
Oracle® TimesTen In-Memory
Database
Security Guide

Release 22.1
F35394-09
December 2025

Oracle TimesTen In-Memory Database Security Guide, Release 22.1

F35394-09

Copyright © 2018, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 What's New

New features in Release 22.1.1.17.0 i

New features in Release 22.1.1.6.0 i

New Features in Release 22.1.1.1.0 i

1 Authentication in TimesTen

Overview of TimesTen Users 1

Managing TimesTen Users 2

Creating or Identifying a Database User 2

Changing the Password of an Internal User 3

Providing a Client/Server User and Password 3

Providing a User Name and Password in an Oracle Wallet 4

Providing a User Name and Password in Connection Attributes 5

Providing a User Name and Password in a Client DSN 6

Providing a User and Password for TimesTen Utilities 7

Dropping a User From the Database 7

Cache Group Users 7

Required Users for Cache 8

Providing Both Cache Administration Users and Passwords 8

Providing the Cache Administration User Names and Passwords in an Oracle Wallet 8

Providing Cache Administration User Name and Passwords in Connection Attributes 10

Providing Cache Administration User Name and Passwords in a Client DSN 10

Registering the Oracle Database Administration User and Password 11

Registering the Oracle Cache Administration User and Password in TimesTen
Classic 11

Registering the Cache Administration User Password in TimesTen Scaleout 12

Membership Services Access Control 13

Prometheus Exporter Authentication 14

Password Management 14

Password Management Features 14

Password Lifetime and Grace Time 15

Limitations on Password Reuse 15

Maximum Failed Login Attempts and Password Lock Time 15

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page i of iv

Password Complexity Checker 15

Profile for Password Management 16

2 Authorization in TimesTen

Privileges Overview 1

About Privileges 2

Granting and Revoking Privileges 2

Functionality of Privileges 2

Overview of System Privileges 3

Overview of Object Privileges 3

Privileges for TimesTen Utilities 4

Overview of the PUBLIC Role 4

System Privileges 4

About System Privileges 5

Instance Administrator 5

Instance Administrator Privileges 5

Instance Administrator Ownership and Privileges for Database and Log Directories 6

Administrative Privileges 6

Privileges to Connect to the Database 7

ANY Keyword 7

ALL PRIVILEGES 7

Privilege Hierarchy 7

Additional System Privileges 8

Privileges Through the PUBLIC Role 8

Overview of Privileges to Create, Alter, or Drop Objects 10

Privileges to Create Database Objects 10

Privileges to Alter Database Objects 11

Privileges to Drop Database Objects 11

Privileges for SQL Objects 11

Object Privileges for Tables 12

Object Privileges for Views 13

Object Privileges for Sequences 14

Object Privileges for Materialized Views 14

Object Privileges for Synonyms 15

ALL Object Privileges 15

Privileges for PL/SQL Objects 15

Privileges for PL/SQL Statements and Operations 16

Overview of Privileges for PL/SQL Statements and Operations 16

Privileges Reference for PL/SQL Statements and Operations 16

Granting Privileges for PL/SQL Statements and Operations 17

Invalidated Objects 20

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page ii of iv

Definer's Rights and Invoker's Rights (AUTHID clause) 22

Privileges for Cache Groups 25

About Cache Group Users and Privileges 26

Oracle Cache Administration User Privilege 26

TimesTen Cache Administration User Privilege 26

Privileges for Other Cache Users 27

Non-Administrative Cache Users 27

Cache Group System Privileges 27

Cache Group Object Privileges 27

User Privilege Views 28

3 Secure Network Communication in TimesTen

Transport Layer Security for TimesTen Client/Server 1

About Using Certificates with Client/Server 2

Configuration for TLS for Client/Server 3

Server Attributes for TLS 3

Client Attributes for TLS 5

Using TLS for Client/Server in TimesTen Classic 6

Task 1: Generate Certificates and Set TLS Attributes with ttInstanceCreate 7

Task 2: Set Server Configuration for TLS in TimesTen Classic 8

Task 3: Set Client Configuration for TLS in TimesTen Classic 9

Task 4: Export Certificates and Configuration in TimesTen Classic 9

Task 5: Import Certificates and Configuration in TimesTen Classic 10

Using TLS for Client/Server in TimesTen Scaleout 10

Task 1: Generate Certificates and Set TLS Attributes with ttGridAdmin gridCreate
and instanceCreate 11

Task 2: Set Server Configuration for TLS in TimesTen Scaleout 12

Task 3: Set Client Configuration for TLS in TimesTen Scaleout 13

Task 4: Export Certificates and Configuration in TimesTen Scaleout 14

Task 5: Import Certificates and Configuration in TimesTen Scaleout 14

Using CA-Signed Certificates for Client/Server in TimesTen Classic 15

Overview for Using CA-Signed Certificates 15

Create the Server Wallet 15

Create the Client Wallet 16

Checking Operation of TLS for Client/Server 17

Transport Layer Security for TimesTen Replication 19

Task 1: Generate Certificates for Replication 20

Task 2: Copy Certificates for Replication 20

Task 3: Configure TLS for Replication 21

Task 4: Activate TLS for Replication 22

Switch Online to TLS for Replication 22

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page iii of iv

Switch All Instances Simultaneously to TLS for Replication (Offline) 23

Task 5: Check Operation of TLS for Replication 24

4 Security for the TimesTen Kubernetes Operator

Introduction to the TimesTen Kubernetes Operator 1

Privileges for the TimesTen Kubernetes Operator 1

Authorization for Users of the TimesTen Kubernetes Operator 1

Encryption for the TimesTen Kubernetes Operator 2

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page iv of iv

About This Content

TimesTen provides security through authentication, authorization and secure network
communication.

Audience

This guide is intended for anyone who is interested in security when using TimesTen.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 1 of 1

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New

This section summarizes new features and functionality of TimesTen Release 22.1 that are
documented in this guide, providing links into the guide for more information.

New features in Release 22.1.1.17.0
• Previously, you could only provide cache administration user credentials by providing the

cache administration user name and both of its passwords to the TimesTen and Oracle
databases individually in a client DSN or using connection attributes. Now, you can specify
cache administration user credentials within an Oracle Wallet where the wallet location is
provided when opening a connection. The preferred method of specifying the cache
administration user name and both passwords is by storing them in an Oracle Wallet.

See Providing Both Cache Administration Users and Passwords.

• You must register the Oracle database cache administration user name and password
internally in the TimesTen database before any cache group operation can be issued.
Before you register the Oracle cache administration user and password internally within
the TimesTen database, you must decide if you want to save these credentials in an
Oracle Wallet (recommended) or within memory (the default). To save the credentials
within an Oracle Wallet, ensure that the CacheAdminWallet connection attribute is set to 1
(likely in your DSN). This directs that the registration of the Oracle cache administration
user name and password is stored in an Oracle Wallet.

See Registering the Oracle Database Administration User and Password.

New features in Release 22.1.1.6.0
• TimesTen supports the use of certificates signed by a third-party certificate authority. See

Using CA-Signed Certificates for Client/Server in TimesTen Classic.

• The list of supported cipher suites has been updated. See Transport Layer Security for
TimesTen Client/Server. (The same cipher suites are supported for replication.)

New Features in Release 22.1.1.1.0
• New support and features have been added for use of Transport Layer Security:

– TimesTen Scaleout now supports TLS for client/server. Encryption and cipher suites
options have been added to the ttGridAdmin gridCreate command. You can export
certificates and configuration information from the server using the ttGridAdmin
gridClientExportAll command and import into the client using the ttClientImport
utility.

– There are new features for TimesTen Classic support of TLS for client/server.
Encryption and cipher suites options have been added to the ttInstanceCreate utility.
You can export certificates and configuration information from the server using the

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page i of ii

ttAdmin -clientExportAll option and import into the client using the ttClientImport
utility.

See Using TLS for Client/Server in TimesTen Scaleout and Using TLS for Client/Server in
TimesTen Classic.

What's New

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page ii of ii

1
Authentication in TimesTen

One aspect of TimesTen access control is authentication of each database user through the
use of passwords.

This chapter discusses users and passwords in TimesTen.

• Overview of TimesTen Users

• Managing TimesTen Users

• Cache Group Users

• Membership Services Access Control

• Prometheus Exporter Authentication

• Password Management

Note

Examples in this chapter use the TimesTen ttIsql utility, indicated by the Command>
prompt.

Overview of TimesTen Users
To protect access to a TimesTen database, users must be created with appropriate passwords.

There are these types of users in TimesTen:

• Administrative users: The instance administrator is the user who created the TimesTen
instance. The instance administrator must be a member of the TimesTen users group and
has full privileges within the instance. See Instance Administrator and Understanding the
TimesTen Users Group in Oracle TimesTen In-Memory Database Installation, Migration,
and Upgrade Guide.

Other uses can have administrative capabilities by being granted the ADMIN privilege. This
can be granted by the instance administrator or by another user with ADMIN privilege.

Note

See Administrative Privileges.

• TimesTen system users: The system users SYSTEM (for internal use), SYS (a schema for
system objects), and TTREP (for replication) are created during TimesTen installation, for
internal use only.

• Internal users: An internal user and associated password are defined within a TimesTen
database. The user must authenticate with the specified password for access to that
database. You can create an internal user with the CREATE USER statement.

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 1 of 16

• External users: An external user is created within the operating system but must be a
member of the TimesTen users group. External users are assumed to have been
authenticated by the operating system upon login, so there is no stored password within
the database. TimesTen uses the operating system credentials of the external user to
enable connection to TimesTen as that user. An external user must be identified to the
database through the CREATE USER ... IDENTIFIED EXTERNALLY statement.

An external user cannot connect over a TimesTen Client/Server connection unless the
client and server are on the same host.

Note

• See Understanding the TimesTen Users Group in Oracle TimesTen In-Memory
Database Installation, Migration, and Upgrade Guide and CREATE USER in
Oracle TimesTen In-Memory Database SQL Reference.

• When an external user connects from a Linux or UNIX system, TimesTen converts
the user name to upper case, rendering it case-insensitive.

Managing TimesTen Users
There are TimesTen features for managing database users.

• Creating or Identifying a Database User

• Changing the Password of an Internal User

• Providing a Client/Server User and Password

• Dropping a User From the Database

Creating or Identifying a Database User
An instance administrator or a user with the ADMIN privilege can create an internal user, identify
an external user, or alter a user. These actions can be performed either through a TimesTen
direct connection or over an encrypted client-server connection. (See Overview of TimesTen
Users in this guide and CREATE USER and ALTER USER in Oracle TimesTen In-Memory
Database SQL Reference.)
To create an internal user, provide the user name and password in the CREATE USER statement.
The following example creates the internal user terry with the password secret:

Command> CREATE USER terry IDENTIFIED BY secret;
User created.

To identify an external user, provide the user name in the CREATE USER ... IDENTIFIED
EXTERNALLY statement. The following example identifies the external user pat to the TimesTen
database:

Command> CREATE USER pat IDENTIFIED EXTERNALLY;
User created.

To change the external user pat to an internal user, perform the following ALTER USER
statement:

Command> ALTER USER pat IDENTIFIED BY secret;

Chapter 1
Managing TimesTen Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 2 of 16

To change the internal user pat to an external user, perform the following ALTER USER
statement:

Command> ALTER USER pat IDENTIFIED EXTERNALLY;

You can see what users have been created by executing a SELECT statement on the following
system views:

• SYS.ALL_USERS lists all users of the database that are visible to the current user.

• SYS.USER_USERS describes the current user of the database.

• SYS.DBA_USERS describes all users of the database. To perform a select statement on this
view, you must have the appropriate privileges granted.

For example, to see the current user, perform the following:

Command> SELECT * FROM sys.user_users;
< PAT, 4, OPEN, <NULL>, <NULL>, USERS, TEMP, 2021-02-25 12:00:17.027100, <NULL>, <NULL> >
1 row found.

Note

You can run a CREATE or ALTER USER … IDENTIFIED BY SQL statement over a client/
server connection only when TLS is used. The password is only encrypted when sent
over a TLS connection.

See SYS.ALL_USERS, SYS.USER_USERS, and SYS.DBA_USERS in the Oracle TimesTen
In-Memory Database System Tables and Views Reference.

Changing the Password of an Internal User
An internal user can alter their password through the IDENTIFIED BY clause of the ALTER USER
statement.

A user with the ADMIN privilege can alter the password of any user.

For example, to change the password for internal user TERRY to "12345":

Command> ALTER USER terry IDENTIFIED BY 12345;
User altered.

Providing a Client/Server User and Password
The preferred method of specifying a user name and password is by storing both in an Oracle
Wallet. However, you can alternatively provide the user name and password in a client DSN or
using connection attributes. Providing credentials in a wallet is more secure than supplying a
password in a client DSN or on the connection string.

You first set or change a password through CREATE USER or ALTER USER SQL statements. See
Creating or Identifying a Database User.

Once set or changed, you can provide the user and password to the TimesTen server through
one of the following methods.

• Providing a User Name and Password in an Oracle Wallet

• Providing a User Name and Password in Connection Attributes

Chapter 1
Managing TimesTen Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 3 of 16

• Providing a User Name and Password in a Client DSN

• Providing a User and Password for TimesTen Utilities

Providing a User Name and Password in an Oracle Wallet
The most secure method to provide credentials when connecting is to store a user's password
in an Oracle Wallet. When connecting, you provide the user name and wallet to supply
credentials for the connection. Supplying the user name identifies which user's password to
retrieve from within the wallet.

There are user-managed and system-managed Oracle Wallets. The system-managed wallets
are those that may be created by a user, but are used internally for internal procedures. This
section discusses user-managed wallets that are used for connecting to a TimesTen database.

To create a user-managed wallet for providing credentials when connecting:

1. Create a directory to contain your wallet. For example, you could create a directory such
as /wallets in which your user-managed wallet is stored.

2. The ttUser utility requires a full directory path in which to create a new Oracle Wallet or to
identify an existing wallet. The name of a wallet cannot be specified. Thus, the wallet is
identified by a unique full directory path. Provide the name of the wallet directory created
above and a unique name for a subdirectory under it in which to place a single wallet to the
ttUser utility.

Note

• You can store credentials for multiple users within a single Oracle wallet. For
example, you could create a wallet in the /wallets/dsn1wallet directory. Multiple
users credentials can be added into a wallet identified by /wallets/dsn1wallet.

• The credentials from only one user can exist in a wallet. Thus, if you have a single
user that has different passwords used to connect to separate DSNs, provide each
credential within different wallets. For example, if user Terry has a password to
connect to dsn1 and another password to connect to dsn2, then you could add
Terry's passwords as appropriate to a wallet in the /wallets/dsn1wallet directory
and to a wallet in the /wallets/dsn2wallet directory. Each wallet would have the
appropriate passwords to connect to each DSN.

The ttUser utility performs the following:

• If the location does not already exist, TimesTen creates the specified subdirectory and the
wallet in the wallet directory location specified. The credentials are added to the Oracle
Wallet.

• If the wallet does exist but the user does not exist in the wallet, the ttUser utility adds the
user and password to the wallet.

• If the user credentials have already been added to an existing wallet, the password is
changed for the user name provided.

The following example shows the user creating the /wallets directory to contain the wallet.
The example assumes that /wallets/dsn1wallet does not exist. Thus, the ttUser utility
creates the dsn1wallet subdirectory and then creates the Oracle Wallet in the /wallets/

Chapter 1
Managing TimesTen Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 4 of 16

dsn1wallet directory. The ttUser utility prompts for the password for the user terry, which is
then added to the wallet.

% mkdir /wallets
% ttUser -setPwd -wallet /wallets/dsn1wallet -uid terry
Enter password:

The following example shows how to add credentials for user terry into multiple wallets to
access multiple TimesTen databases. For example, you would store TimesTen credentials for
DSN1 (terry, pwd1) and DSN2 (terry, pwd2) in two separate wallets that exist in separate
subdirectories under the wallets directory.

$ ttUser -setPwd -wallet /wallets/dsn1wallet -uid terry
Enter password:
$ ttUser -setPwd -wallet /wallets/dsn2wallet -uid terry
Enter password:

See ttUser in the Oracle TimesTen In-Memory Database Reference.

When it's time to authenticate a user to connect to a database, you provide the name of the
user and the location of the corresponding wallet by using the UID and PwdWallet connection
attributes. The UID connection attribute identifies which user to authenticate using the
PwdWallet provided.

connect “dsn=mydb;uid=terry;PwdWallet=/wallets/dsn1wallet”;

For client/server connections, the wallet must exist on the client. See PwdWallet in the Oracle
TimesTen In-Memory Database Reference.

You are required to secure and manage all wallets on your client or server. You can move the
wallet to the location from which you want to connect. Once you no longer need the user
credentials, you can remove these credentials from the wallet with ttUser -removePwd.

If the wallet does not exist or the PwdWallet connection attribute is not specified, then the order
of precedence is to look for credentials provided in the connection string and then in the DSN.

Providing a User Name and Password in Connection Attributes
General connection attributes are set by each connection and exist for the duration of the
connection. Each concurrent connection can have different values. You can provide the user
name and password with the UID, PWD or PWDCrypt general connection attributes.
TimesTen uses the following order of precedence when locating the user name and password
for connection authentication:

• An Oracle Wallet with the user name and password. See Providing a User Name and
Password in an Oracle Wallet.

• The UID, PWD or PWDCrypt connection attributes provided in the connection string.

• The UID, PWD or PWDCrypt connection attributes provided in the client DSN.

The UID, PWD and PWDCrypt connection attributes are as follows:

• UID: Provides the user name to be used for the connection to the database, whether using
a direct or client/server connection. To connect as the instance administrator or as an
external user, you do not need to provide a user name. When you do not provide a user
name, TimesTen assumes that the UID is the user name identified by the operating system.

Chapter 1
Managing TimesTen Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 5 of 16

• PWD: Provides the password that corresponds with the specified UID. For internal users, if
you do not set the PWD attribute in the odbc.ini file for the specified DSN or in the
connection string, TimesTen prompts for the password. For external users, you do not
provide the password as it is verified by the operating system.

When you initiate a client/server connection, the password sent for the connection is
encrypted by the client/server protocol.

• PWDCrypt: As an alternative to PWD, provides an encrypted password that corresponds with
the specified UID.

Note

For more information on the UID, PWD and PWDCrypt general connection attributes,
see UID and PWD in the Oracle TimesTen In-Memory Database Reference. See
Authentication in TimesTen in the Oracle TimesTen In-Memory Database Security
Guide.

Once you have defined the user name and password for a client/server connection, through
the UID and PWD connection attributes, you provide these connection attributes to connect to
the database.

• In the connection string.

• In a client DSN in the odbc.ini file.

The following example is a connection request to database1 that provides the user name as
Terry and the password as ttpwd in the connection attributes.

% ttIsql "DSN=database1;UID=terry;PWD=ttpwd"

Providing a User Name and Password in a Client DSN
You can specify the user name and password in the client DSN.

On Windows, you provide connection attributes in the Oracle TimesTen Client DSN Setup
dialog. In this dialog, you can provide the User ID, Password and PWDCrypt connection
attributes. If providing your password on this dialog, use either Password or PWDCrypt
connection attributes. See Creating a Client DSN on Windows in the Oracle TimesTen In-
Memory Database Operations Guide.

On Linux and UNIX, you provide connection attributes in the odbc.ini file. In the client DSN in
the odbc.ini file, you can provide the UID, PWD, PWDCrypt, or PwdWallet connection attributes.
To provide your password, use only one of the following connection attributes: Password,
PWDCrypt, or PwdWallet.

The following is the syntax for the client DSN in the odbc.ini file:

[ODBC Data Sources]
Client_DSN=TimesTen 22.1 Client Driver

See Creating a DSN on Linux and UNIX for TimesTen Classic in the Oracle TimesTen In-
Memory Database Operations Guide.

Chapter 1
Managing TimesTen Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 6 of 16

Providing a User and Password for TimesTen Utilities
You can provide the user name and password in an Oracle Wallet, the connection attributes, or
in the odbc.ini file.

If a TimesTen utility takes a connection string, then you can provide the user name and
password in an Oracle Wallet. Instead of providing a UID and PWD connection attribute on the
command line, provide the PwdWallet connection attribute with the location and name of the
wallet.

If the UID connection attribute setting is provided for a TimesTen utility but no PWD attribute
setting is provided, either in the connection string or the odbc.ini file, TimesTen prompts for a
password.

See UID and PWD in Oracle TimesTen In-Memory Database Reference.

Note

• When you enter a password at the prompt, what you type is not shown.

• It is not advisable to specify a value for PWD on the command line.

Dropping a User From the Database
An instance administrator or a user with the ADMIN privilege can use the DROP USER statement
to remove an internal or external user from the database. See DROP USER in Oracle
TimesTen In-Memory Database SQL Reference.
For example:

Command> DROP USER terry;
User dropped.

Note

• You cannot drop a user who is still connected to the database or before all
database objects owned by the user have been deleted.

• TimesTen does not support DROP USER CASCADE.

Cache Group Users
There are required users when using cache.

This section covers these topics regarding cache group users:

• Required Users for Cache

• Providing Both Cache Administration Users and Passwords

• Registering the Oracle Database Administration User and Password

Chapter 1
Cache Group Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 7 of 16

Required Users for Cache
To use cache, you must create administration and schema users on both the Oracle and
TimesTen databases.

To use cache, you must have the following users on the Oracle Database:

• Create an Oracle cache administration user who creates, owns, and maintains Oracle
Database objects that store information used to manage the cache environment for a
TimesTen database and enforce predefined behaviors of particular cache group types.

• Identify one or more schema users who own the Oracle Database tables to be cached in a
TimesTen database.

To use cache, you must create the following users on the TimesTen database:

• A TimesTen cache administration user who performs cache group operations. The
TimesTen cache administration user must have the same user name as the Oracle cache
administration user created for cache who can access the cached Oracle Database tables.
The password of the TimesTen cache administration user can be different from the
password of the companion Oracle cache administration user.

• One or more cache table users who own the cache tables. You must create a TimesTen
cache table user with the same user name as each Oracle Database schema user who
owns Oracle Database tables to be cached in the TimesTen database. The password of a
cache table user can be different from the password of the Oracle Database schema user
with the same name.

The owner and name of a TimesTen cache table is the same as the owner and name of
the corresponding cached Oracle Database table.

Providing Both Cache Administration Users and Passwords
If you are running a request that does not require access to the Oracle database, you can
proceed without needing to provide credentials for the Oracle database. That is, you can
connect with only the user name and password for connecting to the TimesTen database.
However, when you want to perform an action that requires connecting to the Oracle database,
then you must provide the appropriate credentials to be able to connect to both the TimesTen
and Oracle databases.
You first create or change a cache administration user and its password through CREATE USER
or ALTER USER SQL statements. See Creating or Identifying a Database User.

Once the cache administration users are created with their respective passwords, these
credentials need to be provided with one of the following methods.

• Providing the Cache Administration User Names and Passwords in an Oracle Wallet

• Providing Cache Administration User Name and Passwords in Connection Attributes

• Providing Cache Administration User Name and Passwords in a Client DSN

Providing the Cache Administration User Names and Passwords in an Oracle Wallet
The most secure method to provide credentials when connecting is to store a user's password
in an Oracle Wallet. When connecting, you provide the user name and wallet to supply
credentials for the connection. Supplying the user name identifies which user's password to
retrieve from within the wallet.

Chapter 1
Cache Group Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 8 of 16

You can store existing credentials for both the cache user and the cache administration user
and their associated passwords within an Oracle Wallet using the ttUser utility.

• For the cache user, you can add this user's password to a wallet in the same manner as a
TimesTen user as described in Providing a User Name and Password in an Oracle Wallet.

• To connect as the cache administration users, you must provide the passwords for both the
TimesTen cache administration user and the Oracle cache administration user.

See Providing a User Name and Password in an Oracle Wallet for full details on how to store
credentials in an Oracle Wallet. This section describes the process to add both cache
administration user passwords to an Oracle Wallet.

You can add the cache administration users passwords to a wallet used by other users, such
as a wallet that contains all credentials for those connecting to a DSN. Alternatively, you could
create a wallet only for the cache administration users.

Use the ttUser -setPwd command to store the password for the TimesTen cache
administration user. Use the ttUser -setOraclePwd command to store the password for the
Oracle cache administration user.

The following example shows how to use the ttUser utility to add both cache administration
users to an Oracle Wallet in the /wallets/cacheadminwallet directory.

1. If it does not already exist, make a directory for your wallet. This example users /wallets
as the directory for the wallet.

% mkdir /wallets

2. Run the ttUser -setPwd command to store the TimesTen cache administration user
credentials. Provide a subdirectory name that identifies the wallet (since you cannot
change the name of an OracleWallet). This example provides cacheadminwallet as the
subdirectory name for the wallet. If cacheadminwallet directory does not exist, then the
ttUser utility creates the cacheadminwallet subdirectory and then creates the Oracle
Wallet in the /wallets/cacheadminwallet directory. The ttUser utility prompts for the
password for the TimesTen cache administration user cacheadmin, which is added to the
wallet.

% ttUser -setPwd -wallet /wallets/cacheadminwallet -uid cacheadmin
Enter password:

3. Run the ttUser -setOraclePwd command to store the Oracle cache administration user
credentials. The ttUser utility prompts for the password for the Oracle cache
administration user cacheadmin, which is added to the wallet in /wallets/
cacheadminwallet.

% ttUser -setOraclePwd -wallet /wallets/cacheadminwallet -uid cacheadmin
Enter password:

See ttUser in the Oracle TimesTen In-Memory Database Reference.

When it's time to authenticate the cache administration users when connecting to a database,
provide the name of the cache administration user and the location of the corresponding wallet
with the UID and PwdWallet connection attributes. The UID connection attribute specifies which
user to authenticate using the PwdWallet provided.

connect “dsn=mydb;uid=cacheadmin;PwdWallet=/wallets/cacheadminwallet”;

Chapter 1
Cache Group Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 9 of 16

Providing Cache Administration User Name and Passwords in Connection Attributes
General connection attributes are set by each connection and exist for the duration of the
connection. Each concurrent connection can have different values. You can provide both cache
administration user names and passwords with the UID, PWD and OraclePWD general connection
attributes.
Once you have created both cache administration users and associated passwords, you can
specify them on a connection string with the UID, PWD, and OraclePWD connection attributes
when connecting to the database.

TimesTen uses the following order of precedence when locating the user name and password
for connection authentication:

• An Oracle Wallet with the cache administration user name and passwords. See Providing
the Cache Administration User Names and Passwords in an Oracle Wallet.

• The UID, PWD and OraclePWD connection attributes provided in the connection string.

• The UID, PWD and OraclePWD connection attributes provided in the client DSN.

The UID, PWD and OraclePWD connection attributes are as follows:

• UID: In this case, specifies the cache administration user name to be used for the
connection to the database.

• PWD: In this case, specifies the password for the TimesTen cache administration user.

• OraclePWD: Specifies the password for the Oracle cache administration user.

Note

For more information on the UID, PWD and OraclePWD general connection
attributes, see UID and PWD in the Oracle TimesTen In-Memory Database
Reference. See Authentication in TimesTen in the Oracle TimesTen In-Memory
Database Security Guide.

The following example is a connection request to database1 that provides the cache
administration user name as cacheadmin, the TimesTen cache administration user password
as ttpwd, and the Oracle cache administration user password as orapwd.

% ttIsql "DSN=database1;UID=cacheadmin;PWD=ttpwd;OraclePWD=orapwd"

Providing Cache Administration User Name and Passwords in a Client DSN
You can provide both cache administration user names and passwords in the client DSN.

On Windows, you specify connection attributes in the Oracle TimesTen Client DSN Setup
dialog. In this dialog, you can specify the User ID, and Password connection attributes.
However, the OraclePWD connection attribute can only be specified on the connection string.
See Creating a Client DSN on Windows in the Oracle TimesTen In-Memory Database
Operations Guide.

On Linux and UNIX, you specify connection attributes in the odbc.ini file. In the client DSN in
the odbc.ini file, you can specify the UID, PWD and OraclePWD connection attributes.

Chapter 1
Cache Group Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 10 of 16

The following is the syntax for the client DSN in the odbc.ini file:

[ODBC Data Sources]
Client_DSN=TimesTen 22.1 Client Driver

See Creating a DSN on Linux and UNIX for TimesTen Classic in the Oracle TimesTen In-
Memory Database Operations Guide.

Registering the Oracle Database Administration User and Password
One of the prerequisites to setting up your cache environment is registering the Oracle cache
administration user and password in TimesTen. TimesTen uses these credentials to connect to
the Oracle database.

There are cache operations that TimesTen performs for you. In order for TimesTen to connect
to the Oracle database successfully to perform these cache operations, TimesTen needs to
have the Oracle cache administration user and password credentials registered internally. This
is accomplished when you run either the ttCacheUidPwdSet built-in procedure for TimesTen
Classic or ttGridAdmin dbCacheCredentialSet in TimesTen Scaleout. By default, the Oracle
cache administration user and password are stored in memory. You can specify that the Oracle
cache administration user and passwords are saved in a system-managed Oracle Wallet
(preferred) by setting the CacheAdminWallet=1 in the DSN as a first connection attribute. Once
the Oracle cache administration user and password are registered (either in memory or in a
system-managed wallet), TimesTen uses the credentials to connect to the backend Oracle
database for cache operations.

See CacheAdminWallet in the Oracle TimesTen In-Memory Database Reference.

This section discusses how to do this in TimesTen Classic and TimesTen Scaleout.

• Registering the Oracle Cache Administration User and Password in TimesTen Classic

• Registering the Cache Administration User Password in TimesTen Scaleout

Registering the Oracle Cache Administration User and Password in TimesTen Classic
You can register with TimesTen Classic the Oracle cache administration user name and
password.

1. Ensure that the CacheAdminWallet first connection attribute is set to 1.

2. Start the ttIsql utility and connect to the cache1 DSN (for example) as the TimesTen
cache administration user. Provide the cache administration user name and passwords
when connecting using one of the methods detailed in Providing Both Cache
Administration Users and Passwords.

% ttIsql "DSN=cache1;UID=cacheadmin;PwdWallet=/wallets/cacheadminwallet"

3. Use the ttCacheUidPwdSet built-in procedure (only once) to register the TimesTen
database of the Oracle cache administration user name and password in the Oracle
database. Since CacheAdminWallet=1, the Oracle cache administration user name and
password are stored in a system-managed Oracle Wallet.

The Oracle cache administration user name is cacheadmin and its password is orapwd.

Command> call ttCacheUidPwdSet('cacheadmin','orapwd');

Chapter 1
Cache Group Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 11 of 16

Note

You can run the ttCacheUidPwdSet built-in procedure over a client/server connection
only when TLS is used. The password is only encrypted when sent over a TLS
connection.

See Setting Up the Oracle Database and TimesTen Classic Systems and Setting Up a Caching
Infrastructure in Oracle TimesTen In-Memory Database Cache Guide.

See Privileges for Cache Groups.

Note

Alternatively, you can use ttAdmin to set the Oracle cache administration user ID and
password. See Set Cache Policies in Oracle TimesTen In-Memory Database
Reference. For example:

% ttAdmin -cacheUidPwdSet -cacheUid cacheadmin -cachePwd orapwd database1

You can use the ttCacheUidPwdSet built-in procedure to later change the Oracle cache
administration password at any time, or change the Oracle cache administration user name
(and optionally the password as well) as long as there are no existing cache groups.

Registering the Cache Administration User Password in TimesTen Scaleout
In TimesTen Scaleout, use the ttGridAdmin dbCacheCredentialSet command on the active
management instance to register the Oracle cache administration user name and password
with TimesTen Scaleout.

1. Ensure that the CacheAdminWallet connection attribute is set to 1. See Create a Database
Definition in the Oracle TimesTen In-Memory Database Scaleout User's Guide.

2. Use the ttGridAdmin dbCacheCredentialSet command (only once) to register the
TimesTen database of the Oracle cache administration user name and password in the
Oracle database. Since CacheAdminWallet=1, the Oracle cache administration user name
and password are stored in a system-managed Oracle Wallet.

The following example specifies database1 as the TimesTen database. The ttGridAdmin
dbCacheCredentialSet command prompts for the user name and password. The Oracle
cache administration user name is cacheadmin.

% ttGridAdmin dbCacheCredentialSet database1
Enter your Oracle user id: cacheadmin
Enter Oracle password:
Password accepted
Configuring cache...OK

See Set the Cache Administration User Name and Password in the TimesTen Database in
Oracle TimesTen In-Memory Database Scaleout User's Guide and Set Credentials
(dbCacheCredentialSet) in Oracle TimesTen In-Memory Database Reference.

Chapter 1
Cache Group Users

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 12 of 16

Note

• You can also use dbCacheCredentialSet to later change the Oracle cache
administration password at any time, or change the Oracle cache administration
user name (and optionally the password as well) as long as there are no existing
cache groups.

• When the active management instance of the grid is created, the ttGridAdmin
gridCreate -walletDir specifies the path to the directory where the server-
managed Oracle Wallets with cryptographic information will be stored. This
cryptographic information includes the Oracle cache administration user, client/
server, and membership service credentials. The default is timesten_home/info.
Wallets for multiple instances can be stored in the same directory, a directory
which can be shared between the instances, such as through NFS. This enables a
user to pass the cache credentials securely around the grid. See Secure Network
Communication in TimesTen.

• The ttGridAdmin modelApply command sends new wallets to all new instances.

• The ttGridAdmin dbDistribute command sets the Oracle cache administration
user ID and password whenever a new instance is added to the distribution map
of the database.

• If you plan to use ttGridAdmin dbImport with any cache groups being imported
into the database, dbCacheCredentialSet must be executed prior to dbImport.
You can use the dbImport -dbCacheCredentialCheck option, before you start the
import, to confirm this.

Membership Services Access Control
In TimesTen Scaleout, all ZooKeeper connections for membership services have world
permission by default, so it is important to limit this access to an authenticated user.

This user name applies to all grid instances connecting to ZooKeeper and to the zkCli
command-line utility. Lack of a specified user name and password is supported for backward
compatibility only.

Specify the ZooKeeper user name through the -membershipUser option of the ttGridAdmin
gridCreate or gridModify command. When you specify the user name on thettGridAdmin
command line, you are prompted to enter the password. For example:

% ttGridAdmin gridModify -membershipUser pat
Enter membership password: zk_pwd
Password accepted
Grid Definition modified.

This will result in the ZooKeeper access control list being defined accordingly on each node.
Changes to the user name and password will take effect with the next ttGridAdmin
modelApply command, at which time ZooKeeper connections on all grid instances are re-
authenticated (which may cause a brief disconnection from membership services).

The membership services user name and password are stored in an Oracle Wallet. You can
specify the path to the location of the wallet on each instance of a grid (including management
instances) by using the ttGridAdmin gridCreate -walletDir option. After creation of the grid,
you can use the ttGridAdmin instanceCreate -walletDir option to specify a different wallet

Chapter 1
Membership Services Access Control

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 13 of 16

location for the standby management instance or any data instance. The default wallet location
is timesten_home/info. The ttGridAdmin modelApply command will send new wallets to all
new instances. (The same wallet is also used to store credentials for TimesTen Scaleout
administration, the password of the Oracle cache administration user, and other internal
TimesTen credentials.)

See Setting Up the Membership Service in Oracle TimesTen In-Memory Database Scaleout
User's Guide. Use of zkCli is shown in Start the ZooKeeper Servers and Managing a
Development or Test Environment.

See Create a Grid (gridCreate) and Modify Grid Settings (gridModify) in Oracle TimesTen In-
Memory Database Reference.

Prometheus Exporter Authentication
In order to monitor database health and operation, TimesTen collects metrics from a variety of
sources. TimesTen Prometheus Exporter converts these metrics into the form used by
Prometheus Monitoring. This integration allows customers to add TimesTen to the systems that
they monitor with Prometheus.

Prometheus includes its own time-series database and time-series query language. You can
use Prometheus directly to construct near real-time graphs of metrics or to create
programmable alerts.

The TimesTen exporter, implemented as the ttExporter utility, is supported in both TimesTen
Classic and TimesTen Scaleout. It is not configured to run by default. It supports client
certificate authentication (mutual TLS) or no authentication. While it is typical for Prometheus
exporters to operate with no security, the default configuration of the TimesTen exporter is
client certificate authentication. An Oracle Wallet is used to store TLS and TimesTen login
credentials.

See The TimesTen Prometheus Exporter in Oracle TimesTen In-Memory Database Monitoring
and Troubleshooting Guide and ttExporter in Oracle TimesTen In-Memory Database
Reference.

Password Management
You can manage passwords to increase the level of security that can be implemented for
authentication.

This section provides an overview of password management in TimesTen.

• Password Management Features

• Profile for Password Management

Password Management Features
Password management features can enhance the security of your TimesTen database.

• Password Lifetime and Grace Time

• Limitations on Password Reuse

• Maximum Failed Login Attempts and Password Lock Time

• Password Complexity Checker

Chapter 1
Prometheus Exporter Authentication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 14 of 16

Password Lifetime and Grace Time
You can limit how long a user can continue to use the same password before it expires, as well
as a grace period after that period of time. During the grace period, the password is still
allowed and recognized, but with a warning.

Limitations on Password Reuse
While limiting password lifetimes enhances system security, allowing users to frequently reuse
previous passwords diminishes the effectiveness.

When a user is changing their password, you can specify:

• A minimum period of time that must pass before a previous password can be reused.

• The number of password changes that must occur before a previous password can be
reused.

Both of these must be satisfied before a password can be reused. For example, if
PASSWORD_REUSE_TIME is 30 and PASSWORD_REUSE_MAX is 10, the user can reuse a password
after 30 days if it is not one of the last 10 passwords used.

If one or the other is set to unlimited, a password can never be reused, but if both are set to
unlimited, there are no limits on how often a password can be reused.

Maximum Failed Login Attempts and Password Lock Time
Hackers may try to access TimesTen by repeatedly guessing passwords until one works. You
can limit the number of failed attempts that are allowed and how long the account is locked
after this maximum number is reached.

Password Complexity Checker
TimesTen offers a set of PL/SQL functions you can choose from to test for sufficient password
complexity. This functionality helps ensure that user passwords are stringent enough to impose
the desired level of protection for your system.

These functions are provided:

• TT_VERIFY_FUNCTION (basic protection)

• TT_STRONG_VERIFY_FUNCTION (stronger protection)

• TT_STIG_VERIFY_FUNCTION (protection according to the Department of Defense Database
Security Technical Implementation Guide)

Checks are run against passwords newly specified through the CREATE USER or ALTER USER
statement. If the password does not have sufficient complexity, the statement fails with an
error.

You can specify a password complexity verification function when you create or alter a user
profile with the CREATE PROFILE or ALTER PROFILE statement. Set the
PASSWORD_COMPLEXITY_CHECKER parameter to the desired function, or to NULL for no complexity
checking, or to DEFAULT to set complexity checking according to the DEFAULT user profile (NULL
by default). Then specify that profile when you create or alter a user through the CREATE USER
or ALTER USER statement.

Chapter 1
Password Management

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 15 of 16

Refer to CREATE PROFILE in Oracle TimesTen In-Memory Database SQL Reference.

Note

• TimesTen does not support user-defined password complexity functions.

• The CREATE PROFILE or ALTER PROFILE parameter PASSWORD_VERIFY_FUNCTION is
equivalent to PASSWORD_COMPLEXITY_CHECKER.

Profile for Password Management
TimesTen employs profiles to specify settings of the password management parameters.

TimesTen employs profiles for the features described in the preceding section:
PASSWORD_LIFE_TIME, PASSWORD_GRACE_TIME, PASSWORD_REUSE_TIME, PASSWORD_REUSE_MAX,
FAILED_LOGIN_ATTEMPTS, and PASSWORD_LOCK_TIME.

The same profile can be used for multiple users, and there is a default profile. A user who is
not assigned a profile will use the default profile. Also, a setting of DEFAULT for any parameter
in a profile will result in use of the value from the default profile.

The CREATE PROFILE SQL statement creates a profile. Specify PROFILE in a CREATE USER
statement to assign an existing profile to a user.

See CREATE PROFILE, ALTER PROFILE, CREATE USER, or ALTER USER in Oracle
TimesTen In-Memory Database SQL Reference.

Chapter 1
Password Management

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 16 of 16

2
Authorization in TimesTen

One aspect of TimesTen access control is the use of permissions, or privileges, to authorize or
limit access to database objects such as tables or views.

This chapter discusses TimesTen features for authorization, covering these topics:

• Privileges Overview

• System Privileges

• Overview of Privileges to Create, Alter, or Drop Objects

• Privileges for SQL Objects

• Privileges for PL/SQL Objects

• Privileges for Cache Groups

• User Privilege Views

Note

• For a list of object privileges, see Privileges in Oracle TimesTen In-Memory
Database SQL Reference.

• For TimesTen SQL statements discussed in this chapter, syntax and required
privileges are documented in SQL Statements in Oracle TimesTen In-Memory
Database SQL Reference.

• Examples in this chapter use the TimesTen ttIsql utility, indicated by the
Command> prompt.

Privileges Overview
TimesTen allows access to objects in the database according to authorization through the
granting of privileges. These privileges determine what operations users may perform.

This section covers these topics:

• About Privileges

• Granting and Revoking Privileges

• Functionality of Privileges

• Overview of System Privileges

• Overview of Object Privileges

• Privileges for TimesTen Utilities

• Overview of the PUBLIC Role

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 1 of 28

About Privileges
When there are multiple users who could potentially access database objects, access to these
objects is authorized according to the granting of privileges.

Every object has an owner. Object privileges authorize a user to access or modify an object
owned by another user. Privileges are granted or revoked either by the instance administrator,
a user with the ADMIN privilege, or, for privileges to a certain object, by the owner of the object.

There are also system level privileges to authorize actions such as connecting to the database.

Note

A user has all privileges on all objects that they own, and these privileges cannot be
revoked.

Granting and Revoking Privileges
Use the SQL GRANT statement to grant privileges to allow a user to access a particular object,
objects, or types of objects. Use the SQL REVOKE statement to revoke privileges.

You must have administrative privilege to grant or revoke system privileges or to grant or
revoke object privileges for an object you do not own.

Examples:

GRANT admin TO terry;
GRANT SELECT ON pat.customers TO terry;
GRANT SELECT ON emp_details_view TO terry;

REVOKE admin, ddl FROM terry;
REVOKE update ON pat.customers FROM terry;

See GRANT and REVOKE in Oracle TimesTen In-Memory Database SQL Reference.

Functionality of Privileges
TimesTen evaluates each user's privileges when a SQL statement is executed.

For example:

Command> SELECT * from pat.table1;

If this statement is executed by pat, then no extra privileges are necessary because pat owns
this object. However, before another user, such as terry, executes this statement, they must
be granted the SELECT privilege for pat.table1:

Command> GRANT SELECT ON pat.table1 TO terry;

Privileges accomplish the following:

• They define what data users, applications, or functions can access or what operations they
can perform.

• They prevent users from adversely affecting system performance or from consuming
excessive system resources. For example, a privilege restricting the creation of indexes is

Chapter 2
Privileges Overview

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 2 of 28

provided not because of an authorization concern, but because it may affect DML
performance and occupies space.

Some examples of privileges include authorization to perform the following:

• Connect to the database and create a session

• Create a table

• Select rows from a table

• Perform cache group operations

There are two levels of privileges:

• System privileges enable system-wide functionality, such as access to all objects. Granting
system privileges can enable a user to perform administrator tasks or access objects in
other users' schemas. Grant them only to trusted users. See Overview of System
Privileges.

• Object privileges enable access to a specific database object, such as a particular table or
view. See Overview of Object Privileges

A subset of these privileges are automatically granted to each user upon creation through the
PUBLIC role. See Overview of the PUBLIC Role.

Privileges are checked when a SQL statement is prepared and the first time it is executed.
Subsequent executions of the statement require further privilege checks only if a REVOKE
statement has been executed in the database.

Overview of System Privileges
A system privilege authorizes a user to perform system-level activities across the database or
perform a specified type of operation for all database objects of a specified type (for example,
CREATE ANY TABLE).

Examples of system privileges are ADMIN, SELECT ANY TABLE, CREATE SESSION and CREATE ANY
SEQUENCE. See System Privileges.

Only the instance administrator or a user with the ADMIN (administrative) privilege can grant a
system privilege to a user.

Note

A user with ADMIN privileges has a special set of system privileges, as discussed in
Administrative Privileges. The instance administrator has an all-encompassing set of
system privileges, as covered in Instance Administrator.

Overview of Object Privileges
An object privilege enables a user to perform a specific operation on a specific object.
Separate object privileges are available for each object type, such as CREATE TABLE.

A user does not have access to objects owned by other users unless explicitly granted access
by the object's owner or by a user with ADMIN privilege.

If the PUBLIC role has been granted access to a given object, then all database users have
access to that object.

Chapter 2
Privileges Overview

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 3 of 28

Object privileges are granted or revoked by the instance administrator, a user with the ADMIN
privilege, or the user who owns the object.

See Privileges for SQL Objects.

Privileges for TimesTen Utilities
Sometimes special privileges are required to run a TimesTen utility.

Any special privilege required to run a TimesTen utility is noted under "Required privilege" in
the description of the utility in Utilities or TimesTen Scaleout Utilities in Oracle TimesTen In-
Memory Database Reference.

Note

If any user other than the instance administrator tries to run a utility that requires
special privilege when the database is not loaded into memory, they will receive an
error because TimesTen cannot determine the privilege of the user.

Overview of the PUBLIC Role
A role called PUBLIC is automatically created in each TimesTen database and given specific
privileges, and each user created in a TimesTen database inherits these privileges. Each
subsequent privilege that is also granted to the PUBLIC role is also automatically granted to all
users simultaneously.

For example, this command results in CREATE SESSION privilege for all users:

Command> GRANT CREATE SESSION TO PUBLIC;

Also see Privileges Through the PUBLIC Role in this document and The PUBLIC Role in
Oracle TimesTen In-Memory Database SQL Reference.

Note

TimesTen does not support any other roles.

System Privileges
There are system privileges available in TimesTen.

• About System Privileges

• Instance Administrator

• Administrative Privileges

• Privileges to Connect to the Database

• ANY Keyword

• ALL PRIVILEGES

• Privilege Hierarchy

Chapter 2
System Privileges

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 4 of 28

• Additional System Privileges

• Privileges Through the PUBLIC Role

About System Privileges
Aside from the instance administrator, the most powerful system privilege is ADMIN, which
enables the user to perform system operations or operations on any database object. Only the
instance administrator or a user with the ADMIN privilege can grant or revoke system privileges
to other users.

An individual user can view their own system privileges in the SYS.USER_SYS_PRIVS system
view. A user with the ADMIN privilege can view all system privileges for all users in the
SYS.DBA_SYS_PRIVS system table. See User Privilege Views.

Instance Administrator
The instance administrator, a member of the TimesTen users group, is the user who creates
the TimesTen installation and all TimesTen instances. This user has a number of special
privileges and capabilities beyond those of other administrative users.

These are described in the following sections:

• Instance Administrator Privileges

• Instance Administrator Ownership and Privileges for Database and Log Directories

Instance Administrator Privileges
There are privileges that only the instance administrator can do.

• Remove the TimesTen installation.

• Create, modify (including upgrade), or destroy a TimesTen instance.

• Create or destroy a database.

• Load or unload a database manually (ramPolicy manual using ttAdmin -ramLoad).

• Load a database when changes to first connection attribute settings are applied.

• Open or close a database.

• Restore a database.

• Start and stop the TimesTen daemon.

• Restart the TimesTen server.

In addition, for TimesTen Scaleout, only the instance administrator can execute any commands
of the ttGridAdmin utility. Among many other functions, including those listed above, only the
TimesTen Scaleout instance administrator can create a grid, create database definitions and
connectables, change the distribution map of an existing database, create repositories, and
perform backups, restores, exports, and imports.

See the following for related information:

• Instance Administrator, Understanding the TimesTen Users Group, and TimesTen
Instances in Oracle TimesTen In-Memory Database Installation, Migration, and Upgrade
Guide

• TimesTen Scaleout Architecture and The Operating System User in Oracle TimesTen In-
Memory Database Scaleout User's Guide

Chapter 2
System Privileges

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 5 of 28

Note

• The instance administrator cannot be the root user.

• You cannot change to a different instance administrator.

• In TimesTen Scaleout, the instance administrator's user name, user ID, group
name, and group ID must all be the same on all hosts of the grid.

Instance Administrator Ownership and Privileges for Database and Log Directories
The instance administrator owns the database directory (indicated by the DataStore
connection attribute), where checkpoint files are written, and the log directory (indicated by the
LogDir connection attribute).

Proper ownership and permissions must be set for these directories. In addition to the owner
being the instance administrator, the group must be the TimesTen users group and the
directory permissions must be set for read/write/execute permission for owner and group with
no access by anyone else.

Administrative Privileges
The ADMIN privilege confers system privileges and privileges on all database objects, which
enables these users to perform administrative tasks and any valid database operation. Only
the instance administrator or another user with ADMIN privilege can grant ADMIN privilege.

A user with the ADMIN privilege can do the following:

• Perform create, alter, drop, select, update, insert, or delete operations on all database
objects.

• Grant or revoke all privileges.

• Perform checkpointing operations.

• Create and delete users.

• View system tables, views, and packages.

• Create, alter or drop replication schemas or active standby pairs.

Note

For more information on viewing privileges for users from system tables or views, see
User Privilege Views.

To grant the ADMIN privilege to the user terry, the instance administrator or another user with
ADMIN privilege executes this statement:

GRANT ADMIN TO terry;

To grant the SELECT privilege to terry on the departments table owned by pat:

GRANT SELECT ON pat.departments TO terry;

Chapter 2
System Privileges

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 6 of 28

Note

Since pat is the owner of departments, pat may also grant the SELECT object privilege
to terry.

Privileges to Connect to the Database
A user must be granted the CREATE SESSION system privilege by the instance administrator or
a user with the ADMIN privilege in order to connect to the database.

The following example grants the CREATE SESSION privilege to pat:

Command> GRANT CREATE SESSION TO pat;

Note

TimesTen databases are accessed through Data Source Names (DSNs). If a user tries
to use a DSN that has connection attributes for which they do not have privileges,
such as first connection attributes, they receive an error.

ANY Keyword
Privileges used with the ANY keyword enable the user to perform the operation on any object of
the specified type in the database.

These system privileges are CREATE ANY object_type, DROP ANY object_type, ALTER ANY
object_type, SELECT ANY object_type, UPDATE ANY TABLE, INSERT ANY TABLE, DELETE ANY
TABLE, and EXECUTE ANY PROCEDURE.

ANY TABLE also includes views and materialized views.

ALL PRIVILEGES
ALL PRIVILEGES, which can be granted by the instance administrator or a user with ADMIN
privilege, grants system privileges to a user.

If you want to limit the privileges granted, you can grant ALL PRIVILEGES then revoke those
system privileges that you do not want the user to have.

Once granted, ALL PRIVILEGES can subsequently be revoked.

Privilege Hierarchy
There is a hierarchy of privileges. Higher level privileges confer related lower level privileges.
For example, the ADMIN privilege confers system privileges. The SELECT ANY TABLE privilege
confers the SELECT privilege on any individual table.

When a user needs a privilege for an operation, first verify whether the user already has the
privilege through a higher level privilege. For example, if the user pat needs to have the
SELECT privilege for terry.table2, you can check the following:

Chapter 2
System Privileges

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 7 of 28

• Has pat been granted the SELECT ANY TABLE privilege? This privilege means pat would
have SELECT on any table, view, or materialized view.

• Has pat been granted the ADMIN privilege? This would mean that pat can perform any
valid SQL operation.

If you grant a privilege that is included in a higher level privilege, no error occurs. However,
when you revoke privileges, they must be revoked in the same unit as granted (ANY level or
object level).

The following series of statements is allowed, and pat can still update the hr.employees table
because of the UPDATE ANY TABLE privilege. (The second statement of course is unnecessary,
but the third statement would not be allowed without it.)

Command> GRANT UPDATE ANY TABLE TO pat;
Commanc> GRANT UPDATE ON hr.employees TO pat;
Command> REVOKE UPDATE ON hr.employees FROM pat;

This next example also leaves pat with the ability to update hr.employees, because that was
granted explicitly:

Command> GRANT UPDATE ANY TABLE TO pat;
Commanc> GRANT UPDATE ON hr.employees TO pat;
Command> REVOKE UPDATE ANY TABLE FROM pat;

The following example attempts to revoke the ability to update the hr.employees table from the
user, but is not allowed because there was no GRANT statement for that specific object.

Command> GRANT UPDATE ANY TABLE TO pat;
Command> REVOKE UPDATE ON hr.employees FROM pat;
15143: REVOKE failed: User PAT does not have object privilege UPDATE on HR.EMPLOYEES
The command failed.

See Privilege Hierarchy in Oracle TimesTen In-Memory Database SQL Reference.

Additional System Privileges
In addition to the ADMIN privilege, some system privileges authorize a range of operations
across certain areas of database functionality.

• XLA: You must have the XLA system privilege to connect as an XLA reader, who can have
global impact on the system. An XLA reader can create extra log volume and can cause
long log holds if they do not advance their bookmarks.

• CACHE_MANAGER: The CACHE_MANAGER privilege is required for cache group administrator
operations. See Privileges for Cache Groups.

Privileges Through the PUBLIC Role
The instance administrator or a user with the ADMIN privilege can grant or revoke default
privileges for all users by granting or revoking privileges for the PUBLIC role.

Chapter 2
System Privileges

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 8 of 28

Note

• If a user has been explicitly granted a privilege, it is not revoked if that privilege is
revoked from PUBLIC.

• Any privileges that were granted to PUBLIC by user SYS cannot be revoked. These
privileges, granted as part of database creation, are shown when you execute the
following SQL statement:

Command> SELECT * FROM DBA_TAB_PRIVS WHERE GRANTOR = 'SYS'

In the following example, user pat is granted the SELECT ANY TABLE privilege and PUBLIC is
granted the SELECT ANY TABLE privilege. Then all system privileges are displayed from the
SYS.DBA_SYS_PRIVS view. (See User Privilege Views.) As shown, revoking SELECT ANY TABLE
from PUBLIC does not revoke SELECT ANY TABLE from pat. (The second column indicates a
privilege held by the user. The third column, NO in the example, indicates whether the user can
grant that privilege to others.)

Command> GRANT SELECT ANY TABLE TO PAT;
Command> GRANT SELECT ANY TABLE TO PUBLIC;
Command> SELECT * FROM SYS.DBA_SYS_PRIVS;
< SYS, ADMIN, NO >
< PUBLIC, SELECT ANY TABLE, NO >
< SYSTEM, ADMIN, NO >
< PAT, ADMIN, NO >
< PAT, SELECT ANY TABLE, NO >
5 rows found.
Command> REVOKE SELECT ANY TABLE FROM PUBLIC;
Command> select * from sys.dba_sys_privs;
< SYS, ADMIN, NO >
< SYSTEM, ADMIN, NO >
< PAT, ADMIN, NO >
< PAT, SELECT ANY TABLE, NO >
4 rows found.

By default in a newly created TimesTen database, PUBLIC has SELECT and EXECUTE privileges
on various system tables and views and PL/SQL functions, procedures and packages. You can
see the list of privileges granted to PUBLIC by querying the SYS.DBA_TAB_PRIVS view. In the
query below, the privilege granted to PUBLIC is in the fifth column, as indicated by the DESCRIBE
statement that precedes the query.

Command> DESC SYS.DBA_TAB_PRIVS;
View SYS.DBA_TAB_PRIVS:
 Columns:
 GRANTEE VARCHAR2 (30) INLINE
 OWNER VARCHAR2 (30) INLINE
 TABLE_NAME VARCHAR2 (30) INLINE
 GRANTOR VARCHAR2 (30) INLINE
 PRIVILEGE VARCHAR2 (40) INLINE NOT NULL
 GRANTABLE VARCHAR2 (3) INLINE NOT NULL
 HIERARCHY VARCHAR2 (3) INLINE NOT NULL
1 view found.

Command> SELECT * FROM SYS.DBA_TAB_PRIVS WHERE GRANTEE='PUBLIC';
< PUBLIC, SYS, TABLES, SYS, SELECT, NO, NO >
< PUBLIC, SYS, COLUMNS, SYS, SELECT, NO, NO >
< PUBLIC, SYS, INDEXES, SYS, SELECT, NO, NO >
< PUBLIC, SYS, USER_COL_PRIVS, SYS, SELECT, NO, NO >

Chapter 2
System Privileges

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 9 of 28

< PUBLIC, SYS, PUBLIC_DEPENDENCY, SYS, SELECT, NO, NO >
< PUBLIC, SYS, USER_OBJECT_SIZE, SYS, SELECT, NO, NO >
< PUBLIC, SYS, STANDARD, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, UTL_IDENT, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, TT_DB_VERSION, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, PLITBLM, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_OUTPUT, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_SQL, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_STANDARD, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_PREPROCESSOR, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, UTL_RAW, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_UTILITY, SYS, EXECUTE, NO, NO >
< PUBLIC, SYS, DBMS_RANDOM, SYS, EXECUTE, NO, NO >
...
57 rows found.

Overview of Privileges to Create, Alter, or Drop Objects
There are privileges that are required in order to create, alter, or drop database objects.

• Privileges to Create Database Objects

• Privileges to Alter Database Objects

• Privileges to Drop Database Objects

Privileges to Create Database Objects
To create a database object such as a table, view, materialized view, sequence, PL/SQL
procedure, PL/SQL function, PL/SQL package, or synonym, you must have the appropriate
CREATE object_type or CREATE ANY object_type privilege.

The following describes the CREATE and CREATE ANY privileges:

• The CREATE object_type privilege grants a user the ability to create an object of the
specified type (such as TABLE), but only in the user's own schema. After creation, the user
owns the object and has all privileges for the object.

• The CREATE ANY object_type privilege grants a user the ability to create any object of that
type in any schema of the database. The CREATE ANY object_type privileges are CREATE
ANY TABLE, CREATE ANY INDEX, CREATE ANY VIEW, CREATE ANY MATERIALIZED VIEW,
CREATE ANY SEQUENCE, CREATE ANY SYNONYM and CREATE ANY PROCEDURE.

A user must be granted CREATE TABLE privilege to create a table in their schema, as in this
example:

Command> GRANT CREATE TABLE TO terry;

This example grants the privilege to create any table in any schema to user terry:

Command> GRANT CREATE ANY TABLE TO terry;

Chapter 2
Overview of Privileges to Create, Alter, or Drop Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 10 of 28

Note

• See Object Privileges for Views and Object Privileges for Materialized Views.

• When CREATE OR REPLACE results in an object (such as a procedure, function,
package, or synonym) being replaced, there is no effect on privileges that any
users had previously been granted on that object. This is as opposed to when
there is an explicit DROP and then CREATE to re-create an object, in which case all
privileges on the object are revoked.

Privileges to Alter Database Objects
The ALTER ANY object_type privilege is necessary to modify the properties of objects that the
user does not own.

For example, if a procedure proc1 is created in the hr schema and pat is granted the ALTER
ANY PROCEDURE privilege, pat can alter the procedure hr.proc1.

The ALTER privilege cannot be granted on an individual object. Instead, you must grant the
ALTER ANY privilege for the desired object type.

Privileges to Drop Database Objects
The DROP ANY object_type privilege enables a user to drop any object of the specified type in
the database and is necessary to drop an object of object_type that the user does not own.

For example, granting pat the DROP ANY TABLE privilege enables pat to drop the employees
table that is owned by the user hr.

The DROP privilege cannot be granted on an individual object. Instead, you must grant the DROP
ANY privilege for the desired object type.

Privileges for SQL Objects
User access to database objects is authorized by granting privileges, either for a single object
or for that type of object anywhere in the database, through the GRANT statement. Access is
removed through the REVOKE statement.

This section covers the following:

• Object Privileges for Tables

• Object Privileges for Views

• Object Privileges for Sequences

• Object Privileges for Materialized Views

• Object Privileges for Synonyms

• ALL Object Privileges

Chapter 2
Privileges for SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 11 of 28

Note

Also, see Privileges for PL/SQL Objects.

Object Privileges for Tables
For a user to create a table, that user must be granted the CREATE TABLE or CREATE ANY TABLE
privilege.

For a user to perform operations on tables that they do not own, they must be granted the
appropriate object privilege for that table. This includes privileges for tables within cache
groups. The object privileges for tables include SELECT, UPDATE, DELETE, INSERT, INDEX and
REFERENCES.

For example:

Command> GRANT SELECT ON hr.employees TO pat;
Command> GRANT UPDATE ON hr.employees TO pat;

The INDEX privilege enables a user to create an index on the table.

The REFERENCES privilege enables use of the REFERENCES clause in the CREATE TABLE or ALTER
TABLE statement. This clause creates a foreign key dependency from a child table column (in
the following example, table1.col1) to a parent table column (in the example, table2.pk).

Command> ALTER TABLE pat.table1 ADD CONSTRAINT fk1 FOREIGN KEY (col1)
REFERENCES pat.table2 (pk);

If pat, owner of the tables, executes the statement, no additional privileges are needed. Any
other user executing the statement would need ALTER ANY TABLE privilege.

In addition, if the user executing an ALTER TABLE ... REFERENCES statement does not own the
table referenced by the REFERENCES clause, then REFERENCES object privilege on the applicable
table column is required. For example, for pat to execute this statement:

Command> ALTER TABLE pat.table1 ADD CONSTRAINT fk1
FOREIGN KEY (col1) REFERENCES terry.table2 (pk);

Pat would need the following privilege grant:

Command> GRANT REFERENCES (pk) ON terry.table2 TO pat;

Note that the REFERENCES privilege implicitly grants SELECT privilege for a user creating a
foreign key from the parent table. However, this implicit grant does not mean that the user has
the SELECT privilege on the parent table, so any SELECT statements fail if the only privilege on
the parent table is REFERENCES.

Chapter 2
Privileges for SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 12 of 28

Note

If you have tables related by foreign key constraints, these notes apply:

• If ON DELETE CASCADE is specified on a foreign-key constraint for a child table, a
user can delete rows from the parent table resulting in deletions from the child
table without requiring an explicit DELETE privilege on the child table. However, a
user must have the DELETE privilege on the parent table for this to occur
automatically.

• When you perform an insert or update on a child table, TimesTen determines
whether there is a foreign key constraint violation on the parent table resulting
from the change to the child table. In this case, a user is required to have the
INSERT or UPDATE privilege on the child table, but not a SELECT privilege on the
parent table.

• A user who creates a child table needs the REFERENCES object privilege on the
parent table to create a foreign key dependency.

Object Privileges for Views
For a user to select from a view that they do not own, they need to be granted the SELECT
object privilege for that view. Furthermore, the owner of the view must have the SELECT object
privilege for all of the objects referenced by the view.

For user pat to create a view that references only objects owned by pat, as in the statement
that follows, then pat needs only the CREATE VIEW privilege.

Command> CREATE VIEW pat.view1 AS SELECT * FROM pat.table1;

For pat to create a view that references a table owned by terry, as in the statement that
follows, then pat also needs the SELECT object privilege on that table. The owner of a view
must be granted the SELECT object privilege on each object referenced by the view.

Command> CREATE VIEW pat.view2 AS SELECT * FROM terry.table2;

For a third user, joe, to execute the preceding statement, joe needs the CREATE ANY VIEW
privilege. And pat, as the owner of the view, still must have been granted the SELECT object
privilege in order to perform the select on the table that terry owns.

When you select from a view, TimesTen validates the view at execution time, as well as any
views referenced by that view, for the required underlying privileges.

Now consider the following example:

Command> CREATE VIEW pat.view2 AS SELECT * from terry.table2;
Command> CREATE VIEW joe.view4 AS SELECT * from pat.view2, terry.table4;

For pat to execute these statements, the following privileges must be granted:

• User pat must be granted the CREATE ANY VIEW privilege so pat can create a view in the
schema owned by joe.

• User joe must be granted the SELECT object privilege on terry.table4.

• User joe must be granted the SELECT object privilege on pat.view2

• User pat must be granted the SELECT object privilege on terry.table2

Chapter 2
Privileges for SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 13 of 28

Object Privileges for Sequences
For a user to perform operations on sequences that they do not own, they must be granted the
SELECT object privilege. The SELECT privilege on a sequence enables the user to perform all
operations on that sequence, including NEXTVAL, even though that ultimately updates the
sequence.

For example, to grant SELECT privilege on the employees_seq sequence in the hr schema to
the user pat:

Command> GRANT SELECT ON hr.employees_seq TO pat;

User pat can subsequently generate the next value of the sequence with the following
statement:

Command> SELECT hr.employees_seq.NEXTVAL FROM DUAL;
< 207 >
1 row found.

Object Privileges for Materialized Views
To create a materialized view, a user needs at least the CREATE MATERIALIZED VIEW privilege.
To create a materialized view in another user's schema, the CREATE ANY MATERIALIZED VIEW
privilege is required.

Additionally, the owner of the materialized view needs to have CREATE TABLE privilege as well
as SELECT privilege on every detail table in that materialized view. If the owner of an existing
materialized view loses the SELECT privilege on any detail table on which the materialized view
is based, the materialized view becomes invalid.

For a user to select from a materialized view that they do not own, the user needs to be
granted the object privileges for materialized views, which include SELECT, INDEX and
REFERENCES.

Note

The status of a materialized view is indicated in the STATUS column of the
SYS.DBA_OBJECTS, SYS.ALL_OBJECTS, and SYS.USER_OBJECTS views. The owner of the
materialized view can see its status in the USER_OBJECTS view.

Also, if a materialized view is invalid, the ttIsql describe output appends INVALID
for the materialized view.

Furthermore, regarding materialized views:

• Users that have the privilege to do so can still update the detail tables of the
materialized view. However, an invalid materialized view does not reflect these
changes.

• In order to re-validate an invalid materialized view, you must grant the appropriate
privileges to the owner of the materialized view and then drop and re-create the
materialized view.

Chapter 2
Privileges for SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 14 of 28

Object Privileges for Synonyms
A synonym is an alias for a database object. Synonyms are often used for security and
convenience, because they can be used to mask object names and object owners. In addition,
you can use a synonym to simplify SQL statements.

Synonyms provide independence by permitting applications to function without modification
regardless of which object a synonym refers to. Synonyms can be used in DML statements,
some DDL statements and cache statements.

For a user to create or drop private or public synonyms, the user must have the following
privileges:

Table 2-1 Privileges for Synonyms

Action Required Privilege

Create a private synonym in the user's own schema. CREATE SYNONYM

Create a private synonym in another user's schema. CREATE ANY SYNONYM

Create a public synonym. CREATE PUBLIC SYNONYM

Drop a private synonym in the user's own schema. No privilege needed.

Drop a private synonym in another user's schema. DROP ANY SYNONYM

Drop a public synonym. DROP PUBLIC SYNONYM

In addition, in order to use a synonym, the user must have the appropriate access privileges
for the object that the synonym refers to. For example, if you create a synonym for a view, then
to select from that view using the synonym, the user would need SELECT privilege on the view.

ALL Object Privileges
You can grant all privileges for an object to a user with the ALL keyword. This grants a user the
right to perform any operation on the object. The object owner and any user with the ADMIN
privilege can execute the GRANT ALL and REVOKE ALL statements.

For example, GRANT ALL ON hr.employees TO pat grants all privileges for the employees table
to user pat. It is possible to revoke individual privileges after granting all object privileges:

Command> GRANT ALL ON hr.employees TO pat;
Command> REVOKE DELETE ON hr.employees FROM pat;

You may also REVOKE ALL object privileges that were granted to a user for the object, as
demonstrated here for user pat:

Command> REVOKE ALL ON hr.employees FROM pat;

Privileges for PL/SQL Objects
Authorization in PL/SQL requires certain privileges.

• Privileges for PL/SQL Statements and Operations

• Invalidated Objects

• Definer's Rights and Invoker's Rights (AUTHID clause)

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 15 of 28

Note

Also, see Privileges for SQL Objects.

Privileges for PL/SQL Statements and Operations
There are required privileges for PL/SQL statements and operations.

• Overview of Privileges for PL/SQL Statements and Operations

• Privileges Reference for PL/SQL Statements and Operations

• Granting Privileges for PL/SQL Statements and Operations

Overview of Privileges for PL/SQL Statements and Operations
For PL/SQL users, authorization through the granting of privileges is necessary to enable a
user to create, alter, drop, or execute PL/SQL procedures and functions, including packages
and their member procedures and functions.

You need the CREATE PROCEDURE privilege to create a procedure, function, package definition,
or package body if it is being created in your own schema, or CREATE ANY PROCEDURE if it is
being created in any other schema. To alter or drop a procedure, function, package definition,
or package body, you must be the owner or have the ALTER ANY PROCEDURE privilege or DROP
ANY PROCEDURE privilege, respectively.

For a user to execute PL/SQL functions, PL/SQL procedures or PL/SQL packages that they do
not own, they must be granted the EXECUTE object privilege for the procedure or function or for
the package to which it belong, or granted EXECUTE ANY PROCEDURE. When you grant a user
EXECUTE privilege on a package, this automatically grants EXECUTE privilege on its component
procedures and functions.

EXECUTE privilege authorizes the following:

• Execute the procedure or function.

• Access any program object declared in the specification of a package.

• Compile the object implicitly during a call to a currently invalid or uncompiled function or
procedure.

To explicitly compile using ALTER PROCEDURE or ALTER FUNCTION, the user must be granted the
ALTER ANY PROCEDURE system privilege.

Privileges Reference for PL/SQL Statements and Operations
There are required privileges for PL/SQL statements and operations.

Required privileges for PL/SQL statements and operations are summarized in Table 2-2.

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 16 of 28

Table 2-2 Privileges for Using PL/SQL Procedures and Functions

Action SQL Statement or Operation Required Privilege

Create a procedure,
function, package definition,
or package body.

CREATE [OR REPLACE]
PROCEDURE

CREATE [OR REPLACE] FUNCTION

CREATE [OR REPLACE] PACKAGE

CREATE [OR REPLACE] PACKAGE
BODY

CREATE PROCEDURE in user's
schema

Or:

CREATE ANY PROCEDURE in any
other schema

Alter a procedure, function,
or package.

ALTER PROCEDURE

ALTER FUNCTION

ALTER PACKAGE

Ownership of the procedure,
function, or package

Or:

ALTER ANY PROCEDURE

Drop a procedure, function,
package definition, or
package body.

DROP PROCEDURE

DROP FUNCTION

DROP PACKAGE

DROP PACKAGE BODY

Ownership of the procedure,
function, or package

Or:

DROP ANY PROCEDURE

Execute a procedure or
function.

Invoke the procedure or function. Ownership of the procedure or
function, or of the package to which
it belongs (if applicable)

Or:

EXECUTE for the procedure or
function, or for the package to which
it belongs (if applicable)

Or:

EXECUTE ANY PROCEDURE

Granting Privileges for PL/SQL Statements and Operations
You can grant and then revoke EXECUTE privilege to user2 for a procedure and a package that
user1 owns.

Command> grant execute on user1.myproc to user2;
Command> grant execute on user1.mypkg to user2;
...
Command> revoke execute on user1.myproc from user2;
Command> revoke execute on user1.mypkg from user2;

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 17 of 28

Note

• A user who has been granted privilege to execute a procedure (or function) can
execute the procedure even without privileges on other procedures that the
procedure calls. For example, consider a stored procedure user2.proc1 that
executes procedure user2.proc2. If user1 is granted privilege to execute proc1
but is not granted privilege to execute proc2, the user could not run proc2 directly
but could still run proc1.

• Privilege to execute a procedure or function allows implicit compilation of the
procedure or function if it is invalid or not compiled at the time of execution.

• To invoke a procedure or function through a synonym, a user must have privilege
to execute the underlying procedure or function.

• A SQL statement executed in PL/SQL requires the same privilege as when
executed directly.

• EXECUTE ANY PROCEDURE does not apply to TimesTen supplied packages; however,
most are accessible through the PUBLIC role.

The following example shows a series of attempted operations by a user, user1, as follows:

1. The user attempts each operation before having the necessary privilege. The resulting
error is shown.

2. The instance administrator grants the necessary privilege.

3. The user successfully performs the operation.

The ttIsql utility is used by user1 to perform (or attempt) the operations and by the instance
administrator to grant privileges.

user1:

Initially the user does not have permission to create a procedure. That must be granted even in
the user's own schema.

Command> create procedure testproc is
 begin
 dbms_output.put_line('user1.testproc called');
 end;
 /
15100: User USER1 lacks privilege CREATE PROCEDURE
The command failed.

Instance administrator:

Command> grant create procedure to user1;

user1:

Once user1 can create a procedure in the user1 schema, that user owns it and can execute it.

Command> create procedure testproc is
 begin
 dbms_output.put_line('user1.testproc called');
 end;
 /

Procedure created.

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 18 of 28

Command> begin
 testproc();
 end;
 /
user1.testproc called

PL/SQL procedure successfully completed.

The user cannot yet create a procedure in another schema, though.

Command> create procedure user2.testproc is
 begin
 dbms_output.put_line('user2.testproc called');
 end;
 /
15100: User USER1 lacks privilege CREATE ANY PROCEDURE
The command failed.

user1:

Now user1 can create a procedure in another schema, but cannot execute it without owning it
or having necessary privilege.

Instance administrator:

Command> grant create any procedure to user1;

Command> create procedure user2.testproc is
 begin
 dbms_output.put_line('user2.testproc called');
 end;
 /

Procedure created.

Command> begin
 user2.testproc();
 end;
 /
 8503: ORA-06550: line 2, column 7:
PLS-00904: insufficient privilege to access object USER2.TESTPROC
 8503: ORA-06550: line 2, column 1:
PL/SQL: Statement ignored
The command failed.

Instance administrator:

Command> grant execute any procedure to user1;

user1:

Now user1 can execute a procedure in another schema.

Command> begin
 user2.testproc();
 end;
 /
user2.testproc called

PL/SQL procedure successfully completed.

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 19 of 28

Invalidated Objects
When a privilege on an object is revoked from a user, all of that user's PL/SQL objects that
refer to that object are temporarily invalidated. Once the privilege has been restored, a user
can explicitly recompile and revalidate an object by executing ALTER PROCEDURE, ALTER
FUNCTION, or ALTER PACKAGE, as applicable, on the object. Alternatively, each object is
recompiled and revalidated automatically the next time it is executed.
For example, if user1 has a procedure user1.proc0 that calls user2.proc1, proc0 becomes
invalid if EXECUTE privilege for proc1 is revoked from user1.

Use the following to see if any of your objects are invalid:

select * from user_objects where status='INVALID';

This example shows a series of actions resulting in an invalidated PL/SQL procedure:

1. A user is granted CREATE ANY PROCEDURE privilege, creates a procedure in another user's
schema, then creates a procedure in their own schema that calls the procedure in the
other user's schema.

2. The user is granted EXECUTE privilege to execute the procedure in the other user's schema.

3. The user executes the procedure in their schema that calls the procedure in the other
user's schema.

4. EXECUTE privilege for the procedure in the other user's schema is revoked from the user,
invalidating the user's own procedure.

5. EXECUTE privilege for the procedure in the other user's schema is granted to the user again.
When the user executes their own procedure, it is implicitly recompiled and revalidated.

Administrative user:

Command> grant create any procedure to user1;

user1:

Command> create procedure user2.proc1 is
 begin
 dbms_output.put_line('user2.proc1 is called');
 end;
 /

Procedure created.

Command> create procedure user1.proc0 is
 begin
 dbms_output.put_line('user1.proc0 is called');
 user2.proc1;
 end;
 /

Procedure created.

Administrative user:

Command> grant execute on user2.proc1 to user1;

user1:

Command> begin
 user1.proc0;

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 20 of 28

 end;
 /
user1.proc0 is called
user2.proc1 is called

PL/SQL procedure successfully completed.

And to confirm user1 has no invalid objects:

Command> select * from user_objects where status='INVALID';
0 rows found.

Administrative user:

Now revoke the EXECUTE privilege from user1.

Command> revoke execute on user2.proc1 from user1;

user1:

Immediately, user1.proc0 becomes invalid because user1 no longer has privilege to execute
user2.proc1.

Command> select * from user_objects where status='INVALID';
< PROC0, <NULL>, 273, <NULL>, PROCEDURE, 2021-06-04 14:51:34, 2021-06-04 14:58:23,
2021-06-04:14:58:23, INVALID, N, N, N, 1, <NULL> >
1 row found.

So user1 can no longer execute the procedure.

Command> begin
 user1.proc0;
 end;
 /
 8503: ORA-06550: line 2, column 7:
PLS-00905: object USER1.PROC0 is invalid
 8503: ORA-06550: line 2, column 1:
PL/SQL: Statement ignored
The command failed.

Administrative user:

Again grant EXECUTE privilege on user2.proc1 to user1.

Command> grant execute on user2.proc1 to user1;

user1:

The procedure user1.proc0 is still invalid until it is either explicitly or implicitly recompiled. It is
implicitly recompiled when it is executed, as shown here. Or ALTER PROCEDURE could be used
to explicitly recompile it.

Command> select * from user_objects where status='INVALID';
< PROC0, <NULL>, 273, <NULL>, PROCEDURE, 2021-06-04 14:51:34, 2021-06-04 16:13:00,
2021-06-04:16:13:00, INVALID, N, N, N, 1, <NULL> >
1 row found.
Command> begin
 user1.proc0;
 end;
 /
user1.proc0 is called
user2.proc1 is called

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 21 of 28

PL/SQL procedure successfully completed.

Command> select * from user_objects where status='INVALID';
0 rows found.

Definer's Rights and Invoker's Rights (AUTHID clause)
When a PL/SQL procedure or function is defined, the optional AUTHID clause of the CREATE
FUNCTION or CREATE PROCEDURE statement specifies whether the function or procedure
executes with definer's rights (AUTHID DEFINER, the default) or invoker's rights (AUTHID
CURRENT_USER).

The AUTHID setting affects the name resolution and privilege checking of SQL statements that
a procedure or function issues at runtime. With definer's rights, SQL name resolution and
privilege checking operate as though the owner of the procedure or function (the definer, in
whose schema it resides) is running it. With invoker's rights, SQL name resolution and privilege
checking simply operate as though the current user (the invoker) is running it.

For procedures or functions in a package, the AUTHID clause of the CREATE PACKAGE statement
specifies whether each member function or procedure of the package executes with definer's
rights or invoker's rights. The AUTHID clause is shown in the syntax documentation for these
statements, under SQL Statements in Oracle TimesTen In-Memory Database SQL Reference.

Invoker's rights would be useful in a scenario where you might want to grant broad privileges
for a body of code, but would want that code to affect only each user's own objects in the
user's own schema.

Definer's rights would be useful in a situation where you want all users to have access to the
same centralized tables or other SQL objects, but only for the specific and limited actions that
are executed by the procedure. The users would not have access to the SQL objects
otherwise.

Refer to Invoker's Rights and Definer's Rights (AUTHID Property) in Oracle Database PL/SQL
Language Reference.

The following example runs a script twice in ttIsql with just one change, first defining a
PL/SQL procedure with AUTHID CURRENT_USER for invoker's rights, then with AUTHID DEFINER
for definer's rights.

Script for AUTHID examples:

The script assumes three users have been created: a tool vendor and two tool users (brandX
and brandY). Each has been granted CREATE SESSION, CREATE PROCEDURE, and CREATE TABLE
privileges as necessary. The following setup is also assumed, to allow "use username;" syntax
to connect to the database as username.

connect adding "uid=toolVendor;pwd=pw" as toolVendor;
connect adding "uid=brandX;pwd=pw" as brandX;
connect adding "uid=brandY;pwd=pw" as brandY;

The script does the following:

• Creates the procedure, printInventoryStatistics, as the tool vendor.

• Creates a table with the same name, myInventory, in each of the three user schemas,
populating it with unique data in each case.

• Runs the procedure as each of the tool users.

The different results between the two executions of the script show the difference between
invoker's rights and definer's rights.

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 22 of 28

Following is the script for the invoker's rights execution.

use toolVendor;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('butter', 1);

create or replace procedure printInventoryStatistics authid current_user is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/
grant execute on printInventoryStatistics to brandX;
grant execute on printInventoryStatistics to brandY;

use brandX;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('toothpaste', 100);
set serveroutput on
execute toolVendor.printInventoryStatistics;

use brandY;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('shampoo', 10);
set serveroutput on
execute toolVendor.printInventoryStatistics;

The only difference for the definer's rights script is the change in the AUTHID clause for the
procedure definition.

...
create or replace procedure printInventoryStatistics authid definer is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/
...

Using AUTHID CURRENT_USER:

This part shows the results when the procedure is defined with invoker's rights. Note that when
the tool users brandX and brandY run the printInventoryStatistics procedure, each sees
the data in the myInventory table as the invoker.

Command> run invoker.sql

use toolVendor;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('butter', 1);
1 row inserted.

create or replace procedure printInventoryStatistics authid current_user is
 inventoryCount pls_integer;

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 23 of 28

begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop
 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/

Procedure created.

grant execute on printInventoryStatistics to brandX;
grant execute on printInventoryStatistics to brandY;

use brandX;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('toothpaste', 100);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
toothpaste 100

PL/SQL procedure successfully completed.

use brandY;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('shampoo', 10);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
shampoo 10

PL/SQL procedure successfully completed.

Use the following to terminate all the connections:

Command> disconnect all;

Using AUTHID DEFINER:

This part shows the results when the procedure is defined with definer's rights. Note that when
the tool users brandX and brandY run printInventoryStatistics, each sees the data in
myInventory belonging to the tool vendor (the definer).

Command> run definer.sql

use toolVendor;

create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('butter', 1);
1 row inserted.

create or replace procedure printInventoryStatistics authid definer is
 inventoryCount pls_integer;
begin
 select count(*) into inventoryCount from myInventory;
 dbms_output.put_line('Total items in inventory: ' || inventoryCount);
 for currentItem in (select * from myInventory) loop

Chapter 2
Privileges for PL/SQL Objects

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 24 of 28

 dbms_output.put_line(currentItem.name || ' ' || currentItem.inventoryCount);
 end loop;
end;
/

Procedure created.

grant execute on printInventoryStatistics to brandX;
grant execute on printInventoryStatistics to brandY;

use brandX;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('toothpaste', 100);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
butter 1

PL/SQL procedure successfully completed.

use brandY;
create table myInventory (name varchar2(100), inventoryCount tt_integer);
insert into myInventory values('shampoo', 10);
1 row inserted.
set serveroutput on;

execute toolVendor.printInventoryStatistics;
Total items in inventory: 1
butter 1

PL/SQL procedure successfully completed.

In this case, it is also instructive to see that although brandX and brandY can each access the
toolVendor.myInventory table through the procedure, they cannot access it directly. That is a
key use of definer's rights, to enable specific and restricted access to a table or other SQL
object through the actions of a procedure.

Command> use brandX;
brandx: Command> select * from toolVendor.myInventory;
15100: User BRANDX lacks privilege SELECT on TOOLVENDOR.MYINVENTORY
The command failed.

brandx: Command> use brandY;
brandy: Command> select * from toolVendor.myInventory;
15100: User BRANDY lacks privilege SELECT on TOOLVENDOR.MYINVENTORY
The command failed.

When finished, terminate all the connections:

Command> disconnect all;

Privileges for Cache Groups
Cache groups require certain users and privileges.

• About Cache Group Users and Privileges

• Oracle Cache Administration User Privilege

• TimesTen Cache Administration User Privilege

Chapter 2
Privileges for Cache Groups

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 25 of 28

• Privileges for Other Cache Users

About Cache Group Users and Privileges
There are system and object privileges for cache groups. In order for a user to perform
operations involving any cache group, the user must have the appropriate cache group
privileges.

In addition, there are administrative users, namely the Oracle cache administration user and
the TimesTen cache administration user, who require special privileges. See Cache Group
Users.

For a complete list of system and object privileges for cache group operations, see Privileges
in Oracle TimesTen In-Memory Database SQL Reference.

Note

Passthrough does not require any cache group privileges, because privileges are
checked by the Oracle database with the user credentials.

Oracle Cache Administration User Privilege
To grant the Oracle cache administration user the minimum set of privileges required to
perform cache operations: On Oracle Database, run the SQL*Plus script
grantCacheAdminPrivileges.sql in the timesten_home/install/oraclescripts directory as
the SYS user.

See Grant Privileges to the Oracle Database Users in Oracle TimesTen In-Memory Database
Cache Guide.

TimesTen Cache Administration User Privilege
The required privilege for the TimesTen cache administration user is the CACHE_MANAGER
system privilege, enabling the user to perform necessary cache group operations.

A TimesTen cache administration user must have the CACHE_MANAGER privilege to perform the
initial load of a read-only cache group or to change the state of autorefresh on a read-only
cache group. (The initial load implicitly alters the state of the cache group autorefresh from
paused to on.)

For a complete list of individual cache group operation privileges, see Required Privileges for
Cache Operations in Oracle TimesTen In-Memory Database Cache Guide.

This grants the CACHE_MANAGER privilege to pat:

Command> GRANT CACHE_MANAGER TO pat;

Note

An asynchronous writethrough (AWT) cache group combines both cache groups and
replication. The CACHE_MANAGER privilege provides all of the privileges needed for
creating AWT cache groups.

Chapter 2
Privileges for Cache Groups

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 26 of 28

Privileges for Other Cache Users
Certain cache group privileges are requires for other users (non-administrative users).

• Non-Administrative Cache Users

• Cache Group System Privileges

• Cache Group Object Privileges

Non-Administrative Cache Users
Operations on a cache group or a cache table, such as loading a cache group or updating a
cache table, can be performed by any TimesTen user who has sufficient privileges.

Note that for these users, there must also be a corresponding Oracle Database user with the
same name who has privilege to select from and update the cached Oracle Database tables.

See Create the TimesTen Users and Grant Privileges to the TimesTen Users in Oracle
TimesTen In-Memory Database Cache Guide.

Cache Group System Privileges
Cache group system privileges enable a user to operate on cache group objects across the
database.

• To create a cache group, a user must be granted either the CREATE CACHE GROUP or CREATE
ANY CACHE GROUP system privilege. In addition, the user must be granted either the CREATE
ANY TABLE or CREATE TABLE privilege to create any underlying cache tables, depending on
whether the table is owned by the user.

• To drop or alter a cache group that is not owned by the user, the user must be granted the
DROP ANY CACHE GROUP or ALTER ANY CACHE GROUP privilege as applicable. In addition, the
user must be granted the DROP ANY TABLE privilege to drop any underlying cache tables if
the tables are not owned by the user.

For example, the following confers the privilege for a user to alter any cache group in the
database:

Command> GRANT ALTER ANY CACHE GROUP TO pat;

These cache group system privileges are for operations on objects not owned by the user:

• FLUSH ANY CACHE GROUP

• LOAD ANY CACHE GROUP

• UNLOAD ANY CACHE GROUP

• REFRESH ANY CACHE GROUP

Cache Group Object Privileges
Object privileges for cache group operations enable a user to perform a particular operation on
a particular cache group that the user does not own.

These are the available cache group object privileges:

• FLUSH

Chapter 2
Privileges for Cache Groups

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 27 of 28

• LOAD

• UNLOAD

• REFRESH

This example grants pat the cache group object privilege to perform a FLUSH on the cache
group cachegrp that is owned by terry:

Command> GRANT FLUSH ON terry.cachegrp TO pat;

See Methods for Transmitting Changes Between TimesTen and Oracle Databases in Oracle
TimesTen In-Memory Database Cache Guide.

User Privilege Views
You can view the privileges granted to each user through certain views.

Table 2-3 System Views for User Privileges

View Name Description

SYS.USER_SYS_PRIVS Returns all of the system privileges granted to the current user.

SYS.DBA_SYS_PRIVS Returns the list of system privileges granted to all users and inherited
from the PUBLIC role. ADMIN privilege is required to select from this
view.

SYS.USER_TAB_PRIVS Returns all of the object privileges granted to the current user.

SYS.ALL_TAB_PRIVS Returns the results of both USER_TAB_PRIVS and the object privileges
inherited from the PUBLIC role for a user. This shows all object
privileges granted to a user.

SYS.DBA_TAB_PRIVS Returns the object privileges granted to all users and inherited from the
PUBLIC role. ADMIN privilege is required to select from this view.

This example displays the system privileges granted to all users:

Command> SELECT * FROM SYS.DBA_SYS_PRIVS;
< SYS, ADMIN, YES >
< SYSTEM, ADMIN, YES >
< TERRY, ADMIN, YES >
< TERRY, CREATE ANY TABLE, NO >
< PAT, CACHE_MANAGER, NO >
5 rows found.

Note

See System Tables and Views in Oracle TimesTen In-Memory Database System
Tables and Views Reference.

Chapter 2
User Privilege Views

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 28 of 28

3
Secure Network Communication in TimesTen

Some features in TimesTen, such as client/server and replication, support Transport Layer
Security (TLS) for secure network communication between TimesTen instances.

TimesTen supports TLS protocol version 1.2 and its associated cipher suites. A cipher suite is
a set of authentication, encryption, and data integrity algorithms used for exchanging
messages between network entities. In this case, the network entities are the TimesTen Client
and the TimesTen Server.

TLS configuration in TimesTen does not apply to communication between TimesTen and
Oracle Database, such as when cache is used. Secure TimesTen-Oracle communications can
be configured through settings in the sqlnet.ora file used for connections to Oracle Database.
Refer to Configuring Transport Layer Security Authentication in Oracle Database Security
Guide.

These topics are discussed here:

• Transport Layer Security for TimesTen Client/Server

• Transport Layer Security for TimesTen Replication

Transport Layer Security for TimesTen Client/Server
When using a client/server connection, you can optionally configure and use TLS for encrypted
communication between clients and the server.

TimesTen supports the following cipher suites. In this case, the network entities are the
TimesTen Client and the TimesTen Server. The names of the cipher suites use both TLS and
SSL terminology. The SSL-named cipher suites work with and apply to Transport Layer
Security.

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 or
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 or
SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 or
SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 or
SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_RSA_WITH_AES_128_CBC_SHA256 or SSL_RSA_WITH_AES_128_CBC_SHA256

• TLS_RSA_WITH_AES_256_CBC_SHA256 or SSL_RSA_WITH_AES_256_CBC_SHA256

• TLS_RSA_WITH_AES_128_GCM_SHA256 or SSL_RSA_WITH_AES_128_GCM_SHA256

• TLS_RSA_WITH_AES_256_GCM_SHA384 or SSL_RSA_WITH_AES_256_GCM_SHA384

This section discusses TimesTen support for TLS for client/server, covering these topics:

• About Using Certificates with Client/Server

• Configuration for TLS for Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 1 of 24

• Using TLS for Client/Server in TimesTen Classic

• Using TLS for Client/Server in TimesTen Scaleout

• Using CA-Signed Certificates for Client/Server in TimesTen Classic

• Checking Operation of TLS for Client/Server

About Using Certificates with Client/Server
For self-signed certificates, TimesTen provides the ttCreateCerts utility for the generation of
certificates for TLS. This utility is used by TimesTen during instance creation (in TimesTen
Classic) and grid creation (in TimesTen Scaleout).

TimesTen uses Oracle Wallets to store certificates. For general information about these
wallets, also referred to as "keystores", refer to How the Keystore for the Storage of TDE
Master Encryption Keys Works in Oracle Database Advanced Security Guide.

Note

The server uses the existing TimesTen user ID and password mechanism to
authenticate a user, but TimesTen also supports a form of client authentication where
the server validates an identity in the client wallet. This is a way for the server to verify
that the connecting client is a legitimate client, but the user still must provide user ID
and password credentials.

In TimesTen Classic:

• TimesTen can generate certificates and place them on an instance when it is created.

• The TimesTen server has its own self-signed root certificate.

• The user typically imports, or optionally copies, the client wallet to each client.

In TimesTen Scaleout:

• TimesTen generates certificates and places them on the first management instance when
a grid is created.

• Certificates are distributed to data instances when the grid model is applied.

• There is one root certificate authority (CA) per grid, stored in a wallet, and a single private
key and certificate used by all instances.

• The user imports the client wallet to client systems.

Regarding certificates generated by TimesTen:

• Certificates produced are self-signed and stored in an Oracle Wallet.

• The root CA has a default expiration time. It is the user’s responsibility to track this. When
the root CA expires, all server certificates must be regenerated. When the root CA is
regenerated, all clients must re-import it. (The task sections later in this chapter for
generating certificates for TimesTen Classic or TimesTen Scaleout also include information
about regenerating certificates.)

• Clients will store the root certificate (the public key) in a local wallet. There is no need to
store the public key on each instance.

• Wallets produced are auto-login or single-sign-on (SSO) wallets, without a password.
Access to wallets is controlled by file system permissions.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 2 of 24

• The wallets are platform-independent.

• Because the certificates are self-signed, they cannot be revoked. But certificates can be
regenerated as needed.

Most discussion in this chapter is for use of self-signed certificates produced through
ttCreateCerts (either by TimesTen or directly by the user), but TimesTen also supports the
use of certificates signed by a third-party CA. See Using CA-Signed Certificates for Client/
Server in TimesTen Classic.

The wallet of each server has its own public/private key identity signed by the root certificate.
Each client that connects to a server must have a wallet containing the root certificate of that
server. (A client may optionally have multiple wallets for connections to multiple database
services.)

Configuration for TLS for Client/Server
There is both server-side and the client-side configuration for TLS for client/server.

• Server Attributes for TLS

• Client Attributes for TLS

Server Attributes for TLS
These are the server connection attributes that determine settings for TLS for client/server.

Also see Task 2: Set Server Configuration for TLS in TimesTen Classic and Task 2: Set Server
Configuration for TLS in TimesTen Scaleout.

• Wallet: Specify the wallet location, as an absolute path, where certificates were placed
(preferably the same directory path as on the client). Assuming ttCreateCerts was used,
this is the full path of the serverWallet directory.

• Encryption (encryption flag): Use one of the following settings. These descriptions
assume matching cipher suite settings between the server and client, where applicable.

– accepted: Enable an encrypted session if required or requested by the client; use an
unencrypted session otherwise. This is the default.

– rejected: Demand an unencrypted session. (If the server does not support encryption,
TimesTen behaves as if this is the setting on the server.) The connection is rejected if
the client requires encryption.

– requested: Request an encrypted session if the client allows it (if the client has any
setting other than rejected); use an unencrypted session otherwise.

– required: Demand an encrypted session. Reject the connection if the client rejects
encryption.

See Table 3-1 later in this section for a summary of the results of each possible
combination of settings of this attribute between the server and client, with consideration of
the cipher suite settings.

• CipherSuites: This lists the cipher suite or suites that can be used, depending also on the
client setting. Specify the desired cipher suites, comma-separated and in order of
preference. See Transport Layer Security for TimesTen Client/Server for the list of
supported cipher suites. For TLS to be used, the server and client settings must include at
least one common suite.

• SSLClientAuthentication: Specifies whether TLS client authentication is required (setting
of 1) or not (setting of 0, the default). With client authentication, the server validates an

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 3 of 24

identity presented by the client, and requires an identity (public/private key) in the client
wallet. Note that regardless of the client authentication setting, server authentication is
performed, where the client validates the server.

The server and client must have the same SSLClientAuthentication setting.

Note

As an alternative to the preceding server connection attributes, these equivalent
attributes are available in the instance-level TimesTen configuration file,
timesten_home/conf/timesten.conf, on the server. Connection attribute settings take
precedence.

• server_wallet

• server_encryption

• server_cipher_suites

• ssl_client_authentication

If you have more than one database in a TimesTen instance, these settings apply to
all, but can be overridden for each database through the server DSN definition.

TimesTen supports TLS session renegotiation, where new session keys are generated during
an active TLS session for more robust security. Session renegotiations are performed
according to either how much data has been transferred or how much time has passed. If you
want to enable this feature, use one these attributes in the server DSN definition:

• SSLRenegotiationSize: Specifies a number of megabytes of data transfer in either
direction between the client and server, after which session renegotiation is performed.
The default setting is 0, meaning do not renegotiate based on megabytes transferred.

• SSLRenegotiationPeriod: Specifies a period of time, in minutes, after which session
renegotiation is performed. The default setting is 0, meaning do not renegotiate based on a
time period.

If both attributes are set to nonzero values, whichever situation occurs first will result in
renegotiation.

The following table shows the results of all possible combinations of encryption flag settings
between client and server, with consideration of the cipher suite settings.

Table 3-1 Results of Combinations of Server and Client Encryption Settings

Server Encryption
Flag Setting

Client Encryption
Flag Setting

Result

accepted accepted Connection accepted, encryption off.

accepted rejected Connection accepted, encryption off.

accepted requested Connection accepted. Encryption on if there is overlap
between the cipher suite settings, off if there is not.

accepted required Connection accepted with encryption on if there is
overlap between cipher suite settings. Connection
rejected if there is not.

rejected accepted Connection accepted, encryption off.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 4 of 24

Table 3-1 (Cont.) Results of Combinations of Server and Client Encryption Settings

Server Encryption
Flag Setting

Client Encryption
Flag Setting

Result

rejected rejected Connection accepted, encryption off.

rejected requested Connection accepted, encryption off.

rejected required Connection rejected.

requested accepted Connection accepted. Encryption on if there is overlap
between the cipher suite settings, off if there is not.

requested rejected Connection accepted, encryption off.

requested requested Connection accepted. Encryption on if there is overlap
between the cipher suite settings, off if there is not.

requested required Connection accepted with encryption on if there is
overlap between cipher suite settings. Connection
rejected if there is not.

required accepted Connection accepted with encryption on if there is
overlap between cipher suite settings. Connection
rejected if there is not.

required rejected Connection rejected.

required requested Connection accepted with encryption on if there is
overlap between cipher suite settings. Connection
rejected if there is not.

required required Connection accepted with encryption on if there is
overlap between cipher suite settings. Connection
rejected if there is not.

Note

If automatic client failover is enabled and a failover occurs, encryption attribute
settings from the original connection will continue to be used. The failover server must
have the same encryption settings as the original server. (See Using Automatic Client
Failover in Oracle TimesTen In-Memory Database Operations Guide for information
about automatic client failover.)

Client Attributes for TLS
These are the client connection attributes to determine settings for TLS for client/server.

Also see Task 3: Set Client Configuration for TLS in TimesTen Classic and Task 3: Set Client
Configuration for TLS in TimesTen Scaleout.

Note

If an attribute is set in both the client DSN definition and the connect string, the
connect string setting takes precedence.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 5 of 24

• Wallet: Specify the wallet directory, as an absolute path, where certificates were placed
(preferably the same directory path as on the server). If ttCreateCerts was used, this is
the full path of the clientWallet directory.

• Encryption (encryption flag): Use one of the following settings. These descriptions
assume matching cipher suite settings between the server and client, where applicable.

– accepted: Enable an encrypted session if required or requested by the server; use an
unencrypted session otherwise. This is the default.

– rejected: Demand an unencrypted session. (If the client does not support encryption,
TimesTen behaves as if this is the setting on the client.) The connection is rejected if
the server requires encryption.

– requested: Request an encrypted session if the server allows it (if the server has any
setting other than rejected); use an unencrypted session otherwise.

– required: Demand an encrypted session. The connection is rejected if the server
rejects encryption.

See Table 3-1 for a summary of the results of each possible combination of settings of this
attribute between the server and client, with consideration of the cipher suite settings.

• CipherSuites: This lists the cipher suite or suites that can be used, depending also on the
server setting. Specify the desired cipher suites, comma-separated and in order of
preference. See Transport Layer Security for TimesTen Client/Server for the list of
supported cipher suites. For TLS to be used, the server and client settings must include at
least one common suite.

• SSLClientAuthentication: Specifies whether TLS client authentication is required (setting
of 1) or not (setting of 0, the default). With client authentication, the server validates an
identity presented by the client, and requires an identity (public/private key) in the client
wallet. Note that regardless of the client authentication setting, server authentication is
performed, where the client validates the server.

The server and client must have the same SSLClientAuthentication setting.

Note

As an alternative to the preceding client connection attributes, these equivalent
attributes are available in the instance-level TimesTen configuration file,
timesten_home/conf/timesten.conf, on the client. Connection attribute settings take
precedence.

• client_wallet

• client_cipher_suites

• server_encryption

• ssl_client_authentication

If you have more than one client DSN in a TimesTen instance, these settings apply to
all, but can be overridden for each client through the client DSN definition.

Using TLS for Client/Server in TimesTen Classic
These are the steps to use TLS for client/server in TimesTen Classic with certificates
generated by TimesTen.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 6 of 24

• Task 1: Generate Certificates and Set TLS Attributes with ttInstanceCreate

• Task 2: Set Server Configuration for TLS in TimesTen Classic

• Task 3: Set Client Configuration for TLS in TimesTen Classic

• Task 4: Export Certificates and Configuration in TimesTen Classic

• Task 5: Import Certificates and Configuration in TimesTen Classic

Alternatively, you can use CA-signed certificates from a third party. See Using CA-Signed
Certificates for Client/Server in TimesTen Classic.

Task 1: Generate Certificates and Set TLS Attributes with ttInstanceCreate
You can arrange for certificates to be created when you run the ttInstanceCreate utility (from
the installation bin directory).

Note

• Certificates generated by ttInstanceCreate can be used for replication as well as
for client/server.

• You can also use the TimesTen ttCreateCerts utility manually to generate
certificates. This is useful, for example, if you need to regenerate certificates for
any reason, such as expiration, or if you have multiple databases on a single
TimesTen instance and want to use different certificates for each database. See
ttCreateCerts in the Oracle TimesTen In-Memory Database Reference .

Set –serverEncryption (the encryption flag) and –serverCipherSuites (the cipher suite or
suites to use) on the ttInstanceCreate command line. See Server Attributes for TLS for
descriptions of encryption and cipher suites attributes. See Transport Layer Security for
TimesTen Client/Server for a list of cipher suites you can use in TimesTen.

This command, to create an instance named tt221, will generate certificates in the instance
conf directory, timesten_home/conf.

% installation_dir/bin/ttInstanceCreate -name tt221 -location instances_dir -
serverEncryption required -serverCipherSuites SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Creating instance in instances_dir/tt221 ...
INFO: Creating certificates, this may take some time ...
ttCreateCerts : certificates created in instances_dir/tt221/conf
...
Instance created successfully.

This generates wallets with a root certificate, server certificate, and client certificate and adds
the following entries to the instance timesten.conf file (the latter two by default):

server_encryption=required
server_cipher_suites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
client_wallet=timesten_home/conf/clientWallet
server_wallet=timesten_home/conf/serverWallet

From the timesten_home/conf directory, what follows shows the serverWallet and
clientWallet directories that are created when you run ttInstanceCreate. Each contains a
wallet, cwallet.sso. (Ignore the .cert files and rootWallet directory.)

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 7 of 24

% ls
client1.cert root.cert server1.cert sys.odbc.ini timesten.conf
clientWallet rootWallet serverWallet sys.ttconnect.ini

Note

If you want to change the -serverEncryption and -serverCipherSuites settings for
the instance at a later time, you can do so using the ttInstanceModify utility, which
also has those options. You can copy or move the wallet to a different location and
specify the new location of the server wallet using the ttInstanceModify -
serverWallet option.

After you have generated certificates, you can list information about them using the -
certificateList option of the TimesTen ttAdmin utility, but to use ttAdmin you must specify a
database on the command line that is defined in the sys.odbc.ini file in the timesten_home/
conf directory.

The utility looks in the timesten_home/conf directory unless the wallets were moved
elsewhere, as would be indicated by the Wallet connection attribute in sys.odbc.ini or by
server_wallet in the instance-level timesten.conf configuration file.

This example is for a database mydb. Start the TimesTen daemon before you run ttAdmin.

% ttDaemonAdmin -start
TimesTen Daemon (PID: 733500, port: 6624) startup OK.
% ttAdmin -certificateList mydb
NAME HOLDER EXPIRATION
timesten_home/conf/serverWallet/cwallet.sso CN=server1,C=US Fri Jul 30
23:08:02 UTC 2032

Task 2: Set Server Configuration for TLS in TimesTen Classic
You can configure TLS for the server in the following ways.

• The encryption flag and cipher suite(s) are specified in the ttInstanceCreate command as
shown earlier. Later, there are additional TLS configuration attributes you can set as well.
In particular, set the wallet location.

• At the instance level, you can add or update TLS attributes in the timesten.conf file in the
timesten_home/conf directory, such as through the server_wallet,
server_cipher_suites, and server_encryption attributes. (Recall that initial values for
server_cipher_suites and server_encryption were set through ttInstanceCreate.)
Values in timesten.conf serve as default values for any database on the instance.

• At the database level, server attributes for TLS can be set in the server DSN definition in
timesten_home/conf/sys.odbc.ini. For a given database, these settings override the
instance-level settings in timesten.conf.

This excerpt from a server DSN definition specifies where ttInstanceCreate placed the server
wallet directory:

[mydb]
Driver=timesten_home/install/lib/libtten.so
DataStore=databases_dir/mydb
...
Wallet=timesten_home/conf/serverWallet

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 8 of 24

Alternatively, you can copy or move the wallet directory to a different location and specify that
location in the Wallet setting. Make sure that you also update the new wallet directory in
timesten.conf file with either using the ttInstanceModify -serverWallet utility or modify the
server_wallet attribute in the timesten.conf file.

See Server Attributes for TLS for information about available configuration attributes.

Task 3: Set Client Configuration for TLS in TimesTen Classic
Configure TLS for the client in the client DSN definition. Manually set Encryption (the
encryption flag), CipherSuites (the cipher suite(s) to use), and Wallet (pointing to the client
wallet directory) in the client DSN definition in sys.odbc.ini on the server.

For example, for a database mydb:

[mydbCS]
TTC_SERVER=mydb_CS
TTC_SERVER_DSN=mydb
Wallet=timesten_home/conf/clientWallet
Encryption=required
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Also be aware of these alternatives:

• You can manually set attribute values in an odbc.ini file on the client, instead of exporting
and importing settings from the server.

• You can set attribute values in the connect string for a particular connection, such as from
the ttIsql utility:

Command> connect
"Driver=...;DataStore=...;Encryption=required;CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_2
56_GCM_SHA384";

• You can set equivalent attributes at the instance level in the TimesTen configuration file,
timesten_home/conf/timesten.conf, on the client. These settings, including
server_encryption, client_cipher_suites, and client_wallet, would be used as
default values. Any connection attribute settings for a particular connection take
precedence.

See Client Attributes for TLS for information about available configuration attributes.

Task 4: Export Certificates and Configuration in TimesTen Classic
The ttAdmin utility has a –clientExportAll option that outputs a ZIP file containing the client
wallet, a sys.odbc.ini file that can be used in accessing the database, and other files (such
as tnsnames.ora file) as applicable.

Run ttAdmin from the timesten_home/bin directory on the server. On the command line,
specify the desired ZIP file path and name and the client DSN. The wallet in the output ZIP file
includes the CA public key (to verify server certificates) and a client certificate for mutual
authentication.

With the following command line for a database mydb, the ttAdmin utility will create a file
exports.zip and place it in the timesten_home/info directory.

% ttAdmin -clientExportAll timesten_home/info/exports.zip mydbCS
Client definitions exported to timesten_home/info/exports.zip

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 9 of 24

The exports.zip file contains the following sys.odbc.ini file and a directory based on the
client DSN name, mydbCSWallet for this example. That directory contains the client wallet,
cwallet.sso, that was created by ttInstanceCreate:

[mydbCS]
TTC_SERVER=mydb_CS
TTC_SERVER_DSN=mydb
Wallet=timesten_home/conf/clientWallet
Encryption=required
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Wallet=mydbCSWallet

Task 5: Import Certificates and Configuration in TimesTen Classic
Run the ttClientImport utility from the client to import the contents of the export ZIP file
created by the ttAdmin -clientExportAll command.

Typically, copy the export ZIP file from the server to a desired location on the client, then
specify that location on the ttClientImport command line. The ttClientImport utility imports
the wallet and sys.odbc.ini file (and anything else) that were exported. The utility places the
wallet directory, mydbCSWallet for this example (based on the client DSN name), under a
wallets directory under timesten_home/conf.

% ttClientImport path/exports.zip
Client definitions imported.

The sys.odbc.ini file on the client is updated to add the client DSN with its TLS settings. (If
there is an existing client DSN with the same name, it is replaced.) The generic wallet path in
the exported sys.odbc.ini file is updated according to the known actual wallet path, with the
wallets/mydbCSWallet subdirectory path.

[mydbCS]
TTC_SERVER=mydb_CS
TTC_SERVER_DSN=mydb
Wallet=timesten_home/conf/clientWallet
Encryption=required
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Wallet=timesten_home/conf/wallets/mydbCSWallet
Wallet=mydbCSWallet

From the timesten_home/conf directory on the client:

% ls
sys.odbc.ini sys.ttconnect.ini timesten.conf wallets
% ls wallets
mydbCSWallet
% ls wallets/mydbCSWallet
cwallet.sso

Once the import is completed, assuming client and server configuration with compatible
encryption flag and cipher suite settings, you can connect to the server through TLS. See
Checking Operation of TLS for Client/Server.

See ttAdmin and ttClientImport in Oracle TimesTen In-Memory Database Reference for
additional information about those utilities.

Using TLS for Client/Server in TimesTen Scaleout
These are the steps to use TLS for client/server in TimesTen Scaleout with certificates
generated by TimesTen.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 10 of 24

• Task 1: Generate Certificates and Set TLS Attributes with ttGridAdmin gridCreate and
instanceCreate

• Task 2: Set Server Configuration for TLS in TimesTen Scaleout

• Task 3: Set Client Configuration for TLS in TimesTen Scaleout

• Task 4: Export Certificates and Configuration in TimesTen Scaleout

• Task 5: Import Certificates and Configuration in TimesTen Scaleout

Task 1: Generate Certificates and Set TLS Attributes with ttGridAdmin gridCreate and
instanceCreate

Certificates are always generated when you use the ttGridAdmin gridCreate command to
define a grid.

Tip

In TimesTen Scaleout, do not use the ttInstanceCreate –serverEncryption and –
serverCipherSuites options when you create the first management instance. In
ttInstanceCreate, those options are for TimesTen Classic only.

The gridCreate command supports the -serverEncryption and –serverCipherSuites
options for TLS. Settings are used by default for any database and client connectable
definitions on the grid. (See Server Attributes for TLS for information about TLS attributes.)

For example:

% ttGridAdmin gridCreate grid1 -k 2 -internalAddress intsys1.example.com -
externalAddress extsys1.example.com -membershipConfig membership_dir/membership.conf -
host mgthost -serverEncryption required -serverCipherSuites
SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Grid grid1 created

When gridCreate is executed, a wallet is placed on the first management instance in a
location according to the gridCreate –walletDir setting, or under timesten_home/info by
default.

After you generate certificates, you can use the ttGridAdmin certificateList command to
display information about them. The default expiration date is 3650 days from creation.

% ttGridAdmin certificateList
NAME HOLDER EXPIRATION
clientWallet CN=client1,C=US Sun Sep 12 20:42:40 UTC 2032
rootWallet CN=ecRoot,C=US Sun Sep 12 20:42:24 UTC 2032
serverWallet CN=server1,C=US Sun Sep 12 20:42:32 UTC 2032

Each time you define a data instance for the grid, you can optionally specify a -walletDir
setting to determine where certificates will be placed on that instance. (Otherwise, the location
established during grid creation is used, which is generally advisable.) For example:

% ttGridAdmin instanceCreate -host datahost1 -location instances_dir -name instance_1 -
daemonport 16010 -csport 16012 -walletDir wallets_dir/wallets1
Instance instance_1 on Host datahost1 created in Model

Certificates are copied to data instances when the grid model is applied, in a wallets
subdirectory either under the location specified by the instanceCreate –walletDir option, or

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 11 of 24

under timesten_home/info by default. Following are the contents of the wallets directory on a
data instance. (Ignore the rootWallet directory.)

% ls wallets
clientWallet rootWallet serverWallet
% ls wallets/clientWallet
cwallet.sso
% ls wallets/serverWallet
cwallet.sso

If you need to regenerate certificates at any time, such as after expiration, you can do so
through the ttGridAdmin certificateRegen command, which runs ttCreateCerts, connects
to all data instances, and copies the new wallet to each data instance.

% ttGridAdmin certificateRegen
Certificates generated

After certificate regeneration, clients cannot connect until the new wallets have been exported
from the server and imported into the client. See Task 5: Import Certificates and Configuration
in TimesTen Scaleout.

When you use certificateRegen, you can also set new values for the encryption flag and
cipher suites. These would serve as default values for any database or connectable that is
subsequently defined.

See Regenerate the Certificates (certificateRegen) in Oracle TimesTen In-Memory Database
Reference.

Task 2: Set Server Configuration for TLS in TimesTen Scaleout
When you want to use TLS in a grid, you typically specify the server encryption flag and cipher
suite(s) to use when you define the grid with the ttGridAdmin gridCreate command, as
shown earlier. These will be default values for any database on the grid. You can also specify a
wallet location for each data instance with the ttGridAdmin instanceCreate command. Later,
there are additional TLS configuration attributes you can set as well.

For a database in the grid, you can specify encryption settings specific to that database by
setting connection attributes in the database definition file, dbname.dbdef, that you specify for
the ttGridAdmin dbdefCreate command.

This is a typical .dbdef file, mydb.dbdef, for a database that will be named mydb.

DatabaseCharacterSet=AL32UTF8
PermSize=128
TempSize=128
DataStore=databases_dir/mydb
ConnectionCharacterSet=AL32UTF8

This is where, for this particular database, you can specify alternative settings for the server
encryption flag (using the Encryption attribute) or the cipher suites (using the CipherSuites
attribute), or specify settings for any additional attributes described in Server Attributes for TLS.
For example, to require authentication of the client:

SSLClientAuthentication=1

(If you use SSLClientAuthentication, you must have the same settings for the server and the
client.)

Once the grid model is applied, as result of the gridCreate -serverEncryption and -
serverCipherSuite settings and the instanceCreate -walletDir setting shown in Task 1:

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 12 of 24

Generate Certificates and Set TLS Attributes with ttGridAdmin gridCreate and instanceCreate,
the following settings are included in the sys.odbc.ini file on data instance instance_1 for
mydb.

[mydb]
DatabaseCharacterSet=AL32UTF8
PermSize=128
TempSize=128
DataStore=databases_dir/mydb
ConnectionCharacterSet=AL32UTF8
...
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
...
Encryption=required
...
Wallet=wallets_dir/wallets1/wallets/serverWallet
...
SSLClientAuthentication=1

You can change settings later, if desired, by using the ttGridAdmin dbdefExport and
dbdefModify commands as described in Modify the Connection Attributes in a Database
Definition in Oracle TimesTen In-Memory Database Scaleout User's Guide.

Task 3: Set Client Configuration for TLS in TimesTen Scaleout
For a TimesTen Scaleout client, you can set TLS attributes in the .connect configuration file
that you specify in the ttGridAdmin connectableCreate command that creates the
connectable.

See Client Attributes for TLS for a description of available attributes. For example, to require
authentication of the client:

SSLClientAuthentication=1

(If you use SSLClientAuthentication, you must have the same settings for the server and the
client.)

Once the connectable is defined and the grid model is applied, as result of the gridCreate -
serverEncryption and -serverCipherSuite settings and the instanceCreate -walletDir
setting for the data instance, the following settings are included in the sys.odbc.ini file on
data instance instance_1 for client/server connections to a database mydb:

[mydbcs]
ConnectionCharacterSet=AL32UTF8
TTC_Timeout=360
...
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Encryption=required
Wallet=wallets_dir/wallets1/wallets/clientWallet
...
SSLClientAuthentication=1

You can change settings later, if desired, by using the ttGridAdmin connectableExport and
connectableModify commands as described in Modify the Connection Attributes in a
Connectable in Oracle TimesTen In-Memory Database Scaleout User's Guide.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 13 of 24

Task 4: Export Certificates and Configuration in TimesTen Scaleout
The ttGridAdmin utility has a gridClientExportAll command that outputs a ZIP file
containing a wallet, a sys.odbc.ini file that can be used to access the database, and other
files (such as tnsnames.ora) as applicable. The wallet includes the CA public key and a client
certificate for mutual authentication.

Run the gridClientExportAll command from the management instance, specifying the
desired ZIP file path and name on the command line. The ttGridAdmin utility obtains
certificates that were created during grid creation by the gridCreate command. This example
places the output ZIP file, clientexport.zip, in the timesten_home/info directory on the
management instance:

% ttGridAdmin gridClientExportAll timesten_home/info/clientexport.zip
Definitions exported to timesten_home/info/clientexport.zip

Contents of the ZIP file include:

• A directory containing the client wallet

• A sys.ocbc.ini file to be used on the client for connecting to the database, including the
TLS settings

• A JSON file with information about the TimesTen release, the grid, and TLS settings

• Other files (such as tnsnames.ora) as applicable

Task 5: Import Certificates and Configuration in TimesTen Scaleout
Run the ttClientImport utility from the client to import the contents of the export ZIP file
created by the ttGridAdmin -gridClientExportAll command.

Once you've exported the certificates to a ZIP file, copy the ZIP file to a desired location on
each client, then run ttClientImport to import the contents. This includes the wallet and
sys.odbc.ini file that were exported. The utility places the wallet in a directory based on the
grid name, timesten_home/conf/wallets/gridnameWallet.

% ttClientImport path/clientexport.zip
Client definitions imported.

In our example, the grid name is grid1. The client DSN entry in the sys.odbc.ini file on the
client is updated to add the TLS and wallet settings:

[mydbcs]
TTC_SERVER_DSN=MYDB
External address/port info for datahost1.instance_1
TTC_SERVER1=extsys1.example.com/16012
...
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
Encryption=required
Wallet=wallet_dir/wallets/clientWallet
ConnectionCharacterSet=AL32UTF8
TTC_Timeout=360
Wallet=timesten_home/conf/wallets/grid1Wallet

Once the import is completed, assuming client and server configuration with compatible
encryption flag and cipher suite settings, you can connect to the server through TLS. See
Checking Operation of TLS for Client/Server.

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 14 of 24

See Export sys.odbc.ini for Client/Server Connections Outside Grid (gridClientExport) and
ttClientImport in Oracle TimesTen In-Memory Database Reference for details about syntax and
options for those utilities.

Using CA-Signed Certificates for Client/Server in TimesTen Classic
Most of the discussion about using TLS in this chapter is for use of self-signed certificates
produced by the ttCreateCerts utility, but TimesTen also supports using certificates signed by
a third-party certificate authority (CA). This section describes the process for that.

Topics:

• Overview for Using CA-Signed Certificates

• Create the Server Wallet

• Create the Client Wallet

Overview for Using CA-Signed Certificates
To use certificates signed by a certificate authority with TimesTen, you must create and
populate a server wallet and a client wallet.
It is assumed that you have obtained a private key and a certificate request (.csr file), typically
using openssl; you have sent the certificate request to a certificate authority (CA); and the CA
has returned a signed certificate with signing chain.

Starting with .pem files that contain x509 certificates, concatenate the certificates in order from
the certificate provided by the CA to the root. (If your certificates are not in .pem format, use
openssl or some other appropriate utility to convert them.) In the discussion in the sections
that follow, assume the result is called complete.pem and the private key is in privkey.pem.
Then you will package the certificates into a pkcs12 file.

At the end of this process, the server wallet will contain the following:

• The entire certificate chain. This consists of the certificate from the CA, the intermediate
certificates, and the root certificate.

• The private key of the certificate from the CA.

And the client wallet will contain the following:

• The certificate chain excluding the CA certificate. This consists of the intermediate
certificates and the root certificate.

Create the Server Wallet
To use CA-signed certificates with TimesTen, you must manually import certificates into the
server wallet and the client wallet. Complete the following steps for the server wallet.

1. Starting with .pem files that contain x509 certificates, concatenate the certificates in order
from the certificate received from the CA to the root. For example:

% cat cert.pem certsigner1.pem certsigner2.pem root.pem > complete.pem

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 15 of 24

2. Package the certificates into a pkcs12 file, as in the following example. Use any password
in the openssl command. It will not be in the Oracle Wallet. In this example, the
concatenated certificates are in complete.pem and the private key is in privkey.pem.

% openssl pkcs12 -export -in complete.pem -inkey privkey.pem -out
server.p12 -password pass:mypwd

3. Using the TimesTen ttCreateCerts utility, create an empty auto_login_only Oracle
Wallet. (See ttCreateCerts in the Oracle TimesTen In-Memory Database Reference for
information about ttCreateCerts and the -run option.)

% ttCreateCerts -run "wallet create -wallet serverWallet -auto_login_only"

4. Put the certificates and private key into the wallet. For example:

% ttCreateCerts -run "wallet import_pkcs12 -wallet serverWallet -
auto_login_only -pkcs12file server.p12 -pkcs12pwd mypwd"

5. Verify the server wallet. This includes confirming that the intermediate and root certificates
are “Trusted Certificates” and the new certificate is a “User Certificate”. (A “User
Certificate” means that TimesTen has the private key for it.) Output should be of the basic
form shown.

% ttCreateCerts -run "wallet display -wallet path/serverWallet"
Requested Certificates:
User Certificates:
Subject:
CN=www.example.com,O=xxxxxxxxxxxxxx,L=xxxxxxxxxxxxxx,ST=xxxxxxxxxxxxxx,C=US
Trusted Certificates:
Subject: CN=xxxxxxxxxxxxxx SHA-256 Private
Root,O=xxxxxxxxxxxxxx,C=US
Subject: CN=xxxxxxxxxxxxxx SHA-256 Private
Intermediate,O=xxxxxxxxxxxxxx,C=US

Create the Client Wallet
To use CA-signed certificates with TimesTen, you must manually import certificates into the
server wallet and the client wallet. Complete the following steps for the client wallet.

1. Create an empty auto_login_only Oracle Wallet for the client wallet. (See ttCreateCerts in
the Oracle TimesTen In-Memory Database Reference for information about ttCreateCerts
and the -run option.)

% ttCreateCerts -run "wallet create -wallet clientWallet -auto_login_only"

2. Add the intermediate signers, as applicable, and then the root certificate, one by one.

% ttCreateCerts -run "wallet add -wallet clientWallet -auto_login_only -
trusted_cert -cert intsig1.pem"
...
% ttCreateCerts -run "wallet add -wallet clientWallet -auto_login_only -
trusted_cert -cert intsigN.pem"
% ttCreateCerts -run "wallet add -wallet clientWallet -auto_login_only -
trusted_cert -cert root.pem"

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 16 of 24

3. Verify the client wallet. This includes confirming that the root certificate is a “Trusted
Certificate” and that there is no “User Certificate” in the wallet. Output should be of the
basic form shown.

% ttCreateCerts -run "wallet display -wallet path/clientWallet"
Requested Certificates:
User Certificates:
Trusted Certificates:
Subject: CN=xxxxxxxxxxxxxx SHA-256 Private
Intermediate,O=xxxxxxxxxxxxxx,C=US
Subject: CN=xxxxxxxxxxxxxx SHA-256 Private
Root,O=xxxxxxxxxxxxxx,C=US

Once you have populated the client and server wallets, assuming client and server
configuration with compatible encryption flag and cipher suite settings, you can connect to the
server through TLS. See Checking Operation of TLS for Client/Server.

Checking Operation of TLS for Client/Server
If TLS is configured on both the server and the client with sufficiently matching settings of
Encryption and CipherSuite, TLS is used as soon as the connection is established.

You can confirm this by calling sqlgetconnectattr tt_tls_session from ttIsqlCS on the
client. A return value of 1 indicates TLS is being used.

The following set of examples shows the results of several combinations of encryption settings
on the server and client.

Scenario 1: Encryption is requested on the server and on the client with the same cipher suite
settings. The connection is successful and TLS is used.

Server DSN definition:

[mydb]
Driver=timesten_home/install/lib/libtten.so
DataStore=/db/databases/mydb
PermSize=512
TempSize=128
LogBufMB=256
LogFileSize=256
LogDir=/db/logs
DatabaseCharacterSet=AL32UTF8
OracleNetServiceName=ttorcl
Wallet=timesten_home/conf/mywallets/serverWallet
Encryption=requested
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Client DSN definition:

[mydbCS]
TTC_SERVER=myserverhost.example.com
TTC_SERVER_DSN=mydb
UID=myuser
PWD=welcome
Wallet=timesten_home/conf/mywallets/clientWallet
Encryption=requested
CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Connect, executing ttIsqlCS from the timesten_home/bin directory (output formatted for
readability):

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 17 of 24

% ttIsqlCS mydbCS

Copyright (c) 1996, 2022, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=mydbCS";
Connection successful: DSN=mydbCS;TTC_SERVER=myserverhost.example.com;
TTC_SERVER_DSN=mydb;UID=myuser;DATASTORE=/db/databases/mydb;
DATABASECHARACTERSET=AL32UTF8;CONNECTIONCHARACTERSET=US7ASCII;LOGFILESIZE=256;
LOGBUFMB=256;LOGDIR=/db/logs;PERMSIZE=512;TEMPSIZE=128;
ORACLENETSERVICENAME=ttorcl;(SERVER)ENCRYPTION=Requested;
(SERVER)WALLET=file:timesten_home/conf/mywallets/serverWallet;
(client)Encryption=Requested;
(client)Wallet=/timesten_home/conf/mywallets/clientWallet;
(client)CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384;
(Default setting AutoCommit=1)

Confirm TLS is enabled:

Command> sqlgetconnectattr tt_tls_session;
TT_TLS_SESSION = 1 (SQL_TRUE)

Scenario 2: Encryption is requested on the server and on the client but with mismatched
cipher suite settings. The connection is successful but a warning message indicates that TLS
is not used. (Except for what is shown here, settings are the same as in Scenario 1.)

From the server DSN definition:

CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

From the client DSN definition:

CipherSuites=SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

Connect:

% ttIsqlCS mydbCS

Copyright (c) 1996, 2022, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=mydbCS";

Warning 01000: Unable to create requested TLS session; unencrypted session
created. Check Wallet and CipherSuites on client and server. SSL error: SSL
Fatal Alert

Connection successful:
...

Scenario 3: Encryption is accepted on the server and on the client. This is not sufficient to
result in TLS usage, as noted in Table 3-1. The connection is successful but TLS is not used.
(Except for what is shown here, settings are the same as in Scenario 1.)

From the server DSN definition:

Encryption=accepted

From the client DSN definition:

Encryption=accepted

Connect:

Chapter 3
Transport Layer Security for TimesTen Client/Server

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 18 of 24

% ttIsqlCS mydbCS

Copyright (c) 1996, 2022, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=mydbCS";
Connection successful:
...
Command> sqlgetconnectattr tt_tls_session;
TT_TLS_SESSION = 0 (SQL_FALSE)

Scenario 4: Encryption is required on the client but rejected on the server. The connection
attempt is unsuccessful. (Except for what is shown here, settings are the same as in Scenario
1.)

From the server DSN definition:

Encryption=rejected

From the client DSN definition:

Encryption=required

Attempt to connect:

% ttIsqlCS mydbCS

Copyright (c) 1996, 2022, Oracle and/or its affiliates. All rights reserved.
Type ? or "help" for help, type "exit" to quit ttIsql.

connect "DSN=mydbCS";
HY000: Connection rejected: inconsistent encryption attributes
The command failed.
Done.

Transport Layer Security for TimesTen Replication
When you use TimesTen replication in TimesTen Classic, you can optionally configure and use
Transport Layer Security (TLS) for secure, encrypted network communication between
replication agents or between TimesTen utilities (such as ttRepAdmin) and replication agents.
Mutual authentication is used for all connections.

TimesTen supports the following cipher suites. The names of the cipher suites use both TLS
and SSL terminology. The SSL-named cipher suites work with and apply to Transport Layer
Security.

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 or
SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 or
SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 or
SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 or
SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• TLS_RSA_WITH_AES_128_CBC_SHA256 or SSL_RSA_WITH_AES_128_CBC_SHA256

• TLS_RSA_WITH_AES_256_CBC_SHA256 or SSL_RSA_WITH_AES_256_CBC_SHA256

Chapter 3
Transport Layer Security for TimesTen Replication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 19 of 24

• TLS_RSA_WITH_AES_128_GCM_SHA256 or SSL_RSA_WITH_AES_128_GCM_SHA256

• TLS_RSA_WITH_AES_256_GCM_SHA384 or SSL_RSA_WITH_AES_256_GCM_SHA384

These are the main steps for using TLS with TimesTen replication:

• Task 1: Generate Certificates for Replication

• Task 2: Copy Certificates for Replication

• Task 3: Configure TLS for Replication

• Task 4: Activate TLS for Replication

• Task 5: Check Operation of TLS for Replication

Task 1: Generate Certificates for Replication
You can create certificates for replication with the ttInstanceCreate utility when you create a
TimesTen instance, or by using the ttCreateCerts utility directly.

Using ttInstanceCreate would be essentially the same as shown earlier in this chapter for
client/server, in Task 1: Generate Certificates and Set TLS Attributes with ttInstanceCreate.
Note that ttInstanceCreate uses the ttCreateCerts utility to generate certificates. Or see
ttCreateCerts in the Oracle TimesTen In-Memory Database Reference for information about
ttCreateCerts syntax, options, and usage in order to use it directly.

If you will be using certificates for both replication and client/server, it is preferable to use
separate certificates for the two features. You can use the ttCreateCerts utility to generate
additional certificates as needed.

Note the following regarding certificates generated by TimesTen:

• Certificates produced are self-signed and stored in an Oracle Wallet.

• Because the certificates are self-signed, they cannot be revoked. But certificates can be
regenerated as needed.

• The root CA has a default expiration time. It is the user’s responsibility to track this. When
the root CA expires, all certificates must be regenerated. When the root CA is regenerated,
it must be copied to each TimesTen instance.

• Instances will store the root certificate (the public key) in a local wallet.

• Wallets produced are auto-login or single-sign-on (SSO) wallets, without a password.
Access to wallets is controlled by file system permissions.

• The wallets are platform-independent.

TimesTen uses Oracle Wallets to store certificates. For general information about these
wallets, also referred to as "keystores", refer to How the Keystore for the Storage of TDE
Master Encryption Keys Works in Oracle Database Advanced Security Guide.

Task 2: Copy Certificates for Replication
After you generate certificates for replication, copy them to the other TimesTen instances.
Recall the resulting wallets from the example in ttCreateCerts in the Oracle TimesTen In-
Memory Database Reference.

% ls timesten_home/conf/wallets
client1.cert clientWallet root.cert rootWallet server1.cert serverWallet
% ls timesten_home/conf/wallets/serverWallet
cwallet.sso

Chapter 3
Transport Layer Security for TimesTen Replication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 20 of 24

For TLS for replication, only serverWallet is used. Copy the serverWallet directory, which
includes the root certificate, to the desired location. This is preferably the same location on
each TimesTen instance.

On each instance:

% mkdir timesten_home/conf/wallets
[...Copy serverWallet from the instance where it was created...]
% cd timesten_home/conf/wallets
% ls
serverWallet
% ls serverWallet
cwallet.sso

Task 3: Configure TLS for Replication
To use TLS for replication, set TLS attributes in the timesten.conf file on each TimesTen
instance. The settings are read on each instance by the replication agent and by utilities that
may communicate with the agent.

Tip

Generate and copy certificates before you configure TLS for replication. Otherwise,
configuration may trigger an error condition where replication agents start up and try to
access certificates that do not exist yet.

• replication_cipher_suite: This lists the cipher suite or suites that can be used,
depending also on the client setting. Specify the desired cipher suites, comma-separated
and in order of preference. See Transport Layer Security for TimesTen Replication for the
list of supported cipher suites. This setting is required. There is no default.

• replication_wallet: Specify the path to the wallet directory—the directory where you
placed the certificates that you generated. This setting is required. There is no default
location. It is suggested, but not required, to use the same location and directory name on
each TimesTen instance. (In the example in the preceding section, Task 2: Copy
Certificates for Replication, this would be timesten_home/conf/wallets/serverWallet.)

• replication_ssl_mandatory: Specifies whether it is mandatory to have consistent TLS
configuration between TimesTen instances—specifically, whether TLS is configured
through replication_cipher_suite and replication_wallet settings, and what cipher
suite is specified. If there is a mismatch between the current instance and the replication
peer, then TimesTen behavior is determined as follows:

– On an instance with a setting of replication_ssl_mandatory=0 (not mandatory, the
default), replication proceeds between that instance and the replication peer, but TLS
is not used for communications between the replication agents as long as the settings
are inconsistent. Use this setting for an online switchover to TLS.

– On an instance with a setting of replication_ssl_mandatory=1 (mandatory),
replication cannot proceed between this instance and the replication peer until the
settings are made consistent. Use this setting for an offline switchover to TLS.

Chapter 3
Transport Layer Security for TimesTen Replication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 21 of 24

Note

• For these configuration changes to take effect on any given instance, you must
restart the replication agent. (It is not necessary to restart the TimesTen daemon.)

• If the replication_cipher_suite value is invalid or the suite is not supported by
TimesTen, an error is reported and replication cannot function until the problem is
resolved.

• If replication_cipher_suite is set but replication_wallet is not, or no
certificates are found in the specified location, an error is reported and replication
cannot function until the problem is resolved.

Task 4: Activate TLS for Replication
Once TLS is configured on all TimesTen instances, with certificates located in the specified
replication_wallet directories and the desired cipher suite specified in the
replication_cipher_suite settings, restarting the replication agents will activate TLS,
resulting in it being used for communication to and from the replication agents.

There are two ways to activate TLS:

• Switch Online to TLS for Replication

• Switch All Instances Simultaneously to TLS for Replication (Offline)

Switch Online to TLS for Replication
If you have an existing replication scheme that is not using TLS, you can perform an online
switchover to TLS by restarting the replication agents one at a time as replication continues to
function.

1. On each instance, confirm replication_wallet is set to indicate where the certificates are
located. (In the example in Task 2: Copy Certificates for Replication, this would be
timesten_home/conf/wallets/serverWallet.)

2. On each instance, confirm replication_cipher_suite is set to indicate the cipher suite
you are using.

3. On each instance, confirm replication_ssl_mandatory=0. This allows you to update the
TimesTen instances to start using TLS one at a time.

4. On each instance (one at a time, in succession), stop and restart the replication agent:

% ttAdmin -repStop DSN
% ttAdmin -repStart DSN

For example, assume the following:

• There is an active standby pair with databases rep1 on host1 and rep2 on host2, with
subscriber rep3 on host3.

• Certificates were generated on rep1 and placed in /swdir/mywalletloc, then copied to the
same location on rep2 and rep3.

Complete these steps, as replication continues to function, to use TLS for communications to
and from each of the replication agents:

1. Use these TLS settings in the timesten.conf file on each instance:

Chapter 3
Transport Layer Security for TimesTen Replication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 22 of 24

replication_wallet=/swdir/mywalletloc
replication_cipher_suite=SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
replication_ssl_mandatory=0

2. Restart the replication agent on each instance, one at a time.

On host1:

% ttAdmin -repStop rep1
% ttAdmin -repStart repl

On host2:

% ttAdmin -repStop rep2
% ttAdmin -repStart rep2

On host3:

% ttAdmin -repStop rep3
% ttAdmin -repStart rep3

Switch All Instances Simultaneously to TLS for Replication (Offline)
If you want TLS to start and be enforced on all instances immediately and simultaneously, you
must shut down all replication agents, stopping replication, before setting
replication_ssl_mandatory=1 on each instance.

1. On all instances, stop the replication agent:

% ttAdmin -repStop DSN

Note

If you are using Oracle Clusterware, you can accomplish this for all instances with
a single command using the ttCWAdmin utility from any instance in the cluster:

% ttCWAdmin -stop -dsn DSN

2. On all instances, confirm replication_wallet is set to indicate where the certificates are
located.

3. On all instances, confirm replication_cipher_suite is set to indicate the cipher suite you
are using.

4. On all instances, confirm replication_ssl_mandatory=1.

This requires all replication agents to be shut down at once, and all timesten.conf files to
be updated while all the replication agents are down.

5. On all instances, restart the replication agent:

% ttAdmin -repStart DSN

Note

If you are using Oracle Clusterware, you can accomplish this for all instances with
a single command using the ttCWAdmin utility from any instance in the cluster:

% ttCWAdmin -start -dsn DSN

Chapter 3
Transport Layer Security for TimesTen Replication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 23 of 24

Task 5: Check Operation of TLS for Replication
The ttRepAdmin utility -showstatus -detail option indicates whether the replication agent
transmitters and receivers are using TLS (indicated as "SSL").

For example:

TRANSMITTER thread(s) (TRANSMITTER(M):140427924887296):
For : REP1 (track 0) (SSL)
 Start/Restart count : 1
 Current state : STATE_META_PEER_INFO

RECEIVER thread(s) (RECEIVER:140427327059712):
For : REP1 (track 0) (SSL)
 Start/Restart count : 1
 Current state : STATE_RCVR_READ_NETWORK_LOOP
 Current DB context : 0x7fb7bc4a41e0

See ttRepAdmin in Oracle TimesTen In-Memory Database Reference.

Note

In order for you to see this output, the replication agents on the master and
subscribing systems must be running and connected to each other.

Chapter 3
Transport Layer Security for TimesTen Replication

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 24 of 24

4
Security for the TimesTen Kubernetes
Operator

There are certain security features and requirements for the TimesTen Kubernetes Operator.

• Introduction to the TimesTen Kubernetes Operator

• Privileges for the TimesTen Kubernetes Operator

• Authorization for Users of the TimesTen Kubernetes Operator

• Encryption for the TimesTen Kubernetes Operator

Introduction to the TimesTen Kubernetes Operator
Kubernetes is an open-source platform for managing containerized workloads and services.
Kubernetes manages the resources of multiple hosts in a cluster and runs containers as
required across these hosts.

TimesTen provides a Kubernetes Operator that manages Kubernetes objects of type
TimesTenClassic or TimesTenScaleout. TimesTen can be deployed, monitored, managed, and
controlled in an automated manner with no required human intervention.

See Overview of the Oracle TimesTen Kubernetes Operator in the Oracle TimesTen In-Memory
Database Kubernetes Operator User's Guide.

Privileges for the TimesTen Kubernetes Operator
The TimesTen Operator creates and manages Pods and containers running TimesTen on
behalf of the user. It monitors and controls TimesTen in those containers through the TimesTen
agent.

The TimesTen Operator requires privileges to run successfully in the Kubernetes cluster. The
privileges differ depending on whether you install the TimesTen Operator in a namespace at
namespace-scope or in the timesten-operator namespace at cluster-scope. For more
information, see About Privileges and About Installing the TimesTen Operator in the Oracle
TimesTen In-Memory Database Kubernetes Operator User's Guide.

Authorization for Users of the TimesTen Kubernetes Operator
The set of Kubernetes users who can create, modify, and delete TimesTenClassic or
TimesTenScaleout objects in a Kubernetes cluster is under the control of the Role Based
Access Control (RBAC) configuration of the cluster.

In order to provide a secure installation, you should restrict the set of users who have
Kubernetes RBAC permissions to GET Secret objects in the Kubernetes namespace. (See
Encryption for the TimesTen Kubernetes Operator, regarding Secrets.)

The TimesTen agent creates the TimesTen instance, runs by default as the timesten user, and
starts TimesTen. The timesten user is the instance administrator of the TimesTen instance.

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 1 of 2

The Operator limits the set of open ports in containers that are running TimesTen to those ports
that TimesTen uses.

Encryption for the TimesTen Kubernetes Operator
You can ensure that only the TimesTen Operator can communicate with the TimesTen agents
with encryption.

• Communication between the TimesTen Operator and the TimesTen agents is secured
through TLS using self-signed certificates that are created by the Operator. These
certificates, inside an Oracle Wallet, are transmitted to the agents through Kubernetes
Secrets that the Operator creates. The TimesTen Operator runs in a customer-specified
Kubernetes namespace. These Secrets are created in that namespace.

• Containers that run the TimesTen agent (and TimesTen itself) have access to the Secrets,
and therefore to the certificates included in them. This insures that only the Operator and
the agents have access to these certificates, preventing other users from using the agent
to control TimesTen.

• The Operator creates a different self-signed certificate for each TimesTenClassic or
TimesTenScaleout object when the object is created. These certificates are created using
openssl and are stored in an Oracle Wallet.

• The Operator stores each wallet in a different Kubernetes Secret. When the Operator
instructs Kubernetes to create Pods and containers (that run the TimesTen agents), the
contents of the Secret are mounted as files in the file system of the TimesTen agent. This
ensures that the certificate is securely communicated between the Operator and the
TimesTen agents.

• The TimesTen agent is configured to accept only HTTPS connections and to authenticate
those connections using the self-signed certificate. The agent is configured to listen on port
8443 and to not accept any other form of communication.

• TimesTen also supports TLS for client/server communication and for communication
between replication agents. See Using Encryption for Data Transmission in Oracle
TimesTen In-Memory Database Kubernetes Operator User's Guide.

Chapter 4
Encryption for the TimesTen Kubernetes Operator

Security Guide
F35394-09
Copyright © 2018, 2025, Oracle and/or its affiliates.

December 11, 2025
Page 2 of 2

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.17.0
	New features in Release 22.1.1.6.0
	New Features in Release 22.1.1.1.0

	1 Authentication in TimesTen
	Overview of TimesTen Users
	Managing TimesTen Users
	Creating or Identifying a Database User
	Changing the Password of an Internal User
	Providing a Client/Server User and Password
	Providing a User Name and Password in an Oracle Wallet
	Providing a User Name and Password in Connection Attributes
	Providing a User Name and Password in a Client DSN
	Providing a User and Password for TimesTen Utilities

	Dropping a User From the Database

	Cache Group Users
	Required Users for Cache
	Providing Both Cache Administration Users and Passwords
	Providing the Cache Administration User Names and Passwords in an Oracle Wallet
	Providing Cache Administration User Name and Passwords in Connection Attributes
	Providing Cache Administration User Name and Passwords in a Client DSN

	Registering the Oracle Database Administration User and Password
	Registering the Oracle Cache Administration User and Password in TimesTen Classic
	Registering the Cache Administration User Password in TimesTen Scaleout

	Membership Services Access Control
	Prometheus Exporter Authentication
	Password Management
	Password Management Features
	Password Lifetime and Grace Time
	Limitations on Password Reuse
	Maximum Failed Login Attempts and Password Lock Time
	Password Complexity Checker

	Profile for Password Management

	2 Authorization in TimesTen
	Privileges Overview
	About Privileges
	Granting and Revoking Privileges
	Functionality of Privileges
	Overview of System Privileges
	Overview of Object Privileges
	Privileges for TimesTen Utilities
	Overview of the PUBLIC Role

	System Privileges
	About System Privileges
	Instance Administrator
	Instance Administrator Privileges
	Instance Administrator Ownership and Privileges for Database and Log Directories

	Administrative Privileges
	Privileges to Connect to the Database
	ANY Keyword
	ALL PRIVILEGES
	Privilege Hierarchy
	Additional System Privileges
	Privileges Through the PUBLIC Role

	Overview of Privileges to Create, Alter, or Drop Objects
	Privileges to Create Database Objects
	Privileges to Alter Database Objects
	Privileges to Drop Database Objects

	Privileges for SQL Objects
	Object Privileges for Tables
	Object Privileges for Views
	Object Privileges for Sequences
	Object Privileges for Materialized Views
	Object Privileges for Synonyms
	ALL Object Privileges

	Privileges for PL/SQL Objects
	Privileges for PL/SQL Statements and Operations
	Overview of Privileges for PL/SQL Statements and Operations
	Privileges Reference for PL/SQL Statements and Operations
	Granting Privileges for PL/SQL Statements and Operations

	Invalidated Objects
	Definer's Rights and Invoker's Rights (AUTHID clause)

	Privileges for Cache Groups
	About Cache Group Users and Privileges
	Oracle Cache Administration User Privilege
	TimesTen Cache Administration User Privilege
	Privileges for Other Cache Users
	Non-Administrative Cache Users
	Cache Group System Privileges
	Cache Group Object Privileges

	User Privilege Views

	3 Secure Network Communication in TimesTen
	Transport Layer Security for TimesTen Client/Server
	About Using Certificates with Client/Server
	Configuration for TLS for Client/Server
	Server Attributes for TLS
	Client Attributes for TLS

	Using TLS for Client/Server in TimesTen Classic
	Task 1: Generate Certificates and Set TLS Attributes with ttInstanceCreate
	Task 2: Set Server Configuration for TLS in TimesTen Classic
	Task 3: Set Client Configuration for TLS in TimesTen Classic
	Task 4: Export Certificates and Configuration in TimesTen Classic
	Task 5: Import Certificates and Configuration in TimesTen Classic

	Using TLS for Client/Server in TimesTen Scaleout
	Task 1: Generate Certificates and Set TLS Attributes with ttGridAdmin gridCreate and instanceCreate
	Task 2: Set Server Configuration for TLS in TimesTen Scaleout
	Task 3: Set Client Configuration for TLS in TimesTen Scaleout
	Task 4: Export Certificates and Configuration in TimesTen Scaleout
	Task 5: Import Certificates and Configuration in TimesTen Scaleout

	Using CA-Signed Certificates for Client/Server in TimesTen Classic
	Overview for Using CA-Signed Certificates
	Create the Server Wallet
	Create the Client Wallet

	Checking Operation of TLS for Client/Server

	Transport Layer Security for TimesTen Replication
	Task 1: Generate Certificates for Replication
	Task 2: Copy Certificates for Replication
	Task 3: Configure TLS for Replication
	Task 4: Activate TLS for Replication
	Switch Online to TLS for Replication
	Switch All Instances Simultaneously to TLS for Replication (Offline)

	Task 5: Check Operation of TLS for Replication

	4 Security for the TimesTen Kubernetes Operator
	Introduction to the TimesTen Kubernetes Operator
	Privileges for the TimesTen Kubernetes Operator
	Authorization for Users of the TimesTen Kubernetes Operator
	Encryption for the TimesTen Kubernetes Operator

