
Oracle® TimesTen In-Memory
Database
TTClasses Guide

Release 22.1
F35399-03
February 2023

Oracle TimesTen In-Memory Database TTClasses Guide, Release 22.1

F35399-03

Copyright © 2006, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 What's New

New features in Release 22.1.1.1.0 viii

1 TTClasses Development Environment

Setting TimesTen Environment Variables 1-1

Set Environment Variables on Linux or UNIX 1-1

Set Environment Variables on Windows 1-1

Compiling and Linking Applications 1-2

Compiling and Linking Applications on Linux or UNIX 1-2

Compiling and Linking Applications on Windows 1-3

Considerations when Using an ODBC Driver Manager (Windows) 1-4

About TimesTen Quick Start and Sample Applications 1-4

2 Understanding and Using TTClasses

Overview of TTClasses 2-1

Using TTCmd, TTConnection, and TTConnectionPool 2-1

Managing TimesTen Connections 2-4

Setting Connection Attributes for the Database 2-4

Connecting and Disconnecting 2-5

Connection Methods 2-6

Using TimesTen Features in your Application 2-7

Binding Parameters 2-7

About Parameter Binding 2-7

Binding Input Parameters 2-8

Registering Parameters 2-9

Parameter C Type to SQL Type Mappings 2-10

Binding Output or Input/Output Parameters 2-11

Binding Duplicate Parameters 2-13

Working with REF CURSORs 2-14

Working with ROWIDs 2-17

Working with LOBs 2-18

iii

Differences Between TimesTen LOBs and Oracle Database LOBs 2-18

Using the LOB Simple Data Interface in TTClasses 2-18

Passthrough LOBs in TTClasses 2-21

Setting a Timeout or Threshold for Executing SQL Statements 2-21

Using Automatic Client Failover in a TTClasses Application 2-22

Using TTClasses Logging 2-22

Using XLA in TTClasses 2-23

About TimesTen XLA 2-23

Acknowledging XLA Updates Without Using Transaction Boundaries 2-24

Acknowledging XLA Updates at Transaction Boundaries 2-25

XLA System Privilege 2-26

Using the TTClasses Classes 2-26

How to Use the Commonly Used Classes 2-27

TTCGlobal Usage 2-27

TTCStatus Usage 2-27

TTConnection Usage 2-28

TTConnectionPool Usage 2-29

TTCmd Usage 2-30

How to Use the System Catalog Classes 2-31

TTCatalog Usage 2-31

TTCatalogTable Usage 2-32

TTCatalogColumn Usage 2-32

TTCatalogIndex Usage 2-32

TTCatalogSpecialColumn Usage 2-32

How to Use the XLA Classes 2-33

About the XLA Classes 2-33

TTXlaPersistConnection Usage 2-33

TTXlaRowViewer Usage 2-34

TTXlaTableHandler Usage 2-35

TTXlaTableList Usage 2-35

TTXlaTable Usage 2-36

TTXlaColumn Usage 2-36

3 Commonly Used Classes Reference

TTGlobal Reference 3-1

Public Members 3-1

Public Methods 3-1

TTStatus Reference 3-3

Subclasses 3-3

Public Members 3-3

iv

Public Methods 3-3

TTConnection Reference 3-4

Public Members 3-5

Public Methods 3-5

TTConnectionPool Reference 3-9

Public Members 3-9

Public Methods 3-9

TTCmd Reference 3-12

Public Members 3-12

Public Methods for General Use and Non-Batch Operations 3-12

Public Methods for Obtaining TTCmd Object Properties 3-25

Public Methods for Batch Operations 3-27

4 System Catalog Classes Reference

TTCatalog Reference 4-1

Public Members 4-1

Public Methods 4-1

TTCatalogTable Reference 4-4

Public Members 4-4

Public Methods 4-4

TTCatalogColumn Reference 4-7

Public Members 4-7

Public Methods 4-7

TTCatalogIndex Reference 4-8

Public Members 4-8

Public Methods 4-8

TTCatalogSpecialColumn Reference 4-10

Public Members 4-10

Public Methods 4-10

5 XLA Classes Reference

TTXlaPersistConnection Reference 5-1

Public Members 5-1

Public Methods 5-1

TTXlaRowViewer Reference 5-4

Public Members 5-4

Public Methods 5-4

TTXlaTableHandler Reference 5-10

Public Members 5-10

v

Protected Members 5-10

Public Methods 5-10

TTXlaTableList Reference 5-12

Public Members 5-13

Public Methods 5-13

TTXlaTable Reference 5-13

Public Members 5-14

Public Methods 5-14

TTXlaColumn Reference 5-14

Public Members 5-15

Public Methods 5-15

vi

About This Content

This document provides usage and reference information for TimesTen support for
TTClasses.

Audience

This guide is for application developers who administer and access TimesTen through
TTClasses.

In addition to familiarity with the particular programming interface you use, you should be
familiar with TimesTen, SQL (Structured Query Language), database operations, and ODBC.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

Oracle Database documentation is available on the Oracle documentation website. This may
be especially useful for Oracle Database features that TimesTen supports but does not
attempt to fully document, such as OCI and Pro*C/C++. In particular, these Oracle Database
documents may be of interest:

• Oracle Database Globalization Support Guide

• Oracle Database Net Services Administrator's Guide

• Oracle Database SQL Language Reference

This guide frequently refers to ODBC API reference documentation for further information.
This is available from Microsoft or a variety of third parties. For example:

https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

7

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/odbc-api-reference

What's New

This section summarizes new features and functionality of TimesTen Release 22.1 that
are documented in this guide, providing links into the guide for more information.

New features in Release 22.1.1.1.0
• To eliminate conversion warnings seen with the -Wconversion compiler flag, there

have been data type changes in signatures of these methods:

– In TTCmd: ExecuteBatch(), getMaxRows(), getParamPrecision(),
getColumnPrecision(), getColumnLength(), getColumn(),
getCollumnNullable(), getNextColumn(), getNextColumnNullable(),
registerParam(), getParam().

– In TTXlaRowViewer: getColumnPrecision(), Get().

See "Commonly Used Classes Reference" and "XLA Classes Reference" for
reference information about these classes and methods.

• The TimesTen driver manager is included in this release. For related information,
see "Compiling and Linking Applications on Linux or UNIX".

What's New

viii

1
TTClasses Development Environment

TTClasses comes compiled and preconfigured with a TimesTen installation.

The information here includes these topics:

• Setting TimesTen Environment Variables

• Compiling and Linking Applications

• About TimesTen Quick Start and Sample Applications

Setting TimesTen Environment Variables
This section discusses how to set environment variables for TimesTen, on Linux or UNIX or
on Windows.

• Set Environment Variables on Linux or UNIX

• Set Environment Variables on Windows

Set Environment Variables on Linux or UNIX
To use TTClasses on a Linux or UNIX system, ensure that your shell environment variables
are set correctly through the appropriate ttenv script in the timesten_home/bin directory,
where timesten_home is the TimesTen instance home directory.

The script is ttenv.sh or ttenv.csh on Linux or UNIX platforms (which you use depends on
your shell).

Instead of doing this directly, you can add a line for the appropriate script to your login
initialization script (for example, .profile or .cshrc).

See Environment Variables in the Oracle TimesTen In-Memory Database Installation,
Migration, and Upgrade Guide.

Set Environment Variables on Windows
Before recompiling your application on a Windows system, ensure that the PATH, INCLUDE,
and LIB environment variables point to the correct Visual Studio directories.

Execute the applicable Visual Studio C++ batch file (for example, VCVARS32.BAT or
VSVARS32.BAT) to accomplish this.

Then set environment variables for TimesTen by running the following, where timesten_home
is the TimesTen instance home directory:

timesten_home\bin\ttenv.bat

1-1

Compiling and Linking Applications
This section discusses how to compile and link your TTClasses applications, including
a section on considerations when using an ODBC driver manager on Windows.

• Compiling and Linking Applications on Linux or UNIX

• Compiling and Linking Applications on Windows

• Considerations when Using an ODBC Driver Manager (Windows)

Note:

Recompile and relink your TTClasses applications after any TimesTen
version upgrade.

You can also refer to the following sections in Oracle TimesTen In-Memory Database
C Developer's Guide for related information:

• Linking Options for general information about TimesTen linking options, such as
using the direct driver versus the client driver or, on Windows, whether to use a
driver manager

• Compiling and Linking Applications

Compiling and Linking Applications on Linux or UNIX
This section documents the TTClasses libraries available to link your applications to,
including consideration of the TimesTen driver manager (TTDM).

TTDM is a lightweight ODBC driver manager that is designed and optimized for use
with the TimesTen database. An application links directly to the TTDM library, and
TTDM dynamically loads the relevant ODBC driver libraries and passes ODBC calls
from the application as needed. TTDM allows an application to use TimesTen direct
and client/server connections at the same time. See Introduction to the TimesTen
Driver Manager in Oracle TimesTen In-Memory Database C Developer's Guide.

For compiling your applications, include the TTClasses header files that are in the
installation_dir/include/ttclasses directory. You can accomplish this by including
TTInclude.h from that directory, using the symbolic link from timesten_home/install
to installation_dir, as follows.

Use the following compile command:

-Itimesten_home/install/include

And use this line in your code:

#include <ttclasses/TTInclude.h>

Chapter 1
Compiling and Linking Applications

1-2

TTClasses XLA programs must also include the following:

#include <ttclasses/TTXla.h>

The following table lists the TTClasses libraries available for linking your applications on
Linux or UNIX platforms. As indicated, for each TTClasses library there is a corresponding
TimesTen library you must also link your application to.

Usage TTClasses Library TimesTen Library

TimesTen direct connections libttclasses.so libtten.so
TimesTen client/server connections libttclassesCS.so libttenCS.so
TimesTen driver manager libttclassesTTDM.so libttdrvmgr.so

For example, adding the following to the link command would result in use of the client driver:

-Ltimesten_home/install/lib -lttclassesCS

The -L option tells the linker to search the TimesTen lib directory for library files. The -
lttclassesCS option links in the driver.

On AIX, when linking applications with the TimesTen ODBC client driver, the C++ runtime
library must be included in the link command (because the client driver is written in C++ and
AIX does not link it automatically) and must follow the client driver:

-Ltimesten_home/install/lib -lttclassesCS -lC_r

You can use the Makefile in the TimesTen Classic Quick Start to guide you in creating your
own Makefile. (See About TimesTen Quick Start and Sample Applications.)

Compiling and Linking Applications on Windows
For compiling your applications, include the TTClasses header files that are in the
installation_dir\include\ttclasses directory.

You can accomplish this by including TTInclude.h from that directory, using the symbolic link
from timesten_home/install to installation_dir, as follows.

Use the following compile command:

/Itimesten_home\install\include

And use the following line in your code:

#include <ttclasses/TTInclude.h>

TTClasses XLA programs must also include the following:

#include <ttclasses/TTXla.h>

Chapter 1
Compiling and Linking Applications

1-3

The following table lists the TTClasses libraries available for linking your applications
on Windows platforms.

Usage Library

TimesTen client/server connections ttclasses221CS.lib
Microsoft ODBC driver manager ttclasses221DM.lib

See the next section,
Considerations when Using an
ODBC Driver Manager
(Windows).

Add the appropriate library, for example
timesten_home\install\lib\ttclasses221.lib, to your link command.

You can use the Makefile in the Quick Start sample_code/ttclasses directory to guide
you in creating your own Makefile. (See About TimesTen Quick Start and Sample
Applications.)

Considerations when Using an ODBC Driver Manager (Windows)
Be aware of the following limitations in TTClasses when you use an ODBC driver
manager on Windows.

• XLA functionality is not supported.

• REF CURSOR functionality is not supported.

In addition, the driver manager does not support the ODBC C types SQL_C_BIGINT and
SQL_C_TINYINT when used with TimesTen. When using the driver manager, you cannot
call methods that use either of these data types in their signatures, such as the
applicable overloaded versions of any of the following TTCmd methods: getColumn(),
getColumnNullable(), getNextColumn(), getNextColumnNullable(), setParam(),
getParam(), and BindParameter().

About TimesTen Quick Start and Sample Applications
The TimesTen Classic Quick Start and TimesTen Scaleout sample applications are
available from the TimesTen GitHub location. For the TimesTen Classic Quick Start,
there is a complete set of tutorials, how-to instructions, and sample applications. For
TimesTen Scaleout, there are ODBC and JDBC sample applications.
After you have configured your environment, you can confirm that everything is set up
correctly by compiling and running the sample applications. For TimesTen Classic,
applications are located under the Quick Start sample_code directory. For instructions
on compiling and running them, see the instructions in the subdirectories. For
TimesTen Scaleout, clone the oracle-timesten-examples GitHub repository and
follow the instructions in the README files.

For TimesTen Classic, the following are included:

• Schema and setup: The build_sampledb script (.sh on Linux or UNIX or .bat on
Windows) creates a sample database and schema. Run this script before using
the sample applications.

• Environment and setup: The ttquickstartenv script (.sh or .csh on Linux or
UNIX, .bat on Windows, or as applicable for your system), a superset of the

Chapter 1
About TimesTen Quick Start and Sample Applications

1-4

ttenv script typically used for TimesTen setup, sets up the environment. Run this script
each time you enter a session where you want to compile or run any of the sample
applications.

• Sample applications and setup: The Quick Start provides sample applications and their
source code for TTClasses.

Chapter 1
About TimesTen Quick Start and Sample Applications

1-5

2
Understanding and Using TTClasses

This chapter provides some general overview and best practices for TTClasses. It includes
the following topics:

• Overview of TTClasses

• Using TTCmd, TTConnection, and TTConnectionPool

• Managing TimesTen Connections

• Using TimesTen Features in your Application

• Using TTClasses Logging

• Using XLA in TTClasses

• Using the TTClasses Classes

Overview of TTClasses
The TimesTen C++ Interface Classes library (TTClasses) provides wrappers around the most
common ODBC functionality to allow database access. It was developed to meet the demand
for an API that is easier to use than ODBC but does not sacrifice performance.

TimesTen supports:

• ODBC 2.5, Extension Level 1, as well as some Extension Level 2 features

• ODBC 3.51 core interface conformance

The TTClasses implementation is based on ODBC 2.5.

See TimesTen ODBC Support in Oracle TimesTen In-Memory Database C Developer's
Guide. Refer to ODBC API reference documentation for general information about ODBC.

In addition to providing a C++ interface to the TimesTen ODBC interface, TTClasses supplies
an interface to the TimesTen Transaction Log API (XLA), which is supported by TimesTen
Classic. XLA allows an application to monitor one or more tables in a database. When other
applications change that table, the changes are reported through XLA to the monitoring
application. TTClasses provides a convenient interface to the most commonly used aspects
of XLA functionality. For general information about XLA, see XLA and TimesTen Event
Management in Oracle TimesTen In-Memory Database C Developer's Guide.

TTClasses is also intended to promote best practices when writing application software that
uses the TimesTen Data Manager. The library uses TimesTen in an optimal manner. For
example, autocommit is disabled by default. Parameterized SQL is strongly encouraged and
its use is greatly simplified in TTClasses compared to hand-coded ODBC.

Using TTCmd, TTConnection, and TTConnectionPool
This section describes a general approach to using TTClasses that has been employed
successfully and can easily be adapted to a variety of applications.

2-1

To achieve optimal performance, real-time applications should use prepared SQL
statements. Ideally, all SQL statements used by an application are prepared when the
application begins, using a separate TTCmd object for each statement. In ODBC, and
thus in TTClasses, statements are bound to a particular connection, so a full set of the
statements used by the application are often associated with every connection to the
database.

A convenient way to accomplish this is to develop an application-specific class that is
derived from TTConnection. For an application named XYZ, you can create a class
XYZConnection, for example. The XYZConnection class contains private TTCmd
members representing the prepared SQL statements that can be used in the
application, and provides new public methods to implement the application-specific
database functionality through these private TTCmd members.

Before a TTCmd object can be used, a SQL statement (such as SELECT, INSERT, UPDATE,
or DELETE) must be associated with it. The association is accomplished by using the
Prepare() method, which also compiles and optimizes the SQL statement to ensure it is
executed in an efficient manner. Note that the Prepare() method only prepares and
does not execute the statement.

With TimesTen, statements are typically parameterized for better performance.
Consider the following SQL statements:

SELECT col1 FROM table1 WHERE C = 10;
SELECT col1 FROM table1 WHERE C = 11;

It is more efficient to prepare a single parameterized statement and execute it multiple
times:

SELECT col1 FROM table1 WHERE C = ?;

The value for "?" is specified at runtime by using the TTCmd::setParam() method.

There is no need to explicitly bind columns or parameters to a SQL statement, as is
necessary when you use ODBC directly. TTCmd automatically defines and binds all
necessary columns at prepare time. Parameters are bound at execution time.

Be aware that preparing is a relatively expensive operation. When an application
establishes a connection to TimesTen, using TTConnection::Connect(), it should
prepare all TTCmd objects associated with the connection. Prepare all SQL statements
prior to the main execution loop of the application.

Anytime a TTClasses method encounters an error or warning, it throws a TTStatus
object as an exception, which the application should catch and handle appropriately.
The TimesTen Classic Quick Start sample applications show examples of how this is
done. See About TimesTen Quick Start and Sample Applications.

Chapter 2
Using TTCmd, TTConnection, and TTConnectionPool

2-2

Note:

If TTConnection or TTCmd lacks the specific get or set method you need, you can
access underlying ODBC connection and statement handles directly, through the
TTConnection::getHdbc() and TTCmd::getHandle() methods. Similarly, there is a
TTGlobal::sqlhenv() method to access the ODBC environment handle.

This is an example of a class that inherits from TTConnection.

class XYZConnection : public TTConnection {
private:
 TTCmd updateData;
 TTCmd insertData;
 TTCmd queryData;

public:
 XYZConnection();
 ~XYZConnection();
 virtual void Connect (const char* connStr, const char* user, const char*
pwd);
 void updateUser ();
 void addUser (char* nameP);
 void queryUser (const char* nameP, int* valueP);
};

In this example, an XYZConnection object is a connection to TimesTen that can be used to
perform three application-specific operations: addUser(), updateUser(), and queryUser().
These operations are specific to the XYZ application. The implementation of these three
methods can use the updateData, insertData, and queryData TTCmd objects to implement
the database operations of the application.

To prepare the SQL statements of the application, the XYZConnection class overloads the
Connect() method provided by the TTConnection base class. The
XYZConnection::Connect() method calls the Connect() method of the base class to
establish the database connection and also calls the Prepare() method for each TTCmd object
to prepare the SQL statements for later use.

This next example shows an implementation of the XYZConnection::Connect() method.

void
XYZConnection::Connect(const char* connStr, const char* user, const char*
pwd)
{
 try {
 TTConnection::Connect(connStr, user, pwd);
 updateData.Prepare(this, "update mydata v set foo = ? where bar = ?");
 insertData.Prepare(this, "insert into mydata values(?,0)");
 queryData.Prepare(this, "select i from mydata where name = ?");
 }
 catch (TTStatus st) {
 cerr << "Error in XYZConnection::Connect: " << st << endl;
 }

Chapter 2
Using TTCmd, TTConnection, and TTConnectionPool

2-3

 return;
}

This Connect() method makes the XYZConnection object and its application-specific
methods fully operational.

This approach also works well with the design of the TTConnectionPool class. The
application can create numerous objects of type XYZConnection and add them to a
TTConnectionPool object. By calling TTConnectionPool::ConnectAll(), the
application connects all connections in the pool to the database and prepares all SQL
statements. Use TTConnectionPool::DisconnectAll() to disconnect.

This application design allows database access to be easily separated from the
application business logic. Only the XYZConnection class contains database-specific
code.

Examples of this application design can be found in several of the TTClasses sample
applications provided with TimesTen Classic Quick Start. See About TimesTen Quick
Start and Sample Applications.

Note that other configurations are possible. Some customers have extended this
scheme further, so that SQL statements to be used in an application are listed in a
table in the database, rather than being hard-coded in the application itself. This allows
changes to database functionality to be implemented by making database changes
rather than application changes.

The following example shows an implementation of the
XYZConnection::Disconnect() method.

void
XYZConnection::Disconnect()
{
 updateData.Drop();
 insertData.Drop();
 queryData.Drop();

 TTConnection::Disconnect();
}

Also see TTCmd Usage, TTConnection Usage, and TTConnectionPool Usage.

Managing TimesTen Connections
This section covers how to connect to a database.

• Setting Connection Attributes for the Database

• Connecting and Disconnecting

• Connection Methods

Setting Connection Attributes for the Database
This section refers to information about setting up a TimesTen database, including
initial connection attribute settings.

Chapter 2
Managing TimesTen Connections

2-4

For TimesTen Classic, Oracle TimesTen In-Memory Database Operations Guide contains
information about creating a DSN (data source name) for a database. A DSN is a logical
name that identifies a TimesTen database and the set of connection attributes used for
connecting to the database. The type of DSN you create depends on whether your
application connects directly to the database or connects by a client. If you intend to connect
directly to the database, refer to Managing TimesTen Databases. If you intend to create a
client connection to the database, refer to Working with the TimesTen Client and Server.

For TimesTen Scaleout, refer to Oracle TimesTen In-Memory Database Scaleout User's
Guide for information about creating a database, setting connection attributes, and
connecting to a database, using either a direct connection or a client/server connection. See
Creating a Database and Connecting to a Database.

Note:

A TimesTen connection cannot be inherited from a parent process. If a process
opens a database connection before creating (forking) a child process, the child
must not use the connection.

Connecting and Disconnecting
Based on the XYZConnection class, you can connect to and disconnect from TimesTen.

See Using TTCmd, TTConnection, and TTConnectionPool.

For example:

 ...

 XYZConnection conn;
 char connStr[256];
 char user[30];
 char pwd[30];

 ...

 try {
 conn.Connect(connStr, user, pwd);
 }
 catch (TTWarning st) {
 cerr << "Warning connecting to TimesTen: " << st << endl;
 }
 catch (TTError st) {
 cerr << "Error connecting to TimesTen " << st << endl;
 exit(1);
 }

// ... Work with the database connection...

 try {
 conn.Disconnect();
 }
 catch (TTStatus st) {

Chapter 2
Managing TimesTen Connections

2-5

 cerr << "Error disconnecting from TimesTen: " << st << endl;
 exit(1);
 }

Connection Methods
There are method signatures for the TTConnection, TTConnectionPool, and
TTXlaPersistConnection classes.

virtual void
TTConnection::Connect(const char* connStr)

virtual void
TTConnection::Connect(const char* connStr, const char* username,
 const char* password)

virtual void
TTConnection::Connect(const char* connStr,
 DRIVER_COMPLETION_ENUM driverCompletion)

void
TTConnectionPool::ConnectAll(const char* connStr)

void
TTConnectionPool::ConnectAll(const char* connStr, const char*
username,
 const char* password)

virtual void
TTXlaPersistConnection::Connect(const char* connStr, const char*
username,
 const char* password, const char*
bookmarkStr,
 bool createBookmarkFlag)

virtual void
TTXlaPersistConnection::Connect(const char* connStr,
 DRIVER_COMPLETION_ENUM
driverCompletion,
 const char * bookmarkStr, bool
createBookmarkFlag)

virtual void
TTXlaPersistConnection::Connect(const char* connStr, const char*
username,
 const char* password, const char*
bookmarkStr)

virtual void
TTXlaPersistConnection::Connect(const char* connStr,
 DRIVER_COMPLETION_ENUM
driverCompletion,
 const char * bookmarkStr)

Chapter 2
Managing TimesTen Connections

2-6

Note:

• The connection string (connStr value) can specify the user name and
password, such as "DSN=testdb;uid=brian;pwd=password". Be aware that for
signatures that take connection string, user name, and password arguments,
the user name and password arguments take precedence over any user name
or password specified in the connection string.

• See TTConnection Reference for information about DRIVER_COMPLETION_ENUM
values.

Using TimesTen Features in your Application
This section covers the following topics for working with data.

• Binding Parameters

• Working with REF CURSORs

• Working with ROWIDs

• Working with LOBs

• Setting a Timeout or Threshold for Executing SQL Statements

• Using Automatic Client Failover in a TTClasses Application

Binding Parameters
This section discusses parameter binding for SQL statements.

• About Parameter Binding

• Binding Input Parameters

• Registering Parameters

• Parameter C Type to SQL Type Mappings

• Binding Output or Input/Output Parameters

• Binding Duplicate Parameters

Note:

The term "bind parameter" as used in TimesTen developer guides (in keeping with
ODBC terminology) is equivalent to the term "bind variable" as used in TimesTen
PL/SQL documents (in keeping with Oracle Database PL/SQL terminology).

About Parameter Binding
The TTCmd class supplies the methods setParam() and BindParameter() (for batch
operations) to bind parameters. It also supplies the method registerParam() to support
output and input/output parameters or to override default bind types.

Chapter 2
Using TimesTen Features in your Application

2-7

The TimesTen binding mechanism (early binding) differs from that of Oracle Database
(late binding). TimesTen requires the data types before preparing queries. As a result,
there will be an error if the data type of each bind parameter is not specified or cannot
be inferred from the SQL statement. This would apply, for example, to the following
statement:

SELECT 'x' FROM DUAL WHERE ? = ?;

You could address the issue as follows, for example:

SELECT 'x' from DUAL WHERE CAST(? as VARCHAR2(10)) =
 CAST(? as VARCHAR2(10));

Binding Input Parameters
For non-batch operations, use the TTCmd::setParam() method to bind input
parameters for SQL statements, specifying the parameter position and the value to be
bound. For batch operations, use the TTCmd::BindParameter() method.

See setParam() and ExecuteBatch() for an example of batch operations.

For non-batch operations, the example below shows snippets from a class
SampleConnection, where parameters are bound to insert a row into a table. (This
example is from the basics.cpp sample application provided with the TimesTen
Classic Quick Start. See About TimesTen Quick Start and Sample Applications.)

Assume a table basics, defined as follows:

create table basics (name char(10) not null primary key, i tt_integer);

Implementation of the Connect() method is omitted here, but see the example of a
Connect() implementation in Using TTCmd, TTConnection, and TTConnectionPool.

class SampleConnection : public TTConnection
{
 using TTConnection::Connect;

 private:
 TTCmd insertData;
 ...

 protected:

 public:
 SampleConnection();
 ~SampleConnection();
 virtual void Connect(const char* connStr,
 DRIVER_COMPLETION_ENUM driverCompletion);
 void insert(char* nameP);
 ...

 ...
 // Assume a Connect() method implemented with the following:

Chapter 2
Using TimesTen Features in your Application

2-8

 // insertData.Prepare(this, "insert into basics values(:name, :value)");
 ...
}

//--

void
SampleConnection::insert(char* nameP)
{
 static long i = 0;
 insertData.setParam(1, nameP);
 insertData.setParam(2, i++);
 insertData.Execute();
}

//--

...

int
main(int argc, char** argv)
{
 ...
 char name[10];
 SampleConnection conn;
 ...

// Assume conn is an open connection.
 sprintf(name, "Robert");
 try {
 conn.insert(name);
 }
 catch (TTStatus st) {
 cerr << "Error inserting row " << name << ":" << st << endl;
 conn.Rollback();
 }
}

Registering Parameters
The TTCmd class provides the registerParam() method, which enables you to specify the
SQL type, precision, and scale of a parameter (as applicable) and whether the parameter is
input, output, or input/output.

A registerParam() call is required for an output or input/output parameter, which could be a
REF CURSOR (output only) or a parameter from a PL/SQL RETURNING INTO clause (output
only), procedure, or function.

A registerParam() call can be either before or after the related setParam() or
BindParameter() call and takes precedence regarding SQL type, precision, and scale (as
applicable).

Chapter 2
Using TimesTen Features in your Application

2-9

The method signature is as follows:

inline void
TTCmd::registerParam(int pno,
 int inputOutputType,
 short sqltype,
 int precision = 0,
 short scale = 0)

• pno is the parameter position in the statement.

• inputOutputType can be TTCmd::PARAM_IN, TTCmd::PARAM_OUT, or
TTCmd::PARAM_INOUT.

• sqltype is the SQL type of the data (for example, SQL_INTEGER).

• precision and scale (both optional) are used the same way as in an ODBC
SQLBindParameter call. For primitive types (such as int), precision and scale
settings are ignored.

Note:

See Binding Output or Input/Output Parameters, for an example. Also see
registerParam() for additional reference information.

Parameter C Type to SQL Type Mappings
For an input parameter, TTClasses by default derives the SQL type from the bound C
type for the setParam() or BindParameter() call according to the mappings.

It is not typical to need a registerParam() call for an input parameter, but you can call
it if you must use a particular SQL type or precision or scale.

Table 2-1 TTClasses C Type to SQL Type Mappings

C Type SQL Type

char* SQL_CHAR, SQL_VARCHAR
void* SQL_BINARY, SQL_VARBINARY
double SQL_FLOAT, SQL_DOUBLE
DATE_STRUCT SQL_DATE
float SQL_REAL, SQL_DECIMAL
int SQL_INTEGER
SQLBIGINT SQL_BIGINT
SQLCHAR* SQL_VARCHAR
SQLINTEGER SQL_INTEGER
SQLSMALLINT SQL_SMALLINT
SQLTINYINT SQL_TINYINT

Chapter 2
Using TimesTen Features in your Application

2-10

Table 2-1 (Cont.) TTClasses C Type to SQL Type Mappings

C Type SQL Type

SQLWCHAR* SQL_WCHAR, SQL_WVARCHAR
TIME_STRUCT SQL_TIME
TIMESTAMP_STRUCT SQL_TIMESTAMP
SQLHSTMT SQL_REFCURSOR

Note:

Not all C types shown in the preceding table are supported if you are using a driver
manager. Refer to Considerations when Using an ODBC Driver Manager
(Windows).

Binding Output or Input/Output Parameters
TTClasses supports output and input/output parameters such as REF CURSORs (output
only), parameters from a PL/SQL procedure or function that has OUT or IN OUT parameters, or
a parameter from a RETURNING INTO clause (output only).

You must use the TTCmd::registerParam() method, described in the preceding section, to inform
TTClasses if a parameter in a SQL statement is output or input/output. For the
intputOutputType setting in the method call, use TTCmd::PARAM_OUT or TTCmd::PARAM_INOUT
as appropriate.

For non-batch operations, after the SQL statement has been executed, use the appropriate
TTCmd::getParam() method to retrieve the output value, specifying the parameter position and
the variable into which the value is placed. There is a signature for each data type.

For batch operations, TTCmd::BindParameter() is used for output or input/output parameters
as well as for input parameters. It is called before the statement is executed. After statement
execution, the data for an output value is in the buffer specified in the BindParameter() call.
BindParameter() has a signature for each data type. For an input/output parameter in batch
operations, BindParameter() is called only once, before statement execution. Before
execution the specified buffer contains the input, and after statement execution it contains the
output.

The following examples provide code fragments showing the use of output and input/output
parameters.

The first example uses input and output parameters. The setParam() call binds the value of
the input parameter :a. The getParam() call retrieves the value of the output parameter :b.
The output parameter is also registered as required.

...
// t1 has a single TT_INTEGER column
cmd.Prepare(&conn, "insert into t1 values (:a) returning c1 into :b");
cmd.setParam(1, 99);
cmd.registerParam(2, TTCmd::PARAM_OUT, SQL_INTEGER);

Chapter 2
Using TimesTen Features in your Application

2-11

cmd.Execute();
SQLINTEGER outval;

if (cmd.getParam(2, &outval))
 cerr << "The output value is null." << endl;
else
 cerr << "The output value is " << outval << endl;
...

The next example uses input and output parameters in a batch operation. The first
BindParameter() call provides the input data for the first parameter :a. The second
BindParameter() call provides a buffer for output data for the second parameter :b.

...
#define BATCH_SIZE 5
int input_int_array[BATCH_SIZE] = { 91, 92, 93, 94, 95 };
int output_int_array[BATCH_SIZE] = { -1, -1, -1, -1, -1 };
SQLULEN numrows;

cmd.PrepareBatch(&conn, "insert into t1 values (:a) returning c1
into :b",
 BATCH_SIZE);
cmd.BindParameter(1, BATCH_SIZE, input_int_array);
cmd.BindParameter(2, BATCH_SIZE, output_int_array);
cmd.registerParam(2, TTCmd::PARAM_OUT, SQL_INTEGER);
numrows = cmd.ExecuteBatch(BATCH_SIZE);
...

The following example uses an input/output parameter. It is registered as required.
The setParam() call binds its input value and the getParam() call retrieves its output
value.

...
cmd.Prepare(&conn, "begin :x := :x + 1; end;");
cmd.registerParam(1, TTCmd::PARAM_INOUT, SQL_INTEGER);
cmd.setParam(1, 99);
cmd.Execute();
SQLINTEGER outval;

if (cmd.getParam(1, &outval))
 cerr << "The output value is null." << endl;
else
 cerr << "The output value is " << outval << endl;
...

This final example uses output and input/output parameters. Assume a PL/SQL
procedure as follows:

create or replace procedure my_proc (
 a in number,
 b in number,
 c out number,
 d in out number) as

Chapter 2
Using TimesTen Features in your Application

2-12

begin
 c := a + b;
 d := a + b - d;
end my_proc;

The input parameters for the procedure are taken as constants in this example rather than as
bound parameters, so only the OUT parameter and IN OUT parameter are bound. Both are
registered as required. The setParam() call provides the input value for the IN OUT
parameter :var1. The first getParam() call retrieves the value for the OUT parameter :sum.
The second getParam() call retrieves the output value for the IN OUT parameter :var1.

...
cmd.Prepare(&conn, "begin my_proc (10, 5, :sum, :var1); end;");
cmd.registerParam (1, TTCmd::PARAM_OUT, SQL_DECIMAL, 38);
cmd.registerParam (2, TTCmd::PARAM_INOUT, SQL_DECIMAL, 38);
cmd.setParam(2, "99");
cmd.Execute();
SQLINTEGER outval1, outval2;

if (cmd.getParam(1, &outval1))
 cerr << "The first output value is null." << endl;
else
 cerr << "The first output value is " << outval << endl;
if (cmd.getParam(2, &outval2))
 cerr << "The second output value is null." << endl;
else
 cerr << "The second output value is " << outval << endl;
...

Binding Duplicate Parameters
In TimesTen, multiple occurrences of the same parameter name in a SQL statement are
considered to be distinct parameters. (This is consistent with Oracle Database support for
binding duplicate parameters.)

Note:

• "TimesTen mode" for binding duplicate parameters, and the DuplicateBindMode
connection attribute, are deprecated.

• Refer to Binding of Duplicate Parameters in SQL Statements in Oracle
TimesTen In-Memory Database C Developer's Guide.

Consider this query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

Chapter 2
Using TimesTen Features in your Application

2-13

When parameter position numbers are assigned, a number is given to each parameter
occurrence without regard to name duplication. The application must, at a minimum,
bind a value for the first occurrence of each parameter name. For any subsequent
occurrence of a given parameter name, the application can bind a different value for
the occurrence or it can leave the parameter occurrence unbound. In the latter case,
the subsequent occurrence takes the same value as the first occurrence. In either
case, each occurrence still has a distinct parameter position number.

This example uses a different value for the second occurrence of a in the SQL
statement above:

mycmd.setParam(1, ...); // first occurrence of :a
mycmd.setParam(2, ...); // second occurrence of :a
mycmd.setParam(3, ...); // occurrence of :b

To use the same value for both occurrences of a:

mycmd.setParam(1, ...); // both occurrences of :a
mycmd.setParam(3, ...); // occurrence of :b

Parameter b is considered to be in position 3 regardless, and the number of
parameters is considered to be three.

Working with REF CURSORs
REF CURSOR is a PL/SQL concept, a handle to a cursor over a SQL result set that
can be passed between PL/SQL and an application.

In TimesTen, the cursor can be opened in PL/SQL, then the REF CURSOR can be
passed to the application for processing. This usage is an OUT REF CURSOR, an OUT
parameter with respect to PL/SQL. As with any output parameter, it must be registered
using the TTCmd::registerParam() method.

See Registering Parameters and Binding Output or Input/Output Parameters.

In the TimesTen implementation, the REF CURSOR is attached to a separate
statement handle. The application prepares a SQL statement that has a REF
CURSOR parameter on one statement handle, then, before executing the statement,
binds a second statement handle as the value of the REF CURSOR. After the
statement is executed, the application can describe, bind, and fetch the results using
the same APIs as for any result set.

In TTClasses, because a TTCmd object encapsulates a single SQL statement, two
TTCmd objects are used to support this REF CURSOR model.

See PL/SQL REF CURSORs in Oracle TimesTen In-Memory Database PL/SQL
Developer's Guide for additional information about REF CURSORs.

Note:

For passing REF CURSORs between PL/SQL and an application, TimesTen
supports only OUT REF CURSORs, from PL/SQL to the application.

Chapter 2
Using TimesTen Features in your Application

2-14

The example below demonstrates the following steps for using a REF CURSOR in
TTClasses.

1. Declare a TTCmd object for the PL/SQL statement that returns a REF CURSOR (cmdPLSQL
in the example).

2. Declare a TTCmd* pointer to point to a second TTCmd object for the REF CURSOR
(cmdRefCursor in the example).

3. Use the first TTCmd object (cmdPLSQL) to prepare the PL/SQL statement.

4. Use the TTCmd::registerParam() method of the first TTCmd object to register the REF
CURSOR as an output parameter.

5. Use the first TTCmd object to execute the statement.

6. Use the TTCmd::getParam() method of the first TTCmd object to retrieve the REF
CURSOR into the second TTCmd object (using &cmdRefCursor). There is a getParam(int
paramNo, TTCmd** rcCmd) signature for REF CURSORs.

7. Fetch the results from the TTCmd object for the REF CURSOR and process as desired.

8. Drop the first TTCmd object.

9. Drop the pointer to the TTCmd object for the REF CURSOR.

10. Issue a delete statement to delete the TTCmd object for the REF CURSOR.

This example retrieves and processes a REF CURSOR from a PL/SQL anonymous block.
See the preceding steps for an explanation.

...
TTCmd cmdPLSQL;
TTCmd* cmdRefCur;
TTConnection conn;
...

// c1 is a TT_INTEGER column.
cmdPLSQL.Prepare(&conn, "begin open :rc for select c1 from t; end;")
cmdPLSQL.registerParam(1, TTCmd::PARAM_OUT, SQL_REFCURSOR);
cmdPLSQL.Execute();

if (cmdPLSQL.getParam(1, &cmdRefCur) == false)
{
 SQLINTEGER fetchval;

 while (!cmdRefCursor->FetchNext()) {
 cmdRefCur->getColumn(1, &fetchval);
 }
 cmdRefCursor->Drop();
 delete cmdRefCursor;
}

cmdPLSQL.Drop();

Be aware of the following usage notes when using REF CURSORs in TTClasses:

Chapter 2
Using TimesTen Features in your Application

2-15

• For passing REF CURSORs between PL/SQL and an application, TimesTen
supports only OUT REF CURSORs, from PL/SQL to the application, and supports a
statement returning only a single REF CURSOR.

• Unlike TTCmd::getParam() calls for other data types, a getParam() call with a
TTCmd** parameter for a REF CURSOR can only be called once. Subsequent calls
return NULL. If you must retrieve a REF CURSOR a second time, you must
reexecute the statement.

• If the statement is executed multiple times, the REF CURSOR parameter must be
reregistered each time. For example, if you are executing the statement, getting
the REF CURSOR parameter, and fetching from the REF CURSOR within a loop,
then the parameter registration must also be in the loop, such as follows:

cmdPLSQL.Prepare(...);

loop
 cmdPLSQL.registerParam(...);
 cmdPLSQL.Execute();
 cmdPLSQL.getParam(...);
 fetch loop
end loop

This is shown the example below.

• Any TTCmd object, including one for a REF CURSOR, has an ODBC statement
handle allocated for it. The REF CURSOR statement handle is dropped at the time
of the Drop() statement and the resource is freed after the delete statement.

The following example uses a REF CURSOR in a loop. Assume the following
declarations and a TTConnection instance conn.

...
TTCmd query;
TTCmd* ref_cur;
...

Here is the loop:

...
 cerr << "Selecting values using cursor" << endl;
 query.Prepare(&conn, "begin open :rc for select c1 from t1;
end;");

 for (int round = 0; round < ROUNDS; round++) {
 cerr << "executing ref cursor round# " << (round+1) << endl;
 query.registerParam(1, TTCmd::PARAM_OUT, SQL_REFCURSOR);
 query.Execute();
 query.getParam(1, &ref_cur);

 while(true) {
 fetch_next = ref_cur -> FetchNext();
 if (fetch_next == 1)
 break;

Chapter 2
Using TimesTen Features in your Application

2-16

 ref_cur -> getColumn(1, &val);
 cerr << "val = " << val << endl;
 }
 ref_cur->Drop();
 delete ref_cur;
 }

 conn.Commit();
 query.Drop();
...

Working with ROWIDs
Each row in a table has a unique identifier known as its rowid. An application can retrieve the
rowid of a row from the ROWID pseudocolumn. Rowids can be represented in either binary or
character format.

An application can specify literal rowid values in SQL statements, such as in WHERE clauses,
as CHAR constants enclosed in single quotes.

The ODBC SQL type SQL_ROWID corresponds to the SQL type ROWID.

For parameters and result set columns, rowids are convertible to and from the C types
SQL_C_BINARY, SQL_C_WCHAR, and SQL_C_CHAR. SQL_C_CHAR is the default C type for rowids.
The size of a rowid is 12 bytes as SQL_C_BINARY, 18 bytes as SQL_C_CHAR, and 36 bytes as
SQL_C_WCHAR.

Note that TTClasses has always supported rowids as character strings; however, a
TTClasses application can now pass a rowid to a PL/SQL anonymous block as a ROWID type
instead of as a string. This involves using the TTCmd::registerParam() method to register
the rowid input parameter as SQL_ROWID type, as shown this example:

...
TTConnection conn;
TTCmd cmd;
...
cmd.Prepare(&conn, "begin delete from t1 where rowid = :x; end;");
cmd.registerParam(1, TTCmd::PARAM_IN, SQL_ROWID);
cmd.setParam(1, rowid_string);
cmd.Execute();
...

Refer to ROWID Data Type and ROWID pseudocolumn in Oracle TimesTen In-Memory
Database SQL Reference for additional information about rowids and the ROWID data type,
including usage and life.

Note:

TimesTen does not support the PL/SQL type UROWID.

Chapter 2
Using TimesTen Features in your Application

2-17

Working with LOBs
This section discusses the use of LOBs (large objects) in TTClasses. This includes
CLOBs (character LOBs), NCLOBs (national character LOBs), and BLOBs (binary
LOBs).

The following topics are discussed:

• Differences Between TimesTen LOBs and Oracle Database LOBs

• Using the LOB Simple Data Interface in TTClasses

• Passthrough LOBs in TTClasses

You can also refer to the following.

• Large objects (LOBs) in Oracle TimesTen In-Memory Database C Developer's
Guide for an overview of LOBs and LOB programming interfaces for C and C++.
Only the LOB simple data interface is applicable to TTClasses.

• LOB Data Types in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen

• Oracle Database SecureFiles and Large Objects Developer's Guide for general
information about programming with LOBs (but not specific to TimesTen
functionality)

Differences Between TimesTen LOBs and Oracle Database LOBs
This section notes differences in LOB support between TimesTen and Oracle
Database.

• A key difference between the TimesTen LOB implementation and the Oracle
Database implementation is that in TimesTen, a LOB used in an application does
not remain valid past the end of the transaction. All such LOBs are invalidated
after a commit or rollback, whether explicit or implicit. This includes after any DDL
statement.

• TimesTen does not support BFILEs, SecureFiles, array reads and writes for LOBs,
or callback functions for LOBs.

• TimesTen does not support binding arrays of LOBs.

• TimesTen does not support batch processing of LOBs.

• Relevant to BLOBs, there are differences in the usage of hexadecimal literals in
TimesTen. see the description of HexadecimalLiteral in Constants in Oracle
TimesTen In-Memory Database SQL Reference.

Using the LOB Simple Data Interface in TTClasses
The simple data interface enables applications to access LOB data by binding and
defining, just as with other scalar types.

For the simple data interface in TTClasses, use getParam() and setParam() to bind
parameters and use getColumn() or getColumnNullable() to define result columns.
The application can bind or define using a SQL type that is compatible with the
corresponding variable type, as follows:

Chapter 2
Using TimesTen Features in your Application

2-18

• For BLOB data, use SQL type SQL_LONGVARBINARY and C type SQL_C_BINARY.

• For CLOB data, use SQL type SQL_LONGVARCHAR and C type SQL_C_CHAR.

• For NCLOB data, use SQL type SQL_WLONGVARCHAR and C type SQL_C_WCHAR.

Note:

• TTClasses does not support batch mode for LOBs.

• Binding a CLOB or NCLOB with a C type of SQL_C_BINARY is prohibited.

The following example shows use of the LOB simple data interface in TTClasses. Assume a
table with NCLOB, BLOB, and CLOB columns has been created and populated. The methods
executed on these LOB types are the same as for NCHAR, BINARY, and CHAR, respectively.

#ifdef _WIN32
#include <ttcommon.h>
#endif
#include "TTInclude.h"
#define LOB_COL_SIZE 4194304

int main(int argc, char** argv) {

 TTConnection conn;
 TTCmd query;
 char conn_str[100] = "... your connection string ...";
 char tbl_name[20] = "... test table name ...";

 int num_rows = 0;
 char query_stmt[1000];
 int fetch_next;
 int value_is_null = 0;
 int column_type;
 SQLWCHAR * unicode_val;
 u_char * binary_val;
 char * alfanum_val;
 SQLLEN b_len;
 SQLLEN u_len;

 cerr << "Connecting to TimesTen <" << conn_str << ">" << endl;

 try {
 conn.Connect(conn_str);
 sprintf(query_stmt, "select * from %s", tbl_name);
 query.Prepare(&conn, query_stmt);
 query.Execute();
 const int num_result_cols = query.getNColumns();

 while (true) {
 // loop until no rows found
 // fetch a row; if no more rows, break out of loop
 // FetchNext returns 0 for success, 1 for SQL_NO_DATA_FOUND

Chapter 2
Using TimesTen Features in your Application

2-19

 fetch_next = query.FetchNext();
 if (fetch_next == 1)
 break;

 for (int col = 1; col <= num_result_cols; col++) {
 value_is_null = 0;
 column_type = query.getColumnType(col);

 switch (column_type) {

 case SQL_WLONGVARCHAR:

 value_is_null = query.getColumnNullable(col,
 (SQLWCHAR**) & unicode_val, &u_len);
 if (value_is_null) {
 cerr << "NCLOB value is NULL";
 } else {
 cerr << "NCLOB value length = " << u_len << endl;
 // do something with NCLOB value
 }
 break;

 case SQL_LONGVARBINARY:

 value_is_null = query.getColumnNullable(col,
 (void**) & binary_val, &b_len);
 if (value_is_null) {
 cerr << "BLOB value is NULL";
 } else {
 cerr << "BLOB value length = " << b_len << endl;
 // do something with BLOB value
 }
 break;

 case SQL_LONGVARCHAR:

 alfanum_val = (char*) malloc(LOB_COL_SIZE + 1);
 value_is_null = query.getColumnNullable(col,
alfanum_val);
 if (value_is_null) {
 cerr << "CLOB value is NULL";
 } else {
 cerr << "CLOB value length = " <<
strlen(alfanum_val) << endl;
 // do something with BLOB value
 }
 free(alfanum_val);
 break;

 default:
 break;
 }
 }

 num_rows++;

Chapter 2
Using TimesTen Features in your Application

2-20

 cerr << "row " << num_rows << " fetched" << endl;
 }
 cerr << num_rows << " rows returned" << endl;
 } catch (TTError err) {
 cerr << "\nError" << err << endl;
 }
 query.Drop();
 conn.Disconnect();
 return 0;
}

Passthrough LOBs in TTClasses
Passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen, are
exposed as TimesTen LOBs and are supported by TimesTen in much the same way that any
TimesTen LOB is supported.

However, note the following:

• TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle database
through passthrough.

• As with TimesTen local LOBs, a passthrough LOB used in an application does not remain
valid past the end of the transaction.

Setting a Timeout or Threshold for Executing SQL Statements
TimesTen offers two ways for you to limit the time for SQL statements or procedure calls to
execute, by setting either a timeout value or a threshold value.

When you set a timeout value, if the timeout duration is reached, the statement stops
executing and an error is thrown. A value of 0 indicates no timeout. When you set a threshold
value, if the threshold is reached, a warning is written to the support log but execution
continues. A value of 0 means no warnings.

The query timeout limit has effect only when a SQL statement is actively executing. A timeout
does not occur during commit or rollback.

Use the TTCmd methods setQueryTimeout() and setQueryThreshold() to specify these settings for
the TTCmd object. Note that these methods override the settings of the TimesTen connection
attributes SQLQueryTimeout (or SQLQueryTimeoutMsec) and QueryThreshold, respectively.
Each of these connection attributes has a default value of 0, for no timeout or no threshold.

There is also a getQueryThreshold() method to read the current threshold setting.

In TTClasses, these features can be used only at the statement level, not the connection
level.

See Timeouts and Thresholds for Executing SQL Statements in Oracle TimesTen In-Memory
Database C Developer's Guide. For information about the relationship between timeout
values, see Choose SQL and PL/SQL Timeout Values in Oracle TimesTen In-Memory
Database Operations Guide.

Chapter 2
Using TimesTen Features in your Application

2-21

Note:

If both a lock timeout value and a SQL query timeout value are specified, the
lesser of the two values causes a timeout first. Regarding lock timeouts, you
can refer to ttLockWait (built-in procedure) or LockWait (general connection
attribute) in Oracle TimesTen In-Memory Database Reference, or to Check
for Deadlocks and Timeouts in Oracle TimesTen In-Memory Database
Monitoring and Troubleshooting Guide.

Using Automatic Client Failover in a TTClasses Application

TTClasses does not have its own functionality for automatic client failover, but a
TTClasses application can configure TimesTen automatic client failover in the same
way that an ODBC application can.

This is discussed in ODBC Support for Automatic Client Failover in Oracle TimesTen
In-Memory Database C Developer's Guide. For TimesTen Scaleout, also see Client
Connection Failover in Oracle TimesTen In-Memory Database Scaleout User's Guide.
For TimesTen Classic, see Using Automatic Client Failover in Oracle TimesTen In-
Memory Database Operations Guide.

Using TTClasses Logging
TTClasses has a logging facility that allows applications to capture debugging
information. TTClasses logging is associated with processes. You can enable logging
for a specific process and produce a single output log stream for the process.

TTClasses supports different levels of logging information. See the example in
Acknowledging XLA Updates Without Using Transaction Boundaries for more
information about what is printed at each log level.

Log level TTLOG_WARN is very useful while developing a TTClasses application. It can
also be appropriate for production applications because in this log level, database
query plans are generated.

At the more verbose log levels (TTLOG_INFO and TTLOG_DEBUG), so much log data is
generated that application performance is adversely affected. Do not use these log
levels in a production environment.

Although TTClasses logging can print to either stdout or stderr, the best approach is
to write directly to a TTClasses log file. The example below demonstrates how to print
TTClasses log information at log level TTLOG_WARN into the /tmp/ttclasses.log output
file.

Chapter 2
Using TTClasses Logging

2-22

Note:

TTClasses logging is disabled by default.

ofstream output;
output.open("/tmp/ttclasses.log");
TTGlobal::setLogStream(output);
TTGlobal::setLogLevel(TTLog::TTLOG_WARN);

First-time users of TTClasses should spend a little time experimenting with TTClasses
logging to see how errors are printed at log level TTLOG_ERROR and how much information is
generated at log levels TTLOG_INFO and TTLOG_DEBUG.

See TTCGlobal Usage for more information about using the TTGlobal class for logging.

Using XLA in TTClasses
This section discusses use of the Transaction Log API (XLA) in TimesTen Classic.

• About TimesTen XLA

• Acknowledging XLA Updates Without Using Transaction Boundaries

• Acknowledging XLA Updates at Transaction Boundaries

• XLA System Privilege

About TimesTen XLA
XLA is a set of functions that enable you to implement applications that monitor TimesTen for
changes to specified database tables and receive real-time notification of these changes.

The primary purpose of XLA is as a high-performance, asynchronous alternative to triggers.

XLA returns notification of changes to specific tables in the database and information about
the transaction boundaries for those database changes. This section shows how to
acknowledge updates only at transaction boundaries (a common requirement for XLA
applications), using one example that does not use and one example that does use
transaction boundaries.

Important notes:

• As discussed in Considerations when Using an ODBC Driver Manager (Windows), XLA
functionality cannot be used in an application connected to an ODBC driver manager.

• If an XLA bookmark becomes stuck, which can occur if an XLA application terminates
unexpectedly or disconnects without first deleting its bookmark or disabling change
tracking, there may be an excessive accumulation of transaction log files. This
accumulation may result in file system space being filled. See Monitoring Accumulation of
Transaction Log Files in Oracle TimesTen In-Memory Database Operations Guide.

Additional notes:

• You can subscribe to tables containing LOB columns, but information about the LOB
value itself is unavailable.

Chapter 2
Using XLA in TTClasses

2-23

• Columns containing LOBs are reported as empty (zero length) or null (if the value
is actually NULL). In this way, you can tell the difference between a null column and
a non-null column.

• An XLA reader cannot subscribe to a table that uses in-memory column-based
compression.

See XLA and TimesTen Event Management in Oracle TimesTen In-Memory Database
C Developer's Guide. In addition, the TTClasses sample applications, provided with
TimesTen Classic Quick Start, include XLA applications. See About TimesTen Quick
Start and Sample Applications.

Acknowledging XLA Updates Without Using Transaction Boundaries
Inside the HandleChange() method, depending on whether the record is an insert,
update, or delete, the appropriate method from among the following is called:
HandleInsert(), HandleUpdate(), or HandleDelete().

It is inside HandleChange() that you can access the flag that indicates whether the
XLA record is the last record in a particular transaction. Thus there is no way in loop in
the example in this section for the HandleChange() method to pass the information
about the transaction boundary to the loop, so that this information can influence when
to call conn.ackUpdates().

This is not an issue under typical circumstances of only a few records per transaction.
Usually only a few records are returned when you ask XLA to return at most 1000
records with a fetchUpdatesWait() call. XLA returns records as quickly as it can, and
even if huge numbers of transactions are occurring in the database, you usually can
pull the XLA records out quickly, a few at a time, and XLA makes sure that the last
record returned is on a transaction boundary. For example, if you ask for 1000 records
from XLA but only 15 are returned, it is highly probable that the 15th record is at the
end of a transaction.

XLA guarantees one of the following:

• A batch of records ends with a completed transaction (perhaps multiple
transactions in a single batch of XLA records).

Or:

• A batch of records contains a partial transaction, with no completed transactions in
the same batch, and subsequent batches of XLA records are returned for that
single transaction until its transaction boundary has been reached.

This example shows a typical main loop of a TTClasses XLA program. (It also
assumes a signal handler is in place.)

TTXlaPersistConnection conn; // XLA connection
TTXlaTableList list(&conn); // tables being monitored
ttXlaUpdateDesc_t ** arry; // pointer to returned XLA records
int records_fetched;
// ...

while (!signal_received) {
 // fetch the updates
 conn.fetchUpdatesWait(&arry, MAX_RECS_TO_FETCH,
&records_fetched, ...);

Chapter 2
Using XLA in TTClasses

2-24

 // Interpret the updates
 for(j=0;j < records_fetched;j++){
 ttXlaUpdateDesc_t *p;
 p = arry[j];
 list.HandleChange(p, NULL);
 } // end for each record fetched

 // periodically call ackUpdates()
 if (/* some condition is reached */) {
 conn.ackUpdates();
 }
}

Acknowledging XLA Updates at Transaction Boundaries
XLA applications should verify whether the last record in a batch of XLA records is at a
transaction boundary, and call ackUpdates() only on transaction boundaries. This way, when
the application or system or database fails, the XLA bookmark is at the start of a transaction
after the system recovers.

This is especially important when operations involve a large number of rows. If a bulk insert,
update, or delete operation has been performed on the database and the XLA application
asks for 1000 records, it may or may not receive all 1000 records. The last record returned
through XLA probably does not have the end-of-transaction flag. In fact, if the transaction has
made changes to 10,000 records, then clearly a minimum of 10 blocks of 1000 XLA records
must be fetched before reaching the transaction boundary.

Calling ackUpdates() for every transaction boundary is not recommended, however, because
ackUpdates() is a relatively expensive operation. Users should balance overall system
throughput with recovery time and file system space requirements. (Recall that a TimesTen
transaction log file cannot be deleted by a checkpoint operation if XLA has a bookmark that
references that log file. See ttLogHolds in Oracle TimesTen In-Memory Database Reference.)
Depending on system throughput, recovery time, and file system space requirements, some
applications may find it appropriate to call ackUpdates() once or several times per minute,
while other applications may need only call it once or several times per hour.

The HandleChange() method has a second parameter to allow passing information between
HandleChange() and the main XLA loop. Compare the example in the preceding section to
the example below, specifically the do_acknowledge setting and the &do_acknowledge
parameter of the HandleChange() call.

In this example, ackUpdates() is called only when the do_acknowledge flag indicates that this
batch of XLA records is at a transaction boundary. (The example also assumes a signal
handler is in place.)

TTXlaPersistConnection conn; // XLA connection
TTXlaTableList list(&conn); // tables being monitored
ttXlaUpdateDesc_t ** arry; // ptr to returned XLA recs
int records_fetched;
int do_acknowledge;
int j;

// ...
while (!signal_received) {
 // fetch the updates

Chapter 2
Using XLA in TTClasses

2-25

 conn.fetchUpdatesWait(&arry, MAX_RECS_TO_FETCH,
&records_fetched, ...);

 do_acknowledge = FALSE;

 // Interpret the updates
 for(j=0;j < records_fetched;j++){
 ttXlaUpdateDesc_t *p;
 p = arry[j];
 list.HandleChange(p, &do_acknowledge);
 } // end for each record fetched

 // periodically call ackUpdates()
 if (do_acknowledge == TRUE /* and some other conditions ... */) {
 conn.ackUpdates();
 }
}

In addition to this change to the XLA main loop, the HandleChange() method must be
overloaded to have two parameters (ttXlaUpdateDesc_t*, void* pData). See
HandleChange(). The TimesTen Classic Quick Start xlasubscriber1 sample
application shows the use of a pData parameter. (See About TimesTen Quick Start and
Sample Applications.)

XLA System Privilege
The system privilege XLA is required for any XLA functionality, such as connecting to
TimesTen (which also requires the CREATE SESSION privilege) as an XLA reader,
executing XLA-related TimesTen C functions, and executing XLA-related TimesTen
built-in procedures.

Refer to XLA System Privilege in Oracle TimesTen In-Memory Database C
Developer's Guide.

Note:

A user with the XLA privilege can be notified of any DML statement that
executes in the database. As a result, the user with XLA privilege can obtain
information about database objects that the user has not otherwise been
granted access to. In practical terms, the XLA privilege is effectively the same
as the SELECT ANY TABLE, SELECT ANY VIEW, and SELECT ANY SEQUENCE
privileges.

Using the TTClasses Classes
This section provides additional information about how to use each class in the
TTClasses library.

• How to Use the Commonly Used Classes

• How to Use the System Catalog Classes

Chapter 2
Using the TTClasses Classes

2-26

• How to Use the XLA Classes

How to Use the Commonly Used Classes
This section describes how to use each of the commonly used classes in the TTClasses
library.

• TTCGlobal Usage

• TTCStatus Usage

• TTConnection Usage

• TTConnectionPool Usage

• TTCmd Usage

TTCGlobal Usage
The TTGlobal class provides a logging facility within TTClasses.

This logging facility can be very useful for debugging problems inside a TTClasses program.
Note, however, that the most verbose logging levels (TTLog::TTLOG_INFO and
TTLog::TTLOG_DEBUG) can generate an extremely large amount of output. Use these logging
levels during development or when trying to diagnose a bug. They are not appropriate for
most production environments.

When logging from a multithreaded program, you may encounter a problem where log output
from different program threads is intermingled when written to the file system. To alleviate this
problem, disable ostream buffering with the ios_base::unitbuf I/O stream manipulator, as in
the following example, which sends TTClasses logging to the app_log.txt file at logging
level TTLog::TTLOG_ERR.

ofstream log_file("app_log.txt");
log_file << std::ios_base::unitbuf;
TTGlobal::setLogStream(log_file);
TTGlobal::setLogLevel(TTLog::TTLOG_ERR);

See Using TTClasses Logging and TTGlobal Reference for more information about
TTGlobal.

TTCStatus Usage
The TTStatus class is used by other classes in the TTClasses library to catch error and
warning exceptions. You can think of TTStatus as a value-added C++ wrapper around the
SQLError ODBC function.

A TTStatus object is thrown as an exception whenever an error or warning occurs. This
allows C++ applications to use {try/catch} blocks to detect and recover from failure.

...
TTCmd myCmd;

try {
 myCmd.ExecuteImmediate(&conn, "create table dummy (c1 int)");
}

Chapter 2
Using the TTClasses Classes

2-27

catch (TTStatus st) {
 cerr << "Error creating table: " << st << endl;
 // Rollback, exit(), throw -- whatever is appropriate
}
...

TTStatus has two subclasses, TTError and TTWarning. ODBC warnings (the Return
Receipt warning, for example) are usually not as serious as ODBC errors and should
typically be handled with different logic. ODBC errors should be handled
programmatically. There may be circumstances where handling ODBC warnings
programmatically is warranted, but it is usually sufficient to simply log them.

This example shows the use of TTError and TTWarning. TTError objects are thrown
for ODBC errors. TTWarning objects are thrown for ODBC warnings.

// catching TTError & TTWarning exceptions

try {
 // some TTClasses method calls
}
catch (TTWarning warn) {
 cerr << "Warning encountered: " << warn << endl;
}
catch (TTError err) {
 // handle the error; this could be a serious problem
}

Note:

TimesTen automatically resolves most transient errors (which is particularly
important for TimesTen Scaleout), but if an error detected by your application
indicates a SQL state of TT005 through the odbc_error attribute, it is
suggested to retry the current transaction. See Transient Errors (ODBC) in
Oracle TimesTen In-Memory Database C Developer's Guide.

Also see TTStatus Reference.

TTConnection Usage
The TTConnection class encapsulates the concept of a connection to a database. You
can think of TTConnection as a value-added C++ wrapper around the ODBC
connection handle (SQLHDBC). All applications that use TimesTen must create at least
one TTConnection object.

Multithreaded applications that use TimesTen from multiple threads simultaneously
must create multiple TTConnection objects. Use one of the following strategies:

• Create one TTConnection object for each thread when the thread is created.

• Create a pool of TTConnection objects when the application process starts. They
are shared by the threads in the process. See TTConnectionPool Usage.

Chapter 2
Using the TTClasses Classes

2-28

A TimesTen connection cannot be inherited from a parent process. If a process opens a
database connection before creating (forking) a child process, the child cannot use the same
connection. Any attempt by a child to use a database connection of a parent can cause
application failure or a core dump.

Applications should not frequently make and then drop database connections, because
connecting and disconnecting are both relatively expensive operations. In addition, short-
lived connections eliminate the benefits of prepared statements. Instead, establish database
connections at the beginning of the application process and reuse them for the life of the
process.

Tip:

If you must manipulate the underlying ODBC connection object directly, use the
TTConnection::getHdbc() method.

Privilege to connect to a database must be granted to users through the CREATE SESSION
privilege, either directly or through the PUBLIC role. See Connection Methods.

Also see Using TTCmd, TTConnection, and TTConnectionPool. and TTConnection
Reference.

TTConnectionPool Usage
The TTConnectionPool class is used by multithreaded applications to manage a pool of
connections.

In general, multithreaded applications can be written using one of the following strategies:

• If there is a relatively small number of threads and the threads are long-lived, each thread
can be assigned to a different connection, which is used for the duration of the
application. In this scenario, the TTConnectionPool class is not necessary.

• If there is a large number of threads in the process, or if the threads are short-lived, a
pool of idle connections can be established. These connections are used for the duration
of the application. When a thread must perform a database transaction, it checks out an
idle connection from the pool, performs its transaction, then returns the connection to the
pool. This is the scenario that the TTConnectionPool class assists with.

The constructor has two forms:

TTConnectionPool()

Or:

TTConnectionPool(const int size);

Where size specifies the maximum number of connections in a pool. Without specifying this,
the maximum number of connections is 128. Note that if you specify the size setting, and you
specify a value that is larger than the maximum number of connections according to the
setting of the TimesTen Connections attribute, you will get an error when the number of
connections exceeds the Connections value. Also see Connections in the Oracle TimesTen
In-Memory Database Reference.

Chapter 2
Using the TTClasses Classes

2-29

Tip:

For best overall performance, TimesTen recommends having one or two
concurrent direct connections to the database for each CPU of the database
server. For no reason should your number of concurrent direct connections
(the size of your connection pool) be more than twice the number of CPUs
on the database server. For client/server connections, however, TimesTen
supports many more connections per CPU efficiently.

To use the TTConnectionPool class, an application creates a single instance of the
class. It then creates several TTConnection objects, instances of either the
TTConnection class or a user class that extends it, but does not call their Connect()
methods directly. Instead, the application uses the
TTConnectionPool::AddConnectionToPool() method to place connection objects into
the pool, then calls TTConnectionPool::ConnectAll() to establish all the connections
to TimesTen. In the background, ConnectAll() loops through all the TTConnection
objects to call their Connect() methods.

Threads for TimesTen applications use the getConnection() and freeConnection()
methods to get and return idle connections.

Tip:

If you want to use TTConnectionPool and extend TTConnection, do not
override the TTConnection::Connect() method that has driverCompletion
in the calling sequence, because there is no corresponding
TTConnectionPool::ConnectAll() method. Instead, override either of the
following Connect() methods:

virtual void Connect(const char* connStr)
virtual void Connect(const char* connStr, const char*
username,
 const char* password)

Then use the appropriate corresponding ConnectAll() method.

Privilege to connect to a database must be granted to users through the CREATE
SESSION privilege, either directly or through the PUBLIC role. See Connection Methods.

Also see Using TTCmd, TTConnection, and TTConnectionPool. and
TTConnectionPool Reference

TTCmd Usage
A TTCmd object encapsulates a single SQL statement that is used multiple times in an
application program. You can think of TTCmd as a value-added C++ wrapper around the
ODBC statement handle (SQLHSTMT). TTCmd has three categories of public methods.

Chapter 2
Using the TTClasses Classes

2-30

Each SQL statement executed multiple times in a program should have its own TTCmd object.
Each of these TTCmd objects should be prepared once during program initialization, then
executed with the Execute() method multiple times as the program runs.

Only database operations that are to be executed a small number of times should use the
ExecuteImmediate() method. Note that ExecuteImmediate() is not compatible with any type of
SELECT statement. All queries must use Prepare() plus Execute() instead.
ExecuteImmediate() is also incompatible with INSERT, UPDATE, or DELETE statements that are
subsequently polled using getRowcount() to see how many rows were inserted, updated or
deleted. These limitations have been placed on ExecuteImmediate() to discourage its use
except in a few particular situations (for example, for creating or dropping a table).

Note:

• Several TTCmd methods return an error if used with an ODBC driver manager.
See Considerations when Using an ODBC Driver Manager (Windows) for
information.

• If you have reason to manipulate the underlying ODBC statement object
directly, use the TTCmd::getHandle() method.

Also see Using TTCmd, TTConnection, and TTConnectionPool. and TTCmd Reference.

How to Use the System Catalog Classes
This section describes how to use each of the TTClasses system catalog classes.

• TTCatalog Usage

• TTCatalogTable Usage

• TTCatalogColumn Usage

• TTCatalogIndex Usage

• TTCatalogSpecialColumn Usage

TTCatalog Usage
The TTCatalog class is the top-level class used for programmatically accessing metadata
information about tables in a database. You can use this class to facilitate reading metadata
from the system catalog. A TTCatalog object contains data structures with the information
that was read.

To use the TTCatalog object, call its fetchCatalogData() method. The fetchCatalogData()
method is the only TTCatalog method that uses the database connection. All other methods
simply return data retrieved by fetchCatalogData().

A TTCatalog object contains an internal array of TTCatalogTable objects. Aside from the
class constructor, all public methods of TTCatalog are used to gain read-only access to this
TTCatalogTable array.

Chapter 2
Using the TTClasses Classes

2-31

The TTCatalog constructor caches the conn parameter and initializes all the internal
data structures appropriately.

TTCatalog (TTConnection* conn)

The following ODBC functions are used inside TTCatalog:

• SQLTables()
• SQLColumns()
• SQLSpecialColumns()
• SQLStatistics()
Also see TTCatalog Reference.

TTCatalogTable Usage
Each object of the top-level TTCatalog class internally contains an array of
TTCatalogTable objects.

A TTCatalogTable object is retrieved through the TTCatalog::getTable() method and
stores all metadata information about the columns and indexes of a table.

Each TTCatalogTable object contains an array of TTCatalogColumn objects and an
array of TTCatalogIndex objects.

Also see TTCatalogTable Reference.

TTCatalogColumn Usage
Each TTCatalogTable object contains an array of TTCatalogColumn objects and an
array of TTCatalogIndex objects.

The TTCatalogColumn class is used to store all metadata information about a single
column of a table. This table is represented by the TTCatalogTable object from which
the column was retrieved through a TTCatalogTable::getColumn() call.

Also see TTCatalogColumn Reference.

TTCatalogIndex Usage
Each TTCatalogTable object contains an array of TTCatalogColumn objects and an
array of TTCatalogIndex objects.

The TTCatalogIndex class is used to store all metadata information about an index of
a table. This table is represented by the TTCatalogTable object from which the index
was retrieved through a TTCatalogTable::getIndex() call.

Also see TTCatalogIndex Reference

TTCatalogSpecialColumn Usage
Obtain a TTCatalogSpecialColumn object by calling the getSpecialColumn() method
on the relevant TTCatalogTable object.

Chapter 2
Using the TTClasses Classes

2-32

In TimesTen, a rowid pseudocolumn is the only type of special column supported, so a
TTCatalogSpecialColumn object can only contain information about rowids.

Also see TTCatalogSpecialColumn Reference.

How to Use the XLA Classes
This section introduces the TTClasses XLA classes then describes how to use each of them.

• About the XLA Classes

• TTXlaPersistConnection Usage

• TTXlaRowViewer Usage

• TTXlaTableHandler Usage

• TTXlaTableList Usage

• TTXlaTable Usage

• TTXlaColumn Usage

About the XLA Classes
TTClasses provides a set of classes for applications to use with the TimesTen Transaction
Log API (XLA), which is supported by TimesTen Classic.

XLA is a set of C-callable functions that allow an application to monitor changes made to one
or more database tables. Whenever another application changes a monitored table, the
application using XLA is informed of the changes. For more information about XLA, see XLA
and TimesTen Event Management in Oracle TimesTen In-Memory Database C Developer's
Guide.

The XLA classes support as many XLA columns as the maximum number of columns
supported by TimesTen. For more information, see System Limits in Oracle TimesTen In-
Memory Database Reference.

Note:

As mentioned in Considerations when Using an ODBC Driver Manager (Windows),
XLA functionality is not supported with TTClasses when you use a generic ODBC
driver manager.

TTXlaPersistConnection Usage
Use TTXlaPersistConnection to create an XLA connection to a database.

An XLA application can create multiple TTXlaPersistConnection objects if needed. Each
TTXlaPersistConnection object must be associated with its own bookmark, which is
specified at connect time and must be maintained through the ackUpdates() and
deleteBookmarkAndDisconnect() methods. Most applications require only one or two XLA
bookmarks.

After an XLA connection is established, the application should enter a loop in which the
fetchUpdatesWait() method is called repeatedly until application termination. This loop

Chapter 2
Using the TTClasses Classes

2-33

should fetch updates from XLA as rapidly as possible to ensure that the transaction log
does not fill up available file system space.

Note:

• The transaction log is in a file system location according to the TimesTen
LogDir attribute setting, if specified, or the DataStore attribute setting if
LogDir is not specified. Refer to Data Store Attributes in Oracle
TimesTen In-Memory Database Reference.

• Each bookmark establishes its own log hold on the transaction log. (See
ttLogHolds in Oracle TimesTen In-Memory Database Reference.) If any
bookmark is not moved forward periodically, transaction logs cannot be
purged by checkpoint operations. This can fill up the file system over
time.

After processing a batch of updates, the application should call ackUpdates() to
acknowledge those updates and get ready for the next call to fetchUpdatesWait(). A
batch of updates can be replayed using the setBookmarkIndex() and
getBookmarkIndex() methods. Also, if the XLA application disconnects after
fetchUpdatesWait() but before ackUpdates(), the next connection (with the same
bookmark name) that calls fetchUpdatesWait() sees that same batch of updates.

Updates that occur while a TTXlaPersistConnection object is disconnected from the
database are not lost. They are stored in the transaction log until another
TTXlaPersistConnection object connects with the same bookmark name.

Privilege to connect to a database must be granted to users through the CREATE
SESSION privilege, either directly or through the PUBLIC role. See Connection Methods.
In addition, the XLA privilege is required for XLA connections and functionality.

Also see TTXlaPersistConnection Reference.

TTXlaRowViewer Usage
TTXlaRowViewer, which represents a row image from change notification records, is
used to examine XLA change notification record structures and old and new column
values.

Methods of this class are used to examine column values from row images contained
in change notification records. Also see related information about the TTXlaTable
class (TTXlaTable Usage).

Before a row can be examined, the TTXlaRowViewer object must be associated with a
row using the setTuple() method, which is invoked inside the
TTXlaTableHandler::HandleInsert(), HandleUpdate(), or HandleDelete() method,
or by a user-written overloaded method. Columns can be checked for null values using
the isNull() method. Non-null column values can be examined using the appropriate
overloaded Get() method.

Also see TTXlaRowViewer Reference.

Chapter 2
Using the TTClasses Classes

2-34

TTXlaTableHandler Usage
The TTXlaTableHandler class provides methods that enable and disable change tracking for
a table. Methods are also provided to handle update notification records from XLA.

TTXlaTableHandler is intended as a base class from which application developers write
customized classes to process changes to a particular table.

The constructor associates the TTXlaTableHandler object with a particular table and
initializes the TTXlaTable data member contained within the TTXlaTableHandler object:

TTXlaTableHandler(TTXlaPersistConnection& conn, const char* ownerP,
 const char* nameP)

Also see TTXlaTable Usage.

Application developers can derive one or more classes from TTXlaTableHandler and can put
most of the application logic in the HandleInsert(), HandleDelete(), and HandleUpdate()
methods of that class.

One possible design is to derive multiple classes from TTXlaTableHandler, one for each
table. Business logic to handle changes to customer data might be implemented in a
CustomerTableHandler class, for example, while business logic to handle changes to order
data might be implemented in an OrderTableHandler class.

Another possible design is to derive one or more generic classes from TTXlaTableHandler to
handle various scenarios. For example, a generic class derived from TTXlaTableHandler
could be used to publish changes using a publish/subscribe system.

See the xlasubscriber1 and xlasubscriber2 demos in the TimesTen Classic Quick Start for
examples of classes that extend TTXlaTableHandler. (Refer to About TimesTen Quick Start
and Sample Applications.)

Also see TTXlaTableHandler Reference.

TTXlaTableList Usage
The TTXlaTableList class provides a list of TTXlaTableHandler objects and is used to
dispatch update notification events to the appropriate TTXlaTableHandler object.

By registering TTXlaTableHandler objects in a TTXlaTableList object, the process of
fetching update notification records from XLA and dispatching them to the appropriate
methods for processing can be accomplished using a loop.

When an update notification is received from XLA, the appropriate HandleXxx() method of
the appropriate TTXlaTableHandler object is called to process the record.

For example, if an object of type CustomerTableHandler is handling changes to table
CUSTOMER, and an object of type OrderTableHandler is handling changes to table ORDERS, the
application should have both of these objects in a TTXlaTableList object. As XLA update
notification records are fetched from XLA, they can be dispatched to the correct handler by a
call to TTXlaTableList::HandleChange().

Chapter 2
Using the TTClasses Classes

2-35

The constructor has two forms:

TTXlaTableList(TTXlaPersistConnection* cP, unsigned int
num_tbls_to_monitor)

Where num_tbls_to_monitor is the number of database objects to monitor.

Or:

TTXlaTableList(TTXlaPersistConnection* cP);

Where cP references the database connection to be used for XLA operations. This
form of the constructor can monitor up to 150 database objects.

Also see TTXlaTableList Reference.

TTXlaTable Usage
The TTXlaTable class encapsulates the metadata for a table being monitored for
changes.

TTXlaTable acts as a metadata interface for the TimesTen ttXlaTblDesc_t C data
structure. (See ttXlaTblDesc_t in Oracle TimesTen In-Memory Database C Developer's
Guide.)

When a user application creates a class that extends TTXlaTableHandler, it typically
calls TTXlaTable::getColNumber() to map a column name to its XLA column number.
You can then use the column number as input to the TTXlaRowViewer::Get() method.
This is shown in the xlasubscriber2 demo in the TimesTen Classic Quick Start.
(Refer to About TimesTen Quick Start and Sample Applications.)

This class also provides useful metadata functions to return the name, owner, and
number of columns in the table.

Also see TTXlaTable Reference

TTXlaColumn Usage
A TTXlaColumn object contains the metadata for a single column of a table being
monitored for changes.

TTXlaColumn acts as a metadata interface for the TimesTen ttXlaColDesc_t C data
structure. (See ttXlaColDesc_t in Oracle TimesTen In-Memory Database C
Developer's Guide.) Information including the column name, type, precision, and scale
can be retrieved.

Applications can associate a column with a TTXlaColumn object by using the
TTXlaRowViewer::getColumn() method.

Also see TTXlaColumn Reference.

Chapter 2
Using the TTClasses Classes

2-36

3
Commonly Used Classes Reference

This reference chapter contains descriptions of commonly used TTClasses and their
methods.

• TTGlobal Reference

• TTStatus Reference

• TTConnection Reference

• TTConnectionPool Reference

• TTCmd Reference

TTGlobal Reference
The TTGlobal class provides a logging facility within TTClasses.

• Public Members

• Public Methods

Also see TTCGlobal Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTGlobal public methods.

Public Methods Summary

Method Description

disableLogging() Disables TTClasses logging.

setLogLevel() Specifies the verbosity level of TTClasses logging.

setLogStream() Specifies where TTClasses logging information should be sent.

sqlhenv() Returns the underlying ODBC environment object (type SQLHENV).

disableLogging()

static void disableLogging()

3-1

This method disables all TTClasses logging. Note that the following two statements
are identical:

TTGlobal::disableLogging();
TTGlobal::setLogLevel(TTLog::TTLOG_NIL);

setLogLevel()

static void setLogLevel(TTLog::TTLOG_LEVEL level)

This method specifies the verbosity level of TTClasses logging. Table 3-1 describes
TTClasses logging levels. The levels are cumulative.

Table 3-1 TTClasses Logging Levels

Logging level Description

TTLog::TTLOG_NIL There is no logging.

TTLog::TTLOG_FATAL_ERR Logs fatal errors (serious misuse of TTClasses methods).

TTLog::TTLOG_ERR Logs all errors, such as SQL_ERROR return codes.

TTLog::TTLOG_WARN (Default) Also logs warnings and all calls to
TTCmd::Prepare(), including the SQL string being
prepared. Prints all database optimizer query plans.

TTLog::TTLOG_INFO Also logs informational messages, such as calls to most
methods on TTCmd and TTConnection objects, including the
SQL string where appropriate.

TTLog::TTLOG_DEBUG Also logs debugging information, such as all bound parameter
values for each call to TTCmd::Execute().

To set the logging level to TTLog::TTLOG_ERR, for example, add the following line to
your program:

TTGlobal::setLogLevel(TTLog::TTLOG_ERR);

setLogStream()

static void setLogStream(ostream& stream)

Specifies the file (ofstream object) where TTClasses logging information should be
sent. By default, if TTClasses logging is enabled, logging is to stderr. Using this
method, an application can specify logging to a file (or any other ostream&), such as in
the following example that sets logging to app_log.txt:

ofstream log_file("app_log.txt");
TTGlobal::setLogStream(log_file);

sqlhenv()

static SQLHENV sqlhenv()

Chapter 3
TTGlobal Reference

3-2

Retrieves the underlying ODBC environment object.

TTStatus Reference
The TTStatus class is used by other classes in the TTClasses library to catch error and
warning exceptions. You can think of TTStatus as a value-added C++ wrapper around the
SQLError ODBC function.

• Subclasses

• Public Members

• Public Methods

Also see TTCStatus Usage.

Subclasses
TTStatus has these subclasses:

Subclass Description

TTError TTError is used to encapsulate ODBC errors (return codes SQL_ERROR
and SQL_INVALID_HANDLE).

TTWarning TTWarning is used to encapsulate ODBC warnings (return code
SQL_SUCCESS_WITH_INFO).

See TTCStatus Usage for additional information about TTError and TTWarning.

Public Members

Member Description

rc Return code from the failing ODBC call: SQL_SUCCESS,
SQL_SUCCESS_WITH_INFO, SQL_ERROR, SQL_NO_DATA_FOUND, or
SQL_INVALID_HANDLE
(SQL_NO_DATA_FOUND, an ODBC 2.0 return code, is defined in
sqlext.h, which is included by timesten.h.)

native_error TimesTen native error number (if any) for the failing ODBC call

odbc_error ODBC error state for the failing ODBC call

err_msg ASCII printable error message for the failing ODBC call

Public Methods
This section summarizes then describes the TTStatus public methods.

Public Methods Summary

Method Description

isConnectionInvalid() Indicates whether the database connection is invalid.

Chapter 3
TTStatus Reference

3-3

Method Description

operator<< Outputs the error message.

throwError() Throws an error from the TTStatus object (not typical use).

isConnectionInvalid()

bool isConnectionInvalid() const

Returns TRUE if the database connection is invalid, or FALSE if it is valid. Specifically,
"invalid" refers to situations when a TimesTen error 846 or 994 is encountered. See
Errors 0 - 999 in Oracle TimesTen In-Memory Database Error Messages and SNMP
Traps.

operator<<

The operator (<<) writes the error message to an output stream. Following is an
example.

try {
 // ...
 // something has gone wrong
 throw stat;
}
catch (TTStatus st) {
 cerr << "Caught exception: " << st << endl;
}

throwError()

void throwError()

This is an alternative, but not typical, way to throw an exception. (The more typical
usage is shown in the preceding operator<< section.)

try {
 // ...
 if (/* something has gone wrong */)
 stat.throwError();
}
catch (TTStatus st) {
 cerr << "Caught exception: " << st << endl;
}

TTConnection Reference
The TTConnection class encapsulates the concept of a connection to a database. You
can think of TTConnection as a value-added C++ wrapper around the ODBC
connection handle (SQLHDBC).

• Public Members

Chapter 3
TTConnection Reference

3-4

• Public Methods

Also see TTConnection Usage.

Public Members

Member Description

DRIVER_COMPLETION_ENUM Specifies whether there is a prompt for the database to connect to
(also depending on whether a database is specified in the connect
string).

Valid values are TTConnection::DRIVER_NOPROMPT,
TTConnection::DRIVER_COMPLETE,
TTConnection::DRIVER_PROMPT, and
TTConnection::DRIVER_COMPLETE_REQUIRED. These
correspond to the values SQL_DRIVER_NOPROMPT,
SQL_DRIVER_COMPLETE, SQL_DRIVER_PROMPT, and
SQL_DRIVER_COMPLETE_REQUIRED for the standard ODBC
SQLDriverConnect function.

Public Methods
This section summarizes then describes the TTConnection public methods.

Public Methods Summary

Method Description

Commit() Commits a transaction to the database.

Connect() Opens a new database connection.

Disconnect() Closes a database connection.

DurableCommit() Performs a durable commit operation on the database.

getHdbc() Returns the ODBC connection handle (type SQLHDBC) associated with
this connection.

GetTTContext() Returns the connection context value.

isConnected() Returns TRUE if the object is connected to TimesTen.

Rollback() Rolls back changes made to the database through this connection
since the last call to Commit() or Rollback().

SetAutoCommitOff() Disables autocommit for the connection.

SetAutoCommitOn() Enables autocommit for the connection.

SetIsoReadCommitted() Sets the transaction isolation level of the connection to be
TXN_READ_COMMITTED.

SetIsoSerializable() Sets the transaction isolation level of the connection to be
TXN_SERIALIZABLE.

SetLockWait() Sets the lock timeout interval for the connection by calling the
ttLockWait TimesTen built-in procedure.

SetPrefetchCloseOff() Turns off the TT_PREFETCH_CLOSE connection option.

Chapter 3
TTConnection Reference

3-5

Method Description

SetPrefetchCloseOn() Turns on the TT_PREFETCH_CLOSE connection option. This is useful
for optimizing SELECT query performance for client/server connections
to TimesTen.

SetPrefetchCount() Allows a user application to tune the number of rows that the
TimesTen ODBC driver SQLFetch call prefetches for a SELECT
statement.

Commit()

void Commit()

Commits a transaction to the database. This commits all operations performed on the
connection since the last call to the Commit() or Rollback() method. A TTStatus
object is thrown as an exception if an error occurs. Also see Rollback().

Connect()

virtual void Connect(const char* connStr)
virtual void Connect(const char* connStr, const char* username,
 const char* password)
virtual void Connect(const char* connStr, DRIVER_COMPLETION_ENUM
driverCompletion)

Opens a new database connection. The connection string specified in the connStr
parameter is used to create the connection. Specify a user and password, either as
part of the connect string or as separate parameters, or a DRIVER_COMPLETION_ENUM
value (refer to Public Members). Also see the following method, Disconnect().

Privilege to connect to a database must be granted to users through the CREATE
SESSION privilege, either directly or through the PUBLIC role. See Connection Methods.

A TTStatus object is thrown as an exception if an error occurs. Any exception
warnings are usually informational and can often be safely ignored. The following logic
is preferred for use of the Connect() method.

TTWarning and TTError are subclasses of TTStatus.

TTConnection conn;
...

try {
 conn.Connect("DSN=mydsn", "myuser", "password");
}
catch (TTWarning warn) {
 // warnings from Connect() are usually informational
 cerr << ''Warning while connecting to TimesTen: '' << warn << endl;
}
catch (TTError err) {
 // handle the error; this could be a serious problem
}

Chapter 3
TTConnection Reference

3-6

Disconnect()

void Disconnect()

Closes a database connection. A TTStatus object is thrown as an exception if an error
occurs. Also see the preceding method, Connect().

DurableCommit()

void DurableCommit()

Performs a durable commit operation on the database. A durable commit operation flushes
the in-memory transaction log buffer to the file system. It calls the ttDurableCommit
TimesTen built-in procedure.

See ttDurableCommit in Oracle TimesTen In-Memory Database Reference.

getHdbc()

SQLHDBC getHdbc()

Returns the ODBC connection handle associated with this connection.

GetTTContext()

void GetTTContext(char* output)

Returns the context value of the connection, a value that is unique for each database
connection. The context of a connection can be used to correlate TimesTen connections with
PIDs (process IDs) using the ttStatus TimesTen utility, for example.

The context value is returned through the output parameter, which requires an array of
CHAR[17] or larger.

This method calls the ttContext TimesTen built-in procedure. See ttContext in Oracle
TimesTen In-Memory Database Reference.

isConnected()

bool isConnected()

Returns TRUE if the object is connected to TimesTen using the Connect() method or FALSE if
not.

Rollback()

void Rollback()

Rolls back (cancels) a transaction. This undoes any changes made to the database through
the connection since the last call to Commit() or Rollback(). A TTStatus object is thrown as
an exception if an error occurs. Also see Commit().

SetAutoCommitOff()

void SetAutoCommitOff()

Disables autocommit for the connection. Also see the following method, SetAutoCommitOn().

Chapter 3
TTConnection Reference

3-7

This method is automatically called by TTConnection::Connect(), because TimesTen
runs with optimal performance only with autocommit disabled.

Note that when autocommit is disabled, committing SELECT statements requires explicit
calls to TTCmd::Close().

SetAutoCommitOn()

void SetAutoCommitOn()

Enables autocommit for the connection, which means that every SQL statement
occurs in its own transaction. Also see the preceding method, SetAutoCommitOff().

SetAutoCommitOn() is generally not advisable, because TimesTen runs much faster
with autocommit disabled.

SetIsoReadCommitted()

void SetIsoReadCommitted()

Sets the transaction isolation level of the connection to be TXN_READ_COMMITTED. The
Read Committed isolation level offers the best combination of single-transaction
performance and good multiconnection concurrency. Also see the following method,
SetIsoSerializable().

SetIsoSerializable()

void SetIsoSerializable()

Sets the transaction isolation level of the connection to be TXN_SERIALIZABLE. In
general, Serializable isolation level offers fair individual transaction performance but
extremely poor concurrency. Read Committed isolation level is preferable over
Serializable isolation level in almost all situations. Also see the preceding method,
SetIsoReadCommitted().

SetLockWait()

void SetLockWait(int secs)

Sets the lock timeout interval for the connection by calling the ttLockWait TimesTen
built-in procedure with the secs parameter. In general, a two-second or three-second
lock timeout is sufficient for most applications. The default lock timeout interval is 10
seconds.

See ttLockWait in Oracle TimesTen In-Memory Database Reference.

SetPrefetchCloseOff()

void SetPrefetchCloseOff()

Turns off the TT_PREFETCH_CLOSE connection option. Also see the following method,
SetPrefetchCloseOn().

SetPrefetchCloseOn()

void SetPrefetchCloseOn()

Chapter 3
TTConnection Reference

3-8

Turns on the TT_PREFETCH_CLOSE connection option, which is useful for optimizing SELECT
query performance for serializable transactions in client/server applications. Note that this
method provides no benefit for an application using a direct connection to TimesTen. Also see
the preceding method, SetPrefetchCloseOff().

See Optimizing Query Performance in Oracle TimesTen In-Memory Database C Developer's
Guide

SetPrefetchCount()

void SetPrefetchCount(int numrows)

Allows a client/server application to tune the number of rows that the TimesTen ODBC driver
internally fetches at a time for a SELECT statement. The value of numrows must be between 1
and 128, inclusive.

Note that this method provides no benefit for an application using a direct connection to
TimesTen.

Note:

This method is not equivalent to executing TTCmd::FetchNext() multiple times.
Instead, proper use of this parameter reduces the amount of time for each call to
TTCmd::FetchNext().

See Prefetching Multiple Rows of Data in Oracle TimesTen In-Memory Database C
Developer's Guide for more information about TT_PREFETCH_COUNT.

TTConnectionPool Reference
The TTConnectionPool class is used by multithreaded applications to manage a pool of
connections.

• Public Members

• Public Methods

Also see TTConnectionPool Usage

Public Members
None

Public Methods
This section summarizes then describes the TTConnectionPool public methods.

Chapter 3
TTConnectionPool Reference

3-9

Public Methods Summary

Method Description

AddConnectionToPool() Adds a TTConnection object (possibly an object of a class
derived from TTConnection) to the connection pool.

ConnectAll() Connects all the TTConnection objects to TimesTen
simultaneously.

DisconnectAll() Disconnects all connections in the connection pool from
TimesTen.

freeConnection() Returns a connection to the pool for reassignment to another
thread.

getConnection() Checks out an idle connection from the connection pool for a
thread.

getStats() Queries the TTConnectionPool object for connection pool
status information.

AddConnectionToPool()

int AddConnectionToPool(TTConnection* connP)

This method is used to add a TTConnection object (possibly an object of a class
derived from TTConnection) to the connection pool. It returns -1 if there is an error.
Also see freeConnection().

ConnectAll()

void ConnectAll(const char* connStr)
void ConnectAll(const char* connStr, const char* username, const char*
password)

After all the TTConnection objects of an application have been added to the
connection pool by AddConnectionToPool(), the ConnectAll() method can be used to
connect all of the TTConnection objects to TimesTen simultaneously. The connection
string specified in the connStr parameter is used to create the connection. Specify a
user and password, either as part of the connect string or as separate parameters.
Also see the next method, DisconnectAll().

A TTStatus object is thrown as an exception if an error occurs.

Privilege to connect to a database must be granted to users through the CREATE
SESSION privilege, either directly or through the PUBLIC role. See Connection Methods.

DisconnectAll()

void DisconnectAll()

Disconnects all connections in the connection pool from TimesTen. Also see the
preceding method, ConnectAll().

Chapter 3
TTConnectionPool Reference

3-10

Applications must call DisconnectAll() before termination to avoid overhead associated with
process failure analysis and recovery. A TTStatus object is thrown as an exception if an error
occurs.

freeConnection()

void freeConnection(TTConnection* connP)

Returns a connection to the pool for reassignment to another thread. Applications should not
free connections that are in the middle of a transaction. TTConnection::Commit() or
Rollback() should be called immediately before the TTConnection object is passed to
freeConnection(). Also see AddConnectionToPool().

getConnection()

TTConnection* getConnection(int timeout_millis=0)

Checks out an idle connection from the connection pool for use by a thread. A pointer to an
idle TTConnection object is returned. The thread should then perform a transaction, ending
with either Commit() or Rollback(), and then should return the connection to the pool using
the freeConnection() method.

If no idle connections are in the pool, the thread calling getConnection() blocks until a
connection is returned to the pool by a call to freeConnection(). An optional timeout, in
milliseconds, can be provided. If this is provided, getConnection() waits for a free
connection for no more than timeout_millis milliseconds. If no connection is available in
that time then getConnection() returns NULL to the caller.

getStats()

void getStats(int* nGets, int* nFrees, int* nWaits, int* nTimeouts,
 int* maxInUse, int* nForcedCommits)

Queries the TTConnectionPool for status information. The following data are returned:

• nGets: Number of calls to getConnection()
• nFrees: Number of calls to freeConnection()
• nWaits: Number of times a call to getConnection() had to wait before returning a

connection

• nTimeouts: Number of calls to getConnection() that timed out

• maxInUse: High point for the most number of connections in use simultaneously

• nForcedCommits: Number of times that freeConnection() had to call Commit() on a
connection before checking it into the pool

If this counter is nonzero, the user application is not calling TTConnection::Commit() or
Rollback() before returning a connection to the pool.

Chapter 3
TTConnectionPool Reference

3-11

TTCmd Reference
A TTCmd object encapsulates a single SQL statement that is used multiple times in an
application program. You can think of TTCmd as a value-added C++ wrapper around the
ODBC statement handle (SQLHSTMT). TTCmd has three categories of public methods.

• Public Members

• Public Methods for General Use and Non-Batch Operations

• Public Methods for Obtaining TTCmd Object Properties

• Public Methods for Batch Operations

Also see TTCmd Usage.

Public Members

Member Description

TTCMD_PARAM_INPUTOUTPUT_TYPE This is used to specify whether a parameter is input,
output, or input/output when registering the
parameter. Supported values are PARAM_IN,
PARAM_INOUT, and PARAM_OUT. See Registering
Parameters.

Public Methods for General Use and Non-Batch Operations
This section summarizes then describes the TTCmd public methods for general use and
non-batch operations.

Public Methods Summary for General Use and Non-Batch Operations

Method Description

Close() Closes the result set when the application has finished
fetching rows.

Drop() Frees a prepared SQL statement and all resources associated
with it.

Execute() Invokes a SQL statement that has been prepared for
execution.

ExecuteImmediate() Invokes a SQL statement that has not been previously
prepared.

FetchNext() Fetches rows from the result set, one at a time. It returns 0
when a row was successfully fetched or 1 when no more rows
are available.

getColumn() Retrieves the value in the specified column of the current row
of the result set.

getColumnLength() Returns the length of the specified column, in bytes.

getColumnNullable() Retrieves the value in the specified column of the current row
of the result set and returns a boolean to indicate whether the
value is NULL.

Chapter 3
TTCmd Reference

3-12

Method Description

getHandle() Retrieves the underlying ODBC statement handle.

getMaxRows() Returns the current limit on the number of rows returned by a
SELECT statement.

getNextColumn() Retrieves the value in the next column of the current row of
the result set.

getNextColumnNullable() Retrieves the value in the next column of the current row of
the result set and returns a boolean to indicate whether the
value is NULL.

getParam() Each call gets the output value of a specified output or input/
output parameter after executing a prepared SQL statement.

getQueryThreshold() Retrieves the query threshold value.

getRowCount() Returns the number of rows that were affected by the recently
executed SQL operation.

isColumnNull() Indicates whether the value in the specified column of the
current row is NULL.

Prepare() Associates a SQL statement with the TTCmd object.

printColumn() Prints the value in the specified column of the current row to
an output stream.

registerParam() Registers a parameter for binding. This is required for output
or input/output parameters.

setMaxRows() Sets a limit on the number of rows returned by a SELECT
statement.

setParam() Each call sets the value of a specified parameter before
executing a prepared SQL statement.

setParamLength() Sets the length, in bytes, of the specified input parameter.

setParamNull() Sets the value of a parameter to NULL before executing a
prepared SQL statement.

setQueryThreshold() Sets a threshold time limit for execution of each SQL
statement. If it is exceeded, a warning is written to the support
log.

setQueryTimeout() Sets a timeout value for SQL statements.

Close()

void Close()

If a SQL SELECT statement is executed using the Execute() method, a cursor is opened
which may be used to fetch rows from the result set. When the application is finished fetching
rows from the result set, it must be closed with the Close() method.

Failure to close the result set may result in locks being held on rows for too long, causing
concurrency problems, memory leaks, and other errors.

A TTStatus object is thrown as an exception if an error occurs.

Drop()

void Drop()

Chapter 3
TTCmd Reference

3-13

If a prepared SQL statement will not be used in the future, the statement and
resources associated with it can be freed by a call to the Drop() method. The TTCmd
object may be reused for another statement if Prepare() is called again.

It is more efficient to use multiple TTCmd objects to execute multiple SQL statements.
Use the Drop() method only if a particular SQL statement will not be used again.

A TTStatus object is thrown as an exception if an error occurs.

Execute()

void Execute()

This method invokes a SQL statement that has been prepared for execution with the
Prepare() method, after any necessary parameter values are defined using
setParam() calls. A TTStatus object is thrown as an exception if an error occurs.

If the SQL statement is a SELECT statement, this method executes the query but does
not return any rows from the result set. Use the FetchNext() method to fetch rows
from the result set one at a time. Use the Close() method to close the result set when
all appropriate rows have been fetched. For SQL statements other than SELECT, no
cursor is opened, and a call to the Close() method is not necessary.

ExecuteImmediate()

int ExecuteImmediate(TTConnection* cP, const char* sqlp)

This method invokes a SQL statement that has not been previously prepared.

ExecuteImmediate() is a convenient alternative to using Prepare() and Execute()
when a SQL statement is to be executed only a small number of times. Use
ExecuteImmediate() for DDL statements such as CREATE TABLE and DROP TABLE, and
infrequently used DML statements that do not return a result set (for example, DELETE
FROM table_name).

ExecuteImmediate() is incompatible with SQL statements that return a result set. In
addition, statements executed through ExecuteImmediate() cannot subsequently be
queried by getRowCount() to get the number of rows affected by a DML operation.
Because of this, ExecuteImmediate() calls getRowCount() automatically, and its value
is the integer return value of this method.

A TTStatus object is thrown as an exception if an error occurs.

FetchNext()

int FetchNext()

After executing a prepared SQL SELECT statement using the Execute() method, use
the FetchNext() method to fetch rows from the result set, one at a time.

After fetching a row of the result set, use the appropriate overloaded getColumn()
method to fetch values from the current row.

If no more rows remain in the result set, FetchNext() returns 1. If a row is returned,
FetchNext() returns 0.

Chapter 3
TTCmd Reference

3-14

After executing a SELECT statement using the Execute() method, the result set must be
closed using the Close() method after all desired rows have been fetched. Note that after the
Close() method is called, the FetchNext() method cannot be used to fetch additional rows
from the result set.

A TTStatus object is thrown as an exception if an error occurs.

getColumn()

void getColumn (int cno, TYPE* valueP)
void getColumn (int cno, TYPE* valueP, SQLLEN* byteLenP)

The getColumn() method, as well as the getColumnNullable() method, fetches the values for
columns of the current row of the result set. Before getColumn() or getColumnNullable()
can be called, the FetchNext() method must be called to fetch the next (or first) row from the
result set of a SELECT statement. SQL statements are executed using the Execute() method.

Table 3-2 below shows the supported TimesTen column types and the appropriate versions of
getColumn() and getColumnNullable() to use for each parameter type. (But note that
getColumnNullable() also returns a boolean value, which is not indicated in the table. Refer
to the getColumnNullable() method documentation later in this section.)

Each getColumn() call retrieves the value associated with a particular column. Columns are
referred to by ordinal number, with "1" indicating the first column specified in the SELECT
statement. In all cases the first argument passed to the getColumn() method, cno, is the
ordinal number of the column whose value is to be fetched. The second argument, valueP, is
a pointer to a variable that stores the value of the specified column. The type of this argument
varies depending on the type of the column being returned. For NCHAR, NVARCHAR, and binary
types, as shown in the table, the method call also specifies byteLenP, a pointer to an integer
value for the number of bytes written into the valueP buffer.

The TTClasses library does not support a large set of data type conversions. The appropriate
version of getColumn() must be called for each output column in the prepared SQL. Calling
the wrong version, such as attempting to fetch an integer column into a char* value, results
in a thrown exception (TTStatus object).

When fetching integer-type data from NUMBER columns, getColumn() supports the following
variants: SQLTINYINT, SQLSMALLINT, SQLINTEGER, and SQLBIGINT. They are appropriate only
for NUMBER fields with the scale parameter set to zero, such as NUMBER(p) or NUMBER(p,0).
The functions have the following range of precision.

Function Precision Range

SQLTINYINT 0<=p<=2

SQLSMALLINT 0<=p<=4

SQLINTEGER 0<=p<=9

SQLBIGINT 0<=p<=18

Chapter 3
TTCmd Reference

3-15

To ensure that all values in the column fit into the variable that the application uses to
retrieve information from the database, you can use SQLBIGINT for all table columns of
data type NUMBER(p), where 0 <= p <= 18. For example:

getColumn(int cno, SQLBIGINT* iP)

This table shows the supported SQL data types and the appropriate input signatures
of getColumn and getColumnNullable to use for each data type. The data type support
also applies to getNextColumn, getNextColumnNullable, and getParam.

Table 3-2 getColumn() and getColumnNullable() Input Signatures for
Supported TimesTen Table Column Types

Data Type getColumn() and getColumnNullable() Input Signatures Supported

TT_TINYINT
getColumn[Nullable](int cno, SQLTINYINT* iP)

TT_SMALLINT
getColumn[Nullable](int cno, SQLSMALLINT* iP)

TT_INTEGER
getColumn[Nullable](int cno, SQLINTEGER* iP)

TT_BIGINT
getColumn[Nullable](int cno, SQLBIGINT* iP)

BINARY_FLOAT
getColumn[Nullable](int cno, float* fP)

BINARY_DOUBLE
getColumn[Nullable](int cno, double* dP)

NUMBER
getColumn[Nullable](int cno, char** cPP)
getColumn[Nullable](int cno, char* cP)
getColumn[Nullable](int cno, SQLTINYINT* iP)
getColumn[Nullable](int cno, SQLSMALLINT* iP)
getColumn[Nullable](int cno, SQLINTEGER* iP)
getColumn[Nullable](int cno, SQLBIGINT* iP)

Note: The char* version allows TTClasses to pass in an array of
preallocated storage, and TTClasses copies the char output fetched
from the database into this array. The integer type methods are
appropriate only for columns declared with the scale parameter set to
zero.

Chapter 3
TTCmd Reference

3-16

Table 3-2 (Cont.) getColumn() and getColumnNullable() Input Signatures for
Supported TimesTen Table Column Types

Data Type getColumn() and getColumnNullable() Input Signatures Supported

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

getColumn[Nullable](int cno, char** cPP)
getColumn[Nullable](int cno, char* cP)

Note: The char* version enables you to preallocate the output buffer.

TT_NCHAR
NCHAR
TT_NVARCHAR
NVARCHAR2

getColumn[Nullable](int cno, SQLWCHAR** wcPP)
getColumn[Nullable](int cno, SQLWCHAR** wcPP,
SQLLEN* byteLenP)

Note: Optionally use the byteLenP parameter for the number of bytes
in the returned value.

BINARY
VARBINARY getColumn[Nullable](int cno, void** binPP, SQLLEN*

byteLenP)
getColumn[Nullable](int cno, void* binP, SQLLEN*
byteLenP)

Note: The void* version enables you to preallocate the output buffer.

DATE
TT_TIMESTAMP
TIMESTAMP

getColumn[Nullable](int cno, TIMESTAMP_STRUCT* tsP)

TT_DATE
getColumn[Nullable](int cno, DATE_STRUCT* dP)

TT_TIME
getColumn[Nullable](int cno, TIME_STRUCT* tP)

Other TimesTen table column types are not supported in this release of the TTClasses library.

getColumnLength()

SQLULEN getColumnLength(int cno)

Returns the length, in bytes, of the value in column number cno of the current row, not
counting the NULL terminator. Or it returns SQL_NULL_DATA if the value is NULL. (For those
familiar with ODBC, this is the value stored by ODBC in the last parameter, pcbValue, from
SQLBindCol after a call to SQLFetch.) When there is a non-null value, the length returned is
between 0 and the column precision, inclusive. See getColumnPrecision().

For example, assume a VARCHAR2(25) column. If the value is null, the length returned is -1. If
the value is 'abcde', the length returned is 5.

Chapter 3
TTCmd Reference

3-17

This method is generally useful only when accessing columns of type CHAR, VARCHAR2,
NCHAR, NVARCHAR2, BINARY, and VARBINARY.

getColumnNullable()

bool getColumnNullable(int cno, TYPE* valueP)
bool getColumnNullable(int cno, TYPE* valueP, SQLLEN* byteLenP)

The getColumnNullable() method is similar to the getColumn() method and supports
the same data types and signatures as documented in Table 3-2 above. However, in
addition to the behavior of getColumn(), the getColumnNullable() method returns a
boolean indicating whether the value is the SQL NULL pseudo-value. If the value is
NULL, the second parameter is set to a distinctive value (for example, -9999) and the
return value from the method is TRUE. If the value is not NULL, it is returned through the
variable pointed to by the second parameter and the getColumnNullable() method
returns FALSE.

getHandle()

SQLHSTMT getHandle()

If you must manipulate the underlying ODBC statement object, use this method to
retrieve the statement handle.

getMaxRows()

SQLULEN getMaxRows()

This method returns the current limit of the number of rows returned by a SELECT
statement from this TTCmd object. A return value of 0 means all rows are returned. Also
see setMaxRows().

getNextColumn()

void getNextColumn(TYPE* valueP)
void getNextColumn(TYPE* valueP, SQLLEN* byteLenP)

The getNextColumn() method, as well as the getNextColumnNullable() method,
fetches the value of the next column of the current row of the result set. Before
getNextColumn() or getNextColumnNullable() can be called, the FetchNext()
method must be called to fetch the next (or first) row from the result set of a SELECT
statement. When you use getNextColumn(), the columns are fetched in order. You
cannot change the fetch order.

See Table 3-2 for the supported SQL data types and the appropriate method version to
use for each data type. This information can be used for getNextColumn(), except
there is no cno column number parameter for getNextColumn().

Chapter 3
TTCmd Reference

3-18

getNextColumnNullable()

bool getNextColumnNullable(TYPE* valueP)
bool getNextColumnNullable(TYPE* valueP, SQLLEN* byteLenP)

The getNextColumnNullable() method is similar to the getNextColumn() method. However, in
addition to the behavior of getNextColumn(), the getNextColumnNullable() method returns
a boolean indicating whether the value is the SQL NULL pseudo-value. If the value is NULL, the
second parameter is set to a distinctive value (for example, -9999) and the return value from
the method is TRUE. If the value is not NULL, it is returned through the variable pointed to by
the second parameter, and the method returns FALSE. When you use
getNextColumnNullable(), the columns are fetched in order. You cannot change the fetch
order.

See Table 3-2 for the supported SQL data types and the appropriate method versions to use
for each data type. This information can be used for getNextColumnNullable(), except there
is no cno column number parameter for getNextColumnNullable().

getParam()

bool getParam(int pno, TYPE* valueP)
bool getParam(int pno, TYPE* valueP, SQLLEN* byteLenP)

Each getParam() version is used to retrieve the value of an output or input/output parameter,
specified by parameter number, after executing a prepared SQL statement. SQL statements
are prepared before use with the Prepare() method and are executed with the Execute()
method. The getParam() method is used to provide a variable of appropriate data type for the
value for each output parameter after executing the statement.

The first argument passed to getParam() is the position of the parameter for the output value.
The first parameter in a SQL statement is parameter 1. The second argument passed to
getParam() is a variable for the output value. Overloaded versions of getParam() take
different data types for the second argument.

The getParam() method supports the same data types documented in Table 3-2. Instead of
cno for column number, however, getParam() takes pno for parameter number. For NCHAR,
NVARCHAR, and binary types, as shown in that table, the method call specifies byteLenP, a
pointer to an integer value for the number of bytes in the parameter value.

The getParam() return is a boolean that is TRUE if the parameter value is NULL, or FALSE
otherwise.

The TTClasses library does not support a large set of data type conversions. The appropriate
overloaded version of getParam() must be called for each output parameter in the prepared
SQL. Calling the wrong version (attempting to use an integer parameter for a char* value, for
example) may result in program failure.

See Binding Output or Input/Output Parameters for examples using getParam().

Chapter 3
TTCmd Reference

3-19

For REF CURSORs, the following signature is supported to use a TTCmd object as a
statement handle for the REF CURSOR (data type SQL_REFCURSOR). See Working with
REF CURSORs for information and an example.

bool getParam(int pno, TTCmd** rcCmd)

getQueryThreshold()

int getQueryThreshold()

Returns the threshold value for the TTCmd object, as described in setQueryThreshold().

If no value has been set with setQueryThreshold(), this method returns the value of
the ODBC connection option TT_QUERY_THRESHOLD (if set) or of the TimesTen general
connection attribute QueryThreshold.

getRowCount()

int getRowCount()

This method can be called immediately after Execute() to return the number of rows
that were affected by the executed SQL operation. For example, after execution of a
DELETE statement that deletes 10 rows, getRowCount() returns 10.

isColumnNull()

bool isColumnNull(int cno)

This method provides another way to determine whether the value in column number
cno of the current row is NULL, returning TRUE if so, or FALSE otherwise.

Also see information about the getColumnNullable() method.

Prepare()

void Prepare(TTConnection* cP, const char* sqlp)

This method associates a SQL statement with the TTCmd object. It takes two
parameters:

• A pointer to a TTConnection object

The connection object should be connected to the database by a call to
TTConnection::Connect().

• A const char* parameter for the SQL statement being prepared

Chapter 3
TTCmd Reference

3-20

Note:

• To avoid unwanted round trips between client and server in client/server
connections, the Prepare() method performs what is referred to as a "deferred
prepare", where the request is not sent to the server until required. See
TimesTen Deferred Prepare in Oracle TimesTen In-Memory Database C
Developer's Guide.

• By default (when connection attribute PrivateCommands=0), TimesTen shares
prepared SQL statements between connections, so subsequent prepares of the
same SQL statement on different connections execute very quickly.

printColumn()

void printColumn(int cno, STDOSTREAM& os, const char* nullString) const

This method prints the value in column number cno of the current row to the output stream
os. Use this for debugging or for demo programs. Use nullString to specify what should be
printed if the column value is NULL (for example, "NULL" or "?").

registerParam()

void registerParam(int pno, TTCMD_PARAM_INPUTOUTPUT_TYPE inputOutputType,
 short sqltype)
void registerParam(int pno, TTCMD_PARAM_INPUTOUTPUT_TYPE inputOutputType,
 short sqltype, int precision)
void registerParam(int pno, TTCMD_PARAM_INPUTOUTPUT_TYPE inputOutputType,
 short sqltype, int precision, short scale)

Use this method to register a parameter for binding. This is required for output and input/
output parameters and can also be used as appropriate to specify SQL type, precision
(maximum number of digits that are used by the data type, where applicable), and scale
(maximum number of digits to the right of the decimal point, where applicable). See
Registering Parameters.

setMaxRows()

void setMaxRows(const int nMaxRows)

This method sets a limit on the number of rows returned by a SELECT statement. If the number
of rows in the result set exceeds the set limit, the TTCmd::FetchNext() method returns 1 when it
has fetched the last row in the requested set size. Also see getMaxRows().

The default is to return all rows. To reset a limit to again return all rows, call setMaxRows()
with nMaxRows set to 0. The limit is only meaningful for SELECT statements.

Chapter 3
TTCmd Reference

3-21

setParam()

void setParam(int pno, TYPE value)
void setParam(int pno, TYPE* valueP)
void setParam(int pno, TYPE* valueP, int byteLen)

All overloaded setParam() versions are described in this section.

Each setParam() version is used to set the value of a parameter, specified by
parameter number, before executing a prepared SQL statement. SQL statements are
prepared before use with the Prepare() method and are executed with the Execute()
method. If the SQL statement contains any parameter markers (the "?" character used
where a literal constant would be valid), values must be assigned to these parameters
before the SQL statement can be executed. The setParam() method is used to define
a value for each parameter before executing the statement. See Dynamic Parameters
in Oracle TimesTen In-Memory Database SQL Reference.

Table 3-3 below shows the supported SQL data types and the appropriate versions of
setParam() to use for each type. SQL data types not mentioned are not supported in
this version of TTClasses. For NCHAR, NVARCHAR, and binary types, as shown in the
table, the method call specifies byteLen, an integer value for the number of bytes in
the parameter value.

The first argument passed to setParam() is the position of the parameter to be set.
The first parameter in a SQL statement is parameter 1. The second argument passed
to setParam() is the value of the parameter. Overloaded versions of setParam() take
different data types for the second argument.

The TTClasses library does not support a large set of data type conversions. The
appropriate overloaded version of setParam() must be called for each parameter in
the prepared SQL. Calling the wrong version (attempting to set an integer parameter
to a char* value, for example) may result in program failure.

Values passed to setParam() are copied into internal buffers maintained by the TTCmd
object. These buffers are statically allocated and bound by the Prepare() method. The
parameter value is the value passed into setParam() at the time of the setParam()
call, not the value at the time of a subsequent Execute() method call.

See Binding Input Parameters and Binding Output or Input/Output Parameters for
examples using setParam(). See Binding Duplicate Parameters regarding duplicate
parameters.

Note:

• To set the length of the value for a bound parameter, see
setParamLength().

• To set a value of NULL for a bound parameter, see setParamNull().

Chapter 3
TTCmd Reference

3-22

Table 3-3 setParam() Signatures for Supported TimesTen Table Column Types

Data Type setParam() Variants Supported

TT_TINYINT
setParam(int pno, SQLTINYINT value)

TT_SMALLINT
setParam(int pno, SQLSMALLINT value)

TT_INTEGER
setParam(int pno, SQLINTEGER value)

TT_BIGINT
setParam(int pno, SQLBIGINT value)

BINARY_FLOAT
REAL setParam(int pno, float value)

BINARY_DOUBLE
DOUBLE setParam(int pno, double value)

NUMBER
setParam(int pno, char* valueP)
setParam(int pno, const char* valueP)
setParam(int pno, SQLCHAR* valueP)
setParam(int pno, SQLTINYINT value)
setParam(int pno, SQLSMALLINT value)
setParam(int pno, SQLINTEGER value)
setParam(int pno, SQLBIGINT value)

Note: The integer versions are appropriate only for columns declared
with the scale parameter set to zero, such as NUMBER(8) or
NUMBER(8,0).

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

setParam(int pno, char* valueP)
setParam(int pno, const char* valueP)
setParam(int pno, SQLCHAR* valueP)

TT_NCHAR
NCHAR
TT_NVARCHAR
NVARCHAR2

setParam(int pno, SQLWCHAR* valueP, int byteLen)

BINARY
VARBINARY setParam(int pno, const void* valueP, int byteLen)

Chapter 3
TTCmd Reference

3-23

Table 3-3 (Cont.) setParam() Signatures for Supported TimesTen Table Column Types

Data Type setParam() Variants Supported

DATE
TT_TIMESTAMP
TIMESTAMP

setParam(int pno, TIMESTAMP_STRUCT& valueP)

TT_DATE
setParam(int pno, DATE_STRUCT& valueP)

TT_TIME
setParam(int pno, TIME_STRUCT& valueP)

setParamLength()

(Version for non-batch operations)

void setParamLength(int pno, int byteLen)

Sets the length, in bytes, of the bound value for an input parameter specified by
parameter number, before execution of the prepared statement.

Note:

There is also a batch version of this method. See setParamLength().

setParamNull()

(Version for non-batch operations)

void setParamNull(int pno)

Sets a value of SQL NULL for a bound input parameter specified by parameter number.

Note:

There is also a batch version of this method. See setParamNull().

setQueryThreshold()

void setQueryThreshold(const int nSecs)

Use this method to specify a threshold time limit, in seconds, for the TTCmd object.
(This applies to any SQL statement, not just queries.) If the execution time of a

Chapter 3
TTCmd Reference

3-24

statement exceeds the threshold, a warning is written to the support log. Execution continues
and is not affected by the threshold. Also see getQueryThreshold().

The setQueryThreshold() method has the same effect as using SQLSetStmtOption to set
TT_QUERY_THRESHOLD or setting the TimesTen general connection attribute QueryThreshold.

See Setting a Timeout or Threshold for Executing SQL Statements.

setQueryTimeout()

void setQueryTimeout(const int nSecs)

Use this method to specify how long, in seconds, any SQL statement (not just a query)
executes before timing out. By default there is no timeout.

This has the same effect as using SQLSetStmtOption to set SQL_QUERY_TIMEOUT or setting the
TimesTen general connection attribute SQLQueryTimeout (or SQLQueryTimeoutMsec, to use
milliseconds).

See Setting a Timeout or Threshold for Executing SQL Statements.

Public Methods for Obtaining TTCmd Object Properties
There are several useful methods for asking questions about properties of the bound input
parameters and output columns of a prepared TTCmd object. These methods generally
provide meaningful results only when a statement has previously been prepared.

This section summarizes then describes the methods for obtaining TTCmd object properties.

Public Methods Summary for Obtaining TTCmd Object Properties

Method Description

getColumnName() Returns the name of the specified column.

getColumnNullability() Indicates whether data in the specified column can have the value
NULL.

getColumnPrecision() Returns the precision of the specified column.

getColumnScale() Returns the scale of the specified column.

getColumnType() Returns the ODBC data type of the specified column.

getNColumns() Returns the number of output columns.

getNParameters() Returns the number of input parameters.

getParamNullability() Indicates whether the value of the specified parameter can be NULL.

getParamPrecision() Returns the precision of the specified parameter in a prepared
statement.

getParamScale() Returns the scale of the specified parameter in a prepared
statement.

getParamType() Returns the ODBC data type of the specified parameter.

isBeingExecuted() Indicates whether the statement represented by the TTCmd object is
being executed.

Chapter 3
TTCmd Reference

3-25

getColumnName()

const char* getColumnName(int cno)

Returns the name of column number cno.

getColumnNullability()

int getColumnNullability(int cno)

Indicates whether column number cno can NULL data. It returns SQL_NO_NULLS,
SQL_NULLABLE, or SQLNULLABLE_UNKNOWN.

getColumnPrecision()

SQLULEN getColumnPrecision(int cno)

Returns the precision of data in column number cno, referring to the size of the column
in the database. For example, for a VARCHAR2(25) column, the precision returned
would be 25.

This value is generally interesting only when generating output from table columns of
type CHAR, VARCHAR2, NCHAR, NVARCHAR2, BINARY, and VARBINARY.

getColumnScale()

int getColumnScale(int cno)

Returns the scale of data in column number cno, referring to the maximum number of
digits to the right of the decimal point.

getColumnType()

int getColumnType(int cno)

Returns the data type of column number cno. The value returned is the ODBC type of
the parameter (for example, SQL_INTEGER, SQL_REAL, SQL_BINARY, SQL_CHAR) as found
in sql.h. Additional TimesTen ODBC types (SQL_WCHAR, SQL_WVARCHAR) can be found
in the TimesTen header file timesten.h.

getNColumns()

int getNColumns()

Returns the number of output columns.

getNParameters()

int getNParameters()

Chapter 3
TTCmd Reference

3-26

Returns the number of input parameters for the SQL statement.

getParamNullability()

int getParamNullability(int pno)

Indicates whether parameter number pno can have the value NULL. It returns SQL_NO_NULLS,
SQL_NULLABLE, or SQLNULLABLE_UNKNOWN.

Note:

In earlier releases this method returned bool instead of int.

getParamPrecision()

SQLULEN getParamPrecision(int pno)

Returns the precision of parameter number pno, referring to the maximum number of digits
that are used by the data type. Also see information for getColumnPrecision(), above.

getParamScale()

int getParamScale(int pno)

Returns the scale of parameter number pno, referring to the maximum number of digits to the
right of the decimal point.

getParamType()

int getParamType(int pno)

Returns the data type of parameter number pno. The value returned is the ODBC type (for
example, SQL_INTEGER, SQL_REAL, SQL_BINARY, SQL_CHAR) as found in sql.h. Additional
TimesTen types (SQL_WCHAR, SQL_WVARCHAR) can be found in the TimesTen header file
timesten.h.

isBeingExecuted()

bool isBeingExecuted()

Indicates whether the statement represented by the TTCmd object is being executed.

Public Methods for Batch Operations
TimesTen supports the ODBC function SQLBindParams for batch insert, update and delete
operations. TTClasses provides an interface to the ODBC function SQLBindParams.

Chapter 3
TTCmd Reference

3-27

Performing batch operations with TTClasses is similar to performing non-batch
operations. SQL statements are first compiled using PrepareBatch(). Then each
parameter in that statement is bound to an array of values using BindParameter().
Finally, the statement is executed using ExecuteBatch().

See the TTClasses bulktest sample program in the TimesTen Classic Quick Start for
an example of using a batch operation. Refer to About TimesTen Quick Start and
Sample Applications.

This section summarizes then describes the TTCmd methods that expose the batch
INSERT, UPDATE, and DELETE functionality to TTClasses users.

Public Methods Summary for Batch Operations

Method Description

batchSize() Returns the number of statements in the batch.

BindParameter() Binds an array of values for one parameter of a statement prepared
using PrepareBatch().

ExecuteBatch() Invokes a SQL statement that has been prepared for execution by
PrepareBatch(). It returns the number of rows in the batch that were
updated.

PrepareBatch() Prepares batch INSERT, UPDATE, and DELETE statements.

setParamLength() Sets the length, in bytes, of the value of the specified bound parameter
before execution of the prepared statement.

setParamNull() Sets the specified bound parameter to NULL before execution of the
prepared statement.

batchSize()

u_short batchSize()

Returns the number of statements in the batch.

BindParameter()

void BindParameter(int pno, unsigned short batSz, TYPE* valueP)
void BindParameter(int pno, unsigned short batSz, TYPE* valueP, size_t
maxByteLen)
void BindParameter(int pno, unsigned short batSz, TYPE* valueP,
 SQLLEN* userByteLenP, size_t maxByteLen)

The overloaded BindParameter() method is used to bind an array of values for a
specified parameter in a SQL statement compiled using PrepareBatch(). This allows
iterating through a batch of repeated executions of the statement with different values.
The pno parameter indicates the position in the statement of the parameter to be
bound, starting from the left, where the first parameter is 1, the next is 2, and so on.

Table 3-4 below shows the supported SQL data types and the appropriate versions of
BindParameter() to use for each parameter type.

Also see Binding Duplicate Parameters.

Chapter 3
TTCmd Reference

3-28

The batSz (batch size) value of this call must match the batSz value specified in
PrepareBatch(), and the bound arrays should contain at least the batSz number of values.
You must determine the correct data type for each parameter. If an invalid parameter number
is specified, the specified batch size is a mismatch, or the data buffer is null, then a TTStatus
object is thrown as an exception and a runtime error is written to the TTClasses global
logging facility at the TTLog::TTLOG_ERR logging level.

Before each invocation of ExecuteBatch(), the application should fill the bound arrays with
valid parameter values. Note that you can use the setParamNull() method to set null values,
as described in setParamNull(). (Be aware that for batch mode, you must use the two-
parameter version of setParamNull() that specifies rowno. The one-parameter version is for
non-batch use only.)

For the SQL types TT_CHAR, CHAR, TT_VARCHAR, and VARCHAR2, an additional maximum length
parameter is required in the BindParameter() call:

• maxByteLen of type size_t is for the maximum length, in bytes, of any value for this
parameter position.

For the SQL types TT_NCHAR, NCHAR, TT_NVARCHAR, NVARCHAR2, BINARY, and VARBINARY, two
additional parameters are required in the BindParameter() call, an array of parameter
lengths and a maximum length:

• userByteLenP is an array of SQLLEN parameter lengths, in bytes, to specify the length of
each value in the batch for this parameter position in the SQL statement. This array must
be at least batSz in length and filled with valid length values before ExecuteBatch() is
called. (You can store SQL_NULL_DATA in the array of parameter lengths for a null value,
which is equivalent to using the setParamNull() batch method.)

• maxByteLen is as described above. This indicates the maximum length value that can be
specified in any element of the userByteLenP array.

For data types where userByteLenP is not available (or as an alternative where it is
available), you can optionally use the setParamLength() batch method to set data lengths, as
described in setParamLength(), and use the setParamNull() batch method to set null values,
as described in setParamNull().

See the example in the next section, ExecuteBatch(), for examples of BindParameter()
usage.

Table 3-4 BindParameter() Signatures for Supported TimesTen Table Column Types

SQL Data Type BindParameter() Variants Supported

TT_TINYINT
BindParameter(int pno, short batSz, SQLTINYINT* user_tiP)

TT_SMALLINT
BindParameter(int pno, short batSz, SQLSMALLINT* user_siP)

TT_INTEGER
BindParameter(int pno, short batSz, SQLINTEGER* user_iP)

Chapter 3
TTCmd Reference

3-29

Table 3-4 (Cont.) BindParameter() Signatures for Supported TimesTen Table Column
Types

SQL Data Type BindParameter() Variants Supported

TT_BIGINT
BindParameter(int pno, short batSz, SQLBIGINT* user_biP)

BINARY_FLOAT
BindParameter(int pno, short batSz, float* user_fP)

BINARY_DOUBLE
BindParameter(int pno, short batSz, double* user_dP)

NUMBER
BindParameter(int pno, short batSz, char** user_cPP,
size_t maxByteLen)

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

BindParameter(int pno, short batSz, char** user_cPP,
size_t maxByteLen)

TT_NCHAR
NCHAR
TT_NVARCHAR
NVARCHAR2

BindParameter(int pno, short batSz, SQLWCHAR** user_wcPP,
 SQLLEN* userByteLenP, size_t maxByteLen)

BINARY
VARBINARY BindParameter(int pno, short batSz, const void**

user_binPP,
 SQLLEN* userByteLenP, size_t maxByteLen)

DATE
TT_TIMESTAMP
TIMESTAMP

BindParameter(int pno, short batSz, TIMESTAMP_STRUCT*
user_tssP)

TT_DATE
BindParameter(int pno, int batSz, DATE_STRUCT* user_dsP)

TT_TIME
BindParameter(int pno, int batSz, TIME_STRUCT* user_tsP)

ExecuteBatch()

SQLULEN ExecuteBatch(unsigned short numRows)

Chapter 3
TTCmd Reference

3-30

After preparing a SQL statement with PrepareBatch() and calling BindParameter() for each
parameter in the SQL statement, use ExecuteBatch() to execute the statement numRows
times. The value of numRows must be no more than the batSz (batch size) value specified in
the PrepareBatch() and BindParameter() calls, but can be less than batSz as required by
application logic.

This method returns the number of rows that were updated, with possible values in the range
0 to batSz, inclusive. (For those familiar with ODBC, this is the third parameter, *pirow, of an
ODBC SQLParamOptions call. Refer to ODBC API reference documentation for information
about SQLParamOptions.)

Before calling ExecuteBatch(), the application should fill the arrays of parameters previously
bound by BindParameter() with valid values.

A TTStatus object is thrown as an exception if an error occurs (often due to violation of a
uniqueness constraint). In this event, the return value is not valid and the batch is incomplete
and should generally be rolled back.

The following example shows how to use the ExecuteBatch() method. The bulktest
TimesTen Classic Quick Start demo also shows usage of this method. (See About TimesTen
Quick Start and Sample Applications.)

First, create a table with two columns:

CREATE TABLE batch_table (a TT_INTEGER, b VARCHAR2(100));

Following is the sample code. Populate the rows of the table in batches of 50.

#define BATCH_SIZE 50
#define VARCHAR_SIZE 100

int int_array[BATCH_SIZE];
char char_array[BATCH_SIZE][VARCHAR_SIZE];

// Prepare the statement

TTCmd insert;
TTConnection connection;

// (assume a connection has been established)

try {

 insert.PrepareBatch (&connection,
 (const char*)"insert into batch_table values (?,?)",
 BATCH_SIZE);

 // Commit the prepared statement
 connection.Commit();

 // Bind the arrays of parameters
 insert.BindParameter(1, BATCH_SIZE, int_array);
 insert.BindParameter(2, BATCH_SIZE, (char **)char_array, VARCHAR_SIZE);

 // Execute 5 batches, inserting a total of 5 * BATCH_SIZE rows into

Chapter 3
TTCmd Reference

3-31

 // the database
 for (int iter = 0; iter < 5; iter++)
 {
 // Populate the value arrays with values.
 // (A more meaningful way of putting data into
 // the database is to read values from a file, for example,
 // rather than generating them arbitrarily.)

 for (int i = 0; i < BATCH_SIZE; i++)
 {
 int_array[i] = i * iter + i;
 sprintf(char_array[i], "varchar value # %d", i*iter+ i);
 }

 // Execute the batch insert statement,
 // which inserts the entire contents of the
 // integer and char arrays in one operation.
 SQLULEN num_ins = insert.ExecuteBatch(BATCH_SIZE);

 cerr << "Inserted " << num_ins << " rows." << endl;

 connection.Commit();

 } // for iter

} catch (TTError er1) {
 cerr << er1 << endl;
}

The number of rows updated (num_ins in the example) can be less than BATCH_SIZE if,
for example, there is a violation of a uniqueness constraint on a column. You can use
code similar to that in the next example check for this situation and roll back the
transaction as necessary.

for (int iter = 0; iter < 5; iter++)
{

 // Populate the value arrays with values.
 // (A better way of putting meaningful data into
 // the database is to read values from a file,
 // rather than generating them arbitrarily.)

 for (int i = 0; i < BATCH_SIZE; i++)
 {
 int_array[i] = i * iter + i;
 sprintf(char_array[i], "varchar value # %d", i*iter+i);
 }

 // now we execute the batch insert statement,
 // which does the work of inserting the entire
 // contents of the integer and char arrays in
 // one operation

 SQLULEN num_ins = insert.ExecuteBatch(BATCH_SIZE);

Chapter 3
TTCmd Reference

3-32

 cerr << "Inserted " << num_ins << " rows (expected "
 << BATCH_SIZE << " rows)." << endl;

 if (num_ins == BATCH_SIZE) {
 cerr << "Committing batch" << endl;
 connection.Commit();
 }
 else {
 cerr << "Some rows were not inserted as expected, rolling back "
 << "transaction." << endl;
 connection.Rollback();
 break; // jump out of batch insert loop
 }

} // for loop

PrepareBatch()

void PrepareBatch(TTConnection* cP, const char* sqlp, unsigned short batSz)

PrepareBatch() is comparable to the Prepare() method but for batch INSERT, UPDATE, or
DELETE statements. The cP and sqlp parameters are used as with Prepare(). See Prepare().

The batSz (batch size) parameter specifies the maximum number of insert, update, or delete
operations that are performed using subsequent calls to ExecuteBatch().

A TTStatus object is thrown as an exception if an error occurs.

Note:

To avoid unwanted round trips between client and server in client/server
connections, the PrepareBatch() method performs what is referred to as a
"deferred prepare", where the request is not sent to the server until required. See
TimesTen Deferred Prepare in Oracle TimesTen In-Memory Database C
Developer's Guide.

setParamLength()

(Version for batch operations)

void setParamLength(int pno, unsigned short rowno, int byteLen)

This method sets the length of a bound parameter value before a call to ExecuteBatch().
The pno argument specifies the parameter number in the SQL statement (where the first
parameter is number 1). The rowno argument specifies the row number in the array of
parameters being bound (where the first row is row number 1). The byteLen parameter
specifies the desired length, in bytes, not counting the NULL terminator. Alternatively, byteLen
can be set to SQL_NTS for a null-terminated string. (It can also be set to SQL_NULL_DATA, which
is equivalent to using the setParamNull() batch method, described next.)

Chapter 3
TTCmd Reference

3-33

Note:

• For binary and NCHAR types, as shown in Table 3-4, it may be easier to
use the BindParameter() userByteLenP array to set parameter lengths.
Be aware that row numbering in the array of parameters being bound
starts with 0 in the userByteLenP array but with 1 when you use
setParamLength().

• There is also a non-batch version of this method. See setParamLength().
(It is important to use only the two-parameter version for non-batch
operations, and only the three-parameter version that specifies rowno for
batch operations.)

setParamNull()

(Version for batch operations)

void setParamNull(int pno, unsigned short rowno)

This method sets a bound parameter value to NULL before a call to ExecuteBatch().
The pno argument specifies the parameter number in the SQL statement (where the
first parameter is number 1). The rowno argument specifies the row number in the
array of parameters being bound (where the first row is row number 1).

Note:

• For binary and NCHAR types, as shown in Table 3-4, there is a
BindParameter() userByteLenP array. For these types, you can have a
null value by specifying SQL_NULL_DATA in this array, which is equivalent
to using setParamNull(). Be aware that row numbering in the bound
array of parameters userByteLenP starts with 0, but numbering starts
with 1 when you use setParamNull().

• There is also a non-batch version of this method. See setParamNull(). (It
is important to use only the one-parameter version for non-batch
operations, and only the two-parameter version that specifies rowno for
batch operations.)

Chapter 3
TTCmd Reference

3-34

4
System Catalog Classes Reference

This reference chapter contains descriptions of TTClasses system catalog classes and their
methods. These classes enable you to examine the TimesTen system catalog.

• TTCatalog Reference

• TTCatalogTable Reference

• TTCatalogColumn Reference

• TTCatalogIndex Reference

• TTCatalogSpecialColumn Reference

TTCatalog Reference
The TTCatalog class is the top-level class used for programmatically accessing metadata
information about tables in a database.

• Public Members

• Public Methods

Also see TTCatalog Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTCatalog public methods.

Public Methods Summary

Method Description

fetchCatalogData() Reads the catalogs in the database for information about tables and
indexes and stores this information into TTCatalog internal data
structures.

getNumSysTables() Returns the number of system tables in the database.

getNumTables() Returns the total number of tables (user tables plus system tables) in the
database.

getNumUserTables() Returns the number of user tables in the database.

getTable() Returns a constant reference to the TTCatalogTable object for the
specified table.

getTableIndex() Returns the index in the TTCatalog object for the specified table.

4-1

Method Description

getUserTable() Returns a constant reference to the TTCatalogTable object
corresponding to the nth user table in the system (where n is specified).

fetchCatalogData()

void fetchCatalogData()

This is the only TTCatalog method that interacts with the database. It reads the
catalogs in the database for information about tables and indexes, storing the
information into TTCatalog internal data structures.

Subsequent use of the constructed TTCatalog object is completely offline after it is
constructed. It is no longer connected to the database.

You must call this method before you use any of the TTCatalog accessor methods.

The following example demonstrates the use of TTCatalog.

TTConnection conn;
conn.Connect(DSN=TptbmData37);
TTCatalog cat (&conn);
cat.fetchCatalogData();
// TTCatalog cat is no longer connected to the database;
// you can now query it through its read-only methods.
cerr << "There are " << cat.getNumTables() << " tables in this
database:" << endl;
for (int i=0; i < cat.getNumTables(); i++)
cerr << cat.getTable(i).getTableOwner() << "."
 << cat.getTable(i).getTableName() << endl;

getNumSysTables()

int getNumSysTables()

Returns the number of system tables in the database. Also see the following methods,
getNumTables() and getNumUserTables().

getNumTables()

int getNumTables()

Returns the total number of tables in the database (user plus system tables). Also see
the preceding method, getNumSysTables(), and the following method,
getNumUserTables().

getNumUserTables()

int getNumUserTables()

Returns the number of user tables in the database. Also see the preceding methods,
getNumSysTables() and getNumTables().

Chapter 4
TTCatalog Reference

4-2

getTable()

const TTCatalogTable& getTable(const char* owner, const char* tblname)
const TTCatalogTable& getTable(int tno)

Returns a constant reference to the TTCatalogTable object for the specified table. Also see
getUserTable().

For the first signature, this is for the table named tblname and owned by owner.

For the second signature, this is for the table corresponding to table number tno in the
system. This is intended to facilitate iteration through all the tables in the system. The order of
the tables in this array is arbitrary.

The following relationship is true:

0 <= tno < getNumTables()

Also see TTCatalogTable Usage.

getTableIndex()

int getTableIndex(const char* owner, const char* tblname) const

This method fetches the index in the TTCatalog object for the specified owner.tblname
object. It returns -2 if owner.tblname does not exist. It returns -1 if fetchCatalogData() was
not called first.

The example retrieves information about the TTUSER.MYDATA table from a TTCatalog object.
You can then call methods of TTCatalogTable, described next, to get information about this
table.

TTConnection conn;
conn.Connect(...);
TTCatalog cat (&conn);
cat.fetchCatalogData();

int idx = cat.getTableIndex("TTUSER", "MYDATA");
if (idx < 0) {
 cerr << "Table TTUSER.MYDATA does not exist." << endl;
 return;
}

TTCatalogTable &table = cat.getTable(idx);

getUserTable()

const TTCatalogTable& getUserTable(int tno)

Returns a constant reference to the TTCatalogTable object corresponding to user table
number tno in the system. This method is intended to facilitate iteration through all of the

Chapter 4
TTCatalog Reference

4-3

user tables in the system. The order of the user tables in this array is arbitrary. Also
see getTable().

The following relationship is true:

0 <= tno < getNumUserTables()

Note:

There is no equivalent method for system tables.

TTCatalogTable Reference
Each object of the top-level TTCatalog class internally contains an array of
TTCatalogTable objects.

• Public Members

• Public Methods

Also see TTCatalogTable Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTCatalogTable public methods.

Public Methods Summary

Method Description

getColumn() Returns a constant reference to the TTCatalogColumn
corresponding to the ith column in the table.

getIndex() Returns a constant reference to the TTCatalogIndex object
corresponding to the nth index in the table, where n is specified.

getNumColumns() Returns the number of columns in the table.

getNumIndexes() Returns the number of indexes on the table.

getNumSpecialColumns() Returns the number of special columns in this table. See
TTCatalogSpecialColumn Usage.

getSpecialColumn() Returns a special column (TTCatalogSpecialColumn object)
from this table, according to the specified column number.

getTableName() Returns the name of the table.

getTableOwner() Returns the owner of the table.

getTableType() Returns the table type as returned by the ODBC SQLTables
function.

Chapter 4
TTCatalogTable Reference

4-4

Method Description

isSystemTable() Returns TRUE if the table is a system table.

isUserTable() Returns TRUE if the table is a user table.

getColumn()

const TTCatalogColumn& getColumn(int cno)

Returns a constant reference to the TTCatalogColumn object corresponding to column
number cno in the table. This method is intended to facilitate iteration through all the columns
in the table.

The following relationship is true:

0 <= cno < getNumColumns()

getIndex()

const TTCatalogIndex& getIndex(int num)

Returns a constant reference to the TTCatalogIndex object corresponding to index number
num in the table. This method is intended to facilitate iteration through all the indexes of the
table. The order of the indexes of a table in this array is arbitrary.

The following relationship is true:

0 <= num < getNumIndexes()

getNumColumns()

int getNumColumns()

Returns the number of columns in the table.

getNumIndexes()

int getNumIndexes()

Returns the number of indexes on the table.

getNumSpecialColumns()

int getNumSpecialColumns()

Returns the number of special columns in this TTCatalogTable object. Because TimesTen
supports only rowid special columns, this always returns 1.

Also see TTCatalogSpecialColumn Usage.

Chapter 4
TTCatalogTable Reference

4-5

getSpecialColumn()

const TTCatalogSpecialColumn& getSpecialColumn(int num) const

Returns a special column (TTCatalogSpecialColumn object) from this TTCatalogTable
object, according to the specified column number. In TimesTen this can be only a rowid
pseudocolumn.

Also see TTCatalogSpecialColumn Usage.

getTableName()

const char* getTableName()

Returns the name of the table.

getTableOwner()

const char* getTableOwner()

Returns the owner of the table.

getTableType()

const char* getTableType() const

Returns the table type of this TTCatalogTable object, as from an ODBC SQLTables
call. In TimesTen this may be TABLE, SYSTEM TABLE, VIEW, or SYNONYM.

isSystemTable()

bool isSystemTable()

Returns TRUE if the table is a system table (owned by SYS, TTREP, or GRID), or FALSE
otherwise.

The isSystemTable() method and isUserTable() method (described next) are useful
for applications that iterate over all tables in a database after a call to
TTCatalog::fetchCatalogData(), so that you can filter or annotate tables to differentiate
the system and user tables. The TTClasses demo program catalog provides an
example of how this can be done. (See About TimesTen Quick Start and Sample
Applications.)

isUserTable()

bool isUserTable()

Returns TRUE if this is a user table, which is to say it is not a system table, or FALSE
otherwise. Note that isUserTable() returns the opposite of isSystemTable() for any
table. The description of isSystemTable() discusses the usage and usefulness of
these methods.

Chapter 4
TTCatalogTable Reference

4-6

TTCatalogColumn Reference
Each TTCatalogTable object contains an array of TTCatalogColumn objects and an array of
TTCatalogIndex objects.

• Public Members

• Public Methods

Also see TTCatalogColumn Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTCatalogColumn public methods.

Public Methods Summary

Method Description

getColumnName() Return the name of the column.

getDataType() Returns an integer representing the ODBC SQL data type of the column.

getLength() Returns the length of the column, in bytes.

getNullable() Indicates whether the column can contain NULL values. (This is not a
boolean value, as noted in the description below.)

getPrecision() Returns the precision of the column.

getRadix() Returns the radix of the column.

getScale() Returns the scale of the column.

getTypeName() Returns the TimesTen name for the type returned by getDataType().

getColumnName()

const char* getColumnName()

Returns the name of the column.

getDataType()

int getDataType()

Returns an integer representing the data type of the column. This is the standard ODBC SQL
type code or a TimesTen extension type code.

getLength()

int getLength()

Returns the length of data in the column, in bytes.

Chapter 4
TTCatalogColumn Reference

4-7

getNullable()

int getNullable()

Indicates whether the column can contain NULL values. It returns SQL_NO_NULLS,
SQL_NULLABLE, or SQL_NULLABLE_UNKNOWN.

getPrecision()

int getPrecision()

Returns the precision of data in the column, referring to the maximum number of digits
that are used by the data type.

getRadix()

int getRadix()

Returns the radix of the column, according to ODBC SQLColumns function output.

getScale()

int getScale()

Returns the scale of data in the column, which is the maximum number of digits to the
right of the decimal point.

getTypeName()

const char* getTypeName()

Returns the TimesTen name of the type returned by getDataType().

TTCatalogIndex Reference
Each TTCatalogTable object contains an array of TTCatalogColumn objects and an
array of TTCatalogIndex objects.

• Public Members

• Public Methods

Also see TTCatalogIndex Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTCatalogIndex public methods.

Chapter 4
TTCatalogIndex Reference

4-8

Public Methods Summary

Method Description

getCollation() Returns the collation of the specified column in the index.

getColumnName() Returns the name of the specified column in the index.

getIndexName() Returns the name of the index.

getIndexOwner() Returns the owner of the index.

getNumColumns() Returns the number of columns in the index.

getTableName() Returns the name of the table for which the index was created.

getType() Returns the type of the index.

isUnique() Indicates whether the index is a unique index.

getCollation()

char getCollation (int num)

Returns the collation of column number num in the index. Values returned are "A" for
ascending order or "D" for descending order.

getColumnName()

const char* getColumnName(int num)

Returns the name of column number num in the index.

getIndexName()

const char* getIndexName()

Returns the name of the index.

getIndexOwner()

const char* getIndexOwner()

Returns the owner of the index.

getNumColumns()

int getNumColumns()

Returns the number of columns in the index.

getTableName()

const char* getTableName()

Chapter 4
TTCatalogIndex Reference

4-9

Returns the name of the table for which the index was created. This is the table
represented by the TTCatalogTable object from which the index was retrieved through
a TTCatalogTable::getIndex() call.

getType()

int getType()

Returns the type of the index. For TimesTen, the allowable values are PRIMARY_KEY,
HASH_INDEX (the same as PRIMARY_KEY), and RANGE_INDEX.

isUnique()

bool isUnique()

Returns TRUE if the index is a unique index, or FALSE otherwise.

TTCatalogSpecialColumn Reference
This class is a wrapper for results from an ODBC SQLSpecialColumns function call on
a table represented by a TTCatalogTable object.

• Public Members

• Public Methods

Also see TTCatalogSpecialColumn Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTCatalogSpecialColumn public methods.

Public Methods Summary

Method Description

getColumnName() Returns the name of the special column.

getDataType() Returns the data type of the special column, as an integer.

getLength() Returns the length of data in the special column, in bytes.

getPrecision() Returns the precision of the special column.

getScale() Returns the scale of the special column.

getTypeName() Returns the data type of the special column, as a character
string.

getColumnName()

const char* getColumnName()

Returns the name of the special column.

Chapter 4
TTCatalogSpecialColumn Reference

4-10

getDataType()

int getDataType()

Returns an integer representing the ODBC SQL data type of the special column. In TimesTen
this can be only SQL_ROWID.

getLength()

int getLength()

Returns the length of data in the special column, in bytes.

getPrecision()

int getPrecision()

Returns the precision for data in the special column, referring to the maximum number of
digits used by the data type.

getScale()

int getScale()

Returns the scale for data in the special column, referring to the maximum number of digits to
the right of the decimal point.

getTypeName()

const char* getTypeName()

Returns the data type name that corresponds to the ODBC SQL data type value returned by
getDataType(). In TimesTen this can be only ROWID.

Chapter 4
TTCatalogSpecialColumn Reference

4-11

5
XLA Classes Reference

After a brief introduction, this chapter contains descriptions of TTClasses XLA classes and
their methods.

• TTXlaPersistConnection Reference

• TTXlaRowViewer Reference

• TTXlaTableHandler Reference

• TTXlaTableList Reference

• TTXlaTable Reference

• TTXlaColumn Reference

TTXlaPersistConnection Reference
Use TTXlaPersistConnection to create an XLA connection to a database.

• Public Members

• Public Methods

Also see TTXlaPersistConnection Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTXlaPersistConnection public methods.

Public Methods Summary

Method Description

ackUpdates() Advances the bookmark to the next set of updates.

Connect() Connects with the specified bookmark, or creates one if it
does not exist (depending on the method signature).

deleteBookmarkAndDisconnect() Deletes the bookmark and disconnects from the database.

Disconnect() Closes an XLA connection to a database, leaving the
bookmark in place.

fetchUpdatesWait() Fetches updates to the transaction log within the specified
wait period.

getBookmarkIndex() Gets the current transaction log position.

setBookmarkIndex() Returns to the transaction log position that was acquired
by a getBookmarkIndex() call.

5-1

ackUpdates()

void ackUpdates()

Use this method to advance the bookmark to the next set of updates. After you have
acknowledged a set of updates, the updates cannot be viewed again by this
bookmark. Therefore, a setBookmarkIndex() call does not allow you to replay XLA
records that have been acknowledged by a call to ackUpdates(). (See the descriptions
of getBookmarkIndex() and setBookmarkIndex() for information about replaying a set of
updates.)

Applications should acknowledge updates when a batch of XLA records have been
read and processed, so that the transaction log does not fill up available file system
space; however, do not call ackUpdates() too frequently, because it is a relatively
expensive operation.

If an application uses XLA to read a batch of records and then a failure occurs before
ackUpdates() is called, the records are retrieved when the application reestablishes its
XLA connection.

Note:

The transaction log is in a file system location according to the TimesTen
LogDir attribute setting, if specified, or the DataStore attribute setting if
LogDir is not specified. Refer to Data Store Attributes in Oracle TimesTen In-
Memory Database Reference.

Connect()

virtual void Connect(const char* connStr, const char* bookmarkStr,
 bool createBookmarkFlag)
virtual void Connect(const char* connStr, const char* username,
 const char* password, const char* bookmarkStr,
 bool createBookmarkFlag)
virtual void Connect(const char* connStr,
 TTConnection::DRIVER_COMPLETION_ENUM
driverCompletion,
 const char* bookmarkStr, bool createBookmarkFlag)

virtual void Connect(const char* connStr, const char* bookmarkStr)
virtual void Connect(const char* connStr, const char* username,
 const char* password, const char* bookmarkStr)
virtual void Connect(const char* connStr,
 TTConnection::DRIVER_COMPLETION_ENUM
driverCompletion,
 const char* bookmarkStr)

Each XLA connection has a bookmark name associated with it, so that after
disconnecting and reconnecting, the same place in the transaction log can be found.
The name for the bookmark of a connection is specified in the bookmarkStr parameter.

Chapter 5
TTXlaPersistConnection Reference

5-2

For the first set of methods listed above, the createBookmarkFlag boolean parameter
indicates whether the specified bookmark is new or was previously created. If you indicate
that a bookmark is new (createBookmarkFlag==true) and it already exists, an error is
returned. Similarly, if you indicate that a bookmark already exists
(createBookmarkFlag==false) and it does not exist, an error is returned.

For the second set of methods listed, without createBookmarkFlag, TTClasses first tries to
connect reusing the supplied bookmark (behavior equivalent to
createBookmarkFlag==false). If that bookmark does not exist, TTClasses then tries to
connect and create a new bookmark with the name bookmarkStr (behavior equivalent to
createBookmarkFlag==true). These methods are provided as a convenience, to simplify XLA
connection logic if you would rather not concern yourself with whether the XLA bookmark
exists.

In either mode, with or without createBookmarkFlag, specify a user name and password
either through the connection string or through the separate parameters, or specify a
DRIVER_COMPLETION_ENUM value. Refer to TTConnection Reference for information about
DRIVER_COMPLETION_ENUM.

Privilege to connect to a database must be granted to users through the CREATE SESSION
privilege, either directly or through the PUBLIC role. See Connection Methods. In addition, the
XLA privilege is required to create an XLA connection.

Note:

Only one XLA connection can connect with a given bookmark name. An error is
returned if multiple connections try to connect to the same bookmark.

deleteBookmarkAndDisconnect()

void deleteBookmarkAndDisconnect()

This method first deletes the bookmark that is currently associated with the connection, so
that the database no longer keeps records relevant to that bookmark, then disconnects from
the database.

To disconnect without deleting the bookmark, use the Disconnect() method instead.

Disconnect()

virtual void Disconnect()

This method closes an XLA connection to a database. The XLA bookmark persists after you
call this method.

To delete the bookmark and disconnect from the database, use
deleteBookmarkAndDisconnect() instead.

fetchUpdatesWait()

void fetchUpdatesWait(ttXlaUpdateDesc_t*** arry, int maxrecs,
 int* recsP, int seconds)

Chapter 5
TTXlaPersistConnection Reference

5-3

Use this method to fetch a set of records describing changes to a database. A list of
ttXlaUpdateDesc_t structures is returned. If there are no XLA updates to be fetched,
this method waits the specified number of seconds before returning.

Specify the number of seconds to wait, seconds, and the maximum number of records
to receive, maxrecs. The method returns the number of records actually received,
recsP, and an array of pointers, arry, that point to structures defining the changes.

The ttXlaUpdateDesc_t structures that are returned by this method are defined in the
XLA specification. No C++ object-oriented encapsulation of these methods is provided.
Typically, after calling fetchUpdatesWait(), an application processes these
ttXlaUpdateDesc_t structures in a sequence of calls to
TTXlaTableList::HandleChange().

See ttXlaUpdateDesc_t in Oracle TimesTen In-Memory Database C Developer's
Guide.

getBookmarkIndex()

void getBookmarkIndex()

This method gets the current bookmark location, storing it into a class private data
member where it is available for use by subsequent setBookmarkIndex() calls.

setBookmarkIndex()

void setBookmarkIndex()

This method returns to the saved transaction log index, restoring the bookmark to the
address previously acquired by a getBookmarkIndex() call. Use this method to replay
a batch of XLA records.

Note that ackUpdates() invalidates the stored transaction log placeholder. After
ackUpdates(), a call to setBookmarkIndex() returns an error because it is no longer
possible to go back to the previously acquired bookmark location.

TTXlaRowViewer Reference
TTXlaRowViewer, which represents a row image from change notification records, is
used to examine XLA change notification record structures and old and new column
values.

• Public Members

• Public Methods

Also see TTXlaRowViewer Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTXlaRowViewer public methods.

Chapter 5
TTXlaRowViewer Reference

5-4

Public Methods Summary

Method Description

columnPrec() Returns the precision of the specified column in the row image.

columnScale() Returns the scale of the specified column in the row image.

Get() Fetches the value of the specified column in the row image.

getColumn() Returns the specified column from the row image.

isColumnTTTimestamp() Indicates whether the specified column in the row image is a
TT_TIMESTAMP column.

isNull() Indicates whether the specified column in the row image has the value
NULL.

numUpdatedCols() Returns the number of columns in the row image that have been
updated.

setTuple() Associates the TTXlaRowViewer object with the specified row image.

updatedCol() Returns the column number in the row image of a column that has
been updated, typically during iteration through all updated columns.

columnPrec()

SQLULEN columnPrec(int cno)

Returns the precision of data in column number cno of the row image, referring to the
maximum number of digits that are used by the data type.

columnScale()

int columnScale(int cno)

Returns the scale of data in column number cno of the row image, referring to the maximum
number of digits to the right of the decimal point.

Get()

void Get(int cno, TYPE* valueP)
void Get(int cno, TYPE* valueP, SQLULEN* byteLenP)

Fetches the value of column number cno in the row image. These methods are very similar to
the TTCmd::getColumn() methods.

Table 5-1 shows the supported SQL data types and the appropriate versions of Get() to use
for each data type. Design the application according to the types of data that are stored. For
example, data of type NUMBER(9,0) can be accessed by the Get(int, int*) method without
loss of information.

Chapter 5
TTXlaRowViewer Reference

5-5

Table 5-1 Get() Signatures for Supported Table Column Types

XLA Data Type Database Data Type Get() Variant

TTXLA_CHAR_TT TT_CHAR
Get(int cno, char** cPP)

TTXLA_NCHAR_TT TT_NCHAR
Get(int cno, SQLWCHAR** wcPP,
SQLULEN* byteLenP)

TTXLA_VARCHAR_TT TT_VARCHAR Get(int cno, char** cPP)

TTXLA_NVARCHAR_TT TT_NVARCHAR
Get(int cno, SQLWCHAR** wcPP,
SQLULEN* byteLenP)

TTXLA_TINYINT TT_TINYINT
Get(int cno, SQLTINYINT* iP)

TTXLA_SMALLINT TT_SMALLINT
Get(int cno, short* iP)

TTXLA_INTEGER TT_INTEGER
Get(int cno, int* iP)

TTXLA_BIGINT TT_BIGINT
Get(int cno, SQLBIGINT* biP)

TTXLA_BINARY_FLOAT BINARY_FLOAT
Get(int cno, float* fP)

TTXLA_BINARY_DOUBLE BINARY_DOUBLE
Get(int cno, double* dP)

TTXLA_TIME TT_TIME
Get(int cno, TIME_STRUCT* tP)

TTXLA_DATE_TT TT_DATE
Get(int cno, DATE_STRUCT* dP)

TTXLA_TIMESTAMP_TT TT_TIMESTAMP
Get(int cno, TIMESTAMP_STRUCT*
tsP)

Chapter 5
TTXlaRowViewer Reference

5-6

Table 5-1 (Cont.) Get() Signatures for Supported Table Column Types

XLA Data Type Database Data Type Get() Variant

TTXLA_BINARY BINARY
Get(int cno, const void**
binPP, SQLULEN* byteLenP)

TTXLA_VARBINARY VARBINARY
Get(int cno, const void**
binPP, SQLULEN* byteLenP)

TTXLA_NUMBER NUMBER
Get(int cno, double* dP)
Get(int cno, char** cPP)
Get(int cno, short* iP)
Get(int cno, int* iP)
Get(int cno, SQLBIGINT* biP)

TTXLA_DATE DATE
Get(int cno, TIMESTAMP_STRUCT*
tsP)

TTXLA_TIMESTAMP TIMESTAMP
Get(int cno, TIMESTAMP_STRUCT*
tsP)

TTXLA_CHAR CHAR
Get(int cno, char** cPP)

TTXLA_NCHAR NCHAR
Get(int cno, SQLWCHAR** wcPP,
SQLULEN* byteLenP)

TTXLA_VARCHAR VARCHAR2
Get(int cno, char** cPP)

TTXLA_NVARCHAR NVARCHAR2
Get(int cno, SQLWCHAR** wcPP,
SQLULEN* byteLenP)

TTXLA_FLOAT FLOAT
Get(int cno, double* dP)
Get(int cno, char** cPP)

Chapter 5
TTXlaRowViewer Reference

5-7

Table 5-1 (Cont.) Get() Signatures for Supported Table Column Types

XLA Data Type Database Data Type Get() Variant

TTXLA_BLOB BLOB
Get(int cno, const void**
binPP, SQLULEN* byteLenP)

TTXLA_CLOB CLOB
Get(int cno, char** cPP)

TTXLA_NCLOB NCLOB
Get(int cno, SQLWCHAR** wcPP,
SQLULEN* byteLenP)

getColumn()

const TTXlaColumn* getColumn(u_int cno) const

Returns a TTXlaColumn object with metadata for column number cno in the row image.

isColumnTTTimestamp()

bool isColumnTTTimestamp(int cno)

Returns TRUE if column number cno in the row image is a TT_TIMESTAMP column, or
FALSE otherwise.

isNull()

bool isNull(int cno)

Indicates whether the column number cno in the row image has the value NULL,
returning TRUE if so or FALSE if not.

numUpdatedCols()

SQLUSMALLINT numUpdatedCols()

Returns the number of columns that have been updated in the row image.

setTuple()

void setTuple(ttXlaUpdateDesc_t* updateDescP, int whichTuple)

Before a row can be examined, this method must be called to associate the
TTXlaRowViewer object with a particular row image. It is invoked inside the

Chapter 5
TTXlaRowViewer Reference

5-8

TTXlaTableHandler::HandleInsert(), HandleUpdate(), or HandleDelete() method, or by a user-
written overloaded method. You would typically call it when overloading the
TTXlaTableHandler::HandleChange() method. The TimesTen Classic Quick Start
xlasubscriber1 demo provides an example of its usage. (See About TimesTen Quick Start
and Sample Applications.)

The ttXlaUpdateDesc_t structures that are returned by
TTXlaPersistConnection::fetchUpdatesWait() contain either zero, one, or two rows. Note the
following:

• Structures that define a row that was inserted into a table contain the row image of the
inserted row.

• Structures that define a row that was deleted from a table contain the row image of the
deleted row.

• Structures that define a row that was updated in a table contain the images of the row
before and after the update.

• Structures that define other changes to the table or the database contain no row images.
For example, structures reporting that an index was dropped contain no row images.

The setTuple() method takes two arguments:

• A pointer to a particular ttXlaUpdateDesc_t structure defining a database change

• An integer specifying which type of row image in the update structure should be
examined

The following are valid values:

– INSERTED_TUP: Examine the inserted row.

– DELETED_TUP: Examine the deleted row.

– UPDATE_OLD_TUP: Examine the row before it was updated.

– UPDATE_NEW_TUP: Examine the row after it was updated.

updatedCol()

SQLUSMALLINT updatedCol(u_int cno)

Returns the column number of a column that has been updated. For the input parameter you
can iterate from 1 through n, where n is the number returned by numUpdatedCols(). The
example that follows shows a snippet from the TimesTen Classic Quick Start demo
xlasubscriber1, where updatedCol() is used with numUpdatedCols() to retrieve each
column that has been updated. (See About TimesTen Quick Start and Sample Applications.)

void
SampleHandler::HandleUpdate(ttXlaUpdateDesc_t*)
{
 cerr << row2.numUpdatedCols() << " column(s) updated: ";
 for (int i = 1; i <= row2.numUpdatedCols(); i++)
 {
 cerr << row2.updatedCol(i) << "("
 << row2.getColumn(row2.updatedCol(i)-1)->getColName() << ") ";
 }

Chapter 5
TTXlaRowViewer Reference

5-9

 cerr << endl;
}

TTXlaTableHandler Reference
The TTXlaTableHandler class provides methods that enable and disable change
tracking for a table. Methods are also provided to handle update notification records
from XLA.

• Public Members

• Protected Members

• Public Methods

Also see TTXlaTableHandler Usage.

Public Members
None

Protected Members

Member Description

TTXlaTable tbl This is for the metadata associated with the table being
handled.

TTXlaRowViewer row This is used to view the row being inserted or deleted, or the
old image of the row being updated, in user-written
HandleInsert(), HandleDelete(), and
HandleUpdate() methods.

TTXlaRowViewer row2 This is used to view the new image of the row being
updated in user-written HandleUpdate() methods.

Public Methods
This section summarizes then describes the TTXlaTableHandler public methods.

Public methods summary

Method Description

DisableTracking() Disables XLA update tracking for the table.

EnableTracking() Enables XLA update tracking for the table.

generateSQL() Returns the SQL associated with a given XLA record.

HandleChange() Dispatches a record from ttXlaUpdateDesc_t to the
appropriate handling routine for processing.

HandleDelete() This is invoked when the HandleChange() method is called to
process a delete operation.

HandleInsert() This is invoked when the HandleChange() method is called to
process an insert operation.

Chapter 5
TTXlaTableHandler Reference

5-10

Method Description

HandleUpdate() This is invoked when the HandleChange() method is called to
process an update operation.

DisableTracking()

virtual void DisableTracking()

Disables XLA update tracking for the table. After this method is called, the XLA bookmark no
longer captures information about changes to the table.

EnableTracking()

virtual void EnableTracking()

Enables XLA update tracking for the table. Until this method is called, the XLA bookmark
does not capture information about changes to the table.

generateSQL()

void generateSQL (ttXlaUpdateDesc_t* updateDescP, char* buffer,
 SQLINTEGER maxByteLen, SQLINTEGER* actualByteLenP)

This method prints the SQL associated with a given XLA record. The SQL string is returned
through the buffer parameter. Allocate space for the buffer and specify its maximum length,
maxByteLen. The actualByteLenP parameter returns information about the actual length of
the SQL string returned.

If maxByteLen is less than the length of the generated SQL string, a TTStatus error is thrown
and the contents of buffer and actualByteLenP are not modified.

HandleChange()

virtual void HandleChange(ttXlaUpdateDesc_t* updateDescP)
virtual void HandleChange(ttXlaUpdateDesc_t* updateDescP, void* pData)

Dispatches a ttXlaUpdateDesc_t object to the appropriate handling routine for processing.
The update description is analyzed to determine if it is for a delete, insert or update operation.
The appropriate handing method is then called: HandleDelete(), HandleInsert(), or
HandleUpdate().

Classes that inherit from TTXlaTableHandler can use the optional pData parameter when
they overload the TTXlaTableHandler::HandleChange() method. This optional parameter is
useful for determining whether the batch of XLA records that was just processed ends on a
transaction boundary. Knowing this helps an application decide the appropriate time to invoke
TTConnection::ackUpdates(). See Acknowledging XLA Updates at Transaction Boundaries
for an example that uses the pData parameter.

Also see HandleChange() for TTXlaTableList objects.

Chapter 5
TTXlaTableHandler Reference

5-11

HandleDelete()

virtual void HandleDelete(ttXlaUpdateDesc_t* updateDescP) = 0

This method is invoked whenever the HandleChange() method is called to process a
delete operation.

HandleDelete() is not implemented in the TTXlaTableHandler base class. It must be
implemented by any classes derived from it, with appropriate logic to handle deleted
rows.

The row that was deleted from the table is available through the protected member row
of type TTXlaRowViewer.

HandleInsert()

virtual void HandleInsert(ttXlaUpdateDesc_t* updateDescP) = 0

This method is invoked whenever the HandleChange() method is called to process an
insert operation.

HandleInsert() is not implemented in the TTXlaTableHandler base class. It must be
implemented by any classes derived from it, with appropriate logic to handle inserted
rows.

The row that was inserted into the table is available through the protected member row
of type TTXlaRowViewer.

HandleUpdate()

virtual void HandleUpdate(ttXlaUpdateDesc_t* updateDescP) = 0

This method is invoked whenever the HandleChange() method is called to process an
update operation.

HandleUpdate() is not implemented in the TTXlaTableHandler base class. It must be
implemented by any classes derived from it, with appropriate logic to handle updated
rows.

The previous version of the row that was updated from the table is available through
the protected member row of type TTXlaRowViewer. The new version of the row is
available through the protected member row2, also of type TTXlaRowViewer.

TTXlaTableList Reference
The TTXlaTableList class provides a list of TTXlaTableHandler objects and is used to
dispatch update notification events to the appropriate TTXlaTableHandler object.

• Public Members

• Public Methods

Also see TTXlaTableList Usage.

Chapter 5
TTXlaTableList Reference

5-12

Public Members
None

Public Methods
This section summarizes then describes the TTXlaTableList public methods.

Public methods summary

Method Description

add() Adds a TTXlaTableHandler object to the list.

del() Deletes a TTXlaTableHandler object from the list.

HandleChange() Processes a record obtained from a ttXlaUpdateDesc_t
structure.

add()

void add(TTXlaTableHandler* tblh)

Adds a TTXlaTableHandler object to the list.

del()

void del(TTXlaTableHandler* tblh)

Deletes a TTXlaTableHandler object from the list.

HandleChange()

void HandleChange(ttXlaUpdateDesc_t* updateDescP)
void HandleChange(ttXlaUpdateDesc_t* updateDescP, void* pData)

When a ttXlaUpdateDesc_t object is received from XLA, it can be processed by calling this
method, which determines which table the record references and calls the HandleChange()
method of the appropriate TTXlaTableHandler object.

See HandleChange() for TTXlaTableHandler objects, including a discussion of the pData
parameter.

TTXlaTable Reference
The TTXlaTable class encapsulates the metadata for a table being monitored for changes.

• Public Members

• Public Methods

Also see TTXlaTable Usage.

Chapter 5
TTXlaTable Reference

5-13

Public Members
None

Public Methods
This section summarizes then describes the TTXlaTable public methods.

Public methods summary

Method Description

getColNumber() Returns the column number of the specified column in the table.

getNCols() Returns the number of columns in the table.

getOwnerName() Returns the name of owner of the table.

getTableName() Returns the name of the table.

getColNumber()

int getColNumber(const char* colNameP) const

For a specified column name in the table, this method returns its column number, or -1
if there is no column by that name.

getNCols()

int getNCols() const

Returns the number of columns in the table.

getOwnerName()

const char* getOwnerName() const

Returns the user name of the owner of the table.

getTableName()

const char* getTableName() const

Returns the name of the table.

TTXlaColumn Reference
A TTXlaColumn object contains the metadata for a single column of a table being
monitored for changes.

• Public Members

Chapter 5
TTXlaColumn Reference

5-14

• Public Methods

Also see TTXlaColumn Usage.

Public Members
None

Public Methods
This section summarizes then describes the TTXlaColumn public methods.

Public Methods Summary

Method Description

getColName() Returns the name of the column.

getPrecision() Returns the precision of the column.

getScale() Returns the scale of the column.

getSize() Returns the size of the column data, in bytes.

getSysColNum() Returns the system-generated column number of this column as
stored in the database.

getType() Returns the data type of the column, as an integer.

getUserColNum() Returns a column number optionally specified by the user, or 0.

isNullable() Indicates whether the column allows NULL values.

isPKColumn() Indicates whether the column is the primary key for the table.

isTTTimestamp() Indicates whether the column is a TT_TIMESTAMP column.

isUpdated() Indicates whether the column was updated.

getColName()

const char* getColName() const

Returns the name of the column.

getPrecision()

SQLULEN getPrecision() const

Returns the precision for data in the column, referring to the maximum number of digits that
are used by the data type.

getScale()

int getScale() const

Returns the scale for data in the column, referring to the maximum number of digits to the
right of the decimal point.

Chapter 5
TTXlaColumn Reference

5-15

getSize()

SQLUINTEGER getSize() const

Returns the size of values in the column, in bytes.

getSysColNum()

SQLUINTEGER getSysColNum() const

This is the system-generated column number of the column, numbered from 1. It
equals the corresponding COLNUM value in SYS.COLUMNS. (See SYS.COLUMNS in
Oracle TimesTen In-Memory Database System Tables and Views Reference.)

getType()

int getType() const

Returns an integer representing the TimesTen XLA data type (TTXLA_xxx) of the
column. This is a value from the dataType field of the TimesTen ttXlaColDesc_t data
structure. In some cases this corresponds to an ODBC SQL data type (SQL_xxx) and
the corresponding standard integer value.

Refer to XLA Data Types in Oracle TimesTen In-Memory Database C Developer's
Guide. The corresponding integer values are defined for use in any TTClasses
application that includes the TTXla.h header file.

Also refer to ttXlaColDesc_t in Oracle TimesTen In-Memory Database C Developer's
Guide.

getUserColNum()

SQLUINTEGER getUserColNum() const

Returns a column number optionally specified by the user through the
ttSetUserColumnID TimesTen built-in procedure, or 0.

See ttSetUserColumnID in Oracle TimesTen In-Memory Database Reference.

isNullable()

bool isNullable() const

Returns TRUE if null values are allowed in the column, or FALSE otherwise.

isPKColumn()

bool isPKColumn() const

Returns TRUE if this column is the primary key for the table, or FALSE otherwise.

Chapter 5
TTXlaColumn Reference

5-16

isTTTimestamp()

bool isTTTimestamp() const

Returns TRUE if this column is a TT_TIMESTAMP column, or FALSE otherwise.

isUpdated()

bool isUpdated() const

Returns TRUE if this column was updated, or FALSE otherwise.

Chapter 5
TTXlaColumn Reference

5-17

	Contents
	About This Content
	What's New
	New features in Release 22.1.1.1.0

	1 TTClasses Development Environment
	Setting TimesTen Environment Variables
	Set Environment Variables on Linux or UNIX
	Set Environment Variables on Windows

	Compiling and Linking Applications
	Compiling and Linking Applications on Linux or UNIX
	Compiling and Linking Applications on Windows
	Considerations when Using an ODBC Driver Manager (Windows)

	About TimesTen Quick Start and Sample Applications

	2 Understanding and Using TTClasses
	Overview of TTClasses
	Using TTCmd, TTConnection, and TTConnectionPool
	Managing TimesTen Connections
	Setting Connection Attributes for the Database
	Connecting and Disconnecting
	Connection Methods

	Using TimesTen Features in your Application
	Binding Parameters
	About Parameter Binding
	Binding Input Parameters
	Registering Parameters
	Parameter C Type to SQL Type Mappings
	Binding Output or Input/Output Parameters
	Binding Duplicate Parameters

	Working with REF CURSORs
	Working with ROWIDs
	Working with LOBs
	Differences Between TimesTen LOBs and Oracle Database LOBs
	Using the LOB Simple Data Interface in TTClasses
	Passthrough LOBs in TTClasses

	Setting a Timeout or Threshold for Executing SQL Statements
	Using Automatic Client Failover in a TTClasses Application

	Using TTClasses Logging
	Using XLA in TTClasses
	About TimesTen XLA
	Acknowledging XLA Updates Without Using Transaction Boundaries
	Acknowledging XLA Updates at Transaction Boundaries
	XLA System Privilege

	Using the TTClasses Classes
	How to Use the Commonly Used Classes
	TTCGlobal Usage
	TTCStatus Usage
	TTConnection Usage
	TTConnectionPool Usage
	TTCmd Usage

	How to Use the System Catalog Classes
	TTCatalog Usage
	TTCatalogTable Usage
	TTCatalogColumn Usage
	TTCatalogIndex Usage
	TTCatalogSpecialColumn Usage

	How to Use the XLA Classes
	About the XLA Classes
	TTXlaPersistConnection Usage
	TTXlaRowViewer Usage
	TTXlaTableHandler Usage
	TTXlaTableList Usage
	TTXlaTable Usage
	TTXlaColumn Usage

	3 Commonly Used Classes Reference
	TTGlobal Reference
	Public Members
	Public Methods

	TTStatus Reference
	Subclasses
	Public Members
	Public Methods

	TTConnection Reference
	Public Members
	Public Methods

	TTConnectionPool Reference
	Public Members
	Public Methods

	TTCmd Reference
	Public Members
	Public Methods for General Use and Non-Batch Operations
	Public Methods for Obtaining TTCmd Object Properties
	Public Methods for Batch Operations

	4 System Catalog Classes Reference
	TTCatalog Reference
	Public Members
	Public Methods

	TTCatalogTable Reference
	Public Members
	Public Methods

	TTCatalogColumn Reference
	Public Members
	Public Methods

	TTCatalogIndex Reference
	Public Members
	Public Methods

	TTCatalogSpecialColumn Reference
	Public Members
	Public Methods

	5 XLA Classes Reference
	TTXlaPersistConnection Reference
	Public Members
	Public Methods

	TTXlaRowViewer Reference
	Public Members
	Public Methods

	TTXlaTableHandler Reference
	Public Members
	Protected Members
	Public Methods

	TTXlaTableList Reference
	Public Members
	Public Methods

	TTXlaTable Reference
	Public Members
	Public Methods

	TTXlaColumn Reference
	Public Members
	Public Methods

