
Oracle® TimesTen In-Memory
Database
Operations Guide

Release 22.1
F35391-05
June 2024

Oracle TimesTen In-Memory Database Operations Guide, Release 22.1

F35391-05

Copyright © 1996, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 What's New

New features in Release 22.1.1.17.0 xv

New features in Release 22.1.1.3.0 xv

New features in Release 22.1.1.1.0 xv

1 Connecting to a TimesTen Database

Connecting to TimesTen with ODBC and JDBC Drivers 1-1

Connecting Using TimesTen ODBC Drivers 1-3

Connecting Using an ODBC Driver Manager 1-4

Connecting Using the TimesTen JDBC Driver and Driver Manager 1-4

Specifying Data Source Names to Identify TimesTen Databases 1-5

Overview of User and System DSNs 1-6

Defining DSNs for Direct or Client/Server Connections 1-6

Connection Attributes for Data Manager DSNs or Server DSNs 1-7

Creating a DSN on Linux and UNIX for TimesTen Classic 1-9

Create a User or System odbc.ini File 1-10

Using Environment Variables in Database Path Names 1-11

Defining Client and Server DSNs 1-11

Resolution Path for a DSN 1-12

DSN Examples for TimesTen Classic 1-12

Creating Multiple DSNs to a Single TimesTen Classic Database 1-12

Specifying PL/SQL Connection Attributes in a DSN 1-13

Setting Up a Default DSN in TimesTen Classic 1-13

odbc.ini File Entry Descriptions 1-15

ODBC Data Sources 1-15

DSN Specification 1-16

odbc.ini File Example 1-17

Providing User Credentials When Connecting 1-18

Connect Using an Oracle Wallet with Credentials 1-18

Connect Using Connection Attributes for Credentials 1-18

Connecting to a Database Using a Connection String 1-19

Using a Connection String in TimesTen Scaleout 1-19

iii

Using a Connection String in TimesTen Classic 1-19

2 Managing TimesTen Databases

Opening and Closing the Database for User Connections 2-1

Specifying the Type of Memory for Shared Memory Segment 2-2

Loading and Unloading the Database from Memory 2-2

Loading a Database into Memory for TimesTen Classic 2-3

Unloading a Database from Memory for TimesTen Classic 2-4

Detaching, Attaching, and Freeing the Shared Memory Segment 2-6

Specifying a RAM Policy 2-9

Changes to RAM Policy After Automatic Recovery Fails 2-11

Preventing an Automatic Reload of the Database After Failure 2-12

Disconnecting from a Database 2-13

Disconnecting from a Database in TimesTen Scaleout 2-13

Disconnecting from a Database in TimesTen Classic 2-13

Specifying the Memory Region Sizes of a Database 2-15

Estimating and Modifying the Memory Region Sizes for the Database 2-16

Monitoring PermSize and TempSize Attributes 2-17

Reducing Database Size for TimesTen Classic 2-18

Receiving Out-of-Memory Warnings 2-19

Storage Provisioning for TimesTen 2-19

Storage Provisioning for Transaction Log Files 2-20

Bulk Copy Data Using the ttBulkCp Utility 2-22

Copying Data from a TimesTen Table to an ASCII File 2-22

Copying Data from an ASCII File into a TimesTen Table 2-23

Running ttBulkCp with the -i Option 2-23

Running ttBulkCp with the -directLoad Option on TimesTen Classic 2-23

Thread Programming with TimesTen 2-24

Defragmenting TimesTen Databases 2-24

Offline Defragmentation of a TimesTen Scaleout Database 2-25

Offline Defragmentation of a TimesTen Classic Database 2-25

Online Defragmentation of TimesTen Classic Databases in an Active Standby Pair
Replication Scheme 2-25

Migrate and Rebuild the Standby Database 2-26

Reverse the Active and Standby Roles 2-28

Destroy and Re-Create a New Standby 2-29

Online Defragmentation of TimesTen Classic Databases in a Non Active Standby Pair
Replication Scheme 2-30

Migrate and Rebuild a Database 2-31

Alter the Replication Scheme 2-31

iv

Destroy and Re-Create a Database 2-32

3 Working with the TimesTen Client and Server

Overview of the TimesTen Client/Server 3-1

Restrictions on Client/Server Communication 3-3

Communication Protocols for Client/Server Communication 3-4

TCP/IP Communication 3-4

Shared Memory Segment Used for Communication 3-4

UNIX Domain Socket Communication 3-4

Configuring TimesTen Client and Server 3-4

Overview of TimesTen Client/Server Configuration 3-5

Installing and Configuring for Client/Server of the Same TimesTen Release 3-7

Install and Configure the TimesTen Server 3-7

Install and Configure the TimesTen Client 3-7

Installing and Configuring Cross-Release TimesTen Client/Server 3-8

Defining Server DSNs for TimesTen Server on a Linux or UNIX System 3-8

Defining a Logical Server Name 3-10

Creating and Configuring a Logical Server Name on Windows 3-11

Creating and Configuring a Logical Server Name on Linux and UNIX 3-12

Defining Client DSNs on a TimesTen Client System 3-13

Creating and Configuring Client DSNs on Windows 3-14

Creating and Configuring Client DSNs on Linux and UNIX 3-20

Sizing the Client Result Set Buffer 3-21

Using Automatic Client Failover 3-22

Managing Automatic Client Failover in TimesTen Scaleout 3-23

Managing Automatic Client Failover in TimesTen Classic Using an Active Standby
Pair 3-23

Managing Generic Automatic Client Failover in TimesTen Classic 3-24

Configuring Automatic Client Failover for TimesTen Classic 3-25

Configuring TCP Keep-Alive Parameters 3-29

Running the TimesTen Server 3-30

Server Informational Messages 3-30

Accessing a Remote Database on Linux and UNIX 3-31

Testing Connections 3-32

4 Working with the TimesTen Daemon

Starting and Stopping the Daemon 4-1

Automatically Starting the TimesTen Daemon 4-1

Using the setuproot Script to Automatically Start the TimesTen Daemon 4-2

Using systemd to Automatically Manage the TimesTen Daemon 4-2

v

Manually Starting and Stopping the Daemon 4-3

Shutting Down a TimesTen Application 4-4

Shutting Down an Application Within TimesTen Classic 4-4

Shutting Down Applications Within TimesTen Scaleout 4-4

Managing TimesTen Daemon Attributes 4-4

Determining the Daemon Listening Address 4-5

Managing Subdaemons 4-7

Configuring a Range for Shared Memory Keys 4-7

Managing TimesTen Client/Server Attributes 4-8

Modifying the TimesTen Server Attributes 4-8

Controlling the TimesTen Server 4-8

Prespawning TimesTen Server Processes in TimesTen Classic 4-8

Specifying Multiple Connections to the TimesTen Server 4-9

Configuring the Maximum Number of Client Connections Per Child Server Process 4-9

Configuring Connection Distribution Among Child Server Processes 4-10

Configuring the Thread Stack Size of the Child Server Processes 4-10

Controlling the TimesTen Server Log Messages 4-10

Error, Warning, and Informational Messages 4-10

Critical Event Logging 4-11

5 Globalization Support

Overview of Globalization Support Features 5-1

Choosing a Database Character Set 5-2

Character Sets and Languages 5-2

Client Operating System and Application Compatibility 5-2

Performance and Storage Implications 5-3

Character Sets and Replication 5-3

Character Set Length Semantics Affect Data Storage 5-3

Setting the Connection Character Set 5-4

Linguistic Sort Rules Support Linguistic Conventions 5-4

Monolingual Linguistic Sorts 5-5

Multilingual Linguistic Sorts 5-5

Case-Insensitive and Accent-Insensitive Linguistic Sorts 5-6

Performing a Linguistic Sort 5-6

Using Linguistic Indexes 5-7

SQL String and Character Functions 5-7

Setting Globalization Support Attributes 5-7

Globalization Support During Migration 5-8

vi

6 Using the ttIsql Utility

Using ttIsql in Batch Mode or Interactive Mode 6-2

Customizing Startup Command Line Options for ttIsql Sessions 6-3

Customizing the ttIsql Command Prompt 6-4

Using the ttIsql Online Help 6-4

Using the ttIsql 'editline' Feature for Linux and UNIX Only 6-5

Emacs Binding 6-6

vi Binding 6-6

Using the ttIsql Command History 6-7

Saving and Clearing the ttIsql Command History 6-8

Using the ttIsql edit Command 6-8

Changing the Default Text Editor for the ttIsql edit Command 6-9

Displaying Characters in ttIsql 6-9

Displaying Database Structures Using ttIsql 6-10

Using the ttIsql describe Command 6-10

Using the ttIsql cachegroups Command 6-11

Using the ttIsql dssize Command 6-11

Using the ttIsql tablesize Command 6-12

Using the ttIsql monitor Command 6-13

Using ttIsql to List Database Objects by Object Type 6-14

Using ttIsql to View and Set Connection Attributes 6-15

Using ttIsql to Manage Transactions 6-15

Using ttIsql with Prepared and Parameterized SQL Statements 6-17

Using, Declaring, and Setting Variables in ttIsql 6-20

Declaring and Setting Bind Variables 6-20

Automatically Creating Bind Variables for Retrieved Columns 6-21

Creating and Running PL/SQL Blocks Within ttIsql 6-23

Passing Data From PL/SQL Using OUT Parameters Within ttIsql 6-23

Using the IF-THEN-ELSE Command Construct Within ttIsql 6-25

Loading Data from an Oracle Database into a TimesTen Table Without Cache 6-26

Use ttIsql to Create a Table and Load SQL Query Results 6-28

Use TimesTen Built-In Procedures to Recommend a Table and Load SQL Query Results 6-30

Cancel a Parallel Load Operation 6-33

Using ttIsql to View and Change Query Optimizer Plans 6-33

Using the showplan Command 6-33

Viewing Commands and Explain Plans from the SQL Command Cache 6-36

View Commands in the SQL Command Cache 6-36

Display Query Plan for Statement in SQL Command Cache 6-37

Using ttIsql to Manage ODBC Functions 6-39

Canceling ODBC Functions 6-39

Timing ODBC Function Calls 6-39

vii

Specifying Error Recovery Within ttIsql 6-40

7 Transaction Management

Transaction Overview 7-1

Transaction Implicit Commit Behavior 7-2

Transaction Autocommit Behavior 7-2

TimesTen DDL Commit Behavior 7-3

Ensuring ACID Semantics 7-3

Transaction Atomicity, Consistency, and Isolation 7-4

Transaction Consistency and Durability 7-4

Concurrency Control Through Isolation and Locking 7-5

Transaction Isolation Levels 7-5

Locking Granularities 7-7

Setting Wait Time for Acquiring a Lock 7-9

Checkpoint Operations 7-9

Purpose of Checkpoints 7-10

Usage of Checkpoint Files 7-10

Types of Checkpoints 7-10

Fuzzy or Non-Blocking Checkpoints 7-10

Blocking Checkpoints 7-11

Setting and Managing Checkpoints 7-11

Programmatically Performing a Checkpoint in TimesTen Classic 7-11

Configuring or Turning Off Background Checkpointing 7-12

Displaying Checkpoint History and Status 7-12

Setting the Checkpoint Rate 7-15

Setting the Number of Checkpoint File Read Threads 7-16

Transaction Logging 7-17

Managing Transaction Log Buffers and Files 7-17

Using NFS-Mounted Systems for Checkpoint and Transaction Log Files 7-18

Monitoring Accumulation of Transaction Log Files 7-18

Log Holds by TimesTen Components or Operations 7-19

Purging Transaction Log Files 7-21

Monitoring Log Holds and Log File Accumulation 7-21

Durability Options 7-22

Durability for TimesTen Scaleout 7-23

Guaranteed Durability for TimesTen Scaleout 7-23

Non-Durable Distributed Transactions for TimesTen Scaleout 7-23

Durability for TimesTen Classic 7-24

Guaranteed Durability for TimesTen Classic 7-24

Non-Durable Transactions for TimesTen Classic 7-25

Transaction Reclaim Operations 7-26

viii

About Reclaim Operations 7-26

Configuring the Commit Buffer for Reclaim Operations 7-27

Recovery with Checkpoint and Transaction Log Files 7-28

8 Working with Data in a TimesTen Database

Database Objects, Users, and Owners 8-1

Database Objects 8-1

Database Users and Owners 8-2

Understanding Tables 8-2

Overview of Tables 8-2

Column Overview 8-3

Inline and Out-of-Line Columns 8-3

Default Column Values 8-3

Table Names 8-4

Table Access 8-4

Primary Keys, Foreign Keys, and Unique Indexes 8-4

Tables in TimesTen Scaleout 8-5

System Tables 8-5

Working with Tables 8-5

Creating a Table 8-6

Dropping a Table 8-6

Estimating Table Size 8-6

Implementing an Aging Policy in Your Tables 8-7

Usage-Based Aging 8-8

Time-Based Aging 8-10

Aging and Foreign Keys 8-12

Scheduling When Aging Starts 8-12

Aging and Replication 8-12

Determining the Effectiveness of Aging 8-13

Understanding Views 8-13

Creating a View 8-14

The SELECT Query in the CREATE VIEW Statement 8-14

Dropping a View 8-15

Restrictions on Views and Detail Tables 8-15

Understanding Materialized Views 8-15

Overview of Materialized Views 8-15

Working with Materialized Views 8-16

Creating a Materialized View 8-16

Dropping a Materialized View 8-17

Restrictions on Materialized Views and Detail Tables 8-18

Performance Implications of Materialized Views 8-18

ix

Understanding Indexes 8-19

Overview of Index Types 8-20

Creating an Index 8-21

Altering an Index 8-21

Dropping an Index 8-22

Estimating the Size of an Index 8-22

Using the Index Advisor to Recommend Indexes 8-22

Prepare for Running the Index Advisor 8-23

Capture the Data Used for Generating Index Recommendations 8-24

Retrieve Index Recommendations and Data Collection Information 8-25

Drop Data Collected for the Index Advisor and Finalize Results 8-27

Example Using Index Advisor Built-In Procedures 8-28

Understanding Rows 8-29

Inserting Rows 8-29

Deleting Rows 8-30

Understanding Synonyms 8-30

Creating Synonyms 8-31

Dropping Synonyms 8-32

Synonyms May Cause Invalidation or Recompilation of SQL Queries 8-32

Understanding System Views 8-32

9 The TimesTen Query Optimizer

Using the Query Optimizer to Choose Optimal Plan 9-1

Viewing SQL Statements Stored in the SQL Command Cache 9-3

Managing Performance and Troubleshooting Commands 9-4

Displaying Commands Stored in the SQL Command Cache 9-4

Viewing SQL Query Plans 9-6

Viewing a Query Plan from the System PLAN Table 9-6

Instruct TimesTen to Store the Plan in the System PLAN Table 9-7

Reading Query Plan from the PLAN Table 9-8

Describing the PLAN Table Columns 9-8

Viewing Query Plans Associated with Commands Stored in the SQL Command Cache 9-10

Modifying a SQL Query Execution Plan 9-13

Why Modify an Execution Plan? 9-13

How Hints Can Influence an Execution Plan 9-14

Tuning a Join When Using ODBC 9-14

Tuning a Join When Using JDBC 9-15

Use Optimizer Hints to Modify the Execution Plan 9-16

Apply Statement Level Optimizer Hints for a SQL Statement 9-17

Apply Transaction Level Optimizer Hints for a Transaction 9-17

x

Apply Connection Level Optimizer Hints for a TimesTen Connection 9-19

10

TimesTen Database Performance Tuning

System and Database Tuning 10-1

Provide Enough Memory 10-2

Avoid Paging of the Memory Used by the Database 10-2

Size Your Database Correctly 10-3

Calculate Shared Memory Size for PL/SQL Runtime 10-3

Set Appropriate Limit on the Number of Open Files 10-4

Configure Log Buffer and Log File Size Parameters 10-4

Avoid Connection Overhead for TimesTen Classic Databases 10-5

Load the Database Into RAM When Duplicating 10-5

Prevent Reloading of the Database After Automatic Recovery Fails 10-5

Reduce Contention 10-6

Consider Special Options for Maintenance 10-6

Check Your Driver 10-6

Enable Tracing Only as Needed 10-7

Use Metrics to Evaluate Performance 10-7

Migrate Data with Character Set Conversions 10-8

Use TimesTen Native Integer Data Types If Appropriate 10-8

Configure the Checkpoint Files and Transaction Log Files to be on a Different Physical
Device 10-8

Client/Server Tuning 10-9

Diagnose Client/Server Performance 10-9

Work Locally When Possible 10-9

Choose Timeout Connection Attributes for Your Client 10-10

Choose a Lock Wait Timeout interval 10-10

Choose the Best Method of Locking 10-11

Choose an Appropriate Lock Level 10-11

Choose an Appropriate Isolation Level 10-11

Enable Prefetch Close for Read-Only Transactions 10-12

Use a Connection Handle When Calling SQLTransact 10-12

Enable Multi-Threaded Mode to Handle Concurrent Connections 10-12

SQL Tuning 10-13

Tune Statements and Use Indexes 10-13

Collect and Evaluate Sampling of Runtimes for SQL Statements 10-14

Creating Tables Without Indexes for Performance When Loading Data 10-17

Select the Appropriate Type of Index 10-17

Size Hash Indexes Appropriately 10-18

Use Foreign Key Constraint Appropriately 10-19

Compute Exact or Estimated Statistics 10-19

xi

Update Table Statistics for Large Tables in Parallel 10-20

Create Script to Regenerate Current Table Statistics 10-21

Control the Invalidation of Commands in the SQL Command Cache 10-22

Avoid ALTER TABLE 10-23

Avoid Nested Queries 10-23

Prepare Statements in Advance 10-24

Avoid Unnecessary Prepare Operations 10-24

Store Data Efficiently with Column-Based Compression of Tables 10-25

Control Read Optimization During Concurrent Write Operations 10-26

Choose SQL and PL/SQL Timeout Values 10-27

Materialized View Tuning 10-28

Limit Number of Join Rows 10-28

Use Indexes on Join Columns 10-29

Avoid Unnecessary Updates 10-29

Avoid Changes to the Inner Table of an Outer Join 10-30

Limit Number of Columns in a View Table 10-30

Transaction Tuning 10-30

Locate Checkpoint and Transaction Log Files on Separate Physical Device 10-30

Size Transactions Appropriately 10-31

Use Durable Commits Appropriately 10-31

Avoid Manual Checkpoints 10-32

Turn Off Autocommit Mode 10-32

Avoid Transaction Roll Back 10-33

Avoid Large DELETE Statements 10-33

Avoid DELETE FROM Statements 10-33

Consider Using the DELETE FIRST Clause 10-33

Increase the Commit Buffer Cache Size 10-34

Recovery Tuning 10-34

Set RecoveryThreads 10-34

Set CkptReadThreads 10-34

Scaling for Multiple CPUs 10-35

Run the Demo Applications as a Prototype 10-35

Limit Database-Intensive Connections Per CPU 10-35

Use Read Operations When Available 10-36

Limit Prepares, Re-prepares, and Connects 10-36

Enable Indexes to be Rebuilt in Parallel During Recovery 10-36

Use Private Commands 10-36

XLA Tuning 10-37

Increase Transaction Log Buffer Size When Using XLA 10-37

Prefetch Multiple Update Records 10-37

Acknowledge XLA Updates 10-37

xii

Cache and Replication Tuning 10-38

xiii

About This Content

This guide provides background information to help you understand how TimesTen works, as
well as step-by-step instructions that show how to perform the most commonly-needed tasks..

Audience

To work with this guide, you should understand how database systems work and have some
knowledge of Structured Query Language (SQL).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

14

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

This section summarizes the new features and functionality of Oracle TimesTen In-Memory
Database Release 22.1 that are documented in this guide, providing links into the guide for
more information.

New features in Release 22.1.1.17.0
• Previously, you could only provide credentials when opening a connection to the TimesTen

database by providing the user name and password individually in a client DSN or using
connection attributes. Now, you can provide user credentials within an Oracle Wallet where
the wallet location is provided when opening a connection. The preferred method is storing
credentials in an Oracle Wallet.

See Providing User Credentials When Connecting.

New features in Release 22.1.1.3.0
• If an application process wants to use both direct and client/server TimesTen drivers, then

it should link with an ODBC driver manager. In this release, a TimesTen-specific driver
manager is provided. The TimesTen driver manager is a transparent, low overhead option
designed specifically for this use case and supports all TimesTen functionality. See
Connecting Using an ODBC Driver Manager.

New features in Release 22.1.1.1.0
• Executing a SELECT statement returns a result set (if there is one). The client driver stores

a maximum number of rows from the result set that fits into a result set buffer. You can
improve performance by adjusting the maximum size of the result set buffer or the
maximum number of rows that can be stored into a result set buffer. See "Sizing the Client
Result Set Buffer" for details.

• There are now two LRU aging policies for TimesTen Classic:

– LRU aging based on set thresholds for the amount of permanent memory in use.

– LRU aging based on row thresholds for a specified root tables of your cache groups.

See "Usage-Based Aging" and "Defining LRU Aging Based on Row Thresholds for Tables"
for details.

• The ttPageLevelTableInfo built-in procedure shows the page allocation for each table to
determine when TimesTen is reusing empty slots and freeing empty pages or if new pages
are allocated to store new rows. See "Determining the Effectiveness of Aging" for details.

• There is a new RAM policy of enduring. In addition to being able to manually load and
unload data from the database (the same as the manual RAM policy), you can also attach,
detach, and free the shared memory segment. When you detach, theshared memory
segment still exists and can be reused when you attach to it. See "Specifying a RAM
Policy" and "Detaching, Attaching, and Freeing the Shared Memory Segment" for details.

xv

• For TimesTen Classic, the root user can set up systemd to use for automatic management
(including starting and stopping) of the TimesTen daemon. See "Automatically Starting the
TimesTen Daemon" and "Using systemd to Automatically Manage the TimesTen Daemon"
for details.

What's New

xvi

1
Connecting to a TimesTen Database

A TimesTen database is a collection of objects such as tables, views, and sequences. You can
access and manipulate the TimesTen database through SQL statements after connecting to
the database.

In TimesTen Classic, if your database does not exist, then TimesTen Classic creates the
database with the specified connection attributes when the instance administrator connects to
the database.

In TimesTen Scaleout, you create and open the database before applications can connect to
the database. See Managing a Database in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

Once you have created a database, you can perform the following:

• Run an application that uses the database.

• Use the ttIsql utility to connect to the database and run a SQL file or start an interactive
SQL session. See Using ttIsql in Batch Mode or Interactive Mode.

This chapter describes how to configure to connect to the TimesTen database. The connection
attributes include management configuration details for your TimesTen database.

• Connecting to TimesTen with ODBC and JDBC Drivers

• Specifying Data Source Names to Identify TimesTen Databases

• Creating a DSN on Linux and UNIX for TimesTen Classic

• Defining Client and Server DSNs

• Resolution Path for a DSN

• DSN Examples for TimesTen Classic

• odbc.ini File Entry Descriptions

• Connecting to a Database Using a Connection String

Connecting to TimesTen with ODBC and JDBC Drivers
An application can use different interfaces and drivers to access the TimesTen database.

1-1

Figure 1-1 Application Access to TimesTen Database Diagram

JDBC TTClasses (C++) OCI

ODBC driver

Application

SQL engine PL/SQL engine

TimesTen database engine

Pro*C/C++ ODP.NET ODPI-C

Node.js

Python

• Open source languages interact with TimesTen through the Oracle Database Programming
Interface for C (ODPI-C). The languages currently supported are Python and Node.js. See
Getting Started in the Oracle TimesTen In-Memory Database Open Source Languages
Support Guide.

• C applications interact with TimesTen by linking with a TimesTen direct or client/server
driver, by linking with the TimesTen driver manager, by linking with a generic driver
manager, or by using the OCI or Pro*C/C++ APIs that indirectly access the TimesTen
ODBC driver.

• Java applications interact with TimesTen by using the TimesTen JDBC driver.

• C++ applications can interact with TimesTen directly through ODBC, through a TimesTen-
provided set of classes called TTClasses or by using the OCI or Pro*C/C++ interfaces that
indirectly access the TimesTen ODBC drivers.

• C# applications interact with TimesTen through Oracle Data Provider for .NET support for
the TimesTen database.

All of these interfaces ultimately use the TimesTen ODBC driver to access a TimesTen
database. These interfaces can use the TimesTen ODBC direct driver, the TimesTen ODBC
client driver, the TimesTen driver manager, or a generic ODBC driver manager. See TimesTen
Connection Options in the Oracle TimesTen In-Memory Database Introduction.

The following sections describe how to define TimesTen databases:

• Connecting Using TimesTen ODBC Drivers

• Connecting Using an ODBC Driver Manager

• Connecting Using the TimesTen JDBC Driver and Driver Manager

Chapter 1
Connecting to TimesTen with ODBC and JDBC Drivers

1-2

Connecting Using TimesTen ODBC Drivers
Your application can connect to the TimesTen database using TimesTen ODBC drivers.

TimesTen includes the following TimesTen ODBC drivers:

• TimesTen Data Manager driver: A TimesTen ODBC driver for use with direct connect
applications.

• TimesTen client driver: A TimesTen client ODBC driver for use with client/server
applications.

An application that links directly with a TimesTen ODBC driver (whether it is linked with the
direct driver or client driver) is limited to using only the driver with which it is linked. An
application linked directly to a TimesTen ODBC driver can connect to multiple databases at the
same time. The TimesTen direct and client drivers support multiple connections to multiple
TimesTen databases.

Note:

This option offers less flexibility but better performance than linking with a driver
manager. However, an application should use a driver manager when connecting
with both direct and client-server connections. If you are going to use a driver
manager, use the TimesTen driver manager over a generic ODBC driver manager to
maximize performance and functionality.

TimesTen includes the following two versions of the TimesTen Data Manager driver (direct
driver):

• Production: Use the production version of the TimesTen Data Manager driver for most
application development and for all deployment.

• Debug: Use the debug version of the TimesTen Data Manager driver only if you encounter
problems with TimesTen itself. This version performs additional internal error checking and
is slower than the production version. On Linux and UNIX, the TimesTen debug libraries
are compiled with the -g option to display additional debug information.

For TimesTen Classic support on Windows, you can install the "TimesTen Client 22.1" driver
after choosing either the Typical or Custom setup.

On Linux and UNIX, depending on the options selected at install time, TimesTen may install the
TimesTen client driver and both the production version and the debug version of the TimesTen
Data Manager driver.

Table 1-1 lists the TimesTen ODBC drivers for Linux and UNIX platforms.

Table 1-1 ODBC Drivers Provided for Linux and UNIX Platforms

Platform Version Location and name

Linux

Solaris x86

Solaris Sparc

Production timesten_home/install/lib/libtten.so
TimesTen Data Manager 22.1 driver.

Chapter 1
Connecting to TimesTen with ODBC and JDBC Drivers

1-3

Table 1-1 (Cont.) ODBC Drivers Provided for Linux and UNIX Platforms

Platform Version Location and name

Linux

Solaris x86

Soliaris Sparc

Debug timesten_home/install/lib/libttenD.so
TimesTen Data Manager 22.1 Debug driver.

Linux

Solaris x86

Soliaris Sparc

Client timesten_home/install/lib/libttclient.so
TimesTen Client 22.1 driver.

AIX Production timesten_home/install/lib/libtten.a
TimesTen Data Manager 22.1 driver.

AIX Debug timesten_home/install/lib/libttenD.a
TimesTen Data Manager 22.1 Debug driver.

AIX Client timesten_home/install/lib/libttclient.a
TimesTen Client 22.1 driver.

macOS Client timesten_home/install/lib/libttclient.dylib
TimesTen Client 22.1 driver.

Connecting Using an ODBC Driver Manager
If an application process wants to use both direct and client/server TimesTen drivers, then it
should link with an ODBC driver manager.

• The TimesTen driver manager is a transparent, low overhead option designed specifically
for this use case. The TimesTen driver manager supports all TimesTen functionality. See
Introduction to the TimesTen Driver Manager in the Oracle TimesTen In-Memory Database
C Developer's Guide.

• Alternatively, your application can be linked with a generic ODBC driver manager. A
generic ODBC driver manager typically has a significant performance impact and inhibits
the use of some TimesTen functionality (such as XLA, the Routing API, the Utility API and
TimesTen ODBC extensions).

Both the TimesTen driver manager and generic ODBC driver manager dynamically load an
ODBC driver at runtime.

Connecting Using the TimesTen JDBC Driver and Driver Manager
The TimesTen JDBC driver enables Java applications to issue SQL statements to TimesTen
and process the results. It is the primary interface for data access in the Java programming
language.

As shown in Figure 1-1, the TimesTen JDBC driver uses the ODBC driver to access TimesTen
databases. For each JDBC method, the driver runs a set of ODBC functions to perform the
appropriate operation. Since the JDBC driver depends on ODBC for all database operations,
the first step in using JDBC is to define a TimesTen database and the ODBC driver that
accesses it on behalf of JDBC.

The TimesTen JDBC API is implemented using native methods to bridge to the TimesTen
native API. Java provides a driver manager that can support multiple drivers connecting to
separate databases. The Java DriverManager class keeps track of all JDBC drivers that have
been loaded and are available to the Java application. The application may load several

Chapter 1
Connecting to TimesTen with ODBC and JDBC Drivers

1-4

drivers and access each driver independently. For example, an application can load both a
TimesTen client JDBC driver and an Oracle database JDBC driver. Then, Java applications
can access either the TimesTen or Oracle databases.

For a list of the Java functions supported by TimesTen, see Support for Interfaces in the
java.sql Package in Oracle TimesTen In-Memory Database Java Developer's Guide.

Specifying Data Source Names to Identify TimesTen Databases
When you connect from an application, you use a Data Source Name (DSN) to uniquely
identify the particular TimesTen database to which you want to connect.

Specifically, a DSN is a character-string name that identifies a TimesTen database and a
collection of connection attributes that are to be used when connecting to the database. On
Windows, the DSN also specifies the ODBC driver to be used to access the database.

In TimesTen Classic, you can also define a default DSN that can be used when a user or an
application either does not specify a DSN or specifies a DSN that is not defined in the
odbc.ini file at connect time. See Setting Up a Default DSN in TimesTen Classic.

Note:

If a user tries to use a DSN that has connection attributes for which they do not have
privileges, such as first connection attributes, they receive an error. For more
information on first connection attribute privileges, see Connection Attributes in the
Oracle TimesTen In-Memory Database Reference.

Even though the DSN uniquely identifies a TimesTen database, a database can be referenced
by multiple DSNs. The difference between each of these unique DSNs is in the specification of
the connection attributes to the database. This provides convenient names to different
connection configurations for a single database.

Note:

According to the ODBC standard, when an attribute occurs multiple times in a
connection string, the first value specified is used, not the last value.

A DSN has the following characteristics:

• Its maximum length is 32 characters.

• It is case insensitive.

• It is composed of ASCII characters except for the following: () [] { } , ; ? * = ! @ \ /

• TimesTen does not recommend the use of spaces as part of the DSN. If a DSN contains a
space, some TimesTen utilities truncate the DSN at the point where they encounter the
space. In addition, a DSN cannot start or end with a space, or consist solely of spaces.

The following sections describe how to configure and manage your DSNs:

• Overview of User and System DSNs

• Defining DSNs for Direct or Client/Server Connections

Chapter 1
Specifying Data Source Names to Identify TimesTen Databases

1-5

• Connection Attributes for Data Manager DSNs or Server DSNs

Overview of User and System DSNs
DSNs are resolved using a two-tiered naming system, where TimesTen first tries to resolve the
DSN within the defined user DSNs and secondly within the defined system DSNs.

• A user DSN can be used only by the user who created the DSN.

– On Windows, user DSNs are defined from the User DSN tab of the ODBC Data
Source Administrator.

– For TimesTen Classic on Linux and UNIX, define user DSNs in the user odbc.ini file.
TimesTen locates this file by first finding if a file is specified by the ODBCINI
environment variable. If not, TimesTen locates the $HOME/.odbc.ini file.

TimesTen Classic supports data sources for both TimesTen Data Manager driver and
the TimesTen Client driver in the .odbc.ini file.

– For TimesTen Scaleout, define user DSNs within the appropriate database definitions
and connectables. See Managing a Database in the Oracle TimesTen In-Memory
Database Scaleout User's Guide.

Although a user DSN is private to the user who created it, it is only the DSN, consisting of
the character-string name and its attributes, that is private. The underlying database can
be referenced by other users' user DSNs or by system DSNs.

• A system DSN can be used by any user on the system on which the system DSN is
defined to connect to the TimesTen database.

– On Windows, system DSNs are defined from the System DSN tab of the ODBC Data
Source Administrator.

– For TimesTen Classic on Linux and UNIX, system DSNs are defined in the
sys.odbc.ini file, which is referred to as the system odbc.ini file.

TimesTen locates the system DSN file in the following order:

* The file is located if it is specified by the SYSODBCINI environment variable.

* In an installation, the file is located in timesten_home/conf/sys.odbc.ini.

* If not found in any of these locations, TimesTen looks on the system for the /etc/
odbc.ini file.

– For TimesTen Scaleout, create system DSNs within the appropriate database
definitions and connectables. See Managing a Database in the Oracle TimesTen In-
Memory Database Scaleout User's Guide.

Defining DSNs for Direct or Client/Server Connections
DSNs are created to uniquely identify a database, whether local or remote.

The following explains the type of DSN to use for either a direct or client/server connection:

• Data Manager DSN: A DSN that specifies a local database on a Linux or UNIX host. You
can use either the production version or debug version of the TimesTen Data Manager
driver.

A Data Manager DSN refers to a database using a path name and a file name prefix. The
database path name specifies the directory location of the database and the prefix for the
database, such as /disk1/databases/AdminDS.

Chapter 1
Specifying Data Source Names to Identify TimesTen Databases

1-6

Note:

This path name and prefix does not define a file name, but the name of the
directory where the database is located and the prefix for all database files. The
actual files used by the database append file suffixes, such as /disk1/
databases/AdminDS.ds0.

A Data Manager DSN that refers to a given TimesTen database must be defined on the
same system on which the database resides. If multiple Data Manager DSNs refer to the
same database, they must all use exactly the same database path name, even if some
other path name identifies the same location. For example, you cannot use a symbolic link
to refer to the database in one DSN and the actual path name in another DSN.

• Client DSN: A client DSN specifies a remote database and uses the TimesTen client. A
client DSN refers to a TimesTen database indirectly by specifying a hostname, DSN pair,
where the hostname represents the server system on which TimesTen server is running
and the DSN refers to a server DSN that specifies the TimesTen database on the server
host.

• Server DSN: A server DSN is always defined as a system DSN and is defined on the
server system for each database on that server that can be accessed by client
applications. The format and attributes of a server DSN are very similar to those of a Data
Manager DSN.

On Linux and UNIX, all user DSNs including both client DSNs and Data Manager DSNs that
are created by a specific user are defined in the same user odbc.ini file. Similarly, all system
DSNs are defined in the same system odbc.ini file.

The following table indicates the types of DSN supported by TimesTen, whether to create a
user or system DSN and the location of the DSN.

DSN type User or System DSN? Location of DSN

Data Manager DSN Can be a user or
system DSN

Located on the system where the database resides.

Client DSN Can be a user or
system DSN

Located on any local or remote system.

Server DSN Must be a system DSN Located on the system where the database resides.

See Working with the TimesTen Client and Server for more information about Client DSNs and
Server DSNs.

Connection Attributes for Data Manager DSNs or Server DSNs
On Linux and UNIX, you specify connection attributes in the odbc.ini file. Connection
attributes that do not appear in the odbc.ini file assume their default value.

Common types of connection attributes:

Chapter 1
Specifying Data Source Names to Identify TimesTen Databases

1-7

Note:

For a complete description of all attributes, see List of Connection Attributes in Oracle
TimesTen In-Memory Database Reference.

• Data Store attributes are associated with a database when it is created and cannot be
modified by subsequent connections. They can only be changed by destroying and re-
creating the database.

The following are the most commonly used data store attributes:

– DataStore: Directory name and file name prefix of the database.

– LogDir: Directory name of the database transaction log files. Placing the transaction
log files and checkpoint files on different file systems can improve system
performance.

– DatabaseCharacterSet: Required character set specification that defines the storage
encoding.

• First connection attributes are used when the TimesTen database is loaded into
memory. Only the instance administrator can load a database with first connection attribute
settings. By default, TimesTen loads an idle database, which is a database with no
connections, into memory when a first connection is made to it. These attributes persist for
all subsequent connections until the last connection to the database is closed. First
connection attributes can be modified only when the TimesTen database is unloaded and
then the instance administrator reconnects with different values for the first connection
attributes.

The following are the most commonly used first connection attributes:

– PermSize: Configures the allocated size of the database's permanent memory region.
The permanent memory region contains persistent database objects. TimesTen only
writes the permanent memory region to the file system during a checkpoint operation.

– TempSize: Configures the allocated size of the database's temporary memory region.
The temporary memory region contains transient data generated when running
statements.

Note:

Your system must have sufficient main memory to accommodate the entire
database. For more details on setting region sizes, see Specifying the
Memory Region Sizes of a Database.

• General connection attributes are set by each connection and persist for the duration of
the connection. Each concurrent connection can have different values.

The following are the most commonly used general connection attributes:

Chapter 1
Specifying Data Source Names to Identify TimesTen Databases

1-8

Note:

If you provide connection attributes in the connection string, this overrides the
connection attributes set in the DSN. See Connecting to a Database Using a
Connection String.

– UID: Specifies the user name to be used for the connection to the database, whether
using a direct or client/server connection. To connect as the instance administrator or
as an external user, you do not need to specify a user name. When you do not specify
a user name, TimesTen assumes that the UID is the user name identified by the
operating system.

– PWD: Specifies the password that corresponds with the specified UID. For internal
users, if you do not set the PWD attribute in the odbc.ini file for the specified DSN or in
the connection string, TimesTen prompts for the password. For external users, you do
not provide the password as it is verified by the operating system.

When you initiate a client/server connection, the password sent for the connection is
encrypted by the client/server protocol.

– PWDCrypt: Specifies the encrypted password that corresponds with the specified UID.

– PwdWallet: TimesTen enables you to store user names and associated passwords in
an Oracle Wallet. This is the most secure and preferred method of providing
credentials for connecting to a TimesTen database. The PwdWallet connection
attribute is the path to the location of the wallet, from which TimesTen retrieves the
password for the specified user name.

– Note:

For more information, see UID and PWD, PWDCrypt, and PwdWallet in
Oracle TimesTen In-Memory Database Reference. See Authentication in
TimesTen in Oracle TimesTen In-Memory Database Security Guide.

• Cache attributes enable you to enter the Oracle Service Identifier for the Oracle database
instance from which data is loaded into TimesTen.

Note:

See Working with the TimesTen Client and Server for a description of the connection
attributes that can be used with the TimesTen client ODBC driver.

Creating a DSN on Linux and UNIX for TimesTen Classic
You can create a DSN in TimesTen Classic in an odbc.ini file for Linux or UNIX platforms.

This section includes the following topics for creating a DSN for TimesTen Classic. In TimesTen
Scaleout, you would create the DSN within the appropriate database definitions and
connectables. See Managing a Database in the Oracle TimesTen In-Memory Database
Scaleout User's Guide for details.

Chapter 1
Creating a DSN on Linux and UNIX for TimesTen Classic

1-9

• Create a User or System odbc.ini File

• Using Environment Variables in Database Path Names

Note:

For examples on defining a DSN, see DSN Examples for TimesTen Classic.

Create a User or System odbc.ini File
User and system DSNs are defined in one of several odbc.ini file types.

On Linux and UNIX, user DSNs are defined in the file $HOME/.odbc.ini or in a file named by
the ODBCINI environment variable. This file is referred to as the user odbc.ini file. System
DSNs are defined in the system odbc.ini file, which is located in timesten_home/conf/
sys.odbc.ini.

The syntax for user and system odbc.ini files are the same. The syntax is described in
odbc.ini File Entry Descriptions. The system odbc.ini file is created when TimesTen is
installed on the system. Users must create their own user odbc.ini file.

Perform the following to create the DSN:

1. Specify the DSN in the odbc.ini file. The DSN appears inside square brackets at the top
of the DSN definition on a line by itself. For example:

[AdminDS]
2. Specify the TimesTen ODBC driver.

Note:

JDBC users need to specify the TimesTen ODBC driver to be used by the JDBC
driver, as described in Connecting Using the TimesTen JDBC Driver and Driver
Manager.

To set the TimesTen ODBC driver, specify the Driver attribute in the odbc.ini file. The
following example provides the TimesTen ODBC driver that this DSN is configured to use,
where /disk1/timesten is the timesten_home:

[AdminDS]
Driver=/disk1/timesten/lib/libtten.so

Note:

For a list of TimesTen ODBC drivers that you can use, see Table 1-1.

3. Specify the database directory path and prefix in the odbc.ini file. The following example
defines /disk1/databases as the database directory path and FixedDs as the prefix for the
database files:

DataStore=/disk1/databases/FixedDs

Chapter 1
Creating a DSN on Linux and UNIX for TimesTen Classic

1-10

Note:

For more information, see Specifying Data Source Names to Identify TimesTen
Databases.

The database directory path can use environment variables, as discussed in Using
Environment Variables in Database Path Names.

4. Choose a database character set. The following example defines the database character
set in the odbc.ini file as AL32UTF8:

DatabaseCharacterSet=AL32UTF8

Note:

See Choosing a Database Character Set.

5. Set connection attributes in your odbc.ini file. Attributes that do not appear in the
odbc.ini file assume their default value.

Note:

See Connection Attributes in Oracle TimesTen In-Memory Database Reference.
For examples, see DSN Examples for TimesTen Classic.

Using Environment Variables in Database Path Names
You can use environment variables in the specification of the database path name and
transaction log file path name.

For example, you can specify $HOME/AdminDS for the location of the database.

Environment variables can be expressed either as $varname or $(varname). The parentheses
are optional. A backslash character (\) in the database path name quotes the next character.

Note:

Environment variable expansion uses the environment of the process connecting to
the database. Different processes may have different values for the same
environment variables and may therefore expand the database path name differently.
Environment variables can only be used in the user odbc.ini file. They cannot be
specified in the system sys.odbc.ini file.

Defining Client and Server DSNs
There are specific methods to define client or server DSNs for each platform.

Chapter 1
Defining Client and Server DSNs

1-11

For directions on how to define client or server DSNs for each platform, see Defining Server
DSNs for TimesTen Server on a Linux or UNIX System and Defining Client DSNs on a
TimesTen Client System.

Resolution Path for a DSN
TimesTen uses certain rules when resolving a DSN.

Note:

• If a user DSN and a system DSN with the same name exist, TimesTen retrieves
the user DSN.

• On Linux and UNIX, if there are multiple DSNs with the same name in the same
odbc.ini file, TimesTen retrieves the first one specified in the file.

1. Searches for a user DSN with the specified name in the following files:

a. The file referenced by the ODBCINI environment variable, if it is set.

b. The .odbc.ini file in the user's home directory, if the ODBCINI environment variable is
not set.

2. If no matching user DSN is found, TimesTen looks for a system DSN with the specified
name.

a. The file referenced by the SYSODBCINI environment variable, if it is set.

b. The sys.odbc.ini file in the daemon home directory, if the SYSODBCINI environment
variable is not set.

c. On Linux and UNIX, the file is located in timesten_home/conf/sys.odbc.ini.

DSN Examples for TimesTen Classic
This section provides additional examples of how to set up a TimesTen Classic database:

• Creating Multiple DSNs to a Single TimesTen Classic Database

• Specifying PL/SQL Connection Attributes in a DSN

• Setting Up a Default DSN in TimesTen Classic

Creating Multiple DSNs to a Single TimesTen Classic Database
You can create two or more DSNs that refer to the same TimesTen Classic database but have
different connection attributes.

This example creates two DSNs, AdminDSN and GlobalDSN. The DSNs are identical except for
their connection character sets. Applications that use the AL32UTF8 character set can connect
to the TTDS database by using AdminDSN. Applications that use multibyte characters can
connect to the TTDS database by using GlobalDSN.

The text in square brackets is the data source name.

Chapter 1
Resolution Path for a DSN

1-12

AdminDSN is created with the AL32UTF8 database character set and AL32UTF8 as the connection
character set. GlobalDSN is created with the AL32UTF8 database character and AL32UTF8 as the
connection character set. Note that /disk1/timesten is the timesten_home.

[AdminDSN]
Driver=/disk1/timesten/lib/libtten.so
Datastore=/disk1/databases/TTDS
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
CacheAdminWallet=1

[GlobalDSN]
Driver=/disk1/timesten/lib/libtten.so
DataStore=/disk1/databases/TTDS
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
CacheAdminWallet=1

Specifying PL/SQL Connection Attributes in a DSN
For TimesTen Classic, PL/SQL connection attributes exist both as first and general connection
attributes.

• PLSQL_MEMORY_ADDRESS - A first connection attribute that specifies the virtual address, as a
hexadecimal value, at which the PL/SQL shared memory segment is loaded into each
process that uses the TimesTen direct drivers. This memory address must be identical in
all connections to your database and in all processes that connect to your database.

• PLSQL_MEMORY_SIZE - A first connection attribute that determines the size, in megabytes, of
the PL/SQL shared memory segment.

• PLSCOPE_SETTINGS - A general connection attribute that controls whether the PL/SQL
compiler generates cross-reference information.

• PLSQL_OPTIMIZE_LEVEL - A general connection attribute that sets the optimization level that
is used to compile PL/SQL library units.

This example creates the PLdsn DSN and sets the PL/SQL shared memory segment size to 32
MB.

[PLdsn]
Datastore=/disk1/databases/PLdsn
PermSize=128
DatabaseCharacterSet=AL32UTF8
ConnectionCharacterSet=AL32UTF8
PLSQL_MEMORY_SIZE=32
CacheAdminWallet=1

For more examples and a complete list of PL/SQL connection attributes see PL/SQL
Connection Attributes in Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.

Setting Up a Default DSN in TimesTen Classic
You can add an optional default data source definition in TimesTen Classic.

At connect time, if an application specifies a DSN that is not in the odbc.ini file or if the
application does not specify a DSN, the default DSN is used to configure the connection to the
TimesTen Classic database.

Chapter 1
DSN Examples for TimesTen Classic

1-13

The default data source must be named default when defined. The default DSN can be
defined with the same attributes as any other data source, which are described in DSN
Specification.

When connecting, TimesTen Classic uses the default DSN in any of the following scenarios:

• When you specify the DSN=default keyword-value pair in the connection string.

• When you specify an undefined value for the DSN connection attribute in the connection
string.

• When you do not specify any value for the DSN connection attribute in the connection
string.

However, in general, it is best to connect with a specific data source.

When using a default DSN, provide default as the DSN name when performing TimesTen
utility operations that require a DSN name, such as destroying the database with the
ttDestroy utility.

The following example shows the user invoking ttIsql to connect using an undefined DSN.
Since there is no definition for doesNotExist in the odbc.ini file, TimesTen Classic uses the
default DSN to create the database and initiate a connection to it. It also demonstrates the
user invoking both the ttStatus and ttDestroy utilities with default specified as the DSN. In
addition, it shows the error thrown if the user provides doesNotExist as the DSN, instead of
default.

% ttIsql doesNotExist;

Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=doesNotExist";
Connection successful:
Command> exit
Disconnecting...
Done.
% ttStatus default
TimesTen status report as of Mon Oct 22 12:27:52 2021

Daemon pid 13623 port 16138 instance myhost
TimesTen Server pid 13632 started on port 16140
--
Data store /timesten/install/sample_db/default
There are no connections to the data store
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group xyz
End of report
% ttDestroy doesNotExist;
Failed to destroy data store: Specified DSN is not found in user and system
odbc.ini files (or registry)
% ttDestroy default;

The following example shows how to configure connection attributes for a default DSN. While
not necessary, you can configure connection attributes for a default DSN as you would
configure any other DSN. Notice that it is not specified in the ODBC Data Sources section.
Note that /disk1/timesten is the timesten_home.

Chapter 1
DSN Examples for TimesTen Classic

1-14

[ODBC Data Sources]
database1=TimesTen 22.1 Driver

[default]
Driver=/disk1/timesten/lib/libtten.so
DataStore=/disk1/timesten/sample_db/DemoDataStore/default
PermSize=128
TempSize=64
DatabaseCharacterSet=AL32UTF8
CacheAdminWallet=1

[database1]
Driver=/disk1/timesten/lib/libtten.so
DataStore=/disk1/timesten/sample_db/DemoDataStore/database1
PermSize=128
TempSize=64
DatabaseCharacterSet=AL32UTF8
CacheAdminWallet=1

odbc.ini File Entry Descriptions
The following sections describe the entries in the odbc.ini file.

Note:

In TimesTen Scaleout, use the ttGridAdmin gridClientExport command to create a
system or user odbc.ini file to be used by the TimesTen Client instance. See
Establishing Client Connections from a TimesTen Client in Oracle TimesTen In-
Memory Database Scaleout User's Guide.

• ODBC Data Sources

• DSN Specification

• odbc.ini File Example

ODBC Data Sources
Each entry in the optional ODBC Data Sources section lists a data source and a description of
the driver it uses.

The data source section has the following format:

[ODBC Data Sources]
DSN=driver-description

• The DSN is required and it identifies the data source to which the driver connects. You
choose this name.

• The driver-description is required. It describes the driver that connects to the data
source.

The optional Data Sources section, when present in the system DSN file on the TimesTen
Server, is used during the setup of Client DSNs. All system DSNs are made available to the
Client DSN setup for the ODBC Data Source Administrator on the client, which displays all
available DSNs on the TimesTen Server. The user can always add a new system DSN in the
ODBC Data Source Administrator. When adding DSNs to the system DSN file, you should only

Chapter 1
odbc.ini File Entry Descriptions

1-15

include those DSNs that can be advertised to clients. All system DSNs are potentially
accessible through the client/server configuration, even if they are not advertised.

DSN Specification
Each DSN listed in the ODBC Data Sources section has its own DSN specification.

The DSN specification for Data Manager DSN could have the format shown in Table 1-2.

Table 1-2 Data Source Specification Format

Component Description

[DSN] The DSN is required. It is the name of the DSN, as
specified in the ODBC Data Sources section of
your .odbc.ini file.

Driver=driver-path-name The TimesTen driver that is linked with the data source.

DataStore=data-store-path-prefix The directory path and prefix of the database to access.
This is required.

DatabaseCharacterSet=Database-
character-set

The database character set determines the character set
in which data is stored. The database character set is
required and cannot be altered after the database has
been created. See Choosing a Database Character Set.

CacheAdminWallet=1 Designates that when TimesTen registers the cache
administration user credentials, the credentials are saved
in an internally managed Oracle Wallet rather than in
memory. Setting the CacheAdminWallet connection
attribute to 1 is recommended when using cache, but
optional. See CacheAdminWallet in Oracle TimesTen In-
Memory Database Reference

Optional attributes See Connection Attributes in Oracle TimesTen In-
Memory Database Reference.

For example, the database1 DSN could have a specification that includes the following. Note
that /disk1/timesten is the timesten_home.

[database1]
Driver=/disk1/timesten/lib/libtten.so
DataStore=/disk1/timesten/sample_db/DemoDataStore/database1
CacheAdminWallet=1

The database specification for TimesTen client DSN could have the format shown in Table 1-3.

Note:

While the syntax for the TimesTen client DSN is listed here, full directions for setting
the client DSN and server DSN are located in Defining Server DSNs for TimesTen
Server on a Linux or UNIX System and Defining Client DSNs on a TimesTen Client
System.

Chapter 1
odbc.ini File Entry Descriptions

1-16

Table 1-3 Database Specification for TimesTen Client Configurations

Component Description

[DSN] The DSN is required. It is the same DSN specified in the ODBC
Data Sources section of the .odbc.ini file.

TTC_Server=server-name The server-name is required. It is the DNS name, host name, IP
address or logical server name for the TimesTen server.

TTC_Server_DSN=server-DSN The server-DSN is required. It is the name of the data source to
access on the TimesTen server.

TTC_Timeout=value Client connection timeout value in seconds.

Note:

Most TimesTen driver attributes are ignored for TimesTen client DSNs.

For example, the client/server data source database1CS that connects to database1 on the
TimesTen server ttserver could have a data source specification that includes the following:

[database1CS]
TTC_Server=ttserver
TTC_SERVER_DSN=database1
TTC_Timeout=30

odbc.ini File Example
The following example shows portions of a Linux or UNIX .odbc.ini file. Note that /disk1/
timesten is the timesten_home.

...
[ODBC Data Sources]
database1=TimesTen 22.1 Driver
...

[database1]
Driver=/disk1/timesten/lib/libtten.so
DataStore=/disk1/timesten/sample_db/DemoDataStore/database1
PermSize=128
TempSize=64
DatabaseCharacterSet=AL32UTF8
CacheAdminWallet=1
...

##
This following sample definitions should be in the .odbc.ini file
that is used for the TimesTen 22.1 Client.
The Server Name is set in the TTC_SERVER attribute.
The Server DSN is set in the TTC_SERVER_DSN attribute.
###

[ODBC Data Sources]
database1CS=TimesTen 22.1 Client Driver
...

Chapter 1
odbc.ini File Entry Descriptions

1-17

[database1CS]
TTC_SERVER=localhost
TTC_SERVER_DSN=database1
...

Providing User Credentials When Connecting
User names and their respective passwords are required when connecting to the TimesTen
database.

Supply the user credentials in the connection string either by:

• Providing them from within an Oracle Wallet. This method requires you to first save the
credentials in an Oracle Wallet with the ttUser utility. After creating the wallet, the
particular wallet is identified by UID and PWDWallet connection attributes on the connection
string. This is the preferred method as it is more secure. See Connect Using an Oracle
Wallet with Credentials.

• Providing the user name and password on the connection string. Specify the user name in
the UID connection attribute and specify the user password in the PWD or PWDCrypt
connection attributes. See Connect Using Connection Attributes for Credentials.

Connect Using an Oracle Wallet with Credentials
You can provide credentials by saving them in an Oracle Wallet, which then can be used for
connecting to the database. This is the preferred method as it is more secure.

The following creates the Oracle Wallet mywallet in the /home/terry/wallets directory.
Assuming that /home/terry/wallets/mywallet does not exist, run the ttUser -setPwd
command to save credentials for the user terry into the Oracle Wallet /home/terry/wallets/
mywallet.

% ttUser -setPwd -wallet /home/terry/wallets/mywallet -uid terry
Enter password:

After the credentials are saved within an Oracle Wallet, you specify the wallet from which to
retrieve credentials for your connection specifying the user name with the UID connection
attribute and the location and name of the Oracle Wallet with the PwdWallet connection
attribute.

connect “dsn=mydb;uid=terry;PwdWallet=/home/terry/wallets/mywallet”;

When the PwdWallet connection attribute is provided, the credentials are retrieved from the
wallet specified. For client/server connections, the wallet must exist on the client.

See Providing Both Cache Administration Users and Passwords in Oracle TimesTen In-
Memory Database Security Guide for more information on providing cache credentials. See
PwdWallet and ttUser in Oracle TimesTen In-Memory Database Reference.

Connect Using Connection Attributes for Credentials
You can set user names and passwords by providing them with individual connection
attributes, which can be used for connecting to a database. However, please note that the
preferred and most secure method is to provide credentials from within an Oracle Wallet.

Chapter 1
Providing User Credentials When Connecting

1-18

In the connection string, specify the user name in the UID connection attribute. Specify the
password in the PWD connection attribute.

% ttIsql "DSN=mydb;UID=sampleuser;PWD=samplepwd"

Connecting to a Database Using a Connection String
TimesTen applications require a DSN or a connection string be specified to connect to a
database.

For modularity and maintainability, it is better to set attributes in a DSN rather than in a
connection string within the application, unless a particular connection requires that specific
attribute settings override the settings in the DSN or the default settings.

The syntax for a connection string contains connection attribute definitions, where each
attribute is separated by a semicolon.

These precedence rules are used to determine the settings of DSN attributes:

1. Attribute settings specified in a connection string have the highest precedence. If an
attribute appears more than once in a connection string, the first specification is used.

2. If an attribute is not specified in the connection string, the attribute settings that are
specified in the DSN are used.

3. Default attribute settings have the lowest precedence.

The following sections describe how to use a connection string instead of a DSN:

• Using a Connection String in TimesTen Scaleout

• Using a Connection String in TimesTen Classic

Using a Connection String in TimesTen Scaleout
In TimesTen Scaleout, you can connect to a specific element by specifying in the connection
string the address of the host associated with that element, the database name, and a
database user with at least CREATE SESSION privileges.

See Using a Connection String to Establish a Client Connection in the Oracle TimesTen In-
Memory Database Scaleout User's Guide.

Using a Connection String in TimesTen Classic
You can connect to a TimesTen database without a predefined DSN with any ODBC
application or the ttIsql utility if the connection string contains the DataStore, Driver and
DatabaseCharacterSet attributes. Define the connection string as follows:

• The name or path name of the ODBC driver using the Driver attribute.

– On Windows, the value of the Driver attribute should be the name of the TimesTen
Client Driver.

– On UNIX systems, the value of the Driver attribute should be the pathname of the
TimesTen ODBC Driver shared library file (as described in Table 1-1). The file resides
in the timesten_home/lib directory.

• The database path and file name prefix using the DataStore attribute.

Chapter 1
Connecting to a Database Using a Connection String

1-19

• The character set for the database using the DatabaseCharacterSet attribute.

The following example shows how you can connect providing the Driver, DataStore and
DatabaseCharacterSet attributes using a connection string in the ttIsql utility:

Providing the connection attributes on the connect string from a Linux/UNIX client. Note that /
disk1/timesten is the timesten_home.

% ttIsql

Command> connect "Driver=/disk1/timesten/lib/libtten.so;
DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8";

Providing the connection attributes on the connect string from a Windows client:

C:\ ttIsql
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "Driver=TimesTen Client 22.1;
DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8";

Chapter 1
Connecting to a Database Using a Connection String

1-20

2
Managing TimesTen Databases

Managing a TimesTen database includes the following:

• Opening and Closing the Database for User Connections

• Specifying the Type of Memory for Shared Memory Segment

• Loading and Unloading the Database from Memory

• Detaching, Attaching, and Freeing the Shared Memory Segment

• Specifying a RAM Policy

• Disconnecting from a Database

• Specifying the Memory Region Sizes of a Database

• Storage Provisioning for TimesTen

• Bulk Copy Data Using the ttBulkCp Utility

• Thread Programming with TimesTen

• Defragmenting TimesTen Databases

Opening and Closing the Database for User Connections
For an application to be able to connect to a database, the database needs to be open. When
a database is closed, any new user connection attempts fail.

• By default in TimesTen Classic, the database is automatically opened and user
connections can connect.

• By default in TimesTen Scaleout, the database is closed until manually opened. See Open
the Database for User Connections in Oracle TimesTen In-Memory Database Scaleout
User's Guide.

You can close the database to reject any new user connections to a database. The instance
administrator can still connect to the database.

• TimesTen Classic: Use the ttAdmin -close command to close the database to any new
user connections.

Since the database can be automatically loaded or unloaded as set by the RAM policy, the
status of a database (open or closed) is not aligned with whether the database is currently
loaded into memory. Thus, the database could be in an open state as well as unloaded or
in a closed state when loaded. See Loading a Database into Memory for TimesTen Classic
for an example of the RAM policy.

You should close a database before manually unloading a database. When loading a
closed database into memory, the database cannot be opened until the load operation
completes. You can re-open the database with the ttAdmin -open command. See
Unloading a Database from Memory for TimesTen Classic for an example.

• TimesTen Scaleout: Before unloading a database from memory, you must manually close
the database. See Unloading a Database from Memory in Oracle TimesTen In-Memory
Database Scaleout User's Guide.

2-1

Use the following to see the status of your database:

• TimesTen Classic: Use the ttStatus or ttAdmin -query utilities to see the status of the
database. See ttStatus or ttAdmin in Oracle TimesTen In-Memory Database Reference.

• TimesTen Scaleout: Use the ttGridAdmin dbStatus command to see the status of the
database. See Monitor the Status of a Database (dbStatus) in Oracle TimesTen In-Memory
Database Reference.

Specifying the Type of Memory for Shared Memory Segment
In TimesTen Classic, the entire database resides in a single shared memory segment.

The behavior for the shared memory segment depends on:

• SysV shared memory segment: You need to configure the size of the shared memory
segment to include the entire database. See Configure shmmax and shmall in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

• RAM policy setting: The RAM policy setting designates how to load or unload the database
(from the checkpoint files) for all shared memory types. When you unload the database, it
destroys the shared memory segment. When you load the database, it creates a new
shared memory segment and loads from the checkpoint files. If you specify the RAM policy
of enduring, you can alternatively attach, detach, and free the shared memory segment.
When you detach, the shared memory segment still exists and can be reused when you
attach to it. See Detaching, Attaching, and Freeing the Shared Memory Segment.

Loading and Unloading the Database from Memory
TimesTen is an in-memory database. As such, a database must first be loaded into memory
from the file system to be available for connections.

When a database is loaded into memory, the contents of the permanent memory region are
read from checkpoint files stored on the file system. The temporary memory region is created
when a database is loaded into memory and is destroyed when it is unloaded. See Specifying
the Memory Region Sizes of a Database for more details on permanent and temporary
memory.

• In TimesTen Scaleout: The grid administrator controls how to load and unload the
database using the ttGridAdmin utility. See ttGridAdmin in the Oracle TimesTen In-
Memory Database Reference for details.

• In TimesTen Classic: RAM policies specify how and when a database is loaded into
memory, including whether to automatically reload the database into memory if the
database is unloaded unexpectedly. See Specifying a RAM Policy for full details on the
different RAM policies.

Only the instance administrator can load a database manually. By default, TimesTen
automatically loads an idle database (which is a database with no connections) into
memory when a first connection is made to it. See Loading a Database into Memory for
TimesTen Classic.

After a database loads into memory, you may need to explicitly start the cache and
replication agents for the database, depending on the functionality you are using and on
which cache and replication policies you set with the ttAdmin utility.

Chapter 2
Specifying the Type of Memory for Shared Memory Segment

2-2

Note:

Instead of loading and unloading the database, you can detach or attach the shared
memory segment leaving the shared memory segment in memory. This is
significantly faster than loading and unloading a database. See Detaching, Attaching,
and Freeing the Shared Memory Segment.

Loading and unloading the database from memory for TimesTen Classic is described in these
sections:

• Loading a Database into Memory for TimesTen Classic

• Unloading a Database from Memory for TimesTen Classic

Loading a Database into Memory for TimesTen Classic
Loading the database into memory for TimesTen Classic can be done automatically when a
certain ram policy is set or manually with the ttAdmin utility.

1. Before you try to load the database into memory for TimesTen Classic, confirm that the
TimesTen daemon is running with the ttStatus utility. The following output shows that the
TimesTen daemon is not running.

% ttStatus
ttStatus: Could not connect to the TimesTen daemon.
If the TimesTen daemon is not running, please start it by running "ttDaemonAdmin -
start".

2. Start the TimesTen daemon, if necessary.

ttDaemonAdmin -start
3. The RAM policy setting is important as it specifies if, how, and when the database is

loaded or unloaded from memory. The default RAM policy for a TimesTen database is
inUse.

You can set the RAM policy before loading the database into memory. See Specifying a
RAM Policy.

The following example sets the RAM policy of a TimesTen database to manual:

% ttAdmin -ramPolicy manual database1

RAM Residence Policy : manual
Manually Loaded In RAM : False
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database state : open

4. Use the ttAdmin utility to load (or reload) the database into memory, or unload the
database from memory.

If the RAM policy is manual for the database database1, then load the TimesTen database
into memory with the ttAdmin -ramLoad utility. The -ramLoad option of the ttAdmin utility
can only be used with the manual or enduring RAM policies:

% ttAdmin -ramLoad database1

Chapter 2
Loading and Unloading the Database from Memory

2-3

RAM Residence Policy : manual
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database state : open

If the RAM policy is manual, you can change it to always to specify that the database is
always reloaded.

ttAdmin -ramPolicy always database1

If the RAM policy is inUse, then you want the grace period to be greater than 0, so that the
database will be kept in memory for that time period when idle:

% ttAdmin -ramPolicy inUse -ramGrace 200 database1

RAM Residence Policy : inUse plus grace period
RAM Residence Grace (Secs) : 200
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database state : open

If the RAM policy is manual for the database database1 and the database was previously
closed to incoming connections, then you can both load and open the TimesTen database
into memory with the ttAdmin -ramload -open command.

% ttAdmin -ramLoad -open database1

RAM Residence Policy : manual
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database state : open

5. If your database is configured for replication or cache for your database, run the ttAdmin
utility to start the replication and cache agents.

To start the replication agent:

ttAdmin -repStart database1

To start the cache agent:

ttAdmin -cacheStart database1
See ttAdmin and ttDaemonAdmin in the Oracle TimesTen In-Memory Database Reference.

Unloading a Database from Memory for TimesTen Classic
In TimesTen Classic, a database remains loaded in shared memory if any applications or
TimesTen agents, such as the cache agent or replication agent, are connected to it. In

Chapter 2
Loading and Unloading the Database from Memory

2-4

TimesTen Classic, a database may also be kept in shared memory for particular RAM policy
setting, even when no applications or agents are connected.

Before unloading the database from memory for TimesTen Classic, you must first close the
database, close all active connections to the database and then set the RAM policy of the
database to manual or inUse.

Note:

The following steps use examples where database1 is the database that is to be
unloaded. It is assumed that it is the active master in a replication scheme and has
been configured with cache. Note that a database can have both replication and
cache configured, and a RAM policy other than manual.

1. Close the database to reject any new requests to connect to the database.

ttAdmin -close database1
2. Disconnect all applications from the database.

To close all active connections to the database, run the ttAdmin -disconnect command.
See Disconnecting from a Database in this book and ttAdmin in the Oracle TimesTen In-
Memory Database Reference.

3. If the replication agent is running on the database, set the replication state to pause and
stop the replication agent. The example sets the replication state from the active master
database1 to the standby master standbydb to pause, then stops the replication agent on
the active master database1.

ttRepAdmin -receiver -name database1 -state pause standbydb
ttAdmin -repStop database1

4. If the cache agent is running on the database, stop the cache agent.

ttAdmin -cacheStop database1
5. Ensure that the RAM policy is set to either manual or inUse. Then unload the database

from memory. See Specifying a RAM Policy.

If the RAM policy is set to always, change it to manual and then unload the database from
memory with the ttAdmin -ramPolicy -ramUnload utility options.

ttAdmin -ramPolicy manual -ramUnload database1

If the RAM policy is set to manual, unload the database with the ttAdmin -ramUnload
utility:

ttAdmin -ramUnload database1

If the RAM policy is set to inUse and a grace period is set, set the grace period to 0 or wait
for the grace period to elapse. This results in the database being unloaded. TimesTen
unloads a database with an inUse RAM policy from memory once you close all active
connections.

ttAdmin -ramGrace 0 database1
6. Run the ttStatus utility to verify that the database has been unloaded from memory and

the database is closed. The database is unloaded if there are no processes. The database
is closed when the output shows Closed for user connections.

Chapter 2
Loading and Unloading the Database from Memory

2-5

See ttStatus in Oracle TimesTen In-Memory Database Reference.

7. Optionally, stop the TimesTen daemon.

ttDaemonAdmin -stop
See ttAdmin in the Oracle TimesTen In-Memory Database Reference.

Detaching, Attaching, and Freeing the Shared Memory Segment
With the enduring RAM policy, you can detach from the shared memory segment leaving the
shared memory segment in memory. And when you are ready to open the database, you can
attach to this same shared memory segment.

Note:

This should only be used when performing a fast upgrade. See About Performing a
Fast Patch Upgrade in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

Attaching and detaching a shared memory segment is significantly faster than loading and
unloading a database. When you unload the database, it destroys the shared memory
segment. When you load the database, it creates a new shared memory segment and loads
from the checkpoint files. If you specify the RAM policy of enduring, you can attach, detach,
and free the shared memory segment. When you detach, the shared memory segment still
exists and can be reused when you attach to it.

Use the following ttAdmin commands to attach to, detach from, and free the shared memory
segment. You can only use these features if the RAM policy is set to enduring.

• ttAdmin –shmDetach [-ckpt | -noCkpt]: Detaches the shared memory segment and
stops the managing subdaemon. The shared memory segment remains in memory after
the subdaemon exits.

Prior to disconnecting from the shared memory segment, you can specify whether the
subdaemon performs a static checkpoint or not. By default, a final checkpoint is performed
with the –ckpt option. This final checkpoint ensures that a database start will not need to
go through a recovery process. If you specify the –noCkpt option, then you avoid the final
checkpoint and increase the performance of the detach and attach processes. However, if
the database cannot attach to the previously detached shared memory segment and
needs to be loaded from the checkpoint files, then not performing this checkpoint
necessitates going through the recovery process during the load to avoid data loss.

• ttAdmin –shmAttach: Attaches to an existing shared memory segment that was
successfully detached with a ttAdmin –shmDetach operation. Creates a subdaemon to
manage this shared memory segment for the database.

• ttAdmin –shmFree: Explicitly destroys a shared memory segment that remains in memory.
You can free a shared memory segment after a successful detach, after an unsuccessful
detach, or after a database crash. If an unsuccessful detach operation or a database crash
occurs, the shared memory segment needs to be freed before you can recover the
database. To reload and recover the database, run the ttAdmin –ramLoad command,
which uses the checkpoint files to recover.

Chapter 2
Detaching, Attaching, and Freeing the Shared Memory Segment

2-6

The following examples demonstrates how to use ttAdmin -shmDetach to detach a shared
memory segment so that it can remain in memory. Then, uses the ttAdmin –shmAttach
command to attach to the existing shared memory segment.

1. Close database1 before detaching the shared memory segment with the ttAdmin -
shmDetach command:

$ ttAdmin -close database1
RAM Residence Policy : enduring
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Closed

2. Detach the shared memory segment and shutdown the managing subdaemon for
database1. You can see that the shared memory segment is detached as the "Manually
loaded in RAM" output displays as False. The ttStatus utility states that the subdaemon is
detached from the database.

$ ttAdmin -shmDetach database1
RAM Residence Policy : enduring
Manually Loaded In RAM : False
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Closed

$ ttStatus
TimesTen status report as of Wed Aug 18 01:45:55 2021

Daemon pid 27561 port 6626 instance instance1
TimesTen server pid 27568 started on port 6628
--
--
Data store /tmp/databases/database1
Daemon pid 27561 port 6626 instance instance1
TimesTen server pid 27568 started on port 6628
There are no connections to the data store
…
Closed to user connections
RAM residence policy: Enduring
Subdaemon is manually detached from data store (Shared Memory Key 0x07108a02 ID
745504801)
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group g900
End of report

3. When ready, run the ttAdmin –shmAttach command to create the managing subdaemon,
start the managing subdaemon for the database1 database and attach to the shared
memory segment. The Manually loaded in RAM output displays as True to denote that
the shared segment is reattached. The ttStatus utility shows that the database is loaded
into RAM.

$ ttAdmin -shmAttach database1
RAM Residence Policy : enduring
Manually Loaded In RAM : True

Chapter 2
Detaching, Attaching, and Freeing the Shared Memory Segment

2-7

Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Closed

$ ttStatus
TimesTen status report as of Wed Aug 18 01:46:08 2021

Daemon pid 27561 port 6626 instance instance1
TimesTen server pid 27568 started on port 6628
--
--
Data store /tmp/databases/ database1
Daemon pid 27561 port 6626 instance instance1
TimesTen server pid 27568 started on port 6628
There are 12 connections to the data store
…
Closed to user connections
RAM residence policy: Enduring
Data store is manually loaded into RAM
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group g900
End of report

4. Open the database.

$ ttAdmin -open sampledb
RAM Residence Policy : enduring
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Open

Note:

Being able to detach and attach to the shared memory segment provides a method
for a faster upgrade. See Upgrades in TimesTen Classic in the Oracle TimesTen In-
Memory Database Installation, Migration, and Upgrade Guide.

If there is a failure (such as a subdaemon crash or an assertion failure) that causes an abrupt
shutdown of the database, then the shared memory segment may not be transactionally
consistent and needs to be destroyed before you can reload the database and create a new
shared memory segment.

The following example frees the shared memory segment with the ttAdmin –shmFree
command. After which, the example executes the ttAdmin –ramLoad to recover the database
from the checkpoint files and creates a new shared memory segment.

1. Free the shared memory segment after a database crash.

$ ttAdmin -shmFree database1
RAM Residence Policy : enduring
Manually Loaded In RAM : False

Chapter 2
Detaching, Attaching, and Freeing the Shared Memory Segment

2-8

Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Closed

$ ttStatus
TimesTen status report as of Wed Aug 18 02:12:27 2021

Daemon pid 6168 port 6626 instance instance1
TimesTen server pid 6175 started on port 6628
--
--
Data store /tmp/databases/database1
Daemon pid 27561 port 6626 instance instance1
TimesTen server pid 27568 started on port 6628
There are no connections to the data store
Closed to user connections
RAM residence policy: Enduring
Data store is manually unloaded from RAM
Replication policy : Manual
Cache Agent policy : Manual
PL/SQL enabled.
--
Accessible by group g900
End of report

2. Load and open the database1 database with a new shared memory segment that recovers
from the checkpoint files:

$ ttAdmin -ramLoad -open database1
RAM Residence Policy : enduring
Manually Loaded In RAM : True
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database State : Open

Specifying a RAM Policy
TimesTen Classic enables you to specify a RAM policy that determines when TimesTen Classic
databases are loaded and unloaded from main memory. There is also a RAM policy that
enables you to detach and leave the shared memory segment in memory instead of unloading
it.

For each TimesTen Classic database, you can have a different RAM policy.

Note:

TimesTen Scaleout supports the manually loading and unloading of the database
through the ttGridAdmin utility by system administrators.

The RAM policy options are as follows:

• manual: The database is manually loaded and unloaded by system administrators. Once
loaded, TimesTen ensures that the database stays loaded until the administrator unloads

Chapter 2
Specifying a RAM Policy

2-9

the database (using ttAdmin -ramUnload) or unless an unrecoverable error condition
occurs. The database can only be explicitly loaded into system RAM by the administrator
(using the ttAdmin -ramLoad option). This is the recommended RAM policy, because it
avoids unnecessary database loading or unloading.

See Perform RAM Operations in Oracle TimesTen In-Memory Database Reference for
more details on ttAdmin -ramLoad and -ramUnload options. For more details on database
error recovery, see Changes to RAM Policy After Automatic Recovery Fails.

• enduring: This option should be used when you want to perform a fast upgrade.

The database can be manually loaded and unloaded by system administrators just as you
would with the manual RAM policy.

In addition, the enduring RAM policy enables you to detach from the shared memory
segment before closing the database. And when you are ready to open the database, you
can attach to this same shared memory segment and start up the main subdaemon to
restart the database. In addition, if a database fails because of an error, you can free the
shared memory segment and recover the database from the checkpoint files. See
Detaching, Attaching, and Freeing the Shared Memory Segment.

This is useful when performing an upgrade.

See Perform RAM Operations in Oracle TimesTen In-Memory Database Reference for
more details on ttAdmin -ramLoad and -ramUnload options. See Changes to RAM Policy
After Automatic Recovery Fails for more details on database error recovery.

• inUse: The database is loaded into memory when the first connection to the database is
opened, and it remains in memory as long as it has at least one active connection. When
the last connection to the database is closed, the database is unloaded from memory. This
is the default policy.

• inUse with RamGrace: The database is loaded into memory when the first connection to
the database is opened, and it remains in memory as long as it has at least one active
connection. When the last connection to the database is closed, the database remains in
memory for a grace period. The database is unloaded from memory only if no processes
have connected to the database for the duration of the grace period. The grace period can
be set or reset at any time. It stays in effect until the next time the grace period is changed.

Note:

Set the RAM policy to inUse or inUse with RamGrace if the application requires
that the TimesTen database is automatically loaded with the first connection and
automatically unloaded with the last disconnection. However, setting RAM policy
to inUse for production systems with large databases may cause performance
issues having the database unload and reload unexpectedly.

• always: The database always stays in memory. If the TimesTen daemon is restarted, it
automatically reloads the database. The database is always automatically reloaded unless
an unrecoverable error condition occurs.

The always RAM policy should be used with caution. When failures occur, it may not be
beneficial to have your database automatically reload. In addition, it may affect system
startup performance if all databases load at the same time when your system boots. See
Changes to RAM Policy After Automatic Recovery Fails on error recovery and Preventing
an Automatic Reload of the Database After Failure for what could occur when trying to
reload the database.

Chapter 2
Specifying a RAM Policy

2-10

A system administrator can set the RAM policy or manually load or unload a database in
TimesTen Classic with either the ttAdmin utility or the C API RAM policy utilities. See ttAdmin
in Oracle TimesTen In-Memory Database Reference or the TimesTen Utility API chapter in
Oracle TimesTen In-Memory Database C Developer's Guide.

Note:

By default, if an automatic recovery of the database is unsuccessful after a fatal error,
TimesTen Classic changes the always and manual RAM policies to InUse to prevent
reoccurring failures. For more information on how to prevent the RAM policy from
changing, see Changes to RAM Policy After Automatic Recovery Fails.

The following example sets the RAM policy to manual for the database identified by the ttdata
DSN:

Note:

The first line shows the RAM residence policy set to manual. The rest of the output
details other policies you can set with the ttAdmin utility. See ttAdmin in Oracle
TimesTen In-Memory Database Reference.

% ttAdmin –ramPolicy manual ttdata
RAM Residence Policy : manual
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database state : open

The following example sets the RAM policy of a TimesTen database to enduring:

$ ttAdmin -ramPolicy enduring database1

RAM Residence Policy : enduring
Manually Loaded In RAM : False
Replication Agent Policy : manual
Replication Manually Started : False
Cache Agent Policy : manual
Cache Agent Manually Started : False
Database state : open

Changes to RAM Policy After Automatic Recovery Fails
Certain procedures automatically occur by default when a fatal error invalidates the database
and the automatic database recovery performed by TimesTen Classic is unsuccessful.

• The RAM policies of manual, enduring, and always remain unchanged.

• The replication and cache agents are not restarted.

• After several failed attempts to reload the database, TimesTen Classic sets the
policyInactive mode, which prevents any more attempts at loading the database.

Chapter 2
Specifying a RAM Policy

2-11

Note:

Reloading a large database into memory when an invalidated database still exists in
memory can fill up available RAM. See Preventing an Automatic Reload of the
Database After Failure on how to stop automatic reloading of the database.

Preventing an Automatic Reload of the Database After Failure
After a fatal error that causes the database to be invalidated, TimesTen Classic attempts to
reload and recover the database, as long as it is consistent with the settings for the RAM
policy, cache agent policy, and replication agent policy.

However, user processes could still be connected to the invalidated database if they do not
know that the original database has been invalidated. In this case, the invalidated database
exists in memory until all user processes close their connections. Thus, the invalidated
database could coexist in memory with the newly reloaded database. This can be an issue if
the database is large.

Note:

Not only does the RAM policy determines whether the database is reloaded and
recovered, but the cache agent and replication agent policies also factor into whether
the database is reloaded after invalidation. If the cache agent and replication agent
policies are set so that the daemon automatically restarts the agent after a failure, the
agent initiates a connection to the database. If this is the first connection, the daemon
reloads the database and performs a recovery.

For more information on cache agent and replication agent policies, see Starting and
Stopping the Replication Agents in the Oracle TimesTen In-Memory Database
Replication Guide, Set a Cache Agent Start Policy in TimesTen Classic in the Oracle
TimesTen In-Memory Database Cache Guide, and ttAdmin in the Oracle TimesTen
In-Memory Database Reference.

You can prevent the database from being automatically reloaded after an invalidation using the
ttAdmin -noautoreload command. You can reset to the default automatic database reload
behavior with the ttAdmin -autoreload command. See ttAdmin in the Oracle TimesTen In-
Memory Database Reference.

Note:

The ttRamPolicyAutoReloadSet built-in procedure performs the same actions as
ttAdmin -noautoreload and ttAdmin -autoreload. See ttRamPolicyAutoReloadSet
in the Oracle TimesTen In-Memory Database Reference.

Any one of the following initiates a reload and recovery of the database so that standard
behavior can resume:

• The TimesTen daemon restarts.

Chapter 2
Specifying a RAM Policy

2-12

• A process connects successfully.

• The administrator runs a ttAdmin command for the database that changes the RAM policy,
performs a RAM load, or starts either the cache or replication agents.

If you set the behavior to prevent automatic reloads of the database, you may receive the
following error when connecting to a database that was not reloaded.

Error 707, "Attempt to connect to a data store that has been manually unloaded from RAM"

Disconnecting from a Database
You can shut down or unload the database by first disconnecting applications in an orderly
fashion.

The forced disconnect option asynchronously disconnects all connected applications from the
database, including those that are idle or unresponsive.

• Reliably disconnects and detaches from the shared memory segment for a database.

• Successfully disconnects any idle or unresponsive connections.

The following sections describe how to disconnect connections from a TimesTen database:

• Disconnecting from a Database in TimesTen Scaleout

• Disconnecting from a Database in TimesTen Classic

Disconnecting from a Database in TimesTen Scaleout
If you are unable to individually disconnect every application from the TimesTen Scaleout
database, use the ttGridAdmin dbDisconnect command to disconnect all user connections
from the database.

See Unloading a Database from Memory in Oracle TimesTen In-Memory Database Scaleout
User's Guide.

Disconnecting from a Database in TimesTen Classic
You can disconnect all connections to a TimesTen Classic database with the ttAdmin -
disconnect command.

However, you must first enable the capability for forced disconnect by setting the
ForceDisconnectEnabled connection attribute to 1 in the DSN definition within the
sys.odbc.ini file. See ForceDisconnectEnabled in the Oracle TimesTen In-Memory Database
Reference.

While control returns to the command prompt, the force disconnect operation may take multiple
seconds (or minutes) to complete. Verify the status of the force disconnect operation with the
ttStatus utility.

While the forced disconnect operation is in process, any new connection request is rejected by
the main daemon. Once the force disconnect operation completes, new connections are
accepted.

You can specify how urgently you need connections to be forced to disconnect with the
urgency level:

• The -transactional option waits for any open transactions to be committed or rolled back
before disconnecting. Does not affect idle connections.

Chapter 2
Disconnecting from a Database

2-13

• The -immediate option rolls back any open transactions before immediately disconnecting.
This option also disconnects idle connections.

• The -abort option terminates all direct mode application processes and client/server
processes (ttcserver) in order to disconnect.

Most of the time, you should use the -transactional and -immediate options. A
recommended practice is to run the -disconnect command twice, as necessary. First use the
transactional urgency level. Then, after allowing some time, use ttStatus to confirm whether
connections have been closed. If not all connections have been closed yet, then use the
immediate urgency level.

The -abort option should only be used on the rare occasion when both the transactional and
immediate urgency levels fail to successfully disconnect all specified connections. The -abort
option could result in lost transactions, as this operation abruptly causes every user and
ttcserver process connected to the database to terminate.

You can specify which type of connections to disconnect with the granularity level.

• The -users option (default) disconnects every user connection to the database. For
example, use this granularity level when preparing to perform database maintenance.

• The -unload option disconnects every connection to the database, including subdaemon
connections. For example, use this granularity level when attempting to unload the
database.

Note:

The always RAM policy conflicts with the unload granularity level. Using these
simultaneously returns an error.

For example, the following script disconnects all connections and unloads the TimesTen
Classic database by first running ttAdmin -disconnect with the transactional urgency level.
Then, the script waits a short time to evaluate if the connections disconnected before trying the
immediate urgency level.

#!/bin/sh

disconnect users and unload the database with the transactional urgency level
ttAdmin -disconnect -transactional -unload database1

wait 10 seconds for the forced disconnect to finish
COUNT = 0
while [ttStatus | grep "pending disconnection"] || [$COUNT -ne 10]
do
 sleep 1
 COUNT=$((COUNT+1))
done

increase the urgency level to immediate
if [ttStatus | grep "pending disconnection"]; then
 ttAdmin -disconnect -immediate -unload database1
fi

Use the ttStatus utility to check progress. During a forced disconnect operation, the output
indicates the pending disconnections:

Chapter 2
Disconnecting from a Database

2-14

TimesTen status report

Daemon pid 10457 port 6627 instance user1
TimesTen server pid 10464 started on port 6629
--
--
Data store /disk1/databases/database1
Daemon pid 10457 port 6627 instance user1
TimesTen server pid 10464 started on port 6629
There are 14 connections to the data store, ***14 pending disconnection***
Shared Memory KEY 0x0210679b ID 949092358
PL/SQL Memory KEY 0x0310679b ID 949125127 Address 0x5000000000
Type PID Context Connection Name ConnID
Process 10484 0x00007f3ddfeb4010 tt_181 1
...

Specifying the Memory Region Sizes of a Database
TimesTen manages database space using two separate memory regions within a single
contiguous memory space. One region contains permanent data and the other contains
temporary data.

• Permanent data includes the tables and indexes that make up a TimesTen database.
When a database is loaded into memory, the contents of the permanent memory region
are read from files stored on the file system. The permanent memory region is written to
the file system during checkpoint operations. TimesTen stores all data in RAM to achieve
exceptional performance. The database throws an error if there is no space left for a new
piece of data. PermSize can be increased with a database restart but it cannot be
decreased.

• Temporary data includes locks, cursors, compiled commands, and other structures needed
for command execution and query evaluation. The temporary memory region is created
when a database is loaded into memory and is destroyed when it is unloaded.

The connection attributes that control the size of the database when it is in memory are
PermSize and TempSize. The PermSize attribute specifies the size of the permanent memory
region and the TempSize attribute specifies the size of the temporary memory region.

Note:

See PermSize and TempSize in the Oracle TimesTen In-Memory Database
Reference.

The sizes of the permanent and temporary memory regions are set when a database is loaded
into memory and cannot be changed while the database is in memory. To change the size of
either region, you must unload the database from memory and then reconnect using different
values for the PermSize or TempSize attributes. See Loading and Unloading the Database from
Memory.

Managing the database size is described in these sections:

• Estimating and Modifying the Memory Region Sizes for the Database

• Monitoring PermSize and TempSize Attributes

• Reducing Database Size for TimesTen Classic

Chapter 2
Specifying the Memory Region Sizes of a Database

2-15

• Receiving Out-of-Memory Warnings

Estimating and Modifying the Memory Region Sizes for the Database
Database operations cannot complete successfully without allocation of sufficient memory.
First, determine appropriate sizes for the TimesTen permanent and temporary memory regions
and the transaction log buffer.

Use the ttShmSize utility or run the application until you can make reasonable estimates, then
set these TimesTen connection attributes:

• DSN: It is specified in the odbc.ini file. The DSN appears inside square brackets at the top
of the DSN definition on a line by itself. For example, [Sampledb].

• PermSize: Size of the permanent memory region, in MB, for the database where the actual
data is stored. Make sure PermSize is sufficient to hold all the data. You can increase this
value, but not decrease it for this database.

In TimesTen Classic, you can decrease the permanent memory region by re-creating the
database with a smaller size. See Reducing Database Size for TimesTen Classic.

Note:

See Determining the Value of the PermSize Attribute in the Oracle TimesTen In-
Memory Database Scaleout User's Guide for how to evaluate an appropriate
value for the PermSize connection attribute for a TimesTen Scaleout database.

• TempSize: For TimesTen Classic, TempSize indicates the total amount of memory in MB
allocated to the temporary region for the database. For TimesTen Scaleout, TempSize
indicates the total amount of memory in MB allocated to the temporary region for an
element. Related database operations may fail if TempSize is insufficient. You can change
this size with a database restart.

• LogBufMB: Size of the internal transaction log buffer, in MB. See Configure Log Buffer and
Log File Size Parameters.

• Connections: Maximum number of connections that you expect your database will use.

See PermSize, TempSize, LogBufMB and LogFileSize in the Oracle TimesTen In-Memory
Database Reference.

Next, ensure that the maximum shared memory segment size of your system is large enough
to contain the database. Use the maximum number of connections that you expect your
database to use. All of the values are in MB (megabytes). Make it larger than the following:

$ ttShmSize -connstr
"DSN=sampledb;PermSize=512;TempSize=128;LogBufMB=256;Connections=2048"
The required shared memory size is 1178028616 bytes.

Note:

If a TimesTen Classic database is configured for replication, reconfigure the database
sizes for all replicas of the database. Once you have made the change in database
size, load the database into memory and restart the cache and replication agents.

Chapter 2
Specifying the Memory Region Sizes of a Database

2-16

If there are multiple TimesTen databases on your system, each using its own shared memory
segment, the maximum shared memory segment size must be large enough to accommodate
the largest database.

Next, determine the total shared memory allocation you will need (converted to appropriate
units). If there are multiple TimesTen databases on your system, the total shared memory
allocation must be large enough to accommodate all of them, using the above equation for
each database. (Then, on Linux for example, divide this value by the page size, typically 4096
bytes, to get total memory allocation in pages.)

Note:

In TimesTen Classic, additional shared segments may be created either for PL/SQL
with the PLSQL_MEMORY_SIZE connection attribute or for client/server with the -
server_shmsize configuration option (in timesten.conf). Refer to
PLSQL_MEMORY_SIZE in Oracle TimesTen In-Memory Database Reference. If you
use the default values or similarly small sizes, there should be enough unused space
in shared memory to accommodate these segments.

Finally, if you want to allow for database invalidation, there must be at least twice as much
physical memory as the size of the largest TimesTen database. If you do not allow for this, but
an invalidation does occur, you cannot reload the database into memory until all processes and
connections that used the database have been found and terminated.

See Linux Prerequisites in Oracle TimesTen In-Memory Database Installation, Migration, and
Upgrade Guide.

Monitoring PermSize and TempSize Attributes
The SYS.V$MONITOR and SYS.GV$MONITOR system views contains several columns that can be
used to monitor usage of PermSize and TempSize.

These columns include PERM_ALLOCATED_SIZE, TEMP_ALLOCATED_SIZE, PERM_IN_USE_SIZE,
PERM_IN_USE_HIGH_WATER, TEMP_IN_USE_SIZE, and TEMP_IN_USE_HIGH_WATER. Each of these
columns show in KB units the currently allocated size of the database and the in-use size of
the database. The system updates this information each time a connection is made or released
and each time a transaction is committed or rolled back.

For example, you could evaluate the temporary space usage by running a full workload and
watching the high water mark (TEMP_IN_USE_HIGH_WATER) of the temporary space usage. The
high water mark can be reset using the ttMonitorHighWaterReset built-in procedure. And if
necessary, you can change TempSize to a value of the observed TEMP_IN_USE_HIGH_WATER
value and add 10%.

Note:

You can also use the ttIsql dssize command to provide this information. See Using
the ttIsql dssize Command and ttIsql in the Oracle TimesTen In-Memory Database
Reference.

Chapter 2
Specifying the Memory Region Sizes of a Database

2-17

You can monitor block-level fragmentation in the database with the SYS.V$BLOCK_INFO or
SYS.GV$BLOCK_INFO system tables or by calling the ttBlockInfo built-in procedure.

See SYS.GV$MONITOR, SYS.V$MONITOR, SYS.GV$BLOCK_INFO or
SYS.V$BLOCK_INFO in the Oracle TimesTen In-Memory Database System Tables and Views
Reference for details on these views. See ttBlockInfo in the Oracle TimesTen In-Memory
Database Reference.

Reducing Database Size for TimesTen Classic
Once a TimesTen Classic database has been defined with a particular size for the permanent
region (indicated by the PermSize DSN attribute), it cannot be reduced to a smaller size, even if
tables or rows are deleted.

To reduce the allocated size of the permanent region of a TimesTen Classic database, run the
ttMigrate utility to save a copy of the database and then re-create the database with a smaller
permanent region size and restore the data.

Perform these steps to reduce the permanent region size of a TimesTen Classic database:

1. Disconnect applications from the database with the ttAdmin -disconnect command. See
Disconnecting from a Database in TimesTen Classic in this book and ttAdmin in the Oracle
TimesTen In-Memory Database Reference.

2. Use the ttMigrate -c option to create a data file for the database.

ttMigrate -c database1 /tmp/database1
3. Unload the TimesTen Classic database from memory. See Unloading a Database from

Memory for TimesTen Classic.

4. Create a new DSN definition for the new copy of the database with a smaller PermSize
value. To modify the original DSN rather than create a new one, you must destroy the
original TimesTen Classic database using the ttDestroy utility before restoring from the
backup.

5. Recreate the TimesTen Classic database by using ttIsql with AutoCreate=1.

ttIsql -connstr "dsn=database1;AutoCreate=1" -e "quit"

The database is empty at this point.

6. Restore the backup by using the ttMigrate -r and -relaxedUpgrade options.

ttMigrate -r -relaxedUpgrade database1 /tmp/database1

Note:

• The permanent region size of a TimesTen Classic database cannot be reduced
below the size that is required by the data currently stored in the database. This
value can be determined by querying the perm_in_use_size column of the
v$monitor system view.

• You can also use this procedure to compact the TimesTen Classic database in
order to reduce fragmentation caused by partially full table pages or
fragmentation of the heap buffers that store index nodes and out-of-line values.

Chapter 2
Specifying the Memory Region Sizes of a Database

2-18

Receiving Out-of-Memory Warnings
Applications must call the ttWarnOnLowMemory built-in procedure to receive out-of memory
warnings.

TimesTen Classic also provides two general connection attributes that determine when a low
memory warning should be issued: PermWarnThreshold and TempWarnThreshold. Both
attributes take a percentage value.

Storage Provisioning for TimesTen
Storage provisioning is the process of allocating server storage space.

• TimesTen installation storage allocation: A TimesTen installation includes all of the
software.

Plan to allocate at least 1.5 GB for each TimesTen installation. If you run multiple instances
on the same system, they can all share a single TimesTen installation. In order to
incorporate software version upgrades, you should provision double that amount of space,
plus some additional space.

• TimesTen instance storage allocation: Each TimesTen instance runs its own set of daemon
processes (with associated daemon log files).

Plan to allocate at least 256 MB for each TimesTen instance.

• Checkpoint files: Each TimesTen database requires disk space for two checkpoint files,
each of which is stored in the directory that is specified with the DataStore attribute. As
each checkpoint file grows on the file system, it never decreases in size. This can result in
the size of each checkpoint file being equal to the maximum size that the database has
ever reached in the permanent memory region. Thus, you should plan as though each
checkpoint file occupies approximately the same amount of space as defined for
permanent memory (as defined with the PermSize connection attribute).

Plan to allocate twice the total permanent space of your databases plus 30%.

Note:

For TimesTen Classic, you can set the Preallocate connection attribute to 1 to
have TimesTen reserve file system space at connect time for checkpoint files.
This is useful for large databases, which ensures that the file system always has
room for the checkpoint files as data is added to the database. For more
information, see Preallocate in the Oracle TimesTen In-Memory Database
Reference.

• Transaction log files: Transaction log files are the most difficult space requirement to
estimate. See Storage Provisioning for Transaction Log Files for how to plan for space
provisioning for transaction log files.

• Local space to facilitate backup or export files for repositories in TimesTen Scaleout.

When you use an SCP-attached repository, any operations are first saved locally by the
target instances before copied to the repository. The target data instances initially store the
backup (or export) files to the $timesten_home/grid/admin/temp directory. You must
ensure that you provision enough storage in this directory to accommodate the maximum
size for backup or export files that would end up in a repository.

Chapter 2
Storage Provisioning for TimesTen

2-19

Plan to allocate space of PermSize times the number of replica sets.

• Repository storage provisioning in TimesTen Scaleout.

A single backup file contains one element from each replica set. Thus, the number of
backup files needed to contain all of the rows of the tables in the database corresponds to
the number of replica sets in your database.

Note:

For hash distributed tables, only a portion of the rows of the tables are included
in each backup file. The rows of hash distributed tables are distributed across the
number of replica sets.

For duplicated tables, each backup file contains all rows in each table.

Plan to allocate space of PermSize times the number of replica sets.

Storage Provisioning for Transaction Log Files
There is a process for estimating the necessary file system space allocation for transaction log
files

Note:

You can generate a more accurate estimate of the transaction log volume within a
test environment.

Consider the following when estimating the necessary file system space allocation for
transaction log files:

• TimesTen keeps enough transaction log files to support recovering from either checkpoint
file. Transaction log files may accumulate depending on the settings for background
checkpoint operations (defined with the CkptLogVolume and CkptFrequency first
connection attributes). In addition, TimesTen preallocates space for three additional
transaction log files.

• TimesTen uses fuzzy checkpoint operations for background operations. Transaction log
files can accumulate during fuzzy checkpoint operations. The amount of time taken to
create a checkpoint scales with the value assigned to the PermSize connection attribute.

• Transaction log files may accumulate between incremental backups.

• In TimesTen Scaleout, each element in each replica set has its own transaction log files to
store transaction log records. If a transaction modifies data in a replica set, then the
changes are usually recorded in both elements of the replica set. However, if one of the
elements in the replica set is down, then the changes are only recorded in the transaction
log files for the active element. Transaction log files can accumulate if one element in a
replica set is down for a very long time.

• In TimesTen Classic, transaction log files may accumulate on the master during temporary
replication outages or if the subscriber is down.

Chapter 2
Storage Provisioning for TimesTen

2-20

Note:

You can limit the number of transaction log files retained with the FAILTHRESHOLD
clause on the CREATE REPLICATION and ALTER REPLICATION statements.

See CkptLogVolume, CkptFrequency, and PermSize in the Oracle TimesTen In-Memory
Database Reference for more information on these connection attributes. See CREATE
REPLICATION and ALTER REPLICATION in the Oracle TimesTen In-Memory Database SQL
Reference for more information on these SQL statements.

The estimate of the transaction log volume depends on the peak update transaction rate and
the average complexity of each transaction that modifies the database.

Consider:

• B represents the transaction log volume in bytes per transaction.

• C represents the number of columns updated. The minimum transaction update (which is
an update of a single number column) generates 400 bytes of transaction log data. Each
additional number column update generates another 250 bytes.

• V represents the average size of larger data inserted or updated (columns of type CHAR,
VARCHAR2, BINARY, VARBINARY or LOB) for each write transaction.

To estimate the transaction log volume for each transaction, use this formula:

B = 400 + ((C-1) * 250) + V

Note that the first column is just 150 bytes more than all subsequent columns, as follows:

B = (C * 250) + (400-250) + V

which simplifies to:

B =(C * 250) + 150 + V

Multiply the estimated transaction log volume value (B) by the expected peak transaction rate
to find the expected peak transaction log rate.

Where:

• L = total storage space to provision for transaction log files in bytes.

• C = average number of columns inserted or updated per write transaction.

• V = average bytes of large data (CHAR, VARCHAR2, BINARY, or VARBINARY columns) inserted
or updated for each write transaction.

• S = time in seconds of required transaction log retention.

• T = peak transaction rate per second averaged over intervals of S seconds.

• f = fraction of transactions that include insert, update, or delete operations.

• Lastly, increase the estimated file system space by an additional 30% for contingencies.

Taking all these factors into account, estimate provisioned transaction log file space in bytes
according to this formula:

L = ((C * 250) + 150 + V) * S * T * f * 1.3

For example, a workload consists of 35% update transactions. Each transaction updates four
columns, including two character columns each averaging 30 bytes updated total. The

Chapter 2
Storage Provisioning for TimesTen

2-21

workload runs at 1 million transactions per second and needs enough transaction log space to
hold one hour's worth of transactions.

• C = 4 columns

• V = 30

• S = 3600

• T = 1,000,000

• f = 35% = 0.35

Thus, you would estimate that the storage provisioning workload requires:

L = ((4 * 250) + 150 + 30) * 3,600 * 1,000,000 * 0.35 * 1.3 = 1.9 TB

Thus, provision file system space of 1.9 TB for the transaction log files.

Bulk Copy Data Using the ttBulkCp Utility
The ttBulkCp utility enables you to copy data between TimesTen tables and ASCII files.

You can manage certain aspects of existing tables in the database with the ttBulkCp utility.
With the ttBulkCp utility, you can add rows of data to an existing table, save data to an ASCII
file, and load the data rows into a table in a TimesTen database.

The rows you are adding must contain the same number of columns as the table, and the data
in each column must be of the type defined for that column.

Because the ttBulkCp utility works on data stored in ASCII files, you can also use this utility to
import data from other applications, provided the number of columns and data types are
compatible with those in the table in the TimesTen database and that the file found is
compatible with ttBulkCp.

• Copying Data from a TimesTen Table to an ASCII File

• Copying Data from an ASCII File into a TimesTen Table

Copying Data from a TimesTen Table to an ASCII File
Run the ttBulkCp utility with the -o option to copy data from a TimesTen table to an ASCII file.

Note:

Ensure that your TimesTen user has SELECT privilege on the tables it copies
information from.

This example copies the data from the hr.employees table of the database1 database to the
employees.dmp file using the ttBulkCp -o mode.

ttBulkCp -o -connstr "DSN=database1;UID=HR;PWD=hr" hr.employees > employees.dmp

See ttBulkCp in the Oracle TimesTen In-Memory Database Reference.

Chapter 2
Bulk Copy Data Using the ttBulkCp Utility

2-22

Copying Data from an ASCII File into a TimesTen Table
The ttBulkCp utility enables you to copy data from an ASCII file into a database table. The
ttBulkCp utility does not copy duplicate rows into a table.

• Running ttBulkCp with the -i Option

• Running ttBulkCp with the -directLoad Option on TimesTen Classic

Running ttBulkCp with the -i Option
The ttBulkCp utility with the -i option enables you to load data from a file.

This option uses standard INSERT SQL statements to load data into a specific table of a
TimesTen database.

On TimesTen Scaleout, the ttBulkCp utility inserts each row into its corresponding element
based on the distribution scheme of the table. For TimesTen Scaleout, you can populate a
table from a single location or from several locations. See Bulk Loading Data into a Database
in Oracle TimesTen In-Memory Database Scaleout User's Guide.

Note:

Ensure that your TimesTen user has INSERT privilege on the tables it copies
information into.

This example copies the data from the employees.dmp file into the hr.employees table of the
database1 database using the ttBulkCp -i mode.

% ttBulkCp -i -connstr "DSN=database1;UID=HR;PWD=hr" hr.employees employees.dmp

employees.dmp:
 107 rows inserted
 0 duplicate rows not inserted
 107 rows total

See ttBulkCp in Oracle TimesTen In-Memory Database Reference.

Running ttBulkCp with the -directLoad Option on TimesTen Classic
Run the ttBulkCp utility with the -directLoad option to copy data from an ASCII file into a
TimesTen Classic database table.

The -directLoad option loads data with standard INSERT SQL statements. The ttBulkCp -
directLoad option can only be used by applications using direct connections, which avoids
some of the overhead required when using client/server connections resulting in better
performance than the -i option.

For improved performance, consider dropping indexes before loading data with the -
directLoad option. Use the ttSchema utility to view the definition of all the indexes that are
created on the tables of a TimesTen Classic database. Once the load operation is complete,
manually re-create the indexes on your table. See ttSchema in the Oracle TimesTen In-
Memory Database Reference.

Chapter 2
Bulk Copy Data Using the ttBulkCp Utility

2-23

Note:

Ensure that your TimesTen user has INSERT privilege on the tables it copies
information into.

This example copies the data from the employees.dmp file into the hr.employees table of the
database1 database using the ttBulkCp -directLoad option.

% ttBulkCp -directLoad -connstr "DSN=database1;UID=HR;PWD=hr" hr.employees employees.dmp

employees.dmp:
 107 rows inserted
 0 duplicate rows not inserted
 107 rows total

See ttBulkCp in the Oracle TimesTen In-Memory Database Reference.

Thread Programming with TimesTen
TimesTen supports multithreaded application access to databases. When a connection is
made to a database, any thread may issue operations on the connection.

Typically, a thread issues operations on its own connection and therefore in a separate
transaction from all other threads. In environments where threads are created and destroyed
rapidly, better performance may be obtained by maintaining a pool of connections. Threads
can allocate connections from this pool on demand to avoid the connect and disconnect
overhead.

TimesTen enables multiple threads to issue requests on the same connection and therefore the
same transaction. These requests are serialized by TimesTen, although the application may
require additional serialization of its own.

TimesTen also enables a thread to issue requests against multiple connections, managing
activities in several separate and concurrent transactions on the same or different databases.

Defragmenting TimesTen Databases
Under some circumstances, a TimesTen database may develop memory fragmentation such
that significant amounts of free memory are allocated to partially filled pages of existing tables.
This can result in an inability to allocate memory for other uses (such as new pages for other
tables) due to a lack of free memory. In these circumstances, it is necessary to defragment the
database in order to make this memory available for other uses.
A secondary table partition is created after a table has been altered with the ALTER TABLE ADD
SQL statement. Defragmentation enables you to remove the secondary table partitions and
create a single table partition that contains all of the table columns. When secondary table
partitions have been created, it is recommended to periodically defragment the database in
order to improve space utilization and performance.

The following procedures address the different types of database fragmentation:

• Offline Defragmentation of a TimesTen Scaleout Database

• Offline Defragmentation of a TimesTen Classic Database

• Online Defragmentation of TimesTen Classic Databases in an Active Standby Pair
Replication Scheme

Chapter 2
Thread Programming with TimesTen

2-24

• Online Defragmentation of TimesTen Classic Databases in a Non Active Standby Pair
Replication Scheme

Offline Defragmentation of a TimesTen Scaleout Database
A TimesTen Scaleout database is defragmented as part of the export and import process.

Thus, to defragment a TimesTen Scaleout database, use the ttGridAdmin dbExport and
dbImport commands. See Exporting and Importing a Database in the Oracle TimesTen In-
Memory Database Scaleout User's Guide.

Offline Defragmentation of a TimesTen Classic Database
To defragment a TimesTen Classic database, use the ttMigrate utility.

1. Stop all connections to the database.

2. Save a copy of the database using ttMigrate.

ttMigrate -c ttdb ttdb.dat
3. As the administration user, rebuild the ttdb database:

ttMigrate -r -relaxedUpgrade -connstr "dsn=ttdb" ttdb.dat

Note:

You can achieve maximum table defragmentation with the ttMigrate -r -
relaxedUpgrade command. The -relaxedUpgrade option also condenses table
partitions. If you do not want to condense table partitions, remove the -
relaxedUpgrade option from the ttMigrate -r -relaxedUpgrade command.

At this time:

• All the users, cache groups, and the active standby pair have been restored to ttdb.

• The cache groups are in AUTOREFRESH STATE = OFF.

• The cache agent and replication agent are not running.

Table partitions can be added when columns are added to tables with the ALTER TABLE ADD
SQL statement. See the notes on ALTER TABLE in the Oracle TimesTen In-Memory Database
SQL Reference. See, Avoid ALTER TABLE for performance considerations.

See ttMigrate in the Oracle TimesTen In-Memory Database Reference.

Online Defragmentation of TimesTen Classic Databases in an Active
Standby Pair Replication Scheme

Use a combination of the ttMigrate -relaxedUpgrade and ttRepAdmin -duplicate utilities to
defragment TimesTen Classic databases (with minimal overall service downtime) that are
involved in a replication scheme where TABLE DEFINITION CHECKING is set to RELAXED. In
addition, the ttMigrate -relaxedUpgrade option condenses partitions.

Chapter 2
Defragmenting TimesTen Databases

2-25

Note:

If your TimesTen Classic database uses an active standby pair replication scheme,
then you can only defragment these databases if the active standby pair replication
scheme either does not contain any cache groups or contains only READONLY cache
groups.

The following sections describe how to defragment TimesTen Classic databases that are
involved in an active standby pair replication scheme:

• Migrate and Rebuild the Standby Database

• Reverse the Active and Standby Roles

• Destroy and Re-Create a New Standby

The example in this section shows how to perform an online defragmentation with an active
standby pair replication scheme where the active database is ttdb1 and the standby database
is ttdb2.

Note:

The examples provided in each section assume that you are familiar with the
configuration and management of replication schemes. See Getting Started in the
Oracle TimesTen In-Memory Database Replication Guide.

Migrate and Rebuild the Standby Database
This section shows how to stop replication to the standby TimesTen database, save a copy of
the standby database, and then defragment the standby database.

Note:

While the standby database is defragmented, application processing can continue on
the active database.

Perform the following to save a copy of the standby database:

1. Stop the replication agent on the standby database (ttdb2):

ttAdmin –repStop ttdb2
2. If there any subscribers, run ttRepStateSave on the active database to set the status of

the standby to failed. As long as the standby database is unavailable, updates to the active
database are replicated directly to the subscriber databases.

call ttRepStateSave('FAILED', 'ttdb2', 'ttsrv2');
3. Save a copy of the standby database using ttMigrate.

ttMigrate -c ttdb2 ttdb2.dat
4. Stop the cache agent, drop any cache groups, and destroy the standby.

Chapter 2
Defragmenting TimesTen Databases

2-26

ttAdmin –cacheStop ttdb2

While connected as cache manager user in ttIsql, drop all cache groups:

DROP CACHE GROUP t_cg;

Destroy the standby database:

ttDestroy ttdb2
5. Rebuild the standby database. Run the following on the standby as the instance

administrator:

ttIsql ttdb2
6. Create the cache manager user and grant the user ADMIN privileges. Using ttIsql:

CREATE USER cacheadmin IDENTIFIED BY cadminpwd;
GRANT CREATE SESSION, CACHE_MANAGER, CREATE ANY TABLE, DROP ANY TABLE TO cacheadmin;
GRANT ADMIN TO cacheadmin;

Note:

The cache manager user requires ADMIN privileges in order to run ttMigrate –r.
Once migration is completed, you can revoke the ADMIN privilege from this user if
desired.

See ttMigrate in the Oracle TimesTen In-Memory Database Reference.

7. As the cache manager user, rebuild the ttdb2 database:

ttMigrate -r -relaxedUpgrade -cacheuid cacheadmin -cachepwd cadminpwd
-connstr "dsn=ttdb2;uid=cacheadmin;pwd=cadminpwd;oraclepwd=oraclepwd" ttdb2.dat

At this time:

• All the users, cache groups, and the active standby pair have been restored to ttdb2.

• The cache groups are in AUTOREFRESH STATE = OFF.

• The cache agent and replication agent are not running.

8. As the cache manager user, start the cache agent on the standby:

ttAdmin –cacheStart ttdb2
9. Load any cache groups.

ALTER CACHE GROUP t_cg SET AUTOREFRESH STATE PAUSED;
LOAD CACHE GROUP t_cg COMMIT EVERY 256 ROWS PARALLEL <nThreads>;

Note:

• Choose nThreads based on how many CPU cores you use to insert the data
into TimesTen for this load operation.

• If there are several read-only cache groups it is recommended that you run
several LOAD operations in separate sessions in parallel, if the TimesTen and
Oracle Database resources are available.

Chapter 2
Defragmenting TimesTen Databases

2-27

10. After completion, verify the cache group state.

Command> cacheGroups;
Cache Group CACHEADMIN.T_CG:
 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: On
 Autorefresh Interval: 10 Seconds

 Autorefresh Status: ok
 Aging: No aging defined

 Root Table: SALES.T
 Table Type: Read Only

1 cache group found.

11. Start the replication agent on the standby database:

ttAdmin -repStart ttdb2
12. Check the replication state on the standby:

% ttIsql ttdb2
Command> call ttRepStateGet;
< STANDBY >
1 row found.

The standby database (ttdb2) has been defragmented and both the active and standby
databases are functional.

Reverse the Active and Standby Roles
In order to perform the database defragmentation on the active database, switch the roles of
the active and standby database.

The active (ttdb1) becomes the standby database. The original standby (ttdb2) becomes the
active database.

1. Stop all application processing and disconnect all application connections with the ttAdmin
-disconnect command. Any query only processing can be moved to work at the ttdb2
TimesTen database. See Disconnecting from a Database in this book and ttAdmin in the
Oracle TimesTen In-Memory Database Reference.

2. Call the ttRepSubscriberWait built-in procedure at the current active database (ttdb1),
with the database name and host of the current standby database (ttdb2) as input
parameters. This ensures that all queued updates have been transmitted to the current
standby database.

Chapter 2
Defragmenting TimesTen Databases

2-28

Note:

If you set the waitTime to -1, the call waits until all transactions that committed
before the call have been transmitted to the subscriber.

However, if you set the waitTime to any value (this value cannot be NULL), ensure
that the return timeOut parameter value is 0x00 before continuing. If the returned
value 0x01, call the ttRepSubscriberWait built-in procedure until all transactions
that committed before the call have been transmitted to the subscriber.

For more information about the ttRepSubscriberWait built-in procedure, see
ttRepSubscriberWait in the Oracle TimesTen In-Memory Database Reference.

call ttRepSubscriberWait(NULL,NULL,'ttdb2','ttsrv2', 100);
3. Stop the replication agent on the current active database.

call ttRepStop;
4. Call the ttRepDeactivate built-in procedure on the current active database. This puts the

database in the IDLE state.

call ttRepDeactivate;

Call the ttRepStateGet built-in procedure to show the database state.

Command> call ttRepStateGet;
< IDLE >
1 row found.

5. Promote the standby to active by calling the ttRepStateSet('ACTIVE') built-in procedure
on the old standby database. This database now becomes the active database in the
active standby pair. Use the ttRepStateGet built-on to verify that the database has
become active.

call ttRepStateSet('ACTIVE');

Command> call ttRepStateGet;
< ACTIVE >
1 row found.

6. Stop the replication agent on the database that used to be the active database.

ttAdmin -repStop ttdb1
7. Run ttRepStateSave on the new active database to set the status of the old active

database to failed. As long as the standby database is unavailable, updates to the active
database are replicated directly to the subscriber databases.

call ttRepStateSave('FAILED', 'ttdb1', 'ttsrv1');
8. Restart the full application workload on the new active database (ttdb2).

This database now acts as the standby database in the active standby pair.

Destroy and Re-Create a New Standby
You can destroy and recreate a new standby by duplicating the new active with the ttRepAdmin
-duplicate command.

During these steps, application processing can continue at the active database.

Chapter 2
Defragmenting TimesTen Databases

2-29

1. Stop the cache agent on the new standby database:

ttAdmin –cacheStop ttdb1
2. As the cache manager user, drop all cache groups using ttIsql:

DROP CACHE GROUP t_cg;
3. Destroy the database:

ttDestroy ttdb1
4. Re-create the new standby database by duplicating the new active.

ttRepAdmin -duplicate -from ttdb2 -host ttsrv2 –setMasterRepStart -UID
ttAdmin -PWD ttadminpwd -keepCG -cacheUID cacheadmin -cachePWD cadminpwd ttdb1

5. Start cache and replication agents on the new standby database:

ttAdmin –cacheStart ttdb1
ttAdmin –repStart ttdb1

This process defragments both the active and standby databases with only a few seconds of
service interruption.

Online Defragmentation of TimesTen Classic Databases in a Non Active
Standby Pair Replication Scheme

Use a combination of the ttMigrate -relaxedUpgrade and ttRepAdmin -duplicate utilities to
defragment TimesTen Classic databases (with minimal overall service downtime) that are
involved in a replication scheme where TABLE DEFINITION CHECKING is set to RELAXED. In
addition, the ttMigrate -relaxedUpgrade option condenses partitions.

Note:

The examples provided in each section assume that you are familiar with the
configuration and management of replication schemes. For more information, see
Getting Started in the Oracle TimesTen In-Memory Database Replication Guide.

The following sections describe how to defragment TimesTen Classic databases that are
involved in a non active standby pair replication scheme:

• Migrate and Rebuild the Standby Database

• Alter the Replication Scheme

• Destroy and Re-Create a Database

Note:

These sections discuss how to defragment databases that are involved in a
bidirectional replication scheme. In bidirectional replication schemes, each database
is both a master and subscriber.

The examples in this section show how to perform an online defragmentation with bidirectional
and unidirectional replication schemes with two TimesTen databases named ttdb1 and ttdb2.

Chapter 2
Defragmenting TimesTen Databases

2-30

For the unidirectional replication example, ttdb1 represents the master and ttdb2 represents
the subscriber.

Migrate and Rebuild a Database
The first step in the procedure is to stop replication on one of the TimesTen Classic databases
and then defragment this database.

Note:

While one of the databases is defragmented, application processing can continue on
the other database.

Perform the following to save a copy of the database:

1. Stop the replication agents on one of the databases.

On the ttdb2 database:

ttAdmin –repStop ttdb2
2. Save a copy of the ttdb1 database using ttMigrate.

ttMigrate -c ttdb2 ttdb2.dat
3. Destroy the database:

ttDestroy ttdb2
4. As a TimesTen user with ADMIN privileges, rebuild the ttdb2 database:

ttMigrate -r -relaxedUpgrade -connstr "dsn=ttdb2;uid=ttadmin;pwd=ttadminpwd"
ttdb2.dat

At this time:

• All the users have been restored to ttdb2.

• The replication agent is not running.

5. Restart the replication agent on ttdb2:

ttAdmin -repStart ttdb2
The ttdb2 TimesTen database has been defragmented.

Alter the Replication Scheme
In order to perform the database defragmentation on the ttdb1 database, perform the
following:

1. Stop all application processing and disconnect all application connections with the ttAdmin
-disconnect command. Any processing can be moved to work at the ttdb2 TimesTen
database. For more information, see Disconnecting from a Database in this book and
ttAdmin in the Oracle TimesTen In-Memory Database Reference.

2. Call the ttRepSubscriberWait built-in procedure at the database that has not been
defragmented (ttdb1), with the database name and host of the defragmented database
(ttdb2) as input parameters. This ensures that all queued updates have been transmitted
to both databases.

Chapter 2
Defragmenting TimesTen Databases

2-31

Note:

If you set the waitTime to -1, the call waits until all transactions that committed
before the call have been transmitted to the subscriber.

However, if you set the waitTime to any value (this value may not be NULL),
ensure that the return timeOut parameter value is 0x00 before continuing. If the
returned value 0x01, call the ttRepSubscriberWait built-in procedure until all
transactions that committed before the call have been transmitted to the
subscriber.

See ttRepSubscriberWait in the Oracle TimesTen In-Memory Database
Reference.

Using ttIsql on ttdb1:

call ttRepSubscriberWait(NULL,NULL,'ttdb2','ttsrv2', 100);

If you are using a bidirectional replication scheme, skip steps 3-4 and move to step 5.

3. For a unidirectional replication scheme, where ttdb1 is the master and ttdb2 is the
subscriber, drop the replication scheme on both TimesTen databases:

Using ttIsql on ttdb1:

DROP REPLICATION r1;

Using ttIsql on ttdb2:

DROP REPLICATION r1;
4. For a unidirectional replication scheme, drop the replication scheme on the master (ttdb1)

and subscriber (ttdb2):

Using ttIsql on ttdb1:

DROP REPLICATION r1;

Using ttIsql on ttdb2:

DROP REPLICATION r1;
5. Start the replication agent on ttdb2:

ttAdmin -repStart ttdb2
6. Stop the replication agent on ttdb1.

ttAdmin -repStop ttdb1
If you modified a unidirectional replication scheme, the ttdb2 database now acts as the master
database in the unidirectional scheme; the ttdb1 database acts as the subscriber database in
the unidirectional replication scheme.

Destroy and Re-Create a Database
Destroy and recreate the TimesTen database in the replication scheme that has not yet been
defragmented using ttRepAdmin -duplicate.

During these steps, application processing can continue on the defragmented database.

Chapter 2
Defragmenting TimesTen Databases

2-32

1. Destroy the database:

ttDestroy ttdb1
2. Recreate the new TimesTen Classic database (ttdb1) by duplicating the previously

defragmented TimesTen Classic database (ttdb2) involved in the replication scheme.

ttRepAdmin -duplicate -from ttdb2 -host ttsrv2 –setMasterRepStart -UID ttadmin -PWD
ttadminpwd ttdb1

3. Start the replication agent on the new standby database:

ttAdmin –repStart ttdb1
This process defragments both of the TimesTen Classic databases involved in either a
unidirectional or bidirectional replication scheme with only a few seconds of service
interruption.

Chapter 2
Defragmenting TimesTen Databases

2-33

3
Working with the TimesTen Client and Server

You can open client/server connections across a network to the TimesTen database with the
TimesTen client and server.

The following sections describe the TimesTen client/server and how to connect using them:

• Overview of the TimesTen Client/Server

• Configuring TimesTen Client and Server

• Running the TimesTen Server

• Accessing a Remote Database on Linux and UNIX

Overview of the TimesTen Client/Server
The TimesTen server is a process that runs on a server system that takes network requests
from TimesTen clients and translates them into operations on databases on the server system.
This enables clients to connect to databases that are located on different systems, potentially
running a different platform and operating system.

You can install the TimesTen client on a separate or the same system as the TimesTen server.
If you install the TimesTen client on the same system as the TimesTen server, you can use it to
access TimesTen databases on the local system.

Note:

You can create a client/server connection between any combination of platforms that
TimesTen supports.

TimesTen does not support IP-level failover or load-balancing with client/server.

Figure 3-1 demonstrates how the TimesTen client and TimesTen server communicate using
their respective drivers.

3-1

Figure 3-1 Diagram of TimesTen Client and TimesTen Server

Network

Client

client

applications

TimesTen

ODBC driver

Client

TimesTen

database

Server

TimesTen
Server

Data Manager

ODBC driver

• TimesTen client: To access TimesTen databases on remote systems, link your application
with the TimesTen client ODBC driver. The application then communicates with the
TimesTen server process. Using the TimesTen client ODBC driver, applications can
connect transparently to TimesTen databases on a remote or local system that has
TimesTen installed.

You can link a client application directly with the TimesTen client ODBC driver or with the
Windows ODBC driver manager to access the TimesTen database. TimesTen supplies a
driver manager for Linux, UNIX, and Windows with the Quick Start sample applications.
Note that there are performance considerations in using a driver manager.

Also, you can link a client application through a provided interface, like JDBC, OCI or
Pro*C/C++, to access the TimesTen database.

Chapter 3
Overview of the TimesTen Client/Server

3-2

Note:

For details on how the application can use different drivers and interfaces to
access a TimesTen database, see Connecting to TimesTen with ODBC and
JDBC Drivers

• TimesTen server: On the server system, the TimesTen server uses the TimesTen Data
Manager driver. The server's responsibility is to listen for requests from a client application,
process the request through the TimesTen Data Manager driver, and then send the results
and any error information back to the client application.

Note:

For details on compiling and linking TimesTen applications, see Setting the Classpath
for Java Development in the Oracle TimesTen In-Memory Database Java
Developer's Guide or Compiling and Linking Applications the Oracle TimesTen In-
Memory Database C Developer's Guide.

The following sections describe the restrictions and the communication protocols for client/
server communication:

• Restrictions on Client/Server Communication

• Communication Protocols for Client/Server Communication

Restrictions on Client/Server Communication
On Linux and UNIX, some TimesTen utilities only work over direct connections, such as
ttAdmin, ttRepAdmin, and ttBackup.

The utilities that can be run over a client/server connection on the Linux and UNIX platforms
are named with a suffix of CS, such as ttIsqlCS, ttBulkCpCS, ttMigrateCS and ttSchemaCS.

The following are the restrictions on client/server communication:

• These utilities have been linked with the TimesTen client driver and can be used to connect
to client DSNs when accessing a database over a client/server connection. Each utility
listed in Utilities in the Oracle TimesTen In-Memory Database Reference provides the
name of the client/server version of that utility, if there is one.

• XLA cannot be used over a client/server connection and is only supported within TimesTen
Classic.

• The ttCacheUidPwdSet built-in procedure cannot be used over a client/server connection.

• You cannot connect with an external user defined on one host to a TimesTen data source
on a remote host. There are no restrictions for connecting with internal users. See
Overview of TimesTen Users in the Oracle TimesTen In-Memory Database Security Guide
for details on internal and external users.

• You cannot create or alter internal users over a client/server connection. Thus, you can
only issue the CREATE USER or ALTER USER statements using a direct connection to the
TimesTen database. Once created, the user that connects from the client to the server
must be granted the CREATE SESSION privilege or the connection fails. For more information
on how to create the user on the TimesTen database and how the administrator grants the

Chapter 3
Overview of the TimesTen Client/Server

3-3

CREATE SESSION privilege, see Creating or Identifying a Database User and Privileges to
Connect to the Database in the Oracle TimesTen In-Memory Database Security Guide.

• On Linux and UNIX, TimesTen does not allow a child process to use a connection opened
by its parent. Any attempt from a child process using fork() to use a connection opened
by the parent process returns an error.

Communication Protocols for Client/Server Communication
The following sections describe the communication protocols that the TimesTen client can use
with the TimesTen server.

• TCP/IP Communication

• Shared Memory Segment Used for Communication

• UNIX Domain Socket Communication

TCP/IP Communication
By default, the TimesTen client communicates with the TimesTen server using TCP/IP sockets.

This is the only form of communication available when the TimesTen client and server are
installed on different systems.

Shared Memory Segment Used for Communication
Client/server connections use shared memory for communication.

A small shared memory segment is allocated (one for each client/server connection) for the
duration of each client/server connection. This shared memory segment is created at connect
time and is destroyed when the client/server connection is disconnected from the TimesTen
database.

The SHMMNI value controls the number of shared memory segments that the host can create
simultaneously. You must configure the SHMMNI parameter setting to account for the number of
client/server connections. Set SHMMNI to a value that is greater than number of expected client/
server connections. See Set the SHMMNI Parameter in the Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide.

UNIX Domain Socket Communication
On Linux and UNIX platforms, if both the TimesTen client and server are installed on the same
system, you can use UNIX domain sockets for communication.

Using a shared memory segment enables for the best performance but slightly greater memory
usage. Using UNIX domain sockets allows for improved performance over TCP/IP, but with
less memory consumption than a shared memory segment connection. To use domain
sockets, you must define the network address of the logical server as ttLocalHost. See
Defining a Logical Server Name.

Configuring TimesTen Client and Server
You can connect an application to a TimesTen database using a client and server.

Chapter 3
Configuring TimesTen Client and Server

3-4

Note:

Before configuring the TimesTen client and server, see Connecting to TimesTen with
ODBC and JDBC Drivers and Specifying Data Source Names to Identify TimesTen
Databases.

The following sections describe how to connect an application to a TimesTen database using
TimesTen client and server:

• Overview of TimesTen Client/Server Configuration

• Installing and Configuring for Client/Server of the Same TimesTen Release

• Installing and Configuring Cross-Release TimesTen Client/Server

• Defining Server DSNs for TimesTen Server on a Linux or UNIX System

• Defining a Logical Server Name

• Defining Client DSNs on a TimesTen Client System

• Sizing the Client Result Set Buffer

• Using Automatic Client Failover

• Configuring TCP Keep-Alive Parameters

You can optionally configure and use TLS for encrypted communication between clients and
the server. See Transport Layer Security for TimesTen Client/Server in Oracle TimesTen In-
Memory Database Security Guide.

Overview of TimesTen Client/Server Configuration
Before the client application can connect to a TimesTen database, the user must configure the
client DSN, optionally a logical server name, and a server DSN to uniquely identify the desired
TimesTen database.

See Figure 3-2.

Chapter 3
Configuring TimesTen Client and Server

3-5

Figure 3-2 Configuring for a Client/Server Connection

Server

Client

client

applications

TimesTen

database

Client DSN

logical

server

name

Server DSN

The client application refers to the client DSN when initiating a connection. With the following
details, the connection request is resolved to be able to connect to the intended TimesTen
database:

• The client DSN is configured in either the user odbc.ini file or the system sys.odbc.ini file
with the server host name, either the logical server name or the actual server system
name, and the server DSN that identifies the TimesTen database on the server.

• The logical server name is an optional configuration on the client. When used, it specifies
the server host name where the TimesTen database is installed. This is used when you
want to hide or simplify the server host name. You must use the logical server name when
using shared memory IPC or UNIX domain sockets.

• The server DSN is configured in the system sys.odbc.ini file with the TimesTen database
name and its connection attributes. The connection attributes specify how the TimesTen
database is loaded and configured, and how the connections to it are to be controlled or
managed.

Chapter 3
Configuring TimesTen Client and Server

3-6

Thus, when these are configured correctly, the client application can use the client DSN to
locate and connect to the TimesTen database. The client DSN defines the server system and
the server DSN. The server DSN, in turn, specifies the TimesTen database on that server, how
the database is to be loaded, and how connections are to be managed.

Installing and Configuring for Client/Server of the Same TimesTen Release
There are methods for installing and configuring TimesTen when the client and server are of
the same TimesTen release.

• Install and Configure the TimesTen Server

• Install and Configure the TimesTen Client

Install and Configure the TimesTen Server
Perform the following tasks on the system on which the TimesTen database resides. This
system is called the server system.

1. Install the TimesTen server.

For information on how to install the TimesTen server, see Overview of the Installation
Process in TimesTen Classic in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

2. Create and configure a server DSN corresponding to the TimesTen database. See
Defining Server DSNs for TimesTen Server on a Linux or UNIX System. Set TimesTen
connection attributes in the Server DSN. See Connection Attributes in the Oracle
TimesTen In-Memory Database Reference.

Install and Configure the TimesTen Client
Install and configure the TimesTen client on the system where the client application resides.
This system is called the client system.

1. Install the TimesTen client.

For information on how to install the TimesTen client, see Overview of the Installation
Process in TimesTen Classic in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

2. If you are using JDBC to connect to the database, install the Java Developer's Kit (JDK)
and set up the environment variables, such as CLASSPATH and the shared library search
path. See Setting the Environment for Java Development in the Oracle TimesTen In-
Memory Database Java Developer's Guide.

3. Create and configure a Client DSN corresponding to the Server DSN. See Creating and
Configuring Client DSNs on Linux and UNIX and Creating and Configuring Client DSNs on
Windows.

4. For OCI and Pro*C/C++ client/server connections, configure the application to use either
tnsnames.ora or easy connect as described in Connecting to a TimesTen Database from
OCI in the Oracle TimesTen In-Memory Database C Developer's Guide.

5. Link client/server applications as follows:

• Link C and C++ client/server applications as described in Linking Options in the Oracle
TimesTen In-Memory Database C Developer's Guide.

• Link OCI or Pro*C/C++ applications in the same manner as any OCI or Pro*C/C++
direct connect applications, which is described in TimesTen Support for OCI and

Chapter 3
Configuring TimesTen Client and Server

3-7

TimesTen Support for Pro*C/C++ in the Oracle TimesTen In-Memory Database C
Developer's Guide.

Installing and Configuring Cross-Release TimesTen Client/Server
Most TimesTen clients can connect to a TimesTen server from a different release.

A TimesTen client 11.2.2 or later release may connect to a TimesTen server 11.2.2 or later
release. However, due to changes in ODBC 3.5 functionality, TimesTen clients of release 18.1
or later can no longer connect to older TimesTen servers in certain circumstances. For more
information about client/server cross-release restrictions, see Client/Server Cross-Release
Restrictions With ODBC 3.5 in the Oracle TimesTen In-Memory Database C Developer's
Guide.

If you are configuring for a cross-release TimesTen client/server connection, install and
configure as directed in Installing and Configuring for Client/Server of the Same TimesTen
Release.

The TimesTen server loads a driver and a TimesTen database of its own release when a
TimesTen client application connects to the TimesTen database. The TimesTen Data Manager
driver is automatically installed on the TimesTen server system.

If you are using a local client/server connection using UNIX domain sockets through
ttLocalHost, then the platforms for the client and the server must be Linux or UNIX. The client
must be running on the same host as the server and thus must be on the same platform. The
release level for the client and server hosts must be the same.

Defining Server DSNs for TimesTen Server on a Linux or UNIX System
Server DSNs identify TimesTen databases that are accessed by a client/server connection.

Because a server DSN identifies databases that are accessed by a TimesTen server, a server
DSN can be configured using the same connection attributes as a Data Manager DSN. In
addition, there are connection attributes that are only allowed within the server DSN
specification. These attributes enable you to specify multiple client/server connections to a
single server.

Note:

Some connection attributes can be configured in the TimesTen daemon options file
(timesten.conf). If you have set the same connection attributes in both the server
DSN and the daemon options file, the value of the connection attributes in the server
DSN takes precedence. For a description of the TimesTen daemon options, see
Managing TimesTen Client/Server Attributes. For a complete description of the
TimesTen Server connection attributes, see Connection Attributes in the Oracle
TimesTen In-Memory Database Reference.

A server DSN must be defined as a system DSN and has the same configuration format and
attributes as a Data Manager DSN.

• For TimesTen Scaleout: A DSN is defined within the appropriate database definition and
connectable. A connectable enables all data instances to accept connection requests from
other data instances in the grid.

Chapter 3
Configuring TimesTen Client and Server

3-8

However, to establish a client connection from a TimesTen client that is not part of the grid,
create a client DSN in the user odbc.ini file or the system sys.odbc.ini file with the
ttGridAdmin gridClientExport command. This command exports every client/server
connectable available for the grid into a file that is formatted to replace the odbc.ini file
used by the TimesTen client. See Connect to a Database Using ODBC and JDBC Drivers
in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

• With TimesTen Classic, you create each system DSN by creating or editing the user
odbc.ini file or the system sys.odbc.ini file. You can add or configure a server DSN
while the TimesTen server is running. See Creating a DSN on Linux and UNIX for
TimesTen Classic.

By default, TimesTen creates only one connection to a server per child process. However, you
can specify multiple client/server connections to a single TimesTen server with the connection
attributes (described below) or by setting the TimesTen daemon attributes in the
timesten.conf file as described in Specifying Multiple Connections to the TimesTen Server. If
you have set both the server connection attributes and the related timesten.conf daemon
attributes, the value of the server connection attributes takes precedence.

Note:

These attributes are read at first connection. Changes to server settings do not occur
until the server is restarted.

To restart the server, use the following command. With TimesTen Scaleout, run this
command within the ttGridAdmin instanceExec command.

ttDaemonAdmin -restartserver

• Connections attribute: Sets the upper limit of the number of concurrent connections to the
database. TimesTen allocates one semaphore for each expected connection, therefore the
SEMMNS kernel parameter has to be set properly. Make sure the connections attribute is set
large enough to accommodate the number of concurrent database connections expected.

See Connections in the Oracle TimesTen In-Memory Database Reference or Set the
Semaphore Values and Configure shmmax and shmall in the Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide.

• ServerStackSize: Set the stack size for each thread on the server.

The ServerStackSize attribute is ignored unless the MaxConnsPerServer attribute is
greater than one. If there is only one connection per server, the server process uses the
process' main stack. Consider setting the ServerStackSize attribute to 1024 KB or greater
if you are running complex SQL queries on your client connections.

• MaxConnsPerServer: Set the maximum number of client connections that are handled by a
single server process. Setting MaxConnsPerServer > 1 enables multithreaded mode for the
database so that it can use threads instead of processes to handle client connections. This
reduces the time required for applications to establish new connections and increases
overall efficiency in configurations that use a large number of concurrent client/server
connections.

The server, referenced by the server DSN, may have multiple server processes, where
each process can only have the maximum number of connections as specified by this
attribute. A new server process is automatically started if the number of connections
exceeds MaxConnsPerServer.

Chapter 3
Configuring TimesTen Client and Server

3-9

Note:

If you are running a server in multithreaded mode and a server process fails,
then all the client connections being handled by that process are terminated.
Consider this when configuring the server for multithreaded mode and choose a
value for MaxConnsPerServer that balances your requirements for reliability and
availability versus the more efficient resource usage of multithreaded mode.

• ServersPerDSN: You can have multiple server processes serving multiple incoming
connections on the server. The ServersPerDSN attribute specifies the number of server
processes to spawn in connection with the MaxConnsPerServer attribute for distribution of
incoming connections.

The MaxConnsPerServer and ServersPerDSN attributes are related in that they do not limit the
number of connections, but control how connections are distributed over server processes. If
ServersPerDSN is set to N where N > 1, then the first N * MaxConnsPerServer client connections
to a server DSN are distributed in round robin fashion over N server processes. If additional
client connections beyond N * MaxConnsPerServer are opened to the same server DSN, then
those connections are assigned to new server processes sequentially. For example, if you
have 12 connections and MaxConnsPerServer=3, then there are four server processes.

This results in the following behavior:

1. The first incoming connection spawns a new server process. Each additional incoming
connection spawns a new server process up to the ServersPerDSN value.

2. The next ServersPerDSN number of incoming connections are assigned to the existing
server processes in a round-robin fashion up to MaxConnsPerServer connections per
server.

3. Once the MaxConnsPerServer is reached for servers spawned up to ServersPerDSN, the
next connection spawns another server process and repeats the process detailed in steps
1 and 2.

For example, if MaxConnsPerServer is set to 2 and ServersPerDSN is set to 5, then the following
occurs:

• Connection 1 arrives at the server, the first server process is started for this connection.
Connections 2 through 5 arrive at the server, server processes 2 through 5 are initiated
where each server process services a connection.

• Connection 6 arrives at the server. Since ServersPerDSN is reached, and
MaxConnsPerServer is not, connection 6 is given to the first server process. Incoming
connections 7 through 10 are given respectively as the second connection to server
processes 2 through 5.

• Connection 11 arrives at the server. Both ServersPerDSN and MaxConnsPerServer are
reached, so server process 6 is started to handle connection 11.

See ServersPerDSN, ServerStackSize, and MaxConnsPerServer in the Oracle TimesTen In-
Memory Database Reference.

Defining a Logical Server Name
A logical server name is a definition for a server system on the TimesTen client.

In some cases, such as when using a communication protocol other than TCP/IP for local
client/server or the TimesTen server process is not listening on the default TCP/IP port, you

Chapter 3
Configuring TimesTen Client and Server

3-10

must define a logical server name on the client system. In these cases, the client DSN must
refer to the logical server name. However, in most cases when the communication protocol
used is TCP/IP, the client DSN can refer directly to the server host name without having to
define a logical server name.

The following sections demonstrate how to define a logical server name on Linux and UNIX
platforms:

• Creating and Configuring a Logical Server Name on Windows

• Creating and Configuring a Logical Server Name on Linux and UNIX

Creating and Configuring a Logical Server Name on Windows
You can create and configure a logical server name on Windows.

1. On the Windows Desktop from the Start menu, select Control Panel, Administrative
Tools, and finally Data Sources (ODBC).

This opens the ODBC Data Source Administrator.

2. Click User DSN or System DSN.

3. Select a TimesTen Client DSN and click Configure.

Note:

If no Client DSN exists, click Add, select TimesTen Client 22.1 and click Finish.
This opens the TimesTen Client DSN Setup dialog. See Creating and Configuring
Client DSNs on Windows for directions on creating a Client DSN in the setup
dialog.

4. Click Servers. This opens the TimesTen Logical Server List dialog.

5. Click Add. This opens the TimesTen Logical Server Name Setup dialog.

6. In the Server Name field, enter a logical server name.

7. In the Description field, enter an optional description for the server.

8. In the Network Address field, enter the host name or IP address of the server system.
The network address must be the name of the system where the TimesTen server is
running. For example, example.com

9. In the Network Port field, TimesTen displays the port number on which the TimesTen
Logical Server listens by default. If the TimesTen server is listening on a different port,
enter that port number in the Network Port field.

For example:

Chapter 3
Configuring TimesTen Client and Server

3-11

10. Click OK, then click Close in the TimesTen Logical Server List dialog to finish creating the
logical server name.

To delete a server name:

1. On the Windows Desktop on the client system from the Start menu, select Control Panel.

2. Double click ODBC. This opens the ODBC Data Source Administrator.

3. Click either User DSN or System DSN.

4. Select a TimesTen Client DSN and click Configure. This opens the TimesTen Client DSN
Setup dialog.

5. Click Servers. This opens the TimesTen Logical Server List dialog.

6. Select a server name from the TimesTen Servers list.

7. Click Delete.

Creating and Configuring a Logical Server Name on Linux and UNIX
Define logical server names in a file named by the SYSTTCONNECTINI environment variable.

This file is referred to as the ttconnect.ini file. The file contains a description, a network
address and a port number.

TimesTen searches for the logical server in this order:

1. In the file specified by the SYSTTCONNECTINI environment variable, if it is set

2. In the timesten_home/conf/sys.ttconnect.ini file

TimesTen uses the ttconnect.ini file to define the names and attributes for servers and the
mappings between logical server names and their network addresses. This information is
stored on the system where the TimesTen Client is installed. By default, the ttconnect.ini file
is timesten_home/conf/sys.ttconnect.ini.

To override the name and location of this file at runtime, set the SYSTTCONNECTINI environment
variable to the name and location of the ttconnect.ini file before launching the TimesTen
application.

You can define short-hand names for TimesTen Servers on Linux and UNIX in the
ttconnect.ini file. The format of a TimesTen Server specification in the ttconnect.ini file is
shown in Table 3-1.

Chapter 3
Configuring TimesTen Client and Server

3-12

Table 3-1 TimesTen Server Format in the ttconnect.ini File

Component Description

[ServerName] Logical server name of the TimesTen server system

Description=description Description of the TimesTen server

Network_Address=network-
address

The DNS name, host name or IP address of the system on which the
TimesTen server is running.

TCP_Port=port-number The TCP/IP port number where the TimesTen server is running.
Default for TimesTen release 22.1 is 6625.

The network address must be one of the following:

Type of connection Network address

Remote client/server connection The name of the system where the TimesTen
Server is running. For example,
server.example.com

Local client/server connection that uses UNIX
domain sockets

ttLocalHost

The following example shows a ttconnect.ini file that defines a logical server name,
LogicalServer, for a TimesTen server running on the system server.example.com and listens
on port 6625. The instance name of the TimesTen installation is instance.

[LogicalServer]
Description=TimesTen server 22.1
Network_Address=server.example.com
TCP_Port=6625

If both the client and server are on the same Linux or UNIX system, applications using the
TimesTen client driver may improve performance by using UNIX domain sockets for
communication.

The logical server name must also define the port number on which the TimesTen server is
listening so that multiple instances of the same version of TimesTen server can be run on the
same system. To achieve this, the logical server name definition in ttconnect.ini file might
look like:

[LocalHost]
Description=Local TimesTen Server 22.1 through domain sockets
Network_Address=ttLocalHost
TCP_Port=6625

Defining Client DSNs on a TimesTen Client System
A client DSN specifies a remote database and uses the TimesTen client.

The client DSN can be defined as a user or as a system DSN. A client DSN refers to a
TimesTen database indirectly by specifying a hostname, DSN pair, where the hostname
represents the server system on which TimesTen server is running and the DSN refers to a
server DSN that is defined on that host. These are configured within the client DSN connection
attributes.

Chapter 3
Configuring TimesTen Client and Server

3-13

Note:

For a complete description of the TimesTen client connection attributes, see List of
Connection Attributes in the Oracle TimesTen In-Memory Database Reference.

Alternatively, you can configure connection attributes at runtime in the connection string that is
passed to the ODBC SQLDriverConnect function or the URL string that is passed to the JDBC
DriverManager.getConnection() method. For example, you could use the TTC_Server_DSN
attribute in either the connection string or the client DSN for a client to specify which DSN it
should use on the server.

Note:

If you configure any of the server DSN data store or first connection attributes within
the definition of the client DSN, they are ignored. However, the TimesTen client
allows most of the server DSN attributes (except for the DataStore connection
attribute) to be passed in as part of the connection or URL string. These are
transparently passed on to the server and overrides what is configured in the server
DSN.

The following sections describe how to create a client DSN and its attributes on either the
Windows or Linux and UNIX platforms:

• Creating and Configuring Client DSNs on Windows

• Creating and Configuring Client DSNs on Linux and UNIX

Creating and Configuring Client DSNs on Windows
On Windows, use the ODBC Data Source Administrator to configure logical server names and
to define client DSNs.

This section includes the following topics:

• Creating a Client DSN on Windows

• Setting the Network Timeout Interval and Authentication

• Accessing a Remote Database on Windows

• Testing Connections

Creating a Client DSN on Windows
You can define a TimesTen client DSN on Windows.

1. On the Windows Desktop from the Search menu, search for and select ODBC Data
Source Administrator (64 bit).

2. Choose either User DSN or System DSN. For a description of user DSNs and system
DSNs see Specifying Data Source Names to Identify TimesTen Databases.

3. Click Add. This opens the Create New Data Source dialog. Select the Drivers tab.

Chapter 3
Configuring TimesTen Client and Server

3-14

4. Choose TimesTen Client 22.1 to select the TimesTen client driver. Click Finish. This
opens the Oracle TimesTen Client DSN Setup dialog.

Chapter 3
Configuring TimesTen Client and Server

3-15

5. In the Client DSN field, enter a name for the Client DSN.

The name must be unique to the current list of defined DSNs on the system where the
client application resides and can contain up to 32 characters. To avoid potential conflicts,
you may want to use a consistent naming scheme that combines the logical server name
with the name of the server DSN. For example, a corporation might have client DSNs
named Boston_Accounts and Chicago_Accounts where Boston and Chicago are logical
server names and Accounts is a server DSN.

6. In the Description field, enter an optional description for the client DSN.

7. In the Server Name or Network Address field, specify the logical server or network
address of the server system.

• The name can be a host name, IP address or logical server name. The logical server
names defined on the client system can be found in the drop-down list. To define
logical server names, click Servers.

• If you do not specify a logical server name in this field, the TimesTen client assumes
that the TimesTen server is running on the default TCP/IP port number. Therefore, if
your server is running on a port other than the default port and you do not specify a
logical server name in this field, you must specify the port number in the ODBC
connection string, using the TCP_Port attribute.

Chapter 3
Configuring TimesTen Client and Server

3-16

For more information on defining logical server names, see Creating and Configuring a
Logical Server Name on Windows.

8. In the Server DSN field, enter the server DSN corresponding to the database that the
client application accesses.

• If you do not know the name of the server DSN, click Refresh to obtain a list of server
DSNs that are defined on the system specified in the Server Name or Network
Address field. Select the server DSN from the drop-down list.

• You must have a network connection to the system where the TimesTen server is
running.

See ODBC Data Sources for more information about customizing which server DSNs show
in this list.

9. In the PwdWallet field, supply the directory location to the Oracle Wallet to use for user
credentials. See Providing a User Name and Password in an Oracle Wallet in the Oracle
TimesTen In-Memory Database Security Guide.

10. In the Connection Character Set field, choose a character set that matches your terminal
settings or your data source. The default connection character set is US7ASCII. See
ConnectionCharacterSet in Oracle TimesTen In-Memory Database Reference.

11. If you are using automatic client failover, you would configure the Failover Server Name,
Failover Port Range, Failover DSN, and No Reconnect On Failover. See Using
Automatic Client Failover.

12. If you are using TimesTen Scaleout, you would configure the TCP KeepAlive Time, TCP
KeepAlive Interval, and TCP KeepAlive Probes. See Configuring TCP Keep-Alive
Parameters in this guide and TTC_TCP_KEEPALIVE_TIME_MS,
TTC_TCP_KEEPALIVE_INTVL_MS, and TTC_TCP_KEEPALIVE_PROBES in the Oracle
TimesTen In-Memory Database Reference.

Setting the Network Timeout Interval and Authentication
You can define the user name, password and network timeout interval for the client/server
connection in the client DSN with the UID, PWD, and TTC_TIMEOUT attributes.

However, configuring the authentication in the client DSN is optional since you can provide the
user name and password when connecting. Also, supplying the password in the client DSN is
strongly discouraged since the password is stored unencrypted.

Alternatively, TimesTen enables you to store user names and associated passwords in an
Oracle Wallet. This is the most secure and preferred method of providing credentials for
connecting to a TimesTen database. However, you would provide the location and name of the
Oracle Wallet on the connect string. For more information on creating the wallet and managing
Oracle cache administration user IDs and passwords, see Providing a User Name and
Password in an Oracle Wallet in Oracle TimesTen In-Memory Database Security Guide.

For a description of the UID, PWD, and TTC_TIMEOUT connection attributes, see List of
Connection Attributes in Oracle TimesTen In-Memory Database Reference.

To set the network timeout interval and authentication:

1. In the User ID field of the Oracle TimesTen Client DSN Setup dialog box, enter a user
name that is defined on the server system.

2. In the Password field, enter the password that corresponds to the user ID. Alternatively,
you can enter a hashed password in the PwdCrypt field or use the ttUser utility to store
the password in an Oracle Wallet and retrieve it from the wallet using the PwdWallet field.
See ttUser in the Oracle TimesTen In-Memory Database Reference.

Chapter 3
Configuring TimesTen Client and Server

3-17

Provide the password in one of the following ways:

• By storing the password in an Oracle Wallet and then entering the path to the wallet in
the PwdWallet field.

• By entering the password that corresponds to the user ID in the Password field.

• By entering an encrypted password that corresponds to the user ID in the PwdCrypt
field

3. In the Network Timeout field, enter the interval time in seconds. You can enter any non-
negative integer. A value of 0 indicates that client/server operations should not time out.
The default is 60 seconds. The maximum is 99,999 seconds.

The TTC_Timeout connection attribute sets a maximum time limit for a network operation
that is completed by using the TimesTen client and server. The TTC_Timeout connection
attribute also determines the maximum number of seconds a TimesTen client application
waits for the result from the corresponding TimesTen server process before timing out.

4. Click OK to save the setup.

Accessing a Remote Database on Windows
In this example, the TimesTen client system is client.example.com. The client application is
accessing the server DSN on the remote server system, server.example.com. The logical
server name is LogicalServer.

Note:

These examples reference the sample DSNs preconfigured in a fresh TimesTen
installation.

1. On the server system server.example.com, use the ttStatus utility to verify that the
TimesTen server is running and to verify the port number it is listening on.

2. Using the procedure in Defining Server DSNs for TimesTen Server on a Linux or UNIX
System, verify that the server DSN, database1, is defined as a system DSN on
server.example.com.

3. On the client system, client.example.com, create a Logical Server Name entry for the
remote TimesTen server. In the TimesTen Logical Server Name Setup dialog:

• In the Server Name field, enter LogicalServer.

• In the Network Address field, enter server.example.com.

• In the Network Port field, enter 6625. This is the default port number for the TimesTen
server for TimesTen Release 22.1. This value should correspond to the value
displayed by ttStatus in Step 1.

4. On the client system, client.example.com, create a client DSN that corresponds to the
remote server DSN, database1CS. In the TimesTen client DSN Setup dialog, enter the
following values:

• In the Client DSN field, enter database1CS.

• In the Server Name or Network Address field, enter LogicalServer.

• In the Description field, enter a description for the server. Entering data into this field
is optional.

Chapter 3
Configuring TimesTen Client and Server

3-18

• In the Server DSN field, enter database1.

5. Run the client application from the system client.example.com using the client DSN,
database1CS. The example below uses the ttIsql program installed with TimesTen client.

ttIsql -connStr "DSN=database1CS"
The next example describes how to access a TimesTen server that is listening on a port
numbered other than the default port number.

Consider that the network address of the TimesTen server is server.example.com and the
server is listening on port 6625. The following methods can be used to connect to a server DS:

1. Define the logical server name LogicalServer with server.example.com as the Network
Address and 6625 as the Network Port. Define Client_DSN as the client DSN with
LogicalServer as the server name and Server_DSN as the server DSN. Then, run the
command:

ttIsql -connStr "DSN=Client_DSN"
2. Alternatively, define the logical server name LogicalServer_tt with server.example.com

as the Network Address and the default port number as the Network Port. Define
Client_DSN as the client DSN with LogicalServer as the server name and Server_DSN as
the server DSN. Overwrite the port number in the command:

ttIsql -connStr "DSN=Client_DSN;TCP_Port=6625"
See Creating and Configuring a Logical Server Name on Windows.

Testing Connections
You can test client application connections to TimesTen databases.

1. On the Windows Desktop from the Start menu, select Settings, and then select Control
Panel.

2. Double click ODBC. This opens the ODBC Data Source Administrator.

3. Click User DSN or System DSN.

4. Select the TimesTen client DSN whose connection you want to test and click Configure.
This opens the TimesTen client DSN Setup dialog.

5. Click Test TimesTen Server Connection to test the connection to TimesTen server.

The ODBC Data Source Administrator attempts to connect to TimesTen server and
displays messages to indicate if it was successful. During this test TimesTen client verifies
that:

• ODBC, Windows sockets and TimesTen client are installed on the client system.

• The server specified in the Server Name or Network Address field of the TimesTen
client DSN Setup dialog is defined and the corresponding system exists.

• The TimesTen server is running on the server system.

6. Click Test Data Source Connection to test the connection to the server DSN. The ODBC
Data Source Administrator attempts to connect to the server DSN and displays messages
to indicate whether it was successful.

During this test, TimesTen client verifies that:

• The server DSN specified in the Server DSN field is defined on the server system.

• A client application can connect to the server DSN.

Chapter 3
Configuring TimesTen Client and Server

3-19

Creating and Configuring Client DSNs on Linux and UNIX
On Linux and UNIX, you define logical server names by editing the ttconnect.ini file; you
define Client DSNs by editing the user odbc.ini file for user DSN or the system sys.odbc.ini
file for system DSNs.

Note:

The syntax for defining the Client DSN in the odbc.ini file is described in odbc.ini
File Entry Descriptions. See Defining a Logical Server Name for details on the
ttconnect.ini file. See Specifying Data Source Names to Identify TimesTen
Databases for a description of user and system DSNs.

In the ODBC Data Sources section of the odbc.ini file, add an entry for the client DSN. The
client DSN specifies the location of the TimesTen database with the following attributes:

• TimesTen ODBC client driver to use for the connection.

• The server (and the port number if you do not want to use the default port number) for the
database is specified in the TTC_Server attribute.

• The server DSN that specifies the intended database is specified in the TTC_Server_DSN
attribute.

Note:

The server DSN is defined on the server system where the database resides.

See Connecting Using TimesTen ODBC Drivers for a list of all available ODBC
client drivers.

For each TimesTen database with which the client connects needs to have two entries:

• Define the client DSN name and provide the name of the TimesTen ODBC client driver to
use in the ODBC Data Sources section.

• Create an entry with the client DSN you defined in the ODBC Data Sources section. Within
this section, specify the server system and the server DSN.

The following is the syntax for providing the client DSN name and the ODBC client driver to
use:

[ODBC Data Sources]
Client_DSN=Name-of-ODBC-driver

For example, to defined database1CS as the client DSN and associate it with the TimesTen
client ODBC driver, you would make the following entry in the ODBC Data Sources section of
the odbc.ini file:

[ODBC Data Sources]
database1CS=TimesTen Client 22.1 Driver

Chapter 3
Configuring TimesTen Client and Server

3-20

After the ODBC Data Sources section, you would add an entry to specify the server system
and server DSN for each data source you defined. Each client DSN listed in the ODBC Data
Sources section of the odbc.ini file requires a its own specification section.

The following is an example specification of the TimesTen client DSN database1CS where the
server is configured with a server name of server.example.com with port of 6625 and the
server DSN is database1.

[database1CS]
TTC_Server=server.example.com/6625
TTC_Server_DSN=database1

If you want to use logical server names, then the following is an example specification of the
TimesTen client DSN database1CS where the server is configured with a logical server name of
LogicalServer and the server DSN is database1:

[database1CS]
TTC_Server=LogicalServer
TTC_Server_DSN=database1

The TTC_Server attributes are the main attributes for a client DSN definition. There are only a
few client connection attributes, each of which are for identifying the server DSN. If you provide
any server connection attributes in the client definition, these attributes are ignored. General
connection attributes may be specified in the client definition.

Note:

See UID and PWD and PwdWallet in the Oracle TimesTen In-Memory Database
Reference for options on how to provide the user ID when connecting.

By default, connections wait 60 seconds for TimesTen client and server to complete a network
operation. The TTC_Timeout attribute sets a maximum time limit for a network operation that is
completed by using the TimesTen client and server. The TTC_Timeout connection attribute also
determines the maximum number of seconds a TimesTen client application waits for the result
from the corresponding TimesTen server process before timing out.

[database1CS]
TTC_Server=server.example.com/6625
TTC_Server_DSN=database1
TTC_Timeout=60

Once the TimesTen client DSN is configured, you can connect to the server using the ttIsqlCS
utility. The following connects to the server using the database1CS DSN.

ttIsqlCS -connStr "DSN=database1CS"

For a description of all client and general connection attributes available for use in the
odbc.ini file, see Connection Attributes in the Oracle TimesTen In-Memory Database
Reference.

Sizing the Client Result Set Buffer
Executing a SELECT statement returns a result set (if there is one). The server stores a
maximum number of rows from the result set that fits into a client result set buffer.

Chapter 3
Configuring TimesTen Client and Server

3-21

You can improve performance by changing the maximum size of the result set buffer or the
maximum number of rows that can be stored into a client result set buffer with the following
connection attributes:

• TTC_NetMsgMaxBytes: The size of a client result set buffer in bytes. The default is 2097152
bytes.

• TTC_NetMsgMaxRows: The maximum number of rows that can be stored in a client result set
buffer. The default is 8192 rows.

The SELECT statement returns the maximum number of bytes or rows into a client result set
buffer, whichever limit is reached first. For queries that return large result sets, you may want to
increase the values of both parameters.

See Configuring the Result Set Buffer Size in Client/Server Using ODBC and Configuring the
Result Set Buffer Size in Client/Server Using OCI in the Oracle TimesTen In-Memory Database
C Developer's Guide and Configuring the Result Set Buffer Size in Client/Server Using JDBC
in the Oracle TimesTen In-Memory Database Java Developer's Guide for details on setting
these limits using ODBC, OCI and JDBC programmatic APIs.

Using Automatic Client Failover
Automatic client failover is for use in high availability client/server scenarios with TimesTen
Scaleout or TimesTen Classic.

If there is a failure of the TimesTen database to which the client is connected, then failover
(connection transfer) to an alternate TimesTen database occurs. Failover connections are
created only as needed.

• For TimesTen Scaleout, the connection is transferred to an available data instance from a
list of available data instances in the grid (and is not dependent on the DSN configuration
in your odbc.ini file).

• For TimesTen Classic, you can use automatic client failover in two scenarios:

– Active standby pair replication scheme: If you have an active standby pair replication
configuration, then the connection is transferred to the new active (original standby)
master within an active standby pair replication configuration. Consider a scenario
where failure of the active master has resulted in the original standby master becoming
the new active master. With the automatic client failover feature, failover (transfer) to
the new active (original standby) node occurs, and applications are automatically
reconnected to the new active master.

Note:

Automatic client failover in TimesTen Classic (when using an active standby
pair replication scheme) is complementary to Oracle Clusterware in
situations where Oracle Clusterware is used, but the two features are not
dependent on each other. For information about Oracle Clusterware, you can
refer to Using Oracle Clusterware to Manage Active Standby Pairs in Oracle
TimesTen In-Memory Database Replication Guide.

– Generic automatic client failover: If you create more than one database and have a
process to ensure that the data is consistent on both databases, then the client can
automatically fail over from one database to another. For example, with a suitable
cache configuration, TimesTen automatically synchronizes the data in all of the
included TimesTen databases with the data in the Oracle database. In such a scenario,

Chapter 3
Configuring TimesTen Client and Server

3-22

applications can safely failover between multiple caches without any concern about
data consistency.

In each of these scenarios, applications are automatically connected to the failover TimesTen
database. TimesTen provides features that enable applications to be alerted when this
happens, enabling the application to take appropriate action.

Note:

If you issue an ALTER SESSION statement anytime after the initial connection, you
must re-issue the statement after a failover. For information about connection
persistence after failover, see ODBC Support for Automatic Client Failover in Oracle
TimesTen In-Memory Database C Developer's Guide.

The following sections describe how to use and enable automatic client failover:

• Managing Automatic Client Failover in TimesTen Scaleout

• Managing Automatic Client Failover in TimesTen Classic Using an Active Standby Pair

• Managing Generic Automatic Client Failover in TimesTen Classic

• Using Automatic Client Failover

Managing Automatic Client Failover in TimesTen Scaleout
By default, if a connection fails in TimesTen Scaleout, then the client automatically attempts to
reconnect to another data instance (if possible).

See Client Connection Failover in the Oracle TimesTen In-Memory Database Scaleout User's
Guide for full details on managing client connection failover in TimesTen Scaleout.

Managing Automatic Client Failover in TimesTen Classic Using an Active Standby
Pair

When you use an active standby pair replication scheme in TimesTen Classic and an
application connects to the active master, then the connection is registered and this registration
is replicated to the standby master. If the active master fails, the standby master becomes the
active master and then notifies the client of the failover. At this point, the client has a new
connection to the new active master.
No state from the original connection, other than the connection handle, is preserved. All client
statement handles from the original connection are marked as invalid.

When failover completes, TimesTen makes a callback to a user-defined function that you
register. This function takes care of any custom actions you want to occur in a failover
situation.

The following items list the behavior of automatic client failover in particular failure scenarios:

• If the client library loses the connection to the active master, it fails over and attempts to
switch to the standby master.

• If, for some reason, there is no active master (no failover has occurred at the server side
and both servers are either standby or idle), applications cannot connect. But automatic
client failover continues to alternate between both servers until it finds an active master or
times out.

Chapter 3
Configuring TimesTen Client and Server

3-23

• If a failover has already occurred and the client is already connected to the new active
master, the next failover request results in an attempt to reconnect to the original active
master. If that fails, alternating attempts are made to connect to the two servers until it
times out.

• If the active master fails before the client registration is successfully propagated by
replication to the standby master, the client does not receive a failover message and the
connection registration is lost. However, the client library eventually notices (through TCP)
that its connection to the original active master is lost and initiates a failover attempt.

Note:

Using automatic client failover with an active standby pair replication scheme results
in one additional database connection per server process. This should be considered
when you choose a setting for the TimesTen Connections attribute (the upper limit of
the number of concurrent connections to the database). The number of server
processes, in turn, is affected by the setting of the MaxConnsPerServer attribute
(maximum number of concurrent connections a server process can handle).

For example, if you have 12 connections and MaxConnsPerServer=3, then there are
four server processes. Therefore, if some of the connections use automatic client
failover, then there are four additional connections.

For C developers, details of how to create the callback and to facilitate an automatic client
failover are discussed in ODBC Support for Automatic Client Failover in the Oracle TimesTen
In-Memory Database C Developer's Guide. For Java developers, details are discussed in
JDBC Support for Automatic Client Failover in the Oracle TimesTen In-Memory Database Java
Developer's Guide.

Managing Generic Automatic Client Failover in TimesTen Classic
You can configure generic automatic client failover across any set of TimesTen Classic
databases.

You can configure a list of failover TimesTen databases in the user or system odbc.ini file.
Once configured, the application can try to connect to each of them until a successful
connection is made. This feature applies only to client/server connections, not direct
connections.

Note:

You must ensure that automatic client failover is meaningful in your environment.
That is, there is no possibility of any data consistency issues when failing over
between the included databases. In addition, the client can locate the necessary
tables and data in any database to which it fails over.

Consider the following for each TimesTen Classic database included in the failover server list:

• Participating databases must be TimesTen release 18.1.4.1.0 or later.

• The same database user name and password must be used for client connections to all
databases.

Chapter 3
Configuring TimesTen Client and Server

3-24

• The failover databases should have the same table and/or cache group definitions. You
must have a process to ensure that the data is consistent on all databases for all tables
and/or cache group tables.

• To facilitate a fast failover, all of the databases in the client failover list should be loaded in
memory.

• When using cache, the databases should have operational cache agents at all times.

• The databases included in the generic automatic failover do not use an active standby pair
replication scheme.

A typical use case for generic automatic failover is a set of databases using read-only caching,
where each database has the same set of cached data. For example, if you have several read-
only cache groups, then you would create the same read-only cache groups on all TimesTen
Classic databases included in the list of failover servers. When the client connection fails over
to an alternate TimesTen database, the cached data is consistent since cache operations
automatically refresh the data (as needed) from the Oracle database. See Read-Only Cache
Group in the Oracle TimesTen In-Memory Database Cache Guide for more details on read-
only cache groups.

Note:

When failover happens, the application will need to re-prepare all statements.

For C developers, details of how to create the callback and to facilitate an automatic client
failover are discussed in ODBC Support for Automatic Client Failover in the Oracle TimesTen
In-Memory Database C Developer's Guide. For Java developers, details are discussed in
JDBC Support for Automatic Client Failover in the Oracle TimesTen In-Memory Database Java
Developer's Guide.

Configuring Automatic Client Failover for TimesTen Classic
A list of failover TimesTen databases can be configured on the client. Then, clients initiate a
connection to each failover TimesTen database, until a successful connection is made.

Note:

The failover server information you provide depends on which type of automatic client
failover you want to use. That is, the failover server should be either the standby
database (when using an active standby pair replication scheme) or a second
TimesTen database (when using read-only cache groups). See Using Automatic
Client Failover for details on both types of automatic client failover.

The following sections describe how to configure for automatic client failover for TimesTen
Classic:

• Configuring Automatic Client Failover for TimesTen Classic on Windows

• Configuring Automatic Client Failover for TimesTen Classic on Linux and UNIX

Chapter 3
Configuring TimesTen Client and Server

3-25

Configuring Automatic Client Failover for TimesTen Classic on Windows
In the TimesTen client DSN Setup dialog, after you have configured the rest of the client DSN
information as described in Creating and Configuring Client DSNs on Windows, complete the
following fields:

1. In the Failover Server Name or Network Address field, specify the logical server or
network address of the failover server.

• The name can be a host name, IP address or logical server. The logical server names
defined on the client system can be found in the drop-down list. To define logical
server names, click Servers.

• If you do not specify a logical server name in this field, the TimesTen client assumes
that the TimesTen server is running on the default TCP/IP port number. Therefore, if
the server is running on a port other than the default port and you do not specify a
logical server name in this field, you must specify the port number in the ODBC
connection string, using the TCP_Port attribute.

See Creating and Configuring a Logical Server Name on Windows for more
information on defining logical server names.

2. In the Failover Server DSN field, enter the server DSN corresponding to the failover
server.

• If you do not know the name of the server DSN, click Refresh to obtain a list of server
DSNs that are defined on the system specified in the Failover Server Name or
Network Address field. Select the server DSN from the drop-down list.

• You must have a network connection to the system where the TimesTen database is
running.

3. If you are using an active standby pair replication scheme for automatic client failover, then
you can optionally specify the Failover Port Range for the port or port range where
TimesTen listens for failover notifications. Specifying a port range helps accommodate
firewalls between client and server systems. With the active standby pair, the active and
standby masters notify the clients to failover.

By default, TimesTen uses a single port chosen by the operating system. A port range is
set as a lower and upper value separated by hyphen.

You only need to specify a port range if both of these conditions are true:

• You need multiple ports on the firewall between the server and client hosts.

• You use multiple client applications configured for automatic client failover on a single
client host.

Each client application configured for automatic client failover on a client host needs to
listen on a distinct port for failover notifications.

4. Optionally, select the No Reconnect On Failover check box to have TimesTen perform all
the usual client failover processing except for the reconnect. For example, statement and
connection handles are marked as invalid. This is useful if the application provides its own
connection pooling or manages its own reconnection to the database after client failover.

Configuring Automatic Client Failover for TimesTen Classic on Linux and UNIX
You can configure for automatic client failover for TimesTen Classic.

On the client, configure the following:

Chapter 3
Configuring TimesTen Client and Server

3-26

1. In the odbc.ini file on the client, define the Client DSNs. Specify the failover servers with
the TTC_ServerN connection attribute, where N >= 2. The TTC_ServerN connection attribute
can specify the DNS name, host name or IP address of the system (with or without the port
number).

Set the TTC_Server_DSNn connection attribute to the name of this database, where n >= 2.

Setting any of TTC_ServerN or TTC_Server_DSNn implies the following:

• You intend to use automatic client failover.

• You understand that a new client thread is created for your application to support the
failover mechanism.

If you are using automatic client failover for read-only cache groups, you can specify more
than one failover server with the TTC_ServerN and TTC_Server_DSNn connection attributes,
where N,n >= 2.

You should specify your failover servers (identified by N) in a sequential order.

For example:

[MyDSN]
TTC_Server=server.example.com/6625
TTC_Server_DSN=MyDSN
TTC_Timeout=60
TTC_Server2=server2.example.com/6625
TTC_Server_DSN2=MyDSN_Failover1
TTC_Server3=server3.example.com/6625
TTC_Server_DSN3=MyDSN_Failover2

Note:

• Optionally, you can define logical server names for your failover servers in
the ttconnect.ini file on the client with the Network_Address and TCP_Port.
See Creating and Configuring a Logical Server Name on Linux and UNIX for
more information on defining logical server names.

• Like other connection attributes, TTC_ServerN and TTC_Server_DSNn can be
specified in the connection string, overriding any settings in the DSN. The
default TCP/IP port number is assumed for TCP_Port and TCP_PortN unless
you specify a value in the TTC_ServerN connection attribute, in the
connection string, or in the logical server definition in ttconnect.ini.

Refer to TTC_Server or TTC_Server1, TTC_Server2, TTC_ServerN, TTC_Server_DSN2,
TTC_Server_DSNn, and TCP_Port2, TCP_PortN in Oracle TimesTen In-Memory
Database Reference.

2. If you are using automatic client failover with read-only cache groups and you have
specified more than one alternate failover server, you can specify how the client selects the
failover server. By default, the client selects from a randomly ordered list of servers
provided by TTC_Server and TTC_ServerN attributes.

However, if you set TTC_Random_Selection to 0, then the client selects the first server
specified by the TTC_ServerN connection attributes. If the client cannot connect to the first
server specified, the client proceeds to the next failover server in the order specified
numerically.

Chapter 3
Configuring TimesTen Client and Server

3-27

Note:

If you are using an active standby pair for automatic client failover and the client
library cannot connect to the active master specified by TTC_Server_DSN, then it
tries the standby master specified by TTC_Server_DSN2.

Refer to TTC_Random_Selection in Oracle TimesTen In-Memory Database Reference.

3. Optionally, set a timeout to specify a duration for all failover recovery attempts in the
odbc.ini file on the client.

• By default, connections wait 60 seconds for TimesTen client and server to complete a
network operation. The TTC_Timeout attribute determines the maximum number of
seconds a TimesTen client application waits for the result from the corresponding
TimesTen server process before timing out.

The TTC_TIMEOUT connection attribute also specifies the duration for all attempts at
failover recovery. The connection might be blocked while failover is attempted.

• Since you are using multiple servers for automatic client failover, then you can also set
the TTC_ConnectTimeout attribute to specify the maximum number of seconds the
client waits for a SQLDriverConnect or SQLDisconnect request. It overrides the value of
TTC_Timeout for those requests. Set the TTC_ConnectTimeout when you want
connection requests to timeout with a different timeframe than the timeout provided for
query requests. For example, you can set a longer timeout for connections if you know
that it takes a longer time to connect, but set a shorter timeout for all other queries.

[MyDSN]
TTC_Server=server.example.com/6625
TTC_Server_DSN=MyDSN
TTC_Timeout=60
TTC_ConnectTimeout=80
TTC_Server2=server2.example.com/6625
TTC_Server_DSN2=MyDSN_Failover1
TTC_Server3=server3.example.com/6625
TTC_Server_DSN3=MyDSN_Failover2

If automatic client failover is defined and there is more than one TTC_SERVERn connection
attribute configured, then the overall elapsed time is four times the value of the timeout
(whether TTC_Timeout or TTC_ConnectTimeout). For example, if the user specifies
TTC_TIMEOUT=10 and there are multiple TTC_SERVERn servers configured, then the
SQLDriverConnect call could take up to 40 seconds.

Refer to TTC_Timeout in Oracle TimesTen In-Memory Database Reference.

4. If you are using an active standby pair replication scheme for client failover, then you can
optionally configure the TTC_FailoverPortRange attribute to specify a port or port range
where the failover thread listens for failover notifications. Specifying a port range helps
accommodate firewalls between client and server systems. With the active standby pair,
the active and standby masters notify the clients to failover.

By default, TimesTen uses a single port chosen by the operating system. A port range is
set as a lower and upper value separated by hyphen.

You only need to specify a port range if both of these conditions are true:

• You need multiple ports on the firewall between the server and client hosts.

Chapter 3
Configuring TimesTen Client and Server

3-28

• You use multiple client applications configured for automatic client failover on a single
client host.

Each client application configured for automatic client failover on a client host needs to
listen on a distinct port for failover notifications.

5. Optionally, enable the TTC_NoReconnectOnFailover connnection attribute to have
TimesTen perform typical client failover, but without reconnecting. This is useful where an
application does its own connection pooling or attempts to reconnect to the database on its
own after failover. The default value is 1 and indicates that TimesTen should attempt to
reconnect.

Configuring TCP Keep-Alive Parameters
One of the ways that a client connection can fail is with a network failure, such as
disconnecting a cable or a host that is suspending or crashing.

When the client connection is lost, then client connection failover is initiated. However, when a
TCP connection is started, you can configure the TCP keep-alive parameters for the
connection to ensure reliable and rapid detection of connection failures.

Note:

You can also detect that there is a problem with the connection by setting the
TTC_Timeout attribute, which sets a maximum time limit for a network operation that
is completed by using the TimesTen client and server. The TTC_Timeout attribute also
determines the maximum number of seconds a TimesTen client application waits for
the result from the corresponding TimesTen Server process before timing out.

TimesTen recommends configuring the TCP keep-alive parameters for determining a
failed TCP connection in addition to the TTC_TIMEOUT attribute, as some database
operations may unexpectedly take longer than the value set for the TTC_TIMEOUT
attribute.

Refer to TTC_Timeout in Oracle TimesTen In-Memory Database Reference.

You can control the per connection keep-alive settings with the following parameters:

• TTC_TCP_KEEPALIVE_TIME_MS: The duration time (in milliseconds) between the last data
packet sent and the first probe. The default is 10000 milliseconds.

Note:

The Linux client platform converts this value to seconds by truncating the last
three digits off of the value of TTC_TCP_KEEPALIVE_TIME_MS. Thus, a setting of
2500 milliseconds becomes 2 seconds, instead of 2.5 seconds.

• TTC_TCP_KEEPALIVE_INTVL_MS: The time interval (in milliseconds) between subsequential
probes. The default is 10000 milliseconds.

• TTC_TCP_KEEPALIVE_PROBES: The number of unacknowledged probes to send before
considering the connection as failed and notifying the client. The default is set to 2
unacknowledged probes.

Chapter 3
Configuring TimesTen Client and Server

3-29

If you keep the default settings, then TimesTen sends the first probe after 10 seconds (the
TTC_TCP_KEEPALIVE_TIME_MS setting).

• If there is a response, then the connection is alive and the TTC_TCP_KEEPALIVE_TIME_MS
timer is reset.

• If there is no response, then TimesTen sends another probe after this initial probe at 10
second intervals (the TTC_TCP_KEEPALIVE_INTVL_MS setting). If no response is received
after 2 successive probes, then this connection is terminated and TimesTen redirects the
connection to another data instance.

For example, you could modify the TCP keep alive settings to have a shorter wait time for the
initial probe of 50000 milliseconds, and to check for a connection every 20000 milliseconds for
a maximum number of 3 times as follows:

TTC_TCP_KEEPALIVE_TIME_MS=50000
TTC_TCP_KEEPALIVE_INTVL_MS=20000
TTC_TCP_KEEPALIVE_PROBES=3

See the TTC_TCP_KEEPALIVE_TIME_MS, TTC_TCP_KEEPALIVE_INTVL_MS, and
TTC_TCP_KEEPALIVE_PROBES sections in the Oracle TimesTen In-Memory Database
Reference.

Running the TimesTen Server
The TimesTen server is a child process of the TimesTen daemon. If you installed the TimesTen
server, this process is automatically started and stopped when the TimesTen daemon is started
or stopped.

You can explicitly start or shut down the daemon or service with the ttDaemonAdmin utility (use
ttGridAdmin instanceExec to run this command on TimesTen Scaleout). The TimesTen server
is run as the instance administrator.

The TimesTen server handles requests from applications linked with the TimesTen client driver.

The default ports for TimesTen daemon and TimesTen servers are described in the The
ttInstanceCreate Utility chapter in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide. System administrators can change the port number during
installation to avoid conflicts or for security reasons. The port range is from 1 - 65535. To
connect to the TimesTen server, client DSNs are required to specify the port number as part of
the logical server name definition or in the connection string.

For instructions on modifying TimesTen server options, see Modifying the TimesTen Server
Attributes.

Server Informational Messages
The TimesTen server records "connect," "disconnect" and various warning, error and
informational entries in log files.

On Linux and UNIX, the TimesTen server logs messages to the timesten_home/diag/
ttmesg.log and timesten_home/diag/tterrors.log files by default. Optionally, you can
configure TimesTen to log messages to the syslog facility.

See Error, Warning, and Informational Messages.

Chapter 3
Running the TimesTen Server

3-30

Accessing a Remote Database on Linux and UNIX
In this example, the TimesTen Client application system is client.example.com. The client
application is accessing the Server DSN database1 on the remote server system,
server.example.com. The logical server name is LogicalServer. The instance name of the
TimesTen installation is instance.

1. On the server system server.example.com, use the ttStatus utility to verify that the
TimesTen server is running and to verify the port number on which it is listening.

2. Verify that the server DSN database1 exists in the system sys.odbc.ini file on
server.example.com.

There should be an entry in the sys.odbc.ini file as follows. Note that /disk1/timesten is
the timesten_home.

[database1]
DataStore=/disk1/timesten/server/database1

3. Create a logical server name entry for the remote TimesTen server in the ttconnect.ini
file on client.example.com.

[LogicalServer]
Network_Address=server.example.com
TCP_Port=6625

4. On the client system, client.example.com, create a client DSN corresponding to the
remote server DSN, database1.

There should be an entry in the odbc.ini file as follows:

[database1CS]
TTC_Server=LogicalServer
TTC_Server_DSN=database1

5. Run the client application from the system client.example.com using the client DSN,
database1CS. The example below uses the ttIsql program that is installed with TimesTen
client.

ttIsqlCS -connStr "DSN=database1CS"
The next example describes how to access a TimesTen server that is listening on a port
numbered other than the default port number.

Let us consider the network address of the TimesTen server is server.example.com and the
server is listening on Port 6625. The following methods can be used to connect to a server
DSN:

1. Define the logical server name LogicalServer with server.example.com as the network
address and 6625 as the network port. Define Client_DSN as the client DSN with
LogicalServer as the server name and Server_DSN as the server DSN. Run the
command:

ttIsqlCS -connStr "DSN=Client_DSN"
2. Alternatively, define the logical server name logical_server with server.example.com as

the network address and the default port number as the network port. Define a client DSN
with LogicalServer as the server name and Server_DSN as the server DSN. Overwrite the
port number in the command:

ttIsqlCS -connStr "DSN=Client_DSN;TCP_Port=6625"

Chapter 3
Accessing a Remote Database on Linux and UNIX

3-31

3. Alternatively, define the server in the connection string. In this case you do not need to
define a client DSN, nor a logical server name.

ttIsqlCS -connStr
"TTC_Server=server.example.com;TTC_Server_DSN=Server_DSN;TCP_Port=6625"

See Creating and Configuring Client DSNs on Linux and UNIX for information on the
creating a ttconnect.ini file. See Overview of User and System DSNs for information on
the location of the proper odbc.ini file.

Testing Connections
You can test client application connections to TimesTen databases.

1. Verify that the client system can access the server system.

2. Run ping from the client system to see if a response is received from the server system.

3. Verify that the TimesTen server is running on the server system.

• Use telnet to connect to the port on which the TimesTen server is listening. For
example:

telnet server.example.com 6625
• If you successfully connect to the TimesTen server, you see a message similar to:

Connected to server.example.com
• If the server system responds to a command, but TimesTen server does not, the

TimesTen server may not be running. In the case of a failed connection, you see a
message similar to:

telnet: Unable to connect to remote host: Connection refused
• Use the ttStatus utility on the server system to determine the status and port number

of the TimesTen server. Generally, the TimesTen server is started at installation time. If
the TimesTen server is not running, you must start it. See Modifying the TimesTen
Server Attributes.

4. Verify that the client application can connect to the database. If you cannot establish a
connection to the database, check that the ttconnect.ini file contains the correct
information.

5. If the information in the ttconnect.ini file is correct, check that a server DSN
corresponding to the database has been defined properly in the system sys.odbc.ini file
on the host where the database resides and where the TimesTen Server is running.

Chapter 3
Accessing a Remote Database on Linux and UNIX

3-32

4
Working with the TimesTen Daemon

The TimesTen daemon starts when TimesTen is installed. The daemon runs in the background.

The TimesTen daemon performs the following functions:

• Starts the TimesTen server

• Manages shared memory access

• Coordinates process recovery

• Keeps management statistics on what databases exist, which are in use, and which
application processes are connected to which databases

• Manages RAM policy for TimesTen Classic

• If requested, starts replication processes and the cache agent.

Application developers do not interact with the daemon directly. No application code runs in the
daemon and application developers do not generally have to be concerned with it. Application
programs that access TimesTen databases communicate with the daemon transparently using
TimesTen internal routines.

The following sections discuss interaction with the TimesTen daemon:

• Starting and Stopping the Daemon

• Shutting Down a TimesTen Application

• Managing TimesTen Daemon Attributes

• Managing TimesTen Client/Server Attributes

• Error, Warning, and Informational Messages

Starting and Stopping the Daemon
• Automatically Starting the TimesTen Daemon

• Manually Starting and Stopping the Daemon

Automatically Starting the TimesTen Daemon
You have two options for automatic management of the TimesTen daemon.

Choose only one of these options.

• Automatically start and stop TimesTen daemon when the operating system boots and
shuts down. See Using the setuproot Script to Automatically Start the TimesTen Daemon.

• Automatically manage the TimesTen daemon using systemd. See Using systemd to
Automatically Manage the TimesTen Daemon.

4-1

Note:

See Manually Starting and Stopping the Daemon for details on how to use the
ttDaemonAdmin utility to manually start and stop the TimesTen daemon.

Using the setuproot Script to Automatically Start the TimesTen Daemon
If you run the setuproot script for SysV, then the TimesTen daemon is automatically started
and stopped when the operating system boots and shuts down.

When you run the TimesTen daemon startup setuproot script (as root), this script installs the
appropriate SysV initialization scripts for TimesTen in the /etc/init.d directory.

The following sections describe the differences between running the setuproot script for
TimesTen Classic or TimesTen Scaleout:

• Using the setuproot script for SysV on TimesTen Classic

• Using the setuproot script for SysV on TimesTen Scaleout

Using the setuproot script for SysV on TimesTen Classic

You can find the setuproot script in the timesten_home/bin directory. After the SysV
intialization scripts are installed, TimesTen is automatically started when the operating system
boots and automatically stopped on operating system shutdown.

When using SysV, run the setuproot script as follows:

cd $TIMESTEN_HOME/bin
setuproot -install

In all other scenarios, the instance administrator uses the ttDaemonAdmin utility to manage the
TimesTen daemon. See ttDaemonAdmin in the Oracle TimesTen In-Memory Database
Reference.

Using the setuproot script for SysV on TimesTen Scaleout

You can find the setuproot script in the timesten_home/bin directory of every instance of the
grid. After you run the setuproot script, the daemon is automatically started for each data
instance as part of the operations for the ttGridAdmin dbOpen or ttGridAdmin modelApply
commands.

For TimesTen Scaleout, the directions on how to run the setuproot script are in the Setting
Instances to Automatically Start at System Startup section in the Oracle TimesTen In-Memory
Database Scaleout User's Guide.

Using systemd to Automatically Manage the TimesTen Daemon
For TimesTen Classic, the root user can set up systemd to use for automatic management
(including starting and stopping) of the TimesTen daemon.

Once you setup and start systemd, you can no longer use the ttDaemonAdmin utility to manage
the daemon. See Using systemd to Manage a TimesTen Service in Oracle TimesTen In-
Memory Database Installation, Migration, and Upgrade Guide for full details on installing,
configuring, and managing systemd.

Perform the following to setup systemd to automatically manage the TimesTen daemon:

Chapter 4
Starting and Stopping the Daemon

4-2

Note:

These steps are an overview of what you must perform to use systemd. See About
Creating an Instance on Linux/UNIX in Oracle TimesTen In-Memory Database
Installation, Migration, and Upgrade Guide.

1. Create the TimesTen instance with systemd.

2. Modify the TimesTen service file.

3. As the root user, run the timesten_home/bin/setuproot utility script with the -install -
systemd options. The setuproot script copies the systemd initialization scripts to the
appropriate location.

4. As the root user, run the systemd systemctl start command to start the TimesTen
service.

Note:

You can use the systemd systemctl commands to manually control systemd.

Once set up and started, systemd takes precedence over any SysV initialization scripts.

Manually Starting and Stopping the Daemon
By default, you can use the ttDaemonAdmin utility to start and stop the TimesTen daemon.

You must be the instance administrator to start and stop the TimesTen daemon with the
ttDaemonAdmin utility.

Note:

See Automatically Starting the TimesTen Daemon for details on how to automatically
start and stop the TimesTen daemon.

• For TimesTen Classic, the instance administrator manually manages the TimesTen
daemon. To manually start and stop the TimesTen main daemon, use the ttDaemonAdmin
utility with the -start or -stop option.

• For TimesTen Scaleout, run the ttDaemonAdmin -start or -stop options within the
ttGridAdmin instanceExec command to manually start the daemon for a data instance.

For more information on ttDaemonAdmin, see ttDaemonAdmin. For details on ttGridAdmin
instanceExec, see Execute a Command or Script on Grid Instances (instanceExec) in Oracle
TimesTen In-Memory Database Reference. See Automatically Starting the TimesTen Daemon
for details on the setuproot script.

Chapter 4
Starting and Stopping the Daemon

4-3

Shutting Down a TimesTen Application
You can shut down your TimesTen application using commands described in the following
sections:

• Shutting Down an Application Within TimesTen Classic

• Shutting Down Applications Within TimesTen Scaleout

Shutting Down an Application Within TimesTen Classic
An application within TimesTen Classic consists of a database that has been allocated shared
memory, user connections, and possibly replication and cache agents for communication with
other TimesTen or Oracle databases.

To close all active connections to the TimesTen Classic database, run the ttAdmin -
disconnect command. See Disconnecting from a Database in this book and ttAdmin in the
Oracle TimesTen In-Memory Database Reference.

If you want to unload the TimesTen Classic database, see Unloading a Database from Memory
for TimesTen Classic.

Shutting Down Applications Within TimesTen Scaleout
With TimesTen Scaleout, there are a few operations to perform when disconnecting all
TimesTen applications from the database.

• Close the database to user connections. The ttGridAdmin dbClose command disables
new user connections to a database.

• Disconnect all applications from the database. The ttGridAdmin dbDisconnect command
terminates all user connections to a database.

• Unload the database from memory. The ttGridAdmin dbUnload command unloads every
element of the database from the memory of their respective hosts.

See Unloading a Database from Memory in Oracle TimesTen In-Memory Database Scaleout
User's Guide.

Managing TimesTen Daemon Attributes
The timesten.conf file contains TimesTen daemon attributes.

• In TimesTen Scaleout, you can import the values in the timesten.conf file by using the
ttGridAdmin instanceConfigImport command. See Import Instance Configuration
Attributes (instanceConfigImport) in the Oracle TimesTen In-Memory Database Reference.

• In TimesTen Classic, you can create or change values for the timesten.conf file through
connection attributes, through editing this file by hand, or with the ttInstanceCreate or
ttInstanceModify utilities.

Use the ttInstanceModify utility to make changes to the timesten.conf file for most
commonly changed attributes. If you cannot use ttInstanceModify to change a particular
attribute and must modify the timesten.conf file directly, stop the TimesTen daemon
before you change the file. Restart the TimesTen daemon after you have finished changing

Chapter 4
Shutting Down a TimesTen Application

4-4

the file. To change TimesTen server attributes, it is only necessary to stop the server. It is
not necessary to stop the TimesTen daemon.

See ttInstanceCreate and ttInstanceModify in the Oracle TimesTen In-Memory Database
Reference.

For more information about the timesten.conf file, see TimesTen Instance Configuration File
in the Oracle TimesTen In-Memory Database Reference.

On Linux and UNIX, the timesten.conf file is located in the daemon home directory:

timesten_home/conf

Some features that the timesten.conf file controls are:

• The network interfaces on which the daemon listens

• The minimum and maximum number of TimesTen subdaemons that can exist for the
TimesTen instance

• Whether or not the TimesTen server is started

• Whether or not you use shared memory segments for client/server inter-process
communication

• The number of server processes that are prespawned on your system

• The location and size of daemon log files and user log files

• The duration of daemon logging to save for critical events

• Backward compatibility

• The maximum number of users for a TimesTen instance

• Data access across NFS mounted systems. This is for Linux only.

• The TNS_ADMIN value for an application using cache, OCI, Pro*C/C++, or ODP.NET. This
option cannot be modified in this file.

• Modifying the default database recovery after a fatal error

The rest of this section includes the following topics:

• Determining the Daemon Listening Address

• Managing Subdaemons

• Configuring a Range for Shared Memory Keys

Determining the Daemon Listening Address
By default, the TimesTen main daemon, all subdaemons and agents listen on a socket for
requests, using any available address.

All TimesTen utilities and agents use the loopback address to talk to the main daemon, and the
main daemon uses the loopback address to talk to agents.

By default, both IPv4 and IPv6 addresses are used. You can disable the use of IPv6 addresses
by setting the enableIPv6 attribute to 0 on a separate line in the timesten.conf file:

enableIPv6=0

This change takes effect after the TimesTen main daemon restarts. You cannot disable the use
of IPv4 addresses.

Chapter 4
Managing TimesTen Daemon Attributes

4-5

You can control which IP addresses that TimesTen listens on by specifying those addresses
with the listen_addr attribute for IPv4 addresses and the listen_6_addr attribute for IPv6
addresses in the timesten.conf file. The addresses specified with this option can be either a
host name or a numerical IP address. If you specify a hostname that resolves to multiple IP
addresses, then TimesTen listens on all of those addresses.

The listen_addr and listen_6_addr attributes exist for situations where a server has multiple
network addresses and multiple network cards. You can limit the network addresses on which
the TimesTen daemon is listening to a subset of the server's network addresses by making
entries only for those addresses on which the daemon listens.

Note:

Use of either the listen_addr or listen_6_addr attributes disables all available
addresses listening for both IPv4 and IPv6. This means that if you set the
listen_addr attribute, then you also must set the listen_6_addr attribute (and vice
versa).

For example:

• Given a situation where a server has a "public" network address that is accessible both
inside and outside the local network and a "private" address that is accessible only within
the local network, adding a listen_addr attribute and/or a listen_6_addr attribute
containing only the private address blocks all communications to TimesTen coming on the
public address.

• By specifying only the local host (or the loopback addresses), the TimesTen main daemon
can be cut off from all communications coming from outside the server and limited to
communicate only with local clients and subdaemons.

TimesTen replication does not use the listen_addr or listen_6_addr attributes. There is no
requirement for setting these attributes when replication is used. If replication is going to be
used in an environment where listen_addr or listen_6_addr attributes are used, then the
replication scheme needs to be configured to use the allowable network addresses.

To explicitly specify the address on which the daemons should listen, enter on a separate line
in the timesten.conf file:

listen_addr=Ipv4Address
listen_6_addr=Ipv6Address

For example, if you want to restrict the daemon to listen to just the loopback addresses, you
add:

listen_addr=127.0.0.1
listen_6_addr=::1

or

listen_addr=localhost
listen_6_addr=localhost

This means that only processes on the local system can communicate with the daemon.
Processes from other systems would be excluded, so operations such as client access from
other systems is not possible.

Chapter 4
Managing TimesTen Daemon Attributes

4-6

If you have multiple ethernet cards on different subnets, you can specify multiple listen_addr
and/or listen_6_addr attributes to control which addresses the daemon listens on.

For example, if you set both listen_addr=10.20.30.51 and
listen_6_addr=2020:100:100:300::51 in the timesten.conf file, the daemon listens on the
IPv4 loopback address, the specified IPv4 address, the IPv6 loopback address and the
specified IPv6 address.

127.0.0.1
10.20.30.51
::1
2020:100:100:300::51

You can enter up to four entries of each attribute on separate lines in the timesten.conf file. In
addition to the addresses you specify, TimesTen always listens on the loopback address for its
own purposes.

Managing Subdaemons
The main TimesTen daemon spawns subdaemons dynamically as they are needed. You can
manually specify a range of subdaemons that the daemon may spawn, by specifying a
minimum and maximum.

At any point in time, one subdaemon is potentially needed for TimesTen process recovery for
each failed application process that is being recovered at that time.

By default, TimesTen spawns a minimum of 2 subdaemons and specifies the default maximum
number of subdaemons at 50. However, you can change these settings by assigning new
values to the min_subs and max_subs attributes in the timesten.conf file.

Configuring a Range for Shared Memory Keys
You can configure a range for all shared memory keys used by TimesTen with the
shmkey_range daemon attribute.

You can constrain shared memory keys to a specific range to prevent shared memory
collisions. However, if you use this option, it is your responsibility to ensure that no other
shared memory segments use shared memory keys in the specified range.

Note:

This option is only available on UNIX or Linux platforms. This option cannot be used
for Windows platforms.

The syntax is as follows:

shmkey_range=low-high

For example:

shmkey_range=0x4000000-0x40FFFFFF

There can be no space in the low-high clause. The range is inclusive; thus, in the preceding
example, both 0x40000000 and 0x40FFFFFF are valid keys. In addition, the minimum range
size is 16.

Chapter 4
Managing TimesTen Daemon Attributes

4-7

With this option, it is possible to run out of shared memory keys, especially if there multiple
invalidations or there are more TimesTen databases in use than originally anticipated.

If a user provides any of the following invalid values for the shared memory keys, then the
TimesTen daemon terminates the startup process.

• Invalid numeric strings

• Only one number is specified for the range

• The first number is greater than the second number in the range specification

• The range size is less than 16.

• The range is specified incorrectly.

Managing TimesTen Client/Server Attributes
This section includes the following topics:

• Modifying the TimesTen Server Attributes

• Controlling the TimesTen Server

• Prespawning TimesTen Server Processes in TimesTen Classic

• Specifying Multiple Connections to the TimesTen Server

• Controlling the TimesTen Server Log Messages

Modifying the TimesTen Server Attributes
The TimesTen server is a child process of the TimesTen daemon that operates continually in
the background.

To modify the TimesTen server attributes, you must do the following:

1. Stop the TimesTen server.

2. Modify the attributes in the timesten.conf file as described in the following sections.

3. Restart the TimesTen server.

Controlling the TimesTen Server
The server_port=portno attribute in the timesten.conf file tells the TimesTen daemon to start
the TimesTen server and what port to use.

The portno is the port number on which the server listens.

Prespawning TimesTen Server Processes in TimesTen Classic
Each TimesTen client connection requires one server process. By default, a server process is
spawned when a client requests a connection.

In TimesTen Classic, you can prespawn a pool of reserve server processes by setting the
server_pool attribute in the timesten.conf file on the server system. These server processes
are immediately available for a client connection, which improves client/server connection
performance.

Chapter 4
Managing TimesTen Client/Server Attributes

4-8

The server_pool=number attribute in the timesten.conf file on the server system tells the
TimesTen server to create number processes. If this option is not specified, no processes are
prespawned and kept in the reserve pool.

When a new connection is requested, if there are no items in the server pool, a new process is
spawned, as long as you have not met the operating system limit.

If you request more process than allowed by your operating system, a warning is returned.
Regardless of the number of processes requested, an error does not occur unless a client
requests a connection when no more are available on the system, even if there are no
processes remaining in the reserve pool.

Changes to the TimesTen server take effect when the server is restarted.

Specifying Multiple Connections to the TimesTen Server
By default, TimesTen creates only one connection to a server for each child server process.
You can set multiple connections to a single TimesTen server, either by using the server
connection attributes or by setting the TimesTen daemon attributes described in this section.

See Defining Server DSNs for TimesTen Server on a Linux or UNIX System or Server First
Connection Attributes in Oracle TimesTen In-Memory Database Reference.

Changes to TimesTen server settings do not occur until the TimesTen server is restarted. To
restart the server, use the following command:

ttDaemonAdmin -restartserver

Note:

In the case that you have set both the server connection attributes and these
daemon attributes, the value of the server connection attributes takes precedence.

The following sections describe how to configure multiple child server processes so that a
single server process can service multiple client connections to a database.

• Configuring the Maximum Number of Client Connections Per Child Server Process

• Configuring Connection Distribution Among Child Server Processes

• Configuring the Thread Stack Size of the Child Server Processes

Configuring the Maximum Number of Client Connections Per Child Server Process
To run a child server process in multithreaded mode so that a single server process can
service multiple client connections to a database, add the max_conns_per_server attribute to
the timesten.conf file.

max_conns_per_server=NumberOfClientConnections

See Defining Server DSNs for TimesTen Server on a Linux or UNIX System.

Chapter 4
Managing TimesTen Client/Server Attributes

4-9

Configuring Connection Distribution Among Child Server Processes
To specify the number of child server processes for a particular server DSN that will use round-
robin connection distribution (when max_conns_per_server >1), add the servers_per_dsn
attribute to the timesten.conf file.

servers_per_dsn=NumberOfChildServerProcesses

By default (value=1), the first max_conns_per_server client connection to a Server DSN is
assigned to a single child server process, the next max_conns_per_server connection is
assigned to a second child server process and so on. See Defining Server DSNs for TimesTen
Server on a Linux or UNIX System for a full description of how the servers_per_dsn and
max_conns_per_server attributes relate to each other to control how connections are
distributed over server processes.

Configuring the Thread Stack Size of the Child Server Processes
To set the size of the child server process thread stack for each client connection, add the
server_stack_size attribute to the timesten.conf file.

server_stack_size=ThreadStackSize

See Defining Server DSNs for TimesTen Server on a Linux or UNIX System.

Note:

These changes to the TimesTen server do not occur until the TimesTen daemon is
restarted.

Controlling the TimesTen Server Log Messages
The noserverlog attribute in the timesten.conf file tells the TimesTen daemon to turn off
logging of connects and disconnects from the client applications.

If the TimesTen Server is installed, you can enable or disable logging of connect and
disconnect messages by:

• To enable logging, change the value of the noserverlog attribute to 1.

• To disable logging, change the value of the noserverlog attribute to 0.

Error, Warning, and Informational Messages
As the daemon operates, it generates error, warning, and informational messages. These
messages may be useful for TimesTen system administration and for debugging applications.

By default, TimesTen messages and diagnostic information are stored in:

• A user error log that contains error message information. Generally, these messages
contain information on actions you may need to take. The default file is timesten_home/
diag/tterrors.log.

Chapter 4
Error, Warning, and Informational Messages

4-10

• A daemon log file containing everything in the user error log plus information used by
TimesTen Customer Support. The default file is timesten_home/diag/ttmesg.log.

• An invalidation file containing diagnostic information when TimesTen invalidates a
database. This file provides useful troubleshooting information for TimesTen Customer
Support. The invalidation file is created and named based on the value specified by the
DataStore connection attribute. This connection attribute is not a file name. For example
on Linux and UNIX systems, if the DataStore connection attribute is /home/ttuser/
AdminData, the actual invalidation file name has a suffix, .inval, /home/ttuser/
AdminData.inval. See Critical Event Logging.

• Critical events log files contain a collection of daemon log entries at the moment of a
critical event to assist when diagnosing critical failures. See Critical Event Logging.

You can specify the location and size of the daemon log files and user log files, as well as the
number of files to keep stored on your system in the TimesTen instance configuration file (the
timesten.conf file).

You can also specify the syslog facility used to log TimesTen daemon and subdaemon
messages on Linux or UNIX. On a separate line of the timesten.conf file add:

facility=name

Possible name values are: auth, cron, daemon, local0-local7, lpr, mail, news, user, or uucp.

See TimesTen Instance Configuration File in the Oracle TimesTen In-Memory Database
Reference.

The ttDaemonLog utility enables you to control the type of events that TimesTen writes to and
fetches from the TimesTen user and error logs. You can also display all messages or selected
categories of messages from the log to the standard output with this utility. See ttDaemonLog
in the Oracle TimesTen In-Memory Database Reference.

Critical Event Logging
When critical events occur, TimesTen collects the daemon log entries at the moment of the
critical event to assist when diagnosing critical failures.

An example of critical events include database failure or a log-based catch up failure.
Database invalidation occurs when TimesTen detects that the data in the database is corrupt
and therefore unusable.

• TimesTen generates critical event files containing a snippet of the daemon log file that was
collected at the moment of the critical event. Critical event log files are created and stored
in the same directory as the daemon log files (specified by supportlog configuration
attribute in the timesten.conf file). Critical event log files are named with the format of
ttmesg.log.ts_timestamp.gz where timestamp is the current time on the host.

• When a critical event occurs, TimesTen records in the daemon log file that critical event
information was collected and the name of the critical event log file.

• If a database invalidation occurs, then TimesTen records in the .inval file that critical
event information was collected at the time of the database invalidation and the name of
the critical event log file. The .inval file is located in the same directory configured as the
DataStore directory.

If more than one critical event occurs in quick succession, TimesTen collects only new
information for each subsequent event in the next critical event log file.

Chapter 4
Error, Warning, and Informational Messages

4-11

You can configure the duration of the daemon log collection with the
daemon_log_snippet_interval_in_mins configuration attribute in the timesten.conf file. As
with all changes to the timesten.conf file, you must restart the main daemon for any change
to take effect. See the TimesTen Instance Configuration File in the Oracle TimesTen In-
Memory Database Reference.

The occurrence of a critical event and the name of the critical event log file are noted in the
daemon log file. The following example shows the message you would see in the daemon log
file if two critical events occur in quick succession.

17:08:00.224 Err : : 12532: A critical event has happened. Saving last 600 seconds
snippet of daemon log at /timesten/instance/diag/ttmesg.log.ts_1568160480.gz.
17:08:00.643 Err : : 12532: Read 543878 bytes from daemon log file and wrote into
 the daemon log snippet file located at /timesten/instance/diag/
ttmesg.log.ts_1568160480.gz

17:11:12.657 Err : : 12532: A critical event has happened. Saving last 600 seconds
 snippet of daemon log at /timesten/instance/diag/ttmesg.log.ts_1568160672.gz.
17:11:12.657 Err : : 12532: Part of the daemon log snippet has already been
 recorded in a prior snippet file ending with timestamp 1568160480.gz
17:11:13.077 Err : : 12532: Read 2678582 bytes from daemon log file and wrote
 into the daemon log snippet file located at
 /timesten/instance/diag/ttmesg.log.ts_1568160672.gz

After which, you can evaluate the collected log records in the specified
ttmesg.log.ts_timestamp.gz files.

Any database invalidation event and the name of the critical event log file are noted in
the .inval file. The following example shows the messages you could see in the .inval file if
two critical events occur in quick succession.

2019-09-10 17:08:00.752
Hostname: myhost
Invalidated data store: /timesten/instance/datastores/mydb
Data store created: 2019/09/10 17:04:25
TimesTen Release 18.1.3.1.0 (Linux x86-64, 64-bit dbg) (myhost)
Data store created by Release 18.1.3.1.0 (Linux x86-64, 64-bit dbg) (myhost)
Source: Data store marked invalid by master daemon: grid LBCU pre-condition check failed
A critical event has happened. Saving last 600 seconds snippet of daemon log at
/timesten/instance/diag/ttmesg.log.ts_1568160480.gz.
Read 953765 bytes from daemon log file and wrote into the daemon log snippet file
located at /timesten/instance/diag/ttmesg.log.ts_1568160480.gz

2019-09-10 17:11:13.905
Hostname: myhost
Invalidated data store: /timesten/instance/datastores/mydb
Data store created: 2019/09/10 17:04:25
TimesTen Release 18.1.3.1.0 (Linux x86-64, 64-bit dbg)
Data store created by Release 18.1.3.1.0 (Linux x86-64, 64-bit dbg)
Source: Data store marked invalid by master daemon: subdaemon managing database
exited or died
A critical event has happened. Saving last 600 seconds snippet of daemon log at
/timesten/instance/diag/ttmesg.log.ts_1568160673.gz.
Part of the daemon log snippet has already been recorded in a prior snippet file
ending with timestamp ts_1568160480.gz
Read 781026 bytes from daemon log file and wrote into the daemon log snippet file
located at /timesten/instance/diag/ttmesg.log.ts_1568160673.gz

After which, you can evaluate the collected log records in the specified
ttmesg.log.ts_timestamp.gz files.

Chapter 4
Error, Warning, and Informational Messages

4-12

5
Globalization Support

The following sections describe TimesTen globalization support features:

• Overview of Globalization Support Features

• Choosing a Database Character Set

• Character Set Length Semantics Affect Data Storage

• Setting the Connection Character Set

• Linguistic Sort Rules Support Linguistic Conventions

• SQL String and Character Functions

• Setting Globalization Support Attributes

• Globalization Support During Migration

Overview of Globalization Support Features
TimesTen globalization support includes database character set, length semantics, linguistic
sorts and indexes, and SQL string and character functions.

• Character set support

You must choose a database character set when you create a database. See Choosing a
Database Character Set in this book and the Supported Character Sets section in the
Oracle TimesTen In-Memory Database Reference for all supported character sets. You can
also choose a connection character set for a session. See Setting the Connection
Character Set.

• Length semantics

You can specify byte semantics or character semantics for defining the storage
measurement of character data types. See Character Set Length Semantics Affect Data
Storage.

• Linguistic sorts and indexes. You can sort data based on linguistic rules. See Linguistic
Sort Rules Support Linguistic Conventions. You can use linguistic indexes to improve
performance of linguistic sorts. See Using Linguistic Indexes.

• SQL string and character functions

TimesTen provides SQL functions that return information about character strings.
TimesTen also provides SQL functions that return a character from an encoded value. See
SQL String and Character Functions.

Note:

This release of TimesTen does not support session language and territory.

5-1

Choosing a Database Character Set
TimesTen uses the database character set to define the encoding of data stored in character
data types, such as CHAR and VARCHAR2.

Use the DatabaseCharacterSet data store attribute to specify the database character set
during database creation. You cannot alter the database character set after database creation,
and there is no default value for DatabaseCharacterSet. See Supported Character Sets in the
Oracle TimesTen In-Memory Database Reference for a list of supported character sets.

Consider the following questions when you choose a character set for a database:

• What languages does the database need to support now and in the future?

• Is the character set available on the operating system?

• What character sets are used on clients?

• How well does the application handle the character set?

• What are the performance implications of the character set?

If you are caching Oracle database tables, or if you loading Oracle database data into a
TimesTen table, you must create the database with the same database character set as the
Oracle database.

This section includes the following topics:

• Character Sets and Languages

• Client Operating System and Application Compatibility

• Performance and Storage Implications

• Character Sets and Replication

Character Sets and Languages
Choosing a database character set determines what languages can be represented in the
database.

A group of characters, such as alphabetic characters, ideographs, symbols, punctuation
marks, and control characters, can be encoded as a character set. An encoded character set
assigns unique numeric codes to each character in the character repertoire. The numeric
codes are called code points or encoded values.

Character sets can be single-byte or multibyte. Single-byte 7-bit encoding schemes can define
up to 128 characters and usually support just one language. Single-byte 8-bit encoding
schemes can define up to 256 characters and often support a group of related languages.
Multibyte encoding schemes are needed to support ideographic scripts used in Asian
languages like Chinese or Japanese because these languages use thousands of characters.
These encoding schemes use either a fixed number or a variable number of bytes to represent
each character. Unicode is a universal encoded character set that enables information from
any language to be stored using a single character set. Unicode provides a unique code value
for every character, regardless of the platform, program, or language.

Client Operating System and Application Compatibility
The database character set is independent of the operating system. On an English operating
system, you can create a database with a Japanese character set. When an application in the

Chapter 5
Choosing a Database Character Set

5-2

client operating system accesses the database, the client operating system must be able to
support the database character set with appropriate fonts and input methods.

For example, you cannot insert or retrieve Japanese data on the English Windows operating
system without first installing a Japanese font and input method. Another way to insert and
retrieve Japanese data is to use a Japanese operating system remotely to access the
database server.

Performance and Storage Implications
For best performance, choose a character set that avoids character set conversion and uses
the most efficient encoding for the languages desired.

Single-byte character sets result in better performance than multibyte character sets and are
more efficient in terms of space requirements. However, single-byte character sets limit how
many languages you can support.

Character Sets and Replication
All databases in a replication scheme must have the same database character set. No
character set conversion occurs during replication.

Character Set Length Semantics Affect Data Storage
In single-byte character sets, the number of bytes and the number of characters in a string are
the same. In multibyte character sets, a character or code point consists of one or more bytes.
Calculating the number of characters based on byte lengths can be difficult in a variable-width
character set. Calculating column lengths in bytes is called byte semantics, while measuring
column lengths in characters is called character semantics.
Character length and byte length semantics are supported to resolve potential ambiguity
regarding column length and storage size. Multibyte encoding character sets are supported,
such as UTF-8 or AL32UTF8. Multibyte encodings require varying amounts of storage per
character depending on the character. For example, a UTF-8 character may require from 1 to 4
bytes. If, for example, a column is defined as CHAR (10), all 10 characters fit in this column
regardless of character set encoding. However, for UTF-8 character set encoding, up to 40
bytes are required.

Character semantics is useful for defining the storage requirements for multibyte strings of
varying widths. For example, in a Unicode database (AL32UTF8), suppose that you need to
define a VARCHAR2 column that can store up to five Chinese characters together with five
English characters. Using byte semantics, this column requires 15 bytes for the Chinese
characters, where each are three bytes long, and 5 bytes for the English characters, where
each are one byte long, for a total of 20 bytes. Using character semantics, the column requires
10 characters.

The expressions in the following list use byte semantics. Note the BYTE qualifier in the CHAR and
VARCHAR2 expressions.

• CHAR (5 BYTE)
• VARCHAR2(20 BYTE)
The expressions in the following list use character semantics. Note the CHAR qualifier in the
VARCHAR2 expression.

• VARCHAR2(20 CHAR)

Chapter 5
Character Set Length Semantics Affect Data Storage

5-3

• SUBSTR(string, 1, 20)
By default, the CHAR and VARCHAR2 character data types are specified in bytes, not characters.
Therefore, the specification CHAR(20) in a table definition allows 20 bytes for storing character
data.

The NCHAR and NVARCHAR2 character data types are encoded as UTF-16, which requires at
least 2 bytes for each character. Thus, NCHAR(20) in a table definition allows 40 bytes for
storing character data.

The NLS_LENGTH_SEMANTICS general connection attribute determines whether a new column of
character data type uses byte or character semantics. It enables you to create CHAR and
VARCHAR2 columns using either byte-length or character-length semantics without having to add
the explicit qualifier. NCHAR and NVARCHAR2 columns are always character-based. Existing
columns are not affected.

The default value for NLS_LENGTH_SEMANTICS is BYTE. Specifying the BYTE or CHAR qualifier in a
data type expression overrides the NLS_LENGTH_SEMANTICS value.

Setting the Connection Character Set
The database character set determines the encoding of CHAR and VARCHAR2 character data
types. The connection character set is used to describe the encoding of the incoming and
outgoing application data, so that TimesTen can perform the necessary character set
conversion between the application and the database.

For example, a non-Unicode application can communicate with a Unicode (AL32UTF8)
database.

The ConnectionCharacterSet general connection attribute sets the character encoding for the
connection, which can be different than the database character set. The connection uses the
connection character set for information that passes through the connection, such as
parameters, SQL query text, results and error messages. Choose a connection character set
that matches the application environment or the character set of your data source.

Best performance results when the connection character set and the database character set
are the same because no conversion occurs. When the connection character set and the
database character set are different, data conversion is performed in the ODBC layer.
Characters that cannot be converted to the target character set are changed to replacement
characters.

The default connection character set is US7ASCII. This setting applies to both direct and client
connections.

Linguistic Sort Rules Support Linguistic Conventions
Different languages have different sorting rules. Text is conventionally sorted inside a database
according to the binary codes used to encode the characters. Typically, this does not produce
a sort order that is linguistically meaningful. A linguistic sort handles the complex sorting
requirements of different languages and cultures.

It enables text in character data types, such as CHAR, VARCHAR2, NCHAR, and NVARCHAR2, to be
sorted according to specific linguistic conventions.

A linguistic sort operates by replacing characters with numeric values that reflect each
character's proper linguistic order. TimesTen offers two kinds of linguistic sorts: monolingual
and multilingual.

Chapter 5
Setting the Connection Character Set

5-4

This section includes the following topics:

• Monolingual Linguistic Sorts

• Multilingual Linguistic Sorts

• Case-Insensitive and Accent-Insensitive Linguistic Sorts

• Performing a Linguistic Sort

• Using Linguistic Indexes

Monolingual Linguistic Sorts
TimesTen compares character strings in two steps for monolingual sorts.

The first step compares the major value of the entire string from a table of major values.
Usually, letters with the same appearance have the same major value. The second step
compares the minor value from a table of minor values. The major and minor values are
defined by TimesTen. TimesTen defines letters with accent and case differences as having the
same major value but different minor values.

Monolingual linguistic sorting is available only for single-byte and Unicode database character
sets. If a monolingual linguistic sort is specified when the database character set is non-
Unicode multibyte, then the default sort order is the binary sort order of the database character
set.

For a list of supported sorts, see NLS_SORT in the Oracle TimesTen In-Memory Database
Reference.

Multilingual Linguistic Sorts
TimesTen provides multilingual linguistic sorts so that you can sort data for multiple languages
in one sort.

Multilingual linguistic sort is based on the ISO/OEC 14651 - International String Ordering and
the Unicode Collation algorithm standards. This framework enables the database to handle
languages that have complex sorting rules, such as those in Asian languages, as well as
providing linguistic support for databases with multilingual data.

In addition, multilingual sorts can handle canonical equivalence and supplementary characters.
Canonical equivalence is a basic equivalence between characters or sequences of characters.
For example, ç is equivalent to the combination of c and ,.

For example, TimesTen supports a monolingual French sort (FRENCH), but you can specify a
multilingual French sort (FRENCH_M). _M represents the ISO 14651 standard for multilingual
sorting. The sorting order is based on the GENERIC_M sorting order and can sort accents from
right to left. TimesTen recommends using a multilingual linguistic sort if the tables contain
multilingual data. If the tables contain only French, then a monolingual French sort may have
better performance because it uses less memory. It uses less memory because fewer
characters are defined in a monolingual French sort than in a multilingual French sort. There is
a trade-off between the scope and the performance of a sort.

For a list of supported multilingual sorts, see NLS_SORT in the Oracle TimesTen In-Memory
Database Reference.

Chapter 5
Linguistic Sort Rules Support Linguistic Conventions

5-5

Case-Insensitive and Accent-Insensitive Linguistic Sorts
Operations inside a database are sensitive to the case and the accents of the characters.
Sometimes you might need to perform case-insensitive or accent-insensitive comparisons.

To specify a case-insensitive or accent-insensitive sort:

• Append _CI to a TimesTen sort name for a case-insensitive sort. For example:

BINARY_CI: accent-sensitive and case-insensitive binary sort

GENERIC_M_CI: accent-sensitive and case-insensitive GENERIC_M sort

• Append _AI to a TimesTen sort name for an accent-insensitive and case-insensitive sort.
For example:

BINARY_AI: accent-insensitive and case-insensitive binary sort

FRENCH_M_AI: accent-insensitive and case-insensitive FRENCH_M sort

Performing a Linguistic Sort
The NLS_SORT data store connection attribute indicates which collating sequence to use for
linguistic comparisons. The NLS_SORT value affects the SQL string comparison operators and
the ORDER BY clause.

You can use the ALTER SESSION statement to change the value of NLS_SORT:

Command> ALTER SESSION SET NLS_SORT=SWEDISH;
Command> SELECT product_name FROM product ORDER BY product_name;

PRODUCT NAME

aerial
Antenne
Lcd
ächzen
Ähre

You can also override the NLS_SORT setting by using the NLSSORT SQL function to perform a
linguistic sort:

SELECT * FROM test ORDER BY NLSSORT(name,'NLS_SORT=SPANISH');

Note:

For materialized views and cache groups, TimesTen recommends that you explicitly
specify the collating sequence using the NLSSORT() SQL function rather than using
this attribute in the connection string or DSN definition.

See NLS_SORT in the Oracle TimesTen In-Memory Database Reference. For more extensive
examples of using NLSSORT, see NLSSORT in the Oracle TimesTen In-Memory Database SQL
Reference.

Chapter 5
Linguistic Sort Rules Support Linguistic Conventions

5-6

Using Linguistic Indexes
You can create a linguistic index to achieve better performance during linguistic comparisons.
A linguistic index requires storage for the sort key values.

To create a linguistic index, use a statement similar to the following:

CREATE INDEX german_index ON employees
 (NLSSORT(employee_id, 'NLS_SORT=GERMAN'));

The optimizer chooses the appropriate index based on the values for NLSSORT and NLS_SORT.

You must create multiple linguistic indexes if you want more than one linguistic sort on a
column. For example, if you want both GERMAN and GERMAN_CI sorts against the same column,
create two linguistic indexes.

See CREATE INDEX in the Oracle TimesTen In-Memory Database SQL Reference.

SQL String and Character Functions
There are many SQL functions that operate on character strings.

These SQL functions are detailed in the following sections in the Oracle TimesTen In-Memory
Database SQL Reference:

• Character Functions Returning Character Values.

• Character Functions Returning Number Values.

• String Functions.

• LOB Functions.

• Conversion Functions (describing some functions that operate on character strings).

• General Comparison Functions (describing some functions that operate on character
strings but not on LOB data types).

Setting Globalization Support Attributes
You can set globalization support attributes.

Parameter Description

DatabaseCharacterSet Indicates the character encoding used by a database.

ConnectionCharacterSet Determines the character encoding for the connection, which may
be different from the database character set.

NLS_SORT Indicates the collating sequence to use for linguistic comparisons.

NLS_LENGTH_SEMANTICS Sets the default length semantics.

NLS_NCHAR_CONV_EXCP Determines whether an error is reported when there is data loss
during an implicit or explicit data type conversion between NCHAR/
NVARCHAR2 data and CHAR/VARCHAR2 data.

DatabaseCharacterSet must be set during database creation. There is no default. See
Choosing a Database Character Set.

Chapter 5
SQL String and Character Functions

5-7

The rest of the attributes are set during connection to a database. For more information about
ConnectionCharacterSet, see Setting the Connection Character Set.

You can use the ALTER SESSION statement to change the following attributes during a session:

• NLS_SORT
• NLS_LENGTH_SEMANTICS
• NLS_NCHAR_CONV_EXCP
For more information, see ALTER SESSION in the Oracle TimesTen In-Memory Database
SQL Reference and Connection Attributes in the Oracle TimesTen In-Memory Database
Reference.

Globalization Support During Migration
Globalization support may cause issues during migration.

For complete details, see Back Up, Restore, and Migrate Data in TimesTen Classic in Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide and the description
of ttMigrate in Oracle TimesTen In-Memory Database Reference.

Chapter 5
Globalization Support During Migration

5-8

6
Using the ttIsql Utility

The TimesTen ttIsql utility is a general tool for working with a TimesTen data source.

The ttIsql command line interface is used to issue SQL statements and built-in ttIsql
commands to perform various operations. Some common tasks that are typically accomplished
using ttIsql include:

• Database setup and maintenance. Creating tables and indexes, altering existing tables
and updating table statistics can be performed quickly and easily using ttIsql.

• Retrieval of information on database structures. The definitions for tables, indexes and
cache groups can be retrieved using built-in ttIsql commands. In addition, the current
size and state of the database can be displayed.

• Optimizing database operations. The ttIsql utility can be used to alter and display query
optimizer plans for the purpose of tuning SQL operations. The time required to run various
ODBC function calls can also be displayed.

The following sections describe how the ttIsql utility is used to perform these types of tasks:

• Using ttIsql in Batch Mode or Interactive Mode

• Customizing Startup Command Line Options for ttIsql Sessions

• Customizing the ttIsql Command Prompt

• Using the ttIsql Online Help

• Using the ttIsql 'editline' Feature for Linux and UNIX Only

• Using the ttIsql Command History

• Using the ttIsql edit Command

• Displaying Characters in ttIsql

• Displaying Database Structures Using ttIsql

• Using ttIsql to List Database Objects by Object Type

• Using ttIsql to View and Set Connection Attributes

• Using ttIsql to Manage Transactions

• Using ttIsql with Prepared and Parameterized SQL Statements

• Using, Declaring, and Setting Variables in ttIsql

• Creating and Running PL/SQL Blocks Within ttIsql

• Passing Data From PL/SQL Using OUT Parameters Within ttIsql

• Using the IF-THEN-ELSE Command Construct Within ttIsql

• Loading Data from an Oracle Database into a TimesTen Table Without Cache

• Using ttIsql to View and Change Query Optimizer Plans

• Using ttIsql to Manage ODBC Functions

• Specifying Error Recovery Within ttIsql

6-1

For more information on ttIsql commands, see the ttIsql section in the Oracle TimesTen In-
Memory Database Reference.

Using ttIsql in Batch Mode or Interactive Mode
The ttIsql utility can be used in two distinctly different ways: batch mode or interactive mode.

When ttIsql is used in interactive mode, users type commands directly into ttIsql from the
console. When ttIsql is used in batch mode, a prepared script of ttIsql commands is run by
specifying the name of the file containing the commands.

Batch mode is commonly used for the following types of tasks:

• Performing periodic maintenance operations including the updating of table statistics,
compacting the database and purging log files.

• Initializing a database by creating tables, indexes and cache groups and then populating
the tables with data.

• Generating simple reports by running common queries.

Interactive mode is suited for the following types of tasks:

• Experimenting with TimesTen features, testing design alternatives and improving query
performance.

• Solving database problems by examining database statistics.

• Any other database tasks that are not performed routinely.

By default, when starting ttIsql from the shell, ttIsql is in interactive mode. The ttIsql
utility prompts you to type in a valid ttIsql built-in command or SQL statement by printing the
Command> prompt. The following example starts ttIsql in interactive mode and then connects
to a TimesTen database by running the connect command with the database1 DSN.

C:\>ttIsql

Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect database1;
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

Command>

When connecting to the database using ttIsql, you can also specify the DSN or connection
string on the ttIsql command line. The connect command is implicitly run.

C:\>ttIsql -connstr "DSN=database1"

Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

Chapter 6
Using ttIsql in Batch Mode or Interactive Mode

6-2

Command>

Batch mode can be accessed in two different ways. The most common way is to specify the -f
option on the ttIsql command line followed by the name of file to run.

For example, running a file containing a CREATE TABLE statement looks like the following:

C:\>ttIsql -f create.sql -connstr "DSN=database1"

Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

run "create.sql"

CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64))

exit;
Disconnecting...
Done.

C:\>

The other way to use batch mode is to enter the run command directly from the interactive
command prompt. The run command is followed by the name of the file containing ttIsql
built-in commands and SQL statements to run:

Command> run "create.sql";

CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64))
Command>

Customizing Startup Command Line Options for ttIsql Sessions
The ttIsql utility can be customized to automatically run a set of command line options every
time a ttIsql session is started from the command prompt.

This is accomplished by setting an environment variable called TTISQL to the value of the
ttIsql command line that you prefer. A summary of ttIsql command line options is shown
below. For a complete description of the ttIsql command line options, see the ttIsql section in
the Oracle TimesTen In-Memory Database Reference.

Usage: ttIsql [-h | -help | -helpcmds | -helpfull | -V]
 ttIsql [-f <filename>]
 [-v <verbosity>]
 [-e <commands>]
 [-interactive]
 [-N <ncharEncoding>]
 [-wait]
 [{<DSN> | -connstr <connection_string>}]

The TTISQL environment variable has the same syntax requirements as the ttIsql command
line. When ttIsql starts up it reads the value of the TTISQL environment variable and applies
all options specified by the variable to the current ttIsql session. If a particular command line

Chapter 6
Customizing Startup Command Line Options for ttIsql Sessions

6-3

option is specified in both the TTISQL environment variable and the command line, then the
command line version always takes precedence.

The procedure for setting the value of an environment variable differs based on the platform
and shell that ttIsql is started from. As an example, setting the TTISQL environment variable
on Windows could look like this:

C:\>set TTISQL=-connStr "DSN=database1" -e "autocommit 0;dssize;"

In this example, ttIsql automatically connects to a DSN called MY_DSN, turns off autocommit,
and displays the size of the database, as shown below:

C:\>ttIsql

Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Command> autocommit 0;
Command> dssize;
The following values are in KB:

 PERM_ALLOCATED_SIZE: 40960
 PERM_IN_USE_SIZE: 9453
 PERM_IN_USE_HIGH_WATER: 9453
 TEMP_ALLOCATED_SIZE: 32768
 TEMP_IN_USE_SIZE: 9442
 TEMP_IN_USE_HIGH_WATER: 9885
Command>

Customizing the ttIsql Command Prompt
You can customize the ttIsql command prompt by using the set command with the prompt
attribute.

Command> set prompt MY_DSN;
MY_DSN

You can specify a string format (%c) that returns the name of the current connection:

Command> set prompt %c;
con1

If you want to embed spaces, you must quote the string:

Command> set prompt "MY_DSN %c> ";
MY_DSN con1>

Using the ttIsql Online Help
The ttIsql utility has an online version of command syntax definitions and descriptions for all
built-in ttIsql commands.

To access this online help from within ttIsql use the help command. To view a detailed
description of any built-in ttIsql commands type the help command followed by one or more

Chapter 6
Customizing the ttIsql Command Prompt

6-4

ttIsql commands to display help for. The example below displays the online description for
the connect and disconnect commands.

Command> help connect disconnect

Arguments in <> are required.
Arguments in [] are optional.

Command Usage: connect [DSN|connection_string] [as <connection_id>]
Command Aliases: (none)
Description: Connects to the data source specified by the optional DSN or
connection string argument. If an argument is not given, then the DSN or
connection string from the last successful connection is used. A connection ID
may optionally be specified, for use in referring to the connection when multiple
connections are enabled. The DSN is used as the default connection ID. If that ID
is already in use, the connection will be assigned the ID "conN", where N is some
number larger than 0.
Requires an active connection: NO
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: NO
Example: connect; -or- connect RunData; -or- connect "DSN=RunData";
-or- connect RunData as rundata1;

Command Usage: disconnect [all]
Command Aliases: (none)
Description: Disconnects from the currently connected data source or all
connections when the "all" argument is included. If a transaction is active when
disconnecting then the transaction will be rolled back automatically. If a
connection exists when executing the "bye", "quit" or "exit" commands then the
"disconnect" command will be executed automatically.
Requires an active connection: NO
Requires autocommit turned off: NO
Reports elapsed execution time: YES
Works only with a TimesTen data source: NO
Example: disconnect;

To view a short description of all ttIsql built-in commands type the help command without an
argument. To view a detailed description of all built-in ttIsql commands type the help
command followed by the all argument.

To view the list of attributes that can be set or shown by using ttIsql, enter:

help attributes

Using the ttIsql 'editline' Feature for Linux and UNIX Only
On Linux and UNIX systems, you can use the 'editline' library to set up emacs (default) or vi
bindings that enable you to scroll through previous ttIsql commands, as well as edit and
resubmit them.

This feature is not available or needed on Windows.

To disable the 'editline' feature in ttIsql, use the ttIsql command set editline off.

The set up and keystroke information is described for each type of editor:

• Emacs Binding

• vi Binding

Chapter 6
Using the ttIsql 'editline' Feature for Linux and UNIX Only

6-5

Emacs Binding
To use the emacs binding, create a file ~/.editrc and put "bind" on the last line of the file, run
ttIsql. The editline lib prints the current bindings.

The keystrokes when using ttIsql with the emacs binding are:

Keystroke Action

<Left-Arrow> Move the insertion point left. Back up.

<Right-Arrow> Move the insertion point right. Move forward.

<Up-Arrow> Scroll to the command prior to the one being displayed. Places the cursor at
the end of the line.

<Down-Arrow> Scroll to a more recent command history item and put the cursor at the end of
the line.

<Ctrl-A> Move the insertion point to the beginning of the line.

<Ctrl-E> Move the insertion point to the end of the line.

<Ctrl-K> Save and erase the characters on the command line from the current position
to the end of the line.

<Ctrl-Y> "Yank" (Restore) the characters previously saved and insert them at the
current insertion point.

<Ctrl-F> Forward char - move forward 1 (see Right Arrow).

<Ctrl-B> Backward char - move back 1 (see Left Arrow).

<Ctrl-P> Previous History (see Up Arrow).

<Ctrl-N> Next History (see up Down Arrow).

<ESC-k> or <Ctrl-Up-
Arrow>

Scroll up one line to edit within a multiple line PL/SQL block.

<ESC-j> or <Ctrl-Down-
Arrow>

Scroll down one line to edit within a multiple line PL/SQL block.

vi Binding
To use the vi bindings, create a file ${HOME}/.editrc and put "bind -v" in the file, run ttIsql.

To get the current settings, create a file ${HOME}/.editrc and put "bind" on the last line of the
file. When you run ttIsql, the editline lib prints the current bindings.

The keystrokes when using ttIsql with the vi binding are:

Keystroke Action

<Left-Arrow>, h Move the insertion point left (back up).

<Right-Arrow>, l Move the insertion point right (forward).

<Up-Arrow>, k Scroll to the prior command in the history and put the cursor at the end of the
line.

<Down-Arrow>, j Scroll to the next command in the history and put the cursor at the end of the
line.

ESC Vi Command mode.

0, $ Move the insertion point to the beginning of the line, Move to end of the line.

Chapter 6
Using the ttIsql 'editline' Feature for Linux and UNIX Only

6-6

Keystroke Action

i, I Insert mode, Insert mode at beginning of the line.

a, A Add ("Insert after") mode, Append at end of line

R Replace mode.

C Change to end of line.

B Move to previous word.

e Move to end of word.

<Ctrl-P> Previous History (see Up Arrow).

<Ctrl-N> Next History (see up Down Arrow).

Using the ttIsql Command History
The ttIsql utility stores a list of the last 100 commands that ran within the current ttIsql
session. The commands in this list can be viewed or run again without having to type the entire
command over.

Both SQL statements and built-in ttIsql commands are stored in the history list. Use the
history command ("h ") to view the list of previous commands. For example:

Command> h;
8 INSERT INTO T3 VALUES (3)
9 INSERT INTO T1 VALUES (4)
10 INSERT INTO T2 VALUES (5)
11 INSERT INTO T3 VALUES (6)
12 autocommit 0
13 showplan
14 SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B
15 trytbllocks 0
16 tryserial 0
17 SELECT * FROM T1, t2, t3 WHERE A=B AND B=C AND A=B
Command>

The history command displays the last 10 SQL statements or ttIsql built-in commands that
were run. To display more than that last 10 commands specify the maximum number to display
as an argument to the history command.

Each entry in the history list is identified by a unique number. The ! character followed by the
number of the command can be used to run the command again. For example:

Command>
Command> ! 12;

autocommit 0
Command>

To run the last command again simply type a sequence of two ! characters:

Command> !!;

autocommit 0
Command>

To run the last command that begins with a given string type the ! character followed by the
first few letters of the command. For example:

Chapter 6
Using the ttIsql Command History

6-7

Command> ! auto;

autocommit 0
Command>

Saving and Clearing the ttIsql Command History
You can save the list of commands that ttIsql stores by using the savehistory command.

savehistory history.txt;

If the output file already exists, use the -a option to append the new command history to the
file or the -f option to overwrite the file. The next example shows how to append new
command history to an existing file.

savehistory -a history.txt;

You can clear the list of commands that ttIsql stores by using the clearhistory command:

clearhistory;

Using the ttIsql edit Command
You can use the ttIsql edit command to edit a file or edit ttIsql commands in a text editor.

The ttIsql edit command starts a text editor such as emacs, gedit, or vi. See Changing the
Default Text Editor for the ttIsql edit Command.

The syntax for the ttIsql edit command is as follows:

Command> edit [file | !history_search_command]

You can only use one parameter at a time. The history_search_command parameter is defined
as the ! character followed by the number of the command or a search string. If you do not
specify a ! character, the ttIsql edit command interprets the parameter as file. file is the
name of the file that you want to edit. If you do not specify a parameter or specify !!, the last
ttIsql command is edited.

When you specify a file parameter, the editor edits the specified file. If TimesTen does not
find an exact file match for the specified file parameter in the current working directory, it
searches for file.sql. If neither file exists, the editor creates the specified file in the current
working directory. You can specify a path in the file parameter.

The following example edits the new.sql file:

edit new.sql;

The following example edits the new.sql file in the /scripts directory:

edit /scripts/new.sql;

If you run the ttIsql edit command with a file parameter, ttIsql does not run the contents
of the file after you exit the editor.

You can edit a SQL statement that is stored in the history list of the current ttIsql session.
When calling the ttIsql edit command specify the ! character followed by the number of the
command or a search string. The editor opens the ttIsql command in a temporary file that
you can save in a preferred location. For more information on using the ttIsql history
command, see Using the ttIsql Command History.

Chapter 6
Using the ttIsql edit Command

6-8

The following example edits ttIsql command 2:

edit !2;

The following example searches for and edits the last ttIsql command that contains the
search string create:

edit !create;

The following example runs a CREATE TABLE statement and then uses the edit command to
edit the CREATE TABLE statement in a text editor:

Command> CREATE TABLE t1
(c1 VARCHAR(10) NOT INLINE NOT NULL, c2 VARCHAR(144) INLINE NOT NULL);
Command> edit;

The prior example is equivalent to using the ttIsql edit command with the !! parameter:

Command> CREATE TABLE t1
(c1 VARCHAR(10) NOT INLINE NOT NULL, c2 VARCHAR(144) INLINE NOT NULL);
Command> edit !!;

If you run the ttIsql edit command with a history_search_command parameter, ttIsql runs
the contents of the file after you exit the editor. The contents of the file run as a single ttIsql
command. If you do not want to run the contents of the file, delete the contents of the file and
save the file before you exit the editor.

Changing the Default Text Editor for the ttIsql edit Command
You can specify the default editor by defining the ttIsql _EDITOR define alias.

The following example sets the default editor to vi.

DEFINE _EDITOR=vi

If you do not define the _EDITOR define alias, ttIsql uses the editor specified by the VISUAL
environment variable. If the _EDITOR define alias and the VISUAL environment variables are not
set, ttIsql uses the editor specified by the EDITOR environment variable. When _EDITOR,
VISUAL, and EDITOR are not set, vi is used for Linux and UNIX and notepad.exe is used for
Windows.

Displaying Characters in ttIsql
The ability of ttIsql to display characters depends on the native operating system locale
settings of the terminal on which you are using ttIsql.

The ttIsql utility supports the character sets listed in Supported Character Sets in the Oracle
TimesTen In-Memory Database Reference.

To override the locale-based output format, use the ncharencoding option or the -N option. The
valid values for these options are LOCALE (the default) and ASCII. If you choose ASCII and
ttIsql encounters a Unicode character, it displays it in escaped format.

You do not need to have an active connection to change the output method.

Chapter 6
Displaying Characters in ttIsql

6-9

Displaying Database Structures Using ttIsql
There are several ttIsql commands that display information on database structures.

The most useful commands are summarized below:

• describe - Displays information on database objects.

• cachegroups - Displays the attributes of cache groups.

• dssize - Reports the current sizes of the permanent and temporary database memory
regions.

• tablesize - Displays the size of tables that have been analyzed with the
ttComputeTabSizes tool.

• monitor - Displays a summary of the current state of the database.

Using the ttIsql describe Command
Use the describe command to display information on individual database objects. Displays
parameters for prepared SQL statements and built-in procedures.

The argument to the describe command can be the name of a table, cache group, view,
materialized view, sequence, synonym, a built-in procedure, a SQL statement or a command
ID for a previously prepared SQL statement, a PL/SQL function, PL/SQL procedure or PL/SQL
package.

The describe command requires a semicolon character to terminate the command.

Command> CREATE TABLE t1 (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command> describe t1;

Table USER.T1:
 Columns:
 *KEY NUMBER NOT NULL
 VALUE CHAR (64)
1 table found.

(primary key columns are indicated with *)
Command> describe SELECT * FROM T1 WHERE KEY=?;

Prepared Statement:
 Parameters:
 Parameter 1 NUMBER
 Columns:
 KEY NUMBER NOT NULL
 VALUE CHAR (64)
Command> describe ttOptUseIndex;

Procedure TTOPTUSEINDEX:
 Parameters:
 Parameter INDOPTION VARCHAR (1024)
 Columns:
 (none)

1 procedure found.
Command>

Chapter 6
Displaying Database Structures Using ttIsql

6-10

Using the ttIsql cachegroups Command
The cachegroups command is used to provide detailed information on cache groups defined in
the current database.

The attributes of the root and child tables defined in the cache group are displayed in addition
to the WHERE clauses associated with the cache group. The argument to the cachegroups
command is the name of the cache group that you want to display information for.

Command> cachegroups;
Cache Group CACHEUSER.READCACHE:
 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 5 Seconds
 Autorefresh Status: ok
 Aging: No aging defined
 Root Table: SALES.READTAB
 Table Type: Read Only
Cache Group CACHEUSER.WRITECACHE:
 Cache Group Type: Asynchronous Writethrough (Dynamic)
 Autorefresh: No
 Aging: LRU on
 Root Table: SALES.WRITETAB
 Table Type: Propagate
2 cache groups found.

Using the ttIsql dssize Command
The dssize command is used to report the current memory status of the permanent and
temporary memory regions as well as the maximum, allocated and in-use sizes for the
database.

However, for TimesTen Scaleout, the dssize command only reports on the current memory
status for the current element.

The dssize command reports the same information that is displayed in the SYS.V$MONITOR and
SYS.GV$MONITOR system views.

The following example uses the k option to print the database size information in KB:

Command> dssize k;
The following values are in KB:

 PERM_ALLOCATED_SIZE: 40960
 PERM_IN_USE_SIZE: 9742
 PERM_IN_USE_HIGH_WATER: 9742
 TEMP_ALLOCATED_SIZE: 32768
 TEMP_IN_USE_SIZE: 9442
 TEMP_IN_USE_HIGH_WATER: 9505

For more information on the dssize command, see ttIsql in the Oracle TimesTen In-Memory
Database Reference.

Chapter 6
Displaying Database Structures Using ttIsql

6-11

Using the ttIsql tablesize Command
The tablesize command displays the detailed analysis of the amount of space used by a
table.

Once you call the ttComputeTabSizes built-in procedure, which analyzes the table size of the
indicated tables, the tablesize command displays the total size data for all analyzed tables.

Note:

See ttComputeTabSizes in the Oracle TimesTen In-Memory Database Reference.

Running the tablesize command with no arguments displays available sizing information for
all tables that have had the ttComputeTabSizes computation run. When you provide a table as
an argument, tablesize displays available sizing only for the indicated table.

The syntax for tablesize is as follows:

tablesize [[owner_name_pattern.]table_name_pattern]

The following example invokes the ttComputeTabSizes built-in procedure to calculate the table
size of the employees table. Then, the tablesize command displays the sizing information
gathered for the employees table.

Command> call ttComputeTabSizes('employees');
Command> tablesize employees;

Sizes of USER1.EMPLOYEES:

 INLINE_ALLOC_BYTES: 60432
 NUM_USED_ROWS: 107
 NUM_FREE_ROWS: 149
 AVG_ROW_LEN: 236
 OUT_OF_LINE_BYTES: 0
 METADATA_BYTES: 1304
 TOTAL_BYTES: 61736
 LAST_UPDATED: 2011-06-29 12:55:28.000000

1 table found.

These values provide insights into overhead and how the total space is used for the table.

For example:

• The NUM_FREE_ROWS value describes the number of rows allocated for the table, but not
currently in use. Space occupied by free rows cannot be used by the system for storing
other system objects or structures.

• Use the TOTAL_BYTES value to calculate how much permanent space your table occupies.

• LAST_UPDATED is the time of the last size computation. If you want a more recent
computation, re-run ttComputeTabSizes and display the new output.

You can find a description for each calculated value in the SYS.ALL_TAB_SIZES section in the
Oracle TimesTen In-Memory Database System Tables and Views Reference.

Chapter 6
Displaying Database Structures Using ttIsql

6-12

Using the ttIsql monitor Command
The monitor command displays all of the information provided by the dssize command plus
additional statistics on the number of connections, checkpoints, lock timeouts, commits,
rollback operations and other information collected since the last time the database was loaded
into memory.

Command> monitor;
TIME_OF_1ST_CONNECT: Wed Apr 20 10:34:17 2011
DS_CONNECTS: 11
DS_DISCONNECTS: 0
DS_CHECKPOINTS: 0
DS_CHECKPOINTS_FUZZY: 0
DS_COMPACTS: 0
PERM_ALLOCATED_SIZE: 40960
PERM_IN_USE_SIZE: 5174
PERM_IN_USE_HIGH_WATER: 5174
TEMP_ALLOCATED_SIZE: 18432
TEMP_IN_USE_SIZE: 4527
TEMP_IN_USE_HIGH_WATER: 4527
SYS18: 0
TPL_FETCHES: 0
TPL_EXECS: 0
CACHE_HITS: 0
PASSTHROUGH_COUNT: 0
XACT_BEGINS: 2
XACT_COMMITS: 1
XACT_D_COMMITS: 0
XACT_ROLLBACKS: 0
LOG_FORCES: 0
DEADLOCKS: 0
LOCK_TIMEOUTS: 0
LOCK_GRANTS_IMMED: 17
LOCK_GRANTS_WAIT: 0
SYS19: 0
CMD_PREPARES: 1
CMD_REPREPARES: 0
CMD_TEMP_INDEXES: 0
LAST_LOG_FILE: 0
REPHOLD_LOG_FILE: -1
REPHOLD_LOG_OFF: -1
REP_XACT_COUNT: 0
REP_CONFLICT_COUNT: 0
REP_PEER_CONNECTIONS: 0
REP_PEER_RETRIES: 0
FIRST_LOG_FILE: 0
LOG_BYTES_TO_LOG_BUFFER: 64
LOG_FS_READS: 0
LOG_FS_WRITES: 0
LOG_BUFFER_WAITS: 0
CHECKPOINT_BYTES_WRITTEN: 0
CURSOR_OPENS: 1
CURSOR_CLOSES: 1
SYS3: 0
SYS4: 0
SYS5: 0
SYS6: 0
CHECKPOINT_BLOCKS_WRITTEN: 0
CHECKPOINT_WRITES: 0
REQUIRED_RECOVERY: 0

Chapter 6
Displaying Database Structures Using ttIsql

6-13

SYS11: 0
SYS12: 1
TYPE_MODE: 0
SYS13: 0
SYS14: 0
SYS15: 0
SYS16: 0
SYS17: 0
SYS9:

Using ttIsql to List Database Objects by Object Type
You can use ttIsql to list tables, indexes, views, sequences, synonyms, PL/SQL functions,
procedures and packages in a database.

Commands prefixed by all display all of this type of object. For example, the functions
command lists PL/SQL functions that are owned by the user, whereas allfunctions lists all
PL/SQL functions.

You can optionally specify patterns for object owners and object names.

Use these commands to list database objects:

• tables and alltables - Lists tables.

• indexes and allindexes - Lists indexes.

• views and allviews - Lists views.

• sequences and allsequences - Lists sequences.

• synonyms and allsynonyms - Lists synonyms.

• functions and allfunctions - Lists PL/SQL functions.

• procedures and allprocedures - Lists PL/SQL procedures.

• packages and allpackages - Lists PL/SQL packages.

Note:

See ttIsql in the Oracle TimesTen In-Memory Database Reference.

The following example demonstrates the procedures and allprocedures commands. User
TERRY creates a procedure called proc1 while connected to myDSN. Note that a slash character
(/) is entered on a new line following the PL/SQL statements.

The procedures command and the allprocedures command show that it is the only PL/SQL
procedure in the database.

% ttisql database1
Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=database1";
Connection successful:
DSN=database1;UID=terry;DataStore=/disk1/databases/
database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

Chapter 6
Using ttIsql to List Database Objects by Object Type

6-14

Command> create or replace procedure proc1 as begin null; end;
 > /
Procedure created.
Command> procedures;
 TERRY.PROC1
1 procedure found.
Command> allprocedures;
 TERRY.PROC1
1 procedure found.

Now connect to the same DSN as Pat and create a procedure called q. The allprocedures
command shows the PL/SQL procedures created by Terry and Pat.

% ttisql "DSN=database1;UID=PAT"
Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.
connect "DSN=database1;UID=PAT";
Connection successful: DSN=database1;UID=PAT;
DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Command> create or replace procedure q as begin null; end;
 > /
Procedure created.
Command> procedures;
 PAT.Q
1 procedure found.
Command> allprocedures;
 TERRY.PROC1
 PAT.Q
2 procedures found.

Using ttIsql to View and Set Connection Attributes
You can view and set connection attributes with the ttIsql show and set commands.

See Connection Attributes in Oracle TimesTen In-Memory Database Reference.

To view the setting for the Passthrough attribute, enter:

Command> show passthrough;
PassThrough = 0

To change the Passthrough setting, enter:

Command> set passthrough 1;

Using ttIsql to Manage Transactions
The ttIsql utility has several built-in commands for managing transactions.

These commands are summarized below:

• autocommit - Turns on or off the autocommit feature. This can also be set as an attribute of
the set command.

• commit - Commits the current transaction.

• commitdurable - Commits the current transaction and ensures that the committed work is
recovered in case of database failure.

Chapter 6
Using ttIsql to View and Set Connection Attributes

6-15

• rollback - Rolls back the current transaction.

• isolation - Changes the transaction isolation level. This can also be set as an attribute of
the set command.

• sqlquerytimeout - Specifies the number of seconds to wait for a SQL statement to run
before returning to the application. This can also be set as an attribute of the set
command.

When starting ttIsql, the autocommit feature is turned on by default, even within a SQL script.
In this mode, every SQL operation against the database is committed automatically.

To turn the autocommit feature off, run the ttIsql autocommit command with an argument of
0. When autocommit is turned off, transactions must be committed or rolled back manually by
running the ttIsql commit, commitdurable or rollback commands. The commitdurable
command ensures that the transaction's effect is preserved in case of database failure. If
autocommit is off when ttIsql exits, any uncommitted statements are rolled back and reported
by ttIsql.

The ttIsql isolation command can be used to change the current connection's transaction
isolation properties. The isolation can be changed only at the beginning of a transaction. The
isolation command accepts one of the following constants: READ_COMMITTED and
SERIALIZABLE. If the isolation command is modified without an argument then the current
isolation level is reported.

The ttIsql sqlquerytimeout command sets the timeout period for SQL statements. If the run
time of a SQL statement exceeds the number of seconds set by the sqlquerytimeout
command, the SQL statement does not run and an 6111 error is generated. See Setting a
Timeout Duration for SQL Statements in the Oracle TimesTen In-Memory Database Java
Developer's Guide and Setting a Timeout Duration for SQL Statements in the Oracle TimesTen
In-Memory Database C Developer's Guide.

Note:

TimesTen roll back and query timeout features do not stop cache operations that are
being processed on the Oracle database. This includes passthrough statements,
flushing, manual loading, manual refreshing, synchronous writethrough, propagating
and dynamic loading.

The following example demonstrates the common use of the ttIsql built-in transaction
management commands.

E:\>ttIsql
Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Command> autocommit 0;
Command> CREATE TABLE LOOKUP (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
Command> commit;
Command> INSERT INTO LOOKUP VALUES (1, 'ABC');
1 row inserted.
Command> SELECT * FROM LOOKUP;

Chapter 6
Using ttIsql to Manage Transactions

6-16

< 1, ABC >
1 row found.
Command> rollback;
Command> SELECT * FROM LOOKUP;
0 rows found.
Command> isolation;
isolation = READ_COMMITTED
Command> commitdurable;
Command> sqlquerytimeout 10;
Command> sqlquerytimeout;
Query timeout = 10 seconds
Command> disconnect;
Disconnecting...
Command> exit;
Done.

Using ttIsql with Prepared and Parameterized SQL Statements
Preparing a SQL statement just once and then running it multiple times is much more efficient
for TimesTen applications than re-preparing the statement each time it is to be run. The ttIsql
utility has a set of built-in commands to work with prepared SQL statements.

These commands are summarized below:

• prepare - Prepares a SQL statement. Corresponds to a SQLPrepare ODBC call.

• exec - Runs a previously prepared statement. Corresponds to a SQLExecute ODBC call.

• execandfetch - Runs a previously prepared statement and fetches all result rows.
Corresponds to a SQLExecute call followed by one or more calls to SQLFetch.

• fetchall - Fetches all result rows for a previously run statement. Corresponds to one or
more SQLFetch calls.

• fetchone - Fetches only one row for a previously run statement. Corresponds to exactly
one SQLFetch call.

• close - Closes the result set cursor on a previously run statement that generated a result
set. Corresponds to a SQLFreeStmt call with the SQL_CLOSE option.

• free - Closes a previously prepared statement. Corresponds to a SQLFreeStmt call with the
SQL_DROP option.

• describe - Describes the prepared statement including the input parameters and the result
columns.

The ttIsql utility prepared statement commands also handle SQL statement parameter
markers. When parameter markers are included in a prepared SQL statement, ttIsql
automatically prompts for the value of each parameter in the statement at runtime.

The example below uses the prepared statement commands of the ttIsql utility to prepare an
INSERT statement into a table containing a NUMBER and a CHAR column. The statement is
prepared and then runs twice with different values for each of the statement's two parameters.
The ttIsql utility timing command is used to display the elapsed time required to run the
primary ODBC function call associated with each command.

Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

Chapter 6
Using ttIsql with Prepared and Parameterized SQL Statements

6-17

Command> timing 1;
Command> create table t1 (key number not null primary key, value char(20));
Execution time (SQLExecute) = 0.007247 seconds.
Command> prepare insert into t1 values (:f, :g);
Execution time (SQLPrepare) = 0.000603 seconds.

Command> exec;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/' to leave the remaining parameters unbound and execute the command.
Enter Parameter 1 'F' (NUMBER) > 1;
Enter Parameter 2 'G' (CHAR) > 'abc';
1 row inserted.
Execution time (SQLExecute) = 0.000454 seconds.

Command> exec;
Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/' to leave the remaining parameters unbound and execute the help command.
Enter Parameter 1 'F' (NUMBER) > 2;
Enter Parameter 2 'G' (CHAR) > 'def';
1 row inserted.
Execution time (SQLExecute) = 0.000300 seconds.

Command> free;
Command> select * from t1;
< 1, abc >
< 2, def >
2 rows found.
Execution time (SQLExecute + Fetch Loop) = 0.000226 seconds.

Command> disconnect;
Disconnecting...
Execution time (SQLDisconnect) = 2.911396 seconds.

In the example above, the prepare command is immediately followed by the SQL statement to
prepare. Whenever a SQL statement is prepared in ttIsql, a unique command ID is assigned
to the prepared statement. The ttIsql utility uses this ID to keep track of multiple prepared
statements. A maximum of 256 prepared statements can exist in a ttIsql session
simultaneously. When the free command runs, the command ID is automatically disassociated
from the prepared SQL statement.

To see the command IDs generated by ttIsql when using the prepared statement commands,
set the verbosity level to 4 using the verbosity command before preparing the statement, or
use the describe * command to list all prepared statements with their IDs.

Command IDs can be referenced explicitly when using ttIsql's prepared statement
commands. See ttIsql in the Oracle TimesTen In-Memory Database Reference or type help at
the ttIsql command prompt.

The example below prepares and runs a SELECT statement with a predicate containing one
NUMBER parameter. The fetchone command is used to fetch the result row generated by the
statement. The showplan command is used to display the execution plan used by the
TimesTen query optimizer when the statement runs. In addition, the verbosity level is set to 4
so that the command ID used by ttIsql to keep track of the prepared statement is displayed.

Command> connect "DSN=database1";
Connection successful:

Chapter 6
Using ttIsql with Prepared and Parameterized SQL Statements

6-18

DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)

Command> CREATE TABLE T1 (KEY NUMBER NOT NULL PRIMARY KEY, VALUE CHAR (64));
The command succeeded.
Command> INSERT INTO T1 VALUES (1, 'abc');
1 row inserted.
The command succeeded.
Command> autocommit 0;
Command> showplan 1;
Command> verbosity 4;
The command succeeded.
Command> prepare SELECT * FROM T1 WHERE KEY=?;
Assigning new prepared command id = 0.

Query Optimizer Plan:

 STEP: 1
 LEVEL: 1
 OPERATION: RowLkRangeScan
 TBLNAME: T1
 IXNAME: T1
 INDEXED CONDITION: T1.KEY = _QMARK_1
 NOT INDEXED: <NULL>

The command succeeded.
Command> exec;

Executing prepared command id = 0.

Type '?' for help on entering parameter values.
Type '*' to end prompting and abort the command.
Type '-' to leave the parameter unbound.
Type '/;' to leave the remaining parameters unbound and execute the command.

Enter Parameter 1 '_QMARK_1' (NUMBER) > 1
The command succeeded.
Command> fetchone;
Fetching prepared command id = 0.
< 1, abc >
1 row found.
The command succeeded.
Command> close;
Closing prepared command id = 0.
The command succeeded.
Command> free;
Freeing prepared command id = 0.
The command succeeded.
Command> commit;
The command succeeded.
Command> disconnect;
Disconnecting...
The command succeeded.
Command>

Chapter 6
Using ttIsql with Prepared and Parameterized SQL Statements

6-19

Note:

See Introduction to PL/SQL in TimesTen in Oracle TimesTen In-Memory Database
PL/SQL Developer's Guide.

Using, Declaring, and Setting Variables in ttIsql
You can declare, set and use bind variables in ttIsql.

• Declaring and Setting Bind Variables

• Automatically Creating Bind Variables for Retrieved Columns

Declaring and Setting Bind Variables
You can declare and set variables and arrays in ttIsql that can be referenced in a SQL
statement, SQL script, or PL/SQL block.

The variables declared using the variable and setvariable command must be one of the
following data types: NUMBER, CHAR, NCHAR, VARCHAR2, NVARCHAR2, CLOB, NCLOB, BLOB, or
REFCURSOR. However, when binding arrays, TimesTen supports only binding arrays of the
NUMBER, CHAR, NCHAR, VARCHAR2, or NVARCHAR2 data types.

Note:

All variables that are declared exist for the life of the ttIsql session. However, if you
declare a new variable with the same name, the new variable replaces the old
variable.

The following examples declare bind variables with the variable or var command for a
number, character string, and an array. Each is assigned to a value either when declared or by
using the setvariable or setvar command.

Note:

See ttIsql in the Oracle TimesTen In-Memory Database Reference.

Command> VARIABLE house_number NUMBER := 268;
Command> PRINT house_number;
HOUSE_NUMBER : 268

Command> VARIABLE street_name VARCHAR2(15);
Command> SETVARIABLE street_name := 'Oracle Parkway';

Command> VARIABLE occupants[5] VARCHAR2(15);
Command> SETVARIABLE occupants[1] := 'Pat';
Command> SETVARIABLE occupants[2] := 'Terry';
Command> PRINT occupants;
OCCUPANTS : ARRAY [5] (Current Size 2)

Chapter 6
Using, Declaring, and Setting Variables in ttIsql

6-20

OCCUPANTS[1] : Pat
OCCUPANTS[2] : Terry

The following is an example of binding multiple values in an array using square brackets to
delineate the values and commas to separate each value for the array:

Command> VARIABLE occupants[5] VARCHAR2(15) := ['Pat', 'Terry'];
Command> PRINT occupants;
OCCUPANTS : ARRAY [5] (Current Size 2)
OCCUPANTS[1] : Pat
OCCUPANTS[2] : Terry

When using array binds, PL/SQL enables you to bind each variable to a PL/SQL variable with
the following declaration, where TypeName is any unique identifier for the PL/SQL data type and
DataType can be specified as CHAR, NCHAR, VARCHAR2, or NVARCHAR2.

TYPE TypeName IS TABLE OF DataType(<precision>) INDEX BY BINARY_INTEGER;

If the variable is declared as array of NUMBER, you can bind it to a PL/SQL variable of the
following data types: NUMBER, INTEGER, FLOAT, or DOUBLE PRECISION. To do so, use the
appropriate declaration:

TYPE TypeName IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE TypeName IS TABLE OF INTEGER INDEX BY BINARY_INTEGER;
TYPE TypeName IS TABLE OF FLOAT INDEX BY BINARY_INTEGER;
TYPE TypeName IS TABLE OF DOUBLE PRECISION INDEX BY BINARY_INTEGER;

The following example declares the occupants VARCHAR2 array, which is then declared and
used within a PL/SQL block:

Command> VARIABLE occupants[5] VARCHAR2(15);
Command> SETVARIABLE occupants[1] := 'Pat';
Command> SETVARIABLE occupants[2] := 'Terry';
Command> DECLARE
TYPE occuname IS TABLE OF VARCHAR2(15) INDEX BY BINARY_INTEGER;
x occuname;
BEGIN
x := :occupants;
FOR LROW IN x.FIRST..x.LAST LOOP
x(LROW) := x(LROW) || ' Doe';
END LOOP;
:occupants := x;
END;
/

PL/SQL procedure successfully completed.

Command> PRINT occupants;
OCCUPANTS : ARRAY [5] (Current Size 2)
OCCUPANTS[1] : Pat Doe
OCCUPANTS[2] : Terry Doe

Automatically Creating Bind Variables for Retrieved Columns
When you set autovariables on in ttIsql, TimesTen creates an automatic bind variable named
after each column in the last fetched row. An automatic bind variable can be used in the same
manner of any bind variable.

Chapter 6
Using, Declaring, and Setting Variables in ttIsql

6-21

The following example selects all rows from the employees table. Since all columns are
retrieved, automatic variables are created and named for each column. The bind variable
contains the last value retrieved for each column.

Command> SET AUTOVARIABLES ON;
Command> SELECT * FROM employees;
...
< 204, Hermann, Baer, HBAER, 515.123.8888, 1994-06-07 00:00:00, PR_REP, 10000,
 <NULL>, 101, 70 >
< 205, Shelley, Higgins, SHIGGINS, 515.123.8080, 1994-06-07 00:00:00, AC_MGR,
12000, <NULL>, 101, 110 >
< 206, William, Gietz, WGIETZ, 515.123.8181, 1994-06-07 00:00:00, AC_ACCOUNT,
8300, <NULL>, 205, 110 >

Command> PRINT;
EMPLOYEE_ID : 206
FIRST_NAME : William
LAST_NAME : Gietz
EMAIL : WGIETZ
PHONE_NUMBER : 515.123.8181
HIRE_DATE : 1994-06-07 00:00:00
JOB_ID : AC_ACCOUNT
SALARY : 8300
COMMISSION_PCT : <NULL>
MANAGER_ID : 205
DEPARTMENT_ID : 110

If you provide an alias for a column name, the automatic bind variable name uses the alias,
rather than the column name.

Command> SET AUTOVARIABLES ON;
Command> SELECT employee_id ID, First_name SURNAME, last_name LASTNAME
 FROM employees;

ID, SURNAME, LASTNAME
...
< 204, Hermann, Baer >
< 205, Shelley, Higgins >
< 206, William, Gietz >
107 rows found.
Command> PRINT;
ID : 206
SURNAME : William
LASTNAME : Gietz

For any query that fetches data without a known named column, set columnlabels on to show
the column names. The following example shows that the columns returns from
ttConfiguration built-in procedure are paramname and paramvalue.

Command> SET AUTOVARIABLES ON;
Command> SET COLUMNLABELS ON;

Command> call TTCONFIGURATION('LockLevel');

PARAMNAME, PARAMVALUE
< LockLevel, 0 >
1 row found.

Command> IF :paramvalue = 1 THEN "e:Database-level locking is enabled";
Command> IF NOT :paramvalue = 1 THEN "e:Row-level locking is enabled";
Row-level locking is enabled

Chapter 6
Using, Declaring, and Setting Variables in ttIsql

6-22

You can also use the describe command to show the column names. The following example
uses the describe command to display the column names for the ttConfiguration built-in
procedure.

Command> DESCRIBE TTCONFIGURATION;

Procedure TTCONFIGURATION:
 Parameters:
 PARAMNAME TT_VARCHAR (30)
 Columns:
 PARAMNAME TT_VARCHAR (30) NOT NULL
 PARAMVALUE TT_VARCHAR (1024)

1 procedure found.

Creating and Running PL/SQL Blocks Within ttIsql
You can create and run PL/SQL blocks from the ttIsql command line.

Set serveroutput on to display results generated from the PL/SQL block:

set serveroutput on

Create an anonymous block that puts a text line in the output buffer. Note that the block must
be terminated with a slash (/).

Command> BEGIN
DBMS_OUTPUT.put_line('Welcome!');
END;
/
Welcome!
PL/SQL procedure successfully completed.
Command>

See PL/SQL Blocks in the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.
For information on error handling in ttIsql for PL/SQL objects, see Showing Errors in ttIsql in
the Oracle TimesTen In-Memory Database PL/SQL Developer's Guide.

Passing Data From PL/SQL Using OUT Parameters Within ttIsql
You can pass data back to applications from PL/SQL by using OUT parameters.

This example returns information about how full is a TimesTen database.

Create the tt_space_info PL/SQL procedure and use SQL to provide values for the permpct,
permmaxpct, temppct, and tempmaxpct parameters.

Command> CREATE OR REPLACE PROCEDURE tt_space_info
(permpct OUT PLS_INTEGER,
permmaxpct OUT PLS_INTEGER,
temppct OUT PLS_INTEGER,
tempmaxpct OUT PLS_INTEGER) AS
monitor sys.monitor%ROWTYPE;
BEGIN
SELECT * INTO monitor FROM sys.monitor;
permpct := monitor.perm_in_use_size * 100 /
monitor.perm_allocated_size;
permmaxpct := monitor.perm_in_use_high_water * 100 /
monitor.perm_allocated_size;
temppct := monitor.temp_in_use_size * 100 /

Chapter 6
Creating and Running PL/SQL Blocks Within ttIsql

6-23

monitor.temp_allocated_size;
tempmaxpct := monitor.temp_in_use_high_water * 100 /
monitor.temp_allocated_size;
END;
/

Procedure created.

Declare the variables and call tt_space_info. The parameter values are passed back to
ttIsql so they can be printed:

Command> VARIABLE permpct NUMBER
Command> VARIABLE permpctmax NUMBER
Command> VARIABLE temppct NUMBER
Command> VARIABLE temppctmax NUMBER
Command> BEGIN
tt_space_info(:permpct, :permpctmax, :temppct, :temppctmax);
END;
/

PL/SQL procedure successfully completed.

Command> PRINT permpct;
PERMPCT : 4

Command> PRINT permpctmax;
PERMPCTMAX : 4

Command> PRINT temppct;
TEMPPCT : 11

Command> PRINT temppctmax;
TEMPPCTMAX : 11

You can also pass back a statement handle that can be run by a PL/SQL statement with an
OUT refcursor parameter. The PL/SQL statement can choose the query associated with the
cursor. The following example opens a refcursor, which randomly chooses between ascending
or descending order.

Command> VARIABLE ref REFCURSOR;
Command> BEGIN
IF (mod(dbms_random.random(), 2) = 0) THEN
open :ref for select object_name from SYS.ALL_OBJECTS order by 1 asc;
ELSE
open :ref for select object_name from SYS.ALL_OBJECTS order by 1 desc;
end if;
END;
/

PL/SQL procedure successfully completed.

To fetch the result set from the refcursor, use the PRINT command:

Command> PRINT ref
REF :
< ACCESS$ >
< ALL_ARGUMENTS >
< ALL_COL_PRIVS >
< ALL_DEPENDENCIES >
...
143 rows found.

Chapter 6
Passing Data From PL/SQL Using OUT Parameters Within ttIsql

6-24

Or if the result set was ordered in descending order, the following would print:

Command> PRINT ref
REF :
< XLASUBSCRIPTIONS >
< WARNING_SETTINGS$ >
< VIEWS >
...
143 rows found.

Using the IF-THEN-ELSE Command Construct Within ttIsql
The IF-THEN-ELSE command construct enables you to implement conditional branching logic in
a ttIsql session.

The IF command tests a condition and decides whether to run commands within the THEN
clause or the optional ELSE clause. The commands can be SQL statements, SQL scripts,
PL/SQL blocks, or TimesTen utilities.

Note:

For details on the syntax of the IF-THEN-ELSE construct, see the ttIsql section in the
Oracle TimesTen In-Memory Database Reference.

The following example creates and tests a bind variable to see which type of locking is enabled
for the TimesTen database. It uses the autovariables command to create the bind variable
from the result of the call to ttConfiguration. The value can be tested within the IF-THEN-
ELSE conditional by testing the paramvalue variable.

Note:

For more details on the autovariables command, see Automatically Creating Bind
Variables for Retrieved Columns.

Command> SET AUTOVARIABLES ON;
Command> CALL TTCONFIGURATION('LockLevel');
PARAMNAME, PARAMVALUE
< LockLevel, 0 >
1 row found.
Command> IF :paramvalue = 1 THEN "e:Database-level locking is enabled"
> ELSE "e:Row-level locking is enabled";
Row-level locking is enabled

The following example checks to see that the employees table exists. If it does not, it runs the
SQL script that creates the employees table; otherwise, a message is printed out.

Command> IF 0 = "SELECT COUNT(*) FROM SYS.TABLES
WHERE TBLNAME LIKE 'employees';"
THEN "e:EMPLOYEES table already exists"
ELSE "@HR_CRE_TT.SQL;";
EMPLOYEES table already exists

Chapter 6
Using the IF-THEN-ELSE Command Construct Within ttIsql

6-25

Loading Data from an Oracle Database into a TimesTen Table
Without Cache

You can load the results of a SQL query from a back-end Oracle database into a single table
on TimesTen without creating a cache group and cache table to contain the results. TimesTen
provides tools that run a user-provided SELECT statement on the Oracle database and load the
result set into a table on TimesTen.

The following are the major steps that are performed to accomplish this task:

1. Create a table with the correct columns and data types on TimesTen.

2. Provide a SELECT statement that runs on the Oracle database to generate the desired
result set.

3. Load the result set into the table on TimesTen.

TimesTen provides two methods to accomplish these tasks:

• The ttIsql utility provides the createandloadfromoraquery command that, once provided
the TimesTen table name and the SELECT statement, automatically creates the TimesTen
table, runs the SELECT statement on the Oracle database, and loads the result set into the
TimesTen table. This command is described fully in Use ttIsql to Create a Table and Load
SQL Query Results.

• The ttTableSchemaFromOraQueryGet built-in procedure evaluates the user-provided
SELECT statement to generate a CREATE TABLE statement that can be run to create a table
on TimesTen, which would be appropriate to receive the result set from the SELECT
statement. The ttLoadFromOracle built-in procedure runs the SELECT statement on the
Oracle database and loads the result set into the TimesTen table. These built-in
procedures are described in Use TimesTen Built-In Procedures to Recommend a Table
and Load SQL Query Results.

Both methods require the following:

• Both the TimesTen and Oracle databases involved must be configured with the same
national database character set.

• When you connect to the TimesTen database, the connection must contain the same
connection attributes that are required when using cache groups, as follows:

– The user name, which must be the same on both the TimesTen and Oracle databases

Note:

The correct privileges must be granted to these users on each database for
the SQL statements that run on their behalf.

– The correct passwords for each user as appropriate in the PWD and OraclePWD
connection attributes

– The OracleNetServiceName connection attributes that identifies the Oracle database
instance

• For either method, the user provides the following:

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-26

– The table name on the TimesTen database where the results of the SQL query is
loaded. If the owner of the table is not provided, the table is created with the current
user as the owner. The table name is not required to be the same name as the table
name on the Oracle database against which the SQL statement is run. This table does
not require a primary key. If the table already exists, a warning is issued and the
retrieved rows are appended to the table.

– Optionally, use the numThreads parameter on ttIsql createandloadfromoraquery or
ttLoadFromOracle to specify the number of parallel threads that you would like to use
in parallel when loading the table with the result set. This defaults to four.

– The SQL SELECT statement that runs against the Oracle database to obtain the
required rows. The tables specified within this SELECT statement must be fully qualified,
unless the tables are within the schema of the current Oracle Database user. The
query cannot have any parameter bindings.

The SELECT list should contain either simple column references or column aliases. For
example, any expressions in the SELECT list should be provided with a column alias.
You can also use the column alias to avoid duplication of column names in the result
table. For example, instead of using SELECT C1+1 FROM T1, use SELECT C1 + 1 C2
FROM T1, which would create a column named C2.

TimesTen evaluates the SELECT statement and uses the column names, data types, and
nullability information to create the table on TimesTen into which the result set is loaded. The
column names and data types (either the same or mapped) are taken from the tables on the
Oracle database involved in the SELECT statement. However, other Oracle Database table
definition information (such as DEFAULT values, primary key, foreign key relationships, and so
on) are not used when creating the CREATE TABLE statement for the TimesTen table.

Note:

If the evaluation returns any unsupported data types or if the query cannot run on the
Oracle database, such as from a syntax error, a warning is logged and a comment is
displayed for the unsupported column in the output. However, if the data type is not
supported by TimesTen, you can cast the data type directly in the SELECT list to a
TimesTen supported data type.

The load process does not check that the column data types and sizes in the TimesTen table
match the data types and sizes of the result set. Instead, the insert is attempted and if the
column data types cannot be mapped or the Oracle Database data from the SQL query
exceeds the TimesTen column size, TimesTen returns an error.

The load is automatically committed every 256 rows. If an error is encountered during the load,
it terminates the load, but does not roll back any committed transactions. Any errors returned
from the Oracle database are reported in the same manner as when using cache groups.

Because you can use the createandloadfromoraquery command and the ttLoadFromOracle
built-in procedure to load into an existing TimesTen table, the following restrictions apply:

• You cannot load into system tables, dictionary tables, temporary tables, detail tables of
views, materialized view tables, tables, or tables already in a cache group. In addition, you
cannot use a synonym for the table name.

• If you load the result set into an existing table that is the referencing table (child table) of a
foreign key constraint, the constraint is not validated. As a result, rows that are missing a
parent row may be loaded. Instead, you should verify all foreign keys after the table is

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-27

loaded. However, the ttLoadFromOracle built-in procedure enables you to ignore
constraint violations by setting the options parameter to IgnoreDuplicates=Y.

The following sections provide more details on each individual method:

• Use ttIsql to Create a Table and Load SQL Query Results

• Use TimesTen Built-In Procedures to Recommend a Table and Load SQL Query Results

• Cancel a Parallel Load Operation

Use ttIsql to Create a Table and Load SQL Query Results
The ttIsql utility provides the createandloadfromoraquery command, which takes a table
name, the number of parallel threads, and a SELECT statement that is to run on the Oracle
database as input parameters.

From these parameters, TimesTen performs the following:

1. Evaluates the SQL query and creates an appropriate table, if not already created, with the
provided table name where the columns are those named in the SQL query with the same
(or mapped) data types as those in the Oracle Database tables from which the resulting
data is retrieved.

2. Loads the results of the SQL query as it runs on the Oracle database into this table. The
call returns a single number indicating the number of rows loaded. Any subsequent calls to
this command append retrieved rows to the table.

Note:

See the createandloadfromoraquery command in ttIsql in the Oracle TimesTen In-
Memory Database Reference.

The following ttIsql example connects providing the DSN, user name, password for the user
on TimesTen, and the password for the same user name on the Oracle database. Then, it runs
the createandloadfromoraquery command to evaluate the SELECT statement. The employees
table is created on TimesTen with the same column names and data types as the columns and
data types of the retrieved rows. Then, the table is populated with the result set from the
Oracle database over two parallel threads.

% ttisql -connstr "DSN=database1;UID=hr;PWD=hr;OraclePWD=oracle"
Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql
connect -connstr "DSN=database1;UID=hr;PWD=********;OraclePWD=********";
Connection successful: DSN=database1;UID=hr;
DataStore=/timesten/install/sample_db/DemoDataStore/database1;
DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;DRIVER=/timesten/install/lib/libtten.so;
PermSize=128;TempSize=64;OracleNetServiceName=inst1;

(Default setting AutoCommit=1)
Command> createandloadfromoraquery employees 2 SELECT * FROM hr.employees;
Mapping query to this table:
 CREATE TABLE "HR"."EMPLOYEES" (
 "EMPLOYEE_ID" number(6,0) NOT NULL,
 "FIRST_NAME" varchar2(20 byte),
 "LAST_NAME" varchar2(25 byte) NOT NULL,
 "EMAIL" varchar2(25 byte) NOT NULL,

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-28

 "PHONE_NUMBER" varchar2(20 byte),
 "HIRE_DATE" date NOT NULL,
 "JOB_ID" varchar2(10 byte) NOT NULL,
 "SALARY" number(8,2),
 "COMMISSION_PCT" number(2,2),
 "MANAGER_ID" number(6,0),
 "DEPARTMENT_ID" number(4,0)
)
Table employees created
< 107, 0, 0, Started=2015-09-11 21:12:45 (GMT); Ended=2015-09-11 21:12:46 (GMT);
Load successfully completed; OracleSCN=779534; Rows Loaded=107; Errors=0;
Statement=ttLoadFromOracle(HR, EMPLOYEES, SELECT * FROM hr.employees, 2) >
1 row found.

Issue the DESCRIBE command to show the new table:

Note:

In this example, the table owner is not specified, so it defaults to the current user. In
this example, the current user is hr.

Command> DESCRIBE employees;

Table HR.EMPLOYEES:
 Columns:
 EMPLOYEE_ID NUMBER (6) NOT NULL
 FIRST_NAME VARCHAR2 (20) INLINE
 LAST_NAME VARCHAR2 (25) INLINE NOT NULL
 EMAIL VARCHAR2 (25) INLINE NOT NULL
 PHONE_NUMBER VARCHAR2 (20) INLINE
 HIRE_DATE DATE NOT NULL
 JOB_ID VARCHAR2 (10) INLINE NOT NULL
 SALARY NUMBER (8,2)
 COMMISSION_PCT NUMBER (2,2)
 MANAGER_ID NUMBER (6)
 DEPARTMENT_ID NUMBER (4)

1 table found.
(primary key columns are indicated with *)

Command> SELECT * FROM employees;
< 114, Den, Raphaely, DRAPHEAL, 515.127.4561, 2002-12-07 00:00:00, PU_MAN,
11000, <NULL>, 100, 30 >
< 115, Alexander, Khoo, AKHOO, 515.127.4562, 2003-05-18 00:00:00, PU_CLERK,
3100, <NULL>, 114, 30 >
…
< 205, Shelley, Higgins, SHIGGINS, 515.123.8080, 2002-06-07 00:00:00,
AC_MGR, 12008, <NULL>, 101, 110 >
< 206, William, Gietz, WGIETZ, 515.123.8181, 2002-06-07 00:00:00,
AC_ACCOUNT, 8300, <NULL>, 205, 110 >
107 rows found.

The following example uses the createandloadfromoraquery command to create the emp table
on TimesTen and populate it in parallel over four threads with data from the hr.employees
table on the Oracle database, where employee_id is less than 200.

Command> createandloadfromoraquery emp 4 SELECT * FROM hr.employees
WHERE employee_id < 200;

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-29

Mapping query to this table:
 CREATE TABLE "HR"."EMP" (
 "EMPLOYEE_ID" number(6,0) NOT NULL,
 "FIRST_NAME" varchar2(20 byte),
 "LAST_NAME" varchar2(25 byte) NOT NULL,
 "EMAIL" varchar2(25 byte) NOT NULL,
 "PHONE_NUMBER" varchar2(20 byte),
 "HIRE_DATE" date NOT NULL,
 "JOB_ID" varchar2(10 byte) NOT NULL,
 "SALARY" number(8,2),
 "COMMISSION_PCT" number(2,2),
 "MANAGER_ID" number(6,0),
 "DEPARTMENT_ID" number(4,0)
)

Table emp created< 100, 0, 0, Started=2015-09-11 21:30:56 (GMT); Ended=2015-09-11
21:30:57 (GMT);
Load successfully completed; OracleSCN=780073; Rows Loaded=100; Errors=0;
Statement=ttLoadFromOracle(HR, EMP, SELECT * FROM hr.employees
WHERE employee_id < 200, 4) >1 row found.

Then, the following createandloadfromoraquery retrieves all employees whose id is > 200 and
the result set is appended to the existing table in TimesTen. A warning tells you that the table
already exists and that 6 rows were added to it.

Command> createandloadfromoraquery emp 4 SELECT * FROM hr.employees
WHERE employee_id > 200;
Warning 2207: Table HR.EMP already exists
< 6, 0, 0, Started=2015-09-11 21:34:31 (GMT); Ended=2015-09-11 21:34:31 (GMT);
Load successfully completed; OracleSCN=780176; Rows Loaded=6; Errors=0;
Statement=ttLoadFromOracle(HR, EMP, SELECT * FROM hr.employees
WHERE employee_id > 200, 4) >
1 row found.

A parallel load operation may take a long time to run and you may want to cancel the
operation. See Cancel a Parallel Load Operation.

Use TimesTen Built-In Procedures to Recommend a Table and Load SQL
Query Results

You can create the TimesTen table and load the result set from the Oracle database into the
table using built-in procedures.

While the createandloadfromoraquery command automatically performs all of the tasks for
creating the TimesTen table and loading the result set from the Oracle database into it, the
following two built-in procedures separate the same functionality into the following two steps:

1. The ttTableSchemaFromOraQueryGet built-in procedure evaluates the SQL query and
generates the CREATE TABLE SQL statement that you can choose to issue. In order to run
this statement, the user should have all required privileges to run the query on the Oracle
database. This enables you to view the table structure without processing. However, it
does require you to issue the recommended CREATE TABLE statement yourself.

2. The ttLoadFromOracle built-in procedure runs the SQL query on the back-end Oracle
database and then loads the result set into the TimesTen table. It requires the TimesTen
table name where the results are loaded, the Oracle Database SQL SELECT statement to
obtain the required rows, and the number of parallel threads that you would like to be used
in parallel when loading the table with this result set. Optionally, you can specify error

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-30

threshold options to avoid issues such as uniqueness violations and data conversion
issues with the IgnoreDuplicates option.

Note:

See ttTableSchemaFromOraQueryGet and ttLoadFromOracle in the Oracle
TimesTen In-Memory Database Reference.

The following example connects providing the DSN, user name, password for the user on
TimesTen, the password for a user with the same name on the Oracle database, and the
OracleNetServiceName for the Oracle database instance. Then, it calls the
ttTableSchemaFromOraQueryGet built-in procedure to evaluate the SELECT statement and
return a recommended CREATE TABLE statement for the employees table. Then, the CREATE
TABLE statement runs. Finally, the example calls the ttLoadFromOracle built-in procedure to
load the employees table with the result set from the Oracle database. The load is performed in
parallel over four threads, which is the default.

Note:

If autocommit is set to off, then the user must either commit or roll back manually
after loading the table.

% ttisql -connstr "DSN=database1;uid=hr;pwd=hr;OraclePWD=oracle"
Copyright (c) 1996, 2024 Oracle. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql
connect -connstr "DSN=database1;UID=hr;PWD=********;OraclePWD=********";
Connection successful: DSN=database1;UID=hr;
DataStore=/timesten/install/sample_db/DemoDataStore/database1;
DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;DRIVER=/timesten/install/lib/libtten.so;
PermSize=128;TempSize=64;OracleNetServiceName=inst1;

Command> call ttTableSchemaFromOraQueryGet('hr','employees',
'SELECT * FROM hr.employees');
< CREATE TABLE "HR"."EMPLOYEES" (
"EMPLOYEE_ID" number(6,0) NOT NULL,
"FIRST_NAME" varchar2(20 byte),
"LAST_NAME" varchar2(25 byte) NOT NULL,
"EMAIL" varchar2(25 byte) NOT NULL,
"PHONE_NUMBER" varchar2(20 byte),
"HIRE_DATE" date NOT NULL,
"JOB_ID" varchar2(10 byte) NOT NULL,
"SALARY" number(8,2),
"COMMISSION_PCT" number(2,2),
"MANAGER_ID" number(6,0),
"DEPARTMENT_ID" number(4,0)
) >
1 row found.

Command> CREATE TABLE "HR"."EMPLOYEES" (
"EMPLOYEE_ID" number(6,0) NOT NULL,
"FIRST_NAME" varchar2(20 byte),
"LAST_NAME" varchar2(25 byte) NOT NULL,
"EMAIL" varchar2(25 byte) NOT NULL,

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-31

"PHONE_NUMBER" varchar2(20 byte),
"HIRE_DATE" date NOT NULL,
"JOB_ID" varchar2(10 byte) NOT NULL,
"SALARY" number(8,2),
"COMMISSION_PCT" number(2,2),
"MANAGER_ID" number(6,0),
"DEPARTMENT_ID" number(4,0)
);

Command> call ttLoadFromOracle ('HR','EMPLOYEES','SELECT * FROM HR.EMPLOYEES');
< 107, 0, 0, Started=2015-09-11 21:52:51 (GMT); Ended=2015-09-11 21:52:51 (GMT);
Load successfully completed; OracleSCN=780552; Rows Loaded=107; Errors=0;
Statement=ttLoadFromOracle(HR, EMPLOYEES, SELECT * FROM HR.EMPLOYEES, 4) >
1 row found.

Command> SELECT * FROM hr.employees;
< 100, Steven, King, SKING, 515.123.4567, 2003-06-17 00:00:00, AD_PRES, 24000,
<NULL>, <NULL>, 90 >
< 101, Neena, Kochhar, NKOCHHAR, 515.123.4568, 2005-09-21 00:00:00, AD_VP, 17000,
<NULL>, 100, 90 >
...
< 205, Shelley, Higgins, SHIGGINS, 515.123.8080, 2002-06-07 00:00:00, AC_MGR,
12008, <NULL>, 101, 110 >
< 206, William, Gietz, WGIETZ, 515.123.8181, 2002-06-07 00:00:00, AC_ACCOUNT,
8300, <NULL>, 205, 110 >
107 rows found.

The following example creates a table on the Oracle database, where employee_id is a column
with a PRIMARY KEY constraints and email is a column with a UNIQUE constraint.

CREATE TABLE employees
(employee_id NUMBER(6) PRIMARY KEY,
first_name VARCHAR2(20),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25) NOT NULL UNIQUE,
phone_number VARCHAR2(20),
hire_date DATE NOT NULL,
job_id VARCHAR2(10) NOT NULL,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
manager_id NUMBER(6),
department_id NUMBER(4));

Then, the following ttTableSchemaFromOraQueryGet built-in procedure evaluates the SQL
query and generates a CREATE TABLE SQL statement. Note that in the suggested CREATE
TABLE SQL statement the PRIMARY KEY and UNIQUE constraints are not carried over from the
Oracle database. Nullability constraints are carried over from the Oracle database. This also
applies to the createandloadfromoraquery command.

Command> call ttTableSchemaFromOraQueryGet ('hr', 'employees',
'SELECT * FROM hr.employees');
< CREATE TABLE "HR"."EMPLOYEES" (
"EMPLOYEE_ID" number(6,0) NOT NULL,
"FIRST_NAME" varchar2(20 byte),
"LAST_NAME" varchar2(25 byte) NOT NULL,
"EMAIL" varchar2(25 byte) NOT NULL,
"PHONE_NUMBER" varchar2(20 byte),
"HIRE_DATE" date NOT NULL,
"JOB_ID" varchar2(10 byte) NOT NULL,
"SALARY" number(8,2),
"COMMISSION_PCT" number(2,2),
"MANAGER_ID" number(6,0),

Chapter 6
Loading Data from an Oracle Database into a TimesTen Table Without Cache

6-32

"DEPARTMENT_ID" number(4,0)
) >
1 row found.

A parallel load operation may take a long time to run and you may want to cancel the
operation. See Cancel a Parallel Load Operation.

Cancel a Parallel Load Operation
You can cancel and cleanly stop all threads that are performing a parallel load operation with
either the SQLCancel(hstmt) ODBC function (this applies for ODBC 2.5 and ODBC 3.5) or by
pressing Ctrl-C in the ttIsql utility.

See TimesTen ODBC Support in the Oracle TimesTen In-Memory Database C Developer's
Guide and Canceling ODBC Functions in this book.

A parallel load operation periodically commits, so any successful operations are not rolled
back. When you issue the cancel command, TimesTen performs the cancel operation:

• Before insert threads are spawned.

• After an insert batch commit (every 256 rows)

• After the main thread completes a fetch from the Oracle database.

To retry a cancelled parallel load operation, delete previously inserted rows from the TimesTen
database to avoid duplicate rows.

Using ttIsql to View and Change Query Optimizer Plans
You can view the query optimizer plans, commands in the SQL command cache, or query
plans for commands in the SQL command cache.

• Using the showplan Command

• Viewing Commands and Explain Plans from the SQL Command Cache

Using the showplan Command
The built-in showplan command is used to display the query optimizer plans used by TimesTen
for processing queries.

In addition, ttIsql contains built-in query optimizer hint commands for altering the query
optimizer plan. By using the showplan command in conjunction with the ttIsql commands
summarized below, the optimum execution plan can be designed. See The TimesTen Query
Optimizer.

• optprofile - Displays the current optimizer hint settings and join order.

• setjoinorder - Sets the join order.

• setuseindex - Sets the index hint.

• tryhash - Enables or disables the use of hash indexes.

• trymergejoin - Enables or disables merge joins.

• trynestedloopjoin - Enables or disables nested loop joins.

• tryserial - Enables or disables serial scans.

• trytmphash - Enables or disables the use of temporary hash indexes.

Chapter 6
Using ttIsql to View and Change Query Optimizer Plans

6-33

• trytmptable - Enables or disables the use of an intermediate results table.

• trytmprange - Enables or disables the use of temporary range indexes.

• tryrange - Enables or disables the use of range indexes.

• tryrowid - Enables or disables the use of rowid scans.

• trytbllocks - Enables or disables the use of table locks.

• unsetjoinorder - Clears the join order.

• unsetuseindex - Clears the index hint.

When using the showplan command and the query optimizer hint commands the autocommit
feature must be turned off. Use the ttIsql autocommit command to turn off autocommit.

The example below shows how these commands can be used to change the query optimizer
execution plan.

Command> CREATE TABLE T1 (A NUMBER);
Command> CREATE TABLE T2 (B NUMBER);
Command> CREATE TABLE T3 (C NUMBER);
Command> INSERT INTO T1 VALUES (3);
1 row inserted.
Command> INSERT INTO T2 VALUES (3);
1 row inserted.
Command> INSERT INTO T3 VALUES (3);
1 row inserted.
Command> INSERT INTO T1 VALUES (4);
1 row inserted.
Command> INSERT INTO T2 VALUES (5);
1 row inserted.
Command> INSERT INTO T3 VALUES (6);
1 row inserted.
Command> autocommit 0;
Command> showplan;
Command> SELECT * FROM T1, T2, T3 WHERE A=B AND B=C AND A=B;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 3
 OPERATION: TblLkSerialScan
 TBLNAME: T2
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 2
 LEVEL: 3
 OPERATION: TblLkSerialScan
 TBLNAME: T3
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T2.B = T3.C

 STEP: 3
 LEVEL: 2
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>

Chapter 6
Using ttIsql to View and Change Query Optimizer Plans

6-34

 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 2
 OPERATION: TblLkSerialScan
 TBLNAME: T1
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T1.A = T2.B AND T1.A = T2.B

 STEP: 5
 LEVEL: 1
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

< 3, 3, 3 >
1 row found.

Command> trytbllocks 0;
Command> tryserial 0;
Command> SELECT * FROM T1, T2, T3 WHERE A=B AND B=C AND A=B;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 3
 OPERATION: TmpRangeScan
 TBLNAME: T2
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 2
 LEVEL: 3
 OPERATION: RowLkSerialScan
 TBLNAME: T3
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: T2.B = T3.C

 STEP: 3
 LEVEL: 2
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 2
 OPERATION: RowLkSerialScan
 TBLNAME: T1
 IXNAME: <NULL>

Chapter 6
Using ttIsql to View and Change Query Optimizer Plans

6-35

 INDEXED CONDITION: <NULL>
 NOT INDEXED: T1.A = T2.B AND T1.A = T2.B

 STEP: 5
 LEVEL: 1
 OPERATION: NestedLoop
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

< 3, 3, 3 >
1 row found.

In this example a query against three tables runs and the query optimizer plan is displayed.
The first version of the query simply uses the query optimizer's default execution plan.
However, in the second version the trytbllocks and tryserial ttIsql built-in hint commands
have been used to alter the query optimizer's plan. Instead of using serial scans and nested
loop joins the second version of the query uses temporary index scans, serial scans and
nested loops.

In this way the showplan command in conjunction with ttIsql's built-in query optimizer hint
commands can be used to quickly determine which execution plan should be used to meet
application requirements.

Viewing Commands and Explain Plans from the SQL Command Cache
You can view commands and their explain plans.

The following sections describe how to view commands and their explain plans:

• View Commands in the SQL Command Cache

• Display Query Plan for Statement in SQL Command Cache

View Commands in the SQL Command Cache
The ttIsql cmdcache command invokes the ttSqlCmdCacheInfo built-in procedure to display
the contents of the TimesTen SQL command cache.

See Displaying Commands Stored in the SQL Command Cache.

If you run the cmdcache command without parameters, the full SQL command cache contents
are displayed. Identical to the ttSqlCmdCacheInfo built-in procedure, you can provide a
command ID to specify a specific command to be displayed.

In addition, the ttIsql cmdcache command can filter the results so that only those commands
that match a particular owner or query text are displayed.

The syntax for the cmdcache command is as follows:

cmdcache [[by {sqlcmdid | querytext | owner}] <query_substring>

If you provide the owner parameter, the results are filtered by the owner, identified by the
<query_substring>, displayed within each returned command. If you provide the querytext
parameter, the results are filtered so that all queries are displayed that contain the substring
provided within the <query_substring>. If only the <query_substring> is provided, such as

Chapter 6
Using ttIsql to View and Change Query Optimizer Plans

6-36

cmdcache <query_substring>, the command assumes to filter the query text by the
<query_substring>.

Display Query Plan for Statement in SQL Command Cache
The ttIsql explain command displays the query plan for an individual command.

• If you provide a command ID from the SQL command cache, the explain command
invokes the ttSqlCmdQueryPlan built-in procedure to display the query plan for an
individual command in the TimesTen SQL command cache. If you want the explain plan
displayed in a formatted method, run the explain command instead of calling the
ttSqlCmdQueryPlan built-in procedure. Both provide the same information, but the
ttSqlCmdQueryPlan built-in procedure provides the data in a raw data format. See Viewing
Query Plans Associated with Commands Stored in the SQL Command Cache.

• If you provide a SQL statement or the history item number, the explain command
compiles the SQL statements necessary to display the explain plan for this particular SQL
statement.

The syntax for the explain command is as follows:

explain [plan for] {[<Connid>.]<ttisqlcmdid> | sqlcmdid <sqlcmdid> | <sqlstmt>
| !<historyitem>}

Identical to the ttSqlCmdQueryPlan built-in procedure, you can provide a command ID to
specify a specific command to be displayed. The command ID can be retrieved with the
cmdcache command, as described in View Commands in the SQL Command Cache.

The following example provides an explain plan for command ID 38001456:

Command> EXPLAIN SQLCMDID 38001456;

Query Optimizer Plan:
 Query Text: select * from all_objects where object_name = 'DBMS_OUTPUT'

 STEP: 1
 LEVEL: 12
 OPERATION: TblLkRangeScan
 TABLENAME: OBJ$
 TABLEOWNERNAME: SYS
 INDEXNAME: USER$.I_OBJ
 INDEXEDPRED:
 NONINDEXEDPRED: (RTRIM(NAME)) = DBMS_OUTPUT;NOT(10 = TYPE#) ;
(FLAGS ^ 128 = 0) ;

 STEP: 2
 LEVEL: 12
 OPERATION: RowLkRangeScan
 TABLENAME: OBJAUTH$
 TABLEOWNERNAME: SYS
 INDEXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXEDPRED: ((GRANTEE#=1) OR (GRANTEE#=10)) AND ((PRIVILEGE#=8))
 NONINDEXEDPRED: OBJ# = OBJ#;

 STEP: 3
 LEVEL: 11
 OPERATION: NestedLoop(Left OuterJoin)
 TABLENAME:
 TABLEOWNERNAME:

Chapter 6
Using ttIsql to View and Change Query Optimizer Plans

6-37

 INDEXNAME:
 INDEXEDPRED:
 NONINDEXEDPRED:
...
 STEP: 21
 LEVEL: 1
 OPERATION: Project
 TABLENAME:
 TABLEOWNERNAME:
 INDEXNAME:
 INDEXEDPRED:
 NONINDEXEDPRED:

Command>

In addition, the ttIsql explain command can generate an explain plan for any SQL query you
provide. For example, the following shows the explain plan for the SQL query: "SELECT * FROM
employees;"

Command> EXPLAIN SELECT * FROM employees;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 1
 OPERATION: TblLkRangeScan
 TBLNAME: EMPLOYEES
 IXNAME: EMP_NAME_IX
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

You can also retrieve explain plans based upon the command history. The following example
shows how you explain a previously run SQL statement using the history command ID:

Command> SELECT * FROM all_objects WHERE object_name = 'DBMS_OUTPUT';
< SYS, DBMS_OUTPUT, <NULL>, 241, <NULL>, PACKAGE, 2009-10-13 10:41:11, 2009-10-13
10:41:11, 2009-10-13:10:41:11, VALID, N, N, N, 1, <NULL> >
< PUBLIC, DBMS_OUTPUT, <NULL>, 242, <NULL>, SYNONYM, 2009-10-13 10:41:11,
2009-10-13 10:41:11, 2009-10-13:10:41:11, INVALID, N, N, N, 1, <NULL> >
< SYS, DBMS_OUTPUT, <NULL>, 243, <NULL>, PACKAGE BODY, 2009-10-13 10:41:11,
2009-10-13 10:41:11, 2009-10-13:10:41:11, VALID, N, N, N, 2, <NULL> >
3 rows found.
Command> HISTORY;
1 connect "DSN=cache";
2 help cmdcache;
3 cmdcache;
4 explain select * from dual;
5 select * from all_objects where object_name = 'DBMS_OUTPUT';
Command> EXPLAIN !5;

Query Optimizer Plan:

 STEP: 1
 LEVEL: 10
 OPERATION: TblLkRangeScan
 TBLNAME: SYS.OBJ$
 IXNAME: USER$.I_OBJ
 INDEXED CONDITION: <NULL>
 NOT INDEXED: O.FLAGS & 128 = 0 AND CAST(RTRIM (O.NAME) AS VARCHAR2(30
BYTE) INLINE) = 'DBMS_OUTPUT' AND O.TYPE# <> 10

 STEP: 2

Chapter 6
Using ttIsql to View and Change Query Optimizer Plans

6-38

 LEVEL: 10
 OPERATION: RowLkRangeScan
 TBLNAME: SYS.OBJAUTH$
 IXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXED CONDITION: (OA.GRANTEE# = 1 OR OA.GRANTEE# = 10) AND OA.PRIVILEGE# = 8
 NOT INDEXED: OA.OBJ# = O.OBJ#

 STEP: 3
 LEVEL: 9
 OPERATION: NestedLoop(Left OuterJoin)
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: <NULL>

 STEP: 4
 LEVEL: 9
 OPERATION: TblLkRangeScan
 TBLNAME: SYS.OBJAUTH$
 IXNAME: OBJAUTH$.I_OBJAUTH1
 INDEXED CONDITION: (OBJAUTH$.GRANTEE# = 1 OR OBJAUTH$.GRANTEE# = 10) AND
(OBJAUTH$.PRIVILEGE# = 2 OR OBJAUTH$.PRIVILEGE# = 3 OR OBJAUTH$.PRIVILEGE# = 4 OR
OBJAUTH$.PRIVILEGE# = 5 OR OBJAUTH$.PRIVILEGE# = 8)
 NOT INDEXED: O.OBJ# = OBJAUTH$.OBJ#
...
 STEP: 19
 LEVEL: 1
 OPERATION: NestedLoop(Left OuterJoin)
 TBLNAME: <NULL>
 IXNAME: <NULL>
 INDEXED CONDITION: <NULL>
 NOT INDEXED: O.OWNER# = 1 OR (O.TYPE# IN (7,8,9) AND (NOT(ISNULLROW
(SYS.OBJAUTH$.ROWID)) OR NOT(ISNULLROW (SYS.SYSAUTH$.ROWID)))) OR (O.TYPE# IN
(1,2,3,4,5) AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID))) OR (O.TYPE# = 6 AND NOT(
ISNULLROW (SYS.SYSAUTH$.ROWID))) OR (O.TYPE# = 11 AND NOT(ISNULLROW
(SYS.SYSAUTH$.ROWID))) OR (O.TYPE# NOT IN (7,8,9,11) AND NOT(ISNULLROW
(SYS.OBJAUTH$.ROWID))) OR (O.TYPE# = 28 AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID)))
OR (O.TYPE# = 23 AND NOT(ISNULLROW (SYS.SYSAUTH$.ROWID))) OR O.OWNER# = 10

Using ttIsql to Manage ODBC Functions
You can perform the following on ODBC functions within ttIsql:

• Canceling ODBC Functions

• Timing ODBC Function Calls

Canceling ODBC Functions
The ttIsql command attempts to cancel an ongoing ODBC function when the user presses Ctrl-
C.

Timing ODBC Function Calls
Information on the time required to run common ODBC function calls can be displayed by
using the ttIsql timing command.

When the timing feature is enabled many built-in ttIsql commands report the elapsed runtime
associated with the primary ODBC function call corresponding to the ttIsql command.

Chapter 6
Using ttIsql to Manage ODBC Functions

6-39

For example, when running the ttIsql connect command several ODBC function calls run,
however, the primary ODBC function call associated with connect is SQLDriverConnect and
this is the function call that is timed and reported as shown below.

Command> timing 1;
Command> connect "DSN=database1";
Connection successful:
DSN=database1;DataStore=/disk1/databases/database1;DatabaseCharacterSet=AL32UTF8;
ConnectionCharacterSet=AL32UTF8;PermSize=128;
(Default setting AutoCommit=1)
Execution time (SQLDriverConnect) = 1.2626 seconds.
Command>

In the example above, the SQLDriverConnect call took about 1.26 seconds to run.

When using the timing command to measure queries, the time required to run the query plus
the time required to fetch the query results is measured. To avoid measuring the time to format
and print query results to the display, set the verbosity level to 0 before running the query.

Command> timing 1;
Command> verbosity 0;
Command> SELECT * FROM t1;
Execution time (SQLExecute + FetchLoop) = 0.064210 seconds.
Command>

Specifying Error Recovery Within ttIsql
Issue the WHENEVER SQLERROR command to prescribe what to do when a SQL error occurs.
WHENEVER SQLERROR can be used to set up a recovery action for SQL statements, SQL script, or
PL/SQL block.

By default, if a SQL error occurs while in ttIsql, the error information is displayed and ttIsql
continues so that you can enter a new command. The default setting is WHENEVER SQLERROR
CONTINUE NONE. You can also specify that ttIsql exits each time an error occurs, which may not
be the best action for interactive use or when running a SQL script or a PL/SQL block.

Note:

For syntax of the WHENEVER SQLERROR command, see the ttIsql section in the Oracle
TimesTen In-Memory Database Reference.

The following example uses EXIT to return an error code of 255 and runs a COMMIT statement
to save all changes to the current connection before exiting ttIsql. The example retrieves the
error code using the C shell echo $status command.

Command> WHENEVER SQLERROR EXIT 255 COMMIT;
Command> SELECT emp_id FROM employee;
 2206: Table PAT.EMPLOYEE not found
WHENEVER SQLERROR exiting.
% echo $status
255

The following example demonstrates how the WHENEVER SQLERROR command can run ttIsql
commands or TimesTen utilities when an error occurs, even if the error is from another
TimesTen utility:

Chapter 6
Specifying Error Recovery Within ttIsql

6-40

Command> WHENEVER SQLERROR EXEC "DSSIZE;CALL TTSQLCMDCACHEINFOGET();";
Command> call TTCACHEPOLICYGET;
 5010: No OracleNetServiceName specified in DSN
The command failed.

DSSIZE;

 PERM_ALLOCATED_SIZE: 32768
 PERM_IN_USE_SIZE: 9204
 PERM_IN_USE_HIGH_WATER: 9204
 TEMP_ALLOCATED_SIZE: 40960
 TEMP_IN_USE_SIZE: 7785
 TEMP_IN_USE_HIGH_WATER: 7848

CALL TTSQLCMDCACHEINFOGET();

CMDCOUNT, FREEABLECOUNT, SIZE
< 10, 7, 41800 >
1 row found.

The following demonstrates the SUPPRESS command option. It suppresses all error messages
and continues to the next command. The example shows that the error messages can be
turned back on in the existing connection with another command option, which in this case is
the EXIT command.

Command> WHENEVER SQLERROR SUPPRESS;
Command> SELECT *;
Command> WHENEVER SQLERROR EXIT;
Command> SELECT *;
 1001: Syntax error in SQL statement before or at: "", character position: 9
select *
 ^
WHENEVER SQLERROR exiting.

The following example sets a bind variable called retcode, the value of which is returned when
a SQL error occurs:

Command> VARIABLE retcode NUMBER := 111;
Command> WHENEVER SQLERROR EXIT :retcode;
Command> INSERT INTO EMPLOYEES VALUES (
202, 'Pat', 'Fay', 'PFAY', '603.123.6666',
TO_DATE ('17-AUG-1997', 'DD-MON-YYYY'),
'MK_REP', 6000, NULL, 201, 20);
 907: Unique constraint (EMPLOYEES on PAT.EMPLOYEES) violated at Rowid
 <BMUFVUAAACOAAAAIiB>
WHENEVER SQLERROR exiting.
% echo $status;
111

Chapter 6
Specifying Error Recovery Within ttIsql

6-41

7
Transaction Management

TimesTen supports transactions that provide atomic, consistent, isolated and durable (ACID)
access to data.

The following sections describe how you can configure transaction features.

• Transaction Overview

• Transaction Implicit Commit Behavior

• Ensuring ACID Semantics

• Concurrency Control Through Isolation and Locking

• Checkpoint Operations

• Transaction Logging

• Durability Options

• Transaction Reclaim Operations

• Recovery with Checkpoint and Transaction Log Files

Transaction Overview
All operations on a TimesTen database, even those that do not modify or access application
data, run within a transaction.

When running an operation and there is no outstanding transaction, one is started
automatically on behalf of the application. Transactions are completed by an explicit or implicit
commit or rollback. When completed, resources (such as locks and result sets) that were
acquired or opened by the transaction are released and freed.

When using SQL statements or supported APIs (such as ODBC and JDBC) to commit or
rollback your transaction:

• When you commit the current transaction, updates made in the transaction are made
available to concurrent transactions.

• When you rollback the current transaction, all updates made in the transaction are undone.

Read-only transactions hold minimal resources, so you do not need to commit every read
operation. When running write operations, commit transactions to release locks. When
possible, keep write transactions short in duration. Any long-running transactions can reduce
concurrency and decrease throughput because locks are held for a longer period of time,
which blocks concurrent transactions. Also, long-running transactions can prevent transaction
log files from being purged, causing these files to accumulate on the file system.

A connection can have only one outstanding transaction at any time and cannot be explicitly
closed if it has an open transaction.

7-1

Transaction Implicit Commit Behavior
You can configure whether the application enables implicit commit behavior or requires explicit
commit behavior for DML or DDL statements.

• Transaction Autocommit Behavior

• TimesTen DDL Commit Behavior

Transaction Autocommit Behavior
Autocommit configures whether TimesTen issues an implicit commit after DML or DDL
statements.

Some database APIs (such as ODBC and JDBC) support autocommit, which is enabled by
default when using those APIs. Other APIs (such as OCI) do not provide an autocommit
feature.

When autocommit is on, the following behavior occurs:

• An implicit commit is issued immediately after a statement runs successfully.

• An implicit rollback is issued immediately after a statement fails, such as a primary key
violation.

• If the statement generates a result set, the automatic commit is not issued until that result
set and any other open result set in the transaction have been explicitly closed. Any
statements processed while a result set is open is not committed until all result sets have
been closed.

Fetching all rows of a result set does not automatically close the result set. After the result
set has been processed, the result set must be explicitly closed if using the read committed
isolation level or the transaction must be explicitly committed or rolled back if using
serializable isolation level.

Note:

Even with durable commits and autocommit enabled, you could lose work if there
is a failure or the application exits without closing result sets.

• If you are using ODBC or JDBC batch operations to INSERT, UPDATE or DELETE several
rows in one call when autocommit is on, a commit occurs after the entire batch operation
has completed. If there is an error during the batch operation, those rows that have been
successfully modified are committed within this transaction. If an error occurs due to a
problem on a particular row, only the successfully modified rows preceding the row with the
error are committed in this transaction. The pirow parameter to the ODBC
SQLParamOptions function contains the number of the rows in the batch that had a
problem.

Commits can be costly for performance and intrusive if they are implicitly run after every
statement. TimesTen recommends you disable autocommit so that all commits are intentional.
Disabling autocommit provides control over transactional boundaries, enables multiple
statements to run within a single transaction, and improves performance, since there is no
implicit commit after every statement.

Chapter 7
Transaction Implicit Commit Behavior

7-2

If autocommit is disabled, transactions must be explicitly completed with a commit or rollback
after any of the following:

• Completing all the work that was to be done in the transaction.

• Issuing a transaction-consistent (blocking) checkpoint request.

• Updating column and table statistics to be used by the query optimizer.

• Calling a TimesTen built-in procedure that does not generate a result set in order for the
new setting specified in the procedure to take effect, such as the ttLockWait procedure.

You must establish a connection to a database before changing the autocommit setting. To
disable autocommit, perform one of the following:

• In ODBC-based applications, run SQLSetConnectOption function with
SQL_AUTOCOMMIT_OFF.

• In JDBC applications, Connection.setAutoCommit(false) method.

• When running ttIsql, issue the autocommit 0 command.

TimesTen DDL Commit Behavior

The TimesTen database issues an implicit COMMIT before and after any DDL statement. A
durable commit is performed after the processing of each DDL statement. This behavior is the
same as the Oracle database.

DDL statements include the following:

• CREATE, ALTER and DROP statements for any database object, including tables, views, users,
procedures and indexes.

• TRUNCATE
• GRANT and REVOKE
There are certain things to keep into consideration:

• DDL changes cannot be rolled back.

• DDL statements delete records from global temporary tables unless the tables were
created with the ON COMMIT PRESERVE ROWS clause.

• Tables created with the CREATE TABLE . . . AS SELECT statement are visible immediately.

• TRUNCATE statements are committed automatically. However, the truncate of the parent and
child tables must be truncated in separate transactions, with the child table truncated first.
You cannot truncate a parent table unless the child table is empty.

Ensuring ACID Semantics
As a relational database, TimesTen is ACID compliant.

• Atomic: All TimesTen transactions are atomic: Either all database operations in a single
transaction occur or none of them occur.

• Consistent: Any transaction can bring the database from one consistent state to another.

• Isolated: Transactions can be isolated. TimesTen has two isolation levels: read committed
and serializable, which together with row level locking provide multi-user concurrency
control.

Chapter 7
Ensuring ACID Semantics

7-3

• Durable: Once a transaction has been committed, it remains committed.

The following sections detail how TimesTen ensures ACID semantics for transactions:

• Transaction Atomicity, Consistency, and Isolation

• Transaction Consistency and Durability

Transaction Atomicity, Consistency, and Isolation
Locking and transaction logs are used to ensure ACID semantics as a transaction modifies
data in a database.

• Locking: TimesTen acquires locks on data items that the transaction writes and, depending
on the transaction isolation level, data items that the transaction reads. See Concurrency
Control Through Isolation and Locking.

• Transaction logging: All TimesTen transactions are atomic. Either all or none of the effects
of the transaction are applied to the database. Modifications to the database are recorded
in a transaction log. Atomicity is implemented by using the transaction log to undo the
effects of a transaction if it is rolled back. Rollback can be caused explicitly by the
application or during database recovery because the transaction was not committed at the
time of failure. See Transaction Logging.

The following table shows how TimesTen uses locks and transaction logs:

If Then

Transaction is
terminated
successfully
(committed)

• Transaction log is written to the file system (depending on durability
connection attribute). See Transaction Consistency and Durability.

• Locks that were acquired on behalf of the transaction are released and the
corresponding data becomes available to other transactions to read and
modify.

• All open result sets in the transaction are automatically closed.

Transaction is rolled
back

• Transaction log is used to undo the effects of the transaction and to restore
any modified data items to the state they were before the transaction
began.

• Locks that were acquired on behalf of the transaction are released.
• All open result sets in the transaction are automatically closed.

System fails (data not
committed)

• On first connect, TimesTen automatically performs database recovery by
reading the latest checkpoint image and applying the transaction log to
restore the database to its most recent transactionally consistent state.
See Checkpoint Operations.

Application fails • All outstanding transactions are rolled back.

Transaction Consistency and Durability
TimesTen provides consistency and durability with a combination of checkpointing and
transaction logging.

• A checkpoint operation writes the current in-memory database image to a checkpoint file
on the file system.

– For TimesTen Classic, a successful checkpoint operation makes all transactions that
have been committed at the time of the checkpoint operation consistent and durable.

– In TimesTen Scaleout, the data in your database is distributed across elements. Each
element keeps its own checkpoint and transaction log files. As a result, the data stored
in each element is independently durable.

Chapter 7
Ensuring ACID Semantics

7-4

Each data instance in a grid manages one element of a database. In the event of a
failure, a data instance can automatically recover the data stored in its element from
the checkpoint and transaction logs files while the remaining data instances continue
to service applications. If the K-safety value is 2 or greater, then a failed element can
be recovered from another element in its replica set.

• All transactions are logged to an in-memory transaction log buffer, which is written to the
file system either with durable or nondurable transactions. See Durability Options.

Note:

Checkpointing and logging are further described in Checkpoint Operations and
Transaction Logging.

Concurrency Control Through Isolation and Locking
TimesTen transactions support ANSI Serializable and ANSI Read Committed levels of
isolation.

ANSI Serializable isolation is the most stringent transaction isolation level. ANSI Read
Committed allows greater concurrency. Read Committed is the default and is an appropriate
isolation level for most applications.

The following sections describe transaction isolation and locking levels:

• Transaction Isolation Levels

• Locking Granularities

Transaction Isolation Levels
Transaction isolation enables each active transaction to operate as if there were no other
transactions active in the system.

Isolation levels determine if row-level locks are acquired when performing read operations.
When a statement is issued to update a table, locks are acquired to prevent other transactions
from modifying the same data until the updating transaction commits or rolls back and then
releases its locks.

The Isolation connection attribute sets the isolation level for a connection. The isolation level
cannot be changed in the middle of a transaction.

TimesTen supports the following two transaction isolation levels:

• ANSI Read Committed isolation: The read committed isolation level is the recommended
mode of operation for most applications, and is the default mode. It enables transactions
that are reading data to run concurrently with a transaction that is updating the same data.
TimesTen makes multiple versions of data items to allow non-serializable read and write
operations to proceed in parallel.

Read operations do not block write operations and write operations do not block read
operations, even when they read and write the same data. Read operations do not acquire
locks on scanned rows. Write operations acquire locks that are held until the transaction
commits or rolls back. Readers share a committed copy of the data, whereas a writer has
its own uncommitted version. Therefore, when a transaction reads an item that is being

Chapter 7
Concurrency Control Through Isolation and Locking

7-5

updated by another in-progress transaction, it sees the committed version of that item. It
cannot see an uncommitted version of an in-progress transaction.

Read committed isolation level provides for better concurrency at the expense of
decreased isolation because of the possibility of non-repeatable reads or phantom rows
within a transaction. If an application runs the same query multiple times within the same
transaction, the commit of an update from another transaction may cause the results from
the second read operation to retrieve different results. A phantom row can appear (in
modified form) in two different read operations within the same transaction, as the result of
an early release of read locks during the transaction.

To set read committed isolation level, if previously modified since this is the default, do one
of the following:

– Connect with the Isolation connection attribute set to 1. You can also modify this
value with the ALTER SESSION SQL statement.

ALTER SESSION SET ISOLATION_LEVEL=READ COMMITTED;

See Isolation in the Oracle TimesTen In-Memory Database Reference or ALTER
SESSION in Oracle TimesTen In-Memory Database SQL Reference.

– When using ttIsql, run isolation 1 or isolation READ_COMMITTED.

– ODBC applications can run the SQLSetConnectOption ODBC function with the
SQL_TXN_ISOLATION flag set to SQL_TXN_READ_COMMITTED. See Option Support for
ODBC 2.5 SQLSetConnectOption and SQLGetConnectOption in the Oracle TimesTen
In-Memory Database C Developer's Guide.

– JDBC applications can run the setTransactionIsolation JDBC method of the
Connection object to TRANSACTION_READ_COMMITTED.

• ANSI Serializable isolation: All locks acquired within a transaction by a read or write
operation are held until the transaction commits or rolls back. Read operations block write
operations, and write operations block read operations. But read operations do not block
other read operations.

– If an initial transaction reads a row, a second transaction can also read the row.

– A row that has been read by an initial transaction cannot be updated or deleted by a
second transaction until the initial transaction commits or rolls back. However, the
second transaction can insert rows that are not in the same range that are locked by
the first transaction. For example, if the first transaction is reading rows 1 through 10,
then the second transaction cannot update rows 1 through 10. However, the second
transaction can insert into rows greater than 10.

– A row that has been inserted, updated or deleted by an initial transaction cannot be
accessed in any way by a second transaction until the initial transaction either commits
or rolls back.

Serializable isolation level provides for repeatable reads and increased isolation at the
expense of decreased concurrency. A transaction that runs the same query multiple times
within the same transaction is guaranteed to see the same result set each time. Other
transactions cannot update or delete any of the returned rows, nor can they insert a new
row that satisfies the query predicate.

To set the isolation level to serializable isolation, do one of the following:

– Connect with the Isolation connection attribute set to 0. You can also modify this
value with the ALTER SESSION SQL statement.

ALTER SESSION SET ISOLATION_LEVEL=SERIALIZABLE ;

Chapter 7
Concurrency Control Through Isolation and Locking

7-6

See Isolation in the Oracle TimesTen In-Memory Database Reference or ALTER
SESSION in Oracle TimesTen In-Memory Database SQL Reference.

– When using ttIsql, run isolation 0 or isolation SERIALIZABLE.

– ODBC applications can run the SQLSetConnectOption ODBC function with the
SQL_TXN_ISOLATION flag set to SQL_TXN_SERIALIZABLE.

– JDBC applications can run the setTransactionIsolation JDBC method of the
Connection object to TRANSACTION_SERIALIZABLE.

To ensure that materialized views are always in a consistent state, all view maintenance
operations are performed under serializable isolation, even when the transaction is in read
committed isolation. This means that the transaction obtains read locks for any data items
read during view maintenance. However, the transaction releases the read locks at the end
of the INSERT, UPDATE or CREATE VIEW statement that triggered the view maintenance,
instead of holding them until the end of the transaction.

Note:

The ttXactAdmin utility generates a report showing lock holds and lock waits for all
outstanding transactions. It can be used to troubleshoot lock contention problems
where operations are being blocked, or encountering lock timeout or deadlock errors.
It can also be used to rollback a specified transaction.

Locking Granularities
TimesTen supports row-level locks, table-level locks and database-level locks.

Different connections can coexist with different levels of locking, but the presence of even one
connection using database-level locking leads to reduced concurrency. For performance
information, see Choose the Best Method of Locking.

Note:

When multiple locks have been obtained within the same transaction, the locks are
released sequentially when the transaction ends.

• Row-level locking: Transactions usually obtain locks on the individual rows that they
access. Row-level locking is the recommended mode of operation because it provides the
finest granularity of concurrency control. It allows concurrent transactions to update
different rows of the same table. However, row-level locking requires space in the
database's temporary memory region to store lock information.

Row-level locking is the default. However, if it has been modified to another type of locking
and you want to re-enable row-level locking, do one of the following:

– Set the LockLevel connection attribute to 0.

– In TimesTen Classic, call the ttLockLevel built-in procedure with the lockLevel
parameter set to Row. This procedure changes the lock level between row-level and
database-level locking on the next transaction and for all subsequent transactions for
this connection.

Chapter 7
Concurrency Control Through Isolation and Locking

7-7

– Run the ttOptSetFlag built-in procedure to set the RowLock parameter to 1, which
enables the optimizer to consider using row locks.

Note:

See LockLevel, ttLockLevel, and ttOptSetFlag in the Oracle TimesTen In-Memory
Database Reference.

• Table-level locking: Table-level locking is recommended when concurrent transactions
access different tables or a transaction accesses most of the rows of a particular table.
Table-level locking provides better concurrency than database-level locking. Row-level
locking provides better concurrency than table-level locking. Table-level locking requires
only a small amount of space in the temporary memory region to store lock information.

Table-level locking provides the best performance for the following:

– Queries that access a significant number of rows of a table

– When there are very few concurrent transactions that access a table

– When temporary space is inadequate to contain all row locks that an operation, such
as a large insert or a large delete, might acquire

To enable table-level locking, run the ttOptSetFlag procedure to set the TblLock
parameter to 1, which enables the optimizer to consider using table locks. In addition, set
RowLock to 0 so that the optimizer does not consider row-level locks.

If both table-level and row-level locking are disabled, TimesTen defaults to row-level
locking. If both table-level and row-level locking are enabled, TimesTen chooses the
locking scheme that is more likely to have better performance. Even though table-level
locking provides better performance than row-level locking because of reduced locking
overhead, the optimizer often chooses row-level locking for better concurrency. For more
information, see ttOptSetFlag in the Oracle TimesTen In-Memory Database Reference.

• Database-level locking: Database-level locking serializes all transactions, which effectively
allows no concurrency on the database. When a transaction is started, it acquires an
exclusive lock on the database, which ensures that there is no more than one active
transaction in the database at any given time. It releases the lock when the transaction is
completed.

Database-level locking can provide better performance than row-level locking, due to
reduced locking overhead. In addition, it provides higher throughput than row-level locking
when running a single stream of transactions such as a bulk load operation. However, its
applicability is limited to applications that never run multiple concurrent transactions. With
database-level locking, every transaction effectively runs in ANSI Serializable isolation,
since concurrent transactions are disallowed.

To enable database-level locking, do one of the following:

– Set the LockLevel connection attribute to 1.

– In TimesTen Classic, call the ttLockLevel built-in procedure with the lockLevel
parameter set to DS. This procedure changes the lock level between row-level and
database-level locking on the next transaction and for all subsequent transactions for
this connection.

Chapter 7
Concurrency Control Through Isolation and Locking

7-8

Setting Wait Time for Acquiring a Lock
Set the LockWait connection attribute to the maximum amount of time that a statement waits to
acquire a lock before it times out. The default is 10 seconds. If a statement within a transaction
waits for a lock and the lock wait interval has elapsed, an error is returned. After receiving the
error, the application can reissue the statement.

Lock wait intervals are imprecise due to the scheduling of the database's managing
subdaemon process to detect lock timeouts. This imprecision does not apply to zero-second
timeouts, which are always immediately reported. The lock wait interval does not apply to
blocking checkpoints.

The database's managing subdaemon process checks every two seconds to see if there is a
deadlock in the database among concurrent transactions. If a deadlock occurs, an error is
returned to one of the transactions involved in the deadlock cycle. The transaction that
receives the error must rollback in order to allow the other transactions involved in the
deadlock to proceed.

When running a workload of high lock-contention potential, consider setting the LockWait
connection attribute to a smaller value for faster return of control to the application, or setting
LockWait to a larger value to increase the successful lock grant ratio (with a risk of decreased
throughput).

See LockWait in Oracle TimesTen In-Memory Database Reference.

Checkpoint Operations
A checkpoint operation synchronizes the current state of the TimesTen in-memory database
with the state in the latest on disk checkpoint file.

A checkpoint operation writes any regions of the in-memory database that have been changed
since the last checkpoint operation. Checkpoint operations alternate between two checkpoint
files so that there is always the latest and latest – 1 checkpoint images available for recovery.
Once the checkpoint completes, TimesTen purges the related transaction log files (which are
now a part of the checkpoint) as they are no longer required.

By default, TimesTen automatically performs background checkpoints at regular intervals.
Checkpointing may generate a large amount of I/O activity and have a long processing time
depending on the size of the database and the number of database changes since the most
recent checkpoint.

Note:

Applications can programmatically initiate checkpoint operations. See Setting and
Managing Checkpoints.

The following sections describe checkpoint operations and how you can manage them:

• Purpose of Checkpoints

• Usage of Checkpoint Files

• Types of Checkpoints

• Setting and Managing Checkpoints

Chapter 7
Checkpoint Operations

7-9

Purpose of Checkpoints
A checkpoint operation has two primary purposes.

• Decreases the amount of time required for database recovery, because it provides a more
up-to-date database image on which recovery can begin.

• Makes a portion of the transaction log unneeded for any future database recovery
operation, typically allowing one or more transaction log files to be deleted.

Both of these functions are very important to TimesTen applications. The reduction in recovery
time is important, as the amount of a transaction log needed to recover a database has a direct
impact on the amount of downtime seen by an application after a system failure. The removal
of unneeded transaction log files is important because it frees file system space that can be
used for new transaction log files. If these files were never purged, they would eventually
consume all available space in the transaction log files directory, causing database operations
to fail due to log space exhaustion.

Usage of Checkpoint Files
TimesTen creates two checkpoint files for each database, named dsname.ds0 and dsname.ds1,
where dsname is the database path name and file name prefix specified in the database DSN.

During a checkpoint operation, TimesTen determines which checkpoint file contains the most
recent consistent image and then writes the next in-memory image of the database to the other
file. Thus, the two files contain the two most recent database images.

• In TimesTen Classic, the database maintains one set of checkpoint and transaction log
files.

• In TimesTen Scaleout, each element maintains its own independent set of checkpoint and
transaction log files. See Understanding Distributed Transactions in TimesTen Scaleout in
the Oracle TimesTen In-Memory Database Scaleout User's Guide.

TimesTen uses the most recent checkpoint file and transaction log files to recover the database
to its most recent transaction-consistent state after a database shutdown or system failure.
(The most recent transaction log files are those written since the checkpoint was done.) If any
errors occur during this process, or if the more recent checkpoint image is incomplete, then
recovery restarts using the other checkpoint file. See Transaction Logging.

Types of Checkpoints
TimesTen uses the most recent checkpoint file to recover the database to transaction-
consistent state at the time of the last successful checkpoint operation completed.

It uses the transaction log files to recover the database to its most recent transaction-
consistent state after a database shutdown or system failure.

TimesTen supports two types of database checkpoint operations:

• Fuzzy or Non-Blocking Checkpoints

• Blocking Checkpoints

Fuzzy or Non-Blocking Checkpoints
Fuzzy checkpoints, or non-blocking checkpoints, enable transactions to run against the
database while the checkpoint is in progress.

Chapter 7
Checkpoint Operations

7-10

Fuzzy checkpoints do not obtain locks, and therefore have a minimal impact on other database
activity. Because transactions may modify the database while a checkpoint operation is in
progress, the resulting checkpoint file may contain both committed and uncommitted
transactions. Furthermore, different portions of the checkpoint image may reflect different
points in time. For example, one portion may have been written before a given transaction
committed, while another portion was written afterward. The term "fuzzy checkpoint" derives its
name from this fuzzy state of the database image.

To recover the database when the checkpoint files were generated from fuzzy checkpoint
operations, TimesTen requires the most recent checkpoint file and the transaction log to bring
the database into its most recent transaction-consistent state.

Blocking Checkpoints
Blocking checkpoints obtain an exclusive lock on the database for a portion of the checkpoint
operation, which blocks all access to the database during that time.

The resulting checkpoint image contains all committed transactions prior to the time the
checkpoint operations acquired the exclusive lock on the database. Because no transactions
can be active while the database lock is held, no modifications made by in-progress
transactions are included in the checkpoint image.

In TimesTen Classic, an application uses the ttCkptBlocking built-in procedure to request a
blocking checkpoint. The actual checkpoint is delayed until the requesting transaction commits
or rolls back. If a blocking checkpoint is requested for a database for which both checkpoint
files are already up to date then the checkpoint request is ignored.

Setting and Managing Checkpoints
There is a default behavior for TimesTen checkpoints.

• TimesTen performs periodic fuzzy checkpoints in the background. You can modify this
behavior. See Configuring or Turning Off Background Checkpointing.

• TimesTen performs a blocking checkpoint operation of a database just before the database
is unloaded from memory. See Blocking Checkpoints.

The following sections describe how to manage checkpointing:

• Programmatically Performing a Checkpoint in TimesTen Classic

• Configuring or Turning Off Background Checkpointing

• Displaying Checkpoint History and Status

• Setting the Checkpoint Rate

• Setting the Number of Checkpoint File Read Threads

Programmatically Performing a Checkpoint in TimesTen Classic
By default, TimesTen performs periodic fuzzy checkpoints in the background. Therefore,
applications rarely need to issue manual checkpoints.

However, if an application wishes to issue a manual checkpoint against a TimesTen Classic
database, it can call the ttCkpt built-in procedure to request a fuzzy checkpoint or the
ttCkptBlocking built-in procedure to request a blocking checkpoint. This is not recommended.
See ttCkpt and ttCkptBlocking in the Oracle TimesTen In-Memory Database Reference.

Chapter 7
Checkpoint Operations

7-11

Configuring or Turning Off Background Checkpointing
You can configure TimesTen to checkpoint either at a specific timed frequency or when the
transaction log files contain a certain amount of data.

To configure checkpointing in TimesTen, do the following:

Configure the CkptFrequency and CkptLogVolume connection attributes as follows:

• The CkptFrequency connection attribute controls how often, in seconds, that TimesTen
performs a background checkpoint. The default is 600 seconds. Set the CkptFrequency
connection attribute to 0 if you want to control background checkpointing with the
CkptLogVolume connection attribute.

• The CkptLogVolume connection attribute controls how much data, in megabytes, that
collects in the transaction log file between background checkpoints. By increasing this
amount, you can delay the frequency of the checkpoint. The default is 0. Set the
CkptFrequency connection attribute to 0 if you want to control background checkpointing
with the CkptLogVolume connection attribute.

In most cases, it is recommended to use CkptLogVolume over CkptFrequency, since
CkptFrequency does not take into account the rate of database transactions. If both
CkptFrequency and CkptLogVolume attributes are set with a value greater than 0, then a
checkpoint is performed when either of the two conditions becomes true.

Alternatively, you can configure background checkpointing or turn it off by calling the
ttCkptConfig built-in procedure. The values set by ttCkptConfig take precedence over those
set with the connection attributes.

Note:

For information on default values and usage, see CkptFrequency, CkptLogVolume,
and ttCkptConfig in the Oracle TimesTen In-Memory Database Reference.

Displaying Checkpoint History and Status
Select from the SYS.GV$CKPT_HISTORY or SYS.V$CKPT_HISTORY system views to display
information on the most recent eight checkpoints and checkpoint attempts.

Note:

You can also use the ttCkptHistory built-in procedure to display this information.

For example, some of the information that you can confirm:

• The amount of time a checkpoint takes (subtract the completion time of the checkpoint
from the start time).

• The type of the checkpoint: fuzzy, blocking, static or none. See Types of Checkpoints.

• The status of the checkpoint: in-progress, completed, or failed. When examining
checkpoint history, verify whether any recent checkpoints failed (indicated with status of

Chapter 7
Checkpoint Operations

7-12

FAILED). If a checkpoint has failed, the reason is displayed in the error or additional details
columns.

• The initiator of the checkpoint. From a user-level application (including TimesTen utilities),
from a background checkpoint request, or the managing subdaemon of the database.

• The reason why the checkpoint occurred. The most popular reasons are after database
creation, after recovery, final checkpoint after shutdown, after the user runs a built-in
procedure, or after a flush operation.

• The reason for a failure if a checkpoint fails.

• The amount of data (total number of bytes) written by a typical checkpoint.

• The checkpoint rate. See Setting the Checkpoint Rate for details on how to calculate the
checkpoint rate from the data provided.

• The percentage of the checkpoint that has been completed. If there is an in-progress
checkpoint, indicates the percentage of the checkpoint that has been completed.

• The number of actual transaction log files purged by this checkpoint. If this column displays
a zero, this does not mean that no log records were purged within the transaction log file.
Instead, log records can be purged continually within a transaction log file. This column
displays the actual number of transaction log files purged to show when file system space
is freed.

There are times when TimesTen may not be able to purge some of the transaction files if
there is a hold set on the transaction log. For example, this value may show when the
checkpoint cannot purge transaction log files due to a long-running transaction or a
replication bookmark located far back in the transaction log files.

• The bookmark name (the reason for the transaction log hold) that is preventing the
removal of one or more transaction logs. This name can help identify why transaction log
files are remaining on the file system longer than expected. See Log Holds by TimesTen
Components or Operations for details on the different bookmark (transaction log hold)
names.

If this information does not provide enough context on why transaction logs are not purged,
then you can also run the ttXactAdmin built-in procedure for more details on the
transaction logs.

See SYS.GV$CKPT_HISTORY, SYS.V$CKPT_HISTORY, SYS.GV$LOG_HOLDS or
SYS.V$LOG_HOLDS in the Oracle TimesTen In-Memory Database System Tables and Views
Reference. See ttCkptHistory, ttLogHolds or ttXactAdmin in the Oracle TimesTen In-Memory
Database Reference.

This example shows a checkpoint in progress:

% SELECT * FROM SYS.V$CKPT_HISTORY;

< 2019-02-05 16:56:34.169520, <NULL>,
Fuzzy , In Progress , User ,
BuiltIn , <NULL>,
0, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, 13, 6, 0, <NULL>, <NULL> >

< 2019-02-05 16:55:47.703199, 2019-02-05 16:55:48.188764,
Fuzzy , Completed , Checkpointer ,
Background , <NULL>,
1, 0, 8964304, 294, 33554432, 291, 5677288, 27, 1019512,
1065408, <NULL>, 5, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:47.106110, 2019-02-05 16:54:47.723379,
Static , Completed , Subdaemon ,

Chapter 7
Checkpoint Operations

7-13

FinalCkpt , <NULL>,
0, 0, 8960328, 294, 33554432, 291, 5677288, 256, 33157172,
5321548, <NULL>, 4, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:41.633792, 2019-02-05 16:54:42.568469,
Blocking , Completed , User ,
BuiltIn , <NULL>,
1, 0, 8958160, 294, 33554432, 291, 5677288, 31, 1162112,
6604976, <NULL>, 3, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:37.438827, 2019-02-05 16:54:37.977301,
Static , Completed , User ,
DbCreate , <NULL>,
0, 0, 1611984, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 2, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:36.861728, 2019-02-05 16:54:37.438376,
Static , Completed , User ,
DbCreate , <NULL>,
1, 0, 1609936, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 1, 0, Checkpoint, <NULL> >

This example shows that an error occurred during the most recent checkpoint attempt, which
was a user-initiated checkpoint:

% SELECT * FROM SYS.V$CKPT_HISTORY;

< 2019-02-05 16:57:14.476860, 2019-02-05 16:57:14.477957,
Fuzzy , Failed , User ,
BuiltIn , 847,
1, <NULL>, <NULL>, 0, 0, 0, 0, 0, 0, 0, <NULL>, 7, 0, <NULL>,
Errors 1: TT0847: 16:57:14 (2019-02-05) >

< 2019-02-05 16:56:34.169520, 2019-02-05 16:56:59.715451,
Fuzzy , Completed , User ,
BuiltIn , <NULL>,
0, 0, 8966472, 294, 33554432, 291, 5677288, 5, 522000,
532928, <NULL>, 6, 0, Checkpoint, <NULL> >

< 2019-02-05 16:55:47.703199, 2019-02-05 16:55:48.188764,
Fuzzy , Completed , Checkpointer ,
Background , <NULL>,
1, 0, 8964304, 294, 33554432, 291, 5677288, 27, 1019512,
1065408, <NULL>, 5, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:47.106110, 2019-02-05 16:54:47.723379,
Static , Completed , Subdaemon ,
FinalCkpt , <NULL>,
0, 0, 8960328, 294, 33554432, 291, 5677288, 256, 33157172,
5321548, <NULL>, 4, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:41.633792, 2019-02-05 16:54:42.568469,
Blocking , Completed , User ,
BuiltIn , <NULL>,
1, 0, 8958160, 294, 33554432, 291, 5677288, 31, 1162112,
6604976, <NULL>, 3, 0, Checkpoint, <NULL> >

< 2019-02-05 16:54:37.438827, 2019-02-05 16:54:37.977301,
Static , Completed , User ,
DbCreate , <NULL>,
0, 0, 1611984, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 2, 0, Checkpoint, <NULL> >

Chapter 7
Checkpoint Operations

7-14

< 2019-02-05 16:54:36.861728, 2019-02-05 16:54:37.438376,
Static , Completed , User ,
DbCreate , <NULL>,
1, 0, 1609936, 93, 33554432, 92, 1853848, 93, 33554432,
1854052, <NULL>, 1, 0, Checkpoint, <NULL> >

This example demonstrates the checkpoint history output. You use the ttCkptHistory built-in
procedure to select specific columns from the checkpoint history:

% SELECT type, reason, bookmarkname, logsPurged FROM ttCkptHistory;;

< Fuzzy , BuiltIn , Oldest Transaction Undo, 0 >
< Static , FinalCkpt , Checkpoint, 6 >
< Blocking , BuiltIn , Checkpoint, 0 >
< Blocking , BuiltIn , Checkpoint, 0 >
< Blocking , BuiltIn , Checkpoint, 0 >
< Blocking , BuiltIn , Backup, 5 >
< Blocking , BuiltIn , Backup, 0 >
< Blocking , BuiltIn , Backup, 0 >

The output from this example shows that the oldest checkpoints (the last rows displayed) did
not purge any transaction log files (indicated by a 0 in the logsPurged column) because there
was a log hold set by an incremental backup. The backup caused a transaction log file
accumulation. However, eventually, the log hold was removed and five transaction log files
could be purged.

A checkpoint operation is started on the fourth row from the bottom. The checkpoint places a
log hold that prevents transaction log files from being purged. Six transaction log files were
purged by the final checkpoint (FinalCkpt) operation.

The most recent checkpoint shows that it is a fuzzy checkpoint with the log hold of Oldest
Transaction Undo. This hold marks a point for the transaction that the checkpoint log purge
operation cannot pass. If you see this message over several consecutive rows, then this may
indicate a long running transaction that could be causing a transaction log file accumulation.

Setting the Checkpoint Rate
By default, there is no limit to the rate at which checkpoint data is written to the file system. You
can use the CkptRate connection attribute or the ttCkptConfig built-in procedure to set the
maximum rate at which background checkpoint data is written to the file system.

Checkpoints taken during recovery and final checkpoints do not honor this rate. In those
situations, the rate is unlimited.

Note:

See CkptRate and ttCkptConfig in the Oracle TimesTen In-Memory Database
Reference.

Setting a rate too low can cause checkpoints to take an excessive amount of time and cause
the following problems:

• Delay the purging of unneeded transaction log files.

• Delay the start of backup operations.

Chapter 7
Checkpoint Operations

7-15

Setting a rate too high can cause checkpoints to consume too much of the file system buffer
cache bandwidth that could result in the following:

• Reduce overall database transaction throughput, as transaction logs are prevented from
writing to the file system as quickly as they usually would.

• Cause contention with other file system I/O operations.

When choosing a rate, you should take into consideration the amount of data written by a
typical checkpoint and the amount of time checkpoints usually take. Both of these pieces of
information are available through the SYS.GV$CKPT_HISTORY or SYS.V$CKPT_HISTORY system
views or the ttCkptHistory built-in procedure.

If a running checkpoint appears to be progressing too slowly, you evaluate the progress of this
checkpoint with the Percent_Complete column of the SYS.GV$CKPT_HISTORY or
SYS.V$CKPT_HISTORY system views. The rate can be increased by calling the ttCkptConfig
built-in procedure. If a call to ttCkptConfig changes the rate, the new rate takes effect
immediately, affecting even the running checkpoint.

Calculate the checkpoint rate (by viewing the SYS.GV$CKPT_HISTORY or SYS.V$CKPT_HISTORY
system views or calling the ttCkptHistory built-in procedure):

1. For any given checkpoint, subtract the starttime from the endtime.

2. Divide the number of bytes written by this elapsed time in seconds to get the number of
bytes per second.

3. Divide this number by 1024*1024 to get the number of megabytes per second.

When setting the checkpoint rate, you should consider the following:

• The specified checkpoint rate is only approximate. The actual rate of the checkpoint may
be below the specified rate, depending on the hardware, system load and other factors.

• The above method may underestimate the actual checkpoint rate, because the starttime
and endtime interval includes other checkpoint activities in addition to the writing of dirty
blocks to the checkpoint file.

• The Percent_Complete field may show 100 percent before the checkpoint is actually
complete. The Percent_Complete field shows only the progress of the writing of dirty
blocks and does not include additional bookkeeping at the end of the checkpoint.

• When adjusting the checkpoint rate, you may also need to adjust the checkpoint frequency,
as a slower rate makes checkpoints take longer, which effectively increases the minimum
time between checkpoint beginnings.

Setting the Number of Checkpoint File Read Threads
By default, TimesTen reads checkpoint files serially with a single thread. Use the
CkptReadThreads connection attribute to set the number of threads that TimesTen uses to read
the checkpoint files when loading the database into memory.

When using n number of threads, TimesTen divides the checkpoint file into n portions of equal
size. Each thread concurrently reads a portion of the file into memory. Once all threads are
done reading their portion of the checkpoint file successfully, TimesTen checks the database
for consistency.

Chapter 7
Checkpoint Operations

7-16

Note:

See Set CkptReadThreads in this book, and CkptReadThreads in the Oracle
TimesTen In-Memory Database Reference.

Transaction Logging
TimesTen maintains a transaction log for each database to track all updates made within each
transaction, so that those updates can be undone if the transaction is rolled back.

TimesTen recovers transactions using both the most recent checkpoint file and the most recent
transaction log, which was written from the time of the last checkpoint operation after a system
failure.

A transaction log record is created for each database modification, commit, and rollback.
However, transaction log records are not generated for read-only transactions. Log records are
first written to the transaction log buffer, which resides in the same shared memory segment as
the database. The contents of the log buffer are then subsequently flushed to the latest
transaction log file.

The transaction log is a logically ordered sequence of transaction log records, but physically
consists of a set of one or more transaction log files and the in-memory log buffer within the
TimesTen database. This log is shared by all concurrent connections.

The following sections describe how to manage and monitor the transaction log buffers and
file:

• Managing Transaction Log Buffers and Files

• Using NFS-Mounted Systems for Checkpoint and Transaction Log Files

• Monitoring Accumulation of Transaction Log Files

Managing Transaction Log Buffers and Files
There are configuration options for transaction log buffers and files.

• Transaction log buffers: There is one transaction log buffer for each database and the size
of the transaction log buffer can be configured using the LogBufMB DSN connection
attribute.

Strands divide the transaction log buffer available memory into a number of different
regions, which can be accessed concurrently by different connections. The number of
transaction log buffer strands is configured with the LogBufParallelism connection
attribute. After which, each connection can run data independent DML statements in
parallel using those strands as if each has its own transaction log buffer. See
LogBufParallelism in the Oracle TimesTen In-Memory Database Reference.

• Transaction log files: The transaction log files are created in the location that the LogDir
connection attribute specifies.

Chapter 7
Transaction Logging

7-17

Note:

The LogDir connection attribute is optional and if it is not specified, the
transaction log files are created in the same directory as the checkpoint files.
However, for best performance, TimesTen recommends that you use the LogDir
connection attribute to place the transaction log files in a different physical device
from the checkpoint files. If separated, I/O operations for checkpoints do not
block I/O operations to the transaction log and vice versa.

If the database is already loaded into RAM and the transaction log files and
checkpoint files for your database are on the same physical device, TimesTen
writes a message to the daemon log file.

See LogDir in the Oracle TimesTen In-Memory Database Reference and Check
Transaction Log File Use of File System Space in the Oracle TimesTen In-
Memory Database Monitoring and Troubleshooting Guide.

You can configure the maximum size for the transaction log files with the LogFileSize
DSN connection attribute. See LogFileSize in the Oracle TimesTen In-Memory Database
Reference.

The transaction log file names have the form dsname.logn. The dsname is the database
path name that is specified by the DataStore DSN connection attribute and is provided
within the database's DSN. The suffix n is the transaction log file number, starting at zero.

When the database is created, TimesTen creates reserve files named dsname.res0,
dsname.res1, and dsname.res2. These files contain pre-allocated space that serves as
reserved transaction log space. Reserved transaction log space allows for a limited
continuation of transaction logging if the file system that holds the transaction log files
becomes full. If the file system that contains the transaction logs becomes full, the
database does not allow any new transactions to begin. Transactions that are in progress
are allowed to continue by using the reserve files until they either commit or rollback. If
there are transactions that are still in progress and the reserve files are all consumed, all
database operations that generate log files are blocked.

Using NFS-Mounted Systems for Checkpoint and Transaction Log Files
To enable TimesTen checkpoint and transaction log files to be located on NFS-mounted file
systems (on Linux platforms platforms only), ensure that allow_network_files=1 in the
timesten.conf file. The allow_network_files=1 configuration is the default setting.

See TimesTen Instance Configuration File in Oracle TimesTen In-Memory Database
Reference.

Monitoring Accumulation of Transaction Log Files
It is important to verify at frequent intervals that there are no transaction log holds that could
result in an excessive accumulation of transaction log files.

If too many transaction log files accumulate and fill up available file system space, new
transactions in the TimesTen database cannot begin until the transaction log hold is advanced
and transaction log files are purged by the next checkpoint operation.

The following sections describe transaction log operations, log holds, and accumulation of log
files:

Chapter 7
Transaction Logging

7-18

• Log Holds by TimesTen Components or Operations

• Purging Transaction Log Files

• Monitoring Log Holds and Log File Accumulation

Log Holds by TimesTen Components or Operations
Several TimesTen components or operations can cause transaction log holds. A transaction
log hold prevents log files, beyond a certain point, from being purged until they are no longer
needed.

In standard circumstances, the log hold position is regularly advanced and log files are purged
appropriately. However, if operations are not functioning properly and the hold position does
not advance, there can be an excessive accumulation of log files beyond the hold position that
can no longer be purged, which eventually fills available file system space.

These components and operations include the following:

• Transactions writing log records to the transaction log file have been committed or rolled
back. These can be either local database transactions or XA transactions.

• Changes recorded in the transaction log file have been written to both checkpoint files.

• Replication: There is a transaction log hold until the transmitting replication agent confirms
that the log files have been fully processed by the receiving host.

Possible failure modes include the following:

– The network is down or there is a standby crash and replication is unable to deliver
data to one or more subscribers. If necessary, the application can direct that logs no
longer be held, then duplicate the master database to the standby when standard
operations resume. Criteria for when to do this includes the amount of time required to
duplicate, the amount of available file system space on the master for log files, and the
transaction log growth rate.

– The overall database transaction rate exceeds the ability of replication to keep the
active and standby databases synchronized. An application can reduce the application
transaction rate or the number of replicated tables.

See Improving Replication Performance in Oracle TimesTen In-Memory Database
Replication Guide and Troubleshooting Replication in Oracle TimesTen In-Memory
Database Monitoring and Troubleshooting Guide.

• XLA: There is a transaction log hold until the XLA bookmark advances.

A possible failure mode occurs when the bookmark becomes stuck, which can occur if an
XLA application terminates unexpectedly or if it disconnects without first deleting its
bookmark or disabling change-tracking. If a bookmark gets too far behind, the application
can delete it. If the XLA reader process is still active, it must first be terminated, so that
another XLA process can connect and delete the bookmark.

• Active standby pairs that replicate AWT cache groups: There is a transaction log hold until
the replication agent confirms that the transaction corresponding to the log hold has been
committed on the Oracle Database. With an active standby pair, the active database
typically receives the confirmation from the standby database. If the standby database is
down, the replication agent receives confirmation from Oracle Database directly.

Possible failure modes include the following:

– Oracle Database is down or there is a lock or resource contention.

– The network is down, slow, or saturated.

Chapter 7
Transaction Logging

7-19

– With an active standby pair, replication to the standby database falls behind. Check log
holds on the standby database.

– The transaction rate to TimesTen exceeds the maximum sustainable rate that
TimesTen can propagate to Oracle Database.

See Monitoring AWT Cache Groups in Oracle TimesTen In-Memory Database Cache
Guide and Troubleshooting AWT Cache Groups in Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

• Cache groups configured with AUTOREFRESH: There is a transaction log hold until the
replication agent on the active database confirms the log files have been fully processed
by the standby database.

Possible failure modes include the following:

– Replication from the active database to the standby database is impacted because the
standby database falls behind due to large workloads resulting from AUTOREFRESH
mode.

– The standby database is down or recovering, but has not been marked as FAILED
through a call, initiated by either the user application or Oracle Clusterware, to the
ttRepStateSave built-in procedure. The active database does not take over
propagation to the Oracle Database until the state of the standby database is marked
as FAILED. While the standby database is down or recovering, transaction log files are
held for the Oracle Database.

See Monitoring Cache Groups with Autorefresh in Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

• Incremental TimesTen backup: There is a log hold until you manually run an incremental
backup and until that backup completes.

The most likely failure is if you configure incremental backups (which starts TimesTen
holding log files), but you do not actually run an incremental backup, which would free the
log file hold.

Another possible failure mode can occur if the incremental backup falls too far behind the
most recent entries in the transaction log. For example, ensure that an unexpected burst of
transaction activity cannot fill up available transaction log file system space due to the
backup holding a log file that is too old. An application can perform another incremental
backup to work around this situation.

• Long-running transaction or XA transaction: There is a transaction log hold until the
transaction commits or rolls back.

A possible failure mode can occur if an application transaction does not commit or rollback
for a long time, so that it becomes necessary for the application to terminate the long-
running transaction.

Alternatively, you can rollback a transaction using the ttXactAdmin utility with the -
xactIdRollback option. See ttXactAdmin in Oracle TimesTen In-Memory Database
Reference.

• Oldest transaction undo: Each transaction that has not yet committed or rolled back
establishes a log hold. This hold starts with the first (oldest) log record of the transaction
and marks a point for the transaction that the checkpoint log purge operation cannot pass.
You can retrieve this log hold information from the SYS.GV$CKPT_HISTORY or
SYS.V$CKPT_HISTORY system views or from the output of the ttCkptHistory built-in
procedure.

Chapter 7
Transaction Logging

7-20

Purging Transaction Log Files
Any transaction log file is kept until TimesTen determines it can be purged. Under standard
TimesTen operating conditions, unneeded transaction log files are purged each time a
checkpoint is initiated.

A checkpoint can be initiated either through a configurable time interval with the
CkptFrequency connection attribute or a configurable log volume with the CkptLogVolume
connection attribute. In TimesTen Classic, you can also initiate a checkpoint (either manually or
in a background checkpointing application thread) with the ttCkpt built-in function.

If you are running out of file system space because of log files accumulating, use the
CkptLogVolume connection attribute instead of the CkptFrequency connection attribute. In
addition, you can tell if reclamation is blocked when frequently selecting from the
SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS system views or calling the ttLogHolds built-in
procedure.

Note:

To improve performance, locate your log files on a separate physical device from the
one on which the checkpoint files are located. See Managing Transaction Log Buffers
and Files.

See Checkpointing in the Oracle TimesTen In-Memory Database Introduction for general
information on checkpointing. See Configuring or Turning Off Background Checkpointing for
more details on CkptFrequency and CkptLogVolume connection attributes.

For more information on log holds, see SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS in the
Oracle TimesTen In-Memory Database SQL Reference or ttLogHolds in the Oracle TimesTen
In-Memory Database Reference.

See CkptFrequency, CkptLogVolume, and ttCkpt in the Oracle TimesTen In-Memory Database
Reference.

Monitoring Log Holds and Log File Accumulation
There are options for periodic monitoring of excessive transaction log accumulation.

• For details of all log holds, select from the SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS system
views or call the ttLogHolds built-in procedure. The information includes the following, as
applicable:

– Log file number, the offset of the hold position, and the type of hold, which can be
checkpoint, replication, backup, XLA, long-running transaction, or long-running XA
transaction

– Name of the checkpoint file for a checkpoint hold

– Name of the subscriber and the parallel track ID it uses for replication

– Backup path for a backup hold

– Name of the persistent subscription and process ID of the last process to open it for
XLA

– Transaction ID for a long-running transaction

Chapter 7
Transaction Logging

7-21

– XA XID for a long-running XA transaction

See SYS.GV$LOG_HOLDS or SYS.V$LOG_HOLDS in the Oracle TimesTen In-Memory
Database SQL Reference or ttLogHolds in the Oracle TimesTen In-Memory Database
Reference.

• Select from the SYS.GV$CKPT_HISTORY or SYS.V$CKPT_HISTORY system views or call the
ttCkptHistory built-in procedure to check the last several checkpoints to confirm none of
the returned rows has a status of FAILED.

See SYS.GV$CKPT_HISTORY or SYS.V$CKPT_HISTORY in the Oracle TimesTen In-
Memory Database SQL Reference or ttCkptHistory in the Oracle TimesTen In-Memory
Database Reference.

• Check the SYS.SYSTEMSTATS table for operational metrics. Each transaction log file has a
unique sequence number, which starts at 0 for the first log file and increments by 1 for
each subsequent log file. The number of the current log file is available in
SYS.SYSTEMSTATS.log.file.latest. The number of the oldest log file not yet purged is
available in SYS.SYSTEMSTATS.log.file.earliest. You should raise an error or warning if
the difference in the sequence numbers exceeds an inappropriate threshold.

See SYS.SYSTEMSTATS in the Oracle TimesTen In-Memory Database System Tables
and Views Reference.

• For XLA, check the SYS.TRANSACTION_LOG_API table that provides bookmark information,
such as the process ID of the connected application, which could help diagnose the reason
why a bookmark may be stuck or lagging.

See SYS.TRANSACTION_LOG_API in the Oracle TimesTen In-Memory Database System
Tables and Views Reference.

Durability Options
Databases in TimesTen are persistent across power failures and crashes. TimesTen
accomplishes durability by periodically saving to disk.

• Checkpoint files: A checkpoint operation writes the current database image to a checkpoint
file on the file system, which has the effect of making all transactions that committed before
the checkpoint durable.

• Transaction log files: For transactions that committed after the last checkpoint, TimesTen
uses conventional logging techniques to make them durable. As each transaction
progresses, it records its database modifications in an in-memory transaction log. At
commit time, the relevant portion of the transaction log is flushed to the file system. This
log flush operation makes that transaction, and all previously-committed transactions,
durable.

Control returns to the application after the transaction log data has been durably written to
the file system. A durably committed transaction is not lost even in the event of a system
failure.

Any recovery uses the last checkpoint image together with the transaction log to reconstruct
the latest transaction-consistent state of the database.

When committing transactions, TimesTen reduces the performance cost for durable commits
with a group commit of multiple concurrently running transactions. TimesTen performs a single
file system write operation to commit a group of concurrent transactions durably. Group commit
does not improve the response time of any given commit operation, as each durable commit
must wait for the file system write operation to complete, but it can significantly improve the
throughput of a series of concurrent transactions.

Chapter 7
Durability Options

7-22

The following sections describe the durability implementation options for TimesTen Scaleout
and TimesTen Classic:

• Durability for TimesTen Scaleout

• Durability for TimesTen Classic

Durability for TimesTen Scaleout
In TimesTen Scaleout, the data in your database is distributed into elements. Each element
keeps its own checkpoint and transaction log files. As a result, the data stored in each element
is independently durable.

Each data instance in a grid manages one element of a database. In the event of a failure, a
data instance can automatically recover the data stored in its element from the checkpoint and
transaction log files while the remaining data instances continue to service applications.

TimesTen Scaleout also enables you to keep multiple copies of your data to increase durability
and fault tolerance. If the K-safety value is 2 or greater, then a failed element can be recovered
from another element in its replica set. For more information on K-safety, see High Availability
and Fault Tolerance and Creating a Grid in the Oracle TimesTen In-Memory Database
Scaleout User's Guide.

In addition, you can change the durability settings of a database according to your
performance and data durability needs. For example, you may choose if data is flushed to disk
with every commit or periodically in batches in order to operate at a higher performance level.
The following sections describe these durability settings:

• Guaranteed Durability for TimesTen Scaleout

• Non-Durable Distributed Transactions for TimesTen Scaleout

Guaranteed Durability for TimesTen Scaleout
In TimesTen Scaleout, you configure how durable your transactions are with the Durablity
connection attribute.

If you set the Durability attribute to 1, participants write durable prepare-to-commit log
records and nondurable commit log records for distributed transactions. Having the
Durability attribute set 1 ensures that committed transactions are recoverable in the case of
a failure. See Durability Settings in Oracle TimesTen In-Memory Database Scaleout User's
Guide.

Non-Durable Distributed Transactions for TimesTen Scaleout
Set the Durability connection attribute to 0 so that participants write nondurable prepare-to-
commit and commit log records for distributed transactions.

K-safety provides a method for failure recovery. K-safety enables you to achieve near-
continuous availability or workload distribution by providing two copies of the data. Thus, if one
copy fails, another copy of the data exists.

If any element of a replica set has failed the other element in the replica set writes durable
prepare-to-commit log records until the failed element recovers. This ensures that transactions
in a grid with K-safety set to 2 and Durability=0 are durable under standard conditions. A
transaction may become nondurable only if both elements of the replica set fail simultaneously.

TimesTen Scaleout periodically promotes transactions to epoch transactions. An epoch
transaction and all transactions committed before it are more resilient to catastrophic failures,

Chapter 7
Durability Options

7-23

since you can recover a database to the globally consistent point marked by the epoch
transaction. Each epoch commit log record is associated to a specific checkpoint file on every
element. In the case of an unexpected failure of an element, the recovery process must use
the checkpoint file on each element that is associated with the latest epoch commit log record,
which is not necessarily the latest checkpoint available on the element.

By default, TimesTen Scaleout generates one epoch transaction every second. You can
configure how often epoch transactions are automatically generated with the EpochInterval
first connection attribute. In addition, you can use the ttEpochCreate or ttDurableCommit built-
in procedures to manually promote a transaction to an epoch transaction.

See Durability Set to 0 in the Oracle TimesTen In-Memory Database Scaleout User's Guide for
more information on epoch transactions and how to promote a transaction to an epoch
transaction.

Durability for TimesTen Classic
TimesTen Classic provides durability by using the last checkpoint image together with the
transaction log to reconstruct the latest transaction-consistent state of the database.

Transaction log records are written to disk asynchronously or synchronously to the completion
of the transaction and controlled by the application at the transaction level.

• You can create an environment for guaranteed durability with no loss of data for those
cases where data integrity must be preserved.

• You can create an environment for durability for those cases where maximum throughput
is paramount but can also tolerate minimal exposure to some data loss.

TimesTen Classic replication makes data highly available to applications with minimal
performance impact. Replication enables you to achieve near-continuous availability or
workload distribution by sending updates between two or more hosts. A master host is
configured to asynchronously send updates and a subscriber host is configured to receive
them.

Note:

For the highest availability for TimesTen Classic, use the active standby pair
replication scheme configuration. See Active Standby Pair With Read-Only
Subscribers in the Oracle TimesTen In-Memory Database Replication Guide.

With an Asynchronous WriteThrough (AWT) cache group, TimesTen transmits committed
updates between the TimesTen cache tables and the cached Oracle Database tables to keep
these tables in the two databases synchronized. See Asynchronous WriteThrough (AWT)
Cache Group in the Oracle TimesTen In-Memory Database Cache Guide.

• Guaranteed Durability for TimesTen Classic

• Non-Durable Transactions for TimesTen Classic

Guaranteed Durability for TimesTen Classic
Guaranteed durability ensures that there is no loss of data (at the cost of some performance)
for those cases where data integrity must be preserved.

Chapter 7
Durability Options

7-24

To guarantee durability for all transactions, you should do at least one of the following. (There
is very little advantage in using both of these options.)

• Use replication enabled with the return twosafe service to replicate transactions. The return
twosafe service provides a fully synchronous option by blocking the application until
replication confirms that the update has been both received and committed on the
subscriber before it is committed on the master. This provides applications a higher level of
confidence that the effects of a committed transaction are durable, even if the master
subsequently fails. This option is usually faster than the durable commit. See Return
Twosafe Replication in the Oracle TimesTen In-Memory Database Replication Guide.

• Configure durable commit operations by setting the DurableCommits connection attribute to
1, which ensures that the transaction is synchronously written to the transaction log file
while the application waits. See DurableCommits in the Oracle TimesTen In-Memory
Database Reference.

Note:

If most of your transactions commit durably, you may want to set the LogFlushMethod
first connection attribute to 1. This connection attribute configures how TimesTen
writes and synchronizes log data to transaction log files. For more information, see
Use Durable Commits Appropriately.

Non-Durable Transactions for TimesTen Classic
Non-durable transactions run considerably faster than durable transactions. Connections that
use non-durable transactions can coexist with connections that use guaranteed durability.

As with guaranteed durability, each transaction enters records into the in-memory transaction
log buffer as it makes modifications to the database. However, when a transaction commits in
non-durable mode, it does not wait for the transaction log buffer to be written to the file system
before returning control to the application. Thus, unless you have configured asynchronous
replication or an asynchronous writethrough cache group, a non-durable transaction may be
lost in the event of a database failure. Eventually, transactions are flushed to the file system
into the transaction log files by the database subdaemon process or when the in-memory
transaction log buffer is full.

If your transactions require extremely high throughput with minimal exposure to data loss, then
consider doing BOTH of these options:

• Use one of these methods to perform an asynchronous write operation of your data to
another database: a TimesTen database or an Oracle database.

– Use the default asynchronous replication that replicates committed transactions from
the master to the subscriber. With the default asynchronous replication, an application
updates a master database and continues working without waiting for the updates to
be received and applied by the subscribers. While asynchronous replication provides
the best performance, it does not provide the application with confirmation that the
replicated updates were committed on subscriber databases. See Copying Updates
Between Databases Oracle TimesTen In-Memory Database Replication Guide.

– Set up an Asynchronous WriteThrough (AWT) cache group to cause committed
updates on TimesTen cache tables to be automatically and asynchronously
propagated to the cached Oracle Database tables. A transaction commit operation on
the TimesTen database occurs asynchronously from the commit on the Oracle
database. This enables an application to continue issuing transactions on the

Chapter 7
Durability Options

7-25

TimesTen database without waiting for the Oracle Database transaction to complete.
However, your application cannot ensure when the transactions are completed on the
Oracle database. See Asynchronous WriteThrough (AWT) Cache Group in the Oracle
TimesTen In-Memory Database Cache Guide.

• Configure for non-durable transactions by setting the DurableCommits connection attribute
to 0, which asynchronously writes non-durable commit log records to the transaction log
file.

See DurableCommits in the Oracle TimesTen In-Memory Database Reference.

The only transactions vulnerable to loss in the event of a system failure are those that
committed non-durably after the last durable commit and were not replicated prior to the
failure.

However, if you have critical transactions that cannot be exposed to any data loss, you can
either:

• Replicate those transactions synchronously from the master database to the subscriber
database by running the ttRepSubscriberWait built-in procedure.

Running the ttRepSubscriberWait built-in procedure on the master database using the
DSN and host of the subscriber database causes the caller to wait until all transactions that
committed before the call have been transmitted to the subscriber. See
ttRepSubscriberWait in the Oracle TimesTen In-Memory Database Reference.

• Force the individual transactions to commit durably to the transaction log files with the
ttDurableCommit built-in procedure. Committing a transaction durably makes that
transaction and all previous transactions durable. However, this does not wait for the
transaction to be replicated.

When a durable commit is needed, the application can call the ttDurableCommit built-in
procedure before committing. The ttDurableCommit built-in procedure does not actually
commit the transaction; it merely causes the commit to be durable when it occurs.

This maintains a smaller window of vulnerability to transaction loss as opposed to all
transactions being committed non-durably. By committing only every nth transaction
durably or performing a durable commit every n seconds, an application can achieve a
quicker response time while maintaining a small window of vulnerability to transaction loss.
A user can elect to perform a durable commit of a critical transaction, such as one that
deals with financial exchange, that cannot be vulnerable to loss.

See ttDurableCommit in the Oracle TimesTen In-Memory Database Reference.

Transaction Reclaim Operations
After a transaction is marked by TimesTen as committed, there is a reclaim phase of the
commit.

• About Reclaim Operations

• Configuring the Commit Buffer for Reclaim Operations

About Reclaim Operations
TimesTen resource cleanup occurs during the reclaim phase of a transaction commit. Consider
a transaction with DELETE operations.

For example. The SQL operation marks the deleted rows as deleted, but the space occupied
by these rows are not actually freed until the reclaim phase of the transaction commit.

Chapter 7
Transaction Reclaim Operations

7-26

During reclaim, TimesTen reexamines all the transaction log records starting from the
beginning of the transaction to determine the reclaim operations that must be performed, then
performs those operations.

To improve performance, a number of transaction log records can be cached to reduce the
need to access the transaction log files. This cache is referred to as the commit buffer and its
size is configurable, as described in the next section, Configuring the Commit Buffer for
Reclaim Operations.

Note:

• The reclaim phase occurs as part of commit processing. Thus, once the reclaim
phase has begun, the transaction is considered to be committed and can no
longer be rolled back.

• If an application is terminated during the reclaim phase, the cleanup operation
completes the reclaim.

Configuring the Commit Buffer for Reclaim Operations
The reclaim phase of a large transaction commit results in a large amount of processing and is
very resource intensive. For this reason, smaller transactions are generally recommended.

You can improve performance, however, by increasing the maximum size of the commit buffer,
which is the cache of transaction log records used during reclaim operations.

Note:

It is not recommended that you perform an extremely large transaction commit (such
as 1 million rows) as it is very resource intensive. In case that you are committing an
extremely large transaction, do not cancel this transaction as it could cause the
transaction to take even longer to complete. This is due to the fact that if you cancel a
transaction while it has not completed, TimesTen has to perform rollback operations.

You can use the TimesTen CommitBufferSizeMax connection attribute to specify the maximum
size of the commit buffer, in megabytes. This setting has the scope of your current session. For
efficiency, initial memory allocation will be significantly less than the maximum, but will
automatically increase as needed in order to fit all the relevant log records into the commit
buffer, until the allocation reaches the maximum. The allocation is then reduced back to the
initial allocation after each reclaim phase. By default, the maximum is 128 KB with an initial
allocation of 16 KB. See CommitBufferSizeMax in Oracle TimesTen In-Memory Database
Reference

Be aware that an increase in the maximum size of the commit buffer may result in a
corresponding increase in temporary space consumption. There is no particular limit to the
maximum size you can specify, aside from the maximum value of an integer, but exceeding the
available temporary space will result in an error.

Note the following related features:

Chapter 7
Transaction Reclaim Operations

7-27

• During the course of a session, you can use ALTER SESSION to change the maximum size
of the commit buffer as follows, where n is the desired maximum, in megabytes. See
ALTER SESSION in Oracle TimesTen In-Memory Database SQL Reference.

ALTER SESSION SET COMMIT_BUFFER_SIZE_MAX = n
• You can use the ttCommitBufferStats built-in procedure to gather statistics for your

connection to help you tune the commit buffer maximum size. This built-in takes no
parameters and returns the total number of commit buffer overflows and the highest
amount of memory used by reclaim operations for transaction log records, in bytes. If there
are buffer overflows, you may consider increasing the commit buffer maximum size. If
there are no overflows and the highest amount of memory usage is well under the commit
buffer maximum size, you may consider decreasing the maximum size.

In TimesTen Classic, you can use the ttCommitBufferStatsReset built-in procedure to
reset these statistics to 0 (zero). This is useful, for example, if you have set a new value for
the commit buffer maximum size and want to restart the statistics.

See ttCommitBufferStats and ttCommitBufferStatsReset in Oracle TimesTen In-Memory
Database Reference.

• The system-wide number of commit buffer overflows is also recorded in the TimesTen
statistic txn.commits.buf.overflowed in the SYS.SYSTEMSTATS table. See
SYS.SYSTEMSTATS in Oracle TimesTen In-Memory Database System Tables and Views
Reference.

• You can check the current setting of CommitBufferSizeMax by calling the ttConfiguration
built-in procedure.

Recovery with Checkpoint and Transaction Log Files
If a database becomes invalid or corrupted by a system or process failure, every connection to
the database is invalidated. When an application reconnects to a failed database, the
subdaemon allocates a new memory segment for the database and recovers its data from the
checkpoint and transaction log files.

During recovery, the latest checkpoint file is read into memory. All transactions that have been
committed since the last checkpoint and whose log records are on the file system are rolled
forward from the appropriate transaction log files. Note that such transactions include all
transactions that were committed durably as well as all transactions whose log records aged
out of the in-memory log buffer. Uncommitted or rolled-back transactions are not recovered.
See Checkpoint Operations, Transaction Logging and Error, Warning, and Informational
Messages.

Chapter 7
Recovery with Checkpoint and Transaction Log Files

7-28

8
Working with Data in a TimesTen Database

There is detailed information on the basic objects in a TimesTen database and simple
examples of how you can use SQL to manage these objects.

For more information about SQL, see Data Types in the Oracle TimesTen In-Memory Database
SQL Reference.

For information on how to issue SQL from within an application, see the appropriate TimesTen
developer's guide.

This chapter includes the following topics:

• Database Objects, Users, and Owners

• Understanding Tables

• Understanding Views

• Understanding Materialized Views

• Understanding Indexes

• Using the Index Advisor to Recommend Indexes

• Understanding Rows

• Understanding Synonyms

• Understanding System Views

Database Objects, Users, and Owners
A TimesTen database has several permanent and temporary objects. TimesTen authenticates
users with passwords. By default, the login name that is being used to run the application
becomes the owner of objects in the database.

The following sections describe the main TimesTen database objects, users, and owners:

• Database Objects

• Database Users and Owners

Database Objects
A TimesTen database has several permanent objects.

• Tables. The primary objects of a TimesTen database are the tables that contain the
application data. See Understanding Tables.

• Materialized Views. Read-only tables that hold a summary of data selected from one or
more "regular" TimesTen tables. See Understanding Materialized Views.

• Views. Logical tables that are based on one or more tables called detail tables. A view
itself contains no data. See Understanding Views.

• Indexes. Indexes on one or more columns of a table may be created for faster access to
tables. See Understanding Indexes.

8-1

• Rows. Every table consists of 0 or more rows. A row is a formatted list of values. See
Understanding Rows.

• Synonyms. Aliases for a database object. Synonyms are often used for security and
convenience, because they can be used to mask object name and object owner. See
Understanding Synonyms.

• System tables and views. System tables and views contain TimesTen metadata, such as
a table of all tables. See System Tables and Understanding System Views.

There are also many temporary objects, including prepared commands, cursors and locks.

Database Users and Owners
TimesTen authenticates user names with passwords. Applications should choose one UID for
the application itself because by default the login name that is being used to run the application
becomes the owner of objects in the database.

If you omit the UID connection attribute in the connection string, TimesTen uses the current
user's login name. TimesTen converts all user names to upper case characters. Ensure that
you use the fully qualified name of a database object, for example owner.table_name,
whenever you issue a SQL statement.

Users cannot access TimesTen databases as user SYS. TimesTen determines the user name
by the value of the UID connection attribute, or if not present, then by the login name of the
connected user. If a user's login is SYS, set the UID connection to override the login name.

Understanding Tables
A TimesTen table consists of rows that have a common format or structure. This format is
described by the table's columns.

The following sections describes tables, its columns and how to manage them:

• Overview of Tables

• Working with Tables

• Implementing an Aging Policy in Your Tables

Overview of Tables
This section includes the following topics:

• Column Overview

• Inline and Out-of-Line Columns

• Default Column Values

• Table Names

• Table Access

• Primary Keys, Foreign Keys, and Unique Indexes

• Tables in TimesTen Scaleout

• System Tables

Chapter 8
Understanding Tables

8-2

Column Overview
When you create the columns in the table, the column names are case-insensitive.

Each column has the following:

• A data type

• Optional nullability, primary key and foreign key properties

• An optional default value

Unless you explicitly declare a column NOT NULL, columns are nullable. If a column in a table is
nullable, it can contain a NULL value. Otherwise, each row in the table must have a non-NULL
value in that column.

The format of TimesTen columns cannot be altered. It is possible to add or remove columns
but not to change column definitions. To add or remove columns, use the ALTER TABLE
statement. To change column definitions, an application must first drop the table and then
recreate it with the new definitions.

Inline and Out-of-Line Columns
The in-memory layout of the rows of a table is designed to provide fast access to rows while
minimizing wasted space. TimesTen designates each VARBINARY, NVARCHAR2 and VARCHAR2
column of a table as either inline or out-of-line.

• An inline column has a fixed length. All values of fixed-length columns of a table are stored
row wise.

• A not inline column (also referred to as an out-of-line column) has a varying length. Some
VARCHAR2, NVARCHAR2 or VARBINARY data type columns are stored out-of-line. Out-of-line
columns are not stored contiguously with the row but are allocated. By default, TimesTen
stores VARCHAR2, NVARCHAR2 and VARBINARY columns whose declared column length is >
128 bytes as out-of-line. In addition, all LOB data types are stored out-of-line. By default,
TimesTen stores variable-length columns whose declared column length is <= 128 bytes
as inline.

Most operations are slightly slower when performed on an out-of-line column instead of an
inline column. There are several performance considerations when you use out-of-line columns
instead of inline columns:

• Accessing data is slower because TimesTen does not store data from out-of-line columns
contiguously with the row.

• Populating data is slower because TimesTen generates more logging operations.

• Deleting data is slower because TimesTen performs more reclaim and logging operations.
If you are deleting a large number of rows (100,000 or more) consider using multiple
smaller DELETE FROM statements, or the DELETE FIRST clause. For more information, see
Avoid Large DELETE Statements.

The maximum sizes of inline and out-of-line portions of a row are listed in Using the ttIsql
tablesize Command.

Default Column Values
When you create a table, you can specify default values for the columns. The default value you
specify must be compatible with the data type of the column.

Chapter 8
Understanding Tables

8-3

You can specify one of the following default values for a column:

• NULL for any column type

• A constant value

• SYSDATE for DATE and TIMESTAMP columns

• USER for CHAR columns

• CURRENT_USER for CHAR columns

• SYSTEM_USER for CHAR columns

If you use the DEFAULT clause of the CREATE TABLE statement but do not specify the default
value for one or more columns, those default values for those columns are NULL. See CREATE
TABLE in the Oracle TimesTen In-Memory Database SQL Reference.

Table Names
A TimesTen table is identified uniquely by its owner name and table name.

Every table has an owner. By default, TimesTen defines the owner as the user who created the
table. Tables created by TimesTen, such as system tables, have the owner name SYS or TTREP.

To uniquely refer to a table, specify both its owner and name separated by a period ("."), such
as MARY.PAYROLL. If an application does not specify an owner, TimesTen looks for the table
under the user name of the caller, then under the user name SYS.

A name is an alphanumeric value that begins with a letter. A name can include underscores.
The maximum length of a table name is 30 characters. The maximum length of an owner name
is also 30 characters. TimesTen displays all table, column and owner names to upper case
characters. See Names, Namespace and Parameters in the Oracle TimesTen In-Memory
Database SQL Reference.

Table Access
Applications access tables through SQL statements. The TimesTen query optimizer
automatically chooses the optimal way to access tables.

It uses existing indexes or, if necessary, creates temporary indexes to speed up access. For
improved performance, applications should explicitly create indexes for frequently searched
columns because the automatic creation and destruction of temporary indexes incurs a
performance overhead. For more details, see Tune Statements and Use Indexes. You can use
optimizer hints (statement or transaction level) to tune the TimesTen execution plan for a
specific application. For more information on optimizer hints, see Use Optimizer Hints to Modify
the Execution Plan.

Primary Keys, Foreign Keys, and Unique Indexes
You can create a primary key on one or more columns to indicate that duplicate values for that
set of columns should be rejected.

Primary key columns must be declared NOT NULL. A table can have at most one primary key.
TimesTen automatically creates a range index on the primary key to enforce uniqueness on the
primary key and to improve access speeds through the primary key. Once a row is inserted, its
primary key columns cannot be modified, except to change a range index to a hash index.

Chapter 8
Understanding Tables

8-4

Note:

Indexes are discussed in Understanding Indexes.

Although a table may have only one primary key, additional uniqueness properties may be
added to the table using unique indexes. See CREATE INDEX in the Oracle TimesTen In-
Memory Database SQL Reference.

Note:

Columns of a primary key must be NOT NULL; however, a unique index can be built on
columns declared as NOT NULL.

A table may also have one or more foreign keys through which rows correspond to rows in
another table. Foreign keys relate to a primary key or uniquely indexed columns in the other
table. Foreign keys use a range index on the referencing columns. See CREATE TABLE in the
Oracle TimesTen In-Memory Database SQL Reference.

Tables in TimesTen Scaleout
In TimesTen Scaleout, tables are the objects used to define how to distribute data in your
database.

TimesTen Scaleout manages the distribution of data according to the defined distribution
scheme of the table. When you create the table, it exists on every element of the database.
Rows of data in the table exist on different elements of the database. See Working with Tables
in Oracle TimesTen In-Memory Database Scaleout User's Guide.

System Tables

In addition to tables created by applications, a TimesTen database contains system tables.
System tables contain TimesTen metadata such as descriptions of all tables and indexes in the
database, as well as other information such as optimizer plans. Applications may query system
tables just as they query user tables. Applications may not directly update system tables.
TimesTen system tables are described in the System Tables and Views chapter in the Oracle
TimesTen In-Memory Database System Tables and Views Reference.

Note:

TimesTen system table formats may change between releases of TimesTen.

Working with Tables
To perform any operation that creates, drops or manages a table, the user must have the
appropriate privileges.

See SQL Statements chapter in the Oracle TimesTen In-Memory Database SQL Reference.

Chapter 8
Understanding Tables

8-5

This section includes the following topics:

• Creating a Table

• Dropping a Table

• Estimating Table Size

Creating a Table
To create a table, use the SQL statement CREATE TABLE.

The syntax for all SQL statements is provided in SQL Statements in the Oracle TimesTen In-
Memory Database SQL Reference. TimesTen converts table names to upper case characters.

The following SQL statement example creates a table, called customer, with two columns:
cust_id and cust_name of two different data types.

Command> CREATE TABLE customer (cust_id TT_INTEGER, cust_name VARCHAR2(50));

This example creates a table, called customer, with a hash index. The customer table has
columns: cust_id, cust_name, addr, zip, and region. The cust_id column is designated as
the primary key, so that the CustId value in a row uniquely identifies that row in the table, as
described in Primary Keys, Foreign Keys, and Unique Indexes.

The UNIQUE HASH ON custId PAGES value indicates that there are 30 pages in the hash index.
This means that the expected number of rows in the table is 30 * 256 = 7680. If the table ends
up with significantly more rows than this, performance can be degraded, and the hash index
should be resized.

See SET PAGES in the ALTER TABLE section in the Oracle TimesTen In-Memory Database
SQL Reference. See Size Hash Indexes Appropriately.

Command> CREATE TABLE customer
(cust_id NUMBER NOT NULL PRIMARY KEY,
cust_name CHAR(100) NOT NULL,
addr CHAR(100),
zip NUMBER,
region CHAR(10))
UNIQUE HASH ON (cust_id) PAGES = 30;

Dropping a Table
To drop a TimesTen table, call the SQL statement DROP TABLE.

The following example drops the table customer.

Command> DROP TABLE customer;

Estimating Table Size
Increasing the size of a TimesTen database can be done on first connect.

To avoid having to increase the size of a database, it is important not to underestimate the
eventual database size. Use the ttSize utility to estimate table size.

The following example shows that the ttSize utility estimates the rows, inline row bytes, size
of any indexes on the table, and the total size of the table:

% ttSize -tbl pat.tab1 mydb

Chapter 8
Understanding Tables

8-6

Rows = 2

Total in-line row bytes = 17524
Indexes:

 Index PAT adds 6282 bytes
 Total index bytes = 6282

Total = 23806

You can also calculate the size of an existing table with the ttIsql tablesize command. See
Using the ttIsql tablesize Command.

Implementing an Aging Policy in Your Tables
You can define an aging policy for one or more tables in your database.

An aging policy refers to the type of aging and the aging attributes, as well as the aging state
(ON or OFF). You can specify one of the following types of aging policies: usage-based or time-
based. Usage-based aging removes least recently used (LRU) data within a specified
database usage range. Time-based aging removes data based on the specified data lifetime
and frequency of the aging process. You can define only one type of aging for a specified table.

You can define an aging policy for a new table with the CREATE TABLE statement. You can add
an aging policy to an existing table with the ALTER TABLE statement if the table does not
already have an aging policy defined. You can change the aging policy by dropping aging and
adding a new aging policy.

You cannot specify aging on the following types of tables:

• Global temporary tables

• Detail tables of materialized views

You can also implement aging in cache groups. See Implementing Aging in a Cache Group for
TimesTen Classic in Oracle TimesTen In-Memory Database Cache Guide.

Note:

There is no support to specify aging policies for tables within TimesTen Scaleout. See
Comparison Between TimesTen Scaleout and TimesTen Classic in Oracle TimesTen
In-Memory Database Scaleout User's Guide.

This section includes the following topics:

• Usage-Based Aging

• Time-Based Aging

• Aging and Foreign Keys

• Scheduling When Aging Starts

• Aging and Replication

• Determining the Effectiveness of Aging

Chapter 8
Understanding Tables

8-7

Usage-Based Aging
Usage-based aging enables you to maintain the amount of memory used in a database within
a specified threshold by removing the least recently used (LRU) data.

Define LRU aging for a new table by using the AGING LRU clause of the CREATE TABLE
statement. Aging begins automatically if the aging state is ON.

You can use the ALTER TABLE statement to perform the following tasks:

• Enable or disable the aging state on a table that has an aging policy defined by using the
ALTER TABLE statement with the SET AGING {ON|OFF} clause.

• Add an LRU aging policy to an existing table by using the ALTER TABLE statement with the
ADD AGING LRU [ON | OFF] clause.

• Drop aging on a table by using the ALTER TABLE statement with the DROP AGING clause.

Call the ttAgingScheduleNow built-in procedure to schedule when aging starts. See Scheduling
When Aging Starts.

If a row has been accessed or referenced since the last aging cycle, it is not eligible for LRU
aging. A row is considered to be accessed or referenced if one of the following is true:

• The row is inserted.

• The row is used to build the result set of a SELECT statement.

• The row has been flagged to be updated or deleted.

• The row is used to build the result set of an INSERT SELECT statement.

To change aging from LRU to time-based on a table, first drop aging on the table by using the
ALTER TABLE statement with the DROP AGING clause. Then add time-based aging by using the
ALTER TABLE statement with the ADD AGING USE clause.

Note:

When you drop LRU aging or add LRU aging to tables that are referenced in
commands, TimesTen marks the compiled commands invalid. The commands need
to be recompiled.

There are two LRU aging policies:

• LRU aging based on set thresholds for the amount of permanent memory in use. This is
the default. Once you create (or alter) a table to use LRU aging, the LRU aging policy
initially uses the default thresholds for permanent memory in use. See Defining LRU Aging
Based on Thresholds for Permanent Memory in Use.

• LRU aging based on row thresholds for a set of tables. See Defining LRU Aging Based on
Row Thresholds for Tables.

Both types of LRU aging can co-exist. Row threshold based aging takes precedence over
permanent memory in use based aging. For each cycle after row based aging is processed,
the current permanent space usage is used as the threshold for LRU aging of tables that use
permanent memory in use threshold aging.

Chapter 8
Understanding Tables

8-8

Defining LRU Aging Based on Thresholds for Permanent Memory in Use
You can define that LRU aging occurs based on set thresholds for the amount of permanent
memory in use.

This method uses the PERM_IN_USE_SIZE metric to determine the thresholds for LRU aging
across all tables. If the high threshold is reached, TimesTen deletes rows from all tables in
order to reduce the permanent memory in use.

Call the ttAgingLRUConfig built-in procedure to specify the LRU aging attributes. The attribute
values apply to all tables in the database that have an LRU aging policy. If you do not call the
ttAgingLRUConfig built-in procedure, then the default values for the attributes are used.

The following table summarizes the LRU aging attributes:

LRU Aging Attribute Description

LowUsageThreshhold The percent of the database PermSize at which LRU aging is
deactivated.

HighUsageThreshhold The percent of the database PermSize at which LRU aging is activated.

AgingCycle The number of minutes between aging cycles.

If you set a new value for AgingCycle after an LRU aging policy has already been defined,
aging occurs based on the current time and the new cycle time. For example, if the original
aging cycle is 15 minutes and LRU aging occurred 10 minutes ago, aging is expected to occur
again in 5 minutes. However, if you change the AgingCycle parameter to 30 minutes, then
aging occurs 30 minutes from the time you call the ttAgingLRUConfig procedure with the new
value for AgingCycle.

Defining LRU Aging Based on Row Thresholds for Tables
After a table or cache group is enabled for LRU aging, you can use the
ttAgingTableLRUConfig built-in procedure to configure that LRU aging occurs based on row
thresholds for a set of tables.

In some situations, the permanent memory in use based aging may result in excessive purging
of data from specific tables. You may find that using row based aging for such tables enables a
better space management to be achieved. When you set LRU aging using the
ttAgingTableLRUConfig built-in procedure, it sets thresholds based on rows for specified
tables and on cache instances when applied to specified cache groups. You can limit the
number of rows deleted from a specified table by setting row thresholds for the table.

Both types of LRU aging can co-exist. Table-based aging takes precedence over permanent
memory in use based aging. Thus, a table configured with the attributes specified with the
ttAgingTableLRUConfig built-in procedure is aged solely based on the specified row
thresholds. For each cycle after row based aging is processed, the current permanent space
usage is used as the threshold for LRU aging of tables that use permanent memory in use
threshold aging.

The following table summarizes the LRU aging attributes:

If you have tables or cache group tables in a parent/child relationship, provide the parent table
to ensure that cascade delete operations perform correctly.

Chapter 8
Understanding Tables

8-9

LRU Aging Attribute Description

tblOwner TimesTen table or cache group owner.

tblName Name of a table.

Provide the cache root table for a cache group. LRU aging automatically
deletes rows from child tables.

LowRowsThreshhold The number of the rows at which LRU aging is deactivated. LRU aging
stops when the number of rows reaches LowRowsThreshold rows in the
table.

HighRowsThreshhold The number of the rows at which LRU aging is activated. LRU aging starts
when the number of rows reaches HighRowsThreshold rows in the
table.

AgingCycle The number of minutes between aging cycles. The defaults and behavior
is the same as the AgingCycle in the ttAgingLRUConfig built-in
procedure.

If both LowRowsThreshold and HighRowsThreshold are set to zero, table based LRU aging is
disabled for this table. LRU aging on this table is switched to be based on the permanent
memory in use threshold. See Defining LRU Aging Based on Thresholds for Permanent
Memory in Use.

See ttAgingTableLRUConfig in the Oracle TimesTen In-Memory Database Reference.

The following example sets the aging threshold for rows in the user1.table1 table to a low
threshold of 10K rows and a high threshold of 100K rows. The aging cycle is set to run at the
default of once every minute.

Command> Call ttAgingTableLRUConfig('user1', 'table1', 10000, 100000);
< USER1, TABLE1, 10000, 100000, 1 >
1 row found.

The following example sets the aging threshold for rows in the user1.table1 table to a low
threshold of 5K rows and a high threshold of 12K rows. The aging cycle is set to run once
every two minutes.

Command> Call ttAgingTableLRUConfig('user1', 'table1', 5000, 12000, 2);
< USER1, TABLE1, 10000, 100000, 0 >
1 row found.

The following example turns off aging by setting the low and high thresholds to zero.

Command> Call ttAgingTableLRUConfig('user1', 'table1', 0, 0);
< USER1, TABLE1, 0, 0, 1 >
1 row found.

You can retrieve the threshold settings by running the built-in procedure with just the schema
owner and table name.

Command> Call ttAgingTableLRUConfig('user1', 'table1');
< USER1, TABLE1, 10000, 100000, 1 >
1 row found.

Time-Based Aging
Time-based aging removes data from a table based on the specified data lifetime and
frequency of the aging process.

Chapter 8
Understanding Tables

8-10

You can specify a time-based aging policy for a new table with the AGING USE clause of the
CREATE TABLE statement. Add a time-based aging policy to an existing table with the ADD
AGING USE clause of the ALTER TABLE statement.

The AGING USE clause has a ColumnName argument. ColumnName is the name of the column that
is used for time-based aging, also called the timestamp column. The timestamp column must
be defined as follows:

• ORA_TIMESTAMP, TT_TIMESTAMP, ORA_DATE or TT_DATE data type

• NOT NULL
Your application updates the values of the timestamp column. If the value of this column is
unknown for some rows and you do not want the rows to be aged, then define the column with
a large default value. You can create an index on the timestamp column for better performance
of the aging process.

Note:

You cannot add or modify a column in an existing table and then use that column as
a timestamp column because you cannot add or modify a column and define it to be
NOT NULL.

You cannot drop the timestamp column from a table that has a time-based aging policy.

If the data type of the timestamp column is ORA_TIMESTAMP, TT_TIMESTAMP, or ORA_DATE, you
can specify the lifetime in days, hours, or minutes in the LIFETIME clause of the CREATE TABLE
statement. If the data type of the timestamp column is TT_DATE, specify the lifetime in days.

The value in the timestamp column is subtracted from SYSDATE. The result is truncated the
result using the specified unit (minute, hour, day) and compared with the specified LIFETIME
value. If the result is greater than the LIFETIME value, then the row is a candidate for aging.

Use the CYCLE clause to indicate how often the system should examine the rows to remove
data that has exceeded the specified lifetime. If you do not specify CYCLE, aging occurs every
five minutes. If you specify 0 for the cycle, then aging is continuous. Aging begins automatically
if the state is ON.

Use the ALTER TABLE statement to perform the following tasks:

• Enable or disable the aging state on a table with a time-based aging policy by using the
SET AGING {ON|OFF} clause.

• Change the aging cycle on a table with a time-based aging policy by using the SET AGING
CYCLE clause.

• Change the lifetime by using the SET AGING LIFETIME clause.

• Add time-based aging to an existing table with no aging policy by using the ADD AGING USE
clause.

• Drop aging on a table by using the DROP AGING clause.

Call the ttAgingScheduleNow built-in procedure to schedule when aging starts. See Scheduling
When Aging Starts.

Chapter 8
Understanding Tables

8-11

To change the aging policy from time-based aging to LRU aging on a table, first drop time-
based aging on the table. Then add LRU aging by using the ALTER TABLE statement with the
ADD AGING LRU clause.

There are two ways to define an LRU aging policy for your table:

• Define the LRU aging policy at the database level based on the percentage of the
permanent memory in use. See Defining LRU Aging Based on Thresholds for Permanent
Memory in Use.

• Define the LRU aging policy at the table level based on table rows or, in the case of cache
groups, cache instances. See Defining LRU Aging Based on Row Thresholds for Tables.

Aging and Foreign Keys
Tables that are related by foreign keys must have the same aging policy.

• If LRU aging is in effect and a row in a child table is recently accessed, then neither the
parent row nor the child row is deleted.

• If time-based aging is in effect and a row in a parent table is a candidate for aging out, then
the parent row and all of its children are deleted.

• If a table has ON DELETE CASCADE enabled, the setting is ignored.

Scheduling When Aging Starts
Call the ttAgingScheduleNow built-in procedure to schedule the aging process.

The aging process starts as soon as you call the procedure unless there is already an aging
process in progress, in which case it begins when that aging process has completed.

When you call ttAgingScheduleNow, the aging process starts regardless of whether the state is
ON or OFF.

The aging process starts only once as a result of calling ttAgingScheduleNow does not change
the aging state. If the aging state is OFF when you call ttAgingScheduleNow, then the aging
process starts, but it does not continue after the process is complete. To continue aging, you
must call ttAgingScheduleNow again or change the aging state to ON.

If the aging state is already set to ON, then ttAgingScheduleNow resets the aging cycle based
on the time ttAgingScheduleNow was called.

You can control aging externally by disabling aging by using the ALTER TABLE statement with
the SET AGING OFF clause. Then use ttAgingScheduleNow to start aging at the desired time.

Use ttAgingScheduleNow to start or reset aging for an individual table by specifying its name
when you call the procedure. If you do not specify a table name, then ttAgingScheduleNow
starts or resets aging on all of the tables in the database that have aging defined.

Aging and Replication
For active standby pairs, implement aging on the active master database.

Deletes that occur as a result of aging are replicated to the standby master database and the
read-only subscribers. If a failover to the standby master database occurs, aging is enabled on
the database after its role changes to ACTIVE.

For all other types of replication schemes, implement aging separately on each node. The
aging policy must be the same on all nodes.

Chapter 8
Understanding Tables

8-12

If you implement LRU aging on a multi-master replication scheme used as a hot standby, LRU
aging may provide unintended results. After a failover, you may not have all of the desired data
because aging occurs locally.

Determining the Effectiveness of Aging
As aging deletes rows, TimesTen frees empty pages and reuses empty slots on non-full pages.
The ttPageLevelTableInfo built-in procedure shows the page allocation for each table to
determine when TimesTen is reusing empty slots and freeing empty pages or if new pages are
allocated to store new rows.

The following demonstrates the output received for user1.table1 and user2.table2 using the
ttPageLevelTableInfo built-in procedure:

Command> vertical 1;
Command> call ttPageLevelTableInfo;

 TBLOWNER: USER1
 TBLNAME: TABLE1
 CARD: 6
 LOGICAL_PGCNT: 1
 LOGICAL_NONFULLPAGES: 1
 LOGICAL_FREESLOTS: 250
 PHYSICAL_PGCNT: 2
 PHYSICAL_NONFULLPAGES0: 0
 PHYSICAL_NONFULLPAGES1: 0
 PHYSICAL_NONFULLPAGES2: 1
 PHYSICAL_NONFULLPAGES3: 1
 PHYSICAL_FREESLOTS0: 0
 PHYSICAL_FREESLOTS1: 0
 PHYSICAL_FREESLOTS2: 253
 PHYSICAL_FREESLOTS3: 253

 TBLOWNER: USER2
 TBLNAME: TABLE2
 CARD: 3
 LOGICAL_PGCNT: 1
 LOGICAL_NONFULLPAGES: 1
 LOGICAL_FREESLOTS: 253
 PHYSICAL_PGCNT: 1
 PHYSICAL_NONFULLPAGES0: 0
 PHYSICAL_NONFULLPAGES1: 1
 PHYSICAL_NONFULLPAGES2: 0
 PHYSICAL_NONFULLPAGES3: 0
 PHYSICAL_FREESLOTS0: 0
 PHYSICAL_FREESLOTS1: 253
 PHYSICAL_FREESLOTS2: 0
 PHYSICAL_FREESLOTS3: 0

2 rows found.

See ttPageLevelTableInfo in the Oracle TimesTen In-Memory Database Reference.

Understanding Views
A view is a logical table that is based on one or more tables. The view itself contains no data. It
is sometimes called a non-materialized view to distinguish it from a materialized view, which
does contain data that has already been calculated from detail tables.

Chapter 8
Understanding Views

8-13

Views cannot be updated directly, but changes to the data in the detail tables are immediately
reflected in the view.

A view is basically a SQL statement that is stored in a database which enables you to treat the
results of a SQL query as a table itself. TimesTen generates the results of a view every time
you query that view, so a view always has the latest data results. You can query a view just like
you would query a regular table.

A materialized view enables you to precompute expensive SQL operations. There are cases
where primarily read-only databases can increase the speed of their SELECT operations by
precomputing the results of queries and storing them in a materialized view. The downside in
this case is that the materialized view requires additional storage space. Keep in mind that
when you perform DML operations on the detail tables of a materialized view, these DML
operations are more resource intensive and more storage is required to store the materialized
view rows. If you use too many materialized views on a table, this may reduce the performance
of that table.

To perform any operation that creates, drops or manages a view, the user must have the
appropriate privileges, which are described along with the syntax for all SQL statements in the
SQL Statements chapter in the Oracle TimesTen In-Memory Database SQL Reference.

This section includes the following topics:

• Creating a View

• Dropping a View

• Restrictions on Views and Detail Tables

Creating a View
To create a view, use the CREATE VIEW SQL statement.

The syntax for all SQL statements is provided in the SQL Statements chapter in the Oracle
TimesTen In-Memory Database SQL Reference.

CREATE VIEW ViewName AS SelectQuery;

This selects columns from the detail tables to be used in the view.

For example, create a view from the table t1:

Command> CREATE VIEW v1 AS SELECT * FROM t1;

Now create a view from an aggregate query on the table t1:

Command> CREATE VIEW v1 (max1) AS SELECT max(x1) FROM t1;

The SELECT Query in the CREATE VIEW Statement
The SELECT query used to define the contents of a materialized view is similar to the top-level
SQL SELECT statement.

The SELECT query used to define the contents of a matierialized view has the following
restrictions:

• A SELECT * query in a view definition is expanded at view creation time. Any columns
added after a view is created do not affect the view.

• The following cannot be used in a SELECT statement that is creating a view:

Chapter 8
Understanding Views

8-14

• DISTINCT
• FIRST
• ORDER BY
• Arguments

• Temporary tables

• Each expression in the select list must have a unique name. A name of a simple column
expression would be that column's name unless a column alias is defined. RowId is
considered an expression and needs an alias.

• No SELECT FOR UPDATE or SELECT FOR INSERT statements can be used on a view.

• Certain TimesTen query restrictions are not checked when a non-materialized view is
created. Views that violate those restrictions may be allowed to be created, but an error is
returned when the view is referenced later in a processed statement.

See SQL Statements in the Oracle TimesTen In-Memory Database SQL Reference.

Dropping a View
The DROP VIEW statement deletes the specified view.

The following statement drops the cust_order view.

Command> DROP VIEW cust_order;

Restrictions on Views and Detail Tables
There are certain restrictions on views and their detail tables.

• When a view is referenced in the FROM clause of a SELECT statement, its name is replaced
by its definition as a derived table during SQL compilation. The content of the derived table
is said to be materialized, but this materialization is temporary and only exists for the
duration of the SQL statement. For example, if both the view and the referencing select
specify aggregates, the view is materialized before its result can be joined with other
tables of the select.

• A view cannot be dropped with a DROP TABLE statement. You must use the DROP VIEW
statement.

• A view cannot be altered with an ALTER TABLE statement.

• Referencing a view can fail due to dropped or altered detail tables.

Understanding Materialized Views
The following sections describes materialized views and how to manage them:

• Overview of Materialized Views

• Working with Materialized Views

Overview of Materialized Views
A materialized view is a read-only table that maintains a summary of data selected from one or
more regular TimesTen tables. The TimesTen tables queried to make up the result set for the
materialized view are called detail tables.

Chapter 8
Understanding Materialized Views

8-15

Note:

Materialized views are not supported on cache tables.

Figure 8-1 shows a materialized view created from detail tables. An application updates the
detail tables and can select data from the materialized view.

Figure 8-1 Materialized View

applications

detail tables

materialized view

updates selects

database

The synchronous materialized view, updates the result set data from the detail tables at the
time of the detail table transaction. Every time data is updated in the detail tables, the result set
is updated. Thus, the materialized view is never out of sync with the detail tables. However,
this can affect your performance. A single transaction, the user transaction, runs the updates
for both the detail table and any materialized views.

Working with Materialized Views
This section includes the following topics:

• Creating a Materialized View

• Dropping a Materialized View

• Restrictions on Materialized Views and Detail Tables

• Performance Implications of Materialized Views

Creating a Materialized View
To create a materialized view, use the SQL statement CREATE MATERIALIZED VIEW.

Chapter 8
Understanding Materialized Views

8-16

Note:

In order to create a materialized view, the user must have the appropriate privileges,
which are described along with the syntax for all SQL statements in the SQL
Statements chapter in the Oracle TimesTen In-Memory Database SQL Reference.

If the owner has these privileges revoked for any of the detail tables on which the
materialized view is created, the materialized view becomes invalid. See Object
Privileges for Materialized Views in the Oracle TimesTen In-Memory Database
Security Guide.

When creating a materialized view, you can establish primary keys and the size of the hash
table in the same manner as described for tables in Primary Keys, Foreign Keys, and Unique
Indexes.

The SELECT query used to define the contents of a materialized view is similar to the top-level
SQL SELECT statement described in SQL Statements in the Oracle TimesTen In-Memory
Database SQL Reference with some restrictions, which are described in CREATE
MATERIALIZED VIEW in the Oracle TimesTen In-Memory Database SQL Reference.

You can create a synchronous materialized view with the CREATE MATERIALIZED VIEW
statement. A synchronous materialized view is automatically updated each time the detail
tables are updated.

The following example creates a synchronous materialized view, named sample_mv, that
generates a result set from selected columns in the customer and book_order detail tables
described above.

Command> CREATE TABLE customer
(cust_id INT NOT NULL,
cus_name CHAR(100) NOT NULL,
addr CHAR(100),
zip INT,
region CHAR(10),
PRIMARY KEY (cust_id));

CREATE TABLE book_order
(order_id INT NOT NULL,
cust_id INT NOT NULL,
book CHAR(100),
PRIMARY KEY (order_id),
FOREIGN KEY (cust_id) REFERENCES customer(cust_id));

Command> CREATE MATERIALIZED VIEW sample_mv AS
SELECT customer.cust_id, cust_name, order_id, book
FROM customer, book_order
WHERE customer.cust_id=book_order.cust_id;

Dropping a Materialized View
To drop any materialized view, issue the DROP VIEW statement.

The following statement drops the sample_mv materialized view.

Command> DROP VIEW sample_mv;

See SQL Statements chapter in the Oracle TimesTen In-Memory Database SQL Reference.

Chapter 8
Understanding Materialized Views

8-17

Restrictions on Materialized Views and Detail Tables
A materialized view is a read-only table that cannot be updated directly. This means a
materialized view cannot be updated by an INSERT, DELETE, or UPDATE statement, nor can it be
updated by replication, XLA, or the cache agent.

For example, any attempt to update a row in a materialized view generates the following error:

805: Update view table directly has not been implemented

Readers familiar with other implementations of materialized views should note the following
characteristics of TimesTen materialized views:

• Detail tables can be replicated, but materialized views cannot.

• Neither a materialized view nor its detail tables can be part of a cache group.

• You cannot create a foreign key to reference a table or another materialized view. Regular
tables cannot use a foreign key to refer to a materialized view.

• To drop a materialized view must use the DROP VIEW statement.

• You cannot alter a materialized view. You must use the DROP VIEW statement and then
create a new materialized view with a CREATE MATERIALIZED VIEW statement.

• Materialized views must be explicitly created by the application.

• The TimesTen query optimizer does not rewrite queries on the detail tables to reference
materialized views. Application queries must directly reference views, if they are to be
used.

• There are some restrictions to the SQL used to create materialized views. See CREATE
MATERIALIZED VIEW in the Oracle TimesTen In-Memory Database SQL Reference.

Performance Implications of Materialized Views
The performance of UPDATE, INSERT, and DELETE operations may be impacted if the updated
table is referenced in a materialized view.

The performance impact depends on many factors, such as the following:

• Nature of the materialized view: How many detail tables, whether outer join or aggregation,
are used.

• Which indexes are present on the detail table and on the materialized view.

• How many materialized view rows are affected by the change.

A materialized view is a persistent, up-to-date copy of a query result. To keep the materialized
view up to date, TimesTen must perform "materialized view maintenance" when you change a
materialized view's detail table. For example, if you have a materialized view named V that
selects from tables T1, T2, and T3, then any time you insert into T1, or update T2, or delete from
T3, TimesTen performs "materialized view maintenance."

Materialized view maintenance needs appropriate indexes just like regular database
operations. If they are not there, materialized view maintenance performs poorly.

All update, insert, or delete statements on detail tables have execution plans, as described in
The TimesTen Query Optimizer. For example, an update of a row in T1 initiates the first stage
of the plan where it updates the materialized view V, followed by a second stage where it
updates T1.

Chapter 8
Understanding Materialized Views

8-18

For fast materialized view maintenance, you should evaluate the plans for all the operations
that update the detail tables, as follows:

1. Examine all the WHERE clauses for the update or delete statements that frequently occur on
the detail tables. Note any clause that uses an index key. For example, if the operations
that an application performs 95 percent of the time are as follows:

UPDATE T1 set A=A+1 WHERE K1=? AND K2=?
DELETE FROMT2 WHERE K3=?

Then the keys to note are (K1, K2) and K3.

2. Ensure that the view selects all of those key columns. In this example, the materialized
view should select K1, K2, and K3.

3. Create an index on the materialized view on each of those keys. In this example, the view
should have two indexes, one on (V.K1, V.K2) and one on V.K3. The indexes do not have
to be unique. The names of the view columns can be different from the names of the table
columns, though they are the same in this example.

With this method, when you update a detail table, your WHERE clause is used to do the
corresponding update of the view. This allows maintenance to run in a batch, which has better
performance.

The above method may not always work, however. For example, an application may have
many different methods to update the detail tables. The application would have to select far too
many items in the view or create too many indexes on the materialized view, taking up more
space or more performance than you might wish. An alternative method is as follows:

1. For each table in the materialized view's FROM clause (each detail table), check which ones
are frequently changed by UPDATE, INSERT and CREATE VIEW statements. For example, a
materialized view's FROM clause may have tables T1, T2, T3, T4, and T5, but of those, only
T2 and T3 are frequently changed.

2. For each of those tables, make sure the materialized view selects its rowids. In this
example, the materialized view should select T2.rowid and T3.rowid.

3. Create an index on the materialized view on each of those rowid columns. In this example,
the columns might be called T2rowid and T3rowid, and indexes would be created on
V.T2rowid and V.T3rowid.

With this method, materialized view maintenance is done on a row-by-row basis, rather than on
a batch basis. But the rows can be matched very efficiently between a materialized view and its
detail tables, which speeds up the maintenance. It is generally not as fast as the first method,
but it is still good.

Understanding Indexes
Indexes are auxiliary data structures that greatly improve the performance of table searches.

You can use the Index Advisor to recommend indexes for a particular SQL workload. For more
details, see Using the Index Advisor to Recommend Indexes.

Indexes are used automatically by the query optimizer to speed up the processing of a query.
See The TimesTen Query Optimizer.

You can designate an index as unique, which means that each row in the table has a unique
value for the indexed column or columns. Unique indexes can be created over nullable
columns. In conformance with the SQL standard, multiple null values are permitted in a unique
index, which enables a unique index to have multiple rows with the same set of values.

Chapter 8
Understanding Indexes

8-19

TimesTen Scaleout supports both local and global indexes. When you create a local index,
then an index is created in each element that maps to rows in that element. A global index
maps all rows in the database in a hash distribution scheme by creating a materialized view
with a local index and a hash distribution scheme to the index key columns. See
Understanding Indexes in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

When sorting data values, TimesTen considers null values to be larger than all non-null values.
See Null Values in the Oracle TimesTen In-Memory Database SQL Reference.

To perform any operation that creates, drops, or alters an index, the user must have the
appropriate privileges, which are described along with the syntax for all SQL statements in
SQL Statements in the Oracle TimesTen In-Memory Database SQL Reference.

The following sections describe how to manage your index:

• Overview of Index Types

• Creating an Index

• Altering an Index

• Dropping an Index

• Estimating the Size of an Index

• Using the Index Advisor to Recommend Indexes

Overview of Index Types
TimesTen provides two types of indexes to enable fast access to tables. You can create up to
500 range or hash indexes on a table.

• Range Indexes: Range indexes are useful for finding rows with column values within a
certain range. You can create range indexes over one or more columns of a table.

Range indexes and equi-joins can be used for equality and range searches, such as
greater than or equal to, less than or equal to, and so on. If you have a primary key on a
field and want to see if FIELD > 10, then the primary key index does not expedite finding
the answer, but a separate index will.

Range indexes are optimized for in-memory data management and provide efficient sorting
by column value.

• Hash Indexes: Hash indexes are useful for equality searches. A hash index is created with
either of the following:

– You can create a hash index or a unique hash index on one or more columns of a table
or materialized view with the CREATE INDEX statement.

– You can create a unique hash index on the primary key of a table during table creation
with the CREATE TABLE... UNIQUE HASH ON statement.

Hash indexes are faster than range indexes for exact match lookups, but they require more
space than range indexes. Hash indexes can only be used for exact value lookups. Hash
indexes cannot be used if the SQL query returns a range of values. Also, hash indexes are
not useful for sorting values that come from a table scan.

TimesTen may create temporary hash and range indexes automatically during query
processing to speed up query processing. Alternatively, you can perform lookups by RowID
for fast access to data. See ROWID Data Type in the Oracle TimesTen In-Memory
Database SQL Reference.

Chapter 8
Understanding Indexes

8-20

See CREATE INDEX and CREATE TABLE sections of the Oracle TimesTen In-Memory
Database SQL Reference for details on creating hash indexes. For details on how to size a
hash table, see Size Hash Indexes Appropriately.

Creating an Index
To create an index, issue the SQL statement CREATE INDEX.

TimesTen converts index names to upper case characters.

When you create an index on TimesTen Scaleout, it creates the index on all elements that are
in the distribution map. TimesTen Scaleout populates each element's index with the rows that
are stored on that element.

Every index has an owner. The owner is the user who created the underlying table. Indexes
created by TimesTen itself, such as indexes on system tables, are created with the user name
SYS or with the user name TTREP for indexes on replication tables.

Note:

You cannot create an index on LOB columns.

The following example creates an index ixid over column cust_id of table customer.

Command> CREATE INDEX ixid ON customer (cust_id);

The following creates a unique hash index on the customer table as part of the table creation:

Command> CREATE TABLE customer
(cust_id NUMBER NOT NULL PRIMARY KEY,
cust_name CHAR(100) NOT NULL,
addr CHAR(100),
zip NUMBER,
region CHAR(10))
UNIQUE HASH ON (cust_id) PAGES = 30;

The following creates a non-unique hash index on the customer table over the customer name:

Command> CREATE HASH INDEX custname_idx ON customer(cust_name);

See CREATE INDEX and ALTER TABLE in the Oracle TimesTen In-Memory Database SQL
Reference.

Altering an Index
You can use the ALTER TABLE statement to add (or change) a primary key constraint to use
either a range or hash index.

You cannot alter an index to be transformed from a hash to a range index or from a range to a
hash index if it was created with the CREATE INDEX statement.

You can change a primary key constraint to use a range index instead of a hash index with the
USE RANGE INDEX clause of the ALTER TABLE statement; you can change a primary key
constraint to use a hash index instead of a range index with the USE HASH INDEX of the ALTER
TABLE statement. See ALTER TABLE in the Oracle TimesTen In-Memory Database SQL
Reference.

Chapter 8
Understanding Indexes

8-21

Dropping an Index
To drop a TimesTen index, issue the DROP INDEX SQL statement.

To uniquely refer to an index, an application must specify both its owner and name. If the
application does not specify an owner, TimesTen looks for the index first under the user name
of the caller, then under the user name SYS.

The following example drops the index named ixid.

Command> DROP INDEX ixid;

All indexes in a table are dropped automatically when the table is dropped. When you drop an
index on TimesTen Scaleout, it drops the index on all elements.

Estimating the Size of an Index
Increasing the size of a TimesTen database can be done on first connect. Use the ttSize utility
to estimate database size, including any indexes.

Correctly estimating the size of a database helps you to avoid having to resize the database in
the future.

The following example shows that the ttSize utility estimates the rows, inline row bytes, size
of any indexes on the table, and the total size of the table:

% ttSize -tbl pat.tab1 mydb

Rows = 2

Total in-line row bytes = 17524
Indexes:

 Index PAT adds 6282 bytes
 Total index bytes = 6282

Total = 23806

Using the Index Advisor to Recommend Indexes
The right set of indexes can make a difference in query performance. Use the Index Advisor to
recommend indexes for improving the performance of a specific SQL workload.

The Index Advisor is intended for read-intensive complex queries. The use of the Index Advisor
is not recommended for a write-intensive workload.

The Index Advisor evaluates a SQL workload and recommends indexes that can improve the
performance for the following: joins, single table scans, and ORDER BY or GROUP BY operations.
The Index Advisor does not differentiate tables that are used for specific intentions, such as the
base table for a materialized view or as a table within a cache group. As long as the table is
used in queries in the SQL workload, the Index Advisor may recommend indexes on that table.

The Index Advisor generates the CREATE statement for each recommended index, which you
can choose to issue. A database administrator should review each CREATE statement
recommended for new indexes before they are applied since the Index Advisor may
recommend the following:

• Indexes that are duplicates of existing indexes.

Chapter 8
Understanding Indexes

8-22

• Indexes for tables or columns of tables that are created and dropped during a SQL
workload. However, you could add the CREATE statement for the recommended index in the
SQL workload after the DDL that creates the tables or columns of tables and before they
are dropped.

• Indexes that cannot be created, such as a unique index for a data set where the data is not
unique. In this case, you should ignore this recommendation.

• Index creation options where you can create an index as either a UNIQUE or non-unique
index. The Index Advisor suggests both index types. You can only create one of the
indexes as both suggested indexes have the same index name. While the optimizer thinks
that the UNIQUE index is better for the specified workload, you can choose to create the
non-unique index. Consider creating the UNIQUE index if the column only contains unique
values. Consider creating the non-unique index if the column contains non-unique value.

The Index Advisor does not cover the following:

• It does not optimize for memory use.

• It does not consider maintenance costs.

• It does not recommend that existing indexes be dropped if they are not useful.

• It does not recommend indexes for global temporary tables.

The recommended steps to use the Index Advisor are as follows:

• Prepare for Running the Index Advisor

• Capture the Data Used for Generating Index Recommendations

• Retrieve Index Recommendations and Data Collection Information

• Drop Data Collected for the Index Advisor and Finalize Results

• Example Using Index Advisor Built-In Procedures

Prepare for Running the Index Advisor
Before you run the Index Advisor, you can optionally set any relevant optimizer hints and
update statistics for the tables included in the SQL workload and force statements to be re-
prepared during the capture.

1. Since the Index Advisor relies on the query plan, set any relevant optimizer hints that you
would use for the SQL workload before enabling the Index Advisor and running the
workload. See Use Optimizer Hints to Modify the Execution Plan.

2. Update statistics for tables included in the SQL workload and force statements to be re-
prepared during the capture. This provides the most up-to-date statistics for the data
collection and causes the statements to be re-prepared based on the latest statistics.

Update statistics for tables included in the SQL workload with one of the following built-in
procedures: ttOptUpdateStats, ttOptEstimateStats, or ttOptSetTblStats. In the built-in
procedures, set the invalidate parameter to 1 to invalidate all commands that reference the
indicated tables and force these commands to be automatically prepared again when re-rund.
This ensures that statistics are up to date.

• The ttOptUpdateStats built-in procedure provides a full update of all statistics for the
tables. However, it can be time consuming.

• The ttOptEstimateStats evaluates statistics based upon a small percentage of rows in
the indicated tables.

• The ttOptSetTblStats sets the statistics to known values provided by you.

Chapter 8
Understanding Indexes

8-23

Note:

See ttOptUpdateStats, ttOptEstimateStats, and ttOptSetTblStats in the Oracle
TimesTen In-Memory Database Reference.

The following example estimates statistics for all tables for the current user by evaluating a
random sample of ten percent of the rows in these tables. It also invalidates all commands
already prepared that reference these tables.

Command> call ttOptEstimateStats ('', 1, '10 PERCENT');

Capture the Data Used for Generating Index Recommendations
Call the ttIndexAdviceCaptureStart and ttIndexAdviceCaptureEnd built-in procedures to
capture the information needed by the Index Advisor to generate index recommendations.

1. Call the ttIndexAdviceCaptureStart built-in procedure to start the process to collect index
information.

2. Run the SQL workload.

3. Call the ttIndexAdviceCaptureEnd built-in procedure to end the index information
collection process.

Note:

After the data collection process ends, you can retrieve the index recommendations
as described in Retrieve Index Recommendations and Data Collection Information.

When you call the ttIndexAdviceCaptureStart built-in procedure to initiate the data collection
process, provide the following:

• In the captureLevel parameter, specify whether the index information is to be collected for
the current connection or for the entire database. You can run multiple connection-level
captures concurrently for independent connections without conflict. A database-level
capture can take place in parallel with a connection-level capture. Since there is no conflict
between a database-level and a connection-level capture, any outstanding connection-
level captures that are already in progress when a database-level capture is initiated
completes as intended. However, an error is returned if you initiate a second request for a
database-level capture while the first is still active; an error is also returned if a second
request for a connection-level capture from the same connection is initiated while the first
connection-level capture is still active.

If you invoke ttIndexAdviceCaptureStart for a database-level capture, any outstanding
connection-level captures that are already in progress complete.

• The captureMode parameter designates that you want the data collection performed on
one of the following scenarios:

– Perform the collection of index information using the current processing of the SQL
workload.

– Base the collection of index information not on a current processing of the SQL
workload, but on existing computed statistics and query plan analysis. In this scenario,

Chapter 8
Understanding Indexes

8-24

the SQL statements have been prepared, but not run. This mode can only be
performed with a connection-level capture.

To complete the capture, call the ttIndexAdviceCaptureEnd built-in procedure that ends either
an active connection-level capture from the same connection or an active database-level
capture. Completing a database-level capture requires the ADMIN privilege.

If a connection fails during a capture, the following occurs:

• If the capture is a connection-level capture, the capture ends and all associated resources
are freed.

• If the capture is a database-level capture, the capture continues until another user with
ADMIN privileges connects and invokes the ttIndexAdviceCaptureEnd built-in procedure to
end a database-level capture.

If temporary space becomes full during a capture, an active capture ends and the data
collected during the capture is saved.

Note:

Run ttIndexAdviceCaptureDrop to free the temporary space after a capture. See
Drop Data Collected for the Index Advisor and Finalize Results.

The following example starts a collection for the Index Advisor at the connection-level for the
current processing of a SQL workload:

call ttIndexAdviceCaptureStart(0,0);

The following example ends the collection for the connection-level capture:

call ttIndexAdviceCaptureEnd(0);

Note:

See ttIndexAdviceCaptureStart and ttIndexAdviceCaptureEnd in the Oracle
TimesTen In-Memory Database Reference.

Retrieve Index Recommendations and Data Collection Information
Use the ttIndexAdviceCaptureInfoGet and ttIndexAdviceCaptureOutput built-in procedures
to retrieve the data collection overview and Index Advisor recommendations. Run either or
both for the data you want.

1. Call the ttIndexAdviceCaptureInfoGet built-in procedure to retrieve data collection
overview information for the Index Advisor. See Retrieve Data Collection Information with
ttIndexAdviceCaptureInfoGet.

2. Call the ttIndexAdviceCaptureOutput built-in procedure to retrieve the recommended
indexes. See Retrieve Index Recommendations with ttIndexAdviceCaptureOutput.

3. After a DBA has evaluated the recommended index creation statements, apply the desired
index creation recommendations.

Chapter 8
Understanding Indexes

8-25

Retrieve Data Collection Information with ttIndexAdviceCaptureInfoGet
The ttIndexAdviceCaptureInfoGet built-in procedure retrieves information about the data
collected for the Index Advisor.

For both a connection-level capture and a database-level capture, only a single row is
returned.

Note:

The database-level capture row can only be returned to a user with ADMIN privileges.

The ttIndexAdviceCaptureInfoGet built-in procedure captures data if:

• The data capture was started and has not ended.

• A previous capture that was started and stopped, and the data was not deleted.

Note:

If no capture is in progress or no data exists, then no rows are returned.

The rows returned include the following information:

• The capture state: Returns 0 if a capture is completed. Returns 1 if a capture is still in
progress.

• The connection identifier, if appropriate.

• The capture level and mode set for this capture.

• The number of prepared and run statements during the capture interval.

• The time that the capture was started and stopped.

The following shows capture information for a completed connection-level capture for 363
prepared statements and 369 run statements:

Command> call ttIndexAdviceCaptureInfoGet();
< 0, 1, 0, 0, 363, 369, 2012-07-27 11:44:08.136833, 2012-07-27 12:07:35.410993 >
1 row found.

Note:

See ttIndexAdviceCaptureInfoGet in the Oracle TimesTen In-Memory Database
Reference.

Chapter 8
Understanding Indexes

8-26

Retrieve Index Recommendations with ttIndexAdviceCaptureOutput
The ttIndexAdviceCaptureOutput built-in procedure retrieves the list of index
recommendations from the last recorded capture at the specified level (connection or
database-level).

The list contains the CREATE statement for each recommended index.

To request index recommendations for a connection-level capture, run
ttIndexAdviceCaptureOutput with captureLevel set to 0 in the same connection that initiated
the capture. For a database-level capture, run ttIndexAdviceCaptureOutput with
captureLevel set to 1 in a connection where the user has ADMIN privilege.

The returned row contains:

• stmtCount - The number of times the index would be useful to speed up the SQL
workload.

• createStmt - The statement that can be used to create the recommended index. All
database object names in these statements are fully qualified.

The following example provides the CREATE statement for an index called PURCHASE_i1 on the
HR.PURCHASE table, which would be useful 4 times for this SQL workload.

CALL ttIndexAdviceCaptureOutput();
< 4, create index PURCHASE_i1 on HR.PURCHASE(AMOUNT); >
1 row found.

Note:

See ttIndexAdviceCaptureOutput in the Oracle TimesTen In-Memory Database
Reference.

Drop Data Collected for the Index Advisor and Finalize Results
After you have applied the CREATE statements for the new indexes that have been approved by
the DBA, you can drop the captured data collected for the Index Advisor. The
ttIndexAdviceCaptureDrop built-in procedure drops the existing data collected for the
specified captureLevel, which can either be a connection or database-level capture.

Call ttIndexAdviceCaptureDrop(0);

You must call this built-in procedure twice to drop both a connection-level and database-level
capture. You may not invoke this built-in procedure while a capture at the same level is in
progress.

Note:

See ttIndexAdviceCaptureDrop in the Oracle TimesTen In-Memory Database
Reference.

Chapter 8
Understanding Indexes

8-27

You can repeat the steps in Prepare for Running the Index Advisor and Retrieve Index
Recommendations and Data Collection Information until a SQL workload runs with no more
index recommendations. You can keep updating the statistics for the tables on which the new
indexes were applied and re-run the Index Advisor to see if any new indexes are now
recommended.

Example Using Index Advisor Built-In Procedures
The Index Advisor built-in procedures shows the flow of a data collection for a SQL workload
and provides index advice.

Command> call ttOptUpdateStats();

Command> call ttIndexAdviceCaptureStart();

Command> SELECT employee_id, first_name, last_name FROM employees;
< 100, Steven, King >
< 101, Neena, Kochhar >
< 102, Lex, De Haan >
< 103, Alexander, Hunold >
< 104, Bruce, Ernst >
...
< 204, Hermann, Baer >
< 205, Shelley, Higgins >
< 206, William, Gietz >
107 rows found.

Command> SELECT MAX(salary) AS MAX_SALARY
FROM employees
WHERE employees.hire_date > '2000-01-01 00:00:00';
< 10500 >
1 row found.

Command> SELECT employee_id, job_id FROM job_history
WHERE (employee_id, job_id) NOT IN (SELECT employee_id, job_id
FROM employees);
< 101, AC_ACCOUNT >
< 101, AC_MGR >
< 102, IT_PROG >
< 114, ST_CLERK >
< 122, ST_CLERK >
< 176, SA_MAN >
< 200, AC_ACCOUNT >
< 201, MK_REP >
8 rows found.

Command> WITH dept_costs AS
(SELECT department_name, SUM(salary) dept_total
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY department_name),
avg_cost AS
(SELECT SUM(dept_total)/COUNT(*) avg
FROM dept_costs)
SELECT * FROM dept_costs
WHERE dept_total >
(SELECT avg FROM avg_cost)
ORDER BY department_name;
< Sales, 304500 >
< Shipping, 156400 >
2 rows found.

Chapter 8
Understanding Indexes

8-28

Command> call ttIndexAdviceCaptureEnd();

Command> call ttIndexAdviceCaptureInfoGet();
< 0, 1, 0, 0, 9, 6, 2012-07-27 11:44:08.136833, 2012-07-27 12:07:35.410993 >
1 row found.

Command> call ttIndexAdviceCaptureOutput();
< 1, create index EMPLOYEES_i1 on HR.EMPLOYEES(SALARY); >
< 1, create index EMPLOYEES_i2 on HR.EMPLOYEES(HIRE_DATE); >
2 rows found.

Command> call ttIndexAdviceCaptureDrop();

Understanding Rows
Rows are used to store TimesTen data. TimesTen supports several data types for fields in a
row.

• One-byte, two-byte, four-byte and eight-byte integers.

• Four-byte and eight-byte floating-point numbers.

• Fixed-length and variable-length character strings, both ASCII and Unicode.

• Fixed-length and variable-length binary data.

• Fixed-length fixed-point numbers.

• Time represented as hh:mi:ss [AM|am|PM|pm].

• Date represented as yyyy-mm-dd.

• Timestamp represented as yyyy-mm-dd hh:mi:ss:ffffff.

The Data Types section in the Oracle TimesTen In-Memory Database SQL Reference contains
a detailed description of these data types.

To perform any operation for inserting or deleting rows, the user must have the appropriate
privileges, which are described along with the syntax for all SQL statements in the SQL
Statements chapter in the Oracle TimesTen In-Memory Database SQL Reference.

The following sections describe how to manage your rows:

• Inserting Rows

• Deleting Rows

Inserting Rows
To insert a row, issue INSERT or INSERT SELECT. You can also use the ttBulkCp utility.

The following example demonstrates how to insert a row in the table customer.

Command> INSERT INTO customer VALUES(23125, 'John Smith';

Chapter 8
Understanding Rows

8-29

Note:

When inserting multiple rows into a table, it is more efficient to use prepared
commands and parameters in your code. Create indexes after the bulk load is
completed.

Deleting Rows
To delete a row, issue the DELETE statement.

The following example deletes all the rows from the table customer for names that start with
the letter "S."

Command> DELETE FROM customer WHERE cust_name LIKE 'S%';

Understanding Synonyms
A synonym is an alias for a database object. Synonyms are often used for security and
convenience, because they can be used to mask object name and object owner.

In addition, you can use a synonym to simplify SQL statements. Synonyms provide
independence in that they permit applications to function without modification regardless of
which object a synonym refers to. Synonyms can be used in DML statements and some DDL
and TimesTen cache statements.

Synonyms are categorized into two classes:

• Private synonyms: A private synonym is owned by a specific user and exists in the schema
of a specific user. A private synonym shares the same namespace as other object names,
such as table names, view names, sequence names, and so on. Therefore, a private
synonym cannot have the same name as a table name or a view name in the same
schema.

• Public synonyms: A public synonym is owned by all users and every user in the database
can access it. A public synonym is accessible for all users and it does not belong to any
user schema. Therefore, a public synonym can have the same name as a private synonym
name or a table name.

In order to create and use synonyms, the user must have the correct privileges, which are
described in Object Privileges for Synonyms in the Oracle TimesTen In-Memory Database
Security Guide.

After synonyms are created, they can be viewed using the following views:

• SYS.ALL_SYNONYMS: describes the synonyms accessible to the current user. See
SYS.ALL_SYNONYMS in the Oracle TimesTen In-Memory Database System Tables and
Views Reference.

• SYS.DBA_SYNONYMS: describes all synonyms in the database. See SYS.DBA_SYNONYMS
in the Oracle TimesTen In-Memory Database System Tables and Views Reference.

• SYS.USER_SYNONYMS: describes the synonyms owned by the current user. See
SYS.USER_SYNONYMS in the Oracle TimesTen In-Memory Database System Tables
and Views Reference.

The following sections describe using synonyms in TimesTen.

Chapter 8
Understanding Synonyms

8-30

• Creating Synonyms

• Dropping Synonyms

• Synonyms May Cause Invalidation or Recompilation of SQL Queries

Creating Synonyms
Create the synonym with the CREATE SYNONYM statement.

You can use the CREATE OR REPLACE SYNONYM statement to change the definition of an existing
synonym without needing to drop it first. The CREATE SYNONYM and CREATE OR REPLACE
SYNONYM statements specify the synonym name and the schema name in which the synonym is
created. If the schema is omitted, the synonym is created in the user's schema. However,
when creating public synonyms, do not provide the schema name as it is defined in the PUBLIC
namespace.

In order to issue the CREATE SYNONYM or CREATE OR REPLACE SYNONYM statements, the user
must have the appropriate privileges, as described in Object Privileges for Synonyms in the
Oracle TimesTen In-Memory Database Security Guide.

• Object types for synonyms: The CREATE SYNONYM and CREATE OR REPLACE SYNONYM
statements define an alias for a particular object, which can be one of the following object
types: table, view, synonym, sequence, PL/SQL stored procedure, PL/SQL function,
PL/SQL package, materialized view, or cache group.

Note:

If you try to create a synonym for unsupported object types, you may not be able
to use the synonym.

• Naming considerations: A private synonym shares the same namespace as all other object
names, such as table names and so on. Therefore, a private synonym cannot have the
same name as a table name or other objects in the same schema.

A public synonym is accessible for all users and does not belong to any particular user
schema. Therefore, a public synonym can have the same name as a private synonym
name or other object name. However, you cannot create a public synonym that has the
same name as any objects in the SYS schema.

In the following example, the user creates a private synonym of synjobs for the jobs table.
Issue a SELECT statement on both the jobs table and the synjobs synonym to show that
selecting from synjobs is the same as selecting from the jobs table. Finally, to display the
private synonym, the example runs a SELECT statement on the SYS.USER_SYNONYMS table.

Command> CREATE SYNONYM synjobs FOR jobs;
Synonym created.

Command> SELECT FIRST 2 * FROM jobs;
< AC_ACCOUNT, Public Accountant, 4200, 9000 >
< AC_MGR, Accounting Manager, 8200, 16000 >
2 rows found.
Command> SELECT FIRST 2 * FROM synjobs;
< AC_ACCOUNT, Public Accountant, 4200, 9000 >
< AC_MGR, Accounting Manager, 8200, 16000 >
2 rows found.

Command> SELECT * FROM sys.user_synonyms;

Chapter 8
Understanding Synonyms

8-31

< SYNJOBS, TTUSER, JOBS, <NULL> >
1 row found.

See CREATE SYNONYM in the Oracle TimesTen In-Memory Database SQL Reference.

Dropping Synonyms
Use the DROP SYNONYM statement to drop an existing synonym from the database. A user
cannot be dropped unless all objects, including synonyms, owned by this user are dropped.

For example, the following drops the public synonym pubemp:

DROP PUBLIC SYNONYM pubemp;
Synonym dropped.

In order drop a public synonym or a private synonym in another user's schema, the user must
have the appropriate privileges. See DROP SYNONYM in the Oracle TimesTen In-Memory
Database SQL Reference.

Synonyms May Cause Invalidation or Recompilation of SQL Queries
When a synonym or object is newly created or dropped, some SQL queries and DDL
statements may be invalidated or recompiled.

The following lists the invalidation and recompilation behavior for SQL queries and DDL
statements:

1. All SQL queries that depend on a public synonym are invalidated if you create a private
synonym with the same name for one of the following objects:

• private synonym

• table

• view

• sequence

• materialized view

• cache group

• PL/SQL object including procedures, functions, and packages

2. All SQL queries that depend on a private synonym or schema object are invalidated when
a private synonym or schema object is dropped.

Understanding System Views
There are several local (V$) global (GV$) system views you can query to retrieve metadata
information about your database.

In TimesTen Scaleout:

• The V$ views contain data for the element to which your application is connected.

• The GV$ views contain the contents of the V$ view for every element of the database.

In TimesTen Classic:

• The V$ views contain rows of data for the database to which your application is connected.

Chapter 8
Understanding System Views

8-32

• The GV$ views contain the same contents as their corresponding V$ view.

In addition, there are several views that you can query that are based on TimesTen built-in
procedures. See System Tables and Views in the Oracle TimesTen In-Memory Database
System Tables and Views Reference.

Chapter 8
Understanding System Views

8-33

9
The TimesTen Query Optimizer

The TimesTen query optimizer is a cost-based optimizer that determines the most efficient way
to run a given query by considering possible query plans. The query optimizer uses information
about an application's tables and their available indexes to choose a fast path to the data.

A query plan in TimesTen Scaleout is affected by the distribution scheme and the distribution
keys of a hash distribution scheme as well as the column and table statistics, the presence or
absence of indexes, the volume of data, the number of unique values, and the selectivity of
predicates.

Application developers can examine the plan chosen by the optimizer to check that indexes
are used appropriately. If necessary, application developers can provide hints to influence the
optimizer's behavior so that it considers a different plan.

This chapter includes the following topics:

• Using the Query Optimizer to Choose Optimal Plan

• Viewing SQL Statements Stored in the SQL Command Cache

• Viewing SQL Query Plans

• Modifying a SQL Query Execution Plan

Using the Query Optimizer to Choose Optimal Plan
TimesTen invokes the optimizer for SQL statements when more than one execution plan is
possible. The optimizer chooses what it thinks is the optimum plan. This plan persists until the
statement is either invalidated or dropped by the application.

A statement is automatically invalidated under the following circumstances:

• An object that the command uses is dropped

• An object that the command uses is altered

• An index on a table or view that the command references is dropped

• An index is created on a table or view that the command references

You can manually invalidate statements with either of the following methods:

• Use the ttOptCmdCacheInvalidate built-in procedure to invalidate statements in the SQL
command cache. See Control the Invalidation of Commands in the SQL Command Cache.

• Set the invalidation option to 1 in the ttOptUpdateStats or the ttOptEstimateStats
built-in procedures. These built-in procedures also update statistics for either a specified
table or all of the current user's tables.

9-1

Note:

For complete details on when to calculate statistics, see Compute Exact or Estimated
Statistics. In addition, see ttOptUpdateStats, or ttOptEstimateStats in the Oracle
TimesTen In-Memory Database Reference.

An invalid statement is usually re-prepared automatically just before it is re-run. This means
that the optimizer is invoked again at this time, possibly resulting in a new plan. Thus, a single
statement may be prepared several times.

Note:

When using JDBC, you must manually reprepare statement when a table has been
altered.

A statement may have to be prepared manually if, for example, the table that the statement
referenced was dropped and a new table with the same name was created. When you prepare
a statement manually, you should commit the prepare statement so it can be shared. If the
statement is recompiled because it was invalid, and if recompilation involves DDL on one of
the referenced tables, then the prepared statement must be committed to release the
command lock.

For example, in ODBC a command joining tables T1 and T2 may undergo the following
changes:

Action Description

SQLPrepare Command is prepared.

SQLExecute Command is run.

SQLExecute Command is re-run.

Create Index on T1 Command is invalidated.

SQLExecute Command is reprepared, then is run.

SQLExecute Command is re-run.

ttOptUpdateStats on T1 Command is invalidated if the invalidate flag is passed to the
ttOptUpdateStats procedure.

SQLExecute Command is reprepared, then is run.

SQLExecute Command is re-run.

SQLTransact Command is committed.

SQLFreeStmt Command is dropped.

In JDBC, a command joining tables T1 and T2 may undergo the following changes:

Action Description

Connection.prepareStatement() Command is prepared.

PreparedStatement.execute() Command is run.

Chapter 9
Using the Query Optimizer to Choose Optimal Plan

9-2

Action Description

PreparedStatement.execute() Command is re-run.

Create Index on T1 Command is invalidated.

PreparedStatement.execute() Command is reprepared, then is run.

PreparedStatement.execute() Command is re-run.

ttOptUpdateStats on T1 Command is invalidated if the invalidate flag is passed to
the ttOptUpdateStats procedure.

PreparedStatement.execute() Command is reprepared, then is run.

PreparedStatement.execute() Command is re-run.

Connection.commit() Command is committed.

PreparedStatement.close() Command is dropped.

As illustrated, optimization is generally performed at prepare time, but it may also be performed
later when indexes are dropped or created, or when statistics are modified. Optimization does
not occur if a prepare can use a command in the cache.

If a command was prepared with the genPlan flag set, it is recompiled with the same flag set.
Thus, the plan is generated even though the plan for another query was found in the SYS.PLAN
table.

If an application specifies optimizer hints to influence the optimizer's behavior, these hints
persist until the command is deleted. See Modifying a SQL Query Execution Plan. For
example, when the ODBC SQLPrepare function or JDBC Connection.prepareStatement()
method is called again on the same handle or when the SQLFreeStmt function or
PreparedStatement.close() method is called. This means that any intermediate reprepare
operations that occur because of invalidations use those same hints.

Viewing SQL Statements Stored in the SQL Command Cache
All commands after they run—SQL statements, built-in procedures, and so on—are stored in
the SQL command cache, which uses temporary memory.

The commands are stored up until the limit of the SQL command cache is reached, then the
new commands are stored after the last used commands are removed. You can retrieve one or
more of these commands that are stored in the SQL command cache.

Note:

This section describes viewing the commands stored in the SQL command cache.
For details on how to view the query plans associated with these commands, see
Viewing Query Plans Associated with Commands Stored in the SQL Command
Cache.

The following sections describe how to view commands cached in the SQL command cache:

• Managing Performance and Troubleshooting Commands

• Displaying Commands Stored in the SQL Command Cache

Chapter 9
Viewing SQL Statements Stored in the SQL Command Cache

9-3

Managing Performance and Troubleshooting Commands
You can view all one or more commands or details of their query plans with the
ttSQLCmdCacheInfo and ttSQLCmdQueryPlan built-in procedures. Use the query plan
information to monitor and troubleshoot your queries.

Viewing commands and query plans can help you perform the following:

• Detect updates or deletes that are not using an index scan.

• Monitor query plans of running queries to ensure all plans are optimized.

• Detect applications that do not prepare SQL statements or that re-prepare the same
statement multiple times.

• Detect the percentage of space used in the command cache for performance evaluation.

Displaying Commands Stored in the SQL Command Cache
The commands run against the TimesTen database are cached in the SQL command cache.
The ttSQLCmdCacheInfo built-in procedure displays a specific or all cached commands in the
TimesTen SQL command cache.

By default, all commands are displayed; if you specify a command id, then only this command
is retrieved for display.

The command data is saved in the following format:

• Command identifier, which is used to retrieve a specific command or its associated query
plan.

• Private connection identifier.

• Counter for the number of executions.

• Counter for the number of times the user prepares this statement.

• Counter for the number of times the user re-prepares this SQL statement.

• Freeable status, where if the value is one, then the subdaemon can free the space with the
garbage collector. A value of zero determines that the space is not able to be freed.

• Total size in bytes allocated for this command in the cache.

• User who created the command.

• Query text up to 1024 characters.

• Number of fetch executions performed internally for this statement.

• The timestamp when the statement started.

• The maximum runtime in seconds for the statement.

• Last measured runtime in seconds for the statement.

• The minimum runtime in seconds for the statement.

• The unique identifier of the statement compiled across the TimesTen.

• Total temporary size in bytes used for this TimesTen statement the last time it ran.

• The maximum temporary size in bytes ever used to run this TimesTen statement.

At the end of the list of all commands, a status is printed of how many commands were in the
cache.

Chapter 9
Viewing SQL Statements Stored in the SQL Command Cache

9-4

The following examples show how to display all or a single command from the SQL command
cache using the ttSQLCmdCacheInfo built-in utility:

Example: Displaying all commands in the SQL command cache

This example runs within ttIsql the ttSQLCmdCacheInfo built-in procedure without arguments
to show all cached commands. The commands are displayed in terse format. To display the
information where each column is prepended with the column name, run vertical on before
calling the ttSQLCmdCacheInfo procedure.

Command> vertical 1;
Command> call ttSQLCmdCacheInfo;

 SQLCMDID: 43402480
 PRIVATE_COMMAND_CONNECTION_ID: -1
 EXECUTIONS: 1
 PREPARES: 1
 REPREPARES: 0
 FREEABLE: 1
 SIZE: 4344
 OWNER: HR
 QUERYTEXT: INSERT INTO employees VALUES
 (191
 , 'Randall'
 , 'Perkins'
 , 'RPERKINS'
 , '650.505.4876'
 , TO_DATE('19-DEC-1999', 'dd-MON-yyyy')
 , 'SH_CLERK'
 , 2500
 , NULL
 , 122
 , 50
)
 FETCHCOUNT: 0
 STARTTIME: 2015-04-09 15:22:22.139000
 MAXEXECUTETIME: 0
 LASTEXECUTETIME: 0
 MINEXECUTETIME: 0
 GRIDCMDID: <NULL>
 TEMPSPACEUSAGE: 0
 MAXTEMPSPACEUSAGE: 0

 SQLCMDID: 43311000
 PRIVATE_COMMAND_CONNECTION_ID: -1
 EXECUTIONS: 1
 PREPARES: 1
 REPREPARES: 0
 FREEABLE: 1
 SIZE: 4328
 OWNER: HR
 QUERYTEXT: INSERT INTO employees VALUES
 (171
 , 'William'
 , 'Smith'
 , 'WSMITH'
 , '011.44.1343.629268'
 , TO_DATE('23-FEB-1999', 'dd-MON-yyyy')
 , 'SA_REP'
 , 7400
 , .15

Chapter 9
Viewing SQL Statements Stored in the SQL Command Cache

9-5

 , 148
 , 80
)
 FETCHCOUNT: 0
 STARTTIME: 2015-04-09 15:22:22.139000
 MAXEXECUTETIME: 0
 LASTEXECUTETIME: 0
 MINEXECUTETIME: 0
 GRIDCMDID: <NULL>
 TEMPSPACEUSAGE: 0
 MAXTEMPSPACEUSAGE: 0

 ...
102 rows found.

Example: Displaying a single SQL command

If you provide a command id as the input for the ttSQLCmdCacheInfo, the single command is
displayed from within the SQL command cache. If no command id is provided to the
ttSQLCmdCacheInfo built-in procedure, then it displays information about all current
commands, where the command id is the first column of the output.

The following example displays the command identified by Command ID of 527973892. It is
displayed in terse format; to view with the column headings prepended, run vertical on
before calling the ttSQLCmdCacheInfo built-in.

Command> call ttSQLCmdCacheInfo(43311000);
< 43311000, -1, 1, 1, 0, 1, 4328, HR, INSERT INTO employees VALUES
(171, 'William', 'Smith', 'WSMITH', '011.44.1343.629268', TO_DATE('23-FEB-1999',
 'dd-MON-yyyy'), 'SA_REP', 7400, .15, 148, 80), 0, 2015-04-09 15:22:22.139000, 0,
 0, 0, <NULL>, 0, 0 >
1 row found.

Viewing SQL Query Plans
You can view the query plan for a command in one of two ways: storing the latest query plan
into the system PLAN table or viewing all cached commands and their query plans in the SQL
command cache.

Both methods are described in the following sections:

• Viewing a Query Plan from the System PLAN Table

• Viewing Query Plans Associated with Commands Stored in the SQL Command Cache

Viewing a Query Plan from the System PLAN Table
The optimizer prepares the query plans. For the last SQL statement to run, you can instruct
that the plan be stored in the system PLAN table:

1. Instruct TimesTen to generate the plan and store it in the system PLAN table.

2. Prepare the statement means calling the ODBC SQLPrepare function or JDBC
Connection.prepareStatement() method on the statement. TimesTen stores the plan into
the PLAN table.

3. Read the generated plan within the SYS.PLAN table.

The stored plan is updated automatically whenever the command is reprepared. Re-
preparation occurs automatically if one or more of the following occurs:

Chapter 9
Viewing SQL Query Plans

9-6

• A table in the statement is altered.

• If indexes are created or dropped.

• The application invalidates commands when statistics are updated with the invalidate
option in the ttOptUpdateStats built-in procedure.

• The user invalidates commands with the ttOptCmdCacheInvalidate built-in procedure.

Note:

See Control the Invalidation of Commands in the SQL Command Cache. For more
information on the built-in procedures, see ttOptUpdateStats and
ttOptCmdCacheInvalidate in the Oracle TimesTen In-Memory Database Reference.

For these cases, read the PLAN table to view how the plan has been modified.

Instruct TimesTen to Store the Plan in the System PLAN Table
Before you can view the plan in the system PLAN table, enable the creation of entries in the
PLAN table with the plan generation option as follows:

• For transaction level optimizer hints, call the built-in ttOptSetFlag procedure and enable
the GenPlan flag.

• For statement level optimizer hints, set TT_GENPLAN(1), which is only in effect for the
statement. After the statement runs, the plan generation option takes on the value of the
GenPlan transaction level optimizer hint.

Note:

See Use Optimizer Hints to Modify the Execution Plan for details on statement level
and transaction level optimizer hints.

This informs TimesTen that all subsequent calls to the ODBC SQLPrepare function or JDBC
Connection.prepareStatement() method in the transaction should store the resulting plan in
the current SYS.PLAN table.

The SYS.PLAN table only stores one plan, so each call to the ODBC SQLPrepare function or
JDBC Connection.prepareStatement() method overwrites any plan currently stored in the
table.

If a command is prepared with plan generation option set, it is also recompiled for plan
generation. Thus, the plan is generated even though the plan for another query was found in
the SYS.PLAN table.

You can use showplan in ttIsql to test the query and optimizer hints, which enables plan
generation as well as shows the query plan for the statements in the transaction. Autocommit
must be off.

autocommit 0;
showplan 1;

Chapter 9
Viewing SQL Query Plans

9-7

Reading Query Plan from the PLAN Table
Once plan generation has been turned on and a command has been prepared, one or more
rows in the SYS.PLAN table store the plan for the command. The number of rows in the table
depends on the complexity of the command. Each row has seven columns, as described in
System Tables and Views in the Oracle TimesTen In-Memory Database System Tables and
Views Reference.

The following example generates a query plan with the following query:

Command> SELECT COUNT(*) FROM t1, t2, t3
WHERE t3.b/t1.b > 1
AND t2.b <> 0
AND t1.a = -t2.a
AND t2.a = t3.a

The optimizer generates the five SYS.PLAN rows shown in the following table. Each row is one
step in the plan and reflects an operation that is performed during query processing.

Step Level Operation TblNames IXName Pred Other Pred

1 3 TblLkRangeScan t1 IX1 N/A N/A

2 3 TblLkRangeScan t2 IX2(D) N/A t2.b <> 0

3 2 MergeJoin N/A N/A t1.a = -t2.a N/A

4 2 TblLkRangeScan t3 IX3(D) N/A N/A

5 1 MergeJoin N/A N/A t2.a = t3.a t3.b / t1.b > 1

For details about each column in the SYS.PLAN table, see Describing the PLAN Table Columns.

Describing the PLAN Table Columns
The SYS.PLAN table has seven columns.

• Column 1 (Step)

Indicates the order of operation, which always starts with one. This example uses a table
lock range scan in the following order:

1. Table locking range scan of IX1 on table t1.

2. Table locking range scan of IX2 on t2.

3. Merge join of t1 and t2 and so forth.

• Column 2 (Level)

Indicates the position of the operation in the join-tree diagram that describes the query
processing. For this example, the join tree is as follows:

Chapter 9
Viewing SQL Query Plans

9-8

Level 1

Level 2

Level 3

Step 2Step 1

Step 3 Step 4

Step 5

MergeJoin

MergeJoin TblLkRangeScan

TblLkRangeScan RangeScan

• Column 3 (Operation)

Indicates the type of operation being run. For a description of the potential values in this
field and the type of table scan each represents, see SYS.PLAN in System Tables and
Views in the Oracle TimesTen In-Memory Database System Tables and Views Reference.

Not all operations the optimizer performs are visible to the user. Only operations significant
to performance analysis are shown in the SYS.PLAN table. TblLk is an optimizer hint that is
honored at runtime in Serializable or Read Committed isolation. Table locks are used
during a scan only if row locks are disabled during preparation.

• Column 4 (TblNames)

Indicates the table that is being scanned. This column is used only when the operation is a
scan. In all other cases, this column is NULL.

• Column 5 (IXName)

Indicates the index that is being used. This column is used only when the operation is an
index scan using an existing index—such as a hash or range scan. In all other cases, this
column is NULL. Names of range indexes are followed with "(D)" if the scan is descending
—from large to small rather than from small to large.

• Column 6 (Pred)

Indicates the predicate that participates in the operation, if there is one. Predicates are
used only with index scan and MergeJoin operations. The predicate character string is
limited to 1,024 characters.

This column may be NULL—indicating no predicate—for a range scan. The optimizer may
choose a range scan over a table scan because, in addition to filtering, it has two useful
properties:

– Rows are returned in sorted order, on index key.

Chapter 9
Viewing SQL Query Plans

9-9

– Rows may be returned faster, especially if the table is sparse.

In this example, the range scans are used for their sorting capability; none of them
evaluates a predicate.

• Column 7 (Other Pred)

Indicates any other predicate that is applied while the operation runs. These predicates do
not participate directly in the scan or join but are evaluated on each row returned by the
scan or join.

For example, at step two of the plan generated for this example, a range scan is performed
on table t2. When that scan is performed, the predicate t2.b <> 0 is also evaluated.
Similarly, once the final merge-join has been performed, it is then possible to evaluate the
predicate t3.b / t1.b > 1.

Viewing Query Plans Associated with Commands Stored in the SQL
Command Cache

Use the query plan information to monitor and troubleshoot your queries.

Note:

For more reasons why to use the ttSQLCmdQueryPlan built-in procedure, see
Managing Performance and Troubleshooting Commands.

The ttSQLCmdQueryPlan built-in procedure displays the query plan of a specific statement or all
statements in the command cache. It displays the detailed run-time query plans for the cached
SQL queries. By default, all query plans are displayed; if you specify the command id taken
from the command output, only the query plan for the specified command is displayed.

Note:

If you want to display a query plan for a specific command, you must provide the
command identifier that is displayed with the ttSQLCmdCacheInfo built-in procedure.
See Displaying Commands Stored in the SQL Command Cache.

The plan data displayed when you invoke this built-in procedure is as follows:

• Command identifier

• Query text up to 1024 characters

• Step number of the current operation in the run-time query plan

• Level number of the current operation in the query plan tree

• Operation name of current step

• Name of table used

• Owner of the table

• Name of index used

• If used and available, the index predicate

Chapter 9
Viewing SQL Query Plans

9-10

• If used and available, the non-indexed predicate

Note:

See Reading Query Plan from the PLAN Table. The source of the data may be
different, but the mapping and understanding of the material is the same as the query
plan in the system PLAN table.

The ttSQLCmdQueryPlan built-in process displays the query plan in a raw data format.
Alternatively, you can run the ttIsql explain command for a formatted version of this output.
See Display Query Plan for Statement in SQL Command Cache.

The following examples show how to display all or a single SQL query plan from the SQL
command cache using the ttSQLCmdQueryPlan built-in procedure.

Example: Displaying all SQL query plans

You can display all SQL query plans associated with commands stored in the command cache
with the ttSQLCmdQueryPlan built-in procedure within the ttIsql utility.

The following example shows the output when running the ttSQLCmdQueryPlan built-in
procedure without arguments, which displays detailed run-time query plans for all valid queries.
For invalid queries, there is no query plan; instead, the query text is displayed.

The query plans are displayed in terse format. To view with the column headings prepended,
run vertical on before calling the ttSQLCmdQueryPlan built-in procedure.

Note: For complex expressions, there may be some difficulties in printing out the original
expressions.

Command> call ttSQLCmdQueryPlan();

< 528079360, select * from t7 where x7 is not null or exists (select 1 from t2,t3
where not 'tuf' like 'abc'), <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL> >
< 528079360, <NULL>, 0, 2, RowLkSerialScan , T7
, PAT , , , >
< 528079360, <NULL>, 1, 3, RowLkRangeScan , T2
, PAT , I2 , , NOT(LIKE(tuf
,abc ,NULL)) >
< 528079360, <NULL>, 2, 3, RowLkRangeScan , T3
, PAT , I2 , , >
< 528079360, <NULL>, 3, 2, NestedLoop ,
, , , , >
< 528079360, <NULL>, 4, 1, NestedLoop(Left OuterJoin) ,
, , , , >
< 528079360, <NULL>, 5, 0, Filter ,
, , , , X7 >
< 527576540, call ttSQLCmdQueryPlan(527973892), <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 527576540, <NULL>, 0, 0, Procedure Call ,
, , , , >
< 528054656, create table t2(x2 int,y2 int, z2 int), <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528066648, insert into t2 select * from t1, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 528066648, <NULL>, 0, 0, Insert , T2
, PAT , , , >

Chapter 9
Viewing SQL Query Plans

9-11

< 528013192, select * from t1 where exists (select * from t2 where x1=x2) or
y1=1, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528061248, create index i1 on t3(y3), <NULL>, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL> >
< 528070368, call ttOptSetOrder('t3 t4 t2 t1'), <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 528070368, <NULL>, 0, 0, Procedure Call ,
, , , , >
< 528018856, insert into t2 select * from t1, <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 527573452, call ttSQLCmdCacheInfo(527973892), <NULL>, <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL> >
< 527573452, <NULL>, 0, 0, Procedure Call ,
, , , , >
< 528123000, select * from t1 where x1 = 1 or x1 = (select x2 from t2,t3 where
z2=t3.x3), <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528123000, <NULL>, 0, 2, RowLkSerialScan , T1
, PAT , , , >
< 528123000, <NULL>, 1, 6, RowLkRangeScan , T2
, PAT , I2 , , >
< 528123000, <NULL>, 2, 6, RowLkRangeScan , T3
, PAT , I2 , , Z2 = X3; >
< 528123000, <NULL>, 3, 5, NestedLoop ,
, , , , >
< 528123000, <NULL>, 4, 4, Materialized View ,
, , , , >
< 528123000, <NULL>, 5, 3, GroupBy ,
, , , , >
< 528123000, <NULL>, 6, 2, Filter ,
, , , , X1 =
colum_name; >
< 528123000, <NULL>, 7, 1, NestedLoop(Left OuterJoin) ,
, , , , >
< 528123000, <NULL>, 8, 0, Filter ,
, , , , X1 = 1; >

Example: Displaying a single SQL query plan

You can display any query plan associated with a command by providing the command id of
the command as the input for the ttSQLCmdQueryPlan built-in procedure. The single query plan
is displayed from within the SQL command cache. If no command id is supplied, the
ttSQLCmdCacheInfo built-in procedure displays information about all current commands in the
TimesTen cache.

The following example displays the query plan of the command identified by command id of
528078576. It is displayed in terse format; to view with the column headings prepended, run
vertical on before calling the ttSQLCmdQueryPlan built-in procedure.

Note: For complex expressions, there are some difficulties to print original expressions.

Command> call ttSQLCmdQueryPlan(528078576);
< 528078576, select * from t1 where 1=2 or (x1 in (select x2 from t2, t5 where y2
in (select y3 from t3)) and y1 in (select x4 from t4)), <NULL>, <NULL>, <NULL>,
<NULL>, <NULL>, <NULL>, <NULL>, <NULL> >
< 528078576, <NULL>, 0, 4, RowLkSerialScan , T1
, PAT , , , >
< 528078576, <NULL>, 1, 7, RowLkRangeScan , T2
, PAT , I2 , , >
< 528078576, <NULL>, 2, 7, RowLkRangeScan , T5
, PAT , I2 , , >
< 528078576, <NULL>, 3, 6, NestedLoop ,
, , , , >

Chapter 9
Viewing SQL Query Plans

9-12

< 528078576, <NULL>, 4, 6, RowLkRangeScan , T3
, PAT , I1 , ((Y3=Y2;)) , >
< 528078576, <NULL>, 5, 5, NestedLoop ,
, , , , >
< 528078576, <NULL>, 6, 4, Filter ,
, , , , X1 = X2; >
< 528078576, <NULL>, 7, 3, NestedLoop(Left OuterJoin) ,
, , , , >
< 528078576, <NULL>, 8, 2, Filter ,
, , , , >
< 528078576, <NULL>, 9, 2, RowLkRangeScan , T4
, PAT , I2 , , Y1 = X4; >
< 528078576, <NULL>, 10, 1, NestedLoop(Left OuterJoin) ,
, , , , >
< 528078576, <NULL>, 11, 0, Filter ,
, , , , >
13 rows found.
Command>

Modifying a SQL Query Execution Plan
If you decide that you want to modify a query plan, you can only modify the query plan that
exists in the system PLAN table.

See Viewing a Query Plan from the System PLAN Table.

Once you do modify the query plan, it does not replace the query plan, but creates a new
query plan with your changes.

The following sections describe why you may want to modify execution plans and then how to
modify them:

• Why Modify an Execution Plan?

• How Hints Can Influence an Execution Plan

• Use Optimizer Hints to Modify the Execution Plan

Why Modify an Execution Plan?
You evaluate and modify an execution plan if it is ill-suited for your application or if it is not
optimal in performance.

• The plan is optimally fast but is ill-suited for the application. The optimizer may select
the fastest query processing path, but this path may not be desirable from the application's
point of view. For example, if the optimizer chooses to use certain indexes, these choices
may prevent other operations-such as certain update or delete operations-from occurring
simultaneously on the indexed tables. In this case, an application can prevent the use of
those indexes.

The plan chosen by the optimizer may also consume more memory than is available or
than the application wants to allocate. For example, this may happen if the plan stores
intermediate results or requires the creation of temporary indexes.

• The plan is not optimally performant. The query optimizer chooses the plan that it
estimates will run the fastest based on its knowledge of the tables' contents, available
indexes, statistics, and the relative costs of various internal operations. The optimizer often
has to make estimates or generalizations when evaluating this information, so there can be
instances where it does not choose the fastest plan. In this case, an application can adjust
the optimizer's behavior to try to produce a better plan.

Chapter 9
Modifying a SQL Query Execution Plan

9-13

How Hints Can Influence an Execution Plan
You can apply hints to pass instructions to the TimesTen query optimizer. The optimizer
considers these hints when choosing the best execution plan for your query.

Transaction level hints are in effect for all calls to the ODBC SQLPrepare function or JDBC
PreparedStatement objects in the transaction.

• If a command is prepared with certain hints in effect, those hints continue to apply if the
command is re-prepared automatically, even when this happens outside the initial prepare
transaction. This can happen when a table is altered, or an index is dropped or created, or
when statistics are modified, as described in Using the Query Optimizer to Choose Optimal
Plan.

• If a command is prepared without hints, subsequent hints do not affect the command if it is
re-prepared automatically. An application must call the ODBC SQLPrepare function or
JDBC Connection.prepareStatement() method a second time so that hints have an
effect.

Tuning a Join When Using ODBC
A developer can tune a join when using ODBC.

When using ODBC, a developer tuning a join on T1 and T2 might go through the steps shown
in the following figure.

During processing, the application may then go through the steps shown in the following figure.

Chapter 9
Modifying a SQL Query Execution Plan

9-14

Tuning a Join When Using JDBC
A developer can tune a join when using JDBC.

When using JDBC, a developer tuning a join on T1 and T2 might go through the steps shown in
the following figure.

During processing, the application may then go through the steps shown in the following figure.

Chapter 9
Modifying a SQL Query Execution Plan

9-15

Use Optimizer Hints to Modify the Execution Plan
You can apply hints to pass instructions to the TimesTen query optimizer.

• To apply a hint only for a particular SQL statement, use a statement level optimizer hint.

• To apply a hint for an entire transaction, use a transaction level optimizer hint with the
appropriate TimesTen built-in procedure.

• To apply a hint for an entire TimesTen connection, use a connection level optimizer hint.

The order of precedence for optimizer hints is statement level hints, transaction level hints and
then connection level hints.

Note:

TimesTen concurrently processes read and write operations optimally. Your read
operations can be optimized for read-only concurrency when you use transaction
level optimizer hints such as ttOptSetFlag ('tblLock',1) or statement level
optimizer hints such as /*+ tt_tbllock(1) tt_rowlock(0) */. Write operations that
operate concurrently with read optimized operations may result in contention.

You can control read optimization during periods of concurrent write operations with
the ttDbWriteConcurrencyModeSet built-in procedure. For more information, see
Control Read Optimization During Concurrent Write Operations.

Directions for applying hints are described in the following sections:

• Apply Statement Level Optimizer Hints for a SQL Statement

Chapter 9
Modifying a SQL Query Execution Plan

9-16

• Apply Transaction Level Optimizer Hints for a Transaction

• Apply Connection Level Optimizer Hints for a TimesTen Connection

Apply Statement Level Optimizer Hints for a SQL Statement
A statement level optimizer hint is a specially formatted SQL comment containing instructions
for the SQL optimizer.

A statement level optimizer hint can be specified within the SQL statement that it is to be
applied against with one of the following methods:

• /*+ */ The hints can be defined over multiple lines. The hints must be enclosed in the
comment syntax. The plus sign (+) denotes the start of a hint.

• --+ The hint must be defined on a single line after the plus sign (+).

The statement level optimizer hint can be specified in the SELECT, INSERT, UPDATE, MERGE,
DELETE, CREATE TABLE AS SELECT, or INSERT ... SELECT statements. You must specify the
hint within comment syntax immediately following the SQL VERB.

If you specify any statement level optimizer hints incorrectly, TimesTen ignores these hints and
does not provide an error. If you define conflicting hints, the rightmost hint overrides any
conflicting hints for the statement.

See Statement Level Optimizer Hints in the Oracle TimesTen In-Memory Database SQL
Reference for information specific to statement level optimizer hints. See Using Optimizer Hints
in the Oracle TimesTen In-Memory Database Scaleout User's Guide for optimizer hints that are
specific to TimesTen Scaleout.

Apply Transaction Level Optimizer Hints for a Transaction
To change the query optimizer behavior for all statements in a transaction, an application calls
the ttOptSetFlag built-in procedure using the ODBC procedure call interface.

Note:

Make sure autocommit is off for transaction level optimizer hints. All optimizer flags
are reset to their default values when the transaction has been committed or rolled
back. If optimizer flags are set while autocommit is on, the optimizer flags are ignored
because each statement runs within its own transaction.

• ttOptSetFlag—Sets certain optimizer parameters. Provides the optimizer with transaction
level optimizer hints with a recommendation on how to best optimize a particular query.

• ttOptGetFlag—View the existing transaction level hints set for a database.

• ttOptSetOrder—Enables an application to specify the table join order.

• ttOptUseIndex—Enables an application to specify that an index be used or to disable the
use of certain indexes; that is, to specify which indexes should be considered for each
correlation in a query.

• ttOptClearStats, ttOptEstimateStats, ttOptSetColIntvlStats, ttOptSetTblStats,
ttOptUpdateStats—Manipulate statistics that TimesTen maintains on the application's
data that are used by the query optimizer to estimate costs of various operations.

Chapter 9
Modifying a SQL Query Execution Plan

9-17

Some of these built-in procedures require that the user have privileges to the objects on which
the utility runs. See Built-In Procedures in the Oracle TimesTen In-Memory Database
Reference.

The following examples provide an ODBC and JDBC method on how to use the ttOptSetFlag
built-in procedure:

Note:

You can also experiment with optimizer settings using the ttIsql utility. The
commands that start with "try" control transaction level optimizer hints. To view
current transaction level optimizer hint settings, use the optprofile command.

Example: Using ttOptSetFlag in JDBC

This JDBC example illustrates the use of ttOptSetFlag to prevent the optimizer from choosing
a merge join.

import java.sql.*;
class Example
{
 public void myMethod() {
 CallableStatement cStmt;
 PreparedStatement pStmt;

 try {

 // Prevent the optimizer from choosing Merge Join
 cStmt = con.prepareCall("{
 CALL ttOptSetFlag('MergeJoin', 0)}");
 cStmt.execute();
 // Next prepared query
 pStmt=con.prepareStatement(
 "SELECT * FROM Tbl1, Tbl2 WHERE Tbl1.ssn=Tbl2.ssn");

 catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

}

Example: Using ttOptSetFlag in ODBC

This ODBC example illustrates the use of ttOptSetFlag to prevent the optimizer from choosing
a merge join.

#include <sql.h>
SQLRETURN rc;
SQLHSTMT hstmt; fetchStmt;
....
rc = SQLExecDirect (hstmt, (SQLCHAR *)
 "{CALL ttOptSetFlag (MergeJoin, 0)}",
 SQL_NTS)
/* check return value */
...
rc = SQLPrepare (fetchStmt, ...)

Chapter 9
Modifying a SQL Query Execution Plan

9-18

/* check return value */
...

Apply Connection Level Optimizer Hints for a TimesTen Connection
To change the query optimizer behavior for all statements of a specific connection, define the
OptimizerHint connection attribute.

The value of the OptimizerHint connection attribute is a string that uses the same format as a
statement level optimizer hint, but without the delimiters of /*+, */, and --+.

You cannot include comments with connection level optimizer hints.

Transaction level optimizer hints overwrite connection level optimizer hints for the current
transaction. After a commit, the transaction level optimizer hints are lost and the connection
level optimizer hints take effect. Statement level optimizer hints overwrite transaction level
optimizer hints and connection level optimizer hints for the scope of the statement. Since this is
a connection attribute, the ttConfiguration utility shows the connection level optimizer hints.

Note:

In a client server setting, the client connection setting of this connection attribute
overwrites the Server DSN setting of this attribute.

This example illustrates how to use connection level optimizer hints. This example uses
TT_RowLock, TT_TblLock, and TT_MergeJoin to enable row locking, disable table locking, and
disable merge joins. Note that /disk1/timesten is the timesten_home.

...
[database1]
Driver=/disk1/timesten/install/lib/libtten.so
DataStore=/disk1/timesten/info/DemoDataStore/database1
PermSize=128
TempSize=64
DatabaseCharacterSet=AL32UTF8
OptimizerHint= TT_RowLock (1) TT_TblLock (0) TT_MergeJoin (0)
...

TimesTen does not support the use of the semicolon (;) character in connection attributes.
Therefore, when you want to use more than one TT_INDEX optimizer hint at the connection
level, you cannot use the same syntax that you use for the statement level.

For example, TT_INDEX(EMPLOYEES,EMP_NAME_IX,1;EMPLOYEES,EMP_MANAGER_IX,1) is a valid
statement level optimizer hint, but it is an invalid connection level optimizer hint. TimesTen
merges multiple TT_INDEX optimizer hints if they are specified on the same line. Therefore,
TT_INDEX(EMPLOYEES,EMP_NAME_IX,1) TT_INDEX(EMPLOYEES,EMP_MANAGER_IX,1)is equivalent
to TT_INDEX(EMPLOYEES,EMP_NAME_IX,1;EMPLOYEES,EMP_MANAGER_IX,1).

This example illustrates the use of multiple TT_INDEX optimizer hints at the connection level.
Note that /disk1/timesten is the timesten_home.

...
[database1]
Driver=/disk1/timesten/install/lib/libtten.so
DataStore=/disk1/databases/info/DemoDataStore/database1
PermSize=128

Chapter 9
Modifying a SQL Query Execution Plan

9-19

TempSize=64
DatabaseCharacterSet=AL32UTF8
OptimizerHint= TT_INDEX(EMPLOYEES,EMP_NAME_IX,1) TT_INDEX(EMPLOYEES,EMP_MANAGER_IX,1)
...

See OptimizerHint in the Oracle TimesTen In-Memory Database Reference.

Chapter 9
Modifying a SQL Query Execution Plan

9-20

10
TimesTen Database Performance Tuning

An application using TimesTen should obtain an order of magnitude performance improvement
in its data access over an application using a traditional RDBMS. However, poor application
design and tuning can erode the TimesTen advantage.

There are factors that can affect the performance of a TimesTen application. These factors
range from subtle, such as data conversions, to more overt, such as preparing a command at
each execution.

This chapter explains the full range of these factors, with a section on each factor indicating:

• How to detect problems.

• How large is the potential performance impact.

• Where are the performance gains.

• What are the tradeoffs.

The following sections describe how to tune and identify performance issues:

Note:

You can also identify performance issues by examining the SYS.SYSTEMSTATS table.

• System and Database Tuning

• Client/Server Tuning

• SQL Tuning

• Materialized View Tuning

• Transaction Tuning

• Recovery Tuning

• Scaling for Multiple CPUs

• XLA Tuning

• Cache and Replication Tuning

For information on tuning TimesTen Java applications, see Java Application Tuning in the
Oracle TimesTen In-Memory Database Java Developer's Guide. For information on tuning
TimesTen C applications, see ODBC Application Tuning in the Oracle TimesTen In-Memory
Database C Developer's Guide.

System and Database Tuning
There are tips for tuning your system and databases.

• Provide Enough Memory

10-1

• Avoid Paging of the Memory Used by the Database

• Size Your Database Correctly

• Calculate Shared Memory Size for PL/SQL Runtime

• Set Appropriate Limit on the Number of Open Files

• Configure Log Buffer and Log File Size Parameters

• Avoid Connection Overhead for TimesTen Classic Databases

• Load the Database Into RAM When Duplicating

• Prevent Reloading of the Database After Automatic Recovery Fails

• Reduce Contention

• Consider Special Options for Maintenance

• Check Your Driver

• Enable Tracing Only as Needed

• Use Metrics to Evaluate Performance

• Migrate Data with Character Set Conversions

• Use TimesTen Native Integer Data Types If Appropriate

• Configure the Checkpoint Files and Transaction Log Files to be on a Different Physical
Device

Provide Enough Memory
Performance impact: Large

Configure your system so that the entire database fits in main memory. The use of virtual
memory substantially decreases performance.

The database or working set does not fit if a performance monitoring tool shows excessive
paging or virtual memory activity. You may have to add physical memory or configure the
system software to allow a large amount of shared memory to be allocated to your
process(es).

For Linux systems, you must configure shared memory so that the maximum size of a shared
memory segment is large enough to contain the size of the total shared memory segment for
the database.

In TimesTen Classic, the entire database resides in a single shared memory segment. In
TimesTen Scaleout, you set settings for the shared memory segment of each host. Set the
appropriate operating system kernel parameters for shmmax, shmall, memlock, and HugePages.
See Operating System Prerequisites in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide and Configuring Linux Kernel Parameters in the Oracle
TimesTen In-Memory Database Scaleout User's Guide.

TimesTen includes the ttSize utility to help you estimate the size of tables in your database.
For more information, see ttSize in the Oracle TimesTen In-Memory Database Reference.

Avoid Paging of the Memory Used by the Database
Performance impact: Variable

Chapter 10
System and Database Tuning

10-2

On Linux, the MemoryLock connection attribute specifies whether the real memory used by the
database should be locked while the database is loaded into memory.

Set MemoryLock to 4 to avoid paging of the memory used by the database. If MemoryLock is not
set to 4, parts of the shared memory segment used by the database may be paged out to the
swap area, resulting in poor database performance. See MemoryLock in the Oracle TimesTen
In-Memory Database Reference.

Size Your Database Correctly
Performance impact: Variable

When you create a database, you are required to specify a database size. Specifically, you
specify sizes for the permanent and temporary memory regions of the database.

For details on how to size the database and shared memory, see Specifying the Memory
Region Sizes of a Database in this book and Configure shmmax and shmall in the Oracle
TimesTen In-Memory Database Installation, Migration, and Upgrade Guide.

Calculate Shared Memory Size for PL/SQL Runtime
Performance impact: Variable

The PL/SQL runtime system uses an area of shared memory to hold metadata about PL/SQL
objects in TimesTen and the executable code for PL/SQL program units that are currently
running or have recently run. The size of this shared memory area is controlled by the
PLSQL_MEMORY_SIZE first connect attribute.

When a new PL/SQL program unit is prepared for execution, it is loaded into shared memory. If
shared memory space is not available, the cached recently-processed program units are
discarded from memory until sufficient shared memory space is available. If all of the PL/SQL
shared memory is being used by currently running program units, then attempts by a new
connection to run PL/SQL may result in out of space errors, such as ORA-04031. If this
happens, increase the PLSQL_MEMORY_SIZE.

Even if such out of space errors do not occur, the PLSQL_MEMORY_SIZE may be too small. It is
less expensive in CPU time to run a PL/SQL procedure that is cached in shared memory than
one that is not cached. In a production application, the goal should be for PLSQL_MEMORY_SIZE
to be large enough so that frequently run PL/SQL units are always cached. The TimesTen built-
in procedure ttPLSQLMemoryStats can be used to determine how often this occurs. The
PinHitRatio value returned is a real number between 0 and 1.

• 1.0: A value of 1.0 means that every PL/SQL execution occurred from the cache.

• 0.0: A value of 0.0 means that every execution required that the program unit be loaded
into shared memory.

The proper value of PLSQL_MEMORY_SIZE for a given application depends on the application. If
only a small number of PL/SQL program units repeatedly run, then the size requirements can
be small. If the application uses hundreds of PL/SQL program units, memory requirements
increase.

Performance increases dramatically as the PinHitRatio goes up. In one set of experiments,
an application program repeatedly runs a large number of PL/SQL stored procedures. With a
larger value for PLSQL_MEMORY_SIZE, the application results in a PinHitRatio of around 90%,
and the average runtime for a PL/SQL procedure was 0.02 seconds. With a smaller value for
PLSQL_MEMORY_SIZE, there was more contention for the cache, resulting in a PinHitRatio of
66%. In this experiment the average runtime was 0.26 seconds.

Chapter 10
System and Database Tuning

10-3

The default value for PLSQL_MEMORY_SIZE is 128 MB on Linux and UNIX systems. This should
be sufficient for several hundred PL/SQL program units of reasonable complexity to run. After
running a production workload for some time, check the value of PinHitRatio. If it is less than
0.90, consider increasing PLSQL_MEMORY_SIZE.

Set Appropriate Limit on the Number of Open Files
Performance impact: Variable

For multithreaded applications that maintain many concurrent TimesTen database connections,
the default number of open files permitted to each process by the operating system may be too
low.

See Limits on Number of Open Files in the Oracle TimesTen In-Memory Database Reference.

Configure Log Buffer and Log File Size Parameters
Performance impact: Large

Increasing the value of LogBufMB and LogFileSize could have a substantial positive
performance impact.

LogBufMB is related to the LogFileSize connection attribute, which should be set to the same
value or integral multiples of LogBufMB for best performance.

Transaction log buffer waits occur when application processes cannot insert transaction data to
the transaction log buffer and must stall to wait for transaction log buffer space to be freed. The
usual reason for this is that the log flusher thread has not cleared out data fast enough. This
may indicate that transaction log buffer space is insufficient, file system transfer rate is
insufficient, writing to the file system is taking too long, or the log flusher is CPU-bound.

• A small LogBufMB could slow down write transactions when these transactions have to wait
for a log flush operation to make space for redo logging. An oversized log buffer has no
impact other than consuming extra memory. The value of LOG_BUFFER_WAITS shows the
number of times a thread was delayed while trying to insert a transaction log record into
the log buffer because the log buffer was full. Generally, if this value is increasing, it
indicates that the log buffer is too small.

• The LogFileSize attribute specifies the maximum size of each transaction log file in
megabytes. If LogFileSize is too small, then TimesTen has to create multiple log files
within a transaction log flush operation. The overhead of file creation often leads to
LOG_BUF_WAITS events, which could significantly impact performance.

You can observe the value of the LOG_BUFFER_WAITS metric (using either the SYS.MONITOR table
or the ttIsql monitor command) to see if it increases while running a workload. After which,
you can increase the value of LogBufMB to improve the database performance.

The trade-off from increasing the value of LogBufMB is that more transactions are buffered in
memory and may be lost if the process crashes. If DurableCommits are enabled, increasing the
value of LogBufMB value does not improve performance.

If log buffer waits still persist after increasing the LogBufMB and LogFileSize values, then
review the other possible issues mentioned above.

The LogBufParallelism connection attribute specifies the number of transaction log buffer
strands. This attribute improves transaction throughput when multiple connections run write
transactions concurrently. Configure this to the lesser value of the number of CPU cores on the
system and the number of concurrent connections running write transactions.

Chapter 10
System and Database Tuning

10-4

See LogBufMB, LogFileSize and LogBufParallelism in the Oracle TimesTen In-Memory
Database Reference.

Avoid Connection Overhead for TimesTen Classic Databases
Performance impact: Large

An idle database is a database with no connections. By default, TimesTen loads an idle
database into memory when a first connection is made to it. When the final application
disconnects from a database, a delay occurs when the database is written to the file system.

If applications are continually connecting and disconnecting from a database, the database
may be loaded to and unloaded from memory continuously, resulting in excessive file system
I/O and poor performance. Similarly, if you are using a very large database you may want to
pre-load the database into memory before any applications attempt to use it.

To avoid the latency of loading a database into memory, you can change the RAM policy of a
TimesTen Classic database to enable databases to always remain in memory. The trade-off is
that since the TimesTen Classic database is never unloaded from memory, a final disconnect
checkpoint never occurs. So, applications should configure frequent checkpoints with the
ttCkptConfig built-in procedure. See ttCkptConfig in the Oracle TimesTen In-Memory
Database Reference.

Alternatively, you can specify that the TimesTen Classic database remain in memory for a
specified interval of time and accept new connections. If no new connections occur in this
interval, TimesTen Classic unloads the database from memory and checkpoints it. You can
also specify a setting to enable a system administrator to load and unload the database from
memory manually.

To change the RAM policy of a TimesTen Classic database, use the ttAdmin utility. For more
details on the RAM policy and the ttAdmin utility, see Specifying a RAM Policy in this book and
the ttAdmin section in the Oracle TimesTen In-Memory Database Reference.

Load the Database Into RAM When Duplicating
Performance impact: Large

Load a TimesTen Classic database into memory with the ttAdmin -ramLoad command before
you duplicate this database with the ttRepAdmin -duplicate utility. This places the database
in memory, available for connections, instead of unloading it with a blocking checkpoint.

See Avoid Connection Overhead for TimesTen Classic Databases in this book and the ttAdmin
and ttRepAdmin sections in the Oracle TimesTen In-Memory Database Reference.

Prevent Reloading of the Database After Automatic Recovery Fails
Performance impact: Large

When TimesTen Classic recovers after a database is invalidated, a new database is reloaded.
However, the invalidated database is only unloaded after all connections to this database are
closed. Thus, both the invalidated database and the recovered database could exist in RAM at
the same time.

Reloading a large database into memory when an invalidated database still exists in memory
can fill up available RAM. See Preventing an Automatic Reload of the Database After Failure
on how to stop automatic reloading of the database.

Chapter 10
System and Database Tuning

10-5

Reduce Contention
Performance impact: Large

Database contention can substantially impede application performance.

To reduce contention in your application:

• Choose the appropriate locking method. See Choose the Best Method of Locking.

• Distribute data strategically in multiple tables or databases.

If your application suffers a decrease in performance because of lock contention and a lack of
concurrency, reducing contention is an important first step in improving performance.

The lock.locks_granted.immediate, lock.locks_granted.wait and lock.timeouts columns
in the SYS.SYSTEMSTATS table provide some information on lock contention:

• lock.locks_granted.immediate counts how often a lock was available and was
immediately granted at lock request time.

• lock.locks_granted.wait counts how often a lock request was granted after the
requestor had to wait for the lock to become available.

• lock.timeouts counts how often a lock request was not granted because the requestor
did not want to wait for the lock to become available.

If limited concurrency results in a lack of throughput, or if response time is an issue, an
application can reduce the number of threads or processes making API (JDBC, ODBC, or OCI)
calls. Using fewer threads requires some queuing and scheduling on the part of the
application, which has to trade off some CPU time for a decrease in contention and wait time.
The result is higher performance for low-concurrency applications that spend the bulk of their
time in the database.

Consider Special Options for Maintenance
Performance impact: Medium

During special operations such as initial loading, you can choose different options than you
would use during standard operations.

In particular, consider using database-level locking for bulk loading; an example would be
using ttBulkCp or ttMigrate. These choices can improve loading performance by a factor of
two.

An alternative to database-level locking is to exploit concurrency. Multiple copies of ttBulkCp -
i can be run using the -notblLock option. Optimal batching for ttBulkCp occurs by adding the
-xp 256 option.

See ttBulkCp and ttMigrate in the Oracle TimesTen In-Memory Database Reference.

Check Your Driver
Performance impact: Large

The TimesTen direct driver: If you only use direct connections and have no need to use both
direct and client-server connections from the same application process, then link directly with
the TimesTen direct driver for maximum performance.

Chapter 10
System and Database Tuning

10-6

The TimesTen client driver on Windows: Use the TimesTen client driver in your DSN when
using the Windows ODBC driver manager. If you do not need the functionality of the Windows
ODBC driver manager, link direct with the TimesTen client driver for improved performance.

The TimesTen data manager driver on Linux and UNIX platforms: There are two versions of
the TimesTen data manager driver for Linux and UNIX platforms: a debug and production
version. Unless you are debugging, use the production version. The debug library can be
significantly slower.

The TimesTen driver manager on Linux and UNIX platforms: If you need to use direct and
client/server connections from the same application process to a TimesTen database, then you
should use the TimesTen driver manager (as opposed to a generic ODBC driver manager) to
minimize the performance impact. If you do not want to use the TimesTen driver manager, you
can use an open source or commercial driver manager, such as unixODBC or iODBC.
However, generic driver managers could result in significant performance penalties and
functionality limitations.

See Creating a DSN on Linux and UNIX for TimesTen Classic and Connecting to TimesTen
with ODBC and JDBC Drivers.

Enable Tracing Only as Needed
Performance impact: Large

Both ODBC and JDBC provide a trace facility to help debug applications. For performance
runs, make sure that tracing is disabled except when debugging applications.

To turn the JDBC tracing on, use:

DriverManager.setLogStream method:
DriverManager.setLogStream(new PrintStream(System.out, true));

By default tracing is off. You must call this method before you load a JDBC driver. Once you
turn the tracing on, you cannot turn it off for the entire execution of the application.

Use Metrics to Evaluate Performance
Performance impact: Variable

You can use the ttStats utility to collect and display database metrics.

The ttStats utility can perform the following functions.

• Monitor and display database performance metrics in real-time, calculating rates of change
during each preceding interval.

• Collect and store snapshots of metrics to the database then produce reports with values
and rates of change from specified pairs of snapshots. (These functions are performed
through calls to the TT_STATS PL/SQL package.)

The ttStats utility gathers metrics from TimesTen system tables, views, and built-in
procedures. In reports, this includes information such as a summary of memory usage,
connections, and load profile, followed by metrics (as applicable) for SQL statements,
transactions, PL/SQL memory, replication, logs and log holds, checkpoints, cache groups,
latches, locks, XLA, and TimesTen connection attributes.

Call the ttStatsConfig built-in procedure to modify statistics collection parameters that affect
the ttStatus utility. See ttStatsConfig in the Oracle TimesTen In-Memory Database Reference.

Chapter 10
System and Database Tuning

10-7

See ttStats in the Oracle TimesTen In-Memory Database Reference. See TT_STATS in the
Oracle TimesTen In-Memory Database PL/SQL Packages Reference.

Migrate Data with Character Set Conversions
Performance impact: Variable

If character set conversion is requested when migrating databases, performance may be
slower than if character set conversion is not requested.

Use TimesTen Native Integer Data Types If Appropriate
Performance impact: Variable

Declare the column types of a table with TimesTen native integer data types, TT_TINYINT,
TT_SMALLINT, TT_INTEGER, or TT_BIGINT instead of the NUMBER data type to save space and
improve the performance of calculations.

TimesTen internally maps the SMALLINT, INTEGER, INT, DECIMAL, NUMERIC, and NUMBER data
types to the NUMBER data type. When you define the column types of a table, ensure that you
choose the appropriate native integer data type for your column to avoid overflow. For more
information on native integer data types and the NUMBER data type, see Numeric Data Types in
the Oracle TimesTen In-Memory Database SQL Reference.

If you use a TimesTen native integer data type when you create a TimesTen cache group that
reads and writes to an Oracle database, ensure that the data type of the columns of the
TimesTen cache group and the Oracle database are compatible. For more information about
the mapping between Oracle Database and TimesTen data types, see Mappings Between
Oracle Database and TimesTen Data Types in the Oracle TimesTen In-Memory Database
Cache Guide.

Configure the Checkpoint Files and Transaction Log Files to be on a
Different Physical Device

Performance impact: Large

For best performance, TimesTen recommends that you use the LogDir connection attribute to
place the transaction log files on a different physical device from the checkpoint files. This is
important if your application needs to have consistent response times and throughput.

TimesTen places the checkpoint files in the location specified by the DataStore connection
attribute, which is the full path name of the database and the file name prefix. If the transaction
log files and checkpoint files are on different physical devices, I/O operations for checkpoints
do not block I/O operations to the transaction log and vice versa. For more information on
transaction logging, see Transaction Logging.

See LogDir and DataStore in the Oracle TimesTen In-Memory Database Reference.

Note:

If the database is already loaded into RAM and the transaction log files and
checkpoint files for your database are on the same physical device, TimesTen writes
a message to the daemon log file.

Chapter 10
System and Database Tuning

10-8

Client/Server Tuning
You can tune your client/server.

The following sections include tips for client/server tuning:

• Diagnose Client/Server Performance

• Work Locally When Possible

• Choose Timeout Connection Attributes for Your Client

• Choose a Lock Wait Timeout interval

• Choose the Best Method of Locking

• Enable Prefetch Close for Read-Only Transactions

• Use a Connection Handle When Calling SQLTransact

• Enable Multi-Threaded Mode to Handle Concurrent Connections

Diagnose Client/Server Performance
Performance impact: Variable

You can analyze your client/server performance with statistics that are tracked in the
SYS.SYSTEMSTATS table.

These statistics can also be viewed with either the ttStats utility or the TT_STATS PL/SQL
package.

Note:

For more details on the SYS.SYSTEMSTATS table, see SYS.SYSTEMSTATS in the
Oracle TimesTen In-Memory Database System Tables and Views Reference. For
details on the ttStats utility, see ttStats in the Oracle TimesTen In-Memory Database
Reference. For more details on the TT_STATS PL/SQL package, see TT_STATS in the
Oracle TimesTen In-Memory Database PL/SQL Packages Reference.

• Total number of executions from a client/server application.

• Total number of INSERT, UPDATE, DELETE, SELECT, MERGE, ALTER, CREATE, DROP statements
run by the server.

• Total number of transactions committed or rolled back by the server.

• Total number of table rows inserted, updated, or deleted by the server.

• Total number of client/server roundtrips.

• Total number of bytes transmitted or received by the server.

• Total number of client/server disconnects.

Work Locally When Possible
Performance impact: Large

Chapter 10
Client/Server Tuning

10-9

Using a TimesTen client to access databases on a remote server system adds network
overhead to your connections. Whenever possible, write your applications to access TimesTen
locally using a direct driver, and link the application directly with TimesTen.

Choose Timeout Connection Attributes for Your Client
Performance impact: Variable

By default, connections wait 60 seconds for a TimesTen client and server to complete a
network operation. The TTC_Timeout attribute determines the maximum number of seconds a
client application waits for the result from the corresponding server process before timing out.

If you are using multiple servers for automatic client failover, then you can set the
TTC_ConnectTimeout attribute to specify the maximum number of seconds the client waits for a
SQLDriverConnect or SQLDisconnect request. It overrides the value of TTC_Timeout for those
requests. Set the TTC_ConnectTimeout when you want connection requests to timeout with a
different timeframe than the timeout provided for query requests. For example, you can set a
longer timeout for connections if you know that it takes a longer time to connect, but set a
shorter timeout for all other queries.

The overall elapsed time allotted for the SQLDriverConnect call depends on if automatic client
failover is configured:

• If there is just one TTC_SERVERn connection attribute defined, then there is no automatic
client failover configured and the overall elapsed time allotted for the initial connection
attempt is limited to 10 seconds.

• If automatic client failover is defined and there is more than one TTC_SERVERn connection
attribute configured, then the overall elapsed time is four times the value of the timeout
(whether TTC_Timeout or TTC_ConnectTimeout). For example, if the user specifies
TTC_TIMEOUT=10 and there are multiple TTC_SERVERn servers configured, then the
SQLDriverConnect call could take up to 40 seconds.

However, within this overall elapsed timeout, each connection attempt can take the time
specified by the TTC_Timeout or TTC_ConnectTimeout value, where the TTC_ConnectTimeout
value overrides the TTC_Timeout value.

See Choose SQL and PL/SQL Timeout Values for information about how TTC_Timeout and
TTC_ConnectTimeout relates to SQL and PL/SQL timeouts.

See TTC_Timeout and TTC_ConnectTimeout in the Oracle TimesTen In-Memory Database
Reference.

Choose a Lock Wait Timeout interval
Performance impact: Variable

By default, connections wait 10 seconds to acquire a lock. To change the timeout interval for
locks, set the LockWait conection attribute or use the ttLockWait built-in procedure.

When running a workload of high lock-contention potential, consider setting the LockWait
connection attribute to a smaller value for faster return of control to the application, or setting
LockWait to a larger value to increase the successful lock grant ratio (with a risk of decreased
throughput).

See Setting Wait Time for Acquiring a Lock in this book or LockWait or ttLockWait in the Oracle
TimesTen In-Memory Database Reference.

Chapter 10
Client/Server Tuning

10-10

Choose the Best Method of Locking
Performance impact: Variable

When multiple connections access a database simultaneously, TimesTen uses locks to ensure
that the various transactions operate in apparent isolation.

TimesTen supports the isolation levels described in Transaction Management.

It also supports the locking levels: database-level locking, table-level locking and row-level
locking. You can use the LockLevel connection attribute to indicate whether database-level
locking or row-level locking should be used. Use the ttOptSetFlag procedure to set optimizer
hints that indicate whether table locks should be used. The default lock granularity is row-level
locking.

Note:

See LockLevel and ttOptSetFlag in the Oracle TimesTen In-Memory Database
Reference.

Choose an Appropriate Lock Level
If there is very little contention on the database, use table-level locking. It provides better
performance and deadlocks are less likely. There is generally little contention on the database
when transactions are short or there are few connections. In that case, transactions are not
likely to overlap.

• Table-level locking is also useful when a statement accesses nearly all the rows on a table.
Such statements can be queries, updates, deletes or multiple inserts done in a single
transaction.

• Database-level locking completely restricts database access to a single transaction, and it
is not recommended for ordinary operations. A long-running transaction using database-
level locking blocks all other access to the database, affecting even the various
background tasks needed to monitor and maintain the database.

• Row-level locking is generally preferable when there are many concurrent transactions that
are not likely to need access to the same row. On modern systems with a sufficient number
of processors using high-concurrency, for example, multiple ttBulkCp processes, row-level
locking generally outperforms database-level locking.

Note:

See ttBulkCp in the Oracle TimesTen In-Memory Database Reference.

Choose an Appropriate Isolation Level
When using row-level locking, applications can run transactions at the SERIALIZABLE or
READ_COMMITTED isolation level.

Chapter 10
Client/Server Tuning

10-11

The default isolation level is READ_COMMITTED. You can use the Isolation connection attribute
to specify one of these isolation levels for new connections.

When running at SERIALIZABLE transaction isolation level, TimesTen holds all locks for the
duration of the transaction.

• Any transaction updating a row blocks writers until the transaction commits.

• Any transaction reading a row blocks out writers until the transaction commits.

When running at READ_COMMITTED transaction isolation level, TimesTen only holds update locks
for the duration of the transaction.

• Any transaction updating a row blocks out writers to that row until the transaction commits.
A reader of that row receives the previously committed version of the row.

• Phantoms are possible. A phantom is a row that appears during one read but not during
another read, or appears in modified form in two different reads, in the same transaction,
due to early release of read locks during the transaction.

You can determine if there is an undue amount of contention on your system by checking for
time-out and deadlock errors (errors 6001, 6002, and 6003). Information is also available in the
lock.timeouts and lock.deadlocks columns of the SYS.SYSTEMSTATS table.

See Transaction Isolation Levels.

Enable Prefetch Close for Read-Only Transactions
Performance impact: Variable

A TimesTen extension enables applications to optimize read-only query performance in client/
server applications. When you enable prefetch close, the server closes the cursor and commits
the transaction after the server has fetched the entire result set for a read-only query. This
enhances performance by decreasing the network round-trips between client and server.

• ODBC: Use the SQLSetConnectOption to set the TT_PREFETCH_CLOSE ODBC connection
option. See Optimizing Query Performance in the Oracle TimesTen In-Memory Database C
Developer's Guide.

• JDBC: Call the TimesTenConnection method setTtPrefetchClose() with a setting of true.
See Optimizing Query Performance in the Oracle TimesTen In-Memory Database Java
Developer's Guide.

Use a Connection Handle When Calling SQLTransact
Performance impact: Large

You should always call SQLTransact with a valid HDBC and a null environment handle.

SQLTransact (SQL_NULL_HENV, ValidHDBC, fType)

It is possible to call SQLTransact with a non-null environment handle and a null connection
handle, but that usage is not recommended as it abruptly commits or rolls back every
transaction for the process, which is slow and can cause unexpected application behavior.

Enable Multi-Threaded Mode to Handle Concurrent Connections
The MaxConnsPerServer connection attribute sets the maximum number of concurrent
connections allowed for a TimesTen server process.

Chapter 10
Client/Server Tuning

10-12

By default, MaxConnsPerServer equals to 1, meaning that each TimesTen server process can
only handle one client connection.

Setting MaxConnsPerServer > 1 enables multi-threaded mode for the database so that it can
use threads instead of processes to handle client connections. This reduces the time required
for applications to establish new connections and increases overall efficiency in configurations
that use a large number of concurrent client/server connections.

See Defining Server DSNs for TimesTen Server on a Linux or UNIX System.

SQL Tuning
After you have determined the overall locking and I/O strategies, make sure that the individual
SQL statements run as efficiently as possible.

The following sections describe how to streamline your SQL statements:

• Tune Statements and Use Indexes

• Collect and Evaluate Sampling of Runtimes for SQL Statements

• Creating Tables Without Indexes for Performance When Loading Data

• Select the Appropriate Type of Index

• Size Hash Indexes Appropriately

• Use Foreign Key Constraint Appropriately

• Compute Exact or Estimated Statistics

• Update Table Statistics for Large Tables in Parallel

• Create Script to Regenerate Current Table Statistics

• Control the Invalidation of Commands in the SQL Command Cache

• Avoid ALTER TABLE

• Avoid Nested Queries

• Prepare Statements in Advance

• Avoid Unnecessary Prepare Operations

• Store Data Efficiently with Column-Based Compression of Tables

• Control Read Optimization During Concurrent Write Operations

• Choose SQL and PL/SQL Timeout Values

Tune Statements and Use Indexes
Performance impact: Large

Verify that all statements run efficiently. For example, use queries that reference only the rows
necessary to produce the required result set.

If only col1 from table t1 is needed, use the statement:

SELECT col1 FROM t1...

instead of using:

SELECT * FROM t1...

Chapter 10
SQL Tuning

10-13

The TimesTen Query Optimizer describes how to view the plan that TimesTen uses to run a
statement. Alternatively, you can use the ttIsql showplan command to view the plan. View
the plan for each frequently run statement in the application. If indexes are not used to
evaluate predicates, consider creating new indexes or rewriting the statement or query so that
indexes can be used. For example, indexes can only be used to evaluate WHERE clauses when
single columns appear on one side of a comparison predicate (equalities and inequalities), or
in a BETWEEN predicate.

If this comparison predicate is evaluated often, it would therefore make sense to rewrite

WHERE c1+10 < c2+20

to

WHERE c1 < c2+10

and create an index on c1.

The presence of indexes does slow down write operations such as UPDATE, INSERT, DELETE and
CREATE VIEW. If an application does few reads but many writes to a table, an index on that
table may hurt overall performance rather than help it.

Occasionally, the system may create a temporary index to speed up query evaluation. If this
happens frequently, it is better for the application itself to create the index. The
CMD_TEMP_INDEXES column in the MONITOR table indicates how often a temporary index was
created during query evaluation.

If you have implemented time-based aging for a table or cache group, create an index on the
timestamp column for better performance of aging. See Time-Based Aging.

Collect and Evaluate Sampling of Runtimes for SQL Statements
Performance impact: Variable

TimesTen provides built-in procedures that measure the runtime of SQL operations to
determine the performance of SQL statements.

Instead of tracing, the built-in procedures sample the runtime of SQL statements during
processing. The built-in procedures measure the runtime of SQL statements by timing the
processing within the SQLExecute API.

You can configure the sampling rate and how the runtimes are collected with the
ttStatsConfig built-in procedure and the following name-value pairs:

Note:

See ttStatsConfig in the Oracle TimesTen In-Memory Database Reference.

Table 10-1 ttStatsConfig Parameter and Value Descriptions

Parameter Description

SQLCmdSampleFactor Configures how often a SQL statement runtime sample is taken. The
default is 0, which means that the sampling is turned off. For example,
when set to 10, TimesTen captures the wall clock time of the SQL
statement runtime for every 10th statement.

Chapter 10
SQL Tuning

10-14

Table 10-1 (Cont.) ttStatsConfig Parameter and Value Descriptions

Parameter Description

ConnSampleFactor Configures how often a SQL statement sample is taken for an
individual connection. The value includes two parameters separated by
a comma within quotes, so that it appears as a single value. The first
number is the connection ID; the second is the same as the
SQLCmdSampleFactor as a number that designates how often the
command sample is taken. By default, sampling is turned off (set to
zero) for individual connections.

SQLCmdHistogramReset When set to a nonzero value, clears the SQL runtime histogram data.

StatsLevel Sets the level of statistics to be taken. Values can be set to either NONE,
BASIC, TYPICAL, or ALL. The default is TYPICAL. Setting the level to
ALL could negatively impact your performance.

The following are examples of how to set the name-value pairs with the ttStatsConfig built-in
procedure:

Note:

You can achieve the best results by choosing representative connections with the
ConnSampleFactor parameter in the ttStatsConfig built-in procedure, rather than
sampling all transactions. Sampling all transactions with a small sample factor can
affect your performance negatively.

For meaningful results, the database should remain in memory since unloading and
re-loading the database empties the SQL command cache.

Sample every 5th statement on connection 1.

Command> call ttStatsConfig('ConnSampleFactor', '1,5');
< CONNSAMPLEFACTOR, 1,5 >
1 row found.

Turn off sampling on connection 1.

Command> call ttStatsConfig('ConnSampleFactor', '1,0');
< CONNSAMPLEFACTOR, 1,0 >
1 row found.

Sample every command:

Command> call ttStatsConfig('SqlCmdSampleFactor',1);
< SQLCMDSAMPLEFACTOR, 1 >
1 row found.

Check whether sampling:

Command> call ttStatsConfig('SqlCmdSampleFactor');
< SQLCMDSAMPLEFACTOR, 1 >
1 row found.

Check the current database statistics collection level.

Chapter 10
SQL Tuning

10-15

Command> call ttStatsConfig('StatsLevel');
< STATSLEVEL, TYPICAL >
1 row found.

Turn off database statistics collection by setting to NONE.

Command> call ttStatsConfig('StatsLevel','None');
< STATSLEVEL, NONE >
1 row found.

Once you have configured the statistics that you want collected, the collected statistics are
displayed with the ttSQLCmdCacheInfo built-in procedure. To display the runtime histogram at
either the command or database levels, use the ttSQLExecutionTimeHistogram built-in
procedure.

The ttSQLCmdCacheInfo built-in procedure displays the following information relating to SQL
runtime statistics:

• Number of fetch executions performed internally for this statement.

• The timestamp when the statement started.

• The maximum wall clock run time in seconds of this statement.

• Last measured runtime in seconds of the statement.

• The minimum runtime in seconds of the statement.

In the following example, the display shows these statistics as the last five values:

Command> vertical call ttSQLCmdCacheInfo(135680792);

 SQLCMDID: 135680792
 PRIVATE_COMMAND_CONNECTION_ID: -1
 EXECUTIONS: 97414
 PREPARES: 50080
 REPREPARES: 1
 FREEABLE: 1
 SIZE: 3880
 OWNER: SALES
 QUERYTEXT: select min(unique2) from big1
 FETCHCOUNT: 40
 STARTTIME: 2018-04-10 13:10:46.808000
 MAXEXECUTETIME: .001319
 LASTEXECUTETIME: .000018
 MINEXECUTETIME: .000017
 EXECLOC: 0
 GRIDCMDID: 00000000000000000000
TEMPSPACEUSAGE: 0 MAXTEMPSPACEUSAGE: 0
1 row found.

See ttSQLCmdCacheInfo in the Oracle TimesTen In-Memory Database Reference.

The ttSQLExecutionTimeHistogram built-in procedure displays a histogram of SQL runtimes
for either a single SQL command or all SQL commands in the command cache, assuming that
sampling is enabled where SQLCmdSampleFactor is greater than zero.

The histogram displays a single row for each bucket of the histogram. Each row includes the
following information:

• The number of SQL statement runtime operations that have been measured since either
the TimesTen database was started or after the ttStatsConfig built-in procedure was
used to reset statistics.

Chapter 10
SQL Tuning

10-16

• Accumulated wall clock runtime.

• The runtime limit that denotes each time frame.

• The last row shows the number of SQL statements that ran in a particular time frame.

The following example shows the output for the ttSQLExecutionTimeHistogram built-in
procedure:

The following example of the ttSQLExecutionTimeHistogram built-in procedure shows that a
total of 1919 statements ran. The total time for all 1919 statements to run was 1.090751
seconds. This example shows that SQL statements ran in the following time frames:

• 278 statements ran in a time frame that was less than or equal to .00001562 seconds.

• 1484 statements ran in a time frame that was greater than .00001562 seconds and less
than or equal to .000125 seconds.

• 35 statements ran in a time frame that was greater than .000125 seconds and less than or
equal to .001 seconds.

• 62 statements ran in a time frame that was greater than .001 seconds and less than or
equal to .008 seconds.

• 60 statements ran in a time frame that was greater than .008 seconds and less than or
equal to .064 seconds.

Command> call ttSQLExecutionTimeHistogram;
< 1919, 1.090751, .00001562, 278 >
< 1919, 1.090751, .000125, 1484 >
< 1919, 1.090751, .001, 35 >
< 1919, 1.090751, .008, 62 >
< 1919, 1.090751, .064, 60 >
< 1919, 1.090751, .512, 0 >
< 1919, 1.090751, 4.096, 0 >
< 1919, 1.090751, 32.768, 0 >
< 1919, 1.090751, 262.144, 0 >
< 1919, 1.090751, 9.999999999E+125, 0 >
10 rows found.

Creating Tables Without Indexes for Performance When Loading Data
Performance impact: Variable

If you are planning to load your tables with data, consider creating your tables without indexes.

After the data is loaded, you can then create your indexes. This reduces the time it takes to
load the data into the tables. The exception is if you are using foreign keys and reference
tables.

Select the Appropriate Type of Index
Performance impact: Variable

The TimesTen database supports hash and range indexes.

The following details when it is appropriate to use each type of index.

Hash indexes are useful for finding rows with an exact match on one or more columns. Hash
indexes are useful for doing equality searches. A hash index is created with either of the
following:

Chapter 10
SQL Tuning

10-17

• You can create a hash index or a unique hash index with the CREATE [UNIQUE] HASH
INDEX statement.

• You can create a unique hash index when creating your table with the CREATE TABLE...
UNIQUE HASH ON statement. The unique hash index is specified over the primary key
columns of the table.

Note:

If you are planning to load your tables with data, consider creating your tables
without indexes. After the data is loaded, you can then create your indexes. This
reduces the time it takes to load the data into the tables. The exception is if you
are using foreign keys and reference tables.

Range indexes are created by default with the CREATE TABLE statement or created with the
CREATE [UNIQUE] HASH INDEX statement. Range indexes can speed up exact key lookups but
are more flexible and can speed up other queries as well. Select a range index if your queries
include LESS THAN or GREATER THAN comparisons. Range indexes are effective for high-
cardinality data: that is, data with many possible values, such as CUSTOMER_NAME or
PHONE_NUMBER. Range indexes are optimized for in-memory data management.

Range indexes can also be used to speed up "prefix" queries. A prefix query has equality
conditions on all but the last key column that is specified. The last column of a prefix query can
have either an equality condition or an inequality condition.

Consider the following table and index definitions:

Command> CREATE TABLE T(i1 tt_integer, i2 tt_integer, i3 tt_integer, ...);
Command> CREATE INDEX IXT on T(i1, i2, i3);

The index IXT can be used to speed up the following queries:

Command> SELECT * FROM T WHERE i1>12;
Command> SELECT * FROM T WHERE i1=12 and i2=75;
Command> SELECT * FROM T WHERE i1=12 and i2 BETWEEN 10 and 20;
Command> SELECT * FROM T WHERE i1=12 and i2=75 and i3>30;

The index IXT is not used for the following queries, because the prefix property is not satisfied:

Command> SELECT * FROM T WHERE i2=12;

There is no equality condition for i1.

The index IXT is used, but matching only occurs on the first two columns for queries like the
following:

Command> SELECT * FROM T WHERE i1=12 and i2<50 and i3=630;

Range indexes have a dynamic structure that adjusts itself automatically to accommodate
changes in table size. A range index can be either unique or non-unique and can be declared
over nullable columns. It also allows the indexed column values to be changed once a record
is inserted. A range index is likely to be more compact than an equivalent hash index.

Size Hash Indexes Appropriately
Performance impact: Variable

Chapter 10
SQL Tuning

10-18

TimesTen uses hash indexes as both primary key constraints and when specified as part of the
CREATE INDEX statement. The size of the hash index is determined by the PAGES parameter
specified in the UNIQUE HASH ON clause of the CREATE TABLE and CREATE INDEX statements.

The value for PAGES should be the expected number of rows in the table divided by 256; for
example, a 256,000 row table should have PAGES = 1000. A smaller value may result in a
greater number of hash collisions, decreasing performance, while a larger value may provide
somewhat increased performance at the cost of extra space used by the index.

If the number of rows in the table varies dramatically, and if performance is the primary
consideration, it is best to create a large index. If the size of a table cannot be accurately
predicted, consider using a range index. Also, consider the use of unique indexes when the
indexed columns are large CHAR or binary values or when many columns are indexed. Unique
indexes may be faster than hash indexes in these cases.

If the performance of record inserts degrades as the size of the table gets larger, it is very likely
that you have underestimated the expected size of the table. You can resize the hash index by
using the ALTER TABLE statement to reset the PAGES value in the UNIQUE HASH ON clause. See
information about SET PAGES in the ALTER TABLE section in the Oracle TimesTen In-Memory
Database SQL Reference.

Use Foreign Key Constraint Appropriately
Performance impact: Variable

The declaration of a foreign key has no performance impact on SELECT queries, but it slows
down the INSERT and UPDATE operations on the table that the foreign key is defined on and the
UPDATE and DELETE operations on the table referenced by the foreign key.

The slow down is proportional to the number of foreign keys that either reference or are
defined on the table.

Compute Exact or Estimated Statistics
Performance impact: Large

If statistics are available on the data in the database, the TimesTen optimizer uses them when
preparing a command to determine the optimal path to the data. If there are no statistics, the
optimizer uses generic guesses about the data distribution.

Note:

See The TimesTen Query Optimizer.

You should compute statistics before preparing your statements, since the information is likely
to result in a more efficient query optimizer plan. When gathering statistics, you need to
determine when and how often to gather new statistics as performance is affected by the
statistics collection process. The frequency of collection should balance the task of providing
accurate statistics for the optimizer against the processing overhead incurred by the statistics
collection process.

Since computing statistics is a time-consuming operation, you should compute statistics with
the following guidelines:

• Update statistics after loading your database or after major application upgrades.

Chapter 10
SQL Tuning

10-19

• Do not update statistics during a heavy transaction load.

• Update statistics when there is substantial creation or alteration on tables, columns, or
PL/SQL objects.

If you have created or altered a substantial number of tables, columns, or PL/SQL objects
in your database, you should update the data dictionary optimizer statistics for the
following system tables: SYS.TABLES, SYS.COLUMNS, and SYS.OBJ$.

• When you substantially modify tables in batch operations, such as a bulk load or bulk
delete, you can gather statistics on these tables as part of the batch operation.

• Update statistics infrequently, such as once a week or once a month, when tables are only
incrementally modified.

• Update statistics as part of a regularly run script or batch job during low transaction load
times.

• When updating the statistics for multiple large tables, see Update Table Statistics for Large
Tables in Parallel.

Note:

For performance reasons, TimesTen does not hold a lock on tables or rows when
computing statistics.

Use the following for computing statistics: ttIsql statsupdate command, ttOptUpdateStats,
or ttOptEstimateStats. Providing an empty string as the table name updates statistics for all
tables in the current user's schema.

• The statsupdate command within ttIsql evaluates every row of the table(s) in question
and computes exact statistics.

• The ttOptUpdateStats built-in procedure evaluates every row of the table(s) in question
and computes exact statistics.

• The ttOptEstimateStats procedure evaluates only a sampling of the rows of the table(s)
in question and produces estimated statistics. This can be faster, but may result in less
accurate statistics. Computing statistics with a sample of 10 percent is about ten times
faster than computing exact statistics and generally results in the same execution plans.

Note:

See ttIsql and Built-In Procedures in the Oracle TimesTen In-Memory Database
Reference.

Update Table Statistics for Large Tables in Parallel
Performance impact: Large

It is important to keep table statistics up to date for all TimesTen tables. However, this process
can be time-consuming and performance intensive when used on large tables. Consider calling
the ttOptUpdateStats built-in procedure in parallel when updating the statistics for multiple
large tables.

Chapter 10
SQL Tuning

10-20

Note:

A TimesTen table is considered a small table when it contains less than 1 million
rows. A TimesTen table is considered a large table when it contains over 100 million
rows.

Call the ttOptUpdateStats built-in procedure for all of the large tables where you want to
update table statistics. Make sure to call each ttOptUpdateStats built-in procedure in parallel.
See ttOptUpdateStats in the Oracle TimesTen In-Memory Database Reference.

Command> call ttOptUpdateStats('table1',0,0);
Command> call ttOptUpdateStats('table2',0,0);
...
...
Command> call ttOptUpdateStats('finaltable',0,0);

Once the ttOptUpdateStats built-in procedure calls have completed, determine how many
transactions are accessing the large TimesTen tables for which you updated table statistics.
During low transaction load times run the ttOptCmdCacheInvalidate('',1) built-in procedure.
See ttOptCmdCacheInvalidate in the Oracle TimesTen In-Memory Database Reference.
During high transaction load times run the following built-in procedures and make sure to call
each ttOptCmdCacheInvalidate built-in procedure in parallel:

Command> call ttOptCmdCacheInvalidate('table1',1);
Command> call ttOptCmdCacheInvalidate('table2',1);
...
...
Command> call ttOptCmdCacheInvalidate('finaltable',1);

The table statistics of your tables are now up to date and compiled commands in the SQL
command cache are invalidated.

Create Script to Regenerate Current Table Statistics
Performance impact: Variable

You can generate a SQL script with the ttOptStatsExport built-in procedure from which you
can restore the table statistics to the current state.

When you apply these statements, you re-create the same environment. Recreating the table
statistics could be used for diagnosing SQL performance.

Call the ttOptStatsExport built-in procedure to return the set of statements required to restore
the table statistics to the current state. If no table is specified, ttOptStatsExport returns the
set of statements required to restore the table statistics for all user tables that the calling user
has permission to access.

Note:

See ttOptStatsExport in the Oracle TimesTen In-Memory Database Reference.

The following example returns a set of built-in procedure commands that would be required to
run to restore the statistics for the employees table:

Chapter 10
SQL Tuning

10-21

Command> call ttOptStatsExport('hr.employees');

< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'EMPLOYEE_ID', 0, (6, 0, 107, 107,
 (20, 20, 1 ,100, 120, 101), (20, 20, 1 ,121, 141, 122), (20, 20, 1 ,142, 162,
143), (20, 20, 1 ,163, 183, 164), (20, 20, 1 ,184, 204, 185), (1, 1, 1 ,205, 206,
205))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'FIRST_NAME', 0, (1, 0, 89, 107,
(89, 107, 0, 'Adam', 'Winston', 'Adam'))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'LAST_NAME', 0, (1, 0, 97, 107, (97,
107, 0, 'Abel', 'Zlotkey', 'Abel'))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'EMAIL', 0, (6, 0, 107, 107, (20,
20, 1, 'ABANDA', 'DGREENE', 'ABULL'), (20, 20, 1, 'DLEE', 'JKING', 'DLORENTZ'),
(20, 20, 1, 'JLANDRY', 'LOZER', 'JLIVINGS'), (20, 20, 1, 'LPOPP', 'RMATOS',
'LSMITH'), (20, 20, 1, 'RPERKINS', 'WGIETZ', 'SANDE'), (1, 1, 1, 'WSMITH',
'WTAYLOR', 'WSMITH'))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'PHONE_NUMBER', 0, (1, 0, 103, 107,
(103, 107, 0, '011.44.1343.329268', '650.509.4876', '011.44.1343.329268'))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'HIRE_DATE', 0, (1, 0, 90, 107, (90,
107, 0 ,'1987-06-17 00:00:00', '2000-04-21 00:00:00', '1987-06-17 00:00:00'))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'JOB_ID', 0, (4, 0, 19, 107, (11,
16, 5, 'AC_ACCOUNT', 'PR_REP', 'FI_ACCOUNT'), (3, 11, 30, 'PU_CLERK', 'SA_REP',
'SA_REP'), (1, 20, 20, 'SH_CLERK', 'ST_CLERK', 'ST_CLERK'), (0, 0, 5, 'ST_MAN',
'ST_MAN', 'ST_MAN'))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'SALARY', 0, (1, 0, 57, 107, (57,
107, 0 ,2100, 24000, 2100))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'COMMISSION_PCT', 0, (1, 72, 7, 107,
(7, 35, 0 ,0.1, 0.4, 0.1))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'MANAGER_ID', 0, (1, 1, 18, 107,
(18, 106, 0 ,100, 205, 100))); >
< call ttoptsetcolIntvlstats('HR.EMPLOYEES', 'DEPARTMENT_ID', 0, (3, 1, 11, 107,
(4, 10, 45 ,10, 50, 50), (2, 6, 34 ,60, 80, 80), (2, 5, 6 ,90, 110, 100))); >
< call ttoptsettblstats('HR.EMPLOYEES', 107, 0); >
12 rows found.

Control the Invalidation of Commands in the SQL Command Cache
Performance impact: Variable

TimesTen caches compiled commands in the SQL command cache. These commands can be
invalidated. An invalidated command is usually re-prepared automatically just before it is re-
run. A single command may be prepared several times.

Note:

See Using the Query Optimizer to Choose Optimal Plan for more information on how
commands are automatically invalidated.

When you compute statistics, the process of updating and compiling commands may compete
for the same locks on certain tables. If statistics are collected in multiple transactions and
commands are invalidated after each statistics update, the following issues may occur:

• A join query that references multiple tables might be invalidated and recompiled more than
once.

• Locks needed for recompilation could interfere with updating statistics, which could result
in a deadlock.

Chapter 10
SQL Tuning

10-22

You can avoid these issues by controlling when commands are invalidated in the SQL
command cache. In addition, you may want to hold off invalidation of all commands if you know
that the table and index cardinalities will be changing significantly.

You can control invalidation of the commands, as follows:

1. Compute statistics without invalidating the commands in the SQL command cache. Set the
invalidate option to 0 in either the ttIsql statsupdate command, the ttOptUpdateStats
built-in procedure, or the ttOptEstimateStats built-in procedure.

2. Manually invalidate the commands in the SQL command cache once all statistics have
been compiled with the ttOptCmdCacheInvalidate built-in procedure.

The ttOptCmdCacheInvalidate built-in procedure can invalidate commands associated solely
with a table or all commands within the SQL command cache. In addition, you can specify
whether the invalidated commands are to be recompiled or marked as unusable.

Note:

For complete details on when to optimally calculate statistics, see Compute Exact or
Estimated Statistics. In addition, see ttIsql, ttOptUpdateStats, ttOptEstimateStats, or
ttOptCmdCacheInvalidate in the Oracle TimesTen In-Memory Database Reference.

Avoid ALTER TABLE
Performance impact: Variable

The ALTER TABLE statement enables applications to add columns to a table and to drop
columns from a table. Although the ALTER TABLE statement itself runs very quickly in most
cases, the modifications it makes to the table can cause subsequent DML statements and
queries on the table to run more slowly.

The actual performance degradation that the application experiences varies with the number of
times the table has been altered and with the particular operation being performed on the
table.

Dropping VARCHAR2 and VARBINARY columns is slower than dropping columns of other data
types since a table scan is required to free the space allocated to the existing VARCHAR2 and
VARBINARY values in the column to be dropped.

Avoid Nested Queries
Performance impact: Variable

If you can, it is recommended that you should rewrite your query to avoid nested queries that
need materialization of many rows.

The following are examples of nested queries that may need to be materialized and result in
multiple rows:

• Aggregate nested query with GROUP BY
• Nested queries that reference ROWNUM
• Union, intersect, or minus nested queries

• Nested queries with ORDER BY

Chapter 10
SQL Tuning

10-23

For example, the following aggregate nested query results in an expensive performance
impact:

Command> SELECT * FROM (SELECT SUM(x1) sum1 FROM t1 GROUP BY y1),
(SELECT sum(x2) sum2 FROM t2 GROUP BY y2) WHERE sum1=sum2;

The following is an example of a nested query that references ROWNUM:

Command> SELECT * FROM (SELECT rownum rc, x1 FROM t1 WHERE x1>100),
(SELECT ROWNUM rc, x2 FROM t2 WHERE x2>100) WHERE x1=x2;

The following is an example of a union nested query:

Command> SELECT * FROM (SELECT x1 FROM t1 UNION SELECT x2 FROM t2),
(SELECT x3 FROM t3 GROUP BY x3) WHERE x1=x3;

See Subqueries in the Oracle TimesTen In-Memory Database SQL Reference.

Prepare Statements in Advance
Performance impact: Large

If you have applications that generate a statement multiple times searching for different values
each time, prepare a parameterized statement to reduce compile time.

For example, if your application generates statements like:

SELECT A FROM B WHERE C = 10;
SELECT A FROM B WHERE C = 15;

You can replace these statements with the single statement:

SELECT A FROM B WHERE C = ?;

TimesTen shares prepared statements automatically after they have been committed. As a
result, an application request to prepare a statement for execution may be completed very
quickly if a prepared version of the statement already exists in the system. Also, repeated
requests to run the same statement can avoid the prepare overhead by sharing a previously
prepared version of the statement.

Even though TimesTen allows prepared statements to be shared, it is still a good practice for
performance reasons to use parameterized statements. Using parameterized statements can
further reduce prepare overhead, in addition to any savings from sharing statements.

Avoid Unnecessary Prepare Operations
Performance impact: Large

Because preparing SQL statements is an expensive operation, your application should
minimize the number of calls to the prepare API. Most applications prepare a set of statements
at the beginning of a connection and use that set for the duration of the connection. This is a
good strategy when connections are long, consisting of hundreds or thousands of transactions.

But if connections are relatively short, a better strategy is to establish a long-duration
connection that prepares the statements and runs them on behalf of all threads or processes.
The trade-off here is between communication overhead and prepare overhead, and can be
examined for each application. Prepared statements are invalidated when a connection is
closed.

See ttSQLCmdCacheInfoGet in the Oracle TimesTen In-Memory Database Reference.

Chapter 10
SQL Tuning

10-24

Store Data Efficiently with Column-Based Compression of Tables
Performance impact: Large

TimesTen provides the ability to compress tables at the column level, which stores the data
more efficiently at the cost of lower performance.

This mechanism provides space reduction for tables by eliminating the redundant storage of
duplicate values within columns and improves the performance of SQL queries that perform full
table scans.

When compressing columns of a TimesTen table, consider the following:

• Compress a column if values are repeated throughout such as the name of countries or
states.

• Compress a column group if you often access multiple columns together.

• Do not compress columns that contain data types that require a small amount of storage
such as TT_TINYINT.

• TimesTen does not compress NULL values.

You can define one or more columns in a table to be compressed together, which is called a
compressed column group. You can define one or more compressed column groups in each
table.

A dictionary table is created for each compressed column group that contains a column with all
the distinct values of the compressed column group. The compressed column group now
contains a pointer to the row in the dictionary table for the appropriate value. The width of this
pointer can be 1, 2, or 4 bytes long depending on the maximum number of entries you defined
for the dictionary table. So if the sum of the widths of the columns in a compressed column
group is wider than the 1, 2, or 4 byte pointer width, and if there are a lot of duplicate values of
those column values, you have reduced the amount of space used by the table.

Figure 10-1 shows the compressed column group in the table pointing to the appropriate row in
the dictionary table.

Figure 10-1 Column-Based Compression of Tables

Dictionary table for STATE

STATE is the compressed

column group in the table

Address table

CITY STATE ZIPSTREET

...

of timesSTREET

Alaska

California

Florida

North Carolina

South Carolina

Wisconsin

2

7

9

1

3

2

The dictionary table has a column of pointers to each of the distinct values. When the user
configures the maximum number of distinct entries for the compressed column group, the size
of the compressed column group is set as follows:

Chapter 10
SQL Tuning

10-25

• 1 byte for a maximum number of entries of 255 (28-1). When the maximum number is
between 1 and 255, the dictionary size is set to 255 (28-1) values and the compressed
column group pointer column is 1 byte.

• 2 bytes for a maximum number of entries of 65,535 (216-1). When the maximum number is
between 256 and 65,535, the dictionary size is set to 65,535 (216-1) values and the
compressed column group pointer column is 2 bytes.

• 4 bytes for a maximum number of entries of 4,294,967,295 (232-1). When the maximum
number is between 65,536 and 4,294,967,295, the dictionary size is set to 4,294,967,295
(232-1) values and the compressed column group pointer column is 4 bytes. This is the
default.

Compressed column groups can be added at the time of table creation or added later using
ALTER TABLE. You can drop the entire compressed column group with the ALTER TABLE
statement. See ALTER TABLE and CREATE TABLE in the Oracle TimesTen In-Memory
Database SQL Reference.

You can call the ttSize built-in procedure to review the level of compression that TimesTen
achieved on your compressed table. For more information on the ttSize built-in procedure,
see ttSize in the Oracle TimesTen In-Memory Database Reference.

Control Read Optimization During Concurrent Write Operations
Performance impact: Variable

TimesTen concurrently processes read and write operations optimally. Your read operations
can be optimized for read-only concurrency when you use transaction level optimizer hints
such as ttOptSetFlag ('tblLock',1) or statement level optimizer hints such as /*+
tt_tbllock(1) tt_rowlock(0) */.

Write operations that operate concurrently with read optimized queries may result in
contention.

You can control read optimization during periods of concurrent write operations with the
ttDBWriteConcurrencyModeSet built-in procedure. This built-in procedure enables you to
switch between a standard mode and an enhanced write concurrent mode. In the standard
mode, the optimizer respects read optimization hints. In the enhanced write concurrent mode,
the optimizer ignores read optimization hints and does not use shared read table locks or write
table locks.

Note:

For more information about table locking, see Locking Granularities.

For more information about optimizer hints, see Use Optimizer Hints to Modify the
Execution Plan.

For more information about transaction level optimizer hints, see ttOptSetFlag in the
Oracle TimesTen In-Memory Database Reference.

Set the mode of the ttDBWriteConcurrencyModeSet built-in procedure to 1 to enable the
enhanced write concurrent mode and disable read optimization. Set the mode to 0 to disable the
enhanced write concurrent mode and re-enable read optimization.

Chapter 10
SQL Tuning

10-26

When the mode is set to 1, all transaction and statement table lock optimizer hints are ignored.
This affects the following:

• Shared read table-level locks for SELECT query and subqueries that are triggered by
optimizer hints.

• Write table locks for DML statements that are triggered by optimizer hints.

Regardless of the mode setting, table locks that are not triggered by optimizer hints are not
affected.

Set the wait of the ttDBWriteConcurrencyModeSet built-in procedure to 0 to perform a mode
switch without notifications. Set the wait of the ttDBWriteConcurrencyModeSet built-in
procedure to 1 to force the built-in procedure to wait until the mode transition is complete.

Running certain SQL statements causes the mode of the ttDBWriteConcurrencyModeSet built-
in procedure to remain in transition. Such SQL statements must match the following two
conditions:

• Affected by the write concurrency mode.

• Compiled in a different write concurrency mode.

The mode of the ttDBWriteConcurrencyModeSet built-in procedure remains in transition until
all such SQL statements complete. The ttDBWriteConcurrencyModeSet built-in procedure uses
lock acquisition to wait during the mode transition. An error is returned if the
ttDBWriteConcurrencyModeSet built-in procedure is not granted a lock within the timeout
interval of the current connection.

Note:

See ttDBWriteConcurrencyModeSet, ttLockWait, and ttDBWriteConcurrencyModeGet
in the Oracle TimesTen In-Memory Database Reference.

Choose SQL and PL/SQL Timeout Values
Performance impact: Variable

You should consider the relationship between certain connection attributes when setting
timeout values.

• SQLQueryTimeout or SQLQueryTimeoutMSec: Controls how long a SQL statement runs
before timing out.

By default, SQL statements do not time out. In some cases, you may want to specify a
value for either the SQLQueryTimeout or SQLQueryTimeoutMSec connection attribute to set
the time limit in seconds or milliseconds within which the database should run SQL
statements. (Note that this applies to any SQL statement, not just queries.)

Both SQLQueryTimeout and SQLQueryTimeoutMsec attributes are internally mapped to one
timeout value in milliseconds. If different values are specified for these attributes, only one
value is retained. See SQLQueryTimeout and SQLQueryTimeoutMSec in the Oracle
TimesTen In-Memory Database Reference.

• PLSQL_TIMEOUT: Controls how long a PL/SQL block runs before timing out.

By default, PL/SQL program units (PL/SQL procedures, anonymous blocks and functions)
are allowed to run for 30 seconds before being automatically terminated. In some cases,

Chapter 10
SQL Tuning

10-27

you may want to modify the PLSQL_TIMEOUT connection attribute value to allow PL/SQL
program units additional time to run. You can also modify this attribute with an ALTER
SESSION statement during runtime.

See PLSQL_TIMEOUT in the Oracle TimesTen In-Memory Database Reference.

• TTC_Timeout: Controls how long a TimesTen client waits for a response from the TimesTen
Server when the client has requested the server to run a SQL statement or PL/SQL block.

• TTC_ConnectTimeout: Controls how long the client waits for a SQLDriverConnect or
SQLDisconnect request. It overrides the value of TTC_Timeout for those requests.

See Choose Timeout Connection Attributes for Your Client.

If you use a TimesTen client/server, then SQLQueryTimeout (or SQLQueryTimeoutMSec) and
PLSQL_TIMEOUT (relevant for PL/SQL) should be set to significantly lower values than
TTC_Timeout, to avoid the possibility of the client mistaking a long-running SQL statement or
PL/SQL block for a non-responsive server.

If you use PL/SQL, the relationship between SQLQueryTimeout (or SQLQueryTimeoutMSec) and
PLSQL_TIMEOUT depends on how many SQL statements you use in your PL/SQL blocks. If
none, there is no relationship. If the maximum number of SQL statements in a PL/SQL block is
n, then PLSQL_TIMEOUT should presumably equal at least n x SQLQueryTimeout (or n x 1000 x
SQLQueryTimeoutMSec), including consideration of processing time in PL/SQL.

Note:

If SQLQueryTimeout (or SQLQueryTimeoutMSec) and PLSQL_TIMEOUT are not set
sufficiently less than TTC_Timeout, and the client mistakes a long-running SQL
statement or PL/SQL block for a non-responsive server and terminates the
connection, the server will cancel the SQL statement or PL/SQL block as soon as it
notices the termination of the connection.

Materialized View Tuning
You can improve performance of materialized views.

• Limit Number of Join Rows

• Use Indexes on Join Columns

• Avoid Unnecessary Updates

• Avoid Changes to the Inner Table of an Outer Join

• Limit Number of Columns in a View Table

Limit Number of Join Rows
Performance impact: Variable

Larger numbers of join rows decrease performance. You can limit the number of join rows and
the number of tables joined by controlling the join condition.

For example, use only equality conditions that map one row from one table to one or at most a
few rows from the other table.

Chapter 10
Materialized View Tuning

10-28

Use Indexes on Join Columns
Performance impact: Variable

Create indexes on the columns of the detail table that are specified in the SELECT statement
that creates the join. Also consider creating an index on the materialized view itself. This can
improve the performance of keeping the materialized view updated.

If an UPDATE or DELETE operation on a detail table is often based on a condition on a column, try
to create an index on the materialized view on this column if possible.

For example, cust_order is a materialized view of customer orders, based on two tables. The
tables are customer and book_order. The former has two columns (cust_id and cust_name)
and the latter has three columns (order_id, book, and cust_id). If you often update the
book_order table to change a particular order by using the condition
book_order.order_id=const, then create an index on cust_order.order_id. On the other
hand, if you often update based on the condition book_order.cust_id=const, then create an
index on Cust_order.cust_id.

If you often update using both conditions and cannot afford to create both indexes, you may
want to add book_order.ROWID in the view and create an index on it instead. In this case,
TimesTen updates the view for each detail row update instead of updating all of the rows in the
view directly and at the same time. The scan to find the row to be updated is an index scan
instead of a row scan, and no join rows need to be generated.

If ViewUniqueMatchScan is used in the execution plan, it is a sign that the execution may be
slower or require more space than necessary. A ViewUniqueMatchScan is used to handle an
update or delete that cannot be translated to a direct update or delete of a materialized view,
and there is no unique mapping between a join row and the associated row in the materialized
view. This can be fixed by selecting a unique key for each detail table that is updated or
deleted.

Avoid Unnecessary Updates
Performance impact: Variable

Try not to update a join column or a GROUP BY column because this involves deleting the old
value and inserting the new value.

Try not to update an expression that references more than one table. This may disallow direct
update of the view because TimesTen may perform another join operation to get the new value
when one value in this expression is updated.

View maintenance based on an update or delete is more expensive when:

• The view cannot be updated directly. For example, not all columns specified in the detail
table UPDATE or DELETE statement are selected in the view, or

• There is not an indication of a one-to-one mapping from the view rows to the join rows.

For example:

Command> CREATE MATERIALIZED VIEW v1 AS SELECT x1 FROM t1, t2 WHERE x1=x2;
Command> DELETE FROM t1 WHERE y1=1;

The extra cost comes from the fact that extra processing is needed to ensure that one and only
one view row is affected due to a join row.

Chapter 10
Materialized View Tuning

10-29

The problem is resolved if either x1 is UNIQUE or a unique key from t1 is included in the select
list of the view. ROWID can always be used as the unique key.

Avoid Changes to the Inner Table of an Outer Join
Performance impact: Variable

Since outer join maintenance is more expensive when changes happen to an inner table, try to
avoid changes to the inner table of an outer join.

When possible, perform INSERT operations on an inner table before inserting into the
associated join rows into an outer table. Likewise, when possible perform DELETE operations on
the outer table before deleting from the inner table. This avoids having to convert non-matching
rows into matching rows or vice versa.

Limit Number of Columns in a View Table
Performance impact: Variable

The number of columns projected in the view SelectList can impact performance. As the
number of columns in the select list grows, the time to prepare operations on detail tables
increases. In addition, the time to run operations on the view detail tables also increases. Do
not select values or expressions that are not needed.

The optimizer considers the use of temporary indexes when preparing operations on detail
tables of views. This can significantly slow down prepare time, depending upon the operation
and the view. If prepare time seems slow, consider using ttOptSetFlag to turn off temporary
range indexes and temporary hash scans.

Transaction Tuning
You can increase performance when using transactions.

• Locate Checkpoint and Transaction Log Files on Separate Physical Device

• Size Transactions Appropriately

• Use Durable Commits Appropriately

• Avoid Manual Checkpoints

• Turn Off Autocommit Mode

• Avoid Transaction Roll Back

• Avoid Large DELETE Statements

• Increase the Commit Buffer Cache Size

Locate Checkpoint and Transaction Log Files on Separate Physical Device
To improve performance, locate your transaction log files on a separate physical device from
the one on which the checkpoint files are located. The LogDir connection attribute determines
where log files are stored.

See Managing Transaction Log Buffers and Files in this book or LogDir in the Oracle TimesTen
In-Memory Database Reference.

Chapter 10
Transaction Tuning

10-30

Size Transactions Appropriately
Performance impact: Large

Each transaction, when it generates transaction log records (for example, a transaction that
does an INSERT, DELETE or UPDATE), incurs a file system write operation when the transaction
commits. File system I/O affects response time and may affect throughput, depending on how
effective group commit is.

Performance-sensitive applications should avoid unnecessary file system write operations at
commit. Use a performance analysis tool to measure the amount of time your application
spends in file system write operations (versus CPU time). If there seems to be an excessive
amount of I/O, there are two steps you can take to avoid writes at commit:

• Adjust the transaction size.

• Adjust whether file system write operations are performed at transaction commit. See Use
Durable Commits Appropriately.

Long transactions perform fewer file system write operations per unit of time than short
transactions. However, long transactions also can reduce concurrency. See Transaction
Management.

• If only one connection is active on a database, longer transactions could improve
performance. However, long transactions may have some disadvantages, such as longer
rollback operations.

• If there are multiple connections, there is a trade-off between transaction log I/O delays
and locking delays. In this case, transactions are best kept to the natural length, as
determined by requirements for atomicity and durability.

Use Durable Commits Appropriately
Performance impact: Large By default, each TimesTen transaction results in a file system
write operation at commit time. This practice ensures that no committed transactions are lost
because of system or application failures. Applications can avoid some or all of these file
system write operations by performing non-durable commits.
Non-durable commits do everything that a durable commit does except write the transaction
log to the file system. Locks are released and cursors are closed, but no file system write
operation is performed.

Note:

Some drivers only write data into cache memory or write to the file system some time
after the operating system receives the write completion notice. In these cases, a
power failure may cause some information that you thought was durably committed
to be lost. To avoid this loss of data, configure your file system to write to the
recording media before reporting completion or use an uninterruptible power supply.

The advantage of non-durable commits is a potential reduction in response time and increase
in throughput. The disadvantage is that some transactions may be lost in the event of system
failure. An application can force the transaction log to be persisted to the file system by
performing an occasional durable commit or checkpoint, thereby decreasing the amount of

Chapter 10
Transaction Tuning

10-31

potentially lost data. In addition, TimesTen itself periodically flushes the transaction log to the
file system when internal buffers fill up, limiting the amount of data that could be lost.

Transactions can be made durable or can be made nondurable on a connection-by-connection
basis. Applications can force a durable commit of a specific transaction by calling the
ttDurableCommit procedure.

Applications that use durable commits can benefit from using synchronous writes in place of
write and flush. To turn on synchronous writes set the first connection attribute
LogFlushMethod=1. The LogFlushMethod attribute controls how TimesTen writes and
synchronizes data to transaction log files. Although application performance can be affected by
this attribute, transaction durability is not affected. See LogFlushMethod in the Oracle
TimesTen In-Memory Database Reference.

The txn.commits.durable column of the SYS.SYSTEMSTATS table indicates the number of
transactions that were durably committed.

Avoid Manual Checkpoints
Performance impact: Large

If possible it is best to avoid performing manual checkpoints. You should configure background
checkpoints with the ttCkptConfig built-in procedure. Background checkpoints are less
obtrusive and use non-blocking (or "fuzzy") checkpoints.

Manual checkpoints only apply to TimesTen Classic. Manual checkpoints are not supported in
TimesTen Scaleout.

If a manual checkpoint is deemed necessary, it is generally better to call ttCkpt to perform a
non-blocking (or "fuzzy") checkpoint than to call ttCkptBlocking to perform a blocking
checkpoint. Blocking or ("transaction-consistent") checkpoints can have a significant
performance impact because they require exclusive access to the database. Non-blocking
checkpoints may take longer, but they permit other transactions to operate against the
database at the same time and thus impose less overall overhead. You can increase the
interval between successive checkpoints (ckptLogVolume parameter of the ttCkptConfig built-
in procedure) by increasing the amount of file system space available for accumulating
transaction log files.

As the transaction log increases in size (if the interval between checkpoints is large), recovery
time increases accordingly. If reducing recovery time after a system crash or application failure
is important, it is important to properly tune the ttCkptConfig built-in procedure. The
ckpt.completed column of the SYS.SYSTEMSTATS table indicates how often checkpoints have
successfully completed.

See ttCkptConfig in the Oracle TimesTen In-Memory Database Reference.

Turn Off Autocommit Mode
Performance impact: Large

AUTOCOMMIT mode forces a commit after each statement, and is enabled by default. Committing
each statement after execution, however, can significantly degrade performance. For this
reason, it is generally advisable to disable AUTOCOMMIT, using the appropriate API for your
programming environment.

The txn.commits.count column of the SYS.SYSTEMSTATS table indicates the number of
transaction commits.

Chapter 10
Transaction Tuning

10-32

If you do not include any explicit commits in your application, the application can use up
important resources unnecessarily, including memory and locks. All applications should do
periodic commits.

Avoid Transaction Roll Back
Performance impact: Large

When transactions fail due to erroneous data or application failure, they are rolled back by
TimesTen automatically. In addition, applications often explicitly roll back transactions to
recover from deadlock or timeout conditions. This is not desirable from a performance point of
view, as a roll back consumes resources and the entire transaction is wasted.

Applications should avoid unnecessary rollback operations. This may mean designing the
application to avoid contention and checking application or input data for potential errors in
advance, if possible. The txn.rollbacks column of the SYS.SYSTEMSTATS table indicates the
number of transactions that were rolled back.

Avoid Large DELETE Statements
Performance impact: Large

You should consider avoiding large delete statements.

• Avoid DELETE FROM Statements

• Consider Using the DELETE FIRST Clause

Avoid DELETE FROM Statements
If you attempt to delete a large number of rows (100,000 or more) from a table with a single
SQL statement the operation can take a long time.

TimesTen logs each row deleted, in case the operation needs to be rolled back, and writing all
of the transaction log records to the file system can be very time-consuming.

Another problem with such a large delete operation is that other database operations will be
slowed down while the write-intensive delete transaction is occurring. Deleting millions of rows
in a single transaction can take minutes to complete.

Another problem with deleting millions of rows at once occurs when the table is being
replicated. Because replication transmits only committed transactions, the replication agent
can be slowed down by transmitting a single, multi-hundred MB (or GB) transaction. TimesTen
replication is optimized for lots of small transactions and performs slowly when millions of rows
are deleted in a single transaction.

See DELETE in the Oracle TimesTen In-Memory Database SQL Reference.

Consider Using the DELETE FIRST Clause
If you want to delete a large number of rows and TRUNCATE TABLE is not appropriate, consider
using the DELETE FIRST NumRows clause to delete rows from a table in batches.

The DELETE FIRST NumRows syntax allows you to change “DELETE FROM TableName WHERE . . ."
into a sequence of “DELETE FIRST 10000 FROM TableName WHERE . . ." operations.

By splitting a large DELETE operation into a batch of smaller operations, the rows will be deleted
much faster, and the overall concurrency of the system and replication will not be affected.

Chapter 10
Transaction Tuning

10-33

For more information about the DELETE FIRST clause, see DELETE in the Oracle TimesTen In-
Memory Database SQL Reference.

Increase the Commit Buffer Cache Size
Performance impact: Large

TimesTen resource cleanup occurs during the reclaim phase of a transaction commit. During
reclaim, TimesTen reexamines all the transaction log records starting from the beginning of the
transaction to determine the reclaim operations that must be performed.

The reclaim phase of a large transaction commit results in a large amount of processing and is
very resource intensive. You can improve performance, however, by increasing the maximum
size of the commit buffer, which is the cache of transaction log records used during reclaim
operations.

You can use the TimesTen CommitBufferSizeMax connection attribute to specify the maximum
size of the commit buffer, in megabytes. This setting has the scope of your current session.

See Configuring the Commit Buffer for Reclaim Operations.

Recovery Tuning
You can improve the performance of database recovery after database shutdown or system
failure.

• Set RecoveryThreads

• Set CkptReadThreads

Set RecoveryThreads
Performance impact: Large

RecoveryThreads defines the number of parallel threads used to rebuild indexes during
database recovery time.

For performance reasons, TimesTen does not log changes to indexes. In the event of a crash,
all indexes need to be rebuilt. To reduce the index rebuild time, set the RecoveryThreads
attribute to the number of CPUs to improve recovery performance. See RecoveryThreads in
the Oracle TimesTen In-Memory Database Reference.

Set CkptReadThreads
Performance impact: Large

When a database has large checkpoint files (hundreds of gigabytes), first connection or
recovery operations may not perform well and, in extreme cases, may take hours to complete.

To improve recovery performance, use the CkptReadThreads connection attribute to increase
the number of concurrent threads used for reading the checkpoint files during the loading of
the database into memory. This reduces the amount of time it takes to load the TimesTen
database to memory by enabling parallel threads to read the TimesTen database checkpoint
files.

See CkptReadThreads in the Oracle TimesTen In-Memory Database Reference.

Chapter 10
Recovery Tuning

10-34

Scaling for Multiple CPUs
There are tips for improving performance for multiple CPUs.

• Run the Demo Applications as a Prototype

• Limit Database-Intensive Connections Per CPU

• Use Read Operations When Available

• Limit Prepares, Re-prepares, and Connects

• Enable Indexes to be Rebuilt in Parallel During Recovery

• Use Private Commands

Run the Demo Applications as a Prototype
Performance impact: Variable

One way to determine the approximate scaling you can expect from TimesTen is to run one of
the scalable demo applications, such as tptbm, on your system.

The tptbm application implements a multi-user throughput benchmark. It enables you to control
how it runs, including options to vary the number of processes that run TimesTen operations
and the transaction mix of SELECTs, UPDATEs, and INSERTs, for example. Run tptbm -help to
see the full list of options.

By default the demo runs one operation per transaction. You can specify more operations per
transaction to better model your application. Larger transactions may scale better or worse,
depending on the application profile.

Run multi-processor versions of the demo to evaluate how your application can be expected to
perform on systems that have multiple CPUs. If the demo scales well but your application
scales poorly, you might try simplifying your application to see where the issue is. Some users
comment out the TimesTen calls and find they still have bad scaling due to issues in the
application.

You may also find, for example, that some simulated application data is not being generated
properly, so that all the operations are accessing the same few rows. That type of localized
access greatly inhibits scalability if the accesses involve changes to the data.

See the Quick Start home page at installation_dir/quickstart.html for additional
information about tptbm and other demo applications. Go to the ODBC link under Sample
Programs.

Limit Database-Intensive Connections Per CPU
Performance impact: Variable

Check the lock.timeouts or lock.locks_granted.wait fields in the SYS.SYSTEMSTATS table. If
they have high values, this may indicate undue contention, which can lead to poor scaling.

Because TimesTen is quite CPU-intensive, optimal scaling is achieved by having at most one
database-intensive connection per CPU. If you have a 4-CPU system or a 2-CPU system with
hyperthreading, then a 4-processor application runs well, but an 8-processor application does
not perform well. The contention between the active threads is too high. The only exception to
this rule is when many transactions are committed durably. In this case, the connections are

Chapter 10
Scaling for Multiple CPUs

10-35

not very CPU-intensive because of the increase in I/O operations to the file system, and so the
system can support many more concurrent connections.

Use Read Operations When Available
Performance impact: Variable

Read operations scale better than write operations. Make sure that the read and write balance
reflects the real-life workload of your application.

Limit Prepares, Re-prepares, and Connects
Performance impact: Variable

Prepares are resource-intensive operations that do not scale well compared to SQL execution
operations. Ensure that you use parameterized SQL statements wherever possible and always
pre-prepare statements that run more than once.

The stmt.prepares.count column of the SYS.SYSTEMSTATS table indicates how often
statements were prepared directly by an application. If the stmt.prepares.count column has a
high value, ensure the following:

• Your application uses parametrized statements.

• Your application only prepares any given SQL statement once and not for every single
execution.

• Your application does not connect and disconnect frequently from the database. If that is
the case, consider using long active connections.

Connect and disconnect operations are resource-intensive operations that do not scale well.
Ensure that your application minimizes the number of connect and disconnect operations. Use
long active connections with parameterized and re-prepared SQL statements to improve
performance.

If your application cannot avoid frequent connect and disconnect operations or you are unable
to modify the application to use long-lived connections, consider using connection pooling.
Connection pooling can reduce the frequency of connect and disconnect operations and
improve the utilization of prepared statements compared to the case where an application
frequently connects and disconnects from the database.

Enable Indexes to be Rebuilt in Parallel During Recovery
Performance impact: Variable

On multi-processor systems, set RecoveryThreads to minimum(number of CPUs available,
number of indexes) to enable indexes to be rebuilt in parallel if recovery is necessary.

If a rebuild is necessary, progress can be viewed in the user log. Setting RecoveryThreads to a
number larger than the number of CPUs available can cause recovery to take longer than if it
were single-threaded.

Use Private Commands
Performance impact: Variable

Chapter 10
Scaling for Multiple CPUs

10-36

When multiple connections run the same command, they access common command structures
controlled by a single command lock. To avoid sharing their commands and possibly placing
contention on the lock, you can set PrivateCommands=1.

The use of private commands increases the amount of temporary space used, but provides
better scaling at the cost.

See PrivateCommands in the Oracle TimesTen In-Memory Database Reference.

XLA Tuning
There are tips on how you can improve XLA performance.

• Increase Transaction Log Buffer Size When Using XLA

• Prefetch Multiple Update Records

• Acknowledge XLA Updates

Increase Transaction Log Buffer Size When Using XLA
Performance impact: Large

A larger transaction log buffer size is appropriate when using XLA.

When XLA is enabled, additional transaction log records are generated to store additional
information for XLA. To ensure the transaction log buffer is properly sized, one can watch for
changes in the SYS.MONITOR table entries LOG_FS_READS and LOG_BUFFER_WAITS. For optimal
performance, both of these values should remain 0. Increasing the transaction log buffer size
may be necessary to ensure the values remain 0. See LogBufMB in the Oracle TimesTen In-
Memory Database Reference.

Prefetch Multiple Update Records
Performance impact: Medium

Prefetching multiple update records at a time is more efficient than obtaining each update
record from XLA individually. Because updates are not prefetched when you use
AUTO_ACKNOWLEDGE mode, it can be slower than the other modes.

If possible, you should design your application to tolerate duplicate updates so you can use
DUPS_OK_ACKNOWLEDGE, or explicitly acknowledge updates. Explicitly acknowledging updates
usually yields the best performance if the application can tolerate not acknowledging each
message individually.

Acknowledge XLA Updates
Performance impact: Medium

To explicitly acknowledge an XLA update, you call acknowledge on the update message.
Acknowledging a message implicitly acknowledges all previous messages.

Typically, you receive and process multiple update messages between acknowledgements. If
you are using the CLIENT_ACKNOWLEDGE mode and intend to reuse a durable subscription in the
future, you should call acknowledge to reset the bookmark to the last-read position before
exiting.

Chapter 10
XLA Tuning

10-37

Cache and Replication Tuning
You can improve performance when using cache groups or a replication scheme.

For recommendations on improving performance when using cache groups, see Cache
Performance in the Oracle TimesTen In-Memory Database Cache Guide.

For recommendations on improving performance for when using a replication scheme, see
Improving Replication Performance in the Oracle TimesTen In-Memory Database Replication
Guide.

Chapter 10
Cache and Replication Tuning

10-38

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.17.0
	New features in Release 22.1.1.3.0
	New features in Release 22.1.1.1.0

	1 Connecting to a TimesTen Database
	Connecting to TimesTen with ODBC and JDBC Drivers
	Connecting Using TimesTen ODBC Drivers
	Connecting Using an ODBC Driver Manager
	Connecting Using the TimesTen JDBC Driver and Driver Manager

	Specifying Data Source Names to Identify TimesTen Databases
	Overview of User and System DSNs
	Defining DSNs for Direct or Client/Server Connections
	Connection Attributes for Data Manager DSNs or Server DSNs

	Creating a DSN on Linux and UNIX for TimesTen Classic
	Create a User or System odbc.ini File
	Using Environment Variables in Database Path Names

	Defining Client and Server DSNs
	Resolution Path for a DSN
	DSN Examples for TimesTen Classic
	Creating Multiple DSNs to a Single TimesTen Classic Database
	Specifying PL/SQL Connection Attributes in a DSN
	Setting Up a Default DSN in TimesTen Classic

	odbc.ini File Entry Descriptions
	ODBC Data Sources
	DSN Specification
	odbc.ini File Example

	Providing User Credentials When Connecting
	Connect Using an Oracle Wallet with Credentials
	Connect Using Connection Attributes for Credentials

	Connecting to a Database Using a Connection String
	Using a Connection String in TimesTen Scaleout
	Using a Connection String in TimesTen Classic

	2 Managing TimesTen Databases
	Opening and Closing the Database for User Connections
	Specifying the Type of Memory for Shared Memory Segment
	Loading and Unloading the Database from Memory
	Loading a Database into Memory for TimesTen Classic
	Unloading a Database from Memory for TimesTen Classic

	Detaching, Attaching, and Freeing the Shared Memory Segment
	Specifying a RAM Policy
	Changes to RAM Policy After Automatic Recovery Fails
	Preventing an Automatic Reload of the Database After Failure

	Disconnecting from a Database
	Disconnecting from a Database in TimesTen Scaleout
	Disconnecting from a Database in TimesTen Classic

	Specifying the Memory Region Sizes of a Database
	Estimating and Modifying the Memory Region Sizes for the Database
	Monitoring PermSize and TempSize Attributes
	Reducing Database Size for TimesTen Classic
	Receiving Out-of-Memory Warnings

	Storage Provisioning for TimesTen
	Storage Provisioning for Transaction Log Files

	Bulk Copy Data Using the ttBulkCp Utility
	Copying Data from a TimesTen Table to an ASCII File
	Copying Data from an ASCII File into a TimesTen Table
	Running ttBulkCp with the -i Option
	Running ttBulkCp with the -directLoad Option on TimesTen Classic

	Thread Programming with TimesTen
	Defragmenting TimesTen Databases
	Offline Defragmentation of a TimesTen Scaleout Database
	Offline Defragmentation of a TimesTen Classic Database
	Online Defragmentation of TimesTen Classic Databases in an Active Standby Pair Replication Scheme
	Migrate and Rebuild the Standby Database
	Reverse the Active and Standby Roles
	Destroy and Re-Create a New Standby

	Online Defragmentation of TimesTen Classic Databases in a Non Active Standby Pair Replication Scheme
	Migrate and Rebuild a Database
	Alter the Replication Scheme
	Destroy and Re-Create a Database

	3 Working with the TimesTen Client and Server
	Overview of the TimesTen Client/Server
	Restrictions on Client/Server Communication
	Communication Protocols for Client/Server Communication
	TCP/IP Communication
	Shared Memory Segment Used for Communication
	UNIX Domain Socket Communication

	Configuring TimesTen Client and Server
	Overview of TimesTen Client/Server Configuration
	Installing and Configuring for Client/Server of the Same TimesTen Release
	Install and Configure the TimesTen Server
	Install and Configure the TimesTen Client

	Installing and Configuring Cross-Release TimesTen Client/Server
	Defining Server DSNs for TimesTen Server on a Linux or UNIX System
	Defining a Logical Server Name
	Creating and Configuring a Logical Server Name on Windows
	Creating and Configuring a Logical Server Name on Linux and UNIX

	Defining Client DSNs on a TimesTen Client System
	Creating and Configuring Client DSNs on Windows
	Creating a Client DSN on Windows
	Setting the Network Timeout Interval and Authentication
	Accessing a Remote Database on Windows
	Testing Connections

	Creating and Configuring Client DSNs on Linux and UNIX

	Sizing the Client Result Set Buffer
	Using Automatic Client Failover
	Managing Automatic Client Failover in TimesTen Scaleout
	Managing Automatic Client Failover in TimesTen Classic Using an Active Standby Pair
	Managing Generic Automatic Client Failover in TimesTen Classic
	Configuring Automatic Client Failover for TimesTen Classic
	Configuring Automatic Client Failover for TimesTen Classic on Windows
	Configuring Automatic Client Failover for TimesTen Classic on Linux and UNIX

	Configuring TCP Keep-Alive Parameters

	Running the TimesTen Server
	Server Informational Messages

	Accessing a Remote Database on Linux and UNIX
	Testing Connections

	4 Working with the TimesTen Daemon
	Starting and Stopping the Daemon
	Automatically Starting the TimesTen Daemon
	Using the setuproot Script to Automatically Start the TimesTen Daemon
	Using systemd to Automatically Manage the TimesTen Daemon

	Manually Starting and Stopping the Daemon

	Shutting Down a TimesTen Application
	Shutting Down an Application Within TimesTen Classic
	Shutting Down Applications Within TimesTen Scaleout

	Managing TimesTen Daemon Attributes
	Determining the Daemon Listening Address
	Managing Subdaemons
	Configuring a Range for Shared Memory Keys

	Managing TimesTen Client/Server Attributes
	Modifying the TimesTen Server Attributes
	Controlling the TimesTen Server
	Prespawning TimesTen Server Processes in TimesTen Classic
	Specifying Multiple Connections to the TimesTen Server
	Configuring the Maximum Number of Client Connections Per Child Server Process
	Configuring Connection Distribution Among Child Server Processes
	Configuring the Thread Stack Size of the Child Server Processes

	Controlling the TimesTen Server Log Messages

	Error, Warning, and Informational Messages
	Critical Event Logging

	5 Globalization Support
	Overview of Globalization Support Features
	Choosing a Database Character Set
	Character Sets and Languages
	Client Operating System and Application Compatibility
	Performance and Storage Implications
	Character Sets and Replication

	Character Set Length Semantics Affect Data Storage
	Setting the Connection Character Set
	Linguistic Sort Rules Support Linguistic Conventions
	Monolingual Linguistic Sorts
	Multilingual Linguistic Sorts
	Case-Insensitive and Accent-Insensitive Linguistic Sorts
	Performing a Linguistic Sort
	Using Linguistic Indexes

	SQL String and Character Functions
	Setting Globalization Support Attributes
	Globalization Support During Migration

	6 Using the ttIsql Utility
	Using ttIsql in Batch Mode or Interactive Mode
	Customizing Startup Command Line Options for ttIsql Sessions
	Customizing the ttIsql Command Prompt
	Using the ttIsql Online Help
	Using the ttIsql 'editline' Feature for Linux and UNIX Only
	Emacs Binding
	vi Binding

	Using the ttIsql Command History
	Saving and Clearing the ttIsql Command History

	Using the ttIsql edit Command
	Changing the Default Text Editor for the ttIsql edit Command

	Displaying Characters in ttIsql
	Displaying Database Structures Using ttIsql
	Using the ttIsql describe Command
	Using the ttIsql cachegroups Command
	Using the ttIsql dssize Command
	Using the ttIsql tablesize Command
	Using the ttIsql monitor Command

	Using ttIsql to List Database Objects by Object Type
	Using ttIsql to View and Set Connection Attributes
	Using ttIsql to Manage Transactions
	Using ttIsql with Prepared and Parameterized SQL Statements
	Using, Declaring, and Setting Variables in ttIsql
	Declaring and Setting Bind Variables
	Automatically Creating Bind Variables for Retrieved Columns

	Creating and Running PL/SQL Blocks Within ttIsql
	Passing Data From PL/SQL Using OUT Parameters Within ttIsql
	Using the IF-THEN-ELSE Command Construct Within ttIsql
	Loading Data from an Oracle Database into a TimesTen Table Without Cache
	Use ttIsql to Create a Table and Load SQL Query Results
	Use TimesTen Built-In Procedures to Recommend a Table and Load SQL Query Results
	Cancel a Parallel Load Operation

	Using ttIsql to View and Change Query Optimizer Plans
	Using the showplan Command
	Viewing Commands and Explain Plans from the SQL Command Cache
	View Commands in the SQL Command Cache
	Display Query Plan for Statement in SQL Command Cache

	Using ttIsql to Manage ODBC Functions
	Canceling ODBC Functions
	Timing ODBC Function Calls

	Specifying Error Recovery Within ttIsql

	7 Transaction Management
	Transaction Overview
	Transaction Implicit Commit Behavior
	Transaction Autocommit Behavior
	TimesTen DDL Commit Behavior

	Ensuring ACID Semantics
	Transaction Atomicity, Consistency, and Isolation
	Transaction Consistency and Durability

	Concurrency Control Through Isolation and Locking
	Transaction Isolation Levels
	Locking Granularities
	Setting Wait Time for Acquiring a Lock

	Checkpoint Operations
	Purpose of Checkpoints
	Usage of Checkpoint Files
	Types of Checkpoints
	Fuzzy or Non-Blocking Checkpoints
	Blocking Checkpoints

	Setting and Managing Checkpoints
	Programmatically Performing a Checkpoint in TimesTen Classic
	Configuring or Turning Off Background Checkpointing
	Displaying Checkpoint History and Status
	Setting the Checkpoint Rate
	Setting the Number of Checkpoint File Read Threads

	Transaction Logging
	Managing Transaction Log Buffers and Files
	Using NFS-Mounted Systems for Checkpoint and Transaction Log Files
	Monitoring Accumulation of Transaction Log Files
	Log Holds by TimesTen Components or Operations
	Purging Transaction Log Files
	Monitoring Log Holds and Log File Accumulation

	Durability Options
	Durability for TimesTen Scaleout
	Guaranteed Durability for TimesTen Scaleout
	Non-Durable Distributed Transactions for TimesTen Scaleout

	Durability for TimesTen Classic
	Guaranteed Durability for TimesTen Classic
	Non-Durable Transactions for TimesTen Classic

	Transaction Reclaim Operations
	About Reclaim Operations
	Configuring the Commit Buffer for Reclaim Operations

	Recovery with Checkpoint and Transaction Log Files

	8 Working with Data in a TimesTen Database
	Database Objects, Users, and Owners
	Database Objects
	Database Users and Owners

	Understanding Tables
	Overview of Tables
	Column Overview
	Inline and Out-of-Line Columns
	Default Column Values
	Table Names
	Table Access
	Primary Keys, Foreign Keys, and Unique Indexes
	Tables in TimesTen Scaleout
	System Tables

	Working with Tables
	Creating a Table
	Dropping a Table
	Estimating Table Size

	Implementing an Aging Policy in Your Tables
	Usage-Based Aging
	Defining LRU Aging Based on Thresholds for Permanent Memory in Use
	Defining LRU Aging Based on Row Thresholds for Tables

	Time-Based Aging
	Aging and Foreign Keys
	Scheduling When Aging Starts
	Aging and Replication
	Determining the Effectiveness of Aging

	Understanding Views
	Creating a View
	The SELECT Query in the CREATE VIEW Statement

	Dropping a View
	Restrictions on Views and Detail Tables

	Understanding Materialized Views
	Overview of Materialized Views
	Working with Materialized Views
	Creating a Materialized View
	Dropping a Materialized View
	Restrictions on Materialized Views and Detail Tables
	Performance Implications of Materialized Views

	Understanding Indexes
	Overview of Index Types
	Creating an Index
	Altering an Index
	Dropping an Index
	Estimating the Size of an Index
	Using the Index Advisor to Recommend Indexes
	Prepare for Running the Index Advisor
	Capture the Data Used for Generating Index Recommendations
	Retrieve Index Recommendations and Data Collection Information
	Retrieve Data Collection Information with ttIndexAdviceCaptureInfoGet
	Retrieve Index Recommendations with ttIndexAdviceCaptureOutput

	Drop Data Collected for the Index Advisor and Finalize Results
	Example Using Index Advisor Built-In Procedures

	Understanding Rows
	Inserting Rows
	Deleting Rows

	Understanding Synonyms
	Creating Synonyms
	Dropping Synonyms
	Synonyms May Cause Invalidation or Recompilation of SQL Queries

	Understanding System Views

	9 The TimesTen Query Optimizer
	Using the Query Optimizer to Choose Optimal Plan
	Viewing SQL Statements Stored in the SQL Command Cache
	Managing Performance and Troubleshooting Commands
	Displaying Commands Stored in the SQL Command Cache

	Viewing SQL Query Plans
	Viewing a Query Plan from the System PLAN Table
	Instruct TimesTen to Store the Plan in the System PLAN Table
	Reading Query Plan from the PLAN Table
	Describing the PLAN Table Columns

	Viewing Query Plans Associated with Commands Stored in the SQL Command Cache

	Modifying a SQL Query Execution Plan
	Why Modify an Execution Plan?
	How Hints Can Influence an Execution Plan
	Tuning a Join When Using ODBC
	Tuning a Join When Using JDBC

	Use Optimizer Hints to Modify the Execution Plan
	Apply Statement Level Optimizer Hints for a SQL Statement
	Apply Transaction Level Optimizer Hints for a Transaction
	Apply Connection Level Optimizer Hints for a TimesTen Connection

	10 TimesTen Database Performance Tuning
	System and Database Tuning
	Provide Enough Memory
	Avoid Paging of the Memory Used by the Database
	Size Your Database Correctly
	Calculate Shared Memory Size for PL/SQL Runtime
	Set Appropriate Limit on the Number of Open Files
	Configure Log Buffer and Log File Size Parameters
	Avoid Connection Overhead for TimesTen Classic Databases
	Load the Database Into RAM When Duplicating
	Prevent Reloading of the Database After Automatic Recovery Fails
	Reduce Contention
	Consider Special Options for Maintenance
	Check Your Driver
	Enable Tracing Only as Needed
	Use Metrics to Evaluate Performance
	Migrate Data with Character Set Conversions
	Use TimesTen Native Integer Data Types If Appropriate
	Configure the Checkpoint Files and Transaction Log Files to be on a Different Physical Device

	Client/Server Tuning
	Diagnose Client/Server Performance
	Work Locally When Possible
	Choose Timeout Connection Attributes for Your Client
	Choose a Lock Wait Timeout interval
	Choose the Best Method of Locking
	Choose an Appropriate Lock Level
	Choose an Appropriate Isolation Level

	Enable Prefetch Close for Read-Only Transactions
	Use a Connection Handle When Calling SQLTransact
	Enable Multi-Threaded Mode to Handle Concurrent Connections

	SQL Tuning
	Tune Statements and Use Indexes
	Collect and Evaluate Sampling of Runtimes for SQL Statements
	Creating Tables Without Indexes for Performance When Loading Data
	Select the Appropriate Type of Index
	Size Hash Indexes Appropriately
	Use Foreign Key Constraint Appropriately
	Compute Exact or Estimated Statistics
	Update Table Statistics for Large Tables in Parallel
	Create Script to Regenerate Current Table Statistics
	Control the Invalidation of Commands in the SQL Command Cache
	Avoid ALTER TABLE
	Avoid Nested Queries
	Prepare Statements in Advance
	Avoid Unnecessary Prepare Operations
	Store Data Efficiently with Column-Based Compression of Tables
	Control Read Optimization During Concurrent Write Operations
	Choose SQL and PL/SQL Timeout Values

	Materialized View Tuning
	Limit Number of Join Rows
	Use Indexes on Join Columns
	Avoid Unnecessary Updates
	Avoid Changes to the Inner Table of an Outer Join
	Limit Number of Columns in a View Table

	Transaction Tuning
	Locate Checkpoint and Transaction Log Files on Separate Physical Device
	Size Transactions Appropriately
	Use Durable Commits Appropriately
	Avoid Manual Checkpoints
	Turn Off Autocommit Mode
	Avoid Transaction Roll Back
	Avoid Large DELETE Statements
	Avoid DELETE FROM Statements
	Consider Using the DELETE FIRST Clause

	Increase the Commit Buffer Cache Size

	Recovery Tuning
	Set RecoveryThreads
	Set CkptReadThreads

	Scaling for Multiple CPUs
	Run the Demo Applications as a Prototype
	Limit Database-Intensive Connections Per CPU
	Use Read Operations When Available
	Limit Prepares, Re-prepares, and Connects
	Enable Indexes to be Rebuilt in Parallel During Recovery
	Use Private Commands

	XLA Tuning
	Increase Transaction Log Buffer Size When Using XLA
	Prefetch Multiple Update Records
	Acknowledge XLA Updates

	Cache and Replication Tuning

