TimesTen Operator runs the TimesTen ttCreateCerts utility, it supplies
the .spec.ttspec.clientTLS.validity value to the -validity option of the TimesTen
ttCreateCerts utility. If you do not specify a value, the default is 3650. For a list of
supported values, see TimesTenClassicSpecSpecClientTLS.

For more information, see the following:

• TimesTenClassicSpecSpecClientTLS in this book.

• Configuration for TLS for Client/Server in the Oracle TimesTen In-Memory Database
Security Guide.

About the Automation Process
Let's review the actions the TimesTen Operator takes when you
specify .spec.ttspec.clientTLS and set .spec.ttspec.clientTLS.auto: true in a
TimesTenClassic object definition:

Chapter 17
Automatically Configure Client/Server TLS

17-12



• The TimesTen Operator runs the TimesTen ttCreateCerts -dir <temporary_directory>
utility. The TimesTen Operator may supply additional options to the ttCreateCerts utility
depending on the settings you provided in .spec.ttspec.clientTLS.

For more information, see

– About Configuring a TimesTenClassic Object for Automatic Client/Server TLS
Encryption

– ttCreateCerts utility in the Oracle TimesTen In-Memory Database Reference

• The TimesTen Operator creates two directories that contain Oracle wallets. These wallets
contain the self-signed certificates that were created by the ttCreateCerts utility:

– /serverWallet/cwallet.sso: Contains the self-signed certificate for TimesTen
servers.

– /clientWallet/cwallet.sso: Contains the self-signed certificate for TimesTen clients.

As an example, let's look at a directory structure for the tt container in a Pod named
sampletls-0:

[timesten@sampletls-0 /]$ pwd
/
[timesten@sampletls-0 /]$ ls -a serverWallet
.  ..  cwallet.sso
[timesten@sampletls-0 /]$ ls -a clientWallet
.  ..  cwallet.sso

Note that the /serverWallet/cwallet.sso and the /clientWallet/cwallet.sso wallets
exist. These wallets contain the self-signed certificates required for client/server TLS
encryption.

• The TimesTen Operator creates two Kubernetes Secrets:

– <name_of_TimesTenClassic_object>-server where
<name_of_TimesTenClassic_object> is the name of the TimesTenClassic object: This
is the Kubernetes Secret that contains the self-signed certificate that is stored in /
serverWallet/cwallet.sso and used for TimesTen servers.

The containers that run TimesTen are configured to mount this Secret. As a result, this
file is available in the TimesTen containers.

– <name_of_TimesTenClassic_object>-client where
<name_of_TimesTenClassic_object> is the name of the TimesTenClassic object: This
is the Kubernetes Secret that contains the self-signed certificate that is stored in /
clientWallet/cwallet.sso and used for TimesTen clients.

As an example, let's look at the Kubernetes Secrets created by the TimesTen Operator for
a TimesTenClassic object named sampletls.

kubectl get secrets
NAME                                     TYPE                             
DATA   AGE
sampletls-client                         Opaque                           
1      21m
sampletls-server                         Opaque                           
1      21m
...

Chapter 17
Automatically Configure Client/Server TLS

17-13



• The TimesTen Operator checks to see if the /serverWallet directory in the tt container
exists. If it does, appropriate Wallet, Ciphersuites, and Encryption entries are added to
the sys.odbc.ini file being generated. These entries could be located in the db.ini
metadata file or in .spec.ttspec.clientTLS or both. See About Configuring a
TimesTenClassic Object for Automatic Client/Server TLS Encryption.

After completing these steps, the TimesTen Operator has automatically configured TimesTen
servers for client/server TLS encryption.

For client applications, when you define Pods that run your applications, you can cause the
client Secret to be mounted in these Pods. You can also include a wallet entry in your
sys.odbc.ini file that directly references the wallet from this Secret. There are steps in the 
Configure and Deploy the TimesTenClassic Object that show you how to do this.

How-to Example
Let's walk-through an example that illustrates how to configure your TimesTenClassic object for
automatic client/server TLS encryption and let's observe how the TimesTen Operator
automates the process.

• Before You Begin

• Configure and Deploy the TimesTenClassic Object

Before You Begin
This example assumes that the TimesTenClassic CRD is deployed in your Kubernetes cluster
and the TimesTen Operator is running in your namespace at namespace-scope. The example
also assumes you have created metadata files and created a Kubernetes Configmap for these
metadata files.

Let's confirm the TimesTenClassic CRD is deployed and the TimesTen Operator is running.
Next, let's create some metadata files and create a Configmap for these metadata files. These
metadata files and their content are not required for automatically configuring client/server
TLS. They are used for explanatory purposes.

1. Confirm the TimesTenClassic CRD exists in your Kubernetes cluster.

kubectl get crds | grep timesten

The output is similar to the following:

timestenclassics.timesten.oracle.com               2025-03-28T16:34:33Z

2. Confirm the TimesTen Operator is running in your namespace at namespace-scope.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
timesten-operator-79bddcc446-nktcz   1/1     Running   0          3m54s

3. Create the metadata files.

Chapter 17
Automatically Configure Client/Server TLS

17-14



a. From a directory of your choice, create an empty subdirectory for the metadata files.
This example creates the cm subdirectory.

mkdir cm

b. Using an editor of your choice, create your desired metadata files. Exit from your editor
after creating each file.

db.ini:

vi cm/db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

adminUser:

vi cm/adminUser

adminuser/adminuserpwd

schema.sql

vi cm/schema.sql

create table adminuser.emp (id number not null primary key, name char 
(32));

4. Create a Kubernetes Configmap for the metadata files.

a. Create the configmap.

kubectl create configmap sampletls --from-file cm

b. (Optional) Review the Configmap in your namespace.

kubectl describe configmap sampletls

The output is similar to the following:

Name:         sampletls
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>

Data
====
adminUser:
----
adminuser/adminuserpwd

db.ini:
----
PermSize=200

Chapter 17
Automatically Configure Client/Server TLS

17-15



DatabaseCharacterSet=AL32UTF8

schema.sql:
----
create table adminuser.emp (id number not null primary key, name char 
(32));

BinaryData
====

Events:  <none>

You are now ready to perform the steps to have the TimesTen Operator automatically configure
client/server TLS encryption.

Configure and Deploy the TimesTenClassic Object
This example shows you how to configure and deploy a TimesTenClassic object for automatic
client/server TLS encryption. This example uses a YAML manifest file.

1. From a directory of your choice, create the YAML manifest file.

vi sampletls.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: sampletls
spec:
  ttspec:
    storageClassName: oci-bv
    clientTLS:
      auto: true
      ciphersuites: SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
      eccurve: p256
      encryption: required
      signAlg: ecdsasha384
      validity: 365  
    storageSize: 10Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - sampletls

Note the following:

• .spec.ttspec.clientTLS is specified and .spec.ttspec.clientTLS is set to true.
This directs the TimesTen Operator to automatically create self-signed certificates and
configure TimesTen to use those certificates for client/server TLS encryption.

• .spec.ttspec.clientTLS.ciphersuites is specified. The TimesTen Operator adds a
ciphersuites entry with a value of SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 to
the sys.odbc.ini file.

Chapter 17
Automatically Configure Client/Server TLS

17-16



• .spec.ttspec.clientTLS.eccurve is specified. The TimesTen Operator adds the -
eccurve option to the ttCreateCerts utility and supplies of value of p256 for this
option.

• .spec.ttspec.clientTLS.encryption is specified. The TimesTen Operator adds an
encryption entry with a value of required to the sys.odbc.ini file.

• .spec.ttspec.clientTLS.signAlg is specified. The TimesTen Operator adds the -
sign_alg option to the ttCreateCerts utility and supplies of value of ecdsasha384 for
this option.

• .spec.ttspec.clientTLS.validity is specified. The TimesTen Operator adds the -
validity option to the ttCreateCerts utility and supplies of value of 365 for this
option.

2. Deploy the TimesTenClassic object.

kubectl create -f sampletls.yaml

The output is the following:

timestenclassic.timesten.oracle.com/sampletls created

3. Monitor deployment.

a. Check status.

kubectl get ttc sampletls

The output is similar to the following:

NAME        STATE          ACTIVE   AGE
sampletls   Initializing   None     2m33s

The provisioning starts, but is not yet completed.

b. Wait a few minutes, then check status again.

kubectl get ttc sampletls

The output is similar to the following:

NAME        STATE    ACTIVE        AGE
sampletls   Normal   sampletls-0   4m37s

The provisioning process completes. The databases are up and running and
operational, as indicated by the Normal state.

4. Verify the TimesTen Operator created the Kubernetes Secrets that contain the certificates
for TimesTen servers and TimesTen clients.

a. Review the Secrets.

kubectl get secrets

Chapter 17
Automatically Configure Client/Server TLS

17-17



The output is similar to the following:

NAME                                     
TYPE                             DATA   AGE
sampletls-client                         
Opaque                           1      21m
sampletls-server                         
Opaque                           1      21m
...

b. Confirm the contents of the sampletls-server Secret.

kubectl describe secret sampletls-server

The output is similar to the following:

Name:         sampletls-server
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
cwallet.sso:  1525 bytes

The Secret contains the cwallet.sso wallet. This wallet contains the self-signed
certificate for TimesTen servers.

c. Confirm the contents of the sampletls-client Secret.

kubectl describe secret sampletls-client

The output is similar to the following:

Name:         sampletls-client
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>

Type:  Opaque

Data
====
cwallet.sso:  1525 bytes

The Secret contains the cwallet.sso wallet. This wallet contains the self-signed
certificate for TimesTen clients.

The TimesTen Operator ran the TimesTen ttCreateCerts utility to create self-signed
certificates for client/server TLS encryption. The TimesTen Operator stored these
certificates in Kubernetes Secrets.

Chapter 17
Automatically Configure Client/Server TLS

17-18



5. Verify the TimesTen Operator automaticlly configured TimesTen to use the certificates for
client/server TLS encryption.

a. Establish a shell in the tt container of the sampletls-0 Pod.

kubectl exec -it sampletls-0 -c tt -- /bin/bash

b. Confirm the existence of the server and client wallets.

[timesten@sampletls-0 /]$ pwd
/

[timesten@sampletls-0 /]$ ls -a serverWallet
.  ..  cwallet.sso

[timesten@sampletls-0 /]$ ls -a clientWallet
.  ..  cwallet.sso

The /serverWallet/cwallet.sso wallet contains the self-signed certificate for
TimesTen Servers. The /clientWallet/cwallet.sso wallet contains the self-signed
certificate for TimesTen clients.

c. (Optional) Confirm the contents of sys.odbc.ini file.

[timesten@sampletls-0 ~]$ cat /tt/home/timesten/instances/instance1/
conf/sys.odbc.ini

The output is similar to the following:

[ODBC Data Sources]
sampletls=TimesTen 22.1 Driver
tt=TimesTen 22.1 Driver

[sampletls]
Datastore=/tt/home/timesten/datastore/sampletls
PermSize=200
DatabaseCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
Wallet=/serverWallet
Ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Encryption=required

[tt]
Datastore=/tt/home/timesten/datastore/sampletls
PermSize=200
DatabaseCharacterSet=AL32UTF8
DDLReplicationLevel=3
AutoCreate=0
ForceDisconnectEnabled=1
WaitForConnect=0

Chapter 17
Automatically Configure Client/Server TLS

17-19



Wallet=/serverWallet
Ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Encryption=required

The TimesTen Operator correctly added appropriate Wallet, Ciphersuites, and
Encryption entries to the sys.odbc.ini file. The values for these entries were
supplied in .spec.ttspec.clientTLS and are correct.

d. Exit from the shell.

6. Verify TLS is being used.

The following steps assume you have successfully copied the client wallet to the
application container that is running your TimesTen client instance and that you have
configured the appropriate client-side attributes. For more information about TimesTen
client-side attributes, see Task 3: Set Client Configuration for TLS in TimesTen Classic in
the Oracle TimesTen In-Memory Database Security Guide.

a. Establish a shell in the application container that contains your TimesTen client
instance.

kubectl exec -it client-0 -c tt -- /bin/bash

b. Use ttIsqlCS to connect to the sampletls database.

[timesten@sampletls-0]$ ttisqlcs -connstr 
"TTC_SERVER1=sampletls-0.sampletls.mynamespace.svc.cluster.local;TTC_SER
VER2=sampletls-1.sampletls.mynamespace.svc.cluster.local;TTC_SERVER_DSN=
sampletls;UID=adminuser;PWD=adminuserpwd;wallet=/
clientWallet;ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;encryp
tion=required";

The output is similar to the following:

Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights 
reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect 
"TTC_SERVER1=sampletls-0.sampletls.mynamespace.svc.cluster.local;TTC_SER
VER2=sampletls-1.sampletls.mynamespace.svc.cluster.local;TTC_SERVER_DSN=
sampletls;UID=adminuser;PWD=********;wallet=/
clientWallet;ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;encryp
tion=required";
Connection successful: 
DSN=;TTC_SERVER=sampletls-0.sampletls.mynamespace.svc.cluster.local;TTC_
SERVER_DSN=sampletls;UID=adminuser;DATASTORE=/tt/home/timesten/
datastore/
sampletls;DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=US7ASCII;
AUTOCREATE=0;PERMSIZE=200;DDLREPLICATIONLEVEL=3;FORCEDISCONNECTENABLED=1
;Encryption=Required;Wallet=/
clientWallet;CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;
(Default setting AutoCommit=1)

Chapter 17
Automatically Configure Client/Server TLS

17-20



c. Use the TimesTen sqlgetconnectattr command in ttIsqlCS to verify TLS is being
used. A return value of 1 indicates TLS is being used.

Command> sqlgetconnectattr tt_tls_session;

The output is the following:

TT_TLS_SESSION = 1 (SQL_TRUE)

Congratulations! You successfully configured a TimesTenClassic object for automatic client/
server TLS encryption. After you deployed the TimesTenClassic object in your namespace, the
TimesTen Operator automatically created self-signed certificates and configured TimesTen to
use those certificates for client/server TLS encryption.

Configure TLS for Client/Server
You can configure TLS for Client/Server to ensure secure network communication between
TimesTen clients and servers. See Transport Layer Security for TimesTen Client/Server in the
Oracle TimesTen In-Memory Database Security Guide for detailed information.

There are both server-side and client-side configuration requirements for using TLS for Client/
Server. These requirements are detailed in these sections:

• Configuration Requirements for the Server

• Configuration Requirements for the Client

Configuration Requirements for the Server
These sections discuss the configuration requirements for the server. The sections also include
an example of how to configure TLS for the server in your Kubernetes cluster.

• Overview of Metadata Files and Kubernetes Facilities

• Create a Kubernetes Secret for the csWallet Metadata File

• Create a ConfigMap for the Server-Side Attributes

• Create a TimesTenClassic Object

• Monitor Deployment of the TimesTenClassic Object

Overview of Metadata Files and Kubernetes Facilities
The /ttconfig/csWallet metadata file is required for TLS support for Client/Server. (The /
ttconfig directory is located in the containers of your TimesTen databases.) This file must
contain the cwallet.sso file (the Oracle wallet) that was generated when you created the TLS
certificates. This file is the Oracle wallet required for the server. Recall that this file was located
in the /scratch/ttuser/instance_dir/instance1/conf/serverWallet directory. See Create
TLS Certificates for Replication and Client/Server for information on creating these certificates.
This wallet contains the credentials that are used for configuring TLS encryption between your
TimesTen database and your Client/Server applications.

There are also server-side connection attributes that must be set. You can define these
attributes in the db.ini metadata file. After the db.ini file is placed in the /ttconfig directory
of the TimesTen containers, the Operator copies the contents of the db.ini file to the

Chapter 17
Configure TLS for Client/Server

17-21



timesten_home/conf/sys.odbc.ini file located in the TimesTen containers. (Note that
timesten_home is the TimesTen instance directory. This instance directory is /tt/home/
timesten/instances/instance1 in your TimesTen containers.)

These required server-side attributes are: Wallet, CipherSuites, and Encryption. See Create
a ConfigMap for the Server-Side Attributes for information on these attributes. Also see Server
Attributes for TLS in the Oracle TimesTen In-Memory Database Security Guide.

In addition to the csWallet and the db.ini metadata files, you may use other supported
metadata files. See About Configuration Metadata Details for information on these supported
metadata files.

You can include these metadata files in one or more Kubernetes facilities (for example, in a
Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the metadata files are
populated in the /ttconfig directory of the TimesTen containers. Note that there is no
requirement as to how to get the metadata files into this /ttconfig directory. See Populate
the /ttconfig Directory.

The following example includes the csWallet metadata file in a Kubernetes Secret. It also
creates the db.ini, the adminUser, and the schema.sql metadata files and includes these
metadata files in a ConfigMap.

Create a Kubernetes Secret for the csWallet Metadata File
This section creates the cs-tls Kubernetes Secret. The cs-tls Secret will contain the
csWallet metadata file.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory. This example creates the
serverWallet subdirectory. (The serverWallet directory is used in the remainder of this
example to denote this directory.)

% mkdir -p serverWallet
2. Copy the cwallet.sso file into the serverWallet directory that you just created. Recall that

the cwallet.sso file was generated when you used the ttCreateCerts utility to create the
TLS certificates. Also recall that this file was located in the /scratch/ttuser/
instance_dir/instance1/conf/serverWallet directory. See "Create TLS Certificates for
Replication and Client/Server" for information.

% cp /scratch/ttuser/instance_dir/instance1/conf/serverWallet/cwallet.sso 
serverWallet/cwallet.sso

3. Create the Kubernetes Secret.

In this example:

• The name of the Secret is cs-tls. Replace cs-tls with a name of your choosing. (cs-
tls is represented in bold.)

• The name of the metadata file required for TLS for Client/Server is csWallet
(represented in bold).

• The location of the wallet directory is serverWallet (in this example, represented in
bold). If you use a different directory, replace serverWallet with the name of your
directory.

• The name of the Oracle wallet: cwallet.sso (represented in bold).

Use the kubectl create command to create the Secret:

Chapter 17
Configure TLS for Client/Server

17-22



% kubectl create secret generic cs-tls 
--from-file=csWallet=serverWallet/cwallet.sso
secret/cs-tls created

You have successfully created and deployed the cs-tls Kubernetes Secret. The csWallet/
cwallet.sso file will later be available in the /ttconfig directory of the TimesTen containers.
In addition, the file will be available in the /tt/home/timesten/csWallet directory of the
TimesTen containers.

Create a ConfigMap for the Server-Side Attributes
This section creates the cs-tls ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata files. This
example creates the cm_csTLS subdirectory. (The cm_csTLS directory is used in the
remainder of this example to denote this directory.)

% mkdir -p cm_csTLS
2. Navigate to the ConfigMap directory.

% cd cm_csTLS
3. Create the db.ini file in this ConfigMap directory (cm_csTLS, in this example). In this

db.ini file, define the server-side attributes for TLS for Client/Server. These server-side
attributes will later be included in the sys.odbc.ini file located in the timesten_home/
conf directory in your TimesTen containers. (Note that timesten_home is the TimesTen
instance directory. This instance directory is tt/home/timesten/instances/instance1 in
your TimesTen containers.)

These are the required server-side attributes for TLS for Client/Server:

• wallet: This is the directory in your TimesTen containers that contains the server
wallet. Specify /tt/home/timesten/csWallet.

• ciphersuites: This is the cipher suite setting. You can specify more than one value. If
you specify more than one value, separate each value by a comma. List the values in
order of preference. There is no default value. Values are the following:

– SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256
– SSL_ECDHE_ECDSA_WITH_AES_256_GCM_384
– SSL_RSA_WITH_AES_128_CBC_SHA256
For TLS to be used, the server and the client settings must include at least one
common suite. This example specifies SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256. See 
Server Attributes for TLS in the Oracle TimesTen In-Memory Database Security Guide.

• encryption: This is the encryption setting for the server. This example specifies the
required setting. See Server Attributes for TLS in the Oracle TimesTen In-Memory
Database Security Guide for information on the valid encryption settings.

This example also specifies the PermSize and the DatabaseCharacterSet connection
attributes.

vi db.ini

PermSize=200

Chapter 17
Configure TLS for Client/Server

17-23



DatabaseCharacterSet=AL32UTF8
wallet=/tt/home/timesten/csWallet
ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
encryption=required

4. Create the adminUser file in this ConfigMap directory (cm_csTLS, in this example). In this
adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw
5. Create the schema.sql file in this ConfigMap directory (cm_csTLS, in this example). In this

schema.sql file, define the s sequence and the emp table for the sampleuser user. The
Operator will automatically initialize your database with these object definitions.

vi schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

6. Create the ConfigMap. The files in the cm_csTLS directory are included in the ConfigMap
and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is cs-tls. Replace cs-tls with a name of your choosing.
(cs-tls is represented in bold in this example.)

• This example uses cm_csTLS as the directory where the files that will be copied into the
ConfigMap reside. If you use a different directory, replace cm_csTLS with the name of
your directory. (cm_csTLS is represented in bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cs-tls --from-file=cm_csTLS
configmap/cs-tls created

7. Use the kubectl describe command to verify the contents of the ConfigMap. (cs-tls, in
this example.)

% kubectl describe configmap cs-tls
Name:         cs-tls
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8
wallet=/tt/home/timesten/csWallet
ciphersuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
encryption=required
 
 
schema.sql:
----
create sequence sampleuser.s;

Chapter 17
Configure TLS for Client/Server

17-24



create table sampleuser.emp (id number not null primary key, name char (32));
 
adminUser:
----
sampleuser/samplepw
 
Events:  <none>

You have successfully created and deployed the cs-tls ConfigMap.

Create a TimesTenClassic Object
This section creates the TimesTenClassic object. For detailed information about the
TimesTenClassic object type, see About the TimesTenClassic Object Type.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use the same
name you used for the name of the TimesTenClassic object. (In this example, cstls.) The
YAML file contains the definitions for the TimesTenClassic object. See 
TimesTenClassicSpecSpec for information on the fields that you must specify in this YAML
file as well as the fields that are optional.

In this example, the fields of particular interest for TLS Client/Server are:

• dbSecret: This example uses one Kubernetes Secret (called cs-tls) for the csWallet
metadata file.

• dbConfigMap: This example uses one ConfigMap (called cs-tls). The db.ini file is
contained in the cs-tls ConfigMap. Recall that the db.ini file contains the server-side
attributes for TLS for Client/Server.

In addition, this example includes:

• name: Replace cstls with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate. See the storageSize and the logStorageSize entries in
"Table 20-3" for information.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.34.0
with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

% vi cstls.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: cstls
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret

Chapter 17
Configure TLS for Client/Server

17-25



    dbConfigMap:
    - cs-tls
    dbSecret:
    - cs-tls

2. Use the kubectl create command to create the TimesTenClassic object from the contents
of the YAML file (in this example, cstls.yaml). Doing so begins the process of deploying
your active standby pair of TimesTen databases in the Kubernetes cluster.

% kubectl create -f cstls.yaml
timestenclassic.timesten.oracle.com/cstls created

You have successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Monitor Deployment of the TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of the
active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet complete.

% kubectl get ttc cstls
NAME    STATE          ACTIVE   AGE
cstls   Initializing   None     15s

2. Use the kubectl get command again to see if value of the STATE field has changed. In this
example, the value is Normal, indicating the active standby pair of databases are now
provisioned and the process is complete.

% kubectl get ttc cstls
NAME    STATE    ACTIVE    AGE
cstls   Normal   cstls-0   3m30s

3. Use the kubectl describe command to view the active standby pair provisioning in detail.

Note the following have been correctly set in the cstls TimesTenClassic object definition:

• The cs-tls Secret has been correctly referenced in the dbSecret field (represented in
bold).

• The cs-tls Configmap has been correctly referenced in the dbConfigMap field
(represented in bold).

Note: Note all of the output is shown in this example.

% kubectl describe ttc cstls
Name:         cstls
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
API Version:  timesten.oracle.com/v4
Kind:         TimesTenClassic
Metadata:
  Creation Timestamp:  2025-01-16T19:08:03Z
  Generation:          1
  Resource Version:    75491472
  Self Link: 
/apis/timesten.oracle.com/v4/namespaces/mynamespace/timestenclassics/cstls
  UID:                 150128b3-10ac-11eb-b019-d681454a288b
Spec:
  Ttspec:
    Db Config Map:

Chapter 17
Configure TLS for Client/Server

17-26



      cs-tls
    Db Secret:
      cs-tls
    Image:               container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    Image Pull Policy:   Always
    Image Pull Secret:   sekret
    Storage Class Name:  oci
    Storage Size:        250Gi
...
Events:
  Type  Reason       Age    From       Message
  ----  ------       ----   ----       -------
  -     Create       4m21s  ttclassic  Service cstls created
  -     Create       4m21s  ttclassic  StatefulSet cstls created
  -     Create       4m21s  ttclassic  Secret tt150128b3-10ac-11eb-b019-d681454a288b 
created
  -     StateChange  3m5s   ttclassic  Pod cstls-1 Daemon Up
  -     StateChange  3m5s   ttclassic  Pod cstls-0 Agent Up
  -     StateChange  3m5s   ttclassic  Pod cstls-0 Release 22.1.1.34.0
  -     StateChange  3m5s   ttclassic  Pod cstls-1 Agent Up
  -     StateChange  3m5s   ttclassic  Pod cstls-1 Release 22.1.1.34.0
  -     StateChange  3m5s   ttclassic  Pod cstls-0 Daemon Up
  -     StateChange  116s   ttclassic  Pod cstls-0 Database Loaded
  -     StateChange  116s   ttclassic  Pod cstls-0 Database Updatable
  -     StateChange  116s   ttclassic  Pod cstls-0 CacheAgent Not Running
  -     StateChange  116s   ttclassic  Pod cstls-0 RepAgent Not Running
  -     StateChange  116s   ttclassic  Pod cstls-0 RepState IDLE
  -     StateChange  116s   ttclassic  Pod cstls-0 RepScheme None
  -     StateChange  115s   ttclassic  Pod cstls-0 RepAgent Running
  -     StateChange  115s   ttclassic  Pod cstls-0 RepScheme Exists
  -     StateChange  115s   ttclassic  Pod cstls-0 RepState ACTIVE
  -     StateChange  96s    ttclassic  Pod cstls-1 Database Loaded
  -     StateChange  96s    ttclassic  Pod cstls-1 Database Not Updatable
  -     StateChange  96s    ttclassic  Pod cstls-1 CacheAgent Not Running
  -     StateChange  96s    ttclassic  Pod cstls-1 RepAgent Not Running
  -     StateChange  96s    ttclassic  Pod cstls-1 RepScheme Exists
  -     StateChange  96s    ttclassic  Pod cstls-1 RepState IDLE
  -     StateChange  90s    ttclassic  Pod cstls-1 RepAgent Running
  -     StateChange  84s    ttclassic  Pod cstls-1 RepState STANDBY
  -     StateChange  84s    ttclassic  TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.)

Configuration Requirements for the Client
These sections cover the client requirements for TLS.

• Copy a Client Wallet

• Configure Client-Side Attributes

Copy a Client Wallet
When you used the ttCreateCerts utility to create TLS certificates, the cwallet.sso wallet file
located in the /scratch/ttuser/instance_dir/instance1/conf/ clientWallet directory was
generated. This file must be copied to the application container that is running your TimesTen
client instance. See "Create TLS Certificates for Replication and Client/Server" for information
on creating the TLS certificates.

Chapter 17
Configure TLS for Client/Server

17-27



This example uses the kubectl cp command to copy the /scratch/ttuser/instance_dir/
instance1/conf/clientWallet/cwallet.sso file from your Linux development host to the
application container running your TimesTen client instance.

1. Use the kubectl exec -it command to invoke the shell in the application container that
contains your TimesTen client instance. (cstls-0, in this example).

% kubectl exec -it cstls-0 -c tt -- /bin/bash
2. From the shell just invoked, and from the directory of your choice, create an empty

subdirectory. This example creates the clientWallet subdirectory.

% mkdir -p clientWallet
3. From your Linux development host, use the kubectl cp command to copy the cwallet.sso

file from the /scratch/ttuser/instance_dir/instance1/conf/clientWallet directory on
your Linux development host to the clientWallet directory that you just created. (This
directory is located in the application container that is running your TimesTen client
instance.) Recall that the cwallet.sso file was generated when you used the
ttCreateCerts utility to create the TLS certificates. See Create TLS Certificates for
Replication and Client/Server for information.

% kubectl cp /scratch/ttuser/instance_dir/instance1/conf/clientWallet/
cwallet.sso cstls-0:clientWallet/cwallet.sso -c tt

4. From your shell, verify the cwallet.sso file is located in the clientWallet directory.

% ls clientWallet
cwallet.sso

You have successfully copied the cwallet.sso client wallet file to the application container that
is running your TimesTen client instance.

Configure Client-Side Attributes
You must set client-side attributes for TLS for Client/Server. The attributes can be set in the
client DSN definition in timesten_home/conf/sys.odbc.ini or in an appropriate Client/Server
connection string. See About Using Client/Server Drivers for additional information.

These are the required client-side attributes for TLS for Client/Server:

• wallet: This is the directory that contains the cwallet.sso client wallet file. This directory
is located in your application container that is running the TimesTen client instance. There
is no default directory. In this example, recall that the clientWallet directory was created
to denote this directory. (See Copy a Client Wallet for information.) For purposes of this
example, the full path to the clientWallet directory is /tt/home/timesten/clientWallet.
Therefore, in this example, /tt/home/timesten/clientWallet is used to denote this
directory.

• ciphersuites: This is the cipher suite setting. You can specify more than one value. If you
specify more than one value, separate each value by a comma. List the values in order of
preference. There is no default value. Values are the following:

– SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256
– SSL_ECDHE_ECDSA_WITH_AES_256_GCM_384
– SSL_RSA_WITH_AES_128_CBC_SHA256

For TLS to be used, the server and the client settings must include at least one common
suite. This example specifies SSL_ECDHE_ECDSA_WITH_AES_128_GCM_256. See Configuration
for TLS for Client/Server in the Oracle TimesTen In-Memory Database Security Guide.

Chapter 17
Configure TLS for Client/Server

17-28



• encryption: This is the encryption setting for the client. This example specifies the
required setting. See Configuration for TLS for Client/Server in the Oracle TimesTen In-
Memory Database Security Guide for information on the valid encryption settings.

This example uses a connection string to connect to the cstsl database as the sampleuser
user. The sampleuser user was created by the Operator and already exists in the cstsl
database. The example then uses the sqlgetconnectattr command from ttIsqlCS on the
client to verify TLS is configured correctly on the Server and on the Client and TLS is being
used.

1. Connect to the database.

% ttIsqlcs -connstr "TTC_SERVER1=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER2=cstls-1.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=sampleuser;PWD=samplepw;
WALLET=tt/home/timesten/clientWallet;
CIPHERSUITES=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
ENCRYPTION=required";
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "TTC_SERVER1=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER2=cstls-1.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=sampleuser;PWD=********;
WALLET=tt/home/timesten/clientWallet;
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
ENCRYPTION=REQUIRED;";
Connection successful: 
DSN=;TTC_SERVER=cstls-0.cstls.mynamespace.svc.cluster.local;
TTC_SERVER_DSN=cstls;UID=sampleuser;
DATASTORE=/tt/home/timesten/datastore/cstls;DATABASECHARACTERSET=AL32UTF8;
CONNECTIONCHARACTERSET=AL32UTF8;AUTOCREATE=0;PERMSIZE=200;
DDLREPLICATIONLEVEL=3;FORCEDISCONNECTENABLED=1;(SERVER)ENCRYPTION=Required;
(SERVER)WALLET=file:/tt/home/timesten/csWallet;(client)Encryption=Required;
(client)Wallet=/tt/home/timesten/clientWallet;
(client)CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256;
(Default setting AutoCommit=1)

2. Use the sqlgetconnectattr command in ttIsqlCS to verify TLS is being used. A return
value of 1 indicates TLS is being used.

Command> sqlgetconnectattr tt_tls_session;
TT_TLS_SESSION = 1 (SQL_TRUE)

You have successfully connected to the database and verified that TLS for Client/Server is
being used.

Chapter 17
Configure TLS for Client/Server

17-29



18
Handle Failover and Recovery in TimesTen
Classic

Learn about how the TimesTen Operator handles failover and recovery.

• About Node Failure in Kubernetes

• About Handling Failover and Recovery

• Illustrate the Failover and Recovery Process

About Node Failure in Kubernetes
Learn about node failure in Kubernetes and how the TimesTen Operator detects it and takes
appropriate action.

Topics:

• How Kubernetes Reports Node Status

• How the TimesTen Kubernetes Operator Handles Node Failure

• About Specifying the .spec.ttspec.deleteDbOnNotReadyNode Datum

• About Kubernetes Events and TimesTen Operator Metrics

How Kubernetes Reports Node Status
The status of a Node in Kubernetes is critical in managing a Kubernetes cluster. Kubernetes
provides details about the status of a Node. In particular, the conditions field of a Node's
status provides information about the status of running Nodes. For example, the Ready
condition provides information about the readiness and health of a Node.

The values for the Ready condition are as follows:

• True: The Node is healthy and is ready to accept Pods.

• False: The Node is not healthy and is not accepting Pods.

• Unknown: The Node controller has not recently heard from the Node.

You can get the status of a Node by using the kubectl get nodes and kubectl describe node
commands. For example:

kubectl get nodes
NAME      STATUS   ROLES                       AGE    VERSION
NodeA     Ready    control-plane,etcd,master   233d   v1.25.16+rke2r2

Kubernetes reports that NodeA is Ready.

kubectl describe node nodea
...
Conditions:

18-1



  Type                 Status  LastHeartbeatTime                 
LastTransitionTime                Reason                       Message
  ----                 ------  -----------------                 
------------------                ------                       -------
  ...
  Ready                True    Thu, 16 Jan 2025 14:04:26 +0000   Thu, 09 Jan 
2025 05:01:08 +0000   KubeletReady                 kubelet is posting ready 
status

Kubernetes reports that the Ready condition for NodeA is True and NodeA is accepting Pods.

For more information, see https://kubernetes.io/docs/reference/node/node-status/ in the
Kubernetes documentation.

How the TimesTen Kubernetes Operator Handles Node Failure
Kubernetes does a good job of detecting and resolving Node and Pod failure. However, there
could be cases where Kubernetes cannot resolve failure. Let's look at an example that could
affect TimesTen databases that reside in containers in Pods on one or more Nodes in a
Kubernetes cluster. Let's then examine what you can do to have the TimesTen Operator detect
this situation and take appropriate action.

In a Kubernetes cluster, assume you use the local volume provisioner to make storage on each
Kubernetes Node available as persistent storage for Pods running on the Node. A drawback of
this approach is that the storage on one Node is not available to other Nodes. Consider the
following scenario:

• There are three nodes in the cluster (Node A, Node B, and Node C).

• TimesTen is running on Node A and Node B.

• Node A goes down and is unavailable.

Kubernetes detects the failure of Node A, but cannot automatically create a new Pod on Node
C to run TimesTen. This is because the persistent volumes used by TimesTen are local to
Node A and therefore Node C cannot access these persistent volumes. As a result, if Node A
is down and unavailable, Kubernetes cannot create a new Pod on Node C. The TimesTen
Operator can correctly fail over the database to Node B, but cannot bring up a replacement for
Node A. Therefore, there is no redundancy in the cluster until Node A comes back up.

You can configure the TimesTen Operator to detect such a situation and take appropriate
action to reconfigure and automatically start TimesTen on Node C.

Here's how:

The .spec.ttspec.deleteDbOnNotReadyNode datum of a TimesTenClassic object allows you to
direct the TimesTen Operator to detect situations where a Node is not ready (or unknown) for a
specific period of time. In such cases, if the .spec.ttspec.deleteDbOnNotReadyNode is
specified, the TimesTen Operator takes appropriate action to remedy the situation. For more
information about the .spec.ttspec.deleteDbOnNotReadyNode datum, see the
deleteDbOnNotReadyNode entry in Table 20-3.

Let's look at this in further detail.

Approximately every .spec.ttspec.pollingInterval seconds, the TimesTen Operator
reconciles each TimesTenClassic object. During this reconciliation, the TimesTen Operator
examines the state of each Pod associated with a TimesTenClassic object. In addition, the
TimesTen Operator also retrieves the state of the Node on which the Pod is running. If a Pod is

Chapter 18
About Node Failure in Kubernetes

18-2

https://kubernetes.io/docs/reference/node/node-status/


scheduled on a Node that is not ready (or unknown), the TimesTen Operator records the time
in the TimesTenClassic object's status.

During the next reconciliation (.spec.ttspec.pollingInterval later), if the Pod is assigned to
the same Node and the Node is still not ready (or unknown), then the TimesTen Operator
checks to see if the .spec.ttspec.deleteDbOnNotReadyNode is specified. If it is specified, the
TimesTen Operator checks to see if the Node's not ready condition has existed for more
than .spec.ttspec.deleteDbOnNotReadyNode seconds. If so, the TimesTen Operator deletes
the Pod and the PVCs associated with the Pod. This causes Kubernetes to create a new Pod
and new PVCs on a surviving Node. Once the Pod is scheduled and started by Kubernetes,
the TimesTen Operator configures it as usual.

About Specifying the .spec.ttspec.deleteDbOnNotReadyNode Datum
You can specify the .spec.ttspec.deleteDbOnNotReadyNode datum for both replicated and
non-replicated configurations.

Note:

Specifying the .spec.ttspec.deleteDbOnNotReadyNode datum could result in the
TimesTen Operator deleting PVCs. Deleting PVCs discards the on-disk copy of
TimesTen databases. Use caution when specifying
the .spec.ttspec.deleteDbOnNotReadyNode datum.

In a replicated environment, depending on your replication setting, deleting PVCs may not
cause data loss. For example, assume the following:

• The sample-0 database is active and the sample-1 database is standby.

• The Node on which the sample-0 database is running fails.

• The TimesTen Operator performs the steps to fail over to sample-1, making it the new
active.

• Even if the Node on which sample-0 was running comes back up, the TimesTen Operator
duplicates the database on sample-1 back to sample-0. In this case, the contents of the
PVCs for sample-0 are not relevant.

Similarly, if sample-0 is the standby, when sample-0 comes back up, the TimesTen Operator
duplicates the database from sample-1. In this case, the database in the PVC on the failed
node is not relevant.

In a non-replicated environment, there may be data loss. For example, there may be data in a
database that is not in any other replica database. In this case, if the TimesTen Operator
deletes PVCs associated with the database, there could be data loss.

In non-replicated environments where TimesTen is used as a read-only cache, specifying
the .spec.ttspec.deleteDbOnNotReadyNode datum may be beneficial. If specified, the
TimesTen Operator can re-provision the number of replicas, even if one Node fails.

About Kubernetes Events and TimesTen Operator Metrics
In these situations, the TimesTen Operator generates Kubernetes Events and TimesTen
Operator metrics.

The Kubernetes Events are as follows:

Chapter 18
About Node Failure in Kubernetes

18-3



• If the TimesTen Operator cannot retrieve one or more Nodes, it generates an appropriate
Event, and continues as though .spec.ttspec.deleteDbOnNotReadyNode was not
specified.

• If the TimesTen Operator cannot delete Pods or PVCs, it generates an appropriate Event.

The TimesTen Operator metrics are as follows:

• timesten_pods_deleted_unschedulable
• timesten_pods_unschedulable
• timesten_pvcs_deleted_unschedulable
For more information about these metrics, see TimesTen Kubernetes Operator Metrics.

About Handling Failover and Recovery
The Operator automatically detects failures of the active TimesTen database and the standby
TimesTen database and works to fix any failures. When the Operator detects a failure of the
active database, it promotes the standby TimesTen database to be the active. Client/server
applications that are using the database are automatically reconnected to the new active
database. Transactions in flight are rolled back. Prepared statements need to be re-prepared
by the applications. The Operator will configure a new standby database.

Illustrate the Failover and Recovery Process
This example simulates a failure of the active TimesTen database. This is for demonstration
purposes only. Do not do this in a production environment.

1. Use the kubectl delete pod command to delete the active database (sample-0 in this
case)

% kubectl delete pod sample-0
2. Use the kubectl describe command to observe how the Operator recovers from the

failure. The Operator promotes the standby database (sample-1) to be active. Any
applications that were connected to the sample-0 database are automatically reconnected
to the sample-1 database by TimesTen. After a brief outage, the applications can continue
to use the database. See "About the High Level State of TimesTenClassic Objects" for
information on the health and states of the active standby pair.

Note: In this example, the text for the Message column displays on two lines for three state
changes. However, the actual output displays on one line for each of these three state
changes.

% kubectl describe ttc sample
Name:         sample
...
Events:
  Type  Reason       Age    From       Message
  ----  ------       ----   ----       -------
  -     StateChange  2m1s   ttclassic  TimesTenClassic sample: was Normal, now 
ActiveDown
  -     StateChange  115s   ttclassic  Pod sample-1 Database Updatable: Yes
  -     StateChange  115s   ttclassic  TimesTenClassic sample:was ActiveDown, now 
StandbyDown
  -     StateChange  115s   ttclassic  Pod sample-1 RepState ACTIVE
  -     StateChange  110s   ttclassic  Pod sample-0 High Level State Unknown
  -     StateChange  63s    ttclassic  Pod sample-0 Pod Phase Running

Chapter 18
About Handling Failover and Recovery

18-4



  -     StateChange  63s    ttclassic  Pod sample-0 Agent Up
  -     StateChange  63s    ttclassic  Pod sample-0 Instance Exists
  -     StateChange  63s    ttclassic  Pod sample-0 Daemon Up
  -     StateChange  63s    ttclassic  Pod sample-0 Database None
  -     StateChange  42s    ttclassic  Pod sample-0 Database Loaded
  -     StateChange  42s    ttclassic  Pod sample-0 Database Updatable: No
  -     StateChange  42s    ttclassic  Pod sample-0 RepAgent Running
  -     StateChange  42s    ttclassic  Pod sample-0 CacheAgent Not Running
  -     StateChange  42s    ttclassic  Pod sample-0 RepScheme Exists
  -     StateChange  42s    ttclassic  Pod sample-0 RepState IDLE
  -     StateChange  36s    ttclassic  Pod sample-0 High Level State Healthy
  -     StateChange  36s    ttclassic  Pod sample-0 RepState STANDBY
  -     StateChange  36s    ttclassic  TimesTenClassic sample:was StandbyDown,now 
Normal

Kubernetes has automatically respawned a new sample-0 Pod to replace the Pod you
deleted. The Operator configured TimesTen within that Pod, bringing the database in the
Pod up as the new standby database. The replicated pair of databases are once again
functioning normally.

Chapter 18
Illustrate the Failover and Recovery Process

18-5



19
Perform Upgrades

The TimesTen Kubernetes Operator provides support for upgrading TimesTen CRDs, the
TimesTen Operator, and TimesTen Classic databases to a new patch or patch set.

The TimesTen Operator provides YAML manifest files and Helm charts for upgrading TimesTen
CRDs and the TimesTen Operator. You obtain these files from TimesTen container images.

The TimesTen Operator also provides support for upgrading replicated and non-replicated
TimesTen Classic databases that are deployed in your Kubernetes namespace. For each
replicated or non-replicated configuration, you have the option of choosing a manual or
automated upgrade strategy. The processes and procedures differ depending on your
configuration and upgrade strategy.

This chapter discusses and details the upgrade processes and procedures using YAML
manifest files. If you are using Helm charts, see Use Helm in Your TimesTen Kubernetes
Operator Environment.

Topics include:

• About Obtaining Container Images for the Upgrade

• About Upgrading from Previous Releases

• Upgrade the TimesTen CRDs

• About Upgrading the TimesTen Operator

• Upgrade the TimesTen Operator

• About Upgrading TimesTen Classic Databases

• Perform an Automated Upgrade of a Replicated TimesTenClassic Object

• Perform a Manual Upgrade of a Replicated TimesTenClassic Object

• Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

• Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

• About Upgrading Direct Mode Applications

• About Failures During an Upgrade

About Obtaining Container Images for the Upgrade
The TimesTen Operator provides several options for obtaining container images that contain
the release of TimesTen that you want to use for the upgrade. These container images contain
the YAML manifest files and Helm charts that are necessary to upgrade the TimesTen CRDs
and the TimesTen Operator. For detailed information about your options, see Prepare to Use
the TimesTen Kubernetes Operator.

The examples in this chapter assume you have made the following decisions:

• Container image: The container image that contains the new release of TimesTen is
container-registry.oracle.com/timesten/timesten:22.1.1.35.0.

19-1



• Download directories: The directories on your development host that contain the YAML
manifest files and Helm charts for the upgrade are new_kube_files/deploy and
new_kube_files/helm respectfully.

About Upgrading from Previous Releases
In TimesTen releases 22.1.1.27.0 and greater, the TimesTenClassic Custom Resouce
Definition (CRD) defines different schema versions. The TimesTen Operator supports the
creation, monitoring, and management of TimesTenClassic objects in these schema versions.
For more information about TimesTen CRDs, see About TimesTen CRDs.

In TimesTen releases 22.1.1.27.0 and greater, note the following:

• You can create TimesTenClassic objects in different schema versions. However, to use
attributes specific to the latest release of the TimesTen Operator, you must define your
object with the v4 schema definitions. For information about these attributes, see 
TimesTenClassicSpecSpec.

• Kubernetes uses the v4 schema version as the default version. If you use the kubectl get
command to fetch a TimesTenClassic object, Kubernetes returns the object in v4 format,
unless you explicitly ask for a different format.

• Not only does Kubernetes support multiple versions of a CRD simultaneously, but it can
serve an object in a schema version that is different than the one in which it was created. A
TimesTenClassic object that you created with one schema version can be fetched with
another schema version. For example, you can create a v4 TimesTenClassic object and
can fetch it as a different version of the object.

• Kubernetes stores newly created objects using one schema version. Kubernetes stores
TimesTenClassic objects in the v4 schema.

• Use the following syntax to define v4 TimesTenClassic objects:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic

Using timesten.oracle.com/v4 for apiVersion instructs Kubernetes to create a v4 object.
For more information about apiVersion, see TimesTenClassic.

Upgrade the TimesTen CRDs
You can upgrade TimesTen CRDs that are installed in your Kubernetes cluster. In TimesTen
releases 22.1.1.27.0 and greater, the TimesTenClassic CRD contains different schema
versions. The v4 schema version is the most current. The v3 and v2 schema versions are
available to facilitate compatibility with previous releases of the TimesTen Operator. The v2
schema version is deprecated and will be removed in a future release. For more information,
see About Upgrading from Previous Releases.

Note the following:

• You cannot downgrade TimesTen CRDs.

• Since CRDs are cluster-scoped, if you delete TimesTen CRDs from your Kubernetes
cluster, all TimesTenClassic objects that are deployed in this cluster are also deleted.

This example uses YAML manifest files for the upgrade. To use Helm charts, see Use Helm in
Your TimesTen Kubernetes Operator Environment.

Chapter 19
About Upgrading from Previous Releases

19-2



1. On your development host, change to the directory that contains the YAML manifest files
for the upgrade. In this example, change to the new_kube_files/deploy directory.

cd new_kube_files/deploy

2. Replace the TimesTen CRDs that are installed in your Kubernetes cluster.

kubectl replace -f crd.yaml

The output is the following:

customresourcedefinition.apiextensions.k8s.io/
timestenclassics.timesten.oracle.com replaced
customresourcedefinition.apiextensions.k8s.io/
timestenscaleouts.timesten.oracle.com replaced

Congratulations! You successfully upgraded the TimesTen CRDs.

About Upgrading the TimesTen Operator
Before you begin the upgrade of the TimesTen Operator, ensure you have obtained either the
YAML manifest files or the Helm charts necessary for the upgrade. See About Obtaining
Container Images for the Upgrade. If you are using Helm charts for the upgrade, see Overview
of Helm and TimesTen Helm Charts.

The upgrade process differs depending on whether you are upgrading the TimesTen Operator
in one or more namespaces at namespace-scope or in the timesten-operator namespace at
cluster-scope. You must upgrade the TimesTen Operator in the same scope as the scope in
which you installed the TimesTen Operator. For more information about the TimesTen Operator
scopes, see About the TimesTen Operator.

The following sections show you how to perform the upgrade in both scopes using YAML
manifest files. The examples assume the files are located in the new_kube_files/deploy
directory. See About Obtaining Container Images for the Upgrade.

To upgrade the TimesTen Operator in one or more namespaces in your Kubernetes cluster at
namespace-scope, use the following files:

• service_account.yaml: Upgrades the service account, role, and role binding objects
associated with the TimesTen Operator.

To perform the upgrade, you use kubectl replace to replace the file in your namespace.

• service_account_cluster.yaml: Upgrades additional privileges and permissions for the
TimesTen Operator. If you installed this file, you must upgrade it. See About Installing the
TimesTen Operator.

You must modify this file and then upgrade it by using kubectl replace. The modifications
you need to make are explained later in the examples.

• operator.yaml: Upgrades the TimesTen Operator in a namespace in your Kubernetes
cluster at namespace-scope.

You must modify this file and then upgrade it by using kubectl replace. The modifications
you need to make are explained later in the examples.

To upgrade the TimesTen Operator in the timesten-operator namespace in your Kubernetes
cluster at cluster-scope, use the following files:

Chapter 19
About Upgrading the TimesTen Operator

19-3



• cluster_config.yaml: Upgrades the timesten-operator namespace as well as the
ServiceAccount, Role, RoleBinding, ClusterRole, and ClusterRoleBinding objects
necessary to run the TimesTen Operator in the timesten-operator namespace at cluster-
scope.

To perform the upgrade, you use kubectl replace to replace the file.

• cluster_operator.yaml: Upgrades the TimesTen Operator in the timesten-operator
namespace in your cluster at cluster-scope.

You must modify this file and then upgrade it by using kubectl replace. The modifications
you need to make are explained later in the examples.

Upgrade the TimesTen Operator
Let's walk through some examples that show you how to upgrade the TimesTen Operator in
two namespaces in a Kubernetes cluster at namespace-scope and in the timesten-operator
namespace in a Kubernetes cluster at cluster-scope.

• Upgrade the TimesTen Operator at Namespace-Scope

• Upgrade the TimesTen Operator at Cluster-Scope

Upgrade the TimesTen Operator at Namespace-Scope
The examples in this section assume you have obtained the YAML manifest files for the
upgrade. See About Obtaining Container Images for the Upgrade. If you are using Helm charts
for the upgrade, see Overview of Helm and TimesTen Helm Charts.

There is one example for upgrading the TimesTen Operator in one namespace in your cluster
at namespace-scope. There is a second example for upgrading the TimesTen Operator into a
second namespace in your cluster at namespace-scope. The examples illustrate that you must
upgrade the TimesTen Operator in each namespace. Once upgraded, the TimesTen Operator
that you upgraded in namespace one services TimesTenClassic objects in namespace one
while the TimesTen Operator that you upgraded in namespace two services TimesTenClassic
objects in namespace two.

To complete the upgrade, perform the steps in the following sections:

• Before You Begin

• Upgrade in Namespace One

• Upgrade in Namespace Two

Before You Begin
Let's confirm the namespaces in which the TimesTen Operator is running.

1. Confirm the namespaces.

kubectl get namespaces

The output is similar to the following:

kubectl get namespaces
NAME              STATUS   AGE

Chapter 19
Upgrade the TimesTen Operator

19-4



mynamespace       Active   15d
mynamespace2      Active   10d

2. Determine the namespaces in which the TimesTen Operator is running.

kubectl get pods -l name=timesten-operator -A

The output is similar to the following:

NAMESPACE      NAME                                 READY   STATUS    
RESTARTS   AGE
mynamespace    timesten-operator-577f7fbc6f-f7588   1/1     Running   
0          10d
mynamespace2   timesten-operator-577f7fbc6f-pgclv   1/1     Running   
0          10d

There are two TimesTen Operators. One Operator is running in the mynamespace
namespace and a second Operator is running in the mynamespace2 namespace. Each
TimesTen Operator is running at namespace-scope.

Upgrade in Namespace One
Let's upgrade the TimesTen Operator in the mynamespace namespace at namespace-scope.

1. Switch to namespace one (mynamespace, in this example).

kubectl config set-context --current --namespace=mynamespace

The output is similar to the following:

Context "default" modified.

2. Confirm a TimesTen Operator is running in this namespace.

kubectl get pods

The output is similar to the following:

NAME                                                      READY   
STATUS    RESTARTS   AGE
...
timesten-operator-577f7fbc6f-tbr7m                        1/1     
Running   0          10d
...

3. Change to the directory that contains the YAML manifest files for the upgrade. In this
example, the new_kube_files/deploy directory contains the files.

cd new_kube_files/deploy

Chapter 19
Upgrade the TimesTen Operator

19-5



4. Upgrade the service account, role, and role binding objects.

kubectl replace -f service_account.yaml

The output is similar to the following:

role.rbac.authorization.k8s.io/timesten-operator replaced
serviceaccount/timesten-operator replaced
rolebinding.rbac.authorization.k8s.io/timesten-operator replaced

5. Make a copy of the service_account_cluster.yaml file for the first namespace
(service_account_cluster_n1.yaml, in this example).

cp service_account_cluster.yaml service_account_cluster_n1.yaml

6. Replace the service_account_cluster_n1.yaml YAML file by doing the following:

a. (Optional): Display the contents of the service_account_cluster_n1.yaml file.

cat service_account_cluster_n1.yaml

The output is similar to the following:

# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>

Chapter 19
Upgrade the TimesTen Operator

19-6



subjects:
- kind: ServiceAccount
  name: timesten-operator
  #namespace: <NAMESPACE>
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
  apiGroup: rbac.authorization.k8s.io

b. Use a text editor to modify the service_account_cluster_n1.yaml file.

Make the following changes:

• Locate #namespace, remove #, and replace <NAMESPACE> with the name of your
namespace (mynamespace, in this example).

• Locate the three occurrences of #name, remove #, and replace <NAMESPACE> with
the name of your namespace (mynamespace, in this example).

vi service_account_cluster_n1.yaml

# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace
subjects:
- kind: ServiceAccount

Chapter 19
Upgrade the TimesTen Operator

19-7



  name: timesten-operator
  namespace: mynamespace
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace
  apiGroup: rbac.authorization.k8s.io

c. Save and close the service_account_cluster_n1.yaml file.

d. Replace the service_account_cluster_n1.yaml file.

kubectl replace -f service_account_cluster_n1.yaml

The output is similar to the following:

clusterrole.rbac.authorization.k8s.io/timesten-operator-mynamespace 
replaced
clusterrolebinding.rbac.authorization.k8s.io/timesten-operator-
mynamespace replaced

7. Modify the operator.yaml file by doing the following:

a. Use a text editor to modify the operator.yaml file.

Replace the following:

• image: Replace container-registry.oracle.com/timesten/timesten:latest
with the name of the image for the upgrade. In this example, the name of the
image for the upgrade is container-registry.oracle.com/timesten/
timesten:22.1.1.35.0.

• If you are running in a multi-architecture environment, modify the affinity
section, using the same setting you used during installation. This example uses
amd64.

vi operator.yaml

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
  replicas: 1
...
    spec:
      serviceAccountName: timesten-operator
      imagePullSecrets:
      - name: sekret
      containers:
        - name: timesten-operator
          image: container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
...
# An example affinity definition; this pod will only be assigned to a 

Chapter 19
Upgrade the TimesTen Operator

19-8



node
# running on amd64 (the default)
#
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "kubernetes.io/arch"
                  operator: In
                  values: ["amd64"]

b. Save and close the operator.yaml file.

8. Upgrade the TimesTen Operator.

kubectl replace -f operator.yaml

The output is the following:

deployment.apps/timesten-operator replaced

9. Verify the TimesTen Operator is running.

kubectl get pods

The output is similar to the following:

NAME                                                      READY   
STATUS    RESTARTS   AGE
...
timesten-operator-7fb9bddf-xrc8h                          1/1     
Running   0          41s
...

10. (Optional) Verify the TimesTen Operator is running the new image.

kubectl describe deployment timesten-operator | grep Image

The output is the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Congratulations! You successfully upgraded the TimesTen Operator in the mynamespace
namespace at namespace-scope. The Operator is using the container-
registry.oracle.com/timesten/timesten:22.1.1.35.0 image and is automatically managing
any existing TimesTenClassic objects in this namespace.

If you are upgrading the TimesTen Operator in a second namespace at namespace-scope,
proceed to Upgrade in Namespace Two. If you are ready to upgrade TimesTenClassic objects
in the mynamespace namespace, proceed to About Upgrading TimesTen Classic Databases.

Chapter 19
Upgrade the TimesTen Operator

19-9



Upgrade in Namespace Two
Let's upgrade the TimesTen Operator in the mynamespace2 namespace at namespace-scope.

1. Switch to namespace two (mynamespace2, in this example).

kubectl config set-context --current --namespace=mynamespace2

The output is similar to the following:

Context "default" modified.

2. Confirm a TimesTen Operator is running in this namespace.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
...
timesten-operator-577f7fbc6f-h8hj8   1/1     Running   0          12d
...

3. Change to the directory that contains the YAML manifest files for the upgrade. In this
example, the new_kube_files/deploy directory contains the files.

cd new_kube_files/deploy

4. Replace the required service account, role, and role binding.

kubectl replace -f service_account.yaml

The output is similar to the following:

role.rbac.authorization.k8s.io/timesten-operator replaced
serviceaccount/timesten-operator replaced
rolebinding.rbac.authorization.k8s.io/timesten-operator replaced

5. Make a copy of the service_account_cluster.yaml file for the namespace
(service_account_cluster_n2.yaml, in this example).

cp service_account_cluster.yaml service_account_cluster_n2.yaml

6. Replace the service_account_cluster_n2.yaml YAML file by doing the following:

a. (Optional): Display the contents of the service_account_cluster_n2.yaml file.

cat service_account_cluster_n2.yaml

Chapter 19
Upgrade the TimesTen Operator

19-10



The output is similar to the following:

# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
subjects:
- kind: ServiceAccount
  name: timesten-operator
  #namespace: <NAMESPACE>
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  #name: timesten-operator-<NAMESPACE>
  apiGroup: rbac.authorization.k8s.io

b. Use a text editor to modify the service_account_cluster_n2.yaml file.

Make the following changes:

• Locate #namespace, remove #, and replace <NAMESPACE> with the name of your
namespace (mynamespace2, in this example).

• Locate the three occurrences of #name, remove #, and replace <NAMESPACE> with
the name of your namespace (mynamespace2, in this example).

vi service_account_cluster_n2.yaml

Chapter 19
Upgrade the TimesTen Operator

19-11



# Copyright (c) 2025, Oracle and/or its affiliates.
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace2
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - get
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - persistentvolumeclaims
  verbs:
  - get
  - list
  - watch
  - delete
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace2
subjects:
- kind: ServiceAccount
  name: timesten-operator
  namespace: mynamespace2
roleRef:
  kind: ClusterRole
  name: timesten-operator
  # If running multiple operators on the same cluster:
  name: timesten-operator-mynamespace2
  apiGroup: rbac.authorization.k8s.io

c. Save and close the service_account_cluster_n2.yaml file.

d. Replace the service_account_cluster_n2.yaml file.

kubectl replace -f service_account_cluster_n2.yaml

The output is similar to the following:

clusterrole.rbac.authorization.k8s.io/timesten-operator-mynamespace2 
replaced
clusterrolebinding.rbac.authorization.k8s.io/timesten-operator-
mynamespace2 replaced

Chapter 19
Upgrade the TimesTen Operator

19-12



7. Modify the operator.yaml file by doing the following:

a. Use a text editor to modify the operator.yaml file.

Replace the following:

• image: Replace container-registry.oracle.com/timesten/timesten:latest
with the name of the image for the upgrade. In this example, the name of the
image for the upgrade is container-registry.oracle.com/timesten/
timesten:22.1.1.35.0.

• If you are running in a multi-architecture environment, modify the affinity
section, using the same setting you used during installation. This example uses
amd64.

vi operator.yaml

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
  replicas: 1
...
    spec:
      serviceAccountName: timesten-operator
      imagePullSecrets:
      - name: sekret
      containers:
        - name: timesten-operator
          image: container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
...
# An example affinity definition; this pod will only be assigned to a 
node
# running on amd64 (the default)
#
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "kubernetes.io/arch"
                  operator: In
                  values: ["amd64"]

b. Save and close the operator.yaml file.

8. Upgrade the TimesTen Operator.

kubectl replace -f operator.yaml

The output is the following:

deployment.apps/timesten-operator replaced

Chapter 19
Upgrade the TimesTen Operator

19-13



9. Verify the TimesTen Operator is running.

kubectl get pods

The output is similar to the following:

NAME                                READY   STATUS    RESTARTS   AGE
...
timesten-operator-c4b99bd8f-smjlm   1/1     Running   0          43s
...

10. (Optional) Verify the TimesTen Operator is running the new image.

kubectl describe deployment timesten-operator | grep Image

The output is the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Congratulations! You successfully upgraded the TimesTen Operator in the mynamespace2
namespace at namespace-scope. The Operator is using the container-
registry.oracle.com/timesten/timesten:22.1.1.35.0 image and is automatically managing
any existing TimesTenClassic objects in this namespace.

To upgrade TimesTenClassic objects in the mynamespace2 namespace, proceed to About
Upgrading TimesTen Classic Databases.

Upgrade the TimesTen Operator at Cluster-Scope
The examples in this section assume you have obtained the YAML manifest files for the
upgrade. See About Obtaining Container Images for the Upgrade. If you are using Helm charts
for the upgrade, see Overview of Helm and TimesTen Helm Charts.

Let's walk through the steps to upgrade the TimesTen Operator at cluster-scope.

1. Confirm the TimesTen Operator is running at cluster-scope.

a. Confirm there is a TimesTen Operator running in the timesten-operator namespace.

kubectl get pods -l name=timesten-operator -A

The output is similar to the following:

NAMESPACE           NAME                                 READY   
STATUS    RESTARTS   AGE
timesten-operator   timesten-operator-6bf76dd84b-c8j59   1/1     
Running   0          2d4h

There is a TimesTen Operator running in the timesten-operator namespace.

Chapter 19
Upgrade the TimesTen Operator

19-14



b. Verify the TimesTen Operator Deployment has the TT_OPERATOR_SCOPE environment
variable set to cluster.

kubectl describe deployment timesten-operator -n timesten-operator | 
grep TT_OPERATOR_SCOPE

The output is the following:

      TT_OPERATOR_SCOPE:               cluster

2. Change to the directory that contains the YAML manifest files for the upgrade. In this
example, the new_kube_files/deploy directory contains the files.

cd new_kube_files/deploy

3. Upgrade the service account, cluster role, and cluster rolebinding objects.

 kubectl replace -f cluster_config.yaml

The output is similar to the following:

namespace/timesten-operator replaced
clusterrole.rbac.authorization.k8s.io/timesten-operator replaced
serviceaccount/timesten-operator replaced
clusterrolebinding.rbac.authorization.k8s.io/timesten-operator replaced

4. Modify the cluster_operator.yaml file by doing the following:

a. Use a text editor to modify the cluster_operator.yaml file.

Replace the following:

• image: Replace container-registry.oracle.com/timesten/timesten:latest
with the name of the image for the upgrade. In this example, the name of the
image for the upgrade is container-registry.oracle.com/timesten/
timesten:22.1.1.35.0.

• If you are running in a multi-architecture environment, modify the affinity
section, using the same setting you used during installation. This example uses
amd64.

vi cluster_operator.yaml

# Copyright (c) 2019 - 2025, Oracle and/or its affiliates.
apiVersion: apps/v1
kind: Deployment
metadata:
  name: timesten-operator
spec:
  replicas: 1
...
    spec:
      serviceAccountName: timesten-operator
      imagePullSecrets:
      - name: sekret
      containers:

Chapter 19
Upgrade the TimesTen Operator

19-15



        - name: timesten-operator
          image: container-registry.oracle.com/timesten/
timesten:22.1.1.35.0
...
# An example affinity definition; this pod will only be assigned to a 
node
# running on amd64 (the default)
#
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "kubernetes.io/arch"
                  operator: In
                  values: ["amd64"]

b. Save and close the cluster_operator.yaml file.

5. Upgrade the TimesTen Operator.

kubectl replace -f cluster_operator.yaml

The output is the following:

deployment.apps/timesten-operator replaced

6. Verify the TimesTen Operator is running in the timesten-operator namespace.

kubectl get pods -n timesten-operator

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
timesten-operator-5cf4b68d58-5cn6t   1/1     Running   0          54s

7. (Optional) Verify the TimesTen Operator is running the new image.

kubectl describe deployment timesten-operator -n timesten-operator| grep 
Image

The output is the following:

Image:       container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Congratulations! You successfully upgraded the TimesTen Operator. The Operator is running in
the timesten-operator namespace in your Kubernetes cluster at cluster-scope. The Operator
is using the container-registry.oracle.com/timesten/timesten:22.1.1.35.0 image.

If you are ready to upgrade TimesTenClassic objects, proceed to About Upgrading TimesTen
Classic Databases.

Chapter 19
Upgrade the TimesTen Operator

19-16



About Upgrading TimesTen Classic Databases
The TimesTen Operator provides support for upgrading TimesTen Classic databases that are
deployed in your Kubernetes namespace. The support is applicable to both replicated and non-
replicated configurations. For each configuration, the TimesTen Operator supports an
automated and a manual image upgrade strategy. The TimesTen Operator determines the
upgrade strategy from the .spec.ttspec.imageUpgradeStrategy datum. If the value is Auto
(or not specified), the upgrade process is automated. If the value is Manual, the upgrade
process is manual. You have the option of specifying
the .spec.ttspec.imageUpgradeStrategy datum when you define the attributes for your
TimesTenClassic object. See About Defining TimesTenClassic Objects.

The upgrade process is dependent on the configuration and the image upgrade strategy. The
upgrade processes are discussed in the following sections:

• About the Upgrade Process for Replicated Configurations

• About the Upgrade Process for Non-Replicated Configurations

About the Upgrade Process for Replicated Configurations
For replicated configurations where the image upgrade strategy is:

• Auto: The upgrade process is automated and occurs immediately. Kubernetes takes no
explicit action to terminate Pods as part of the upgrade process. Instead, the TimesTen
Operator automatically terminates Pods in an orchestrated manner to perform the upgrade.

• Manual: The upgrade process is manual. Neither Kubernetes nor the TimesTen Operator
takes immediate action. You are responsible for initiating the upgrade.

Chapter 19
About Upgrading TimesTen Classic Databases

19-17



Note:

The following actions occur during both an automated and a manual upgrade:

• The standby is terminated first. It takes some time for the standby to come back
up. When the standby comes back up, it is upgraded to the new release. During
the upgrade of the standby, depending on your replication configuration, there
may be disruption on the active database.

• Next, the failover from the active to the standby occurs:

– The active is terminated. It takes some time for the former active to come
back up. When the active comes back up, it is upgraded to the new release.

– The standby database is promoted to the active and the former active
becomes the standby.

If you are using AWT cache groups, the standby is normally responsible for
transmitting committed transactions from TimesTen to the Oracle Database. While
the standby is being upgraded, the active takes on this responsibility. This may
increase the load on the active. In addition, part of the upgrade process involves
copying the database from the active to the standby. This also increases the
workload on the active. These increases may temporarily reduce the performance of
the active database.

For more information about how TimesTen performs an upgrade of an active standby
pair of TimesTen databases, see Performing an Upgrade with Active Standby Pair
Replication in the Oracle TimesTen In-Memory Database Installation, Migration, and
Upgrade Guide.

Ensure you perform an upgrade at the appropriate time. We recommend that you do
not perform upgrades at the busiest time of a production day. Applications may
experience short outages and perhaps reduced performance as a result of the
upgrade procedure.

There are examples later in the chapter that show you how to perform an automated and a
manual upgrade for replicated TimesTenClassic objects. The examples are in the following
sections:

• Perform an Automated Upgrade of a Replicated TimesTenClassic Object

• Perform a Manual Upgrade of a Replicated TimesTenClassic Object

About the Upgrade Process for Non-Replicated Configurations
For non-replicated configurations where the image upgrade strategy is:

• Auto: The upgrade process is automated. The TimesTen Operator does not take
immediate action. Rather, Kubernetes takes action and automatically begins terminating
Pods and replacing them with new ones. The new Pods run the upgraded TimesTen
image.

The number of Pods that Kubernetes terminates and replaces is dependent on the value of
the .spec.ttspec.rollingUpdatePartition datum. In particular, Kubernetes upgrades
Pods whose ordinal value is greater than or equal to the value
of .spec.ttspec.rollingUpdatePartition. Pods whose ordinal value is less than the
value of .spec.ttspec.rollingUpdatePartition are not upgraded. For example, if you
have three non-replicated Pods (replicas = 3 where the ordinal value of the Pods are -0,

Chapter 19
About Upgrading TimesTen Classic Databases

19-18



-1, and -2) and the value of .spec.ttspec.rollingUpdatePartition is 2, the -2 Pod is
upgraded, but the -1 and -0 Pods are not. The default
for .spec.ttspec.rollingUpdatePartition is 0.

You have the option of specifying the .spec.ttspec.rollingUpdatePartition datum
when you define the attributes for your TimesTenClassic object. If you do not specify the
datum, the default is 0. See About Defining TimesTenClassic Objects.

You also have the option of changing the value of
the .spec.ttspec.rollingUpdatePartition datum as part of the upgrade procedure.
There is an example later in the chapter that illustrates how to do this.

• Manual: The upgrade process is manual. Neither Kubernetes nor the TimesTen Operator
takes immediate action. You are responsible for initiating the upgrade by deleting one or
more Pods. For manual upgrades, the .spec.ttspec.rollingUpdatePartition datum is
ignored.

There are two examples later in the chapter that show you how to perform an automated and a
manual upgrade for non-replicated TimesTenClassic objects. The examples are in the following
sections:

• Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

• Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

Perform an Automated Upgrade of a Replicated TimesTenClassic
Object

Before starting the automated upgrade, note the following:

Note:

An automated upgrade happens immediately. The TimesTen Operator takes down
your databases, restarts them, and then initiates and completes the fail over process.
Do not perform this procedure at the busiest time of your production day. Applications
see short outages and perhaps reduced performance as a result of the upgrade
procedure.

Let's perform an automated upgrade for a replicated TimesTenClassic object.

1. Review the TimesTenClassic objects running in your namespace.

kubectl get ttc

The output is similar to the following:

NAME             STATE              ACTIVE           AGE
mannorepsample   AllReplicasReady   N/A              30h
manrepsample     Normal             manrepsample-0   54m
norepsample      AllReplicasReady   N/A              21h
repsample        Normal             repsample-0      50m

Chapter 19
Perform an Automated Upgrade of a Replicated TimesTenClassic Object

19-19



There are several TimesTenClassic objects running in your namespace. One of the
replicated TimesTenClassic objects is repsample. Its high level state is Normal indicating
TimesTen databases in the active standby pair are up and running and functioning
properly.

2. Review the image upgrade strategy for the object.

kubectl get ttc repsample -o yaml | grep imageUpgradeStrategy

The output is the following:

imageUpgradeStrategy: Auto

The image upgrade strategy is Auto (also the default), indicating an automated upgrade
strategy.

3. On your development host, edit the TimesTenClassic object's .spec.ttspec.image datum
with the container image you want to use for the upgrade. This example uses container-
registry.oracle.com/timesten/timesten:22.1.1.35.0.

a. Edit the file, replacing the image value with container-registry.oracle.com/
timesten/timesten:22.1.1.35.0.

 kubectl edit ttc repsample

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
    image: container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...

b. Save the file and exit from the editor.

4. Confirm the StatefulSet contains the new image.

kubectl describe statefulset repsample | grep Image

The output is the following:

Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0

When the TimesTen Operator detects that there is an update to the
TimesTenClassic's .spec.ttspec.image datum, it modifies the StatefulSet with the new
image. Since this is an automated upgrade of a replicated TimesTenClassic object, the
TimesTen Operator takes action and initiates and orchestrates the upgrade process.

Chapter 19
Perform an Automated Upgrade of a Replicated TimesTenClassic Object

19-20



5. Monitor the progress of the upgrade, observing the state transitions.

kubectl get events -w

The output is similar to the following:

LAST SEEN   TYPE      REASON                   OBJECT                      
MESSAGE
...
8m4s        Normal    Upgrade                  timestenclassic/repsample   
Image updated, automatic upgrade started
8m4s        Normal    Upgrade                  timestenclassic/repsample   
Deleted standby pod repsample-1 during upgrade
7m59s       Warning   Failed                   timestenclassic/repsample   
Pod repsample-1 was replaced
7m54s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 is Not Ready
7m54s       Warning   StateChange              timestenclassic/repsample   
TimesTenClassic was Normal, now ActiveTakeover
7m53s       Normal    StateChange              timestenclassic/repsample   
TimesTenClassic was ActiveTakeover, now StandbyDown
5m28s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Agent Up
5m28s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Instance Exists
5m28s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Daemon Down
5m28s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Daemon Up
5m28s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Database Unloaded
5m25s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Database None
5m10s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Database Loaded
5m10s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 RepAgent Not Running
5m10s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 RepScheme Exists
5m10s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 RepState IDLE
5m4s        Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Database Loaded
5m4s        Normal    Info                     timestenclassic/repsample   
Pod repsample-1 RepAgent Running
5m4s        Normal    Info                     timestenclassic/repsample   
Pod repsample-1 RepScheme Exists
5m4s        Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 RepState STANDBY
5m4s        Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 is Ready
5m3s        Normal    Upgrade                  timestenclassic/repsample   
Upgrade of standby complete
5m3s        Normal    StateChange              timestenclassic/repsample   
TimesTenClassic was StandbyDown, now Normal

Chapter 19
Perform an Automated Upgrade of a Replicated TimesTenClassic Object

19-21



4m32s       Normal    Upgrade                  timestenclassic/repsample   
Deleted active pod repsample-0 during upgrade
3m31s       Warning   Error                    timestenclassic/repsample   
Pod repsample-0 Unreachable for 117 seconds
3m31s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-0 is Not Ready
3m31s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-0 is Not Active Ready
3m31s       Warning   StateChange              timestenclassic/repsample   
TimesTenClassic was Normal, now ActiveDown
3m30s       Warning   Failed                   timestenclassic/repsample   
Pod repsample-0 was replaced
3m29s       Normal    Info                     timestenclassic/repsample   
Pod repsample-1 Database Updatable
3m29s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 RepState ACTIVE
3m29s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 is Not Ready
3m29s       Normal    StateChange              timestenclassic/repsample   
TimesTenClassic was ActiveDown, now ActiveTakeover
3m25s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 is Ready
3m25s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-1 is Active Ready
3m25s       Normal    StateChange              timestenclassic/repsample   
TimesTenClassic was ActiveTakeover, now StandbyDown
2m35s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Agent Up
2m35s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Instance Exists
2m35s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Daemon Down
2m35s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Daemon Up
2m35s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Database Unloaded
2m32s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Database None
2m11s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Database Loaded
2m11s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 RepAgent Not Running
2m11s       Normal    Info                     timestenclassic/repsample   
Pod repsample-0 RepScheme Exists
2m11s       Normal    StateChange              timestenclassic/repsample   
Pod repsample-0 RepState IDLE
2m5s        Normal    Info                     timestenclassic/repsample   
Pod repsample-0 Database Loaded
2m5s        Normal    Info                     timestenclassic/repsample   
Pod repsample-0 RepAgent Running
2m5s        Normal    Info                     timestenclassic/repsample   
Pod repsample-0 RepScheme Exists
2m5s        Normal    StateChange              timestenclassic/repsample   
Pod repsample-0 RepState STANDBY
2m5s        Normal    StateChange              timestenclassic/repsample   
Pod repsample-0 is Ready

Chapter 19
Perform an Automated Upgrade of a Replicated TimesTenClassic Object

19-22



2m5s        Normal    Upgrade                  timestenclassic/repsample   
Upgrade of active complete
2m5s        Normal    Upgrade                  timestenclassic/repsample   
Upgrade completed in 359 secs
2m4s        Normal    StateChange              timestenclassic/repsample   
TimesTenClassic was StandbyDown, now Normal

The automated upgrade process completes. The TimesTenClassic object is in the Normal
state. TimesTen databases are up and running and functioning properly. Active standby
pair replication is configured between them.

6. Verify the active and standby databases are running the correct release.

a. Establish a shell in the active Pod.

kubectl exec -it repsample-1 -c tt -- /bin/bash

b. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

c. Exit from the shell.

d. Establish a shell in the standby Pod.

kubectl exec -it repsample-0 -c tt -- /bin/bash

e. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

f. Exit from the shell.

The active and standby databases are running the correct release of TimesTen.

Chapter 19
Perform an Automated Upgrade of a Replicated TimesTenClassic Object

19-23



Congratulations! You successfully completed an automated upgrade for a replicated
TimesTenClassic object. The active and standby databases are upgraded, running, and fully
operational.

Perform a Manual Upgrade of a Replicated TimesTenClassic
Object

Let's perform an manual upgrade for a replicated TimesTenClassic object by first modifying the
TimesTenClassic object, followed by initiating an upgrade of the standby database, and
concluding with initiating the fail over from the active database to the standby:

• Modify a Replicated TimesTenClassic Object

• Upgrade the Standby Database

• Fail Over

Modify a Replicated TimesTenClassic Object
Let's modify a replicated TimesTenClassic object.

1. Review the TimesTenClassic objects running in your namespace.

kubectl get ttc

The output is similar to the following:

NAME             STATE              ACTIVE           AGE
mannorepsample   AllReplicasReady   N/A              30h
manrepsample     Normal             manrepsample-0   54m
norepsample      AllReplicasReady   N/A              21h
repsample        Normal             repsample-0      50m

There are several TimesTenClassic objects running in your namespace. One of the
replicated TimesTenClassic objects is manrepsample. Its high level state is Normal
indicating TimesTen databases in the active standby pair are up and running and
functioning properly.

2. Review the image upgrade strategy for the object.

kubectl get ttc manrepsample -o yaml | grep imageUpgradeStrategy

The output is the following:

imageUpgradeStrategy: Manual

The image upgrade strategy is Manual , indicating a manual upgrade strategy.

3. On your development host, edit the TimesTenClassic object's .spec.ttspec.image datum
with the container image you want to use for the upgrade. This example uses container-
registry.oracle.com/timesten/timesten:22.1.1.35.0.

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-24



a. Edit the file, replacing the image value with container-registry.oracle.com/
timesten/timesten:22.1.1.35.0.

 kubectl edit ttc manrepsample

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
    image: container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...

b. Save the file and exit from the editor.

4. Confirm the StatefulSet contains the new image.

kubectl describe statefulset manrepsample | grep Image

The output is the following:

Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0

When the TimesTen Operator detects that there is an update to the
TimesTenClassic's .spec.ttspec.image datum, it modifies the StatefulSet with the new
image. Since this is a manual upgrade of a replicated TimesTenClassic object, the
TimesTen Operator takes no further action. This enables you to initiate the manual
upgrade.

You successfully modified the TimesTenClassic object. Let's continue the manual upgrade by
upgrading the standby database.

Upgrade the Standby Database
Perform these steps to upgrade the standby database.

Note:

Even though you are upgrading the standby database, depending on your replication
configuration, this may result in disruption on your active database. This may impact
your applications. Perform the upgrade at the appropriate time.

1. Determine which Pod is the standby.

kubectl get ttc manrepsample

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-25



The output is similar to the following.

NAME           STATE    ACTIVE           AGE
manrepsample   Normal   manrepsample-0   160m

Since the manrepsample-0 Pod is the active, the manrepsample-1 Pod is the standby.

2. Delete the standby Pod.

kubectl delete pod manrepsample-1

The output is the following.

pod "manrepsample-1" deleted

Kubernetes automatically creates a new manrepsample-1 Pod to replace the deleted Pod.
The TimesTen Operator configures the new manresample-1 Pod as the standby Pod. This
new Pod runs the upgraded TimesTen image.

3. Monitor the progress of the upgrade by observing the state transitions.

 kubectl get events -w

The output is similar to the following:

LAST SEEN   TYPE      REASON                   
OBJECT                         MESSAGE
...              
2m51s       Warning   StateChange              timestenclassic/
manrepsample   TimesTenClassic was Normal, now ActiveTakeover
2m50s       Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was ActiveTakeover, now StandbyDown
50s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Agent Up
50s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Instance Exists
50s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Daemon Down
50s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Daemon Up
50s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Unloaded
43s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database None
22s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Loaded
22s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepAgent Not Running
22s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepScheme Exists
22s         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 RepState IDLE
16s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Loaded

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-26



16s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepAgent Running
16s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepScheme Exists
16s         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 RepState STANDBY
16s         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 is Ready
16s         Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was StandbyDown, now Normal

The TimesTen Operator successfully upgraded the standby database.

You are now ready to fail over from the active database to the standby.

Fail Over
You are now ready to initiate the fail over from the active database to the standby.

Note:

During fail over, the TimesTen Operator takes down your active database, and
immediately fails over to the standby. Do not perform this procedure at the busiest
time of your production day. It's best to consider performing this operation during a
scheduled production outage.

Before failing over, quiesce your applications on the active database. You can use the
TimesTen ttAdmin -close and the ttAdmin -disconnect commands. See Opening and
Closing the Database for User Connections and Disconnecting from a Database in the Oracle
TimesTen In-Memory Database Operations Guide.

To avoid potential data loss, use the TimesTen ttRepAdmin -wait command to wait until
replication is caught up, ensuring that transactions that were executed on the active database
are replicated to the standby database. See ttRepAdmin in the Oracle TimesTen In-Memory
Database Reference.

Once the standby is caught up, fail over from the active database to the standby by deleting
the active Pod. When you delete the active Pod, the TimesTen Operator automatically detects
the failure and promotes the standby database to be the active. Client/server applications that
are using the active database are automatically reconnected to the new active database.
Transactions in flight are rolled back. Prepared SQL statements do need to be re-prepared by
the applications. See About Handling Failover and Recovery for more information.

Let's initiate the fail over.

1. Delete the active Pod.

kubectl delete pod manrepsample-0

The output is the following.

pod "manrepsample-0" deleted

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-27



Kubernetes automatically creates a new manrepsample-0 Pod to replace the deleted Pod.
The TimesTen Operator configures the new manresample-0 Pod as the standby Pod. This
new Pod runs the upgraded TimesTen image.

2. Monitor the progress of the upgrade, observing the state transitions.

 kubectl get events -w

The output is similar to the following:

LAST SEEN   TYPE      REASON                   
OBJECT                         MESSAGE
...
37m         Warning   Upgrade                  timestenclassic/
manrepsample   Image updated, automatic upgrade disabled
26m         Warning   Failed                   timestenclassic/
manrepsample   Pod manrepsample-1 was replaced
26m         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 is Not Ready
26m         Warning   StateChange              timestenclassic/
manrepsample   TimesTenClassic was Normal, now ActiveTakeover
26m         Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was ActiveTakeover, now StandbyDown
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Agent Up
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Instance Exists
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Daemon Down
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Daemon Up
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Unloaded
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database None
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Loaded
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepAgent Not Running
24m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepScheme Exists
24m         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 RepState IDLE
23m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Loaded
23m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepAgent Running
23m         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 RepScheme Exists
23m         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 RepState STANDBY
23m         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 is Ready
23m         Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was StandbyDown, now Normal
3m50s       Warning   Failed                   timestenclassic/

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-28



manrepsample   Pod manrepsample-0 was replaced
3m44s       Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-0 is Not Ready
3m44s       Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-0 is Not Active Ready
3m44s       Warning   StateChange              timestenclassic/
manrepsample   TimesTenClassic was Normal, now ActiveDown
3m43s       Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-1 Database Updatable
3m43s       Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 RepState ACTIVE
3m43s       Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 is Not Ready
3m43s       Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was ActiveDown, now ActiveTakeover
3m38s       Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 is Ready
3m38s       Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-1 is Active Ready
3m38s       Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was ActiveTakeover, now StandbyDown
119s        Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Agent Up
119s        Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Instance Exists
119s        Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Daemon Down
118s        Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Daemon Up
118s        Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Database Unloaded
111s        Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Database None
90s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Database Loaded
90s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 RepAgent Not Running
90s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 RepScheme Exists
90s         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-0 RepState IDLE
84s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 Database Loaded
84s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 RepAgent Running
84s         Normal    Info                     timestenclassic/
manrepsample   Pod manrepsample-0 RepScheme Exists
84s         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-0 RepState STANDBY
84s         Normal    StateChange              timestenclassic/
manrepsample   Pod manrepsample-0 is Ready
84s         Normal    StateChange              timestenclassic/
manrepsample   TimesTenClassic was StandbyDown, now Normal

The upgrade process completes.

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-29



3. Confirm which Pod is the active.

kubectl get ttc manrepsample

The output is similar to the following:

NAME           STATE    ACTIVE           AGE
manrepsample   Normal   manrepsample-1   3h21m

The TimesTen Operator promoted the standby manrepsample-1 database to be the active.
Applications that were connected to the manrepsample-0 database are automatically
reconnected to the manrepsample-1 database by TimesTen. After a brief outage, the
applications can continue to use the database.

4. Verify the active and standby databases are running the correct release.

a. Establish a shell in the active Pod.

kubectl exec -it manrepsample-1 -c tt -- /bin/bash

b. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

c. Exit from the shell.

d. Establish a shell in the standby Pod.

kubectl exec -it manrepsample-0 -c tt -- /bin/bash

e. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

Chapter 19
Perform a Manual Upgrade of a Replicated TimesTenClassic Object

19-30



f. Exit from the shell.

The active and standby databases are running the correct release of TimesTen.

Congratulations! You successfully performed a manual upgrade for a replicated
TimesTenClassic object. The active and standby databases are upgraded, running, and fully
operational.

Perform an Automated Upgrade of a Non-Replicated
TimesTenClassic Object

Let's perform an automated upgrade for a non-replicated TimesTenClassic object consisting of
three independent TimesTen databases.

1. Review the TimesTenClassic objects running in your namespace.

kubectl get ttc

The output is similar to the following:

NAME             STATE              ACTIVE        AGE
mannorepsample   AllReplicasReady   N/A           3h47m
norepsample      AllReplicasReady   N/A           4d10s
repsample        Normal             repsample-0   5d23h

One of the non-replicated TimesTenClassic objects is norepsample. Its high level state is
AllReplicasReady, indicating all replicas are ready and available. TimesTen databases are
up and running and functioning properly.

2. Review the image upgrade strategy and rolling update partition values for the object.

kubectl get ttc norepsample -o yaml | grep 'imageUpgradeStrategy\|
rollingUpdatePartition'

The output is the following:

imageUpgradeStrategy: Auto
rollingUpdatePartition: 2

The image upgrade strategy is Auto (also the default), indicating an automated upgrade
strategy. The value for rollingUpdatePartition is 2, indicating that Kubernetes upgrades
Pods with an ordinal value greater than or equal to 2. For the norepsample object, since
the value of replicas is 3, there are three Pods named norepsample-0, norepsample-1,
and norepsample-2. Therefore, Kubernetes only upgrades the norepsample-2 Pod. Let's
verify this by performing the upgrade.

3. On your development host, edit the TimesTenClassic object's .spec.ttspec.image datum
with the container image you want to use for the upgrade. This example uses container-
registry.oracle.com/timesten/timesten:22.1.1.35.0.

Chapter 19
Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

19-31



a. Edit the file, replacing the image value with container-registry.oracle.com/
timesten/timesten:22.1.1.35.0.

 kubectl edit ttc norepsample

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
    image: container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...

b. Save the file and exit from the editor.

4. Confirm the StatefulSet contains the new image.

kubectl describe statefulset norepsample | grep Image

The output is the following:

Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0

When the TimesTen Operator detects that there is an update to the
TimesTenClassic's .spec.ttspec.image datum, it modifies the StatefulSet with the new
image. Since this is an automated upgrade, the TimesTen Operator takes no further action,
but Kubernetes does take action. Kubernetes automatically begins to terminate Pods and
replace them with new ones. These new Pods run the new image. Since
rollingUpdatePartition is 2, you should expect to see only the norepsample-2 Pod
upgraded with the new image.

5. Monitor the progress.

kubectl get ttc norepsample

The output is similar to the following:

NAME          STATE               ACTIVE   AGE
norepsample   SomeReplicasReady   N/A      16m

The object is in the SomeReplicasReady state.

Wait a few minutes. Then, monitor again.

kubectl get ttc norepsample

Chapter 19
Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

19-32



The output is similar to the following:

NAME          STATE              ACTIVE   AGE
norepsample   AllReplicasReady   N/A      19m

The object is in the AllReplicasReady state. All replicas are ready and available.
TimesTen databases are up and running and functioning properly.

6. Check the image that the norepsample-2 Pod is running.

kubectl describe pod norepsample-2 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The containers in the Pod are running the new container image.

7. Check the image for the norepsample-1 and norepsample-0 Pods.

a. Check the norepsample-1 Pod.

kubectl describe pod norepsample-1 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

The containers in the Pod are not running the new image. Due to the
rollingUpdatePartition value of 2, Kubernetes does not upgrade this Pod with the
new image. This is correct behavior.

b. Check the norepsample-0 Pod.

kubectl describe pod norepsample-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0
Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

Chapter 19
Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

19-33



Image:          container-registry.oracle.com/timesten/
timesten:22.1.1.34.0

The containers in the Pod are not running the new image. Due to the
rollingUpdatePartition value of 2, Kubernetes does not upgrade this Pod with the
new image. This is correct behavior.

After you confirm the upgrade is working, you can upgrade the remaining Pods.

8. Edit the TimesTenClassic object's .spec.ttspec.rollingUpdatePartition datum and
change the value from 2 to 0.

a. Edit the file, replacing the rollingUpdatePartition value with 2.

 kubectl edit ttc norepsample

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
    rollingUpdatePartition: 0
...

b. Save the file and exit from the editor.

Kubernetes automatically begins to terminate Pods and replace them with new ones.
These new Pods run the new image. Since rollingUpdatePartition is now 0, you should
expect to see the norepsample-1 and norepsample-0 Pods upgraded with the new image.

9. Monitor the progress.

a. TimesTenClassic object:

kubectl get ttc norepsample

The output is similar to the following

NAME          STATE               ACTIVE   AGE
norepsample   SomeReplicasReady   N/A      51m

b. Pods:

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS     RESTARTS   AGE
...
norepsample-0                        3/3     Running    0          53m
norepsample-1                        0/3     Init:0/1   0          106s
norepsample-2                        3/3     Running    0          36m

Chapter 19
Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

19-34



Kubernetes replaces the norepsample-1 Pod first. Wait a few minutes. Then monitor
again.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS     RESTARTS   AGE
...
norepsample-0                        0/3     Init:0/1   0          46s
norepsample-1                        3/3     Running    0          3m41s
norepsample-2                        3/3     Running    0          38m

Kubernetes replaced the norepsample-1 Pod and is in the process of replacing the
norepsample-0 Pod.

Check again.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
...
norepsample-0                        3/3     Running   0          5m59s
norepsample-1                        3/3     Running   0          8m54s
norepsample-2                        3/3     Running   0          43m

All Pods are running.

10. Confirm the Pods are running the new container image.

Pod norepsample-1:

kubectl describe pod norepsample-1 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Pod norepsample-0:

kubectl describe pod norepsample-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Chapter 19
Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

19-35



Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The Pods are running the new image.

11. (Optional) Confirm the state of the TimesTenClassic object.

kubectl get ttc norepsample

The output is similar to the following:

NAME          STATE              ACTIVE   AGE
norepsample   AllReplicasReady   N/A      62m

12. Verify the databases are running the correct release.

a. Establish a shell in the -0 Pod.

kubectl exec -it norepsample-0 -c tt -- /bin/bash

b. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

c. Exit from the shell.

d. Establish a shell in the -1 Pod.

kubectl exec -it norepsample-1 -c tt -- /bin/bash

e. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

Chapter 19
Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object

19-36



f. Exit from the shell.

g. Establish a shell in the -2 Pod.

kubectl exec -it norepsample-2 -c tt -- /bin/bash

h. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

i. Exit from the shell.

The TimesTen databases are running the correct release of TimesTen.

Congratulations! You successfully performed an automated upgrade for a non-replicated
TimesTenClassic object. All replicas are ready and available. Pods are running the new
TimesTen container image. TimesTen databases are upgraded and fully operational.

Perform a Manual Upgrade of a Non-Replicated
TimesTenClassic Object

Let's perform a manual upgrade for a non-replicated TimesTenClassic object consisting of
three independent TimesTen databases.

1. Review the TimesTenClassic objects running in your namespace.

kubectl get ttc

The output is similar to the following:

NAME             STATE              ACTIVE        AGE
mannorepsample   AllReplicasReady   N/A           3m32s
norepsample      AllReplicasReady   N/A           11h
repsample        Normal             repsample-0   5d19h

One of the non-replicated TimesTenClassic objects is mannorepsample. Its high level state
is AllReplicasReady.

2. Review the image upgrade strategy for this object.

kubectl get ttc mannorepsample -o yaml | grep imageUpgradeStrategy

Chapter 19
Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

19-37



The output is the following:

 imageUpgradeStrategy: Manual

The image upgrade strategy is Manual. Let's perform an upgrade.

3. On your development host, edit the TimesTenClassic object's .spec.ttspec.image datum
with the container image you want to use for the upgrade. This example uses container-
registry.oracle.com/timesten/timesten:22.1.1.35.0.

a. Edit the file, replacing the image value with container-registry.oracle.com/
timesten/timesten:22.1.1.35.0.

 kubectl edit ttc mannorepsample

# Please edit the object below. Lines beginning with a '#' will be 
ignored,
# and an empty file will abort the edit. If an error occurs while 
saving this file will be
# reopened with the relevant failures.
#
apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
...
    image: container-registry.oracle.com/timesten/timesten:22.1.1.35.0
...

b. Save the file and exit from the editor.

When the TimesTen Operator detects that there is an update to the
TimesTenClassic's .spec.ttspec.image datum, it modifies the StatefulSet with the new
image. Since this is a manual upgrade of a non-replicated object, the TimesTen Operator
and Kubernetes take no further action.

4. (Optional) Confirm the StatefulSet contains the new image.

kubectl describe statefulset mannorepsample | grep Image

The output is the following:

Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:      container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The containers including tt, daemonlog, and exporter contain the new image.

5. Review the Pods for the TimesTenClassic object.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS    RESTARTS   AGE
mannorepsample-0                     3/3     Running   0          26m

Chapter 19
Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

19-38



mannorepsample-1                     3/3     Running   0          26m
mannorepsample-2                     3/3     Running   0          26m
...

There are three Pods associated with the TimesTenClassic object. Each Pod is running a
TimesTen database. The databases are independent and have no relationship to each
other.

6. Delete the mannorepsample-2 Pod. This action causes Kubernetes to terminate the Pod
and replace it with a new one.

kubectl delete pod mannorepsample-2

7. Monitor the progress.

kubectl get ttc mannorepsample

The output is the following:

NAME             STATE               ACTIVE   AGE
mannorepsample   SomeReplicasReady   N/A      49m

The object is in the SomeReplicasReady state.

Wait a few minutes. Then monitor again.

kubectl get ttc mannorepsample

The output is the following:

NAME             STATE              ACTIVE   AGE
mannorepsample   AllReplicasReady   N/A      53m

The object is in the AllReplicasReady state. All replicas are ready and available.
TimesTen databases are up and running and functioning properly.

8. Check the image that the mannorepsample-2 Pod is running.

kubectl describe pod mannorepsample-2 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The containers in the Pod are running the new container image.

Chapter 19
Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

19-39



9. Delete the remaining Pods.

kubectl delete pod mannorepsample-1

kubectl delete pod mannorepsample-0

10. Monitor the progress.

kubectl get pods

The output is similar to the following:

NAME                                 READY   STATUS     RESTARTS   AGE
mannorepsample-0                     0/3     Init:0/1   0          13s
mannorepsample-1                     0/3     Init:0/1   0          60s
...

Kubernetes starts recreating the Pods.

Wait a few minutes. Then monitor again.

kubectl get pods

The output is the following:

NAME                                 READY   STATUS    RESTARTS   AGE
mannorepsample-0                     3/3     Running   0          1m16s
mannorepsample-1                     3/3     Running   0          2m3s
mannorepsample-2                     3/3     Running   0          6m32s
...

The mannorepsample-0 and mannorepsample-1 Pods are now running. The
mannorepsample-2 has already been running.

11. Confirm the Pods are running the new container image.

Pod mannorepsample-0:

kubectl describe pod mannorepsample-0 | grep Image

The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

Pod mannorepsample-1:

kubectl describe pod mannorepsample-1 | grep Image

Chapter 19
Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

19-40



The output is similar to the following:

Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0
Image:          container-registry.oracle.com/timesten/timesten:22.1.1.35.0

The Pods are running the new image.

12. (Optional) Confirm the state of the TimesTenClassic object.

kubectl get ttc mannorepsample

The output is similar to the following:

NAME             STATE              ACTIVE   AGE
mannorepsample   AllReplicasReady   N/A      79m

13. Verify the databases are running the correct release.

a. Establish a shell in the -0 Pod.

kubectl exec -it mannorepsample-0 -c tt -- /bin/bash

b. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

c. Exit from the shell.

d. Establish a shell in the -1 Pod.

kubectl exec -it mannorepsample-1 -c tt -- /bin/bash

e. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1

Chapter 19
Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object

19-41



  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

f. Exit from the shell.

g. Establish a shell in the -2 Pod.

kubectl exec -it mannorepsample-2 -c tt -- /bin/bash

h. Run the TimesTen ttVersion utility.

ttVersion

The output is similar to the following:

TimesTen Release 22.1.1.35.0 (64 bit Linux/x86_64) (instance1:6624) 
2025-01-16T15:16:01Z
  Instance admin: timesten
  Instance home directory: /tt/home/timesten/instances/instance1
  Group owner: timesten
  Daemon home directory: /tt/home/timesten/instances/instance1/info
  PL/SQL enabled.

i. Exit from the shell.

The TimesTen databases are running the correct release of TimesTen.

Congratulations! You successfully performed a manual upgrade for a non-replicated
TimesTenClassic object. All replicas are ready and available. Pods are running the new
TimesTen container image. TimesTen databases are upgraded and fully operational.

About Upgrading Direct Mode Applications
You cannot use the automated upgrade procedures to upgrade direct mode applications that
are running in their own containers. The TimesTen Operator does propagate image changes
from a TimesTenClassic object to the associated StatefulSet, but the changes do not initiate
the automated upgrade process. You must manually terminate the applications that are running
in the containers. In so doing, the StatefulSet spawns new containers to replace the original
containers. These new containers run the new TimesTen image. For more information about
direct mode applications, see About Using Direct Mode Applications.

About Failures During an Upgrade
If there are failures in any step of the upgrade process, a TimesTenClassic object enters the
ManualInterventionRequired state. The remaining steps of the upgrade process are
canceled. You must manually fix the TimesTenClassic object. See About the High Level State
of TimesTenClassic Objects.

Chapter 19
About Upgrading Direct Mode Applications

19-42



20
TimesTen Kubernetes Operator Object Types

This chapter gives an overview of the TimesTenClassic and the TimesTenScaleout object
types. The chapter describes the syntax for each object type.

Topics:

• Overview of the TimesTen Kubernetes Operator Object Types

• About the TimesTenClassic Object Type

• About the TimesTenScaleout Object Type

Overview of the TimesTen Kubernetes Operator Object Types
The TimesTen Kubernetes Operator (TimesTen Operator) installation defines the
TimesTenClassic and the TimesTenScaleout object types to the Kubernetes cluster. An object
of type TimesTenClassic describes the metadata deploying TimesTen Classic databases. An
object of type TimesTenScaleout describes the metadata for TimesTen Scaleout grids and
databases. You can create as many TimesTenClassic and TimesTenScaleout objects as you
like.

The definition of the TimesTenClassic and the TimesTenScaleout object types use the same
basic format that the formal Kubernetes documentation uses to define objects that are built-in
to Kubernetes. The facilities available in any given Kubernetes cluster depend on what release
of Kubernetes the cluster is using. For information on the Kubernetes API documentation, see:

https://kubernetes.io/docs/reference/kubernetes-api/
The Kubernetes API reference documentation refers to a number of built-in Kubernetes types
used in the definition of the TimesTenClassic and the TimesTenScaleout object types. A
Kubernetes StatefulSet is of particular importance. The TimesTenClassic and the
TimesTenScaleout object types are basically a wrapper around a StatefulSet type. For more
information, see:

https://kubernetes.io/docs/reference/kubernetes-api/

About the TimesTenClassic Object Type
The definition of the TimesTenClassic object type defines the set of attributes for deploying
TimesTen Classic databases. The TimesTenClassic object type uses the following object
definitions:

• TimesTenClassic

• TimesTenClassicSpec

• TimesTenClassicSpecSpec

• TimesTenClassicSpecSpecClientTLS

• TimesTenClassicSpecSpecPrometheus

• TimesTenClassicStatus

20-1

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/


TimesTenClassic
An object of type TimesTenClassic describes the metadata for deploying TimesTen Classic
databases.

The following table describes the syntax for the TimesTenClassic object type.

Table 20-1    TimesTenClassic syntax

Field Type Description

apiVersion string Versioned schema of this representation of an object.

The TimesTen Kubernetes Operator supports v4, v3,
and v2 schema versions.

The value must be timesten.oracle.com/v4,
timesten.oracle.com/v3 or
timesten.oracle.com/v2.

Use the v4 schema version by specifying
timesten.oracle.com/v4. The v3 and v2 schema
versions are available to facilitate upwards
compatibility from earlier releases of the TimesTen
Operator. The v2 schema version is deprecated. It is
fully supported in this release, but will be removed in a
future release.

For more information about schema versions for
TimesTenClassic objects, see About TimesTen CRDs.

kind string Type of object. For example, TimesTenClassic.

metadata ObjectMeta Metadata about the object, such as its name. All of the
object's metadata is passed from the object to the
StatefulSet. For information about ObjectMeta, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

spec TimesTenClassicSpec Desired configuration of TimesTen Pods and
databases.

status TimesTenClassicStatus Current status of the Pods in this TimesTenClassic
object as well as the status of various TimesTen
components within those Pods. This data may be out
of date by some window of time.

TimesTenClassicSpec
TimesTenClassicSpec appears in TimesTenClassic. The following table describes the syntax
for TimesTenClassicSpec. The third column indicates the schema version in which the field
was first introduced. For more information, see About TimesTen CRDs.

Chapter 20
About the TimesTenClassic Object Type

20-2

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/


Table 20-2    TimesTenClassicSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

ttspec TimesTenClassicSpecSpec v2 Attributes specific to TimesTen.

template PodTemplateSpec v2 Describes the Pods provisioned for the
TimesTenClassic object. In addition to
Pods specified by template, there are
the tt and daemonlog containers that
are automatically included in each Pod.
TimesTen runs in the tt container. If
you configure and use Prometheus, the
exporter container is also included.
For information on PodTemplateSpec,
see:

https://kubernetes.io/docs/
reference/kubernetes-api/

volumeClaimTemplates PersistentVolumeClaim v2 TimesTen automatically provisions
PersistentVolumeClaims (PVCs) for /tt
(and for /ttlog, if specified). If you
have applications that are running in
containers in the TimesTen Pods, and
those applications require additional
PVCs, specify them in this field. For
information on
PersistentVolumeClaim, see:

https://kubernetes.io/docs/
reference/kubernetes-api/

TimesTenClassicSpecSpec
TimesTenClassicSpecSpec appears in TimesTenClassicSpec.

The TimesTen Operator supports v4, v3, and v2 schema versions.

Note:

The v2 schema version is deprecated. It is fully supported in this release, but will be
removed in a future release.

For more information about schema versions, see About TimesTen CRDs.

The following table details the fields for TimesTenClassicSpecSpec. Note the following:

• The fields are in alphabetical order.

• The third column indicates the earliest schema version the field was supported in.

• There are some fields of type quantity. The specified value is of the same format as
Kubernetes resource limits. For example, 200Gi, 200G, 1000Mi, 1000M, and so on.

Chapter 20
About the TimesTenClassic Object Type

20-3

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/


• There are fields that are reserved for internal use and are not documented in this table.
The names of these fields typically begin with zz. For example, zzTestInfo is reserved for
internal use.

Table 20-3    TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

additionalMemoryRequest quantity v2 The amount of memory to request in
addition to whatever is required for the
TimesTen database.

This memory is used for the TimesTen
daemon, subdaemons, agents, and the
Client/Server server.

This value is added to
databaseMemorySize that was either
specified by you or calculated. The sum
is the memory request to Kubernetes.

The default is 2Gi.

Chapter 20
About the TimesTenClassic Object Type

20-4



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

agentAsyncTimeout integer v2 At times the TimesTen Operator needs
to perform operations on a TimesTen
instance or database. When the
TimesTen Operator needs to perform
such operations, it asks the TimesTen
Agent running in the tt container of the
appropriate Pod to perform the
operation. The Agent issues TimesTen
commands and utilities and, using the
TimesTen ttIsql utility, runs SQL
operations on the appropriate instance
or database.

The Agent runs the operation either
synchronously (while the TimesTen
Operator waits) or asynchronously
(while the TimesTen Operator is not
waiting and can perform other
operations for other TimesTen objects).

The only operation that is performed
asynchronously is duplicate, where a
TimesTen Classic database is copied
from the active Pod to the standby Pod.
This is done as part of the initial rollout
of an active standby pair, and at various
times during its lifecycle.

These duplicate operations can take a
long time, and the amount of time
increases as the size of the database
increases. If an asynchronous operation
does not complete within
agentAsyncTimeout seconds, the
TimesTen Operator decides that it has
failed and acts accordingly.

If your database is large, you may need
to increase the default value for
agentAsyncTimeout.

The default is 600 and is expressed in
seconds.

agentGetTimeout integer v2 Time in seconds that the TimesTen
Operator waits for an https GET request
to be processed by the TimesTen
agent. This includes the TCP and the
TLS times as well as the time it takes
for the TimesTen agent to implement
the GET request.

The default is 60. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

Chapter 20
About the TimesTenClassic Object Type

20-5



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

agentPostTimeout integer v2 Time in seconds that the TimesTen
Operator waits for an https POST
request to be processed by the
TimesTen agent. This includes the TCP
and the TLS times as well as the time it
takes for the TimesTen agent to
implement the POST request. The POST
requests may take a long time and the
time may be proportional to the size of
the database. (An example is a POST
request to duplicate a database from
the active to the standby.)

The default is 600. A value of 0
indicates that there is no timeout. If the
timeout is exceeded, the TimesTen
Operator considers the POST request to
have failed.

agentTcpTimeout integer v2 Time in seconds that the TimesTen
Operator waits for a TCP handshake
when communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

agentTlsTimeout integer v2 Time in seconds that the TimesTen
Operator waits for a TLS (https)
credential exchange when
communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

automaticMemoryRequests boolean v2 Determines if the TimesTen Operator
attempts to set appropriate memory
limits and requests for TimesTen Pods.

Valid values:
• true (default): The TimesTen

Operator attempts to set memory
limits and requests.

• false: The TimesTen Operator
does not set memory limits and
requests.

Chapter 20
About the TimesTenClassic Object Type

20-6



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

bothDownBehavior string v2 If the TimesTenClassic object enters the
BothDown state, the TimesTen
Operator examines the
bothDownBehavior setting to
determine what to do. Acceptable
values are Best (default) or Manual.
See BothDown.

cacheCleanup boolean v2 Determines if the metadata in the
Oracle Database should be cleaned up
when this TimesTenClassic object is
deleted. Use for TimesTen Cache only.

Valid values:

• true (or not specified): The
metadata is cleaned up.

• false: The metadata is not
cleaned up.

See Dropping Oracle Database Objects
Used by Cache Groups with
Autorefresh in the Oracle TimesTen In-
Memory Database Cache Guide.

clientTLS TimesTenClassicSpecSpec
ClientTLS

v4 If specified, the TimesTen Operator can
automatically create self-signed
certificates and configure TimesTen to
use those certificates for client/server
encryption. The fields for the
clientTLS object are defined in 
TimesTenClassicSpecSpecClientTLS.

For more information about how the
TimesTen Operator automatically
generates certificates and configures
client/server TLS connections, see 
Automatically Configure Client/Server
TLS.

createASReadinessProbe boolean v2 Determines if the TimesTen Operator
creates a readiness probe for a
replicated TimesTenClassic object.

Valid values:

• true (default): The TimesTen
Operator creates a readiness
probe.

• false: The TimesTen Operator
does not create a readiness probe.

See About Readiness Probes for
TimesTen Containers.

daemonLogCPURequest quantity v2 The amount of CPU requested for the
daemonlog container.

The default is 200m (one-fifth of a CPU).

Chapter 20
About the TimesTenClassic Object Type

20-7



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

daemonLogMemoryRequest quantity v2 The amount of memory requested for
the daemonlog container.

The default is 200Mi.

daemonLogSidecar boolean v2 Determines if a daemon log container is
created in each TimesTen Pod. This
container writes the TimesTen daemon
logs (from ttmesg.log) to stdout.
This causes Kubernetes to record these
logs.

Valid values:

• true (or not specified): A daemon
log container is created.

• false: A daemon log container is
not created.

databaseCPURequest quantity v2 Specify this value to tell the TimesTen
Operator how much CPU your tt
containers require. This includes CPU
used by the TimesTen daemon,
subdaemons, replication agents, cache
agents, and the Client/Server server.

There is no default.

Chapter 20
About the TimesTenClassic Object Type

20-8



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

databaseMemorySize quantity v2 You can specify this value to tell the
TimesTen Operator how much shared
memory your database requires.

If you specify a value, that value will be
used. If you do not specify a value, the
TimesTen Operator attempts to
determine the required size from the
provided db.ini file.

If the TimesTen Operator cannot
determine the database size, the value
580911104 is used. This is the size
required for a default database with a
PermSize of 200Mbyte, rounded up to
2Mi. This may be useful for
experimentation, but is likely insufficient
for production purposes.

TimesTen recommends that you
provide a db.ini file to the TimesTen
Operator by using a Configmap or
Secret, and that you not specify
databaseMemorySize.

Note:

If you
provide a
db.ini
file by
using an
init
container,
you must
specify
database
MemorySi
ze.

dbConfigMap array of strings v2 Name of one or more ConfigMaps to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers.
If you do not specify dbConfigMap or
dbSecret, you must place the
metadata files into the /ttconfig
directory by using other means. See 
Populate the /ttconfig Directory.

Chapter 20
About the TimesTenClassic Object Type

20-9



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

dbSecret array of strings v2 Name of one or more Secrets to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers.
If you do not specify dbSecret or
dbConfigMap, you must place the
metadata files into the /ttconfig
directory by using other means. See 
Populate the /ttconfig Directory.

deleteDbOnNotReadyNode integer v3 When specified, this datum directs the
TimesTen Operator to detect situations
where a Node is not ready (or
unknown) for a specific period of time.
When detected, the TimesTen Operator
takes appropriate action to remedy the
situation. Specifically, the TimesTen
Operator checks to see if the Node's
not ready condition has existed for more
than deleteDbOnNotReadyNode
seconds. If so, the TimesTen Operator
deletes the Pod and the PVCs
associated with the Pod. This causes
Kubernetes to create a new Pod and
new PVCs on a surviving Node. Once
the Pod is scheduled and started by
Kubernetes, the TimesTen Operator
configures it as usual.

The value is expressed in seconds and
must be greater than
pollingInterval.

By default, this datum is not specified in
your TimesTenClassic object definition.
You must specify it.

Note: Use caution when specifying this
datum. Specifying this datum could
result in the TimesTen Operator
deleting PVCs. Deleting PVCs discards
the on-disk copy of TimesTen
databases.

For more information, see How the
TimesTen Kubernetes Operator
Handles Node Failure.

exporterCPURequest quantity v2 The amount of CPU requested for the
exporter container (if provisioned).

The default is 200m (one-fifth of a CPU).

Chapter 20
About the TimesTenClassic Object Type

20-10



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

exporterMemoryRequest quantity v2 The amount of memory requested for
the exporter container (if
provisioned).

The default is 200Mi.

image string v2 Name of the TimesTen image that is
executed in the created containers.

There is no default. You must specify
the name of the image.

imagePullPolicy string v2 Determines if and when Kubernetes
pulls the TimesTen image from the
image repository.

Valid values:

• Always
• IfNotPresent (default)

• Never
Note: Values are case sensitive.

imagePullSecret string v2 Image pull secret that is used to
authenticate and give permission to
Kubernetes to fetch the specified
TimesTen image from its image
repository.

There is no default. You must specify
the name of the image pull secret.

imageUpgradeStrategy string v2 Determines if the TimesTen Operator
performs automated upgrades.

Valid values:

• Auto (or not specified): The
TimesTen Operator performs
automated upgrades.

• Manual: The TimesTen Operator
does not perform an automated
upgrade.

Values are case sensitive. See Perform
Upgrades.

logStorageClassName string v2 Name of the storage class that is used
to request persistent volumes for the
TimesTen database transaction log
files. This field is optional.

Chapter 20
About the TimesTenClassic Object Type

20-11



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

logStorageSelector metav1.LabelSelector v2 When choosing to use a persistent
volume to store the TimesTen
transaction logs, the primary
determinant of what volumes to use is
the logStorageClassName field that
you specify. You can optionally specify a
label selector by using the
logStorageSelector field. This label
selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

logStorageSize string v2 Amount of storage to be provisioned for
the TimesTen transaction logs. For
information on determining the amount
of storage needed for the transaction
log files, see Storage Provisioning for
TimesTen in the Oracle TimesTen In-
Memory Database Operations Guide

The default is 50Gi. This default value
may be suitable when you are
experimenting with the product or using
it for demonstration purposes. However,
in a production environment, consider
choosing a value greater than 50Gi.
The examples in this book assume a
production environment and use a
value of 250Gi.

memoryWarningPercent integer v2 At runtime, if a container's memory
usage is more than its percentage of its
limit (both as reported by cgroups), the
TimesTen Operator generates Events to
inform you of this occurrence.

The memory usage refers to the
container's memory allocation.

The default is 90.

Chapter 20
About the TimesTenClassic Object Type

20-12

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

pollingInterval integer v2 Determines how often (expressed in
seconds) that the TimesTen Operator
checks the status of the
TimesTenClassic object. For example, if
you set this value to 10, the TimesTen
Operator checks the status of the
TimesTenClassic object every ten
seconds.

This value interacts with
unreachableTimeout. The
pollingInterval value should be
smaller than the unreachableTimeout
value.

The value must be a positive integer
(greater than 0). The default is 5.

prometheus TimesTenClassicSpecSpec
Prometheus

v2 Determines if the TimesTen Exporter is
deployed. If specified, the Exporter is
deployed. The fields for the
prometheus object are defined in 
TimesTenClassicSpecSpecPrometheus
.

Chapter 20
About the TimesTenClassic Object Type

20-13



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

readOnlyRootFilesystem boolean v2 Determines if the TimesTen Operator
causes the container image to be
mounted read-only in TimesTen
containers. In addition, determines if
the TimesTen Operator provisions an
empty directory and mounts it on top of
the /tmp directory in all TimesTen
containers in all TimesTen Pods. This
includes the tt, daemonlog, and
exporter containers in each Pod.

Valid values:

• true (default): The TimesTen
Operator provisions an empty
directory and mounts it on top of
the /tmp directory. In addition, the
TimesTen Operator creates these
containers with container images
mounted as read-only.

• false: The TimesTen Operator
does not provision an empty
directory and does not create
containers with container images
mounted as read-only.

If you provide your own containers, the
TimesTen Operator does not
automatically mount your container
images as read-only.

If you upgrade a v1 TimesTenClassic
object and if the Pods associated with
that TimesTenClassic object are
replaced, the replacements do not have
readOnlyRootFilesystem set.

reexamine string v2 When a TimesTenClassic object is in
the ManualInterventionRequired
state, the TimesTen Operator examines
the reexamine value every
pollingInterval seconds. If the
value has changed since the last
iteration for this object, the TimesTen
Operator examines the state of the
TimesTen containers for this object.
See About the
ManualInterventionRequired State for
Replicated Objects and About Bringing
Up One Database.

Chapter 20
About the TimesTenClassic Object Type

20-14



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

repCreateStatement string v2 The repReturnServiceAttribute
and the repStoreAttribute fields
provide some control over the CREATE
ACTIVE STANDBY statement that you
use to configure your active standby
pair replication scheme. However, these
fields do not provide a mechanism to
set all the replication options.

The repCreateStatement field
provides more control over the active
standby pair replication configuration. If
you choose to define a replication
scheme, you must choose either the
repCreateStatement approach or the
repReturnServiceAttribute and
the repStoreAttribute approach.
You cannot use both approaches
simultaneously in a single
TimesTenClassic object definition. For
example, you cannot use the
repCreateStatement and the
repReturnServiceAttribute fields
in a single TimesTenClassic object
definition. However, you can use the
repReturnServiceAttribute and
the repStoreAttribute fields in a
single TimesTenClassic object
definition.

Example of using
repCreateStatement:

apiVersion: timesten.oracle.com/
v4
kind: TimesTenClassic
metadata:
 name: sample
spec:
  ttspec:
 repCreateStatement: |
      create active standby pair
        "{{tt-name}}" on "{{tt-
node-0}}",
        "{{tt-name}}" on "{{tt-
node-1}}"
      RETURN TWOSAFE
      store "{{tt-name}}" on 
"{{tt-node-0}}"
        PORT {{tt-rep-port}} 
FAILTHRESHOLD 10 TIMEOUT 5 
        DISABLE RETURN ALL 10
      store "{{tt-name}}" on 

Chapter 20
About the TimesTenClassic Object Type

20-15



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

"{{tt-node-1}}"
        PORT {{tt-rep-port}} 
FAILTHRESHOLD 10 TIMEOUT 5 
        DISABLE RETURN ALL 10

The TimesTen Operator does the
substitutions for you.

• {{tt-name}}: The name of the
TimesTenClassic object. (For
example, sample.)

• {{tt-node-0}}: The fully
qualified DNS name of the -0 Pod
for the TimesTenClassic object.
(For example,
sample-0.sample.mynamespace
.svc.cluster.local.)

• {{tt-node-1}}: The fully
qualified DNS name of the -1 Pod
for the TimesTenClassic object.
(For example,
sample-1.sample.mynamespace
.svc.cluster.local.)

• {{tt-rep-port}}: The TCP port
either chosen by the TimesTen
Operator or specified in the
repPort field.

When you use the
repCreateStatement field, you have
nearly complete control over the
replication configuration. The TimesTen
Operator executes the statement you
define (after substituting a number of
values into it). Since the TimesTen
Operator is using the CREATE statement
that you define, ensure that the
statement you specify is correct and
appropriate. If the creation of your
active standby pair replication scheme
fails, your TimesTenClassic object
transitions from the Initializing
state to the Failed state. You must
then delete the TimesTenClassic object
to clean up the resources it holds. See 
About the High Level State of
TimesTenClassic Objects.

The configuration has the following
restrictions:

• Must be an active standby pair.

Chapter 20
About the TimesTenClassic Object Type

20-16



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

• Must not be configured with
subscribers.

See CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory
Database SQL Reference and Defining
an Active Standby Pair Replication
Scheme in the Oracle TimesTen In-
Memory Database Replication Guide.

replicas integer v2 Valid for non-replicated database
configurations.

Number of TimesTen Pods to provision.

You can only specify replicas if the
value of replicationTopology is
none.

The minimum value is 1. The maximum
value is 3. The default is 1.

You cannot change the value of
replicas once the TimesTenClassic
object is created.

For more information, see Create
TimesTen Classic Databases.

replicationCipherSuite string v2 Determines the encryption algorithm to
be used by TimesTen replication. If
specified, replication traffic is
encrypted.

You can specify one or more cipher
suites. Specify the desired cipher
suites, comma-separated and in order
of preference. The supported cipher
suites are as follows:

• SSL_ECDHE_ECDSA_WITH_AES_12
8_GCM_SHA256

• SSL_ECDHE_ECDSA_WITH_AES_25
6_GCM_SHA384

• SSL_RSA_WITH_AES_128_CBC_SH
A256

See Configuration for TLS for Client/
Server in the Oracle TimesTen In-
Memory Database Security Guide.

Chapter 20
About the TimesTenClassic Object Type

20-17



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

replicationSSLMandatory integer v2 Determines if SSL encryption is
mandatory for replication.

Valid values:

• 0 (or not specified): SSL encryption
is not mandatory for replication.

• 1: SSL encryption is mandatory for
replication.

This field is only examined if
replicationCipherSuite is
specified.

See About Using Certificates with
Client/Server in the Oracle TimesTen
In-Memory Database Security Guide.

replicationTopology string v2 Determines if replication should be
configured.

Valid values:
• activeStandbyPair (default):

The TimesTen Operator configures
an active standby pair replication
scheme.

• none: The TimesTen Operator
does not configure replication.
Instead, it configures a non-
replicated configuration and uses
the replicas field to determine
how many TimesTen Pods to
create.

For more information, see Create
TimesTen Classic Databases.

repPort integer v2 TCP port used for replication. The
default is 4444.

Chapter 20
About the TimesTenClassic Object Type

20-18



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

repReturnServiceAttribute string v2 You can use the
repReturnServiceAttribute field to
specify the ReturnServiceAttribute
clause. This clause is part of the syntax
for the CREATE ACTIVE STANDBY PAIR
statement. The information you specify
is included in your active standby pair's
CREATE ACTIVE STANDBY PAIR
statement by the TimesTen Operator.
Do not specify the
repReturnServiceAttribute field if
you have specified the
repCreateStatement field.

If you do not specify the
repReturnServiceAttribute field
(or the repCreateStatement field),
the default is NO RETURN.

See CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory
Database SQL Reference and Defining
an Active Standby Pair Replication
Scheme in the Oracle TimesTen In-
Memory Database Replication Guide
for information on the CREATE ACTIVE
STANDBY PAIR statement and the
ReturnServiceAttribute clause.

repStateTimeout integer v2 Time in seconds a replicated database
remains in the recovering replication
state as reported by the TimesTen
ttRepStateGet built-in procedure. The
recovering replication state indicates
the database is in the process of
synchronizing updates with the active
database after a failure. See 
ttRepStateGet in the Oracle TimesTen
In-Memory Database Reference.

The default is 30.

Chapter 20
About the TimesTenClassic Object Type

20-19



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

repStoreAttribute string v2 You can use the repStoreAttribute
field to specify the StoreAttribute
clause. This clause is part of the
CREATE ACTIVE STANDBY PAIR
statement. The information you specify
is included in your active standby pair's
CREATE ACTIVE STANDBY PAIR
statement by the TimesTen Operator.
Do not specify the
repStoreAttribute field if you have
specified the repCreateStatement
field.

If you do not specify the
repStoreAttribute field (or the
repCreateStatement field), the
default is: PORT repPort
FAILTHRESHOLD 0.

If you specify the
repStoreAttribute, you must specify
the port. This port is used by
replication. The port must match the
port provided in the repPort field (or
must match the default value if
repPort is not specified). If the ports
do not match, the TimesTenClassic
object enters the Failed state.

See CREATE ACTIVE STANDBY PAIR
in the Oracle TimesTen In-Memory
Database SQL Reference and Defining
an Active Standby Pair Replication
Scheme in the Oracle TimesTen In-
Memory Database Replication Guide
for information on the CREATE ACTIVE
STANDBY PAIR statement and the
StoreAttribute clause.

resetUpgradeState string v2 The resetUpgradeState field allows
an online upgrade to be canceled.

Chapter 20
About the TimesTenClassic Object Type

20-20



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

rollingUpdatePartition integer v2 Specific to upgrading a non-replicated
configuration. Kubernetes upgrades
Pods with an ordinal value that is
greater than or equal to the
rollingUpdatePartition value.
Pods with an ordinal value that is less
than rollingUpdatePartition are
not upgraded.

For example, if you have three non-
replicated Pods (replicas = 3 and
Pods are samplerep-0, samplerep-1,
and samplerep-2) and you set
rollingUpdatePartition to 1, the
samplerep_1 and samplerep-2 Pods
are upgraded, but the samplerep-0
Pod is not.

The default is 0.

For more information, see Perform
Upgrades in this book and Partitioned
rolling updates in the Kubernetes
documentation.

stopManaging string v2 If you change the value of
stopManaging for the
TimesTenClassic object, the TimesTen
Operator places the object in the
ManualInterventionRequired state.
See About the
ManualInterventionRequired State for
Replicated Objects and About Bringing
Up One Database.

storageClassName string v2 Name of the storage class that is used
to request persistent volumes for the
TimesTen database.

There is no default. You must specify
the name of the storage class.

storageSelector metav1.LabelSelector v2 When choosing to use a persistent
volume to store a TimesTen database,
the primary determinant of what
volumes to use is the
StorageClassName that you specify.
You can optionally specify a label
selector by using the
storageSelector field. This label
selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

Chapter 20
About the TimesTenClassic Object Type

20-21

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

storageSize string v2 Amount of storage to be provisioned for
TimesTen and the database. For
information on determining the amount
of storage needed for TimesTen, see 
Storage Provisioning for TimesTen in
the Oracle TimesTen In-Memory
Database Operations Guide .

The default is 50Gi. This default value
may be suitable when you are
experimenting with the product or using
it for demonstration purposes. However,
in a production environment, consider
choosing a value greater than 50Gi.
The examples in this book assume a
production environment and use a
value of 250Gi.

storePassword string v4 The TimesTen Operator stores its
security certificates in Java Keystores.
In order to create and use Java
Keystores, they must be secured with a
known password (storePassword).
The password must be known by both
the TimesTen Operator who creates
and reads the keystore and the
TimesTen Agent who also reads it.

The default value is a hard-coded string
that is not documented.

Although not recommended, you can
use the storePassword datum to set
the password to a different value than
the default and control the password
setting. Once set, you cannot change
storePassword. If it is changed, the
TimesTen Operator generates a
warning in the form of a Kubernetes
Event and ignores the changed value.

terminationGracePeriod integer v2 Amount of time (in seconds) that
Kubernetes waits for a Pod to gracefully
shut down before being forcefully
terminated.

The default varies depending on your
configuration:
• Replicated (Active Standby Pair):

Default is 10 seconds.

• Non-replicated: Default is 300
seconds.

Chapter 20
About the TimesTenClassic Object Type

20-22



Table 20-3    (Cont.) TimesTenClassicSpecSpec syntax

Field Type Earliest
Schema
Version
Supported
In

Description

unreachableTimeout integer v2 Number of seconds that a TimesTen
instance or TimesTen database is
unavailable before the TimesTen
Operator takes action to fail over or
otherwise recover from the issue.

This value interacts with
pollingInterval. The
pollingInterval value should be
smaller than the unreachableTimeout
value.

The value must be a positive integer
(greater than 0). The default is 30.

upgradeDownPodTimeout integer v2 Maximum amount of seconds that the
TimesTenClassic object remains in the
WaitingForActive state. After this
period of time, if the TimesTenClassic
object is still in the WaitingForActive
state, it transitions to the
ManualInterventionRequired state.

The default is 0 (which means there is
no timeout. The TimesTenClassic object
waits forever, if required).

For information on the
WaitingForActive and the
ManualInterventionRequired
states, see About the High Level State
of TimesTenClassic Objects.

TimesTenClassicSpecSpecClientTLS
TimesTenClassicSpecSpecClientTLS appears in TimesTenClassicSpecSpec.

The following table describes the syntax for TimesTenClassicSpecSpecClientTLS.

Chapter 20
About the TimesTenClassic Object Type

20-23



Table 20-4    TimeTenClassicSpecSpecClientTLS

Field Type Earliest
Schema
Version
Supported
In

Description

auto boolean v4 Determines if the TimesTen Operator
automatically creates self-signed
certificates and configures TimesTen to
use those certificates for client/server
encryption.

Valid values are the following:

• true: The TimesTen Operator
automatically creates and
configures self-signed certificates
for client/server encryption.

• false (default): The TimesTen
does not automatically create and
configure self-signed certificates
for client/server encryption.

If you do not specify the auto datum,
and any other field is specified in
the .spec.ttspec.clientTLS clause,
the default value for the auto datum is
false.

Chapter 20
About the TimesTenClassic Object Type

20-24



Table 20-4    (Cont.) TimeTenClassicSpecSpecClientTLS

Field Type Earliest
Schema
Version
Supported
In

Description

ciphersuites string v4 Defines the cipher suite(s) used for
client/server communication.

You can specify one or more cipher
suites. Specify the desired cipher
suites, comma-separated, and in order
of preference.

The supported cipher suites are as
follows:

• SSL_ECDHE_ECDSA_WITH_AES_12
8_GCM_SHA256

• SSL_ECDHE_ECDSA_WITH_AES_25
6_GCM_SHA384

• SSL_RSA_WITH_AES_128_CBC_SH
A256

The TimesTen Operator first checks to
see if there is a ciphersuites entry in
the db.ini file.
• If there is an entry, the TimesTen

Operator uses it.
• If there is no entry, the TimesTen

Operator uses the value specified
in this datum.

• If .spec.ttspec.clientTLS.au
to is true, and there is no value
specified in either the db.ini file
or in this datum, the TimesTen
Operator sets the value to
SSL_ECDHE_ECDSA_WITH_AES_12
8_GCM_SHA256.

The TimesTen Operator adds the
ciphersuites value to the TimesTen
Server's sys.odbc.ini file.

See Configuration for TLS for Client/
Server in the Oracle TimesTen In-
Memory Database Security Guide.

eccurve string v4 Defines the size of the elliptical curve.

The supported values are as follows:
• p256
• p384 (default)

• p521
See the -eccurve option of the
TimesTen ttCreateCerts utility in the
Oracle TimesTen In-Memory Database
Reference.

Chapter 20
About the TimesTenClassic Object Type

20-25



Table 20-4    (Cont.) TimeTenClassicSpecSpecClientTLS

Field Type Earliest
Schema
Version
Supported
In

Description

encryption string v4 Defines the encryption setting for client/
server access.

The supported values are as follows:
• accepted
• rejected
• requested
• required
The TimesTen Operator first checks to
see if there is an encryption entry in
the db.ini file.
• If there is an entry, the TimesTen

Operator uses it.
• If there is no entry, the TimesTen

Operator uses the value specified
in this datum.

• If .spec.ttspec.clientTLS.au
to is true, and there is no value
specified in either the db.ini file
or in this datum, the TimesTen
Operator sets the value to
accepted.

The TimesTen Operator adds the
encryption value to the TimesTen
Server's sys.odbc.ini file.

See Configuration for TLS for Client/
Server in the Oracle TimesTen In-
Memory Database Security Guide.

signAlg string v4 Defines the elliptical curve signing
algorithm.

The supported values are as follows:
• ecdsasha256
• ecdsasha384 (default)

• ecdsasha512
See the -sign_alg option of the
TimesTen ttCreateCerts utility in the
Oracle TimesTen In-Memory Database
Reference.

validity integer v4 Defines the number of days the created
certificate is valid.

The minimum is 30 and the maximum is
9999.

The default is 3650.

See the -validity option of the
TimesTen ttCreateCerts utility in the
Oracle TimesTen In-Memory Database
Reference.

Chapter 20
About the TimesTenClassic Object Type

20-26



TimesTenClassicSpecSpecPrometheus
TimesTenClassicSpecSpecPrometheus appears in TimesTenClassicSpecSpec.

The following table describes the syntax for TimesTenClassicSpecSpecPrometheus.

Table 20-5    TimesTenClassicSpecSpecPrometheus syntax

Field Type Earliest
Schema
Version
Supported
In

Description

certSecret string v2 When using https to serve TimesTen
metrics, a Kubernetes Secret is
required.

If you create your own Kubernetes
Secret, use the certSecret field to
specify the name of this Secret. This
Secret contains an Oracle Wallet that
holds the necessary certificates used
by the TimesTen exporter for serving
TimesTen metrics by https. See Create
Your Own Oracle Wallet, Certificates,
and Secrets for Exposing TimesTen
Metrics.

If you want the TimesTen Operator to
automatically create an Oracle Wallet,
certificates, and Kubernetes Secrets
that are required for https, do not
specify the certSecret field. We
recommend this approach. See About
Transport Layer Security (mutual TLS)
Certificates for TimesTen Metrics.

createPodMonitors boolean v2 Determines if the TimesTen Kubernetes
Operator creates PodMonitors.

Valid values:

• true (or not specified): The
TimesTen Operator creates
PodMonitors.

• false: The TimesTen Operator
does not create PodMonitors.

See Expose TimesTen Metrics with the
TimesTen Kubernetes Operator.

Chapter 20
About the TimesTenClassic Object Type

20-27



Table 20-5    (Cont.) TimesTenClassicSpecSpecPrometheus syntax

Field Type Earliest
Schema
Version
Supported
In

Description

insecure boolean v2 Determines if the TimesTen exporter is
started with no authentication or with
Transport Layer Security (mutual TLS).

Valid values:

• true: The TimesTen exporter is
started with no authentication and
serves data by http.

• false (or not specified): The
TimesTen exporter is started with
mutual TLS and serves data by
https.

For more information, see About Using
http or https for TimesTen Metrics.

For information about the TimesTen
exporter, see About the TimesTen
Exporter in the Oracle TimesTen In-
Memory Database Monitoring and
Troubleshooting Guide.

limitRate integer v2 Determines the limit of GET requests
per minute that the TimesTen exporter
accepts. The value can be any integer
value from 1 to 15.

The default is 10.

port integer v2 Port on which the TimesTen exporter
listens.

The default is 8888.

Chapter 20
About the TimesTenClassic Object Type

20-28



Table 20-5    (Cont.) TimesTenClassicSpecSpecPrometheus syntax

Field Type Earliest
Schema
Version
Supported
In

Description

publish boolean v2 Determines if the TimesTen Operator
provisions a TimesTen exporter
container.

Valid values:

• true (or not specified): The
TimesTen Operator provisions a
TimesTen exporter container.

• false: The TimesTen Operator
does not provision a TimesTen
exporter container.

If you do not specify the publish field,
and any other field is specified in
the .spec.ttspec.prometheus
clause, the default value for the
publish field is true.

If you do not specify
the .spec.ttspec.prometheus
clause and the TimesTen release is
22.1 or greater, the default value for the
publish field is dependent on the
value of the EXPOSE_METRICS
TimesTen Operator environment
variable:
• If EXPOSE_METRICS is "1" (or not

specified), the TimesTen Operator
treats the publish field as true.

• If EXPOSE_METRICS is "0", the
TimesTen Operator treats the
publish field as false.

For more information, see Expose
TimesTen Metrics with the TimesTen
Kubernetes Operator and TimesTen
Kubernetes Operator Environment
Variables.

TimesTenClassicStatus
TimesTenClassicStatus appears in TimesTenClassic. The Operator stores various persistent
information in TimesTenClassicStatus.

The output of the kubectl get and kubectl describe commands display information in
TimesTenClassicStatus. This information includes the following:

• awtBehindMb: a field that is present only if AWT (Asynchronous WriteThrough) is in use.
The field represents how many megabytes of log is present in TimesTen that has not yet
been pushed to Oracle Database. For more information on AWT cache group, see 
Overview of Cache Groups in the Oracle TimesTen In-Memory Database Cache Guide.

Chapter 20
About the TimesTenClassic Object Type

20-29



• High Level state of the Active Standby Pair: a string that describes the High Level state of
the active standby pair.

• Detailed state of TimesTen in each Pod, which includes the following:

– Is the TimesTen agent running?

– Is the TimesTen main daemon running?

– Is the TimesTen replication agent running?

– Is the TimesTen cache agent running?

– Is there a database in the instance?

– Is the database loaded?

– Is the database updatable or read only?

– Is there a replication scheme in the database?

– What is the replication state of this database?

– What does this database think the replication state of its peer is?

– What is the role for TimesTen in this Pod (active or standby)?

– What is the High Level state of the Pod?

Note:

Unknown values can occur if, for example, the agent is not running or a Pod is
unavailable.

About the TimesTenScaleout Object Type
The TimesTenScaleout object type is defined using the following object definitions:

• TimesTen Scaleout

• TimesTenScaleoutSpec

• TimesTenScaleoutSpecSpec

• TimesTenScaleoutSpecSpecPrometheus

• TimesTenScaleoutStatus

TimesTen Scaleout
An object of type TimesTenScaleout describes the metadata for a TimesTen grid and the
TimesTen database within the grid in TimesTen Scaleout.

The following table describes the syntax for the TimesTenScaleout object type:

Chapter 20
About the TimesTenScaleout Object Type

20-30



Table 20-6    TimesTenScaleout syntax

Field Type Description

apiVersion string Versioned schema of this representation of an object.

The value can be timesten.oracle.com/v1 or
timesten.oracle.com/v2.

kind string Type of object (in this example, TimesTenScaleout).

metadata ObjectMeta Metadata about the object, such as its name. For
information on ObjectMeta, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

spec TimesTenScaleoutSpec Desired configuration of the TimesTen Scaleout grid
and the databases within the grid.

status TimesTenScaleoutStatus Current status of the Pods in this TimesTenScaleout
object as well as the status of various TimesTen
components within those Pods. This data may be out
of date by some window of time.

TimesTenScaleoutSpec
TimesTenScaleoutSpec appears in TimesTenScaleout. The following table describes the
syntax for TimesTenScaleoutSpec:

Table 20-7    TimesTenScaleoutSpec syntax

Field Type Description

ttspec TimesTenScaleoutSpecSpec Specific TimesTen attributes for deploying a grid
in TimesTen Scaleout.

dataTemplate Array of PodTemplateSpec Array of specifications for the Pods that contain
the TimesTen Scaleout data instances. This field
is optional. If specified, there must be k entries
in the array. Each entry is the template for the
Pods in a different data space. For example, if k
is set to 2, then the first entry is for data space 1,
and the second entry is for data space 2.

Use dataTemplate to pass affinity and other
settings to Kubernetes. For information about
PodTemplateSpec, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

dataVolumeClaimTemplates Array of arrays of
PersistentVolumeClaim

Array of arrays of Volume Claim Templates to be
added to just the data instance Pods. There is
one list (of lists) per data space.

mgmtTemplate PodTemplateSpec Specification for the Pod that contains the
TimesTen Scaleout management instance. Use
mgmtTemplate to pass affinity and other
settings to Kubernetes. For information about
PodTemplateSpec, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

Chapter 20
About the TimesTenScaleout Object Type

20-31

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/


Table 20-7    (Cont.) TimesTenScaleoutSpec syntax

Field Type Description

mgmtVolumeClaimTemplates Array of PersistentVolumeClaim Array of Volume Claim Templates to be added to
just the management instance Pod.

volumeClaimTemplates PersistentVolumeClaim TimesTen automatically provisions
PersistentVolumeClaims (PVCs) for /tt (and
for /ttlog, if specified). If you have applications
that are running in containers in the TimesTen
Pods, and those applications require additional
PVCs, specify them in this field. For information
on PersistentVolumeClaim, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

zookeeperTemplate Array of PodTemplateSpec Specification for the Pods that contains the
TimesTen Scaleout ZooKeeper instances. Use
zookeeperTemplate to pass affinity and other
settings to Kubernetes. For information about
PodTemplateSpec, see:

https://kubernetes.io/docs/reference/
kubernetes-api/

zookeeperVolumeClaimTempl
ates

Array of PersistentVolumeClaim Array of Volume Claim Templates to be added to
just the ZooKeeper Pods.

TimesTenScaleoutSpecSpec
TimesTenScaleoutSpecSpec appears in TimesTenScaleoutSpec.

The following table describes the syntax for TimesTenScaleoutSpecSpec. There are some
fields of type quantity. The specified value is of the same format as Kubernetes resource limits.
For example, 200Gi, 200G, 1000Mi, 1000M, and so on.

Note:

There are datum that are reserved for internal use and are not documented in this
table. The names of these datum typically begin with zz. For example, zzTestInfo is
reserved for internal use.

Chapter 20
About the TimesTenScaleout Object Type

20-32

https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/
https://kubernetes.io/docs/reference/kubernetes-api/


Table 20-8    TimesTenScaleoutSpecSpec

Field Type Description

additionalMemoryRequest quantity The amount of memory to request in
addition to whatever is required for an
element of the TimesTen database.

This memory is used for the TimesTen
daemon, subdaemons, agents, and the
Client/Server server.

This value is added to
databaseMemorySize that was either
specified by you or calculated. The sum is
the memory request to Kubernetes.

The default is 2Gi.

agentGetTimeout integer Time in seconds that the Operator waits for
an https GET request to be processed by
the TimesTen agent. This includes the TCP
and the TLS times as well as the time it
takes for the TimesTen agent to implement
the GET request.

The default is 60. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the
agent to be down.

agentPostTimeout integer Time in seconds that the Operator waits for
an https POST request to be processed by
the TimesTen agent. This includes the TCP
and the TLS times as well as the time it
takes for the TimesTen agent to implement
the POST request. The POST requests may
take a long time and the time may be
proportional to the size of the database.
(An example is a POST request to duplicate
a database from the active to the standby.)

The default is 600. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the POST
request to have failed.

agentTcpTimeout integer Time in seconds that the Operator waits for
a TCP handshake when communicating
with the TimesTen agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the
agent to be down.

agentTlsTimeout integer Time in seconds that the Operator waits for
a TLS (https) credential exchange when
communicating with the TimesTen agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the Operator considers the
agent to be down.

Chapter 20
About the TimesTenScaleout Object Type

20-33



Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

automaticMemoryRequests boolean Determines if the Operator attempts to set
appropriate memory limits and requests for
TimesTen Pods.

Valid values:
• true (default): The Operator attempts

to set memory limits and requests.
• false: The Operator does not set

memory limits and requests.

cacheCleanup boolean Determines if the metadata in the Oracle
Database should be cleaned up when this
TimesTenClassic object is deleted. Use for
TimesTen Cache only.

Valid values:

• true (or not specified): The metadata
is cleaned up.

• false: The metadata is not cleaned
up.

See Dropping Oracle Database Objects
Used by Cache Groups with Autorefresh in
the Oracle TimesTen In-Memory Database
Cache Guide.

daemonLogCPURequest quantity The amount of CPU requested for the
daemonlog container.

The default is 200m (one-fifth of a CPU).

daemonLogMemoryRequest quantity The amount of memory requested for the
daemonlog container.

The default is 200Mi.

daemonLogSidecar boolean Determines if a daemon log container is
created in each TimesTen Pod. This
container writes the TimesTen daemon logs
(from ttmesg.log) to stdout. This
causes Kubernetes to record these logs.

Valid values:

• true (or not specified): A daemon log
container is created.

• false: A daemon log container is not
created.

databaseCPURequest Quantity Specify this value to tell the Operator how
much CPU your tt containers require. This
includes CPU used by the TimesTen
daemon, subdaemons, replication agents,
cache agents, and the Client/Server server.

There is no default.

Chapter 20
About the TimesTenScaleout Object Type

20-34



Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

databaseMemorySize Quantity You can specify this value to tell the
Operator how much shared memory an
element of your database requires.

If you specify a value, that value will be
used. If you do not specify a value, the
Operator attempts to determine the
required size from the provided db.ini file.

If the Operator cannot determine the
database size, the value 580911104 is
used. This is the size required for a default
database with a PermSize of 200Mbyte,
rounded up to 2Mi. This may be useful for
experimentation, but is likely insufficient for
production purposes.

TimesTen recommends that you provide a
db.ini file to the Operator by using a
Configmap or Secret, and that you not
specify databaseMemorySize.

Note:

If you provide
a db.ini file
by using an
init container,
you must
specify
databaseMem
orySize.

dataStorageClassName string Name of the storage class that is used to
request persistent volumes for the elements
of the TimesTen database in the grid. If not
specified, the default is the value of
storageClassName.

dataStorageSelector metav1.LabelSelector When choosing to use a persistent volume
to store the elements of a TimesTen
database in the grid, the primary
determinant of what volumes to use is the
dataStorageClassName that you specify.
You can optionally specify a label selector
by using the dataStorageSelector field.
This label selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

Chapter 20
About the TimesTenScaleout Object Type

20-35

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

dataStorageSize string Amount of storage to be provisioned for
each element of the TimesTen database in
the grid.

The default is 50Gi. This default value may
be suitable when you are experimenting
with the product or using it for
demonstration purposes. However, in a
production environment, consider choosing
a value greater than 50Gi. The examples in
this book assume a production environment
and use a value of 250Gi.

dbConfigMap array of strings Name of one or more ConfigMaps to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers. If
you do not specify dbConfigMap or
dbSecret, you must place the metadata
files into the /ttconfig directory by using
other means. See Populate the /ttconfig
Directory.

dbSecret array of strings Name of one or more Secrets to be
included in a projected volume. This
projected volume is mounted as /
ttconfig in the TimesTen containers. If
you do not specify dbSecret or
dbConfigMap, you must place the
metadata files into the /ttconfig directory
by using other means. See Populate the /
ttconfig Directory.

exporterCPURequest quantity The amount of CPU requested for the
exporter container (if provisioned).

The default is 200m (one-fifth of a CPU).

exporterMemoryRequest quantity The amount of memory requested for the
exporter container (if provisioned).

The default is 200Mi.

image string Name of the TimesTen image that is
executed in the created containers.

There is no default. You must specify the
name of the image.

imagePullPolicy string Determines if and when Kubernetes pulls
the TimesTen image from the image
repository.

Valid values:

• Always
• IfNotPresent (default)

• Never
Note: Values are case sensitive.

Chapter 20
About the TimesTenScaleout Object Type

20-36



Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

imagePullSecret string Image pull secret that is used to
authenticate and give permission to
Kubernetes to fetch the specified TimesTen
image from its image repository.

There is no default. You must specify the
name of the image pull secret.

k integer K-Safety value for this TimesTen grid. This
value determines the number of copies of
data for your TimesTen database. This
value also determines the number of
StatefulSets that the TimesTen Operator
creates. A StatefulSet provides the Pods
that are used to implement a single data
space in the grid. For example, if you set k
to 2, the Operator creates two StatefulSets.
One StatefulSet provides the Pods for the
data instances in data space one. The
second StatefulSet provides the Pods for
the data instances in data space two. The
Operator also creates a StatefulSet for the
management instance and a StatefulSet for
ZooKeeper.

The default is 2.

For more information on K-Safety, see K-
Safety in the Oracle TimesTen In-Memory
Database Scaleout User's Guide.

logStorageClassName string Name of the storage class that is used to
request persistent volumes for the
TimesTen database transaction log files.
This field is optional and is valid only for
data instances.

logStorageSelector metav1.LabelSelector When choosing to use a persistent volume
to store the TimesTen transaction log files,
the primary determinant of what volumes to
use is the logStorageClassName that you
specify. You can optionally specify a label
selector by using the
logStorageSelector field. This label
selector further filters the set of volumes.
Valid only for data instances. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

logStorageSize string Amount of storage to be provisioned for the
TimesTen transaction log files. This value is
for each element of the TimesTen database
in the grid. Valid only for data instances.

Chapter 20
About the TimesTenScaleout Object Type

20-37

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

memoryWarningPercent integer At runtime, if a container's memory usage
is more than its percentage of its limit (both
as reported by cgroups), the Operator
generates Events to inform you of this
occurrence.

The memory usage refers to the container's
memory allocation.

The default is 90.

mgmtCPURequest quantity The amount of cpu requested for the tt
container of management instances.

The default is 1.

mgmtMemoryRequest quantity The amount of memory requested for the
tt container of management instances.

The default is 3Gi.

mgmtStorageClassName string Name of the storage class that is used to
request persistent volumes for the
database of the management instance. If
not specified, the default is the value of
storageClassName.

mgmtStorageSelector metav1.LabelSelector When choosing to use a persistent volume
to store the database of the management
instance, the primary determinant of what
volumes to use is the
mgmtStorageClassName that you specify.
You can optionally specify a label selector
by using the mgmtstorageSelector field.
This label selector further filters the set of
volumes. If you do not specify
mgmtstorageSelector, the value is the
value of StorageSelector. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

mgmtStorageSize string Amount of storage to be provisioned for the
database of the management instance.

The default is 50Gi.

Chapter 20
About the TimesTenScaleout Object Type

20-38

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

nReplicaSets integer Number of replica sets in the grid. A replica
set contains k elements (where each
element is an exact copy of the other
elements in the replica set). The
nReplicaSets value also determines the
number of replicas for each StatefulSet. For
example, if you set k to 2, the TimesTen
Operator creates two StatefulSets for the
data instances. If you set nReplicaSets to
3, each StatefulSet contains three replicas,
and the total number of replica sets in the
grid is three.

The default is 1.

For more information on replica sets, see 
Understanding Replica Sets in the Oracle
TimesTen In-Memory Database Scaleout
User's Guide.

nZookeeper integer Number of ZooKeeper Pods to provision in
a StatefulSet.

Valid values:

• 1
• 3 (default)

• 5
pollingInterval integer Determines how often (expressed in

seconds) that the Operator checks the
status of the TimesTenScaleout object. For
example, if you set this value to 10, the
Operator checks the status of the
TimesTenScaleout object every ten
seconds.

The value must be a positive integer
(greater than 0). The default is 5.

prometheus TimesTenScaleoutSpecSpecProm
etheus

Determines if the TimesTen Exporter is
deployed. If specified, the Exporter is
deployed. The datum for the prometheus
object are defined in 
TimesTenScaleoutSpecSpecPrometheus.

reexamine string When a TimesTenScaleout object is in the
ManualInterventionRequired state, the
Operator examines the reexamine value
every pollingInterval seconds. If the
value has changed since the last iteration
for this object, the Operator reexamines the
TimesTenScaleout object and attempts to
resume management of the object.

Chapter 20
About the TimesTenScaleout Object Type

20-39



Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

replicaSetRecovery string Controls the behavior of the Operator when
a total replica set failure occurs.

Valid values:

• Restart (default): The Operator
forcibly unloads and reloads the
database when a total replica set
failure occurs.

• Manual: The Operator changes the
state of the TimesTenScaleout object
to ManualInterventionRequired
when a total replica set failure occurs.

stopManaging string If you change the value of stopManaging
for the TimesTenScaleout object, the
Operator places the object in the
ManualInterventionRequired state.

storageClassName string Name of the storage class that is used to
request persistent volumes for the
TimesTen database.

If the value for storageClassName is the
same as the value for
dataStorageClassName, for
mgmtStorageClassName, and for
zookeeperStorageClassName, you can
just specify storageClassName. In this
case, the value for
dataStorageClassName, for
mgmtStorageClassName, and for
zookeeperStorageClassName is set to
the value of storageClassName.

Chapter 20
About the TimesTenScaleout Object Type

20-40



Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

storageSelector metav1.LabelSelector When choosing to use a persistent volume
to store an element of a TimesTen
database in a grid, the primary determinant
of what volumes to use is the
StorageClassName that you specify. You
can optionally specify a label selector by
using the storageSelector field. This
label selector further filters the set of
volumes.

If the value for storageSelector is the
same as the value for
dataStorageSelector, for
mgmtStorageSelector, and for
zookeeperStorageSelector, you can
just specify storageSelector. In this
case, the value for
dataStorageSelector, for
mgmtStorageSelector, and for
zookeeperStorageSelector is set to the
value of storageSelector. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

storageSize string Amount of storage to be used for each
element of a TimesTen database in the
grid.

If the value for storageSize is the same
as the value for dataStorageSize, for
mgmtStorageSize, and for
zookeeperStorageSize, you can just
specify storageSize. In this case, the
value for dataStorageSize, for
mgmtStorageSize, and for
zookeeperStorageSize is set to the
value of storageSize.

The default is 50Gi.

For information on determining the amount
of storage needed for TimesTen, see 
Storage Provisioning for TimesTen in the
Oracle TimesTen In-Memory Database
Operations Guide .

zookeeperCPURequest quantity The amount of cpu requested for the
zookeeper container of Zookeeper Pods.

The default is 500m.

zookeeperMemoryRequest quantity The amount of memory requested for the
zookeeper container of Zookeeper Pods.

The default is 1Gi.

Chapter 20
About the TimesTenScaleout Object Type

20-41

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-8    (Cont.) TimesTenScaleoutSpecSpec

Field Type Description

zookeeperStorageClassName string Name of the storage class that is used to
request persistent volumes for ZooKeeper's
persistent data.

If not specified, the default is the value of
storageClassName.

zookeeperStorageSelector metav1.LabelSelector When choosing to use a persistent volume
to store ZooKeeper's persistent data, the
primary determinant of what volumes to
use is the zookeeperStorageClassName
that you specify. You can optionally specify
a label selector by using the
zookeeperStorageSelector field. This
label selector further filters the set of
volumes. See:

https://kubernetes.io/docs/
concepts/storage/persistent-
volumes/#selector

zookeeperStorageSize string Amount of storage to be provisioned for
ZooKeeper's persistent data .

The default is 50Gi.

TimesTenScaleoutSpecSpecPrometheus
TimesTenScaleoutSpecSpecPrometheus appears in TimesTenScaleoutSpecSpec . The
following table describes the syntax for TimesTenScaleoutSpecSpecPrometheus.

Table 20-9    TimesTenScaleoutSpecSpecPrometheus syntax

Field Type Description

certSecret string When using https to serve TimesTen
metrics, a Kubernetes Secret is required.

If you create your own Kubernetes Secret,
use the certSecret datum to specify the
name of this Secret. This Secret contains
an Oracle Wallet that holds the necessary
certificates used by the TimesTen exporter
for serving TimesTen metrics by https. See 
Create Your Own Oracle Wallet,
Certificates, and Secrets for Exposing
TimesTen Metrics.

If you want the TimesTen Operator to
automatically create an Oracle Wallet,
certificates, and Kubernetes Secrets that
are required for https, do not specify the
certSecret datum. We recommend this
approach. See About Transport Layer
Security (mutual TLS) Certificates for
TimesTen Metrics.

Chapter 20
About the TimesTenScaleout Object Type

20-42

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#selector


Table 20-9    (Cont.) TimesTenScaleoutSpecSpecPrometheus syntax

Field Type Description

createPodMonitors boolean Determines if the TimesTen Kubernetes
Operator creates PodMonitors.

Valid values:

• true (or not specified): The TimesTen
Operator creates PodMonitors.

• false: The TimesTen Operator does
not create PodMonitors.

See Expose TimesTen Metrics with the
TimesTen Kubernetes Operator for details.

insecure boolean Determines if the TimesTen exporter is
started with no authentication or with
Transport Layer Security (mutual TLS).

Valid values:

• true: The TimesTen exporter is
started with no authentication and
serves data by http.

• false (or not specified): The
TimesTen exporter is started with
mutual TLS and serves data by https.

For more information, see About Using http
or https for TimesTen Metrics.

For information about the TimesTen
exporter, see About the TimesTen Exporter
in the Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting
Guide.

limitRate integer Determines the limit of GET requests per
minute that the TimesTen exporter accepts.
The value can be any integer value from 1
to 15.

The default is 10.

port integer Port on which the TimesTen exporter
listens.

The default is 8888.

Chapter 20
About the TimesTenScaleout Object Type

20-43



Table 20-9    (Cont.) TimesTenScaleoutSpecSpecPrometheus syntax

Field Type Description

publish boolean Determines if the TimesTen Operator
provisions a TimesTen exporter container.

Valid values:

• true (or not specified): The TimesTen
Operator provisions a TimesTen
exporter container.

• false: The TimesTen Operator does
not provision a TimesTen exporter
container.

If you do not specify the publish datum,
and any other datum is specified in
the .spec.ttspec.prometheus clause,
the default value for the publish datum is
true.

If you do not specify
the .spec.ttspec.prometheus clause
and the TimesTen release is 22.1 or
greater, the default value for the publish
datum is dependent on the value of the
EXPOSE_METRICS TimesTen Operator
environment variable:
• If EXPOSE_METRICS is "1" (or not

specified), the TimesTen Operator
treats the publish datum as true.

• If EXPOSE_METRICS is "0", the
TimesTen Operator treats the publish
datum as false.

For more information, see Expose
TimesTen Metrics with the TimesTen
Kubernetes Operator and TimesTen
Kubernetes Operator Environment
Variables.

TimesTenScaleoutStatus
TimesTenScaleoutStatus appears in TimesTen Scaleout. The Operator stores various
persistent information in TimesTenScaleoutStatus.

The output of the kubectl get and kubectl describe commands display information in
TimesTenScaleoutStatus.

The information includes the following:

• High Level state of the TimesTen grid and the database within the grid.

• Detailed state of TimesTen in each Pod, including:

– Are the TimesTen agents running?

– Are the TimesTen daemons running?

– Is there a database in the instance?

– Is the database loaded?

Chapter 20
About the TimesTenScaleout Object Type

20-44



– Is the database updatable or read only?

– What is the High Level state of the Pods?

Note:

Unknown values can occur if, for example, the agent is not running or a Pod is
unavailable.

Chapter 20
About the TimesTenScaleout Object Type

20-45



21
Helm Charts for the TimesTen Kubernetes
Operator

There are four Helm charts that allow you to deploy the TimesTen CRD, the TimesTen
Operator, and TimesTenClassic objects. Each chart contains variables and default values that
are specific to the chart. The names of the charts are as follows:

• ttcrd: Deploys the TimesTen CRD in your Kubernetes cluster. You cannot change the
values of the variables in this chart.

• ttoperator: Deploys the TimesTen Operator in a namespace in your Kubernetes cluster.
The TimesTen Operator runs at namespace-scope and services TimesTenClassic objects
in this namespace. You have the option of defining your own values for variables in this
chart.

• ttclusteroperator: Deploys the TimesTen Operator in the timesten-operator
namespace in your Kubernetes cluster. The TimesTen Operator runs at cluster-scope and
services TimesTenClassic objects in all namespaces in the cluster. The timesten-
operator namespace is created by the TimesTen Operator and cannot be modified. You
have the option of defining your own values for variables in this chart.

• ttclassic: Deploys a TimesTenClassic object. The TimesTen Operator creates TimesTen
Classic databases based on the object's definition. You have the option of defining your
own values for variables in this chart.

The following sections describe the values and defaults values for the ttoperator,
ttclusteroperator, and ttclassic charts:

• The ttoperator Chart

• The ttclusteroperator Chart

• The ttclassic Chart

For detailed information about using Helm, see Use Helm in Your TimesTen Kubernetes
Operator Environment.

The ttoperator Chart
The ttoperator chart deploys the TimesTen Operator in a namespace in your Kubernetes
cluster. The TimesTen Operator runs at namespace-scope and services TimesTenClassic
objects in this namespace.

The following table describes the variables and default values for the ttoperator chart.
Indentation and case sensitivity must be correct for each variable. There may be some
variables that exist in the product, but are not documented.

21-1



Table 21-1    Variables for the ttoperator Chart

Variable Description Description

affinity Variable that defines Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.

There is no default. However, if you are
using a multi-architecture cluster that
consists of amd64 and arm64 nodes,
you must instruct Kubernetes to deploy
the TimesTen Operator on a specific
architecture.

affinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1

Here is an example that shows how to
instruct Kubernetes to deploy the
TimesTen Operator and the objects it
manages on arm64 nodes:

affinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values: ["arm64"]

Valid values for values are:

• "amd64": Use this for TimesTen
Operators that you want to run on
amd64 nodes.

• "arm64": Use this for TimesTen
Operators that you want to run on
arm64 nodes.

Here is a complete affinity section with
node affinity and pod affinity sections:

affinity: {}
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
        - matchExpressions:

Chapter 21
The ttoperator Chart

21-2



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

          - key: 
"kubernetes.io/arch"
            operator: In
            values: ["amd64"]

  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1
    
preferredDuringSchedulingIgno
redDuringExecution:
    - weight: 1
      preference:
        matchExpressions:
        - key: another-node-
label-key
          operator: In
          values:
          - another-node-
label-value
  podAntiAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
    - labelSelector:
        matchExpressions:
        - key: app
          operator: In
          values:
          - exampleApp
      topologyKey: 
"kubernetes.io/hostname"
  podAffinity:
    
preferredDuringSchedulingIgno
redDuringExecution:
     - weight: 50
       podAffinityTerm:
         labelSelector:
           matchExpressions:

Chapter 21
The ttoperator Chart

21-3



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

           - key: app
             operator: In
             values:
               - exampleApp
         topologyKey: 
"kubernetes.io/hostname"

annotations Variable that defines a list of
annotations to be applied to a TimesTen
Operator Deployment and the Pods that
the TimesTen Operator manages.

There is no default.

annotations:
  x: y

connectionManager Variable that determines if the TimesTen
Operator's Connection Manager is used.

Values are as follows:
• true (default): The TimesTen

Operator's Connection Manager is
used.

• false: The TimesTen Operator's
Connection Manager is not used.

See About the Connection Manager.

connectionManager: true

createClusterRole Variable that determines if cluster level
roles are created.

Default: true
By default or if you specify true, the
chart creates additional permissions
and privileges for the TimesTen
Operator.

If you specify false, the chart does not
create the additional permissions and
privileges. You must create these
objects by running the kubectl
create
service_account_cluster.yaml
command. The
service_account_cluster.yaml
YAML manifest file is included in the
TimesTen Operator distribution.

createClusterRole: true

Chapter 21
The ttoperator Chart

21-4



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

image Variable that defines parameters that
affect container images.

Default:
• repository: Location of the

container image. For example,
container-
registry.oracle.com/
timesten/timesten.

• tag: TimesTen release number that
contains the relevant Helm charts.
For example, "22.1.1.34.0".

• pullPolicy: Pull policy for the
container image. For example,
Always.

image: 
  repository: phx.ocir.io/
youraccount/tt2211260image
  tag: "1"
  pullPolicy: Always

imagePullSecrets Variable that defines a list of pull
Secrets required to pull container
images.

There is no default.

imagePullSecrets: sekret

javaHome Variable that defines the location where
Java is installed in the TimesTen
container image.

Default: "/usr/java/jdk-21"

javaHome: "/usr/java/jdk-21"

labels Variable that defines a list of labels
applied to a TimesTen Operator
Deployment and the Pods that the
TimesTen Operator manages.

There is no default.

labels:
  x: y

livenessFailureThreshold Variable that sets the
FailureThreshold attribute for the
TimesTen Operator's liveness probe.

Default: 3

livenessFailureThreshold: 2

livenessInitialDelaySeconds Variable that sets the
InitialDelaySeconds attribute for the
TimesTen Operator's liveness probe.

Default: 10

livenessInitialDelaySeconds: 
15

livenessPeriodSeconds Variable that sets the PeriodSeconds
attribute for the TimesTen Operator's
liveness probe.

Default: 30

livenessPeriodSeconds: 20

livenessSuccessThreshold Variable that sets the
SuccessThreshold attribute for the
TimesTen Operator's liveness probe.

Default: 1

livenessSuccessThreshold: 2

livenessTimeoutSeconds Variable that sets the TimeoutSeconds
attribute for the TimesTen Operator's
liveness probe.

Default: 10

livenessTimeoutSeconds: 15

Chapter 21
The ttoperator Chart

21-5



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

maxReconciles Variable that determines how many
TimesTenClassic objects the TimesTen
Operator processes concurrently.

Valid values are as follows:
• "2" (default): The TimesTen

Operator processes at most two
TimesTenClassic objects at one
time (in parallel).

• "1": The TimesTen Operator
processes at most one
TimesTenClassic object at one
time.

For performance purposes, we
recommend that you do not change the
default value.

maxReconciles: 2

metrics Variable that determines if and how
TimesTen Operator metrics are
exposed.

Valid values are as follows:
• expose: 1 or expose: 0: If you

specify expose: 1 (or do not
specify it), TimesTen Operator
metrics are exposed. If you specify
expose: 0, TimesTen Operator
metrics are not exposed.

• scheme: https or scheme:
http: If you specify scheme:
https (or do not specify it),
TimesTen Operator metrics are
available by using https/Transport
Layer Security (mutual TLS). If you
specify scheme: http, TimesTen
Operator metrics are available by
using http.

• createServiceMonitor: 1 or
createServiceMonitor: 0: If
you specify
createServiceMonitor: 1 (or
do not specify it), the TimesTen
Operator attempts to create a
ServiceMonitor object. If you
specify createServiceMonitor:
0, the TimesTen Operator does not
create a ServiceMonitor object.

Default:

  expose: 1
  scheme: https
  createServiceMonitor: 1

See Expose Metrics from the TimesTen
Kubernetes Operator.

metrics:
  expose: 0
  scheme: http
  createServiceMonitor: 0

Chapter 21
The ttoperator Chart

21-6



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

name Variable for the name of the TimesTen
Operator Deployment.

Default: timesten-operator
name: timesten-operator

operatorNodePort Variable that determines the port on
which the Connection Manager is
available to applications outside the
cluster.

The Connection Manager can be
accessed from outside the Kubernetes
cluster on any node in the Kubernetes
cluster by this port number.

The default is 32625. Valid values are
between 30000 and 32767.

operatorNodePort: 32627

operatorSAN Variable that adds subject alternate
names (SANs) to the TLS certificate
that the TimesTen Operator creates to
control access to the TimesTen
Operator metrics and to the Connection
Manager.
• If you use metrics and the

Connection Manager from inside
the Kubernetes cluster, you do not
need to specify this variable.

• If you use either metrics or the
Connection Manager (or both) from
outside the Kubernetes cluster, you
must define a SAN for the nodes in
the cluster. A SAN value can be a
DNS name (potentially wildcarded)
or an IP address. The value is a
comma delimited list of SAN values.

You can specify a single level of
wildcards.

By default, there is no SAN specified.

operatorSan: 
"1.2.3.4,1.2.3.5,*.mycluster.
example.org"

podDisruptionBudget Variable that determines if a
podDisruptionBudget is created . If
created, uses the provided values.

Default: create: false
A podDisruptionBudget is not
created by default.

podDisruptionBudget:
  create: true
  pdbName: samplepdb
  maxUnvailable: 1
  minAvailable: 1
  matchLabels:
    "x": "y"

Chapter 21
The ttoperator Chart

21-7



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

probes Variable that determines if TimesTen
Operator probes are exposed.

If you specify expose: 1 (or do not
specify it), TimesTen Operator probes
are exposed. If you specify expose: 0,
TimesTen Operator probes are not
exposed.

Default:

  expose: 1

See About Readiness and Liveness
Probes.

probes:
  expose: 0

readinessFailureThreshold Variable that sets the
FailureThreshold attribute for the
TimesTen Operator's readiness probe.

Default: 1

readinessFailureThreshold: 2

readinessInitialDelaySeconds Variable that sets the
InitialDelaySeconds attribute for the
TimesTen Operator's readiness probe.

Default: 10

readinessInitialDelaySeconds:
 15

readinessPeriodSeconds Variable that sets the PeriodSeconds
attribute for the TimesTen Operator's
readiness probe.

Default: 10

readinessPeriodSeconds: 15

readinessSuccessThreshold Variable that sets the
SuccessThreshold attribute for the
TimesTen Operator's readiness probe.

Default: 1

readinessSuccessThreshold: 2

readinessTimeoutSeconds Variable that sets the TimeoutSeconds
attribute for the TimesTen Operator's
readiness probe.

Default: 10

readinessTimeoutSeconds: 15

replicas Variable that defines the number of
replica Pods in a TimesTen Operator
Deployment.

Default: 1

replicas: 3

Chapter 21
The ttoperator Chart

21-8



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

resources Variable that defines resource requests
and limits.

Default:

  requests:
    cpu: "250m" 
    memory: "1G"
  limits:
    cpu: "250m"
    memory: "1G"

resources:
  requests:
    cpu: "300m" 
    memory: "1G"
  limits:
    cpu: "300m"
    memory: "1G"

serviceAccount Variable that determines if a service
account is created and what annotations
to apply (if any).

Default: create: true
By default or if you specify create:
true, the chart creates a Kubernetes
ServiceAccount called timesten-
operator as well as a Kubernetes Role
object and a Kubernetes RoleBinding
object. The Role and RoleBinding
objects grant the ServiceAccount the
privileges needed to run the TimesTen
Operator.

If you specify create: false, the
chart does not create the
ServiceAccount, Role, and RoleBinding
objects. You must create these objects
by running the kubectl create
service_account.yaml command.
The service_account.yaml YAML
manifest file is included in the TimesTen
Operator distribution.

serviceAccount:
  create: false

Chapter 21
The ttoperator Chart

21-9



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

testAffinity Variable that defines Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters. These
affinity configurations are only applied to
the Helm test Pod.

There is no default. However, if you are
using a multi-architecture cluster that
consists of amd64 and arm64 nodes,
you must instruct Kubernetes to deploy
the TimesTen test Pod on a specific
architecture. This must be the same
architecture as what the TimesTen
Operator and its objects run on. For
example, if the TimesTen Operator runs
on arm64 nodes, the test Pod must
also run on arm64 nodes.

testAffinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1

Here is an example that shows how to
instruct Kubernetes to run the test Pod
on arm64 nodes:

testAffinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values: ["arm64"]

Valid values for values are:

• "amd64": Use this if you want the
test Pod to run on amd64 nodes.

• "arm64": Use this if you want the
test Pod to run on arm64 nodes.

testAnnotations Variable that defines a list of
annotations to be applied to a Helm
test Pod. This Pod is created when you
run the helm test command.

Default:

helm.sh/hook-delete-policy: 
hook-succeeded

testAnnotations:
  x: y

Chapter 21
The ttoperator Chart

21-10



Table 21-1    (Cont.) Variables for the ttoperator Chart

Variable Description Description

testLabels Variable that defines a list of labels to be
applied to a Helm test Pod. This Pod is
created when you run the helm test
command.

There is no default.

testLabels:
  x: y

The ttclusteroperator Chart
The ttclusteroperator chart deploys the TimesTen Operator in the timesten-operator
namespace in your Kubernetes cluster. The TimesTen Operator runs at cluster-scope and
services TimesTenClassic objects in all namespaces in the cluster. The timesten-operator
namespace is created by the TimesTen Operator and cannot be modified.

The following table describes the variables and default values for the ttclusteroperator
chart. Indentation and case sensitivity must be correct for each variable. There may be some
variables that exist in the product, but are not documented.

Chapter 21
The ttclusteroperator Chart

21-11



Table 21-2    The ttclusteroperator Chart

Variable Description Description

affinity Variable that defines Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.

There is no default. However, if you are
using a multi-architecture cluster that
consists of amd64 and arm64 nodes,
you must instruct Kubernetes to deploy
the TimesTen Operator on a specific
architecture.

affinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1

Here is an example that shows how to
instruct Kubernetes to deploy the
TimesTen Operator and the objects it
manages on arm64 nodes:

affinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values: ["arm64"]

Valid values for values are:

• "amd64": Use this for TimesTen
Operators that you want to run on
amd64 nodes.

• "arm64": Use this for TimesTen
Operators that you want to run on
arm64 nodes.

Here is a complete affinity section with
node affinity and pod affinity sections:

affinity: {}
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
        - matchExpressions:

Chapter 21
The ttclusteroperator Chart

21-12



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

          - key: 
"kubernetes.io/arch"
            operator: In
            values: ["amd64"]

  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1
    
preferredDuringSchedulingIgno
redDuringExecution:
    - weight: 1
      preference:
        matchExpressions:
        - key: another-node-
label-key
          operator: In
          values:
          - another-node-
label-value
  podAntiAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
    - labelSelector:
        matchExpressions:
        - key: app
          operator: In
          values:
          - exampleApp
      topologyKey: 
"kubernetes.io/hostname"
  podAffinity:
    
preferredDuringSchedulingIgno
redDuringExecution:
     - weight: 50
       podAffinityTerm:
         labelSelector:
           matchExpressions:

Chapter 21
The ttclusteroperator Chart

21-13



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

           - key: app
             operator: In
             values:
               - exampleApp
         topologyKey: 
"kubernetes.io/hostname"

annotations Variable that defines a list of
annotations to be applied to a TimesTen
Operator Deployment and the Pods that
the TimesTen Operator manages.

There is no default.

annotations:
  x: y

connectionManager Variable that determines if the TimesTen
Operator's Connection Manager is used.

Values are as follows:
• true (default): The TimesTen

Operator's Connection Manager is
used.

• false: The TimesTen Operator's
Connection Manager is not used.

See About the Connection Manager.

connectionManager: true

createClusterRole Variable that determines if cluster level
roles are created.

Default: true
By default or if you specify true, the
chart creates additional permissions
and privileges for the TimesTen
Operator.

If you specify false, the chart does not
create the additional permissions and
privileges. You must create these
objects by running the kubectl
create
service_account_cluster.yaml
command. The
service_account_cluster.yaml
YAML manifest file is included in the
TimesTen Operator distribution.

createClusterRole: true

Chapter 21
The ttclusteroperator Chart

21-14



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

image Variable that defines parameters that
affect container images.

Default:
• repository: Location of the

container image. For example,
container-
registry.oracle.com/
timesten/timesten.

• tag: TimesTen release number that
contains the relevant Helm charts.
For example, "22.1.1.34.0".

• pullPolicy: Pull policy for the
container image. For example,
Always.

image: 
  repository: phx.ocir.io/
youraccount/tt2211260image
  tag: "1"
  pullPolicy: Always

imagePullSecrets Variable that defines a list of pull
Secrets required to pull container
images.

There is no default.

imagePullSecrets: sekret

javaHome Variable that defines the location where
Java is installed in the TimesTen
container image.

Default: "/usr/java/jdk-21"

javaHome: "/usr/java/jdk-21"

labels Variable that defines a list of labels
applied to a TimesTen Operator
Deployment and the Pods that the
TimesTen Operator manages.

There is no default.

labels:
  x: y

livenessFailureThreshold Variable that sets the
FailureThreshold attribute for the
TimesTen Operator's liveness probe.

Default: 3

livenessFailureThreshold: 2

livenessInitialDelaySeconds Variable that sets the
InitialDelaySeconds attribute for the
TimesTen Operator's liveness probe.

Default: 10

livenessInitialDelaySeconds: 
15

livenessPeriodSeconds Variable that sets the PeriodSeconds
attribute for the TimesTen Operator's
liveness probe.

Default: 30

livenessPeriodSeconds: 20

livenessSuccessThreshold Variable that sets the
SuccessThreshold attribute for the
TimesTen Operator's liveness probe.

Default: 1

livenessSuccessThreshold: 2

livenessTimeoutSeconds Variable that sets the TimeoutSeconds
attribute for the TimesTen Operator's
liveness probe.

Default: 10

livenessTimeoutSeconds: 15

Chapter 21
The ttclusteroperator Chart

21-15



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

maxReconciles Variable that determines how many
TimesTenClassic objects the TimesTen
Operator processes concurrently.

Valid values are as follows:
• "2" (default): The TimesTen

Operator processes at most two
TimesTenClassic objects at one
time (in parallel).

• "1": The TimesTen Operator
processes at most one
TimesTenClassic object at one
time.

For performance purposes, we
recommend that you do not change the
default value.

maxReconciles: 2

metrics Variable that determines if and how
TimesTen Operator metrics are
exposed.

Valid values are as follows:
• expose: 1 or expose: 0: If you

specify expose: 1 (or do not
specify it), TimesTen Operator
metrics are exposed. If you specify
expose: 0, TimesTen Operator
metrics are not exposed.

• scheme: https or scheme:
http: If you specify scheme:
https (or do not specify it),
TimesTen Operator metrics are
available by using https/Transport
Layer Security (mutual TLS). If you
specify scheme: http, TimesTen
Operator metrics are available by
using http.

• createServiceMonitor: 1 or
createServiceMonitor: 0: If
you specify
createServiceMonitor: 1 (or
do not specify it), the TimesTen
Operator attempts to create a
ServiceMonitor object. If you
specify createServiceMonitor:
0, the TimesTen Operator does not
create a ServiceMonitor object.

Default:

  expose: 1
  scheme: https
  createServiceMonitor: 1

See Expose Metrics from the TimesTen
Kubernetes Operator.

metrics:
  expose: 0
  scheme: http
  createServiceMonitor: 0

Chapter 21
The ttclusteroperator Chart

21-16



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

name Variable for the name of the TimesTen
Operator Deployment.

Default: timesten-operator
name: timesten-operator

operatorNodePort Variable that determines the port on
which the Connection Manager is
available to applications outside the
cluster.

The Connection Manager can be
accessed from outside the Kubernetes
cluster on any node in the Kubernetes
cluster by this port number.

The default is 32625. Valid values are
between 30000 and 32767.

operatorNodePort: 32627

operatorSAN Variable that adds subject alternate
names (SANs) to the TLS certificate
that the TimesTen Operator creates to
control access to the TimesTen
Operator metrics and to the Connection
Manager.
• If you use metrics and the

Connection Manager from inside
the Kubernetes cluster, you do not
need to specify this variable.

• If you use either metrics or the
Connection Manager (or both) from
outside the Kubernetes cluster, you
must define a SAN for the nodes in
the cluster. A SAN value can be a
DNS name (potentially wildcarded)
or an IP address. The value is a
comma delimited list of SAN values.

You can specify a single level of
wildcards.

By default, there is no SAN specified.

operatorSan: 
"1.2.3.4,1.2.3.5,*.mycluster.
example.org"

podDisruptionBudget Variable that determines if a
podDisruptionBudget is created . If
created, uses the provided values.

Default: create: false
A podDisruptionBudget is not
created by default.

podDisruptionBudget:
  create: true
  pdbName: samplepdb
  maxUnvailable: 1
  minAvailable: 1
  matchLabels:
    "x": "y"

Chapter 21
The ttclusteroperator Chart

21-17



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

probes Variable that determines if TimesTen
Operator probes are exposed.

If you specify expose: 1 (or do not
specify it), TimesTen Operator probes
are exposed. If you specify expose: 0,
TimesTen Operator probes are not
exposed.

Default:

  expose: 1

See About Readiness and Liveness
Probes.

probes:
  expose: 0

readinessFailureThreshold Variable that sets the
FailureThreshold attribute for the
TimesTen Operator's readiness probe.

Default: 1

readinessFailureThreshold: 2

readinessInitialDelaySeconds Variable that sets the
InitialDelaySeconds attribute for the
TimesTen Operator's readiness probe.

Default: 10

readinessInitialDelaySeconds:
 15

readinessPeriodSeconds Variable that sets the PeriodSeconds
attribute for the TimesTen Operator's
readiness probe.

Default: 10

readinessPeriodSeconds: 15

readinessSuccessThreshold Variable that sets the
SuccessThreshold attribute for the
TimesTen Operator's readiness probe.

Default: 1

readinessSuccessThreshold: 2

readinessTimeoutSeconds Variable that sets the TimeoutSeconds
attribute for the TimesTen Operator's
readiness probe.

Default: 10

readinessTimeoutSeconds: 15

replicas Variable that defines the number of
replica Pods in a TimesTen Operator
Deployment.

Default: 1

replicas: 3

Chapter 21
The ttclusteroperator Chart

21-18



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

resources Variable that defines resource requests
and limits.

Default:

  requests:
    cpu: "250m" 
    memory: "1G"
  limits:
    cpu: "250m"
    memory: "1G"

resources:
  requests:
    cpu: "300m" 
    memory: "1G"
  limits:
    cpu: "300m"
    memory: "1G"

serviceAccount Variable that determines if a service
account is created and what annotations
to apply (if any).

Default: create: true
By default or if you specify create:
true, the chart creates a Kubernetes
ServiceAccount called timesten-
operator as well as a Kubernetes Role
object and a Kubernetes RoleBinding
object. The Role and RoleBinding
objects grant the ServiceAccount the
privileges needed to run the TimesTen
Operator.

If you specify create: false, the
chart does not create the
ServiceAccount, Role, and RoleBinding
objects. You must create these objects
by running the kubectl create
service_account.yaml command.
The service_account.yaml YAML
manifest file is included in the TimesTen
Operator distribution.

serviceAccount:
  create: false

Chapter 21
The ttclusteroperator Chart

21-19



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

testAffinity Variable that defines Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters. These
affinity configurations are only applied to
the Helm test Pod.

There is no default. However, if you are
using a multi-architecture cluster that
consists of amd64 and arm64 nodes,
you must instruct Kubernetes to deploy
the TimesTen test Pod on a specific
architecture. This must be the same
architecture as what the TimesTen
Operator and its objects run on. For
example, if the TimesTen Operator runs
on arm64 nodes, the test Pod must
also run on arm64 nodes.

testAffinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1

Here is an example that shows how to
instruct Kubernetes to run the test Pod
on arm64 nodes:

testAffinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values: ["arm64"]

Valid values for values are:

• "amd64": Use this if you want the
test Pod to run on amd64 nodes.

• "arm64": Use this if you want the
test Pod to run on arm64 nodes.

testAnnotations Variable that defines a list of
annotations to be applied to a Helm
test Pod. This Pod is created when you
run the helm test command.

Default:

helm.sh/hook-delete-policy: 
hook-succeeded

testAnnotations:
  x: y

Chapter 21
The ttclusteroperator Chart

21-20



Table 21-2    (Cont.) The ttclusteroperator Chart

Variable Description Description

testLabels Variable that defines a list of labels to be
applied to a Helm test Pod. This Pod is
created when you run the helm test
command.

There is no default.

testLabels:
  x: y

The ttclassic Chart
The ttclassic chart creates a TimesTen Classic object.

The following table describes the variables and default values for the ttclassic chart.
Indentation and case sensitivity must be correct for each variable. The fields are in alphabetical
order.

Table 21-3    Variables for the ttclassic Chart

Variable Default Example

additionalMemoryRequest Variable that defines the amount of
memory to request in addition to what is
required for the TimesTen database.
This memory is used for the TimesTen
daemon, subdaemons, replication
agents, cache agents, and the server in
a client/server environment.

Default: 2Gi
See TimesTenClassicSpecSpec.

additionalMemoryRequest: 3Gi

affinity Variable to define Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters.

There is no default.

affinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1

Chapter 21
The ttclassic Chart

21-21



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

agentTcpTimeout Variable that determines the time in
seconds that the TimesTen Operator
waits for a TCP handshake when
communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

See TimesTenClassicSpecSpec.

agentTcpTimeout: 20

agentTlsTimeout Variable that determines the time in
seconds that the Operator waits for a
TLS (https) credential exchange when
communicating with the TimesTen
agent.

The default is 10. A value of 0 indicates
that there is no timeout. If the timeout is
exceeded, the TimesTen Operator
considers the agent to be down.

See TimesTenClassicSpecSpec.

agentTlsTimeout: 20

annotations A list of annotations to be applied to a
TimesTenClassic object.

There is no default.
annotations:
  x: y

clientTLS Optional variable used to instruct the
TimesTen Operator to automatically
generate certificates and automatically
configure client/server TLS connections.

For the TimesTen Operator to
automatically perform these operations,
you must specify clientTLS and you
must set clientTLS.auto to true.

For a list of options and defaults for
clientTLS, see 
TimesTenClassicSpecSpecClientTLS.

For more information about how the
TimesTen Operator automatically
generates certificates and configures
client/server connections, see 
Automatically Configure Client/Server
TLS.

clientTLS:
  auto: true
  validity: 9999
  encryption: required

containers Variable to define a custom container.
This container is created in each Pod in
a TimesTenClassic object. The provided
YAML is copied directly to
the .spec.template.spec.containe
rs section of a TimesTenClassic object
YAML manifest.

Default: There is no default.

See TimesTenClassicSpec.

containers:
  - name: sampleapp
    image: sample.com/
sample:latest
    command:
        - /bin/sample

Chapter 21
The ttclassic Chart

21-22



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

createASReadinessProbe Variable that determines if the TimesTen
Operator creates a readiness probe for
a replicated TimesTenClassic.

Valid values:

• true (default): The TimesTen
Operator creates a readiness
probe.

• false: The TimesTen Operator
does not create a readiness probe.

See About Readiness Probes for
TimesTen Containers.

createASReadinessProbe: true

customerService[1-5] Variable to create one or more Services
(up to 5). A Service maps to your
TimesTen database, which allows
applications outside of your Kubernetes
cluster to access TimesTen through
client/server.

You can define a maximun of five
custom Services, named
customService1, customService2,
customService3, customService4,
and customService5.

Note:

The YAML
that you
provide for
a
customSe
rvice
definition
is used
without
modificatio
n.

Default: There is no default.

customService1:
  apiVersion: v1
  kind: Service
  metadata:
    name: sampleexternal
  spec:
    type: NodePort
    selector:
      
database.timesten.oracle.com:
 payroll
    ports:
      - port: 6625
        targetPort: 6625
        nodePort: 31625

customService2:
  apiVersion: v1
  kind: Service
  metadata:
    name: sampleinteral
  spec:
    type: NodePort
    selector:
      
database.timesten.oracle.com:
 payroll
    ports:
      - port: 6626
        targetPort: 6626
        nodePort: 31626

daemonLogCPURequest Amount of CPU requested for the
daemonlog container.

Default: 200m
See TimesTenClassicSpecSpec.

daemonlogCPURequest: 400m

Chapter 21
The ttclassic Chart

21-23



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

daemonLogMemoryRequest Amount of memory requested for the
daemonlog container.

Default: 200Mi
See TimesTenClassicSpecSpec.

daemonLogMemoryRequest: 300Mi

databaseCPURequest Amount of CPU your tt containers
require. This includes the CPU used by
the TimesTen daemon, subdaemons,
replication agents, cache agents, and
the server in a client/server
environment.

Default: There is no default.

See TimesTenClassicSpecSpec.

databaseCPURequest: 2

databaseMemorySize Amount of shared memory your
database requires.

Default: There is no default.

See TimesTenClassicSpecSpec.

databaseMemorySize: 20Gi

dbConfigMap Variable that creates a Kubernetes
ConfigMap based on the provided
values and adds a dbConfigMap entry
to a TimesTenClassic object definition.

Default: There is no default. By default,
a ConfigMap is not created by a
ttclassic chart.

See TimesTenClassicSpecSpec.

dbConfigMap:
  - name: sample
    directory: cm

Note: You must create a directory in
the /ttclassic directory of the
ttclassic chart. All files in the
directory are added to the generated
ConfigMap. This example assumes you
have created a cm directory in the /
ttclassic directory tree.

dbSecret Variable that creates a Kubernetes
Secret based on the provided values
and adds a dbSecret entry to a
TimesTenClassic object definition.

Default: There is no default. By default,
a Secret is not created by a ttclassic
chart.

See TimesTenClassicSpecSpec.

dbSecret:
  - name: sample
    directory: seekret

Note: You must create a directory in
the /ttclassic directory of the
ttclassic chart. All files in the
directory are added to the generated
Secret. This example assumes you
have created a seekret directory in
the /ttclassic directory tree.

Chapter 21
The ttclassic Chart

21-24



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

deleteDbOnNotReadyNode When specified, this variable directs the
TimesTen Operator to detect situations
where a Node is not ready (or unknown)
for a specific period of time. When
detected, the TimesTen Operator takes
appropriate action to remedy the
situation. Specifically, the TimesTen
Operator checks to see if the Node's not
ready condition has existed for more
than deleteDbOnNotReadyNode
seconds. If so, the TimesTen Operator
deletes the Pod and the PVCs
associated with the Pod. This causes
Kubernetes to create a new Pod and
new PVCs on a surviving Node. Once
the Pod is scheduled and started by
Kubernetes, the TimesTen Operator
configures it as usual.

The value is expressed in seconds and
must be greater than
pollingInterval.

By default, this variable is not specified.
You must specify it.

Note: Use caution when specifying this
datum. Specifying this datum could
result in the TimesTen Operator deleting
PVCs. Deleting PVCs discards the on-
disk copy of TimesTen databases.

For more information, see How the
TimesTen Kubernetes Operator Handles
Node Failure.

deleteDbOnNotReadyNode: 30

exporterCPURequest Amount of CPU requested for the
exporter container (if provisioned).

Default: 200m
See TimesTenClassicSpecSpec.

exporterCPURequest: 400m

exporterMemoryRequest Amount of memory requested for the
exporter container (if provisioned).

Default: 200Mi
exporterMemoryRequest: 400Mi

Chapter 21
The ttclassic Chart

21-25



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

image Parameters that affect container
images.

Default:
• repository: Location of the

container image. For example,
container-
registry.oracle.com/
timesten/timesten.

• tag: TimesTen release number that
contains the relevant Helm charts.
For example, "22.1.1.34.0".

• pullPolicy: Pull policy for the
container image. For example,
Always.

image: 
  repository: phx.ocir.io/
youraccount/tt2211260image
  tag: "1"
  pullPolicy: Always

imagePullSecret Pull Secret required to pull container
images.

Default: There is no default.

See TimesTenClassicSpecSpec.

imagePullSecret: sekret

imageUpgradeStrategy Variable to determine if the TimesTen
Operator performs automated upgrades.
If set to Manual, Helm cannot
automatically upgrade or rollback a
release.

Default: Auto
See TimesTenClassicSpecSpec.

imageUpgradeStrategy: Manual

initContainers Variable used to define an init
container. This init container is
created in each Pod in a
TimesTenClassic object.

The provided YAML is copied directly to
the .spec.template.spec section of
a TimesTenClassic object YAML
manifest.

Default: There is no default.

initContainers:
- name: sample
  image:
  command:
  - sh
  - "-c"
  - |
    /bin/bash <<'EOF'
    echo test/user > /
ttconfig/testUser
    ls -l /ttconfig
    EOF
  volumeMounts:
  - name: tt-config
    mountPath: /ttconfig

labels A list of labels to be applied to a
TimesTenClassic object.

Default: There is no default.
labels:
  x: y

Chapter 21
The ttclassic Chart

21-26



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

logStorageClassName Name of the storage class that is used
to request persistent volumes for the
TimesTen database transaction log files.

Default: There is no default. If you do
not specify logStorageClassName, a
log volume is not allocated.

See TimesTenClassicSpecSpec.

logStorageClassName: fast

logStorageSize Amount of storage to be provisioned for
the TimesTen transaction log files.

Default: 50Gi
See TimesTenClassicSpecSpec.

logStorageSize: 100Gi

name Name of the TimesTenClassic object to
be created.

Default: releaseName
name: sample

podDisruptionBudget Variable that determines if a
podDisruptionBudget is created . If
created, uses the provided values.

Default: create: false
A podDisruptionBudget is not
created by default.

podDisruptionBudget:
  create: true
  pdbName: samplepdb
  maxUnvailable: 1
  minAvailable: 1
  matchLabels:
    "x": "y"

pollingInterval Variable that determines how often
(expressed in seconds) that the
TimesTen Operator checks the status of
a TimesTenClassic object.

Default: 5

pollingInterval: 6

Chapter 21
The ttclassic Chart

21-27



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

readOnlyRootFilesystem Variable that determines if the TimesTen
Operator causes the container image to
be mounted read only in TimesTen
containers. The TimesTen Operator
provisions an empty directory and
mounts it on top of the /tmp directory in
all TimesTen containers in all TimesTen
Pods. This includes the tt, daemonlog,
and exporter containers in each Pod.

Valid values:

• true (default): The TimesTen
Operator provisions an empty
directory and mounts it on top of
the /tmp directory. In addition, the
TimesTen Operator creates these
containers with container images
mounted as read-only.

• false: The TimesTen Operator
does not provision an empty
directory and does not create
containers with container images
mounted as read-only.

If you provide your own containers, the
TimesTen Operator does not
automatically mount your container
images as read-only.

If you upgrade a v1 TimesTenClassic
object and if the Pods associated with
that TimesTenClassic object are
replaced, the replacements do not have
readOnlyRootFilesystem set.

readOnlyRootFilesystem: true

replicas Variable that determines the number of
Pods to provision for a non-replicated
TimesTenClassic object.

The default is 1. The maximum value is
3.

replicas: 2

replicationTopology Variable that determines the
configuration for a TimesTen Classic
database.

Valid values:
• activeStandbyPair (default):

The TimesTen Operator configures
an active standby pair replication
scheme.

• none: The TimesTen Operator does
not configure replication. Instead, it
configures a non-replicated
configuration and uses the
replicas variable to determine
how many TimesTen Pods to
create.

replicationTopology:
activeStandbyPair
or

replicationTopology: none

Chapter 21
The ttclassic Chart

21-28



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

repStateTimeout Variable that indicates the time in
seconds a replicated database remains
in the recovering replication state as
reported by the TimesTen
ttRepStateGet built-in procedure.

The recovering replication state
indicates that the database is in the
process of synchronizing updates with
the active database after a failure. For
more information about the TimesTen
ttRepStateGet built-in procedure, see 
ttRepStateGet in the Oracle TimesTen
In-Memory Database Reference.

Default: 30 (expressed in seconds).

For more information about
repStateTimeout, see 
TimesTenClassicSpecSpec.

repStateTimeout: 40

rollingUpdatePartition Variable that is specific to upgrading a
non-replicated configuration.
Kubernetes upgrades Pods with an
ordinal value that is greater than or
equal to the
rollingUpdatePartition value.

For example, if you have three non-
replicated Pods (replicas = 3 and
Pods are samplerep-0, samplerep-1,
and samplerep-2) and you set
rollingUpdatePartition to 1, the
samplerep_1 and samplerep-2 Pods
are upgraded, but the samplerep-0
Pod is not.

The default is 0.

For more information, see Perform
Upgrades in this book and Partitioned
rolling updates in the Kubernetes
documentation.

rollingUpdatePartition: 2

securityContext Variable used to create an optional
securityContext definition. This
securityContext definition is applied
to TimesTenClassic at the Pod level.

The provided YAML is copied directly to
the .spec.template.spec section of
a TimesTenClassic object YAML
manifest.

Default: There is no default.

securityContext
  runAsNonRoot: true

Chapter 21
The ttclassic Chart

21-29

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/


Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

serviceAccountName Name of the service account that is
assigned to the Pods that are created by
the TimesTen Operator.

By default, when the TimesTen Operator
creates StatefulSets (which in turn
create Pods that run TimesTen), the
StatefulSets and Pods have no service
account. Specifying
serviceAccountName lets you define a
Kubernetes ServiceAccount that the
TimesTen Pods run under.

Default: There is no default.

serviceAccountName: xyz

storageClassName Name of the storage class that is used
to request persistent volumes for a
TimesTen database.

Default: There is no default. However,
you must specify a value for
storageClassName.

See TimesTenClassicSpecSpec.

storageClassName: oci-bv

storageSize Amount of storage to be provisioned for
TimesTen and the TimesTen database.

Default: 50Gi
storageSize: 250Gi

storePassword The TimesTen Operator stores its
security certificates in Java Keystores.
In order to create and use Java
Keystores, they must be secured with a
known password (storePassword).
The password must be known by both
the TimesTen Operator who creates and
reads the keystore and the TimesTen
Agent who also reads it.

The default value is a hard-coded string
that is not documented.

Although not recommended, you can
use the storePassword variable to set
the password to a different value than
the default and control the password
setting. Once set, you cannot change
storePassword. If it is changed, the
TimesTen Operator generates a warning
in the form of a Kubernetes Event and
ignores the changed value.

storePassword: 
pseudoRandomString

templateSpec Variable used to insert arbitrary YAML
into the .spec.template.spec section
of a TimesTenClassic object.

Default: There is no default.

See TimesTenClassicSpec.

templateSpec:
  preemptionPolicy: Never

Chapter 21
The ttclassic Chart

21-30



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

terminationGracePeriod Variable that determines the amount of
time (in seconds) that Kubernetes waits
for a Pod to gracefully shut down before
being forcefully terminated.

The default varies depending on your
configuration:
• Replicated (Active Standby Pair:

Default) is 10 seconds.

• Non-replicated: Default is 300
seconds.

terminationGracePeriod: 30

testAffinity Variable to define Kubernetes
nodeAffinity, podAffinity, and
podAntiAffinity parameters. These
affinity configurations are only applied to
the Helm test Pod.

There is no default.

testAffinity:
  nodeAffinity:
    
requiredDuringSchedulingIgnor
edDuringExecution:
      nodeSelectorTerms:
      - matchExpressions:
        - key: 
topology.kubernetes.io/zone
          operator: In
          values:
          - antarctica-east1
          - antarctica-west1

testAnnotations A list of annotations to be applied to a
Helm test Pod. This Pod is created
when you run the helm test command.

Default:

helm.sh/hook-delete-policy: 
hook-succeeded

testAnnotations:
  x: y

testLabels A list of labels to be applied to a Helm
test Pod. This Pod is created when you
run the helm test command.

Default: There is no default.

testLabels:
  x: y

tolerations Variable to define tolerations to be
applied to the Pods in a
TimesTenClassic object.

The provided YAML is copied directly to
the .spec.template.spec section of
a TimesTenClassic object YAML
manifest.

Default: There is no default.

tolerations:
  - key: "key1"
    operator: "Equal"
    value: "value1"
    effect: "NoSchedule"

Chapter 21
The ttclassic Chart

21-31



Table 21-3    (Cont.) Variables for the ttclassic Chart

Variable Default Example

ttspec Variable to insert arbitrary YAML into
the .spec.ttspec section of a
TimesTenClassic object. Use this
variable to specify additional datum that
are supported by the TimesTenClassic
object type, but are not explicitly
supported by the ttclassic chart.

Default: There is no default.

See TimesTenClassicSpecSpec.

ttspec:
  agentGetTimeout: 10
  prometheus:
    port: 7777

volumes Variable used to create optional volume
definitions. These definitions are applied
to TimesTenClassic objects.

The provided YAML is copied directly to
the .spec.template.spec section of
a TimesTenClassic object YAML
manifest.

Default: There is no default.

volumes:
  - name: tt-config
    emptyDir: {}

Chapter 21
The ttclassic Chart

21-32



22
TimesTen Kubernetes Operator Metrics

There are several TimesTen Kubernetes Operator (TimesTen Operator) metrics that can be
exposed and then published by Prometheus or some other scraper. These metrics include
information about the functionality of the TimesTen Operator as well as the overall status of
TimesTenClassic and TimesTenScaleout objects that the TimesTen Operator manages.

The following table details the TimesTen Operator metrics:

Table 22-1    TimesTen Operator Metrics

Metric Type Description

timesten_agent_tt_mem_usage Gauge Amount of memory used by the
TimesTen Agent and TimesTen within a
Pod. Reports the memory usage by
each Pod as reported by Linux cgroups
in the memory.usage_in_bytes value.
Reports the value in bytes.

timesten_agent_rss Gauge Resident Set Size (rss) for the TimesTen
Agent within each Pod running
TimesTen. Reports the value as
reported by the VmRSS field in the /
proc/self/status file, which is
managed by the Linux kernel for the
TimesTen agent process within each tt
container in each Pod that is running
TimesTen. Reports the value in
Kilobytes.

timesten_classic_state Gauge State of each TimesTenClassic object.
The specific state is reported in the
state label.

timesten_classic_state_allrepli
casready

Gauge Number of non-replicated
TimesTenClassic objects in the
AllReplicasReady state.

timesten_classic_state_noreplic
asready

Gauge Number of non-replicated
TimesTenClassic objects in the
NoReplicasReady state.

timesten_classic_state_normal Gauge Number of replicated TimesTenClassic
objects in the Normal state.

timesten_classic_state_not_allr
eplicasready

Gauge Number of non-replicated
TimesTenClassic objects in states other
than AllReplicasReady or
Initializing.

timesten_classic_state_not_norm
al

Gauge Number of replicated TimesTenClassic
objects in states other than Normal or
Initializing.

timesten_classic_state_somerepl
icasready

Gauge Number of non-replicated
TimesTenClassic objects in the
SomeReplicasReady state.

22-1



Table 22-1    (Cont.) TimesTen Operator Metrics

Metric Type Description

timesten_pods_deleted_unschedul
able

Gauge Total count of Pods that the TimesTen
Operator has deleted. The value
increases each time a Pod is deleted.

For more information, see the
deleteDbOnNotReadyNode datum in 
Table 20-3.

timesten_pods_unschedulable Gauge Number of Pods that are not currently
scheduled by Kubernetes. The value
increases and decreases over time.

timesten_pvcs_deleted_unschedul
able

Gauge Total count of PVCs that the TimesTen
Operator has deleted. The value
increases each time a PVC is deleted.

For more information, see the
deleteDbOnNotReadyNode datum in 
Table 20-3.

timesten_scaleout_state Gauge State of each TimesTenScaleout object.
The specific state is reported in the
state label.

timesten_scaleout_state_normal Gauge Number of TimesTenScaleout objects in
the Normal state.

timesten_scaleout_state_not_nor
mal

Gauge Number of TimesTenScaleout objects in
states other than Normal or
Initializing.

timesten_operator_mem_usage Gauge Amount of memory used by the
TimesTen Kubernetes Operator.
Reports the memory usage by the
TimesTen Operator Pod as reported by
Linux cgroups in the
memory.usage_in_bytes value.
Reports the value in bytes.

timesten_operator_rss Gauge Resident Set Size (rss) for the TimesTen
Kubernetes Operator. Reports the value
as reported by the VmRSS field in the /
proc/self/status file, which is
managed by the Linux kernel for the
TimesTen Kubernetes Operator
process. Reports the value in Kilobytes.

Each metric has these labels:

• namespace: The namespace of the TimesTen object that the metric describes.

• name:

– For the timesten_operator_mem_usage and timesten_operator_rss metrics, the
name label is the name of the TimesTen Operator Pod.

– For the timesten_agent_tt_mem_usage and timesten_agent_rss metrics, the name
label is the name of the TimesTen Pod.

– For all other metrics, the name label is the name of the TimesTen object that the metric
describes.

Chapter 22

22-2



In addition there are several other labels of secondary importance:

• container: The name of the container that generated the metric. For example, timesten-
operator.

• endpoint: The name of the endpoint that the metric came from. For example, metrics.

• instance: The IP address and port of the TimesTen Operator Pod that generated the
metric. For example, 10.244.1.111:8080

• job: The name of the job. For example, timesten-operator.

• pod: The name of the TimesTen Operator Pod that generated the metric. For example,
timesten-operator-5f4f4c69f6-z9h2k.

• service. The name of the Service. For example, timesten-operator.

Here is an example of a sample timesten_classic_state_normal metric:

timesten_classic_state_normal{container="timesten-operator", 
endpoint="metrics", instance="10.244.1.111:8080", job="timesten-operator", 
name="sample", namespace="mynamespace", pod="timesten-operator-5f4f4c69f6-
z9h2k", 
service="timesten-operator"}

The metric has a value of 1 or 0, depending on whether the TimesTenClassic object (sample, in
this case) is healthy or not.

Here is an example of a sample timesten_classic_state metric:

timesten_classic_state{container="timesten-operator", 
endpoint="metrics", instance="10.244.1.111:8080", job="timesten-operator", 
name="sample", namespace="mynamespace", pod="timesten-operator-5f4f4c69f6-
z9h2k", 
service="timesten-operator", state="Normal"}

The metric has a value of 1 or 0, depending on whether the TimesTenClassic object (sample, in
this case) is in the Normal state or not.

For details on how the TimesTen Operator exposes metrics, see Expose Metrics from the
TimesTen Kubernetes Operator.

Note:

The TimesTen Operator automatically exposes many other additional metrics. We
cannot guarantee these additional metrics will exist from release to release. In
addition, these metrics may not be specifically pertinent or useful for the TimesTen
Operator.

Chapter 22

22-3



23
TimesTen Kubernetes Operator Environment
Variables

There are environment variables for the TimesTen Operator. The operator.yaml and
cluster_operator.yaml files contain these environment variables. You can change the default
setting for these environment variables depending on your needs. For more information about
the TimesTen Operator, see About the TimesTen Operator.

The following table describes these variables:

Table 23-1    TimesTen Operator Environment Variables

Environment Variable Description

CREATE_SERVICEMONITOR Determines if the TimesTen Operator creates a Kubernetes
ServiceMonitor object.

Valid values are as follows:
• "1" (default): The TimesTen Operator should create a

ServiceMonitor object.
• "0": The TimesTen Operator should not create a

ServiceMonitor object.

If EXPOSE_METRICS is set to "0" and
CREATE_SERVICEMONITOR is set to "1" (default),
CREATE_SERVICEMONITOR is treated as though it was set to
"0".

See Expose Metrics from the TimesTen Kubernetes
Operator.

EXPOSE_METRICS Determines if TimesTen Operator metrics are exposed
outside of the TimesTen Operator's Pods.

Valid values are as follows:
• "1" (default): Metrics should be exposed outside of the

TimesTen Operator's Pods.
• "0": Metrics should not be exposed outside of the

TimesTen Operator's Pods.

If EXPOSE_METRICS is set to "0" and
CREATE_SERVICEMONITOR is set to "1" (default),
CREATE_SERVICEMONITOR is treated as though it was set to
"0".

In addition, if EXPOSE_METRICS is set to "0", the value of
METRICS_SCHEME is ignored and http is always used.

See Expose Metrics from the TimesTen Kubernetes
Operator.

EXPOSE_PROBES Determines if liveness probes should be exposed outside of
the TimesTen Operator's Pods.

Valid values are as follows:
• "1" (default): Probes should be exposed.

• "0": Probes should not be exposed.

23-1



Table 23-1    (Cont.) TimesTen Operator Environment Variables

Environment Variable Description

JAVA_HOME Specifies the location where Java is installed in the TimesTen
container image.

Default: /usr/java/jdk-21.

If you are using a different location, change the value for this
environment variable.

METRICS_SCHEME Determines if TimesTen Operator metrics should be made
available by https or http.

Valid values are as follows:
• "https" (default): https is used.

• "http": http is used.

If EXPOSE_METRICS is set to "0", the value of
METRICS_SCHEME is ignored and http is always used.

See Expose Metrics from the TimesTen Kubernetes
Operator.

TT_CONNECTION_MANAGER Determines if the TimesTen Operator's Connection Manager
is enabled.

Valid values are as follows:
• "1" (default): Enable the Connection Manager.

• "0": Do not enable the Connection Manager.

If you disable metrics for the TimesTen Operator or you do
not use https for metrics, the Connection Manager is not
enabled. For example, if you set METRICS_SCHEME to
"http" or EXPOSE_METRICS to "0", then
TT_CONNECTION_MANAGER is ignored and treated as "0".

See About the Connection Manager.

TT_CONNECTION_MANAGER_NODEPORT Determines the port number on which the Connection
Manager is available to applications outside of the
Kubernetes cluster.

The Connection Manager can be accessed from outside the
Kubernetes cluster on any node in the Kubernetes cluster by
this port number.

The default is 32625. Valid values are between 30000 and
32767.

Use this environment variable to change the port number.

TT_MAX_RECONCILES Determines how many TimesTenClassic objects the
TimesTen Operator processes concurrently.

Valid values are as follows:
• "2" (default): The TimesTen Operator processes at most

two TimesTenClassic objects at one time (in parallel).
• "1": The TimesTen Operator processes at most one

TimesTenClassic object at one time.

For performance purposes, we recommend that you do not
change the default value.

Chapter 23

23-2



Table 23-1    (Cont.) TimesTen Operator Environment Variables

Environment Variable Description

TT_OPERATOR_SAN Adds subject alternate names (SANs) to the TLS certificate
that the TimesTen Operator creates to control access to the
TimesTen Operator metrics and to the Connection Manager.
• If you use metrics and the Connection Manager from

inside the Kubernetes cluster, you do not need to set this
environment variable.

• If you use either metrics or the Connection Manager (or
both) from outside the Kubernetes cluster, you must
define a SAN for the nodes in the cluster. A SAN value
can be a DNS name (potentially wildcarded) or an IP
address. The value is a comma delimited list of SAN
values, such as
"1.2.3.4,1.2.3.5,*.mycluster.example.org".
You can specify a single level of wildcards.

By default, there is no SAN specified.

Chapter 23

23-3



24
Dockerfile ARGs

You have several options for obtaining TimesTen container images. One of these options is to
build your own TimesTen container image. TimesTen provides a Dockerfile for this purpose.
For more information about TimesTen container images, see About TimesTen Container
Images and Container Registry Options.

The Dockerfile supports a number of ARGs. These ARGs let you override the attributes of the
Dockerfile (and its resultant image). You supply these ARGs on the docker build command
line.

The following table describes the supported ARGs:

Table 24-1    Dockerfile ARGs

ARG name Default value Description

TT_BASE container-
registry.oracle.com/os/
oraclelinux:8

Name of the base image.

UNZIP_BASE container-
registry.oracle.com/os/
oraclelinux:8

Name of the image that is used to unzip
the TimesTen distribution.

TT_DISTRO timesten22.1.1.34.0.server.linu
x8664.zip or
timesten22.1.1.34.0.server.linu
xarm64.zip depending on whether you
are using amd64 or arm64 nodes.

Name of the TimesTen distribution that
you are including in the container
image.

For information about deploying the
TimesTen Kubernetes Operator in a
multi-architecture Kubernetes cluster,
see About Deploying in a Multi-
Architecture Kubernetes Cluster.

TT_RELEASE 22.1.1.34.0 Release number (in dotted decimal
format) of the TimesTen release that is
included in $TT_DISTRO.

TT_USER timesten Name of the Linux user that is created
in the container image. This is the user
who runs TimesTen.

To define a different user to run
TimesTen, supply this ARG on the
docker build command line.

TT_UID 3429 The numeric UID of $TT_USER.

To define a different UID for $TT_USER,
supply this ARG on the docker build
command line.

24-1



Table 24-1    (Cont.) Dockerfile ARGs

ARG name Default value Description

TT_GROUP timesten Name of the Linux group that is created
in the container image. This is the name
of the TimesTen users group.

To define a different name for the
TimesTen group, supply this ARG on the
docker build command line.

TT_GID 3429 The numeric GID of $TT_GROUP.

To define a different GID
for $TT_GROUP, supply this ARG on the
docker build command line.

TT_EXTRA_LINUX_PACKAGES There is no default. Additional Linux packages that you want
installed in the container image by the
yum install command.

Chapter 24

24-2



A
Active Standby Pair Example

This appendix provides an example showing you the complete process for deploying and
running your active standby pair of TimesTen databases in the Kubernetes cluster. After the
databases are up and running, the example demonstrates how the Operator controls and
manages the databases. If the active database fails, the Operator performs the necessary
tasks to failover to the standby database, making that standby database the active one. The
example concludes with procedures to delete the TimesTen databases and to stop the
Operator.

Note:

You have the option of using Helm to deploy your active standby pair of TimesTen
databases. For more information about using Helm, see Use Helm in Your TimesTen
Kubernetes Operator Environment.

• Before You Begin

• Create a ConfigMap Object

• Create a TimesTenClassic Object

• Monitor Deployment

• Verify Existence of Underlying Objects

• Verify Connection to the Active TimesTen Database

• Recover from Failure

• Clean Up

Before You Begin
Review the following sections and complete if you have not already done so.

1. Before You Begin

2. Prepare to Use the TimesTen Kubernetes Operator

3. Install TimesTen Custom Resource Definitions

4. Learn About and Install the TimesTen Kubernetes Operator

Create a ConfigMap Object
This section creates the sample ConfigMap. This ConfigMap contains the db.ini, the
adminUser, and the schema.sql metadata files. This ConfigMap will be referenced when you
define the TimesTenClassic object. See "Overview of Configuration Metadata and Kubernetes
Facilities" for information on the configuration files and the ConfigMap facility.

On your Linux development host:

A-1



1. From the directory of your choice, create an empty subdirectory for the metadata files. This
example creates the cm_sample subdirectory. (The cm_sample directory is used in the
remainder of this example to denote this directory.)

% mkdir -p cm_sample
2. Create the db.ini file in this ConfigMap directory (cm_sample, in this example). In this

db.ini file, define the PermSize and DatabaseCharacterSet connection attributes.

vi cm/db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8

3. Create the adminUser file in this ConfigMap directory (cm_sample in this example). In this
adminUser file, create the sampleuser user with the samplepw password.

vi cm/adminUser

sampleuser/samplepw
4. Create the schema.sql file in this ConfigMap directory (cm_sample in this example). In this

schema.sql file, define the s sequence and the emp table for the sampleuser user. The
Operator will automatically initialize your database with these object definitions.

vi cm/schema.sql

create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);

5. Create the ConfigMap. The files in the cm_sample directory are included in the ConfigMap
and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is sample. Replace sample with a name of your choosing.
(sample is represented in bold in this example.)

• This example uses cm_sample as the directory where the files that will be copied into
the ConfigMap reside. If you use a different directory, replace cm_sample with the name
of your directory. (cm_sample is represented in bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap sample --from-file=cm_sample
configmap/sample created

You successfully created and deployed the sample ConfigMap.

6. Use the kubectl describe command to verify the contents of the ConfigMap. (sample, in
this example.)

% kubectl describe configmap sample
Name:         sample
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
adminUser:
----

Appendix A
Create a ConfigMap Object

A-2



sampleuser/samplepw
 
db.ini:
----
PermSize=200
DatabaseCharacterSet=AL32UTF8
 
schema.sql:
----
create sequence sampleuser.s;
create table sampleuser.emp (
  id number not null primary key,
  name char(32)
);
 
 
Events:  <none>

Create a TimesTenClassic Object
This section creates the TimesTenClassic object. For detailed information about the
TimesTenClassic object type, see About the TimesTenClassic Object Type.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use the same
name you used for the name of the TimesTenClassic object. (In this example, sample.) The
YAML file contains the definitions for the TimesTenClassic object. See
"TimesTenClassicSpecSpec" for information on the fields that you must specify in this
YAML file as well as the fields that are optional.

In this example, replace the following. (The values you can replace are represented in
bold.)

• name: Replace sample with the name of your TimesTenClassic object.

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate. See the storageSize and the logStorageSize entries in
"Table 20-3" for information.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.34.0
with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called sample) for the db.ini, the
adminUser, and the schema.sql metadata files. This ConfigMap will be included in the
ProjectedVolume. This volume is mounted as /ttconfig in the TimesTen containers.
See "Using ConfigMaps and Secrets" and "Example Using One ConfigMap" for
information on ConfigMaps.

% vi sample.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic

Appendix A
Create a TimesTenClassic Object

A-3



metadata:
  name: sample
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - sample

2. Use the kubectl create command to create the TimesTenClassic object from the contents
of the YAML file (in this example, sample.yaml). Doing so begins the process of deploying
your active standby pair of TimesTen databases in the Kubernetes cluster.

% kubectl create -f sample.yaml
configmap/sample created
timestenclassic.timesten.oracle.com/sample created

You successfully created the TimesTenClassic object in the Kubernetes cluster. The process of
deploying your TimesTen databases begins, but is not yet complete.

Monitor Deployment
Use the kubectl get and the kubectl describe commands to monitor the progress of the
active standby pair as it is provisioned.

Note:

For the kubectl get timestenclassic and kubectl describe timestenclassic
commands, you can alternatively specify kubectl get ttc and kubectl describe ttc
respectively. timestenclassic and ttc are synonymous when used in these
commands, and return the same results. The first kubectl get and the first kubectl
describe examples in this appendix use timestenclassic. The remaining examples
in this appendix use ttc for simplicity.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet complete.

% kubectl get timestenclassic sample
NAME     STATE          ACTIVE   AGE
sample   Initializing   None     11s

2. Use the kubectl describe command to view the initial provisioning in detail.

% kubectl describe timestenclassic sample
Name:         sample
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
API Version:  timesten.oracle.com/v4
Kind:         TimesTenClassic
Metadata:
  Creation Timestamp:  2025-01-16T15:35:12Z
  Generation:          1
  Resource Version:    20251755
  Self Link: 
/apis/timesten.oracle.com/v4/namespaces/mynamespace/timestenclassics/sample

Appendix A
Monitor Deployment

A-4



  UID:                 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
  Ttspec:
    Db Config Map:
      sample
    Image:               container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    Image Pull Policy:   Always
    Image Pull Secret:   sekret
    Storage Class Name:  oci-bv
    Storage Size:        250Gi
Status:
  Active Pods:       None
  High Level State:  Initializing
  Last Event:        3
  Pod Status:
    Cache Status:
      Cache Agent:        Down
      Cache UID Pwd Set:  false
      N Cache Groups:     0
    Db Status:
      Db:            Unknown
      Db Id:         0
      Db Updatable:  Unknown
    Initialized:     true
    Pod Status:
      Agent:                Down
      Last Time Reachable:  0
      Pod IP:
      Pod Phase:            Pending
    Replication Status:
      Last Time Rep State Changed:  0
      Rep Agent:                    Down
      Rep Peer P State:             Unknown
      Rep Scheme:                   Unknown
      Rep State:                    Unknown
    Times Ten Status:
      Daemon:          Down
      Instance:        Unknown
      Release:         Unknown
    Admin User File:   false
    Cache User File:   false
    Cg File:           false
    High Level State:  Down
    Intended State:    Active
    Name:              sample-0
    Schema File:       false
    Cache Status:
      Cache Agent:        Down
      Cache UID Pwd Set:  false
      N Cache Groups:     0
    Db Status:
      Db:            Unknown
      Db Id:         0
      Db Updatable:  Unknown
    Initialized:     true
    Pod Status:
      Agent:                Down
      Last Time Reachable:  0
      Pod IP:
      Pod Phase:            Pending
    Replication Status:
      Last Time Rep State Changed:  0

Appendix A
Monitor Deployment

A-5



      Rep Agent:                    Down
      Rep Peer P State:             Unknown
      Rep Scheme:                   Unknown
      Rep State:                    Unknown
    Times Ten Status:
      Daemon:            Down
      Instance:          Unknown
      Release:           Unknown
    Admin User File:     false
    Cache User File:     false
    Cg File:             false
    High Level State:    Unknown
    Intended State:      Standby
    Name:                sample-1
    Schema File:         false
  Rep Create Statement:  create active standby pair "sample" on 
 "sample-0.sample.mynamespace.svc.cluster.local", "sample" on 
 "sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on 
 "sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0 
 store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444 
FAILTHRESHOLD  0
  Rep Port:              4444
  Status Version:        1.0
Events:
  Type  Reason  Age   From       Message
  ----  ------  ----  ----       -------
  -     Create  50s   ttclassic  Secret tt517a8646-a354-11ea-a9fb-0a580aed5e4a 
created
  -     Create  50s   ttclassic  Service sample created
  -     Create  50s   ttclassic  StatefulSet sample created

3. Use the kubectl get command again to see if value of the STATE field has changed. In this
example, the value is Normal, indicating the active standby pair of databases are now
provisioned and the process is complete.

% kubectl get ttc sample
NAME     STATE    ACTIVE     AGE
sample   Normal   sample-0   3m5s

4. Use the kubectl describe command again to view the active standby pair provisioning in
detail.

Note: In this example, the now Normal line displays on its own line. In the actual output,
this line does not display as its own line, but at the end of the StateChange previous line.

% kubectl describe ttc sample
Name:         sample
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
API Version:  timesten.oracle.com/v4
Kind:         TimesTenClassic
Metadata:
  Creation Timestamp:  2025-01-16T15:35:12Z
  Generation:          1
  Resource Version:    20252668
  Self Link:
/apis/timesten.oracle.com/v4/namespaces/mynamespace/timestenclassics/sample 
  UID:                 517a8646-a354-11ea-a9fb-0a580aed5e4a
Spec:
  Ttspec:
    Db Config Map:
      sample

Appendix A
Monitor Deployment

A-6



    Image:               container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    Image Pull Policy:   Always
    Image Pull Secret:   sekret
    Storage Class Name:  oci-bv
    Storage Size:        250Gi
Status:
  Active Pods:       sample-0
  High Level State:  Normal
  Last Event:        35
  Pod Status:
    Cache Status:
      Cache Agent:        Not Running
      Cache UID Pwd Set:  true
      N Cache Groups:     0
    Db Status:
      Db:            Loaded
      Db Id:         26
      Db Updatable:  Yes
    Initialized:     true
    Pod Status:
      Agent:                Up
      Last Time Reachable:  1590939597
      Pod IP:               192.0.2.1
      Pod Phase:            Running
    Replication Status:
      Last Time Rep State Changed:  0
      Rep Agent:                    Running
      Rep Peer P State:             start
      Rep Scheme:                   Exists
      Rep State:                    ACTIVE
    Times Ten Status:
      Daemon:          Up
      Instance:        Exists
      Release:         22.1.1.34.0
    Admin User File:   true
    Cache User File:   false
    Cg File:           false
    High Level State:  Healthy
    Intended State:    Active
    Name:              sample-0
    Schema File:       true
    Cache Status:
      Cache Agent:        Not Running
      Cache UID Pwd Set:  true
      N Cache Groups:     0
    Db Status:
      Db:            Loaded
      Db Id:         26
      Db Updatable:  No
    Initialized:     true
    Pod Status:
      Agent:                Up
      Last Time Reachable:  1590939597
      Pod IP:               192.0.2.2
      Pod Phase:            Running
    Replication Status:
      Last Time Rep State Changed:  1590939496
      Rep Agent:                    Running
      Rep Peer P State:             start
      Rep Scheme:                   Exists
      Rep State:                    STANDBY
    Times Ten Status:

Appendix A
Monitor Deployment

A-7



      Daemon:            Up
      Instance:          Exists
      Release:           22.1.1.34.0
    Admin User File:     true
    Cache User File:     false
    Cg File:             false
    High Level State:    Healthy
    Intended State:      Standby
    Name:                sample-1
    Schema File:         true
  Rep Create Statement:  create active standby pair "sample" on 
"sample-0.sample.mynamespace.svc.cluster.local", "sample" on 
"sample-1.sample.mynamespace.svc.cluster.local" NO RETURN store "sample" on 
"sample-0.sample.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0 
store "sample" on "sample-1.sample.mynamespace.svc.cluster.local" PORT 4444 
FAILTHRESHOLD 0
  Rep Port:              4444
  Status Version:        1.0
Events:
  Type  Reason       Age    From       Message
  ----  ------       ----   ----       -------
  -     Create       4m43s  ttclassic  Secret tt517a8646-a354-11ea-a9fb-0a580aed5e4a 
created
  -     Create       4m43s  ttclassic  Service sample created
  -     Create       4m43s  ttclassic  StatefulSet sample created
  -     StateChange  3m47s  ttclassic  Pod sample-0 Daemon Unknown
  -     StateChange  3m47s  ttclassic  Pod sample-0 CacheAgent Unknown
  -     StateChange  3m47s  ttclassic  Pod sample-0 RepAgent Unknown
  -     StateChange  3m47s  ttclassic  Pod sample-1 Daemon Unknown
  -     StateChange  3m47s  ttclassic  Pod sample-1 CacheAgent Unknown
  -     StateChange  3m47s  ttclassic  Pod sample-1 RepAgent Unknown
  -     StateChange  3m26s  ttclassic  Pod sample-0 Agent Up
  -     StateChange  3m26s  ttclassic  Pod sample-0 Release 22.1.1.34.0
  -     StateChange  3m26s  ttclassic  Pod sample-0 Daemon Down
  -     StateChange  3m26s  ttclassic  Pod sample-1 Agent Up
  -     StateChange  3m26s  ttclassic  Pod sample-1 Release 22.1.1.34.0
  -     StateChange  3m26s  ttclassic  Pod sample-1 Daemon Down
  -     StateChange  3m26s  ttclassic  Pod sample-0 Daemon Up
  -     StateChange  3m25s  ttclassic  Pod sample-1 Daemon Up
  -     StateChange  2m13s  ttclassic  Pod sample-0 RepState IDLE
  -     StateChange  2m13s  ttclassic  Pod sample-0 Database Updatable
  -     StateChange  2m13s  ttclassic  Pod sample-0 CacheAgent Not Running
  -     StateChange  2m13s  ttclassic  Pod sample-0 RepAgent Not Running
  -     StateChange  2m13s  ttclassic  Pod sample-0 RepScheme None
  -     StateChange  2m13s  ttclassic  Pod sample-0 Database Loaded
  -     StateChange  2m11s  ttclassic  Pod sample-0 RepAgent Running
  -     StateChange  2m10s  ttclassic  Pod sample-0 RepScheme Exists
  -     StateChange  2m10s  ttclassic  Pod sample-0 RepState ACTIVE
  -     StateChange  113s   ttclassic  Pod sample-1 Database Loaded
  -     StateChange  113s   ttclassic  Pod sample-1 Database Not Updatable
  -     StateChange  113s   ttclassic  Pod sample-1 CacheAgent Not Running
  -     StateChange  113s   ttclassic  Pod sample-1 RepAgent Not Running
  -     StateChange  113s   ttclassic  Pod sample-1 RepScheme Exists
  -     StateChange  113s   ttclassic  Pod sample-1 RepState IDLE
  -     StateChange  106s   ttclassic  Pod sample-1 RepAgent Running
  -     StateChange  101s   ttclassic  Pod sample-1 RepState STANDBY
  -     StateChange  101s   ttclassic  TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.) There are two TimesTen databases, configured as an active standby pair. One
database is active. (In this example, sample-0 is the active database, as indicated by Rep
State ACTIVE). The other database is standby. (In this example, sample-1 is the standby

Appendix A
Monitor Deployment

A-8



database as indicated by Rep State STANDBY). The active database can be modified and
queried. Changes made on the active database are replicated to the standby database. If the
active database fails, the Operator automatically promotes the standby database to be the
active. The formerly active database will be repaired or replaced, and will then become the
standby.

Verify Existence of Underlying Objects
Use the kubectl describe commands to verify the underlying objects.

1. StatefulSet:

% kubectl get statefulset sample
NAME     READY   AGE
sample   2/2     8m21s

2. Service:

% kubectl get service sample
NAME     TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)    AGE
sample   ClusterIP   None         <none>        6625/TCP   9m28s

3. Pods:

% kubectl get pods
NAME                                        READY   STATUS    RESTARTS   AGE
sample-0                                    2/2     Running   0          10m
sample-1                                    2/2     Running   0          10m
timesten-operator-5d7dcc7948-8mnz4          1/1     Running   0          11h

4. PersistentVolumeClaims (PVCs):

% kubectl get pvc
NAME                         STATUS   VOLUME 
CAPACITY   ACCESS MODES   STORAGECLASS   AGE
tt-persistent-sample-0       Bound
ocid1.volume.oc1.phx.abyhqljrbxcgzyixa4pmmcwiqxgqclc7gxvdnoty367w2qn26tij6kfpx
6qq
250Gi       RWO            oci-bv         10m
tt-persistent-sample-1       Bound
ocid1.volume.oc1.phx.abyhqljtt4qxxoj5jqiskriskh66hakaw326rbza4uigmuaezdnu53qhh
oaa
250Gi       RWO            oci-bv         10m

Verify Connection to the Active TimesTen Database
You can run the kubectl exec command to invoke shells in your Pods and control TimesTen,
which is running in those Pods. By default, TimesTen runs in the Pods as the timesten user.
Once you have established a shell in the Pod, verify you can connect to the sample database,
and that the information from the metadata files is correct. You can optionally run queries
against the database or any other operations.

1. Establish a shell in the Pod.

% kubectl exec -it sample-0 -c tt -- /bin/bash
2. Connect to the sample database. Verify the information in the metadata files is in the

database correctly. For example, attempt to connect to the database as the sampleuser
user. Check that the PermSize value of 200 is correct. Check that the sampleuser.emp table
exists.

Appendix A
Verify Existence of Underlying Objects

A-9



 % ttIsql sample
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=sample";
Connection successful:
DSN=sample;UID=timesten;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)

Command> connect adding "uid=sampleuser;pwd=samplepw" as sampleuser;
Connection successful:
DSN=sample;UID=sampleuser;DataStore=/tt/home/timesten/datastore/sample;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;PermSize=200;
DDLReplicationLevel=3;
(Default setting AutoCommit=1)
sampleuser: Command> tables;
  SAMPLEUSER.EMP
1 table found.

Recover from Failure
This example simulates a failure of the active TimesTen database. This is for demonstration
purposes only. Do not do this in a production environment.

1. Use the kubectl delete pod command to delete the active database (sample-0 in this
case)

% kubectl delete pod sample-0
2. Use the kubectl describe command to observe how the Operator recovers from the

failure. The Operator promotes the standby database (sample-1) to be active. Any
applications that were connected to the sample-0 database are automatically reconnected
to the sample-1 database by TimesTen. After a brief outage, the applications can continue
to use the database. See "About the High Level State of TimesTenClassic Objects" for
information on the health and states of the active standby pair.

Note: In this example, the text for the Message column displays on two lines for three state
changes. However, the actual output displays on one line for each of these three state
changes.

% kubectl describe ttc sample
Name:         sample
...
Events:
  Type  Reason       Age    From       Message
  ----  ------       ----   ----       -------
  -     StateChange  2m1s   ttclassic  TimesTenClassic sample: was Normal, now 
ActiveDown
  -     StateChange  115s   ttclassic  Pod sample-1 Database Updatable: Yes
  -     StateChange  115s   ttclassic  TimesTenClassic sample:was ActiveDown, now 
StandbyDown
  -     StateChange  115s   ttclassic  Pod sample-1 RepState ACTIVE
  -     StateChange  110s   ttclassic  Pod sample-0 High Level State Unknown
  -     StateChange  63s    ttclassic  Pod sample-0 Pod Phase Running
  -     StateChange  63s    ttclassic  Pod sample-0 Agent Up
  -     StateChange  63s    ttclassic  Pod sample-0 Instance Exists

Appendix A
Recover from Failure

A-10



  -     StateChange  63s    ttclassic  Pod sample-0 Daemon Up
  -     StateChange  63s    ttclassic  Pod sample-0 Database None
  -     StateChange  42s    ttclassic  Pod sample-0 Database Loaded
  -     StateChange  42s    ttclassic  Pod sample-0 Database Updatable: No
  -     StateChange  42s    ttclassic  Pod sample-0 RepAgent Running
  -     StateChange  42s    ttclassic  Pod sample-0 CacheAgent Not Running
  -     StateChange  42s    ttclassic  Pod sample-0 RepScheme Exists
  -     StateChange  42s    ttclassic  Pod sample-0 RepState IDLE
  -     StateChange  36s    ttclassic  Pod sample-0 High Level State Healthy
  -     StateChange  36s    ttclassic  Pod sample-0 RepState STANDBY
  -     StateChange  36s    ttclassic  TimesTenClassic sample:was StandbyDown, now 
Normal

Kubernetes has automatically respawned a new sample-0 Pod to replace the Pod you
deleted. The Operator configured TimesTen inside of that Pod, bringing the database in the
Pod up as the new standby database. The replicated pair of databases are once again
functionally normally.

Clean Up
This example concludes with deleting the databases and all objects associated with
TimesTenClassic. These steps are used for example purposes only. Doing these steps results
in the termination of the Pods that are running the TimesTen databases as well as the deletion
of the TimesTen databases themselves.

1. Delete the ConfigMap object. (sample, in this example.)

% kubectl delete configmap sample
configmap "sample" deleted

2. Delete the TimesTenClassic object and the underlying objects.

% kubectl delete -f sample.yaml
timestenclassic.timesten.oracle.com "sample" deleted

3. Verify the Pods that were running the TimesTen databases no longer exist.

% kubectl get pods
NAME                                        READY   STATUS    RESTARTS   AGE
timesten-operator-5d7dcc7948-8mnz4          1/1     Running   0          5d23h

4. Delete the persistent storage used to hold your databases. You have to do this manually.

% kubectl get pvc
NAME                     STATUS   VOLUME
CAPACITY   ACCESS MODES   STORAGECLASS   AGE
tt-persistent-sample-0   Bound
...

tt-persistent-sample-1   Bound
...
% kubectl delete pvc tt-persistent-sample-0
persistentvolumeclaim "tt-persistent-sample-0" deleted
% kubectl delete pvc tt-persistent-sample-1
persistentvolumeclaim "tt-persistent-sample-1" deleted

5. If you no longer want to run the Operator, you can stop it. Navigate to the /deploy directory
(kube_files/deploy, in this example) and use the kubectl delete command to stop the
operator.

% cd kube_files/deploy
% kubectl delete -f operator.yaml
deployment.apps "timesten-operator" deleted

Appendix A
Clean Up

A-11



B
TimesTen Cache in TimesTen Classic Example

This appendix provides a working example for using TimesTen Cache with active standby pair
of TimesTen databases in your Kubernetes environment. This example should not be used for
production purposes. It assumes a test environment. Your Oracle Database should be
customized with the settings specific to your environment.

Topics:

• Set Up the Oracle Database to Cache Data

• Create Metadata Files and a Kubernetes Facility

• Create a TimesTenClassic Object

• Monitor Deployment of a TimesTenClassic Object

• Verify TimesTen Cache Configuration

• Perform Operations On Cache Group Tables

• Clean Up Cache Metadata on the Oracle Database

Set Up the Oracle Database to Cache Data
The following sections describe the tasks that must be performed in the Oracle Database:

• Create the Oracle Database Users

• Grant Privileges to the Cache Administration User

• Create the Oracle Database Tables to Be Cached

Create the Oracle Database Users
Before you can use TimesTen Cache, you must create the following users in your Oracle
database:

• A cache administration user. This user creates and maintains Oracle Database objects that
store information about the cache environment. This user also enforces predefined
behaviors of cache group types.

• One or more schema users who owns Oracle Database tables that are cached in a
TimesTen database.

See Create the Oracle Database Users and Default Tablespace in the Oracle TimesTen In-
Memory Database Cache Guide for information.

This example creates the cacheuser2 cache administration user and the oratt schema user in
the Oracle Database.

1. Create a shell from which you can access your Oracle Database and then use SQL*Plus to
connect to the Oracle Database as the sys user. Then, create a default tablespace to store
the TimesTen Cache management objects. See Create the Oracle Database Users and
Default Tablespace in the Oracle TimesTen In-Memory Database Cache Guide for
information.

B-1



This example creates the cachetablespace2 tablespace.

% sqlplus sys/syspwd@oracache as sysdba

SQL> CREATE TABLESPACE cachetablespace2 DATAFILE 'datatt2.dbf' SIZE 100M;
 
Tablespace created.

2. Use SQL*Plus to create the schema user. Grant this schema user the minimum privileges
required to create tables in the Oracle Database to be cached in your TimesTen database.

This example creates the oratt schema user.

SQL> CREATE USER oratt IDENTIFIED BY oraclepwd;
 
User created.
 
SQL> GRANT CREATE SESSION, RESOURCE TO oratt;
 
Grant succeeded.

3. Use SQL*Plus to create the cache administration user. Assign the cachetablespace2
tablespace to this user. You will later use the same name of this Oracle cache
administration user in the cacheUser metadata file.

This example creates the cacheuser2 user.

SQL> CREATE USER cacheuser2 IDENTIFIED BY oraclepwd 
       DEFAULT TABLESPACE cachetablespace2 
       QUOTA UNLIMITED ON cachetablespace2;
 
User created.

SQL> commit;
 
Commit complete.

SQL> exit

Grant Privileges to the Cache Administration User
The cache administration user must be granted a specific set of privileges depending on the
cache group types that will be created in the TimesTen databases and the operations
performed on those cache groups. TimesTen provides the grantCacheAdminPrivileges.sql
SQL*Plus script that you can run in your Oracle Database to grant the cache administration
user the minimum set of privileges required to perform cache operations. See Grant Privileges
to the Oracle Cache Administration User and see Required Privileges for Cache Administration
User for Cache Operations in the Oracle TimesTen In-Memory Database Cache Guide.

Perform these steps to run the grantCacheAdminPrivileges.sql script:

1. Create a shell from which you can access your Oracle Database, and then from the
directory of your choice, create an empty subdirectory. This example creates the
oraclescripts subdirectory.

% mkdir -p oraclescripts
2. From your Linux development host, use the kubectl cp command to copy the

grantCacheAdminPrivileges.sql script from the installation_dir/oraclescripts
directory on your Linux development host to the oraclescripts directory that you just
created. Recall that the installation_dir directory was created when you unpacked the
TimesTen distribution.

Appendix B
Set Up the Oracle Database to Cache Data

B-2



% cp /installation_dir/oraclescripts/grantCacheAdminPrivileges.sql 
database-oracle:oraclescripts/grantCacheAdminPrivileges.sql

3. From your shell, verify the script is located in the oraclescripts directory.

% ls oraclescripts
grantCacheAdminPrivileges.sql

4. Use SQL*Plus to connect to the Oracle Database as the sys user. Then, run the
oraclescripts/grantCacheAdminPrivileges.sql script. This script grants the cacheuser2
cache administration user the minimum set of privileges required to perform cache group
operations. See Grant Privileges to the Oracle Cache Administration User in the Oracle
TimesTen In-Memory Database Cache Guide.

% sqlplus sys/syspwd@oracache as sysdba

SQL> @grantCacheAdminPrivileges "cacheuser2";
 
Please enter the administrator user id
The value chosen for administrator user id is cacheuser2
 
TT_CACHE_ADMIN_ROLE role already exists
***************** Initialization for cache admin begins ******************
0. Granting the CREATE SESSION privilege to CACHEUSER2
1. Granting the TT_CACHE_ADMIN_ROLE to CACHEUSER2
2. Granting the DBMS_LOCK package privilege to CACHEUSER2
3. Granting the DBMS_DDL package privilege to CACHEUSER2
4. Granting the DBMS_FLASHBACK package privilege to CACHEUSER2
5. Granting the CREATE SEQUENCE privilege to CACHEUSER2
6. Granting the CREATE CLUSTER privilege to CACHEUSER2
7. Granting the CREATE OPERATOR privilege to CACHEUSER2
8. Granting the CREATE INDEXTYPE privilege to CACHEUSER2
9. Granting the CREATE TABLE privilege to CACHEUSER2
10. Granting the CREATE PROCEDURE  privilege to CACHEUSER2
11. Granting the CREATE ANY TRIGGER  privilege to CACHEUSER2
12. Granting the GRANT UNLIMITED TABLESPACE privilege to CACHEUSER2
13. Granting the DBMS_LOB package privilege to CACHEUSER2
14. Granting the SELECT on SYS.ALL_OBJECTS privilege to CACHEUSER2
15. Granting the SELECT on SYS.ALL_SYNONYMS privilege to CACHEUSER2
16. Checking if the cache administrator user has permissions on the 
    default tablespace
    Permission exists
18. Granting the CREATE TYPE privilege to CACHEUSER2
19. Granting the SELECT on SYS.GV$LOCK privilege to CACHEUSER2
20. Granting the SELECT on SYS.GV$SESSION privilege  to CACHEUSER2
21. Granting the SELECT on SYS.DBA_DATA_FILES privilege  to CACHEUSER2
22. Granting the SELECT on SYS.USER_USERS privilege  to CACHEUSER2
23. Granting the SELECT on SYS.USER_FREE_SPACE privilege  to CACHEUSER2
24. Granting the SELECT on SYS.USER_TS_QUOTAS privilege  to CACHEUSER2
25. Granting the SELECT on SYS.USER_SYS_PRIVS privilege  to CACHEUSER2
26. Granting the SELECT on SYS.V$DATABASE privilege  to CACHEUSER2 (optional)
27. Granting the SELECT ANY TRANSACTION privilege to CACHEUSER2
********* Initialization for cache admin user done successfully *********

You have successfully run the grantCacheAdminPrivileges.sql script in the Oracle Database.

Create the Oracle Database Tables to Be Cached
This example creates two tables in the oratt user schema. See "Create the Oracle Database
Users" for information on this user.

• readtab: This table will later be cached in a read-only cache group.

Appendix B
Set Up the Oracle Database to Cache Data

B-3



• writetab: This table will later be cached in an AWT cache group.

1. Create a shell from which you can access your Oracle Database and then use SQL*Plus to
connect to the Oracle Database as the sys user. Then create the oratt.readtab and the
oratt.writetab tables.

% sqlplus sys/syspwd@oracache as sysdba

SQL> CREATE TABLE oratt.readtab (keyval NUMBER NOT NULL PRIMARY KEY, 
       str VARCHAR2(32));
 
Table created.

SQL> CREATE TABLE oratt.writetab (pk NUMBER NOT NULL PRIMARY KEY, 
       attr VARCHAR2(40));
 
Table created.

2. Use SQL*Plus to insert rows into the oratt.readtab and the oratt.writetab tables. Then
verify the rows have been inserted.

SQL> INSERT INTO oratt.readtab VALUES (1,'Hello');
 
1 row created.

SQL> INSERT INTO oratt.readtab VALUES (2,'World');
 
1 row created.

SQL> INSERT INTO oratt.writetab VALUES (100, 'TimesTen');
 
1 row created.

SQL> INSERT INTO oratt.writetab VALUES (101, 'Cache');
 
1 row created.

SQL> commit;
 
Commit complete.

Verify the rows have been inserted into the tables.

SQL> SELECT * FROM oratt.readtab;
 
    KEYVAL STR
---------- --------------------------------
         1 Hello
         2 World
 
SQL>  SELECT * FROM oratt.writetab;
 
        PK ATTR
---------- ----------------------------------------
       100 TimesTen
       101 Cache

3. Use SQL*Plus to grant the SELECT privilege on the oratt.readtab table and the SELECT,
INSERT, UPDATE, and DELETE privileges on the oratt.writetab table to the cache
administration user (cacheuser2, in this example).

SQL> GRANT SELECT ON oratt.readtab TO cacheuser2;
 

Appendix B
Set Up the Oracle Database to Cache Data

B-4



Grant succeeded.
 
SQL> GRANT SELECT ON oratt.writetab TO cacheuser2;
 
Grant succeeded.
 
SQL> GRANT INSERT ON oratt.writetab TO cacheuser2;
 
Grant succeeded.
 
SQL> GRANT UPDATE ON oratt.writetab TO cacheuser2;
 
Grant succeeded.
 
SQL> GRANT DELETE ON oratt.writetab TO cacheuser2;
 
Grant succeeded.

4. Use SQL*Plus to query the nls_database_parameters system view to determine the
Oracle Database database character set. The Oracle Database database character set
must match the TimesTen database character set. (The TimesTen database character set
will be set later. See "Create Metadata Files and a Kubernetes Facility" for details.)

In this example, the query returns the AL32UTF8 database character set.

SQL> SELECT value FROM nls_database_parameters WHERE 
       parameter='NLS_CHARACTERSET';
 
VALUE
------------------------------------------------------------------------------
AL32UTF8

You have successfully created the Oracle Database tables that will be cached in the TimesTen
cache group tables.

Create Metadata Files and a Kubernetes Facility
There are metadata files that are specific to using TimesTen Cache:

• cacheUser: This file is required. The user in this file is created in the TimesTen databases
and serves as the cache manager. The name of this user must match the name of the
cache administration user that you created in the Oracle Database. See "Create the Oracle
Database Users" for information on the cache administration user in the Oracle Database.
Also see "cacheUser" for more information on the cacheUser metadata file.

• cachegroups.sql: This file is required. The contents of this file contain the CREATE CACHE
GROUP definitions. The file can also contain the LOAD CACHE GROUP statement and the built-in
procedures to update statistics on the cache group tables (such as, ttOptEstimateStats
and ttOptUpdateStats). See "cachegroups.sql" for more information on this file.

• tnsnames.ora: This file is required. It defines Oracle Net Services to which applications
connect. For TimesTen Cache, this file configures the connectivity between TimesTen and
the Oracle Database (from which data is being cached). In this context, TimesTen is the
application that is the connection to the Oracle Database. See "tnsnames.ora" for more
information on this file.

• sqlnet.ora: This file may be required. It may be necessary depending on your Oracle
Database configuration. The file defines options for how client applications communicate
with the Oracle Database. In this context, TimesTen is the application. The tnsnames.ora
and sqlnet.ora files together define how an application communicates with the Oracle
Database. See "sqlnet.ora" for information on this file.

Appendix B
Create Metadata Files and a Kubernetes Facility

B-5



• db.ini: This file is required if you are using TimesTen Cache. The contents of this file
contain TimesTen connection attributes for your TimesTen databases, which will be
included in TimesTen's sys.odbc.ini file. For TimesTen Cache, you must specify the
OracleNetServiceName and the DatabaseCharacterSet connection attributes. The
DatabaseCharacterSet connection attribute must match the Oracle database character
set. See "db.ini" for more information on this file.

• schema.sql: The contents of this file contain database objects, such as tables, sequences,
and users. The instance administrator uses the ttIsql utility to run this file immediately
after the database is created. This file is run before the Operator configures TimesTen
Cache or replication, so ensure there are no cache definitions in this file.

In TimesTen Cache, one or more cache table users own the cache tables. If this cache
table user is not the cache manager user, then you must specify the schema.sql file and in
it you must include the schema user and assign the appropriate privileges to this schema
user. For example, if the oratt schema user was created in the Oracle Database, and this
user is not the TimesTen cache manager user, you must create the TimesTen oratt user in
this file. See "Create the Oracle Database Users" for more information on the schema
users in the Oracle Database. Also see "schema.sql" for more information on the
schema.sql file.

In addition, you can use these other supported metadata files:

• adminUser: The user in this file is created in the TimesTen databases and is granted ADMIN
privileges. See "adminUser" for more information on this file.

• epilog.sql: The contents of this file contain operations that must be performed after the
Operator configures replication. For example, if you are using XLA, you could create
replicated bookmarks for XLA in this file. This file is run after cache and replication have
been configured. See "epilog.sql" for more information on this file.

You can include these metadata files in one or more Kubernetes facilities (for example, in a
Kubernetes Secret, in a ConfigMap, or in an init container). This ensures the metadata files are
populated in the /ttconfig directory of the TimesTen containers. Note that there is no
requirement as to how to get the metadata files into this /ttconfig directory. See "Populate
the /ttconfig Directory" for more information.

This example uses the ConfigMap facility to populate the /ttconfig directory in your TimesTen
containers. The adminUser, db.ini, schema.sql, cacheUser, cachegroups.sql, tnsnames.ora,
and sqlnet.ora metadata files are used in this example.

On your Linux development host:

1. From the directory of your choice, create an empty subdirectory for the metadata files. This
example creates the cm_cachetest subdirectory. (The cm_cachetest directory is used in
the remainder of this example to denote this directory.)

% mkdir -p cm_cachetest
2. Navigate to the ConfigMap directory.

% cd cm_cachetest
3. Create the adminUser file in this ConfigMap directory (cm_cachetest, in this example). In

this adminUser file, create the sampleuser user with the samplepw password.

vi adminUser

sampleuser/samplepw
4. Create the db.ini file in this ConfigMap directory (cm_cachetest, in this example). In this

db.ini file, define the PermSize, DatabaseCharacterSet, and the OracleNetServiceName

Appendix B
Create Metadata Files and a Kubernetes Facility

B-6



connection attributes. The DatabaseCharacterSet value must match the database
character set value in the Oracle Database. See "Create the Oracle Database Tables to Be
Cached" for information on how to query the nls_database_parameters system view to
determine the Oracle Database database character set. In this example, the value is
AL32UTF8.

vi db.ini

PermSize=200
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=Oracache

5. Create the schema.sql file in this ConfigMap directory (cm_cachetest, in this example). In
this example, create the oratt user. Recall that this user was previously created in the
Oracle Database. See "Create the Oracle Database Users" for information on the oratt
user in the Oracle Database.

vi schema.sql

create user oratt identified by ttpwd;
grant admin to oratt;

6. Create the cacheUser metadata file in this ConfigMap directory (cm_cachetest, in this
example). The cacheUser file must contain one line of the form cacheuser/ttpassword/
orapassword, where cacheuser is the user you wish to designate as the cache manager in
the TimesTen database, ttpassword is the TimesTen password you wish to assign to this
user, and orapassword is the Oracle Database password that has already been assigned
to the Oracle Database cache administration user. Note that the cacheUser name in this
file must match the Oracle Database cache administration user that you previously
created. See "Create the Oracle Database Users" for more information on the Oracle
Database cache administration user.

In this example, the cacheuser2 user with password of oraclepwd was already created in
the Oracle Database. Therefore, supply cacheuser2 as the TimesTen cache manager user.
You can assign any TimesTen password to this TimesTen cache manager user. This
example assigns ttpwd.

vi cacheuser

cacheuser2/ttpwd/oraclepwd
7. Create the cachegroups.sql metadata file in this ConfigMap directory (cm_cachetest, in

this example). The cachegroups.sql file contains the cache group definitions. In this
example, a dynamic AWT cache group and a read-only cache group are created. In
addition, the LOAD CACHE GROUP statement is included to load rows from the oratt.readtab
cached table in the Oracle Database into the oratt.readtab cache table in the TimesTen
database.

vi cachegroups.sql

CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (pk NUMBER NOT NULL PRIMARY KEY,attr VARCHAR2(40));
 
CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
  INTERVAL 5 SECONDS
FROM oratt.readtab (keyval NUMBER NOT NULL PRIMARY KEY,str VARCHAR2(32));
 
LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;

Appendix B
Create Metadata Files and a Kubernetes Facility

B-7



8. Create the tnsnames.ora metadata file in this ConfigMap directory (cm_cachetest, in this
example).

vi tnsnames.ora

OraTest =   
 (DESCRIPTION = 
   (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
     (PORT = 1521))     
   (CONNECT_DATA =       
     (SERVER = DEDICATED)       
     (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =  
 (DESCRIPTION =   
   (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
     (PORT = 1521))     
   (CONNECT_DATA =       
     (SERVER = DEDICATED)       
     (SERVICE_NAME = OraCache.my.sample.com)))

9. Create the sqlnet.ora metadata file in this ConfigMap directory (cm_cachetest, in this
example).

vi sqlnet.ora

NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2

10. Use the Linux ls command to verify the metadata files are in the ConfigMap directory
(cm_cachetest, in this example).

% ls
adminUser        cacheUser  schema.sql  tnsnames.ora
cachegroups.sql  db.ini     sqlnet.ora

11. Create the ConfigMap. The files in the cm_cachetest directory are included in the
ConfigMap and, later, will be available in the TimesTen containers.

In this example:

• The name of the ConfigMap is cachetest. Replace cachetest with a name of your
choosing. (cachetest is represented in bold in this example.)

• This example uses cm_cachetest as the directory where the files that will be copied
into the ConfigMap reside. If you use a different directory, replace cm_cachetest with
the name of your directory. (cm_cachetest is represented in bold in this example.)

Use the kubectl create command to create the ConfigMap:

% kubectl create configmap cachetest --from-file=cm_cachetest
configmap/cachetest created

12. Use the kubectl describe command to verify the contents of the ConfigMap. (cachetest,
in this example.) The metadata files are represented in bold.

% kubectl describe configmap cachetest;
Name:         cachetest
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
 
Data
====
tnsnames.ora:

Appendix B
Create Metadata Files and a Kubernetes Facility

B-8



----

OraTest =   
 (DESCRIPTION = 
   (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
     (PORT = 1521))     
   (CONNECT_DATA =       
     (SERVER = DEDICATED)       
     (SERVICE_NAME = OraTest.my.sample.com)))
OraCache =  
 (DESCRIPTION =   
   (ADDRESS = (PROTOCOL = TCP)(HOST = database.myhost.svc.cluster.local)
     (PORT = 1521))     
   (CONNECT_DATA =       
     (SERVER = DEDICATED)       
     (SERVICE_NAME = OraCache.my.sample.com)))
 
adminUser:
----
sampleuser/samplepw
 
cacheUser:
----
cacheuser2/ttpwd/oraclepwd
 
cachegroups.sql:
----
CREATE DYNAMIC ASYNCHRONOUS WRITETHROUGH CACHE GROUP writecache
FROM oratt.writetab (
  pk NUMBER NOT NULL PRIMARY KEY,
  attr VARCHAR2(40)
);
 
CREATE READONLY CACHE GROUP readcache
AUTOREFRESH
  INTERVAL 5 SECONDS
FROM oratt.readtab (
  keyval NUMBER NOT NULL PRIMARY KEY,
  str VARCHAR2(32)
);
 
LOAD CACHE GROUP readcache COMMIT EVERY 256 ROWS;
 
db.ini:
----
permSize=200
databaseCharacterSet=AL32UTF8
oracleNetServiceName=Oracache
 
schema.sql:
----
create user oratt identified by ttpwd;
grant admin to oratt;
 
sqlnet.ora:
----
NAME.DIRECTORY_PATH= {TNSNAMES, EZCONNECT, HOSTNAME}
SQLNET.EXPIRE_TIME = 10
SSL_VERSION = 1.2
 
 
Events:  <none>

Appendix B
Create Metadata Files and a Kubernetes Facility

B-9



You have successfully created and deployed the cachetest ConfigMap.

Create a TimesTenClassic Object
This section creates a TimesTenClassic object.

Perform these steps:

1. Create an empty YAML file. You can choose any name, but you may want to use the same
name you used for the name of the TimesTenClassic object. (In this example, cachetest.)
The YAML file contains the definitions for the TimesTenClassic object. See 
TimesTenClassicSpecSpec for information on the fields that you must specify in this YAML
file as well as the fields that are optional.

In this example, note these fields:

• name: Replace cachetest with the name of your TimesTenClassic object (represented
in bold).

• storageClassName: Replace oci-bv with the name of the storage class used to
allocate PersistentVolumes to hold TimesTen.

• storageSize: Replace 250Gi with the amount of storage that should be requested for
each Pod to hold TimesTen. Note: This example assumes a production environment
and uses a value of 250Gi for storageSize. For demonstration purposes, a value of
50Gi is adequate.

• image: Replace container-registry.oracle.com/timesten/timesten:22.1.1.34.0
with the location and name of your image.

• imagePullSecret: Replace sekret with the image pull secret that Kubernetes should
use to fetch the TimesTen image.

• dbConfigMap: This example uses one ConfigMap (called cachetest) for the metadata
files (represented in bold).

% vi cachetest.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: cachetest
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250Gi
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    dbConfigMap:
    - cachetest

2. Use the kubectl create command to create the TimesTenClassic object from the contents
of the YAML file (in this example, cachetest.yaml). Doing so begins the process of
deploying your active standby pair of TimesTen databases in the Kubernetes cluster.

% kubectl create -f cachetest.yaml
timestenclassic.timesten.oracle.com/cachetest created

You have successfully created the TimesTenClassic object in the Kubernetes cluster. The
process of deploying your TimesTen databases begins, but is not yet complete.

Appendix B
Create a TimesTenClassic Object

B-10



Monitor Deployment of a TimesTenClassic Object
Use the kubectl get and the kubectl describe commands to monitor the progress of the
active standby pair as it is provisioned.

1. Use the kubectl get command and review the STATE field. Observe the value is
Initializing. The active standby pair provisioning has begun, but is not yet complete.

% kubectl get ttc cachetest
NAME        STATE          ACTIVE   AGE
cachetest   Initializing   None     41s

2. Use the kubectl get command again to see if value of the STATE field has changed. In this
example, the value is Normal, indicating the active standby pair of databases are now
provisioned and the process is complete.

% kubectl get ttc cachetest
NAME        STATE    ACTIVE        AGE
cachetest   Normal   cachetest-0   3m58s

3. Use the kubectl describe command to view the active standby pair provisioning in detail.

Note the following:

• The cachetest Configmap has been correctly referenced in the dbConfigMap field
(represented in bold).

• The cache agent is running in the active and the standby Pods (represented in bold).

• The cache administration user UID and password have been set in the active and the
standby Pods (represented in bold).

• Two cache groups have been created in the active and the standby Pods (represented
in bold).

• The replication agent is running in the active and standby Pods (represented in bold).

% kubectl describe ttc cachetest
Name:         cachetest
Namespace:    mynamespace
Labels:       <none>
Annotations:  <none>
API Version:  timesten.oracle.com/v4
Kind:         TimesTenClassic
Metadata:
  Creation Timestamp:  2025-01-16T03:29:48Z
  Generation:          1
  Resource Version:    78390500
  Self Link:           /apis/timesten.oracle.com/v4/namespaces/mynamespace/
timestenclassics/cachetest
  UID:                 2b18d81d-15a9-11eb-b999-be712d29a81e
Spec:
  Ttspec:
    Db Config Map:
      cachetest
    Image:               container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    Image Pull Policy:   Always
    Image Pull Secret:   sekret
    Storage Class Name:  oci-bv
    Storage Size:        250Gi
Status:
  Active Pods:       cachetest-0
  High Level State:  Normal

Appendix B
Monitor Deployment of a TimesTenClassic Object

B-11



  Last Event:        28
  Pod Status:
    Cache Status:
      Cache Agent:        Running
      Cache UID Pwd Set:  true
      N Cache Groups:     2
    Db Status:
      Db:            Loaded
      Db Id:         30
      Db Updatable:  Yes
    Initialized:     true
    Pod Status:
      Agent:                Up
      Last Time Reachable:  1603510527
      Pod IP:               10.244.7.92
      Pod Phase:            Running
    Replication Status:
      Last Time Rep State Changed:  0
      Rep Agent:                    Running
      Rep Peer P State:             start
      Rep Scheme:                   Exists
      Rep State:                    ACTIVE
    Times Ten Status:
      Daemon:          Up
      Instance:        Exists
      Release:         22.1.1.34.0
    Admin User File:   true
    Cache User File:   true
    Cg File:           true
    High Level State:  Healthy
    Intended State:    Active
    Name:              cachetest-0
    Schema File:       true
    Cache Status:
      Cache Agent:        Running
      Cache UID Pwd Set:  true
      N Cache Groups:     2
    Db Status:
      Db:            Loaded
      Db Id:         30
      Db Updatable:  No
    Initialized:     true
    Pod Status:
      Agent:                Up
      Last Time Reachable:  1603510527
      Pod IP:               10.244.8.170
      Pod Phase:            Running
    Replication Status:
      Last Time Rep State Changed:  1603510411
      Rep Agent:                    Running
      Rep Peer P State:             start
      Rep Scheme:                   Exists
      Rep State:                    STANDBY
    Times Ten Status:
      Daemon:            Up
      Instance:          Exists
      Release:           22.1.1.34.0
    Admin User File:     true
    Cache User File:     true
    Cg File:             true
    High Level State:    Healthy
    Intended State:      Standby

Appendix B
Monitor Deployment of a TimesTenClassic Object

B-12



    Name:                cachetest-1
    Schema File:         true
  Rep Create Statement:  create active standby pair "cachetest" on 
  "cachetest-0.cachetest.mynamespace.svc.cluster.local", "cachetest" on 
  "cachetest-1.cachetest.mynamespace.svc.cluster.local" NO RETURN store 
  "cachetest" on "cachetest-0.cachetest.mynamespace.svc.cluster.local" 
  PORT 4444 FAILTHRESHOLD 0 store "cachetest" on 
 "cachetest-1.cachetest.mynamespace.svc.cluster.local" PORT 4444 FAILTHRESHOLD 0
  Rep Port:              4444
  Status Version:        1.0
Events:
  Type  Reason       Age    From       Message
  ----  ------       ----   ----       -------
  -     Create       5m40s  ttclassic  Secret tt2b18d81d-15a9-11eb-b999-be712d29a81e 
created
  -     Create       5m40s  ttclassic  Service cachetest created
  -     Create       5m40s  ttclassic  StatefulSet cachetest created
  -     StateChange  4m28s  ttclassic  Pod cachetest-0 Agent Up
  -     StateChange  4m28s  ttclassic  Pod cachetest-0 Release 22.1.1.34.0
  -     StateChange  4m28s  ttclassic  Pod cachetest-0 Daemon Up
  -     StateChange  3m18s  ttclassic  Pod cachetest-0 RepScheme None
  -     StateChange  3m18s  ttclassic  Pod cachetest-0 RepAgent Not Running
  -     StateChange  3m18s  ttclassic  Pod cachetest-0 RepState IDLE
  -     StateChange  3m18s  ttclassic  Pod cachetest-0 Database Loaded
  -     StateChange  3m18s  ttclassic  Pod cachetest-0 Database Updatable
  -     StateChange  3m18s  ttclassic  Pod cachetest-0 CacheAgent Not Running
  -     StateChange  2m57s  ttclassic  Pod cachetest-0 CacheAgent Running
  -     StateChange  2m47s  ttclassic  Pod cachetest-1 Agent Up
  -     StateChange  2m47s  ttclassic  Pod cachetest-1 Release 22.1.1.34.0
  -     StateChange  2m46s  ttclassic  Pod cachetest-0 RepAgent Running
  -     StateChange  2m46s  ttclassic  Pod cachetest-0 RepScheme Exists
  -     StateChange  2m46s  ttclassic  Pod cachetest-0 RepState ACTIVE
  -     StateChange  2m46s  ttclassic  Pod cachetest-1 Daemon Up
  -     StateChange  2m9s   ttclassic  Pod cachetest-1 CacheAgent Running
  -     StateChange  2m9s   ttclassic  Pod cachetest-1 Database Not Updatable
  -     StateChange  2m9s   ttclassic  Pod cachetest-1 Database Loaded
  -     StateChange  2m9s   ttclassic  Pod cachetest-1 RepAgent Not Running
  -     StateChange  2m9s   ttclassic  Pod cachetest-1 RepScheme Exists
  -     StateChange  2m9s   ttclassic  Pod cachetest-1 RepState IDLE
  -     StateChange  2m3s   ttclassic  Pod cachetest-1 RepAgent Running
  -     StateChange  118s   ttclassic  Pod cachetest-1 RepState STANDBY
  -     StateChange  118s   ttclassic  TimesTenClassic was Initializing, now Normal

Your active standby pair of TimesTen databases are successfully deployed (as indicated by
Normal.) You are now ready to verify that TimesTen Cache is configured correctly and is
working properly.

Verify TimesTen Cache Configuration
To verify that TimesTen Cache is configured correctly and is working properly, perform the
following steps:

1. Review the active (cachetest-0, in this example) Pod and the standby Pod (cachetest-1,
in this example).

% kubectl get pods
NAME                                       READY   STATUS    RESTARTS   AGE
cachetest-0                                2/2     Running   0          8m16s
cachetest-1                                2/2     Running   0          8m15s
timesten-operator-f84766548-tch7s          1/1     Running   0          36d

Appendix B
Verify TimesTen Cache Configuration

B-13



2. Use the kubectl exec -it command to invoke the shell in the active Pod (cachetest-0, in
this example).

% kubectl exec -it cachetest-0 -c tt -- /bin/bash
3. Use ttIsql to connect to the cachetest database. Confirm the TimesTen connection

attributes are correct. In particular, note that the OracleNetServiceName connection
attribute is correctly set to Oracache (represented in bold).

% ttIsql cachetest;
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=cachetest";
Connection successful: DSN=cachetest;UID=timesten;DataStore=/tt/home/timesten/
datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

4. Use the ttIsql cachegroups to view the definition of the cacheuser2.readcache and the
cacheuser2.writecache cache groups.

Command> cachegroups;
 
Cache Group CACHEUSER2.READCACHE:
 
  Cache Group Type: Read Only
  Autorefresh: Yes
  Autorefresh Mode: Incremental
  Autorefresh State: On
  Autorefresh Interval: 5 Seconds
  Autorefresh Status: ok
  Aging: No aging defined
 
  Root Table: ORATT.READTAB
  Table Type: Read Only
 
Cache Group CACHEUSER2.WRITECACHE:
 
  Cache Group Type: Asynchronous Writethrough (Dynamic)
  Autorefresh: No
  Aging: LRU on
 
  Root Table: ORATT.WRITETAB
  Table Type: Propagate
 
2 cache groups found.

5. Use ttIsql to query the oratt.readtab cache table. Note that the data from the
oratt.readtab cached table in the Oracle Database is correctly loaded in the
oratt.readcache cache table in the TimesTen database. Recall that you specified the LOAD
CACHE GROUP statement in the cachegroups.sql metadata file. See Create Metadata Files
and a Kubernetes Facility for information on this cachegroups.sql metadata file.

Command> SELECT * FROM oratt.readtab;
< 1, Hello >
< 2, World >
2 rows found.

Appendix B
Verify TimesTen Cache Configuration

B-14



You have verified that the cache groups were created and data was correctly loaded in the
oratt.readtab table.

Perform Operations On Cache Group Tables
The examples in this section perform operations on the oratt.readtab and the
oratt.writetab tables to verify that TimesTen Cache is working properly.

• Perform Operations on the oratt.readtab Table

• Perform Operations on the oratt.writetab Table

Perform Operations on the oratt.readtab Table
This section performs operations on the oratt.readtab table.

1. Create a shell from which you can access your Oracle Database and then use SQL*Plus to
connect to the Oracle Database as the schema user (oratt, in this example). Then, insert
a new row, delete an existing row, and update an existing row in the oratt.readtab table
of the Oracle Database and commit the changes.

% sqlplus oratt/oraclepwd@oracache;

SQL> INSERT INTO oratt.readtab VALUES (3,'Welcome');
 
1 row created.
 
SQL> DELETE FROM oratt.readtab WHERE keyval=2;
 
1 row deleted.
 
SQL> UPDATE oratt.readtab SET str='Hi' WHERE keyval=1;
 
1 row updated.
 
SQL> COMMIT;
 
Commit complete.

Since the read-only cache group was created with an autorefresh interval of 5 seconds, the
TimesTen oratt.readtab cache table in the readcache cache group is automatically
refreshed after 5 seconds with the committed updates from the cached oratt.readtab
table of the Oracle Database. The next step is to test that the data was correctly
propagated from the Oracle Database to the TimesTen database.

2. Use the kubectl exec -it command to invoke the shell in the container of the Pod that is
running the TimesTen active database (cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /bin/bash
3. Use the TimesTen ttIsql utility to connect to the cachetest database. Query the

TimesTen oratt.readtab table to verify that the table has been updated with the
committed updates from the Oracle Database.

% ttIsql cachetest;
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 

Appendix B
Perform Operations On Cache Group Tables

B-15



 
connect "DSN=cachetest";
Connection successful: DSN=cachetest;UID=timesten;DataStore=/tt/home/timesten/
datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Command> SELECT * FROM oratt.readtab;
< 1, Hi >
< 3, Welcome >
2 rows found.

You have verified that TimesTen Cache is working correctly for the oratt.readtab table and
the readcache cachegroup.

Perform Operations on the oratt.writetab Table
This example performs operations on the oratt.writetab table.

1. Use the kubectl exec -it command to invoke the shell in the container of the Pod that is
running the TimesTen active database (cachetest-0, in this example).

% kubectl exec -it cachetest-0 -c tt -- /bin/bash
2. Use the TimesTen ttIsql utility to connect to the cachetest database as the cache

manager user (cacheuser2, in this example). Issue a SELECT statement on the TimesTen
oratt.writetab table. Recall that the writecache cache group is a dynamic cache group.
Thus by issuing the SELECT statement, the cache instance is automatically loaded from the
cached Oracle Database table, if the data is not found in the TimeTen cache table.

% ttIsql "DSN=cachetest;UID=cacheuser2;PWD=ttpwd;OraclePWD=oraclepwd";
 
Copyright (c) 1996, 2025, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
 
 
 
connect "DSN=cachetest;UID=cacheuser2;PWD=********;OraclePWD=********";
Connection successful: DSN=cachetest;UID=cacheuser2;DataStore=/tt/home/timesten/
datastore/cachetest;
DatabaseCharacterSet=AL32UTF8;ConnectionCharacterSet=AL32UTF8;AutoCreate=0;
PermSize=200;OracleNetServiceName=Oracache;DDLReplicationLevel=3;
ForceDisconnectEnabled=1;
(Default setting AutoCommit=1)

Command> SELECT * FROM oratt.writetab WHERE pk=100;
< 100, TimesTen >
1 row found.

3. Use ttIsql to insert a new row, delete an existing row, and update an existing row in the
TimesTen oratt.writetab cache table, and commit the changes.

Command> INSERT INTO oratt.writetab VALUES (102,'Cache');
1 row inserted.
Command> DELETE FROM oratt.writetab WHERE pk=101;
1 row deleted.
Command> UPDATE oratt.writetab SET attr='Oracle' WHERE pk=100;
1 row updated.
Command> COMMIT;

Appendix B
Perform Operations On Cache Group Tables

B-16



The committed updates on the TimesTen oratt.writetab cache table in the writecache
cache group should automatically be propagated to the oratt.writetab table in the Oracle
Database.

4. Create a shell from which you can access your Oracle Database and then use SQL*Plus to
connect to the Oracle database as the schema user (oratt, in this example). Then query
the contents of the oratt.writetab table in the Oracle Database to verify the committed
updates from the TimesTen database have been propagated to the oratt.writetab table
of the Oracle Database.

% sqlplus oratt/oraclepwd@orapcache;

SQL> SELECT * FROM oratt.writetab ORDER BY pk;
 
        PK ATTR
---------- ----------------------------------------
       100 Oracle
       102 Cache

You have verified that TimesTen Cache is working correctly for the oratt.writetab table and
the writecache cachegroup.

Clean Up Cache Metadata on the Oracle Database
When you create certain types of cache groups in a TimesTen database, TimesTen stores
metadata about that cache group in the Oracle Database. If you later delete that TimesTen
database, TimesTen does not automatically delete the metadata in the Oracle Database. As a
result, metadata can accumulate on the Oracle Database. See Dropping Oracle Database
Objects Used by Cache Groups with Autorefresh in the Oracle TimesTen In-Memory Database
Cache Guide for more information.

However, in a Kubernetes environment, if you provide a cacheUser metadata file and a
cachegroups.sql metadata file when you initially create the TimesTenClassic object, then, by
default, the Operator automatically cleans up the Oracle Database metadata if you delete that
TimesTenClassic object.

If you do not want the Operator to automatically clean up the Oracle Database, you set the
cacheCleanup field in the TimesTenClassic object definition to false. See the cacheCleanup
entry in "Table 20-3" for more information. Also see "About Configuration Metadata Details" for
information on the cacheUser and the cachegroups.sql files.

Appendix B
Clean Up Cache Metadata on the Oracle Database

B-17



C
Create Your Own Oracle Wallet, Certificates,
and Secrets for Exposing TimesTen Metrics

By default, the TimesTen Operator automatically exposes TimesTen metrics and uses
Transport Layer Security (mutual TLS)/https to serve these metrics. It exposes these metrics to
Prometheus or any other scrape target.

The TimesTen Operator works with the TimesTen exporter to expose these metrics. For more
information about the TimesTen exporter, see Overview of the TimesTen Kubernetes Operator
and the TimesTen Exporter.

If TimesTen metrics are served by https, then by default the TimesTen Operator automatically
creates an Oracle Wallet, all necessary certificates, and Kubernetes Secrets so that https can
be used to expose TimesTen metrics securely.

For more information about how the TimesTen Operator exposes TimesTen metrics, see 
Expose TimesTen Metrics with the TimesTen Kubernetes Operator.

Although not recommended, you have the option of creating your own Oracle Wallet,
certificates, and Kubernetes Secrets for use in exporting these metrics.

This appendix shows you how.

Topics:

• About Creating Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

• Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

About Creating Your Own Oracle Wallet, Certificates, and
Kubernetes Secrets

You have the option of creating your own Oracle Wallet, certificates, and Kubernetes Secrets to
serve TimesTen metrics by https. If you choose this option, the TimesTen Operator cannot
create a PodMonitor object with sufficient information to allow Prometheus to access
TimesTen. You can create a PodMonitor object yourself or otherwise edit the Prometheus
configuration files to cause Prometheus to scrape TimesTen metrics.

After you create a Kubernetes Secret containing an Oracle Wallet (that contains the necessary
certificates), you must include this Secret in your TimesTenClassic or TimesTenClassic object
YAML manifest file. You do this by specifying the .spec.ttspec.prometheus.certSecret
datum in your object definition.

Here is a code snippet of a TimesTenClassic object YAML manifest file:

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: samplecertsecret
spec:
  ttspec:

C-1



…
    prometheus:
      certSecret: prometheuscert
      port: 7777

Note the following:

• The .spec.ttspec.prometheus datum is specified in the TimesTen Classic object YAML
manifest file. This causes the TimesTen Operator to automatically deploy the TimesTen
exporter in a separate container within each Pod running TimesTen.

• The certSecret datum is specified in the .spec.ttspec.prometheus clause of the
TimesTenClassic object. The wallet contained in the prometheusecert Kubernetes Secret
is used for Transport Layer Security (mutual TLS)/https.

The port datum is specified. This is the port on which the TimesTen exporter listens. The
causes the TimesTen Operator to set up the http server on TCP port 7777 in each
TimesTen Pod.

Here is a summary of the tasks you need to complete to create your own Oracle Wallet,
certificates, and Kubernetes Secret. The summary also includes the tasks to include the
appropriate Kubernetes Secret in a TimesTenClassic or TimesTenScaleout object YAML
manifest file. There is a complete example in Create Your Own Oracle Wallet, Certificates, and
Kubernetes Secrets.

• Create a TimesTen instance. See Before You Begin.

• Use the TimesTen ttExporter utility to generate the certificates. One of the certificates
that is created is the self-signed server certificate. This certificate is placed in an Oracle
Wallet. See Create Certificates.

• Place the Oracle Wallet into a Kubernetes Secret. See Create a Kubernetes Secret
Containing an Oracle Wallet.

• Specify the name of the Secret in the spec.ttspec.prometheus.certSecret datum of a
TimesTenClassic or TimesTenScaleout object YAML manifest file. See Define and Deploy
a TimesTenClassic Object.

• Save the PEM formatted file containing the server certificate, the client certificate, and the
client private key that were created when you ran the TimesTen ttExporter utility. You
need these later to configure the Prometheus server. See Create Certificates.

Here are additional references:

• For information about the spec.ttspec.prometheus.certSecret datum, see 
TimesTenClassicSpecSpecPrometheus and TimesTenScaleoutSpecSpecPrometheus.

• For information about the command line options for the ttExporter utility, see ttExporter in
the Oracle TimesTen In-Memory Database Reference.

Create Your Own Oracle Wallet, Certificates, and Kubernetes
Secrets

Let's look at an example that shows you how to create your own Oracle Wallet, certificates,
and Kubernetes Secrets. The example also shows you how to specify a Kubernetes Secret
that contains an Oracle Wallet in a TimesTenClassic object YAML manifest file.

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-2



Note:

The steps are the same for a TimesTenScaleout object.

• Before You Begin

• Create Certificates

• Create a Kubernetes Secret Containing an Oracle Wallet

• Define and Deploy a TimesTenClassic Object

Before You Begin
The TimesTen ttExporter utility is located in the /bin directory of a TimesTen instance. Since
the ttExporter utility is located in the TimesTen instance, you are required to create a
TimesTen instance on your development host so that you have access to the ttExporter
utility. You create a TimesTen instance from a TimesTen installation. A TimesTen installation is
created when you unzip the TimesTen distribution.

You must download the TimesTen distribution and unzip it to create a TimesTen installation
before beginning these steps. You may have already completed this process if you chose to
build the TimesTen container image.

1. If you have not already done so, download and unzip the TimesTen distribution into a
directory on your development host.

2. On your development host from a directory of your choice, create a directory for the
TimesTen instance. This example assumes you have previously created the /scratch/
ttuser directory. The example creates the /scratch/ttuser/instance1_exporter_dir
directory.

mkdir /scratch/ttuser/instance1_exporter_dir

3. Create the TimesTen instance located in the TimesTen installation directory. Replace the
following:

• installation_dir: Name of the TimesTen installation directory. This is the directory
where you unzipped the TimesTen distribution.

• tt22.1.1.34.0: TimesTen release number in ttdottedrelease format, where
dottedrelease is 22.1.1.34.0 in this example.

• instance1_exporter: Name of the TimesTen instance.

• /scratch/ttuser/instance1_exporter_dir: Location of the TimesTen instance. You
created this directory in the previous step.

./installation_dir/tt22.1.1.34.0/bin/ttInstanceCreate -name 
instance1_exporter -location /scratch/ttuser/instance1_exporter_dir

The output is similar to the following:

Creating instance in /scratch/ttuser/instance1_exporter_dir/
instance1_exporter ...

NOTE: The TimesTen daemon startup/shutdown scripts have not been installed.

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-3



The startup script is located here :
        '/scratch/ttuser/instance1_exporter_dir/instance1_exporter/startup/
tt_instance1_exporter'

Run the 'setuproot' script :
        /scratch/ttuser/instance1_exporter_dir/instance1_exporter/bin/
setuproot -install
This will move the TimesTen startup script into its appropriate location.

The 22.1 Release Notes are located here :
  '/scratch/ttuser/installation_dir/tt22.1.1.34.0/README.html'

Instance created successfully.

4. Set the TIMESTEN_HOME environment variable. You must set this variable before you run the
ttExporter utility. This example uses the bash Bourne-type shell.

. /scratch/ttuser/instance1_exporter_dir/instance1_exporter/bin/ttenv.sh

The output is similar to the following, with not all output shown:

LD_LIBRARY_PATH set to ...
...
PATH set to ...
...
CLASSPATH set to ...
TIMESTEN_HOME set to /scratch/ttuser/instance1_exporter_dir/
instance1_exporter

You successfully created the TimesTen instance on your development host. You are now ready
to use the ttExporter utility to create the certificates.

Create Certificates
There are certificates that are necessary in order to use Transport Layer Security (mutual
TLS)/https. They are as follows:

• Server certificate: A self-signed certificate that is stored in an Oracle Wallet. This certificate
is used by the TimesTen exporter. The name of the Oracle Wallet is cwallet.sso.

• Exported server certificate: The self-signed server certificate in PEM format. This certificate
is required for your Prometheus configuration.

• Client certificate and client private key: The client certificate and the client private key
required for your Prometheus configuration.

The following steps show you how to create these certificates:

1. Check that the TIMESTEN_HOME environment variable is set. You set this environment
variable in a previous step. See Before You Begin.

echo $TIMESTEN_HOME

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-4



The output is the following:

/scratch/ttuser/instance1_exporter_dir/instance1_exporter

2. On your development host, from a directory of your choice, create a subdirectory to store
an Oracle Wallet. This example creates the exportercertdir directory.

mkdir -p exportercertdir

3. Create the self-signed server certificate. This certificate is stored as an Oracle Wallet. The
name of the file that contains the Oracle Wallet is cwallet.sso. It contains the certificate
information required by the TimesTen exporter. Later, you will use a Kubernetes Secret to
place the cwallet.sso Oracle Wallet file into the /ttconfig/exporterWallet location of
the exporter container.

ttExporter -create-server-certificate -certificate-common-name 
*.samplecertsecret.mynamespace.svc.cluster.local -certificate-alt-names 
*.samplecertsecret.mynamespace.svc.cluster.local -certificate-directory 
exportercertdir

The -certificate-common-name and -certificate-alt-names ttExporter options are
required. For detailed information on these options, see ttExporter in the Oracle TimesTen
In-Memory Database Reference.

The -certificate-common-name option is the Common Name (CN) that is included in the
certificate. It matches the DNS name where the certificate is installed. This CN can contain
only one name. Single-level wildcards are acceptable. In this example, the CN name is
*.samplecertsecret.mynamespace.svc.cluster.local, where:

• * is a single level wildcard.

• samplecertsecret is the name of your TimesTenClassic or your TimesTenScaleout
object.

• mynamespace is the name of your namespace.

• svc.cluster.local completes the required format for the DNS name.

The -certificate-alt-names option is the Subject Alternative Name (SAN) that is
included in the certificate. This name includes the CN mentioned previously as well as any
other DNS names that need access to the TimesTen Exporter. Single level wildcards are
acceptable. In this example, the SAN name includes only the CN name. Specifically, the
SAN name is *.samplecertsecret.mynamespace.svc.cluster.local, where:

• * is a single level wildcard.

• samplecertsecret is the name of your TimesTenClassic or your TimesTenScaleout
object.

• mynamespace is the name of your namespace.

• svc.cluster.local completes the required format for the DNS name.

Since these options require you to specify the name of the TimesTenClassic (or the
TimesTenScaleout) object and the name of your namespace, you must know these names
before completing this step. In addition, you must use these same names when defining
your TimesTen Classic or your TimesTenScaleout object.

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-5



4. Export the server certificate.

ttExporter -export-server-certificate exportercertdir/server.crt -
certificate-directory exportercertdir

This command exports the server certificate in PEM format. In this example, the name of
the file that contains the certificate is server.crt. Save this file. You need it later when
configuring Prometheus.

5. Create and export the client certificate and the client private key.

ttExporter -export-client-certificate exportercertdir/client.crt -export-
client-private-key exportercertdir/key.crt -certificate-directory 
exportercertdir

This command creates the client certificate. In this example, the contents of the client
certificate is stored in the client.crt file. The example also creates the client private key
and stores its contents in the key.crt file. Save these files. You need them later when
configuring Prometheus.

6. (Optional): Verify the certificates are created.

ls -a exportercertdir

The output is similar to the following:

.   client.crt  server.crt

..  key.crt     .ttwallet.BA0F2D86-B6D2-4095-A4D0-CDF1FF89E9BF

Verify the ttExporter utility has created the Oracle Wallet.

ls -a exportercertdir/.ttwallet*

The output is the following:

.  ..  cwallet.sso

You have successfully created the server certificate, the client certificate, and the client private
key. Make a note of these files and their location. You need them later. Specifically, you need to
specify the cwallet.sso Oracle Wallet file when you create the Kubernetes Secret. See Create
a Kubernetes Secret Containing an Oracle Wallet. In addition, you need to specify the
server.crt, the client.crt, and the key.crt files later when you configure Prometheus.

Note:

Configuring Prometheus is outside the scope of this book. For information on
configuring Prometheus, see About Configuring the TimesTen Exporter and
Prometheus with Client Certificate Authentication in the Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting Guide.

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-6



Create a Kubernetes Secret Containing an Oracle Wallet
The following steps show you how to create a Kubernetes Secret for an Oracle Wallet. This
Oracle Wallet contains the self-signed server certificate. You created the Oracle Wallet in 
Create Certificates.

1. On your development host, from a directory of your choice, create an empty subdirectory
for the Oracle Wallet (the cwallet.sso file). This example creates the walletdir
subdirectory.

mkdir -p walletdir

2. Copy the cwallet.sso Oracle Wallet to the directory.

cp exportercertdir/.ttwallet*/cwallet.sso walletdir/cwallet.sso

In this example, the Oracle Wallet is located in the exportercertdir/.ttwallet*/
cwallet.sso walletdir directory. You created this directory in Create Certificates.

3. Create the Kubernetes Secret for the Oracle Wallet. Ensure to specify the /
exporterWallet directory.

kubectl create secret generic prometheuscert --from-
file=exporterWallet=walletdir/cwallet.sso

The kubectl create generic secret command does the following:

• Creates the prometheuscert Kubernetes Secret.

• Includes the exporterWallet metadata file. This file is required when including the
cwallet.sso file in the Secret.

• Defines walletdir as the location for the cwallet.sso file.

• Defines the cwallet.sso file as the name of the Oracle Wallet file.

The output is the following:

secret/prometheuscert created

You have successfully created the Kubernetes Secret. Make a note of the name of the Secret.
You use it later when you create your TimesTenClassic or TimesTenScaleout object.

Define and Deploy a TimesTenClassic Object
Let's define a TimesTenClassic object with the appropriate information such that the TimesTen
Operator automatically provisions the TimesTen exporter in a separate container within each
Pod that is running TimesTen. Let's use the .spec.ttspec.prometheus.certSecret datum to
instruct the TimesTen Operator to use the Oracle Wallet located in the Kubernetes Secret that
you previously created. (You created this Secert in Create a Kubernetes Secret Containing an
Oracle Wallet).

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-7



1. Define a TimesTenClassic object.

vi samplecertsecret.yaml

apiVersion: timesten.oracle.com/v4
kind: TimesTenClassic
metadata:
  name: samplecertsecret
spec:
  ttspec:
    storageClassName: oci-bv
    storageSize: 250G
    image: container-registry.oracle.com/timesten/timesten:22.1.1.34.0
    imagePullSecret: sekret
    prometheus:
      certSecret: prometheuscert
      port: 7777
    dbConfigMap:
    - samplecertsecret

Note the following:

• The .spec.ttspec.prometheus clause is specified. The TimesTen Operator provisions
a TimesTen exporter container in each TimesTen Pod.

• The .spec.ttspec.prometheus.certSecret datum is specified. The value of this
datum is the name of the Kubernetes Secret containing the Oracle Wallet you
previously created.

• The TimesTen exporter is listening on port 7777.

2. Create the TimesTenClassic object from the contents of the YAML file.

kubectl create -f samplecertsecret.yaml

The output is the following:

configmap/samplecertsecret created
timestenclassic.timesten.oracle.com/samplecertsecret created

3. Wait a few minutes then confirm the TimesTenClassic object is in the Normal state. Confirm
also that the TimesTen Operator provisioned a TimesTen exporter container in each
TimesTen Pod.

kubectl get ttc samplecertsecret

Output.

NAME               STATE    ACTIVE               AGE
samplecertsecret   Normal   samplecertsecret-0   6m19s

Confirm there is a TimesTen exporter container.

kubectl get pods

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-8



Output.

NAME                                  READY   STATUS    RESTARTS   AGE
samplecertsecret-0                    3/3     Running   0          2m59s
samplecertsecret-1                    3/3     Running   0          2m59s
timesten-operator-7f77c749fd-lkhtr    1/1     Running   0          60m

The TimesTen Operator provisioned three containers for each TimesTen Pod. One
container is running the TimesTen exporter. The TimesTen exporter is listening on port
7777 and functions as an https server.

Your next step is to edit the appropriate Prometheus configuration files to cause Prometheus to
scrape TimesTen metrics. For more information about configuring Prometheus, see https://
prometheus.io/docs/prometheus/latest/configuration/configuration/.

Appendix C
Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets

C-9

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

	Contents
	About This Content
	What's New
	New Features in Release 22.1.1.34.0
	New Features in Release 22.1.1.30.0
	New Features in Release 22.1.1.27.0
	New Features in Release 22.1.1.19.0
	New features in Release 22.1.1.9.0
	New features in Release 22.1.1.3.0
	New features in Release 22.1.1.1.0

	1 Overview of the Oracle TimesTen Kubernetes Operator
	Overview of Containers and Kubernetes
	Custom Resource Definition
	Kubernetes Operator

	About the TimesTen Kubernetes Operator
	About TimesTenClassic and TimesTenScaleout Objects
	About Provisioning Active Standby Pairs
	About Deploying a Replicated TimesTenClassic Object
	About Objects Created by the TimesTen Operator
	StatefulSet
	Service
	Secret
	Pods
	Events

	About the TimesTen Containers and the TimesTen Agent
	Simple Deployment

	About Deploying a TimesTen Scaleout Grid and Database
	StatefulSets
	Services
	Secret
	Persistent Volume Claims and Pods
	Password-less ssh
	Quick Rollout


	2 Prepare to Use the TimesTen Kubernetes Operator
	About TimesTen Container Images and Container Registry Options
	Before You Begin
	Choose a TimesTen Container Image
	Option 1: Use a Container Image from Oracle Container Registry
	Create Auth Token
	Accept the Oracle License Agreement
	Configure Your Development Host and Kubernetes Cluster

	Option 2: Use a Container Image from Oracle Cloud Marketplace
	Option 3: Build a Container Image and Push It to a Container Registry of Your Choice
	Configure Your Development Host and Kubernetes Cluster
	Download and Unpack a TimesTen Distribution
	Build a TimesTen Container Image
	Tag and Push the Container Image to Your Container Registry


	Obtain TimesTen YAML Manifest Files and Helm Charts

	3 Install TimesTen Custom Resource Definitions
	About TimesTen CRDs
	Install TimesTen CRDs

	4 Learn About and Install the TimesTen Kubernetes Operator
	About Kubernetes Operators
	About the TimesTen Operator
	About Deploying in a Multi-Architecture Kubernetes Cluster
	About the Default Kubernetes Security Context for the TimesTen Operator
	About Readiness and Liveness Probes
	About Privileges
	About Installing the TimesTen Operator
	About Customizations for a TimesTen Operator Deployment
	Install the TimesTen Operator
	Install the TimesTen Operator at Namespace-Scope
	Before You Begin
	Install in Namespace One
	Install in Namespace Two
	Verify Installation

	Install the TimesTen Operator at Cluster-Scope


	5 Use Configuration Metadata
	Overview of Configuration Metadata and Kubernetes Facilities
	List of Configuration Metadata
	About Configuration Metadata Details
	adminUser
	cachegroups.sql
	cacheUser
	csWallet
	db.ini
	epilog.sql
	replicationWallet
	schema.sql
	sqlnet.ora
	testUser
	tnsnames.ora
	*.connect
	*.csconnect

	Populate the /ttconfig Directory
	Using ConfigMaps and Secrets
	Example Using One ConfigMap
	Example Using One ConfigMap and One Secret
	Example Using One ConfigMap for a TimesTenScaleout Object

	Using an init container

	Additional Configuration Options
	Persistent Storage
	Additional Resource Specifications

	About the Default Affinity and Anti-Affinity Settings for TimesTenClassic Objects
	About the Default Kubernetes Security Context for TimesTen Pods
	About Readiness Probes for TimesTen Containers
	About Readiness Probes for Replicated Configurations
	About the /tmp/active Readiness Probe
	About the /tmp/readiness Readiness Probe
	About Disabling Readiness Probes

	About Readiness Probes for Non-Replicated Configurations


	6 Specify CPU and Memory Requests and Limits
	About Resource Requests and Limits
	About TimesTen Containerized Deployments
	About Specifying Requests and Limits for TimesTen Containers
	Approach 1: Use Specific Datum for Requests and Limits
	Approach 2: Use Templates for Requests and Limits
	About Specifying Requests and Limits to Kubernetes
	About Verifying databaseMemorySize
	About Runtime Memory Monitoring

	7 Create TimesTen Classic Databases
	About Defining TimesTenClassic Objects
	About the Deployment Process
	About the Examples
	Create Replicated TimesTen Classic Databases
	Create Non-Replicated TimesTen Classic Databases
	Modify the Number of Replicas in Non-Replicated Environments

	8 Deploy TimesTen Scaleout Databases
	About Deploying a Grid
	About Planning a Grid
	About Configuring a Grid
	About Provisioning a Grid
	About ssh
	About Creating a Grid

	Deploy a Grid
	Create Configuration Metadata and a Kubernetes ConfigMap for a Grid
	Define and Deploy a TimesTenScaleout Object
	Monitor the High Level State of a TimesTenScaleout Object
	Verify Underlying Objects
	Connect to the Database
	Manage a Grid and Its Database


	9 Use Helm in Your TimesTen Kubernetes Operator Environment
	Overview of Helm and TimesTen Helm Charts
	About Helm
	About a Helm Chart
	About Helm Charts for TimesTen
	About Installing and Testing a Release
	About Versions in a Chart.yaml File
	About the Helm Substitution Engine and Language

	Install the TimesTen CRDs and the TimesTen Operator
	Install the TimesTen CRDs
	Install the TimesTen Operator
	Test the TimesTen Operator

	Create TimesTen Databases and Test TimesTen
	About Creating TimesTen Databases
	About Using the ttclassic Helm Chart
	Create Replicated TimesTen Databases
	Test TimesTen for a Replicated Configuration
	Create Non-Replicated TimesTen Databases
	Test TimesTen for a Non-Replicated Configuration

	Upgrade
	About Upgrading
	Upgrade the TimesTen CRDs
	Upgrade the TimesTen Operator
	Upgrade Replicated TimesTen Databases
	Upgrade Non-Replicated TimesTen Databases

	Roll Back an Upgrade
	Roll Back a Replicated TimesTen Upgrade
	Roll back a Non-Replicated TimesTen Upgrade
	Roll Back a TimesTen Operator Upgrade

	Clean Up
	About Uninstalling a Release
	Delete TimesTen Databases
	Delete the TimesTen Operator
	Delete the TimesTen CRDs


	10 Use TimesTen Databases
	About Using Direct Mode Applications
	About Using Client/Server Drivers

	11 Manage and Monitor TimesTen Classic Databases
	About the High Level State of TimesTenClassic Objects
	ActiveDown
	ActiveTakeover
	AllReplicasReady
	BothDown
	ConfiguringActive
	Failed
	Initializing
	ManualInterventionRequired
	NoReplicasReady
	Normal
	Reexamine
	SomeReplicasReady
	StandbyCatchup
	StandbyDown
	StandbyStarting
	WaitingForActive

	About the High Level State of TimesTen Pods
	CatchingUp
	Down
	Healthy
	HealthyActive
	HealthyStandby
	Initializing
	ManualInterventionRequired
	Normal
	OtherDown
	Reexamine
	Terminal
	Unknown
	UpgradeFailed

	About the BothDown State
	About the ManualInterventionRequired State for Replicated Objects
	About Bringing Up One Database
	Verify Conditions Are Met for the Database
	Set the reexamine Value

	About Suspending Management of a TimesTenClassic Object
	Suspend Management
	Resume Management

	About Manual Operations
	Manually Invoke TimesTen Utilities
	Revert to Manual Control
	Delete TimesTen Databases
	Locate the TimesTen Operator
	Modify TimesTen Connection Attributes
	Manually Edit the db.ini File
	Modify First Connection Attributes
	Modify General Connection Attributes



	12 Manage TimesTen Scaleout
	About Managing TimesTen Scaleout
	About Single Data Instance Failure
	About Management Instance Failure
	About the waiting for seed State
	About Failure of All Data Instances
	About High Level States
	DatabaseDown
	DatabaseImpeded
	DatabasePartial
	DatabaseRestarting
	DatabaseRestartRequired
	Failed
	Initializing
	ManualInterventionRequired
	Normal
	Reexamine
	Unmanaged

	About Management States
	ActiveAgentUp
	ActiveDaemonUp
	ActiveDown
	Error
	Normal
	Unknown

	About Database and Element States
	About the ManualInterventionRequired State
	About Suspending Management
	Simulate Single Data Instance Failure
	Simulate Management Instance Failure
	Simulate Replica Set Failure with Restart
	Simulate Replica Set Failure with Manual
	Suspend Management
	Set reexamine Datum

	13 Optimize Client/Server Performance
	About Client/Server Challenges
	About NodePort Services
	About the Connection Manager
	How to Use the Connection Manager
	About Accessing the Endpoint from Inside the Cluster
	About Accessing the Endpoint from Outside the Cluster
	About Accessing TimesTen
	About Handling Failures

	About the NodePort Service for the Connection Manager
	About the TimesTen Operator Configuration

	14 Expose TimesTen Metrics with the TimesTen Kubernetes Operator
	Overview of TimesTen Metrics
	Overview of the TimesTen Kubernetes Operator and the TimesTen Exporter
	About the Prometheus Operator
	About Exposing TimesTen Metrics
	About Using http or https for TimesTen Metrics
	About Transport Layer Security (mutual TLS) Certificates for TimesTen Metrics
	About Creating PodMonitor Objects
	About the TimesTen Metrics Service
	About Choosing to Expose TimesTen Metrics
	Expose TimesTen Metrics Automatically

	15 Expose Metrics from the TimesTen Kubernetes Operator
	About Exposing Metrics from the TimesTen Kubernetes Operator
	About Using http or https
	About Transport Layer Security (mutual TLS) Certificates
	About Creating ServiceMonitor Objects
	About the TimesTen Kubernetes Operator's Metrics Service
	About TimesTen Operator Metrics
	Demonstrate How to Expose TimesTen Kubernetes Operator Metrics

	16 Work with TimesTen Cache
	About Using TimesTen Cache

	17 Use Encryption for Data Transmission
	Create TLS Certificates for Replication and Client/Server
	Configure TLS for Replication
	Create Metadata Files and Kubernetes Facilities
	Create a Kubernetes Secret
	Create a ConfigMap

	Create a TimesTenClassic Object
	Monitor Deployment of a TimesTenClassic Object
	Verify TLS Is Being Used for Replication

	Automatically Configure Client/Server TLS
	About Configuring a TimesTenClassic Object for Automatic Client/Server TLS Encryption
	About the Automation Process
	How-to Example
	Before You Begin
	Configure and Deploy the TimesTenClassic Object


	Configure TLS for Client/Server
	Configuration Requirements for the Server
	Overview of Metadata Files and Kubernetes Facilities
	Create a Kubernetes Secret for the csWallet Metadata File
	Create a ConfigMap for the Server-Side Attributes
	Create a TimesTenClassic Object
	Monitor Deployment of the TimesTenClassic Object

	Configuration Requirements for the Client
	Copy a Client Wallet
	Configure Client-Side Attributes



	18 Handle Failover and Recovery in TimesTen Classic
	About Node Failure in Kubernetes
	How Kubernetes Reports Node Status
	How the TimesTen Kubernetes Operator Handles Node Failure
	About Specifying the .spec.ttspec.deleteDbOnNotReadyNode Datum
	About Kubernetes Events and TimesTen Operator Metrics

	About Handling Failover and Recovery
	Illustrate the Failover and Recovery Process

	19 Perform Upgrades
	About Obtaining Container Images for the Upgrade
	About Upgrading from Previous Releases
	Upgrade the TimesTen CRDs
	About Upgrading the TimesTen Operator
	Upgrade the TimesTen Operator
	Upgrade the TimesTen Operator at Namespace-Scope
	Before You Begin
	Upgrade in Namespace One
	Upgrade in Namespace Two

	Upgrade the TimesTen Operator at Cluster-Scope

	About Upgrading TimesTen Classic Databases
	About the Upgrade Process for Replicated Configurations
	About the Upgrade Process for Non-Replicated Configurations

	Perform an Automated Upgrade of a Replicated TimesTenClassic Object
	Perform a Manual Upgrade of a Replicated TimesTenClassic Object
	Modify a Replicated TimesTenClassic Object
	Upgrade the Standby Database
	Fail Over

	Perform an Automated Upgrade of a Non-Replicated TimesTenClassic Object
	Perform a Manual Upgrade of a Non-Replicated TimesTenClassic Object
	About Upgrading Direct Mode Applications
	About Failures During an Upgrade

	20 TimesTen Kubernetes Operator Object Types
	Overview of the TimesTen Kubernetes Operator Object Types
	About the TimesTenClassic Object Type
	TimesTenClassic
	TimesTenClassicSpec
	TimesTenClassicSpecSpec
	TimesTenClassicSpecSpecClientTLS
	TimesTenClassicSpecSpecPrometheus
	TimesTenClassicStatus

	About the TimesTenScaleout Object Type
	TimesTen Scaleout
	TimesTenScaleoutSpec
	TimesTenScaleoutSpecSpec
	TimesTenScaleoutSpecSpecPrometheus
	TimesTenScaleoutStatus


	21 Helm Charts for the TimesTen Kubernetes Operator
	The ttoperator Chart
	The ttclusteroperator Chart
	The ttclassic Chart

	22 TimesTen Kubernetes Operator Metrics
	23 TimesTen Kubernetes Operator Environment Variables
	24 Dockerfile ARGs
	A Active Standby Pair Example
	Before You Begin
	Create a ConfigMap Object
	Create a TimesTenClassic Object
	Monitor Deployment
	Verify Existence of Underlying Objects
	Verify Connection to the Active TimesTen Database
	Recover from Failure
	Clean Up

	B TimesTen Cache in TimesTen Classic Example
	Set Up the Oracle Database to Cache Data
	Create the Oracle Database Users
	Grant Privileges to the Cache Administration User
	Create the Oracle Database Tables to Be Cached

	Create Metadata Files and a Kubernetes Facility
	Create a TimesTenClassic Object
	Monitor Deployment of a TimesTenClassic Object
	Verify TimesTen Cache Configuration
	Perform Operations On Cache Group Tables
	Perform Operations on the oratt.readtab Table
	Perform Operations on the oratt.writetab Table

	Clean Up Cache Metadata on the Oracle Database

	C Create Your Own Oracle Wallet, Certificates, and Secrets for Exposing TimesTen Metrics
	About Creating Your Own Oracle Wallet, Certificates, and Kubernetes Secrets
	Create Your Own Oracle Wallet, Certificates, and Kubernetes Secrets
	Before You Begin
	Create Certificates
	Create a Kubernetes Secret Containing an Oracle Wallet
	Define and Deploy a TimesTenClassic Object



