
Oracle® TimesTen In-Memory
Database
PL/SQL Packages Reference

Release 22.1
F35405-03
February 2023

Oracle TimesTen In-Memory Database PL/SQL Packages Reference, Release 22.1

F35405-03

Copyright © 1996, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 What's New

New features in Release 22.1.1.1.0 xii

1 Introduction to TimesTen-Supplied PL/SQL Packages and Types

Package Overview 1-1

Package Components 1-1

Displaying the List of TimesTen-Supplied Packages 1-2

Using TimesTen-Supplied Packages 1-3

Referencing Package Contents 1-3

Running Package Examples 1-3

Summary of TimesTen-Supplied PL/SQL Packages 1-4

2 DBMS_LOB

Using DBMS_LOB 2-1

Overview 2-1

Security Model 2-2

Constants 2-2

Data Types 2-3

Rules and Limits 2-4

Operational Notes 2-5

Exceptions 2-8

DBMS_LOB Subprograms 2-8

APPEND Procedures 2-9

CLOSE Procedures 2-11

COMPARE Functions 2-12

CONVERTTOBLOB Procedure 2-13

CONVERTTOCLOB Procedure 2-15

COPY Procedures 2-17

CREATETEMPORARY Procedures 2-22

ERASE Procedures 2-23

FREETEMPORARY Procedures 2-24

iii

GETCHUNKSIZE Functions 2-25

GETLENGTH Functions 2-26

GET_STORAGE_LIMIT Functions 2-27

INSTR Functions 2-28

ISOPEN Functions 2-29

ISTEMPORARY Functions 2-30

OPEN Procedures 2-30

READ Procedures 2-31

SUBSTR Functions 2-33

TRIM Procedures 2-34

WRITE Procedures 2-35

WRITEAPPEND Procedures 2-37

3 DBMS_LOCK

Using DBMS_LOCK 3-1

DBMS_LOCK Subprograms 3-1

SLEEP Procedure 3-1

4 DBMS_OUTPUT

Using DBMS_OUTPUT 4-1

Overview 4-1

Operational Notes 4-1

Rules and Limits 4-2

Exceptions 4-2

Examples 4-2

Data Structures 4-3

CHARARR Table Type 4-4

DBMSOUTPUT_LINESARRAY Table Type 4-4

DBMS_OUTPUT Subprograms 4-4

DISABLE Procedure 4-4

ENABLE Procedure 4-5

GET_LINE Procedure 4-5

GET_LINES Procedure 4-6

NEW_LINE Procedure 4-7

PUT Procedure 4-7

PUT_LINE Procedure 4-8

5 DBMS_PREPROCESSOR

Using DBMS_PREPROCESSOR 5-1

iv

Overview 5-1

Operational Notes 5-2

Data Structures 5-2

SOURCE_LINES_T Table Type 5-3

DBMS_PREPROCESSOR Subprograms 5-3

GET_POST_PROCESSED_SOURCE Function 5-3

PRINT_POST_PROCESSED_SOURCE Procedure 5-5

6 DBMS_RANDOM

Using DBMS_RANDOM 6-1

Operational Notes 6-1

DBMS_RANDOM Subprograms 6-1

INITIALIZE Procedure 6-2

NORMAL Function 6-3

RANDOM Function 6-3

SEED Procedure 6-3

STRING Function 6-4

TERMINATE Procedure 6-4

VALUE Function 6-5

7 DBMS_SQL

Using DBMS_SQL 7-1

Overview 7-2

Security Model 7-2

Constants 7-2

Operational Notes 7-3

Exceptions 7-7

Examples 7-8

Example 1: Basic 7-8

Example 2: Copy Between Tables 7-9

Examples 3, 4, and 5: Bulk DML 7-11

Example 6: Define an Array 7-14

Example 7: Describe Columns 7-15

Example 8: RETURNING Clause 7-17

Example 9: PL/SQL Block in Dynamic SQL 7-22

Data Structures 7-23

DESC_REC Record Type 7-24

DESC_REC2 Record Type 7-25

DESC_REC3 Record Type 7-26

v

BINARY_DOUBLE_TABLE Table Type 7-27

BINARY_FLOAT_TABLE Table Type 7-27

BLOB_TABLE Table Type 7-27

CLOB_TABLE Table Type 7-27

DATE_TABLE Table Type 7-28

DESC_TAB Table Type 7-28

DESC_TAB2 Table Type 7-28

DESC_TAB3 Table Type 7-28

INTERVAL_DAY_TO_SECOND_TABLE Table Type 7-28

INTERVAL_YEAR_TO_MONTH_TABLE Table Type 7-29

NUMBER_TABLE Table Type 7-29

TIME_TABLE Table Type 7-29

TIMESTAMP_TABLE Table Type 7-29

VARCHAR2_TABLE Table Type 7-29

VARCHAR2A Table Type 7-30

VARCHAR2S Table Type 7-30

DBMS_SQL Subprograms 7-30

BIND_ARRAY Procedure 7-32

BIND_VARIABLE Procedure 7-34

CLOSE_CURSOR Procedure 7-36

COLUMN_VALUE Procedure 7-36

DEFINE_ARRAY Procedure 7-39

DEFINE_COLUMN Procedure 7-41

DESCRIBE_COLUMNS Procedure 7-42

DESCRIBE_COLUMNS2 Procedure 7-43

DESCRIBE_COLUMNS3 Procedure 7-43

EXECUTE Function 7-44

EXECUTE_AND_FETCH Function 7-44

FETCH_ROWS Function 7-45

IS_OPEN Function 7-46

LAST_ERROR_POSITION Function 7-47

LAST_ROW_COUNT Function 7-47

LAST_ROW_ID Function 7-47

LAST_SQL_FUNCTION_CODE Function 7-48

OPEN_CURSOR Function 7-48

PARSE Procedures 7-49

TO_CURSOR_NUMBER Function 7-51

TO_REFCURSOR Function 7-53

VARIABLE_VALUE Procedure 7-55

vi

8 DBMS_UTILITY

Using DBMS_UTILITY 8-1

Security Model 8-1

Constants 8-1

Data Types 8-2

Exceptions 8-3

DBMS_UTILITY Subprograms 8-3

CANONICALIZE Procedure 8-5

COMMA_TO_TABLE Procedure 8-6

COMPILE_SCHEMA Procedure 8-7

DB_VERSION Procedure 8-8

FORMAT_CALL_STACK Function 8-9

FORMAT_ERROR_BACKTRACE Function 8-9

FORMAT_ERROR_STACK Function 8-12

GET_CPU_TIME Function 8-13

GET_DEPENDENCY Procedure 8-13

GET_ENDIANNESS Function 8-14

GET_HASH_VALUE Function 8-14

GET_SQL_HASH Function 8-15

GET_TIME Function 8-16

INVALIDATE Procedure 8-16

IS_BIT_SET Function 8-20

NAME_RESOLVE Procedure 8-20

NAME_TOKENIZE Procedure 8-22

TABLE_TO_COMMA Procedure 8-23

VALIDATE Procedure 8-24

9 TT_DB_VERSION

Using TT_DB_VERSION 9-1

Overview 9-1

Constants 9-1

Examples 9-2

10

TT_STATS

Using TT_STATS 10-1

Overview 10-1

Security Model 10-2

Operational Notes 10-2

TT_STATS Subprograms 10-3

vii

CAPTURE_SNAPSHOT Procedure and Function 10-3

DROP_SNAPSHOTS_RANGE Procedures 10-5

GENERATE_REPORT_HTML Procedure 10-6

GENERATE_REPORT_TEXT Procedure 10-7

GET_CONFIG Procedures 10-8

SET_CONFIG Procedure 10-9

SHOW_SNAPSHOTS Procedures 10-10

11

UTL_FILE

Using UTL_FILE 11-1

Security Model 11-1

Operational Notes 11-2

Rules and Limits 11-3

Exceptions 11-3

Examples 11-4

Data Structures 11-6

FILE_TYPE Record Type 11-6

UTL_FILE Subprograms 11-7

FCLOSE Procedure 11-8

FCLOSE_ALL Procedure 11-9

FCOPY Procedure 11-9

FFLUSH Procedure 11-10

FGETATTR Procedure 11-11

FGETPOS Function 11-12

FOPEN Function 11-12

FOPEN_NCHAR Function 11-14

FREMOVE Procedure 11-15

FRENAME Procedure 11-15

FSEEK Procedure 11-16

GET_LINE Procedure 11-17

GET_LINE_NCHAR Procedure 11-18

GET_RAW Procedure 11-19

IS_OPEN Function 11-20

NEW_LINE Procedure 11-21

PUT Procedure 11-21

PUT_LINE Procedure 11-22

PUT_LINE_NCHAR Procedure 11-23

PUT_NCHAR Procedure 11-24

PUT_RAW Procedure 11-25

PUTF Procedure 11-26

viii

PUTF_NCHAR Procedure 11-27

12

UTL_IDENT

Using UTL_IDENT 12-1

Overview 12-1

Security Model 12-2

Constants 12-2

Examples 12-2

13

UTL_RAW

Using UTL_RAW 13-1

Overview 13-1

Operational Notes 13-1

UTL_RAW Subprograms 13-1

BIT_AND Function 13-3

BIT_COMPLEMENT Function 13-4

BIT_OR Function 13-4

BIT_XOR Function 13-5

CAST_FROM_BINARY_DOUBLE Function 13-5

CAST_FROM_BINARY_FLOAT Function 13-6

CAST_FROM_BINARY_INTEGER Function 13-7

CAST_FROM_NUMBER Function 13-8

CAST_TO_BINARY_DOUBLE Function 13-8

CAST_TO_BINARY_FLOAT Function 13-10

CAST_TO_BINARY_INTEGER Function 13-11

CAST_TO_NUMBER Function 13-11

CAST_TO_NVARCHAR2 Function 13-12

CAST_TO_RAW Function 13-12

CAST_TO_VARCHAR2 Function 13-13

COMPARE Function 13-14

CONCAT Function 13-14

CONVERT Function 13-15

COPIES Function 13-16

LENGTH Function 13-16

OVERLAY Function 13-17

REVERSE Function 13-18

SUBSTR Function 13-18

TRANSLATE Function 13-21

TRANSLITERATE Function 13-23

ix

XRANGE Function 13-27

14

UTL_RECOMP

Using UTL_RECOMP 14-1

Overview 14-1

Operational Notes 14-1

Examples 14-2

UTL_RECOMP Subprograms 14-2

RECOMP_PARALLEL Procedure 14-2

RECOMP_SERIAL Procedure 14-3

x

About This Content

This is a reference document for PL/SQL packages provided with TimesTen.

Audience

This document is a reference for programmers, systems analysts, project managers, and
others interested in developing database applications using PL/SQL. This manual assumes a
working knowledge of application programming and familiarity with SQL and PL/SQL to
access information in relational database systems.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

TimesTen documentation is available on the TimesTen documentation website.

Oracle TimesTen In-Memory Database PL/SQL Developer's Guide is especially relevant.

Oracle Database documentation is also available on the Oracle documentation website. This
may be especially useful for Oracle Database features that TimesTen supports but does not
attempt to fully document, such as OCI and Pro*C/C++.

In particular, the following Oracle Database documents may be of interest.

• Oracle Database PL/SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

• Oracle Database SQL Language Reference

• Oracle Database Reference

In addition, numerous third-party documents are available that describe PL/SQL in detail.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

11

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

This section summarizes new features and functionality of TimesTen Release 22.1.

New features in Release 22.1.1.1.0
• TimesTen 22.1 PL/SQL is based on the PL/SQL implementation for Oracle

Database 19c.

What's New

xii

1
Introduction to TimesTen-Supplied PL/SQL
Packages and Types

A set of PL/SQL packages is supplied with TimesTen. These packages extend database
functionality and allow PL/SQL access to SQL features.

This manual documents these public packages, listed with brief descriptions in Summary of
TimesTen-Supplied PL/SQL Packages. Packages that are part of the PL/SQL language itself
or are for TimesTen or Oracle Database internal use only are not shown here or described in
this manual.

This chapter contains these topics:

• Package Overview

• Summary of TimesTen-Supplied PL/SQL Packages

For additional information about PL/SQL and PL/SQL packages, you can refer to the
following:

• Oracle TimesTen In-Memory Database PL/SQL Developer's Guide

• Oracle Database PL/SQL Language Reference

• Oracle Database PL/SQL Packages and Types Reference

Package Overview
A package is an encapsulated collection of related program objects stored together in the
database. Program objects are procedures, functions, variables, constants, cursors, and
exceptions.

This section covers the following topics:

• Package Components

• Displaying the List of TimesTen-Supplied Packages

• Using TimesTen-Supplied Packages

• Referencing Package Contents

• Running Package Examples

Package Components
PL/SQL packages have two parts, the specification and the body, although sometimes the
body is unnecessary.

The specification is the interface to your application. It declares the types, variables,
constants, exceptions, cursors, and subprograms available for use. The body fully defines
cursors and subprograms, and so implements the specification.

1-1

Unlike subprograms, packages cannot be called, parameterized, or nested. However,
the formats of a package and a subprogram are similar:

CREATE PACKAGE name AS -- specification (visible part)
 -- public type and item declarations
 -- subprogram specifications
END [name];

CREATE PACKAGE BODY name AS -- body (hidden part)
 -- private type and item declarations
 -- subprogram bodies
[BEGIN
 -- initialization statements]
END [name];

The specification holds public declarations that are visible to your application. The
body holds implementation details and private declarations that are hidden from your
application. You can debug, enhance, or replace a package body without changing the
specification. You can change a package body without recompiling calling programs
because the implementation details in the body are hidden from your application.

Displaying the List of TimesTen-Supplied Packages
To display the list of packages currently installed in TimesTen, use the system view
ALL_PROCEDURES for objects owned by SYS.

The following example, using ttIsql, shows this. As with other ALL_* system views,
all users have SELECT privilege for the ALL_PROCEDURES system view.

Command> select distinct object_name from all_procedures where
owner='SYS';
< DBMS_LOB >
< DBMS_LOCK >
< DBMS_OUTPUT >
< DBMS_PREPROCESSOR >
< DBMS_RANDOM >
< DBMS_SQL >
...
< DBMS_UTILITY >
...
< TT_STATS >
< UTL_FILE >
< UTL_RAW >
< UTL_RECOMP >
< UTL_IDENT >
< TT_DB_VERSION >
19 rows found.

Chapter 1
Package Overview

1-2

Using TimesTen-Supplied Packages
TimesTen-supplied packages are automatically installed when the database is created.

All users have EXECUTE privilege for packages described in this document, other than for
UTL_RECOMP and UTL_FILE, as noted in those chapters.

To select from a view defined with a PL/SQL function, you must have SELECT privileges on the
view. No separate EXECUTE privileges are needed to select from the view. Instructions on
special requirements for packages are documented in the individual chapters.

Note:

In TimesTen, running as the instance administrator is comparable to running as the
Oracle Database user SYSDBA. Running as the ADMIN user is comparable to running
as the Oracle Database user DBA.

Referencing Package Contents
To reference the types, items, and subprograms declared in a package specification, use
"dot" notation.

For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

Running Package Examples
In order to see the output from the package examples in this document, first execute the
following command in ttIsql:

Command> set serveroutput on

Chapter 1
Package Overview

1-3

Summary of TimesTen-Supplied PL/SQL Packages
Lists of the PL/SQL packages supplied with TimesTen for public use. These packages
run as the invoking user, rather than the package owner.

Note:

• The procedures and functions provided in these packages and their
external interfaces are reserved by Oracle Database and are subject to
change.

• Do not modify supplied packages. Modifying supplied packages may
cause internal errors and database security violations.

Table 1-1 Summary of TimesTen-Supplied PL/SQL Packages

Package Name Description

DBMS_LOB Provides subprograms to operate on binary and
character large objects: BLOBs, CLOBs, and NCLOBs.

DBMS_LOCK Provides an interface to Lock Management services.
TimesTen supports only the SLEEP procedure, to
suspend the session for a specified duration.

DBMS_OUTPUT Enables you to send messages from stored procedures
and packages.

DBMS_PREPROCESSOR Provides an interface to print or retrieve the source text of
a PL/SQL unit in its post-processed form.

DBMS_RANDOM Provides a built-in random number generator.

DBMS_SQL Lets you use dynamic SQL to access the database.

DBMS_UTILITY Provides various utility routines.

TT_DB_VERSION Indicates the TimesTen major and minor version
numbers.

TT_STATS Collects snapshots of database metrics and generates
reports based on comparisons between snapshots.

UTL_FILE Enables your PL/SQL programs to read and write
operating system text files and provides a restricted
version of standard operating system stream file I/O.

UTL_IDENT Indicates in which database or client PL/SQL is running,
such as TimesTen or Oracle Database, and server versus
client. (Each database or client running PL/SQL has its
own copy of this package.)

UTL_RAW Provides SQL functions for manipulating RAW data types.

UTL_RECOMP Recompiles invalid PL/SQL modules.

Chapter 1
Summary of TimesTen-Supplied PL/SQL Packages

1-4

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

Chapter 1
Summary of TimesTen-Supplied PL/SQL Packages

1-5

2
DBMS_LOB

TimesTen Classic supports LOBs (large objects). The DBMS_LOB package provides
subprograms to operate on BLOBs, CLOBs, and NCLOBs. You can use DBMS_LOB to access
and manipulate specific parts of LOBs or complete LOBs.

This chapter contains the following topics:

• Using DBMS_LOB

– Overview

– Security model

– Constants

– Data types

– Rules and limits

– Operational notes

– Exceptions

• DBMS_LOB Subprograms

You can also refer to Large objects (LOBs) in Oracle TimesTen In-Memory Database PL/SQL
Developer's Guide.

Using DBMS_LOB
• Overview

• Security Model

• Constants

• Data Types

• Rules and Limits

• Operational Notes

• Exceptions

Overview
DBMS_LOB can read, manipulate, and modify BLOBs, CLOBs, and NCLOBs.

For an overview of LOBs, see Introduction to Large Objects and SecureFiles in Oracle
Database SecureFiles and Large Objects Developer's Guide.

2-1

Security Model
Operations provided by this package are performed under the current calling user, not
under the package owner SYS.

Any DBMS_LOB subprogram called from an anonymous PL/SQL block is executed using
the privileges of the current user. Any DBMS_LOB subprogram called from a stored
procedure is executed using the privileges of the owner of the stored procedure.

When creating the procedure, users can set the AUTHID to indicate whether they want
definer's rights or invoker's rights. For example:

CREATE PROCEDURE proc1 AUTHID DEFINER ...

Or:

CREATE PROCEDURE proc1 AUTHID CURRENT_USER ...

See Definer's Rights and Invoker's Rights (AUTHID Clause) in Oracle TimesTen In-
Memory Database Security Guide. For information about the security model pertaining
to temporary LOBs, see Operational Notes.

Constants
The DBMS_LOB package uses the constants shown in Table 2-1:

Table 2-1 DBMS_LOB Constants

Constant Type Value Description

CALL BINARY_INTEGER 12 Create the temporary
LOB with call duration.

DEFAULT_CSID INTEGER 0 This is the default
character set ID.

DEFAULT_LANG_CTX INTEGER 0 This is the default
language context.

LOB_READONLY BINARY_INTEGER 0 Open the specified LOB
read-only.

LOB_READWRITE BINARY_INTEGER 1 Open the specified LOB
read/write.

BLOBMAXSIZE INTEGER 16777216 (16 MB) Set maximum size of a
BLOB in bytes.

CLOBMAXSIZE INTEGER 4194304 (4 MB) Set maximum size of a
CLOB in bytes.

NO_WARNING INTEGER 0 Indicates success, no
warning message.

Chapter 2
Using DBMS_LOB

2-2

Table 2-1 (Cont.) DBMS_LOB Constants

Constant Type Value Description

SESSION BINARY_INTEGER 10 Create the temporary
LOB with session
duration.

Note: In TimesTen, LOB
duration cannot extend
past the end of the
transaction. Temporary
LOB contents are
destroyed when the
corresponding locator is
invalidated at the end of
the transaction.

TRANSACTION BINARY_INTEGER 11 Create the temporary
LOB with transaction
duration.

WARN_INCONVERTIBLE_CH
AR

INTEGER 1 Used by the conversion
functions to indicate there
is an inconvertible
character.

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

Data Types
The DBMS_LOB package uses the data types shown in Table 2-2.

Table 2-2 Data Types Used by DBMS_LOB

Type Description

BLOB Source or destination binary LOB

RAW Source or destination RAW buffer (used with BLOBs)

CLOB Source or destination character LOB (including NCLOBs)

VARCHAR2 Source or destination character buffer (used with CLOBs and
NCLOBs)

INTEGER Size of a buffer or LOB, offset into a LOB, or amount to access (in
bytes for BLOBs or characters for CLOBs or NCLOBs)

Chapter 2
Using DBMS_LOB

2-3

The DBMS_LOB package defines no special types.

An NCLOB is a CLOB for holding fixed-width and varying-width, multibyte national
character sets.

The clause ANY_CS in the specification of DBMS_LOB subprograms for CLOBs enables
the CLOB type to accept a CLOB or NCLOB locator variable as input.

Rules and Limits
• General Rules and Limits

• Maximum LOB Size

• Maximum Buffer Size

General Rules and Limits

• The following rules apply in the specification of subprograms in this package:

– The newlen, offset, and amount parameters for subprograms operating on
BLOBs must be specified in terms of bytes.

– The newlen, offset, and amount parameters for subprograms operating on
CLOBs must be specified in terms of characters.

• A subprogram raises an INVALID_ARGVAL exception if the following restrictions are
not followed in specifying values for parameters (unless otherwise specified):

1. Only positive, absolute offsets from the beginning of LOB data are permitted.
Negative offsets from the tail of the LOB are not permitted.

2. Only positive, nonzero values are permitted for the parameters that represent
size and positional quantities, such as amount, offset, newlen, nth, and so on.
Negative offsets and ranges observed in SQL string functions and operators
are not permitted.

3. The value of offset, amount, newlen, and nth must not exceed the value
BLOBMAXSIZE (for a BLOB) or CLOBMAXSIZE (for a CLOB or NCLOB) in any
DBMS_LOB subprogram. In TimesTen, the maximum BLOB size is 16 MB and
the maximum CLOB or NCLOB size is 4 MB.

4. For CLOBs consisting of fixed-width multibyte characters, the maximum value
for these parameters must not exceed (CLOBMAXSIZE/
character_width_in_bytes) characters.

• PL/SQL language specifications stipulate an upper limit of 32767 bytes (not
characters) for RAW and VARCHAR2 parameters used in DBMS_LOB subprograms. For
example, if you declare a variable as follows:

charbuf VARCHAR2(3000)

Then charbuf can hold 3000 single byte characters or 1500 two-byte fixed width
characters. This has an important consequence for DBMS_LOB subprograms for
CLOBs and NCLOBs.

• The %CHARSET clause indicates that the form of the parameter with %CHARSET must
match the form of the ANY_CS parameter to which it refers.

For example, in DBMS_LOB subprograms that take a VARCHAR2 buffer parameter, the
form of the VARCHAR2 buffer must be appropriate for the form of the character LOB

Chapter 2
Using DBMS_LOB

2-4

parameter. If the specified LOB is of type NCLOB, the buffer must contain NCHAR data. If the
specified LOB is of type CLOB, the buffer must contain CHAR data.

For DBMS_LOB subprograms that take two-character LOB parameters, both parameters
must have the same form. That is, they must both be NCLOBs or they must both be
CLOBs.

• If the value of amount plus offset exceeds the maximum LOB size allowed by the
database, then access exceptions are raised. In TimesTen, the maximum BLOB size is
16 MB and the maximum CLOB or NCLOB size is 4 MB.

Under these input conditions, subprograms such as READ, COMPARE, INSTR, and SUBSTR
read until the end of the LOB is reached. For example, for a READ operation on a BLOB, if
the user specifies an offset value of 3 MB and an amount value of 2 MB on a LOB that
is 4 MB, then READ returns only 1 MB (4 MB minus 3 MB).

• Functions with NULL or invalid input values for parameters return NULL. Procedures with
NULL values for destination LOB parameters raise exceptions.

• Operations involving patterns as parameters, such as COMPARE, INSTR, and SUBSTR, do not
support regular expressions or special matching characters (such as % in the LIKE
operator in SQL) in the pattern parameter or substrings.

• The end-of-LOB condition is indicated by the READ procedure using a NO_DATA_FOUND
exception. This exception is raised only upon an attempt by the user to read beyond the
end of the LOB. The READ buffer for the last read contains 0 bytes.

• Unless otherwise stated, the default value for an offset parameter is 1, which indicates
the first byte in the BLOB data or the first character in the CLOB or NCLOB data. No
default values are specified for the amount parameter. You must input the values
explicitly.

• You must lock the row containing the destination LOB before calling any subprograms
that modify the LOB, such as APPEND, COPY, ERASE, TRIM, or WRITE. These subprograms
do not implicitly lock the row containing the LOB.

Maximum LOB Size

The maximum size for LOBs in TimesTen is 16 MB for BLOBs and 4 MB for CLOBs or
NCLOBs.

Maximum Buffer Size

The maximum buffer size is 32767 bytes.

For BLOBs, where buffer size is expressed in bytes, the number of bytes cannot exceed
32767.

For CLOBs or NCLOBs, where buffer size is expressed in characters, the number of
characters cannot result in a buffer larger than 32767 bytes. For example, if you are using
fixed-width, two-byte characters, then specifying 20000 characters is an error (20000*2 =
40000, which is greater than 32767).

Operational Notes
This section discusses how to use LOBS and the DBMS_LOB package, covering these topics:

• LOB Usage Notes

• Persistent LOBs

Chapter 2
Using DBMS_LOB

2-5

• Temporary LOBs

LOB Usage Notes

DBMS_LOB subprograms operate based on LOB locators. For the successful completion
of DBMS_LOB subprograms, you must provide an input locator that represents a LOB,
either a temporary LOB (discussed below) or a persistent LOB that already exists in
the database tablespaces.

Tip:

• In TimesTen, LOB locators do not remain valid past the end of the
transaction.

• LOB manipulations through APIs that use LOB locators result in usage of
TimesTen temporary space. Any significant number of such
manipulations may necessitate a size increase for the TimesTen
temporary data partition. See TempSize in Oracle TimesTen In-Memory
Database Reference.

To use LOBs in your database, you must first use SQL data definition language (DDL)
to define the tables that contain columns of type BLOB, CLOB, or NCLOB.

In TimesTen, you can write data into the middle of a LOB only by overwriting previous
data. There is no functionality to insert data into the middle of a LOB and move
previous data, beginning at that point, toward the end of the LOB correspondingly.
Similarly, in TimesTen you can delete data from the middle of a LOB only by
overwriting previous data with zeros or null data. There is no functionality to remove
data from the middle of a LOB and move previous data, beginning at that point, toward
the beginning of the LOB correspondingly. In either case in TimesTen, the size of the
LOB does not change, except in the circumstance where from the specified offset
there is less space available in the LOB than there is data to write. (In Oracle
Database you can use the DBMS_LOB FRAGMENT procedures to insert or delete data,
move other data accordingly, and change the size of the LOB. TimesTen does not
support those procedures.)

DBMS_LOB procedures and functions are supported for both TimesTen LOBs and
passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen
and exposed as TimesTen LOBs. Note, however, that CREATETEMPORARY can only be
used to create a temporary LOB in TimesTen. If a temporary passthrough LOB is
created using some other mechanism, such as SQL, ISTEMPORARY and FREETEMPORARY
can be used on that LOB.

TimesTen does not support DBMS_LOB subprograms intended specifically for BFILEs,
SecureFiles (including Database File System features), or inserting or deleting data
fragments in the middle of a LOB (FRAGMENT subprograms).

Persistent LOBs

To populate your database table with LOBs after BLOB, CLOB, or NCLOB columns are
defined in the table, use the SQL data manipulation language (DML) to initialize or
populate the locators in the LOB columns.

Chapter 2
Using DBMS_LOB

2-6

Temporary LOBs

TimesTen supports the definition, creation, deletion, access, and update of temporary LOBs.
The temporary data partition stores the temporary LOB data. Temporary LOBs are not
permanently stored in the database. Their primary purpose is for performing transformations
on LOB data from applications.

You can use PL/SQL to create or manipulate a temporary LOB (BLOB, CLOB, or NCLOB).

A temporary LOB is empty when it is created. In TimesTen, all temporary LOBs are deleted at
the end of the transaction in which they were created. Also, if a process dies unexpectedly or
if the database crashes, temporary LOBs are deleted and the space for temporary LOBs is
freed.

There is no support for consistent-read, undo, backup, parallel processing, or transaction
management for temporary LOBs. Because consistent-read and rollbacks are not supported
for temporary LOBs, you must free the temporary LOB and start over again if you encounter
an error.

In PL/SQL, do not use more than one locator for a temporary LOB. Because consistent-read,
undo, and versions are not generated for temporary LOBs, there is potentially a performance
impact if you assign multiple locators to the same temporary LOB. Semantically, each locator
should have its own copy of the temporary LOB. A temporary LOB locator can be passed by
reference to other procedures if necessary.

A copy of a temporary LOB is created if the user modifies the temporary LOB while another
locator is also pointing to it. The locator on which a modification was performed now points to
a new copy of the temporary LOB. Other locators no longer see the same data as the locator
through which the modification was made. A deep copy was not incurred by persistent LOBs
in these types of situations, because consistent-read snapshots and version pages enable
users to see their own versions of the LOB cheaply.

Because temporary LOBs are not associated with any table schema, there are no meanings
to the terms in-row and out-of-row for temporary LOBs. Creation of a temporary LOB instance
by a user causes the engine to create and return a locator to the LOB data. The PL/SQL
DBMS_LOB package, as well as other programmatic interfaces, operates on temporary LOBs
through these locators just as they do for persistent LOBs.

There is no concept of client-side temporary LOBs. All temporary LOBs reside in the server.

A temporary LOB instance can be accessed and modified using appropriate DBMS_LOB
functions and procedures, just as for persistent LOBs. To make a temporary LOB persistent,
you can use the COPY procedure to copy it into a BLOB, CLOB, or NCLOB column (as appropriate)
in the database.

When you are finished with a temporary LOB instance, use the FREETEMPORARY procedure to
free it.

Security is provided through the LOB locator. Only the user who created the temporary LOB
can see it. Locators cannot be passed from one user session to another. Even if someone did
pass a locator from one session to another, they would not access the temporary LOBs from
the original session.

The following notes are specific to temporary LOBs:

• All functions in DBMS_LOB return NULL if any parameter is NULL. All procedures in DBMS_LOB
raise an exception if the LOB locator is input as NULL.

Chapter 2
Using DBMS_LOB

2-7

• Operations based on CLOBs do not verify whether the character set IDs (CSIDs)
of the parameters (CLOB parameters, VARCHAR2 buffers and patterns, and so on)
match. It is the user's responsibility to ensure this.

Exceptions

Table 2-3 DBMS_LOB Exceptions

Exception Code Description

ACCESS_ERROR 22925 There was an attempt to write too much data to the LOB.
In TimesTen, BLOB size is limited to 16 MB and CLOB or
NCLOB size is limited to 4 MB.

BUFFERING_ENABLED 22279 Cannot perform operation with LOB buffering enabled.

CONTENTTYPE_TOOLONG 43859 The length of the contenttype string exceeds the
defined maximum. Modify the length of the contenttype
string and retry the operation.

CONTENTTYPEBUF_WRONG 43862 The length of the contenttype buffer is less than the
defined constant. Modify the length of the contenttype
buffer and retry the operation.

INVALID_ARGVAL 21560 The argument is expecting a valid non-null value but the
argument value passed in is NULL, invalid, or out of
range.

NO_DATA_FOUND 1403 This is the end-of-LOB indicator for looping read
operations. It is not a hard error.

QUERY_WRITE 14553 Cannot perform a LOB write inside a query. (This is not
applicable for TimesTen.)

VALUE_ERROR 6502 This is a PL/SQL error for invalid values to subprogram
parameters.

DBMS_LOB Subprograms
Table 2-4 summarizes the DBMS_LOB subprograms, followed by a full description of
each subprogram.

Table 2-4 DBMS_LOB Subprograms

Subprogram Description

APPEND Procedures Appends the contents of the source LOB to the destination
LOB.

CLOSE Procedures Closes a previously opened LOB.

COMPARE Functions Compares two entire LOBs or parts of two LOBs.

CONVERTTOBLOB Procedure Reads character data from a source CLOB or NCLOB,
converts the character data to the specified character set,
writes the converted data to a destination BLOB in binary
format, and returns the new offsets.

Chapter 2
DBMS_LOB Subprograms

2-8

Table 2-4 (Cont.) DBMS_LOB Subprograms

Subprogram Description

CONVERTTOCLOB Procedure Takes a source BLOB, converts the binary data in the
source to character data using the specified character set,
writes the character data to a destination CLOB or
NCLOB, and returns the new offsets.

COPY Procedures Copies all or part of the source LOB to the destination
LOB.

CREATETEMPORARY
Procedures

Creates a temporary LOB in the temporary data partition.

ERASE Procedures Erases all or part of a LOB.

FREETEMPORARY Procedures Frees a temporary LOB in the temporary data partition.

GETCHUNKSIZE Functions Returns the amount of space used in the LOB chunk to
store the LOB value.

GETLENGTH Functions Returns the length of the LOB value, in bytes for a BLOB
or characters for a CLOB.

GET_STORAGE_LIMIT Functions Returns the storage limit for the LOB type of the specified
LOB.

INSTR Functions Returns the matching position of the nth occurrence of the
pattern in the LOB.

ISOPEN Functions Checks to see if the LOB was already opened using the
input locator.

ISTEMPORARY Functions Checks if the locator is pointing to a temporary LOB.

OPEN Procedures Opens a LOB (persistent or temporary) in the indicated
mode, read/write or read-only.

READ Procedures Reads data from the LOB starting at the specified offset.

SUBSTR Functions Returns part of the LOB value starting at the specified
offset.

TRIM Procedures Trims the LOB value to the specified length.

WRITE Procedures Writes data to the LOB from a specified offset.

WRITEAPPEND Procedures Appends a buffer to the end of a LOB.

APPEND Procedures
This procedure appends the contents of a source LOB to a destination LOB. It appends the
complete source LOB. (Do not confuse this with the WRITEAPPEND procedure.)

Note:

Also see WRITEAPPEND Procedures.

Chapter 2
DBMS_LOB Subprograms

2-9

Syntax

DBMS_LOB.APPEND (
 dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB);

DBMS_LOB.APPEND (
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET);

Parameters

Table 2-5 APPEND Procedure Parameters

Parameter Description

dest_lob Locator for the LOB to which the data is being appended

src_lob Locator for the LOB from which the data is being read

Usage Notes

• It is recommended that you enclose write operations to the LOB with OPEN and
CLOSE calls, but not mandatory. If you opened the LOB before performing the
operation, however, you must close it before you commit or roll back the
transaction.

Exceptions

Table 2-6 APPEND Procedure Exceptions

Exception Description

VALUE_ERROR Either the source or destination LOB is NULL.

QUERY_WRITE Cannot perform a LOB write inside a query. (This is not applicable for
TimesTen.)

BUFFERING_ENABLED Cannot perform operation if LOB buffering is enabled on either LOB.

Examples

This example shows use of the APPEND procedure.

create table t1 (a int, c clob);

insert into t1(a,c) values(1, 'abcde');
1 row inserted.

commit;

declare
 c1 clob;
 c2 clob;
begin

Chapter 2
DBMS_LOB Subprograms

2-10

 c1 := 'abc';
 select c into c2 from t1 where a = 1;
 dbms_output.put_line('c1 before append is ' || c1);
 dbms_output.put_line('c2 before append is ' || c2);
 dbms_lob.append(c1, c2);
 dbms_output.put_line('c1 after append is ' || c1);
 dbms_output.put_line('c2 after append is ' || c2);
 insert into t1 values (2, c1);
end;

c1 before append is abc
c2 before append is abcde
c1 after append is abcabcde
c2 after append is abcde

PL/SQL procedure successfully completed.

select * from t1;
< 1, abcde >
< 2, abcabcde >
2 rows found.

(Output is shown after running the commands from a SQL script.)

CLOSE Procedures
This procedure closes a previously opened LOB.

Syntax

DBMS_LOB.CLOSE (
 lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.CLOSE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

Parameters

Table 2-7 CLOSE Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

Usage Notes

• CLOSE requires a round-trip to the server.

• It is not mandatory that you wrap LOB operations inside OPEN and CLOSE calls. However, if
you open a LOB, you must close it before you commit or roll back the transaction.

• It is an error to commit the transaction before closing all LOBs that were opened by the
transaction. When the error is returned, the "open" status of the open LOBs is discarded,

Chapter 2
DBMS_LOB Subprograms

2-11

but the transaction is successfully committed. Hence, all the changes made to the
LOB and non-LOB data in the transaction are committed.

Exceptions

An error is returned if the LOB is not open.

COMPARE Functions
This function compares two entire LOBs or parts of two LOBs.

Syntax

DBMS_LOB.COMPARE (
 lob_1 IN BLOB,
 lob_2 IN BLOB,
 amount IN INTEGER := DBMS_LOB.BLOBMAXSIZE,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.COMPARE (
 lob_1 IN CLOB CHARACTER SET ANY_CS,
 lob_2 IN CLOB CHARACTER SET lob_1%CHARSET,
 amount IN INTEGER := DBMS_LOB.CLOBMAXSIZE,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
 RETURN INTEGER;

Parameters

Table 2-8 COMPARE Function Parameters

Parameter Description

lob_1 Locator for the first LOB for comparison

lob_2 Locator for the second LOB for comparison

amount Number of bytes (for BLOBs) or characters (for CLOBs or NCLOBs) to
compare

offset_1 Offset in bytes or characters in the first LOB (starting from 1)

offset_2 Offset in bytes or characters in the second LOB (starting from 1)

Return Values

The function returns one of the following:

• 0 (zero) if the data matches exactly over the specified range

• -1 if the first LOB is less than the second

• 1 if the first LOB is greater than the second

• NULL if amount, offset_1, or offset_2 is an invalid value, outside the range 1 to
BLOBMAXSIZE or CLOBMAXSIZE (as appropriate), inclusive

Chapter 2
DBMS_LOB Subprograms

2-12

Usage Notes

• You can only compare LOBs of the same type. For example, you cannot compare a
BLOB to a CLOB.

• For fixed-width n-byte CLOBs or NCLOBs, if the input amount for COMPARE is specified to
be greater than CLOBMAXSIZE/n, then COMPARE matches characters in a range of size that
is either CLOBMAXSIZE/n or Max(length(clob1), length(clob2)), whichever is less.

CONVERTTOBLOB Procedure
This procedure reads character data from a source CLOB or NCLOB, converts the character
data to the character set you specify, writes the converted data to a destination BLOB in
binary format, and returns the new offsets. You can use this procedure with any combination
of persistent or temporary LOBs.

Syntax

DBMS_LOB.CONVERTTOBLOB(
 dest_lob IN OUT NOCOPY BLOB,
 src_clob IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 blob_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 2-9 CONVERTTOBLOB Procedure Parameters

Parameter Description

dest_lob Locator for the destination LOB

src_clob Locator for the source LOB

amount Number of characters to convert from the source LOB

If you want to convert the entire CLOB or NCLOB, pass the constant
CLOBMAXSIZE. If you pass any other value, it must be less than or
equal to the size of the LOB.

dest_offset (IN) Offset in bytes in the destination LOB for the start of the write

Specify a value of 1 to start at the beginning of the LOB.

(OUT) The new offset in bytes after the end of the write

src_offset (IN) Offset in characters in the source LOB for the start of the read

(OUT) Offset in characters in the source LOB right after the end of the
read

blob_csid Character set ID for the converted BLOB data

Chapter 2
DBMS_LOB Subprograms

2-13

Table 2-9 (Cont.) CONVERTTOBLOB Procedure Parameters

Parameter Description

lang_context (IN) Language context, such as shift status, for the current
conversion (ignored by TimesTen)

(OUT) The language context at the time when the current conversion
is done (set to 0 by TimesTen)

This parameter is not supported by TimesTen.

warning Warning message

This parameter is not supported by TimesTen.

Usage Notes

This section discusses special usage notes for CONVERTTOBLOB.

Preconditions

Before a call to CONVERTTOBLOB, the following preconditions must be met.

• Both the source and destination LOBs must exist.

• If the destination LOB is a persistent LOB, the row must be locked. To lock the
row, select the LOB using the FOR UPDATE clause of the SELECT statement.

Constants and Defaults

All parameters are required. You must pass a variable for each OUT or IN OUT
parameter. You must pass either a variable or a value for each IN parameter.

Table 2-10 gives a summary of typical values for each parameter. Note that constants
are used for some values. These constants are defined in the dbmslob.sql package
specification file.

Table 2-10 CONVERTTOBLOB Typical Values

Parameter Value Description

amount CLOBMAXSIZE (IN) Convert the entire LOB.

dest_offset 1 (IN) Start from the beginning.

src_offset 1 (IN) Start from the beginning.

blob_csid DEFAULT_CSID (IN) Default character set ID, use
same ID as source CLOB.

lang_context DEFAULT_LANG_CTX (IN) This is the default language
context (ignored by TimesTen).

warning NO_WARNING (OUT)
WARN_INCONVERTIBLE_CHAR
(OUT)

This is a warning message
(ignored by TimesTen).

Chapter 2
DBMS_LOB Subprograms

2-14

General Notes

• You must specify the desired character set ID for the destination BLOB in the blob_csid
parameter. If you pass a zero value, the database assumes that the desired character set
is the same as the source CLOB character set.

• You must specify the offsets for both the source and destination LOBs, and the number of
characters to copy from the source LOB. The amount and src_offset values are in
characters and the dest_offset is in bytes. To convert the entire LOB, you can specify
CLOBMAXSIZE for the amount parameter.

• CONVERTTOBLOB gets the source and destination LOBs as necessary before converting
and writing the data.

Exceptions

Table 2-11 CONVERTTOBLOB Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters is NULL or invalid.

INVALID_ARGVAL Any of the following is true:

src_offset < 1 or src_offset > CLOBMAXSIZE
dest_offset < 1 or dest_offset > BLOBMAXSIZE
amount < 1 or amount > CLOBMAXSIZE

CONVERTTOCLOB Procedure
This procedure takes a source BLOB, converts the binary data in the source to character
data using the character set you specify, writes the character data to a destination CLOB or
NCLOB, and returns the new offsets. You can use this procedure with any combination of
persistent or temporary LOBs.

Syntax

DBMS_LOB.CONVERTTOCLOB(
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_blob IN BLOB,
 amount IN INTEGER,
 dest_offset IN OUT INTEGER,
 src_offset IN OUT INTEGER,
 blob_csid IN NUMBER,
 lang_context IN OUT INTEGER,
 warning OUT INTEGER);

Parameters

Table 2-12 CONVERTTOCLOB Procedure Parameters

Parameter Description

dest_lob Locator for the destination LOB

Chapter 2
DBMS_LOB Subprograms

2-15

Table 2-12 (Cont.) CONVERTTOCLOB Procedure Parameters

Parameter Description

src_blob Locator for the source LOB

amount Number of bytes to convert from the source LOB

If you want to convert the entire BLOB, pass the constant
BLOBMAXSIZE. If you pass any other value, it must be less than or
equal to the size of the BLOB.

dest_offset (IN) Offset in characters in the destination LOB for the start of the
write

Specify a value of 1 to start at the beginning of the LOB.

(OUT) The new offset in characters after the end of the write

This offset always points to the beginning of the first complete
character after the end of the write.

src_offset (IN) Offset in bytes in the source LOB for the start of the read

(OUT) Offset in bytes in the source LOB right after the end of the read

blob_csid Character set ID for the source BLOB data

lang_context (IN) Language context, such as shift status, for the current
conversion (ignored by TimesTen)

(OUT) Language context at the time when the current conversion is
done (set to 0 by TimesTen)

This parameter is not supported by TimesTen.

warning Warning message

This parameter is not supported by TimesTen.

Usage Notes

This section discusses special usage notes for CONVERTTOCLOB.

Preconditions

Before a call to CONVERTTOCLOB, the following preconditions must be met.

• Both the source and destination LOBs must exist.

• If the destination LOB is a persistent LOB, the row must be locked before calling
the CONVERTTOCLOB procedure. To lock the row, select the LOB using the FOR
UPDATE clause of the SELECT statement.

Constants and Defaults

All parameters are required. You must pass a variable for each OUT or IN OUT
parameter. You must pass either a variable or a value for each IN parameter.

Table 2-13 gives a summary of typical values for each parameter. Note that constants
are used for some values. These constants are defined in the dbmslob.sql package
specification file.

Chapter 2
DBMS_LOB Subprograms

2-16

Table 2-13 CONVERTTOCLOB Typical Values

Parameter Value Description

amount BLOBMAXSIZE (IN) Convert the entire LOB.

dest_offset 1 (IN) Start from the beginning.

src_offset 1 (IN) Start from the beginning.

blob_csid DEFAULT_CSID (IN) Default character set ID, use same
ID as destination CLOB.

lang_context DEFAULT_LANG_CTX (IN) This is the default language
context (ignored by TimesTen).

warning NO_WARNING (OUT)
WARN_INCONVERTIBLE_CHAR (OUT)

This is a warning message
(ignored by TimesTen).

General Notes

• You must specify the desired character set ID for the source BLOB in the blob_csid
parameter. If you pass a zero value, the database assumes that the desired character set
is the same as the destination CLOB character set.

• You must specify the offsets for both the source and destination LOBs, and the number of
characters to copy from the source LOB. The amount and src_offset values are in bytes
and the dest_offset is in characters. To convert the entire LOB, you can specify
BLOBMAXSIZE for the amount parameter.

• CONVERTTOCLOB gets the source and destination LOBs as necessary before converting
and writing the data.

Exceptions

Table 2-14 CONVERTTOCLOB Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters is NULL or invalid.

INVALID_ARGVAL Any of the following is true:

src_offset < 1 or src_offset > BLOBMAXSIZE
dest_offset < 1 or dest_offset > CLOBMAXSIZE
amount < 1 or amount > BLOBMAXSIZE

COPY Procedures
This procedure copies all or part of a source LOB to a destination LOB. You can specify the
offsets for both the source and destination LOBs, and the number of bytes or characters to
copy.

Syntax

DBMS_LOB.COPY (
 dest_lob IN OUT NOCOPY BLOB,
 src_lob IN BLOB,

Chapter 2
DBMS_LOB Subprograms

2-17

 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER:= 1);

DBMS_LOB.COPY (
 dest_lob IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameters

Table 2-15 COPY Procedure Parameters

Parameter Description

dest_lob Locator for the destination LOB being copied to

src_lob Locator for the source LOB being copied from

amount Number of bytes (for BLOBs) or characters (for CLOBs or
NCLOBs) to copy

dest_offset Offset in bytes or characters in the destination LOB for the start of
the copy (starting from 1)

src_offset Offset in bytes or characters in the source LOB for the start of the
copy (starting from 1)

Usage Notes

• If the offset you specify in the destination LOB is beyond the end of the data
currently in this LOB, then zero-byte fillers (for BLOBs) or spaces (for CLOBs or
NCLOBs) are inserted in the destination LOB to reach the offset. If the offset is
less than the current length of the destination LOB, then existing data is
overwritten.

• It is not an error to specify an amount that exceeds the length of the data in the
source LOB. Thus, you can specify a large amount to copy from the source LOB,
which copies data from the src_offset to the end of the source LOB.

• It is recommended that you enclose write operations to the LOB with OPEN and
CLOSE calls, but not mandatory. However, if you opened the LOB before performing
the operation, you must close it before you commit or roll back the transaction.

• In addition to copying from one TimesTen LOB to another, COPY can copy from a
TimesTen LOB to a passthrough LOB, from a passthrough LOB to a TimesTen
LOB, or from one passthrough LOB to another passthrough LOB. An attempt to
copy a passthrough LOB to a TimesTen LOB when the passthrough LOB is larger
than the TimesTen LOB size limit results in an error.

Exceptions

Maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Chapter 2
DBMS_LOB Subprograms

2-18

Table 2-16 COPY Procedure Exceptions

Exception Description

VALUE_ERROR Any of the input parameters is NULL or invalid.

INVALID_ARGVAL Any of the following is true:

src_offset < 1 or src_offset > maximum LOB size

dest_offset < 1 or dest_offset > maximum LOB size

amount < 1 or amount > maximum LOB size

QUERY_WRITE Cannot perform a LOB write inside a query. (This is not applicable for
TimesTen.)

BUFFERING_ENABLED Cannot perform the operation if LOB buffering is enabled on either LOB.

Examples

The examples in this section show how to copy LOBs in PL/SQL, copying between
passthrough LOBs (from Oracle Database) and TimesTen LOBs. The first example uses the
COPY procedure. The second, as contrast, simply uses INSERT and UPDATE statements, though
also uses functionality of the DBMS_LOB package.

Copy CLOBs Using COPY Procedure

This example uses the COPY procedure to first copy a passthrough CLOB from Oracle
Database into a TimesTen CLOB, then to copy a TimesTen CLOB into a passthrough CLOB.

autocommit 0;
passthrough 0;
DROP TABLE tt_table; CREATE TABLE tt_table (i INT, c CLOB); COMMIT;
passthrough 3;
DROP TABLE ora_table; CREATE TABLE ora_table (i INT, c CLOB); COMMIT;
passthrough 0;
set serveroutput on;

DECLARE
 passthru_clob CLOB;
 tt_clob CLOB;
 clob_length BINARY_INTEGER;
 clob_buffer VARCHAR2(80);

BEGIN
 EXECUTE IMMEDIATE 'call ttoptsetflag(''passthrough'', 1)';

 -- Note that in PL/SQL, passthrough statements must be executed as
 -- dynamic SQL, and SELECT INTO must be used to assign a passthrough LOB.

 -- 1. Copy a passthrough CLOB on Oracle Database to a TimesTen CLOB
 -- On Oracle Database : insert a row with an empty CLOB, get a passthrough
CLOB
 -- handle, and append to the passthrough CLOB.
 EXECUTE IMMEDIATE 'INSERT INTO ora_table VALUES (1, EMPTY_CLOB())';
 EXECUTE IMMEDIATE 'SELECT c FROM ora_table WHERE i = 1 FOR UPDATE'
 INTO passthru_clob;

Chapter 2
DBMS_LOB Subprograms

2-19

 DBMS_LOB.APPEND(passthru_clob, 'Copy from Oracle Database to
TimesTen');
 clob_length := DBMS_LOB.GETLENGTH(passthru_clob);

 -- On TimesTen: insert a row with an empty CLOB, and get a TimesTen
CLOB handle
 INSERT INTO tt_table VALUES (1, EMPTY_CLOB()) RETURNING c INTO
tt_clob;

 -- Copy the passthrough CLOB on Oracle Database to a TimesTen CLOB
 DBMS_LOB.COPY(tt_clob, passthru_clob, clob_length, 1, 1);

 -- On TimesTen: display the modified TimesTen CLOB
 DBMS_LOB.READ(tt_clob, clob_length, 1, clob_buffer);
 DBMS_OUTPUT.PUT_LINE(clob_buffer);

 -- 2. Copy a TimesTen CLOB to a passthrough CLOB on Oracle Database
 -- On TimesTen: insert a row with LOB data, and get a TimesTen CLOB
handle
 INSERT INTO tt_table VALUES (2, 'Copy from TimesTen to Oracle
Database.')
 RETURNING c INTO tt_clob;
 clob_length := DBMS_LOB.GETLENGTH(tt_clob);

 -- On Oracle Database: insert a row with an empty CLOB, and get a
passthrough
 -- CLOB handle
 EXECUTE IMMEDIATE 'INSERT INTO ora_table VALUES (2, EMPTY_CLOB())';
 EXECUTE IMMEDIATE 'SELECT c FROM ora_table WHERE i = 2 FOR UPDATE'
 INTO passthru_clob ;

 -- Copy a TimesTen CLOB to a passthrough CLOB on Oracle Database
 DBMS_LOB.COPY(passthru_clob, tt_clob, clob_length, 1, 1);

 -- On Oracle Database: display the modified passthrough CLOB
 DBMS_LOB.READ(passthru_clob, clob_length, 1, clob_buffer);
 DBMS_OUTPUT.PUT_LINE(clob_buffer);

 COMMIT;
 EXECUTE IMMEDIATE 'call ttoptsetflag(''passthrough'', 0)';
END;

Copy CLOBs Using INSERT and UPDATE Statements

A passthrough LOB from Oracle Database can be bound to an INSERT or UPDATE
statement executed against a table in TimesTen. You can copy a passthrough LOB to
a TimesTen LOB in this way. Similarly, a TimesTen LOB can be bound to a
passthrough INSERT or UPDATE statement executed against a table in Oracle Database.
You can copy a TimesTen LOB to a passthrough LOB in this way.

This example shows both of these scenarios.

autocommit 0;
passthrough 0;
DROP TABLE tt_table; CREATE TABLE tt_table (i INT, c CLOB); COMMIT;

Chapter 2
DBMS_LOB Subprograms

2-20

passthrough 3;
DROP TABLE ora_table; CREATE TABLE ora_table (i INT, c CLOB); COMMIT;
passthrough 0;
set serveroutput on;

DECLARE
 passthru_clob CLOB;
 tt_clob CLOB;
 clob_length BINARY_INTEGER;
 clob_buffer VARCHAR2(80);

BEGIN
 EXECUTE IMMEDIATE 'call ttoptsetflag(''passthrough'', 1)';

 -- Note that in PL/SQL, passthrough statements must be executed as
 -- dynamic SQL, and SELECT INTO must be used to assign a passthrough LOB.

 -- 1. A TimesTen CLOB is updated with a passthrough CLOB on Oracle Database
 -- On TimesTen: insert a row with a NULL CLOB value
 INSERT INTO tt_table VALUES (1, NULL);

 -- On Oracle Database: insert a row with an empty CLOB, get a passthrough
CLOB
 -- handle
 EXECUTE IMMEDIATE 'INSERT INTO ora_table
 VALUES (1, ''Copy from Oracle Database to TimesTen'')';
 EXECUTE IMMEDIATE 'SELECT c FROM ora_table WHERE i = 1' INTO
passthru_clob ;

 -- On TimesTen: update the TimesTen CLOB with the passthrough CLOB
 UPDATE tt_table SET c = passthru_clob where i = 1;

 -- On TimesTen: display the modified TimesTen CLOB
 SELECT c INTO tt_clob FROM tt_table WHERE i = 1;
 clob_length := DBMS_LOB.GETLENGTH(tt_clob);
 DBMS_LOB.READ(tt_clob, clob_length, 1, clob_buffer);
 DBMS_OUTPUT.PUT_LINE(clob_buffer);

 -- 2. A passthrough table on Oracle Database is inserted with a TimesTen
CLOB
 -- On TimesTen: insert a row with a CLOB value, and get a TimesTen CLOB
handle
 INSERT INTO tt_table VALUES (2, 'Copy from TimesTen to Oracle Database.')
 RETURNING c INTO tt_clob;

 -- On Oracle Database: insert a row on Oracle Database with the TimesTen
CLOB
 EXECUTE IMMEDIATE 'INSERT INTO ora_table VALUES (2, :1)' USING tt_clob;

 -- On Oracle Database: display the modified passthrough CLOB
 EXECUTE IMMEDIATE 'SELECT c FROM ora_table WHERE i = 2' INTO
passthru_clob;
 clob_length := DBMS_LOB.GETLENGTH(passthru_clob);
 DBMS_LOB.READ(passthru_clob, clob_length, 1, clob_buffer);
 DBMS_OUTPUT.PUT_LINE(clob_buffer);

Chapter 2
DBMS_LOB Subprograms

2-21

 COMMIT;
 EXECUTE IMMEDIATE 'call ttoptsetflag(''passthrough'', 0)';
END;

CREATETEMPORARY Procedures
This procedure creates a temporary BLOB, CLOB, or NCLOB in the temporary data
partition.

Use FREETEMPORARY Procedures when you are finished using temporary LOBs.

Tip:

In TimesTen, creation of a temporary LOB results in creation of a database
transaction if one is not already in progress. You must execute a commit or
rollback to close the transaction.

Syntax

DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY BLOB,
 cache IN BOOLEAN,
 dur IN BINARY_INTEGER := DBMS_LOB.SESSION);

DBMS_LOB.CREATETEMPORARY (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 cache IN BOOLEAN,
 dur IN BINARY_INTEGER := DBMS_LOB.SESSION);

Parameters

Table 2-17 CREATETEMPORARY Procedure Parameters

Parameter Description

lob_loc Locator for the temporary LOB

It is permissible to specify an NCLOB locator instead of a CLOB locator.
The appropriate character set is used.

cache Flag indicating whether the LOB should be read into buffer cache

dur One of two predefined duration values—SESSION or CALL—that
specifies a hint as to when the temporary LOB is cleaned up

Note: Either setting is permitted, but in TimesTen the duration of a
LOB locator does not extend past the end of the transaction.

Usage Notes

• CREATETEMPORARY cannot be used to create a temporary passthrough LOB.

Chapter 2
DBMS_LOB Subprograms

2-22

ERASE Procedures
This procedure erases all or part of a LOB.

Note:

Also see TRIM Procedures.

Syntax

DBMS_LOB.ERASE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

DBMS_LOB.ERASE (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER := 1);

Parameters

Table 2-18 ERASE Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

amount (IN) Number of bytes (for BLOBs) or characters (for CLOBs or
NCLOBs) to be erased

(OUT) Number of bytes or characters actually erased

offset Absolute offset (starting from 1) from the beginning of the LOB, in bytes
(for BLOBs) or characters (for CLOBs or NCLOBs)

Usage Notes

• When data is erased from the middle of a LOB, zero-byte fillers (for BLOBs) or spaces
(for CLOBs or NCLOBs) are written.

• The actual number of bytes or characters erased can differ from the number you
specified in the amount parameter if the end of the LOB data is reached first. The actual
number of characters or bytes erased is returned in the amount parameter.

• It is recommended that you enclose write operations to the LOB with OPEN and CLOSE
calls, but not mandatory. However, if you opened the LOB before performing the
operation, you must close it before you commit or roll back the transaction.

Chapter 2
DBMS_LOB Subprograms

2-23

Note:

The length of the LOB does not decrease when a section of the LOB is
erased. To decrease the length of a LOB, see TRIM Procedures.

Exceptions

Maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Table 2-19 ERASE Procedure Exceptions

Exception Description

VALUE_ERROR Any input parameter is NULL.

INVALID_ARGVAL Any of the following is true:

amount < 1 or amount > maximum LOB size

offset < 1 or offset > maximum LOB size

QUERY_WRITE Cannot perform a LOB write inside a query. (This is not applicable
for TimesTen.)

BUFFERING_ENABLED Cannot perform operation if LOB buffering is enabled on the LOB.

FREETEMPORARY Procedures
This procedure frees a temporary BLOB, CLOB, or NCLOB in the temporary data
partition.

Also refer to CREATETEMPORARY Procedures.

Syntax

DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY BLOB);

DBMS_LOB.FREETEMPORARY (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS);

Parameters

Table 2-20 FREETEMPORARY Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

Usage Notes

• After the call to FREETEMPORARY, the LOB locator that was freed is marked as
invalid.

Chapter 2
DBMS_LOB Subprograms

2-24

• If an invalid LOB locator is assigned to another LOB locator through an assignment
operation in PL/SQL, then the target of the assignment is also freed and marked as
invalid.

• CREATETEMPORARY cannot be used to create a temporary passthrough LOB; however, if
one is created using some other mechanism, such as SQL, ISTEMPORARY and
FREETEMPORARY can be used on that LOB.

GETCHUNKSIZE Functions
In TimesTen, this function is not supported and simply returns the value 32K for
interoperability. This value is not relevant for any performance tuning for a TimesTen
application.

Refer to GETCHUNKSIZE Functions in Oracle Database PL/SQL Packages and Types
Reference if you are interested in Oracle Database functionality.

Syntax

DBMS_LOB.GETCHUNKSIZE (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.GETCHUNKSIZE (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Parameters

Table 2-21 GETCHUNKSIZE Function Parameters

Parameter Description

lob_loc Locator for the LOB

Return Values

Returns the value 32K, but applications should not rely on this number for performance
tuning.

Exceptions

Table 2-22 GETCHUNKSIZE Procedure Exceptions

Exception Description

BUFFERING_ENABLED Cannot perform operation if LOB buffering is enabled on the LOB.

Chapter 2
DBMS_LOB Subprograms

2-25

GETLENGTH Functions
This function returns the length of the specified LOB in bytes (for BLOBs) or
characters (for CLOBs or NCLOBs).

Syntax

DBMS_LOB.GETLENGTH (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.GETLENGTH (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Parameters

Table 2-23 GETLENGTH Function Parameter

Parameter Description

lob_loc Locator for the LOB

Return Values

Returns an INTEGER value for the length of the LOB in bytes or characters. NULL is
returned if the value of the input LOB or lob_loc is NULL.

Usage Notes

• Any zero-byte or space filler in the LOB caused by previous ERASE or WRITE
operations is included in the length count. The length of an empty LOB is 0 (zero).

Exceptions

Table 2-24 GETLENGTH Procedure Exceptions

Exception Description

BUFFERING_ENABLED Cannot perform operation if LOB buffering is enabled on the LOB.

Examples

The following example shows use of the GETLENGTH function.

create table t1 (a int, b blob, c clob);

insert into t1(a,b,c) values(1, 0x123451234554321, 'abcde');
1 row inserted.

commit;

declare

Chapter 2
DBMS_LOB Subprograms

2-26

 myblob blob;
 i integer;
begin
 myblob := empty_blob();
 i := dbms_lob.getlength(myblob);
 dbms_output.put_line('Length of BLOB before SELECT: ' || i);
 select b into myblob from t1 where a=1;
 i := dbms_lob.getlength(myblob);
 dbms_output.put_line('Length of BLOB after SELECT: ' || i);
end;

Length of BLOB before SELECT: 0
Length of BLOB after SELECT: 8

PL/SQL procedure successfully completed.

(Output is shown after running the commands from a SQL script.)

GET_STORAGE_LIMIT Functions
This function returns the storage limit, in bytes, for the type of specified LOB.

Syntax

DBMS_LOB.GET_STORAGE_LIMIT (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

DBMS_LOB.GET_STORAGE_LIMIT (
 lob_loc IN BLOB)
 RETURN INTEGER;

Parameters

Table 2-25 GET_STORAGE_LIMIT Function Parameters

Parameter Description

lob_loc Locator for the LOB

Return Value

In TimesTen, the value returned is simply the maximum storage space, in bytes, for the type
of specified LOB. That is 16777216 (16 MB) for a BLOB or 4194304 (4 MB) for a CLOB or
NCLOB.

Chapter 2
DBMS_LOB Subprograms

2-27

INSTR Functions
This function returns the matching position of the nth occurrence of a specified pattern
in a specified LOB, starting from a specified offset.

Note:

Also see SUBSTR Functions.

Syntax

DBMS_LOB.INSTR (
 lob_loc IN BLOB,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

DBMS_LOB.INSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 pattern IN VARCHAR2 CHARACTER SET lob_loc%CHARSET,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
 RETURN INTEGER;

Parameters

Table 2-26 INSTR Function Parameters

Parameter Description

lob_loc Locator for the LOB

pattern Pattern to be tested for

The pattern is in RAW bytes for BLOBs, or a character string
(VARCHAR2) for CLOBs or NCLOBs. The maximum size of the
pattern is 16383 bytes.

offset Absolute offset in bytes (for BLOBs) or characters (for CLOBs or
NCLOBs), starting from 1, at which the pattern-matching is to
start

nth Occurrence number of the pattern in the LOB, starting from 1

Return Values

The function returns one of the following:

• An INTEGER value for the offset of the beginning of the matched pattern, in bytes
(for BLOBs) or characters (for CLOBs or NCLOBs)

• 0 (zero) if the pattern is not found

Chapter 2
DBMS_LOB Subprograms

2-28

• NULL if any of the input parameters is NULL or invalid or any of the following is true:

– offset < 1 or offset > maximum LOB size

– nth < 1 or nth > maximum LOB size

Where maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Usage Notes

• For a CLOB or NCLOB, the form of the VARCHAR2 buffer for the pattern parameter must
be appropriate for the type of LOB. If the specified LOB is of type NCLOB, the pattern must
contain NCHAR data. If the specified LOB is of type CLOB, the pattern must contain CHAR
data.

• Operations that accept RAW or VARCHAR2 parameters for pattern matching, such as INSTR,
do not support regular expressions or special matching characters (as with SQL LIKE) in
the pattern parameter or substrings.

ISOPEN Functions
This function checks to see if a LOB was already opened using the input locator.

Syntax

DBMS_LOB.ISOPEN (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.ISOPEN (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Parameters

Table 2-27 ISOPEN Function Parameters

Parameter Description

lob_loc Locator for the LOB

Return Values

The return value is 1 if the LOB is open, or 0 (zero) if not.

Usage Notes

• The "open" status is associated with the LOB, not with the locator. If any locator is used
in opening the LOB, then any other locator for the LOB would also see it as open.

• ISOPEN requires a round-trip, because it must check the state on the server to see if the
LOB is open.

Chapter 2
DBMS_LOB Subprograms

2-29

ISTEMPORARY Functions
This function determines whether a LOB is temporary.

Syntax

DBMS_LOB.ISTEMPORARY (
 lob_loc IN BLOB)
 RETURN INTEGER;

DBMS_LOB.ISTEMPORARY (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
 RETURN INTEGER;

Parameters

Table 2-28 ISTEMPORARY Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

Return Values

The return value is 1 if the LOB exists and is temporary, 0 (zero) if the LOB does not
exist or is not temporary, or NULL if the given locator value is NULL.

Usage Notes

• When you free a temporary LOB with FREETEMPORARY, the LOB locator is not set to
NULL. Consequently, ISTEMPORARY returns 0 (zero) for a locator that has been freed
but not explicitly reset to NULL.

• CREATETEMPORARY cannot be used to create a temporary passthrough LOB;
however, if one is created using some other mechanism, such as SQL,
ISTEMPORARY and FREETEMPORARY can be used on that LOB.

OPEN Procedures
This procedure opens a LOB in the indicated mode, read-only or read/write.

Syntax

DBMS_LOB.OPEN (
 lob_loc IN OUT NOCOPY BLOB,
 open_mode IN BINARY_INTEGER);

DBMS_LOB.OPEN (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 open_mode IN BINARY_INTEGER);

Chapter 2
DBMS_LOB Subprograms

2-30

Parameters

Table 2-29 OPEN Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

open_mode Mode in which to open, either LOB_READONLY or LOB_READWRITE

Usage Notes

• An error is returned if you try to write to a LOB that was opened as read-only.

• OPEN requires a round-trip to the server and causes execution of other code that relies on
the OPEN call.

• It is not mandatory that you wrap LOB operations inside OPEN and CLOSE calls. However, if
you open a LOB, you must close it before you commit or roll back the transaction.

• It is an error to commit the transaction before closing all LOBs that were opened in the
transaction. When the error is returned, the "open" status of the open LOBs is discarded,
but the transaction is successfully committed. Hence, all the changes made to both LOB
and non-LOB data in the transaction are committed.

READ Procedures
This procedure reads part of a LOB, starting from a specified absolute offset from the
beginning of the LOB, and returns the specified number of bytes (for BLOBs) or characters
(for CLOBs or NCLOBs) into the buffer parameter.

Syntax

DBMS_LOB.READ (
 lob_loc IN BLOB,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

DBMS_LOB.READ (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN OUT NOCOPY INTEGER,
 offset IN INTEGER,
 buffer OUT VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 2-30 READ Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

Chapter 2
DBMS_LOB Subprograms

2-31

Table 2-30 (Cont.) READ Procedure Parameters

Parameter Description

amount (IN) Number of bytes (for BLOBs) or characters (for CLOBs or
NCLOBs) to read

(OUT) Number of bytes or characters actually read

offset Offset in bytes (for BLOBs) or characters (for CLOBs or NCLOBs) from
the start of the LOB (starting from 1)

buffer Output buffer from the read operation

Usage Notes

• If the input offset points past the end of the LOB, then amount is set to 0 (zero)
and a NO_DATA_FOUND exception is raised.

• For a CLOB or NCLOB, the form of the VARCHAR2 buffer for the buffer parameter
must be appropriate for the type of LOB. If the specified LOB is of type NCLOB, the
buffer must contain NCHAR data. If the specified LOB is of type CLOB, the buffer
must contain CHAR data.

• When calling READ from a client, the returned buffer contains data in the client
character set. The database converts the LOB value from the server character set
to the client character set before it returns the buffer to the user.

• READ gets the LOB, if necessary, before the read.

Exceptions

Maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Table 2-31 READ Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc, amount, or offset is NULL.

INVALID_ARGVAL Any of the following is true:

amount < 1 or amount > 32767 bytes (or the character equivalent) or
the capacity of buffer
offset < 1 or offset > maximum LOB size

NO_DATA_FOUND The end of the LOB is reached and there are no more bytes or
characters to read from the LOB. The amount parameter has a value
of 0 (zero).

Chapter 2
DBMS_LOB Subprograms

2-32

SUBSTR Functions
This function returns a specified number of bytes (for a BLOB) or characters (for a CLOB or
NCLOB), starting at a specified offset from the beginning of a specified LOB.

Note:

Also see INSTR Functions and READ Procedures.

Syntax

DBMS_LOB.SUBSTR (
 lob_loc IN BLOB,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN RAW;

DBMS_LOB.SUBSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
 RETURN VARCHAR2 CHARACTER SET lob_loc%CHARSET;

Parameters

Table 2-32 SUBSTR Function Parameters

Parameter Description

lob_loc Locator for the LOB

amount Number of bytes (for BLOBs) or characters (for CLOBs or NCLOBs) to read

offset Offset in bytes (for BLOBs) or characters (for CLOBs or NCLOBs) from the
start of the LOB (starting from 1)

Return Values

Returns one of the following:

• RAW bytes from a BLOB

• VARCHAR2 characters from a CLOB or NCLOB

• NULL if any input parameter is NULL or any of the following is true:

– amount < 1 or amount > 32767 bytes (or the character equivalent)

– offset < 1 or offset > maximum LOB size

Where maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Chapter 2
DBMS_LOB Subprograms

2-33

Usage Notes

• For fixed-width n-byte CLOBs or NCLOBs, if the input amount for SUBSTR is greater
than (32767/n), then SUBSTR returns a character buffer of length (32767/n) or the
length of the CLOB, whichever is less. For CLOBs in a varying-width character set,
n is the maximum byte-width used for characters in the CLOB.

• For a CLOB or NCLOB, the form of the VARCHAR2 return buffer must be appropriate
for the type of LOB. If the specified LOB is of type NCLOB, the buffer must contain
NCHAR data. If the specified LOB is of type CLOB, the buffer must contain CHAR data.

• When calling SUBSTR from a client, the returned buffer contains data in the client
character set. The database converts the LOB value from the server character set
to the client character set before it returns the buffer to the user.

• SUBSTR returns 8191 or more characters based on the characters stored in the
LOB. If all characters are not returned because the character byte size exceeds
the available buffer, the user should either call SUBSTR with a new offset to read the
remaining characters, or call the subprogram in a loop until all the data is
extracted.

• SUBSTR get s the LOB, if necessary, before reading.

TRIM Procedures
This procedure trims a LOB to the length you specify in the newlen parameter. Specify
the new desired data length in bytes for BLOBs or characters for CLOBs or NCLOBs.

Note:

Also see ERASE Procedures and WRITEAPPEND Procedures.

Syntax

DBMS_LOB.TRIM (
 lob_loc IN OUT NOCOPY BLOB,
 newlen IN INTEGER);

DBMS_LOB.TRIM (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 newlen IN INTEGER);

Parameters

Table 2-33 TRIM Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

newlen Desired trimmed length of the LOB value, in bytes (for BLOBs) or
characters (for CLOBs or NCLOBs)

Chapter 2
DBMS_LOB Subprograms

2-34

Usage Notes

• If you attempt to trim an empty LOB, no action is taken and TRIM returns no error.

• If the new length that you specify in newlen is greater than the size of the LOB, an
exception is raised.

• It is recommended that you enclose write operations to the LOB with OPEN and CLOSE
calls, but not mandatory. However, if you opened the LOB before performing the
operation, you must close it before you commit or roll back the transaction.

• TRIM gets the LOB, if necessary, before altering the length of the LOB, unless the new
length specified is 0 (zero).

Exceptions

Maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Table 2-34 TRIM Procedure Exceptions

Exception Description

VALUE_ERROR The lob_loc value is NULL.

INVALID_ARGVAL Either of the following is true:

newlen < 0 or newlen > maximum LOB size

QUERY_WRITE Cannot perform a LOB write inside a query. (This is not applicable for
TimesTen.)

BUFFERING_ENABLED Cannot perform operation if LOB buffering enabled is enabled on the
LOB.

WRITE Procedures
This procedure writes a specified amount of data into a LOB, starting from a specified
absolute offset from the beginning of the LOB. The data is written from the buffer parameter.

WRITE replaces (overwrites) any data that already exists in the LOB from the offset through
the length you specify.

Note:

Also see COPY Procedures and WRITEAPPEND Procedures.

Syntax

DBMS_LOB.WRITE (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITE (

Chapter 2
DBMS_LOB Subprograms

2-35

 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 2-35 WRITE Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

amount Number of bytes (for BLOBs) or characters (for CLOBs or
NCLOBs) to write

offset Offset in bytes (for BLOBs) or characters (for CLOBs or
NCLOBs) from the start of the LOB for the write operation
(starting from 1)

buffer Input buffer with data for the write

Usage Notes

• There is an error if the specified amount is more than the data in the buffer. If the
input amount is less than the data in the buffer, then only amount bytes or
characters from the buffer are written to the LOB. If the offset you specify is
beyond the end of the data currently in the LOB, then zero-byte fillers (for BLOBs)
or spaces (for CLOBs or NCLOBs) are inserted into the LOB to reach the offset.

• For a CLOB or NCLOB, the form of the VARCHAR2 buffer for the buffer parameter
must be appropriate for the type of LOB. If the specified LOB is of type NCLOB, the
buffer must contain NCHAR data. If the specified LOB is of type CLOB, the buffer
must contain CHAR data.

• When calling WRITE from a client, the buffer must contain data in the client
character set. The database converts the client-side buffer to the server character
set before it writes the buffer data to the LOB.

• It is recommended that you enclose write operations to the LOB with OPEN and
CLOSE calls, but not mandatory. However, if you opened the LOB before performing
the operation, you must close it before you commit or roll back the transaction.

• WRITE gets the LOB, if necessary, before writing to it, unless the write is specified
to overwrite the entire LOB.

Exceptions

Maximum LOB size is BLOBMAXSIZE for a BLOB or CLOBMAXSIZE for a CLOB.

Table 2-36 WRITE Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc, amount, or offset is NULL, out of range, or
invalid.

Chapter 2
DBMS_LOB Subprograms

2-36

Table 2-36 (Cont.) WRITE Procedure Exceptions

Exception Description

INVALID_ARGVAL Any of the following is true:

amount < 1 or amount > 32767 bytes (or the character
equivalent) or capacity of buffer
offset < 1 or offset > maximum LOB size

QUERY_WRITE Cannot perform a LOB write inside a query. (This is not
applicable for TimesTen.)

BUFFERING_ENABLED Cannot perform operation if LOB buffering is enabled on the
LOB.

WRITEAPPEND Procedures
This procedure appends a specified amount of data to the end of a LOB. The data is written
from the buffer parameter. (Do not confuse this with the APPEND procedure.)

Note:

Also see APPEND Procedures, COPY Procedures, and WRITE Procedures.

Syntax

DBMS_LOB.WRITEAPPEND (
 lob_loc IN OUT NOCOPY BLOB,
 amount IN INTEGER,
 buffer IN RAW);

DBMS_LOB.WRITEAPPEND (
 lob_loc IN OUT NOCOPY CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Table 2-37 WRITEAPPEND Procedure Parameters

Parameter Description

lob_loc Locator for the LOB

amount Number of bytes (for BLOBs) or characters (for CLOBs or NCLOBs)
to write

buffer Input buffer with data for the write

Chapter 2
DBMS_LOB Subprograms

2-37

Usage Notes

• There is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, then only the amount bytes or characters
from the buffer are appended to the LOB.

• For a CLOB or NCLOB, the form of the VARCHAR2 buffer for the buffer parameter
must be appropriate for the type of LOB. If the specified LOB is of type NCLOB, the
buffer must contain NCHAR data. If the specified LOB is of type CLOB, the buffer
must contain CHAR data.

• When calling WRITEAPPEND from a client, the buffer must contain data in the client
character set. The database converts the client-side buffer to the server character
set before it writes the buffer data to the LOB.

• It is recommended that you enclose write operations to the LOB with OPEN and
CLOSE calls, but not mandatory. However, if you opened the LOB before performing
the operation, you must close it before you commit or roll back the transaction.

• WRITEAPPEND gets the LOB, if necessary, before appending to it.

Exceptions

Table 2-38 WRITEAPPEND Procedure Exceptions

Exception Description

VALUE_ERROR Any of lob_loc, amount, or offset is null, out of range, or
invalid.

INVALID_ARGVAL Any of the following is true:

amount < 1 or amount > 32767 bytes (or the character
equivalent) or capacity of buffer

QUERY_WRITE Cannot perform a LOB write inside a query. (This is not
applicable for TimesTen.)

BUFFERING_ENABLED Cannot perform operation if LOB buffering is enabled on the
LOB.

Chapter 2
DBMS_LOB Subprograms

2-38

3
DBMS_LOCK

The DBMS_LOCK package provides an interface to Lock Management services. TimesTen
supports only the SLEEP subprogram.

This chapter contains the following topics:

• Using DBMS_LOCK

• DBMS_LOCK Subprograms

Using DBMS_LOCK
TimesTen currently implements only the SLEEP subprogram, used to suspend the session for
a specified duration.

DBMS_LOCK Subprograms
TimesTen supports only the SLEEP subprogram. Table 3-1 summarizes that subprogram,
followed by a full description.

Table 3-1 DBMS_LOCK Package Subprograms

Subprogram Description

SLEEP Procedure Suspends the session for a specified duration.

SLEEP Procedure
This procedure suspends the session for a specified duration.

Syntax

DBMS_LOCK.SLEEP (
 seconds IN NUMBER);

Parameters

Table 3-2 SLEEP Procedure Parameters

Parameter Description

seconds Amount of time, in seconds, to suspend the session, where the
smallest increment is a hundredth of a second

3-1

Usage Notes

• The actual sleep time may be somewhat longer than specified, depending on
system activity.

• If the PLSQL_TIMEOUT general connection attribute is set to a positive value that is
less than this sleep time, the timeout takes effect first. Be sure that either the sleep
value is less than the timeout value, or PLSQL_TIMEOUT=0 (no timeout). See
PL/SQL Connection Attributes in Oracle TimesTen In-Memory Database PL/SQL
Developer's Guide for information about PLSQL_TIMEOUT.

Examples

DBMS_LOCK.SLEEP(1.95);

Chapter 3
DBMS_LOCK Subprograms

3-2

4
DBMS_OUTPUT

The DBMS_OUTPUT package enables you to send messages from stored procedures and
packages. The package is especially useful for displaying PL/SQL debugging information.

This chapter contains the following topics:

• Using DBMS_OUTPUT

– Overview

– Operational notes

– Rules and limits

– Exceptions

– Examples

• Data Structures

– Table types

• DBMS_OUTPUT Subprograms

Using DBMS_OUTPUT
This section contains topics which relate to using the DBMS_OUTPUT package.

• Overview

• Operational Notes

• Rules and Limits

• Exceptions

• Examples

Overview
The PUT Procedure and PUT_LINE Procedure in this package enable you to place
information in a buffer that can be read by another procedure or package. In a separate
PL/SQL procedure or anonymous block, you can display the buffered information by calling
the GET_LINE Procedure and GET_LINES Procedure.

If the package is disabled, all calls to subprograms are ignored. In this way, you can design
your application so that subprograms are available only when a client can process the
information.

Operational Notes
• If you do not call GET_LINE, or if you do not display the messages on your screen in

ttIsql, the buffered messages are ignored.

4-1

• The ttIsql utility calls GET_LINES after issuing a SQL statement or anonymous
PL/SQL calls.

• Typing SET SERVEROUTPUT ON in ttIsql has the same effect as the following:

DBMS_OUTPUT.ENABLE (buffer_size => NULL);

There is no limit on the output.

• You should generally avoid having application code invoke either the DISABLE
Procedure or ENABLE Procedure because this could subvert the attempt by an
external tool like ttIsql to control whether to display output.

Note:

Messages sent using DBMS_OUTPUT are not actually sent until the sending
subprogram completes. There is no mechanism to flush output during the
execution of a procedure.

Rules and Limits
• The maximum line size is 32767 bytes.

• The default buffer size is 20000 bytes. The minimum size is 2000 bytes and the
maximum is unlimited.

Exceptions
DBMS_OUTPUT subprograms raise the application error ORA-20000, and the output
procedures can return the following errors:

Table 4-1 DBMS_OUTPUT Exceptions

Exception Description

ORU-10027 Buffer overflow

ORU-10028 Line length overflow

Examples
The DBMS_OUTPUT package is commonly used to debug stored procedures or functions.

This function queries the employees table of the HR schema and returns the total salary
for a specified department. The function includes calls to the PUT_LINE procedure:

CREATE OR REPLACE FUNCTION dept_salary (dnum NUMBER) RETURN NUMBER IS
 CURSOR emp_cursor IS
 select salary, commission_pct from employees where department_id =
dnum;
 total_wages NUMBER(11, 2) := 0;
 counter NUMBER(10) := 1;

Chapter 4
Using DBMS_OUTPUT

4-2

BEGIN
 FOR emp_record IN emp_cursor LOOP
 emp_record.commission_pct := NVL(emp_record.commission_pct, 0);
 total_wages := total_wages + emp_record.salary
 + emp_record.commission_pct;
 DBMS_OUTPUT.PUT_LINE('Loop number = ' || counter ||
 '; Wages = '|| TO_CHAR(total_wages)); /* Debug line */
 counter := counter + 1; /* Increment debug counter */
 END LOOP;
 /* Debug line */
 DBMS_OUTPUT.PUT_LINE('Total wages = ' ||
 TO_CHAR(total_wages));
 RETURN total_wages;
END;

Assume the user executes the following statements in ttIsql:

Command> SET SERVEROUTPUT ON
Command> VARIABLE salary NUMBER;
Command> EXECUTE :salary := dept_salary(20);

The user would then see output such as the following:

Loop number = 1; Wages = 13000
Loop number = 2; Wages = 19000
Total wages = 19000

PL/SQL procedure successfully executed.

Data Structures
The DBMS_OUTPUT package declares two table types for use with the GET_LINES Procedure.

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

Table types

CHARARR Table Type

DBMSOUTPUT_LINESARRAY Table Type

Chapter 4
Data Structures

4-3

CHARARR Table Type
This package type is to be used with the GET_LINES Procedure to obtain text
submitted through the PUT Procedure and PUT_LINE Procedure.

Syntax

TYPE CHARARR IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

DBMSOUTPUT_LINESARRAY Table Type
This package type is to be used with the GET_LINES Procedure to obtain text
submitted through the PUT Procedure and PUT_LINE Procedure.

Syntax

TYPE DBMSOUTPUT_LINESARRAY IS
 VARRAY(2147483647) OF VARCHAR2(32767);

DBMS_OUTPUT Subprograms
Table 4-2 summarizes the DBMS_OUTPUT subprograms, followed by a full description of
each subprogram.

Table 4-2 DBMS_OUTPUT Package Subprograms

Subprogram Description

DISABLE Procedure Disables message output.

ENABLE Procedure Enables message output.

GET_LINE Procedure Retrieves one line from buffer.

GET_LINES Procedure Retrieves an array of lines from buffer.

NEW_LINE Procedure Terminates a line created with PUT.

PUT Procedure Places a partial line in the buffer.

PUT_LINE Procedure Places a line in the buffer.

DISABLE Procedure
This procedure disables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES,
and purges the buffer of any remaining information.

As with the ENABLE Procedure, you do not need to call this procedure if you are using
the SET SERVEROUTPUT ON setting from ttIsql.

Syntax

DBMS_OUTPUT.DISABLE;

Chapter 4
DBMS_OUTPUT Subprograms

4-4

ENABLE Procedure
This procedure enables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES. Calls to
these procedures are ignored if the DBMS_OUTPUT package is not activated.

Syntax

DBMS_OUTPUT.ENABLE (
 buffer_size IN INTEGER DEFAULT 20000);

Parameters

Table 4-3 ENABLE Procedure Parameters

Parameter Description

buffer_size Upper limit, in bytes, for the amount of buffered information

Setting buffer_size to NULL specifies that there should be no limit.

Usage Notes

• It is not necessary to call this procedure when you use SET SERVEROUTPUT ON from
ttIsql. It is called automatically (with NULL value for buffer_size in the current release).

• If there are multiple calls to ENABLE, then buffer_size is the last of the values specified.
The maximum size is 1,000,000 and the minimum is 2000 when the user specifies
buffer_size (NOT NULL).

• NULL is expected to be the usual choice. The default is 20000 for backward compatibility
with earlier database versions that did not support unlimited buffering.

GET_LINE Procedure
This procedure retrieves a single line of buffered information.

Syntax

DBMS_OUTPUT.GET_LINE (
 line OUT VARCHAR2,
 status OUT INTEGER);

Parameters

Table 4-4 GET_LINE Procedure Parameters

Parameter Description

line A single line of buffered information, excluding a final newline
character

You should declare this parameter as VARCHAR2(32767) to avoid the
risk of "ORA-06502: PL/SQL: numeric or value error:
character string buffer too small".

Chapter 4
DBMS_OUTPUT Subprograms

4-5

Table 4-4 (Cont.) GET_LINE Procedure Parameters

Parameter Description

status Call status

If the call completes successfully, then the status returns as 0. If there
are no more lines in the buffer, then the status is 1.

Usage Notes

• You can choose to retrieve from the buffer a single line or an array of lines. Call
GET_LINE to retrieve a single line of buffered information. To reduce the number of
calls to the server, call GET_LINES to retrieve an array of lines from the buffer.

• You can choose to automatically display this information if you are using ttIsql by
using the special SET SERVEROUTPUT ON command.

• After calling GET_LINE or GET_LINES, any lines not retrieved before the next call to
PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them with the next
message.

GET_LINES Procedure
This procedure retrieves an array of lines from the buffer.

Syntax

DBMS_OUTPUT.GET_LINES (
 lines OUT DBMS_OUTPUT.CHARARR,
 numlines IN OUT INTEGER);

DBMS_OUTPUT.GET_LINES (
 lines OUT DBMS_OUTPUT.DBMSOUTPUT_LINESARRAY,
 numlines IN OUT INTEGER);

Parameters

Table 4-5 GET_LINES Procedure Parameters

Parameter Description

lines Array of lines of buffered information

The maximum length of each line in the array is 32767 bytes. It is
recommended that you use the varray overload version in a 3GL
host program to execute the procedure from a PL/SQL
anonymous block.

numlines Number of lines you want to retrieve from the buffer

After retrieving the specified number of lines, the procedure
returns the number of lines actually retrieved. If this number is
less than the number of lines requested, then there are no more
lines in the buffer.

Chapter 4
DBMS_OUTPUT Subprograms

4-6

Usage Notes

• You can choose to retrieve from the buffer a single line or an array of lines. Call GET_LINE
to retrieve a single line of buffered information. To reduce the number of trips to the
server, call GET_LINES to retrieve an array of lines from the buffer.

• You can choose to automatically display this information if you are using ttIsql by using
the special SET SERVEROUTPUT ON command.

• After GET_LINE or GET_LINES is called, any lines not retrieved before the next call to PUT,
PUT_LINE, or NEW_LINE are discarded to avoid confusing them with the next message.

NEW_LINE Procedure
This procedure puts an end-of-line marker.

The GET_LINE Procedure and the GET_LINES Procedure return "lines" as delimited by
"newlines". Every call to the PUT_LINE Procedure or to NEW_LINE generates a line that is
returned by GET_LINE or GET_LINES.

Syntax

DBMS_OUTPUT.NEW_LINE;

PUT Procedure
This procedure places a partial line in the buffer.

Note:

The PUT version that takes a NUMBER input is obsolete. It is supported for legacy
reasons only.

Syntax

DBMS_OUTPUT.PUT (
 a IN VARCHAR2);

Parameters

Table 4-6 PUT Procedure Parameters

Parameter Description

a Item to buffer

Usage Notes

• You can build a line of information piece by piece by making multiple calls to PUT, or place
an entire line of information into the buffer by calling PUT_LINE.

Chapter 4
DBMS_OUTPUT Subprograms

4-7

• When you call PUT_LINE, the item you specify is automatically followed by an end-
of-line marker. If you make calls to PUT to build a line, you must add your own end-
of-line marker by calling NEW_LINE. GET_LINE and GET_LINES do not return lines
that have not been terminated with a newline character.

• If your lines exceed the line limit, you receive an error message.

• Output that you create using PUT or PUT_LINE is buffered. The output cannot be
retrieved until the PL/SQL program unit from which it was buffered returns to its
caller.

Exceptions

Table 4-7 PUT Procedure Exceptions

Exception Description

ORA-20000, ORU-10027 Buffer overflow, according to the buffer_size limit specified in
the ENABLE Procedure call

ORA-20000, ORU-10028 Line length overflow, limit of 32767 bytes for each line

PUT_LINE Procedure
This procedure places a line in the buffer.

Note:

The PUT_LINE version that takes a NUMBER input is obsolete. It is supported
for legacy reasons only.

Syntax

DBMS_OUTPUT.PUT_LINE (
 a IN VARCHAR2);

Parameters

Table 4-8 PUT_LINE Procedure Parameters

Parameter Description

a Item to buffer

Usage Notes

• You can build a line of information piece by piece by making multiple calls to PUT,
or place an entire line of information into the buffer by calling PUT_LINE.

• When you call PUT_LINE, the item you specify is automatically followed by an end-
of-line marker. If you make calls to PUT to build a line, then you must add your own

Chapter 4
DBMS_OUTPUT Subprograms

4-8

end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES do not return lines that
have not been terminated with a newline character.

• If your lines exceeds the line limit, you receive an error message.

• Output that you create using PUT or PUT_LINE is buffered. The output cannot be retrieved
until the PL/SQL program unit from which it was buffered returns to its caller.

Exceptions

Table 4-9 PUT_LINE Procedure Exceptions

Exception Description

ORA-20000, ORU-10027 Buffer overflow, according to the buffer_size limit specified in the
ENABLE Procedure call

ORA-20000, ORU-10028 Line length overflow, limit of 32767 bytes for each line

Chapter 4
DBMS_OUTPUT Subprograms

4-9

5
DBMS_PREPROCESSOR

The DBMS_PREPROCESSOR package provides an interface to print or retrieve the source text of a
PL/SQL unit in its post-processed form.

This package contains the following topics:

• Using DBMS_PREPROCESSOR

– Overview

– Operational notes

• Data Structures

– Table types

• DBMS_PREPROCESSOR Subprograms

Using DBMS_PREPROCESSOR
• Overview

• Operational Notes

Overview
There are three styles of subprograms:

1. Subprograms that take a schema name, a unit type name, and the unit name

2. Subprograms that take a VARCHAR2 string that contains the source text of an arbitrary
PL/SQL compilation unit

3. Subprograms that take a VARCHAR2 associative array (index-by table) that contains the
segmented source text of an arbitrary PL/SQL compilation unit

Subprograms of the first style are used to print or retrieve the post-processed source text of a
stored PL/SQL unit. The user must have the privileges necessary to view the original source
text of this unit. The user must also specify the schema in which the unit is defined, the type
of the unit, and the name of the unit. If the schema is null, then the current user schema is
used. If the status of the stored unit is VALID and the user has the required privilege, then the
post-processed source text is guaranteed to be the same as that of the unit the last time it
was compiled.

Subprograms of the second or third style are used to generate post-processed source text in
the current user schema. The source text is passed in as a single VARCHAR2 string in the
second style, or as a VARCHAR2 associative array in the third style. The source text can
represent an arbitrary PL/SQL compilation unit. A typical usage is to pass the source text of
an anonymous block and generate its post-processed source text in the current user schema.
The third style can be useful when the source text exceeds the VARCHAR2 length limit.

5-1

Operational Notes
• For subprograms of the first style, the status of the stored PL/SQL unit is not

required to be VALID. Likewise, the source text passed in as a VARCHAR2 string or a
VARCHAR2 associative array may contain compile time errors. If errors are found
when generating the post-processed source, the error message text also appears
at the end of the post-processed source text. In some cases, the preprocessing
can terminate because of errors. When this happens, the post-processed source
text appears to be incomplete and the associated error message can help indicate
that an error has occurred during preprocessing.

• For subprograms of the second or third style, the source text can represent any
arbitrary PL/SQL compilation unit. However, the source text of a valid PL/SQL
compilation unit cannot include commonly used prefixes such as CREATE OR
REPLACE. In general, the input source should be syntactically prepared in a way as
if it were obtained from the ALL_SOURCE view. The following list gives some
examples of valid initial syntax for some PL/SQL compilation units.

 anonymous block (BEGIN | DECLARE) ...
 package PACKAGE name ...
 package body PACKAGE BODY name ...
 procedure PROCEDURE name ...
 function FUNCTION name ...

If the source text represents a named PL/SQL unit that is valid, that unit is not
created after its post-processed source text is generated.

• If the text of a wrapped PL/SQL unit is obtained from the ALL_SOURCE view, the
keyword WRAPPED always immediately follows the name of the unit, as in this
example:

PROCEDURE "some proc" WRAPPED
a000000
b2
...

If such source text is presented to a GET_POST_PROCESSED_SOURCE
Function or a PRINT_POST_PROCESSED_SOURCE Procedure, the exception
WRAPPED_INPUT is raised.

Data Structures
The DBMS_PREPROCESSOR package defines a table type.

Chapter 5
Data Structures

5-2

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

Table types

SOURCE_LINES_T Table Type

SOURCE_LINES_T Table Type
This table type stores lines of post-processed source text. It is used to hold PL/SQL source
text both before and after it is processed. It is especially useful in cases in which the amount
of text exceeds 32 KB.

Syntax

TYPE source_lines_t IS
 TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

DBMS_PREPROCESSOR Subprograms
Table 5-1 summarizes the DBMS_PREPROCESSOR subprograms, followed by a full description of
each subprogram.

Table 5-1 DBMS_PREPROCESSOR Package Subprograms

Subprogram Description

GET_POST_PROCESSED_SOURCE Function Returns the post-processed source text.

PRINT_POST_PROCESSED_SOURCE
Procedure

Prints post-processed source text.

GET_POST_PROCESSED_SOURCE Function
This overloaded function returns the post-processed source text. The different functionality of
each form of syntax is presented along with the definition.

Syntax

Returns post-processed source text of a stored PL/SQL unit:

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 object_type IN VARCHAR2,
 schema_name IN VARCHAR2,

Chapter 5
DBMS_PREPROCESSOR Subprograms

5-3

 object_name IN VARCHAR2)
 RETURN dbms_preprocessor.source_lines_t;

Returns post-processed source text of a compilation unit:

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 source IN VARCHAR2)
 RETURN dbms_preprocessor.source_lines_t;

Returns post-processed source text of an associative array (index-by table) containing
the source text of the compilation unit:

DBMS_PREPROCESSOR.GET_POST_PROCESSED_SOURCE (
 source IN dbms_preprocessor.source_lines_t)
 RETURN dbms_preprocessor.source_lines_t;

Parameters

Table 5-2 GET_POST_PROCESSED_SOURCE Function Parameters

Parameter Description

object_type One of PACKAGE, PACKAGE BODY, PROCEDURE, or FUNCTION
(case sensitive)

schema_name Schema name (case insensitive unless a quoted identifier is
used)

If NULL, use the current schema.

object_name Name of the object (case insensitive unless a quoted identifier is
used)

source Source text of the compilation unit

source_lines_t Associative array containing the source text of the compilation
unit

The source text is a concatenation of all the non-null associative
array elements in ascending index order.

Return Values

An associative array containing the lines of the post-processed source text starting
from index 1

Usage Notes

• Newline characters are not removed.

• Each line in the post-processed source text is mapped to a row in the associative
array.

• In the post-processed source, unselected text has blank lines.

Chapter 5
DBMS_PREPROCESSOR Subprograms

5-4

Exceptions

Table 5-3 GET_POST_PROCESSED_SOURCE Function Exceptions

Exception Description

ORA-24234 Insufficient privileges or non-existent object

ORA-24235 Bad value for object type (neither PACKAGE, PACKAGE BODY,
PROCEDURE, nor FUNCTION)

ORA-24236 Empty source text

ORA-00931 Missing identifier

The object_name value cannot be NULL.

ORA-06502 Numeric or value error:

• Character string buffer is too small.
• A line is too long (more than 32767 bytes).

PRINT_POST_PROCESSED_SOURCE Procedure
This overloaded procedure calls DBMS_OUTPUT.PUT_LINE to let you view post-processed
source text. The different functionality of each form of syntax is presented along with the
definition.

Syntax

Prints post-processed source text of a stored PL/SQL unit:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 object_type IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2);

Prints post-processed source text of a compilation unit:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 source IN VARCHAR2);

Prints post-processed source text of an associative array containing the source text of the
compilation unit:

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE (
 source IN dbms_preprocessor.source_lines_t);

Chapter 5
DBMS_PREPROCESSOR Subprograms

5-5

Parameters

Table 5-4 PRINT_POST_PROCESSED_SOURCE Procedure Parameters

Parameter Description

object_type One of PACKAGE, PACKAGE BODY, PROCEDURE, or FUNCTION
(case sensitive)

schema_name Schema name (case insensitive unless a quoted identifier is
used)

If NULL, use current schema.

object_name Name of the object (case insensitive unless a quoted identifier is
used)

source Source text of the compilation unit

source_lines_t Associative array containing the source text of the compilation
unit

The source text is a concatenation of all the non-null associative
array elements in ascending index order.

Usage Notes

The associative array may contain holes. Null elements are ignored when doing the
concatenation.

Exceptions

Table 5-5 PRINT_POST_PROCESSED_SOURCE Procedure Exceptions

Exception Description

ORA-24234 Insufficient privileges or non-existent object

ORA-24235 Bad value for object type (neither PACKAGE, PACKAGE BODY,
PROCEDURE, nor FUNCTION)

ORA-24236 Empty source text

ORA-00931 Missing identifier

The object_name value cannot be NULL.

ORA-06502 Numeric or value error:

• Character string buffer is too small.
• A line is too long (more than 32767 bytes).

Chapter 5
DBMS_PREPROCESSOR Subprograms

5-6

6
DBMS_RANDOM

The DBMS_RANDOM package provides a built-in random number generator.

This chapter contains the following topics:

• Using DBMS_RANDOM

– Operational notes

• DBMS_RANDOM Subprograms

Note:

DBMS_RANDOM is not intended for cryptography.

Using DBMS_RANDOM
• Operational Notes

Operational Notes
• The RANDOM function produces integers in the range [-2^^31, 2^^31).

• The VALUE function produces numbers in the range [0,1) with 38 digits of precision.

DBMS_RANDOM can be explicitly initialized but does not require initialization before a call to the
random number generator. It automatically initializes with the date, user ID, and process ID if
no explicit initialization is performed.

If this package is seeded twice with the same seed, then accessed in the same way, it
produces the same result in both cases.

In some cases, such as when testing, you may want the sequence of random numbers to be
the same on every run. In that case, you seed the generator with a constant value by calling
an overload of SEED. To produce different output for every run, simply omit the seed call. Then
the system chooses a suitable seed for you.

DBMS_RANDOM Subprograms
Table 6-1 summarizes the DBMS_RANDOM subprograms, followed by a full description of each
subprogram.

6-1

Table 6-1 DBMS_RANDOM Package Subprograms

Subprogram Description

INITIALIZE Procedure Initializes the package with a seed value.

NORMAL Function Returns random numbers in a normal distribution.

RANDOM Function Generates a random number.

SEED Procedure Resets the seed.

STRING Function Gets a random string.

TERMINATE Procedure Terminates package.

VALUE Function One version gets a random number greater than or equal to 0
and less than 1, with 38 digits to the right of the decimal point
(38-digit precision). The other version gets a random Oracle
Database number x, where x is greater than or equal to a
specified lower limit and less than a specified higher limit.

Note:

• The INITIALIZE Procedure, RANDOM Function and TERMINATE
Procedure are deprecated. They are included in this release for legacy
reasons only.

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This
document uses BINARY_INTEGER to indicate data types in reference
information (such as for table types, record types, subprogram
parameters, or subprogram return values), but may use either in
discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This
document uses INTEGER throughout.

INITIALIZE Procedure
This procedure is deprecated. Although currently supported, it should not be used. It
initializes the random number generator.

Syntax

DBMS_RANDOM.INITIALIZE (
 val IN BINARY_INTEGER);

Parameters

Table 6-2 INITIALIZE Procedure Parameters

Parameter Description

val Seed number used to generate a random number

Chapter 6
DBMS_RANDOM Subprograms

6-2

Usage Notes

This procedure is obsolete as it simply calls the SEED Procedure.

NORMAL Function
This function returns random numbers in a standard normal distribution.

Syntax

DBMS_RANDOM.NORMAL
 RETURN NUMBER;

Return Value

The random number, a NUMBER value

RANDOM Function
This procedure is deprecated. Although currently supported, it should not be used. It
generates and returns a random number.

Syntax

DBMS_RANDOM.RANDOM
 RETURN binary_integer;

Return Value

A random BINARY_INTEGER value greater than or equal to -power(2,31) and less than
power(2,31)

Usage Notes

See the NORMAL Function and the VALUE Function.

SEED Procedure
This procedure resets the seed used in generating a random number.

Syntax

DBMS_RANDOM.SEED (
 val IN BINARY_INTEGER);

DBMS_RANDOM.SEED (
 val IN VARCHAR2);

Chapter 6
DBMS_RANDOM Subprograms

6-3

Parameters

Table 6-3 SEED Procedure Parameters

Parameter Description

val Seed number or string used to generate a random number

Usage Notes

The seed can be a string up to length 2000.

STRING Function
This function generates and returns a random string.

Syntax

DBMS_RANDOM.STRING
 opt IN CHAR,
 len IN NUMBER)
 RETURN VARCHAR2;

Parameters

Table 6-4 STRING Function Parameters

Parameter Description

opt What the returning string looks like:

• 'u', 'U' - Returning string is in uppercase alpha characters.
• 'l', 'L' - Returning string is in lowercase alpha characters.
• 'a', 'A' - Returning string is in mixed-case alpha characters.
• 'x', 'X' - Returning string is in uppercase alpha-numeric

characters.
• 'p', 'P' - Returning string is in any printable characters.
Otherwise the returning string is in uppercase alpha characters.

len Length of the returned string

Return Value

A VARCHAR2 value with the random string

TERMINATE Procedure
This procedure is deprecated. Although currently supported, it should not be used. It
would be called when the user is finished with the package.

Syntax

DBMS_RANDOM.TERMINATE;

Chapter 6
DBMS_RANDOM Subprograms

6-4

VALUE Function
One version returns a random number, greater than or equal to 0 and less than 1, with 38
digits to the right of the decimal (38-digit precision). The other version returns a random
Oracle Database NUMBER value x, where x is greater than or equal to the specified low value
and less than the specified high value.

Syntax

DBMS_RANDOM.VALUE
 RETURN NUMBER;

DBMS_RANDOM.VALUE(
 low IN NUMBER,
 high IN NUMBER)
RETURN NUMBER;

Parameters

Table 6-5 VALUE Function Parameters

Parameter Description

low Lower limit of the range in which to generate a random number

high Upper limit of the range in which to generate a random number

Return Value

A NUMBER value that is the generated random number

Chapter 6
DBMS_RANDOM Subprograms

6-5

7
DBMS_SQL

The DBMS_SQL package provides an interface for using dynamic SQL to execute data
manipulation language (DML) and data definition language (DDL) statements, execute
PL/SQL anonymous blocks, and call PL/SQL stored procedures and functions.

For example, you can enter a DROP TABLE statement from within a stored procedure by using
the PARSE procedure supplied with the DBMS_SQL package.

This chapter contains the following topics:

• Using DBMS_SQL

– Overview

– Security model

– Constants

– Operational notes

– Exceptions

– Examples

• Data Structures

– Record types

– Table types

• DBMS_SQL Subprograms

Note:

For more information on native dynamic SQL, see Dynamic SQL in PL/SQL
(EXECUTE IMMEDIATE Statement) in Oracle TimesTen In-Memory Database
PL/SQL Developer's Guide. You can also refer to EXECUTE IMMEDIATE
Statement in Oracle Database PL/SQL Language Reference.

Using DBMS_SQL
• Overview

• Security Model

• Constants

• Operational Notes

• Exceptions

• Examples

7-1

Overview
TimesTen PL/SQL supports dynamic SQL. Dynamic SQL statements are not
embedded in your source program; rather, they are stored in character strings that are
input to, or built by, the program at runtime.

This functionality enables you to create more general-purpose procedures. For
example, dynamic SQL lets you create a procedure that operates on a table whose
name is not known until runtime.

Native dynamic SQL (EXECUTE IMMEDIATE) is an alternative to DBMS_SQL that lets you
place dynamic SQL statements, PL/SQL blocks, and PL/SQL procedure and function
calls directly into PL/SQL blocks. In most situations, native dynamic SQL is easier to
use and performs better than DBMS_SQL. However, native dynamic SQL itself has
certain limitations, such as there being no support for so-called Method 4 (for dynamic
SQL statements with an unknown number of inputs or outputs). Also, there are some
tasks that can only be performed using DBMS_SQL.

The ability to use dynamic SQL from within stored procedures generally follows the
model of the Oracle Call Interface (OCI). See Oracle Call Interface Programmer's
Guide for information about OCI.

PL/SQL differs somewhat from other common programming languages, such as C. For
example, addresses (also called pointers) are not user-visible in PL/SQL. As a result,
there are some differences between OCI and the DBMS_SQL package, including the
following:

• OCI binds by address, while the DBMS_SQL package binds by value.

• With DBMS_SQL you must call VARIABLE_VALUE to retrieve the value of an OUT
parameter for an anonymous block, and you must call COLUMN_VALUE after fetching
rows to actually retrieve the values of the columns in the rows into your program.

• The current release of the DBMS_SQL package does not provide CANCEL cursor
procedures.

• Indicator variables are not required, because NULL is fully supported as a value of
a PL/SQL variable.

Security Model
DBMS_SQL is owned by SYS and compiled with AUTHID CURRENT_USER. Any DBMS_SQL
subprogram called from an anonymous PL/SQL block is run using the privileges of the
current user.

See Definer's Rights and Invoker's Rights (AUTHID Clause) in Oracle TimesTen In-
Memory Database Security Guide.

Constants
The constants described in Table 7-1 are used with the language_flag parameter of
the PARSE Procedures. For TimesTen, use NATIVE.

Chapter 7
Using DBMS_SQL

7-2

Table 7-1 DBMS_SQL Constants

Name Type Value Description

V6 INTEGER 0 Specifies Oracle Database version 6 behavior
(not applicable for TimesTen).

NATIVE INTEGER 1 Specifies typical behavior for the database to
which the program is connected.

V7 INTEGER 2 Specifies Oracle Database version 7 behavior
(not applicable for TimesTen).

Operational Notes
• Execution Flow

• Processing Queries

• Processing Updates, Inserts, and Deletes

• Locating Errors

Execution Flow

1. OPEN_CURSOR

2. PARSE

3. BIND_VARIABLE or BIND_ARRAY

4. DEFINE_COLUMN or DEFINE_ARRAY

5. EXECUTE

6. FETCH_ROWS or EXECUTE_AND_FETCH

7. VARIABLE_VALUE or COLUMN_VALUE

8. CLOSE_CURSOR

OPEN_CURSOR

To process a SQL statement, you must have an open cursor. When you call
the OPEN_CURSOR Function, you receive a cursor ID number for the data structure
representing a valid cursor maintained by TimesTen. These cursors are distinct from cursors
defined at the precompiler, OCI, or PL/SQL level, and are used only by the DBMS_SQL
package.

PARSE

Every SQL statement must be parsed by calling the PARSE Procedures. Parsing the
statement checks the statement syntax and associates it with the cursor in your program.

You can parse any DML or DDL statement. DDL statements are run on the parse, which
performs the implied commit.

Chapter 7
Using DBMS_SQL

7-3

Note:

When parsing a DDL statement to drop a procedure or a package, a timeout
can occur if you are still using the procedure in question or a procedure in
the package in question. After a call to a procedure, that procedure is
considered to be in use until execution has returned to the user side. Any
such timeout occurs after a short time.

The execution flow of DBMS_SQL is shown in Figure 7-1 that follows.

Chapter 7
Using DBMS_SQL

7-4

Figure 7-1 DBMS_SQL Execution Flow

no

no

no

yes

yes

yes

open_cursor

PARSE

bind_variable

Query?

close_cursor

EXECUTE

variable_value

EXECUTE

define_column

column_value

variable_value

fetch_rows

Use bind

variables?

PL/SQL

block?

BIND_VARIABLE or BIND_ARRAY

Many DML statements require that data in your program be input to TimesTen. When you
define a SQL statement that contains input data to be supplied at runtime, you must use
placeholders in the SQL statement to mark where data must be supplied.

Chapter 7
Using DBMS_SQL

7-5

For each placeholder in the SQL statement, you must call a bind procedure, either the
BIND_ARRAY Procedure or the BIND_VARIABLE Procedure, to supply the value of a
variable in your program (or the values of an array) to the placeholder. When the SQL
statement is subsequently run, TimesTen uses the data that your program has placed
in the output and input, or bind, variables.

DBMS_SQL can run a DML statement multiple times, each time with a different bind
variable. The BIND_ARRAY procedure lets you bind a collection of scalars, each value of
which is used as an input variable once for each EXECUTE. This is similar to the array
interface supported by OCI.

Note:

The term "bind parameter" as used in TimesTen developer guides (in
keeping with ODBC terminology) is equivalent to the term "bind variable" as
used in TimesTen PL/SQL documents (in keeping with Oracle Database
PL/SQL terminology).

DEFINE_COLUMN or DEFINE_ARRAY

The columns of the row being selected in a SELECT statement are identified by their
relative positions as they appear in the select list, from left to right. For a query, you
must call a define procedure (DEFINE_COLUMN or DEFINE_ARRAY) to specify the variables
that are to receive the SELECT values, much the way an INTO clause does for a static
query.

Use the DEFINE_ARRAY procedure to define a PL/SQL collection into which rows are
fetched in a single SELECT statement. DEFINE_ARRAY provides an interface to fetch
multiple rows at one fetch. You must call DEFINE_ARRAY before using the COLUMN_VALUE
procedure to fetch the rows.

EXECUTE

Call the EXECUTE function to run your SQL statement.

FETCH_ROWS or EXECUTE_AND_FETCH

The FETCH_ROWS function retrieves the rows that satisfy the query. Each successive
fetch retrieves another set of rows, until the fetch cannot retrieve any more rows.
Instead of calling EXECUTE and then FETCH_ROWS, you may find it more efficient to call
EXECUTE_AND_FETCH if you are calling EXECUTE for a single execution.

VARIABLE_VALUE or COLUMN_VALUE

For queries, call COLUMN_VALUE to determine the value of a column retrieved by the
FETCH_ROWS call. For anonymous blocks containing calls to PL/SQL procedures or DML
statements with a RETURNING clause, call VARIABLE_VALUE to retrieve the values
assigned to the output variables when statements were run.

CLOSE_CURSOR

When you no longer need a cursor for a session, close the cursor by calling
CLOSE_CURSOR.

Chapter 7
Using DBMS_SQL

7-6

If you neglect to close a cursor, then the memory used by that cursor remains allocated even
though it is no longer needed.

Processing Queries

If you are using dynamic SQL to process a query, then you must perform the following steps:

1. Specify the variables that are to receive the values returned by the SELECT statement by
calling the DEFINE_COLUMN Procedure or the DEFINE_ARRAY Procedure.

2. Run your SELECT statement by calling the EXECUTE Function.

3. Call the FETCH_ROWS Function (or EXECUTE_AND_FETCH) to retrieve the rows that
satisfied your query.

4. Call COLUMN_VALUE Procedure to determine the value of a column retrieved by
FETCH_ROWS for your query. If you used anonymous blocks containing calls to PL/SQL
procedures, then you must call the VARIABLE_VALUE Procedure to retrieve the values
assigned to the output variables of these procedures.

Processing Updates, Inserts, and Deletes

If you are using dynamic SQL to process an INSERT, UPDATE, or DELETE, then you must
perform the following steps.

1. You must first run your INSERT, UPDATE, or DELETE statement by calling the EXECUTE
Function.

2. If statements have the RETURNING clause, then you must call the VARIABLE_VALUE
Procedure to retrieve the values assigned to the output variables.

Locating Errors

There are additional functions in the DBMS_SQL package for obtaining information about the
last referenced cursor in the session. The values returned by these functions are only
meaningful immediately after a SQL statement is run. In addition, some error-locating
functions are only meaningful after certain DBMS_SQL calls. For example, call the
LAST_ERROR_POSITION Function immediately after a PARSE call.

Exceptions
The following table lists the exceptions raised by DBMS_SQL.

Table 7-2 Exceptions Raised by DBMS_SQL

Exception Error Code Description

INCONSISTENT_TYPE -6562 Raised by the COLUMN_VALUE Procedure or
VARIABLE_VALUE Procedure when the type of
the given OUT parameter (for where to output the
requested value) is different from the type of the
value.

Chapter 7
Using DBMS_SQL

7-7

Examples
This section provides these example procedures that use the DBMS_SQL package.

• Example 1: Basic

• Example 2: Copy Between Tables

• Examples 3, 4, and 5: Bulk DML

• Example 6: Define an Array

• Example 7: Describe Columns

• Example 8: RETURNING Clause

• Example 9: PL/SQL Block in Dynamic SQL

Example 1: Basic
This example does not require the use of dynamic SQL because the text of the
statement is known at compile time, but it illustrates the basic concept underlying the
package.

The demo procedure deletes all employees from a table myemployees (created from the
employees table of the HR schema) whose salaries exceed a specified value.

CREATE OR REPLACE PROCEDURE demo(p_salary IN NUMBER) AS
 cursor_name INTEGER;
 rows_processed INTEGER;

BEGIN
 cursor_name := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(cursor_name, 'DELETE FROM myemployees WHERE salary
> :x',
 DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(cursor_name, ':x', p_salary);
 rows_processed := DBMS_SQL.EXECUTE(cursor_name);
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
EXCEPTION
WHEN OTHERS THEN
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Create the myemployees table and see how many employees have salaries greater
than or equal to $15,000:

Command> create table myemployees as select * from employees;
107 rows inserted.

Command> select * from myemployees where salary>=15000;
< 100, Steven, King, SKING, 515.123.4567, 1987-06-17 00:00:00,
AD_PRES, 24000,
<NULL>, <NULL>, 90 >
< 101, Neena, Kochhar, NKOCHHAR, 515.123.4568, 1989-09-21 00:00:00,
AD_VP, 17000,

Chapter 7
Using DBMS_SQL

7-8

<NULL>, 100, 90 >
< 102, Lex, De Haan, LDEHAAN, 515.123.4569, 1993-01-13 00:00:00, AD_VP,
17000,
<NULL>, 100, 90 >
3 rows found.

Run demo to delete everyone with a salary greater than $14,999 and confirm the results, as
follows:

Command> begin
 demo(14999);
 end;
 /

PL/SQL procedure successfully completed.

Command> select * from myemployees where salary>=15000;
0 rows found.

Example 2: Copy Between Tables
The following sample procedure is passed the names of a source and a destination table,
and copies the rows from the source table to the destination table.

This sample procedure assumes that both the source and destination tables have the
following columns.

id of type NUMBER
name of type VARCHAR2(30)
birthdate of type DATE

This procedure does not specifically require the use of dynamic SQL; however, it illustrates
the concepts of this package.

CREATE OR REPLACE PROCEDURE copy (
 source IN VARCHAR2,
 destination IN VARCHAR2) IS
 id_var NUMBER;
 name_var VARCHAR2(30);
 birthdate_var DATE;
 source_cursor INTEGER;
 destination_cursor INTEGER;
 ignore INTEGER;
 BEGIN

 -- Prepare a cursor to select from the source table:
 source_cursor := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(source_cursor,
 'SELECT id, name, birthdate FROM ' || source,
 DBMS_SQL.NATIVE);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 1, id_var);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 2, name_var, 30);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 3, birthdate_var);

Chapter 7
Using DBMS_SQL

7-9

 ignore := DBMS_SQL.EXECUTE(source_cursor);

 -- Prepare a cursor to insert into the destination table:
 destination_cursor := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(destination_cursor,
 'INSERT INTO ' || destination ||
 ' VALUES (:id_bind, :name_bind, :birthdate_bind)',
 DBMS_SQL.NATIVE);

 -- Fetch a row from the source table and insert it into the
destination table:
 LOOP
 IF DBMS_SQL.FETCH_ROWS(source_cursor)>0 THEN
 -- get column values of the row
 DBMS_SQL.COLUMN_VALUE(source_cursor, 1, id_var);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 2, name_var);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 3, birthdate_var);

 -- Bind the row into the cursor that inserts into the destination
table. You
 -- could alter this example to require the use of dynamic SQL by
inserting an
 -- if condition before the bind.
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':id_bind',
id_var);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':name_bind',
name_var);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ':birthdate_bind',
 birthdate_var);
 ignore := DBMS_SQL.EXECUTE(destination_cursor);
 ELSE

 -- No more rows to copy:
 EXIT;
 END IF;
 END LOOP;

 -- Commit (in TimesTen commit closes cursors automatically):
 COMMIT;

 EXCEPTION
 WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(source_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 END IF;
 IF DBMS_SQL.IS_OPEN(destination_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);
 END IF;
 RAISE;
 END;

Chapter 7
Using DBMS_SQL

7-10

Examples 3, 4, and 5: Bulk DML
This series of examples shows how to use bulk array binds (table items) in the SQL DML
statements INSERT, UPDATE, and DELETE.

Here is an example of a bulk INSERT statement that adds three new departments to the
departments table in the HR schema:

DECLARE
 stmt VARCHAR2(200);
 departid_array DBMS_SQL.NUMBER_TABLE;
 deptname_array DBMS_SQL.VARCHAR2_TABLE;
 mgrid_array DBMS_SQL.NUMBER_TABLE;
 locid_array DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 dummy NUMBER;
BEGIN
 departid_array(1):= 280;
 departid_array(2):= 290;
 departid_array(3):= 300;

 deptname_array(1) := 'Community Outreach';
 deptname_array(2) := 'Product Management';
 deptname_array(3) := 'Acquisitions';

 mgrid_array(1) := 121;
 mgrid_array(2) := 120;
 mgrid_array(3) := 70;

 locid_array(1):= 1500;
 locid_array(2):= 1700;
 locid_array(3):= 2700;

 stmt := 'INSERT INTO departments VALUES(
 :departid_array, :deptname_array, :mgrid_array, :locid_array)';
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, ':departid_array', departid_array);
 DBMS_SQL.BIND_ARRAY(c, ':deptname_array', deptname_array);
 DBMS_SQL.BIND_ARRAY(c, ':mgrid_array', mgrid_array);
 DBMS_SQL.BIND_ARRAY(c, ':locid_array', locid_array);
 dummy := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);
 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;

Chapter 7
Using DBMS_SQL

7-11

Following is output from a SELECT statement, showing the new rows.

Command> select * from departments;
< 10, Administration, 200, 1700 >
...
< 280, Community Outreach, 121, 1500 >
< 290, Product Management, 120, 1700 >
< 300, Acquisitions, 70, 2700 >
30 rows found.

Here is an example of a bulk UPDATE statement that demonstrates updating salaries for
four existing employees in the employees table in the HR schema:

DECLARE
 stmt VARCHAR2(200);
 empno_array DBMS_SQL.NUMBER_TABLE;
 salary_array DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 dummy NUMBER;

BEGIN
 empno_array(1):= 203;
 empno_array(2):= 204;
 empno_array(3):= 205;
 empno_array(4):= 206;

 salary_array(1) := 7000;
 salary_array(2) := 11000;
 salary_array(3) := 13000;
 salary_array(4) := 9000;

 stmt := 'update employees set salary = :salary_array
 WHERE employee_id = :num_array';
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, ':num_array', empno_array);
 DBMS_SQL.BIND_ARRAY(c, ':salary_array', salary_array);
 dummy := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);

 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;

Assume the following entries for the specified employees before running the example,
showing salaries of $6500, $10000, $12000, and $8300:

Command> select * from employees where employee_id>=203 and
employee_id<=206;
< 203, Susan, Mavris, SMAVRIS, 515.123.7777, 1994-06-07 00:00:00,

Chapter 7
Using DBMS_SQL

7-12

HR_REP,
6500, <NULL>, 101, 40 >
< 204, Hermann, Baer, HBAER, 515.123.8888, 1994-06-07 00:00:00, PR_REP,
10000, <NULL>, 101, 70 >
< 205, Shelley, Higgins, SHIGGINS, 515.123.8080, 1994-06-07 00:00:00, AC_MGR,
12000, <NULL>, 101, 110 >
< 206, William, Gietz, WGIETZ, 515.123.8181, 1994-06-07 00:00:00, AC_ACCOUNT,
8300, <NULL>, 205, 110 >
4 rows found.

The following shows the new salaries after running the example.

Command> select * from employees where employee_id>=203 and employee_id<=206;
< 203, Susan, Mavris, SMAVRIS, 515.123.7777, 1994-06-07 00:00:00, HR_REP,
7000, <NULL>, 101, 40 >
< 204, Hermann, Baer, HBAER, 515.123.8888, 1994-06-07 00:00:00, PR_REP,
11000, <NULL>, 101, 70 >
< 205, Shelley, Higgins, SHIGGINS, 515.123.8080, 1994-06-07 00:00:00, AC_MGR,
13000, <NULL>, 101, 110 >
< 206, William, Gietz, WGIETZ, 515.123.8181, 1994-06-07 00:00:00, AC_ACCOUNT,
9000, <NULL>, 205, 110 >
4 rows found.

In a DELETE statement, for example, you could bind in an array in the WHERE clause and have
the statement be run for each element in the array, as follows:

DECLARE
 stmt VARCHAR2(200);
 dept_no_array DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 dummy NUMBER;
BEGIN
 dept_no_array(1) := 60;
 dept_no_array(2) := 70;
 stmt := 'delete from employees where department_id = :dept_array';
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, ':dept_array', dept_no_array, 1, 1);
 dummy := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.CLOSE_CURSOR(c);

 EXCEPTION WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(c) THEN
 DBMS_SQL.CLOSE_CURSOR(c);
 END IF;
 RAISE;
END;

In this example, only the first element of the array is specified by the BIND_ARRAY call (lower
and upper bounds of the array elements are both set to 1), so only employees in department
60 are deleted.

Chapter 7
Using DBMS_SQL

7-13

Before running the example, there are five employees in department 60 and one in
department 70, where the department number is the last entry in each row:

Command> select * from employees where department_id>=60 and
department_id<=70;
< 103, Alexander, Hunold, AHUNOLD, 590.423.4567, 1990-01-03 00:00:00,
IT_PROG,
9000, <NULL>, 102, 60 >
< 104, Bruce, Ernst, BERNST, 590.423.4568, 1991-05-21 00:00:00,
IT_PROG, 6000,
<NULL>, 103, 60 >
< 105, David, Austin, DAUSTIN, 590.423.4569, 1997-06-25 00:00:00,
IT_PROG, 4800,
 <NULL>, 103, 60 >
< 106, Valli, Pataballa, VPATABAL, 590.423.4560, 1998-02-05 00:00:00,
IT_PROG,
4800, <NULL>, 103, 60 >
< 107, Diana, Lorentz, DLORENTZ, 590.423.5567, 1999-02-07 00:00:00,
IT_PROG,
4200, <NULL>, 103, 60 >
< 204, Hermann, Baer, HBAER, 515.123.8888, 1994-06-07 00:00:00,
PR_REP, 10000,
<NULL>, 101, 70 >
6 rows found.

After running the example, only the employee in department 70 remains.

Command> select * from employees where department_id>=60 and
department_id<=70;
< 204, Hermann, Baer, HBAER, 515.123.8888, 1994-06-07 00:00:00,
PR_REP, 10000,
<NULL>, 101, 70 >
1 row found.

Example 6: Define an Array
This example defines an array.

CREATE OR REPLACE PROCEDURE BULK_PLSQL(deptid NUMBER) IS
 names DBMS_SQL.VARCHAR2_TABLE;
 sals DBMS_SQL.NUMBER_TABLE;
 c NUMBER;
 r NUMBER;
 sql_stmt VARCHAR2(32767) :=
 'SELECT last_name, salary FROM employees WHERE department_id
= :b1';

BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, sql_stmt, dbms_sql.native);
 DBMS_SQL.BIND_VARIABLE(c, 'b1', deptid);
 DBMS_SQL.DEFINE_ARRAY(c, 1, names, 5, 1);
 DBMS_SQL.DEFINE_ARRAY(c, 2, sals, 5, 1);

Chapter 7
Using DBMS_SQL

7-14

 r := DBMS_SQL.EXECUTE(c);

 LOOP
 r := DBMS_SQL.FETCH_ROWS(c);
 DBMS_SQL.COLUMN_VALUE(c, 1, names);
 DBMS_SQL.COLUMN_VALUE(c, 2, sals);
 EXIT WHEN r != 5;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(c);

 -- loop through the names and sals collections
 FOR i IN names.FIRST .. names.LAST LOOP
 DBMS_OUTPUT.PUT_LINE('Name = ' || names(i) || ', salary = ' ||
sals(i));
 END LOOP;
END;

For example, for department 20 in the employees table, this produces the following output:

Command> begin
 bulk_plsql(20);
 end;
 /
Name = Hartstein, salary = 13000
Name = Fay, salary = 6000

PL/SQL procedure successfully completed.

Example 7: Describe Columns
This can be used as a substitute for the ttIsql DESCRIBE command by using a SELECT *
query on the table to describe. This example describes columns of the employees table.

DECLARE
 c NUMBER;
 d NUMBER;
 col_cnt INTEGER;
 f BOOLEAN;
 rec_tab DBMS_SQL.DESC_TAB;
 col_num NUMBER;
 PROCEDURE print_rec(rec in DBMS_SQL.DESC_REC) IS
 BEGIN
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.PUT_LINE('col_type = '
 || rec.col_type);
 DBMS_OUTPUT.PUT_LINE('col_maxlen = '
 || rec.col_max_len);
 DBMS_OUTPUT.PUT_LINE('col_name = '
 || rec.col_name);
 DBMS_OUTPUT.PUT_LINE('col_name_len = '
 || rec.col_name_len);

Chapter 7
Using DBMS_SQL

7-15

 DBMS_OUTPUT.PUT_LINE('col_schema_name = '
 || rec.col_schema_name);
 DBMS_OUTPUT.PUT_LINE('col_schema_name_len = '
 || rec.col_schema_name_len);
 DBMS_OUTPUT.PUT_LINE('col_precision = '
 || rec.col_precision);
 DBMS_OUTPUT.PUT_LINE('col_scale = '
 || rec.col_scale);
 DBMS_OUTPUT.PUT('col_null_ok = ');
 IF (rec.col_null_ok) THEN
 DBMS_OUTPUT.PUT_LINE('true');
 ELSE
 DBMS_OUTPUT.PUT_LINE('false');
 END IF;
 END;
BEGIN
 c := DBMS_SQL.OPEN_CURSOR;

 DBMS_SQL.PARSE(c, 'SELECT * FROM employees', DBMS_SQL.NATIVE);

 d := DBMS_SQL.EXECUTE(c);

 DBMS_SQL.DESCRIBE_COLUMNS(c, col_cnt, rec_tab);

/*
 * Following loop could simply be for j in 1..col_cnt loop.
 * Here we are simply illustrating some PL/SQL table
 * features.
 */
 col_num := rec_tab.first;
 IF (col_num IS NOT NULL) THEN
 LOOP
 print_rec(rec_tab(col_num));
 col_num := rec_tab.next(col_num);
 EXIT WHEN (col_num IS NULL);
 END LOOP;
 END IF;

 DBMS_SQL.CLOSE_CURSOR(c);
END;

Here is an abbreviated sample of the output, describing columns of the employees
table, assuming it was run from the HR schema. Information from only the first two
columns is shown here:

col_type = 2
col_maxlen = 7
col_name = EMPLOYEE_ID
col_name_len = 11
col_schema_name = HR
col_schema_name_len = 8
col_precision = 6
col_scale = 0
col_null_ok = false

Chapter 7
Using DBMS_SQL

7-16

col_type = 1
col_maxlen = 20
col_name = FIRST_NAME
col_name_len = 10
col_schema_name = HR
col_schema_name_len = 8
col_precision = 0
col_scale = 0
col_null_ok = true
...

Example 8: RETURNING Clause
With this clause, INSERT, UPDATE, and DELETE statements can return values of expressions.
These values are returned in bind variables.

BIND_VARIABLE is used to bind these outbinds if a single row is inserted, updated, or deleted.
If multiple rows are inserted, updated, or deleted, then BIND_ARRAY is used. VARIABLE_VALUE
must be called to get the values in these bind variables.

Note:

This is similar to VARIABLE_VALUE, which must be called after running a PL/SQL
block with an out-bind inside DBMS_SQL.

The examples that follow assume a table tab has been created:

Command> create table tab (c1 number, c2 number);

Examples are shown for single row insert, single row update, multiple row insert, multiple row
update, and multiple row delete.

Single row insert

This shows a single row insert.

 CREATE OR REPLACE PROCEDURE single_Row_insert
 (c1 NUMBER, c2 NUMBER, r OUT NUMBER) is
 c NUMBER;
 n NUMBER;
 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'INSERT INTO tab VALUES (:bnd1, :bnd2) ' ||
 'RETURNING c1*c2 INTO :bnd3', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', c2);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r); -- get value of outbind
variable

Chapter 7
Using DBMS_SQL

7-17

 DBMS_SQL.CLOSE_CURSOR(c);
 END;

The following runs this example and shows the results. The table was initially empty.

Command> declare r NUMBER;
 begin
 single_Row_insert(100,200,r);
 dbms_output.put_line('Product = ' || r);
 end;
 /
Product = 20000

PL/SQL procedure successfully completed.

Command> select * from tab;
< 100, 200 >
1 row found.

Single Row Update

This shows a single row update. Note that rownum is an internal variable for row
number.

 CREATE OR REPLACE PROCEDURE single_Row_update
 (c1 NUMBER, c2 NUMBER, r out NUMBER) IS
 c NUMBER;
 n NUMBER;

 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'UPDATE tab SET c1 = :bnd1, c2 = :bnd2 ' ||
 'WHERE rownum = 1 ' ||
 'RETURNING c1*c2 INTO :bnd3',
DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', c2);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r);-- get value of outbind
variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;

The following runs this example and shows the results, updating the row that was
inserted in the previous example.

Command> declare r NUMBER;
 begin
 single_Row_update(200,300,r);
 dbms_output.put_line('Product = ' || r);
 end;
 /

Chapter 7
Using DBMS_SQL

7-18

Product = 60000

PL/SQL procedure successfully completed.

Command> select * from tab;
< 200, 300 >
1 row found.

Multiple Row Insert

This shows a multiple row insert.

 CREATE OR REPLACE PROCEDURE multi_Row_insert
 (c1 DBMS_SQL.NUMBER_TABLE, c2 DBMS_SQL.NUMBER_TABLE,
 r OUT DBMS_SQL.NUMBER_TABLE) is
 c NUMBER;
 n NUMBER;

 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'insert into tab VALUES (:bnd1, :bnd2) ' ||
 'RETURNING c1*c2 INTO :bnd3', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_ARRAY(c, 'bnd1', c1);
 DBMS_SQL.BIND_ARRAY(c, 'bnd2', c2);
 DBMS_SQL.BIND_ARRAY(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r);-- get value of outbind
variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;

The following script can be used to run this example in ttIsql:

declare
 c1_array dbms_sql.number_table;
 c2_array dbms_sql.number_table;
 r_array dbms_sql.number_table;
begin
 c1_array(1) := 10;
 c1_array(2) := 20;
 c1_array(3) := 30;
 c2_array(1) := 15;
 c2_array(2) := 25;
 c2_array(3) := 35;
 multi_Row_insert(c1_array,c2_array,r_array);
 dbms_output.put_line('Product for row1 = ' || r_array(1));
 dbms_output.put_line('Product for row2 = ' || r_array(2));
 dbms_output.put_line('Product for row3 = ' || r_array(3));
end;
/

Chapter 7
Using DBMS_SQL

7-19

Following are the results. The table was initially empty.

Product for row1 = 150
Product for row2 = 500
Product for row3 = 1050

PL/SQL procedure successfully completed.

Command> select * from tab;
< 10, 15 >
< 20, 25 >
< 30, 35 >
3 rows found.

Multiple Row Update

This shows a multiple row update.

 CREATE OR REPLACE PROCEDURE multi_Row_update
 (c1 NUMBER, c2 NUMBER, r OUT DBMS_SQL.NUMBER_TABLE) IS
 c NUMBER;
 n NUMBER;

 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'UPDATE tab SET c1 = :bnd1 WHERE c2 > :bnd2
' ||
 'RETURNING c1*c2 INTO :bnd3',
DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd2', c2);
 DBMS_SQL.BIND_ARRAY(c, 'bnd3', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_OUTPUT.PUT_LINE(n || ' rows updated');
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd3', r);-- get value of outbind
variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;

Note:

Note that bnd1 and bnd2 can be arrays as well. The value of the expression
for all the rows updated is in bnd3. There is no way of differentiating which
rows were updated of each value of bnd1 and bnd2.

The following script can be used to run the example in ttIsql:

declare
 c1 NUMBER;
 c2 NUMBER;
 r_array dbms_sql.number_table;

Chapter 7
Using DBMS_SQL

7-20

begin
 c1 := 100;
 c2 := 0;
 multi_Row_update(c1, c2, r_array);
 dbms_output.put_line('Product for row1 = ' || r_array(1));
 dbms_output.put_line('Product for row2 = ' || r_array(2));
 dbms_output.put_line('Product for row3 = ' || r_array(3));
end;
/

Here are the results, updating the rows that were inserted in the previous example. (The
report of the number of rows updated is from the example itself. The products are reported by
the test script.)

3 rows updated
Product for row1 = 1500
Product for row2 = 2500
Product for row3 = 3500

PL/SQL procedure successfully completed.

Command> select * from tab;
< 100, 15 >
< 100, 25 >
< 100, 35 >
3 rows found.
Command>

Multiple Row Delete

v) This shows a multiple row delete.

 CREATE OR REPLACE PROCEDURE multi_Row_delete
 (c1_test NUMBER,
 r OUT DBMS_SQL.NUMBER_TABLE) is
 c NUMBER;
 n NUMBER;

 BEGIN
 c := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(c, 'DELETE FROM tab WHERE c1 = :bnd1 ' ||
 'RETURNING c1*c2 INTO :bnd2', DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(c, 'bnd1', c1_test);
 DBMS_SQL.BIND_ARRAY(c, 'bnd2', r);
 n := DBMS_SQL.EXECUTE(c);
 DBMS_OUTPUT.PUT_LINE(n || ' rows deleted');
 DBMS_SQL.VARIABLE_VALUE(c, 'bnd2', r);-- get value of outbind
variable
 DBMS_SQL.CLOSE_CURSOR(c);
 END;

Chapter 7
Using DBMS_SQL

7-21

The following script can be used to run the example in ttIsql.

declare
 c1_test NUMBER;
 r_array dbms_sql.number_table;
begin
 c1_test := 100;
 multi_Row_delete(c1_test, r_array);
 dbms_output.put_line('Product for row1 = ' || r_array(1));
 dbms_output.put_line('Product for row2 = ' || r_array(2));
 dbms_output.put_line('Product for row3 = ' || r_array(3));
end;
/

Here are the results, deleting the rows that were updated in the previous example.
(The report of the number of rows deleted is from the example itself. The products are
reported by the test script.)

3 rows deleted
Product for row1 = 1500
Product for row2 = 2500
Product for row3 = 3500

PL/SQL procedure successfully completed.

Command> select * from tab;
0 rows found.

Note:

BIND_ARRAY of Number_Table internally binds a number. The number of times
statement is run depends on the number of elements in an inbind array.

Example 9: PL/SQL Block in Dynamic SQL
You can execute a PL/SQL block in dynamic SQL, using either DBMS_SQL or EXECUTE
IMMEDIATE. This example executes a block using DBMS_SQL.

Assume the following procedure:

Command> create or replace procedure foo is
 begin
 dbms_output.put_line('test');
 end;
 /

Procedure created.

Chapter 7
Using DBMS_SQL

7-22

Now execute the procedure in a PL/SQL block using DBMS_SQL:

Command> declare
 c number;
 r number;
 begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'begin foo; end;', dbms_sql.native);
 r := dbms_sql.execute(c);
 end;
 /
test

PL/SQL procedure successfully completed.

Data Structures
The DBMS_SQL package defines the following record types and table types.

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

Record types

• DESC_REC Record Type

• DESC_REC2 Record Type

• DESC_REC3 Record Type

Table types

• BINARY_DOUBLE_TABLE Table Type

• BINARY_FLOAT_TABLE Table Type

• BLOB_TABLE Table Type

• CLOB_TABLE Table Type

• DATE_TABLE Table Type

• DESC_TAB Table Type

• DESC_TAB2 Table Type

• DESC_TAB3 Table Type

• INTERVAL_DAY_TO_SECOND_TABLE Table Type

Chapter 7
Data Structures

7-23

• INTERVAL_YEAR_TO_MONTH_TABLE Table Type

• NUMBER_TABLE Table Type

• TIME_TABLE Table Type

• TIMESTAMP_TABLE Table Type

• VARCHAR2_TABLE Table Type

• VARCHAR2A Table Type

• VARCHAR2S Table Type

DESC_REC Record Type

Note:

This type has been deprecated in favor of the DESC_REC2 Record Type.

This record type holds the describe information for a single column in a dynamic query.
It is the element type of the DESC_TAB table type and the DESCRIBE_COLUMNS
Procedure.

Syntax

TYPE desc_rec IS RECORD (
 col_type BINARY_INTEGER := 0,
 col_max_len BINARY_INTEGER := 0,
 col_name VARCHAR2(32) := '',
 col_name_len BINARY_INTEGER := 0,
 col_schema_name VARCHAR2(32) := '',
 col_schema_name_len BINARY_INTEGER := 0,
 col_precision BINARY_INTEGER := 0,
 col_scale BINARY_INTEGER := 0,
 col_charsetid BINARY_INTEGER := 0,
 col_charsetform BINARY_INTEGER := 0,
 col_null_ok BOOLEAN := TRUE);
TYPE desc_tab IS TABLE OF desc_rec INDEX BY BINARY_INTEGER;

Fields

Table 7-3 DESC_REC Fields

Field Description

col_type Type of column

col_max_len Maximum column length

col_name Name of column

col_name_len Length of column name

col_schema_name Column schema name

Chapter 7
Data Structures

7-24

Table 7-3 (Cont.) DESC_REC Fields

Field Description

col_schema_name_len Length of column schema name

col_precision Precision of column

col_scale Scale of column

col_charsetid Column character set ID

col_charsetform Column character set form

col_null_ok Null column flag, TRUE if NULL is allowable

DESC_REC2 Record Type
DESC_REC2 is the element type of the DESC_TAB2 table type and the DESCRIBE_COLUMNS2
Procedure.

This record type is identical to DESC_REC except for the col_name field, which has been
expanded to the maximum possible size for VARCHAR2. It is therefore preferred to DESC_REC,
which is deprecated, because column name values can be greater than 32 characters.

Syntax

TYPE desc_rec2 IS RECORD (
 col_type binary_integer := 0,
 col_max_len binary_integer := 0,
 col_name varchar2(32767) := '',
 col_name_len binary_integer := 0,
 col_schema_name varchar2(32) := '',
 col_schema_name_len binary_integer := 0,
 col_precision binary_integer := 0,
 col_scale binary_integer := 0,
 col_charsetid binary_integer := 0,
 col_charsetform binary_integer := 0,
 col_null_ok boolean := TRUE);

Fields

Table 7-4 DESC_REC2 Fields

Field Description

col_type Type of column

col_max_len Maximum column length

col_name Name of column

col_name_len Length of column name

col_schema_name Column schema name

col_schema_name_len Length of column schema name

col_precision Precision of column

Chapter 7
Data Structures

7-25

Table 7-4 (Cont.) DESC_REC2 Fields

Field Description

col_scale Scale of column

col_charsetid Column character set ID

col_charsetform Column character set form

col_null_ok Null column flag, TRUE if NULL is allowable

DESC_REC3 Record Type
DESC_REC3 is the element type of the DESC_TAB3 table type and the
DESCRIBE_COLUMNS3 Procedure.

DESC_REC3 is identical to DESC_REC2 except for two additional fields to hold the type
name (type_name) and type name len (type_name_len) of a column in a dynamic
query. The col_type_name and col_type_name_len fields are only populated when the
col_type field value is 109 (the Oracle Database type number for user-defined types),
which is not currently used.

Syntax

TYPE desc_rec3 IS RECORD (
 col_type binary_integer := 0,
 col_max_len binary_integer := 0,
 col_name varchar2(32767) := '',
 col_name_len binary_integer := 0,
 col_schema_name varchar2(32) := '',
 col_schema_name_len binary_integer := 0,
 col_precision binary_integer := 0,
 col_scale binary_integer := 0,
 col_charsetid binary_integer := 0,
 col_charsetform binary_integer := 0,
 col_null_ok boolean := TRUE,
 col_type_name varchar2(32767) := '',
 col_type_name_len binary_integer := 0);

Fields

Table 7-5 DESC_REC3 Fields

Field Description

col_type Type of column

col_max_len Maximum column length

col_name Name of column

col_name_len Length of column name

col_schema_name Column schema name

col_schema_name_len Length of column schema name

Chapter 7
Data Structures

7-26

Table 7-5 (Cont.) DESC_REC3 Fields

Field Description

col_precision Precision of column

col_scale Scale of column

col_charsetid Column character set ID

col_charsetform Column character set form

col_null_ok Null column flag, TRUE if NULL is allowable

col_type_name Reserved for future use

col_type_name_len Reserved for future use

BINARY_DOUBLE_TABLE Table Type
This is a table of BINARY_DOUBLE.

Syntax

TYPE binary_double_table IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;

BINARY_FLOAT_TABLE Table Type
This is a table of BINARY_FLOAT.

Syntax

TYPE binary_float_table IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;

BLOB_TABLE Table Type
This is a table of BLOB.

Syntax

TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;

CLOB_TABLE Table Type
This is a table of CLOB.

Syntax

TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;

Chapter 7
Data Structures

7-27

DATE_TABLE Table Type
This is a table of DATE.

Syntax

type date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;

DESC_TAB Table Type
This is a table of DESC_REC Record Type.

Syntax

TYPE desc_tab IS TABLE OF desc_rec INDEX BY BINARY_INTEGER;

DESC_TAB2 Table Type
This is a table of DESC_REC2 Record Type.

Syntax

TYPE desc_tab2 IS TABLE OF desc_rec2 INDEX BY BINARY_INTEGER;

DESC_TAB3 Table Type
This is a table of DESC_REC3 Record Type.

Syntax

TYPE desc_tab3 IS TABLE OF desc_rec3 INDEX BY BINARY_INTEGER;

INTERVAL_DAY_TO_SECOND_TABLE Table Type
This is a table of DSINTERVAL_UNCONSTRAINED.

Syntax

 TYPE interval_day_to_second_Table IS TABLE OF
 DSINTERVAL_UNCONSTRAINED INDEX BY binary_integer;

Chapter 7
Data Structures

7-28

INTERVAL_YEAR_TO_MONTH_TABLE Table Type
This is a table of YMINTERVAL_UNCONSTRAINED.

Syntax

TYPE interval_year_to_month_table IS TABLE OF YMINTERVAL_UNCONSTRAINED
 INDEX BY BINARY_INTEGER;

NUMBER_TABLE Table Type
This is a table of NUMBER.

Syntax

TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

TIME_TABLE Table Type
This is a table of TIME_UNCONSTRAINED.

Syntax

TYPE time_table IS TABLE OF TIME_UNCONSTRAINED INDEX BY BINARY_INTEGER;

TIMESTAMP_TABLE Table Type
This is a table of TIMESTAMP_UNCONSTRAINED.

Syntax

TYPE timestamp_table IS TABLE OF TIMESTAMP_UNCONSTRAINED INDEX BY
BINARY_INTEGER;

VARCHAR2_TABLE Table Type
This is table of VARCHAR2(2000).

Syntax

TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

Chapter 7
Data Structures

7-29

VARCHAR2A Table Type
This is table of VARCHAR2(32767).

Syntax

TYPE varchar2a IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

VARCHAR2S Table Type
This is table of VARCHAR2(256).

Note:

This type has been superseded by the VARCHAR2A Table Type. It is
supported only for backward compatibility.

Syntax

TYPE varchar2s IS TABLE OF VARCHAR2(256) INDEX BY BINARY_INTEGER;

DBMS_SQL Subprograms
Table 7-6 summarizes the DBMS_SQL subprograms, followed by a full description of
each subprogram.

Table 7-6 DBMS_SQL Package Subprograms

Subprogram Description

BIND_ARRAY Procedure Binds a given value to a given collection.

BIND_VARIABLE Procedure Binds a given value to a given variable.

CLOSE_CURSOR Procedure Closes given cursor and frees memory.

COLUMN_VALUE Procedure Returns value of the cursor element for a given position in
a cursor.

COLUMN_VALUE_LONG procedure Returns a selected part of a LONG column that has been
defined using DEFINE_COLUMN_LONG.

Important: Because TimesTen does not support the
LONG data type, attempting to use this procedure in
TimesTen results in an ORA-01018 error at runtime.

The COLUMN_VALUE_LONG and DEFINE_COLUMN_LONG
procedures are therefore not documented in this manual.

DEFINE_ARRAY Procedure Defines a collection to be selected from the given cursor.
Used only with SELECT statements.

DEFINE_COLUMN Procedure Defines a column to be selected from the given cursor.
Used only with SELECT statements.

Chapter 7
DBMS_SQL Subprograms

7-30

Table 7-6 (Cont.) DBMS_SQL Package Subprograms

Subprogram Description

DEFINE_COLUMN_LONG procedure Defines a LONG column to be selected from the given
cursor. Used with SELECT statements.

Important: Because TimesTen does not support the
LONG data type, attempting to use the
COLUMN_VALUE_LONG procedure in TimesTen results in
an ORA-01018 error at runtime.

The COLUMN_VALUE_LONG and DEFINE_COLUMN_LONG
procedures are therefore not documented in this manual.

DESCRIBE_COLUMNS Procedure Describes the columns for a cursor opened and parsed
through DBMS_SQL.

DESCRIBE_COLUMNS2
Procedure

Describes the specified column, as an alternative to
DESCRIBE_COLUMNS Procedure.

DESCRIBE_COLUMNS3
Procedure

Describes the specified column, as an alternative to
DESCRIBE_COLUMNS Procedure.

EXECUTE Function Executes a given cursor.

EXECUTE_AND_FETCH Function Executes a given cursor and fetches rows.

FETCH_ROWS Function Fetches a row from a given cursor.

IS_OPEN Function Returns TRUE if the given cursor is open.

LAST_ERROR_POSITION
Function

Returns byte offset in the SQL statement text where the
error occurred.

LAST_ROW_COUNT Function Returns cumulative count of the number of rows fetched.

LAST_ROW_ID Function Returns the rowid of last row processed, NULL for
TimesTen.

TimesTen does not support this feature.

LAST_SQL_FUNCTION_CODE
Function

Returns SQL function code for statement.

OPEN_CURSOR Function Returns cursor ID number of new cursor.

PARSE Procedures Parses given statement.

TO_CURSOR_NUMBER Function Takes an opened strongly or weakly typed REF CURSOR
and transforms it into a DBMS_SQL cursor number.

TO_REFCURSOR Function Takes an opened, parsed, and executed cursor and
transforms or migrates it into a PL/SQL-manageable REF
CURSOR (a weakly typed cursor) that can be consumed by
PL/SQL native dynamic SQL.

VARIABLE_VALUE Procedure Returns value of named variable for given cursor.

Chapter 7
DBMS_SQL Subprograms

7-31

BIND_ARRAY Procedure
This procedure binds a given value or set of values to a given variable in a cursor,
based on the name of the variable in the statement.

Syntax

DBMS_SQL.BIND_ARRAY (
 c IN INTEGER,
 name IN VARCHAR2,
 <table_variable> IN <datatype>
 [,index1 IN INTEGER,
 index2 IN INTEGER)]);

Where the table_variable and its corresponding datatype can be any of the
following matching pairs:

<bflt_tab> dbms_sql.Binary_Float_Table
<bdbl_tab> dbms_sql.Binary_Double_Table
<bl_tab> dbms_sql.Blob_Table
<cl_tab> dbms_sql.Clob_Table
<c_tab> dbms_sql.Varchar2_Table
<d_tab> dbms_sql.Date_Table
<ids_tab> dbms_sql.Interval_Day_to_Second_Table
<iym_tab> dbms_sql.Interval_Year_to_Month_Table
<n_tab> dbms_sql.Number_Table
<tm_tab> dbms_sql.Time_Table
<tms_tab> dbms_sql.Timestamp_Table

Notice that the BIND_ARRAY procedure is overloaded to accept different data types.

Parameters

Table 7-7 BIND_ARRAY Procedure Parameters

Parameter Description

c ID number of the cursor where the value is to be bound

name Name of the collection in the statement

table_variable Local variable that has been declared as datatype

index1 Index for the table element that marks the lower bound of the range

index2 Index for the table element that marks the upper bound of the range

Usage Notes

This section discusses usage notes for the BIND_ARRAY procedure, covering these
topics:

• General Notes

• Bulk Array Binds

Chapter 7
DBMS_SQL Subprograms

7-32

• Types for Scalar Collections

General Notes

The length of the bind variable name should be less than or equal to 30 bytes.

For binding a range, the table must contain the elements that specify the range—
tab(index1) and tab(index2)—but the range does not have to be dense. The index1 value
must be less than or equal to index2. All elements between tab(index1) and tab(index2)
are used in the bind.

If you do not specify indexes in the bind call, and two different binds in a statement specify
tables that contain a different number of elements, then the number of elements actually used
is the minimum number between all tables. This is also the case if you specify indexes. The
minimum range is selected between the two indexes for all tables.

Not all bind variables in a query have to be array binds. Some can be regular binds and the
same value are used for each element of the collections in expression evaluations (and so
forth).

Bulk Array Binds

Bulk selects, inserts, updates, and deletes can enhance the performance of applications by
bundling many calls into one. The DBMS_SQL package lets you work on collections of data
using the PL/SQL table type.

Table items are unbounded homogeneous collections. In persistent storage, they are like
other relational tables and have no intrinsic ordering. But when a table item is brought into the
workspace (either by querying or by navigational access of persistent data), or when it is
created as the value of a PL/SQL variable or parameter, its elements are given subscripts
that can be used with array-style syntax to get and set the values of elements.

The subscripts of these elements need not be dense, and can be any number including
negative numbers. For example, a table item can contain elements at locations -10, 2, and 7
only.

When a table item is moved from transient work space to persistent storage, the subscripts
are not stored. The table item is unordered in persistent storage.

At bind time the table is copied out from the PL/SQL buffers into local DBMS_SQL buffers (the
same as for all scalar types), then the table is manipulated from the local DBMS_SQL buffers.
Therefore, if you change the table after the bind call, then that change does not affect the way
the execute acts.

Types for Scalar Collections

You can declare a local variable as one of the following table-item types, which are defined as
public types in DBMS_SQL.

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_table
 IS TABLE OF dsinterval_unconstrained

Chapter 7
DBMS_SQL Subprograms

7-33

 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_month_table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

<tm_tab> Time_Table
<tms_tab> Timestamp_Table
<ids_tab> Interval_Day_To_Second_Table
<iym_tab> Interval_Year_To_Month_Table

Examples

See Examples .

BIND_VARIABLE Procedure
This procedures binds a given value or set of values to a given variable in a cursor,
based on the name of the variable in the statement.

Syntax

DBMS_SQL.BIND_VARIABLE (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN <datatype>);

Where datatype can be any of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BLOB
CLOB CHARACTER SET ANY_CS
DATE
INTERVAL DAY TO SECOND(9,9) (DSINTERVAL_UNCONSTRAINED)
NUMBER
TIME(9) (TIME_UNCONSTRAINED)
TIMESTAMP(9) (TIMESTAMP_UNCONSTRAINED)
VARCHAR2 CHARACTER SET ANY_CS
INTERVAL YEAR TO MONTH(9) (YMINTERVAL_UNCONSTRAINED)
VARRAY
Nested table

Notice that BIND_VARIABLE is overloaded to accept different data types.

Chapter 7
DBMS_SQL Subprograms

7-34

The following syntax is also supported for BIND_VARIABLE. The square brackets [] indicate
an optional parameter for the BIND_VARIABLE function.

DBMS_SQL.BIND_VARIABLE (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN VARCHAR2 CHARACTER SET ANY_CS [,out_value_size IN
INTEGER]);

To bind CHAR, RAW, and ROWID data, you can use the following variations on the following
syntax:

DBMS_SQL.BIND_VARIABLE_CHAR (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN CHAR CHARACTER SET ANY_CS [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_RAW (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN RAW [,out_value_size IN INTEGER]);

DBMS_SQL.BIND_VARIABLE_ROWID (
 c IN INTEGER,
 name IN VARCHAR2,
 value IN ROWID);

Parameters

Table 7-8 BIND_VARIABLE Procedure Parameters

Parameter Description

c ID number of the cursor where the value is to be bound

name Name of the variable in the statement

value Value to bind to the variable in the cursor

For IN and IN OUT variables, the value has the same type as the type of the
value being passed in for this parameter.

out_value_size Maximum expected OUT value size, in bytes, for the VARCHAR2, RAW, CHAR
OUT or IN OUT variable

If no size is given, then the length of the current value is used. This parameter
must be specified if the value parameter is not initialized.

Usage Notes

If the variable is an IN or IN OUT variable or an IN collection, then the given bind value must
be valid for the variable or array type. Bind values for OUT variables are ignored.

Chapter 7
DBMS_SQL Subprograms

7-35

The bind variables or collections of a SQL statement are identified by their names.
When binding a value to a bind variable or bind array, the string identifying it in the
statement must contain a leading colon, as shown in the following example:

SELECT last_name FROM employees WHERE salary > :X;

For this example, the corresponding bind call would look similar to the following:

BIND_VARIABLE(cursor_name, ':X', 3500);

Or:

BIND_VARIABLE (cursor_name, 'X', 3500);

The length of the bind variable name should be less than or equal to 30 bytes.

Examples

See Examples .

CLOSE_CURSOR Procedure
This procedure closes a given cursor. The memory allocated to the cursor is released
and you can no longer fetch from that cursor.

Syntax

DBMS_SQL.CLOSE_CURSOR (
 c IN OUT INTEGER);

Parameters

Table 7-9 CLOSE_CURSOR Procedure Parameters

Parameter Description

c (IN) ID number of the cursor to close

(OUT) NULL

COLUMN_VALUE Procedure
This procedure is used to access the data fetched by calling the FETCH_ROWS
Function. It returns the value of the cursor element for a given position in a given
cursor.

Syntax

DBMS_SQL.COLUMN_VALUE (
 c IN INTEGER,
 position IN INTEGER,
 value OUT <datatype>

Chapter 7
DBMS_SQL Subprograms

7-36

 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

Where square brackets [] indicate optional parameters and datatype can be any of the
following types:

BINARY_DOUBLE
BINARY_FLOAT
BLOB
CLOB CHARACTER SET ANY_CS
DATE
INTERVAL DAY TO SECOND(9,9) (DSINTERVAL_UNCONSTRAINED)
NUMBER
TIME(9) (TIME_UNCONSTRAINED)
TIMESTAMP(9) (TIMESTAMP_UNCONSTRAINED)
VARCHAR2 CHARACTER SET ANY_CS
INTERVAL YEAR TO MONTH(9) (YMINTERVAL_UNCONSTRAINED)
VARRAY
Nested table

For variables containing CHAR, RAW, and ROWID data, you can use the following variations on
the syntax:

DBMS_SQL.COLUMN_VALUE_CHAR (
 c IN INTEGER,
 position IN INTEGER,
 value OUT CHAR CHARACTER SET ANY_CS
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_RAW (
 c IN INTEGER,
 position IN INTEGER,
 value OUT RAW
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

DBMS_SQL.COLUMN_VALUE_ROWID (
 c IN INTEGER,
 position IN INTEGER,
 value OUT ROWID
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

The following syntax enables the COLUMN_VALUE procedure to accommodate bulk operations:

DBMS_SQL.COLUMN_VALUE(
 c IN INTEGER,
 position IN INTEGER,
 <param_name> IN OUT NOCOPY <table_type>);

Chapter 7
DBMS_SQL Subprograms

7-37

Where the param_name and its corresponding table_type can be any of these
matching pairs:

<bdbl_tab> dbms_sql.Binary_Double_Table
<bflt_tab> dbms_sql.Binary_Float_Table
<bl_tab> dbms_sql.Blob_Table
<cl_tab> dbms_sql.Clob_Table
<c_tab> dbms_sql.Varchar2_Table
<d_tab> dbms_sql.Date_Table
<ids_tab> dbms_sql.Interval_Day_To_Second_Table
<iym_tab> dbms_sql.Interval_Year_To_Month_Table
<n_tab> dbms_sql.Number_Table
<tm_tab> dbms_sql.Time_Table
<tms_tab> dbms_sql.Timestamp_Table

Parameters

Table 7-10 COLUMN_VALUE Procedure Parameters (Single Row)

Parameter Description

c ID number of the cursor from which you are fetching the values

position Relative position of the column in the cursor, where the first column in a
statement has position 1

value Value returned from the specified column

column_error Error code for the column value, if applicable

actual_length Actual length, before any truncation, of the value in the specified column

Table 7-11 COLUMN_VALUE Procedure Parameters (Bulk)

Parameter Description

c ID number of the cursor from which you are fetching the values

position Relative position of the column in the cursor, where the first column in a
statement has position 1

param_name Local variable that has been declared table_type
The param_name is an IN OUT NOCOPY parameter for bulk operations.

For bulk operations, the subprogram appends the new elements at the
appropriate (implicitly maintained) index. Consider an example where the
DEFINE_ARRAY Procedure is used, a batch size (the cnt parameter) of
10 rows is specified, and a start index (lower_bnd) of 1 is specified. The
first call to this subprogram, after calling the FETCH_ROWS Function,
populates elements at index 1..10; the next call populates elements
11..20; and so on.

Exceptions

ORA-06562: Type of out argument must match type of column or bind
variable

Chapter 7
DBMS_SQL Subprograms

7-38

This exception is raised if the type of the given OUT parameter value is different from the
actual type of the value. This type was the given type when the column was defined by calling
DEFINE_COLUMN.

Examples

See Examples .

DEFINE_ARRAY Procedure
This procedure defines the collection into which the row values are fetched, with a
FETCH_ROWS Function call, for a given column. This procedure lets you do batch fetching
of rows from a single SELECT statement. A single fetch brings several rows into the PL/SQL
aggregate object.

Scalar Types for Collections

You can declare a local variable as one of the following table-item types, and then fetch any
number of rows into it using DBMS_SQL. These are the same types you can specify for the
BIND_ARRAY procedure.

TYPE binary_double_table
 IS TABLE OF BINARY_DOUBLE INDEX BY BINARY_INTEGER;
TYPE binary_float_table
 IS TABLE OF BINARY_FLOAT INDEX BY BINARY_INTEGER;
TYPE blob_table IS TABLE OF BLOB INDEX BY BINARY_INTEGER;
TYPE clob_table IS TABLE OF CLOB INDEX BY BINARY_INTEGER;
TYPE date_table IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE interval_day_to_second_table
 IS TABLE OF dsinterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE interval_year_to_month_table
 IS TABLE OF yminterval_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE number_table IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
TYPE time_table IS TABLE OF time_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE timestamp_table
 IS TABLE OF timestamp_unconstrained
 INDEX BY BINARY_INTEGER;
TYPE varchar2_table IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

Syntax

DBMS_SQL.DEFINE_ARRAY (
 c IN INTEGER,
 position IN INTEGER,
 <table_variable> IN <datatype>
 cnt IN INTEGER,
 lower_bnd IN INTEGER);

Chapter 7
DBMS_SQL Subprograms

7-39

Where table_variable and its corresponding datatype can be any of the following
matching pairs:

<bflt_tab> dbms_sql.Binary_Float_Table
<bdbl_tab> dbms_sql.Binary_Double_Table
<bl_tab> dbms_sql.Blob_Table
<cl_tab> dbms_sql.Clob_Table
<c_tab> dbms_sql.Varchar2_Table
<d_tab> dbms_sql.Date_Table
<n_tab> dbms_sql.Number_Table
<tm_tab> dbms_sql.Time_Table
<tms_tab> dbms_sql.Timestamp_Table
<ids_tab> dbms_sql.Interval_Day_To_Second_Table
<iym_tab> dbms_sql.Interval_Year_To_Month_Table

Note that DEFINE_ARRAY is overloaded to accept different data types.

Parameters

Table 7-12 DEFINE_ARRAY Procedure Parameters

Parameter Description

c ID number of the cursor where the array is to be bound

position Relative position of the column in the array being defined, where the first
column in a statement has position 1

table_variable Local variable that has been declared as datatype

cnt Number of rows that must be fetched

lower_bnd Lower bound index, the starting point at which results are copied into the
collection

Usage Notes

The count (cnt) must be an integer greater than zero. The lower_bnd can be positive,
negative, or zero. A query on which a DEFINE_ARRAY call was issued cannot contain
array binds.

Exceptions

ORA-29253: Invalid count argument passed to procedure
dbms_sql.define_array

This exception is raised if the count (cnt) is less than or equal to zero.

Examples

See Examples .

Chapter 7
DBMS_SQL Subprograms

7-40

DEFINE_COLUMN Procedure
This procedure defines a column to be selected from the given cursor. This procedure is only
used with SELECT cursors.

The column being defined is identified by its relative position in the SELECT list of the
statement in the given cursor. The type of the COLUMN value determines the type of the column
being defined.

Syntax

DBMS_SQL.DEFINE_COLUMN (
 c IN INTEGER,
 position IN INTEGER,
 column IN <datatype>);

Where datatype can be any of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BLOB
CLOB CHARACTER SET ANY_CS
DATE
INTERVAL DAY TO SECOND(9,9) (DSINTERVAL_UNCONSTRAINED)
NUMBER
TIME(9) (TIME_UNCONSTRAINED)
TIMESTAMP(9) (TIMESTAMP_UNCONSTRAINED)
INTERVAL YEAR TO MONTH(9) (YMINTERVAL_UNCONSTRAINED)
VARRAY
Nested table

Note that DEFINE_COLUMN is overloaded to accept different data types.

The following syntax is also supported for the DEFINE_COLUMN procedure:

DBMS_SQL.DEFINE_COLUMN (
 c IN INTEGER,
 position IN INTEGER,
 column IN VARCHAR2 CHARACTER SET ANY_CS,
 column_size IN INTEGER);

To define columns with CHAR, RAW, and ROWID data, you can use the following variations on the
procedure syntax:

DBMS_SQL.DEFINE_COLUMN_CHAR (
 c IN INTEGER,
 position IN INTEGER,
 column IN CHAR CHARACTER SET ANY_CS,
 column_size IN INTEGER);

DBMS_SQL.DEFINE_COLUMN_RAW (
 c IN INTEGER,

Chapter 7
DBMS_SQL Subprograms

7-41

 position IN INTEGER,
 column IN RAW,
 column_size IN INTEGER);

DBMS_SQL.DEFINE_COLUMN_ROWID (
 c IN INTEGER,
 position IN INTEGER,
 column IN ROWID);

Parameters

Table 7-13 DEFINE_COLUMN Procedure Parameters

Parameter Description

c ID number of the cursor for the row being defined to be selected

position Relative position of the column in the row being defined, where the first
column in a statement has position 1

column Value of the column being defined

The type of this value determines the type for the column being defined.

column_size Maximum expected size of the column value, in bytes, for columns of
type VARCHAR2, CHAR, and RAW

Examples

See Examples .

DESCRIBE_COLUMNS Procedure
This procedure describes the columns for a cursor opened and parsed through
DBMS_SQL.

Syntax

DBMS_SQL.DESCRIBE_COLUMNS (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DBMS_SQL.DESC_TAB);

DBMS_SQL.DESCRIBE_COLUMNS (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DBMS_SQL.DESC_REC);

Parameters

Table 7-14 DESCRIBE_COLUMNS Procedure Parameters

Parameter Description

c ID number of the cursor for the columns being described

Chapter 7
DBMS_SQL Subprograms

7-42

Table 7-14 (Cont.) DESCRIBE_COLUMNS Procedure Parameters

Parameter Description

col_cnt Number of columns in the select list of the query

desc_t Table to fill in with the description of each of the columns of the query

Examples

See Examples .

DESCRIBE_COLUMNS2 Procedure
This function describes the specified column. This is an alternative to
DESCRIBE_COLUMNS Procedure.

Syntax

DBMS_SQL.DESCRIBE_COLUMNS2 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DBMS_SQL.DESC_TAB2);

DBMS_SQL.DESCRIBE_COLUMNS2 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DBMS_SQL.DESC_REC2);

Parameters

Table 7-15 DESCRIBE_COLUMNS2 Procedure Parameters

Parameter Description

c ID number of the cursor for the columns being described

col_cnt Number of columns in the select list of the query

desc_t Table to fill in with the description of each of the columns of the query, indexed
from 1 to the number of elements in the select list of the query

DESCRIBE_COLUMNS3 Procedure
This function describes the specified column. This is an alternative to
DESCRIBE_COLUMNS Procedure.

Syntax

DBMS_SQL.DESCRIBE_COLUMNS3 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DBMS_SQL.DESC_TAB3);

Chapter 7
DBMS_SQL Subprograms

7-43

DBMS_SQL.DESCRIBE_COLUMNS3 (
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DBMS_SQL.DESC_REC3);

Parameters

Table 7-16 DESCRIBE_COLUMNS3 Procedure Parameters

Parameter Description

c ID number of the cursor for the columns being described

col_cnt Number of columns in the select list of the query

desc_t Table to fill in with the description of each of the columns of the query,
indexed from 1 to the number of elements in the select list of the query

Usage Notes

The cursor passed in by the cursor ID has to be opened and parsed, otherwise an
error is raised for an invalid cursor ID.

EXECUTE Function
This function executes a given cursor. This function accepts the ID number of the
cursor and returns the number of rows processed. The return value is only valid for
INSERT, UPDATE, and DELETE statements. For other types of statements, including DDL,
the return value is undefined and should be ignored.

Syntax

DBMS_SQL.EXECUTE (
 c IN INTEGER)
 RETURN INTEGER;

Parameters

Table 7-17 EXECUTE Function Parameters

Parameter Description

c Cursor ID number of the cursor to execute

Return Value

An INTEGER value that indicates the number of rows processed

EXECUTE_AND_FETCH Function
This function executes the given cursor and fetches rows. It provides the same
functionality as calling EXECUTE and then calling FETCH_ROWS; however, calling

Chapter 7
DBMS_SQL Subprograms

7-44

EXECUTE_AND_FETCH may reduce the number of network round trips when used against a
remote database.

The EXECUTE_AND_FETCH function returns the number of rows actually fetched.

Syntax

DBMS_SQL.EXECUTE_AND_FETCH (
 c IN INTEGER,
 exact IN BOOLEAN DEFAULT FALSE)
 RETURN INTEGER;

Parameters

Table 7-18 EXECUTE_AND_FETCH Function Parameters

Parameter Description

c ID number of the cursor to execute and fetch

exact TRUE to raise an exception if the number of rows actually matching the query
differs from 1

Even if an exception is raised, the rows are still fetched and available.

Return Value

An INTEGER value indicating the number of rows that were fetched

Exceptions

ORA-01422: Exact fetch returns more than requested number of rows

This exception is raised if the number of rows matching the query is not 1.

FETCH_ROWS Function
This function fetches a row from a given cursor.

A DEFINE_ARRAY Procedure call defines the collection into which the row values are
fetched.

A FETCH_ROWS call fetches the specified number of rows, according to the cnt parameter of
the DEFINE_ARRAY call. When you fetch the rows, they are copied into DBMS_SQL buffers until
you execute a COLUMN_VALUE Procedure call, for each column, at which time the rows are
copied into the table that was passed as an argument to COLUMN_VALUE. The rows are placed
in positions lower_bnd, lower_bnd+1, lower_bnd+2, and so on, according to the lower_bnd
setting in the DEFINE_ARRAY call. While there are still rows coming in, the user keeps issuing
FETCH_ROWS and COLUMN_VALUE calls. You can call FETCH_ROWS repeatedly as long as there are
rows remaining to be fetched.

The FETCH_ROWS function accepts the ID number of the cursor to fetch and returns the number
of rows actually fetched.

Chapter 7
DBMS_SQL Subprograms

7-45

Syntax

DBMS_SQL.FETCH_ROWS (
 c IN INTEGER)
 RETURN INTEGER;

Parameters

Table 7-19 FETCH_ROWS Function Parameters

Parameter Description

c ID number of the cursor to fetch

Return Value

An INTEGER value indicating the number of rows that were fetched

Examples

See Examples .

IS_OPEN Function
This function checks to see if the given cursor is currently open.

Syntax

DBMS_SQL.IS_OPEN (
 c IN INTEGER)
 RETURN BOOLEAN;

Parameters

Table 7-20 IS_OPEN Function Parameters

Parameter Description

c Cursor ID number of the cursor to check

Return Value

TRUE for any cursor number that has been opened but not closed, or FALSE for a NULL
cursor number

Note that the CLOSE_CURSOR Procedure nulls out the cursor variable passed to it.

Exceptions

ORA-29471 DBMS_SQL access denied

Chapter 7
DBMS_SQL Subprograms

7-46

This is raised if an invalid cursor ID number is detected. Once a session has encountered
and reported this error, every subsequent DBMS_SQL call in the same session raises this error,
meaning that DBMS_SQL is non-operational for the session.

LAST_ERROR_POSITION Function
This function returns the byte offset in the SQL statement text where the error occurred. The
first character in the SQL statement is at position 0.

Syntax

DBMS_SQL.LAST_ERROR_POSITION
 RETURN INTEGER;

Return Value

An INTEGER value indicating the byte offset in the SQL statement text where the error
occurred

Usage Notes

Call this function after a PARSE call, before any other DBMS_SQL procedures or functions are
called.

LAST_ROW_COUNT Function
This function returns the cumulative count of the number of rows fetched.

Syntax

DBMS_SQL.LAST_ROW_COUNT
 RETURN INTEGER;

Return Value

An INTEGER value indicating the cumulative count of the number of rows that were fetched

Usage Notes

Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call. If called after an EXECUTE
call, the value returned is zero.

LAST_ROW_ID Function
This function returns the rowid of the last row processed, but NULL for TimesTen.

TimesTen does not support this feature.

Syntax

DBMS_SQL.LAST_ROW_ID
 RETURN ROWID;

Chapter 7
DBMS_SQL Subprograms

7-47

Return Value

NULL for TimesTen

LAST_SQL_FUNCTION_CODE Function
This function returns the SQL function code for the statement.

These codes are listed in the OCI Function Codes table in Oracle Call Interface
Programmer's Guide.

Syntax

DBMS_SQL.LAST_SQL_FUNCTION_CODE
 RETURN INTEGER;

Return Value

An INTEGER value indicating the SQL function code for the statement

Usage Notes

Call this function immediately after the SQL statement is run. Otherwise, the return
value is undefined.

OPEN_CURSOR Function
This procedure opens a new cursor.

The second overload takes a security_level parameter to apply fine-grained control
to the security of the opened cursor. In TimesTen, however, there is no security
enforcement: security_level=0.

When you no longer need this cursor, you must close it explicitly by calling the
CLOSE_CURSOR Procedure.

Syntax

DBMS_SQL.OPEN_CURSOR
 RETURN INTEGER;

DBMS_SQL.OPEN_CURSOR (
 security_level IN INTEGER)
 RETURN INTEGER;

Chapter 7
DBMS_SQL Subprograms

7-48

Parameters

Table 7-21 OPEN_CURSOR Function Parameters

Parameter Description

security_level Specifies the level of security protection to enforce on the opened
cursor. Only the security level 0 is valid in TimesTen (levels 1 and 2 are
not supported).

• Level 0 allows all DBMS_SQL operations on the cursor without any
security checks. The cursor may be fetched from, and even re-
bound and re-executed by, code running with a different effective
user ID or roles than at the time the cursor was parsed. This level
of security is disabled by default.

• Level 1 is not applicable for TimesTen.
• Level 2 is not applicable for TimesTen.

Return Value

The cursor ID of the new cursor

Usage Notes

You can use cursors to run the same SQL statement repeatedly or to run a new SQL
statement. When a cursor is reused, the contents of the corresponding cursor data area are
reset when the new SQL statement is parsed. It is never necessary to close and reopen a
cursor before reusing it.

PARSE Procedures
This procedure parses the given statement in the given cursor. All statements are parsed
immediately. In addition, DDL statements are run immediately when parsed.

There are multiple versions of the PARSE procedure:

• Taking a VARCHAR2 statement as an argument

• Taking VARCHAR2A, table of VARCHAR2(32767), as an argument

• Taking VARCHAR2S, table of VARCHAR2(32767), as an argument

• Taking a CLOB statement as an argument

You can use the CLOB overload version of the parse procedure to parse a SQL statement
larger than 32 KB.

The VARCHAR2A overload version of the procedure concatenates elements of a PL/SQL table
statement and parses the resulting string. You can use this procedure to parse a statement
that is longer than the limit for a single VARCHAR2 variable by splitting up the statement.

Syntax

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN VARCHAR2,
 language_flag IN INTEGER);

Chapter 7
DBMS_SQL Subprograms

7-49

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN DBMS_SQL.VARCHAR2A,
 lb IN INTEGER,
 ub IN INTEGER,
 lfflg IN BOOLEAN,
 language_flag IN INTEGER);

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN DBMS_SQL.VARCHAR2S,
 lb IN INTEGER,
 ub IN INTEGER,
 lfflg IN BOOLEAN,
 language_flag IN INTEGER);

DBMS_SQL.PARSE (
 c IN INTEGER,
 statement IN CLOB,
 language_flag IN INTEGER);

Parameters

Table 7-22 PARSE Procedure Parameters

Parameter Description

c ID number of the cursor in which to parse the statement

statement SQL statement to be parsed

SQL statements larger than 32 KB can be stored in CLOBs.

Unlike PL/SQL statements, your SQL statement should not include a
final semicolon. For example:

DBMS_SQL.PARSE(cursor1, 'BEGIN proc; END;', 2);
DBMS_SQL.PARSE(cursor1, 'INSERT INTO tab
VALUES(1)',2);

lb Lower bound for elements in the statement

ub Upper bound for elements in the statement

lfflg TRUE to insert a line feed after each element on concatenation

language_flag Flag to determine how the SQL statement is handled

For TimesTen, use the NATIVE (or 1) setting, which specifies typical
behavior for the database to which the program is connected.

Usage Notes

• Because client-side code cannot reference remote package variables or
constants, you must explicitly use the values of the constants.

Chapter 7
DBMS_SQL Subprograms

7-50

For example, the following code does not compile on the client:

DBMS_SQL.PARSE(cur_hdl, stmt_str, DBMS_SQL.NATIVE);
-- uses constant DBMS_SQL.NATIVE

The following code works on the client, because the argument is explicitly provided:

DBMS_SQL.PARSE(cur_hdl, stmt_str, 1); -- compiles on the client

• The VARCHAR2S type is supported only for backward compatibility. You are advised to use
VARCHAR2A instead.

Exceptions

ORA-24344: Success with compilation error

If you create a type, procedure, function, or package that has compilation warnings, this
exception is raised but the object is still created.

Examples

See Examples .

TO_CURSOR_NUMBER Function
This function takes an opened strongly or weakly-typed REF CURSOR and transforms it into
a DBMS_SQL cursor number.

Syntax

DBMS_SQL.TO_CURSOR_NUMBER(
 rc IN OUT SYS_REFCURSOR)
 RETURN INTEGER;

Parameters

Table 7-23 TO_CURSOR_NUMBER Function Parameters

Parameter Description

rc REF CURSOR to be transformed into a cursor number

Return Value

A DBMS_SQL manageable cursor number transformed from a REF CURSOR

Usage Notes

• The REF CURSOR passed in has to be opened (OPEN_CURSOR).

• Once the REF CURSOR is transformed into a DBMS_SQL cursor number, the REF
CURSOR is no longer accessible by any native dynamic SQL operations.

Chapter 7
DBMS_SQL Subprograms

7-51

• Toggling between a REF CURSOR and DBMS_SQL cursor number after a fetch has
started is not allowed.

Examples

CREATE OR REPLACE PROCEDURE DO_QUERY1(sql_stmt VARCHAR2) IS
 TYPE CurType IS REF CURSOR;
 src_cur CurType;
 curid NUMBER;
 desctab DBMS_SQL.DESC_TAB;
 colcnt NUMBER;
 namevar VARCHAR2(50);
 numvar NUMBER;
 datevar DATE;

BEGIN
 -- sql_stmt := 'select * from employees';
 OPEN src_cur FOR sql_stmt;

 -- Switch from native dynamic SQL to DBMS_SQL
 curid := DBMS_SQL.TO_CURSOR_NUMBER(src_cur);

 DBMS_SQL.DESCRIBE_COLUMNS(curid, colcnt, desctab);

 -- Define columns
 FOR i IN 1 .. colcnt LOOP
 IF desctab(i).col_type = 2 THEN
 DBMS_SQL.DEFINE_COLUMN(curid, i, numvar);
 ELSIF desctab(i).col_type = 12 THEN
 DBMS_SQL.DEFINE_COLUMN(curid, i, datevar);
 ELSE
 DBMS_SQL.DEFINE_COLUMN(curid, i, namevar, 25);
 END IF;
 END LOOP;

 -- Fetch Rows
 WHILE DBMS_SQL.FETCH_ROWS(curid) > 0 LOOP
 FOR i IN 1 .. colcnt LOOP
 IF (desctab(i).col_type = 1) THEN
 DBMS_SQL.COLUMN_VALUE(curid, i, namevar);
 ELSIF (desctab(i).col_type = 2) THEN
 DBMS_SQL.COLUMN_VALUE(curid, i, numvar);
 ELSIF (desctab(i).col_type = 12) THEN
 DBMS_SQL.COLUMN_VALUE(curid, i, datevar);
 END IF;
 END LOOP;
 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Chapter 7
DBMS_SQL Subprograms

7-52

You could execute this procedure as follows:

Command> begin
 do_query1('select * from employees');
 end;
 /

PL/SQL procedure successfully completed.

TO_REFCURSOR Function
This function takes an opened (by OPEN_CURSOR), parsed (by PARSE), and executed (by
EXECUTE) cursor and transforms or migrates it into a PL/SQL-manageable REF CURSOR (a
weakly-typed cursor) that can be consumed by PL/SQL native dynamic SQL.

This subprogram is only used with SELECT cursors.

Syntax

DBMS_SQL.TO_REFCURSOR(
 cursor_number IN OUT INTEGER)
 RETURN SYS_REFCURSOR;

Parameters

Table 7-24 TO_REFCURSOR Function Parameters

Parameter Description

cursor_number Cursor number of the cursor to be transformed into a REF CURSOR

Return Value

A PL/SQL REF CURSOR transformed from a DBMS_SQL cursor number

Usage notes

• The cursor passed in by the cursor_number has to be opened, parsed, and executed.
Otherwise an error is raised.

• Once the cursor_number is transformed into a REF CURSOR, it is no longer accessible
by any DBMS_SQL operations.

• After a cursor_number is transformed into a REF CURSOR, using IS_OPEN results in an
error.

• Toggling between REF CURSOR and DBMS_SQL cursor number after starting to fetch is
not allowed. An error is raised.

Examples

CREATE OR REPLACE PROCEDURE DO_QUERY2(mgr_id NUMBER) IS
 TYPE CurType IS REF CURSOR;
 src_cur CurType;
 curid NUMBER;

Chapter 7
DBMS_SQL Subprograms

7-53

 sql_stmt VARCHAR2(200);
 ret INTEGER;
 empnos DBMS_SQL.Number_Table;
 depts DBMS_SQL.Number_Table;

BEGIN

 -- DBMS_SQL.OPEN_CURSOR
 curid := DBMS_SQL.OPEN_CURSOR;

 sql_stmt :=
 'SELECT EMPLOYEE_ID, DEPARTMENT_ID from employees where MANAGER_ID
= :b1';

 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.NATIVE);
 DBMS_SQL.BIND_VARIABLE(curid, 'b1', mgr_id);
 ret := DBMS_SQL.EXECUTE(curid);

 -- Switch from DBMS_SQL to native dynamic SQL
 src_cur := DBMS_SQL.TO_REFCURSOR(curid);

 -- Fetch with native dynamic SQL
 FETCH src_cur BULK COLLECT INTO empnos, depts;

 IF empnos.COUNT > 0 THEN
 DBMS_OUTPUT.PUT_LINE('EMPNO DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------');
 -- Loop through the empnos and depts collections
 FOR i IN 1 .. empnos.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(empnos(i) || ' ' || depts(i));
 END LOOP;
 END IF;

 -- Close cursor
 CLOSE src_cur;
END;

The following example executes this procedure for a manager ID of 103.

Command> begin
 do_query2(103);
 end;
 /
EMPNO DEPTNO
----- ------
104 60
105 60
106 60
107 60

PL/SQL procedure successfully completed.

Chapter 7
DBMS_SQL Subprograms

7-54

VARIABLE_VALUE Procedure
This procedure returns the value of the named variable for a given cursor. It is used to return
the values of bind variables inside PL/SQL blocks or of DML statements with a RETURNING
clause.

Syntax

DBMS_SQL.VARIABLE_VALUE (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT NOCOPY <datatype>);

Where datatype can be any of the following types:

BINARY_DOUBLE
BINARY_FLOAT
BLOB
CLOB CHARACTER SET ANY_CS
DATE
INTERVAL DAY TO SECOND(9,9) (DSINTERVAL_UNCONSTRAINED)
NUMBER
TIME(9) (TIME_UNCONSTRAINED)
TIMESTAMP(9) (TIMESTAMP_UNCONSTRAINED)
VARCHAR2 CHARACTER SET ANY_CS
INTERVAL YEAR TO MONTH(9) (YMINTERVAL_UNCONSTRAINED)
VARRAY
Nested table

For variables containing CHAR, RAW, and ROWID data, you can use the following variations on
the syntax:

DBMS_SQL.VARIABLE_VALUE_CHAR (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT CHAR CHARACTER SET ANY_CS);

DBMS_SQL.VARIABLE_VALUE_RAW (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT RAW);

DBMS_SQL.VARIABLE_VALUE_ROWID (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT ROWID);

Chapter 7
DBMS_SQL Subprograms

7-55

The following syntax enables the VARIABLE_VALUE procedure to accommodate bulk
operations:

DBMS_SQL.VARIABLE_VALUE (
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT NOCOPY <table_type>);

For bulk operations, table_type can be any of the following:

dbms_sql.Binary_Double_Table
dbms_sql.Binary_Float_Table
dbms_sql.Blob_Table
dbms_sql.Clob_Table
dbms_sql.Date_Table
dbms_sql.Interval_Day_To_Second_Table
dbms_sql.Interval_Year_To_Month_Table
dbms_sql.Number_Table
dbms_sql.Time_Table
dbms_sql.Timestamp_Table
dbms_sql.Varchar2_Table

Parameters

Table 7-25 VARIABLE_VALUE Procedure Parameters

Parameter Description

c ID number of the cursor from which to get the values

name Name of the variable for which you are retrieving the value

value For the single row option, value of the variable for the specified position

For the array option, local variable that has been declared table_type
Note: For bulk operations, value is an OUT NOCOPY parameter.

Exceptions

ORA-06562: Type of out argument must match type of column or bind
variable

This is raised if the type of the output parameter differs from the type of the value as
defined by the BIND_VARIABLE call.

Examples

See Examples .

Chapter 7
DBMS_SQL Subprograms

7-56

8
DBMS_UTILITY

The DBMS_UTILITY package provides various utility subprograms.

This chapter contains the following topics:

• Using DBMS_UTILITY

– Security model

– Constants

– Data types

– Exceptions

• DBMS_UTILITY Subprograms

Using DBMS_UTILITY
• Security Model

• Constants

• Data Types

• Exceptions

Security Model
DBMS_UTILITY runs with the privileges of the calling user for the NAME_RESOLVE Procedure
and the COMPILE_SCHEMA Procedure. This is necessary so that the SQL works correctly.

The package does not run as SYS.

Constants
The DBMS_UTILITY package uses the constants shown in Table 8-1.

Table 8-1 DBMS_UTILITY Constants

Name Type Value Description

INV_ERROR_ON_RESTRICTIONS BINARY_INTEGER 1 This constant is the only
valid value for the
p_option_flags
parameter of the
INVALIDATE subprogram.

8-1

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This
document uses BINARY_INTEGER to indicate data types in reference
information (such as for table types, record types, subprogram
parameters, or subprogram return values), but may use either in
discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This
document uses INTEGER throughout.

Data Types
• dblink_array

• index_table_type

• instance_record

• lname_array

• name_array

• number_array

• uncl_array

dblink_array

TYPE dblink_array IS TABLE OF VARCHAR2(128) INDEX BY BINARY_INTEGER;

Lists of database links would be stored here. (TimesTen does not support dblinks.)

index_table_type

TYPE index_table_type IS TABLE OF BINARY_INTEGER INDEX BY
BINARY_INTEGER;

The order in which objects should be generated is returned here.

instance_record

 TYPE instance_record IS RECORD (
 inst_number NUMBER,
 inst_name VARCHAR2(60));
 TYPE instance_table IS TABLE OF instance_record INDEX BY
BINARY_INTEGER;

The list of active instance number and instance name.

The starting index of instance_table is 1; instance_table is dense.

Chapter 8
Using DBMS_UTILITY

8-2

lname_array

TYPE lname_array IS TABLE OF VARCHAR2(4000) index by BINARY_INTEGER;

Lists of long NAME should be stored here, including fully qualified attribute names.

name_array

TYPE name_array IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;

Lists of NAME should be stored here.

number_array

TYPE number_array IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

The order in which objects should be generated is returned here.

uncl_array

TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

Lists of "USER"."NAME"."COLUMN"@LINK should be stored here.

Exceptions
The following table lists the exceptions raised by DBMS_UTILITY.

Table 8-2 Exceptions Raised by DBMS_UTILITY

Exception Error Code Description

INV_NOT_EXIST_OR_NO_PRIV -24237 Raised by the INVALIDATE subprogram when
the object_id argument is NULL or invalid, or
when the caller does not have CREATE privilege
on the object being invalidated.

INV_MALFORMED_SETTINGS -24238 Raised by the INVALIDATE subprogram if a
compiler setting is specified more than once in
the p_plsql_object_settings parameter.

INV_RESTRICTED_OBJECT -24239 Raised by the INVALIDATE subprogram when
different combinations of conditions pertaining to
the p_object_id parameter are contravened.

DBMS_UTILITY Subprograms
Table 8-3 summarizes the DBMS_UTILITY subprograms, followed by a full description of each
subprogram.

Chapter 8
DBMS_UTILITY Subprograms

8-3

Table 8-3 DBMS_UTILITY Package Subprograms

Subprogram Description

CANONICALIZE Procedure Canonicalizes a given string.

COMMA_TO_TABLE Procedure Converts a comma-delimited list of names into a PL/SQL
table of names.

COMPILE_SCHEMA Procedure Compiles all procedures, functions, packages, and views in
the specified schema.

DB_VERSION Procedure Returns version information for the database.

Returns NULL for the compatibility setting because
TimesTen does not support the system parameter
COMPATIBLE.

FORMAT_CALL_STACK Function Formats the current call stack.

FORMAT_ERROR_BACKTRACE
Function

Formats the backtrace from the point of the current error to
the exception handler where the error has been caught.

FORMAT_ERROR_STACK
Function

Formats the current error stack.

GET_CPU_TIME Function Returns the current CPU time in hundredths of a second.

GET_DEPENDENCY Procedure Shows the dependencies on the object passed in.

GET_ENDIANNESS Function Returns the endianness of your database platform.

GET_HASH_VALUE Function Computes a hash value for the given string.

GET_SQL_HASH Function Computes the hash value for a given string using the MD5
algorithm.

GET_TIME Function Finds out the current time in hundredths of a second.

INVALIDATE Procedure Invalidates a database object and (optionally) modifies its
PL/SQL compiler parameter settings.

IS_BIT_SET Function Checks the setting of a specified bit in a RAW value.

NAME_RESOLVE Procedure Resolves the given name of the form:

[[a.]b.]c[@dblink]

Where a, b, and c are SQL identifiers and dblink is a
dblink.

Important: Do not use @dblink. TimesTen does not
support dblinks.

NAME_TOKENIZE Procedure Calls the parser to parse the given name:

'a[.b[.c]][@dblink]"

Where a, b, and c are SQL identifiers and dblink is a
dblink. Strips double quotes or converts to uppercase if
there are no quotes. Ignores comments and does not
perform semantic analysis. Missing values are NULL.

Important: Do not use @dblink. TimesTen does not
support dblinks.

Chapter 8
DBMS_UTILITY Subprograms

8-4

Table 8-3 (Cont.) DBMS_UTILITY Package Subprograms

Subprogram Description

TABLE_TO_COMMA Procedure Converts a PL/SQL table of names into a comma-delimited
list of names.

VALIDATE Procedure Validates the object described either by owner, name, and
namespace or by object ID.

CANONICALIZE Procedure
This procedure canonicalizes the given string. The procedure handles a single reserved or
key word (such as "table"), and strips off white spaces for a single identifier. For example, "
table" becomes TABLE.

Syntax

DBMS_UTILITY.CANONICALIZE(
 name IN VARCHAR2,
 canon_name OUT VARCHAR2,
 canon_len IN BINARY_INTEGER);

Parameters

Table 8-4 CANONICALIZE Procedure Parameters

Parameter Description

name The string to be canonicalized

canon_name The canonicalized string

canon_len The length of the string (in bytes) to canonicalize

Return Value

The first canon_len bytes in canon_name

Usage Notes

• If the name value is NULL, the canon_name value becomes NULL.

• If name is a dotted name (such as a."b".c), then for each component in the dotted name
where the component begins and ends with a double quote, no transformation is
performed on that component. Alternatively, convert to upper case with NLS_UPPER and
apply begin and end double quotes to the capitalized form of this component. In such a
case, each canonicalized component is concatenated in the input position, separated by
".".

• If name is not a dotted name, and if name begins and ends with a double quote, remove
both quotes. Alternatively, convert to upper case with NLS_UPPER. Note that this case does
not include a name with special characters, such as a space, but is not doubly quoted.

• Any other character after a[.b]* is ignored.

Chapter 8
DBMS_UTILITY Subprograms

8-5

• The procedure does not handle cases like 'A B.'

Examples

• a becomes A.

• "a" becomes a.

• "a".b becomes "a"."B".

• "a".b,c.f becomes "a"."B" with",c.f" ignored.

COMMA_TO_TABLE Procedure
This procedure converts a comma-delimited list of names into a PL/SQL table of
names. The second version supports fully qualified attribute names.

Syntax

DBMS_UTILITY.COMMA_TO_TABLE (
 list IN VARCHAR2,
 tablen OUT BINARY_INTEGER,
 tab OUT dbms_utility.uncl_array);

DBMS_UTILITY.COMMA_TO_TABLE (
 list IN VARCHAR2,
 tablen OUT BINARY_INTEGER,
 tab OUT dbms_utility.lname_array);

Parameters

Table 8-5 COMMA_TO_TABLE Procedure Parameters

Parameter Description

list Comma-delimited list of names, where a name should have the
following format for the first version of the procedure:

a[.b[.c]][@d]

Or the following format for the second version of the procedure:

a[.b]*

Where a, b, c, and d are simple identifiers (quoted or unquoted).

tablen Number of tables in the PL/SQL table

tab PL/SQL table that contains list of names

Return Value

A PL/SQL table with values 1..n, and n+1 is NULL

Chapter 8
DBMS_UTILITY Subprograms

8-6

Usage Notes

The list must be a non-empty, comma-delimited list. Anything other than a comma-delimited
list is rejected. Commas inside double quotes do not count.

Entries in the comma-delimited list cannot include multibyte characters.

The values in tab are copied from the original list, with no transformations.

COMPILE_SCHEMA Procedure
This procedure compiles all procedures, functions, packages, and views in the specified
schema.

Syntax

DBMS_UTILITY.COMPILE_SCHEMA (
 schema IN VARCHAR2,
 compile_all IN BOOLEAN DEFAULT TRUE,
 reuse_settings IN BOOLEAN DEFAULT FALSE);

Parameters

Table 8-6 COMPILE_SCHEMA Procedure Parameters

Parameter Description

schema Name of the schema

compile_all TRUE to compile everything within the schema regardless of whether
status is VALID
FALSE to compile only objects with status INVALID

reuse_settings Flag to specify whether the session settings in the objects should be
reused, or the current session settings should be adopted instead

Usage Notes

• Note that this subprogram is a wrapper for the RECOMP_SERIAL Procedure included
with the UTL_RECOMP package.

• After calling this procedure, you should select from view ALL_OBJECTS for items with
status INVALID to see if all objects were successfully compiled.

• To see the errors associated with invalid objects, you can use the ttIsql show errors
command:

Command> show errors [{FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY}
[schema.]name];

Chapter 8
DBMS_UTILITY Subprograms

8-7

Examples:

Command> show errors function foo;
Command> show errors procedure fred.bar;
Command> show errors package body emp_actions;

Exceptions

Table 8-7 COMPILE_SCHEMA Procedure Exceptions

Exception Description

ORA-20000 Raised for insufficient privileges for some object in this schema.

ORA-20001 Raised if SYS objects cannot be compiled.

ORA-20002 Raised if maximum iterations exceeded. Some objects may not
have been recompiled.

DB_VERSION Procedure
This procedure returns version information for the database.

Returns NULL for the compatibility setting because TimesTen does not support the
system parameter COMPATIBLE.

Also see TT_DB_VERSION.

Syntax

DBMS_UTILITY.DB_VERSION (
 version OUT VARCHAR2,
 compatibility OUT VARCHAR2);

Parameters

Table 8-8 DB_VERSION Procedure Parameters

Parameter Description

version String that represents the internal software version of the
database (for example, 22.1.1.1.0)

The length of this string is variable and is determined by the
database version.

compatibility Compatibility setting of the database

In TimesTen, DB_VERSION returns NULL for the compatibility
setting because TimesTen does not support the system
parameter COMPATIBLE.

Chapter 8
DBMS_UTILITY Subprograms

8-8

FORMAT_CALL_STACK Function
This function formats the current call stack. It can be used on any stored procedure to access
the call stack and is useful for debugging.

Syntax

DBMS_UTILITY.FORMAT_CALL_STACK
 RETURN VARCHAR2;

Return Value

The call stack, up to 2000 bytes

FORMAT_ERROR_BACKTRACE Function
This procedure displays the call stack at the point where an exception was raised, even if the
procedure is called from an exception handler in an outer scope. The output is similar to the
output of the SQLERRM function, but not subject to the same size limitation.

Syntax

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
 RETURN VARCHAR2;

Return Value

The backtrace string (or a null string if no error is currently being handled)

Examples

Script format_error_backtrace.sql:

Execute the following script from ttIsql, using the run command.

CREATE OR REPLACE PROCEDURE Log_Errors (i_buff in varchar2) IS
 g_start_pos integer := 1;
 g_end_pos integer;

 FUNCTION Output_One_Line RETURN BOOLEAN IS
 BEGIN
 g_end_pos := Instr (i_buff, Chr(10), g_start_pos);

 CASE g_end_pos > 0
 WHEN true THEN
 DBMS_OUTPUT.PUT_LINE (Substr (i_buff, g_start_pos,
 g_end_pos-g_start_pos));
 g_start_pos := g_end_pos+1;
 RETURN TRUE;

 WHEN FALSE THEN
 DBMS_OUTPUT.PUT_LINE (Substr (i_buff, g_start_pos,
 (Length(i_buff)-g_start_pos)+1));

Chapter 8
DBMS_UTILITY Subprograms

8-9

 RETURN FALSE;
 END CASE;
 END Output_One_Line;

BEGIN
 WHILE Output_One_Line() LOOP NULL;
 END LOOP;
END Log_Errors;
/

-- Define and raise an exception to view backtrace.
-- See EXCEPTION_INIT Pragma in Oracle Database PL/SQL Language
Reference.

CREATE OR REPLACE PROCEDURE P0 IS
 e_01476 EXCEPTION; pragma exception_init (e_01476, -1476);
BEGIN
 RAISE e_01476;
END P0;
/
Show Errors

CREATE OR REPLACE PROCEDURE P1 IS
BEGIN
 P0();
END P1;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P2 IS
BEGIN
 P1();
END P2;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P3 IS
BEGIN
 P2();
END P3;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE P4 IS
BEGIN
 P3();
END P4;
/
CREATE OR REPLACE PROCEDURE P5 IS
BEGIN
 P4();
END P5;
/
SHOW ERRORS

Chapter 8
DBMS_UTILITY Subprograms

8-10

CREATE OR REPLACE PROCEDURE Top_Naive IS
BEGIN
 P5();
END Top_Naive;
/
SHOW ERRORS

CREATE OR REPLACE PROCEDURE Top_With_Logging IS
 -- NOTE: SqlErrm in principle gives the same info as Format_Error_Stack.
 -- But SqlErrm is subject to some length limits,
 -- while Format_Error_Stack is not.
BEGIN
 P5();
EXCEPTION
 WHEN OTHERS THEN
 Log_Errors ('Error_Stack...' || Chr(10) ||
 DBMS_UTILITY.FORMAT_ERROR_STACK());
 Log_Errors ('Error_Backtrace...' || Chr(10) ||
 DBMS_UTILITY.FORMAT_ERROR_BACKTRACE());
 DBMS_OUTPUT.PUT_LINE ('----------');
END Top_With_Logging;
/
SHOW ERRORS

Execute Top_Naive:

This shows the results of executing the Top_Naive procedure that is created in the script,
assuming user SCOTT ran the script and executed the procedure.

Command> set serveroutput on
Command> begin
 Top_Naive();
 end;
 /
 8507: ORA-01476: divisor is equal to zero
 8507: ORA-06512: at "SCOTT.P0", line 4
 8507: ORA-06512: at "SCOTT.P1", line 3
 8507: ORA-06512: at "SCOTT.P2", line 3
 8507: ORA-06512: at "SCOTT.P3", line 3
 8507: ORA-06512: at "SCOTT.P4", line 3
 8507: ORA-06512: at "SCOTT.P5", line 3
 8507: ORA-06512: at "SCOTT.TOP_NAIVE", line 3
 8507: ORA-06512: at line 2
The command failed.

This output shows the call stack at the point where an exception was raised. It shows the
backtrace error message as the call stack unwound, starting at the unhandled exception
ORA-01476 raised at SCOTT.P0 line 4, back to SCOTT.Top_Naive line 3.

Execute Top_With_Logging:

Chapter 8
DBMS_UTILITY Subprograms

8-11

This shows the results of executing the Top_With_Logging() procedure that is created
in the script, assuming user SCOTT ran the script and executed the procedure.

Command> begin
 Top_With_Logging();
 end;
 /
Error_Stack...
ORA-01476: divisor is equal to zero
Error_Backtrace...
ORA-06512: at "SCOTT.P0", line 4
ORA-06512: at "SCOTT.P1", line 3
ORA-06512: at "SCOTT.P2", line 3
ORA-06512: at "SCOTT.P3", line 3
ORA-06512: at "SCOTT.P4", line 3
ORA-06512: at "SCOTT.P5", line 3
ORA-06512: at "SCOTT.TOP_WITH_LOGGING", line 6

PL/SQL procedure successfully completed.

This output shows the call stack at the point where an exception was raised. It shows
the backtrace error message as the call stack unwound, starting at the unhandled
exception ORA-01476 raised at SCOTT.P0 line 4, back to SCOTT.Top_With_Logging line
6.

ORA-06512 information:

Oracle Database Error Messages provides the following information about the
ORA-06512 error:

ORA-06512: at stringline string
 Cause: Backtrace message as the stack is unwound by unhandled
exceptions.
 Action: Fix the problem causing the exception or write an
exception handler
 for this condition. Or you may need to contact your application
administrator or
 DBA.

FORMAT_ERROR_STACK Function
This function formats the current error stack. It can be used in exception handlers to
look at the full error stack.

Syntax

DBMS_UTILITY.FORMAT_ERROR_STACK
 RETURN VARCHAR2;

Return Value

The error stack, up to 2000 bytes (or a null string if no error is currently being handled)

Chapter 8
DBMS_UTILITY Subprograms

8-12

GET_CPU_TIME Function
This function returns a measure of current CPU processing time in hundredths of a second.
The difference between the times returned from two calls measures the CPU processing time
(not the total elapsed time) between those two points.

Also see the GET_TIME Function, which has a different intent.

Syntax

 DBMS_UTILITY.GET_CPU_TIME
 RETURN NUMBER;

Return Value

The number of hundredths of a second of CPU processing time from some arbitrary point

Usage Notes

This subprogram reports cycles (CPU time) used in performing work and is unrelated to clock
time or any other fixed reference. It always returns a positive value. The amount of work
performed is calculated by measuring the difference between a start point and end point for a
particular operation, using a GET_CPU_TIME call at each point.

GET_DEPENDENCY Procedure
This procedure shows the dependencies on the object passed in.

Syntax

 DBMS_UTILITY.GET_DEPENDENCY
 type IN VARCHAR2,
 schema IN VARCHAR2,
 name IN VARCHAR2);

Parameters

Table 8-9 GET_DEPENDENCY Procedure Parameters

Parameter Description

type The type of the object

For example, if the object is a table, give the type as "TABLE".

schema The schema name of the object

name The name of the object

Usage Notes

This procedure uses the DBMS_OUTPUT package to display results, so you must declare SET
SERVEROUTPUT ON from ttIsql to view dependencies. Alternatively, any application that
checks the DBMS_OUTPUT output buffers can invoke this subprogram and then retrieve the
output through DBMS_OUTPUT subprograms such as GET_LINES.

Chapter 8
DBMS_UTILITY Subprograms

8-13

GET_ENDIANNESS Function
This function indicates the endianness of the database platform.

Syntax

 DBMS_UTILITY.GET_ENDIANNESS
 RETURN NUMBER;

Return Value

A NUMBER value indicating the endianness of the database platform: 1 for big-endian or
2 for little-endian

GET_HASH_VALUE Function
This function computes a hash value for the given string.

Syntax

DBMS_UTILITY.GET_HASH_VALUE (
 name IN VARCHAR2,
 base IN NUMBER,
 hash_size IN NUMBER)
 RETURN NUMBER;

Parameters

Table 8-10 GET_HASH_VALUE Function Parameters

Parameter Description

name String to be hashed

base Base value where the returned hash value is to start

hash_size Desired size of the hash table

Return Value

A hash value based on the input string

For example, to get a hash value on a string where the hash value should be between
1000 and 3047, use 1000 as the base value and 2048 as the hash_size value. Using
a power of 2 for hash_size works best.

Chapter 8
DBMS_UTILITY Subprograms

8-14

GET_SQL_HASH Function
This function computes a hash value for the given string using the MD5 algorithm.

Syntax

DBMS_UTILITY.GET_SQL_HASH (
 name IN VARCHAR2,
 hash OUT RAW,
 pre10ihash OUT NUMBER)
 RETURN NUMBER;

Parameters

Table 8-11 GET_SQL_HASH Procedure Parameters

Parameter Description

name String to be hashed

hash A field to store all 16 bytes of returned hash value

pre10ihash A field to store a pre-10g Oracle Database version hash value

Return Value

A hash value (last four bytes) based on the input string

The MD5 hash algorithm computes a 16-byte hash value, but TimesTen uses only the last
four bytes to return a number. The hash output parameter gets all 16 bytes.

Example

This example displays the 16-byte hash value (ignoring both the four-byte returned hash
value and the pre-10g hash value).

Command> declare
 ignore_hash_4b number := 0;
 ignore_pre10ihash number := 0;
 hash_16B RAW(16);
 query_text varchar2(255);
 begin
 query_text := 'SELECT * FROM dual';
 -- Calculate the hash of the SQL text
 ignore_hash_4b := DBMS_UTILITY.GET_SQL_HASH(
 query_text,
 hash_16B,
 ignore_pre10ihash);
 dbms_output.put_line('>' || query_text || '< hash is ' ||
hash_16B);
 end;
 /
>SELECT * FROM dual< hash is 462D200E640BC1CBBDFE01B36A231600

Chapter 8
DBMS_UTILITY Subprograms

8-15

PL/SQL procedure successfully completed.

GET_TIME Function
This function returns a measure of current time in hundredths of a second. The
difference between the times returned from two calls measures the total elapsed time
(not just CPU processing time) between those two points.

Also see the GET_CPU_TIME Function, which has a different intent.

Syntax

DBMS_UTILITY.GET_TIME
 RETURN NUMBER;

Return Value

The number of hundredths of a second from the time at which the subprogram is
invoked

Usage Notes

Numbers are returned in the range -2,147,483,648 to 2,147,483,647 depending on
platform and system, and your application must take the sign of the number into
account in determining the interval. For example, for two negative numbers,
application logic must allow for the first (earlier) number to be larger than the second
(later) number that is closer to zero. By the same token, your application should also
allow for the first (earlier) number to be negative and the second (later) number to be
positive.

INVALIDATE Procedure
This procedure invalidates a database object and (optionally) modifies its PL/SQL
compiler parameter settings. It also invalidates any objects that directly or indirectly
depend on the object being invalidated.

Syntax

DBMS_UTILITY.INVALIDATE (
 p_object_id IN NUMBER
 [,p_plsql_object_settings IN VARCHAR2 DEFAULT NULL,
 p_option_flags BINARY_INTEGER DEFAULT 0]);

Chapter 8
DBMS_UTILITY Subprograms

8-16

Parameters

Table 8-12 INVALIDATE Procedure Parameters

Parameter Description

p_object_id ID number of the object to be invalidated

This equals the value of the OBJECT_ID column from
ALL_OBJECTS. If the p_object_id argument is NULL or invalid
then the exception inv_not_exist_or_no_priv is raised. The
caller of this procedure must have CREATE privilege on the object
being invalidated, otherwise the inv_not_exist_or_no_priv
exception is raised.

p_plsql_object_settings Optional parameter that is ignored if the object specified by
p_object_id is not a PL/SQL object.

• If no value is specified for this parameter, the PL/SQL
compiler settings are left unchanged, equivalent to REUSE
SETTINGS.

• If a value is provided, it must specify the values of the PL/SQL
compiler settings separated by one or more spaces.

• If a setting is specified more than once, the
inv_malformed_settings exception is raised. The setting
values are changed only for the object specified by
p_object_id and do not affect dependent objects that may
be invalidated. The setting names and values are case
insensitive.

• If a setting is omitted and REUSE SETTINGS is specified, then
if a value was specified for the compiler setting in an earlier
compilation of this library unit, TimesTen uses that value.

• If a setting is omitted and REUSE SETTINGS was not specified
or no value was specified for the parameter in an earlier
compilation, then the database obtains the value for that
setting from the session environment.

p_option_flags Optional parameter that defaults to zero (no flags)

Only the inv_error_on_restrictions flag is supported (see
Constants). With this flag, the subprogram imposes various
restrictions on the objects that can be invalidated. For example, the
object specified by p_object_id cannot be a table. By default,
invalidate quietly returns on these conditions (and does not raise
an exception). If the caller sets this flag, the exception
inv_restricted_object is raised.

Usage Notes

The object type (object_type column from ALL_OBJECTS) of the object that is specified by
p_object_id must be a PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY, LIBRARY, OPERATOR, or
SYNONYM. If the object is not one of these types and the flag inv_error_on_restrictions is
specified in p_option_flags, the exception inv_restricted_object is raised. If
inv_error_on_restrictions is not specified in this situation, then no action is taken.

If the object specified by p_object_id is the package specification of STANDARD or
DBMS_STANDARD, or the specification or body of DBMS_UTILITY, and if the flag
inv_error_on_restrictions is specified in p_option_flags, then the exception

Chapter 8
DBMS_UTILITY Subprograms

8-17

inv_restricted_object is raised. If inv_error_on_restrictions is not specified in
this situation, then no action is taken.

If the object specified by p_object_id is an object type specification and there are
tables that depend on the type, and if the flag inv_error_on_restrictions is
specified in p_option_flags, then the exception inv_restricted_object is raised. If
inv_error_on_restrictions is not specified, then no action is taken.

Exceptions

Table 8-13 INVALIDATE Exceptions

Exception Description

INV_NOT_EXIST_OR_NO_PRIV Raised when the object_id argument value is NULL or
invalid, or when the caller does not have CREATE privilege on
the object being invalidated.

INV_MALFORMED_SETTINGS Raised if a compiler setting is specified more than once in
the p_plsql_object_settings parameter.

INV_RESTRICTED_OBJECT Raised when different combinations of conditions pertaining
to the p_object_id parameter are contravened.

Examples

This example invalidates a procedure created in the example in
FORMAT_ERROR_BACKTRACE Function. From examining user_objects, you can
see information for the procedures created in that example. The following describes
user_objects then queries its contents.

Command> describe user_objects;

View SYS.USER_OBJECTS:
 Columns:
 OBJECT_NAME VARCHAR2 (30) INLINE
 SUBOBJECT_NAME VARCHAR2 (30) INLINE
 OBJECT_ID TT_BIGINT NOT NULL
 DATA_OBJECT_ID TT_BIGINT
 OBJECT_TYPE VARCHAR2 (17) INLINE NOT NULL
 CREATED DATE NOT NULL
 LAST_DDL_TIME DATE NOT NULL
 TIMESTAMP VARCHAR2 (78) INLINE NOT NULL
 STATUS VARCHAR2 (7) INLINE NOT NULL
 TEMPORARY VARCHAR2 (1) INLINE NOT NULL
 GENERATED VARCHAR2 (1) INLINE NOT NULL
 SECONDARY VARCHAR2 (1) INLINE NOT NULL
 NAMESPACE TT_INTEGER NOT NULL
 EDITION_NAME VARCHAR2 (30) INLINE

1 view found.

Command> select * from user_objects;
...
< LOG_ERRORS, <NULL>, 296, <NULL>, PROCEDURE, 2009-09-18 12:53:45,
2009-09-18 12

Chapter 8
DBMS_UTILITY Subprograms

8-18

:58:22, 2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< P0, <NULL>, 297, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< P1, <NULL>, 298, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< P2, <NULL>, 299, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< P3, <NULL>, 300, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< P4, <NULL>, 301, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< P5, <NULL>, 302, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< TOP_NAIVE, <NULL>, 303, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:
58:22, 2009-09-18:12:58:22, VALID, N, N, N, 1, <NULL> >
< TOP_WITH_LOGGING, <NULL>, 304, <NULL>, PROCEDURE, 2009-09-18 12:53:45,
2009-09
-18 15:19:16, 2009-09-18:15:19:16, VALID, N, N, N, 1, <NULL> >
...
20 rows found.

To invalidate the P5 procedure, for example, specify object_id 302 in the INVALIDATE call:

Command> begin
 dbms_utility.invalidate(302, 'PLSQL_OPTIMIZE_LEVEL=2 REUSE
SETTINGS');
 end;
 /

This marks the P5 procedure as invalid and sets its PLSQL_OPTIMIZE_LEVEL compiler setting
to 2. The values of other compiler settings remain unchanged because REUSE SETTINGS is
specified. Note that in addition to P5 being invalidated, any PL/SQL objects that refer to that
object are invalidated. Given that Top_With_Logging and Top_Naive call P5, here are the
results of the INVALIDATE call, querying for all user objects that are now invalid:

Command> select * from user_objects where status='INVALID';
< P5, <NULL>, 302, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, INVALID, N, N, N, 1, <NULL> >
< TOP_NAIVE, <NULL>, 303, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:
58:22, 2009-09-18:12:58:22, INVALID, N, N, N, 1, <NULL> >
< TOP_WITH_LOGGING, <NULL>, 304, <NULL>, PROCEDURE, 2009-09-18 12:53:45,
2009-09
-18 15:19:16, 2009-09-18:15:19:16, INVALID, N, N, N, 1, <NULL> >
3 rows found.

Chapter 8
DBMS_UTILITY Subprograms

8-19

A user can explicitly recompile and revalidate an object by calling the VALIDATE
procedure discussed later in this chapter, or by executing ALTER PROCEDURE, ALTER
FUNCTION, or ALTER PACKAGE, as applicable, on the object. Alternatively, each object is
recompiled and revalidated automatically the next time it is executed.

IS_BIT_SET Function
This function checks the bit setting for the given bit in the given RAW value.

Syntax

DBMS_UTILITY.IS_BIT_SET (
 r IN RAW,
 n IN NUMBER)
 RETURN NUMBER;

Parameters

Table 8-14 IS_BIT_SET Procedure Parameters

Parameter Description

r Source raw

n Which bit in r to check

Return Value

1 if bit n in RAW r is set, where bits are numbered high to low with the lowest bit being
bit number 1

NAME_RESOLVE Procedure
This procedure resolves the given name of the form:

[[a.]b.]c[@dblink]

Where a, b, and c are SQL identifiers and dblink is a dblink, including synonym
translation and authorization checking as necessary.

Do not use @dblink. TimesTen does not support dblinks.

Syntax

DBMS_UTILITY.NAME_RESOLVE (
 name IN VARCHAR2,
 context IN NUMBER,
 schema OUT VARCHAR2,
 part1 OUT VARCHAR2,
 part2 OUT VARCHAR2,
 dblink OUT VARCHAR2,
 part1_type OUT NUMBER,
 object_number OUT NUMBER);

Chapter 8
DBMS_UTILITY Subprograms

8-20

Parameters

Table 8-15 NAME_RESOLVE Procedure Parameters

Parameter Description

name Name of the object

This can be of the form:

[[a.]b.]c[@dblink]

Where a, b, and c are SQL identifiers and dblink is a dblink. TimesTen
does not support dblinks. No syntax checking is performed on the dblink. If a
dblink is specified, or if the name resolves to something with a dblink, then
the object is not resolved, but the schema, part1, part2, and dblink OUT
parameters receive values.

The a, b and c entries may be delimited identifiers, and may contain
Globalization Support (NLS) characters, either single or multibyte.

context An integer from 0 to 9, as follows:

• 0 - Table
• 1 - PL/SQL (for two-part names)
• 2 - Sequences
• 3 - Trigger (not applicable for TimesTen)
• 4 - Java source (not applicable for TimesTen)
• 5 - Java resource (not applicable for TimesTen)
• 6 - Java class (not applicable for TimesTen)
• 7 - Type (not applicable for TimesTen)
• 8 - Java shared data (not applicable for TimesTen)
• 9 - Index

schema Schema of the object, c
If no schema is specified in name, then schema is determined by resolving
the name.

part1 First part of the name

The type of this name is specified part1_type (synonym or package).

part2 Subprogram name, as applicable, or NULL.

If part1 is non-null, then the subprogram is within the package indicated by
part1. If part1 is null, the subprogram is a top-level subprogram.

dblink Not applicable

TimesTen does not support dblinks.

part1_type Type of part1, as follows:

• 5 - Synonym
• 7 - Procedure (top level)
• 8 - Function (top level)
• 9 - Package

object_number Object identifier

Exceptions

All errors are handled by raising exceptions. A wide variety of exceptions are possible, based
on the various syntax errors that are possible when specifying object names.

Chapter 8
DBMS_UTILITY Subprograms

8-21

NAME_TOKENIZE Procedure
This procedure calls the parser to parse the input name.

"a[.b[.c]][@dblink]"

Where a, b, and c are SQL identifiers and dblink is a dblink. It strips double quotes, or
converts to uppercase if there are no quotes. It ignores comments of all sorts, and
does no semantic analysis. Missing values are left as NULL.

Do not use @dblink. TimesTen does not support dblinks.

Syntax

DBMS_UTILITY.NAME_TOKENIZE (
 name IN VARCHAR2,
 a OUT VARCHAR2,
 b OUT VARCHAR2,
 c OUT VARCHAR2,
 dblink OUT VARCHAR2,
 nextpos OUT BINARY_INTEGER);

Parameters

Table 8-16 NAME_TOKENIZE Procedure Parameters

Parameter Description

name The input name, consisting of SQL identifiers (for example,
scott.foo)

a Output for the first token of the name

b Output for the second token of the name (if applicable)

c Output for the third token of the name (if applicable)

dblink Output for the dblink of the name (not applicable for TimesTen)

nextpos Next position after parsing the input name

Examples

Consider the following script to run in ttIsql:

declare
 a varchar2(30);
 b varchar2(30);
 c varchar2(30);
 d varchar2(30);
 next integer;

begin
 dbms_utility.name_tokenize('scott.foo', a, b, c, d, next);
 dbms_output.put_line('a: ' || a);

Chapter 8
DBMS_UTILITY Subprograms

8-22

 dbms_output.put_line('b: ' || b);
 dbms_output.put_line('c: ' || c);
 dbms_output.put_line('d: ' || d);
 dbms_output.put_line('next: ' || next);
end;
/

This produces the following output.

a: SCOTT
b: FOO
c:
d:
next: 9

PL/SQL procedure successfully completed.

TABLE_TO_COMMA Procedure
This procedure converts a PL/SQL table of names into a comma-delimited list of names.

This takes a PL/SQL table, 1..n, terminated with n+1 being NULL. The second version
supports fully qualified attribute names.

Syntax

DBMS_UTILITY.TABLE_TO_COMMA (
 tab IN dbms_utility.uncl_array,
 tablen OUT BINARY_INTEGER,
 list OUT VARCHAR2);

DBMS_UTILITY.TABLE_TO_COMMA (
 tab IN dbms_utility.lname_array,
 tablen OUT BINARY_INTEGER,
 list OUT VARCHAR2);

Parameters

Table 8-17 TABLE_TO_COMMA Procedure Parameters

Parameter Description

tab PL/SQL table that contains list of table names

tablen Number of tables in the PL/SQL table

list Comma-delimited list of tables

Return Value

A VARCHAR2 value with a comma-delimited list and the number of elements found in the table

Chapter 8
DBMS_UTILITY Subprograms

8-23

VALIDATE Procedure
Validates the object described either by owner, name, and namespace or by object ID.

Syntax

DBMS_UTILITY.VALIDATE(
 object_id IN NUMBER);

DBMS_UTILITY.VALIDATE(
 owner IN VARCHAR2,
 objname IN VARCHAR2,
 namespace NUMBER,
 edition_name VARCHAR2 := NULL;

Parameters

Table 8-18 VALIDATE Procedure Parameters

Parameter Description

object_id ID number of the object to be validated

See INVALIDATE Procedure.

owner Name of the user who owns the object

Same as the OWNER field in ALL_OBJECTS.

objname Name of the object to be validated

Same as the OBJECT_NAME field in ALL_OBJECTS.

namespace Namespace of the object

Same as the namespace field in obj$. Equivalent numeric values
are as follows:

• 1 - Table or procedure
• 2 - Body
• 3 - Trigger (not applicable for TimesTen)
• 4 - Index
• 5 - Cluster
• 9 - Directory
• 10 - Queue
• 11 - Replication object group
• 12 - Replication propagator
• 13 - Java source (not applicable for TimesTen)
• 14 - Java resource (not applicable for TimesTen)
• 58 - Model (data mining)

edition_name Reserved for future use

Usage Notes

• Executing VALIDATE on a subprogram also validates subprograms that it
references. (See the example below.)

• No errors are raised if the object does not exist, is already valid, or is an object
that cannot be validated.

Chapter 8
DBMS_UTILITY Subprograms

8-24

• The INVALIDATE Procedure invalidates a database object and optionally changes its
PL/SQL compiler parameter settings. The object to be invalidated is specified by its
object_id value.

Examples

This example starts where the INVALIDATE example in INVALIDATE Procedure left off.
Assume P5, Top_Naive, and Top_With_Logging are invalid, shown as follows:

Command> select * from user_objects where status='INVALID';
< P5, <NULL>, 302, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:58:22,
2009-09-18:12:58:22, INVALID, N, N, N, 1, <NULL> >
< TOP_NAIVE, <NULL>, 303, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-18
12:
58:22, 2009-09-18:12:58:22, INVALID, N, N, N, 1, <NULL> >
< TOP_WITH_LOGGING, <NULL>, 304, <NULL>, PROCEDURE, 2009-09-18 12:53:45,
2009-09
-18 15:19:16, 2009-09-18:15:19:16, INVALID, N, N, N, 1, <NULL> >
3 rows found.

Validating Top_With_Logging, for example, also validates P5, because it calls P5 (leaving only
Top_Naive invalid):

Command> begin
 dbms_utility.validate(304);
 end;
 /

PL/SQL procedure successfully completed.

Command> select * from user_objects where status='INVALID';
< TOP_NAIVE, <NULL>, 303, <NULL>, PROCEDURE, 2009-09-18 12:53:45, 2009-09-21
11:
14:37, 2009-09-21:11:14:37, INVALID, N, N, N, 1, <NULL> >
1 row found.

Chapter 8
DBMS_UTILITY Subprograms

8-25

9
TT_DB_VERSION

The TT_DB_VERSION package indicates the TimesTen version numbers.

This chapter contains the following topics:

• Using TT_DB_VERSION

– Overview

– Constants

– Examples

Using TT_DB_VERSION
• Overview

• Constants

• Examples

Overview
The TT_DB_VERSION package has boolean variables to indicate which TimesTen major release
the package is supplied with.

The package for TimesTen Release 22.1 is as follows:

PACKAGE TT_DB_VERSION IS
 VER_LE_1121 CONSTANT BOOLEAN := FALSE;
 VER_LE_1122 CONSTANT BOOLEAN := FALSE;
 VER_LE_1801 CONSTANT BOOLEAN := FALSE;
 VER_LE_2201 CONSTANT BOOLEAN := TRUE;
 ...
END TT_DB_VERSION;

Constants
The TT_DB_VERSION package contains boolean constants indicating the current TimesTen
release. These are shown in Table 9-1 for TimesTen Release 22.1.

Table 9-1 TT_DB_VERSION Constants

Name Type Value Description

VER_LE_1121 BOOLEAN FALSE Boolean that is TRUE if the TimesTen
version this package is supplied with
is TimesTen 11.2.1 or prior

9-1

Table 9-1 (Cont.) TT_DB_VERSION Constants

Name Type Value Description

VER_LE_1122 BOOLEAN FALSE Boolean that is TRUE if the TimesTen
version this package is supplied with
is TimesTen 11g Release 2 (11.2.2)
or prior.

VER_LE_1801 BOOLEAN FALSE Boolean that is TRUE if the TimesTen
version this package is supplied with
is TimesTen Release 18.1 or prior

VER_LE_2201 BOOLEAN TRUE Boolean that is TRUE if the TimesTen
version this package is supplied with
is TimesTen Release 22.1 or prior

Examples
See Examples in the UTL_IDENT chapter for an example that uses both that package
and TT_DB_VERSION for conditional compilation.

Chapter 9
Using TT_DB_VERSION

9-2

10
TT_STATS

The TT_STATS package enables you to collect snapshots of TimesTen Classic database
metrics (statistics, states, and other information) and generate reports comparing two
specified snapshots.

This chapter contains the following topics:

• Using TT_STATS

– Overview

– Security model

– Operational notes

• TT_STATS Subprograms

Note:

There is also a ttStats utility program. In addition to acting as a convenient front-
end for the TT_STATS package to collect snapshots and generate reports, the utility
can monitor metrics in real-time. See ttStats in Oracle TimesTen In-Memory
Database Reference.

Using TT_STATS
This section covers the following topics for the TT_STATS package:

• Overview

• Security Model

• Operational Notes

Overview
The TT_STATS package provides features for collecting and comparing snapshots of
TimesTen system metrics, according to the capture level. Each snapshot can consist of what
TimesTen considers to be basic metrics, typical metrics, or all available metrics.

For those familiar with Oracle Database performance analysis tools, these reports are similar
in nature to Oracle Automatic Workload Repository (AWR) reports.

The package includes procedures and functions for the following:

• Capture a snapshot of metrics according to the capture level.

• Generate a report in HTML or plain text showing before and after values of metrics or the
differences between those values.

10-1

• Show the snapshot ID and timestamp of snapshots currently stored.

• Delete snapshots based on a range of IDs or timestamps.

• Get or set the value of a specified TT_STATS configuration parameter.

• Show the values of all configuration parameters.

Note:

The only supported configuration parameters are for the maximum number of
snapshots and the maximum total size of snapshots that can be stored.

Security Model
By default, only the instance administrator has privilege to run functions or procedures
of the TT_STATS PL/SQL package.

Any other user, including an ADMIN user, must be granted EXECUTE privilege for the
TT_STATS package by the instance administrator or by an ADMIN user, such as in the
following example:

GRANT EXECUTE ON SYS.TT_STATS TO scott;

Note:

Although ADMIN users cannot execute the package by default, they can grant
themselves privilege to execute it.

Operational Notes
Each metric in the SYS.SYSTEMSTATS table has a designated level, and the capture
level setting for a snapshot corresponds to those levels. Available levels are NONE,
BASIC, TYPICAL (the default, appropriate for most purposes), and ALL. See
CAPTURE_SNAPSHOT Procedure and Function.

Be aware that the capture level applies only to metrics in the SYS.SYSTEMSTATS table,
however. For metrics outside of SYSTEMSTATS, the same set of data are gathered
regardless of the capture level.

Note:

You can also use the ttStatsConfig built-in procedure to change the
capture level. See ttStatsConfig in Oracle TimesTen In-Memory Database
Reference.

Chapter 10
Using TT_STATS

10-2

Snapshots are stored in a number of TimesTen SYS.SNAPSHOT_xxxxx system tables. To assist
you in minimizing the risk of running out of permanent space, the TT_STATS package has
configuration parameters to specify the maximum number of snapshots that can be stored
and the total size of snapshots stored. In this release, an error is issued if either limit is
exceeded, and the snapshot capture would fail. TimesTen provides default limits, but you can
alter them through the SET_CONFIG procedure. (See SET_CONFIG Procedure.)

Be aware that execution of this package may involve numerous reads and insertions, which
may impact database performance during package operations.

TT_STATS Subprograms
Table 10-1 summarizes the TT_STATS subprograms, followed by a full description of each
subprogram.

Table 10-1 TT_STATS Package Subprograms

Subprogram Description

CAPTURE_SNAPSHOT Procedure and Function Takes a snapshot of TimesTen metrics. The
function also returns the snapshot ID.

DROP_SNAPSHOTS_RANGE Procedures Deletes snapshots according to a specified
range of snapshot IDs or timestamps.

GENERATE_REPORT_HTML Procedure Produces a report in HTML format based on the
data from two specified snapshots.

GENERATE_REPORT_TEXT Procedure Produces a report in plain text format based on
the data from two specified snapshots.

GET_CONFIG Procedures Retrieves the value of a specified TT_STATS
configuration parameter or the values of all
configuration parameters.

SET_CONFIG Procedure Sets a specified value for a specified TT_STATS
configuration parameter.

SHOW_SNAPSHOTS Procedures Shows the snapshot IDs and timestamps of all
snapshots currently stored in the database.

Note:

The only supported TT_STATS configuration parameters are for limits of the number
of snapshots and total size of snapshots that can be stored in the permanent
memory segment.

CAPTURE_SNAPSHOT Procedure and Function
The procedure captures a snapshot of TimesTen metrics according to the specified capture
level, or by default uses what is considered a typical level. The snapshots are stored in
TimesTen SYS.SNAPSHOT_xxxx system tables.

The function does the same and also returns the ID number of the snapshot.

Chapter 10
TT_STATS Subprograms

10-3

Note:

• The capture level applies only to metrics from SYS.SYSTEMSTATS, as
discussed below.

• There are defined limits for the maximum number of snapshots that can
be stored and the maximum total size of all stored snapshots. See
SET_CONFIG Procedure.

Syntax

TT_STATS.CAPTURE_SNAPSHOT (
 capture_level IN VARCHAR2 DEFAULTED,
 description IN VARCHAR2 DEFAULTED);

TT_STATS.CAPTURE_SNAPSHOT (
 capture_level IN VARCHAR2 DEFAULTED,
 description IN VARCHAR2 DEFAULTED)
 RETURN BINARY_INTEGER;

Parameters

Table 10-2 CAPTURE_SNAPSHOT Procedure Parameters

Parameter Description

capture_level The desired level of metrics to capture

The following choices are available:

• NONE: For metrics outside of SYS.SYSTEMSTATS only.

• BASIC: For a minimal basic set of metrics.

• TYPICAL (default): For a typical set of metrics. This level is
appropriate for most purposes. The basic set is a subset of
the typical set.

• ALL: For all available metrics.

Use the same level for any two snapshots to be used in a report.

Note: For metrics outside of SYS.SYSTEMSTATS, the same data
are gathered regardless of the capture level.

description An optional description of the snapshot

Use this if you want to provide any description or notes for the
snapshot, such as to distinguish it from other snapshots.

Usage Notes

• As mentioned above, the capture level applies only to metrics in the
SYS.SYSTEMSTATS table. For metrics outside of SYSTEMSTATS, the same data are
gathered regardless of the capture level.

• For SYSTEMSTATS metrics, only those within the specified capture level have
meaningful accumulated values. SYSTEMSTATS metrics outside of the specified level
have a value of 0 (zero).

Chapter 10
TT_STATS Subprograms

10-4

• You can call the procedure or function without specifying the capture_level parameter.
This results in capture of what is considered a typical level of metrics.

Return Value

The function returns a BINARY_INTEGER value for the ID of the snapshot.

Examples

Capture just the basic metrics:

call tt_stats.capture_snapshop('BASIC');

Capture the default typical level of metrics:

call tt_stats.capture_snapshot;

This example uses the function to capture the default typical level of metrics and displays the
snapshot ID:

declare
 id number;
begin
 id := tt_stats.capture_snapshot();
 dbms_output.put_line('Snapshot with ID (' || id || ') was captured.');
end;

DROP_SNAPSHOTS_RANGE Procedures
This procedure deletes previously captured snapshots of TimesTen metrics according to a
specified range of snapshot IDs or timestamps.

Note:

You can use the SHOW_SNAPSHOTS Procedures to display the IDs and
timestamps of all currently stored snapshots.

Syntax

TT_STATS.DROP_SNAPSHOTS_RANGE (
 snapshot_low IN BINARY_INTEGER,
 snapshot_high IN BINARY_INTEGER);

TT_STATS.DROP_SNAPSHOTS_RANGE (
 ts_old IN TIMESTAMP(6),
 ts_new IN TIMESTAMP(6));

Chapter 10
TT_STATS Subprograms

10-5

Parameters

Table 10-3 DROP_SNAPSHOTS_RANGE Procedure Parameters

Parameter Description

snapshot_low Snapshot ID for the start of the range of snapshots to delete

snapshot_high Snapshot ID for the end of the range of snapshots to delete

ts_old Timestamp for the start of the range of snapshots to delete

ts_new Timestamp for the end of the range of snapshots to delete

Usage Notes

• Specify 0 (zero) for both input parameters to drop all snapshots.

• It is permissible for snapshot_low to be greater than snapshot_high. The range of
snapshots from the lower value through the higher value are still deleted.

• Similarly, it is permissible for ts_new to be an older timestamp than ts_old.

Examples

This example specifies snapshot IDs, dropping the snapshots with IDs of 1, 2, and 3.

call tt_stats.drop_snapshots_range(1,3);

GENERATE_REPORT_HTML Procedure
This procedure uses the data from two specified snapshots of TimesTen metrics to
produce a report in HTML format with information for each metric, such as rate of
change or start and end values.

Reports include a summary of memory usage, connections, and load profile, followed
by metrics (as applicable) for SQL statements, transactions, PL/SQL memory,
replication, logs and log holds, checkpoints, cache groups, latches, locks, XLA, and
TimesTen connection attributes.

For a detailed example of the HTML reports that are produced, see ttStats in Oracle
TimesTen In-Memory Database Reference.

Also see GENERATE_REPORT_TEXT Procedure.

Chapter 10
TT_STATS Subprograms

10-6

Note:

• You can use the SHOW_SNAPSHOTS Procedures to display the IDs and
timestamps of all currently stored snapshots.

• Use snapshots taken at the same capture level. See CAPTURE_SNAPSHOT
Procedure and Function.

• The reports are similar in nature to Oracle Automatic Workload Repository
(AWR) reports.

• For SYSTEMSTATS metrics, only those within the specified capture level have
meaningful accumulated values. SYSTEMSTATS metrics outside of the specified
level have a value of 0 (zero).

Syntax

TT_STATS.GENERATE_REPORT_HTML (
 snapshot_id1 IN BINARY_INTEGER,
 snapshot_id2 IN BINARY_INTEGER,
 report OUT TT_STATS.REPORT_TABLE);

Parameters

Table 10-4 GENERATE_REPORT_HTML Procedure Parameters

Parameter Description

snapshot_id1 ID of the first snapshot to analyze

snapshot_id2 ID of the second snapshot to analyze

report An associative array (index-by table) containing the HTML-formatted
report

Each row is of type VARCHAR2(32767).

The application can output the report contents line-by-line as desired.

Usage Notes

• You can enter the snapshot IDs in either order. The procedure determines which is the
earlier.

GENERATE_REPORT_TEXT Procedure
This procedure analyzes and compares two specified snapshots of TimesTen metrics and
produces a report in plain text format with information for each metric, such as rate of change
or start and end values.

Reports include a summary of memory usage, connections, and load profile, followed by
metrics (as applicable) for SQL statements, transactions, PL/SQL memory, replication, logs
and log holds, checkpoints, cache groups, latches, locks, XLA, and TimesTen connection
attributes.

Also see GENERATE_REPORT_HTML Procedure.

Chapter 10
TT_STATS Subprograms

10-7

Note:

• You can use the SHOW_SNAPSHOTS Procedures to display the IDs
(and timestamps) of all currently stored snapshots.

• Use snapshots taken at the same capture level. See
CAPTURE_SNAPSHOT Procedure and Function.

• The reports are similar in nature to Oracle Automatic Workload
Repository (AWR) reports.

• For SYSTEMSTATS metrics, only those within the specified capture level
have meaningful accumulated values. SYSTEMSTATS metrics outside of
the specified level have a value of 0 (zero).

Syntax

TT_STATS.GENERATE_REPORT_TEXT (
 snapshot_id1 IN BINARY_INTEGER,
 snapshot_id2 IN BINARY_INTEGER,
 report OUT TT_STATS.REPORT_TABLE);

Parameters

Table 10-5 GENERATE_REPORT_TEXT Procedure Parameters

Parameter Description

snapshot_id1 ID of the first snapshot to analyze

snapshot_id2 ID of the second snapshot to analyze

report An associative array (index-by table) containing the plain-text-
formatted report

Each row is of type VARCHAR2(32767).

The application can output the report contents line-by-line as
desired.

Usage Notes

• You can enter the snapshot IDs in either order. The procedure determines which is
the earlier.

GET_CONFIG Procedures
Either procedure retrieves the value of a specified TT_STATS configuration parameter
or the values of all configuration parameters. The version without the OUT parameter
sends the information to the standard output.

Syntax

TT_STATS.GET_CONFIG (
 name IN VARCHAR2 DEFAULTED);

Chapter 10
TT_STATS Subprograms

10-8

TT_STATS.GET_CONFIG (
 name IN VARCHAR2 DEFAULTED,
 params OUT TT_STATS.REPORT_TABLE);

Parameters

Table 10-6 GET_CONFIG Procedure Parameters

Parameter Description

name Name of a TT_STATS configuration parameter whose value you want
to retrieve

In this release, the following TT_STATS parameters are supported.

• MAX_SNAPSHOT_COUNT: This is the maximum number of
snapshots that can be stored.

• MAX_SNAPSHOT_RETENTION_SIZE: This is the maximum total
size of all stored snapshots, in MB.

If no parameter name is specified (name is empty), the values of all
configuration parameters are displayed.

Also see SET_CONFIG Procedure.

params An associative array (index-by table) containing the value of the
specified TT_STATS parameter or values of all parameters

Each row is of type VARCHAR2(32767).

SET_CONFIG Procedure
This procedure sets a specified value for a specified TT_STATS configuration parameter.

Syntax

TT_STATS.SET_CONFIG (
 name IN VARCHAR2,
 value IN BINARY_INTEGER);

Parameters

Table 10-7 SET_CONFIG Procedure Parameters

Parameter Description

name Name of the TT_STATS configuration parameter to set

In this release, the following TT_STATS parameters are supported:

• MAX_SNAPSHOT_COUNT: This is the maximum number of
snapshots that can be stored. The default value is 256.

• MAX_SNAPSHOT_RETENTION_SIZE: This is the maximum total
size of all stored snapshots, in MB. The default value is 256 MB.

An error is issued if either limit is exceeded, and the snapshot capture
fails.

Also see GET_CONFIG Procedures.

value Value to set for the specified parameter

Chapter 10
TT_STATS Subprograms

10-9

Usage Notes

• The scope of these settings is global, affecting all connections to the database.

Examples

Specify a limit of 500 stored snapshots:

call tt_stats.set_config('MAX_SNAPSHOT_COUNT', 500);

SHOW_SNAPSHOTS Procedures
This procedure shows the IDs and timestamps of all snapshots of TimesTen metrics
currently stored in the database.

The version without the OUT parameter sends the information to the standard output.

Syntax

TT_STATS.SHOW_SNAPSHOTS;

TT_STATS.SHOW_SNAPSHOTS (
 resultset OUT TT_STATS.REPORT_TABLE);

Parameters

Table 10-8 SHOW_SNAPSHOTS Procedure Parameters

Parameter Description

resultset An associative array (index-by table) with pairs of data showing
the ID and timestamp of each currently stored snapshot

Each row is of type VARCHAR2(32767).

Chapter 10
TT_STATS Subprograms

10-10

11
UTL_FILE

With the UTL_FILE package, PL/SQL programs can read and write operating system text files.
UTL_FILE provides a restricted version of operating system stream file I/O.

This chapter contains the following topics:

• Using UTL_FILE

– Security model

– Operational notes

– Rules and limits

– Exceptions

– Examples

• Data Structures

– Record types

• UTL_FILE Subprograms

Using UTL_FILE
• Security Model

• Operational Notes

• Rules and Limits

• Exceptions

• Examples

Security Model
UTL_FILE is limited to the directory timesten_home/plsql/utl_file_temp.

Access does not extend to subdirectories of this directory. In addition, access is subject to file
system permission checking. The instance administrator can grant UTL_FILE access to
specific users as desired. Users can reference this UTL_FILE directory by using the string
'UTL_FILE_TEMP' for the location parameter in UTL_FILE subprograms. This predefined
string is used in the same way as directory object names in Oracle Database.

You cannot use UTL_FILE with a link, which could be used to circumvent desired access
limitations. Specifying a link as the file name causes FOPEN to fail with an error.

For TimesTen direct connections, the application owner is owner of the file. For client/server
connections, the server owner is owner of the file.

UTL_FILE_DIR access is not supported in TimesTen.

11-1

Tip:

• Users do not have execute permission on UTL_FILE by default. To use
UTL_FILE in TimesTen, an ADMIN user or instance administrator must
explicitly GRANT EXECUTE permission on it, such as in the following
example:

GRANT EXECUTE ON SYS.UTL_FILE TO scott;

• The privileges needed to access files are operating system specific.
UTL_FILE privileges give you read and write access to all files within the
UTL_FILE directory, but not in subdirectories.

• Attempting to apply invalid UTL_FILE options results in unpredictable
behavior.

Operational Notes
UTL_FILE is limited to the directory timesten_home/plsql/utl_file_temp. Access
does not extend to subdirectories of this directory. In addition, access is subject to file
system permission checking. The instance administrator can grant UTL_FILE access to
specific users as desired. Users can reference this UTL_FILE directory by using the
string 'UTL_FILE_TEMP' for the location parameter in UTL_FILE subprograms. This
predefined string is used in the same way as directory object names in Oracle
Database.

The file location and file name parameters are supplied to the FOPEN function as
separate strings, so that the file location can be checked against the utl_file_temp
directory. Together, the file location and name must represent a valid file name on the
system, and the directory must be accessible. Any subdirectories of utl_file_temp
are not accessible.

UTL_FILE implicitly interprets line terminators on read requests, thereby affecting the
number of bytes returned on a GET_LINE call. For example, the len parameter of
GET_LINE specifies the requested number of bytes of character data. The number of
bytes actually returned to the user is the least of the following:

• GET_LINE len parameter value

• Number of bytes until the next line terminator character

• The max_linesize parameter value specified by FOPEN
The FOPEN max_linesize parameter must be a number in the range 1 and 32767. If
unspecified, TimesTen supplies a default value of 1024. The GET_LINE len parameter
must be a number in the range 1 and 32767. If unspecified, TimesTen supplies the
default value of max_linesize. If max_linesize and len are defined to be different
values, then the lesser value takes precedence.

When data encoded in one character set is read and Globalization Support is informed
(such as through NLS_LANG) that it is encoded in another character set, the result is
indeterminate. If NLS_LANG is set, it should be the same as the database character set.

Chapter 11
Using UTL_FILE

11-2

Rules and Limits
Operating system-specific parameters, such as C-shell environment variables under Linux or
UNIX, cannot be used in the file location or file name parameters.

UTL_FILE I/O capabilities are similar to standard operating system stream file I/O (OPEN, GET,
PUT, CLOSE) capabilities, but with some limitations. For example, call the FOPEN function to
return a file handle, which you use in subsequent calls to GET_LINE or PUT to perform stream
I/O to a file. When file I/O is done, call FCLOSE to complete any output and free resources
associated with the file.

Exceptions
This section describes exceptions that are thrown by UTL_FILE subprograms.

Note:

In addition to the exceptions listed here, procedures and functions in UTL_FILE can
raise predefined PL/SQL exceptions such as NO_DATA_FOUND or VALUE_ERROR. Refer
to Predefined Exceptions in Oracle Database PL/SQL Language Reference for
information about those.

Table 11-1 UTL_FILE package exceptions

Exception Name Description

ACCESS_DENIED Permission to access to the file location is denied.

CHARSETMISMATCH A file is opened using FOPEN_NCHAR, but later I/O operations use non-
NCHAR procedures such as PUTF or GET_LINE. Or a file is opened
using FOPEN, but later I/O operations use NCHAR functions such as
PUTF_NCHAR or GET_LINE_NCHAR.

DELETE_FAILED Requested file delete operation failed.

FILE_OPEN Requested operation failed because the file is open.

INTERNAL_ERROR There was an unspecified PL/SQL error.

INVALID_FILEHANDLE File handle is invalid.

INVALID_FILENAME The filename parameter is invalid.

INVALID_MAXLINESIZE The max_linesize value for FOPEN is out of range. It should be within
the range 1 to 32767.

INVALID_MODE The open_mode parameter in FOPEN is invalid.

INVALID_OFFSET Caused by one of the following:

• ABSOLUTE_OFFSET is NULL and RELATIVE_OFFSET is NULL.

• ABSOLUTE_OFFSET is less than 0.

• Either offset caused a seek past the end of the file.

INVALID_OPERATION File could not be opened or operated on as requested.

INVALID_PATH File location or name is invalid.

Chapter 11
Using UTL_FILE

11-3

Table 11-1 (Cont.) UTL_FILE package exceptions

Exception Name Description

LENGTH_MISMATCH Length mismatch for CHAR or RAW data.

READ_ERROR Operating system error occurred during the read operation.

RENAME_FAILED Requested file rename operation failed.

WRITE_ERROR Operating system error occurred during the write operation.

Examples
Example 1: GET_LINE

This example reads from a file using the GET_LINE procedure.

DECLARE
 V1 VARCHAR2(32767);
 F1 UTL_FILE.FILE_TYPE;
BEGIN
 -- In this example MAX_LINESIZE is less than GET_LINE's length
request
 -- so number of bytes returned is 256 or less if a line terminator
is seen.
 F1 := UTL_FILE.FOPEN('UTL_FILE_TEMP','u12345.tmp','R',256);
 UTL_FILE.GET_LINE(F1,V1,32767);
 DBMS_OUTPUT.PUT_LINE('Get line: ' || V1);
 UTL_FILE.FCLOSE(F1);

 -- In this example, FOPEN's MAX_LINESIZE is NULL and defaults to
1024,
 -- so number of bytes returned is 1024 or less if line terminator is
seen.
 F1 := UTL_FILE.FOPEN('UTL_FILE_TEMP','u12345.tmp','R');
 UTL_FILE.GET_LINE(F1,V1,32767);
 DBMS_OUTPUT.PUT_LINE('Get line: ' || V1);
 UTL_FILE.FCLOSE(F1);

 -- GET_LINE doesn't specify a number of bytes, so it defaults to
 -- same value as FOPEN's MAX_LINESIZE which is NULL and defaults to
1024.
 -- So number of bytes returned is 1024 or less if line terminator is
seen.
 F1 := UTL_FILE.FOPEN('UTL_FILE_TEMP','u12345.tmp','R');
 UTL_FILE.GET_LINE(F1,V1);
 DBMS_OUTPUT.PUT_LINE('Get line: ' || V1);
 UTL_FILE.FCLOSE(F1);
END;

Chapter 11
Using UTL_FILE

11-4

Consider the following test file, u12345.tmp, in the utl_file_temp directory:

This is line 1.
This is line 2.
This is line 3.
This is line 4.
This is line 5.

The example results in the following output, repeatedly getting the first line only:

Get line: This is line 1.
Get line: This is line 1.
Get line: This is line 1.

PL/SQL procedure successfully completed.

Example 2: PUTF

This appends content to the end of a file using the PUTF procedure.

declare
 handle utl_file.file_type;
 my_world varchar2(4) := 'Zork';
begin
 handle := utl_file.fopen('UTL_FILE_TEMP','u12345.tmp','a');
 utl_file.putf(handle, '\nHello, world!\nI come from %s with %s.\n',
my_world,
 'greetings for all earthlings');
 utl_file.fflush(handle);
 utl_file.fclose(handle);
end;

This appends the following to file u12345.tmp in the utl_file_temp directory.

Hello, world!
I come from Zork with greetings for all earthlings.

Example 3: GET_RAW

This procedure gets raw data from a specified file using the GET_RAW procedure. It exits when
it reaches the end of the data, through its handling of NO_DATA_FOUND in the EXCEPTION
processing.

CREATE OR REPLACE PROCEDURE getraw(n IN VARCHAR2) IS
 h UTL_FILE.FILE_TYPE;
 Buf RAW(32767);
 Amnt CONSTANT BINARY_INTEGER := 32767;
BEGIN
 h := UTL_FILE.FOPEN('UTL_FILE_TEMP', n, 'r', 32767);
 LOOP
 BEGIN
 UTL_FILE.GET_RAW(h, Buf, Amnt);

Chapter 11
Using UTL_FILE

11-5

 -- Do something with this chunk
 DBMS_OUTPUT.PUT_LINE('This is the raw data:');
 DBMS_OUTPUT.PUT_LINE(Buf);
 EXCEPTION WHEN No_Data_Found THEN
 EXIT;
 END;
 END LOOP;
 UTL_FILE.FCLOSE (h);
END;

Consider the following content in file u12345.tmp in the utl_file_temp directory:

hello world!

The example produces output as follows:

Command> begin
 getraw('u12345.tmp');
 end;
 /
This is the raw data:
68656C6C6F20776F726C64210A

PL/SQL procedure successfully completed.

Data Structures
The UTL_FILE package defines the following record type.

Record types

• FILE_TYPE Record Type

FILE_TYPE Record Type
The contents of FILE_TYPE are private to the UTL_FILE package. You should not
reference or change components of this record.

TYPE file_type IS RECORD (
 id BINARY_INTEGER,
 datatype BINARY_INTEGER,
 byte_mode BOOLEAN);

Fields

Table 11-2 FILE_TYPE Fields

Field Description

id Indicates the internal file handle number (numeric value).

Chapter 11
Data Structures

11-6

Table 11-2 (Cont.) FILE_TYPE Fields

Field Description

datatype Indicates whether the file is a CHAR file, NCHAR file, or other
(binary).

byte_mode Indicates whether the file was open as a binary file or as a text
file.

Tip:

Oracle Database does not guarantee the persistence of FILE_TYPE values between
database sessions or within a single session. Attempts to clone file handles or use
dummy file handles may have indeterminate outcomes.

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

UTL_FILE Subprograms
Table 11-3 summarizes the UTL_FILE subprograms, followed by a full description of each
subprogram.

Table 11-3 UTL_FILE Subprograms

Subprogram Description

FCLOSE Procedure Closes a file.

FCLOSE_ALL Procedure Closes all open file handles.

FCOPY Procedure Copies a contiguous portion of a file to a newly created file.

FFLUSH Procedure Physically writes all pending output to a file.

FGETATTR Procedure Reads and returns the attributes of a file.

FGETPOS Function Returns the current relative offset position (in bytes) within a file, in
bytes.

FOPEN Function Opens a file for input or output.

FOPEN_NCHAR Function Opens a file in Unicode for input or output.

FREMOVE Procedure Deletes a file if you have sufficient privileges.

Chapter 11
UTL_FILE Subprograms

11-7

Table 11-3 (Cont.) UTL_FILE Subprograms

Subprogram Description

FRENAME Procedure Renames an existing file to a new name, similar to the UNIX mv
function.

FSEEK Procedure Adjusts the file pointer forward or backward within the file by the
number of bytes specified.

GET_LINE Procedure Reads text from an open file.

GET_LINE_NCHAR Procedure Reads text in Unicode from an open file.

GET_RAW Procedure Reads a RAW string value from a file and adjusts the file pointer
ahead by the number of bytes read.

IS_OPEN Function Determines if a file handle refers to an open file.

NEW_LINE Procedure Writes one or more operating system-specific line terminators to a
file.

PUT Procedure Writes a string to a file.

PUT_LINE Procedure Writes a line to a file, and so appends an operating system-specific
line terminator.

PUT_LINE_NCHAR Procedure Writes a Unicode line to a file.

PUT_NCHAR Procedure Writes a Unicode string to a file.

PUT_RAW Procedure Accepts as input a RAW data value and writes the value to the output
buffer.

PUTF Procedure This is equivalent to PUT but with formatting.

PUTF_NCHAR Procedure This is equivalent to PUT_NCHAR but with formatting.

FCLOSE Procedure
This procedure closes an open file identified by a file handle.

Syntax

UTL_FILE.FCLOSE (
 file IN OUT UTL_FILE.FILE_TYPE);

Parameters

Table 11-4 FCLOSE Procedure Parameters

Parameter Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

Exceptions

Refer to Exceptions for information about these exceptions.

INVALID_FILEHANDLE
WRITE_ERROR

Chapter 11
UTL_FILE Subprograms

11-8

If there is buffered data yet to be written when FCLOSE runs, you may receive WRITE_ERROR
when closing a file.

Examples

See Examples .

FCLOSE_ALL Procedure
This procedure closes all open file handles for the session. This is useful as an emergency
cleanup procedure, such as after a PL/SQL program exits on an exception.

Syntax

UTL_FILE.FCLOSE_ALL;

Usage Notes

FCLOSE_ALL does not alter the state of the open file handles held by the user. Therefore, an
IS_OPEN test on a file handle after an FCLOSE_ALL call still returns TRUE, even though the file
has been closed. No further read or write operations can be performed on a file that was
open before an FCLOSE_ALL.

Exceptions

Refer to Exceptions.

WRITE_ERROR

FCOPY Procedure
This procedure copies a contiguous portion of a file to a newly created file.

By default, the whole file is copied if the start_line and end_line parameters are omitted.
The source file is opened in read mode. The destination file is opened in write mode. A
starting and ending line number can optionally be specified to select a portion from the center
of the source file for copying.

Syntax

UTL_FILE.FCOPY (
 src_location IN VARCHAR2,
 src_filename IN VARCHAR2,
 dest_location IN VARCHAR2,
 dest_filename IN VARCHAR2,
 [start_line IN BINARY_INTEGER DEFAULT 1,
 end_line IN BINARY_INTEGER DEFAULT NULL]);

Chapter 11
UTL_FILE Subprograms

11-9

Parameters

Table 11-5 FCOPY Procedure Parameters

Parameters Description

src_location Directory location of the source file

src_filename Source file to be copied

dest_location Destination directory where the destination file is created

dest_filename Destination file created from the source file

start_line Line number at which to begin copying

The default is 1 for the first line.

end_line Line number at which to stop copying

The default is NULL, signifying end of file.

Exceptions

Refer to Exceptions.

INVALID_FILENAME
INVALID_PATH
INVALID_OPERATION
INVALID_OFFSET
READ_ERROR
WRITE_ERROR

FFLUSH Procedure
FFLUSH physically writes pending data to the file identified by the file handle.

Typically, data written to a file is buffered. The FFLUSH procedure forces the buffered
data to be written to the file. The data must be terminated with a newline character.

Flushing is useful when the file must be read while still open. For example, debugging
messages can be flushed to the file so that they can be read immediately.

Syntax

UTL_FILE.FFLUSH (
 file IN UTL_FILE.FILE_TYPE);

Parameters

Table 11-6 FFLUSH Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

Chapter 11
UTL_FILE Subprograms

11-10

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

Examples

See Examples .

FGETATTR Procedure
This procedure reads and returns the attributes of a file.

Syntax

UTL_FILE.FGETATTR(
 location IN VARCHAR2,
 filename IN VARCHAR2,
 fexists OUT BOOLEAN,
 file_length OUT NUMBER,
 block_size OUT BINARY_INTEGER);

Parameters

Table 11-7 FGETATTR Procedure Parameters

Parameters Description

location Location of the source file

filename Name of the file to be examined

fexists A BOOLEAN for whether the file exists

file_length Length of the file in bytes, or NULL if file does not exist

block_size File system block size in bytes, or NULL if file does not exist

Exceptions

Refer to Exceptions.

INVALID_PATH
INVALID_FILENAME
INVALID_OPERATION
READ_ERROR
ACCESS_DENIED

Chapter 11
UTL_FILE Subprograms

11-11

FGETPOS Function
This function returns the current relative offset position within a file, in bytes.

Syntax

UTL_FILE.FGETPOS (
 file IN utl_file.file_type)
 RETURN BINARY_INTEGER;

Parameters

Table 11-8 FGETPOS Function Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

Return Value

The relative offset position for an open file, in bytes, or 0 for the beginning of the file

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
READ_ERROR

An INVALID_FILEHANDLE exception is raised if the file is not open. An
INVALID_OPERATION exception is raised if the file was opened for byte mode
operations.

FOPEN Function
This function opens a file. You can specify the maximum line size and have a
maximum of 50 files open simultaneously.

Also see FOPEN_NCHAR Function.

Syntax

UTL_FILE.FOPEN (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2,
 max_linesize IN BINARY_INTEGER DEFAULT 1024)
 RETURN utl_file.file_type;

Chapter 11
UTL_FILE Subprograms

11-12

Parameters

Table 11-9 FOPEN Function Parameters

Parameter Description

location Directory location of file

filename File name, including extension (file type), without directory path

If a directory path is given as a part of the file name, it is ignored by
FOPEN. On Linux or UNIX, the file name cannot end with a slash, "/".

open_mode Mode in which the file was opened:

• r - Read text mode

• w - Write text mode

• a - Append text mode

• rb - Read byte mode

• wb - Write byte mode

• ab - Append byte mode

If you try to open a file specifying 'a' or 'ab' for open_mode but the file
does not exist, the file is created in WRITE mode.

max_linesize Maximum number of characters for each line, including the newline
character, for this file

The minimum value is 1 and the maximum is 32767. If this is
unspecified, TimesTen supplies a default value of 1024.

Return Value

A file handle, which must be passed to all subsequent procedures that operate on that file

The specific contents of the file handle are private to the UTL_FILE package, and individual
components should not be referenced or changed by the UTL_FILE user.

Usage Notes

The file location and file name parameters are supplied to the FOPEN function as separate
strings, so that the file location can be checked against the utl_file_temp directory.
Together, the file location and name must represent a valid file name on the system, and the
directory must be accessible. Any subdirectories of utl_file_temp are not accessible.

Exceptions

Refer to Exceptions.

INVALID_PATH
INVALID_MODE
INVALID_OPERATION
INVALID_MAXLINESIZE

Examples

See Examples .

Chapter 11
UTL_FILE Subprograms

11-13

FOPEN_NCHAR Function
This function opens a file in national character set mode for input or output, with the
maximum line size specified. You can have a maximum of 50 files open
simultaneously. With this function, you can read or write a text file in Unicode instead
of in the database character set.

Even though the contents of an NVARCHAR2 buffer may be AL16UTF16 or UTF-8
(depending on the national character set of the database), the contents of the file are
always read and written in UTF-8. UTL_FILE converts between UTF-8 and AL16UTF16
as necessary.

Also see FOPEN Function.

Syntax

UTL_FILE.FOPEN_NCHAR (
 location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2,
 max_linesize IN BINARY_INTEGER DEFAULT 1024)
RETURN utl_file.file_type;

Parameters

Table 11-10 FOPEN_NCHAR Function Parameters

Parameter Description

location Directory location of file

filename File name, including extension

open_mode Open mode: r, w, a, rb, wb, or ab (as documented for FOPEN)

max_linesize Maximum number of characters for each line, including the
newline character, for this file

The minimum value is 1 and the maximum is 32767. If this is
unspecified, TimesTen supplies a default value of 1024.

Return Value

A file handle, which must be passed to all subsequent procedures that operate on that
file

The specific contents of the file handle are private to the UTL_FILE package, and
individual components should not be referenced or changed by the UTL_FILE user.

Exceptions

Refer to Exceptions.

INVALID_PATH
INVALID_MODE

Chapter 11
UTL_FILE Subprograms

11-14

INVALID_OPERATION
INVALID_MAXLINESIZE

FREMOVE Procedure
This procedure deletes a file if you have sufficient privileges.

Syntax

UTL_FILE.FREMOVE (
 location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

Table 11-11 FREMOVE Procedure Parameters

Parameters Description

location Directory location of the file

filename Name of the file to be deleted

Usage Notes

This procedure does not verify privileges before deleting a file. The operating system verifies
file and directory permissions.

Exceptions

Refer to Exceptions.

INVALID_PATH
INVALID_FILENAME
INVALID_OPERATION
ACCESS_DENIED
DELETE_FAILED

FRENAME Procedure
This procedure renames an existing file.

Syntax

UTL_FILE.FRENAME (
 src_location IN VARCHAR2,
 src_filename IN VARCHAR2,
 dest_location IN VARCHAR2,
 dest_filename IN VARCHAR2,
 overwrite IN BOOLEAN DEFAULT FALSE);

Chapter 11
UTL_FILE Subprograms

11-15

Parameters

Table 11-12 FRENAME Procedure Parameters

Parameters Description

src_location Directory location of the source file

src_filename Source file to be renamed

dest_location Destination directory of the destination file

dest_filename New name of the file

overwrite Whether it is permissible to overwrite an existing file in the
destination directory (default FALSE)

Usage Notes

Permission on both the source and destination directories must be granted.

Exceptions

Refer to Exceptions.

INVALID_PATH
INVALID_FILENAME
RENAME_FAILED
ACCESS_DENIED

FSEEK Procedure
This procedure adjusts the file pointer forward or backward within the file by the
number of bytes specified.

Syntax

UTL_FILE.FSEEK (
 file IN OUT utl_file.file_type,
 absolute_offset IN BINARY_INTEGER DEFAULT NULL,
 relative_offset IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 11-13 FSEEK Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

absolute_offset Absolute location to which to seek, in bytes (default NULL)

relative_offset Number of bytes to seek forward or backward

Use a positive integer to seek forward, a negative integer to see
backward, or 0 for the current position. Default is NULL.

Chapter 11
UTL_FILE Subprograms

11-16

Usage Notes

• Using FSEEK, you can read previous lines in the file without first closing and reopening the
file. You must know the number of bytes by which you want to navigate.

• If the beginning of the file is reached before the number of bytes specified, then the file
pointer is placed at the beginning of the file.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
READ_ERROR
INVALID_OFFSET

INVALID_OPERATION is raised if the file was opened for byte-mode operations.
INVALID_OFFSET is raised if the end of the file is reached before the number of bytes
specified.

GET_LINE Procedure
This procedure reads text from the open file identified by the file handle and places the text in
the output buffer parameter.

Text is read up to, but not including, the line terminator, or up to the end of the file, or up to
the end of the len parameter. It cannot exceed the max_linesize specified in FOPEN.

Syntax

UTL_FILE.GET_LINE (
 file IN UTL_FILE.FILE_TYPE,
 buffer OUT VARCHAR2,
 len IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 11-14 GET_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call

buffer Data buffer to receive the line read from the file

len Number of bytes read from the file

If NULL (default), TimesTen supplies the value of max_linesize from
FOPEN.

Usage Notes

• Because the line terminator character is not read into the buffer, reading blank lines
returns empty strings.

Chapter 11
UTL_FILE Subprograms

11-17

• The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN.

• If unspecified, TimesTen supplies a default value of 1024. Also see
GET_LINE_NCHAR Procedure.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
READ_ERROR
CHARSETMISMATCH
NO_DATA_FOUND
VALUE_ERROR

INVALID_OPERATION is thrown if the file was not opened for read mode (mode r) or was
opened for byte-mode operations. CHARSETMISMATCH is thrown if FOPEN_NCHAR was
used instead of FOPEN to open the file. NO_DATA_FOUND is thrown if no text was read due
to end of file. VALUE_ERROR is thrown if the line does not fit into the buffer.
(NO_DATA_FOUND and VALUE_ERROR are predefined PL/SQL exceptions.)

Examples

See Examples .

GET_LINE_NCHAR Procedure
This procedure reads text from the open file identified by the file handle and places the
text in the output buffer parameter. With this function, you can read a text file in
Unicode instead of in the database character set.

The file must be opened in national character set mode, and must be encoded in the
UTF-8 character set. The expected buffer data type is NVARCHAR2. If a variable of
another data type such as NCHAR or VARCHAR2 is specified, PL/SQL performs standard
implicit conversion from NVARCHAR2 after the text is read.

Also see GET_LINE Procedure.

Syntax

UTL_FILE.GET_LINE_NCHAR (
 file IN UTL_FILE.FILE_TYPE,
 buffer OUT NVARCHAR2,
 len IN BINARY_INTEGER DEFAULT NULL);

Chapter 11
UTL_FILE Subprograms

11-18

Parameters

Table 11-15 GET_LINE_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call

The file must be open for reading (mode r).

buffer Data buffer to receive the line read from the file

len The number of bytes read from the file

If NULL (default), TimesTen supplies the value of max_linesize from
FOPEN_NCHAR.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
READ_ERROR
CHARSETMISMATCH
NO_DATA_FOUND
VALUE_ERROR

INVALID_OPERATION is thrown if the file was not opened for read mode (mode r) or was
opened for byte-mode operations. NO_DATA_FOUND is thrown if no text was read due to end of
file. VALUE_ERROR is thrown if the line does not fit into the buffer. CHARSETMISMATCH is thrown if
the file was opened by FOPEN instead of FOPEN_NCHAR. (NO_DATA_FOUND and VALUE_ERROR are
predefined PL/SQL exceptions.)

GET_RAW Procedure
This procedure reads a RAW string value from a file and adjusts the file pointer ahead by the
number of bytes read. It ignores line terminators.

Syntax

UTL_FILE.GET_RAW (
 file IN utl_file.file_type,
 buffer OUT NOCOPY RAW,
 len IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 11-16 GET_RAW Function Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

buffer The RAW data

Chapter 11
UTL_FILE Subprograms

11-19

Table 11-16 (Cont.) GET_RAW Function Parameters

Parameters Description

len Number of bytes read from the file

If NULL (default), len is assumed to be the maximum length of RAW.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
READ_ERROR
LENGTH_MISMATCH
NO_DATA_FOUND

(NO_DATA_FOUND is a predefined PL/SQL exception.)

Examples

See Examples .

IS_OPEN Function
This function tests a file handle to see if it identifies an open file. It reports only
whether a file handle represents a file that has been opened, but not yet closed. It
does not guarantee you can use the file without error.

Syntax

UTL_FILE.IS_OPEN (
 file IN UTL_FILE.FILE_TYPE)
 RETURN BOOLEAN;

Parameters

Table 11-17 IS_OPEN Function Parameters

Parameter Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

Return Value

TRUE if the file is open, or FALSE if not

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE

Chapter 11
UTL_FILE Subprograms

11-20

NEW_LINE Procedure
This procedure writes one or more line terminators to the file identified by the input file
handle. This procedure is distinct from PUT because the line terminator is a platform-specific
character or sequence of characters.

Syntax

UTL_FILE.NEW_LINE (
 file IN UTL_FILE.FILE_TYPE,
 lines IN BINARY_INTEGER := 1);

Parameters

Table 11-18 NEW_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

lines Number of line terminators to be written to the file

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

PUT Procedure
PUT writes the text string stored in the buffer parameter to the open file identified by the file
handle.

The file must be open for write operations. No line terminator is appended by PUT. Use
NEW_LINE to terminate the line or PUT_LINE to write a complete line with a line terminator. Also
see PUT_NCHAR Procedure.

Syntax

UTL_FILE.PUT (
 file IN UTL_FILE.FILE_TYPE,
 buffer IN VARCHAR2);

Chapter 11
UTL_FILE Subprograms

11-21

Parameters

Table 11-19 PUT Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call

The file must be open for writing (mode w).

buffer Buffer that contains the text to be written to the file

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, TimesTen supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR
CHARSETMISMATCH

INVALID_OPERATION is thrown if the file was not opened using mode w or a (write or
append). CHARSETMISMATCH is thrown if FOPEN_NCHAR was used instead of FOPEN to
open the file.

PUT_LINE Procedure
This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle.

The file must be open for write operations. PUT_LINE terminates the line with the
platform-specific line terminator character or characters. Also see PUT_LINE_NCHAR
Procedure.

Syntax

UTL_FILE.PUT_LINE (
 file IN UTL_FILE.FILE_TYPE,
 buffer IN VARCHAR2,
 autoflush IN BOOLEAN DEFAULT FALSE);

Chapter 11
UTL_FILE Subprograms

11-22

Parameters

Table 11-20 PUT_LINE Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call

buffer Text buffer that contains the lines to be written to the file

autoflush Flag for flushing the buffer to the file system after the write

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size
in FOPEN. If unspecified, TimesTen supplies a default value of 1024. The sum of all sequential
PUT calls cannot exceed 32767 without intermediate buffer flushes.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR
CHARSETMISMATCH

INVALID_OPERATION is thrown if the file was opened for byte-mode operations.
CHARSETMISMATCH is thrown if FOPEN_NCHAR was used instead of FOPEN to open the file.

PUT_LINE_NCHAR Procedure
This procedure writes the text string stored in the buffer parameter to the open file identified
by the file handle.

With this function, you can write a text file in Unicode instead of in the database character
set. This procedure is equivalent to the PUT_NCHAR Procedure, except that the line
separator is appended to the written text. Also see PUT_LINE Procedure.

Syntax

UTL_FILE.PUT_LINE_NCHAR (
 file IN UTL_FILE.FILE_TYPE,
 buffer IN NVARCHAR2);

Parameters

Table 11-21 PUT_LINE_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call

The file must be open for writing (mode w).

Chapter 11
UTL_FILE Subprograms

11-23

Table 11-21 (Cont.) PUT_LINE_NCHAR Procedure Parameters

Parameters Description

buffer Text buffer that contains the lines to be written to the file

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, TimesTen supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR
CHARSETMISMATCH

INVALID_OPERATION is thrown if the file was opened for byte-mode operations.
CHARSETMISMATCH is thrown if FOPEN was used instead of FOPEN_NCHAR to open the file.

PUT_NCHAR Procedure
This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle.

With this function, you can write a text file in Unicode instead of in the database
character set. The file must be opened in the national character set mode. The text
string is written in the UTF-8 character set. The expected buffer data type is
NVARCHAR2. If a variable of another data type is specified, PL/SQL performs implicit
conversion to NVARCHAR2 before writing the text.

Also see PUT Procedure.

Syntax

UTL_FILE.PUT_NCHAR (
 file IN UTL_FILE.FILE_TYPE,
 buffer IN NVARCHAR2);

Parameters

Table 11-22 PUT_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call

buffer Buffer that contains the text to be written to the file

Chapter 11
UTL_FILE Subprograms

11-24

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size
in FOPEN. If unspecified, TimesTen supplies a default value of 1024. The sum of all sequential
PUT calls cannot exceed 32767 without intermediate buffer flushes.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR
CHARSETMISMATCH

INVALID_OPERATION is thrown if the file was not opened using mode w or a (write or append).
CHARSETMISMATCH is thrown if the file was opened by FOPEN instead of FOPEN_NCHAR.

PUT_RAW Procedure
This procedure accepts as input a RAW data value and writes the value to the output buffer.

Syntax

UTL_FILE.PUT_RAW (
 file IN utl_file.file_type,
 buffer IN RAW,
 autoflush IN BOOLEAN DEFAULT FALSE);

Parameters

Table 11-23 PUT_RAW Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN or FOPEN_NCHAR call

buffer The RAW data written to the buffer

autoflush Flag to perform a flush after writing the value to the output buffer (default is
FALSE)

Usage Notes

You can request an automatic flush of the buffer by setting autoflush to TRUE.

The maximum size of the buffer parameter is 32767 bytes unless you specify a smaller size
in FOPEN. If unspecified, TimesTen supplies a default value of 1024. The sum of all sequential
PUT calls cannot exceed 32767 without intermediate buffer flushes.

Chapter 11
UTL_FILE Subprograms

11-25

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR

PUTF Procedure
This procedure is a formatted PUT procedure. It works like a limited printf().

Also see PUTF_NCHAR Procedure.

Syntax

UTL_FILE.PUTF (
 file IN UTL_FILE.FILE_TYPE,
 format IN VARCHAR2,
 [arg1 IN VARCHAR2 DEFAULT NULL,
 . . .
 arg5 IN VARCHAR2 DEFAULT NULL]);

Parameters

Table 11-24 PUTF Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN call

format Format string that can contain text and the formatting characters
\n and %s

arg1..arg5 From one to five operational argument strings

Argument strings are substituted, in order, for the %s formatters in
the format string. If there are more formatters in the format
parameter string than there are arguments, an empty string is
substituted for each %s for which there is no argument.

Usage Notes

The format string can contain any text, but the character sequences %s and \n have
special meaning.

Character sequence Meaning

%s Substitute this sequence with the string value of the next argument
in the argument list.

\n Substitute with the appropriate platform-specific line terminator.

Chapter 11
UTL_FILE Subprograms

11-26

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR
CHARSETMISMATCH

INVALID_OPERATION is thrown if the file was opened for byte-mode operations.
CHARSETMISMATCH is thrown if FOPEN_NCHAR was used instead of FOPEN to open the file.

Examples

See Examples .

PUTF_NCHAR Procedure
Using PUTF_NCHAR, you can write a text file in Unicode instead of in the database character
set.

This procedure is the formatted version of the PUT_NCHAR Procedure.

It accepts a format string with formatting elements \n and %s, and up to five arguments to be
substituted for consecutive occurrences of %s in the format string. The expected data type of
the format string and the arguments is NVARCHAR2.

If variables of another data type are specified, PL/SQL performs implicit conversion to
NVARCHAR2 before formatting the text. Formatted text is written in the UTF-8 character set to
the file identified by the file handle. The file must be opened in the national character set
mode.

Syntax

UTL_FILE.PUTF_NCHAR (
 file IN UTL_FILE.FILE_TYPE,
 format IN NVARCHAR2,
 [arg1 IN NVARCHAR2 DEFAULT NULL,
 . . .
 arg5 IN NVARCHAR2 DEFAULT NULL]);

Parameters

Table 11-25 PUTF_NCHAR Procedure Parameters

Parameters Description

file Active file handle returned by an FOPEN_NCHAR call

The file must be open for reading (mode r).

format Format string that can contain text and the format characters \n and
%s

Chapter 11
UTL_FILE Subprograms

11-27

Table 11-25 (Cont.) PUTF_NCHAR Procedure Parameters

Parameters Description

arg1..arg5 From one to five operational argument strings

Argument strings are substituted, in order, for the %s format characters
in the format string. If there are more format characters in the format
string than there are arguments, an empty string is substituted for each
%s for which there is no argument.

Usage Notes

The maximum size of the buffer parameter is 32767 bytes unless you specify a
smaller size in FOPEN. If unspecified, TimesTen supplies a default value of 1024. The
sum of all sequential PUT calls cannot exceed 32767 without intermediate buffer
flushes.

Exceptions

Refer to Exceptions.

INVALID_FILEHANDLE
INVALID_OPERATION
WRITE_ERROR
CHARSETMISMATCH

INVALID_OPERATION is thrown if the file was opened for byte-mode operations.
CHARSETMISMATCH is thrown if the file was opened by FOPEN instead of FOPEN_NCHAR.

Chapter 11
UTL_FILE Subprograms

11-28

12
UTL_IDENT

The UTL_IDENT package indicates which database or client PL/SQL is running in, such as
TimesTen versus Oracle Database, and server versus client. Each database or client running
PL/SQL has its own copy of this package.

This chapter contains the following topics:

• Using UTL_IDENT

– Overview

– Security model

– Constants

– Examples

Using UTL_IDENT
This section contains topics that relate to using the UTL_IDENT package.

• Overview

• Security Model

• Constants

• Examples

Overview
The UTL_IDENT package indicates whether PL/SQL is running on TimesTen, an Oracle
database client, an Oracle database server, or Oracle Forms. Each of these has its own
version of UTL_IDENT with appropriate settings for the constants.

The primary use case for the UTL_IDENT package is for conditional compilation, resembling
the following, of PL/SQL packages that are supported by Oracle Database, TimesTen, or
clients such as Oracle Forms.

$if utl_ident.is_oracle_server $then
 [...Run code supported for Oracle Database...]
$elsif utl_ident.is_timesten $then
 [...code supported for TimesTen Database...]
$end

Also see Examples.

12-1

Security Model
The UTL_IDENT package runs as the package owner SYS. The public synonym
UTL_IDENT and EXECUTE permission on this package are granted to PUBLIC.

Constants
The UTL_IDENT package uses the constants in Table 12-1, shown here with the
settings in a TimesTen database.

Table 12-1 UTL_IDENT Constants

Constant Type Value Description

IS_ORACLE_SERVER BOOLEAN FALSE PL/SQL is running in Oracle
Database.

IS_ORACLE_CLIENT BOOLEAN FALSE PL/SQL is running in Oracle Client.

IS_ORACLE_FORMS BOOLEAN FALSE PL/SQL is running in Oracle Forms.

IS_TIMESTEN BOOLEAN TRUE PL/SQL is running in TimesTen.

Examples
This example shows output from a script that creates and executes a function
IS_CLOB_SUPPORTED that uses the UTL_IDENT and TT_DB_VERSION packages to provide
information about the database being used.

The function uses UTL_IDENT to determine whether the database is TimesTen, then
uses TT_DB_VERSION to determine the TimesTen version. VER_LE_1121 is TRUE for
TimesTen 11.2.1 releases and FALSE for TimesTen 11g Release 2 (11.2.2) and higher
releases. In the example, because VER_LE_1121 is determined to be FALSE, then it can
be assumed that this is a TimesTen 11g Release 2 (11.2.2) or higher release
(presumably Release 22.1) and therefore LOBs are supported by TimesTen Classic.
The example then creates a table with a CLOB column and shows DESCRIBE output of
the table.

create or replace function is_clob_supported return boolean
as
begin
$if utl_ident.is_oracle_server
$then
 return true;
$elsif utl_ident.is_timesten
$then
 $if tt_db_version.ver_le_1121
 $then
 return false; -- CLOB datatype was introduced in TimesTen 11g
Release 2 (11.2.2)
 $else
 return true;
 $end

Chapter 12
Using UTL_IDENT

12-2

$end
end;

Function created.

show errors;
No errors.

begin
 if is_clob_supported
 then
 execute immediate 'create table mytab (mydata clob)';
 else
 execute immediate 'create table mytab (mydata varchar2(4000000))';
 end if;
end;

PL/SQL procedure successfully completed.

describe mytab;

Table MYSCHEMA.MYTAB:
 Columns:
 MYDATA CLOB

1 table found.
(primary key columns are indicated with *)

(Output is shown after running the commands from a SQL script.)

Chapter 12
Using UTL_IDENT

12-3

13
UTL_RAW

The UTL_RAW package provides SQL functions for manipulating RAW data types.

This chapter contains the following topics:

• Using UTL_RAW

– Overview

– Operational notes

• UTL_RAW Subprograms

Using UTL_RAW
• Overview

• Operational Notes

Overview
This package is necessary because SQL functions do not operate on RAW values and PL/SQL
does not allow overloading between a RAW and a CHAR data type.

UTL_RAW is not specific to the database environment and may be used in other environments.
For this reason, the prefix UTL has been given to the package, instead of DBMS.

Operational Notes
UTL_RAW allows a RAW record to be composed of many elements. When the RAW data type is
used, character set conversion is not performed, keeping the RAW value in its original format
when being transferred through remote procedure calls.

With the RAW functions, you can manipulate binary data that was previously limited to the
hextoraw and rawtohex SQL functions.

Functions returning RAW values do so in hexadecimal encoding.

UTL_RAW Subprograms
Table 13-1 summarizes the UTL_RAW subprograms, followed by a full description of each
subprogram.

13-1

Table 13-1 UTL_RAW Package Subprograms

Subprogram Description

BIT_AND Function Performs bitwise logical AND of two RAW values and returns
the resulting RAW.

BIT_COMPLEMENT Function Performs bitwise logical COMPLEMENT of a RAW value and
returns the resulting RAW.

BIT_OR Function Performs bitwise logical OR of two RAW values and returns
the resulting RAW.

BIT_XOR Function Performs bitwise logical XOR ("exclusive or") of two RAW
values and returns the resulting RAW.

CAST_FROM_BINARY_DOUBLE
Function

Returns the RAW binary representation of a
BINARY_DOUBLE value.

CAST_FROM_BINARY_FLOAT
Function

Returns the RAW binary representation of a BINARY_FLOAT
value.

CAST_FROM_BINARY_INTEGER
Function

Returns the RAW binary representation of a
BINARY_INTEGER value.

CAST_FROM_NUMBER Function Returns the RAW binary representation of a NUMBER value.

CAST_TO_BINARY_DOUBLE
Function

Casts the RAW binary representation of a BINARY_DOUBLE
value into a BINARY_DOUBLE.

CAST_TO_BINARY_FLOAT
Function

Casts the RAW binary representation of a BINARY_FLOAT
value into a BINARY_FLOAT.

CAST_TO_BINARY_INTEGER
Function

Casts the RAW binary representation of a
BINARY_INTEGER value into a BINARY_INTEGER.

CAST_TO_NUMBER Function Casts the RAW binary representation of a NUMBER value
into a NUMBER.

CAST_TO_NVARCHAR2 Function Casts a RAW value into an NVARCHAR2 value.

CAST_TO_RAW Function Casts a VARCHAR2 value into a RAW value.

CAST_TO_VARCHAR2 Function Casts a RAW value into a VARCHAR2 value.

COMPARE Function Compares two RAW values.

CONCAT Function Concatenates up to 12 RAW values into a single RAW.

CONVERT Function Converts a RAW value from one character set to another
and returns the resulting RAW.

COPIES Function Copies a RAW value a specified number of times and
returns the concatenated RAW value.

LENGTH Function Returns the length in bytes of a RAW value.

OVERLAY Function Overlays the specified portion of a target RAW value with
an overlay RAW value, starting from a specified byte
position and proceeding for a specified number of bytes.

REVERSE Function Reverses a byte-sequence in a RAW value.

SUBSTR Function Returns a substring of a RAW value for a specified number
of bytes from a specified starting position.

Chapter 13
UTL_RAW Subprograms

13-2

Table 13-1 (Cont.) UTL_RAW Package Subprograms

Subprogram Description

TRANSLATE Function Translates the specified bytes from an input RAW value
according to the bytes in a specified translation RAW value.

TRANSLITERATE Function Converts the specified bytes from an input RAW value
according to the bytes in a specified transliteration RAW
value.

XRANGE Function Returns a RAW value containing the succession of one-byte
encodings beginning and ending with the specified byte-
codes.

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This document
uses BINARY_INTEGER to indicate data types in reference information (such as
for table types, record types, subprogram parameters, or subprogram return
values), but may use either in discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This document uses
INTEGER throughout.

BIT_AND Function
This function performs bitwise logical AND of two supplied RAW values and returns the resulting
RAW.

Syntax

UTL_RAW.BIT_AND (
 r1 IN RAW,
 r2 IN RAW)
RETURN RAW;

Parameters

Table 13-2 BIT_AND Function Parameters

Parameter Description

r1 First RAW value for AND operation

r2 Second RAW value for AND operation

Return Value

Result of the AND operation, or NULL if either input value is NULL

Chapter 13
UTL_RAW Subprograms

13-3

Usage Notes

If r1 and r2 differ in length, the operation is terminated after the last byte of the shorter
of the two RAW values, and the unprocessed portion of the longer RAW value is
appended to the partial result. The resulting length equals that of the longer of the two
input values.

BIT_COMPLEMENT Function
This function performs bitwise logical COMPLEMENT of the supplied RAW value and returns
the resulting RAW. The result length equals the input RAW length.

Syntax

UTL_RAW.BIT_COMPLEMENT (
 r IN RAW)
 RETURN RAW;

Parameters

Table 13-3 BIT_COMPLEMENT Function Parameters

Parameter Description

r RAW value for COMPLEMENT operation

Return Value

Result of the COMPLEMENT operation, or NULL if the input value is NULL

BIT_OR Function
This function performs bitwise logical OR of two supplied RAW values and returns the
resulting RAW.

Syntax

UTL_RAW.BIT_OR (
 r1 IN RAW,
 r2 IN RAW)
 RETURN RAW;

Parameters

Table 13-4 BIT_OR Function Parameters

Parameters Description

r1 First RAW value for OR operation

r2 Second RAW value for OR operation

Chapter 13
UTL_RAW Subprograms

13-4

Return Value

Result of the OR operation, or NULL if either input value is NULL

Usage Notes

If r1 and r2 differ in length, the operation is terminated after the last byte of the shorter of the
two RAW values, and the unprocessed portion of the longer RAW value is appended to the
partial result. The resulting length equals that of the longer of the two input values.

BIT_XOR Function
This function performs bitwise logical XOR ("exclusive or") of two supplied RAW values and
returns the resulting RAW.

Syntax

UTL_RAW.BIT_XOR (
 r1 IN RAW,
 r2 IN RAW)
 RETURN RAW;

Parameters

Table 13-5 BIT_XOR Function Parameters

Parameter Description

r1 First RAW value for XOR operation

r2 Second RAW value for XOR operation

Return Value

Result of the XOR operation, or NULL if either input value is NULL

Usage Notes

If r1 and r2 differ in length, the operation is terminated after the last byte of the shorter of the
two RAW values, and the unprocessed portion of the longer RAW value is appended to the
partial result. The resulting length equals that of the longer of the two input values.

CAST_FROM_BINARY_DOUBLE Function
This function returns the RAW binary representation of a BINARY_DOUBLE value.

Syntax

UTL_RAW.CAST_FROM_BINARY_DOUBLE(
 n IN BINARY_DOUBLE,
 endianess IN BINARY_INTEGER DEFAULT 1)
RETURN RAW;

Chapter 13
UTL_RAW Subprograms

13-5

Parameters

Table 13-6 CAST_FROM_BINARY_DOUBLE Function Parameters

Parameter Description

n The BINARY_DOUBLE value

endianess BINARY_INTEGER value indicating the endianess

The function recognizes the defined constants big_endian,
little_endian, and machine_endian. The default is big_endian.

Return Value

RAW binary representation of the BINARY_DOUBLE value, or NULL if the input is NULL

Usage Notes

• An eight-byte BINARY_DOUBLE value maps to the IEEE 754 double-precision format
as follows:

byte 0: bit 63 ~ bit 56
byte 1: bit 55 ~ bit 48
byte 2: bit 47 ~ bit 40
byte 3: bit 39 ~ bit 32
byte 4: bit 31 ~ bit 24
byte 5: bit 23 ~ bit 16
byte 6: bit 15 ~ bit 8
byte 7: bit 7 ~ bit 0

• Parameter endianess specifies how the bytes of the BINARY_DOUBLE value are
mapped to the bytes of the RAW value. In the following matrix, rb0 to rb7 refer to
the bytes of the RAW and db0 to db7 refer to the bytes of the BINARY_DOUBLE.

Endianess rb0 rb1 rb2 rb3 rb4 rb5 rb6 rb7

big_endian db0 db1 db2 db3 db4 db5 db6 db7
little_endian db7 db6 db5 db4 db3 db2 db1 db0

• When machine_endian is specified, the eight bytes of the BINARY_DOUBLE
argument are copied straight across into the RAW return value. The effect is the
same as if the user specified big_endian on a big-endian system or
little_endian on a little-endian system.

CAST_FROM_BINARY_FLOAT Function
This function returns the RAW binary representation of a BINARY_FLOAT value.

Syntax

UTL_RAW.CAST_FROM_BINARY_FLOAT(
 n IN BINARY_FLOAT,

Chapter 13
UTL_RAW Subprograms

13-6

 endianess IN BINARY_INTEGER DEFAULT 1)
RETURN RAW;

Parameters

Table 13-7 CAST_FROM_BINARY_FLOAT Function Parameters

Parameter Description

n The BINARY_FLOAT value

endianess BINARY_INTEGER value indicating the endianess

The function recognizes the defined constants big_endian,
little_endian, and machine_endian. The default is big_endian.

Return Value

RAW binary representation of the BINARY_FLOAT value, or NULL if the input is NULL

Usage Notes

• A four-byte BINARY_FLOAT value maps to the IEEE 754 single-precision format as follows:

byte 0: bit 31 ~ bit 24
byte 1: bit 23 ~ bit 16
byte 2: bit 15 ~ bit 8
byte 3: bit 7 ~ bit 0

• The parameter endianess specifies how the bytes of the BINARY_FLOAT value are
mapped to the bytes of the RAW value. In the following matrix, rb0 to rb3 refer to the bytes
of the RAW and fb0 to fb3 refer to the bytes of the BINARY_FLOAT.

Endianess rb0 rb1 rb2 rb3

big_endian fbo fb1 fb2 fb3
little_endian fb3 fb2 fb1 fb0

• When machine_endian is specified, the four bytes of the BINARY_FLOAT argument are
copied straight across into the RAW return value. The effect is the same as if the user
specified big_endian on a big-endian system or little_endian on a little-endian system.

CAST_FROM_BINARY_INTEGER Function
This function returns the RAW binary representation of a BINARY_INTEGER value.

Syntax

UTL_RAW.CAST_FROM_BINARY_INTEGER (
 n IN BINARY_INTEGER
 endianess IN BINARY_INTEGER DEFAULT 1)
RETURN RAW;

Chapter 13
UTL_RAW Subprograms

13-7

Parameters

Table 13-8 CAST_FROM_BINARY_INTEGER Function Parameters

Parameter Description

n The BINARY_INTEGER value

endianess BINARY_INTEGER value indicating the endianess

The function recognizes the defined constants big_endian,
little_endian, and machine_endian. The default is
big_endian.

Return Value

RAW binary representation of the BINARY_INTEGER value, or NULL if the input is NULL

CAST_FROM_NUMBER Function
This function returns the RAW binary representation of a NUMBER value.

Syntax

UTL_RAW.CAST_FROM_NUMBER (
 n IN NUMBER)
 RETURN RAW;

Parameters

Table 13-9 CAST_FROM_NUMBER Function Parameters

Parameter Description

n The NUMBER value

Return Value

RAW binary representation of the NUMBER value, or NULL if the input is NULL

CAST_TO_BINARY_DOUBLE Function
This function casts the RAW binary representation of a BINARY_DOUBLE value into a
BINARY_DOUBLE value.

Syntax

UTL_RAW.CAST_TO_BINARY_DOUBLE (
 r IN RAW
 endianess IN BINARY_INTEGER DEFAULT 1)
RETURN BINARY_DOUBLE;

Chapter 13
UTL_RAW Subprograms

13-8

Parameters

Table 13-10 CAST_TO_BINARY_DOUBLE Function Parameters

Parameter Description

r RAW binary representation of a BINARY_DOUBLE value

endianess BINARY_INTEGER value indicating the endianess

The function recognizes the defined constants big_endian,
little_endian, and machine_endian. The default is big_endian.

Return Value

The BINARY_DOUBLE value, or NULL if the input is NULL

Usage Notes

• If the RAW argument is more than eight bytes, only the first eight bytes are used and the
rest of the bytes are ignored. If the result is -0, +0 is returned. If the result is NaN, the
value BINARY_DOUBLE_NAN is returned.

• An eight-byte BINARY_DOUBLE value maps to the IEEE 754 double-precision format as
follows:

byte 0: bit 63 ~ bit 56
byte 1: bit 55 ~ bit 48
byte 2: bit 47 ~ bit 40
byte 3: bit 39 ~ bit 32
byte 4: bit 31 ~ bit 24
byte 5: bit 23 ~ bit 16
byte 6: bit 15 ~ bit 8
byte 7: bit 7 ~ bit 0

• The parameter endianess specifies how the bytes of the BINARY_DOUBLE value are
mapped to the bytes of the RAW value. In the following matrix, rb0 to rb7 refer to the bytes
in RAW and db0 to db7 refer to the bytes in BINARY_DOUBLE.

Endianess rb0 rb1 rb2 rb3 rb4 rb5 rb6 rb7

big_endian db0 db1 db2 db3 db4 db5 db6 db7
little_endian db7 db6 db5 db4 db3 db2 db1 db0

• When machine_endian is specified, the eight bytes of the RAW argument are copied
straight across into the BINARY_DOUBLE return value. The effect is the same as if the user
specified big_endian on a big-endian system or little_endian on a little-endian system.

Exceptions

If the RAW argument is less than eight bytes, a VALUE_ERROR exception is raised.

Chapter 13
UTL_RAW Subprograms

13-9

CAST_TO_BINARY_FLOAT Function
This function casts the RAW binary representation of a BINARY_FLOAT value into a
BINARY_FLOAT value.

Syntax

UTL_RAW.CAST_TO_BINARY_FLOAT (
 r IN RAW
 endianess IN BINARY_INTEGER DEFAULT 1)
RETURN BINARY_FLOAT;

Parameters

Table 13-11 CAST_TO_BINARY_FLOAT Function Parameters

Parameter Description

r RAW binary representation of a BINARY_FLOAT value

endianess BINARY_INTEGER value indicating the endianess

The function recognizes the defined constants big_endian,
little_endian, and machine_endian. The default is
big_endian.

Return Value

The BINARY_FLOAT value, or NULL if the input is NULL

Usage Notes

• If the RAW argument is more than four bytes, only the first four bytes are used and
the rest of the bytes are ignored. If the result is -0, +0 is returned. If the result is
NaN, the value BINARY_FLOAT_NAN is returned.

• A four-byte BINARY_FLOAT value maps to the IEEE 754 single-precision format as
follows:

byte 0: bit 31 ~ bit 24
byte 1: bit 23 ~ bit 16
byte 2: bit 15 ~ bit 8
byte 3: bit 7 ~ bit 0

• The parameter endianess specifies how the bytes of the BINARY_FLOAT value are
mapped to the bytes of the RAW value. In the following matrix, rb0 to rb3 refer to
the bytes in RAW and fb0 to fb3 refer to the bytes in BINARY_FLOAT.

Endianess rb0 rb1 rb2 rb3

big_endian fbo fb1 fb2 fb3
little_endian fb3 fb2 fb1 fb0

Chapter 13
UTL_RAW Subprograms

13-10

• When machine_endian is specified, the four bytes of the RAW argument are copied straight
across into the BINARY_FLOAT return value. The effect is the same as if the user specified
big_endian on a big-endian system or little_endian on a little-endian system.

Exceptions

If the RAW argument is less than four bytes, a VALUE_ERROR exception is raised.

CAST_TO_BINARY_INTEGER Function
This function casts the RAW binary representation of a BINARY_INTEGER value into a
BINARY_INTEGER value.

Syntax

UTL_RAW.CAST_TO_BINARY_INTEGER (
 r IN RAW
 endianess IN BINARY_INTEGER DEFAULT 1)
RETURN BINARY_INTEGER;

Parameters

Table 13-12 CAST_TO_BINARY_INTEGER Function Parameters

Parameter Description

r RAW binary representation of a BINARY_INTEGER value

endianess BINARY_INTEGER value indicating the endianess

The function recognizes the defined constants big_endian,
little_endian, and machine_endian. The default is big_endian.

Return Value

The BINARY_INTEGER value, or NULL if the input is NULL

CAST_TO_NUMBER Function
This function casts the RAW binary representation of a NUMBER value into a NUMBER value.

Syntax

UTL_RAW.CAST_TO_NUMBER (
 r IN RAW)
 RETURN NUMBER;

Parameters

Table 13-13 CAST_TO_NUMBER Function Parameters

Parameter Description

r RAW binary representation of a NUMBER value

Chapter 13
UTL_RAW Subprograms

13-11

Return Value

The NUMBER value, or NULL if the input is NULL

CAST_TO_NVARCHAR2 Function
This function casts a RAW value represented using some number of data bytes into an
NVARCHAR2 value with that number of data bytes.

Note:

When casting to NVARCHAR2, the current Globalization Support character set
is used for the characters within that NVARCHAR2 value.

Syntax

UTL_RAW.CAST_TO_NVARCHAR2 (
 r IN RAW)
RETURN NVARCHAR2;

Parameters

Table 13-14 CAST_TO_NVARCHAR2 Function Parameters

Parameter Description

r RAW value, without leading length field, to be changed to an
NVARCHAR2 value

Return Value

Data converted from the input RAW value, or NULL if the input is NULL

CAST_TO_RAW Function
This function casts a VARCHAR2 value represented using some number of data bytes
into a RAW value with that number of data bytes. The data itself is not modified in any
way, but its data type is recast to a RAW data type.

Syntax

UTL_RAW.CAST_TO_RAW (
 c IN VARCHAR2)
RETURN RAW;

Chapter 13
UTL_RAW Subprograms

13-12

Parameters

Table 13-15 CAST_TO_RAW Function Parameters

Parameter Description

c VARCHAR2 value to be changed to a RAW value

Return Values

Data converted from the input VARCHAR2 value, with the same byte-length as the input value
but without a leading length field, or NULL if the input is NULL

CAST_TO_VARCHAR2 Function
This function casts a RAW value represented using some number of data bytes into a
VARCHAR2 value with that number of data bytes.

Note:

When casting to VARCHAR2, the current Globalization Support character set is used
for the characters within that VARCHAR2 value.

Syntax

UTL_RAW.CAST_TO_VARCHAR2 (
 r IN RAW)
RETURN VARCHAR2;

Parameters

Table 13-16 CAST_TO_VARCHAR2 Function Parameters

Parameter Description

r RAW value, without leading length field, to be changed to a VARCHAR2 value

Return Value

Data converted from the input RAW value, or NULL if the input is NULL

Chapter 13
UTL_RAW Subprograms

13-13

COMPARE Function
This function compares two RAW values. If they differ in length, then the shorter is
extended on the right according to the optional pad parameter.

Syntax

UTL_RAW.COMPARE (
 r1 IN RAW,
 r2 IN RAW
 [,pad IN RAW DEFAULT NULL])
 RETURN NUMBER;

Parameters

Table 13-17 COMPARE Function Parameters

Parameter Description

r1 First RAW value to be compared

Note: The value can be NULL or zero-length.

r2 Second RAW value to be compared

Note: The value can be NULL or zero-length.

pad Byte to extend whichever of the input values is shorter (default x'00')

Return Value

A NUMBER value that equals the position number (numbered from 1) of the first
mismatched byte when comparing the two input values, or 0 if the input values are
identical or both NULL

CONCAT Function
This function concatenates up to 12 RAW values into a single RAW value. If the
concatenated size exceeds 32 KB, an error is returned.

Syntax

UTL_RAW.CONCAT (
 r1 IN RAW DEFAULT NULL,
 r2 IN RAW DEFAULT NULL,
 r3 IN RAW DEFAULT NULL,
 r4 IN RAW DEFAULT NULL,
 r5 IN RAW DEFAULT NULL,
 r6 IN RAW DEFAULT NULL,
 r7 IN RAW DEFAULT NULL,
 r8 IN RAW DEFAULT NULL,
 r9 IN RAW DEFAULT NULL,
 r10 IN RAW DEFAULT NULL,
 r11 IN RAW DEFAULT NULL,

Chapter 13
UTL_RAW Subprograms

13-14

 r12 IN RAW DEFAULT NULL)
 RETURN RAW;

Parameters

Items r1...r12 are the RAW items to concatenate.

Return Value

RAW value consisting of the concatenated input values

Exceptions

There is an error if the sum of the lengths of the inputs exceeds the maximum allowable
length for a RAW value, which is 32767 bytes.

CONVERT Function
This function converts a RAW value from one character set to another and returns the resulting
RAW value.

Both character sets must be supported character sets defined to the database.

Syntax

UTL_RAW.CONVERT (
 r IN RAW,
 to_charset IN VARCHAR2,
 from_charset IN VARCHAR2)
 RETURN RAW;

Parameters

Table 13-18 CONVERT Function Parameters

Parameter Description

r RAW byte-string to be converted

to_charset Name of Globalization Support character set to which the input value is
converted

from_charset Name of Globalization Support character set from which the input value is
converted

Return Value

Converted byte-string according to the specified character set

Exceptions

VALUE_ERROR occurs under any of the following circumstances:

• The input byte-string is missing, NULL, or zero-length.

• The from_charset or to_charset parameter is missing, NULL, or zero-length.

Chapter 13
UTL_RAW Subprograms

13-15

• The from_charset or to_charset parameter is invalid or unsupported.

COPIES Function
This function returns a specified number of copies of a specified RAW value,
concatenated.

Syntax

UTL_RAW.COPIES (
 r IN RAW,
 n IN NUMBER)
 RETURN RAW;

Parameters

Table 13-19 COPIES Function Parameters

Parameters Description

r RAW value to be copied

n Number of times to copy the RAW value

Note: This must be a positive value.

Return Value

RAW value copied the specified number of times and concatenated

Exceptions

VALUE_ERROR occurs under any of the following circumstances:

• The value to be copied is missing, NULL, or zero-length.

• The number of times to copy the value is less than or equal to 0.

• The length of the result exceeds the maximum allowable length for a RAW value,
which is 32767 bytes.

LENGTH Function
This function returns the length in bytes of a RAW value.

Syntax

UTL_RAW.LENGTH (
 r IN RAW)
RETURN NUMBER;

Chapter 13
UTL_RAW Subprograms

13-16

Parameters

Table 13-20 LENGTH Function Parameters

Parameter Description

r RAW byte-stream to be measured

Return Value

NUMBER value indicating the length of the RAW value, in bytes

OVERLAY Function
This function overlays the specified portion of a target RAW value with an overlay RAW, starting
from a specified byte position and proceeding for a specified number of bytes.

Syntax

UTL_RAW.OVERLAY (
 overlay_str IN RAW,
 target IN RAW
 [,pos IN BINARY_INTEGER DEFAULT 1,
 len IN BINARY_INTEGER DEFAULT NULL,
 pad IN RAW DEFAULT NULL])
 RETURN RAW;

Parameters

Table 13-21 OVERLAY Function Parameters

Parameters Description

overlay_str Byte-string used to overlay target

target Target byte-string to be overlaid

pos Byte position in target at which to start overlay, numbered from 1 (default 1)

len Number of bytes to overlay (default: length of overlay_str)

pad Pad byte used when len exceeds overlay_str length or pos exceeds
target length (default x'00')

Return Value

RAW target byte value overlaid as specified

Usage Notes

If overlay_str has less than len bytes, then it is extended to len bytes using the pad byte. If
overlay_str exceeds len bytes, then the extra bytes in overlay_str are ignored. If len
bytes beginning at position pos of target exceed the length of target, then target is
extended to contain the entire length of overlay_str.

Chapter 13
UTL_RAW Subprograms

13-17

If len is specified, it must be greater than or equal to 0. If pos is specified, it must be
greater than or equal to 1. If pos exceeds the length of target, then target is padded
with pad bytes to position pos, and target is further extended with overlay_str bytes.

Exceptions

VALUE_ERROR occurs under any of the following circumstances:

• The overlay_str is NULL or zero-length.

• The target is missing or undefined.

• The length of target exceeds the maximum length for a RAW value, 32767 bytes.

• The len is less than 0.

• The pos is less than or equal to 0.

REVERSE Function
This function reverses a RAW byte-sequence from end to end.

For example, x'0102F3' would be reversed to x'F30201', and 'xyz' would be
reversed to 'zyx'. The result length is the same as the input length.

Syntax

UTL_RAW.REVERSE (
 r IN RAW)
 RETURN RAW;

Parameters

Table 13-22 REVERSE Function Parameters

Parameter Description

r RAW value to reverse

Return Value

RAW value that is the reverse of the input value

Exceptions

VALUE_ERROR occurs if the input value is NULL or zero-length.

SUBSTR Function
This function returns a substring of a RAW value for a specified number of bytes and
starting position.

Syntax

UTL_RAW.SUBSTR (
 r IN RAW,

Chapter 13
UTL_RAW Subprograms

13-18

 pos IN BINARY_INTEGER
 [,len IN BINARY_INTEGER DEFAULT NULL])
 RETURN RAW;

Parameters

Table 13-23 SUBSTR Function Parameters

Parameter Description

r RAW byte-string from which the substring is extracted

pos Byte position at which to begin extraction, either counting forward from the
beginning of the input byte-string (positive value) or backward from the end
(negative value)

len Number of bytes, beginning at pos and proceeding toward the end of the
byte string, to extract (default: to the end of the RAW byte-string)

Return Value

RAW substring beginning at position pos for len bytes, or NULL if the input is NULL

Usage Notes

If pos is positive, SUBSTR counts from the beginning of the RAW byte-string to find the first byte.
If pos is negative, SUBSTR counts backward from the end of the RAW byte-string. The value of
pos cannot equal 0.

A specified value of len must be positive. If len is omitted, SUBSTR returns all bytes to the end
of the RAW byte-string.

Exceptions

VALUE_ERROR occurs under any of the following circumstances:

• The pos equals 0 or is greater than the length of r.

• The len is less than or equal to 0.

• The len is greater than (length of r) minus (pos-1).

Examples

Example 1: This example, run in ttIsql, counts backward 15 bytes from the end of the input
RAW value for its starting position, then takes a substring of five bytes starting at that point.

declare
 sr raw(32767);
 r raw(32767);

begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 r := UTL_RAW.SUBSTR(sr, -15, 5);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);

Chapter 13
UTL_RAW Subprograms

13-19

end;
/

The result is as follows:

source raw: 1236567812125612344434341234567890ABAA1234
return raw: 5612344434

PL/SQL procedure successfully completed.

Here the input and output are presented, for purposes of this discussion, in a way that
gives a clearer indication of the functionality:

source raw: 12 36 56 78 12 12 56 12 34 44 34 34 12 34 56 78 90 AB AA
12 34
return raw: 56 12 34 44 34

The substring starts at the 15th byte from the end.

Example 2: This example, run in ttIsql, has the same input RAW value and starting
point as the preceding example, but because len is not specified the substring is taken
from the starting point to the end of the input.

declare
 sr raw(32767);
 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 r := UTL_RAW.SUBSTR(sr, -15);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

Here is the result:

source raw: 1236567812125612344434341234567890ABAA1234
return raw: 5612344434341234567890ABAA1234

Here the input and output are presented, for purposes of this discussion, in a way that
gives a clearer indication of the functionality:

source raw: 12 36 56 78 12 12 56 12 34 44 34 34 12 34 56 78 90 AB AA
12 34
return raw: 56 12 34 44 34 34 12 34 56 78 90 AB AA 12 34

Chapter 13
UTL_RAW Subprograms

13-20

TRANSLATE Function
This function performs a byte-by-byte translation of a RAW value, given an input set of bytes, a
set of bytes to search for and translate from in the input bytes, and a set of corresponding
bytes to translate to.

Whenever a byte in the specified from_set is found in the input RAW value, it is translated to
the corresponding byte in the to_set for the output RAW value, or it is simply not included in
the output RAW value if there is no corresponding byte in to_set. Any bytes in the input RAW
value that do not appear in from_set are simply copied as-is to the output RAW value.

Syntax

UTL_RAW.TRANSLATE (
 r IN RAW,
 from_set IN RAW,
 to_set IN RAW)
 RETURN RAW;

Note:

Be aware that to_set and from_set are reversed in the calling sequence compared
to TRANSLITERATE.

Parameters

Table 13-24 TRANSLATE Function Parameters

Parameter Description

r RAW source byte-string whose bytes are to be translated, as applicable

from_set RAW byte-codes that are searched for in the source byte-string

Where found, they are translated in the result.

to_set RAW byte-codes to translate to

Where a from_set byte is found in the source byte-string, it is translated in
the result to the corresponding to_set byte, as applicable.

Return Value

RAW value with the translated byte-string

Usage Notes

• If to_set is shorter than from_set, the extra from_set bytes have no corresponding
translation bytes. Bytes from the input RAW value that match any such from_set bytes are
not translated or included in the result. They are effectively translated to NULL.

• If to_set is longer than from_set, the extra to_set bytes are ignored.

• If a byte value is repeated in from_set, the repeated occurrence is ignored.

Chapter 13
UTL_RAW Subprograms

13-21

Note:

Differences from TRANSLITERATE:

• The from_set parameter comes before the to_set parameter in the
calling sequence.

• Bytes from the source byte-string that appear in from_set but have no
corresponding values in to_set are not translated or included in the
result.

• The resulting RAW value may be shorter than the input RAW value.

Note that TRANSLATE and TRANSLITERATE only differ in functionality when
to_set has fewer bytes than from_set.

Exceptions

VALUE_ERROR occurs if the source byte string, from_set, or to_set is NULL or zero-
length.

Examples

Example 1: In this example, run in ttIsql, from_set is x'12AA34' and to_set is
x'CD'. Wherever '12' appears in the input RAW value it is replaced by 'CD' in the
result. Wherever 'AA' or '34' appears in the input RAW value, because there are no
corresponding bytes in to_set, those bytes are not included in the result (effectively
translated to NULL).

You can compare this to Examples in the TRANSLITERATE section to see how the
functions differ.

declare
 sr raw(32767);
 from_set raw(32767);
 to_set raw(32767);
 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 from_set := hextoraw('12AA34');
 to_set := hextoraw('CD');
 dbms_output.put_line('from_set: ' || from_set);
 dbms_output.put_line('to_set: ' || to_set);
 r := UTL_RAW.TRANSLATE(sr, from_set, to_set);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

The result is as follows:

from_set: 12AA34
to_set: CD
source raw: 1236567812125612344434341234567890ABAA1234

Chapter 13
UTL_RAW Subprograms

13-22

return raw: CD365678CDCD56CD44CD567890ABCD

PL/SQL procedure successfully completed.

The inputs and output are presented in the following, for purposes of this discussion, in a way
that gives a clearer indication of the functionality.

from_set: 12 AA 34
to_set: CD
source raw: 12 365678 12 12 56 12 34 44 34 34 12 34 567890AB AA 12 34
return raw: CD 365678 CD CD 56 CD 44 CD 567890AB CD

Example 2: In this example, run in ttIsql, the from_set is x'12AA12' and the to_set is
x'CDABEF'. Wherever '12' appears in the input RAW it is replaced by 'CD' in the result.
Wherever 'AA' appears in the input it is replaced by 'AB' in the result. The second '12' in
from_set is ignored, and therefore the corresponding byte in to_set is ignored as well.

declare
 sr raw(32767);
 from_set raw(32767);
 to_set raw(32767);
 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 from_set := hextoraw('12AA12');
 to_set := hextoraw('CDABEF');
 dbms_output.put_line('from_set: ' || from_set);
 dbms_output.put_line('to_set: ' || to_set);
 r := UTL_RAW.TRANSLATE(sr, from_set, to_set);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

The result is as follows. Note this is the same behavior as for TRANSLITERATE with the same
input RAW, from_set, and to_set, as shown in Examples in the TRANSLITERATE section.

from_set: 12AA12
to_set: CDABEF
source raw: 1236567812125612344434341234567890ABAA1234
return raw: CD365678CDCD56CD34443434CD34567890ABABCD34

PL/SQL procedure successfully completed.

TRANSLITERATE Function
This function performs a byte-by-byte transliteration of a RAW value, given an input set of
bytes, a set of bytes to search for and convert from in the input bytes, and a set of
corresponding bytes to convert to.

Whenever a byte in the specified from_set is found in the input RAW value, it is converted to
the corresponding byte in the to_set for the output RAW value, or it is converted to the

Chapter 13
UTL_RAW Subprograms

13-23

specified "padding" byte if there is no corresponding byte in to_set. Any bytes in the
input RAW value that do not appear in from_set are copied as-is to the output RAW
value.

Syntax

UTL_RAW.TRANSLITERATE (
 r IN RAW,
 to_set IN RAW DEFAULT NULL,
 from_set IN RAW DEFAULT NULL,
 pad IN RAW DEFAULT NULL)
 RETURN RAW;

Note:

Be aware that to_set and from_set are reversed in the calling sequence
compared to TRANSLATE.

Parameters

Table 13-25 TRANSLITERATE Function Parameters

Parameter Description

r RAW source byte-string whose bytes are to be converted, as applicable

to_set RAW byte-codes to convert to

Where a from_set byte is found in the source byte-string, it is
converted in the result to the corresponding to_set byte, as
applicable. This defaults to a NULL string effectively extended with pad
to the length of from_set, as necessary.

from_set RAW byte-codes that are searched for in the source byte-string

Where found, they are converted in the result. The default is x'00'
through x'FF', which results in all bytes in the source byte string
being converted in the result.

pad A "padding" byte used as the conversion value for any byte in the
source byte-string for which there is a matching byte in from_set that
does not have a corresponding byte in to_set (default x'00')

Return Value

RAW value with the converted byte-string

Usage Notes

• If to_set is shorter than from_set, the extra from_set bytes have no
corresponding conversion bytes. Bytes from the input RAW value that match any
such from_set bytes are converted in the result to the pad byte instead.

• If to_set is longer than from_set, the extra to_set bytes are ignored.

• If a byte value is repeated in from_set, the repeated occurrence is ignored.

Chapter 13
UTL_RAW Subprograms

13-24

Note:

Differences from TRANSLATE:

• The to_set parameter comes before the from_set parameter in the calling
sequence.

• Bytes from the source byte-string that appear in from_set but have no
corresponding values in to_set are replaced by pad in the result.

• The resulting RAW value always has the same length as the input RAW value.

Note that TRANSLATE and TRANSLITERATE differ in functionality only when to_set has
fewer bytes than from_set.

Exceptions

VALUE_ERROR occurs if the source byte-string is NULL or zero-length.

Examples

Example 1: In this example, run in ttIsql, the from_set is x'12AA34' and the to_set is
x'CD'. Wherever '12' appears in the input RAW value it is replaced by 'CD' in the result.
Wherever 'AA' or '34' appears in the input RAW value, because there are no corresponding
bytes in to_set, those bytes are replaced by the pad byte, which is not specified and
therefore defaults to x'00'.

You can compare this to Examples in the TRANSLATE section to see how the functions differ.

declare
 sr raw(32767);
 from_set raw(32767);
 to_set raw(32767);
 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 from_set := hextoraw('12AA34');
 to_set := hextoraw('CD');
 dbms_output.put_line('from_set: ' || from_set);
 dbms_output.put_line('to_set: ' || to_set);
 r := UTL_RAW.TRANSLITERATE(sr, to_set, from_set);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

The result is as follows.

from_set: 12AA34
to_set: CD
source raw: 1236567812125612344434341234567890ABAA1234
return raw: CD365678CDCD56CD00440000CD00567890AB00CD00

Chapter 13
UTL_RAW Subprograms

13-25

PL/SQL procedure successfully completed.

The inputs and output are presented in the following, for purposes of this discussion, in
a way that gives a clearer indication of the functionality.

from_set: 12 AA 34
to_set: CD
source raw: 12 365678 12 12 56 12 34 44 34 34 12 34 567890AB AA 12 34
return raw: CD 365678 CD CD 56 CD 00 44 00 00 CD 00 567890AB 00 CD 00

Example 2: This example, run in ttIsql, is the same as the preceding example,
except pad is specified to be x'FF'.

declare
 sr raw(32767);
 from_set raw(32767);
 to_set raw(32767);
 pad raw(32767);
 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 from_set := hextoraw('12AA34');
 to_set := hextoraw('CD');
 pad := hextoraw('FF');
 dbms_output.put_line('from_set: ' || from_set);
 dbms_output.put_line('to_set: ' || to_set);
 r := UTL_RAW.TRANSLITERATE(sr, to_set, from_set, pad);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

The result is as follows. 'AA' and '34' are replaced by 'FF' instead of '00'.

from_set: 12AA34
to_set: CD
source raw: 1236567812125612344434341234567890ABAA1234
return raw: CD365678CDCD56CDFF44FFFFCDFF567890ABFFCDFF

PL/SQL procedure successfully completed.

Example 3: In this example, run in ttIsql, the from_set is x'12AA12' and the to_set
is x'CDABEF'. Wherever '12' appears in the input RAW value it is replaced by 'CD' in
the result. Wherever 'AA' appears in the input it is replaced by 'AB' in the result. The
second '12' in from_set is ignored, and therefore the corresponding byte in to_set is
ignored as well.

declare
 sr raw(32767);
 from_set raw(32767);
 to_set raw(32767);

Chapter 13
UTL_RAW Subprograms

13-26

 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 from_set := hextoraw('12AA12');
 to_set := hextoraw('CDABEF');
 dbms_output.put_line('from_set: ' || from_set);
 dbms_output.put_line('to_set: ' || to_set);
 r := UTL_RAW.TRANSLITERATE(sr, to_set, from_set);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

The result is as follows. Note this is the same behavior as for TRANSLATE with the same input
RAW, from_set, and to_set, as shown in Examples in the TRANSLATE section.

from_set: 12AA12
to_set: CDABEF
source raw: 1236567812125612344434341234567890ABAA1234
return raw: CD365678CDCD56CD34443434CD34567890ABABCD34

PL/SQL procedure successfully completed.

Example 4: In this example, run in ttIsql, from_set and to_set are not specified.

declare
 sr raw(32767);
 r raw(32767);
begin
 sr := hextoraw('1236567812125612344434341234567890ABAA1234');
 r := UTL_RAW.TRANSLITERATE(sr);
 dbms_output.put_line('source raw: ' || sr);
 dbms_output.put_line('return raw: ' || r);
end;
/

The result is as follows. According to the from_set and to_set defaults, all bytes are
replaced by x'00'.

source raw: 1236567812125612344434341234567890ABAA1234
return raw: 00

PL/SQL procedure successfully completed.

XRANGE Function
This function returns a RAW value containing the succession of one-byte encodings beginning
and ending with the specified byte-codes. The specified byte-codes must be single-byte RAW
values.

If the start_byte value is greater than the end_byte value, the succession of resulting bytes
begins with start_byte, wraps through x'FF' back to x'00', then ends at end_byte.

Chapter 13
UTL_RAW Subprograms

13-27

Syntax

UTL_RAW.XRANGE (
 start_byte IN RAW DEFAULT NULL,
 end_byte IN RAW DEFAULT NULL)
 RETURN RAW;

Parameters

Table 13-26 XRANGE Function Parameters

Parameters Description

start_byte Beginning byte-code value for resulting sequence (default x'00')

end_byte Ending byte-code value for resulting sequence (default x'FF')

Return Value

RAW value containing the succession of one-byte encodings

Examples

The following three examples, run in ttIsql, show the results where start_byte is
less than end_byte, start_byte is greater than end_byte, and default values are used.

Command> declare
 r raw(32767);
 s raw(32767);
 e raw(32767);
 begin
 s := hextoraw('1');
 e := hextoraw('A');
 r := utl_raw.xrange(s,e);
 dbms_output.put_line(r);
 end;
 /
0102030405060708090A

PL/SQL procedure successfully completed.

Command> declare
 r raw(32767);
 s raw(32767);
 e raw(32767);
 begin
 s := hextoraw('EE');
 e := hextoraw('A');
 r := utl_raw.xrange(s,e);
 dbms_output.put_line(r);
 end;
 /
EEEFF0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF000102030405060708090A

Chapter 13
UTL_RAW Subprograms

13-28

PL/SQL procedure successfully completed.

Command> declare
 r raw(32767);
 begin
 r := utl_raw.xrange();
 dbms_output.put_line(r);
 end;
 /
000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F2021222324252
627
28292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4
E4F
505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F7071727374757
677
78797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9
E9F
A0A1A2A3A4A5A6A7A8A9AAABACADAEAFB0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC0C1C2C3C4C5C
6C7
C8C9CACBCCCDCECFD0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFE0E1E2E3E4E5E6E7E8E9EAEBECEDE
EEF
F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF

PL/SQL procedure successfully completed.

Chapter 13
UTL_RAW Subprograms

13-29

14
UTL_RECOMP

The UTL_RECOMP package recompiles invalid PL/SQL modules, invalid views, index types, and
operators in a database.

This chapter contains the following topics:

• Using UTL_RECOMP

– Overview

– Operational notes

– Examples

• UTL_RECOMP Subprograms

Using UTL_RECOMP
• Overview

• Operational Notes

• Examples

Overview
UTL_RECOMP is particularly useful after a major-version upgrade that typically invalidates all
PL/SQL objects.

Although invalid objects are recompiled automatically on use, it is useful to run this before
operation to eliminate or minimize subsequent latencies due to on-demand automatic
recompilation at runtime.

Operational Notes
• This package must be run using ttIsql.

• To use this package, you must be the instance administrator and run it as
SYS.UTL_RECOMP.

• This package expects the following packages to have been created with VALID status:

– STANDARD (standard.sql)

– DBMS_STANDARD (dbmsstdx.sql)

– DBMS_RANDOM (dbmsrand.sql)

• There should be no other DDL on the database while running entries in this package. Not
following this recommendation may lead to deadlocks.

• Because TimesTen does not support DBMS_SCHEDULER, the number of recompile threads
to run in parallel is always 1, regardless of what the user specifies. Therefore, there is no
effective difference between RECOMP_PARALLEL and RECOMP_SERIAL in TimesTen.

14-1

Examples
Recompile all objects sequentially:

Command> EXECUTE SYS.UTL_RECOMP.RECOMP_SERIAL();

Recompile objects in schema SCOTT sequentially:

Command> EXECUTE SYS.UTL_RECOMP.RECOMP_SERIAL('SCOTT');

UTL_RECOMP Subprograms
Table 14-1 summarizes the UTL_RECOMP subprograms, followed by a full description of
each subprogram.

Table 14-1 UTL_RECOMP Package Subprograms

Subprogram Description

RECOMP_PARALLEL
Procedure

Recompiles invalid objects in a given schema, or all invalid
objects in the database, in parallel.

As noted earlier, in TimesTen the number of recompile threads
to run in parallel is always 1, regardless of what the user
specifies. Therefore, there is no effective difference between
RECOMP_PARALLEL and RECOMP_SERIAL in TimesTen.

RECOMP_SERIAL
Procedure

Recompiles invalid objects in a given schema or all invalid
objects in the database.

Note:

• The PLS_INTEGER and BINARY_INTEGER data types are identical. This
document uses BINARY_INTEGER to indicate data types in reference
information (such as for table types, record types, subprogram
parameters, or subprogram return values), but may use either in
discussion and examples.

• The INTEGER and NUMBER(38) data types are also identical. This
document uses INTEGER throughout.

RECOMP_PARALLEL Procedure
This procedure uses the information exposed in the DBA_Dependencies view to
recompile invalid objects in the database, or in a given schema, in parallel.

In TimesTen, the threads value is always 1 regardless of how it is set. As a result,
there is no effective difference between RECOMP_PARALLEL and RECOMP_SERIAL.

Chapter 14
UTL_RECOMP Subprograms

14-2

Syntax

UTL_RECOMP.RECOMP_PARALLEL(
 threads IN BINARY_INTEGER DEFAULT NULL,
 schema IN VARCHAR2 DEFAULT NULL,
 flags IN BINARY_INTEGER DEFAULT 0);

Parameters

Table 14-2 RECOMP_PARALLEL Procedure Parameters

Parameter Description

threads The number of recompile threads to run in parallel

In TimesTen, threads is always 1.

schema The schema in which to recompile invalid objects

If NULL, all invalid objects in the database are recompiled.

flags Flag values intended for internal testing and diagnosability only

RECOMP_SERIAL Procedure
This procedure recompiles invalid objects in a given schema or all invalid objects in the
database.

Syntax

UTL_RECOMP.RECOMP_SERIAL(
 schema IN VARCHAR2 DEFAULT NULL,
 flags IN BINARY_INTEGER DEFAULT 0);

Parameters

Table 14-3 RECOMP_SERIAL Procedure Parameters

Parameter Description

schema The schema in which to recompile invalid objects

If NULL, all invalid objects in the database are recompiled.

flags Flag values intended for internal testing and diagnosability only

Chapter 14
UTL_RECOMP Subprograms

14-3

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.1.0

	1 Introduction to TimesTen-Supplied PL/SQL Packages and Types
	Package Overview
	Package Components
	Displaying the List of TimesTen-Supplied Packages
	Using TimesTen-Supplied Packages
	Referencing Package Contents
	Running Package Examples

	Summary of TimesTen-Supplied PL/SQL Packages

	2 DBMS_LOB
	Using DBMS_LOB
	Overview
	Security Model
	Constants
	Data Types
	Rules and Limits
	Operational Notes
	Exceptions

	DBMS_LOB Subprograms
	APPEND Procedures
	CLOSE Procedures
	COMPARE Functions
	CONVERTTOBLOB Procedure
	CONVERTTOCLOB Procedure
	COPY Procedures
	CREATETEMPORARY Procedures
	ERASE Procedures
	FREETEMPORARY Procedures
	GETCHUNKSIZE Functions
	GETLENGTH Functions
	GET_STORAGE_LIMIT Functions
	INSTR Functions
	ISOPEN Functions
	ISTEMPORARY Functions
	OPEN Procedures
	READ Procedures
	SUBSTR Functions
	TRIM Procedures
	WRITE Procedures
	WRITEAPPEND Procedures

	3 DBMS_LOCK
	Using DBMS_LOCK
	DBMS_LOCK Subprograms
	SLEEP Procedure

	4 DBMS_OUTPUT
	Using DBMS_OUTPUT
	Overview
	Operational Notes
	Rules and Limits
	Exceptions
	Examples

	Data Structures
	CHARARR Table Type
	DBMSOUTPUT_LINESARRAY Table Type

	DBMS_OUTPUT Subprograms
	DISABLE Procedure
	ENABLE Procedure
	GET_LINE Procedure
	GET_LINES Procedure
	NEW_LINE Procedure
	PUT Procedure
	PUT_LINE Procedure

	5 DBMS_PREPROCESSOR
	Using DBMS_PREPROCESSOR
	Overview
	Operational Notes

	Data Structures
	SOURCE_LINES_T Table Type

	DBMS_PREPROCESSOR Subprograms
	GET_POST_PROCESSED_SOURCE Function
	PRINT_POST_PROCESSED_SOURCE Procedure

	6 DBMS_RANDOM
	Using DBMS_RANDOM
	Operational Notes

	DBMS_RANDOM Subprograms
	INITIALIZE Procedure
	NORMAL Function
	RANDOM Function
	SEED Procedure
	STRING Function
	TERMINATE Procedure
	VALUE Function

	7 DBMS_SQL
	Using DBMS_SQL
	Overview
	Security Model
	Constants
	Operational Notes
	Exceptions
	Examples
	Example 1: Basic
	Example 2: Copy Between Tables
	Examples 3, 4, and 5: Bulk DML
	Example 6: Define an Array
	Example 7: Describe Columns
	Example 8: RETURNING Clause
	Example 9: PL/SQL Block in Dynamic SQL

	Data Structures
	DESC_REC Record Type
	DESC_REC2 Record Type
	DESC_REC3 Record Type
	BINARY_DOUBLE_TABLE Table Type
	BINARY_FLOAT_TABLE Table Type
	BLOB_TABLE Table Type
	CLOB_TABLE Table Type
	DATE_TABLE Table Type
	DESC_TAB Table Type
	DESC_TAB2 Table Type
	DESC_TAB3 Table Type
	INTERVAL_DAY_TO_SECOND_TABLE Table Type
	INTERVAL_YEAR_TO_MONTH_TABLE Table Type
	NUMBER_TABLE Table Type
	TIME_TABLE Table Type
	TIMESTAMP_TABLE Table Type
	VARCHAR2_TABLE Table Type
	VARCHAR2A Table Type
	VARCHAR2S Table Type

	DBMS_SQL Subprograms
	BIND_ARRAY Procedure
	BIND_VARIABLE Procedure
	CLOSE_CURSOR Procedure
	COLUMN_VALUE Procedure
	DEFINE_ARRAY Procedure
	DEFINE_COLUMN Procedure
	DESCRIBE_COLUMNS Procedure
	DESCRIBE_COLUMNS2 Procedure
	DESCRIBE_COLUMNS3 Procedure
	EXECUTE Function
	EXECUTE_AND_FETCH Function
	FETCH_ROWS Function
	IS_OPEN Function
	LAST_ERROR_POSITION Function
	LAST_ROW_COUNT Function
	LAST_ROW_ID Function
	LAST_SQL_FUNCTION_CODE Function
	OPEN_CURSOR Function
	PARSE Procedures
	TO_CURSOR_NUMBER Function
	TO_REFCURSOR Function
	VARIABLE_VALUE Procedure

	8 DBMS_UTILITY
	Using DBMS_UTILITY
	Security Model
	Constants
	Data Types
	Exceptions

	DBMS_UTILITY Subprograms
	CANONICALIZE Procedure
	COMMA_TO_TABLE Procedure
	COMPILE_SCHEMA Procedure
	DB_VERSION Procedure
	FORMAT_CALL_STACK Function
	FORMAT_ERROR_BACKTRACE Function
	FORMAT_ERROR_STACK Function
	GET_CPU_TIME Function
	GET_DEPENDENCY Procedure
	GET_ENDIANNESS Function
	GET_HASH_VALUE Function
	GET_SQL_HASH Function
	GET_TIME Function
	INVALIDATE Procedure
	IS_BIT_SET Function
	NAME_RESOLVE Procedure
	NAME_TOKENIZE Procedure
	TABLE_TO_COMMA Procedure
	VALIDATE Procedure

	9 TT_DB_VERSION
	Using TT_DB_VERSION
	Overview
	Constants
	Examples

	10 TT_STATS
	Using TT_STATS
	Overview
	Security Model
	Operational Notes

	TT_STATS Subprograms
	CAPTURE_SNAPSHOT Procedure and Function
	DROP_SNAPSHOTS_RANGE Procedures
	GENERATE_REPORT_HTML Procedure
	GENERATE_REPORT_TEXT Procedure
	GET_CONFIG Procedures
	SET_CONFIG Procedure
	SHOW_SNAPSHOTS Procedures

	11 UTL_FILE
	Using UTL_FILE
	Security Model
	Operational Notes
	Rules and Limits
	Exceptions
	Examples

	Data Structures
	FILE_TYPE Record Type

	UTL_FILE Subprograms
	FCLOSE Procedure
	FCLOSE_ALL Procedure
	FCOPY Procedure
	FFLUSH Procedure
	FGETATTR Procedure
	FGETPOS Function
	FOPEN Function
	FOPEN_NCHAR Function
	FREMOVE Procedure
	FRENAME Procedure
	FSEEK Procedure
	GET_LINE Procedure
	GET_LINE_NCHAR Procedure
	GET_RAW Procedure
	IS_OPEN Function
	NEW_LINE Procedure
	PUT Procedure
	PUT_LINE Procedure
	PUT_LINE_NCHAR Procedure
	PUT_NCHAR Procedure
	PUT_RAW Procedure
	PUTF Procedure
	PUTF_NCHAR Procedure

	12 UTL_IDENT
	Using UTL_IDENT
	Overview
	Security Model
	Constants
	Examples

	13 UTL_RAW
	Using UTL_RAW
	Overview
	Operational Notes

	UTL_RAW Subprograms
	BIT_AND Function
	BIT_COMPLEMENT Function
	BIT_OR Function
	BIT_XOR Function
	CAST_FROM_BINARY_DOUBLE Function
	CAST_FROM_BINARY_FLOAT Function
	CAST_FROM_BINARY_INTEGER Function
	CAST_FROM_NUMBER Function
	CAST_TO_BINARY_DOUBLE Function
	CAST_TO_BINARY_FLOAT Function
	CAST_TO_BINARY_INTEGER Function
	CAST_TO_NUMBER Function
	CAST_TO_NVARCHAR2 Function
	CAST_TO_RAW Function
	CAST_TO_VARCHAR2 Function
	COMPARE Function
	CONCAT Function
	CONVERT Function
	COPIES Function
	LENGTH Function
	OVERLAY Function
	REVERSE Function
	SUBSTR Function
	TRANSLATE Function
	TRANSLITERATE Function
	XRANGE Function

	14 UTL_RECOMP
	Using UTL_RECOMP
	Overview
	Operational Notes
	Examples

	UTL_RECOMP Subprograms
	RECOMP_PARALLEL Procedure
	RECOMP_SERIAL Procedure

