Preface

<table>
<thead>
<tr>
<th>Audience</th>
<th>xxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation Accessibility</td>
<td>xxi</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>xxi</td>
</tr>
<tr>
<td>Conventions</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

General Maintenance Information

1.1 Overview of Roles and Responsibilities

1.1.1 Common Administrative Tasks for Oracle Exadata Database Machine Management

1.1.2 Understanding the Administrative Differences with Oracle Exadata Database Machine

1.2 Powering On and Off Oracle Exadata Rack

1.2.1 Non-emergency Power Procedures

1.2.1.1 Powering On Oracle Exadata Rack

1.2.1.2 Powering On Servers Remotely using ILOM

1.2.1.3 Powering Off Oracle Exadata Rack

1.2.1.4 Powering On and Off Network Switches

1.2.2 Emergency Power-off Considerations

1.2.2.1 Emergency Power-off Procedure

1.2.2.2 Emergency Power-off Switch

1.2.3 Cautions and Warnings

1.3 Using Auto Service Request to Manage Hardware Faults

1.3.1 Understanding Auto Service Request

1.3.2 Installing and Configuring ASR

1.4 Monitoring the System Using Oracle Enterprise Manager Cloud Control

1.5 Monitoring the System Using Oracle Configuration Manager

1.6 Changing Component Passwords

1.6.1 Changing the Database Server Passwords

1.6.1.1 Changing the User Account Password on the Database Server

1.6.1.2 Changing the GRUB Account Password on the Database Server

1.6.2 Changing the Exadata Storage Server Passwords
2 Maintaining Database Servers of Oracle Exadata Database Machine

2.1 Management Server on Database Servers 2-2
2.2 Maintaining the Hard Disks of Oracle Database Servers 2-2
 2.2.1 Verifying the Database Server Configuration 2-3
 2.2.1.1 About the RAID Disk Configuration 2-3
 2.2.1.2 Verifying Disk Controller Configuration on Oracle Exadata Database Machine X7-8 or Later Systems 2-4
 2.2.1.3 Verifying Disk Controller Configuration on Oracle Exadata Database Machine X6-8 and Earlier 2-5
 2.2.1.4 Verifying Virtual Drive Configuration 2-7
 2.2.1.5 Verifying Physical Drive Configuration 2-7
 2.2.2 Monitoring a Database Server RAID Set Rebuilding 2-8
 2.2.3 Reclaiming a Hot Spare Drive After Upgrading to Oracle Exadata System Software Release 12.1.2.1.0 or Later 2-8
 2.2.4 Understanding Automated File Deletion Policy 2-13
2.3 Maintaining Flash Disks on Exadata Database Servers 2-14
 2.3.1 Monitoring the Status of Flash Disks 2-14
 2.3.2 Performing a Hot-Pluggable Replacement of a Flash Disk 2-15
2.4 Adding Disk Expansion Kit to Database Servers 2-16
2.5 Adding Memory Expansion Kit to Database Servers 2-20
2.6 Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems 2-21
2.7 Adding and Configuring an Extra Network Card on Oracle Exadata Database Machine X6-2 and Later 2-23
 2.7.1 Viewing the Network Interfaces 2-24
 2.7.2 Configuring the Additional Network Card for a Non-Oracle VM Environment 2-26
 2.7.3 Configuring the Additional Network Card for an Oracle VM Environment 2-29
2.8 Increasing the Number of Active Cores on Database Servers 2-31
2.9 Extending LVM Partitions 2-33
 2.9.1 Extending the root LVM Partition 2-34
 2.9.1.1 Extending the root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later 2-34
 2.9.1.2 Extending the root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1 2-37
 2.9.2 Resizing a Non-root LVM Partition 2-40
 2.9.2.1 Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later 2-40
 2.9.2.2 Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1 2-42
 2.9.2.3 Reducing a Non-root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later 2-46
 2.9.3 Extending the Swap Partition 2-50
2.10 Creating a Snapshot-Based Backup of Oracle Linux Database Server 2-52
 2.10.1 Creating a Snapshot-Based Backup of Oracle Linux Database Server with Uncustomized Partitions 2-53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.2</td>
<td>Creating a Snapshot-Based Backup of Oracle Linux Database Server with Customized Partitions</td>
<td>2-55</td>
</tr>
<tr>
<td>2.11</td>
<td>Recovering Oracle Linux Database Servers Using a Snapshot-Based Backup</td>
<td>2-55</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Overview of Snapshot-Based Recovery of Database Servers</td>
<td>2-56</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Recovering Oracle Linux Database Server with Uncustomized Partitions</td>
<td>2-57</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Recovering Exadata Database Servers X7 or Later with Customized Partitions</td>
<td>2-61</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Recovering Exadata X6 or Earlier Database Servers with Customized Partitions</td>
<td>2-66</td>
</tr>
<tr>
<td>2.11.5</td>
<td>Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery</td>
<td>2-71</td>
</tr>
<tr>
<td>2.11.5.1</td>
<td>Configuring Eighth Rack On X3-2 or Later Machines Running Oracle Exadata Storage Server Release 12.1.2.3.0 or Later</td>
<td>2-72</td>
</tr>
<tr>
<td>2.11.5.2</td>
<td>Configuring Eighth Rack On X3-2 Machines Running Oracle Exadata Storage Server Release 12.1.2.2.3 or Earlier</td>
<td>2-73</td>
</tr>
<tr>
<td>2.12</td>
<td>Re-Imaging the Oracle Exadata Database Server</td>
<td>2-74</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Contact Oracle Support Services</td>
<td>2-75</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Download Latest Release of Cluster Verification Utility</td>
<td>2-75</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Remove the Database Server from the Cluster</td>
<td>2-75</td>
</tr>
<tr>
<td>2.12.4</td>
<td>Image the Database Server</td>
<td>2-78</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Configure the Re-imaged Database Server</td>
<td>2-78</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Prepare the Re-imaged Database Server for the Cluster</td>
<td>2-79</td>
</tr>
<tr>
<td>2.12.7</td>
<td>Apply Oracle Exadata System Software Patch Bundles to the Replacement Database Server</td>
<td>2-82</td>
</tr>
<tr>
<td>2.12.8</td>
<td>Clone Oracle Grid Infrastructure to the Replacement Database Server</td>
<td>2-82</td>
</tr>
<tr>
<td>2.12.9</td>
<td>Clone Oracle Database Homes to the Replacement Database Server</td>
<td>2-86</td>
</tr>
<tr>
<td>2.13</td>
<td>Changing Existing Elastic Configurations for Database Servers</td>
<td>2-88</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Adding a New Database Server to the Cluster</td>
<td>2-89</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Moving an Existing Database Server to a Different Cluster</td>
<td>2-89</td>
</tr>
<tr>
<td>2.13.3</td>
<td>Dropping a Database Server from an Oracle RAC Cluster</td>
<td>2-90</td>
</tr>
<tr>
<td>2.14</td>
<td>Managing Quorum Disks for High Redundancy Disk Groups</td>
<td>2-91</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Using Quorum Disks to Increase Fault Tolerance</td>
<td>2-91</td>
</tr>
<tr>
<td>2.14.2</td>
<td>Overview of Quorum Disk Manager</td>
<td>2-94</td>
</tr>
<tr>
<td>2.14.3</td>
<td>Software Requirements for Quorum Disk Manager</td>
<td>2-94</td>
</tr>
<tr>
<td>2.14.4</td>
<td>quorumdiskmgr Reference</td>
<td>2-94</td>
</tr>
<tr>
<td>2.14.4.1</td>
<td>Syntax for the Quorum Disk Manager Utility</td>
<td>2-95</td>
</tr>
<tr>
<td>2.14.4.2</td>
<td>quorumdiskmgr Objects</td>
<td>2-96</td>
</tr>
<tr>
<td>2.14.4.3</td>
<td>Creating a Quorum Disk Configuration (--create --config)</td>
<td>2-96</td>
</tr>
<tr>
<td>2.14.4.4</td>
<td>Creating a Target (--create --target)</td>
<td>2-97</td>
</tr>
<tr>
<td>2.14.4.5</td>
<td>Creating a Device (--create --device)</td>
<td>2-98</td>
</tr>
<tr>
<td>2.14.4.6</td>
<td>Listing Quorum Disk Configurations (--list --config)</td>
<td>2-98</td>
</tr>
</tbody>
</table>
2.14.4.7 Listing Targets (--list --target) 2-99
2.14.4.8 Listing Devices (--list --device) 2-100
2.14.4.9 Deleting Configurations (--delete --config) 2-101
2.14.4.10 Deleting Targets (--delete --target) 2-101
2.14.4.11 Deleting Devices (--delete --device) 2-101
2.14.4.12 Changing Owner and Group Values (--alter --config) 2-102
2.14.4.13 Changing the RDMA Network Fabric IP Addresses (--alter --target) 2-103

2.14.5 Add Quorum Disks to Database Nodes 2-103
2.14.6 Recreate Quorum Disks 2-110
2.14.7 Use Cases 2-110
 2.14.7.1 New Deployments on Oracle Exadata 12.1.2.3.0 or Later 2-110
 2.14.7.2 Upgrading to Oracle Exadata Release 12.1.2.3.0 or Later 2-111
 2.14.7.3 Downgrading to a Pre-12.1.2.3.0 Oracle Exadata Release 2-111
 2.14.7.4 Managing Quorum Disks When Changing Elastic Configurations 2-111

2.14.8 Reconfigure Quorum Disk After Restoring a Database Server 2-119
2.15 Using vmetrics 2-121
 2.15.1 About the vmetrics Package 2-122
 2.15.2 Installing and Starting the vmetrics Service 2-122
 2.15.3 Files in the vmetrics Package 2-123
 2.15.4 Displaying the Statistics 2-123
 2.15.5 Adding Metrics to vmetrics 2-124

3 Maintaining Oracle Exadata Storage Servers of Oracle Exadata Racks

3.1 Maintaining Oracle Exadata Storage Servers 3-2
 3.1.1 Shutting Down Exadata Storage Server 3-2
 3.1.2 Checking Status of a Rebalance Operation 3-3
 3.1.3 Enabling Network Connectivity with the Diagnostics ISO 3-4

3.2 Using Extended (XT) Storage Servers 3-5
 3.2.1 About Oracle Exadata Extended (XT) Storage Servers 3-5
 3.2.2 What Data Can Be Stored on Oracle Exadata Extended (XT) Storage Servers? 3-6
 3.2.3 Enabling Smart Scan on Exadata XT Storage Servers 3-6

3.3 Maintaining the Hard Disks of Oracle Exadata Storage Servers 3-6
 3.3.1 Monitoring the Status of Hard Disks 3-8
 3.3.2 Monitoring Hard Disk Controller Write-through Caching Mode 3-10
 3.3.3 Replacing a Hard Disk Due to Disk Failure 3-12
 3.3.4 Replacing a Hard Disk Due to Disk Problems 3-14
 3.3.5 Replacing a Hard Disk Due to Bad Performance 3-16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.6</td>
<td>Replacing a Hard Disk Proactively</td>
<td>3-18</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Moving All Drives to Another Exadata Storage Server</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Repurposing a Hard Disk</td>
<td>3-21</td>
</tr>
<tr>
<td>3.3.9</td>
<td>Removing and Replacing the Same Hard Disk</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.10</td>
<td>Re-Enabling a Hard Disk That Was Rejected</td>
<td>3-24</td>
</tr>
<tr>
<td>3.4</td>
<td>Maintaining Flash Disks on Oracle Exadata Storage Servers</td>
<td>3-24</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Replacing a Flash Disk Due to Flash Disk Failure</td>
<td>3-25</td>
</tr>
<tr>
<td>3.4.2</td>
<td>About Flash Disk Degraded Performance Statuses</td>
<td>3-28</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Replacing a Flash Disk Due to Flash Disk Problems</td>
<td>3-31</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Performing a Hot Pluggable Replacement of a Flash Disk</td>
<td>3-33</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Enabling and Disabling Write Back Flash Cache for Software Versions</td>
<td>3-34</td>
</tr>
<tr>
<td>3.4.5.1</td>
<td>Enable Write Back Flash Cache for 11.2.3.3.1 or Higher</td>
<td>3-35</td>
</tr>
<tr>
<td>3.4.5.2</td>
<td>Disable Write Back Flash Cache for 11.2.3.3.1 or Higher</td>
<td>3-36</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Enabling and Disabling Write Back Flash Cache for Software Versions</td>
<td>3-37</td>
</tr>
<tr>
<td>3.4.6.1</td>
<td>Enabling Write Back Flash Cache on a Rolling Basis</td>
<td>3-38</td>
</tr>
<tr>
<td>3.4.6.2</td>
<td>Enabling Write Back Flash Cache on a Non-Rolling Basis</td>
<td>3-39</td>
</tr>
<tr>
<td>3.4.6.3</td>
<td>Disabling Write Back Flash Cache on a Rolling Basis</td>
<td>3-40</td>
</tr>
<tr>
<td>3.4.6.4</td>
<td>Disabling Write Back Flash Cache on a Non-Rolling Basis</td>
<td>3-42</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Enabling Flash Cache Compression</td>
<td>3-43</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Monitoring Exadata Smart Flash Cache Usage Statistics</td>
<td>3-45</td>
</tr>
<tr>
<td>3.4.9</td>
<td>Disabling Flash Cache Compression</td>
<td>3-45</td>
</tr>
<tr>
<td>3.5</td>
<td>Maintaining PMEM Devices on Oracle Exadata Storage Servers</td>
<td>3-48</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Replacing a PMEM Device Due to Device Failure</td>
<td>3-48</td>
</tr>
<tr>
<td>3.5.2</td>
<td>About PMEM Device Degraded Performance Statuses</td>
<td>3-50</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Replacing a PMEM Device Due to Degraded Performance</td>
<td>3-50</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Enabling and Disabling Write-Back PMEM Cache</td>
<td>3-52</td>
</tr>
<tr>
<td>3.5.4.1</td>
<td>Enable Write-Back PMEM Cache</td>
<td>3-53</td>
</tr>
<tr>
<td>3.5.4.2</td>
<td>Disable Write-Back PMEM Cache</td>
<td>3-53</td>
</tr>
<tr>
<td>3.6</td>
<td>Maintaining the M.2 Disks of Oracle Exadata Storage Server</td>
<td>3-54</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Monitoring the Status of M.2 Disks</td>
<td>3-55</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Replacing a M.2 Disk Due to Failure or Other Problems</td>
<td>3-56</td>
</tr>
<tr>
<td>3.7</td>
<td>Managing the RAM Cache on the Storage Servers</td>
<td>3-58</td>
</tr>
<tr>
<td>3.7.1</td>
<td>About the Cell RAM Cache</td>
<td>3-59</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Sizing Recommendations for the Cell RAM Cache</td>
<td>3-59</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Enabling the Cell RAM Cache</td>
<td>3-61</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Viewing the Cell RAM Cache Size</td>
<td>3-61</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Changing the Size of the Cell RAM Cache</td>
<td>3-62</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Monitoring Cell RAM Cache Usage Statistics</td>
<td>3-62</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Disabling the Cell RAM Cache</td>
<td>3-63</td>
</tr>
<tr>
<td>3.8</td>
<td>Resizing Grid Disks</td>
<td>3-63</td>
</tr>
</tbody>
</table>
3.8.1 Determine the Amount of Available Space 3-65
3.8.2 Shrink the Oracle ASM Disks in the Donor Disk Group 3-69
3.8.3 Shrink the Grid Disks in the Donor Disk Group 3-71
3.8.4 Increase the Size of the Grid Disks Using Available Space 3-72
3.8.5 Increase the Size of the Oracle ASM Disks 3-74

3.9 Using the Oracle Exadata System Software Rescue Procedure 3-76
3.9.1 About the Oracle Exadata System Software Rescue Procedure 3-76
3.9.2 Performing Rescue Using the CELLBOOT USB Flash Drive 3-78
3.9.3 Configuring Oracle Exadata Database Machine Storage Servers After Rescue 3-79
3.9.4 Configuring Oracle Exadata Database Machine Eighth Rack Storage Servers After Rescue 3-80
3.9.5 Re-creating a Damaged CELLBOOT USB Flash Drive 3-81

3.10 Changing Existing Elastic Configurations for Storage Cells 3-81
3.10.1 Adding a Cell Node 3-82
3.10.2 Adding a New Storage Server to an Eighth Rack Cluster 3-86
3.10.3 Adding Storage Cells using OEDACLI 3-91
3.10.4 Expanding an Existing Exadata Storage Grid 3-93
3.10.5 Dropping a Storage Server from an Existing Disk Group or Storage Grid 3-93
3.10.6 Dropping Storage Servers using OEDACLI 3-95

4 Maintaining Other Components of Oracle Exadata Racks

4.1 Replacing a Power Distribution Unit 4-2
4.1.1 Reviewing the PDU Replacement Guidelines 4-2
4.1.2 Replacing a PDU 4-3

4.2 Resetting a Non-Responsive ILOM 4-5
4.2.1 Resetting the ILOM Using SSH 4-5
4.2.2 Resetting the ILOM Using the ILOM Remote Console 4-5
4.2.3 Resetting the ILOM Using IPMItool 4-6
4.2.4 Resetting the ILOM Using the SP Reset Pin on Oracle Exadata Database Machine X2-2 Servers and Exadata Storage Servers 4-6
4.2.5 Removing the SP from Sun Fire X4800 Oracle Database Servers and Sun Server X2-8 Oracle Database Servers 4-6
4.2.6 Unplugging the ILOM Power Supply 4-7

4.3 Configuring Service Processor and ILOM Network Settings 4-7

4.4 Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems 4-9

4.5 Verify the Link Speed on Network Ports 4-10

4.6 Changing from 1 GbE Connections to 10 GbE Connections 4-11
4.6.1 Task 1: Verify ping Functionality 4-12
4.6.2 Task 2: Back up the Current Interface Files 4-12
4.6.3 Task 3: Edit the 10 GbE Interface Settings 4-13
4.6.4 Task 4: Verify the 10 GbE Interfaces 4-15
4.7 Maintaining the InfiniBand Transport Layer systems based on a RoCE Network Layer Network 4-17
 4.7.1 Backing Up Settings on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch 4-17
 4.7.2 Restoring Settings on a InfiniBand Transport Layer systems based on a RoCE Network Layer Switch 4-18
 4.7.3 Replacing a Failed InfiniBand Transport Layer systems based on a RoCE Network Layer Switch 4-19
 4.7.4 Verifying the InfiniBand Transport Layer systems based on a RoCE Network Layer Configuration 4-20
 4.7.5 Verifying InfiniBand Transport Layer systems based on a RoCE Network Layer Network Operation 4-20
 4.7.6 Upgrading the Switch Firmware for InfiniBand Transport Layer systems based on a RoCE Network Layer 4-27
 4.7.7 Downgrading the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Software 4-27
4.8 Maintaining the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network 4-28
 4.8.1 Backing Up and Restoring InfiniBand Switch Settings 4-28
 4.8.1.1 Backing Up Settings on a Switch with 2.1.3-4 Firmware 4-29
 4.8.1.2 Backing Up Settings on a Switch with 1.1.3-2 Firmware 4-30
 4.8.1.3 Backing Up Settings on a Switch with 1.0.1 Firmware 4-30
 4.8.1.4 Restoring Settings on a Switch with 2.1.3-4 Firmware 4-31
 4.8.1.5 Restoring Settings on a Switch with 1.1.3-2 Firmware 4-32
 4.8.1.6 Restoring Settings on a Switch with 1.0.1 Firmware 4-33
 4.8.2 Alerts May Be Raised During the 2.2.2 Upgrade Process 4-33
 4.8.3 Replacing a Failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer Card on Database Servers 4-34
 4.8.4 Replacing a Failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch 4-34
 4.8.5 Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration 4-36
 4.8.6 Using the verify-topology Utility 4-36
 4.8.7 Verifying InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network Operation 4-37
 4.8.8 Understanding the Network Subnet Manager Master 4-40
 4.8.9 Upgrading the Switch Firmware for InfiniBand Transport Layer systems based on an InfiniBand Network Layer 4-42
 4.8.10 Downgrading the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Software 4-42
4.9 Modifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration 4-42
 4.9.1 Configuring InfiniBand Partitioning 4-42
4.9.2 Changing InfiniBand IP Addresses and Host Names 4-42
4.9.3 Changing InfiniBand Network Information 4-43

4.10 Configuring Network Routing on Database Servers 4-55
4.10.1 About Network Routing on Database Servers 4-55
4.10.2 Task 1: Configure for Boot-Time Routing 4-56
4.10.3 Task 2: Configure for Real-Time Routing 4-56
4.10.4 Task 3: Verify Network Routing Rules and Routes 4-57
4.10.5 Removing Network Routing Configuration for Troubleshooting 4-57
4.10.6 Returning to Default Routing 4-58

4.11 Changing the DNS Servers 4-58
4.11.1 Change the DNS Server Address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch 4-59
4.11.2 Change the DNS Server Address on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch 4-59
4.11.3 Change the DNS Server Address on the Cisco Ethernet Switch 4-61
4.11.4 Change the DNS Server Address on the Database Server 4-62
4.11.5 Change the DNS Server on Oracle Exadata Storage Server 4-63
4.11.6 Change the DNS Server on the KVM Switch 4-65

4.12 Changing the NTP Servers 4-66
4.12.1 Set the NTP Server Address on the Database Servers 4-66
4.12.2 Set the NTP Server Address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch 4-67
4.12.3 Set the NTP Server Address on the Cisco 9336C RoCE Switch 4-68
4.12.4 Set the NTP Server Address on the Cisco Ethernet Switch 4-69
4.12.5 Set the NTP Server on Oracle Exadata Storage Servers 4-70

4.13 Changing the Time Zone Settings 4-73
4.13.1 Change Time Zone Settings on Storage Servers 4-74
4.13.2 Change Time Zone Settings on the Database Servers 4-76
4.13.3 Change Time Zone Settings on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches 4-77
4.13.4 Change Time Zone Settings on the Cisco 9336C RoCE Switch 4-78
4.13.5 Task 4: Change Time Zone Settings on the Ethernet Switch 4-79

4.14 Managing the KVM Switch 4-81
4.14.1 Configuring the KVM Switch 4-81
4.14.2 Configuring the KVM Switch to Access a Server 4-83
4.14.3 Accessing a Server Using the KVM Switch 4-84

5 Managing Oracle VM Domains on Oracle Exadata Database Machine

5.1 Oracle VM and Oracle Exadata Database Machine 5-3
5.1.1 About Oracle VM 5-3
5.1.2 Maximum Supported Virtual Machines on Oracle Exadata Database Machine 5-4
5.1.3 Supported Operations in the Management Domain (dom0) 5-4
5.1.4 Oracle VM Resources 5-5
 5.1.4.1 Storage Configuration for Management Domain 5-5
 5.1.4.2 Storage Configuration for User Domain 5-6
5.2 Migrating a Bare Metal Oracle RAC Cluster to an Oracle RAC Cluster in Oracle VM 5-7
5.3 Showing Running Domains 5-8
5.4 Monitoring a User Domain Console 5-9
5.5 Monitoring Oracle VMs with Oracle Enterprise Manager 5-9
5.6 Starting a User Domain 5-9
5.7 Disabling User Domain Automatic Start 5-10
5.8 Shutting Down a User Domain From Within the User Domain 5-10
5.9 Shutting Down a User Domain From Within the Management Domain 5-10
5.10 Backing Up and Restoring Oracle Databases on Oracle VM User Domains 5-11
5.11 Modifying the Memory Allocated to a User Domain 5-11
5.12 Modifying the Number of Virtual CPUs Allocated to a User Domain 5-13
5.13 Increasing the Disk Space in a User Domain 5-14
 5.13.1 Adding a New LVM Disk to a User Domain 5-15
 5.13.2 Increasing the Size of the root File System 5-18
 5.13.3 Increasing the Size of the /u01 File System 5-20
 5.13.4 Increasing the Size of the Grid Infrastructure Home or Database Home File System 5-21
 5.13.5 Increasing the Size of the Swap Area 5-23
5.14 Expanding /EXAVMIMAGES After Adding the Database Server Disk Expansion Kit 5-24
 5.14.1 Expanding /EXAVMIMAGES on Management Domain on Release 18.1.x or Later 5-24
 5.14.2 Expanding /EXAVMIMAGES on Management Domain on Release 12.2.x 5-29
 5.14.3 Expanding /EXAVMIMAGES on Management Domain on Releases Earlier than 12.2.x 5-33
5.15 Creating Oracle VM Oracle RAC Clusters 5-37
5.16 Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLl 5-40
5.17 Creating a User Domain Without Oracle Grid Infrastructure and Oracle Database 5-44
5.18 Moving a User Domain to a Different Database Server 5-46
5.19 Backing up the Management Domain and User Domains in an Oracle VM Deployment 5-47
 5.19.1 Backing up the Management Domain dom0 Using Snapshot-Based Backup 5-47
 5.19.2 Backing up the User Domains 5-49
 5.19.2.1 Method 1: Back up All the User Domains 5-50
5.19.2.2 Method 2: Back up Individual User Domains 5-51
5.19.2.3 Method 3: Back up a User Domain from Inside the User Domain 5-53

5.20 Recovering an Oracle VM Deployment 5-55
5.20.1 Overview of Snapshot-Based Recovery of Database Servers 5-55
5.20.2 Scenario 1: Recovering a Management Domain and Its User Domains from Backup 5-56
5.20.2.1 Recovering a Management Domain and Its User Domains (Releases Prior to 12.2.1.1.0) 5-57
5.20.2.2 Recovering a Management Domain and Its User Domains (Releases 12.2.1.1.0 and Later) 5-63
5.20.2.3 Recovering a Management Domain and Its User Domains (Release 18.1 and X7 and Later) 5-69
5.20.3 Scenario 2: Re-imaging the Management Domain and Restoring User Domains from Backup 5-78
5.20.4 Scenario 3: Restoring and Recovering User Domains from Snapshot Backups 5-81

5.21 Removing an Oracle RAC Cluster Running in Oracle VM 5-82
5.22 Deleting a User Domain from an Oracle VM Oracle RAC Cluster 5-85
5.23 Implementing Tagged VLAN Interfaces 5-86
5.24 Implementing InfiniBand Partitioning across Oracle VM Oracle RAC Clusters on Oracle Exadata Database Machine 5-88
5.24.1 About InfiniBand Partitioning Across Oracle RAC Clusters Running in Oracle VM 5-89
5.24.2 Requirements for Implementing InfiniBand Partitioning across OVM RAC Clusters 5-91
5.24.3 About InfiniBand Partitioning Network Configuration 5-92
5.24.4 Configuring InfiniBand Partitioning across Oracle VM RAC Clusters 5-92
5.24.5 Implementing InfiniBand Partitioning across OVM RAC Clusters: Setting up Limited Membership 5-102

5.25 Running Oracle EXAchk in Oracle VM Environments 5-105

6 Managing Oracle VM Domains Using KVM

6.1 Oracle VM and Oracle Exadata Database Machine 6-2
6.1.1 About Oracle VM 6-3
6.1.2 Maximum Supported Virtual Machines on Oracle Exadata Database Machine 6-4
6.1.3 Supported Operations in the KVMHost 6-4
6.1.4 Oracle VM Resources 6-4
6.2 Migrating a Bare Metal Oracle RAC Cluster to an Oracle RAC Cluster in Oracle VM 6-5
6.3 Showing Running Domains 6-6
6.4 Starting a Guest 6-6
6.5 Monitoring a Guest Console During Startup 6-7
6.6 Disabling Guest Automatic Start 6-7
6.7 Shutting Down a User Domain From Within the User Domain 6-7
6.8 Shutting Down a Guest From Within the kvmhost 6-8
6.9 Backing Up and Restoring Oracle Databases on KVM Guests 6-8
6.10 Modifying the Memory Allocated to a Guest 6-8
6.11 Modifying the Number of Virtual CPUs Allocated to a Guest 6-9
6.12 Increasing the Disk Space in a User Domain 6-10
 6.12.1 Adding a New LVM Disk to a Guest 6-10
 6.12.2 Increasing the Size of the root File System 6-13
 6.12.3 Increasing the Size of the /u01 File System 6-15
 6.12.4 Increasing the Size of the Grid Infrastructure Home or Database Home File System 6-17
 6.12.5 Increasing the Size of the Swap Area 6-18
6.13 Expanding /EXAVMIMAGES on the kvmhost 6-20
6.14 Creating Oracle VM Oracle RAC Clusters 6-24
6.15 Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI 6-27
6.16 Moving a Guest to a Different Database Server 6-31
6.17 Implementing Tagged VLAN Interfaces 6-32
6.18 About RDMA Network Fabric Partitioning Across Oracle RAC Clusters Running in Oracle VM 6-34
6.19 Using Oracle EXAchk in Oracle VM Environments 6-35
 6.19.1 Running Oracle EXAchk in Oracle VM Environments 6-35
 6.19.2 Audit Checks Performed by Oracle EXAchk 6-36
 6.19.3 Oracle EXAchk Command Line Options for Oracle Exadata Database Machine 6-36

7 Updating Exadata Software

7.1 About Updating Exadata Software 7-2
7.2 Planning for Software Maintenance 7-3
 7.2.1 Understanding Exadata Database Machine Software and Updates 7-3
 7.2.1.1 What Software Do You Update on Oracle Exadata Database Machine? 7-3
 7.2.1.2 Software Release Types 7-5
 7.2.1.3 Software Release Availability 7-6
 7.2.1.4 Software Update Frequency 7-7
 7.2.1.5 Software Update Utilities 7-10
 7.2.2 Configuration and Operational Best Practices for Software Maintenance 7-13
 7.2.2.1 Understanding Rolling and Non-Rolling Updates 7-14
 7.2.2.2 Online Updates for Oracle Linux Kernel and Oracle Database Interim Fixes 7-16
 7.2.2.3 Configuration Practices for Optimal Software Maintenance 7-16
 7.2.2.4 Operational Practices for Optimal Software Maintenance 7-19
7.5.9.3 Downloading the ISO Image as a YUM Repository from My Oracle Support and Making It Available as a YUM HTTP Repository on a Web Server 7-52

7.5.10 Managing Exadata Obsoleted Packages 7-53
7.5.11 Updating Individual Packages 7-54
7.5.12 Running Prerequisite Checks 7-55
7.5.13 Backing up Exadata Database Servers Before Planned Maintenance 7-57
7.5.14 Running the Update 7-59
7.5.15 Rolling Back Updates 7-60

7.6 Updating Database Servers Running Oracle Exadata System Software Release 11.2.2.4.2 7-62
7.6.1 Preparing to Use the dbnodeupdate.sh Utility on Database Servers with Release 11.2.2.4.2 7-62
7.6.2 Running the dbnodeupdate.sh Utility 7-63

7.7 Updating Software on Oracle Exadata Storage Servers 7-64
7.7.1 Overview of Oracle Exadata Database Machine Storage Server Updates 7-64
7.7.2 Scheduling Automated Updates of Storage Servers 7-65
7.7.3 Update Utility for Oracle Exadata Storage Server 7-66
7.7.4 Recommended Timeline for Updating Oracle Exadata Storage Server 7-67
7.7.5 Preparing Exadata Storage Servers for Update 7-68
7.7.6 Running the Update for Exadata Storage Servers 7-72
7.7.7 Rolling Back Updates for Exadata Storage Servers 7-73

7.8 Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware 7-74
7.8.1 Preparing for InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Upgrades or Downgrades 7-75
7.8.2 Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Software 7-78
7.8.3 Downgrading InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware 7-78

7.9 Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware 7-79
7.9.1 Preparing for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Updates 7-80
7.9.2 Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Software 7-82
7.9.3 Downgrading InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware 7-83

7.10 Upgrading Oracle Java SE on Oracle Linux 7-84
7.10.1 Stop the MS Process 7-85
7.10.2 Download and Update the Java JDK Package 7-85
7.10.2.1 Using YUM and ULN to Update the JDK Package on Database Servers 7-86
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.10.2.2</td>
<td>Manually Update the JDK Package on Oracle Exadata System</td>
<td>7-91</td>
</tr>
<tr>
<td></td>
<td>Software versions 12.1.2.1.0 to 12.1.2.2.0</td>
<td></td>
</tr>
<tr>
<td>7.10.2.3</td>
<td>Manually Update the JDK Package on Oracle Exadata System</td>
<td>7-92</td>
</tr>
<tr>
<td></td>
<td>Software Release 12.1.2.2.1 and Later</td>
<td></td>
</tr>
<tr>
<td>7.10.3</td>
<td>Reconfigure Management Server (MS)</td>
<td>7-93</td>
</tr>
<tr>
<td>7.11</td>
<td>Setting up SSH Equivalence</td>
<td>7-94</td>
</tr>
<tr>
<td>7.12</td>
<td>Troubleshooting Software Updates on Oracle Exadata Database Machine</td>
<td>7-95</td>
</tr>
<tr>
<td>7.12.1</td>
<td>Troubleshooting Exadata Database Server Updates</td>
<td>7-96</td>
</tr>
<tr>
<td>7.12.2</td>
<td>Monitoring, Validating, and Troubleshooting Exadata Storage Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updates</td>
<td></td>
</tr>
<tr>
<td>7.12.3</td>
<td>Troubleshooting a Failing Prerequisite Check Due to Dependency</td>
<td>7-97</td>
</tr>
<tr>
<td></td>
<td>Problems on Exadata Database Server</td>
<td></td>
</tr>
<tr>
<td>7.12.4</td>
<td>Troubleshooting a Multilib Problem on Exadata Database Server</td>
<td>7-99</td>
</tr>
</tbody>
</table>

8 Using the DBMCLI Utility

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Overview of the DBMCLI Utility</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Starting DBMCLI</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Understanding Command Syntax and Options for DBMCLI</td>
<td>8-2</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Reserved Words</td>
<td>8-3</td>
</tr>
<tr>
<td>8.1.4</td>
<td>DBMCLI Command-Line Editing</td>
<td>8-4</td>
</tr>
<tr>
<td>8.1.5</td>
<td>DBMCLI Input and Output Options</td>
<td>8-4</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Comments in DBMCLI Scripts</td>
<td>8-4</td>
</tr>
<tr>
<td>8.1.7</td>
<td>Line Continuation in DBMCLI Commands</td>
<td>8-4</td>
</tr>
<tr>
<td>8.2</td>
<td>About DBMCLI Administration Commands</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3</td>
<td>About DBMCLI Object Commands</td>
<td>8-5</td>
</tr>
<tr>
<td>8.4</td>
<td>About DBMCLI Object Types</td>
<td>8-5</td>
</tr>
<tr>
<td>8.5</td>
<td>DBMCLI Object Attributes</td>
<td>8-6</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Restrictions on Values of Common Attributes</td>
<td>8-6</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Attribute Lists in LIST Command</td>
<td>8-7</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Attribute Filters in LIST Commands</td>
<td>8-7</td>
</tr>
<tr>
<td>8.6</td>
<td>Monitoring Database Server with Metrics</td>
<td>8-8</td>
</tr>
<tr>
<td>8.6.1</td>
<td>About Metrics</td>
<td>8-8</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Displaying Metrics</td>
<td>8-9</td>
</tr>
<tr>
<td>8.6.2.1</td>
<td>Displaying Specific Attributes for Metrics</td>
<td>8-9</td>
</tr>
<tr>
<td>8.6.2.2</td>
<td>Displaying Metric Definitions</td>
<td>8-10</td>
</tr>
<tr>
<td>8.6.2.3</td>
<td>Displaying Current Metrics</td>
<td>8-10</td>
</tr>
<tr>
<td>8.6.2.4</td>
<td>Displaying Metric History</td>
<td>8-11</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Database Server Metrics</td>
<td>8-11</td>
</tr>
<tr>
<td>8.7</td>
<td>DBMCLI Command Reference</td>
<td>8-12</td>
</tr>
<tr>
<td>8.7.1</td>
<td>ALTER</td>
<td>8-13</td>
</tr>
<tr>
<td>8.7.1.1</td>
<td>ALTER ALERTHISTORY</td>
<td>8-14</td>
</tr>
</tbody>
</table>
8.7.1.2 ALTER DBSERVER 8-14
8.7.1.3 ALTER IBPORT 8-28
8.7.1.4 ALTER THRESHOLD 8-28
8.7.1.5 ALTER USER 8-29

8.7.2 CREATE 8-29
8.7.2.1 CREATE DBSERVER 8-30
8.7.2.2 CREATE DIAGPACK 8-32
8.7.2.3 CREATE ROLE 8-36
8.7.2.4 CREATE THRESHOLD 8-36
8.7.2.5 CREATE USER 8-38

8.7.3 DESCRIBE 8-38
8.7.3.1 DESCRIBE ALERTDEFINITION 8-39
8.7.3.2 DESCRIBE ALERTHISTORY 8-40
8.7.3.3 DESCRIBE DBSERVER 8-41
8.7.3.4 DESCRIBE IBPORT 8-46
8.7.3.5 DESCRIBE LUN 8-48
8.7.3.6 DESCRIBE METRICCURRENT 8-49
8.7.3.7 DESCRIBE METRICDEFINITION 8-50
8.7.3.8 DESCRIBE METRIC HISTORY 8-51
8.7.3.9 DESCRIBE PHYSICALDISK 8-52
8.7.3.10 DESCRIBE ROLE 8-54
8.7.3.11 DESCRIBE THRESHOLD 8-55
8.7.3.12 DESCRIBE USER 8-56

8.7.4 DROP 8-56
8.7.4.1 DROP ALERTHISTORY 8-57
8.7.4.2 DROP DBSERVER 8-58
8.7.4.3 DROP ROLE 8-58
8.7.4.4 DROP THRESHOLD 8-58
8.7.4.5 DROP USER 8-59

8.7.5 GRANT 8-59
8.7.5.1 GRANT PRIVILEGE 8-60
8.7.5.2 GRANT ROLE 8-61

8.7.6 HELP 8-62

8.7.7 LIST 8-62
8.7.7.1 LIST ALERTDEFINITION 8-64
8.7.7.2 LIST ALERTHISTORY 8-64
8.7.7.3 LIST DBSERVER 8-65
8.7.7.4 LIST DIAGPACK 8-67
8.7.7.5 LIST IBPORT 8-68
8.7.7.6 LIST LUN 8-69
8.7.7.7 LIST METRICCURRENT 8-70
9 Using the ExaCLI Utility

9.1 ExaCLI Command Reference 9-1
9.2 ExaCLI Security 9-6
9.3 Creating Users for Use with ExaCLI 9-6
9.4 Differences in Commands Between ExaCLI and DBMCLI/CellCLI 9-7
9.5 Certificates 9-8
 9.5.1 Using the Default Self-Signed Certificate 9-9
 9.5.2 Using a CA-Certified Security Certificate 9-9
9.6 Executing Commands Remotely Using URLs 9-10

10 Using the exadcli Utility

10.1 exadcli Command Reference 10-1
10.2 Using exadcli for the First Time 10-5
10.3 exadcli Examples 10-6

11 Replacement Units

11.1 Understanding Repair Categories 11-2
11.2 Regulatory and Certificate Compliance 11-3
11.3 Compliance with the European Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Directive 11-4
11.4 Managing Disk Controller Batteries 11-4
 11.4.1 About Disk Controller Batteries 11-5
 11.4.2 Monitoring Batteries in the Database Servers 11-5
 11.4.3 Replacing Batteries in Disk Controllers 11-6
11.5 Managing F20 PCIe Energy Storage Modules 11-6
 11.5.1 About F20 PCIe Energy Storage Modules 11-6
11.5.2 Replacing Flash ESM

11.6 LED Status Descriptions

11.6.1 Exadata Database Server X5-2 and later LEDs
11.6.2 Sun Server X4-2 Oracle Database Server LEDs
11.6.3 Sun Server X3-2 Oracle Database Server LEDs
11.6.4 Sun Fire X4170 M2 Oracle Database Server LEDs
11.6.5 Sun Fire X4170 Oracle Database Server LEDs
11.6.6 Exadata Database Server X5-8 and Later LEDs
11.6.7 Sun Server X4-8 Oracle Database Server LEDs
11.6.8 Sun Server X2-8 Oracle Database Server LEDs
11.6.9 Sun Fire X4800 Oracle Database Server LEDs
11.6.10 Exadata Storage Server X7-2 and X8-2 LEDs
11.6.11 Exadata Storage Server X5-2 Servers
11.6.12 Exadata Storage Server X4-2L Servers
11.6.13 Exadata Storage Server X3-2 Servers
11.6.14 Exadata Storage Server with Sun Fire X4270 M2 Servers
11.6.15 Exadata Storage Server with Sun Fire X4275 Servers LEDs
11.6.16 Sun Flash Accelerator F20 PCIe Card LEDs
11.6.17 Sun Datacenter InfiniBand Switch 36 Switch LEDs
11.6.18 Cisco Nexus 9336C-FX2 Switch LEDs

11.7 Parts and Repair Procedures for Oracle Database Servers

11.7.1 Oracle Server X8-2 and X8M-2 Database Server Parts
11.7.2 Oracle Server X7-2 Oracle Database Server Parts
11.7.3 Oracle Server X6-2 Oracle Database Server Parts
11.7.4 Oracle Server X5-2 Oracle Database Server Parts
11.7.5 Sun Server X4-2 Oracle Database Server Parts
11.7.6 Sun Server X3-2 Oracle Database Server Parts
11.7.7 Sun Fire X4170 M2 Oracle Database Server Parts
11.7.8 Sun Fire X4170 Oracle Database Server Parts
11.7.9 Oracle Server X8M-8 and X8-8 Database Server Parts
11.7.10 Oracle Server X7-8 Oracle Database Server Parts
11.7.11 Oracle Server X5-8 and X6-8 Oracle Database Server Parts
11.7.12 Sun Server X4-8 Oracle Database Server Parts
11.7.13 Sun Server X2-8 Oracle Database Server Parts
11.7.14 Sun Fire X4800 Oracle Database Server Parts

11.8 Parts for Exadata Storage Servers

11.8.1 Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and Extended (XT) Server Parts
11.8.2 Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash Parts
11.8.3 Oracle Exadata Storage Server X7-2 High Capacity Server Parts
11.8.4 Oracle Exadata Storage Server X7-2 Extreme Flash Parts
11.8.5 High Capacity Exadata Storage Server X6-2 Servers Parts 11-162
11.8.6 Extreme Flash Exadata Storage Server X6-2 Servers Parts 11-167
11.8.7 High Capacity Exadata Storage Server X5-2 Servers Parts 11-171
11.8.8 Extreme Flash Exadata Storage Server X5-2 Servers Parts 11-175
11.8.9 Exadata Storage Server X4-2L Servers Parts 11-182
11.8.10 Exadata Storage Server X3-2L Servers Parts 11-189
11.8.11 Exadata Storage Server with Sun Fire X4270 M2 Servers Parts 11-199
11.8.12 Exadata Storage Server with Sun Fire X4275 Servers Parts 11-215

11.9 Parts for RDMA Network Fabric Switches 11-234
 11.9.1 Parts for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches 11-234
 11.9.2 Parts for InfiniBand Transport Layer systems based on a RoCE Network Layer Switches 11-237

11.10 Parts for Cisco Switch 11-239
 11.10.1 Parts for Cisco Catalyst 4948 Switch 11-240
 11.10.2 Parts for Cisco Nexus 9348 Switch 11-241
 11.10.3 Parts for Cisco Nexus 93108TC Switch 11-244

11.11 Parts for KVM Switch and KMM Tray 11-246
11.12 Parts for Power Distribution Units 11-247
11.13 Cables and Cable Accessories for Oracle Exadata Rack 11-249

Index
Preface

This guide describes the maintenance procedures for Oracle Exadata Database Machine. It includes information about maintenance and repair, as well as replacement parts information.

• Audience
• Documentation Accessibility
• Related Documentation
• Conventions

Audience

This guide is intended for Oracle Exadata Database Machine customers and those responsible for data center site planning, configuration, and maintenance of Oracle Exadata Database Machine.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documentation

In addition to the Oracle Exadata Database Machine documentation set, the following guides contain hardware information for Oracle Exadata Database Machine:

• Oracle Exadata Database Machine System Overview
• Oracle Exadata Database Machine Security Guide
• Oracle Engineered System Safety and Compliance Guide, Compliance Model No.: ESY27
• Oracle Engineered Systems Extending and Multi-Rack Cabling Guide
• Oracle Exadata Database Machine Maintenance Guide
• Oracle Exadata System Software User’s Guide
Preface
The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
<tr>
<td><code>$</code> prompt</td>
<td>The dollar sign ($) prompt indicates a command run as the oracle user.</td>
</tr>
<tr>
<td><code>#</code> prompt</td>
<td>The pound (#) prompt indicates a command that is run as the root user.</td>
</tr>
</tbody>
</table>
This chapter contains topics about general maintenance of Oracle Exadata Database Machine.

Note:
For ease of reading, the name "Oracle Exadata Rack" is used when information refers to both Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.

All procedures in this chapter are applicable to Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.

• **Overview of Roles and Responsibilities**
 You should determine which individuals or groups are responsible for resolving any issue that arises.

• **Powering On and Off Oracle Exadata Rack**
 This section contains the procedures for powering on and off the components of an Oracle Exadata Rack.

• **Using Auto Service Request to Manage Hardware Faults**
 Auto Service Request (ASR) is designed to automatically open service requests when specific Oracle Exadata Rack hardware faults occur.

• **Monitoring the System Using Oracle Enterprise Manager Cloud Control**

• **Monitoring the System Using Oracle Configuration Manager**
 Oracle Configuration Manager collects configuration information and uploads it to the Oracle repository.

• **Changing Component Passwords**
 The passwords for the components can be changed after initial configuration.

• **Determining the Server Model**
 Use the `exadata.img.hw` command to determine the model of the cell or database server.

• **Monitoring Ambient Temperature of Servers**

• **Replacing a Disk Controller Battery Backup Unit**

• **Overview of the dbmsrv Service**

• **Configuring Password Expiration for Users Accessing the Server Remotely**
 You can configure `DBSERVER` attributes to expire user passwords.

• **State of Storage Server and Database Servers During Configuration Changes**
 Before a change to a configuration, determine if the database and storage servers need to be offline or online.

• **Rescue Plan**
• Using ExaWatcher Charts to Monitor Oracle Exadata Database Machine Performance

ExaWatcher is a utility that collects performance data on the storage servers and database servers of an Exadata system. The data collected includes operating system statistics, such as iostat, cell statistics (cellsrvstat), and network statistics.

1.1 Overview of Roles and Responsibilities

You should determine which individuals or groups are responsible for resolving any issue that arises.

Most IT organizations have teams of database administrators, system administrators, network administrators, and storage administrators. These administrators are responsible for system implementation and ongoing operations. In an Oracle Exadata Database Machine environment, it is usually more efficient and effective to have the database administrator take the lead role for Oracle Exadata Database Machine management, with assistance from the system administrator. This is because Oracle Exadata Database Machine is engineered to run Oracle Database, and administration is specific to Oracle Database and Oracle Exadata System Software. The other teams may have distinct responsibilities or be a second level of support to provide assistance.

Usually there is one individual or group that has primary responsibility for any issue that arises. This individual or group receives the first contact from Oracle Enterprise Manager Cloud Control, the help desk, or operations team when there is an issue on the system. For Oracle Exadata Database Machine, the primary contact is typically the database administrator. If the database administrator needs assistance from another team to resolve the issue, then they collaborate to resolve the issue. Ownership of the issue should remain clear.

• Common Administrative Tasks for Oracle Exadata Database Machine Management

Initial system deployment is usually performed by Oracle engineers. The primary responsibilities for the database administrator begin with typical operational tasks.

• Understanding the Administrative Differences with Oracle Exadata Database Machine

Most administration tasks are similar on Oracle Exadata Database Machine servers as on traditional database servers and storage servers, but there are some differences.

1.1.1 Common Administrative Tasks for Oracle Exadata Database Machine Management

Initial system deployment is usually performed by Oracle engineers. The primary responsibilities for the database administrator begin with typical operational tasks.
<table>
<thead>
<tr>
<th>Task or Event</th>
<th>Administrator</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow performance</td>
<td>Database administrator</td>
<td>Receive alerts from Oracle Enterprise Manager Cloud Control that performance thresholds have been exceeded.</td>
</tr>
<tr>
<td></td>
<td>System Administrator</td>
<td>Review system performance, CPU, memory and I/O on all servers for unusual trends.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review database performance, wait events, locking, parallelism, and execution plans.</td>
</tr>
<tr>
<td>Patch application or upgrades</td>
<td>Database administrator</td>
<td>Apply Oracle Exadata System Software patches or upgrades, and RDMA Network Fabric switch firmware upgrades.</td>
</tr>
<tr>
<td></td>
<td>System Administrator</td>
<td>Apply Oracle Database patches, Oracle Grid Infrastructure patches or upgrades.</td>
</tr>
<tr>
<td>System outage or failure</td>
<td>Database administrator</td>
<td>Connect to Integrated Lights Out Manager (ILOM), verify current system state, identify hardware issue or restart system, and review logs for root cause analysis.</td>
</tr>
<tr>
<td></td>
<td>System Administrator</td>
<td>Check surviving instances for errors, monitor performance on surviving instances, and verify application functionality has not been disrupted.</td>
</tr>
<tr>
<td>Suspected network issues</td>
<td>Database administrator</td>
<td>Inspect network interfaces for errors or dropped packets, check if any switches have restarted, and escalate to network administration team, as needed.</td>
</tr>
<tr>
<td></td>
<td>System Administrator</td>
<td>Inspect database-side performance to assess impact, if any.</td>
</tr>
<tr>
<td>Backup database</td>
<td>Database administrator</td>
<td>Run database backup routines, and ensure database server backups are completed.</td>
</tr>
<tr>
<td></td>
<td>System Administrator</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-1 (Cont.) Common Administrative Tasks for Oracle Exadata Database Machine Management

<table>
<thead>
<tr>
<th>Task or Event</th>
<th>Administrator</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed disk replacement</td>
<td>Database administrator System Administrator</td>
<td>Receive alerts about hardware replacement, verify Oracle Auto Service Request (ASR) has opened a service request, and verify operators will allow field service technician in the data center to replace drive or provide spare drive.</td>
</tr>
</tbody>
</table>

1.1.2 Understanding the Administrative Differences with Oracle Exadata Database Machine

Most administration tasks are similar on Oracle Exadata Database Machine servers as on traditional database servers and storage servers, but there are some differences.

The following list shows the differences and exceptions for Oracle Exadata Database Machine servers:

- Configuration settings for Oracle Exadata Database Machine database servers, RDMA Network Fabric switches, and other components have settings based on testing and performance criteria. Changing the configuration settings, such as database server firmware or kernel parameters, based on company policy or other reasons should be reviewed for the potential impact to Oracle Exadata Database Machine.

- Restarting a server incorrectly can disrupt the database. The storage servers have special procedures and guidelines that must be followed to minimize disruption, such as off-lining grid disks before restarting the server, and not restarting more than one server at a time.

- Storage servers cannot be modified the same way as the database servers. Network changes, such as those for the NTP servers or DNS servers, are done using the `ipconf` utility. Network changes cannot be done manually by editing the configuration files. In addition, no software or additional packages can be installed on the storage servers. This restriction includes monitoring software. Storage server system updates are provided by Oracle Exadata System Software upgrades.

- Storage servers do not require backups. A self-maintained internal USB drive or M.2 device that can be used for cell recovery. Backup clients cannot be installed on the storage servers.

- Oracle wait events in Oracle Real Application Clusters (Oracle RAC) databases using storage servers may include events with `%cell%` in the name. These events are related to the storage servers.

- The Oracle Database `V$CELL` views include rows for any database using Oracle Exadata Storage Server.
• Oracle Automatic Storage Management (Oracle ASM) disk path names are of the format \textit{o/cell_ip_address/cell_griddisk_name}, such as the following:

\texttt{o/192.168.10.1/data_CD_01_dm01cell01}

• SQL plans may include \texttt{storage} to indicate that some operations may be off-loaded to the storage servers.

• Operations such as backup and recovery use Oracle Recovery Manager (RMAN), and all data for backup and recovery continues to pass through the database instances. The backup clients for RMAN should be installed on the database servers in Oracle Exadata Database Machine to facilitate integration with enterprise backup solutions in the same way as in traditional environments.

• The practice of deploying one or more non-production environments for development, testing and quality assurance still apply for Oracle Exadata Database Machine environments.

Related Topics

• \texttt{Shutting Down Exadata Storage Server}
 When performing maintenance on Exadata Storage Servers, it may be necessary to power down or restart the cell.

• \texttt{Using the ipconf Utility}

1.2 Powering On and Off Oracle Exadata Rack

This section contains the procedures for powering on and off the components of an Oracle Exadata Rack.

• \texttt{Non-emergency Power Procedures}
 When the outage is planned, use these procedures for powering on and off the components of Oracle Exadata Rack in an orderly fashion.

• \texttt{Emergency Power-off Considerations}

• \texttt{Cautions and Warnings}

1.2.1 Non-emergency Power Procedures

When the outage is planned, use these procedures for powering on and off the components of Oracle Exadata Rack in an orderly fashion.

• \texttt{Powering On Oracle Exadata Rack}

• \texttt{Powering On Servers Remotely using ILOM}
 Servers can be powered on remotely using the Integrated Lights Out Manager (ILOM) interface.

• \texttt{Powering Off Oracle Exadata Rack}
 Power off the components of the Oracle Exadata Rack in the correct order.

• \texttt{Powering On and Off Network Switches}

1.2.1.1 Powering On Oracle Exadata Rack

Oracle Exadata Rack is powered on by either pressing the power button on the front of the servers, or by logging in to the ILOM interface, and applying power to the system.
When a database server is powered on and the operating system boots, Oracle Clusterware is automatically started, if it is installed. Oracle Clusterware then starts all resources that are configured to start automatically.

The power on sequence is as follows:

1. Rack, including switches.
 - Ensure the switches have had power applied for a few minutes to complete power-on configuration before starting Exadata Storage Servers.
2. Exadata Storage Servers.
 - Ensure all Exadata Storage Servers complete the boot process before starting the database servers. This may take five to ten minutes before all services start.
3. Database servers.

1.2.1.2 Powering On Servers Remotely using ILOM

Servers can be powered on remotely using the Integrated Lights Out Manager (ILOM) interface.

The ILOM can be accessed using the Web console, the command-line interface (CLI), IPMI, or SNMP. For example, to apply power to server `dm01cel01` using IPMI, where `dm01cel01-ilom` is the host name of the ILOM for the server to be powered on, run the following command from a server that has IPMItool installed:

```
# ipmitool -I lanplus -H dm01cel01-ilom -U root chassis power on
```

The preceding command causes the system to prompt for the password.

Related Topics

- Oracle Integrated Lights Out Manager (ILOM) Documentation

1.2.1.3 Powering Off Oracle Exadata Rack

Power off the components of the Oracle Exadata Rack in the correct order.

The power off sequence for Oracle Exadata Rack is as follows:

1. Database servers (Oracle Exadata Database Machine only).
2. Exadata Storage Servers.
3. Rack, including switches.
 - **Powering Off Database Servers**
 - **Powering Off Oracle Exadata Storage Servers**
 - Oracle Exadata Storage Servers are powered off and restarted using the Linux `shutdown` command.
 - **Powering Off Multiple Servers at the Same Time**
1.2.1.3.1 Powering Off Database Servers

When powering off database servers, Oracle Clusterware should be stopped prior to restarting or shutting down a database server. Oracle Clusterware is stopped using the following command:

crsctl stop cluster

The following procedure is the recommended shutdown procedure for database servers:

1. Stop Oracle Clusterware using the following command:

```
# GRID_HOME/grid/bin/crsctl stop cluster
```

If any resources managed by Oracle Clusterware are still running after issuing the crsctl stop cluster command, then the command fails. Use the -f option to unconditionally stop all resources, and stop Oracle Clusterware.

2. Shut down the operating system using the following command:

```
# shutdown -h now
```

1.2.1.3.2 Powering Off Oracle Exadata Storage Servers

Oracle Exadata Storage Servers are powered off and restarted using the Linux shutdown command.

The following command shuts down Oracle Exadata Storage Server immediately:

```
# shutdown -h now
```

When powering off Oracle Exadata Storage Servers, all storage services are automatically stopped.

If you use the -r option, then the shutdown command shuts down and then restarts Oracle Exadata Storage Server. The -now option indicates you want to stop the server immediately.

```
# shutdown -r now
```

Another system command to reboot a server is the reboot command. However, shutdown -r now is the preferred command to restart a server. You should never use the command reboot -f command to shut down Oracle Exadata Storage Servers.

Note:

Do not perform successive shutdown or reboot commands, which is essentially the same as reboot -f.

Note the following when powering off Oracle Exadata Storage Server:

- All database and Oracle Clusterware processes should be shut down prior to shutting down more than one Oracle Exadata Storage Server.
Powering off one Oracle Exadata Storage Server does not affect running database processes or Oracle Automatic Storage Management (Oracle ASM).

Powering off or restarting Oracle Exadata Storage Servers can impact database availability.

The `shutdown` commands can be used to power off or reboot Oracle Exadata Storage Server.

See Also:

- “Shutting Down Exadata Storage Server” if the databases or Oracle Clusterware will remain operational while powering down Oracle Exadata Storage Server
- SHUTDOWN(8) manual page for details.

1.2.1.3.3 Powering Off Multiple Servers at the Same Time

The `dcli` utility can be used to run the `shutdown` command on multiple servers at the same time. Do not run the `dcli` utility from a server that will be shut down. For example, to shut down all Exadata Storage Servers using the `dcli` utility, run the command from a database server. The following command shows the command syntax:

```
# dcli -l root -g group_name shutdown -h now
```

In the preceding syntax, `group_name` is the file that contains a list of all Exadata Storage Servers, `cell_group`, or database servers, `dbs_group`.

The following command shows the syntax to shut down all Exadata Storage Servers at the same time:

```
# dcli -l root -g cell_group shutdown -h now
```

Example 1-1 shows the power off procedure for Oracle Exadata Rack when using the `dcli` utility to shut down multiple servers at the same time. The commands are run from a database server.

Example 1-1 Powering Off Oracle Exadata Rack Using the dcli Utility

1. Stop Oracle Clusterware on all database servers using the following command:

   ```
   # GRID_HOME/grid/bin/crsctl stop cluster -all
   ```

2. Shut down all remote database servers using the following command:

   ```
   # dcli -l root -g remote_dbs_group shutdown -h now
   ```

 In the preceding command, `remote_dbs_group` is the file that contains a list of all the remote database servers.

3. Shut down all Exadata Storage Servers using the following command:

   ```
   # dcli -l root -g cell_group shutdown -h now
   ```

 In the preceding command, `cell_group` is the file that contains a list of all Exadata Storage Servers.
4. Shut down the local database server using the following command:

   ```
   shutdown -h now
   ```

5. Remove power from the rack.

1.2.1.4 Powering On and Off Network Switches

The network switches do not have power switches. They power off when power is removed, by way of the power distribution unit (PDU) or at the breaker in the data center.

1.2.2 Emergency Power-off Considerations

If there is an emergency, then power to Oracle Exadata Rack should be halted immediately. The following emergencies may require powering off Oracle Exadata Rack:

- Natural disasters such as earthquake, flood, hurricane, tornado or cyclone.
- Abnormal noise, smell or smoke coming from the machine.
- Threat to human safety.

- **Emergency Power-off Procedure**
- **Emergency Power-off Switch**

1.2.2.1 Emergency Power-off Procedure

To perform an emergency power-off procedure for Oracle Exadata Rack, turn off power at the circuit breaker or pull the emergency power-off switch in the computer room. After the emergency, contact Oracle Support Services to restore power to the machine.

1.2.2.2 Emergency Power-off Switch

Emergency power-off (EPO) switches are required when computer equipment contains batteries capable of supplying more than 750 volt-amperes for more than five minutes. Systems that have these batteries include internal EPO hardware for connection to a site EPO switch or relay. Use of the EPO switch removes power from Oracle Exadata Rack.

1.2.3 Cautions and Warnings

The following cautions and warnings apply to Oracle Exadata Rack:

- Do not touch the parts of this product that use high-voltage power. Touching them might result in serious injury.
- Do not power off Oracle Exadata Rack unless there is an emergency. In that case, follow the **Emergency Power-off Procedure**.
- Keep the front and rear cabinet doors closed. Failure to do so might cause system failure or result in damage to hardware components.
- Keep the top, front, and back of the cabinets clear to allow proper airflow and prevent overheating of components.
1.3 Using Auto Service Request to Manage Hardware Faults

Auto Service Request (ASR) is designed to automatically open service requests when specific Oracle Exadata Rack hardware faults occur.

- **Understanding Auto Service Request**
- **Installing and Configuring ASR**

Oracle recommends installing Oracle Auto Service Request (ASR) on a standalone server running Oracle Solaris or Oracle Linux.

1.3.1 Understanding Auto Service Request

When a hardware problem is detected, Oracle ASR Manager submits a service request to Oracle Support Services. In many cases, Oracle Support Services can begin work on resolving the issue before the database administrator is even aware the problem exists. Oracle Auto Service Request (ASR) is designed to automatically open service requests when specific Oracle Exadata Rack hardware faults occur.

To enable this feature, the Oracle Exadata Rack components must be configured to send hardware fault telemetry to the Oracle ASR Manager software. This service covers components in storage servers and Oracle Database servers, such as disks and flash cards.

Oracle ASR Manager must be installed on a server that has connectivity to Oracle Exadata Rack, and an outbound Internet connection using HTTPS or an HTTPS proxy. Oracle recommends that Oracle ASR Manager be installed on a server outside of Oracle Exadata Rack. The following are some of the reasons for the recommendation:

- If the server that has Oracle Exadata Rack installed goes down, then Oracle Exadata Rack is unavailable for the other components of Oracle Exadata Database Machine. This is very important when there are several Oracle Exadata Database Machines using Oracle ASR at a site.
- In order to submit a service request (SR), the server must be able to access the Internet.

Note:

Oracle ASR can only use the management network. Ensure the management network is set up to allow Oracle ASR to run.

Prior to using Oracle ASR, the following must be set up:

- Oracle Premier Support for Systems or Oracle/Sun Limited Warranty
- Technical contact responsible for Oracle Exadata Rack
- Valid shipping address for Oracle Exadata Rack parts

An e-mail message is sent to the technical contact for the activated asset to notify the creation of the service request. The following are examples of the disk failure Simple Network Management Protocol (SNMP) traps sent to Oracle ASR Manager.
Note:

- Oracle ASR is applicable only for component faults. Not all component failures are covered, though the most common components such as disk, fan, and power supplies are covered.

- Oracle ASR is not a replacement for other monitoring mechanisms, such as SMTP, and SNMP alerts, within the customer data center. Oracle ASR is a complementary mechanism that expedites and simplifies the delivery of replacement hardware. Oracle ASR should not be used for downtime events in high-priority systems. For high-priority events, contact Oracle Support Services directly.

- There are occasions when a service request may not be automatically filed. This can happen because of the unreliable nature of the SNMP protocol, or loss of connectivity to the Oracle ASR Manager. Oracle recommends that customers continue to monitor their systems for faults, and call Oracle Support Services if they do not receive notice that a service request has been automatically filed.

- Oracle ASR can monitor Sun Datacenter InfiniBand Switch 36 switches that have firmware release 2.1.2 and later in Oracle Exadata Database Machines running Oracle Exadata System Software release 11.2.3.3.0 or later. Switches may need a field engineer to set the entitlement serial number.

Example 1-2 Example of Exadata Storage Server SNMP Trap

This example shows the SNMP trap for a storage server disk failure. The corresponding hardware alert code has been highlighted.

```
2011-09-07 10:59:54 server1.example.com [UDP: [192.85.884.156]:61945]:
RFC1213-MIB::sysUpTime.0 = Timeticks: (52455631) 6 days, 1:42:36.31
SNMPv2-SMI::snmpModules.1.1.4.1.0 = OID: SUN-HW-TRAP-MIB::sunHwTrapHardDriveFault
SUN-HW-TRAP-MIB::sunHwTrapSystemIdentifier = STRING: Sun Oracle Database Machine
1007AK215C
SUN-HW-TRAP-MIB::sunHwTrapChassisId = STRING: 0921XFG004
SUN-HW-TRAP-MIB::sunHwTrapProductName = STRING: SUN FIRE X4270 M2 SERVER
SUN-HW-TRAP-MIB::sunHwTrapSuspectComponentName = STRING: SEAGATE ST32000SSSUN2.0T;
Slot: 0SUN-HW-TRAP-MIB::sunHwTrapFaultClass = STRING: NULL
SUN-HW-TRAP-MIB::sunHwTrapFaultCertainty = INTEGER: 0
SUN-HW-TRAP-MIB::sunHwTrapFaultMessageID = STRING: HALRT-02001
SUN-HW-TRAP-MIB::sunHwTrapFaultUUID = STRING: acb0a175-70b8-435f-9622-38a9a55ee8d3
SUN-HW-TRAP-MIB::sunHwTrapAssocObjectId = OID: SNMPv2-SMI::zeroDotZero
SUN-HW-TRAP-MIB::sunHwTrapAdditionalInfo = STRING: Exadata Storage Server: cellname Disk Serial Number: E06S8K
server1.example.com failure trap.
```
Example 1-3 Example of Oracle Database Server SNMP Trap

This example shows the SNMP trap from an Oracle database server disk failure. The corresponding hardware alert code has been highlighted.

2011-09-09 10:59:54 dbserv01.example.com [UDP: [192.22.645.342]:61945]:
RFC1213-MIB::sysUpTime.0 = Timeticks: (52455631) 6 days, 1:42:36.31
SNMPv2-SMI::snmpModules.1.1.4.1.0 = OID: SUN-HW-TRAP-MIB::sunHwTrapHardDriveFault
SUN-HW-TRAP-MIB::sunHwTrapSystemIdentifier = STRING: Sun Oracle Database Machine
1007AK215C
SUN-HW-TRAP-MIB::sunHwTrapChassisId = STRING: 0921XFG004
SUN-HW-TRAP-MIB::sunHwTrapProductName = STRING: SUN FIRE X4170 M2 SERVER
SUN-HW-TRAP-MIB::sunHwTrapSuspectComponentName = STRING: HITACHI H103030SCSUN300G
Slot: OSUN-HW-TRAP-MIB::sunHwTrapFaultClass = STRING: NULL
SUN-HW-TRAP-MIB::sunHwTrapFaultCertainty = INTEGER: 0
SUN-HW-TRAP-MIB::sunHwTrapFaultMessageID = STRING: HALRT-02007
SUN-HW-TRAP-MIB::sunHwTrapFaultUUID = STRING: acb0a175-70b8-435f-9622-38a9a5ee8b3
SUN-HW-TRAP-MIB::sunHwTrapAssocObjectId = OID: SNMPv2-SMI::zeroDotZero
SUN-HW-TRAP-MIB::sunHwTrapAdditionalInfo = STRING: Exadata Database Server: db03
Disk Serial Number: HITACHI H103030SCSUN300GA2A81019GGDE5E
dbserv01.example.com failure trap.

Related Topics

• About Oracle Auto Service Request

1.3.2 Installing and Configuring ASR

Oracle recommends installing Oracle Auto Service Request (ASR) on a standalone server running Oracle Solaris or Oracle Linux.

After installation is complete, configure fault telemetry destinations for the servers on Oracle Exadata Database Machine. The Oracle Exadata Database Machine servers can be set up during initial configuration. Oracle Exadata Deployment Assistant (OEDA) collects the configuration information, and then configures the servers.

Note:

When configuring the Integrated Lights Out Manager (ILOM) alert settings, do not remove the rules at the top of the rule list. To add a new rule, enter the rule at the bottom of the rule list.

• To install and configure Oracle ASR after initial configuration, refer to the installation and configuration information available in Oracle Auto Service Request Quick Installation Guide for Oracle Exadata Database Machine.
1.4 Monitoring the System Using Oracle Enterprise Manager Cloud Control

Oracle Exadata Database Machine can be monitored by Oracle Enterprise Manager Cloud Control agents using the Oracle Exadata Plug-in and the Oracle Systems Infrastructure Plug-in. The Oracle Exadata Database Machine is discovered and monitored as a system target in Oracle Enterprise Manager Cloud Control. Individual database servers, storage servers, and switches are grouped together under the system target for the Oracle Exadata Database Machine so they can be monitored as a group.

The Oracle Exadata Storage Server metrics are collected and managed by Management Server (MS). When used with Oracle Enterprise Manager Cloud Control, the metrics are presented as Oracle Enterprise Manager Cloud Control metrics.

All Exadata server alerts are delivered to Oracle Enterprise Manager Cloud Control using SNMP. The Exadata hardware and software components are monitored by Integrated Lights Out Manager (ILOM) and Oracle Exadata System Software in the following ways:

- Hardware components are monitored by ILOM. When a hardware component reports a failure or an exceeded threshold, ILOM reports the failure as an SNMP trap to MS. MS processes the trap, creates an alert, and delivers the alert to the Oracle Enterprise Manager Cloud Control agent.

- Hardware and software components are also monitored by MS directly. When a failure or threshold is exceeded, MS processes the trap, creates an alert, and delivers the alert to the Oracle Enterprise Manager Cloud Control agent.

From the end-user perspective, there is no difference between the two types of alerts. The alert message contains the corrective action to resolve the alert.
1.5 Monitoring the System Using Oracle Configuration Manager

Oracle Configuration Manager collects configuration information and uploads it to the Oracle repository.

When the configuration information is uploaded daily, Oracle Support Services can analyze the data and provide better service. When a service request is logged, the configuration data is associated with the service request. The following are some of the benefits of Oracle Configuration Manager:

- Reduced time for problem resolution
- Proactive problem avoidance
- Improved access to best practices, and the Oracle knowledge base
- Improved understanding of the customer's business needs
- Consistent responses and services

The Oracle Configuration Manager software is installed and configured in each ORACLE_HOME directory on a server. For clustered databases, only one instance is configured for Oracle Configuration Manager. A configuration script is run on every database on the server. The Oracle Configuration Manager collectors then send their data to a centralized Oracle repository.

Related Topics

- Oracle Configuration Manager Installation and Administration Guide
- Oracle Configuration Manager Collection Overview

1.6 Changing Component Passwords

The passwords for the components can be changed after initial configuration.

- Changing the Database Server Passwords
• Changing the Exadata Storage Server Passwords
• Changing the Power Distribution Unit Password
• Changing the ILOM Password
• Changing the Password for the RDMA Network Fabric Switch
 You can change the password for the RDMA Network Fabric switch after the initial configuration of your rack.
• Changing the Ethernet Switch Password
 To change the password for the Ethernet switch, you must connect to the switch and run a command on the switch.
• Changing the KVM Password

1.6.1 Changing the Database Server Passwords

The user accounts and GRUB passwords can be changed on the database servers. The default user accounts on the database server are root, and the software owner account. Typically the software owner account is oracle or grid.

• Changing the User Account Password on the Database Server
 Use the operating system passwd command to change user passwords.

• Changing the GRUB Account Password on the Database Server
 Use the host_access_control script to change the GRUB account password on database servers.

1.6.1.1 Changing the User Account Password on the Database Server

Use the operating system passwd command to change user passwords.

• Use the following command at the operating system prompt to change the user accounts on the database server, where user_name is the name of the account to change:

 passwd user_name

Related Topics
• Default Security Setting Enacted by OEDA

1.6.1.2 Changing the GRUB Account Password on the Database Server

Use the host_access_control script to change the GRUB account password on database servers.

• Run the following command as the root user to change the GRUB account password on the database server:

 /opt/oracle.cellos/host_access_control grub-password
1.6.2 Changing the Exadata Storage Server Passwords

The default user accounts on Exadata Storage Servers are root, celladmin, and cellmonitor.

- To change one of the passwords for Exadata Storage Server, use the operating system `passwd` command.

 At the operating system prompt, use the following command, where `user_name` is the name of the account to change:

  ```
passwd user_name
  ```

1.6.3 Changing the Power Distribution Unit Password

The default account user for the power distribution unit (PDU) is admin. The following procedure describes how to change the password for the PDU:

1. Use a Web browser to access the PDU metering unit by entering the IP address for the unit in the address line of the browser. The Current Measurement page appears.
2. Click Network Configuration in the upper left of the page.
3. Log in as the admin user on the PDU metering unit.
4. Locate the Admin/User fields. Only letters and numbers are allowed for user names and passwords.
5. Enter up to five users and passwords in the Admin/Users fields.
6. Designate each user to be either an administrator or user.
7. Click Submit to set the users and passwords.

1.6.4 Changing the ILOM Password

The default user account for the Integrated Lights Out Manager (ILOM) is root. The following procedure describes how to change the password for the ILOM:

1. Log in to the ILOM using SSH.
2. Use the following command to change the password:

   ```
   set /SP/users/user_name password
   ```

 In the preceding command, `user_name` is the user account to be changed. The following is an example of the command:

   ```
   set /SP/users/user1 password
   Changing password for user /SP/users/user1/password...
   Enter new password:********
   Enter new password again:********
   New password was successfully set for user /SP/users/user1
   ```
1.6.5 Changing the Password for the RDMA Network Fabric Switch

You can change the password for the RDMA Network Fabric switch after the initial configuration of your rack.

- Changing the InfiniBand Switch Password
 This procedure describes how to change a password for the InfiniBand switch.

- Changing the Cisco 9336c RoCE Switch Password
 This procedure describes how to change a password for the Cisco 9336c RoCE switch.

1.6.5.1 Changing the InfiniBand Switch Password

This procedure describes how to change a password for the InfiniBand switch.

The default user accounts for the InfiniBand switch are root, ilom-admin, ilom-user, ilom-operator, and nm2user.

1. Log in to the InfiniBand switch with SSH using the following command:

 `ssh user_name@switch_name`

 In the preceding command, `user_name` is the name of the user, and `switch_name` is the name of the InfiniBand switch.

2. Check the firmware version of the switch.

3. Use the ILOM to change the password using the following commands:

 `ssh -l ilom-admin switch_name`

 `set /SP/users/user_name password`

 See Also:

1.6.5.2 Changing the Cisco 9336c RoCE Switch Password

This procedure describes how to change a password for the Cisco 9336c RoCE switch.

1. Access the switch using SSH or via the serial port.

 `$ ssh admin@switch_name`

 User Access Verification

 Password:
2. Change the password.

switch# configure terminal
switch(config)# username user_name password new password
switch(config)# exit
switch#

3. Save the configuration.

switch# copy running-config startup-config

1.6.6 Changing the Ethernet Switch Password

To change the password for the Ethernet switch, you must connect to the switch and run a command on the switch.

- **Changing the Cisco 4948 Ethernet Switch Password**
 You can change the passwords for both serial port access and SSH access to the switch.

- **Changing the Cisco 93108-1G or 9348 Ethernet Switch Password**
 You use the change-password command to change the password for either the Cisco Nexus 93108-1G or Cisco Nexus 9348 Ethernet switch.

1.6.6.1 Changing the Cisco 4948 Ethernet Switch Password

You can change the passwords for both serial port access and SSH access to the switch.

There are two different methods to access the switch. One is through a serial port and the other is through ssh.

- Serial port: When using serial port access, there are no user accounts, so the enable password is all that is required.
- ssh: When the switch is accessed via ssh, you must supply a user account and password before you can change the password.

During the installation of the system, the admin user is created and you can use this user to access the switch using ssh.

- **Changing the Cisco 4948 Ethernet Switch Password for Serial Port Access**
 You can change the passwords for both serial port access and SSH access to the switch.

- **Changing the Cisco 4948 Ethernet Switch Password for Telnet or SSH Access**
 You can change the passwords for both serial port access and SSH access to the switch.

1.6.6.1.1 Changing the Cisco 4948 Ethernet Switch Password for Serial Port Access

You can change the passwords for both serial port access and SSH access to the switch.

1. Access the switch using telnet, ssh, or via the serial port.
If you use the serial port for access, you will not be prompted for a user name or password, you will just get the prompt.

```
my_host> ssh admin@my_switch
Using keyboard-interactive authentication.
Password:
```

Note:

- In Oracle Linux 5 update 5 or higher, `telnet` was removed for security reasons. You may need to install telnet client package in the compute node before you can access the switch using `telnet`.
- Before using SSH to access the switch, you must enable SSH in the switch following the steps described in “Configuring SSH on Cisco Catalyst 4948 Ethernet Switch” (My Oracle Support Doc ID 1415044.1).

2. Change to enable mode.

```
Switch> enable
```

3. Set the password.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no enable password
Switch(config)# enable secret new_password
Switch(config)# end
Switch# write memory
*Sep 15 14:25:05.893:%SYS-5-CONFIG_I:Configured from console by console
Building configuration...
Compressed configuration from 2502 bytes to 1085 bytes [OK ]
```

4. Save the current configuration.

```
Switch# copy running-config startup-config
```

5. Exit from the session.

```
Switch# exit
```

1.6.6.1.2 Changing the Cisco 4948 Ethernet Switch Password for Telnet or SSH Access

You can change the passwords for both serial port access and SSH access to the switch.

1. Access the switch using `telnet`, `ssh`, or via the serial port.
If you use the serial port for access, you will not be prompted for a user name or password, you will just get the prompt.

my_host> ssh admin@my_switch
Using keyboard-interactive authentication.
Password:

2. Change to enable mode.

Switch> enable
Password:

3. Verify the password will be sent in encrypted format.

Use the following command to check that service password configuration is set to -encryption.

Switch# show running-config all | include service password-encryption
service password-encryption

If this is set to no service password-encryption, then passwords will be sent in clear text. You can change this setting, as shown in Step 5.

4. Enter configuration mode.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

5. If password encryption is set to no service password-encryption, then change it to service password-encryption.

Switch(config)# service password-encryption

6. Change the password for a specific user.

Switch(config)# username user_name password new_password

7. Exit configuration mode and save the changes.

Switch(config)# end
Switch# write memory

1.6.6.2 Changing the Cisco 93108-1G or 9348 Ethernet Switch Password

You use the change-password command to change the password for either the Cisco Nexus 93108-1G or Cisco Nexus 9348 Ethernet switch.

1. Access the switch using ssh or via the serial port.

my_host> ssh admin@my_switch
User Access Verification
Password:
2. Change the password.

```
Switch# change-password
Enter old password:
Enter new password:
Confirm new password:
```

3. Copy the running configuration to the startup configuration.

```
Switch# copy running-config startup-config
```

4. Exit from the session.

```
Switch# exit
```

1.6.7 Changing the KVM Password

The default user account for the KVM is `Admin`. The following procedure describes how to change the password for the KVM:

1. Pull the KVM tray out from the front of the rack, and open it using the handle.
2. Touch the touch pad.
3. Toggle between the host and KVM interface by pressing the Ctrl key on the left side twice, similar to a double-click on a mouse.
4. Select **Local** from User Accounts.
5. Click **Admin** under Users.
6. Set a password for the `Admin` account. Do not modify any other parameters.
7. Click **Save**.

1.7 Determining the Server Model

Use the `exadata.img.hw` command to determine the model of the cell or database server.

```
/usr/sbin/exadata.img.hw --get model
```

Reference the following table for the server model numbers for each Oracle Exadata Database Machine.

Table 1-2 Oracle Exadata Database Machine Server Models

<table>
<thead>
<tr>
<th>Oracle Exadata Database Machine</th>
<th>Database Server Model</th>
<th>Exadata Storage Server Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Exadata Database Machine X8M-2</td>
<td>ORACLE SERVER X8M-2</td>
<td>ORACLE SERVER X8M-2L (High Capacity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ORACLE SERVER X8M-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine</td>
<td>Database Server Model</td>
<td>Exadata Storage Server Model</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X8-2</td>
<td>ORACLE SERVER X8-2</td>
<td>ORACLE SERVER X8-2L (High Capacity) ORACLE SERVER X8-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X8M-8</td>
<td>ORACLE SERVER X8M-8</td>
<td>ORACLE SERVER X8M-2L (High Capacity) ORACLE SERVER X8M-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X8-8</td>
<td>ORACLE SERVER X8-8</td>
<td>ORACLE SERVER X8-2L (High Capacity) ORACLE SERVER X8-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X7-2</td>
<td>ORACLE SERVER X7-2</td>
<td>ORACLE SERVER X7-2L (High Capacity) ORACLE SERVER X7-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X7-8</td>
<td>ORACLE SERVER X7-8</td>
<td>ORACLE SERVER X7-2L (High Capacity) ORACLE SERVER X7-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X6-2</td>
<td>ORACLE SERVER X6-2</td>
<td>ORACLE SERVER X6-2L ORACLE SERVER X6-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X6-8</td>
<td>ORACLE SERVER X5-8</td>
<td>ORACLE SERVER X6-2L ORACLE SERVER X6-2L_EXTREME_FLASH</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X5-2</td>
<td>ORACLE SERVER X5-2</td>
<td>ORACLE SERVER X5-2L</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X5-8</td>
<td>ORACLE SERVER X5-8</td>
<td>ORACLE SERVER X5-2L</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X4-2</td>
<td>SUN SERVER X4-2</td>
<td>SUN SERVER X4-2L</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X4-8 Full Rack</td>
<td>SUN SERVER X4-8</td>
<td>SUN SERVER X4-2L ORACLE SERVER X5-2L</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X3-2</td>
<td>SUN FIRE X4170 M3</td>
<td>SUN FIRE X4270 M3</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X3-8 Full Rack</td>
<td>Sun Fire X4800 M2</td>
<td>SUN FIRE X4270 M3</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X2-2</td>
<td>SUN FIRE X4170 M2 SERVER</td>
<td>SUN FIRE X4270 M2 SERVER</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X2-8 Full Rack</td>
<td>Sun Fire X4800 or Sun Fire X4800 M2</td>
<td>SUN FIRE X4270 M2 SERVER</td>
</tr>
</tbody>
</table>
1.8 Monitoring Ambient Temperature of Servers

Maintaining environmental temperature conditions within design specification for Oracle Exadata Rack helps achieve maximum efficiency and targeted component service lifetimes. The impact of validating the ambient temperature range is minimal. The impact of corrective actions will vary depending on the environmental conditions.

Temperatures outside the ambient temperature range of 21 to 23 degrees Celsius (70 to 74 degrees Fahrenheit) affect all components within Oracle Exadata Rack, possibly causing performance problems and shortened service lifetimes.

Use the following command as the root user on the first database server in the cluster to verify the ambient temperature range of all servers:

dcli -g /opt/oracle.SupportTools/onecommand/all_group -l root 'ipmitool sunoem cli "show /SYS/T_AMB" | grep value'

The following is an example of the output from the command:

dm01db01: value = 21.440 degree C
dm01db02: value = 21.440 degree C
dm01db03: value = 22.190 degree C
...
dm01db08: value = 21.940 degree C
dm01ce101: value = 22.000 degree C
dm01ce102: value = 22.000 degree C
dm01ce103: value = 23.000 degree C
...
dm01ce114: value = 22.080 degree C

If the output is outside the ambient temperature range, then investigate and correct the problem. The following items should be checked:

- Sufficient air flow into the rack
- Room temperature is within the specified range
- Rear of rack is clear of obstructions

1.9 Replacing a Disk Controller Battery Backup Unit

The disk controller battery backup unit (disk controller BBU) resides on a drive tray in the database and Exadata Storage Servers. The disk controller BBU can be replaced without downtime for the server or the applications running on the server.

Note:

The procedures in this section do not apply to on-controller battery backup units. Replacement of those units require a system shutdown because the system must be opened to access the controller card.

- Replacing a Disk Controller BBU on a Database Server
1.9.1 Replacing a Disk Controller BBU on a Database Server

This section describes how to replace a disk controller BBU on a database server.

Note:

After any maintenance procedure, Oracle recommends using the Oracle EXAchk tool. The tool is available with My Oracle Support note 1070954.1.

The high-level steps are:

• Step 1: Prepare the Disk Controller BBU for Removal
 The method of removing the Disk Controller BBU depends on the Oracle Exadata Database Machine model.

• Step 2: Replace the Disk Controller BBU

• Step 3: Enable and Verify the New Disk Controller BBU

1.9.1.1 Step 1: Prepare the Disk Controller BBU for Removal

The method of removing the Disk Controller BBU depends on the Oracle Exadata Database Machine model.

On certain Oracle Exadata Database Machine X3-2, X4-2, and X4-8 database nodes, and Oracle Exadata Database Machine X3-2, X4-2, X3-8, and X4-8 storage servers, the BBU is remote mounted and does not require a system shutdown to be accessed. However you must still prepare it for removal from the RAID HBA to avoid the risk of data corruption to the disk volumes.

Note:

There is no remote mount BBU option for Oracle Exadata Database Machine X3-8 database nodes.

• Preparing Systems with Remote Mount BBU
 Describes how to prepare to remove the disk controller BBU on systems with remote mount BBU.

• Preparing Systems That Do Not Have a Remote Mount BBU
 This topic describes how to prepare to remove the disk controller BBU on systems without a remote mount BBU.
1.9.1.1 Preparing Systems with Remote Mount BBU

Describes how to prepare to remove the disk controller BBU on systems with remote mount BBU.

If your system does not have a remote mount BBU, see Preparing Systems That Do Not Have a Remote Mount BBU.

1. Log in as the root user.
2. Get the version of the image that is running on the server in the rack that requires service.

 # imageinfo -ver
 11.2.3.2.1.130302

 The version is the first five parts, such as 11.2.3.2.1 in the example. The last part is the image date.

3. Prepare the disk controller BBU for removal.

 If you are running version 12.1.2.1.0 or later:
 a. Drop the disk controller BBU for replacement:

 DBMCLI> alter dbserver bbu drop for replacement

 b. Verify the BBU status has been updated.

 DBMCLI> list dbserver attributes bbustatus -dropped for replacement

 If you are running versions between 11.2.3.3.0 and 12.1.2.1.0:
 a. Drop the disk controller BBU for replacement.

 # /opt/oracle.cellos/compmon/exadata_mon_hw_asr.pl -drop_bbu_for_replacement

 b. Verify the status has been updated.

 # /opt/oracle.cellos/compmon/exadata_mon_hw_asr.pl -list_bbu_status

 BBU status: dropped for replacement.

 If you are running version 11.2.3.2.x:
 a. Locate the server in the rack being serviced, and turn on the indicator light.

 Exadata Storage Servers are identified by a number 1 through 18, where 1 is the lowest Storage Server in the rack installed in RU2, counting up to the top of the rack.

 Exadata Database Nodes are identified by a number 1 through 8, where 1 is the lowest most database node in the rack installed in RU16.

 Turn on the locate indicator light for easier identification of the server being serviced. If the server number has been identified, then the Locate Button on
the front panel may be pressed. To turn on the indicator light remotely, use any of the following methods:

- From a login to the CellCli on Exadata Storage Servers:

  ```
  CellCli> alter cell led on
  ```

- From a login to the server's ILOM:

  ```
  -> set /SYS/LOCATE value=Fast_Blink
  ```

- From a login to the server's root account:

  ```
  # ipmitool chassis identify force
  Chassis identify interval: indefinite
  ```

b. Check that HBA can see the battery and its current status.

 Note:

 If you are running on Solaris, use `/opt/MegaRAID/MegaCli` in place of `/opt/MegaRAID/MegaCli/MegaCli64` in the commands below.

   ```
   # /opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -a0
   ```

 The default output should show that the battery is still visible and may show low voltage or other issues depending on the fault. It may return an error reading the BBU if it is hard failed and no longer accessible to the HBA.

c. Verify the current cache policy for all logical volumes.

   ```
   # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU
   ```

 The default cache policy should be `WriteBack` for all volumes. If the battery is functioning normally it will report as current cache policy `WriteBack`. However if it is failed it may report current cache policy as `WriteThrough`.

d. Set the cache policy for all logical volumes to `WriteThrough` cache mode, which does not use the battery.

   ```
   # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wt -lall -a0
   ```

e. Verify the current cache policy for all logical volumes is now `WriteThrough`.

   ```
   # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU
   ```
1.9.1.1.2 Preparing Systems That Do Not Have a Remote Mount BBU

This topic describes how to prepare to remove the disk controller BBU on systems without a remote mount BBU.

If the system does not have the remote mounted battery installed, you need to shut down the node for which the battery requires replacement.

If your system has a remote mount BBU, see Preparing Systems with Remote Mount BBU.

1. Revert all the RAID disk volumes to WriteThrough mode

 This ensures that all data in the RAID cache memory is flushed to disk and is not lost when the battery is replaced.

 a. Set all logical volumes cache policy to WriteThrough cache mode.

 # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wt -lall -a0

 b. Verify the current cache policy for all logical volumes is now WriteThrough, which does not use the battery.

 # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU

2. Shut down the server operating system.

 b. Change the environment to point to the Oracle Grid Infrastructure Home.

 Run the following commands as the root user, where the 1 of +ASM1 refers to the database node number:

 # . oraenv
 ORACLE_SID = [root] ? +ASM1
 The Oracle base for ORACLE_HOME=/u01/app/11.2.0/grid is /u01/app/oracle

 For example, for database node 3, the value would be +ASM3.

 c. Shut down Oracle Clusterware Services prior to powering down the database node.

 Run the following commands as the root user:

 # $ORACLE_HOME/bin/crsctl stop crs
Or:

```
# Grid_home/bin/crsctl stop crs
```

Grid_home is typically set to `/u01/app/11.2.0/grid`, but this can vary depending on your installation configuration.

d. Verify that Oracle Clusterware Services have been stopped.
 There should be no Clusterware processes running.

```
# ps -ef | grep css
```

e. Shut down the server operating system.

 - Linux:

     ```
     # shutdown -hP now
     ```

 - Solaris:

     ```
     # shutdown -y -i 5 -g 0
     ```

1.9.1.2 Step 2: Replace the Disk Controller BBU

In this step, you remove the old disk controller BBU and replace it with the new BBU.

Exadata X3-2, X4-2, or X4-8 Compute Nodes and X3-2, X3-8, X4-2, or X4-8 Storage Cell nodes with the Remote Battery

These steps apply to Exadata nodes based on X3-2, X4-2, X4-8 and X3-2L, X4-2L servers with the remote battery installed.

1. Locate the battery slot marked with an orange and white BBU label.

 X3-2 and X4-2 Compute nodes: this is the upper right-most slot on the front of the chassis labelled BBU (previously designated “HDD7”).

 X4-8 Compute nodes: this is in the lower slot, second from the left, on the rear of the chassis labeled BBU.

 X3-2L and X4-2L Storage cells: this is the right-hand slot on the rear of the chassis above PS1, labelled BBU (previously designated "REAR HDD 1").

2. Unlatch and carefully slide out the old BBU carrier.

3. Insert and carefully slide in the new BBU carrier, and latch it closed.

Exadata X3-2L or X4-2L Storage Cell nodes without the Remote Battery

Replace the existing HBA BBU with a remote-mounted battery kit (part 7060020) following the CAP detailed in Support Note 1561949.1.

Exadata X3-2 or X4-2 Database Machine Compute nodes without the Remote Battery

Replace the existing HBA BBU with a remote-mounted battery kit (part 7060020) following the CAP detailed in Support Note 1561949.1.

Exadata X3-8 Database Machine Compute nodes
These steps are relevant to Exadata nodes based on X2-8 servers (formerly x4800m2).

1. Remove CMOD0 from the server and set it on a flat, antistatic surface.
2. Remove the CMOD top cover.
3. Remove the HBA REM with BBU attached:
 a. Lift the REM ejector handle and rotate it to its fully open position.
 b. Lift the connector end of the REM and pull the REM away from the retaining clip on the front support bracket.
4. Remove the old BBU from the REM:
 a. Use a No. 1 Phillips screwdriver to remove the 3 retaining screws that secure the battery to the REM card. Do NOT attempt to remove any screws from the top side of the REM and battery pack; those screws hold the standoffs that provide the bottom screw holes and should remain with the battery pack.
 b. Detach the battery pack including circuit board from the REM by gently lifting it from its circuit board connector.
5. Install the new BBU on the REM.
 a. Attach the battery pack circuit board connector to mate with the REM's connector.
 b. Use a No. 1 Phillips screwdriver to secure the battery to the REM. If the BBU comes with a package of new screws, then use those new screws - do not re-use the screws from the old BBU attachment.
6. Re-install the HBA REM with BBU attached.
 a. Ensure that the REM ejector lever is in the closed position. The lever should be flat with the REM support bracket.
 b. Position the REM so that the battery is facing downward and the connector is aligned with the connector on the motherboard.
 c. Slip the opposite end of the REM under the retaining clips on the front support bracket and ensure that the notch on the edge of the REM is positioned around the alignment post on the bracket.
 d. Carefully lower and position the connector end of the REM until the REM contacts the connector on the motherboard, ensuring that the connectors are aligned. To seat the connector, carefully push the REM downward until it is in a level position.
7. Install the cover on the CMOD.
8. Return the CMOD back into the unit in CMOD0 slot.

1.9.1.3 Step 3: Enable and Verify the New Disk Controller BBU

Similar to Step 1: Prepare the Disk Controller BBU for Removal, this step has two subsections:

- For Systems with Remote Mount BBU
- For Systems That Do Not Have a Remote Mount BBU

For Systems with Remote Mount BBU
For systems with remote mount BBU, the system was not shut down at the end of Step 1: Prepare the Disk Controller BBU for Removal.

If you are using Oracle Exadata System Software version 11.2.3.3.0 or later:

1. Log in as the root user.
2. Verify the disk controller BBU battery state is present and seen by the RAID controller. It may take several minutes for the new BBU battery to be detected.

 Note:
 If you are running on Solaris, use `/opt/MegaRAID/MegaCli` in place of `/opt/MegaRAID/MegaCli/MegaCli64` in the commands below.

   ```bash
   # /opt/MegaRAID/MegaCli/MegaCli64 -AdpAllInfo -a0 | grep BBU
   BBU : Present
   BBU : Yes
   Cache When BBU Bad : Disabled
   
   3. Re-enable the disk controller BBU and disk cache.
   - If you are running Oracle Exadata System Software version 12.1.2.1.0 or later:
     
     ```sql
 DBMCLI> ALTER DBSERVER BBU REENABLE
     ```
   - If you are running Oracle Exadata System Software version earlier than 12.1.2.1.0:
     
     ```bash
 # /opt/oracle.cellos/compmon/exadata_mon_hw_asr.pl -reenable_bbu
 HDD disk controller battery has been reenabled.
     ```

4. Verify the disk controller BBU battery state is operational.
   - If you are running Oracle Exadata System Software version 12.1.2.1.0 or later:
     
     ```sql
 DBMCLI> LIST DBSERVER ATTRIBUTES bbustatus
     ```
   - If you are running Oracle Exadata System Software version earlier than 12.1.2.1.0:
     
     ```bash
 # /opt/oracle.cellos/compmon/exadata_mon_hw_asr.pl -list_bbu_status
 BBU status: present
     ```

5. Verify the current logical disk drive cache policy uses writeback mode:

   ```bash
 # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep -i bbu
 Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
 Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
 ... <repeated for each logical volume present>
   ```
6. If the current cache policy is WriteThrough mode, and not WriteBack, then check the status of the battery.

   # /opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -getbbustatus -a0 | grep Battery
   BatteryType: iBBU08
   Battery State : Operational
   Battery Pack Missing : No
   Battery Replacement required : No

   If the “Battery State” is anything other than “Operational” or “Optimal” (exact term depends on image version), investigate and correct the problem before continuing.

   The following shows which image version uses "Optimal" and "Operational".

<table>
<thead>
<tr>
<th>Exadata image version</th>
<th>Battery State</th>
<th>Raid f/w version</th>
</tr>
</thead>
<tbody>
<tr>
<td>X4 12.1.2.1.0</td>
<td>Optimal</td>
<td>12.12.0-0178</td>
</tr>
<tr>
<td>X4 12.1.1.1.1</td>
<td>Optimal</td>
<td>12.12.0-0178</td>
</tr>
<tr>
<td>X3 11.2.3.3.0</td>
<td>Optimal</td>
<td>12.12.0-0178</td>
</tr>
<tr>
<td>X3 11.2.3.2.2</td>
<td>Optimal</td>
<td>12.12.0-0178</td>
</tr>
<tr>
<td>X3 11.2.3.2.1</td>
<td>Operational</td>
<td>12.12.0-0140</td>
</tr>
</tbody>
</table>

   If you are using image version 11.2.3.2.x:

   1. Log in as the root user.
   2. Turn off the server’s locate LED.

      # ipmitool chassis identify off
      Chassis identify interval: off

   3. Wait approximately 5 minutes for the HBA to recognize and start communicating with the new BBU.

   4. Verify the HBA battery status is Operational and charging.

      # /opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -a0

   5. Set all logical drives cache policy to WriteBack cache mode.

      # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wb -lall -a0

   6. Verify the current cache policy for all logical drives is now using WriteBack cache mode.

      # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep -i bbu
      Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
      Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
      ... <repeated for each logical volume present>
For Systems That Do Not Have a Remote Mount BBU

For systems that do not have a remote mount BBU, you shut down the system at the end of Step 1: Prepare the Disk Controller BBU for Removal. In this section you restart the system and enable the new BBU.

1. Power on the server by pressing the power button.

2. After ILOM has booted, power on the server by pressing the power button, and then connect to the server's console.

   To connect to the console from the ILOM Web browser (preferred): Access the "Remote Control -> Redirection" tab and click the "Launch Remote Console" button. On ILOM 3.1.x systems, the console button can be launched from the initial Summary Information screen.

   To connect to the console from the ILOM CLI:

   > start /SP/console

3. From the server's console, monitor the system booting. Watch in particular the LSI controller BIOS while it is loading. If it gives a warning message regarding drives with preserved cache, then choose "D" to discard the cache and continue. This is not an issue as the disk will get re-synced after boot by ASM. If it gives a warning message regarding drives are in write-through mode due to a low battery, then choose to continue.

   The Exadata boot should continue normally after that, showing the Exadata boot splash screen and continue with normal OS boot messages. Note that there may be a long pause between screen outputs on the ILOM serial console during subsequent boot steps as the default console is the graphics, and the Exadata boot splash screen will not display.

4. Once full boot is completed, log in as the root user and verify the new battery is seen and is charging.

   # /opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -a0

5. Set all logical drives cache policy to WriteBack cache mode using the battery.

   # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wb -lall -a0

6. Verify the current cache policy for all logical drives is now using WriteBack cache mode.

   # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU

7. Verify the database services were started automatically.

   a. Verify that CRS is running.

   # . oraenv
   ORACLE_SID = [root] ? +ASM1
   The Oracle base for ORACLE_HOME=/u01/app/11.2.0/grid is /u01/app/oracle
   
   # crsctl check crs
   CRS-4638: Oracle High Availability Services is online
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online

In the above output the 1 of \( +\text{ASM1} \) refers to the database node number. For example, for database node \( #3 \), the value would be \( +\text{ASM3} \).

b. Validate that instances are running.

```
ps -ef |grep pmon
```

It should return a record for ASM instance and a record for each database.

1.9.2 Replacing a Disk Controller BBU on an Exadata Storage Server

This section describes how to replace a disk controller BBU on an Exadata Storage Server.

![Note:]

After any maintenance procedure, Oracle recommends using the Oracle EXAchk tool. The tool is available with My Oracle Support note 1070954.1.

The high-level steps are:

- **Step 1: Prepare the Disk Controller BBU for Removal**
- **Step 2: Replace the Disk Controller BBU**
- **Step 3: Enable the New Disk Controller BBU**

1.9.2.1 Step 1: Prepare the Disk Controller BBU for Removal

On certain X3-2, X4-2, and X4-8 database nodes, and X3-2, X4-2, and X3-8, X4-8 storage servers, the BBU is remote mounted and does not require a system shutdown to be accessed. However you must still prepare it for removal from the RAID HBA to avoid the risk of data corruption to the disk volumes. Note there is no remote mount BBU option for X3-8 database nodes.

**For Systems with Remote Mount BBU**

Perform the steps in this section if your system has a remote mount BBU. If your system does not have a remote mount BBU, perform the steps in "For Systems That Do Not Have a Remote Mount BBU".

1. Log in as the root user.
2. Get the version of the image that is running on the server in the rack that requires service.

```
cellcli -e LIST CELL ATTRIBUTES releaseVersion
11.2.3.2.1
```
3. Drop the disk controller BBU.
If you are running version 11.2.3.3.0 or later:

a. Drop the disk controller BBU for replacement. Run the following command as the celladmin or root user:

```
cellcli -e ALTER CELL BBU DROP FOR REPLACEMENT
HDD disk controller battery has been dropped for replacement
```

b. Verify that the BBU was dropped for replacement:

```
cellcli -e LIST CELL ATTRIBUTES bbustatus
dropped for replacement.
```

If you are running version 11.2.3.2.x:

a. Locate the server in the rack being serviced, and turn on the indicator light.

Exadata Storage Servers are identified by a number 1 through 18, where 1 is the lowest Storage Server in the rack installed in RU2, counting up to the top of the rack.

Exadata Database Nodes are identified by a number 1 through 8, where 1 is the lowest most database node in the rack installed in RU16.

Turn on the locate indicator light for easier identification of the server being serviced. If the server number has been identified, then the Locate Button on the front panel may be pressed.

To turn on the indicator light remotely, use any of the following methods:

From a login to the CellCli on Exadata Storage Servers:

```
CellCli> ALTER CELL LED ON
```

From a login to the server's ILOM:

```
-> set /SYS/LOCATE value=Fast_Blink
```

From a login to the server's root account:

```
ipmitool chassis identify force
Chassis identify interval: indefinite
```

b. Check that HBA can see the battery and its current status.

Note:

If you are running on Solaris, use /opt/MegaRAID/MegaCli in place of /opt/MegaRAID/MegaCli/MegaCli64 in the commands below.

```
/opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -a0
```
The default output should show that the battery is still visible and may show low voltage or other issues depending on the fault. It may return an error reading the BBU if it is hard failed and no longer accessible to the HBA.

c. Verify the current cache policy for all logical volumes.

    # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU

The default cache policy should be WriteBack for all volumes. If the battery is functioning normally it will report as current cache policy WriteBack. However if it is failed it may report current cache policy as WriteThrough.

d. Set the cache policy for all logical volumes to WriteThrough cache mode, which does not use the battery.

    # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wt -lall -a0

e. Verify the current cache policy for all logical volumes is now WriteThrough.

    # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU

For Systems That Do Not Have a Remote Mount BBU

Perform the steps in this section if your system does not have a remote mount BBU. If your system has a remote mount BBU, see “For Systems with Remote Mount BBU”. If the system does not have the remote mounted battery installed, you need to shut down the node for which the battery requires replacement.

1. Revert all the RAID disk volumes to WriteThrough mode to ensure all data in the RAID cache memory is flushed to disk and not lost when replacement of the battery occurs.
   a. Set all logical volumes cache policy to WriteThrough cache mode.

    # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wt -lall -a0

   b. Verify the current cache policy for all logical volumes is now WriteThrough, which does not use the battery:

    # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU

2. Shut down the server operating system.

   Note the following when powering off Exadata Storage Servers:
   - Verify there are no other storage servers with disk faults. Shutting down a storage server while another disk is failing may cause database processes and Oracle ASM to crash if it loses both disks in the partner pair when this server's disks go offline.
   - Powering off one Exadata Storage Server with no disk faults in the rest of the rack will not affect running database processes or Oracle ASM.
   - All database and Oracle Clusterware processes should be shut down prior to shutting down more than one Exadata Storage Server. Refer to the Exadata Owner's Guide for details if this is necessary.
ASM drops a disk shortly after it is taken offline. Powering off or restarting Exadata Storage Servers can impact database performance if the storage server is offline for longer than the ASM disk repair timer to be restored. The default `DISK_REPAIR_TIME` attribute value of 3.6hrs should be adequate for replacing components, but may need to be changed if you need more time.

a. Check the disk repair time by logging into ASM and running the following query.

```sql
SQL> SELECT dg.name,a.value FROM v$asm_attribute a, v$asm_diskgroup dg
WHERE a.name = 'disk_repair_time' AND a.group_number =
dg.group_number;
```

As long as the value is large enough to comfortably replace the components being replaced, there is no need to change it.

If you need to change it, you can use this statement:

```sql
SQL> ALTER DISKGROUP DATA SET ATTRIBUTE 'disk_repair_time'='8.5H';
```

b. Check if ASM will be OK if the grid disks go offline. The following command should return `Yes` for the grid disks being listed.

```
cellcli -e LIST GRIDDISK ATTRIBUTES name,asmmodestatus,asmdeactivationoutcome
...sample ...
DATA_CD_09_ce101 ONLINE Yes
DATA_CD_10_ce101 ONLINE Yes
DATA_CD_11_ce101 ONLINE Yes
RECO_CD_00_ce101 ONLINE Yes
RECO_CD_01_ce101 ONLINE Yes
...repeated for all griddisks....
```

If one or more disks does not return `asmdeactivationoutcome='Yes'`, check the respective disk group and restore the data redundancy for that disk group. Once the disk group data redundancy is fully restored, re-run the command to verify that `asmdeactivationoutcome='Yes'` for all grid disks. Once all disks return `asmdeactivationoutcome='Yes'`, proceed to the next step.

**Note:**

Shutting down the cell services when one or more grid disks does not return `asmdeactivationoutcome='Yes'` will cause Oracle ASM to dismount the affected disk group, causing the databases to shut down abruptly.

c. Inactivate all grid disks on the cell that needs to be powered down for maintenance. This could take up to 10 minutes or longer.

```
cellcli
...sample ...
CellCLI> ALTER GRIDDISK ALL INACTIVE
```
GridDisk DATA_CD_00_dmorlx8ce101 successfully altered
GridDisk DATA_CD_01_dmorlx8ce101 successfully altered
GridDisk DATA_CD_02_dmorlx8ce101 successfully altered
GridDisk RECO_CD_00_dmorlx8ce101 successfully altered
GridDisk RECO_CD_01_dmorlx8ce101 successfully altered
GridDisk RECO_CD_02_dmorlx8ce101 successfully altered
...repeated for all griddisks...

d. Verify that the grid disks are now offline. The output should show
asmdoestatus='UNUSED' or 'OFFLINE' and asmdeactivationoutcome=Yes for
all grid disks once the disks are offline and inactive in ASM.

CellCLI> LIST GRIDDISK ATTRIBUTES
name,status,asmdoestatus,asmdeactivationoutcome
DATA_CD_00_dmorlx8ce101 inactive OFFLINE Yes
DATA_CD_01_dmorlx8ce101 inactive OFFLINE Yes
DATA_CD_02_dmorlx8ce101 inactive OFFLINE Yes
RECO_CD_00_dmorlx8ce101 inactive OFFLINE Yes
RECO_CD_01_dmorlx8ce101 inactive OFFLINE Yes
RECO_CD_02_dmorlx8ce101 inactive OFFLINE Yes
...repeated for all griddisks...

e. Once all disks are offline and inactive, you can shut down the cell.

    # shutdown -hP now

When powering off Exadata Storage Servers, all storage services are
automatically stopped.

1.9.2.2 Step 2: Replace the Disk Controller BBU

See "Step 2: Replace the Disk Controller BBU".

1.9.2.3 Step 3: Enable the New Disk Controller BBU

Similar to "Step 1: Prepare the Disk Controller BBU for Removal", this section has two
subsections:

- For Systems with Remote Mount BBU
- For Systems That Do Not Have Remote Mount BBU

For Systems with Remote Mount BBU

Perform the steps in this section if your system has a remote mount BBU. In this
scenario, the system was not shut down at the end of "Step 1: Prepare the Disk
Controller BBU for Removal".

If you are running image version 11.2.3.3.0 or later:

1. Log in as the celladmin or root user.
2. Re-enable the BBU.

    # cellcli -e alter cell bbu reenable
    HDD disk controller battery has been reenabled
3. Verify the disk controller BBU battery state is operational.

   # cellcli -e list cell attributes bbustatus
   normal

   If the "BBU status" is anything other than "normal", then investigate and correct
   the problem before continuing.

If you are running image version 11.2.3.2.x:

1. Log in as the root user.
2. Turn off the server's locate LED.

   # ipmitool chassis identify off
   Chassis identify interval: off
3. Wait approximately 5 minutes for the HBA to recognize and start communicating
   with the new BBU.
4. Verify the HBA battery status is Operational and charging.

   # /opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -a0
5. Set all logical drives cache policy to WriteBack cache mode.

   # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wb -lall -a0
6. Verify the current cache policy for all logical drives is now using WriteBack cache
   mode.

   # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdpinfo -a0 | grep -i bbu
   Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
   Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
   ... <repeated for each logical volume present>

For Systems That Do Not Have Remote Mount BBU

At the end of "Step 1: Prepare the Disk Controller BBU for Removal", systems without
a remote mount BBU were shut down. You now have to restart the system.

1. Power on the server by pressing the power button.
2. After ILOM has booted, power on the server by pressing the power button, and
   then connect to the server's console.

   To connect to the console from the ILOM Web browser (preferred): Access the
   "Remote Control -> Redirection" tab and click the "Launch Remote Console"
   button. On ILOM 3.1.x systems, the console button can be launched from the
   initial Summary Information screen.

   To connect to the console from the ILOM CLI:

   > start /SP/console
3. From the server’s console, monitor the system booting. Watch in particular the LSI
   controller BIOS while it is loading. If it gives a warning message regarding drives
   with preserved cache, then choose "D" to discard the cache and continue. This is
   not an issue as the disk will get re-synced after boot by ASM. If it gives a warning
   message regarding drives are in write-through mode due to a low battery, then
   choose to continue.

   The Exadata boot should continue normally after that, showing the Exadata boot
   splash screen and continue with normal OS boot messages. Note that there may
be a long pause between screen outputs on the ILOM serial console during subsequent boot steps as the default console is the graphics, and the Exadata boot splash screen will not display.

4. Once full boot is completed, log in as the root user and verify the new battery is seen and is charging.

   # /opt/MegaRAID/MegaCli/MegaCli64 -adpbbucmd -a0

5. Set all logical drives cache policy to WriteBack cache mode using the battery.

   # /opt/MegaRAID/MegaCli/MegaCli64 -ldsetprop wb -lall -a0

6. Verify the current cache policy for all logical drives is now using WriteBack cache mode.

   # /opt/MegaRAID/MegaCli/MegaCli64 -ldpdinfo -a0 | grep BBU

7. Return the cell back to service.
   a. Activate the grid disks.

      # cellcli
      CellCLI> alter griddisk all active
      GridDisk DATA_CD_00_dmorlx8ce101 successfully altered
      GridDisk DATA_CD_01_dmorlx8ce101 successfully altered
      GridDisk DATA_CD_02_dmorlx8ce101 successfully altered
      GridDisk RECO_CD_00_dmorlx8ce101 successfully altered
      GridDisk RECO_CD_01_dmorlx8ce101 successfully altered
      GridDisk RECO_CD_02_dmorlx8ce101 successfully altered
      ...etc...

   b. Verify that all disks are active.

      CellCLI> list griddisk
      DATA_CD_00_dmorlx8ce101         active
      DATA_CD_01_dmorlx8ce101         active
      DATA_CD_02_dmorlx8ce101         active
      RECO_CD_00_dmorlx8ce101         active
      RECO_CD_01_dmorlx8ce101         active
      RECO_CD_02_dmorlx8ce101         active
      ...etc...

   c. Verify all grid disks have been successfully put online. Wait until 'asmmodestatus' is in status 'ONLINE' for all grid disks. The following is an example of the output early in the activation process.

      CellCLI> list griddisk attributes
      name,status,asmmodestatus,asmdeactivationoutcome
      DATA_CD_00_dmorlx8ce101 active ONLINE Yes
      DATA_CD_01_dmorlx8ce101 active ONLINE Yes
      DATA_CD_02_dmorlx8ce101 active ONLINE Yes
      RECO_CD_00_dmorlx8ce101 active SYNCING Yes
      RECO_CD_01_dmorlx8ce101 active ONLINE Yes
      ...etc...

      In the example above 'RECO_CD_00_dmorlx8ce101' is still in the 'SYNCING' process. Oracle ASM synchronization is only complete when ALL grid disks show 'asmmodestatus=ONLINE'. This process can take some time depending on how busy the machine is, and has been while this individual server was down for repair.
1.10 Overview of the dbmsrv Service

Starting with Oracle Exadata System Software release 12.1.2.1.0:

- The database nodes now run the Management Server (MS). Previously MS ran only on the storage nodes.

- The database nodes now run a new service called Database Machine Service (dbmsrv). This new service is based on the MS that runs on the storage servers and provides enhanced management capabilities to the database nodes.

- Starting with Oracle Exadata System Software release 12.1.2.1.2, Management Server (MS) on the database nodes does not use sudo any more. This means that configuration for sudoers is no longer needed.

Prior to Oracle Exadata System Software release 12.1.2.1.2:

- For security reasons, Management Server on the database nodes is not run as root. However, it needs root permission to run certain utilities that monitor the system, such as disk status, ILOM, power supply unit, and to send Oracle Auto Service Request (ASR) messages and alerts. To achieve this, a sudoers configuration file, dbmsvc_sudo_conf, is added to enable the Management Server users on the database nodes to run the utilities with root privilege.

  You should not disable the dbmsrv service or dbserverd, or edit the sudoers configuration file. If the entries in the file are removed, then the dbmsrv service may not be able to monitor some parts of the system. For example, if a disk fails, it might not be possible to send an Oracle ASR message in time, and this may cause a disruption on the database node and delay recovery.

To manage the new Management Server on the database node service in Oracle Exadata System Software release 12.1.2.1.0 and later, new users and groups were added.

The users and their IDs are:

- dbmsvc: 12137
- dbmadmin: 12138
- dbmmonitor: 12139

The new groups and their IDs are:

- dbmsvc: 11137
- dbmadmin: 11138
- dbmmonitor: 11139
- dbmusers: 11140

The following topics describe how to modify user IDs for this service:

- Using a Script to Change User IDs and Group IDs for dbmsrv
  Starting with Oracle Exadata System Software releases 18.1.12 and 19.1.2, you can use the migrate_ids.sh script to change the user and group IDs for the dbmsrv users.

- Manually Changing User IDs and Group IDs for dbmsrv
  Prior to Oracle Exadata System Software releases 18.1.12 and 19.1.2 when the migrate_ids.sh script was introduced, you have to manually change the user and group IDs for the dbmsrv users.
1.10.1 Using a Script to Change User IDs and Group IDs for dbmsrv

Starting with Oracle Exadata System Software releases 18.1.12 and 19.1.2, you can use the `migrate_ids.sh` script to change the user and group IDs for the dbmsrv users.

You can change the user ID and group ID of the dbmsrv service users if there are conflicts with the default values (for example, if you are using LDAP or if you are using session management tools that require different values from the default values).

These steps are specific to the dbmsrv service users and groups only. Do not use them to modify the user and group IDs for other Oracle products.

1. Navigate to the `opt/oracle.SupportTools` directory.
2. Run the `migrate_ids.sh` script.

The `migrate_ids.sh` script has the following syntax and options:

```
migrate_ids.sh [-uid username new_uid]
 [-gid group_name new_group_id]
 [-skipdirs directory_path [,directory_path]]
```

- **-uid**: Specify user name and the new uid to migrate the user to a new UID
- **-gid**: Specify group name and the new group ID to migrate the group to a new ID
- **-skipdirs**: Specify a list of absolute paths of directories to skip during the user or group ID migration.

The script searches all directories to find files that use the uid or gid being migrated so that the script can update the owner or group access to use the new uid or gid. The `-skipdirs` option allows you to specify which directories do not need to be searched. The specified directories and any files within them are skipped while changing the uid and gid values.

Using the `-skipdirs` option can be useful if you have large NFS directories that you want to skip to make the migration faster. However, if there are files in the directories being skipped that use the uid or gid being migrated, then those files are not updated. It is your responsibility to make sure that the directories being skipped with this option do not contain such files to ensure successful migration of the IDs.

**Example 1-4    Migrate the dbmadmin user to a new user ID**

This example shows how to migrate only the uid of user dbmadmin to 3001.

```
migrate_ids.sh -uid dbmadmin 3001
```

**Example 1-5    Migrate the dbmusers group to a new group ID**

This example shows how to migrate only the gid of group dbmusers to 4001.

```
migrate_ids.sh -gid dbmusers 4001
```
Example 1-6  Migrate all dbmsrv users and groups to new values

This example shows how to migrate all the user and group IDs for dbmsrv to new values.

migrate_ids.sh -uid dbmsvc 3001 -gid dbmsvc 4001
migrate_ids.sh -uid dbmadmin 3002 -gid dbmadmin 4002
migrate_ids.sh -uid dbmmonitor 3003 -gid dbmmonitor 4003
migrate_ids.sh -gid dbmusers 4004

Example 1-7  Migrate a user ID while skipping directories

This example shows how to migrate the user ID of user dbmadmin to 3001 while not searching the files in the /proc or /sys directories.

migrate_ids.sh -uid dbmadmin 3001 -skipdirs /proc,/sys

Related Topics
• Overview of the dbmsrv Service

1.10.2 Manually Changing User IDs and Group IDs for dbmsrv

Prior to Oracle Exadata System Software releases 18.1.12 and 19.1.2 when the migrate_ids.sh script was introduced, you have to manually change the user and group IDs for the dbmsrv users.

You can change the user ID and group ID of the dbmsrv service users if there are conflicts with the default values (for example, if you are using LDAP or if you are using session management tools that require different values from the default values).

If possible, you should upgrade to the latest version of Oracle Exadata System Software and use the migrate_ids.sh script instead of using the manual procedure.

These steps are specific to the dbmsrv service users and groups only. Do not use them to modify the user and group IDs for other Oracle products.

1. Shut down the services on the database server. Run the following command as root or the dbmadmin user.

   dbmcli -e alter dbserver shutdown services all

2. Change the group ID of the group.

   a. Change the assigned group ID for the group.

      Run the following command as root, where new_group_ID is the new group ID, and group_name the name of group you want to change:

      groupmod -g new_group_ID group_name

      For example:

      groupmod -g 3001 dbmusers

   b. Update the files containing the old group ID.
Run the following command as root:

```bash
find / -gid old_group_ID -exec chgrp -h new_group_ID {} \;
```

For example:

```bash
find / -gid 11140 -exec chgrp -h 3001 {} \;
```

3. Change the user ID.
   This step has to be done after changing the group ID or you will get a "GID does not exist" error.
   a. Change the user ID assigned to the user.
      Run the following command as `c`, where `new_user_ID` is the new ID for the user, `new_group_ID` is the new group ID assigned in the previous step, and `username` is the name of the user you want to change.

      ```bash
 usermod -u new_user_ID -g new_group_ID username
      ```

      For example:

      ```bash
 usermod -u 2998 -g 3001 dbmsvc
      ```

   b. Update the files containing the old user ID.
      Run the following command as root:

      ```bash
 find / -uid old_user_ID -exec chown -h new_user_ID {} \;
      ```

      For example:

      ```bash
 find / -uid 12137 -exec chown -h 2998 {} \;
      ```

4. Reset the setuid bit on the executable files.
   The setuid bit was changed by the `chgrp` and `chown` commands. Perform the following sub-steps as root.
   a. Modify the permissions for the `dbrsMain` executable.

      ```bash
 # chmod 6550 /opt/oracle/dbserver/dbms/bin/dbrsMain
      ```

   b. Modify the permissions for the `exaCmdHelper` executable.

      ```bash
 chmod 4550 /opt/oracle/dbserver/dbms/bin/exaCmdHelper
      ```

5. Restart the services on the database server.
   Run the following command as the root or dbmadmin user:

   ```bash
 dbmcli -e alter dbserver startup services all
   ```
1.11 Configuring Password Expiration for Users Accessing the Server Remotely

You can configure DBSERVER attributes to expire user passwords.

In Oracle Exadata System Software release 19.1.0, there are new DBSERVER attributes for configuring password security for users that access Oracle Exadata System Software servers remotely, such as with REST API or ExaCLI. These attributes determine if the user is able to change the password remotely, the amount of time before a user password expires, and the number of days prior to password expiration that the user receives warning messages. In the default configuration, user passwords do not expire.

**Note:**
The DBSERVER attributes for password expiration apply only to users created with Oracle Exadata System Software. Password expiration applies only to users that are displayed with the LIST USER command and does not apply to operating system users like dbmadmin or oracle.

- To allow the user to change the password remotely, use the ALTER DBSERVER command to set the remotePwdChangeAllowed attribute to true.
  
  If you set the value to false, then the user receives a message indicating that they must contact the server administrator to have their password changed.

  \[ \text{DBMCLI}\> \text{ALTER DBSERVER remotePwdChangeAllowed=true} \]

- To change the length of time before a user password expires, use the ALTER DBSERVER command to modify the pwdExpInDays attribute.
  
  Set the value \( n \) to the number of days before the password expires. If pwdExpInDays is set to 0 (the default value), then the user password does not expire.

  \[ \text{DBMCLI}\> \text{ALTER DBSERVER pwdExpInDays=}n \]

- To configure the length of the warning period before the password expires, use the ALTER DBSERVER command to modify the pwdExpWarnInDays attribute.
  
  Set the value \( n \) to the number of days to warn the user before the password expires. The default user account password expiration warning time is 7 days.

  \[ \text{DBMCLI}\> \text{ALTER DBSERVER pwdExpWarnInDays=}n \]

- To specify the length of time before a user account is locked after the user password expires, use the ALTER DBSERVER command to modify the accountLockInDays attribute.
Set the value \( n \) to the number of days before the user account is locked. The default user account lock time is 7 days.

```
DBMCLI> ALTER DBSERVER accountLockInDays=n
```

1.12 State of Storage Server and Database Servers During Configuration Changes

Before a change to a configuration, determine if the database and storage servers need to be offline or online.

**Table 1-3  State of Storage Server and Database Servers for Operations**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Storage Server</th>
<th>Database Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS server update</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>NTP server update</td>
<td>Online</td>
<td>Online</td>
</tr>
<tr>
<td>Time zone update</td>
<td>Offline</td>
<td>Online</td>
</tr>
<tr>
<td>Admin network IP address, netmask, gateway, or host name change</td>
<td>Offline</td>
<td>Online</td>
</tr>
<tr>
<td>Client network IP address, netmask, gateway, or host name change</td>
<td>Offline</td>
<td>Online</td>
</tr>
<tr>
<td>Integrated Lights Out Manager (ILOM) IP address change</td>
<td>Offline</td>
<td>Online if the <code>ipmitool sunoem getval/setval</code> command is supported</td>
</tr>
<tr>
<td>Other ILOM parameter change</td>
<td>Online if the <code>ipmitool sunoem getval/setval</code> command is supported</td>
<td>Online if the <code>ipmitool sunoem getval/setval</code> command is supported</td>
</tr>
<tr>
<td>RDMA Network Fabric IP address, netmask, or host name change</td>
<td>Offline</td>
<td>Online</td>
</tr>
<tr>
<td>Partition key (pkey) change</td>
<td>Offline</td>
<td>Online</td>
</tr>
</tbody>
</table>

1.13 Rescue Plan

In Exadata releases earlier than 12.2.1.1.0, after a storage server or database server rescue, you need to re-run multiple commands to configure items such as IORM plans, thresholds, and storage server and database server notification setting.

In Oracle Exadata release 12.2.1.1.0, there is a new attribute called `rescuePlan` for the `cell` and `dbserver` objects. When you are done configuring your database servers and storage servers, you should save the value of the `rescuePlan` attribute to a file. The file should be saved to a remote server because the data on the rescued server will be erased in the event of a rescue. After you rescue the server, you can retrieve the file from the remote server and run the file to restore the settings. See Example 3 below.
For security reasons, the rescue plan does not include configurations that require a password.

**Example 1-8  Rescue Plan for a Storage Cell**

The `rescuePlan` attribute for a storage server could look like this:

```bash
$ cellcli -e list cell attributes rescuePlan

CREATE ROLE "admin"

GRANT PRIVILEGE all actions ON diagpack all attributes WITH all options TO ROLE "admin"

CREATE ROLE "diagRole"

GRANT PRIVILEGE download ON diagpack all attributes WITH all options TO ROLE "diagRole"

GRANT PRIVILEGE create ON diagpack all attributes WITH all options TO ROLE "diagRole"

GRANT PRIVILEGE list ON diagpack all attributes WITH all options TO ROLE "diagRole"

ALTER CELL accessLevelPerm="remoteLoginEnabled", diagHistoryDays="7", metricHistoryDays="7", notificationMethod="mail,snmp", notificationPolicy="warning,critical,clear", snmpSubscriber={(host="localhost", port=162, community="public", type=asr)}, bbuLearnCycleTime="2016-10-17T02:00:00-07:00", bbuLearnSchedule="MONTH 1 DATE 17 HOUR 2 MINUTE 0", alertSummaryStartTime="2016-09-21T17:00:00-07:00", alertSummaryInterval=weekly, hardDiskScrubInterval=biweekly, hardDiskScrubFollowupIntervalInDays="14"

ALTER IORMPLAN objective=basic
```

**Example 1-9  Rescue Plan for a Database Server**

The `rescuePlan` attribute for a database server could look like this:

```bash
$ dbmcli -e list dbserver attributes rescuePlan

CREATE ROLE "listdbserverattrs"

GRANT PRIVILEGE list ON dbserver ATTRIBUTES bbuStatus, coreCount WITH all options TO ROLE "listdbserverattrs"

ALTER DBSERVER diagHistoryDays="7", metricHistoryDays="7", bbuLearnSchedule="MONTH 1 DATE 17 HOUR 2 MINUTE 0", alertSummaryStartTime="2016-09-26T08:00:00-07:00", alertSummaryInterval=weekly, pendingCoreCount="128" force
Example 1-10 Creating a Rescue Plan script for a cell

The following command stores the commands in the rescuePlan attribute to a file called `rescue.cell` located on a remote server.

```
$ cellcli -e list cell attributes rescuePlan >& /location/on/remote/server/rescue_cell.cell
```

If you need to rescue the server, you can run the script after the server rescue to restore the settings. The following command runs the `rescue_cell.cell` file using the CellCLI `start` command:

```
$ cellcli -e start /location/on/remote/server/rescue_cell.cell
```

Example 1-11 Creating a Rescue Plan script for a database server

The following command stores the commands in the rescuePlan attribute to a file called `rescue_db.cell` located on a remote server.

```
$ dbmcli -e list dbserver attributes rescuePlan >& /location/on/remote/server/rescue_db.cell
```

If you need to rescue the server, you can run the script after the server rescue to restore the settings. The following command runs the `rescue_cell.cell` file using the CellCLI `start` command:

```
$ dbmcli -e start /location/on/remote/server/rescue_db.cell
```

1.14 Using ExaWatcher Charts to Monitor Oracle Exadata Database Machine Performance

ExaWatcher is a utility that collects performance data on the storage servers and database servers of an Exadata system. The data collected includes operating system statistics, such as iostat, cell statistics (cellsrvstat), and network statistics.

- About ExaWatcher Charts
 ExaWatcher collects and presents performance data on the storage servers and database servers of Oracle Exadata Database Machine for a specified period of time.

- IO Charts
 IO charts show IO performance for an entire server or for individual disks in the storage server.

- CPU Charts
 The CPU charts show CPU utilization for the server. These statistics are from `iostat` (avg-cpu: %user, %system, %iowait).

- CPU Detail
 The CPU detail charts show detailed information for CPU usage, including the average CPU utilization per CPU ID. These statistics are from `mpstat`.

Oracle
- **Cell Server Charts**
 Cell server statistics are useful for tracking features that are specific to Exadata storage servers. This page displays statistics related to Smart Flash Cache and Smart IOs.

- **Alert History**

1.14.1 About ExaWatcher Charts

ExaWatcher collects and presents performance data on the storage servers and database servers of Oracle Exadata Database Machine for a specified period of time.

To extract the data collected by ExaWatcher, run `GetExaWatcherResults.sh` and specify the start and end time of the desired time range. The results are then placed in a compressed archive file in a directory called `ExtractedResults`.

For example:

```
$ GetExaWatcherResults.sh --from 08/24/2016_17:00:00 --to 08/25/2016_17:00:00
```

Note:
You can use the `--c` or `--scp` options with `GetExaWatcherResults.sh` to copy the resulting archive file to a different location.

In Oracle Exadata System Software release 12.2.1.1.0, `GetExaWatcherResults.sh` also generates HTML pages that contain charts for IO, CPU utilization, cell server statistics, and alert history. The IO and CPU utilization charts use data from `iostat`, CPU detail uses data from `mpstat`, and cell server statistics use data from `cellsrvstat`. Alert history will be retrieved for the specified time frame.

You can find the new charts in the resulting archive file. In the archive file, there is a subdirectory named: `Charts.ExaWatcher.<hostname>/<timestamp>_<duration>/`, for example, `Charts.ExaWatcher.xxceladm13.oracle.com/2016_08_24_17_00_00_01h00m00s_0`.

To view the HTML pages, the archive file needs to be moved to a machine with a local browser that has access to the internet. The file needs to be uncompressed from a bz2 compressed file, then untar with `tar -xvf`. Then you can open `Charts.ExaWatcher.<hostname>/<timestamp>_<duration>/index.html` in a browser. The left panel on that page shows the following menu:
Figure 1-1 ExaWatcher Menu in the Left Panel

<table>
<thead>
<tr>
<th>8/3/16 1:30:00 PM - 8/3/16 2:30:00 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>*****celadm01.example.com</td>
</tr>
<tr>
<td>IOStat Summary</td>
</tr>
<tr>
<td>IOStat Detail</td>
</tr>
<tr>
<td>CPU Utilization</td>
</tr>
<tr>
<td>CPU Detail</td>
</tr>
<tr>
<td>CellSrvStat</td>
</tr>
<tr>
<td>Alert History</td>
</tr>
</tbody>
</table>

Note:

For screen reader users, the menu items are navigated using the UP/DOWN arrow keys and activated using the SPACE bar. The TAB key will move you to the frame on the right side.

The CellSrvStat menu item is available only when run against a storage server. The Alert History menu item is available only if there were alerts during the requested time frame.

1.14.2 IO Charts

IO charts show IO performance for an entire server or for individual disks in the storage server.

The following pages are available for IO statistics:

- IO Stat Summary
- I/O Stat Detail

1.14.2.1 IO Stat Summary

IOStat Summary shows a summary of IO performance for the entire server. The four charts shown in this page are:
Table 1-4 Statistics for IOStat Summary

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash IOPs</td>
<td>Total reads per second, writes per second, and IO per second (reads per second + writes per second) for the server. This uses r/s and w/s from iostat.</td>
</tr>
<tr>
<td>Hard Disk IOPs</td>
<td></td>
</tr>
<tr>
<td>Flash MB/s</td>
<td>Total read MB per second, write MB per second, and IO MB per second. This uses rsec/s and wsec/s from iostat, converted into MB.</td>
</tr>
<tr>
<td>Hard Disk MB/s</td>
<td></td>
</tr>
</tbody>
</table>

The statistics are shown for flash and hard disks, when applicable. On Exadata Extreme Flash, there are no hard disks. On database servers, there are no flash devices.

If there is a suspected I/O performance problem, the IOPs and the MB/s statistics for the storage servers can be compared to the data sheet to determine if the storage is at maximum capacity. High read times observed on the database can also be correlated to the service time and average wait time from iostat, to determine if the high times could potentially be due to the storage server. Note that the database times would typically include IOs that are satisfied from flash cache, as well as hard disk. In addition, these charts enable you to visualize any peaks during the time frame.

The partial screenshot below shows the IOPs and MB/s charts for flash and hard disk.
Figure 1-2 IO Summary Charts

Below each chart, there is a range selector that you can use to drill down to a specific time within the chart. Moving the range selector on any chart affects all charts on the page.

Note:

The range selector is not accessible to screen readers. Also, not all values presented in the chart are accessible to a screen reader. Only the first value of each chart data point is.
When you use the range selector, the displayed chart changes to show only the data for the time range specified by the range selector.

1.14.2.2 I/O Stat Detail

IOStat Detail shows performance for each disk on the storage server. The following charts are shown in this page:

<table>
<thead>
<tr>
<th>Table 1-5</th>
<th>Statistics for IO Stat Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>Flash Service Time</td>
<td>Average service time per disk contrasted against the range of wait times.</td>
</tr>
<tr>
<td>Hard Disk Service Time</td>
<td></td>
</tr>
<tr>
<td>Flash Wait Time</td>
<td>Average wait time per disk</td>
</tr>
<tr>
<td>Hard Disk Wait Time</td>
<td></td>
</tr>
</tbody>
</table>

By default, the charts include a line that depicts the average across all disks on the server. The shaded, background image indicates the minimum and maximum range for the statistic. You can choose to display individual disks by using the drop down selector.
If the background image has a wide range, then this can indicate possible differences in disk performance. You can use this metric to look more closely at each individual disk on the storage server to see if there is an imbalance. If the background image has a narrow range, then that indicates the disks are performing similarly.

The individual disk IOPs and MB/s for a storage server can also be compared to the data sheet numbers to see if the disks are potentially hitting their maximum capacity.

Figure 1-4 IO Detail Charts

1.14.3 CPU Charts

The CPU charts show CPU utilization for the server. These statistics are from `iostat` (avg-cpu: %user, %system, %iowait).
1.14.4 CPU Detail

The CPU detail charts show detailed information for CPU usage, including the average CPU utilization per CPU ID. These statistics are from mpstat.
1.14.5 Cell Server Charts

Cell server statistics are useful for tracking features that are specific to Exadata storage servers. This page displays statistics related to Smart Flash Cache and Smart IOs.
Figure 1-7 Cell Server Charts

1.14.6 Alert History

This page displays alerts that were present during the specified time frame. Alerts may be raised from errors or issues, which may result in IO performance issues on the servers.
Figure 1-8 Alert History
This chapter contains the following topics:

- **Management Server on Database Servers**
- **Maintaining the Hard Disks of Oracle Database Servers**
 Repair of the hard disks does not require the database server in Oracle Exadata Database Machine to be shut down.
- **Maintaining Flash Disks on Exadata Database Servers**
 Flash disks should be monitored and replaced when necessary.
- **Adding Disk Expansion Kit to Database Servers**
 You can add a disk expansion kit to some Oracle Exadata Database Servers.
- **Adding Memory Expansion Kit to Database Servers**
- **Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems**
 Ensure you are using the correct link speed for Oracle Exadata Database Machine X7 and X8 database servers.
- **Adding and Configuring an Extra Network Card on Oracle Exadata Database Machine X6-2 and Later**
 You can add an additional network card on Oracle Exadata Database Machine X6-2 and later systems.
- **Increasing the Number of Active Cores on Database Servers**
 You can increase the number of active cores on Oracle Exadata Database Machine using capacity-on-demand.
- **Extending LVM Partitions**
 Logical Volume Manager (LVM) provides flexibility to reorganize the partitions in the database servers.
- **Creating a Snapshot-Based Backup of Oracle Linux Database Server**
- **Recovering Oracle Linux Database Servers Using a Snapshot-Based Backup**
 You can recover a database server file systems running Oracle Linux using a snapshot-based backup after severe disaster conditions happen for the database server, or when the server hardware is replaced to such an extent that it amounts to new hardware.
• Re-Imaging the Oracle Exadata Database Server
 The re-image procedure is necessary when a database server needs to be brought to an initial state for various reasons.

• Changing Existing Elastic Configurations for Database Servers
 Elastic configurations provide a flexible and efficient mechanism to change the server configuration of your Oracle Exadata Database Machine.

• Managing Quorum Disks for High Redundancy Disk Groups
 Quorum disks allow for the Oracle RAC voting files to be stored in a high redundancy disk group on an Oracle Exadata Rack with fewer than five storage servers due to the presence of two extra failure groups.

• Using vmetrics
 The vmetrics package enables you to display system statistics gathered by the vmetrics service.

2.1 Management Server on Database Servers

Management Server (MS) running on database servers provides monitoring, alerting, and other administrative capabilities. It also provides the DBMCLI command-line administration tool.

See Also:

• "Management Server on Database Servers" in the Oracle Exadata Database Machine System Overview guide
• Using the DBMCLI Utility

2.2 Maintaining the Hard Disks of Oracle Database Servers

Repair of the hard disks does not require the database server in Oracle Exadata Database Machine to be shut down.

No downtime of the rack is required, however individual servers may require downtime, and be taken outside of the cluster temporarily.

• Verifying the Database Server Configuration
 Oracle recommends verifying the status of the database server RAID devices to avoid possible performance impact, or an outage.

• Monitoring a Database Server RAID Set Rebuilding

• Reclaiming a Hot Spare Drive After Upgrading to Oracle Exadata System Software Release 12.1.2.1.0 or Later

• Understanding Automated File Deletion Policy

Related Topics

• Parts and Repair Procedures for Oracle Database Servers
 Each server model has a different layout of internal components, different replaceable parts and different repair procedures.
2.2.1 Verifying the Database Server Configuration

Oracle recommends verifying the status of the database server RAID devices to avoid possible performance impact, or an outage.

The impact of validating the RAID devices is minimal. The impact of corrective actions will vary depending on the specific issue uncovered, and may range from simple reconfiguration to an outage.

- About the RAID Disk Configuration
 The disks are configured RAID-5 configuration.
- Verifying Disk Controller Configuration on Oracle Exadata Database Machine X7-8 or Later Systems
- Verifying Disk Controller Configuration on Oracle Exadata Database Machine X6-8 and Earlier
- Verifying Virtual Drive Configuration
- Verifying Physical Drive Configuration
 Check your system for critical, degraded, or failed disks.

2.2.1.1 About the RAID Disk Configuration

The disks are configured RAID-5 configuration.

The disk drives in each database server are controlled by a MegaRAID SAS disk controller.

Table 2-1 Disk Configurations for Exadata Database Machine Two-Socket Systems

<table>
<thead>
<tr>
<th>Server Type</th>
<th>RAID Controller</th>
<th>Disk Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Exadata Database Machine X8-2</td>
<td>MegaRAID SAS 9361-16i</td>
<td>4 disk drives in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X7-2</td>
<td>MegaRAID SAS 9361-16i</td>
<td>4 disk drives in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X6-2</td>
<td>MegaRAID SAS 9361-8i</td>
<td>4 disk drives in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X5-2</td>
<td>MegaRAID SAS 9361-8i</td>
<td>4 disk drives in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X4-2</td>
<td>MegaRAID SAS 9261-8i</td>
<td>4 disk drives in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X3-2</td>
<td>MegaRAID SAS 9261-8i</td>
<td>4 disk drives in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X2-2</td>
<td>MegaRAID SAS 9261-8i</td>
<td>4 disk drives in each database server</td>
</tr>
</tbody>
</table>
Table 2-2 Disk Configurations for Exadata Database Machine Eight-Socket Systems

<table>
<thead>
<tr>
<th>Server Type</th>
<th>RAID Controller</th>
<th>Disk Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Exadata Database Machine X8-8</td>
<td>N/A</td>
<td>Two NVMe flash accelerator cards in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X7-8</td>
<td>N/A</td>
<td>Two NVMe flash accelerator cards in each database server</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X5-8</td>
<td>MegaRAID SAS 9361-8i</td>
<td>8 disk drives in each database server with one virtual drive created across the RAID set</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X4-8</td>
<td>MegaRAID SAS 9261-8i</td>
<td>7 disk drives in each database server configured as one 6-disk RAID-5 with one global hot spare drive by default</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X3-8</td>
<td>MegaRAID SAS 9261-8i</td>
<td>8 disk drives in each database server with one virtual drive created across the RAID set</td>
</tr>
</tbody>
</table>

2.2.1.2 Verifying Disk Controller Configuration on Oracle Exadata Database Machine X7-8 or Later Systems

- Query `mdstat` to view the database server disk controller configuration on Oracle Exadata Database Machine X7-8 or later systems.

```
[root@dbnode01adm01 ~]# cat /proc/mdstat
Personalities : [raid1]
md34 : active raid1 nvme3n1[1] nvme1n1[0]
       3125613568 blocks super external:/md126/0 [2/2] [UU]

md24 : active raid1 nvme2n1[1] nvme0n1[0]
       262144000 blocks super external:/md127/0 [2/2] [UU]

md25 : active raid1 nvme2n1[1] nvme0n1[0]
       2863467520 blocks super external:/md127/1 [2/2] [UU]

md126 : inactive nvme3n1[1](S) nvme1n1[0](S)
        6306 blocks super external:imsm

md127 : inactive nvme2n1[1](S) nvme0n1[0](S)
        6306 blocks super external:imsm

unused devices: <none>
```

If the output you see is different, then investigate and correct the problem. Degraded virtual drives usually indicate absent or failed physical disks. Disks that show [1/2] and [U_] or [U_] for the state indicate that one of the NVME disks is down. Failed disks should be replaced quickly.
2.2.1.3 Verifying Disk Controller Configuration on Oracle Exadata Database Machine X6-8 and Earlier

For Oracle Exadata Database Machine X4-2, Oracle Exadata Database Machine X3-2, and Oracle Exadata Database Machine X2-2, the expected output is one virtual drive, none degraded or offline, five physical devices (one controller and four disks), four disks, and no critical or failed disks.

For Oracle Exadata Database Machine X3-8 Full Rack and Oracle Exadata Database Machine X2-8 Full Rack, the expected output is one virtual drive, none degraded or offline, 11 physical devices (one controller, two SAS2 expansion ports, and eight disks), eight disks, and no critical or failed disks.

If your output is different, then investigate and correct the problem. Degraded virtual drives usually indicate absent or failed physical disks. Critical disks should be replaced immediately to avoid the risk of data loss if the number of failed disks in the node exceed the count needed to sustain the operations of the system. Failed disks should also be replaced quickly.

Note:

If additional virtual drives or a hot spare are present, then it may be that the procedure to reclaim disks was not performed at deployment time or that a bare metal restore procedure was performed without using the dualboot=no qualifier. Contact Oracle Support Services and reference My Oracle Support note 1323309.1 for additional information and corrective steps.

When upgrading a database server that has a hot spare to Oracle Exadata System Software release 11.2.3.2.0 or later, the hot spare is removed, and added as an active drive to the RAID configuration. The database servers have the same availability in terms of RAID5 redundancy, and can survive the loss of one drive. When a drive failure happens, Oracle Auto Service Request (ASR) sends out a notification to replace the faulty drive at the earliest opportunity.

- Use the following command to verify the database server disk controller configuration on all systems prior to Oracle Exadata Database Machine X7-8:

```bash
if [[ -d /proc/xen && ! -f /proc/xen/capabilities ]];
then
    echo -e "This check will not run in a user domain of a virtualized environment. Execute this check in the management domain."
else
    if [ -x /opt/MegaRAID/storcli/storcli64 ];
    then
        export CMD=/opt/MegaRAID/storcli/storcli64
    else
        export CMD=/opt/MegaRAID/MegaCli/MegaCli64
    fi
    RAW_OUTPUT=$($CMD AdpAllInfo -aALL -nolog | grep "Device Present" -A8);
```
Example 2-1 Checking the disk controller configuration for Oracle Exadata Database Machine 2-socket system (X2-2 or later) without the disk expansion kit

The following is an example of the output from the command for Oracle Exadata Database Machine 2-socket system (X2-2 or later) without the disk expansion kit.

Device Present
================
Virtual Drives : 1
Degraded : 0
Offline : 0
Physical Devices : 5
 Disks : 4
 Critical Disks : 0
 Failed Disks : 0

Example 2-2 Checking the disk controller configuration for Oracle Exadata Database Machine X4-8 Full Rack

The following is an example of the output from the command for Oracle Exadata Database Machine X4-8 Full Rack:

Device Present
================
Virtual Drives : 1
Degraded : 0
Offline : 0
Physical Devices : 8
 Disks : 7
 Critical Disks : 0
 Failed Disks : 0

Example 2-3 Checking the disk controller configuration for Oracle Exadata Database Machine X5-8 or X6-8 Full Rack

The following is an example of the output from the command for Oracle Exadata Database Machine X5-8 or X6-8 Full Rack:

Device Present
================
Virtual Drives : 1
Degraded : 0
Offline : 0
Physical Devices : 9
Disks : 8
Critical Disks : 0
Failed Disks : 0

2.2.1.4 Verifying Virtual Drive Configuration

To verify the virtual drive configuration, use the following command to verify the virtual drive configuration:

```
/opt/MegaRAID/MegaCli/MegaCli64 CfgDsply -aALL | grep "Virtual Drive:";
```
```
/opt/MegaRAID/MegaCli/MegaCli64 CfgDsply -aALL | grep "Number Of Drives";
```
```
/opt/MegaRAID/MegaCli/MegaCli64 CfgDsply -aALL | grep "^State"
```

The following is an example of the output for Oracle Exadata Database Machine X4-2, Oracle Exadata Database Machine X3-2 and Oracle Exadata Database Machine X2-2. The virtual device 0 should have four drives, and the state is Optimal.

Virtual Drive : 0 (Target Id: 0)
Number Of Drives : 4
State : Optimal

The expected output for Oracle Exadata Database Machine X3-8 Full Rack and Oracle Exadata Database Machine X2-8 Full Rack displays the virtual device has eight drives and a state of optimal.

Note:

If a disk replacement was performed on a database server without using the dualboot=no option, then the database server may have three virtual devices. Contact Oracle Support and reference My Oracle Support note 1323309.1 for additional information and corrective steps.

2.2.1.5 Verifying Physical Drive Configuration

Check your system for critical, degraded, or failed disks.

To verify physical drive configuration, use the following command to verify the database server physical drive configuration:

```
/opt/MegaRAID/MegaCli/MegaCli64 -PDList -aALL | grep "Firmware state"
```
The following is an example of the output for Oracle Exadata Database Machine X4-2, Oracle Exadata Database Machine X3-2, and Oracle Exadata Database Machine X2-2:

Firmware state: Online, Spun Up

The drives should show a state of Online, Spun Up. The order of the output is not important. The output for Oracle Exadata Database Machine X3-8 Full Rack or Oracle Exadata Database Machine X2-8 Full Rack should be eight lines of output showing a state of Online, Spun Up.

If your output is different, then investigate and correct the problem.

Degraded virtual drives usually indicate absent or failed physical disks. Critical disks should be replaced immediately to avoid the risk of data loss if the number of failed disks in the node exceed the count needed to sustain the operations of the system. Failed disks should be replaced quickly.

2.2.2 Monitoring a Database Server RAID Set Rebuilding

If a drive in a database server RAID set is replaced, then the progress of the RAID set rebuild should be monitored.

Use the following command on the database server that has the replaced disk. The command is run as the root user.

```
/opt/MegaRAID/MegaCli/MegaCli64 -pdrbld -showprog -physdrv [disk_enclosure:slot_number] -a0
```

In the preceding command, `disk_enclosure` and `slot_number` indicate the replacement disk identified by the MegaCli64 -PDList command. The following is an example of the output from the command:

Rebuild Progress on Device at Enclosure 252, Slot 2 Completed 41% in 13 Minutes.

2.2.3 Reclaiming a Hot Spare Drive After Upgrading to Oracle Exadata System Software Release 12.1.2.1.0 or Later

Oracle Exadata Database Machines upgraded to Oracle Exadata System Software release 12.1.2.1.0 or later that have a hot spare drive cannot use the `reclaimdisks.sh` script to reclaim the drive. The following procedure describes how to manually reclaim the drive:
Note:
During the procedure, the database server is restarted twice. The steps in the procedure assume that the Oracle Grid Infrastructure restart is disabled after the server restart.

The sample output shows Oracle Exadata Database Machine X2-2 database server with four disks. The enclosure identifier, slot number, and such may be different for your system.

1. Identify the hot spare drive.

 # /opt/MegaRAID/MegaCli/MegaCli64 -PDList -aALL

 The following is an example of the output from the command for the hot spare drive:

 ...
 Enclosure Device ID: 252
 Slot Number: 3
 Enclosure position: N/A
 Device Id: 8
 WWN: 5000CCA00A9FAA5F
 Sequence Number: 2
 Media Error Count: 0
 Other Error Count: 0
 Predictive Failure Count: 0
 Last Predictive Failure Event Seq Number: 0
 PD Type: SAS
 Hotspare Information:
 Type: Global, with enclosure affinity, is revertible
 Raw Size: 279.396 GB [0x22ecb25c Sectors]
 Non Coerced Size: 278.896 GB [0x22dcb25c Sectors]
 Coerced Size: 278.464 GB [0x22cee000 Sectors]
 Sector Size: 0
 Logical Sector Size: 0
 Physical Sector Size: 0
 Firmware state: Hotspare, Spun down
 Device Firmware Level: A2A8
 Shield Counter: 0
 Successful diagnostics completion on : N/A
 ...

 The command identified the hot spare drive on enclosure identifier 252, slot 3.

2. Obtain the virtual drive information.

 # /opt/MegaRAID/MegaCli/MegaCli64 -LDInfo -Lall -aALL
The following is an example of the output from the command:

```
Adapter 0 -- Virtual Drive Information:
Virtual Drive: 0 (Target Id: 0)
Name :DBSYS
RAID Level : Primary-5, Secondary-0, RAID Level Qualifier-3
Size : 556.929 GB
Sector Size : 512
Is VD emulated : No
Parity Size : 278.464 GB
State : Optimal
Strip Size : 1.0 MB
Number Of Drives : 3
Span Depth : 1
Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache
if Bad BBU
Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache
if Bad BBU
Default Access Policy: Read/Write
Current Access Policy: Read/Write
Disk Cache Policy : Disabled
Encryption Type : None
Is VD Cached: No
```

The command identified a RAID 5 configuration for virtual drive 0 on adapter 0.

3. Remove the hot spare drive.

```
# /opt/MegaRAID/MegaCli/MegaCli64 -PDHSP -Rmv -PhysDrv[252:3] -a0
```

4. Add the drive as an active RAID 5 drive.

```
# /opt/MegaRAID/MegaCli/MegaCli64 -LDRecon -Start -r5       \
-Add -PhysDrv[252:3] -L0 -a0
```

Start Reconstruction of Virtual Drive Success.
Exit Code: 0x00

Note:

If the message Failed to Start Reconstruction of Virtual Drive is displayed, then follow the instructions in My Oracle Support note 1505157.1.

5. Monitor the progress of the RAID reconstruction.

```
# /opt/MegaRAID/MegaCli/MegaCli64 -LDRecon -ShowProg -L0 -a0
```

Reconstruction on VD #0 (target id #0) Completed 1% in 2 Minutes.
The following output shows the output of the command after the hot spare drive is added to the RAID 5 configuration, and the reconstruction is finished:

Reconstruction on VD #0 is not in Progress.

6. **Verify the number of drives.**

```bash
# /opt/MegaRAID/MegaCli/MegaCli64 -LDInfo -Lall -Aall
```

The following is an example of the output from the command:

```plaintext
Adapter 0 -- Virtual Drive Information:
Virtual Drive: 0 (Target Id: 0)
Name :DBSYS
RAID Level : Primary-5, Secondary-0, RAID Level Qualifier-3
Size : 835.394 GB
Sector Size : 512
Is VD emulated : No
Parity Size : 278.464 GB
State : Optimal
Strip Size : 1.0 MB
Number Of Drives : 4
Span Depth : 1
Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU
Default Access Policy: Read/Write
Current Access Policy: Read/Write
Disk Cache Policy : Disabled
Encryption Type : None
Is VD Cached: No
```

7. **Check the size of the RAID.**

```bash
# parted /dev/sda print
```

```plaintext
Model: LSI MR9261-8i (scsi)
Disk /dev/sda: 598GB
Sector size (logical/physical): 512B/4096B
Partition Table: msdos

Number Start End Size Type File system Flags
1 32.3kB 132MB 132MB primary ext3 boot
2 132MB 598GB 598GB primary lvm
```

8. **Restart the server in order for the changes to take effect.**

9. **Check the size of the RAID again.**

```bash
# parted /dev/sda print
```

```plaintext
Model: LSI MR9261-8i (scsi)
Disk /dev/sda: 897GB
```
Sector size (logical/physical): 512B/4096B
Partition Table: msdos

Number Start End Size Type File system Flags
1 32.3kB 132MB 132MB primary ext3 boot
2 132MB 598GB 598GB primary lvm

The increased RAID size allows for extending the volume group. To extend the volume group, you must add an additional partition to the drive.

10. Obtain the new size, in sectors.

 # parted /dev/sda
 GNU Parted 2.1
 Using /dev/sda
 Welcome to GNU Parted! Type 'help' to view a list of commands.
 (parted) unit s
 (parted) print
 Model: LSI MR9261-8i (scsi)
 Disk /dev/sda:
 1751949312s
 Sector size (logical/physical): 512B/4096B
 Partition Table: msdos

 Number Start End Size Type File system Flags
 1 63s 257039s 256977s primary ext3 boot
 2 257040s 1167957629s 1167700590s primary lvm

 In the preceding example, a third partition can be created starting at sector 1167957630, and ending at the end of the disk at sector 1751949311.

11. Create an additional partition on the drive.

 # parted /dev/sda
 GNU Parted 2.1
 Using /dev/sda
 Welcome to GNU Parted! Type 'help' to view a list of commands.
 (parted) unit s

 (parted) mkpart
 Partition type? primary/extended? primary
 File system type? [ext2]? ext2
 Start? 1167957630
 End? 1751949311
 Warning: The resulting partition is not properly aligned for best performance.
 Ignore/Cancel? Ignore
 Warning: WARNING: the kernel failed to re-read the partition table on /dev/sda (Device or resource busy). As a result, it may not reflect all of your changes until after reboot.
 (parted)

 (parted) print
Model: LSI MR9261-8i (scsi)
Disk /dev/sda: 1751949312s
Sector size (logical/physical): 512B/4096B
Partition Table: msdos

Number Start End Size Type File system Flags
 1 63s 257039s 256977s primary ext3 boot
 2 257040s 1167957629s 1167700590s primary lvm
 3 1167957630s 1751949311s 583991682s primary

(parted) set 3 lvm on

Warning: WARNING: the kernel failed to re-read the partition table on /dev/sda (Device or resource busy). As a result, it may not reflect all of your changes until after reboot.
(parted) print
Model: LSI MR9261-8i (scsi)
Disk /dev/sda: 1751949312s
Sector size (logical/physical): 512B/4096B
Partition Table: msdos

Number Start End Size Type File system Flags
 1 63s 257039s 256977s primary ext3 boot
 2 257040s 1167957629s 1167700590s primary lvm
 3 1167957630s 1751949311s 583991682s primary

12. Restart the database server.
13. Create the physical volume.

 # pvcreate /dev/partition_name

14. Add the physical volume to the existing volume group.
 In the following example, substitute the actual names for the volume_group, partition_name, and volume_name.

 # vgextend volume_group /dev/partition_name

 Volume group "volume_name" successfully extended

15. Resize the logical volume and file systems as described in "Extending LVM Partitions."

Related Topics
• Failed to Start Reconstruction of Virtual Drive - Adding a hot-spare manually (My Oracle Support Doc ID 1505157.1)

2.2.4 Understanding Automated File Deletion Policy

Management Server (MS) includes a file deletion policy for the / (root) directory on the database servers that is triggered when file system utilization is high. Deletion of files is triggered when file utilization is 80 percent, and an alert is sent before the deletion begins. The alert includes the name of the directory, and space usage for the subdirectories. In particular, the deletion policy is as follows:
Files in the following directories are deleted using a policy based on the file modification time stamp.

- /opt/oracle/dbserver/log
- /opt/oracle/dbserver/dbms/deploy/config/metrics
- /opt/oracle/dbserver/dbms/deploy/log

Files that are older than the number of days set by the `metricHistoryDays` attribute are deleted first, then successive deletions occur for earlier files, down to files with modification time stamps older than or equal to 10 minutes, or until file system utilization is less than 75 percent. The `metricHistoryDays` attribute applies to files in `/opt/oracle/dbserver/dbms/deploy/config/metrics`. For the other log and trace files, use the `diagHistoryDays` attribute.

Starting with Oracle Exadata System Software release 12.1.2.2.0, the maximum amount of space for `ms-odl.trc` and `ms-odl.log` files is 100 MB (twenty 5 MB files) for `.trc` files and 100 MB (twenty 5 MB files) for `.log` files. Previously, it was 50 MB (ten 5 MB files) for both `.trc` and `.log` files.

`ms-odl` generation files are renamed when they reach 5 MB, and the oldest are deleted when the files use up 100 MB of space.

2.3 Maintaining Flash Disks on Exadata Database Servers

Flash disks should be monitored and replaced when necessary.

Starting with Exadata Database Machine X7-8, the database servers contain flash devices instead of hard disks. These flash devices can be replaced without shutting down the server.

- **Monitoring the Status of Flash Disks**
 You can monitor the status of a flash disk on the Exadata Database Machine by checking its attributes with the `DBMCLI LIST PHYSICALDISK` command.

- **Performing a Hot-Pluggable Replacement of a Flash Disk**
 For Oracle Exadata Database Machine X7-8 and X8-8 models, the database server uses hot-pluggable flash disks instead of hard disk drives.

2.3.1 Monitoring the Status of Flash Disks

You can monitor the status of a flash disk on the Exadata Database Machine by checking its attributes with the `DBMCLI LIST PHYSICALDISK` command.

For example, a flash disk status equal to `failed` is probably having problems and needs to be replaced.

- **Use the `DBMCLI` command** `LIST PHYSICALDISK` to determine the status of a flash disk:

  ```
  DBMCLI> LIST PHYSICALDISK WHERE disktype=flashdisk AND status!=normal
  DETAIL
  name:               FLASH_1_1
  deviceName:         /dev/nvme0n1
  diskType:           FlashDisk
  luns:               1_1
  makeModel:          "Oracle Flash Accelerator F640 PCIe Card"
  ```
The Exadata Database Server flash disk statuses are as follows:

- normal
- normal - dropped for replacement
- failed
- failed - dropped for replacement
- failed - rejected due to incorrect disk model
- failed - rejected due to incorrect disk model - dropped for replacement
- failed - rejected due to wrong slot
- failed - rejected due to wrong slot - dropped for replacement
- warning - peer failure
- warning - predictive failure, write-through caching
- warning - predictive failure
- warning - predictive failure - dropped for replacement
- warning - write-through caching

2.3.2 Performing a Hot-Pluggable Replacement of a Flash Disk

For Oracle Exadata Database Machine X7-8 and X8-8 models, the database server uses hot-pluggable flash disks instead of hard disk drives.

1. Determine if the flash disk is ready to be replaced.

When performing a hot-pluggable replacement of a flash device on Oracle Exadata Database Machine X7-8 and X8-8 database servers, the disk status should be Dropped for replacement, which indicates the flash disk is ready for online replacement.

```
DBMCLI> LIST PHYSICALDISK WHERE DISKTYPE=flashdisk AND STATUS LIKE '.*dropped for replacement.*' DETAIL
```

```
name:               FLASH_1_1
deviceName:         /dev/nvme0n1
diskType:           FlashDisk
luns:               1_1
makeModel:          "Oracle Flash Accelerator F640 PCIe Card"
physicalFirmware:   QDV1RD09
physicalInsertTime: 2017-08-11T12:25:00-07:00
physicalSerial:     PHLE6514003R6P4BGN-1
physicalSize:       2.910957656800747T
```
2. Locate the failed flash disk based on the PCI number and FDOM number.

A white Locator LED is lit to help locate the affected database server. An amber Fault-Service Required LED is lit to identify the affected flash card.

3. Make sure the DPCC OK LED is off on the card.

![Caution:](image)

Removing a card with the DPCC OK LED on could result in a system crash. If a failed disk has a status of Failed - dropped for replacement but the DPCC OK LED is still on, contact Oracle Support.

4. Remove and replace the failed flash disk.
 a. Slide out the DPCC and replace the flash card inside.
 b. Slide the DPCC carrier back to the slot.

5. Use a stylus to press both ATTN buttons on the front of the DPCC.
 - If only a single PCIe card is present, press only the corresponding ATTN button.
 - If you are not performing a hot-pluggable replacement, then this step is not necessary.

The buttons alert the system to a request to bring the devices online. When the system acknowledges the request, it lights the DPCC OK LED indicators on the DPCC. If you do not press the ATTN buttons, then the flash disk will not be detected by the operating system.

2.4 Adding Disk Expansion Kit to Database Servers

You can add a disk expansion kit to some Oracle Exadata Database Servers.

Note the following restrictions:

- The disk expansion kit is supported on Oracle Exadata Database Machine X5-2, X6-2, and X7-2 systems only.
- Oracle Exadata System Software release 12.1.2.3.0 or later is required.

1. Replace the plastic filler with the four drives in the disk expansion kit.
 The server should be powered on so that the controller can sense the new drives.

2. An alert will be raised to indicate the disk expansion kit is detected and the drives have been automatically added to the existing RAID5 configuration and reconstruction of the corresponding virtual drive is started.

3. Another alert will be raised when the virtual drive reconstruction is completed.

4. Run `/opt/oracle.SupportTools/reclaimdisks.sh -extend-vgexadb` to extend the `VGExaDb` volume group to the rest of the `/dev/sda` system disk.
Note:

- `reclaimdisks.sh` works only during initial deployment, before the database software is installed. If you have already been running Oracle Exadata Database Machine for a while, you do not need to run it because you should have already run it during initial deployment. In the event that it was not run during initial deployment, you cannot run it at this time because too many changes to `/u01` have been made. `reclaimdisks.sh` returns an error message if it discovers changes to the `/u01` file system. By default, the `/u01` file system is empty on new systems.

- Run this command only after the virtual drive reconstruction is complete. If you run it before reconstruction is complete, you will see the following messages:

 [WARNING] Reconstruction of the logical drive 0 is in progress: Completed: 14%. Left: 5 Hours 32 Minutes
 [WARNING] Continue after reconstruction is complete

If this occurs, wait until the virtual drive reconstruction is complete, then re-run the command.

If prompted to fix the GUID Partition Table (GPT) or to continue with the current settings, enter `F` to fix the GPT.

```
[root@dbnode01 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -extend-vgexadb
Model is ORACLE SERVER X6-2
Number of LSI controllers: 1
Physical disks found: 8 (252:0 252:1 252:2 252:3 252:4 252:5 252:6 252:7)
Logical drives found: 1
Linux logical drive: 0
RAID Level for the Linux logical drive: 5
Physical disks in the Linux logical drive: 8 (252:0 252:1 252:2 252:3 252:4 252:5 252:6 252:7)
Dedicated Hot Spares for the Linux logical drive: 0
Global Hot Spares: 0
Valid. Disks configuration: RAID5 from 8 disks with no global and dedicated hot spare disks.
Valid. Booted: Linux. Layout: Linux + DOM0.
[INFO  ] Size of system block device /dev/sda: 4193GB
[INFO  ] Last partition on /dev/sda ends on: 1797GB
[INFO  ] Unused space detected on the system block device: /dev/sda
[INFO  ] Label of partition table on /dev/sda: gpt
[INFO  ] Adjust the partition table to use all of the space on /dev/sda
[INFO  ] Respond to the following prompt by typing 'F'
Warning: Not all of the space available to /dev/sda appears to be used, you can fix the GPT to use all of the space (an extra 4679680000 blocks) or
```
continue with the current setting? Fix/Ignore? F
Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 4193GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.8kB</td>
<td>537MB</td>
<td>537MB</td>
<td>ext4</td>
<td>primary</td>
<td>boot</td>
</tr>
<tr>
<td>2</td>
<td>537MB</td>
<td>123GB</td>
<td>122GB</td>
<td></td>
<td>primary</td>
<td>lvm</td>
</tr>
<tr>
<td>3</td>
<td>123GB</td>
<td>1690GB</td>
<td>1567GB</td>
<td></td>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1690GB</td>
<td>1797GB</td>
<td>107GB</td>
<td></td>
<td>primary</td>
<td>lvm</td>
</tr>
</tbody>
</table>

[INFO] Check for Linux with inactive DOM0 system disk
[INFO] Valid Linux with inactive DOM0 system disk is detected
[INFO] Number of partitions on the system device /dev/sda: 4
[INFO] Higher partition number on the system device /dev/sda: 4
[INFO] Last sector on the system device /dev/sda: 818940000
[INFO] End sector of the last partition on the system device /dev/sda: 3509759000
[INFO] Unmount /u01 from /dev/mapper/VGExaDbOra-LVDbOra1
[INFO] Remove inactive system logical volume /dev/VGExaDb/LVDbSys3
[INFO] Remove xen files from /boot
[INFO] Remove logical volume /dev/VGExaDbOra/LVDbOra1
[INFO] Remove volume group VGExaDbOra
[INFO] Remove physical volume /dev/sda4
[INFO] Remove partition /dev/sda4
[INFO] Remove device /dev/sda4
[INFO] Remove partition /dev/sda3
[INFO] Remove device /dev/sda3
[INFO] Create primary partition 3 using 240132160 8189439966
[INFO] Set lvm flag for the primary partition 3 on device /dev/sda3
[INFO] Add device /dev/sda3
[INFO] Primary LVM partition /dev/sda3 has size 7949307807 sectors
[INFO] Create physical volume on partition /dev/sda3
[INFO] LVM Physical Volume /dev/sda3 has size 3654340511 sectors
[INFO] Size of LVM physical volume less than size of device /dev/sda3
[INFO] Remove LVM physical volume /dev/sda3
[INFO] Reboot is required to apply the changes in the partition table

5. If required, reboot the database server to apply the changes in the partition table. The message at the end of the previous command will tell you if a reboot is required.

[root@dbnode01 ~]# shutdown -r now

If a reboot is not required, skip to step 7.

This step depends on how you want to use the additional space. For example, you can increase the size of existing volume groups, or you can create and mount new volume groups to make use of the additional space.
This command might return an error, as shown below. This error can be ignored.

```
[root@dbnode01 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -extend-vgexadb
Model is ORACLE SERVER X6-2
Number of LSI controllers: 1
Physical disks found: 8 (252:0 252:1 252:2 252:3 252:4 252:5 252:6 252:7)
Logical drives found: 1
Linux logical drive: 0
RAID Level for the Linux logical drive: 5
Physical disks in the Linux logical drive: 8 (252:0 252:1 252:2 252:3 252:4 252:5 252:6 252:7)
Dedicated Hot Spares for the Linux logical drive: 0
Global Hot Spares: 0
Valid. Disks configuration: RAID5 from 8 disks with no global and dedicated hot spare disks.
    [INFO    ] Check for Linux system disk
    [INFO    ] Number of partitions on the system device /dev/sda: 4
    [INFO    ] Higher partition number on the system device /dev/sda: 4
    [INFO    ] Last sector on the system device /dev/sda: 8189400000
    [INFO    ] End sector of the last partition on the system device /dev/sda: 8189439966
    [INFO    ] Next free available partition on the system device /dev/sda:
    [INFO    ] Primary LVM partition /dev/sda4 has size 4679680000 sectors
    [INFO    ] Create physical volume on partition /dev/sda4
    [INFO    ] LVM Physical Volume /dev/sda4 has size 4679680000 sectors
    [INFO    ] Size of LVM physical volume matches size of primary LVM partition /dev/sda4
    [INFO    ] Extend volume group VGExaDb with physical volume on /dev/sda4
    [INFO    ] Create 100Gb logical volume for DBORA partition in volume group VGExaDb
    [WARNING ] Failed command at attempt: lvm lvcreate -L 100GB -n LVDbOra1 VGExaDb at 1/1
    [ERROR    ] Failed command: lvm lvcreate -L 100GB -n LVDbOra1 VGExaDb
    [ERROR    ] Unable to create logical volume LVDbOra1 in volume group VGExaDb
    [ERROR    ] Unable to reclaim all disk space
```

Valid. Disks configuration: RAID5 from 8 disks with no global and dedicated hot spare disks.

8. Resize the logical volume and file systems as described in Extending LVM Partitions.

2.5 Adding Memory Expansion Kit to Database Servers

Additional memory can be added to database servers. The following procedure describes how to add the memory:

1. Power down the database server.
2. Replace the plastic fillers with the DIMMs.
 - X4-8: See "Replace a Failed DIMM" in Sun Server X4-8 Service Manual at http://docs.oracle.com/cd/E40591_01/html/E40317/gnsdu.html#scrolltoc
 - X4-2: See "Servicing the DIMMs (CRU)" in Sun Server X4-2 Service Manual at http://docs.oracle.com/cd/E36975_01/html/E38045/z40003f01425075.html#scrolltoc
3. Power on the database server.
4. Add the database server back to the cluster.
Additional notes:

- Memory for Sun Server X4-2 Oracle Database Servers and Sun Server X3-2 Oracle Database Servers can be expanded to a maximum of 512 GB with the memory expansion kit.
- Memory for Sun Fire X4170 Oracle Database Servers can be expanded to a maximum of 144 GB by removing the existing memory, and replacing it with three X2-2 Memory Expansion Kits.
- Sun Fire X4170 M2 Oracle Database Servers ship from the factory with 96 GB of memory, with 12 of the 18 DIMM slots populated with 8 GB DIMMs. The optional X2-2 Memory Expansion Kit can be used to populate the remaining 6 empty slots with 16 GB DIMMs to bring the total memory to 192 GB (12 x 8 GB and 6 x 16GB).

The memory expansion kit is primarily for consolidation workloads where many databases are run on each database server. In this scenario, the CPU usage is often low while the memory usage is very high.

However, there is a downside to populating all the memory slots as the frequency of the memory DIMMs drop to 800 MHz from 1333 MHz. The performance effect of the slower memory appears as increased CPU utilization. The average measured increase in CPU utilization is typically between 5% and 10%. The increase varies greatly by workload. In test workloads, several workloads had almost zero increase, while one workload had as high as a 20% increase.

- When adding memory to Oracle Exadata Database Machines running Oracle Linux, Oracle recommends updating the `/etc/security/limits.conf` file with the following:

  ```
  oracle  soft   memlock 75%
  oracle  hard   memlock 75%
  ```

2.6 Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems

Ensure you are using the correct link speed for Oracle Exadata Database Machine X7 and X8 database servers.

Note:

You should configure the client network ports using Oracle Exadata Deployment Assistant (OEDA) during the deployment of the X7 and X8 systems. See the OEDA Customer Network Configuration Page.

The following steps may be necessary to configure a client access port if the OEDA deployment was not performed or was performed incorrectly.

1. For each network interface (designated by x) that does not have the link detected, run the following commands:
- For 10GbE network interfaces:

  ```
  # ifdown ethx
  # ethtool -s ethx 10000 duplex full autoneg off
  # ifup ethx
  # ethtool ethx
  ```

 For 10Gb/s, you must use SFP+ transceivers; SFP28 transceivers do not support 10Gb/s traffic.

- For 25GbE network interfaces:

  ```
  # ifdown ethx
  # ethtool -s ethx 25000 duplex full autoneg off
  # ifup ethx
  # ethtool ethx
  ```

2. Confirm that the output from the `ethtool` command shows `yes` for Link detected.

 Link detected: yes

3. Edit the appropriate files in `/etc/sysconfig/network-scripts`, where `x` is the number associated with the network interface.

 a. Locate the `/etc/sysconfig/network-scripts/ifcfg-ethx` file. Add the following lines, if they are not already present in the file:

      ```
      • For 10GbE network interfaces:

        ONBOOT=YES
        ETHTOOL_OPTS="speed 10000 duplex full autoneg off"
      ```

      ```
      • For 25GbE network interfaces:

        ONBOOT=YES
        ETHTOOL_OPTS="speed 25000 duplex full autoneg off"
      ```

 b. Repeat the previous step for all network interfaces that do not have the `ETHTOOL_OPTS` setting in the associated `ifcfg-ethx` file and are connected to 10GbE or 25GbE switches.

The network interface should now show the link as detected. These changes are persistent, and do not need to be repeated after a server reboot.

4. Check the ILOM on each compute node to validate the LAN on Motherboard is properly configured to detect the 25G transceiver.

   ```
   show /HOST/network
   /HOST/network
   Targets:
   ```

   ```
   Properties:
   active_media = none
   auto_media_detection = enabled
   current_active_media = (none)
   ```
2.7 Adding and Configuring an Extra Network Card on Oracle Exadata Database Machine X6-2 and Later

You can add an additional network card on Oracle Exadata Database Machine X6-2 and later systems.

Prerequisites

Ensure you are using the correct link speed for Oracle Exadata Database Machine X7-2 and X8-2 compute nodes. Complete the steps in Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems.

Oracle Exadata Database Machine X6-2

Oracle Exadata Database Machine X6-2 database server offers highly available copper 10G network on the motherboard, and an optical 10G network via a PCI card on slot 2. Oracle offers an additional Ethernet card for customers that require additional connectivity. The additional card provides either dual port 10GE copper connectivity (part number 7100488) or dual port 10GE optical connectivity (part number X1109A-Z). You install this card in PCIe slot 1 on the Oracle Exadata Database Machine X6-2 database server.

After you install the card and connect it to the network, the Oracle Exadata System Software automatically recognizes the new card and configures the two ports as eth6 and eth7 interfaces on the X6-2 database server. You can use these additional ports to provide an additional client network, or to create a separate backup or data recovery network. On a database server that runs virtual machines, you could use this to isolate traffic from two virtual machines.

Oracle Exadata Database Machine X7-2

Oracle Exadata Database Machine X7-2 and later database servers offer 2 copper (RJ45) or 2 optical (SFP28) network connections on the motherboard plus 2 optical (SFP28) network connections in PCIe card slot 1. Oracle offers an additional 4 copper (RJ45) 10G network connections for customers that require additional connectivity. The additional card is the Oracle Quad Port 10GBase-T card (part number 7111181). You install this card in PCIe slot 3 on the database server.

After you install the card and connect it to the network, the Oracle Exadata System Software automatically recognizes the new card and configures the four ports as eth5 to eth8 interfaces on the database server. You can use these additional ports to...
provide an additional client network, or to create a separate backup or data recovery networks. On a database server that runs virtual machines, you could use this additional client network to isolate traffic from two virtual machines.

After you have added the card to the database server, you need to configure the card. See the following topics for instructions:

- **Viewing the Network Interfaces**
- **Configuring the Additional Network Card for a Non-Oracle VM Environment**
- **Configuring the Additional Network Card for an Oracle VM Environment**

Oracle Exadata Database Machine X8-2

Oracle Exadata Database Machine X8-2 database servers offer 2 copper (RJ45) or 2 copper/optical (SFP28) network connections on the motherboard plus 2 optical (SFP28) network connections in PCIe card slot 1. Oracle offers an additional 4 copper 1/10G (RJ45) or 2 optical 10/25G (SFP28) network connections for customers that require additional connectivity. The two additional cards are:

- Oracle Quad Port 10GBase-T card (part number 7111181)
- Oracle Dual Port 25 Gb Ethernet Adapter (part number 7118016)

The additional card is installed in PCIe slot 3 on the database server.

After you install the card and connect it to the network, the Oracle Exadata System Software automatically recognizes the new card and configures either the four ports as eth5 to eth8 interfaces for the quad port card, or eth5 and eth6 for the dual port card on the database server. You can use these additional ports to provide an additional client network, or to create a separate backup or data recovery networks. On a database server that runs virtual machines, you could use this additional client network to isolate traffic from two virtual machines.

- **Viewing the Network Interfaces**
 To view the network interfaces, you can run the `ipconf.pl` command.

- **Configuring the Additional Network Card for a Non-Oracle VM Environment**
 You can configure the additional network card on an Oracle Exadata Database Machine X6-2 or later database server for a non-Oracle VM environment.

- **Configuring the Additional Network Card for an Oracle VM Environment**
 You can configure the additional network card on an Oracle Exadata Database Machine X6-2 and later database server for an Oracle VM environment.

2.7.1 Viewing the Network Interfaces

To view the network interfaces, you can run the `ipconf.pl` command.

Example 2-4 Viewing the default network interfaces for an Oracle Exadata Database Machine X8M-2 database server

The following example shows the output for an Oracle Exadata Database Machine X8M-2 database server without the additional network card. In addition to the RDMA Network Fabric interfaces, the output shows the interfaces for three network cards:

- A single port 1/10Gb card, `eth0`
- A dual port 10 or 25Gb card, on `eth1` and `eth2`
• A dual port 10 or 25Gb card, on eth3 and eth4

root@scaz23adm01 ibdiagtools]# /opt/oracle.cellos/ipconf.pl
[Info]: ipconf command line: /opt/oracle.cellos/ipconf.pl
Logging started to /var/log/cellos/ipconf.log
Interface re0 is Linked. hca: mlx5_0
Interface rel is Linked. hca: mlx5_0
Interface eth0 is Linked. driver/mac: igb/00:10:e0:c3:b7:9c
Interface eth1 is Unlinked. driver/mac: bnxt_en/00:10:e0:c3:b7:9d
(slave of bondeth0)
Interface eth2 is Linked. driver/mac: bnxt_en/00:10:e0:c3:b7:9d
(slave of bondeth0)
Interface eth3 is Unlinked. driver/mac: bnxt_en/00:0a:f7:c3:28:30
Interface eth4 is Unlinked. driver/mac: bnxt_en/00:0a:f7:c3:28:38

Example 2-5 Viewing the default network interfaces for an Oracle Exadata Database Machine X7-2 or X8-2 database server

The following example shows the output for an Oracle Exadata Database Machine X7-2 or X8-2 database server without the additional network card. In addition to the RDMA Network Fabric interfaces, the output shows the interfaces for three network cards:

• A single port 10Gb card, on eth0
• A dual port 10 or 25Gb card, on eth1 and eth2
• A dual port 25Gb card, on eth3 and eth4

/opt/oracle.cellos/ipconf.pl
Logging started to /var/log/cellos/ipconf.log
Interface ib0 is Linked. hca: mlx4_0
Interface ib1 is Linked. hca: mlx4_0
Interface eth0 is Linked. driver/mac: igb/00:10:e0:c3:ba:72
Interface eth1 is Linked. driver/mac: bnxt_en/00:10:e0:c3:ba:73
Interface eth2 is Linked. driver/mac: bnxt_en/00:10:e0:c3:ba:74
Interface eth3 is Unlinked. driver/mac: bnxt_en/00:0a:f7:c3:14:a0 (slave of bondeth0)
Interface eth4 is Unlinked. driver/mac: bnxt_en/00:0a:f7:c3:14:a0 (slave of bondeth0)

Example 2-6 Viewing the default network interfaces for an Oracle Exadata Database Machine X6-2 database server

The following example shows the output for an Oracle Exadata Database Machine X6-2 database server without the additional network card. In addition to the RDMA Network Fabric interfaces, the output shows the interfaces for two network cards:

• A quad port 10Gb card, on eth0 to eth3
2.7.2 Configuring the Additional Network Card for a Non-Oracle VM Environment

You can configure the additional network card on an Oracle Exadata Database Machine X6-2 or later database server for a non-Oracle VM environment.

This procedure assumes that you have already installed the network card in the Oracle Exadata Database Machine database server but have not yet completed the configuration with Oracle Exadata Deployment Assistant (OEDA).

⚠️ WARNING:

If you have already installed Oracle Grid Infrastructure on Oracle Exadata Database Machine, then refer to the Oracle Clusterware documentation. Use caution when changing the network interfaces for the cluster.

1. Ensure you have the following information for the new network card.
 You will need to input this information when you run `ipconf.pl`.
 - IP address
 - Netmask
 - Gateway

2. Run the `ipconf.pl` script to configure the card.
 The following example shows a sample `ipconf.pl` session. The output shows three network cards:
 - A quad port 10Gb card, on eth0 to eth3
 - A dual port 10Gb card, on eth4 and eth5, with only one port cabled
 - A dual port 10Gb card, on eth6 and eth7, with only one port cabled. This is the new network card.
For sample output for Oracle Exadata Database Machine X7-2, see **Viewing the Network Interfaces**.

```bash
# cd /opt/oracle.cellos/
# ./ipconf.pl
Logging started to /var/log/cellos/ipconf.log
Interface ib0   is                      Linked.    hca: mlx4_0
Interface ib1   is                      Linked.    hca: mlx4_0
Interface eth0  is                      Linked.    driver/mac: ixgbe/00:10:e0:8b:22:e8 (slave of vmeth0)
Interface eth1  is                      Linked.    driver/mac: ixgbe/00:10:e0:8b:22:e9 (slave of bondeth0)
Interface eth2  is                      Linked.    driver/mac: ixgbe/00:10:e0:8b:22:e9 (slave of bondeth0)
Interface eth3  is                      Linked.    driver/mac: ixgbe/00:10:e0:8b:22:eb
Interface eth4  is                      Linked.    driver/mac: ixgbe/90:e2:ba:ac:1d:e4
Interface eth5  is .................... Unlinked.  driver/mac: ixgbe/90:e2:ba:ac:1d:e5
Interface eth6  is ...                  Linked.    driver/mac: ixgbe/90:e2:ba:78:d0:10
Interface eth7  is .................... Unlinked.  driver/mac: ixgbe/90:e2:ba:78:d0:11
bondeth0 eth1,eth2 UP      vmbondeth0 10.128.1.169  255.255.240.0
10.128.0.1  SCAN       test08client02.example.com
bondeth1 None      UNCONF
bondeth2 None      UNCONF
bondeth3 None      UNCONF
Selected interface name to configure or press Enter to continue: eth6
Selected interface. eth6
IP address or up or none: 10.129.19.34
Netmask: 255.255.248.0
Gateway (IP address or none) or none: 10.129.16.0
Select network type for interface from the list below
1: Management
2: SCAN
3: Other
Network type: 3
Fully qualified hostname or none: test08adm02-bkup.example.com
Continue configuring or re-configuring interfaces? (y/n) [y]: n
Do you want to configure basic ILOM settings (y/n) [y]: n
[Info]: Custom changes have been detected in /etc/sysconfig/network-script
s/ifcfg-eth6
[Info]: Original file /etc/sysconfig/network-scripts/ifcfg-eth6 will be saved in /opt/oracle.cellos/conf/network-scripts/backup_by_Exadata_ipconf
[Info]: Original file /etc/ssh/sshd_config will be saved in /etc/ssh/sshd_
config.backupbyExadata
[Info]: Generate /etc/ssh/sshd_config with ListenAddress(es)
10.128.18.106,
10.129.19.34, 10.128.1.169, 192.168.18.44, 192.168.18.45
Stopping sshd:                                             [  OK  ]
Starting sshd:                                             [  OK  ]
[Info]: Save /etc/sysctl.conf in /etc/sysctl.conf.backupbyExadata
[Info]: Adjust settings for IB interfaces in /etc/sysctl.conf
Re-login using new IP address 10.128.18.106 if you were disconnected
after following commands
ip addr show vmbondeth0
ip addr show bondeth0
ip addr show vmeth0
ip addr show eth0
ifup eth6
sleep 1
ifup vmeth6
sleep 1
ip addr show vmeth6
ip addr show eth6
sleep 4
service sshd condrestart

3. If you need to set up the network card with VLAN, perform these steps:
   a. Add the VLAN ID to the /opt/oracle.cellos/cell.conf file.
      • Locate the Ethernet interface in the file. For example:

      <Interfaces>
        <Gateway>10.129.16.0</Gateway>
        <Hostname>test08adm02-bkup.example.com</Hostname>
        <IP_address>10.129.19.34</IP_address>
        <IP_enabled>yes</IP_enabled>
        <IP_ssh_listen>enabled</IP_ssh_listen>
        <Inet_protocol>IPv4</Inet_protocol>
        <Name>eth6</Name>
        <Net_type>Other</Net_type>
        <Netmask>255.255.248.0</Netmask>
        <State>1</State>
        <Status>UP</Status>
        <Vlan_id>0</Vlan_id>
      </Interfaces>

      • Add the VLAN ID to the <Vlan_id> element. The following example shows
        the interface configured with VLAN ID of 2122.

      <Interfaces>
        <Gateway>10.129.16.0</Gateway>
        <Hostname>test08adm02-bkup.example.com</Hostname>
        <IP_address>10.129.19.34</IP_address>
        <IP_enabled>yes</IP_enabled>
        <IP_ssh_listen>enabled</IP_ssh_listen>
        <Inet_protocol>IPv4</Inet_protocol>
        <Name>eth6</Name>
        <Net_type>Other</Net_type>
        <Netmask>255.255.248.0</Netmask>
        <State>1</State>
        <Status>UP</Status>
        <Vlan_id>0</Vlan_id>
      </Interfaces>
<Net_type>Other</Net_type>
<Netmask>255.255.248.0</Netmask>
<State>1</State>
<Status>UP</Status>
<Vlan_id>2122</Vlan_id>
</Interfaces>

b. Run the following command to configure the network interface using the modified cell.conf file:

```
/opt/oracle.cellos/ipconf.pl -init -force
```

c. Validate the interface has the VLAN configured by checking that the `/etc/sysconfig/network-scripts` directory contains files with the VLAN ID in the filename. For example, if the VLAN ID is 2122, you should see the following files:

```
ls -ltr /etc/sysconfig/network-scripts/*2122*
```

```
-rw-r----- 1 root root 250 Sep 7 14:39 /etc/sysconfig/network-scripts/ifcfg-eth6.2122
-rw-r----- 1 root root 85 Sep 7 14:39 /etc/sysconfig/network-scripts/route-eth6.2122
-rw-r----- 1 root root 56 Sep 7 14:39 /etc/sysconfig/network-scripts/rule-eth6.2122
```

4. Reboot the database server for the changes to take effect.

```
shutdown -r now
```

5. Check that the network is working by pinging the gateway. For example:

```
ping 10.129.16.0
```

### 2.7.3 Configuring the Additional Network Card for an Oracle VM Environment

You can configure the additional network card on an Oracle Exadata Database Machine X6-2 and later database server for an Oracle VM environment.

This procedure assumes that you have already installed the network card in the Oracle Exadata Database Machine database server but have not yet completed the configuration with Oracle Exadata Deployment Assistant (OEDA).

⚠️ **Caution:**

Do not attempt this procedure if you have already installed Oracle Grid Infrastructure on Oracle Exadata Database Machine.

1. Add a section for the new network in the `/EXAVMIMAGES/conf/virtual_machine_config_file` configuration file in dom0.
The following example assumes the bridge is called `vmeth6`, and the interface is called `eth1`. The virtual machine configuration file name is `/EXAVMIMAGES/conf/test08adm01vm01.example.com-vm.xml`.

```xml
<Interfaces>
 <Bridge>vmeth6</Bridge>
 <Gateway>10.129.16.0</Gateway>
 <Hostname>test08adm02-bkup.example.com</Hostname>
 <IP_address>10.129.19.34</IP_address>
 <Name>eth1</Name>
 <IP_enabled>yes</IP_enabled>
 <IP_ssh_listen>disabled</IP_ssh_listen>
 <Net_type>Other</Net_type>
 <Netmask>255.255.248.0</Netmask>
 <Vlan_id>0</Vlan_id>
 <State>1</State>
 <Status>UP</Status>
</Interfaces>
```

If you are using VLANs, enter the appropriate VLAN ID [1-4095] in the `<Vlan_id>` element.

2. Create the bridge.
   a. To create an unbonded bridge named `vmeth6`:

      ```
 # /opt/exadata_ovm/exadata.img.domu_maker add-single-bridge-dom0 vmeth6
      ```
   
   b. To create an bonded bridge, use a command similar to the following:

      ```
 # /opt/exadata_ovm/exadata.img.domu_maker add-bonded-bridge-dom0
 bridge_name slave1 slave2 [vlan]
      ```

      `slave1` and `slave2` are the names of the bonded interfaces.

      For example:

      ```
 # /opt/exadata_ovm/exadata.img.domu_maker add-bonded-bridge-dom0
 vmbondeth1 eth6 eth7
      ```

3. (X2 to X8 servers only) Allocate the GUIDs for the InfiniBand Transport Layer systems based on an InfiniBand Network Layer:

   ```
 # /opt/exadata_ovm/exadata.img.domu_maker allocate-guids
 virtual_machine_config_file virtual_machine_config_file_final
   ```

   The virtual machine configuration files are located in the `/EXAVMIMAGES/conf` directory. For example:

   ```
 # /opt/exadata_ovm/exadata.img.domu_maker allocate-guids /EXAVMIMAGES/conf/
 test08adm01vm01.example.com-vm.xml /EXAVMIMAGES/conf/final-
   ```
4. Shut down the guest and restart it.

   # /opt/exadata_ovm/exadata.img.domu_maker remove-domain /EXAVMIMAGES/conf
   /final-test08adm01vm01.example.com-vm.xml

   # /opt/exadata_ovm/exadata.img.domu_maker start-domain /EXAVMIMAGES/conf
   /final-test08adm01vm01.example.com-vm.xml

5. Once the guest is running, use the `ip addr` command to verify the interface is valid.

   The following example checks the `eth1` interface.

   # ip addr show eth1

   eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
   link/ether 00:16:3e:53:56:00 brd ff:ff:ff:ff:ff:ff
   inet 10.129.19.34/21 brd 10.129.23.255 scope global eth1
     valid_lft forever preferred_lft forever

### 2.8 Increasing the Number of Active Cores on Database Servers

You can increase the number of active cores on Oracle Exadata Database Machine using capacity-on-demand.

The number of active cores on the database servers on Oracle Exadata Database Machine X4-2 and newer systems can be reduced during installation. The number of active cores can be increased when additional capacity is needed. This is known as capacity-on-demand.

Additional cores are increased in 2-core increments on Oracle Exadata Database Machine X4-2 and newer systems, and in 8-core increments on Oracle Exadata Database Machine X4-8 Full Rack and newer systems. The following table lists the capacity-on-demand core processor configurations.

<table>
<thead>
<tr>
<th>Oracle Exadata Database Machine</th>
<th>Eligible Systems</th>
<th>Minimum Cores per Server</th>
<th>Maximum Cores per Server</th>
<th>Core Increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Exadata Database Machine X7-2 and X8-2</td>
<td>Any configuration except Eighth Rack</td>
<td>14</td>
<td>48</td>
<td>From 14 to 48, in multiples of 2: 14, 16, 18, ..., 46, 48</td>
</tr>
</tbody>
</table>
Table 2-3  (Cont.) Capacity-on-Demand Core Processor Configurations

<table>
<thead>
<tr>
<th>Oracle Exadata Database Machine</th>
<th>Eligible Systems</th>
<th>Minimum Cores per Server</th>
<th>Maximum Cores per Server</th>
<th>Core Increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Exadata Database Machine X7-2 and X8-2</td>
<td>Eighth rack</td>
<td>8</td>
<td>24</td>
<td>From 8 to 24, in multiples of 2: 8, 10, 12, ..., 22, 24</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X6-2</td>
<td>Any configuration except Eighth Rack</td>
<td>14</td>
<td>44</td>
<td>From 14 to 44, in multiples of 2: 14, 16, 18, ..., 42, 44</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X6-2</td>
<td>Eighth rack</td>
<td>8</td>
<td>22</td>
<td>From 8 to 22, in multiples of 2: 8, 10, 12, ..., 20, 22</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X5-2</td>
<td>Any configuration except Eighth Rack</td>
<td>14</td>
<td>36</td>
<td>From 14 to 36, in multiples of 2: 14, 16, 18, ..., 34, 36</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X5-2</td>
<td>Eighth rack</td>
<td>8</td>
<td>18</td>
<td>From 8 to 18, in multiples of 2: 8, 10, 12, 14, 16, 18</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X4-2</td>
<td>Full rack Half rack Quarter rack</td>
<td>12</td>
<td>24</td>
<td>From 12 to 24, in multiples of 2: 12, 14, 16, 18, 20, 22, 24</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X7-8 and X8-8</td>
<td>Any configuration</td>
<td>56</td>
<td>192</td>
<td>From 56 to 192, in multiples of 8: 56, 64, 72, ..., 184, 192</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X6-8 and X5-8</td>
<td>Any configuration</td>
<td>56</td>
<td>144</td>
<td>From 56 to 144, in multiples of 8: 56, 64, 72, ..., 136, 144</td>
</tr>
<tr>
<td>Oracle Exadata Database Machine X4-8</td>
<td>Full rack</td>
<td>48</td>
<td>120</td>
<td>From 48 to 120, in multiples of 8: 48, 56, 64, ..., 112, 120</td>
</tr>
</tbody>
</table>
Oracle recommends licensing the same number of cores on each server, in case of failover.

Database servers can be added one at a time, and capacity-on-demand can be applied to the individual database servers. This option includes Oracle Exadata Database Machine X5-2 Eighth Racks.

The database server must be restarted after enabling additional cores. If the database servers are part of a cluster, then they can be enabled in a rolling fashion.

1. Verify the number of active physical cores using the following command:

   DBMCLI> LIST DBSERVER attributes coreCount

2. Use the following command to increase the number of active physical cores:

   DBMCLI> ALTER DBSERVER pendingCoreCount = new_number_of_active_physical_cores

3. Verify the pending number of active physical cores using the following command:

   DBMCLI> LIST DBSERVER attributes pendingCoreCount

4. Restart the server.

5. Verify the number of active physical cores using the following command:

   DBMCLI> LIST DBSERVER attributes coreCount

**Related Topics**

- *Oracle Exadata Database Machine Licensing Information User's Guide*

### 2.9 Extending LVM Partitions

Logical Volume Manager (LVM) provides flexibility to reorganize the partitions in the database servers.

**Note:**

- Keep at least 1 GB of free space in the VGExaDb volume group. This space is used for the LVM snapshot created by the dbnodeupdate.sh utility during software maintenance.

- If you make snapshot-based backups of the / (root) and /u01 directories by following the steps in Creating a Snapshot-Based Backup of Oracle Linux Database Server, then keep at least 6 GB of free space in the VGExaDb volume group.
This section contains the following topics:

- **Extending the root LVM Partition**
  The procedure for extending the root LVM partition depends on your Oracle Exadata System Software release.

- **Resizing a Non-root LVM Partition**
  The procedure for resizing a non-root LVM partition depends on your Oracle Exadata System Software release.

- **Extending the Swap Partition**
  This procedure describes how to extend the size of the swap (/\swap) partition.

### 2.9.1 Extending the root LVM Partition

The procedure for extending the root LVM partition depends on your Oracle Exadata System Software release.

- **Extending the root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later**
- **Extending the root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1**
  You can extend the size of the root (/) partition on systems running Oracle Exadata System Software earlier than release 11.2.3.2.1 using this procedure.

#### 2.9.1.1 Extending the root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later

The following procedure describes how to extend the size of the root (/) partition on systems running Oracle Exadata System Software release 11.2.3.2.1 or later:

**Note:**

- This procedure does not require an outage on the server.
- For management domain systems, the active and inactive Sys LVM's are LVDbSys2 and LVDbSys3 instead of LVDbSys1 and LVDbSys2.
- Make sure that LVDbSys1 and LVDbSys2 are sized the same.

1. Collect information about the current environment.
   a. Use the `df` command to identify the amount of free and used space in the root partition (/).

   ```bash
 # df -h /
   ```

   The following is an example of the output from the command:

   ```plaintext
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/VGExaDb-LVDbSys1 30G 22G 6.2G 79% /
   ```
Note:

The active root partition may be either LVDbSys1 or LVDbSys2, depending on previous maintenance activities.

b. Use the `lvs` command to display the current volume configuration.

```bash
lvs -o lv_name,lv_path,vg_name,lv_size
```

The following is an example of the output from the command:

<table>
<thead>
<tr>
<th>LV</th>
<th>Path</th>
<th>VG</th>
<th>LSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDbOra1</td>
<td>/dev/VGExaDb/LVDbOra1</td>
<td>VGExaDb</td>
<td>100.00g</td>
</tr>
<tr>
<td>LVDbSwap1</td>
<td>/dev/VGExaDb/LVDbSwap1</td>
<td>VGExaDb</td>
<td>24.00g</td>
</tr>
<tr>
<td>LVDbSys1</td>
<td>/dev/VGExaDb/LVDbSys1</td>
<td>VGExaDb</td>
<td>30.00g</td>
</tr>
<tr>
<td>LVDbSys2</td>
<td>/dev/VGExaDb/LVDbSys2</td>
<td>VGExaDb</td>
<td>30.00g</td>
</tr>
<tr>
<td>LVDoNotRemoveOrUse</td>
<td>/dev/VGExaDb/LVDoNotRemoveOrUse</td>
<td>VGExaDb</td>
<td>1.00g</td>
</tr>
</tbody>
</table>

2. Use the `tune2fs` command to check the online resize option.

```bash
tune2fs -l /dev/mapper/vg_name-lv_name | grep resize_inode
```

For example:

```bash
tune2fs -l /dev/mapper/VGExaDb-LVDbSys1 | grep resize_inode
```

The `resize_inode` option should be listed in the output from the command. If the option is not listed, then the file system must be unmounted before resizing the partition. Refer to Extending the root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1 to resize the partition.

3. Verify there is available space in the volume group `VGExaDb` using the `vgdisplay` command.

```bash
vgdisplay -s
```

The following is an example of the output from the command:

"VGExaDb" 834.89 GB [184.00 GB used / 650.89 GB free]

The volume group must contain enough free space to increase the size of both system partitions, and maintain at least 1 GB of free space for the LVM snapshot created by the `dbnodeupdate.sh` utility during upgrade.

If there is not enough free space, then verify that the `reclaimdisks.sh` utility has been run. If the utility has not been run, then use the following command to reclaim disk space:

```bash
/opt/oracle.SupportTools/reclaimdisks.sh -free -reclaim
```
If the utility has been run and there is not enough free space, then the LVM cannot be resized.

Note:
reclaimdisks.sh cannot run at the same time as a RAID rebuild (that is, a disk replacement or expansion). Wait until the RAID rebuild is complete, then run reclaimdisks.sh.

4. Resize both LVDbSys1 and LVDbSys2 logical volumes using the lvextend command.

In the following example, XG is the amount of space in GB that the logical volume will be extended. The amount of space added to each system partition must be the same.

```
lvextend -L +XG --verbose /dev/VGExaDb/LVDbSys1
lvextend -L +XG --verbose /dev/VGExaDb/LVDbSys2
```

The following example extends the logical volumes by 10 GB:

```
lvextend -L +10G /dev/VGExaDb/LVDbSys1
lvextend -L +10G /dev/VGExaDb/LVDbSys2
```

5. Resize the file system within the logical volume using the resize2fs.

```
resize2fs /dev/VGExaDb/LVDbSys1
resize2fs /dev/VGExaDb/LVDbSys2
```

6. Verify the space was extended for the active system partition using the df command.

```
df -h /
```
2.9.1.2 Extending the root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1

You can extend the size of the root (/) partition on systems running Oracle Exadata System Software earlier than release 11.2.3.2.1 using this procedure.

**Note:**

- This procedure requires the system to be offline and restarted.
- Keep at least 1 GB of free space in the VGExaDb volume group to be used for the LVM snapshot created by the `dbnodeupdate.sh` utility during software maintenance. If you make snapshot-based backups of the / (root) and /u01 directories by following the steps in *Creating a Snapshot-Based Backup of Oracle Linux Database Server*, then keep at least 6 GB of free space in the VGExaDb volume group.
- For management domain systems, active and inactive Sys LVM's are LVDbSys2 and LVDbSys3 instead of LVDbSys1 and LVDbSys2.
- Make sure LVDbSys1 and LVDbSys2 are sized the same.

1. Collect information about the current environment.
   a. Use the `df` command to identify the mount points for the root partition (/) and the non-root partition (/u01), and their respective LVMs.

   The following is an example of the output from the command:

   ```
 # df
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/mapper/VGExaDb-LVDbSys1 30963708 21867152 7523692 75% /
 /dev/sda1 126427 16355 103648 14% /boot
 /dev/mapper/VGExaDb-LVDbOra1 103212320 67404336 30565104 69% /u01
 tmpfs 84132864 3294608 80838256 4% /dev/shm
 # df
 ``

 The file system name in the `df` command output is in the following format:

   ```
   /dev/mapper/VolumeGroup-LogicalVolume
   ``

   The full logical volume name of the root file system in the preceding example is `/dev/VGExaDb/LVDbSys1`.

   b. Use the `lvsan` command to display logical volumes.

   ```
 # lvm lvsan
 ACTIVE '/dev/VGExaDb/LVDbSys1' [30.00 GB] inherit
   ```
c. Use the `lvdisplay` command to display the current logical volume and the volume group configuration.

```
lvm lvdisplay /dev/VGExaDb/LVDbSys1
```

```
--- Logical volume ---
LV Name /dev/VGExaDb/LVDbSys1
VG Name VGExaDb
LV UUID GScpD7-1ka8-gLg9-oBo2-uWaM-ZZ4W-Keazih
LV Write Access read/write
LV Status available
open 1
LV Size 30.00 GB
Current LE 7680
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:0
```

d. Verify there is available space in the volume group `VGExaDb` so the logical volume can be extended.

```
lvm vgdisplay VGExaDb -s
"VGExaDb" 556.80 GB [154.00 GB used / 402.80 GB free]
```

If the command shows there is zero free space, then neither the logical volume or the file system can be extended.

2. Restart the system in diagnostic mode.


   b. Log in to the ILOMweb interface.

   c. Select the Remote Control tab.

   d. Select the Redirection tab.

   e. Click Launch Remote Console.

      The ILOM Remote Console window is displayed.

   f. Select the Devices menu in the ILOM Remote Console window.

   g. Click CD-ROM image.

   h. Navigate to the location of the `diagnostics.iso` file on the local machine in the File Open dialog box.

   i. Select the `diagnostics.iso` file.

   j. Click Open.

      A message similar to the following appears on the console.
k. Select **Host Control** from the Remote Control tab.

l. Select **CDROM** as the next boot device from the list of values.

m. Click **Save**.

When the system is restarted, the `diagnostics.iso` image is used. The system reverts to the default after the next restart.

n. Log in as the **root** user in the ILOM Remote Console window.

o. Restart the server.

```bash
shutdown -r now
```

The system restarts using the `diagnostics.iso` image.

3. **Enter e** to enter the diagnostic shell.

Choose from following by typing letter in '()':
(e)nter interactive diagnostics shell. Must use credentials from Oracle support to login (reboot or power cycle to exit the shell),
(r)estore system from NFS backup archive,

Select:e

4. Log in to the system as the **root** user. You will be prompted for the password.

```text
localhost login: root
Password: *********
```

5. **Unmount the root file system.**

```bash
cd /
umount /mnt/cell
```

6. **Verify the logical volume name.**

```bash
lvm lvscan
ACTIVE '/dev/VGExaDb/LVDbSys1' [30.00 GB] inherit
ACTIVE '/dev/VGExaDb/LVDbSwap1' [24.00 GB] inherit
ACTIVE '/dev/VGExaDb/LVDbOra1' [100.00 GB] inherit
```

7. **Resize the `LVDbSys1` and `LVDbSys2` holding the current and backup root file system.**

In the following commands, `XG` is the amount of space in GB that the logical volume will be extended.

```bash
lvm lvextend -L+XG --verbose /dev/VGExaDb/LVDbSys1
lvm lvextend -L+XG --verbose /dev/VGExaDb/LVDbSys2
```
For example, if the logical volume is expanded 5 GB, then the commands would be:

```bash
lvm lvextend -L+5G --verbose /dev/VGExaDb/LVDbSys1
lvm lvextend -L+5G --verbose /dev/VGExaDb/LVDbSys2
```

8. Verify the file system is valid using `e2fsck`.

```bash
e2fsck -f /dev/VGExaDb/LVDbSys1
e2fsck -f /dev/VGExaDb/LVDbSys2
```

9. Resize the file system.

```bash
resize2fs -p /dev/VGExaDb/LVDbSys1
resize2fs -p /dev/VGExaDb/LVDbSys2
```

10. Restart the system in normal mode.

```bash
shutdown -r now
```

11. Log in to the system.

12. Verify the root file system mount mounts without issues with the new size.

### 2.9.2 Resizing a Non-root LVM Partition

The procedure for resizing a non-root LVM partition depends on your Oracle Exadata System Software release.

- **Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later**
  This procedure describes how to extend the size of a non-root (/u01) partition on systems running Oracle Exadata System Software release 11.2.3.2.1 or later.

- **Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1**
  This procedure describes how to extend the size of a non-root (/u01) partition on systems running Oracle Exadata System Software earlier than release 11.2.3.2.1.

- **Reducing a Non-root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later**
  You can reduce the size of a non-root (/u01) partition on systems running Oracle Exadata System Software release 11.2.3.2.1 or later.

#### 2.9.2.1 Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later

This procedure describes how to extend the size of a non-root (/u01) partition on systems running Oracle Exadata System Software release 11.2.3.2.1 or later.

This procedure does not require an outage on the server.

1. Collect information about the current environment.
a. Use the `df` command to identify the amount of free and used space in the `/u01` partition.

```bash
df -h /u01
```

The following is an example of the output from the command:

```
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VGExaDb-LVDbOra1 99G 25G 70G 26% /u01
```

b. Use the `lvs` command to display the current logical volume configuration used by the `/u01` file system.

```bash
lvs -o lv_name,lv_path,vg_name,lv_size
```

The following is an example of the output from the command:

```
LV Path VG LSize
LVDbOra1 /dev/VGExaDb/LVDbOra1 VGExaDb 100.00G
LVDbSwap1 /dev/VGExaDb/LVDbSwap1 VGExaDb 24.00G
LVDbSys1 /dev/VGExaDb/LVDbSys1 VGExaDb 30.00G
LVDbSys2 /dev/VGExaDb/LVDbSys2 VGExaDb 30.00G
```

2. Use the `tune2fs` command to check the online resize option.

```bash
tune2fs -l /dev/mapper/vg_name | grep resize_inode
```

The `resize_inode` option should be listed in the output from the command. If the option is not listed, then the file system must be unmounted before resizing the partition. Refer to "Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1" when resizing the partition.

3. Verify there is available space in the volume group `VGExaDb` using the `vgdisplay` command.

```bash
vgdisplay -s
```

The following is an example of the output from the command:

```
"VGExaDb" 834.89 GB [184.00 GB used / 650.89 GB free]
```

If the output shows there is less than 1 GB of free space, then neither the logical volume nor file system should be extended. Maintain at least 1 GB of free space in the `VGExaDb` volume group for the LVM snapshot created by the `dbnodeupdate.sh` utility during an upgrade.
If there is not enough free space, then verify that the `reclaimdisks.sh` utility has been run. If the utility has not been run, then use the following command to reclaim disk space:

```
/opt/oracle.SupportTools/reclaimdisks.sh -free -reclaim
```

If the utility has been run and there is not enough free space, then the LVM cannot be resized.

---

**Note:**

- `reclaimdisks.sh` cannot run at the same time as a RAID rebuild (that is, a disk replacement or expansion). Wait until the RAID rebuild is complete, then run `reclaimdisks.sh`.

---

4. Resize the logical volume using the `lvextend` command.

```
lvextend -L +sizeG /dev/VGExaDb/LVDbOra1
```

In the preceding command, `size` is the amount of space to be added to the logical volume.

The following example extends the logical volume by 10 GB:

```
lvextend -L +10G /dev/VGExaDb/LVDbOra1
```

5. Resize the file system within the logical volume using the `resize2fs` command.

```
resize2fs /dev/VGExaDb/LVDbOra1
```

6. Verify the space was extended using the `df` command

```
df -h /u01
```

---

2.9.2.2 Extending a Non-root LVM Partition on Systems Running Oracle Exadata System Software Earlier than Release 11.2.3.2.1

This procedure describes how to extend the size of a non-root (`/u01`) partition on systems running Oracle Exadata System Software earlier than release 11.2.3.2.1.

In this procedure, `/dev/VGExaDb/LVDbOra1` is mounted at `/u01`.
1. Collect information about the current environment.

   a. Use the `df` command to identify the mount points for the root partition (`/`) and the non-root partition (`/u01`), and their respective LVMs.

   ```
 # df
 Filesystem 1K-blocks Used Available Use%
 Mounted on
 /dev/mapper/VGExaDb-LVDbSys1 30963708 21867152 7523692 75% /
 /dev/sda1 126427 16355 103648 14% /
 boot
 /dev/mapper/VGExaDb-LVDbOra1 103212320 67404336 30565104 69% /u01
 tmpfs 84132864 3294608 80838256 4% /dev/shm
   ```

   b. Use the `lvm lvscan` command to display logical volumes.

   ```
 ACTIVE ©/dev/VGExaDb/LVDbSys1© [30.00 GB] inherit
 ACTIVE ©/dev/VGExaDb/LVDbSwap1©
 [24.00 GB] inherit
 ACTIVE ©/dev/VGExaDb/LVDbOra1©
 [100.00 GB] inherit
   ```

   c. Use the `lvdisplay` command to display the current volume group configuration.

   ```
 # lvdisplay /dev/VGExaDb/LVDbOra1
 --- Logical volume ---
 LV Name /dev/VGExaDb/LVDbOra1
 VG Name VGExaDb
 LV UUID vzoIE6-uZrx-10Du-UD78-314Y-WXmz-f7SXyY
 LV Write Access read/write
 LV Status available
 # open 1
 LV Size 100.00 GB
 Current LE 25600
 Segments 1
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:2
   ```
d. Verify there is available space in the volume group \texttt{VGExaDb} so the logical drive can be extended.

If the command shows there is zero free space, then neither the logical volume or file system can be extended.

\verbatim
$ lvm vgdisplay VGExaDb -s
"VGExaDb" 556.80 GB [154.00 GB used / 402.80 GB free]
\endverbatim

2. Shut down any software that uses \texttt{/u01}.

The following software typically uses \texttt{/u01}:

- Oracle Clusterware, Oracle ASM, and Oracle Database

\verbatim
$ Grid_home/bin/crsctl stop crs
\endverbatim

- Trace File Analyzer

\verbatim
$ Grid_home/bin/tfactl stop
\endverbatim

- OS Watcher

\verbatim
$ /opt/oracle.oswatcher/osw/stopOSW.sh
\endverbatim

- Oracle Enterprise Manager agent

\verbatim
(oracle)$ agent_home/bin/emctl stop agent
\endverbatim

3. Unmount the partition as the root user.

\verbatim
$ umount /u01
\endverbatim
Note:
If the umount command reports that the file system is busy, then use the fuser(1) command to identify processes still accessing the file system that must be stopped before the umount command will succeed.

```
umount /u01
umount: /u01: device is busy
umount: /u01: device is busy

fuser -mv /u01

<table>
<thead>
<tr>
<th>USER</th>
<th>PID ACCESS COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>/u01: root</td>
<td>6788 ..c.. ssh</td>
</tr>
<tr>
<td>root</td>
<td>8422 ..c.. bash</td>
</tr>
<tr>
<td>root</td>
<td>11444 ..c.. su</td>
</tr>
<tr>
<td>oracle</td>
<td>11445 ..c.. bash</td>
</tr>
<tr>
<td>oracle</td>
<td>11816m mgr</td>
</tr>
<tr>
<td>root</td>
<td>16451 ..c.. bash</td>
</tr>
</tbody>
</table>
```

4. Verify the file system.
```
e2fsck -f /dev/VGExaDb/LVDbOra1
```

5. Extend the partition.
In this example, the logical volume is expanded to 80% of the physical volume size. At the same time, the file system is resized with the command.
```
lvextend -L+XG --verbose /dev/VGExaDb/LVDbOra1
```
In the preceding command, \textit{XG} is the amount of GB the logical volume will be extended. The following example shows how to extend the logical volume by an additional 200 GB:
```
lvextend -L+200G --verbose /dev/VGExaDb/LVDbOra1
```

Caution:
Use extreme caution when reducing the size. The new size must be large enough to hold all the original content of the partition. To reduce the size, use a command similar to the following:
```
lvreduce -L60G --resizefs --verbose /dev/VGExaDb/LVDbOra1
```
In the preceding command, the size of /u01 is reduced to 60 GB.
6. Check the /u01 file system using the e2fsck command.

   # e2fsck -f /dev/VGExaDb/LVDbOra1

7. Resize the /u01 file system.

   # resize2fs -p /dev/VGExaDb/LVDbOra1

8. Mount the partition.

   # mount -t ext3 /dev/VGExaDb/LVDbOra1 /u01

9. Verify the space was extended.

   $ df -h /u01

10. Restart any software that was stopped in step 2.

    • Oracle Clusterware, Oracle ASM, and Oracle Database
      
      # Grid_home/bin/crsctl start crs

    • Trace File Analyzer
      
      # Grid_home/bin/tfactl start

    • OS Watcher
      
      # /opt/oracle.cellos/vldrun -script oswatcher

    • Oracle Enterprise Manager agent
      
      (oracle)$ agent_home/bin/emctl start agent

Related Topics

• Creating a Snapshot-Based Backup of Oracle Linux Database Server with Customized Partitions

2.9.2.3 Reducing a Non-root LVM Partition on Systems Running Oracle Exadata System Software Release 11.2.3.2.1 or Later

You can reduce the size of a non-root (/u01) partition on systems running Oracle Exadata System Software release 11.2.3.2.1 or later.

Note:

• This procedure does not require an outage on the server.

• It is recommended that you back up your file system before performing this procedure.
1. Use the `df` command to determine the amount of free and used space in the `/u01` partition:

```
df -h /u01
```

The following is an example of the output:

```
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VGExaDb-LVDbOra1 193G 25G 159G 14% /u01
```

2. Use the `lvm` command to display the current logical volume configuration used by the `/u01` file system.

In this example, the size of the `LVDbOra1` partition needs to be reduced so that `LVDbSys2` (30.00 GB in size) can be created by the `dbserver_backup.sh` script.

```
lvm vgdisplay VGExaDb -s
"VGExaDb" 271.82 GB [250.04 GB used / 21.79 GB free]

lvm lvscan
ACTIVE '/dev/VGExaDb/LVDbSys1' [30.00 GB] inherit
ACTIVE '/dev/VGExaDb/LVDbSwap1' [24.00 GB] inherit
ACTIVE '/dev/VGExaDb/LVDbOra1' [196.04 GB] inherit
```

3. Shut down any software that uses `/u01`.

The following software typically uses `/u01`:

- Oracle Clusterware, Oracle ASM, and Oracle Database

```
Grid_home/bin/crsctl stop crs
```

- Trace File Analyzer

```
Grid_home/bin/tfactl stop
```

- OS Watcher (releases earlier than 11.2.3.3.0)

```
/opt/oracle.oswatcher/osw/stopOSW.sh
```

- ExaWatcher (release 11.2.3.3.0 and later)

```
/opt/oracle.ExaWatcher/ExaWatcher.sh --stop
```

- Oracle Enterprise Manager agent

```
(oracle)$ agent_home/bin/emctl stop agent
```

4. Unmount the partition as the root user.

```
umount /u01
```
Note:

If the `umount` command reports that the file system is busy, then use the `fuser(1)` command to identify the processes still accessing the file system that must be stopped before the `umount` command will succeed.

```
umount /u01
umount: /u01: device is busy
umount: /u01: device is busy

fuser -vm /u01
```

```
USER PID ACCESS COMMAND
/u01: root 6788 ..c.. ssh
 root 8422 ..c.. bash
 root 11444 ..c.. su
 oracle 11445 ..c.. bash
 oracle 11816m mgr
 root 16451 ..c.. bash
```

5. Verify the file system.

```
e2fsck -f /dev/VGExaDb/LVDbOra1
```

```
fsck 1.39 (29-May-2006)
e2fsck 1.39 (29-May-2006)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
DBORA: 72831/25706496 files (2.1% non-contiguous), 7152946/51389440 blocks
```

6. Resize the file system to the required size (120G in the example below).

```
resize2fs /dev/VGExaDb/LVDbOra1 120G
```

```
resize2fs 1.39 (29-May-2017)
Resizing the filesystem on /dev/VGExaDb/LVDbOra1 to 26214400 (4k) blocks.
The filesystem on /dev/VGExaDb/LVDbOra1 is now 26214400 blocks long.
```

7. Resize the LVM to the desired size.

```
lvm lvreduce -L 120G --verbose /dev/VGExaDb/LVDbOra1
```

```
Finding volume group VGExaDb
WARNING: Reducing active logical volume to 120.00 GB
THIS MAY DESTROY YOUR DATA (filesystem etc.)
Do you really want to reduce LVDbOra1? [y/n]: y
Archiving volume group "VGExaDb" metadata (seqno 8).
Reducing logical volume LVDbOra1 to 120.00 GB
Found volume group "VGExaDb"
```
Found volume group "VGExaDb"
Loading VGExaDb-LVDbOra1 table (253:2)
Suspending VGExaDb-LVDbOra1 (253:2) with device flush
Found volume group "VGExaDb"
Resuming VGExaDb-LVDbOra1 (253:2)
Creating volume group backup "/etc/lvm/backup/VGExaDb" (seqno 9).
Logical volume LVDbOra1 successfully resized

8. Mount the partition.

```
mount -t ext3 /dev/VGExaDb/LVDbOra1 /u01
```

9. Verify the space was reduced.

```
df -h /u01
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VGExaDb-LVDbOra1 119G 25G 88G 22% /u01

lvm vgdisplay -s
"VGExaDb" 271.82 GB [174.00 GB used / 97.82 GB free]
```

10. Restart any software that was stopped in step 3.

- Oracle Clusterware, Oracle ASM, and Oracle Database

  ```
 # Grid_home/bin/crsctl start crs
  ```

- Trace File Analyzer

  ```
 # Grid_home/bin/tfactl start
  ```

- OS Watcher (releases earlier than 11.2.3.3.0)

  ```
 # /opt/oracle.cellos/vldrun -script oswatcher
  ```

- ExaWatcher (release 11.2.3.3.0 and later)

  ```
 # /opt/oracle.cellos/vldrun -script oswatcher
  ```

- Oracle Enterprise Manager agent

  ```
 (oracle)$ agent_home/bin/emctl start agent
  ```
2.9.3 Extending the Swap Partition

This procedure describes how to extend the size of the swap (/\swap) partition.

**Note:**

This procedure requires the system to be offline and restarted.

Keep at least 1 GB of free space in the VGExaDb volume group to be used for the Logical Volume Manager (LVM) snapshot created by the dbnodeupdate.sh utility during software maintenance. If you make snapshot-based backups of the / (root) and /u01 directories by following the steps in "Creating a Snapshot-Based Backup of Oracle Linux Database Server", then keep at least 6 GB of free space in the VGExaDb volume group.

1. Collect information about the current environment.
   a. Use the `swapon` command to identify the swap partition.

      ```
 # swapon -s
 Filename Type Size Used Priority
 /dev/dm-2 partition 25165816 0 -1
      ```

   b. Use the `lvm lvscan` command to display the logical volumes.

      ```
 # lvm lvscan
 ACTIVE '/dev/VGExaDb/LVDbSys1' [30.00 GiB] inherit
 ACTIVE '/dev/VGExaDb/LVDbSys2' [30.00 GiB] inherit
 ACTIVE '/dev/VGExaDb/LVDbSwap1' [24.00 GiB] inherit
 ACTIVE '/dev/VGExaDb/LVDbOra1' [103.00 GiB] inherit
 ACTIVE '/dev/VGExaDb/LVDoNotRemoveOrUse' [1.00 GiB] inherit
      ```

   c. Use the `vgdisplay` command to display the current volume group configuration.

      ```
 # vgdisplay
 --- Volume group ---
 VG Name VGExaDb
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 4
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 3
 Open LV 3
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 556.80 GB
      ```
d. Use the `pvdisplay` command to display the name of the physical device created by LVM and used with the operating system.

```bash
pvdisplay
--- Physical volume ---
PV Name /dev/sda2
VG Name VGExaDb
PV Size 556.80 GB / not usable 2.30 MB
Allocatable yes
PE Size (KByte) 4096
Total PE 142541
Free PE 103117
Allocated PE 39424
PV UUID Eq0e7e-p1fS-FyGN-zrvj-0Oqd-oUSb-55x2TX
```

2. Attach the `/opt/oracle.SupportTools/diagnostics.iso` file from any healthy database server as virtual media to the ILOM of the database server to be restored.

The following is an example of how to set up a virtual CD-ROM using the ILOM interface:

a. If you installed Oracle Exadata System Software release 19.1 or later on the database server, then download the `diagnostics.iso` file from My Oracle Support using the relevant patch for your Oracle Exadata System Software release, for example, patch 27162010 for release 19.1.0.0.0.

b. If you installed Oracle Exadata System Software release 18.1.x or earlier on the database server, then copy the `/opt/oracle.SupportTools/diagnostics.iso` file to a directory on the machine using the ILOM interface.

c. Log in to the ILOM web interface.

d. Select **Remote Console** from the Remote Control tab. This will start the console.

e. Select the **Devices** menu.

f. Select the CD-ROM image option.

g. Navigate to the location of the `diagnostics.iso` file.

h. Open the `diagnostics.iso` file.

i. Select **Host Control** from the Remote Control tab.

j. Select **CDROM** as the next boot device from the list of values.

k. Click **Save**.

3. Restart the server in diagnostic mode.

4. Verify the file system is valid.
Use the following command:

```
#fsck -f /dev/VGExaDb/LVDbSwap1
```

5. Extend the partition.

   In this example, the logical volume is expanded to 80% of the physical volume size. At the same time, the file system is resized with this command. In the following command, the value for `LogicalVolumePath` is obtained by the `lvmscan` command, and the value for `PhysicalVolumePath` is obtained by the `pvdisplay` command.

   ```
 #lvextend -l+80%PVS --resizefs --verbose LogicalVolumePath
 PhysicalVolumePath
   ```

6. Restart the system in normal mode.

### 2.10 Creating a Snapshot-Based Backup of Oracle Linux Database Server

A backup should be made before and after every significant change to the software on the database server. For example, a backup should be made before and after the following procedures:

- Application of operating system patches
- Application of Oracle patches
- Reconfiguration of significant operating parameters
- Installation or reconfiguration of significant non Oracle software

Starting with Oracle Exadata System Software release 19.1.0, the SSHD `ClientAliveInterval` defaults to 600 seconds. If the time needed for completing backups exceeds 10 minutes, then you can specify a larger value for `ClientAliveInterval` in the `/etc/ssh/sshd_config` file. You must restart the SSH service for changes to take effect. After the long running operation completes, remove the modification to the `ClientAliveInterval` parameter and restart the SSH service.

This section contains the following topics:

- Creating a Snapshot-Based Backup of Oracle Linux Database Server with Uncustomized Partitions
  This procedure describes how to take a snapshot-based backup. The values shown in the procedure are examples.
- Creating a Snapshot-Based Backup of Oracle Linux Database Server with Customized Partitions
2.10.1 Creating a Snapshot-Based Backup of Oracle Linux Database Server with Uncustomized Partitions

This procedure describes how to take a snapshot-based backup. The values shown in the procedure are examples.

If you have not customized the database server partitions from their original shipped configuration, then use the procedures in this section to take a backup and use the backup to restore the database server using the backup.

Note:

- The recovery procedure restores the exact partitions, including the name and sizes, as they were originally shipped. If you modified the partitions in any way, then you cannot use this procedure. Modifications include changing sizes, renaming, addition or removal of partitions.
- All steps must be performed as the root user.

1. Prepare a destination to hold the backup.
   The destination can be a large, writable NFS location. The NFS location should be large enough to hold the backup tar files. For uncustomized partitions, 145 GB should be adequate.
   
   a. Create a mount point for the NFS share.

      ```bash
 mkdir -p /root/tar
      ```

   b. Mount the NFS location.

      In the following command, `ip_address` is the IP address of the NFS server, and `nfs_location` is the NFS location.

      ```bash
 mount -t nfs -o rw,intr,soft,proto=tcp,nolock
 ip_address:/nfs_location/ /root/tar
      ```

2. Take a snapshot-based backup of the / (root), /u01, and /boot directories.
   
   a. Create a snapshot named `root_snap` for the root directory.

      ```bash
 lvcreate -L1G -s -c 32K -n root_snap /dev/VGExaDb/LVDbSys1
      ```

      1VDbSys1 is used in the example below, but you should use the value based on the output of `imageinfo`. If the active image is on LVDbSys2, then the command would be: `lvcreate -L1G -s -c 32K -n root_snap /dev/VGExaDb/LVDbSys2`

   b. Label the snapshot.

      ```bash
 e2label /dev/VGExaDb/root_snap DBSYS_SNAP
      ```
c. Determine the file system type of the / (root) and /u01 directories.

Database servers running 12.1.2.1.0 or later use the "ext4" file system type, while older systems use "ext3". Systems older than X5 with cells updated to 12.1.2.1.0 or later also use "ext3".

```
mount -l
```

d. Mount the snapshot.

In the `mount` command below, `filesystem_type_of_/u01_directory` is a placeholder for the file system type as determined in the previous step.

```
mkdir /root/mnt
mount /dev/VGExaDb/root_snap /root/mnt -t filesystem_type_of_/u01_directory
```

e. Create a snapshot named `u01_snap` for the /u01 directory.

```
lvcreate -L5G -s -c 32K -n u01_snap /dev/VGExaDb/LVDbOra1
```

f. Label the snapshot.

```
e2label /dev/VGExaDb/u01_snap DBORA_SNAP
```

g. Mount the snapshot.

In the `mount` command below, `filesystem_type_of_/u01_directory` is a placeholder for the file system type as determined in step 2.c above.

```
mkdir -p /root/mnt/u01
mount /dev/VGExaDb/u01_snap /root/mnt/u01 -t filesystem_type_of_/u01_directory
```

h. Change to the directory for the backup.

```
cd /root/mnt
```

i. Create the backup file using one of the following commands:

- System does not have NFS mount points:

```
tar -pjcvf /root/tar/mybackup.tar.bz2 * /boot --exclude /tar/mybackup.tar.bz2 > /tmp/backup_tar.stdout 2> /tmp/backup_tar.stderr
```

- System has NFS mount points:

```
tar -pjcvf /root/tar/mybackup.tar.bz2 * /boot --exclude /tar/mybackup.tar.bz2 --exclude nfs_mount_points > /tmp/backup_tar.stdout 2> /tmp/backup_tar.stderr
```

j. Check the /tmp/backup_tar.stderr file for any significant errors. Errors about failing to tar open sockets, and other similar errors, can be ignored.

3. Unmount the snapshots and remove the snapshots for the / (root) and /01 directories.

   cd /
   umount /root/mnt/u01
   umount /root/mnt
   /bin/rm -rf /root/mnt
   lvremove /dev/VGExaDb/u01_snap
   lvremove /dev/VGExaDb/root_snap

4. Unmount the NFS share.

   umount /root/tar

Related Topics

• Creating a Snapshot-Based Backup of Oracle Linux Database Server with Customized Partitions

2.10.2 Creating a Snapshot-Based Backup of Oracle Linux Database Server with Customized Partitions

When you have customized the partitions, the procedure to back up is the same as the procedure used for non-customized database servers, with the following exceptions:

• You must add any additional partitions similar to /u01 to the backup.
• If any partitions were renamed, then use the names defined for your environment. For example, if /u01 was renamed to /myown_u01, then use /myown_u01 in the commands.

Related Topics

• Creating a Snapshot-Based Backup of Oracle Linux Database Server with Uncustomized Partitions

2.11 Recovering Oracle Linux Database Servers Using a Snapshot-Based Backup

You can recover a database server file systems running Oracle Linux using a snapshot-based backup after severe disaster conditions happen for the database server, or when the server hardware is replaced to such an extent that it amounts to new hardware.

For example, replacing all hard disks leaves no trace of original software on the system. This is similar to replacing the complete system as far as the software is concerned. In addition, it provides a method for disaster recovery of the database servers using an LVM snapshot-based backup taken when the database server was healthy before the disaster condition.
The recovery procedures described in this section do not include backup or recovery of storage servers or the data within the Oracle databases. Oracle recommends testing the backup and recovery procedures on a regular basis.

- **Overview of Snapshot-Based Recovery of Database Servers**
  The recovery process consists of a series of tasks.

- **Recovering Oracle Linux Database Server with Uncustomized Partitions**
  You can recover the Oracle Linux database server from a snapshot-based backup when using uncustomized partitions.

- **Recovering Exadata Database Servers X7 or Later with Customized Partitions**
  This procedure describes how to recover an Oracle Exadata Database Machine X7-2 or later Oracle Linux database server from a snapshot-based backup when using customized partitions.

- **Recovering Exadata X6 or Earlier Database Servers with Customized Partitions**
  This procedure describes how to recover Oracle Exadata Database Servers for Oracle Exadata Database Machine X6-2 or earlier running Oracle Linux from a snapshot-based backup when using customized partitions.

- **Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery**

### 2.11.1 Overview of Snapshot-Based Recovery of Database Servers

The recovery process consists of a series of tasks.

The recovery procedures use the `diagnostics.iso` image as a virtual CD-ROM to restart the database server in rescue mode using the ILOM.

---

**Note:**

Restoring files from tape may require additional drives to be loaded, and is not covered in this chapter. Oracle recommends backing up files to an NFS location, and using existing tape options to back up and recover from the NFS host.

The general work flow includes the following tasks:

1. Recreate the following:
   - Boot partitions
   - Physical volumes
   - Volume groups
   - Logical volumes
   - File system
   - Swap partition
2. Activate the swap partition.
3. Ensure the `/boot` partition is the active boot partition.
4. Restore the data.
5. Reconfigure GRUB.
6. Restart the server.

If you use quorum disks, then after recovering the database servers from backup, you must manually reconfigure the quorum disk for the recovered server. See Reconfigure Quorum Disk After Restoring a Database Server for more information.

2.11.2 Recovering Oracle Linux Database Server with Uncustomized Partitions

You can recover the Oracle Linux database server from a snapshot-based backup when using uncustomized partitions.

This procedure is applicable when the layout of the partitions, logical volumes, file systems, and their sizes are equal to the layout when the database server was initially deployed.

⚠️ Caution:

All existing data on the disks is lost during the procedure.

1. Prepare NFS server to host the backup archive mybackup.tar.bz2.

The NFS server must be accessible by PI address. For example, on an NFS server with the IP address nfs_ip, where the directory /export is exported from NFS mounts, put the mybackup.tar.bz2 file in the /export directory.

2. Attach the /opt/oracle.SupportTools/diagnostics.iso file from any healthy database server as virtual media to the ILOM of the database server to be restored.

The following is an example of how to set up a virtual CD-ROM using the ILOM interface:

a. If you installed Oracle Exadata System Software release 19.1 or later on the database server, then download the diagnostics.iso file from My Oracle Support using the relevant patch for your Oracle Exadata System Software release, for example, patch 27162010 for release 19.1.0.0.0.

b. If you installed Oracle Exadata System Software release 18.1.x or earlier on the database server, then copy the /opt/oracle.SupportTools/diagnostics.iso file to a directory on the machine using the ILOM interface.

c. Log in to the ILOM web interface.

d. Select Remote Console from the Remote Control tab. This will start the console.

e. Select the Devices menu.

f. Select the CD-ROM image option.

g. Navigate to the location of the diagnostics.iso file.

h. Open the diagnostics.iso file.

i. Select Host Control from the Remote Control tab.

j. Select CDROM as the next boot device from the list of values.
k. Click Save.

3. Restart the system from the ISO file.

Choose the CD-ROM as boot device during start up. You can also preset the boot device using the `ipmitool` command from any other machine that can reach the ILOM of the database server to be restored, instead of selecting the boot device manually during boot up using the following commands:

```
ipmitool -H ILOM_ip_address_or_hostname
-U root_user chassis bootdev cdrom

ipmitool -H ILOM_ip_address_or_hostname
-U root_user chassis power cycle
```

4. Answer as follows when prompted by the system. The responses are shown in bold.

Note that for Oracle Exadata System Software release 12.1.2.2.0 or later, DHCP is used and you do not have to manually set up the network.

- If you are using Oracle Exadata System Software release 18.1 or later, running on Oracle Exadata Database Machine X7 or later, then the prompt looks like the following:

```
Choose from the following by typing letter in '()':
(e)nter interactive diagnostics shell.
Use diagnostics shell password to login as root user
(reboot or power cycle to exit the shell),
(r)estore system from NFS backup archive,
```

Select: r
Continue (y/n) [n]: y
Rescue password:
[INFO    ] Enter path to the backup file on the NFS server in
Enter path to the backup file on the NFS server in format:  
<ip_address_of_the_NFS_share>:/<path>/<archive_file>
For example, 10.124.1.15:/export/nfs/share/backup.

2010.04.08.tar.bz2
NFS line: <nfs_ip>:/export/mybackup.tar.bz2

[INFO] The backup file could be created either from LVM or non-LVM based COMPUTE node
[INFO] Versions below 11.2.1.3.0 do not support LVM based partitioning
Use LVM based scheme. (y/n) [y]: y

Configure network settings on host via DHCP. (y/n) [y]: n
Configure bonded network interface. (y/n) [y]: y
IP Address of bondeth0 on this host: <IP address of the DB host>

Netmask of bondeth0 on this host: <netmask for the above IP address>
Bonding mode:active-backup or 802.3ad [802.3ad]: active-backup
Slave interface1 for bondeth0 (ethX) [eth4]: eth4
Slave interface2 for bondeth0 (ethX) [eth5]: eth5
...
[ 354.619610] bondeth0: first active interface up!
[ 354.661427] ixgbe 0000:13:00.1 eth5: NIC Link is Up 10 Gbps,
Flow Control: RX/TX
[ 354.724414] bondeth0: link status definitely up for interface
eth5, 10000 Mbps full duplex
Default gateway: <Gateway for the above IP address>

---

• If you are using Oracle Exadata System Software release 12.1.x or 12.2.x, then the prompts look like the following:

Use diagnostics shell password to login as root user
(reboot or power cycle to exit the shell),
(r)estore system from NFS backup archive.
Select: r
Continue (y/n) [n]: y
Rescue password:

[INFO: ] Enter path to the backup file on the NFS server in format:  
Enter path to the backup file on the NFS server in format:  
<ip_address_of_the_NFS_share>:/<path>/<archive_file>
For example, 10.124.1.15:/export/nfs/share/backup.

2010.04.08.tar.bz2
NFS line: <nfs_ip>:/export/mybackup.tar.bz2

[INFO: ] The backup file could be created either from LVM or non-LVM based COMPUTE node
[INFO: ] Versions below 11.2.1.3.0 do not support LVM based partitioning
Use LVM based scheme. (y/n) [y]: y

---
If you are using Oracle Exadata System Software release earlier than 12.1.2.2.0, then the prompts look like the following

--------------------------------------------------------------------
----------
Choose from following by typing letter in '()':
(e)nter interactive diagnostics shell. Must use credentials from Oracle
(r)estore system from NFS backup archive,
Select: r
Are you sure (y/n) [n]: y

The backup file could be created either from LVM or non-LVM based compute node
versions below 11.2.1.3.1 and 11.2.2.1.0 or higher do not support LVM based partitioning
use LVM based scheme (y/n): y

Enter path to the backup file on the NFS server in format:
   ip_address_of_the_NFS_share:/path/archive_file
For example, 10.10.10.10:/export/operating_system.tar.bz2
NFS line:<nfs_ip>:/export/mybackup.tar.bz2
IP Address of this host: IP address of the DB host
Netmask of this host: netmask for the above IP address
Default gateway: Gateway for the above IP address. If there is no default gateway in your network, enter 0.0.0.0.
--------------------------------------------------------------------
----------

When the recovery completes, the log in screen appears.

5. Log in as the root user.
   If you do not have the password for the root user, then contact Oracle Support Services.

6. Restart the system.
   # shutdown -r now

   The restoration process is complete.

7. Verify that all Oracle software can start and function by logging in to the database server.
   The /usr/local/bin/imagehistory command indicates that the database server was reconstructed.
   The following is an example of the output:

   # imagehistory

   Version                  : 11.2.2.1.0
   Image activation date    : 2010-10-13 13:42:58 -0700
   Imaging mode             : fresh
   Imaging status           : success
8. Run reclaimdisks.sh on restored database server.

```
/opt/oracle.SupportTools/reclaimdisks.sh -free -reclaim
```

9. If the recovery was on Oracle Exadata Database Machine Eighth Rack, then perform the procedure described in Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery.

### 2.11.3 Recovering Exadata Database Servers X7 or Later with Customized Partitions

This procedure describes how to recover an Oracle Exadata Database Machine X7-2 or later Oracle Linux database server from a snapshot-based backup when using customized partitions.

- **Note:**
  - This task assumes you are running Oracle Exadata System Software release 18c (18.1.0) or greater.

1. Complete step 1 through step 3 in Recovering Oracle Linux Database Server with Uncustomized Partitions.

2. Choose to enter the diagnostics shell at step 4 in Recovering Oracle Linux Database Server with Uncustomized Partitions, and log in as the root user.

   If you do not have the password for the root user, then contact Oracle Support Services.

3. If required, use `/opt/MegaRAID/MegaCli/MegaCli64` to configure the disk controller to set up the disks.

4. Ensure you create a primary boot partition of size at least 128 MB to be mounted at `/boot`.
   - The boot area cannot be a LVM partition.

5. Create the boot partition.

   ```
 umount /mnt/cell
 parted /dev/rdsk
   ```

   The interactive shell appears. The following procedure describes how to respond to the system prompts:
   - a. Assign a disk label.

     ```
 (parted) mklabel gpt
     ```
b. Set the unit size as sector.

(parted) unit s

c. Check the partition table by displaying the existing partitions.

(parted) print

d. Remove the partitions that will be re-created.

(parted) rm <part#>

e. Create a new first partition.

(parted) mkpart primary 64 1048639

f. Specify this is a bootable partition.

(parted) set 1 boot on

6. Create second primary (boot) and third primary (LVM) partitions.

a. Create a second primary partition as a UEFI boot partition with fat32.

(parted) mkpart primary fat32 1048640s 1572927s
(parted) set 2 boot on

b. Create a new third partition.

(parted) mkpart primary 1572928 ±1

c. Configure the third partition as a physical volume.

(parted) set 3 lvm on

d. Write the information to disk, then quit.

(parted) quit

7. Use the /sbin/lvm command to re-create the customized LVM partitions and mkfs to create file systems.

a. Create the physical volume, volume group, and the logical volumes as follows:

```
lvm pvcreate /dev/sda3
lvm vgcreate VGExaDb /dev/sda3
```

    If the logical volume or volume group already exists, then remove the logical volume or volume group as follows and then re-create them.

```
lvm vgremove VGExaDb
lvm pvremove /dev/sda3
lvm pvcreate /dev/sda3
lvm vgcreate VGExaDb /dev/sda3
```
b. Create the logical volume for the / (root) directory, a file system, and label it.

- Create the logical volume:

  ```bash
 # lvm lvcreate -n LVDbSys1 -L40G VGExaDb
  ```

- Create the file system.

  ```bash
 # mkfs.ext4 /dev/VGExaDb/LVDbSys1
  ```

- Label the file system.

  ```bash
 # e2label /dev/VGExaDb/LVDbSys1 DBSYS
  ```

c. Create the logical volume for the swap directory, and label it.

  ```bash
 # lvm lvcreate -n LVDbSwap1 -L24G VGExaDb
 # mkswap -L SWAP /dev/VGExaDb/LVDbSwap1
  ```

d. Create the logical volume for the root/u01 directory, and label it.

- Create the logical volume:

  ```bash
 # lvm lvcreate -n LVDbOra1 -L100G VGExaDb
  ```

- Create the file system on LVDbOra1.

  ```bash
 # mkfs.ext4 /dev/VGExaDb/LVDbOra1
  ```

- Label the file system.

  ```bash
 # e2label /dev/VGExaDb/LVDbOra1 DBORA
  ```

- Label the /dev/sda2 file system.

  ```bash
 # dosfslabel /dev/sda2 ESP
  ```

e. Create a file system on the /boot partition, and label it.

- Create the file system.

  ```bash
 # mkfs.ext4 /dev/sda1
  ```

- Label the file system:

  ```bash
 # e2label /dev/sda1 BOOT
  ```

**Note:**

For customized file system layouts, additional logical volumes can be created at this time. For customized layouts, different sizes may be used.
8. Create mount points for all the partitions to mirror the original system, and mount the respective partitions.

For example, assuming /mnt is used as the top level directory for this, the mounted list of partitions may look like the following:

/dev/VGExaDb/LVDbSys1 on /mnt
/dev/VGExaDb/LVDbOra1 on /mnt/u01
/dev/sda1 on /mnt/boot

You would create the directories and mount the partitions as follows:

```bash
mount /dev/VGExaDb/LVDbSys1 /mnt -t ext4
mkdir /mnt/u01 /mnt/boot
mount /dev/VGExaDb/LVDbOra1 /mnt/u01 -t ext4
mount /dev/sda1 /mnt/boot -t ext4
```

**Note:**

For customized file system layouts with additional logical volumes, additional mount points need to be created during this step.

9. Create mount point /mnt/boot/efi and mount /dev/sda2 on /mnt/boot/efi with type vfat.

```bash
mkdir /mnt/boot/efi
mount /dev/sda2 /mnt/boot/efi -t vfat
```

10. Bring up the network.

```bash
ip address add ip_address_for_eth0/netmask_for_eth0 dev eth0
ip link set up eth0
ip route add default via gateway_address dev eth0
```

11. Mount the NFS server where you have the backup.

Mount the NFS server with IP address nfs_ip and the export it as /export to the backup location.

```bash
mkdir -p /root/mnt
mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/export /root/mnt
```

12. Restore from backup.

```bash
tar -pjxvf /root/mnt/mybackup.tar.bz2 -C /mnt
```

13. Unmount the restored file systems.

```bash
umount /mnt/u01
umount /mnt/boot/efi
```
# umount /mnt/boot
# umount /mnt

14. **Detach the** diagnostics.iso **file.**

15. **Check the boot devices and boot order for the** ExadataLinux_1 **device.**

   a. **Check the available boot order.**

   ```
 # efibootmgr
 BootCurrent: 000C
 Timeout: 1 seconds
 BootOrder: 0000,0001,0002,0003,0004,0005,0007,0008,0009,000A,000B
 Boot0001* NET0:PX4 IP4 Intel(R) I210 Gigabit Network Connection
 Boot0002* NET1:PX4 IP4 Oracle Dual Port 10GBase-T Ethernet Controller
 Boot0003* NET2:PX4 IP4 Oracle Dual Port 10GBase-T Ethernet Controller
 Boot0004* PCIE1:PX4 IP4 Oracle Dual Port 25Gb Ethernet Adapter
 Boot0005* PCIE1:PX4 IP4 Oracle Dual Port 25Gb Ethernet Adapter
 Boot0007* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
 Boot0008* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
 Boot0009* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
 Boot000A* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
 Boot000B* Oracle Linux
 Boot000C* USB:SUN
 ``

 If the Boot0000* **ExadataLinux_1 device is not listed then create the device.**

   ```
   # efibootmgr -c -d /dev/sda -p 2 -l '\EFI\REDHAT\SHIM.EFI' -L 'ExadataLinux_1'
   BootCurrent: 000C
   Timeout: 1 seconds
   BootOrder: 0000,0001,0002,0003,0004,0005,0007,0008,0009,000A,000B
   Boot0001* NET0:PX4 IP4 Intel(R) I210 Gigabit Network Connection
   Boot0002* NET1:PX4 IP4 Oracle Dual Port 10GBase-T Ethernet Controller
   Boot0003* NET2:PX4 IP4 Oracle Dual Port 10GBase-T Ethernet Controller
   Boot0004* PCIE1:PX4 IP4 Oracle Dual Port 25Gb Ethernet Adapter
   Boot0005* PCIE1:PX4 IP4 Oracle Dual Port 25Gb Ethernet Adapter
   Boot0007* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
   Boot0008* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
   Boot0009* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
   Boot000A* PCIE3:PX4 IP4 Oracle Quad Port 10GBase-T Adapter
   Boot000B* Oracle Linux
   Boot000C* USB:SUN
   Boot0000* ExadataLinux_1
   ```

 b. **Configure the** Boot0000* **ExadataLinux_1 device to be first in the boot order.**

   ```
   # efibootmgr -o 0000
   BootCurrent: 000B
   Timeout: 1 seconds
   ```
16. Restart the system and update the boot order in the BIOS.

```
# reboot
```

Modify the boot order to set the ExadataLinux_1 boot device as the first device.

a. Press F2 when booting the system.

b. Go to the Setup Utility.

c. Select BOOT.

d. Set ExadataLinux_1 for Boot Option #1.

e. Exit the Setup Utility.

This completes the restoration procedure for the server.

17. Run reclaimdisks.sh on restored database server.

```
/opt/oracle.SupportTools/reclaimdisks.sh -free -reclaim
```

18. If the recovery was on Oracle Exadata Database Machine Eighth Rack, then perform the procedure described in Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery.

2.11.4 Recovering Exadata X6 or Earlier Database Servers with Customized Partitions

This procedure describes how to recover Oracle Exadata Database Servers for Oracle Exadata Database Machine X6-2 or earlier running Oracle Linux from a snapshot-based backup when using customized partitions.

The steps are the same as restoring non-customized partitions until you are prompted to choose from enter interactive diagnostics shell and restore system from NFS backup archive options after booting the database server using diagnostics.iso.

1. Choose to enter the diagnostics shell, and log in as the root user.
If you do not have the password for the root user, then contact Oracle Support Services.

2. If required, use /opt/MegaRAID/MegaCli/MegaCli64 to configure the disk controller to set up the disks.

3. Ensure you create a primary boot partition of size at least 128 MB to be mounted at /boot.

 The boot area cannot be a LVM partition.

4. Create the boot partition.

 umount /mnt/cell
 parted /dev/sda

 The interactive shell appears. The following procedure describes how to respond to the system prompts:

 a. Assign a disk label.
 - If you are running Oracle Exadata System Software release 11.2.3.3.0 or later:

 (parted) mklabel gpt

 - If you are running a release earlier than Oracle Exadata System Software release 11.2.3.3.0:

 (parted) mklabel msdos

 b. Set the unit size as sector.

 (parted) unit s

 c. Check the partition table by displaying the existing partitions.

 (parted) print

 d. Remove the partitions that will be re-created.

 (parted) rm <part#>

 e. Create a new first partition.

 (parted) mkpart primary 63 1048639

 f. Specify this is a bootable partition.

 (parted) set 1 boot on

5. Create an additional primary (LVM) partition.

 - If using Oracle Exadata System Software release 18.1.0.0.0 or later — Create second primary (bios_grub) and third primary (LVM) partitions:

 a. Enter mkpart primary 1048640 1050687 to create a new second partition.
b. Enter set 2 bios_grub on to specify this is a GRUB BIOS partition.

c. Enter mkpart primary 1050688 1751949278 to create a new third partition.

d. Enter set 3 lvm on to specify this is a physical volume.

e. Enter quit to write the information to disk, then quit.

• If using a release earlier than Oracle Exadata System Software release 18.1.0.0.0:

a. Enter mkpart primary 1048640 -1 to create a new second partition.

b. Enter set 2 lvm on to specify this is a physical volume.

c. Enter quit to write the information to disk, then quit.

6. Use the /sbin/lvm command to re-create the customized LVM partitions and `mkfs` to create file systems.

a. Create the physical volume, volume group, and the logical volumes as follows:

```
  lvm pvcreate /dev/sda2
  lvm vgcreate VGExaDb /dev/sda2
```

b. Create the logical volume for the / (root) directory, a file system, and label it.

• Create the logical volume:

```
  lvm lvcreate -n LVDbSys1 -L40G VGExaDb
```

• If using Oracle Exadata System Software release 12.1.2.2.0 or later, then create the logical volume for the reserved partition.

```
# lvm lvcreate -n LVDoNotRemoveOrUse -L1G VGExaDb
```

Note:

Do not create any file system on this logical volume.

• Create the file system.

 – If you previously had an ext4 file system, use the `mkfs.ext4` command:

```
  mkfs.ext4 /dev/VGExaDb/LVDbSys1
```

 – If you previously had an ext3 file system, use the `mkfs.ext3` command:

```
  mkfs.ext3 /dev/VGExaDb/LVDbSys1
```

• Label the file system.

```
e2label /dev/VGExaDb/LVDbSys1 DBSYS
```
c. Create the logical volume for the `swap` directory, and label it.

```
lvm lvcreate -n LVDbSwap1 -L24G VGExaDb
mkswap -L SWAP /dev/VGExaDb/LVDbSwap1
```

d. Create the logical volume for the `root/u01` directory, and label it.

- Create the logical volume:

```
lvm lvcreate -n LVDbOra1 -L100G VGExaDb
```

- Create the file system.

 - If you previously had an `ext4` file system, then use the `mkfs.ext4` command:

    ```
    mkfs.ext4 /dev/VGExaDb/LVDbOra1
    ```

 - If you previously had an `ext3` file system, then use the `mkfs.ext3` command:

    ```
    mkfs.ext3 /dev/VGExaDb/LVDbOra1
    ```

- Label the file system.

```
e2label /dev/VGExaDb/LVDbOra1 DBORA
```

e. Create a file system on the `/boot` partition, and label it.

- Create the file system.

 - If you previously had an `ext4` file system, use the `mkfs.ext4` command:

    ```
    mkfs.ext4 /dev/sda1
    ```

 - If you previously had an `ext3` file system, use the `mkfs.ext3` command:

    ```
    mkfs.ext3 /dev/sda1
    ```

- Label the file system:

```
e2label /dev/sda1 BOOT
```

Note:

For customized file system layouts, additional logical volumes can be created at this time. For customized layouts, different sizes may be used.

7. Create mount points for all the partitions to mirror the original system, and mount the respective partitions.
For example, assuming /mnt is used as the top level directory for this, the mounted list of partitions may look like the following:

```
/dev/VGExaDb/LVDbSys1 on /mnt
/dev/VGExaDb/LVDbOra1 on /mnt/u01
/dev/sda1 on /mnt/boot
```

Note:

For customized file system layouts with additional logical volumes, additional mount points need to be created during this step.

The following is an example for Oracle Exadata Database Machine X6-2 and earlier systems of how to mount the root file system, and create two mount points. In the commands below, `filesystem_type_of_/directory` specifies the file system of the / (root) directory: it is either `ext3` or `ext4`.

```
mount /dev/VGExaDb/LVDbSys1 /mnt -t filesystem_type_of_/directory
mkdir /mnt/u01 /mnt/boot

mount /dev/VGExaDb/LVDbOra1 /mnt/u01 -t filesystem_type_of_/u01_directory
mount /dev/sda1 /mnt/boot -t filesystem_type_of_/boot_directory
```

8. Bring up the network.
 - If the operating system is Oracle Linux 6 or later:
     ```
     ip address add ip_address_for_eth0/netmask_for_eth0 dev eth0
     ip link set up eth0
     ip route add default via gateway_address dev eth0
     ```
 - If the operating system is Oracle Linux 5:
     ```
     ifconfig eth0 ip_address_for_eth0/netmask up
     ```

9. Mount the NFS server where you have the backup.
 Mount the NFS server with IP address `nfs_ip` and the export it as /export to the backup location.

   ```
   mkdir -p /root/mnt
   mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/export /root/mnt
   ```

10. Restore from backup.

    ```
    tar -pjxvf /root/mnt/mybackup.tar.bz2 -C /mnt
    ```

11. Unmount the restored file systems, and remount the /boot partition.

    ```
    umount /mnt/u01
    umount /mnt/boot
    ```
umount /mnt
mkdir /boot
mount /dev/sda1 /mnt/boot -t filesystem_type_of_/boot_directory

12. Set up the boot loader.

In the following instructions, /dev/sda1 is the /boot area.

- If using Oracle Exadata System Software release 18.1.0.0.0 or later:

 grub2-install /dev/sda

 Installing for i386-pc platform.
 Installation finished. No error reported.

- If using a release earlier than Oracle Exadata System Software release 18.1.0.0.0:

 grub
 find /I_am_hd_boot (1)
 root (hdX,0)
 setup (hdX)
 quit

 In the preceding commands, (1) finds the hard disk hdX that has the file
 I_am_hd_boot, such as (hd0,0).

14. Unmount the /boot partition.

 umount /boot

15. Restart the system.

 # shutdown -r now

 This completes the restoration procedure for the server.

16. If the recovery was on Oracle Exadata Database Machine Eighth Rack, then
 perform the procedure described in Configuring Oracle Exadata Database
 Machine Eighth Rack Oracle Linux Database Server After Recovery.

2.11.5 Configuring Oracle Exadata Database Machine Eighth Rack
Oracle Linux Database Server After Recovery

After the Oracle Linux database server in Oracle Exadata Database Machine Eighth Rack
has been re-imaged, restored, or rescued, you can then reconfigure the eighth rack.

- Configuring Eighth Rack On X3-2 or Later Machines Running Oracle Exadata
 Storage Server Release 12.1.2.3.0 or Later
- Configuring Eighth Rack On X3-2 Machines Running Oracle Exadata Storage
 Server Release 12.1.2.2.3 or Earlier
2.11.5.1 Configuring Eighth Rack On X3-2 or Later Machines Running Oracle Exadata Storage Server Release 12.1.2.3.0 or Later

The following procedure should be performed after Oracle Linux database server in Oracle Exadata Database Machine Eighth Rack has been re-imaged, restored, or rescued.

For X3-2 systems, use this method only if you are running Oracle Exadata System Software release 12.1.2.3.0 or later.

1. On the recovered server, check that the resourcecontrol utility exists in the /opt/oracle.SupportTools directory. If not, copy it from another database server to the recovered server.

2. Ensure proper permissions are set on the resourcecontrol utility.

 # chmod 740 /opt/oracle.SupportTools/resourcecontrol

3. Verify the current configuration.

 # dbmcli -e LIST DBSERVER ATTRIBUTES coreCount

 See Table 2-3 for the number of cores allowed for each machine configuration. If the correct value is shown, then no configuration changes are necessary. If that value is not shown, then continue to step 4 of this procedure.

4. Change the enabled core configuration.

 # dbmcli -e ALTER DBSERVER pendingCoreCount=new_core_count FORCE

 new_core_count for an Eighth Rack is:
 - X8-2: 24
 - X7-2: 24
 - X6-2: 22
 - X5-2: 18
 - X4-8: 60
 - X4-2: 12

5. Restart the server.

 # reboot

6. Verify the changes to the configuration.

 # dbmcli -e LIST DBSERVER ATTRIBUTES coreCount
2.11.5.2 Configuring Eighth Rack On X3-2 Machines Running Oracle Exadata Storage Server Release 12.1.2.2.3 or Earlier

The following procedure should be performed after Oracle Linux database server in Oracle Exadata Database Machine Eighth Rack has been re-imaged, restored, or rescued.

2. Ensure proper permissions are set on the utility.

 # chmod 740 /opt/oracle.SupportTools/resourcecontrol

3. Verify the current configuration.
 The output from the command is shown in this example.

 # /opt/oracle.SupportTools/resourcecontrol -show

 Validated hardware and OS. Proceed.
 Number of cores active: 8

 For an eighth rack configuration, eight cores should be enabled. If that value is shown, then no configuration changes are necessary. If that value is not shown, then continue to step 4 of this procedure.

 Note:

 If there is an error similar to the following after running the utility, then restarting the server one or more times usually clears the error:

 Validated hardware and OS. Proceed.
 Cannot get ubisconfig export. Cannot Proceed. Exit.

4. Change the configuration for enabled cores.

 # /opt/oracle.SupportTools/resourcecontrol -cores 8

5. Restart the server.

 # shutdown -r now

6. Verify the changes to the configuration.

 # /opt/oracle.SupportTools/resourcecontrol -show
The following is an example of the expected output from the command for the database server:

```
This is a Linux database server.
Validated hardware and OS. Proceed.
Number of cores active per socket: 4
```

2.12 Re-Imaging the Oracle Exadata Database Server

The re-image procedure is necessary when a database server needs to be brought to an initial state for various reasons.

Some examples scenarios for re-imaging the database server are:

- You want to install a new server and need to use an earlier release than is in the image already installed on the server.
- You need to replace a damaged database server with a new database server.
- Your database server had multiple disk failures causing local disk storage failure and you do not have a database server backup.
- You want to repurpose the server to a new rack.

During the re-imaging procedure, the other database servers on Oracle Exadata Database Machine are available. When the new server is added to the cluster, the software is copied from an existing database server to the new server. It is your responsibility to restore scripting, CRON jobs, maintenance actions, and non-Oracle software.

Note:

The procedures in this section assume the database is Oracle Database 11g Release 2 (11.2) or later.

Starting with Oracle Exadata System Software release 19.1.0, Secure Eraser is automatically started during re-imaging if the hardware supports Secure Eraser. This significantly simplifies the re-imaging procedure while maintaining performance. Now, when re-purposing a rack, you only have to image the rack and the secure data erasure is taken care of transparently as part of the process.

The following tasks describes how to re-image an Oracle Exadata Database Server running Oracle Linux:

- **Contact Oracle Support Services**
 If a failed server is being replaced, open a support request with Oracle Support Services.

- **Download Latest Release of Cluster Verification Utility**
 The latest release of the cluster verification utility (`cluvfy`) is available from My Oracle Support.

- **Remove the Database Server from the Cluster**
 If you are reimaging a failed server or repurposing a server, follow the steps in this task to remove the server from the cluster before you reimage it. If you are
reimaging the server for a different reason, skip this task and proceed with the reimaging task next.

- **Image the Database Server**
 After the database server has been installed or replaced, you can image the new database server.

- **Configure the Re-imaged Database Server**
 The re-imaged database server does not have any host names, IP addresses, DNS or NTP settings. The steps in this task describe how to configure the re-imaged database server.

- **Prepare the Re-imaged Database Server for the Cluster**
 This task describes how to ensure the changes made during initial installation are done to the re-imaged, bare metal database server.

- **Apply Oracle Exadata System Software Patch Bundles to the Replacement Database Server**
 Oracle periodically releases Oracle Exadata System Software patch bundles for Oracle Exadata Database Machine.

- **Clone Oracle Grid Infrastructure to the Replacement Database Server**
 This procedure describes how to clone Oracle Grid Infrastructure to the replacement database server.

- **Clone Oracle Database Homes to the Replacement Database Server**
 The following procedure describes how to clone the Oracle Database homes to the replacement server.

2.12.1 Contact Oracle Support Services

If a failed server is being replaced, open a support request with Oracle Support Services.

The support engineer will identify the failed server, and send a replacement. The support engineer will ask for the output from the `imagehistory` command run from a surviving database server. The output provides a link to the `computeImageMaker` file that was used to image the original database server, and provides a means to restore the system to the same level.

2.12.2 Download Latest Release of Cluster Verification Utility

The latest release of the cluster verification utility (`cluvfy`) is available from My Oracle Support.

See My Oracle Support note 316817.1 for download instructions and other information.

Related Topics

- **Cluster Verification Utility (CLUVFY) FAQ(My Oracle Support Doc ID 316817.1)**

2.12.3 Remove the Database Server from the Cluster

If you are reimaging a failed server or repurposing a server, follow the steps in this task to remove the server from the cluster before you reimagine it. If you are reimaging
the server for a different reason, skip this task and proceed with the reimaging task next.

The steps in this task are performed using a working database server in the cluster. In the following commands, *working_server* is a working database server, and *failed_server* is the database server you are removing, either because it failed or it is being repurposed.

1. **Log in as the oracle user on a database server in the cluster.**

 The *oracle* user refers to the operating system user that owns the Oracle Database software installation. The `$ORACLE_HOME` variable should point to the location of the database home.

2. **Disable the listener that runs on the failed server.**

   ```
   $ srvctl disable listener -n failed_server
   $ srvctl stop listener -n failed_server
   ```

3. **Delete the Oracle home from the Oracle inventory.**

 In the following command, *list_of_working_servers* is a list of the servers that are still working in the cluster, such as dm01db02, dm01db03, and so on.

 In the following command, replace `/u01/app/oracle/product/12.1.0.2/dbhome_1` with the location of your Oracle Database home directory.

   ```
   $ cd $ORACLE_HOME/oui/bin
   $ ./runInstaller -updateNodeList ORACLE_HOME= /u01/app/oracle/product/12.1.0.2/dbhome_1 "CLUSTER_NODES=list_of_working_servers"
   ```

4. **Log in as the grid user on the database server.**

 The *grid* user refers to the operating system user that owns the Oracle Grid Infrastructure software installation. The `$ORACLE_HOME` variable should point to the location of the Grid home.

5. **Verify the failed server is unpinned.**

   ```
   $ olsnodes -s -t
   ```

 The following is an example of the output from the command:

   ```
   dm01db01       Inactive       Unpinned
   dm01db02       Active         Unpinned
   ```

6. **Log in as the root user on the database server.**

7. **Stop and delete the VIP resources for the failed database server.**

   ```
   # srvctl stop vip -i failed_server-vip
   PRCC-1016 : failed_server-vip.example.com was already stopped
   
   # srvctl remove vip -i failed_server-vip
   Please confirm that you intend to remove the VIPs failed_server-vip (y/[n]) y
   ```
8. Delete the server from the cluster.

```
# crsctl delete node -n failed_server
CRS-4661: Node dm01db01 successfully deleted.
```

If you receive an error message similar to the following, then relocate the voting disks.

```
CRS-4662: Error while trying to delete node dm01db01.
CRS-4000: Command Delete failed, or completed with errors.
```

To relocate the voting disks use the following steps:

a. Determine the current location of the voting disks.

```
# crsctl query css votedisk
```

The following is an example of the output from the command. The current location is DBFS_DG.

```
## STATE    File Universal Id          File Name
Disk group  -----------------          ---------
----------  -----------------          ---------
1. ONLINE   123456789abab (o/192.168.73.102/DATA_CD_00_dm01cel07) [DBFS_DG]
2. ONLINE   123456789cdcd (o/192.168.73.103/DATA_CD_00_dm01cel08) [DBFS_DG]
3. ONLINE   123456789efef (o/192.168.73.100/DATA_CD_00_dm01cel05) [DBFS_DG]
Located 3 voting disk(s).
```

b. Relocate the voting disks to another disk group.

```
# ./crsctl replace votedisk +DATA
Successful addition of voting disk 2345667aabbdd.
...
CRS-4266: Voting file(s) successfully replaced
```

c. Relocate the voting disks to the original location using a command similar to the following:

```
# ./crsctl replace votedisk +DBFS_DG
```

d. Delete the server from the cluster.

9. Log in as the grid user on the database server.

The grid user refers to the operating system user that owns the Oracle Grid Infrastructure software installation. The $ORACLE_HOME variable should point to the location of the Grid home.

10. Update the Oracle inventory.
In the following command, replace
/u01/app/12.1.0.2/grid with the location
of your Oracle Grid Infrastructure home directory.

$ cd $ORACLE_HOME/oui/bin
$./runInstaller -updateNodeList ORACLE_HOME=/u01/app/12.1.0.2/grid \
"CLUSTER_NODES=list_of_working_servers" CRS=TRUE

11. Verify the server was deleted successfully.

$ cluvfy stage -post nodedel -n failed_server -verbose

The following is an example of the output from the command:

Performing post-checks for node removal
Checking CRS integrity...
The Oracle clusterware is healthy on node "dm01db02"
CRS integrity check passed
Result:
Node removal check passed
Post-check for node removal was successful.

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

2.12.4 Image the Database Server

After the database server has been installed or replaced, you can image the new
database server.

You can use installation media on a USB thumb drive, or a touchless option using PXE
or ISO attached to the ILOM. See Imaging a New System in Oracle Exadata Database
Machine Installation and Configuration Guide for the details.

2.12.5 Configure the Re-imaged Database Server

The re-imaged database server does not have any host names, IP addresses, DNS or
NTP settings. The steps in this task describe how to configure the re-imaged database
server.

You need the following information prior to configuring the re-imaged database server:

• Name servers
• Time zone, such as Americas/Chicago
• NTP servers
• IP address information for the management network
• IP address information for the client access network
• IP address information for the RDMA Network Fabric
• Canonical host name
• Default gateway
The information should be the same on all database servers in Oracle Exadata Database Machine. The IP addresses can be obtained from DNS. In addition, a document with the information should have been provided when Oracle Exadata Database Machine was installed.

The following procedure describes how to configure the re-imaged database server:

1. Power on the replacement database server. When the system boots, it automatically runs the Configure Oracle Exadata routine, and prompts for information.
2. Enter the information when prompted, and confirm the settings. The start up process will continue.

Note:

- If the database server does not use all network interfaces, then the configuration process stops, and warns that some network interfaces are disconnected. It prompts whether to retry the discovery process. Respond with `yes` or `no`, as appropriate for the environment.
- If bonding is used for the client access network, then it is set in the default active-passive mode at this time.

2.12.6 Prepare the Re-imaged Database Server for the Cluster

This task describes how to ensure the changes made during initial installation are done to the re-imaged, bare metal database server.

Note:

For Oracle VM systems, follow the procedure in *Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI*.

1. Copy or merge the contents of the following files using files on a working database server as reference:
 a. Copy the contents of the `/etc/security/limits.conf` file.
 b. Merge the contents of the `/etc/hosts` files.
 c. Copy the `/etc/oracle/cell/network-config/cellinit.ora` file.
 d. Update the `/etc/oracle/cell/network-config/cellinit.ora` file with the `IP_ADDRESS` of the `ifcfg-bondib0` interface (in case of active/passive bonding) or `ib0` and `ib1` interfaces (in case of active/active bonding) of the replacement server.
 e. Copy the `/etc/oracle/cell/network-config/cellip.ora` file.
 - The content of the `cellip.ora` file should be the same on all database servers.
 f. Configure additional network requirements, such as 10 GbE.
g. Copy the `modprobe` configuration.
The contents of the configuration file should be the same on all database servers.
 - Oracle Linux 5 or 6: The file is located at `/etc/modprobe.conf`.
 - Oracle Linux 7: The file is located at `/etc/modprobe.d/exadata.conf`.

h. Copy the `/etc/sysctl.conf` file.
The contents of the file should be the same on all database servers.

i. Update the `cellroute.ora`.
Make a copy of the `/etc/oracle/cell/network-config/cellroute.ora` file.
Modify the contents on the replacement server to use the local InfiniBand interfaces on the new node.

j. Restart the database server so the network changes take effect.

2. Set up the users for the software owners on the replacement database server by adding groups.
 If you are using role-separated management, then the users are usually `oracle` and `grid`. If you use a single software owner, then the user is usually `oracle`. The group information is available on a working database server.
 a. Obtain the current group information from a working database server.

      ```
      # id oracle
      uid=1000(oracle) gid=1001(oinstall) groups=1001(oinstall),1002(dba),
      1003(oper),1004(asmdba)
      ```

 b. Use the `groupadd` command to add the group information to the replacement database server.

      ```
      # groupadd -g 1001 oinstall
      # groupadd -g 1002 dba
      # groupadd -g 1003 oper
      # groupadd -g 1004 asmdba
      ```

 c. Obtain the current user information from a working database server.

      ```
      # id oracle uid=1000(oracle) gid=1001(oinstall) \
      groups=1001(oinstall),1002(dba),1003(oper),1004(asmdba)
      ```

 d. Add the user information to the replacement database server.

      ```
      # useradd -u 1000 -g 1001 -G 1001,1002,1003,1004 -m -d /home/oracle \
      /bin/bash oracle
      ```

 e. Create the Oracle Base and Grid home directories, such as `/u01/app/oracle` and `/u01/app/12.2.0.1/grid`.

      ```
      # mkdir -p /u01/app/oracle
      # mkdir -p /u01/app/12.2.0.1/grid
      # chown -R oracle:oinstall /u01/app
f. Change the ownership on the `cellip.ora` and `cellinit.ora` files.
   The ownership is usually `oracle:oinstall`.

   ```bash
 # chown -R oracle:oinstall /etc/oracle/cell/network-config
   ```

g. Secure the restored database server.

   ```bash
 $ chmod u+x /opt/oracle.SupportTools/harden_passwords_reset_root_ssh
 $ /opt/oracle.SupportTools/harden_passwords_reset_root_ssh
   ```

   The database server restarts. Log in as the `root` user when prompted by the system. You are prompted for a new password. Set the password to match the root password of the other database servers.

h. Set the password for the Oracle software owner.

   The owner is usually `oracle`.

   ```bash
 # passwd oracle
   ```

3. Set up SSH for the `oracle` account.

   a. Log in to the `oracle` account on the replacement database server.

      ```bash
 # su - oracle
      ```

   b. Create the `dcli` group file on the replacement database server listing the servers in the Oracle cluster.

   c. Run the following command on the replacement database server.

      ```bash
 $ dcli -g dbs_group -l oracle -k
      ```

   d. Log in as the `oracle` user on the replacement database server.

      ```bash
 # su - oracle
      ```

   e. Verify SSH equivalency.

      ```bash
 $ dcli -g dbs_group -l oracle date
      ```

4. Set up or copy any custom login scripts from a working database server to the replacement database server.

   In the following command, `replacement_server` is the name of the new server, such as `dm01db01`.

   ```bash
 $ scp .bash* oracle@replacement_server:.
   ```
2.12.7 Apply Oracle Exadata System Software Patch Bundles to the Replacement Database Server

Oracle periodically releases Oracle Exadata System Software patch bundles for Oracle Exadata Database Machine.

If a patch bundle has been applied to the working database servers that was later than the release of the `computeImageMaker` file, then the patch bundle must be applied to the replacement Oracle Exadata Database Server. Determine if a patch bundle has been applied as follows:

- Prior to Oracle Exadata System Software release 11.2.1.2.3, the database servers did not maintain version history information. To determine the release number, log in to Oracle Exadata Storage Server, and run the following command:

  `imageinfo -ver`

  If the command shows a different release than the release used by the `computeImageMaker` file, then Oracle Exadata System Software patch has been applied to Oracle Exadata Database Machine and must be applied to the replacement Oracle Exadata Database Server.

- Starting with Oracle Exadata System Software release 11.2.1.2.3, the `imagehistory` command exists on the Oracle Exadata Database Server. Compare information on the replacement Oracle Exadata Database Server to information on a working Oracle Exadata Database Server. If the working database has a later release, then apply the Oracle Exadata Storage Server patch bundle to the replacement Oracle Exadata Database Server.

Related Topics
- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)

2.12.8 Clone Oracle Grid Infrastructure to the Replacement Database Server

This procedure describes how to clone Oracle Grid Infrastructure to the replacement database server.

In the following commands, `working_server` is a working database server, and `replacement_server` is the replacement database server. The commands in this procedure are run from a working database server as the Grid home owner. When the root user is needed to run a command, it will be called out.

1. Verify the hardware and operating system installation using the cluster verification utility (`cluvfy`).

   `$ cluvfy stage -post hwos -n replacement_server,working_server -verbose`

   The phrase Post-check for hardware and operating system setup was successful should appear at the end of the report. If the cluster verification utility
fails to validate the storage on the replacement server, you can ignore those messages.

2. Verify peer compatibility.

   $ cluvfy comp peer -refnode working_server -n replacement_server \ 
      -oainv oinstall -osdba dba | grep -B 3 -A 2 mismatched

   The following is an example of the output:

   Compatibility check: Available memory [reference node: dm01db02]
   Node Name Status Ref. node status Comment
   ----------------------- ----------------------- ----------------------- ----------
   dm01db01 31.02GB (3.2527572E7KB) 29.26GB (3.0681252E7KB) mismatched
   Available memory check failed

   Compatibility check: Free disk space for "/tmp" [reference node: dm01db02]
   Node Name Status Ref. node status Comment
   ----------------------- ---------------------- ----------
   dm01db01 55.52GB (5.8217472E7KB) 51.82GB (5.4340608E7KB) mismatched
   Free disk space check failed

   If the only failed components are related to the physical memory, swap space and disk space, then it is safe to continue.

3. Perform the requisite checks for adding the server.
   a. Ensure the GRID_HOME/network/admin/samples directory has permissions set to 750.
   b. Validate the addition of the database server.

      Run the following command as the oracle user. The command prompts for the password of the root user.

      $ cluvfy stage -pre nodeadd -n replacement_server -fixup -method root -verbose
      Enter "ROOT" password:

      If the only failed component is related to swap space, then it is safe to continue.

      If the command returns an error, then set the following environment variable and rerun the command:

      $ export IGNORE_PREADDNODE_CHECKS=Y

4. Add the replacement database server to the cluster.

   If you are using Oracle Grid Infrastructure release 12.1 or higher, include the CLUSTER_NEW_NODE_ROLES attribute, as shown in the following example.

   $ cd GRID_HOME/addnode

   $ ./addnode.sh -silent "CLUSTER_NEW_NODES={replacement_server}"
"CLUSTER_NEW_VIRTUAL_HOSTNAMES={replacement_server-vip}" \ 
"CLUSTER_NEW_NODE_ROLES={hub}" 

The second command causes Oracle Universal Installer to copy the Oracle Clusterware software to the replacement database server. A message similar to the following is displayed:

WARNING: A new inventory has been created on one or more nodes in this session. However, it has not yet been registered as the central inventory of this system. To register the new inventory please run the script at '/u01/app/oraInventory/orainstRoot.sh' with root privileges on nodes 'dm01db01'. If you do not register the inventory, you may not be able to update or patch the products you installed.

The following configuration scripts need to be executed as the "root" user in each cluster node:

/u01/app/oraInventory/orainstRoot.sh #On nodes dm01db01
/u01/app/12.1.0.2/grid/root.sh #On nodes dm01db01

5. Run the configuration scripts.

As the root user, first disable HAIP, then run the orainstRoot.sh and root.sh scripts on the replacement database server using the commands shown in the following example.

```
export HAIP_UNSUPPORTED=true
#/u01/app/oraInventory/orainstRoot.sh
Creating the Oracle inventory pointer file (/etc/oraInst.loc)
Changing permissions of /u01/app/oraInventory.
Adding read,write permissions for group.
Removing read,write,execute permissions for world.
Changing groupname of /u01/app/oraInventory to oinstall.
The execution of the script is complete.
```

```
#/GRID_HOME/root.sh
```

Note: Check GRID_HOME/install/log files for the output of root.sh script.

If you are running Oracle Grid Infrastructure release 11.2, then the output file created by the script reports that the listener resource on the replaced database server failed to start. This is the expected output.

```
/u01/app/11.2.0/grid/bin/srvctl start listener -n dm01db01 \
...Failed
/u01/app/11.2.0/grid/perl/bin/perl
```
After the scripts are run, the following message is displayed:

The Cluster Node Addition of /u01/app/12.1.0.2/grid was successful.
Please check '/tmp/silentInstall.log' for more details.

6. Check the cluster.

$ GRID_HOME/bin/crsctl check cluster -all

*******************************************************************************
node1:
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online
*******************************************************************************
node2:
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online
*******************************************************************************
node3:
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online

7. If you are running Oracle Grid Infrastructure release 11.2, then re-enable the listener resource.

Run the following commands on the replacement database server.

# GRID_HOME/grid/bin/srvctl enable listener -l LISTENER \
-n replacement_server

# GRID_HOME/grid/bin/srvctl start listener -l LISTENER \
-n replacement_server

8. Start the disk groups on the replacement server.
   a. Check disk group status.

In the following example, notice that disk groups are offline on the replacement server.

$ crsctl stat res -t

<table>
<thead>
<tr>
<th>Name</th>
<th>Target</th>
<th>State</th>
<th>Server</th>
<th>State details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ora.DATAC1.dg</td>
<td>ONLINE</td>
<td>ONLINE</td>
<td>node1</td>
<td>STABLE</td>
</tr>
<tr>
<td></td>
<td>OFFLINE</td>
<td>OFFLINE</td>
<td>node2</td>
<td>STABLE</td>
</tr>
</tbody>
</table>
ora.DBFS_DG.dg
ONLINE ONLINE node1 STABLE
ONLINE ONLINE node2 STABLE
ora.LISTENER.lsnr
ONLINE ONLINE node1 STABLE
ONLINE ONLINE node2 STABLE
ora.RECOCl.dg
ONLINE ONLINE node1 STABLE
OFFLINE OFFLINE node2 STABLE

b. For each offline disk group, run the `START DISKGROUP` command for each disk group that is offline from either the original server or the replacement server.

```shell
$ srvctl start diskgroup -diskgroup dgname
```

Related Topics
- *Oracle Real Application Clusters Administration and Deployment Guide*

2.12.9 Clone Oracle Database Homes to the Replacement Database Server

The following procedure describes how to clone the Oracle Database homes to the replacement server.

Run the commands from a working database server as the `oracle` user. When the `root` user is needed to run a command, it will be called out.

1. Add the Oracle Database `ORACLE_HOME` to the replacement database server using the following commands:

```shell
$ cd /u01/app/oracle/product/12.1.0.2/dbhome_1/addnode
$./addnode.sh -silent "CLUSTER_NEW_NODES={replacement_server}"
```

The second command causes Oracle Universal Installer to copy the Oracle Database software to the replacement database server.

WARNING: The following configuration scripts need to be executed as the "root" user in each cluster node.

```shell
/u01/app/oracle/product/12.1.0.2/dbhome_1/root.sh #On nodes dm01db01
```

To execute the configuration scripts:
- Open a terminal window.
- Log in as root.
- Run the scripts on each cluster node.
After the scripts are finished, the following messages appear:

The Cluster Node Addition of /u01/app/oracle/product/12.1.0.2/dbhome_1 was successful.
Please check '/tmp/silentInstall.log' for more details.

2. Run the following script on the replacement database server:

```
/u01/app/oracle/product/12.1.0.2/dbhome_1/root.sh
```

Check the /u01/app/oracle/product/12.1.0.2/dbhome_1/install/root_replacement_server.com_date.log file for the output of the script.

3. Run the Oracle Database Configuration Assistant (DBCA) in interactive mode to add database instances to the target nodes.

   a. Start up DBCA.

```
$ cd /u01/app/oracle/product/12.1.0.2/dbhome_1/bin
$./dbca
```

   b. On the Database Operation screen, select Instance Management. Click Next.

   c. On the Instance Operation screen, select Add an instance. Click Next.

   d. On the Database List screen, select the cluster database to which you want to add an instance.

   e. The List Instance screen displays the current instances. Click Next to add a new instance.

   f. The Add Instance screen displays the default name and the newly added node to the cluster. Accept the defaults and click Next.

   g. On the Summary screen, verify the plan and click Finish.

   h. On the Progress screen, watch for 100% completion.

   i. On the Finish screen, acknowledge the confirmation that the new instance was successfully added.

Verify that the instance has been added:

```
$ srvctl config database -db dbm01
```

Verify the administrative privileges on the target node:

```
$ cd /u01/app/oracle/product/12.1.0.2/dbhome_1/bin
$./cluvfy comp admprv -o db_config -d /u01/app/oracle/product/12.1.0.2/dbhome_1 -n new_node
```
4. Ensure the instance parameters are set for the replaced database instance. The following is an example for the `CLUSTER_INTERCONNECTS` parameter.

```sql
SQL> SHOW PARAMETER cluster_interconnects

NAME TYPE VALUE
------------------------------ --------

cluster_interconnects string

SQL> ALTER SYSTEM SET cluster_interconnects='192.168.73.90' SCOPE=spfile SID='dbm1';
```

5. Validate the configuration files as follows:
   - The `Oracle_home/dbs/init.SID.ora` file points to the SPFILE in the Oracle ASM shared storage.
   - The password file that is copied in the `Oracle_home/dbs` directory has been changed to `orapwSID`.

6. Check that any services that incorporated this instance before and ensure the services are updated to include this replacement instance.

7. If this procedure was performed on Oracle Exadata Database Machine Eighth Rack, then perform the procedure described in Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery.

Related Topics
- Oracle Real Application Clusters Administration and Deployment Guide

2.13 Changing Existing Elastic Configurations for Database Servers

Elastic configurations provide a flexible and efficient mechanism to change the server configuration of your Oracle Exadata Database Machine.

- **Adding a New Database Server to the Cluster**
  You can add a new database server to an existing Oracle Real Application Clusters (Oracle RAC) cluster running on Oracle Exadata Database Machine.

- **Moving an Existing Database Server to a Different Cluster**
  You can repurpose an existing database server and move it to a different cluster within the same Oracle Exadata Rack.

- **Dropping a Database Server from an Oracle RAC Cluster**
  You can remove a database server that is a member of an Oracle Real Application Clusters (Oracle RAC) cluster.

Related Topics
- **Changing Existing Elastic Configurations for Storage Cells**
  You can modify the capacity of your Oracle Exadata Database Machine using elastic configuration.
2.13.1 Adding a New Database Server to the Cluster

You can add a new database server to an existing Oracle Real Application Clusters (Oracle RAC) cluster running on Oracle Exadata Database Machine.

1. Determine if the new database server needs to be re-imaged or upgraded.

   Check the image label of the database servers in the cluster to which you want to add the new database server.
   - If the image label of the new database server is later, or a newer release, than the image label of the existing database servers in the cluster and you do not wish to upgrade the existing servers, then reimage the new database server to the older version by completing the following tasks:
     - Download Latest Release of Cluster Verification Utility
     - Image the Database Server
     - Configure the Re-imaged Database Server
   - If the image label of the new database server is earlier, or an older release, than the image label of the existing database servers in the cluster, then an upgrade is required using patchmgr. See Updating Exadata Software for details.

2. Add the database server to the cluster by completing the following tasks:
   - For bare metal systems:
     - Prepare the Re-imaged Database Server for the Cluster
     - Clone Oracle Grid Infrastructure to the Replacement Database Server
     - Clone Oracle Database Homes to the Replacement Database Server
   - For Oracle VM systems:
     - Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI

3. Download and run the latest version of Oracle EXAchk to ensure that the resulting configuration implements the latest best practices for Oracle Exadata Database Machine.

2.13.2 Moving an Existing Database Server to a Different Cluster

You can repurpose an existing database server and move it to a different cluster within the same Oracle Exadata Rack.

1. Remove the database server from the existing Oracle Real Application Clusters (Oracle RAC) cluster.
   a. Stop Oracle Grid Infrastructure on the database server.
      
      ```bash
 Grid_home/bin/crsl stop crs
      ```
   b. Remove the database server from the cluster by completing the steps in Remove the Database Server from the Cluster.

2. Determine if the database server that is being repurposed needs to be reimaged.
Check the image label of the existing database servers in the cluster to which you want to add the database server. If the image label of the database server being added does not match the image label of the existing database servers in the cluster, then reimage the database server being added. Complete the following tasks:

- Contact Oracle Support Services
- Download Latest Release of Cluster Verification Utility
- Image the Database Server
- Configure the Re-imaged Database Server

If an upgrade is required, the upgrade may be performed using patchmgr. See Updating Exadata Software for details.

3. Add the database server to the cluster.

Complete the following tasks:

- Prepare the Re-imaged Database Server for the Cluster
- Apply Oracle Exadata System Software Patch Bundles to the Replacement Database Server
- Clone Oracle Grid Infrastructure to the Replacement Database Server
- Clone Oracle Database Homes to the Replacement Database Server

4. Download and run the latest version of Oracle EXAchk to ensure that the resulting configuration implements the latest best practices for Oracle Exadata Database Machine.

Related Topics

- dbnodeupdate.sh and dbserver.patch.zip: Updating Exadata Database Server Software using the DBNodeUpdate Utility and patchmgr (My Oracle Support Doc ID 1553103.1)

2.13.3 Dropping a Database Server from an Oracle RAC Cluster

You can remove a database server that is a member of an Oracle Real Application Clusters (Oracle RAC) cluster.

1. Stop Oracle Grid Infrastructure on the database server to be removed.

   ```
 Grid_home/bin/crsctl stop crs
   ```

2. Remove the database server from the cluster by completing the steps in Remove the Database Server from the Cluster.

3. Download and run the latest Oracle EXAchk to ensure that the resulting configuration implements the latest best practices for Oracle Exadata Database Machine.
2.14 Managing Quorum Disks for High Redundancy Disk Groups

Quorum disks allow for the Oracle RAC voting files to be stored in a high redundancy disk group on an Oracle Exadata Rack with fewer than five storage servers due to the presence of two extra failure groups.

- **Using Quorum Disks to Increase Fault Tolerance**
  Quorum disks are used to meet the minimum requirement of five failure groups for a high redundancy disk group on a system that does not have five storage servers.

- **Overview of Quorum Disk Manager**
  The Quorum Disk Manager utility, introduced in Oracle Exadata System Software release 12.1.2.3.0, helps you to manage the quorum disks.

- **Software Requirements for Quorum Disk Manager**
  You must satisfy the minimum software requirements to use the Quorum Disk Manager utility.

- **quorumdiskmgr Reference**

- **Add Quorum Disks to Database Nodes**
  You can add quorum disks to database nodes on an Oracle Exadata Rack with fewer than 5 storage servers that contains a high redundancy disk group.

- **Recreate Quorum Disks**
  In certain circumstances, you might need to recreate a quorum disk.

- **Use Cases**
  The following topics describe various configuration cases when using the quorum disk manager utility.

- **Reconfigure Quorum Disk After Restoring a Database Server**
  After restoring a database server, `lvdisplay` shows the quorum disk was not restored.

### 2.14.1 Using Quorum Disks to Increase Fault Tolerance

Quorum disks are used to meet the minimum requirement of five failure groups for a high redundancy disk group on a system that does not have five storage servers.

A **failure group** is a subset of the disks in a disk group, which could fail at the same time because they share hardware. Oracle recommends a minimum of three failure groups for normal redundancy disk groups and five failure groups for high redundancy disk groups to maintain the necessary number of copies of the Partner Status Table (PST) and to ensure robustness with respect to storage hardware failures. On Engineered Systems, these recommendations are enforced to ensure the highest availability of the system.

The PST contains status information about the Oracle Automatic Storage Management (Oracle ASM) disks in a disk group, such as the disk number, status (either online or offline), partner disk number, failure group info, and heartbeat info. To tolerate a single hardware failure, you need 3 total copies of the PST available to form a 2 of 3 majority. If there are two hardware failures, then you need a total for 5 copies of the PST so that after a double failure you still have a 3 of 5 majority.
A quorum failure group is a special type of failure group that does not contain user data. Quorum failure groups are used for storing the PST. A quorum failure group can also be used to store a copy of the voting file for Oracle Clusterware. Because disks in quorum failure groups do not contain user data, a quorum failure group is not considered when determining redundancy requirements in respect to storing user data.

In the event of a system failure, three failure groups in a normal redundancy disk group allow a comparison among three PSTs to accurately determine the most up to date and correct version of the PST, which could not be done with a comparison between only two PSTs. Similarly with a high redundancy disk group, if two failure groups are offline, then Oracle ASM would be able to make a comparison among the three remaining PSTs.

You can create quorum failure groups with Oracle Exadata Deployment Assistant (OEDA) when deploying Exadata or you can add them later using the Quorum Disk Manager Utility. The iSCSI quorum disks are created on database nodes and a voting file is created on those quorum disks. These additional quorum failure groups are used to meet the minimum requirement of five voting files and PSTs for a high redundancy disk group. Quorum disks are required when the following conditions exist:

- The Oracle Exadata Rack has fewer than five storage servers.
- The Oracle Exadata Rack has at least two database nodes.
- The Oracle Exadata Rack has at least one high redundancy disk group.

Quorum failure groups allow for a high redundancy disk group to exist on Oracle Exadata Racks with fewer than five storage servers by creating two extra failure groups. Without this feature, a disk group is vulnerable to a double partner storage server failure that results in the loss of the PST or voting file quorum, which can cause a complete cluster and database outage. Refer to My Oracle Support note 1339373.1 for how to restart the clusterware and databases in this scenario.

The iSCSI quorum disk implementation has high availability because the IP addresses on the RDMA Network Fabric are highly available using RDS.

Each iSCSI device shown in the figure below corresponds to a particular path to the iSCSI target. Each path corresponds to an RDMA Network Fabric port on the database node. For each multipath quorum disk device in an active–active system, there are two iSCSI devices, one for \texttt{ib0 or re0} and the other for \texttt{ib1 or re1}.
Quorum disks can be used with bare metal Oracle Real Application Clusters (Oracle RAC) clusters and Oracle VM Oracle RAC clusters. For Oracle VM Oracle RAC clusters, the quorum disk devices reside in the Oracle RAC cluster nodes which are Oracle VM user domains as shown in the following figure.
2.14.2 Overview of Quorum Disk Manager

The Quorum Disk Manager utility, introduced in Oracle Exadata System Software release 12.1.2.3.0, helps you to manage the quorum disks.

This utility enables you to create an iSCSI quorum disk on two of the database nodes and store a voting file on those two quorum disks. These two additional voting files are used to meet the minimum requirement of five voting files for a high redundancy disk group.

The Quorum Disk Manager utility (quorumdiskmgr) is used to create and manage all the necessary components including the iSCSI configuration, the iSCSI targets, the iSCSI LUNs, and the iSCSI devices for implementing quorum disks.

2.14.3 Software Requirements for Quorum Disk Manager

You must satisfy the minimum software requirements to use the Quorum Disk Manager utility.

To use this feature, the following releases are required:

- Oracle Exadata System Software release 12.1.2.3.0 and above
- Patch 23200778 for all Oracle Database homes
- Oracle Grid Infrastructure release 12.1.0.2.160119 with patches 22722476 and 22682752, or Oracle Grid Infrastructure release 12.1.0.2.160419 and above

For new deployments, Oracle Exadata Deployment Assistant (OEDA) installs the patches automatically.

2.14.4 quorumdiskmgr Reference

The quorum disk manager utility (quorumdiskmgr) runs on each database server to enable you to create and manage iSCSI quorum disks on database servers. You use...
quorumdiskmgr to create, list, alter, and delete iSCSI quorum disks on database servers. The utility is installed on database servers when they are shipped.

- **Syntax for the Quorum Disk Manager Utility**
- **quorumdiskmgr Objects**
- **Creating a Quorum Disk Configuration (--create --config)**
  The --create --config action creates a quorum disk configuration.
- **Creating a Target (--create --target)**
  The --create --target action creates a target that will be used to create the devices to add to the specified Oracle ASM disk group.
- **Creating a Device (--create --device)**
  The --create --device action creates devices by discovering and logging into targets on database servers with an RDMA Network Fabric IP address in the specified list of IP addresses.
- **Listing Quorum Disk Configurations (--list --config)**
  The --list --config action lists the quorum disk configurations.
- **Listing Targets (--list --target)**
  The --list --target action lists the attributes of targets.
- **Listing Devices (--list --device)**
  The --list --device action lists the attributes of devices, including device path, size, host name and ASM disk group name.
- **Deleting Configurations (--delete --config)**
  The --delete --config action deletes quorum disk configurations.
- **Deleting Targets (--delete --target)**
  The --delete --target action deletes the targets created for quorum disks on database servers.
- **Deleting Devices (--delete --device)**
  The --delete --device command deletes quorum disk devices.
- **Changing Owner and Group Values (--alter --config)**
  The --alter --config action changes the owner and group configurations.
- **Changing the RDMA Network Fabric IP Addresses (--alter --target)**
  The --alter --target command changes the RDMA Network Fabric IP addresses of the database servers that have access to the local target created for the specified Oracle ASM disk group.

### 2.14.4.1 Syntax for the Quorum Disk Manager Utility

The quorum disk manager utility is a command-line tool. It has the following syntax:

```
quorumdiskmgr --verb --object [--options]
```

**verb** is an action performed on an object. It is one of: alter, create, delete, list.

**object** is an object on which the command performs an action.

**options** extend the use of a command combination to include additional parameters for the command.

When using the quorumdiskmgr utility, the following rules apply:
Verbs, objects, and options are case-sensitive except where explicitly stated.

Use the double quote character around the value of an option that includes spaces or punctuation.

2.14.4.2 quorumdiskmgr Objects

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config</td>
<td>The quorum disk configurations include the owner and group of the ASM instance to which the iSCSI quorum disks will be added, and the list of network interfaces through which local and remote iSCSI quorum disks will be discovered.</td>
</tr>
<tr>
<td>target</td>
<td>A target is an endpoint on each database server that waits for an iSCSI initiator to establish a session and provides required IO data transfer.</td>
</tr>
<tr>
<td>device</td>
<td>A device is an iSCSI device created by logging into a local or remote target.</td>
</tr>
</tbody>
</table>

2.14.4.3 Creating a Quorum Disk Configuration (--create --config)

The `--create --config` action creates a quorum disk configuration.

The configuration must be created before any targets or devices can be created.

**Syntax**

```
quorumdiskmgr --create --config [--owner owner --group group] --network-iface-list network-iface-list
```

**Parameters**

The following table lists the parameters for the `--create --config` action:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--owner</code></td>
<td>Specifies the owner of the Oracle ASM instance to which the iSCSI quorum disks will be added. This is an optional parameter. The default value is <code>grid</code>.</td>
</tr>
<tr>
<td><code>--group</code></td>
<td>Specifies the group of the Oracle ASM instance to which the iSCSI quorum disks will be added. This is an optional parameter. The default value is <code>dba</code>.</td>
</tr>
<tr>
<td><code>--network-iface-list</code></td>
<td>Specifies the list of RDMA Network Fabric interface names through which the local and remote targets will be discovered.</td>
</tr>
</tbody>
</table>

**Example 2-7** Create a Quorum Disk Configuration for a System with InfiniBand Transport Layer systems based on an InfiniBand Network Layer

```
quorumdiskmgr --create --config --owner=oracle --group=dba --network-iface-list="ib0, ib1"
```
Example 2-8  Create a Quorum Disk Configuration for a System with InfiniBand Transport Layer systems based on a RoCE Network Layer

quorumdiskmgr --create --config --owner=oracle --group=dba --network-iface-list="re0, re1"

2.14.4.4 Creating a Target (--create --target)

The `--create --target` action creates a target that will be used to create the devices to add to the specified Oracle ASM disk group.

The `--create --target` action creates a target that can be accessed by database servers with an RDMA Network Fabric IP address in the specified IP address list.

After a target is created, the `asm-disk-group`, `host-name`, and `size` attributes cannot be changed.

Syntax

```
quorumdiskmgr --create --target --asm-disk-group asm_disk_group --visible-to ip_list
 [--host-name host_name] [--size size]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--asm-disk-group</code></td>
<td>Specifies the Oracle ASM disk group to which the device created from the target will be added. The value of <code>asm-disk-group</code> is not case-sensitive.</td>
</tr>
<tr>
<td><code>--visible-to</code></td>
<td>Specifies a list of RDMA Network Fabric IP addresses. Database servers with an RDMA Network Fabric IP address in the list will have access to the target.</td>
</tr>
<tr>
<td><code>--host-name</code></td>
<td>Specifies the host name of the database server on which <code>quorumdiskmgr</code> runs. The total length of the values for <code>asm-disk-group</code> and <code>host-name</code> cannot exceed 26 characters. If the host name is too long, a shorter host name can be specified as long as a different host name is specified for each database server in the rack. This is an optional parameter. The default value is the host name of the database server on which <code>quorumdiskmgr</code> runs. The value of <code>host-name</code> is not case-sensitive.</td>
</tr>
<tr>
<td><code>--size</code></td>
<td>Specifies the size of the target. This is an optional parameter. The default value is 128 MB.</td>
</tr>
</tbody>
</table>

Example 2-9  Creating a Target For Oracle ASM Disk Group Devices

This example shows how to create a target for devices added to the DATAC1 disk group. That target is only visible to database servers that have an RDMA Network Fabric IP address of 192.168.10.45 or 192.168.10.46.

```
quorumdiskmgr --create --target --asm-disk-group=datac1 --visible-to="192.168.10.45, 192.168.10.46"
 --host-name=db01
```
2.14.4.5 Creating a Device (--create --device)

The `--create --device` action creates devices by discovering and logging into targets on database servers with an RDMA Network Fabric IP address in the specified list of IP addresses.

The created devices will be automatically discovered by the Oracle ASM instance with the owner and group specified during configuration creation.

Syntax

```bash
quorumdiskmgr --create --device --target-ip-list target_ip_list
```

Parameters

- `--target-ip-list`: Specifies a list of RDMA Network Fabric IP addresses. `quorumdiskmgr` discovers targets on database servers that have an IP address in the list, then logs in to those targets to create devices.

Example

**Example 2-10 Creating Devices From a Target For an Oracle ASM Disk Group**

This example shows how to create devices using targets on database servers that have an IP address of `192.168.10.45` or `192.168.10.46`.

```bash
quorumdiskmgr --create --device --target-ip-list="192.168.10.45,
192.168.10.46"
```

2.14.4.6 Listing Quorum Disk Configurations (--list --config)

The `--list --config` action lists the quorum disk configurations.

Syntax

```bash
quorumdiskmgr --list --config
```

Sample Output

**Example 2-11 Listing the quorum disk configuration on rack with InfiniBand Transport Layer systems based on an InfiniBand Network Layer**

```bash
$ quorumdiskmgr --list --config
Owner: grid
Group: dba
ifaces: exadata_ib1 exadata_ib0
```
Example 2-12  Listing the quorum disk configuration on rack with InfiniBand Transport Layer systems based on a RoCE Network Layer

$ quorumdiskmgr --list --config
Owner: grid
Group: dba
ifaces: exadata_re1 exadata_re0

2.14.4.7 Listing Targets (--list --target)

The --list --target action lists the attributes of targets.

The target attributes listed include target name, size, host name, Oracle ASM disk group name, the list of IP addresses (a visible-to IP address list) indicating which database servers have access to the target, and the list of IP addresses (a discovered-by IP address list) indicating which database servers have logged into the target.

If an Oracle ASM disk group name is specified, the action lists all local targets created for the specified Oracle ASM disk group. Otherwise, the action lists all local targets created for quorum disks.

Syntax

quorumdiskmgr --list --target 
[--asm-disk-group asm_disk_group]

Parameters

• --asm-disk-group: Specifies the Oracle ASM disk group. quorumdiskmgr displays all local targets for this Oracle ASM disk group. The value of asm-disk-group is not case-sensitive.

Example 2-13  Listing the Target Attributes for a Specific Oracle ASM Disk Group

This example shows how to list the attributes of the target for the DATAC1 disk group.

quorumdiskmgr --list --target --asm-disk-group=datac1
Name: iqn.2015-05.com.oracle:qd--datac1_db01
Size: 128 MB
Host name: DB01
ASM disk group name: DATAC1
Discovered by: 192.168.10.47, 192.168.10.46

Note:

For systems installed using a release prior to Oracle Exadata System Software 19.1.0, the Name might appear as iqn.2015-05.com.oracle:QD_DATAC1_DB01. Also, the Visible to field displays IP addresses instead of names.
2.14.4.8 Listing Devices (--list --device)

The `--list --device` action lists the attributes of devices, including device path, size, host name and ASM disk group name.

- If only the Oracle ASM disk group name is specified, then the output includes all the devices that have been added to the Oracle ASM disk group.
- If only the host name is specified, then the output includes all the devices created from the targets on the host.
- If both an Oracle ASM disk group name and a host name are specified, then the output includes a single device created from the target on the host that has been added to the Oracle ASM disk group.
- If neither an Oracle ASM disk group name or a host name is specified, then the output includes all quorum disk devices.

Syntax

```
quorumdiskmgr --list --device [--asm-disk-group asm_disk_group] [--host-name host_name]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--asm-disk-group</code></td>
<td>Specifies the Oracle ASM disk group to which devices have been added. The value of <code>asm-disk-group</code> is not case-sensitive.</td>
</tr>
<tr>
<td><code>--host-name</code></td>
<td>Specifies the host name of the database server from whose targets devices are created. The value of <code>host-name</code> is not case-sensitive.</td>
</tr>
</tbody>
</table>

Example 2-14  Listing Device Attributes for an Oracle ASM Disk Group

This example shows how to list the attributes for devices used by the `DATAC1` disk group.

```
$ quorumdiskmgr --list --device --asm-disk-group datac1
Device path: /dev/exadata_quorum/QD_DATAc1_DB01
Size: 128 MB
Host name: DB01
ASM disk group name: DATAC1

Device path: /dev/exadata_quorum/QD_DATAc1_DB02
Size: 128 MB
Host name: DB02
ASM disk group name: DATAC1
```
2.14.4.9 Deleting Configurations (--delete --config)

The --delete --config action deletes quorum disk configurations. The configurations can only be deleted when there are no targets or devices present.

Syntax

quorumdiskmgr --delete --config

2.14.4.10 Deleting Targets (--delete --target)

The --delete --target action deletes the targets created for quorum disks on database servers.

If an Oracle ASM disk group name is specified, then this command deletes all the local targets created for the specified Oracle ASM disk group. Otherwise, this command deletes all local targets created for quorum disks.

Syntax

quorumdiskmgr --delete --target [--asm-disk-group asm_disk_group]

Parameters

• --asm-disk-group: Specifies the Oracle ASM disk group. Local targets created for this disk group will be deleted. The value of asm-disk-group is not case-sensitive.

Example 2-15 Deleting Targets Created for an Oracle ASM Disk Group

This example shows how to delete targets created for the DATA1 disk group.

quorumdiskmgr --delete --target --asm-disk-group=DATA1

2.14.4.11 Deleting Devices (--delete --device)

The --delete --device command deletes quorum disk devices.

• If only an Oracle ASM disk group name is specified, then the command deletes all the devices that have been added to the Oracle ASM disk group.

• If only a host name is specified, then the command deletes all the devices created from the targets on the host.

• If both an Oracle ASM disk group name and a host name are specified, then the command deletes a single device created from the target on the host and that has been added to the Oracle ASM disk group.

• If neither an Oracle ASM disk group name nor a host name is specified, then the command deletes all quorum disk devices.
Syntax

quorumdiskmgr --delete --device [--asm-disk-group asm_disk_group] [--host-name host_name]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--asm-disk-group</td>
<td>Specifies the Oracle ASM disk group whose device you want to delete. The value of <code>asm-disk-group</code> is not case-sensitive.</td>
</tr>
<tr>
<td>--host-name</td>
<td>Specifies the host name of the database server. Devices created from targets on this host will be deleted. The value of <code>host-name</code> is not case-sensitive.</td>
</tr>
</tbody>
</table>

Example 2-16   Deleting Quorum Disk Devices Created from Targets on a Specific Host

This example shows how to delete all the quorum disk devices that were created from the targets on the host `DB01`.

```
quorumdiskmgr --delete --device --host-name=db01
```

2.14.4.12 Changing Owner and Group Values (--alter --config)

The `--alter --config` action changes the owner and group configurations.

Syntax

quorumdiskmgr --alter --config --owner owner --group group

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--owner</td>
<td>Specifies the new owner for the quorum disk configuration. This parameter is optional. If not specified, the owner is unchanged.</td>
</tr>
<tr>
<td>--group</td>
<td>Specifies the new group for the quorum disk configuration. This parameter is optional. If not specified, the group is unchanged.</td>
</tr>
</tbody>
</table>

Example 2-17   Changes the Owner and Group Configuration for Quorum Disk Devices

This example shows how to change the assigned owner and group for quorum disk devices.

```
quorumdiskmgr --alter --config --owner=grid --group=dba
```
2.14.4.13 Changing the RDMA Network Fabric IP Addresses (--alter --target)

The `--alter --target` command changes the RDMA Network Fabric IP addresses of the database servers that have access to the local target created for the specified Oracle ASM disk group.

**Syntax**

```
quorumdiskmgr --alter --target --asm-disk-group asm_disk_group --visible-to ip_list
```

**Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--asm-disk-group</code></td>
<td>Specifies the Oracle ASM disk group to which the device created from the target will be added. The value of <code>asm-disk-group</code> is not case-sensitive.</td>
</tr>
<tr>
<td><code>--visible-to</code></td>
<td>Specifies a list of RDMA Network Fabric IP addresses. Database servers with an RDMA Network Fabric IP address in the list will have access to the target.</td>
</tr>
</tbody>
</table>

**Example 2-18  Changing the RDMA Network Fabric IP Addresses for Accessing Targets**

This example shows how to change the RDMA Network Fabric IP address list that determines which database servers have access to the local target created for `DATAC1` disk group.

```
quorumdiskmgr --alter --target --asm-disk-group=datac1 --visible-to="192.168.10.45, 192.168.10.47"
```

2.14.5 Add Quorum Disks to Database Nodes

You can add quorum disks to database nodes on an Oracle Exadata Rack with fewer than 5 storage servers that contains a high redundancy disk group.

The example in this section creates quorum disks for an Oracle Exadata Rack that has two database nodes: `db01` and `db02`.

This is an active-active system. On both `db01` and `db02` there are two RDMA Network Fabric ports:

- InfiniBand Transport Layer systems based on an InfiniBand Network Layer: `ib0` and `ib1`
- InfiniBand Transport Layer systems based on a RoCE Network Layer: `re0` and `re1`

The network interfaces to be used for communication with the iSCSI devices can be found using the following command:

```
$ oifcfg getif | grep cluster_interconnect | awk '{print $1}'
```
The IP address of each interface can be found using the following command:

```
ip addr show interface_name
```

The RDMA Network Fabric IP addresses for this example are as follows:

On `db01`:
- Network interface: `ib0` or `re0`, IP address: `192.168.10.45`
- Network interface: `ib1` or `re1`, IP address: `192.168.10.46`

On `db02`:
- Network interface: `ib0` or `re0`, IP address: `192.168.10.47`
- Network interface: `ib1` or `re1`, IP address: `192.168.10.48`

The Oracle ASM disk group to which the quorum disks will be added is `DATAC1`. The Oracle ASM owner is `grid`, and the user group is `dba`.

Initially, the voting files reside on a normal redundancy disk group `RECOC1`:

```
$ Grid_home/bin/crsctl query css votedisk
```

```
STATE File Universal Id File Name Disk group
-- ----- ----------------- --------- ---------
1. ONLINE 21f5507a2b934f77b7ecf88b26c47 (o/192.168.76.187;192.168.76.188/RECOC1_CD_00_celadm12) [RECOC1]
2. ONLINE 387f71ee81f14f38bfbdf0693451e328 (o/192.168.76.189;192.168.76.190/RECOC1_CD_00_celadm13) [RECOC1]
3. ONLINE 6f7f6e62e6054fb868b167108c0b2f64 (o/192.168.76.191;192.168.76.192/RECOC1_CD_00_celadm14) [RECOC1]
```

Located 3 voting disk(s).

1. Log into `db01` and `db02` as the root user.

2. Run the `quorumdiskmgr` command with the `--create --config` options to create quorum disk configurations on both `db01` and `db02`.
   - For InfiniBand Transport Layer systems based on an InfiniBand Network Layer:
     
     ```
 # /opt/oracle.SupportTools/quorumdiskmgr --create --config --owner=grid --group=dba --network-iface-list="ib0, ib1"
     ```
   
   - For InfiniBand Transport Layer systems based on a RoCE Network Layer:
     
     ```
 # /opt/oracle.SupportTools/quorumdiskmgr --create --config --owner=grid --group=dba --network-iface-list="re0, re1"
     ```

3. Run the `quorumdiskmgr` command with the `--list --config` options to verify that the configurations have been successfully created on both `db01` and `db02`.

   ```
 # /opt/oracle.SupportTools/quorumdiskmgr --list --config
   ```

   Your output should resemble one of the following:
• For Oracle Exadata System Software release 18.x or earlier, the output should look like this:

  Owner: grid
  Group: dba
  ifaces: exadata_ib1 exadata_ib0

• If you have upgraded to Oracle Exadata System Software release 19.1.0 or later from an earlier release, then the output should look like this:

  Owner: grid
  Group: dba
  ifaces: exadata_ib0
  Initiator name: iqn.1988-12.com.oracle:7a4a399566

• If you have a system that was imaged with Oracle Exadata System Software release 19.1.0 or later (not upgraded), then the output should look like this:

  Owner: grid
  Group: dba
  ifaces: exadata_ib0

• If your rack uses InfiniBand Transport Layer systems based on a RoCE Network Layer, then the output should look like this:

  Owner: grid
  Group: dba
  ifaces: exadata_re0

4. Run the `quorumdiskmgr` command with the `--create --target` options to create a target on both db01 and db02 for Oracle ASM disk group DATAC1 and make the target visible to both db01 and db02.

   For example, you would use a command similar to this:

   ```
 # /opt/oracle.SupportTools/quorumdiskmgr --create --target --asm-disk-group=datac1 --visible-to="192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48"
   ```

5. Run the `quorumdiskmgr` command with the `--list --target` options to verify the target has been successfully created on both db01 and db02.

   ```
 # /opt/oracle.SupportTools/quorumdiskmgr --list --target
   ```

   The output shows both IP addresses and initiator names in the Visible to list only if you have a system that was upgraded from a release older than Oracle Exadata System Software release 19.1.0. Otherwise, the Visible to list shows only IP addresses in it.
• If you are running Oracle Exadata System Software release 18.x or earlier, then the output should look like this for each node:

Name: iqn.2015-05.com.oracle:QD_DATA1_DB01
Size: 128 MB
Host name: DB01
ASM disk group name: DATA1
Visible to: 192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48
Discovered by:

Name: iqn.2015-05.com.oracle:QD_DATA1_DB02
Size: 128 MB
Host name: DB02
ASM disk group name: DATA1
Visible to: 192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48
Discovered by:

• If you are running Oracle Exadata System Software release 19.x or later, then the output should look like this for each node:

Name: iqn.2015-05.com.oracle:QD_DATA1_DB01
Size: 128 MB
Host name: DB01
ASM disk group name: DATA1

Name: iqn.2015-05.com.oracle:QD_DATA1_DB02
Size: 128 MB
Host name: DB02
ASM disk group name: DATA1

6. Run the `quorumdiskmgr` command with the `--create --device` options to create devices on both `db01` and `db02` from targets on both `db01` and `db02`.

For example, you would use a command similar to this:

```
/opt/oracle.SupportTools/quorumdiskmgr --create --device --target-ip-list="192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48"
```

7. Run the `quorumdiskmgr` command with the `--list --device` options to verify the devices have been successfully created on both `db01` and `db02`.

```
/opt/oracle.SupportTools/quorumdiskmgr --list --device
```
On both db01 and db02, the output should look like:

Device path: /dev/exadata_quorum/QD_DATAC1_DB01
Size: 128 MB
Host name: DB01
ASM disk group name: DATAC1

Device path: /dev/exadata_quorum/QD_DATAC1_DB02
Size: 128 MB
Host name: DB02
ASM disk group name: DATAC1

8. Switch to the grid user on either db01 or db02.

9. Set up Oracle ASM environments.

10. Alter the *asm_diskstring* initialization parameter and add /dev/exadata_quorum/* to the existing string

   SQL> ALTER SYSTEM SET asm_diskstring='o/*/DATAC1_*','o/*/RECO1_*','/dev/exadata_quorum/*' scope=both sid='*';

11. Verify the two quorum disk devices have been automatically discovered by Oracle ASM.

   SQL> set linesize 200
   SQL> col path format a50
   SQL> SELECT inst_id, label, path, mode_status, header_status
       FROM gv$asm_disk WHERE path LIKE '/dev/exadata_quorum/%';

   The output should look like:

<table>
<thead>
<tr>
<th>INST_ID</th>
<th>LABEL</th>
<th>PATH</th>
<th>MODE_STATUS</th>
<th>HEADER_STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QD_DATAC1_DB01</td>
<td>/dev/exadata_quorum/QD_DATAC1_DB01</td>
<td>ONLINE</td>
<td>CANDIDATE</td>
</tr>
<tr>
<td>1</td>
<td>QD_DATAC1_DB01</td>
<td>/dev/exadata_quorum/QD_DATAC1_DB01</td>
<td>ONLINE</td>
<td>CANDIDATE</td>
</tr>
<tr>
<td>1</td>
<td>QD_DATAC1_DB02</td>
<td>/dev/exadata_quorum/QD_DATAC1_DB02</td>
<td>ONLINE</td>
<td>CANDIDATE</td>
</tr>
<tr>
<td>2</td>
<td>QD_DATAC1_DB01</td>
<td>/dev/exadata_quorum/QD_DATAC1_DB01</td>
<td>ONLINE</td>
<td>CANDIDATE</td>
</tr>
<tr>
<td>2</td>
<td>QD_DATAC1_DB02</td>
<td>/dev/exadata_quorum/QD_DATAC1_DB02</td>
<td>ONLINE</td>
<td>CANDIDATE</td>
</tr>
</tbody>
</table>

12. Add the two quorum disk devices to a high redundancy Oracle ASM disk group.

   If there is no high redundancy disk group, create a high redundancy disk group and include the two new quorum disks. For example:

   SQL> CREATE DISKGROUP DATAC1 HIGH REDUNDANCY ADD QUORUM FAILGROUP db01 DISK '/dev/exadata_quorum/QD_DATAC1_DB01' QUORUM FAILGROUP db02 DISK '/dev/exadata_quorum/QD_DATAC1_DB02' ...
If a high redundancy disk group already exists, add the two new quorum disks. For example:

```sql
SQL> ALTER DISKGROUP datac1 ADD QUORUM FAILGROUP db01 DISK '/dev/exadata_quorum/QD_DATAC1_DB01'
QUORUM FAILGROUP db02 DISK '/dev/exadata_quorum/QD_DATAC1_DB02';
```

13. Relocate the existing voting files from the normal redundancy disk group to the high redundancy disk group.

```
$ Grid_home/bin/crsctl replace votedisk +DATAC1
```

14. Verify the voting disks have been successfully relocated to the high redundancy disk group and that five voting files exist.

```
crsctl query css votedisk
```

The output should show 3 voting disks from storage servers and 2 voting disks from database nodes:

```
STATE File Universal Id File Name Disk group
-- ----- ----------------- --------- ---------
1. ONLINE ca2f1b57873f4ff4bf1dfb78824f2912 (o/192.168.10.42/DATAC1_CD_09_celadm12) [DATAC1]
2. ONLINE a8c3609a3dd44f53bf17c89429c6ebe6 (o/192.168.10.43/DATAC1_CD_09_celadm13) [DATAC1]
3. ONLINE cafb7e95a5be4f00bf10fc094469cad9 (o/192.168.10.44/DATAC1_CD_09_celadm14) [DATAC1]
4. ONLINE 4dca8fb7bd594f6ebf8321ac23e53434 (/dev/exadata_quorum/QD_DATAC1_DB01) [DATAC1]
5. ONLINE 4948b73db0514f47bf94ee53b98fde51 (/dev/exadata_quorum/QD_DATAC1_DB02) [DATAC1]
Located 5 voting disk(s).
```

15. Move the Oracle ASM password file to the high redundancy disk group.

   **a.** Get the source Oracle ASM password file location.

   `$ asmcmd pwget --asm`

   **b.** Move the Oracle ASM password file to the high redundancy disk group.

   `$ asmcmd pwmove --asm full_path_of_source_file
   full_path_of_destination_file`

   **Example:**

   ```
 asmcmd pwmove --asm +recoc1/ASM/PASSWORD/pwdasm.256.898960531
 +datac1/asmpwdfile
   ```

16. Move the Oracle ASM SPFILE to the high redundancy disk group.

   These commands should be run from any one Oracle VM cluster node for Oracle Real Application Clusters (Oracle RAC).
a. Get the Oracle ASM SPFILE in use.

   $ asmcmd spget

b. Copy the Oracle ASM SPFILE to the high redundancy disk group.

   $ asmcmd spcopy full_path_of_source_file
   full_path_of_destination_file

c. Modify the Oracle Grid Infrastructure configuration to use the relocated
   SPFILE upon next restart.

   $ asmcmd spset full_path_of_destination_file

d. At this point if a downtime can be afforded, restart Oracle Grid Infrastructure.

   # Grid_home/bin/crsctl stop crs
   # Grid_home/bin/crsctl start crs

   If a downtime is not permitted, repeat step 16 every time an initialization
   parameter modification to the Oracle ASM SPFILE is required until Oracle Grid
   Infrastructure is restarted.

17. Relocate the MGMTDB to the high redundancy disk group.

   Move the MGMTDB (if running) to the high redundancy disk group using How to
   Move/Recreate GI Management Repository to Different Shared Storage
   (Diskgroup, CFS or NFS etc) (My Oracle Support Doc ID 1589394.1).

   Configure the MGMTDB to not use hugepages using the steps below:

   export ORACLE_SID=-MGMTDB
   export ORACLE_HOME=$GRID_HOME
   sqlplus "sys as sysdba"
   SQL> ALTER SYSTEM SET use_large_pages=false scope=spfile  sid='*';

18. Optional: Restart Oracle Grid Infrastructure.

   # Grid_home/bin/crsctl stop crs
   # Grid_home/bin/crsctl start crs

19. Optional: Convert the normal redundancy disk group to a high redundancy disk
    group.

   Refer to How To Move The Database To Different Diskgroup (Change Diskgroup
   Redundancy) (My Oracle Support Doc ID 438580.1) for details on how to change
   disk group redundancy.

Related Topics

- Exadata Oracle Linux 6 to Oracle Linux 7 Quorumdisk Migration FAQ (My Oracle
  Support Doc ID 2453054.1)
2.14.6 Recreate Quorum Disks

In certain circumstances, you might need to recreate a quorum disk.

Some examples of when you might need to recreate a quorum disk are:

• When recreating a guest domU
• If you deleted the quorum disks without first dropping the quorum disks from the Oracle ASM disk group

1. Force drop the lost quorum disk.

   ALTER DISKGROUP dg_name DROP QUORUM DISK disk_name FORCE;

2. Follow the instructions in "Adding Quorum Disks to Database Nodes" to add a new quorum disk.

Related Topics

• Add Quorum Disks to Database Nodes
  You can add quorum disks to database nodes on an Oracle Exadata Rack with fewer than 5 storage servers that contains a high redundancy disk group.

2.14.7 Use Cases

The following topics describe various configuration cases when using the quorum disk manager utility.

• New Deployments on Oracle Exadata 12.1.2.3.0 or Later
• Upgrading to Oracle Exadata Release 12.1.2.3.0 or Later
• Downgrading to a Pre-12.1.2.3.0 Oracle Exadata Release
• Managing Quorum Disks When Changing Elastic Configurations
  When modifying the elastic configuration of an Oracle Exadata Rack, you might have to perform additional actions if you use quorum disks.

2.14.7.1 New Deployments on Oracle Exadata 12.1.2.3.0 or Later

For new deployments on Oracle Exadata release 12.1.2.3.0 and above, OEDA implements this feature by default when all of the following requirements are satisfied:

• The system has at least two database nodes and fewer than five storage servers.
• You are running OEDA release February 2016 or later.
• You meet the software requirements listed in Software Requirements for Quorum Disk Manager.
• Oracle Database is 11.2.0.4 and above.
• The system has at least one high redundancy disk group.

If the system has three storage servers in place, then two quorum disks will be created on the first two database nodes of the cluster picked by OEDA.

If the system has four storage servers in place, then one quorum disk will be created on the first database node picked by OEDA.
2.14.7.2 Upgrading to Oracle Exadata Release 12.1.2.3.0 or Later

If the target Exadata system has fewer than five storage servers, at least one high redundancy disk group, and two or more database nodes, you can implement this feature manually using quorumdiskmgr.

Related Topics
• Add Quorum Disks to Database Nodes

2.14.7.3 Downgrading to a Pre-12.1.2.3.0 Oracle Exadata Release

Rolling back to a pre-12.1.2.3.0 Oracle Exadata release, which does not support quorum disks, from a release that supports quorum disks, which is any release 12.1.2.3.0 and later, requires quorum disk configuration to be removed if the environment has quorum disk implementation in place. You need to remove the quorum disk configuration before performing the Exadata software rollback.

To remove quorum disk configuration, perform these steps:

1. Ensure there is at least one normal redundancy disk group in place. If not, create one.

2. Relocate the voting files to a normal redundancy disk group:

   $GI_HOME/bin/crsctl replace votedisk +normal_redundancy_diskgroup

3. Drop the quorum disks from ASM. Run the following command for each quorum disk:

   SQL> alter diskgroup diskgroup_name drop quorum disk quorum_disk_name force;

   Wait for the rebalance operation to complete. You can tell it is complete when v$asm_operation returns no rows for the disk group.

4. Delete the quorum devices. Run the following command from each database node that has quorum disks in place:

   /opt/oracle.SupportTools/quorumdiskmgr --delete --device [--asm-disk-group asm_disk_group] [--host-name host_name]

5. Delete the targets. Run the following command from each database node that has quorum disks in place:

   /opt/oracle.SupportTools/quorumdiskmgr --delete --target [--asm-disk-group asm_disk_group]

6. Delete the configuration. Run the following command from each database node that has quorum disks in place:

   /opt/oracle.SupportTools/quorumdiskmgr --delete --config

2.14.7.4 Managing Quorum Disks When Changing Elastic Configurations

When modifying the elastic configuration of an Oracle Exadata Rack, you might have to perform additional actions if you use quorum disks.

• Adding a Database Node if Using Quorum Disks
• **Removing a Database Node When Using Quorum Disks**
  If database node being removed hosted a quorum disk containing a voting file and there are fewer than five storage servers in the Oracle Real Application Clusters (Oracle RAC) cluster, then a quorum disk must be created on a different database node before the database node is removed.

• **Adding an Oracle Exadata Storage Server and Expanding an Existing High Redundancy Disk Group**

• **Removing an Oracle Exadata Storage Server When Using Quorum Disks**

### 2.14.7.4.1 Adding a Database Node if Using Quorum Disks

If the existing Oracle Real Application Clusters (Oracle RAC) cluster has fewer than two database nodes and fewer than five storage servers, and the voting files are not stored in a high redundancy disk group, then Oracle recommends adding quorum disks to the database node(s) and relocating the voting files to a high redundancy disk group.

#### Note:

The requirements listed in "Software Requirements for Quorum Disk Manager" must be met.

If the existing Oracle RAC cluster already has quorum disks in place, the quorum disks need to be made visible to the newly added node prior to adding the node to the Oracle RAC cluster using the `addnode.sh` procedure.

1. Log in to the 2 database nodes that contain the quorum devices as the root user.
2. Retrieve the quorum disk ISCSI target configuration.

   ```
 /opt/oracle.SupportTools/quorumdiskmgr --list --target
   ```

   The output of this command should be similar to the following (where the host name is `db01` and the diskgroup_name is `DATA`):

   ```
 Name: iqn.2015-05.com.oracle:QD_DATA_DB01
 Host name: DB01
 ASM disk group name: DATA
 Size: 128 MB
 Visible to: IP_address1, IP_address2, IP_address3, IP_address4...
 IP_address2n
 Discovered by: IP_address1, IP_address2, IP_address3, IP_address4
   ```

   ```
 IP_address1, IP_address2, IP_address3, IP_address4...IP_address2n above refer to the IP addresses of the RDMA Network Fabric interfaces of all the existing cluster nodes. In the example above, the number of number of nodes in the cluster is n.
   ```

3. Modify the target in each node to make the device target visible to the node being added.
In this command, use the IP addresses shown in the visibleToList field in the previous step in IP_list and append the list with the IP addresses of the node being added.

```
/opt/oracle.SupportTools/quorumdiskmgr --alter --target --asm-disk-group asm_diskgroupname --visible-to 'IP_list, IP_addressX, IP_addressY'
```

`IP_addressX` and `IP_addressY` in the previous command refer to the IP addresses of the 2 RDMA Network Fabric interfaces of the node being added.

4. Run `/opt/oracle.SupportTools/quorumdiskmgr --list --target` in the two database nodes that contain the quorum devices and make sure the two IP addresses of the node being added are seen in the Visible to list.

5. Log in as the root user on the node being added.

6. Run the `quorumdiskmgr` command with the `--list --config` option to verify that the configurations have been successfully created on the node.

```
/opt/oracle.SupportTools/quorumdiskmgr --list --config
```

Your output should resemble one of the following:

- For Oracle Exadata System Software release 18.x or earlier, the output should look like this:

  ```
 Owner: grid
 Group: dba
 ifaces: exadata_ib1 exadata_ib0
  ```

- If you have upgraded to Oracle Exadata System Software release 19.1.0 or later from an earlier release, then the output should look like this:

  ```
 Owner: grid
 Group: dba
 ifaces: exadata_ib0
 Initiator name: iqn.1988-12.com.oracle:7a4a399566
  ```

- If you have a system that was imaged with Oracle Exadata System Software release 19.1.0 or later (not upgraded), then the output should look like this:

  ```
 Owner: grid
 Group: dba
 ifaces: exadata_ib0
  ```

- If your rack uses InfiniBand Transport Layer systems based on a RoCE Network Layer, then the output should look like this:

  ```
 Owner: grid
 Group: dba
 ifaces: exadata_re0
  ```
7. Run the `quorumdiskmgr` command with the `--create --device` option to create the quorum devices on the node being added pointing to the targets for the existing quorum devices.

In the following command, `IP_List` is a command delimited list of the IP addresses obtained in step 4.

```bash
/opt/oracle.SupportTools/quorumdiskmgr --create --device --target-ip-list='IP_List'
```

8. Run the `quorumdiskmgr` command with the `--list --device` options to verify the existing quorum devices have been successfully discovered and are visible on the node being added.

```bash
/opt/oracle.SupportTools/quorumdiskmgr --list --device
```

On the newly added node the output should be similar to the following and it should be the same as in any of the existing cluster nodes:

```
Device path: /dev/exadata_quorum/QD_DATAC1_DB01
Size: 128 MB
Host name: DB01
ASM disk group name: DATA
Device path: /dev/exadata_quorum/QD_DATAC1_DB02
Size: 128 MB
Host name: DB02
ASM disk group name: DATA
```

**Related Topics**

- Add Quorum Disks to Database Nodes
  You can add quorum disks to database nodes on an Oracle Exadata Rack with fewer than 5 storage servers that contains a high redundancy disk group.

### 2.14.7.4.2 Removing a Database Node When Using Quorum Disks

If database node being removed hosted a quorum disk containing a voting file and there are fewer than five storage servers in the Oracle Real Application Clusters (Oracle RAC) cluster, then a quorum disk must be created on a different database node before the database node is removed.

If the database node being removed did not host a quorum disk, then no action is required. Otherwise, use these steps to create a quorum disk on a database node that does not currently host a quorum disk.

1. Log into `db01` and `db02` as the root user.

2. Run the `quorumdiskmgr` command with the `--create --config` options to create quorum disk configurations on both `db01` and `db02`.
   - For InfiniBand Transport Layer systems based on an InfiniBand Network Layer:

     ```bash
 # /opt/oracle.SupportTools/quorumdiskmgr --create --config --owner=grid --group=dba --network-iface-list="ib0, ib1"
     ```
• For InfiniBand Transport Layer systems based on a RoCE Network Layer:

```
/opt/oracle.SupportTools/quorumdiskmgr --create --config --
 owner=grid --group=dba --network-iface-list="re0, re1"
```

3. Run the `quorumdiskmgr` command with the `--list --config` options to verify that the configurations have been successfully created on both `db01` and `db02`.

```
/opt/oracle.SupportTools/quorumdiskmgr --list --config
```

Your output should resemble one of the following:

• For Oracle Exadata System Software release 18.x or earlier, the output should look like this:

```
Owner: grid
Group: dba
ifaces: exadata_ib1 exadata_ib0
```

• If you have upgraded to Oracle Exadata System Software release 19.1.0 or later from an earlier release, then the output should look like this:

```
Owner: grid
Group: dba
ifaces: exadata_ib0
Initiator name: iqn.1988-12.com.oracle:7a4a399566
```

• If you have a system that was imaged with Oracle Exadata System Software release 19.1.0 or later (not upgraded), then the output should look like this:

```
Owner: grid
Group: dba
ifaces: exadata_ib0
```

• If your rack uses InfiniBand Transport Layer systems based on a RoCE Network Layer, then the output should look like this:

```
Owner: grid
Group: dba
ifaces: exadata_re0
```

4. Run the `quorumdiskmgr` command with the `--create --target` options to create a target on both `db01` and `db02` for Oracle ASM disk group `DATAC1` and make the target visible to both `db01` and `db02`.

For example, you would use a command similar to this:

```
/opt/oracle.SupportTools/quorumdiskmgr --create --target --asm-disk-group=datac1
 --visible-to="192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48"
```
5. Run the `quorumdiskmgr` command with the `--list --target` options to verify the target has been successfully created on both `db01` and `db02`.

```
/opt/oracle.SupportTools/quorumdiskmgr --list --target
```

The output shows both IP addresses and initiator names in the `Visible to list` only if you have a system that was upgraded from a release older than Oracle Exadata System Software release 19.1.0. Otherwise, the `Visible to list` shows only IP addresses in it.

- If you are running Oracle Exadata System Software release 18.x or earlier, then the output should look like this for each node:

  ```
 Name: iqn.2015-05.com.oracle:QD_DATAC1_DB01
 Size: 128 MB
 Host name: DB01
 ASM disk group name: DATAC1
 Visible to: 192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48
 Discovered by:
  ```

  ```
 Name: iqn.2015-05.com.oracle:QD_DATAC1_DB02
 Size: 128 MB
 Host name: DB02
 ASM disk group name: DATAC1
 Visible to: 192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48
 Discovered by:
  ```

- If you are running Oracle Exadata System Software release 19.x or later, then the output should look like this for each node:

  ```
 Name: iqn.2015-05.com.oracle:QD_DATAC1_DB01
 Size: 128 MB
 Host name: DB01
 ASM disk group name: DATAC1
 Discovered by:
  ```

  ```
 Name: iqn.2015-05.com.oracle:QD_DATAC1_DB02
 Size: 128 MB
 Host name: DB02
 ASM disk group name: DATAC1
 Discovered by:
  ```

6. Run the `quorumdiskmgr` command with the `--create --device` options to create devices on both `db01` and `db02` from targets on both `db01` and `db02`. 

For example, you would use a command similar to this:

```
/opt/oracle.SupportTools/quorumdiskmgr --create --device --target-ip-list="192.168.10.45, 192.168.10.46, 192.168.10.47, 192.168.10.48"
```

7. Run the `quorumdiskmgr` command with the `--list --device` options to verify the devices have been successfully created on both `db01` and `db02`.

```
/opt/oracle.SupportTools/quorumdiskmgr --list --device
```

On both `db01` and `db02`, the output should look like:

```
Device path: /dev/exadata_quorum/QD_DATA1_DB01
Size: 128 MB
Host name: DB01
ASM disk group name: DATAC1

Device path: /dev/exadata_quorum/QD_DATA1_DB02
Size: 128 MB
Host name: DB02
ASM disk group name: DATAC1
```

8. Add the two quorum disk devices to a high redundancy Oracle ASM disk group.

   If there is no high redundancy disk group, create a high redundancy disk group and include the two new quorums. For example:

   ```
 SQL> CREATE DISKGROUP DATA1 HIGH REDUNDANCY ADD QUORUM FAILGROUP db01 DISK '/dev/exadata_quorum/QD_DATA1_DB01' QUORUM FAILGROUP db02 DISK '/dev/exadata_quorum/QD_DATA1_DB02' ...
   ```

   If a high redundancy disk group already exists, add the two new quorum disks. For example:

   ```
 SQL> ALTER DISKGROUP data1 ADD QUORUM FAILGROUP db01 DISK '/dev/exadata_quorum/QD_DATA1_DB01' QUORUM FAILGROUP db02 DISK '/dev/exadata_quorum/QD_DATA1_DB02';
   ```

9. Remove the database node.

   After the database node is removed, its voting file will get relocated automatically to the quorum disk added in the previous steps.

2.14.7.4.3 Adding an Oracle Exadata Storage Server and Expanding an Existing High Redundancy Disk Group

   When you add a storage server that uses quorum disks, Oracle recommends relocating a voting file from a database node to the newly added storage server.

   1. Add the Exadata storage server. See Adding a Cell Node for details.

   In the example below, the new storage server added is called “celadm04”.

   2. After the storage server is added, verify the new fail group from `v$asm_disk`.
SQL> select distinct failgroup from v$asm_disk;
FAILGROUP
-------------------------------
ADM01
ADM02
CELADM01
CELADM02
CELADM03
CELADM04

3. Verify at least one database node has a quorum disk containing a voting file.

$ crsctl query css votedisk
## STATE    File Universal Id                File Name Disk group
--  ------    -----------------                --------- ---------
1. ONLINE   834ee5a8f5054f12bf47210c51ecb8f4 (o/192.168.12.125;192.168.12.126/
     DATAC5_CD_00_celadm01) [DATAC5]
2. ONLINE   f4af2213d9964f0bbfa30b2ba711b475 (o/192.168.12.127;192.168.12.128/
     DATAC5_CD_00_celadm02) [DATAC5]
3. ONLINE   ed61778df2964f37bf1d53ea03cd7173 (o/192.168.12.129;192.168.12.130/
     DATAC5_CD_00_celadm03) [DATAC5]
4. ONLINE   bfe1c3aa91334f16bf78ee7d33ad77e0 (/dev/exadata_quorum/
     QD_DATAC5_ADM01) [DATAC5]
5. ONLINE   a3a56e7145694f75bf21751520b226ef (/dev/exadata_quorum/
     QD_DATAC5_ADM02) [DATAC5]
Located 5 voting disk(s).

The example above shows there are two quorum disks with voting files on two
database nodes.

4. Drop one of the quorum disks.

SQL> alter diskgroup datac5 drop quorum disk QD_DATAC5_ADM01;
The voting file on the dropped quorum disk will be relocated automatically to the
newly added storage server by the Grid Infrastructure as part of the voting file
refresh. You can verify this as follows:

$ crsctl query css votedisk
## STATE    File Universal Id                File Name Disk group
--  ------    -----------------                --------- ---------
1. ONLINE   834ee5a8f5054f12bf47210c51ecb8f4 (o/192.168.12.125;192.168.12.126/
     DATAC5_CD_00_celadm01) [DATAC5]
2. ONLINE   f4af2213d9964f0bbfa30b2ba711b475 (o/192.168.12.127;192.168.12.128/
     DATAC5_CD_00_celadm02) [DATAC5]
3. ONLINE   ed61778df2964f37bf1d53ea03cd7173 (o/192.168.12.129;192.168.12.130/
     DATAC5_CD_00_celadm03) [DATAC5]
4. ONLINE   a3a56e7145694f75bf21751520b226ef (/dev/exadata_quorum/
     QD_DATAC5_ADM02) [DATAC5]
5. ONLINE   ab5ae60cf84fe3bfe6541b16e33787 (/dev/exadata_quorum/
     QD_DATAC5_ADM04) [DATAC5]

2.14.7.4.4 Removing an Oracle Exadata Storage Server When Using Quorum Disks

If removing a storage server results in the number of storage servers being used by
the Oracle RAC cluster to fewer than five, and the voting files reside in a high
redundancy disk group, then Oracle recommends adding quorum disks to the
database nodes, if not in place already.

Prior to removing the storage server, add the quorum disks so that five copies of
the voting files are available immediately after removing the storage server.
Related Topics

- Add Quorum Disks to Database Nodes

2.14.8 Reconfigure Quorum Disk After Restoring a Database Server

After restoring a database server, `lvdisplay` shows the quorum disk was not restored.

When you restore a database server, Exadata image rescue mode restores the layout of disks and file systems, with the exception of custom partitions, including quorum disks. These files must be recreated after being restored from backup.

The logical volumes created for quorum disks are in `/dev/VGExaDb` and have the name-prefix `LVDbVd*`.

1. Using the configuration backed up under `/etc/lvm/archive`, make a logical volume (LV) for the quorum disk on every node.

   For example, you would use a command similar to the following, but using values from the backup configuration information.

   ```bash
 # lvcreate -L 128MB -n <LVName> VGExaDb
   ```

2. Reboot all database servers.

   ```bash
 # shutdown -r now
   ```

3. After the server restarts, verify the quorum disks were restored.

   ```bash
 # /opt/oracle.SupportTools/quorumdiskmgr --list --config
 Owner: grid
 Group: dba
 ifaces: exadata_ib1 exadata_ib0

 # /opt/oracle.SupportTools/quorumdiskmgr --list --target
 Name: iqn.2015-05.com.oracle:QD_DATAC1_DB01
 Host name: DB01
 ASM disk group name: DATAC1
 Size: 128 MB
 Visible to: 192.168.10.45, 192.168.10.46
 Discovered by: 192.168.10.45, 192.168.10.46

 # /opt/oracle.SupportTools/quorumdiskmgr --list --device
 Device path: /dev/exadata_quorum/QD_DATAC1_DB01
 Host name: DB01
 ASM disk group name: DATAC1
 Size: 128 MB
 Device path: /dev/exadata_quorum/QD_DATAC1_DB01
 Host name: DB01
 ASM disk group name: DATAC1
 Size: 128 MB
   ```
4. Query the voting disks for the cluster to see if all voting disks are available.

```bash
crsctl query css votedisk
STATE File Universal Id
File Name Disk group
-- ----- -----------------
------------------------------------ -----------
1. ONLINE ca2f1b57873f4ff4bf1dfb78824f2912
 (o/192.168.10.42/DATAC1_CD_09_celadm12) [DATAC1]
2. ONLINE a8c3609a3dd4f53bf17c89429c6ebe6
 (o/192.168.10.43/DATAC1_CD_09_celadm13) [DATAC1]
3. ONLINE 4948b73db0514f47bf94ee53b98f6b51
 (/dev/exadata_quorum/QD_DATAC1_DB02) [DATAC1]
4. ONLINE cafb7e95a5be4f00bf10bc09446fad9
 (o/192.168.10.44/DATAC1_CD_09_celadm14) [DATAC1]
Located 4 voting disk(s).
```

Notice that there is one voting disk missing, for the recovered database server (DB01). If you query `V$ASM_DISK`, you can see that the quorum disk was offlined by the recovery process.

```sql
SQL> set line 200
col LABEL for a20
col path for a30
col mode_status for a20
col header_status for a30
SELECT label, path, mode_status, header_status, mount_status
FROM v$asm_disk
WHERE path LIKE '/dev/%';
```

```
LABEL PATH
MODE_STATUS
HEADER_STATUS MOUNT_S
-------------------- ------------------------------ -------------------
------------------------------ -------
QD_DATAC1_DB01 /dev/exadata_quorum/QD_DATAC1_ ONLINE
CANDIDATE CLOSED
QD_DATAC1_DB02 /dev/exadata_quorum/QD_DATAC1_ ONLINE
MEMBER CACHED
```

5. Drop the unavailable quorum disk from the Oracle ASM disk group using the `FORCE` option.

```sql
SQL> alter diskgroup DATA_C1 drop quorum disk QD_DATAC1_DB01 force;
```

6. Add the same quorum disk to the Oracle ASM disk group.

```sql
SQL> alter diskgroup DATA_C1 add quorum failgroup DB01 disk '/dev/exadata_quorum/QD_DATAC1_DB01';
```
7. **Requery V$ASM_DISK to verify both quorum disks are available.**

   SQL> SELECT label, path, mode_status, header_status, mount_status
            FROM v$asm_disk
            WHERE path LIKE '/dev/%';

<table>
<thead>
<tr>
<th>LABEL</th>
<th>PATH</th>
<th>MODE_STATUS</th>
<th>HEADER_STATUS</th>
<th>MOUNT_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>QD_DATAC1_DB01</td>
<td>/dev/exadata_quorum/QD_DATAC1_ ONLINE</td>
<td>ONLINE</td>
<td>CACHED</td>
<td></td>
</tr>
<tr>
<td>QD_DATAC1_DB02</td>
<td>/dev/exadata_quorum/QD_DATAC1_ ONLINE</td>
<td>ONLINE</td>
<td>CACHED</td>
<td></td>
</tr>
</tbody>
</table>

8. **Query the voting disks for the cluster to verify all voting disks are now available.**

   # crsctl query css votedisk
   ## STATE  File Universal Id
   File Name                               Disk group
   -- ------ ------------------------------ -------
   1. ONLINE   ca2f1b57873f4ff4bf1dfb78824f2912
   (o/192.168.10.42/DATAC1_CD_09_celadm12) [DATAC1]
   2. ONLINE   a8c3609a3dd44f53bf17c89429c6ebe6
   (o/192.168.10.43/DATAC1_CD_09_celadm13) [DATAC1]
   3. ONLINE   4948b73db0514f47bf94e53b98fdb51
   (/dev/exadata_quorum/QD_DATAC1_DB02) [DATAC1]
   4. ONLINE   cafb7e95a5be4f00bf10bc094469cad9
   (o/192.168.10.44/DATAC1_CD_09_celadm14) [DATAC1]
   5. ONLINE   4dca8fb7bd594f6ebf8321ac23e53434
   (/dev/exadata_quorum/QD_DATAC1_DB01) [DATAC1]
   Located 5 voting disk(s).

2.15 Using vmetrics

The vmetrics package enables you to display system statistics gathered by the vmetrics service.

- **About the vmetrics Package**
  The vmetrics service collects the statistics required for SAP monitoring of Oracle VM domains.

- **Installing and Starting the vmetrics Service**

- **Files in the vmetrics Package**

- **Displaying the Statistics**

- **Adding Metrics to vmetrics**
2.15.1 About the vmetrics Package

The vmetrics service collects the statistics required for SAP monitoring of Oracle VM domains.

You can access the system statistics from the management domain (dom0) or the user domain (domU). The vmetrics service runs on the management domain, collects the statistics, and pushes them to the xenstore. This allows the user domains to access the statistics.

System statistics collected by the vmetrics service are shown below, with sample values:

com.sap.host.host.VirtualizationVendor=Oracle Corporation;
com.sap.host.host.VirtProductInfo=Oracle VM 3;
com.sap.host.host.PagedInMemory=0;
com.sap.host.host.PagedOutMemory=0;
com.sap.host.host.PageRates=0;
com.sap.vm.vm.uuid=2b80522b-060d-47ee-8209-2ab65778eb7e;
com.sap.host.host.HostName=sc10adm01.example.com;
com.sap.host.host.HostSystemInfo=sc10adm01;
com.sap.host.host.NumberOfPhysicalCPUs=24;
com.sap.host.host.NumCPUs=4;
com.sap.host.host.TotalPhyMem=98295;
com.sap.host.host.UsedVirtualMemory=2577;
com.sap.host.host.MemoryAllocatedToVirtualServers=2577;
com.sap.host.host.FreeVirtualMemory=29788;
com.sap.host.host.FreePhysicalMemory=5212;
com.sap.host.host.TotalCPUPtime=242507.220000;
com.sap.host.host.Time=1453150151;
com.sap.vm.vm.PhysicalMemoryAllocatedToVirtualSystem=8192;
com.sap.vm.vm.ResourceMemoryLimit=8192;
com.sap.vm.vm.TotalCPUPtime=10160.1831404;
com.sap.vm.vm.ResourceProcessorLimit=4;

2.15.2 Installing and Starting the vmetrics Service

To install the vmetrics service, run the install.sh script as the root user on dom0:

[root@scac10adm01]# cd /opt/oracle.SupportTools/vmetrics
[root@scac10adm01]# ./install.sh

The install.sh script verifies that it is running on dom0, stops any vmetrics services currently running, copies the package files to /opt/oracle.vmetrics, and copies vmetrics.svc to /etc/init.d.

To start the vmetrics service on dom0, run the following command as the root user on dom0:

[root@scac10adm01 vmetrics]# service vmetrics.svc start

The commands to gather the statistics are run every 30 seconds.
2.15.3 Files in the vmetrics Package

The vmetrics package contains the following files:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>install.sh</td>
<td>This file installs the package.</td>
</tr>
<tr>
<td>vm-dump-metrics</td>
<td>This script reads the statistics from the xenstore and displays them in XML format.</td>
</tr>
<tr>
<td>vmetrics</td>
<td>This Python script runs the system commands and uploads them to the xenstore. The system commands are listed in the vmetrics.conf file.</td>
</tr>
<tr>
<td>vmetrics.conf</td>
<td>This XML file specifies the metrics that the dom0 should push to the xenstore, and the system commands to run for each metric.</td>
</tr>
<tr>
<td>vmetrics.svc</td>
<td>The init.d file that makes vmetrics a Linux service.</td>
</tr>
</tbody>
</table>

2.15.4 Displaying the Statistics

Once the statistics have been pushed to the xenstore, you can view the statistics on dom0 and domU by running either of the following commands:

---

**Note:**

On domU's, ensure that the xenstoreprovider and ovmd packages are installed.

- **xenstoreprovider** is the library which communicates with the ovmapi kernel infrastructure.
- **ovmd** is a daemon that handles configuration and reconfiguration events and provides a mechanism to send/receive messages between the VM and the Oracle VM Manager.

The following command installs the necessary packages on Oracle Linux 5 and 6 to support the Oracle VM API.

```
yum install ovmd xenstoreprovider
```

- The `/usr/sbin/ovmd -g vmhost` command displays the statistics on one line. The `sed` command breaks up the line into multiple lines, one statistic per line. You need to run this command as the root user.

  root@scac10db01vm04 ~]# /usr/sbin/ovmd -g vmhost | sed 's/; */;
  com.sap.host.host.VirtualizationVendor=Oracle Corporation;
  com.sap.host.host.VirtProductInfo=Oracle VM 3;
  com.sap.host.host.PagedInMemory=0;
  com.sap.host.host.PagedOutMemory=0;
  com.sap.host.host.PageRates=0;
  com.sap.vm.vm.uuid=2b80522b-060d-47ee-82ab5778eb7e;
  com.sap.host.host.HostName=scac10adm01.example.com;
  com.sap.host.host.HostSystemInfo=scac10adm01;
  com.sap.host.host.NumberOfPhysicalCPUs=24;
  ```
The `vm-dump-metrics` command displays the metrics in XML format.

```
[root@scac10db01vm04 ~]# ./vm-dump-metrics
<metrics>
  <metric type='real64' context='host'>
    <name>TotalCPUTime</name>
    <value>242773.600000</value>
  </metric>
  <metric type='uint64' context='host'>
    <name>PagedOutMemory</name>
    <value>0</value>
  </metric>
... 
```

Note that you have copy the `vm-dump-metrics` command to the domU's from which you want to run the command.

2.15.5 Adding Metrics to vmetrics

You can add your own metric to be collected by the vmetrics service.

1. In `/opt/oracle.SupportTools/vmetrics/vmetrics.conf`, add the new metric and the system commands to retrieve and parse that metric. For example:

```
<metric type="uint32" context="host">
  <name>NumCPUs</name>
  <action>grep -c processor /proc/cpuinfo</action>
  <action2>xm list | grep '^Domain-0' | awk '{print $4}'</action2>
</metric>
```

In the `<name>` element, enter the name of the new metric.

In the `<action>` and `<action2>` elements, specify the system command for the new metric. You only need to have `<action2>`, but you can use `<action>` as a fallback if `<action2>` does not work on some systems.

Note that any action that needs the name of the vm should be done with `scas07client07vm01`. When vmetrics runs, it swaps out this dummy name for the actual domU names that are running in the dom0.

2. In `/opt/oracle.SupportTools/vmetrics/vmetrics`, add the metric in the list `gFieldsList`. Prefix the metric name with "host" if the metric is about the host (dom0) or with "vm" if the metric is about the vm (domU). For example:

Suppose the `gFieldsList` looks like this:

```
gFieldsList = [ 'host.VirtualizationVendor',
  'host.VirtProductInfo',
  'host.PagedInMemory',
  'vm.ResourceProcessorLimit' ]
```

If you are adding a new metric called "NumCPUs" (as shown in the example in step 1), and this metric is intended to tell the domU how many cpu's the dom0 has available, then `gFieldsList` would now look like:

```
gFieldsList = [ 'host.VirtualizationVendor',
  'host.VirtProductInfo',
  'host.PagedInMemory',
  'host.NumCPUs=4',
... 
```
3. **(optional)** In `/opt/oracle.SupportTools/vmetrics/vm-dump-metrics`, add the new metric if you want the new metric to be included in the XML output.

 If you skip this step, you can view the new metric using the `ovmd -g vmhost` command.
Maintaining Oracle Exadata Storage Servers of Oracle Exadata Racks

Oracle Exadata Storage Servers contain disks and memory devices that might require maintenance.

Note:

- For ease of reading, the name "Oracle Exadata Rack" is used when information refers to both Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.
- All procedures in this chapter are applicable to Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.

- **Maintaining Oracle Exadata Storage Servers**
 This section describes how to perform maintenance on Oracle Exadata Storage Servers.

- **Using Extended (XT) Storage Servers**
 Oracle Exadata Storage Server X8-2 Extended (XT) offers a lower cost storage option that can be used for infrequently accessed, older, or regulatory data.

- **Maintaining the Hard Disks of Oracle Exadata Storage Servers**

- **Maintaining Flash Disks on Oracle Exadata Storage Servers**

- **Maintaining PMEM Devices on Oracle Exadata Storage Servers**
 If a PMEM device fails, the data is recovered automatically.

- **Maintaining the M.2 Disks of Oracle Exadata Storage Server**
 Oracle Exadata Database Machine X7 and later systems come with two internal M.2 devices that contain the system area.

- **Managing the RAM Cache on the Storage Servers**
 Cell RAM Cache is a cache in front of the Flash Cache and is an extension of the database cache. It is faster than the Flash Cache, but has smaller capacity.

- **Resizing Grid Disks**
 You can resize grid disks and Oracle ASM disk groups to shrink one with excess free space and increase the size of another that is near capacity.

- **Using the Oracle Exadata System Software Rescue Procedure**
 In the rare event that both system disks fail simultaneously, you must use the Oracle Exadata Storage Server rescue functionality provided on the Oracle Exadata System Software CELLBOOT USB flash drive.

- **Changing Existing Elastic Configurations for Storage Cells**
 You can modify the capacity of your Oracle Exadata Database Machine using elastic configuration.
3.1 Maintaining Oracle Exadata Storage Servers

This section describes how to perform maintenance on Oracle Exadata Storage Servers.

- **Shutting Down Exadata Storage Server**
 When performing maintenance on Exadata Storage Servers, it may be necessary to power down or restart the cell.

- **Checking Status of a Rebalance Operation**
 When dropping or adding a disk, you can check the status of the Oracle ASM rebalance operation.

- **Enabling Network Connectivity with the Diagnostics ISO**
 If a storage server does not restart, the diagnostics ISO may be needed to access the cell so it can be manually repaired.

3.1.1 Shutting Down Exadata Storage Server

When performing maintenance on Exadata Storage Servers, it may be necessary to power down or restart the cell.

If Exadata Storage Server is to be shut down when one or more databases are running, then you must verify that taking Exadata Storage Server offline will not impact Oracle ASM disk group and database availability. The ability to take Exadata Storage Server offline without affecting database availability depends on the level of Oracle ASM redundancy used on the affected disk groups. Availability also depends on the current status of disks in other Exadata Storage Servers that have mirror copies of data for the Exadata Storage Server that you are taking offline.

1. Optional: Configure the grid disks to remain offline after restarting the cell.
 - If you are planning to have multiple restarts, or you want to control when the Exadata Storage Server becomes active again, then you can perform this step.
 - Making the grid disks inactive allows you to verify the planned maintenance activity was successful before making the grid disks available again.
 a. Set the grid disks to inactive.

     ```
     CellCLI> ALTER GRIDDISK ALL INACTIVE
     ```

 b. Wait at least 30 seconds, or until Oracle ASM has completed taking the corresponding Oracle ASM disks offline.

 This step is very important if you are using versions of Oracle Exadata System Software before release 18.1. If you put the commands into a script, then make sure to add a `sleep` command with a value over 30 seconds.

 Note:

 If you set the grid disks to inactive, then you must complete step 6 later to activate the grid disks.
2. Stop the cell services.

CellCLI> ALTER CELL SHUTDOWN SERVICES ALL

The preceding command checks if any disks are offline, in predictive failure status, or need to be copied to its mirror. If Oracle ASM redundancy is intact, then the command takes the grid disks offline in Oracle ASM, and then stops the cell services. If the following error is displayed, then it may not be safe to stop the cell services because a disk group may be forced to dismount due to redundancy.

Stopping the RS, CELLSRV, and MS services...
The SHUTDOWN of ALL services was not successful. CELL-01548: Unable to shut down CELLSRV because disk group DATA, RECO may be forced to dismount due to reduced redundancy. Getting the state of CELLSRV services... running Getting the state of MS services... running Getting the state of RS services... running

If the CELL-01548 error occurs, then restore Oracle ASM disk group redundancy and retry the command when disk status is back to normal for all the disks.

See Powering Off Oracle Exadata Storage Servers

4. After performing the maintenance, restart the Exadata Storage Server. The cell services are started automatically. As part of the Exadata Storage Server startup, all grid disks are automatically changed to ONLINE in Oracle ASM.

5. Verify that all grid disks have been successfully brought online.

CellCLI> LIST GRIDDISK ATTRIBUTES name, asmmodestatus

Wait until asmmodestatus shows ONLINE or UNUSED for all grid disks.

6. Optional: Change the grid disks status to ONLINE.

This step is only necessary when step 1 has been performed. If step 1 was not performed, then the grid disks were set to online automatically when the Exadata Storage Server was restarted.

CellCLI> ALTER GRIDDISK ALL ACTIVE

3.1.2 Checking Status of a Rebalance Operation

When dropping or adding a disk, you can check the status of the Oracle ASM rebalance operation.

- The rebalance operation may have completed successfully. Check the Oracle ASM alert logs to confirm.
- The rebalance operation may be currently running. Check the GV$ASM_OPERATION view to determine if the rebalance operation is still running.
3.1.3 Enabling Network Connectivity with the Diagnostics ISO

If a storage server does not restart, the diagnostics ISO may be needed to access the cell so it can be manually repaired.

The ISO is located on any storage server at /opt/oracle.SupportTools/diagnostics.iso. The diagnostics ISO should be used after other boot methods, such as using the USB, do not work.

The following procedure enables networking with the diagnostics ISO so files can be transferred to repair the cell:

1. Enable a one-time CD-ROM boot in the service processor using a web interface or serial console. The following is an example of the command for the serial console:

 set boot_device=cdrom

2. Mount a local copy of diagnostics.iso as a CD-ROM using the service processor interface.

3. Restart the cell using the shutdown -r now command.

4. Log into the cell as the root user with the diagnostics ISO password.

5. Use the following command to avoid pings:

 alias ping="ping -c"

6. Make a directory named /etc/network.

7. Make a directory named /etc/network/if-pre-up.d.

8. Add the following lines to the /etc/network/interfaces file:

 iface eth0 inet static
 address IP_address_of_cell
 netmask netmask_of_cell
 gateway gateway_IP_address_of_cell
9. Bring up the eth0 interface using the following command:

 ifup eth0

There may be some warning messages, but the interface is operational.

10. Use either FTP or the `wget` command to retrieve the files to repair the cell.

3.2 Using Extended (XT) Storage Servers

Oracle Exadata Storage Server X8-2 Extended (XT) offers a lower cost storage option that can be used for infrequently accessed, older, or regulatory data.

- **About Oracle Exadata Extended (XT) Storage Servers**
 Oracle Exadata Extended (XT) Storage Servers help you extend the operational and management benefits of Exadata Database Machine to rarely accessed data that must be kept online.

- **What Data Can Be Stored on Oracle Exadata Extended (XT) Storage Servers?**
 Oracle Exadata Extended (XT) Storage Servers are intended to provide lower-cost storage for infrequently accessed, older, or regulatory data.

- **Enabling Smart Scan on Exadata XT Storage Servers**
 If you purchase Oracle Exadata System Software licenses for your Oracle Exadata XT Storage Servers, then you can enable features such as Smart Scan and Storage Indexes to improve performance.

3.2.1 About Oracle Exadata Extended (XT) Storage Servers

Oracle Exadata Extended (XT) Storage Servers help you extend the operational and management benefits of Exadata Database Machine to rarely accessed data that must be kept online.

Each Oracle Exadata XT Storage Server includes twelve 14 TB SAS disk drives with 168 TB total raw disk capacity. To achieve a lower cost, Flash is not included, and licensing the Oracle Exadata System Software is optional. Hybrid Columnar Compression is included by default, but some software features are disabled without a license.

Oracle Exadata XT Storage Servers use the same RDMA Network Fabric as the other servers in your Oracle Exadata Rack. Oracle Exadata XT Storage Servers add storage capacity while remaining transparent to applications, transparent to SQL, and retaining the same operational model. You can use the same security model and encryption used for your other Exadata storage servers.

You can add Oracle Exadata XT Storage Servers to Oracle Exadata Racks, including Eighth Rack configurations, that are X4 or newer. You must add at least 2 servers initially. After adding the initial 2 servers, you can add additional Oracle Exadata XT Storage Servers as needed. To implement high redundancy, you must have a minimum of 3 Oracle Exadata XT Storage Servers. XT Storage Servers follow the same placement patterns as High Capacity (HC) and Extreme Flash (EF) Storage Servers.

An Oracle ASM disk group should use storage provided by only one type of storage server (HC, EF, or XT). After adding the Oracle Exadata XT Storage Servers to your
rack, create new disk groups to use the storage. The default disk group name for XT storage servers is XTND. However, you can use a different name as required.

Oracle Exadata XT Storage Servers provide fully integrated storage for your Oracle Database. You can use the new disk group with database features such as Oracle Partitioning, Oracle Automatic Data Optimization, and Oracle Advanced Compression.

3.2.2 What Data Can Be Stored on Oracle Exadata Extended (XT) Storage Servers?

Oracle Exadata Extended (XT) Storage Servers are intended provide lower-cost storage for infrequently accessed, older, or regulatory data.

Oracle Exadata Extended (XT) Storage Servers help you to keep all your required data online and available for queries. This includes data such as:

- Historical data
- Images, BLOBs, contracts, and other large table-based objects
- Compliance and regulatory data
- Local backups

The XT storage servers can also provide storage for development databases which have less stringent performance requirements compared to production databases.

3.2.3 Enabling Smart Scan on Exadata XT Storage Servers

If you purchase Oracle Exadata System Software licenses for your Oracle Exadata XT Storage Servers, then you can enable features such as Smart Scan and Storage Indexes to improve performance.

1. Procure or transfer Exadata System Software Licenses.
 All drives must be licensed to enable Smart Scan.

2. Modify the `enableSmartStorage` attribute for the XT storage servers.
 You do not need to stop the storage servers first. Simply run the following command on each XT storage server that is licensed:

   ```
   cellcli -e ALTER CELL enableSmartStorage=true
   ```

3. Verify the cell has been modified.

   ```
   cellcli -e "LIST CELL ATTRIBUTES name, status, enableSmartStorage"
   ```

3.3 Maintaining the Hard Disks of Oracle Exadata Storage Servers

Every Oracle Exadata Storage Server in Oracle Exadata Rack has a system area, which is where the Oracle Exadata System Software system software resides. In Oracle Exadata Database Machine X7 and later systems, two internal M.2 devices contain the system area. In all other systems, the first two disks of Oracle Exadata
Storage Server are system disks and the portions on these system disks are referred to as the system area.

In Oracle Exadata Database Machine X7 and later systems, all the hard disks in the cell are data disks. In systems prior to Oracle Exadata Database Machine X7, the non-system area of the system disks, referred to as data partitions, is used for normal data storage. All other disks in the cell are data disks.

Starting in Oracle Exadata System Software release 11.2.3.2.0, if there is a disk failure, then Oracle Exadata System Software sends an alert stating that the disk can be replaced, and, after all data has been rebalanced out from that disk, turns on the blue OK to Remove LED for the hard disk with predictive failure. In Oracle Exadata System Software releases earlier than 11.2.3.2.0, the amber Fault-Service Required LED was turned on for a hard disk with predictive failure, but not the blue LED. In these cases, it is necessary to manually check if all data has been rebalanced out from the disk before proceeding with disk replacement.

Starting with Oracle Exadata System Software release 18.1.0.0.0 and Oracle Exadata Database Machine X7 systems, there is an additional white Do Not Service LED that indicates when redundancy is reduced to inform system administrators or field engineers that the storage server should not be powered off for services. When redundancy is restored, Oracle Exadata System Software automatically turns off the Do Not Service LED to indicate that the cell can be powered off for services.

For a hard disk that has failed, both the blue OK to Remove LED and the amber Fault-Service Required LED are turned on for the drive indicating that disk replacement can proceed. The behavior is the same in all releases. The drive LED light is a solid light in Oracle Exadata System Software releases 11.2.3.2.0 and later; the drive LED blinks in earlier releases.

Note:
Oracle Exadata Rack is online and available while replacing the Oracle Exadata Storage Server physical disks.

This section contains the following topics:

- **Monitoring the Status of Hard Disks**
 You can monitor the status of a hard disk by checking its attributes with the `CellCLI LIST PHYSICALDISK` command.

- **Monitoring Hard Disk Controller Write-through Caching Mode**
 The hard disk controller on each Oracle Exadata Storage Server periodically performs a discharge and charge of the controller battery. During the operation, the write cache policy changes from write-back caching to write-through caching.

- **Replacing a Hard Disk Due to Disk Failure**

- **Replacing a Hard Disk Due to Disk Problems**
 You may need to replace a hard disk because the disk is in `warning - predictive failure` status.

- **Replacing a Hard Disk Due to Bad Performance**
 A single bad hard disk can degrade the performance of other good disks. It is better to remove the bad disk from the system than let it remain.
• **Replacing a Hard Disk Proactively**
 Exadata Storage software has a complete set of automated operations for hard disk maintenance, when a hard disk has failed or has been flagged as a problematic disk. But there are situations where a hard disk has to be removed proactively from the configuration.

• **Moving All Drives to Another Exadata Storage Server**
 It may necessary to move all drives from one Exadata Storage Server to another Exadata Storage Server.

• **Repurposing a Hard Disk**
 You may want to delete all data on a disk, and then use the disk for another purpose.

• **Removing and Replacing the Same Hard Disk**
 What happens if you accidentally remove the wrong hard disk?

• **Re-Enabling a Hard Disk That Was Rejected**
 If a physical disk was rejected because it was inserted into the wrong slot, you can re-enable the disk.

Related Topics

• **LED Status Descriptions**
 The LEDs on the Oracle Exadata Rack components help you identify the component that needs servicing.

• **Oracle Maximum Availability Architecture (MAA) Web site**

• **Bare Metal Restore Procedure for Compute Nodes on an Exadata Environment (My Oracle Support Doc ID 1084360.1)**

3.3.1 Monitoring the Status of Hard Disks

You can monitor the status of a hard disk by checking its attributes with the CellCLI LIST PHYSICALDISK command.

For example, a hard disk status equal to `failed` (the status for failed hard disks was `critical` in earlier releases), or `warning - predictive failure` is probably having problems and needs to be replaced. The disk firmware maintains the error counters, and marks a drive with `Predictive Failure` when internal thresholds are exceeded. The drive, not the cell software, determines if it needs replacement.

• Use the CellCLI command LIST PHYSICALDISK to determine the status of a hard disk:

```sql
CellCLI> LIST PHYSICALDISK WHERE disktype=harddisk AND status!=normal
DETAIL
name:                            8:4
deviceId:              12
deviceName:                   /dev/sde
diskType:                      HardDisk
enclosureDeviceId:      8
errOtherCount:          0
luns:                   0_4
makeModel:                    "HGST    H7280A520SUN8.0T"
physicalFirmware:         PD51
physicalInsertTime:      2016-11-30T21:24:45-08:00
physicalInterface:     sas
```
When disk I/O errors occur, Oracle ASM performs bad extent repair for read errors due to media errors. The disks will stay online, and no alerts are sent. When Oracle ASM gets a read error on a physically-addressed metadata block, it does not have mirroring for the blocks, and takes the disk offline. Oracle ASM then drops the disk using the `FORCE` option.

The Oracle Exadata Storage Server hard disk statuses are as follows:

- **Oracle Exadata System Software release 11.2.3.3 and later:**
 - normal
 - normal - dropped for replacement
 - normal - confinedOnline
 - normal - confinedOnline - dropped for replacement
 - not present
 - failed
 - failed - dropped for replacement
 - failed - rejected due to incorrect disk model
 - failed - rejected due to incorrect disk model - dropped for replacement
 - failed - rejected due to wrong slot
 - failed - rejected due to wrong slot - dropped for replacement
 - warning - confinedOnline
 - warning - confinedOnline - dropped for replacement
 - warning - peer failure
 - warning - poor performance
 - warning - poor performance - dropped for replacement
 - warning - poor performance, write-through caching
 - warning - predictive failure, poor performance
 - warning - predictive failure, poor performance - dropped for replacement
 - warning - predictive failure, write-through caching
 - warning - predictive failure
 - warning - predictive failure - dropped for replacement
 - warning - predictive failure, poor performance, write-through caching
 - warning - write-through caching
 - warning - write-through caching

- **Oracle Exadata System Software release 11.2.3.2:**
 - normal
 - normal - confinedOnline
 - not present
failed
failed - rejected due to incorrect disk model
failed - rejected due to wrong slot
warning - confinedOnline
warning - peer failure
warning - poor performance
warning - poor performance, write-through caching
warning - predictive failure, poor performance
warning - predictive failure, write-through caching
warning - predictive failure
warning - predictive failure, poor performance, write-through caching
warning - write-through caching
• Oracle Exadata System Software release 11.2.3.1.1 and earlier:
 normal
critical
 poor performance
 predictive failure
 not present

Related Topics
• LIST PHYSICALDISK
• About Oracle ASM Disk Repair Timer

3.3.2 Monitoring Hard Disk Controller Write-through Caching Mode

The hard disk controller on each Oracle Exadata Storage Server periodically performs a discharge and charge of the controller battery. During the operation, the write cache policy changes from write-back caching to write-through caching.

Write-through cache mode is slower than write-back cache mode. However, write-back cache mode has a risk of data loss if the Oracle Exadata Storage Server loses power or fails. For Oracle Exadata System Software releases earlier than release 11.2.1.3, the operation occurs every month. For Oracle Exadata System Software release 11.2.1.3.0 and later, the operation occurs every three months, for example, at 01:00 on the 17th day of January, April, July and October.

• To change the start time for the learn cycle, use a command similar to the following:

 CellCLI> ALTER CELL bbuLearnCycleTime="2013-01-22T02:00:00-08:00"

 The time reverts to the default learn cycle time after the cycle completes.
- To see the time for the next learn cycle, use the following command:

```bash
CellCLI> LIST CELL ATTRIBUTES bbuLearnCycleTime
```

Oracle Exadata Storage Server generates an informational alert about the status of the caching mode for logical drives on the cell, similar to the following:

HDD disk controller battery on disk controller at adapter 0 is going into a learn cycle. This is a normal maintenance activity that occurs quarterly and runs for approximately 1 to 12 hours. The disk controller cache might go into WriteThrough caching mode during the learn cycle. Disk write throughput might be temporarily lower during this time. The message is informational only, no action is required.

- To view the status of the battery, use a command similar to the following example:

```bash
# /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0
BBU status for Adapter: 0

BatteryType: iBBU08
Voltage: 3721 mV
Current: 541 mA
Temperature: 43 C

BBU Firmware Status:

**Charging Status:** Charging
 Voltage: OK
 Temperature: OK
 Learn Cycle Requested: No
 Learn Cycle Active: No
 Learn Cycle Status: OK
 Learn Cycle Timeout: No
 I2c Errors Detected: No
 Battery Pack Missing: No
 Battery Replacement required: No
 Remaining Capacity Low: Yes
 Periodic Learn Required: No
 Transparent Learn: No

Battery state:

GasGuageStatus:
 Fully Discharged: No
 Fully Charged: No
 Discharging: No
 Initialized: No
 Remaining Time Alarm: Yes
 Remaining Capacity Alarm: No
 Discharge Terminated: No
 Over Temperature: No
3.3.3 Replacing a Hard Disk Due to Disk Failure

A hard disk outage can cause a reduction in performance and data redundancy. Therefore, the disk should be replaced with a new disk as soon as possible. When the disk fails, the Oracle ASM disks associated with the grid disks on the hard disk are automatically dropped with the `FORCE` option, and an Oracle ASM rebalance follows to restore the data redundancy.

An Exadata alert is generated when a disk fails. The alert includes specific instructions for replacing the disk. If you have configured the system for alert notifications, then the alert is sent by e-mail to the designated address.

After the hard disk is replaced, the grid disks and cell disks that existed on the previous disk in that slot are re-created on the new hard disk. If those grid disks were part of an Oracle ASM group, then they are added back to the disk group, and the data is rebalanced on them, based on the disk group redundancy and `ASM_POWER_LIMIT` parameter.

---

**Note:**

For storage servers running Oracle Exadata System Software release 12.1.2.0 with Oracle Database release 12.1.0.2 with BP4, Oracle ASM sends an e-mail about the status of a rebalance operation. In earlier releases, the administrator had to check the status of the operation.

For earlier releases, check the rebalance operation status as described in Checking Status of a Rebalance Operation.

---

The following procedure describes how to replace a hard disk due to disk failure:

1. Determine the failed disk using the following command:

   ```bash
 CellCLI> LIST PHYSICALDISK WHERE diskType=HardDisk AND status=failed DETAIL
   ```

   The following is an example of the output from the command. The slot number shows the location of the disk, and the status shows that the disk has failed.

   ```bash
 CellCLI> LIST PHYSICALDISK WHERE diskType=HardDisk AND status=failed DETAIL
   ```
2. Ensure the blue OK to Remove LED on the disk is lit before removing the disk.

3. Replace the hard disk on Oracle Exadata Storage Server and wait for three minutes. The hard disk is hot-pluggable, and can be replaced when the power is on.

4. Confirm the disk is online.

   When you replace a hard disk, the disk must be acknowledged by the RAID controller before you can use it. This does not take long.

   Use the `LIST PHYSICALDISK` command similar to the following to ensure the status is `NORMAL`.

   ```
 CellCLI> LIST PHYSICALDISK WHERE name=28:5 ATTRIBUTES status
   ```

5. Verify the firmware is correct using the `ALTER CELL VALIDATE CONFIGURATION` command.

   In rare cases, the automatic firmware update may not work, and the LUN is not rebuilt. This can be confirmed by checking the `ms-odl.trc` file.

---

See Also:

- Parts for Exadata Storage Servers
- *Oracle Database Reference* for information about the `V$ASM_OPERATION` view
- *Oracle Automatic Storage Management Administrator’s Guide* for information about the rebalance operation
3.3.4 Replacing a Hard Disk Due to Disk Problems

You may need to replace a hard disk because the disk is in warning - predictive failure status.

The predictive failure status indicates that the hard disk will soon fail, and should be replaced at the earliest opportunity. The Oracle ASM disks associated with the grid disks on the hard drive are automatically dropped, and an Oracle ASM rebalance relocates the data from the predictively failed disk to other disks.

If the drop did not complete before the hard drive dies, then refer to Replacing a Hard Disk Due to Disk Failure.

An alert is sent when the disk is removed. After replacing the hard disk, the grid disks and cell disks that existed on the previous disk in the slot are re-created on the new hard disk. If those grid disks were part of an Oracle ASM disk group, then they are added back to the disk group, and the data is rebalanced based on disk group redundancy and the ASM_POWER_LIMIT parameter.

Note:

On Oracle Exadata Storage Servers running Oracle Exadata System Software release 12.1.2.0 with Oracle Database release 12.1.0.2 with BP4, Oracle ASM sends an e-mail about the status of a rebalance operation. In earlier releases, the administrator had to check the status of the operation.

For earlier releases, check the rebalance operation status as described in Checking Status of a Rebalance Operation.

1. Determine which disk is the failing disk.

```
CellCLI> LIST PHYSICALDISK WHERE diskType=HardDisk AND status= "warning - predictive failure" DETAIL
```

The following is an example of the output. The slot number shows the location of the disk, and the status shows the disk is expected to fail.

```
CellCLI> LIST PHYSICALDISK WHERE diskType=HardDisk AND status= "warning - predictive failure" DETAIL

name: 28:3
deviceId: 19
diskType: HardDisk
enclosureDeviceId: 28
errMediaCount: 0
errOtherCount: 0
foreignState: false
luns: 0_3
makeModel: "SEAGATE ST360057SSUN600G"
physicalFirmware: 0705
physicalInterface: sas
physicalSerial: E07L8E
```
2. Ensure the blue OK to Remove LED on the disk is lit before removing the disk.

3. Wait until the Oracle ASM disks associated with the grid disks on the hard disk have been successfully dropped. To determine if the grid disks have been dropped, query the `V$ASM_DISK_STAT` view on the Oracle ASM instance.

⚠️ Caution:

On all systems prior to Oracle Exadata Database Machine X7, the disks in the first two slots are system disks which store the operating system and Oracle Exadata System Software. One system disk must be in working condition to keep up the server.

Wait until `ALTER CELL VALIDATE CONFIGURATION` shows no `mdadm` errors, which indicates the system disk resynchronization has completed, before replacing the other system disk.

4. Replace the hard disk on Oracle Exadata Storage Server and wait for three minutes. The hard disk is hot-pluggable, and can be replaced when the power is on.

5. Confirm the disk is online.

When you replace a hard disk, the disk must be acknowledged by the RAID controller before you can use it. This does not take long. Use the `LIST PHYSICALDISK` command to ensure the status is `NORMAL`.

```
CellCLI> LIST PHYSICALDISK WHERE name=28:3 ATTRIBUTES status
```

6. Verify the firmware is correct using the `ALTER CELL VALIDATE CONFIGURATION` command.

🔗 See Also:

- Parts for Exadata Storage Servers
- *Oracle Database Reference* for information about the `V$ASM_OPERATION` view
- *Oracle Database Reference* for information about querying the `V$ASM_DISK_STAT` view
- `ALTER CELL VALIDATE CONFIGURATION` command in *Oracle Exadata System Software User's Guide*
3.3.5 Replacing a Hard Disk Due to Bad Performance

A single bad hard disk can degrade the performance of other good disks. It is better to remove the bad disk from the system than let it remain.

Starting with Oracle Exadata System Software release 11.2.3.2, an underperforming disk is automatically identified and removed from active configuration. Oracle Exadata Database Machine then runs a set of performance tests. When poor disk performance is detected by CELLSRV, the cell disk status changes to normal - confinedOnline, and the hard disk status changes to warning - confinedOnline.

The following conditions trigger disk confinement:

- Disk stopped responding. The cause code in the storage alert log is CD_PERF_HANG.
- Slow cell disk such as the following:
  - High service time threshold (cause code CD_PERF_SLOW_ABS)
  - High relative service time threshold (cause code CD_PERF_SLOW_RLTV)
- High read or write latency such as the following:
  - High latency on writes (cause code CD_PERF_SLOW_LAT_WT)
  - High latency on reads (cause code CD_PERF_SLOW_LAT_RD)
  - High latency on reads and writes (cause code CD_PERF_SLOW_LAT_RW)
  - Very high absolute latency on individual I/Os happening frequently (cause code CD_PERF_SLOW_LAT_ERR)
- Errors such as I/O errors (cause code CD_PERF_IOERR).

If the disk problem is temporary and passes the tests, then it is brought back into the configuration. If the disk does not pass the tests, then it is marked as poor performance, and Oracle Auto Service Request (ASR) submits a service request to replace the disk. If possible, Oracle ASM takes the grid disks offline for testing. If Oracle ASM cannot take the disks offline, then the cell disk status stays at normal - confinedOnline until the disks can be taken offline safely.

The disk status change is associated with the following entry in the cell alert history:

```
MESSAGE ID date_time info "Hard disk entered confinement status. The LUN n_m changed status to warning - confinedOnline. CellDisk changed status to normal - confinedOnline. Status: WARNING - CONFINEDONLINE Manufacturer: name Model Number: model Size: size Serial Number: serial_number Firmware: fw_release Slot Number: m Cell Disk: cell_disk_name Grid Disk: grid disk 1, grid disk 2 ... Reason for confinement: threshold for service time exceeded"
```

The following would be logged in the storage cell alert log:

```
CDHS: Mark cd health state change cell_disk_name with newState HEALTH_BAD_ONLINE pending HEALTH_BAD_ONLINE ongoing INVALID cur HEALTH_GOOD Celldisk entering CONFINE ACTIVE state with cause CD_PERF_SLOW_ABS
```
activeForced: 0
inactiveForced: 0 trigger HistoryFail: 0, forceTestOutcome: 0 testFail: 0
global conf related state: numHDsConf: 1 numFDsConf: 0 numHDsHung: 0
numFDsHung: 0
...

Note:
In releases earlier than Oracle Exadata System Software release 11.2.3.2, use the CALIBRATE command to identify a bad hard disk, and look for very low throughput and IOPS for each hard disk.

The following procedure describes how to remove a hard disk once the bad disk has been identified:

1. Illuminate the hard drive service LED to identify the drive to be replaced using a command similar to the following, where disk_name is the name of the hard disk to be replaced, such as 20:2:

```bash
cellcli -e 'alter physicaldisk disk_name serviceled on'
```

2. Find all the grid disks on the bad disk.

For example:

```bash
[root@exa05celadm03 ~]# cellcli -e "list physicaldisk 20:11 attributes name, id"
 20:11 RD58EA
[root@exa05celadm03 ~]# cellcli -e "list celldisk where physicalDisk='RD58EA'"
 CD_11_exa05celadm03 normal
[root@exa05celadm03 ~]# cellcli -e "list griddisk where celldisk='CD_11_exa05celadm03'"
 DATA_CD_11_exa05celadm03 active
 DBFS_CD_11_exa05celadm03 active
 RECO_CD_11_exa05celadm03 active
 TPCH_CD_11_exa05celadm03 active
```

3. Direct Oracle ASM to stop using the bad disk immediately.

```sql
SQL> ALTER DISKGROUP diskgroup_name DROP DISK asm_disk_name;
```

4. Ensure the blue OK to Remove LED on the disk is lit before removing the disk.

5. Ensure that the Oracle ASM disks associated with the grid disks on the bad disk have been successfully dropped by querying the V$ASM_DISK_STAT view.

6. Remove the badly-performing disk. An alert is sent when the disk is removed.

7. When a new disk is available, install the new disk in the system. The cell disks and grid disks are automatically created on the new hard disk.
Note:

When a hard disk is replaced, the disk must be acknowledged by the RAID controller before it can be used. The acknowledgement does not take long, but use the LIST PHYSICALDISK command to ensure the status is NORMAL.

See Also:

- Oracle Exadata System Software User's Guide
- Oracle Automatic Storage Management Administrator's Guide for information about dropping a disk from a disk group

3.3.6 Replacing a Hard Disk Proactively

Exadata Storage software has a complete set of automated operations for hard disk maintenance, when a hard disk has failed or has been flagged as a problematic disk. But there are situations where a hard disk has to be removed proactively from the configuration.

In the CellCLI ALTER PHYSICALDISK command, the drop for replacement option checks if a normal functioning hard disk can be removed safely without the risk of data lost. However, after the execution of the command, the grid disks on the hard disk are inactivated on the storage cell and set to offline in the Oracle ASM disk groups.

The redundancy of the disk group is compromised until the hard disk has been replaced or re-enabled, and the subsequent rebalance completes. This is especially important for disk groups using normal redundancy.

To reduce the risk of having a disk group without full redundancy and proactively replace a hard disk, follow this procedure:

1. Identify the LUN, celldisk, and grid disk associated with the hard disk.

   Use a command similar to the following where, X:Y identifies the hard disk name of the drive you are replacing.

   ```bash
 # cellcli -e "list diskmap" | grep 'X:Y'
 ``

 The output should be similar to the following:

   ```
   20:5            KEBTDJ          5                       normal
   559G
   CD_05_exaceladm01    /dev/sdf
   "DATACl_CD_05_exaceladm01, DBFS_DG_CD_05_exaceladm01,
   RECOCl_CD_05_exaceladm01"
   ```
To get the LUN, issue a command similar to the following:

```
CellCLI> list lun where deviceName='/dev/sdf/
0_5 0_5 normal
```

2. Drop the grid disk from the Oracle ASM disk groups in normal mode

```
SQL> ALTER DISKGROUP diskgroup_name DROP DISK asm_disk_name;
```

3. Wait for the completion of rebalance.

4. Execute the drop for replacement.

 Use a command similar to the following where, \(X:Y \) identifies the hard disk name of the drive you are replacing.

 `CellCLI> alter physicaldisk X:Y drop for replacement`

5. Ensure the blue “OK to Remove” LED on the disk is lit before removing the disk.

6. Replace the new hard disk.

7. Verify the LUN, celldisk and grid disk associated with the hard disk were created.

 `CellCLI> list lun lun_name`
 `CellCLI> list celldisk where lun=lun_name`
 `CellCLI> list griddisk where celldisk=celldisk_name`

8. Verify the grid disk was added to the Oracle ASM disk groups.

 The following query should return no rows.

 `SQL> SELECT path,header_status FROM v$asm_disk WHERE group_number=0;`

 The following query shows whether all the failgroups have the same number of disks:

 `SQL> SELECT group_number, failgroup, mode_status, count(*) FROM v$asm_disk GROUP BY group_number, failgroup, mode_status;`

3.3.7 Moving All Drives to Another Exadata Storage Server

It may necessary to move all drives from one Exadata Storage Server to another Exadata Storage Server.

This need may occur when there is a chassis-level component failure, such as a motherboard or ILOM failure, or when troubleshooting a hardware problem.

1. Back up the files in the following directories:
 - `/etc/hosts`
 - `/etc/modprobe.conf`
 - `/etc/sysconfig/network`
 - `/etc/sysconfig/network-scripts`
2. Safely inactivate all grid disks and shut down Exadata Storage Server.

Refer to "Shutting Down Exadata Storage Server". Make sure the Oracle ASM disk_repair_time attribute is set to a sufficiently large enough value so Oracle ASM does not drop the disks before the grid disks can be activated in another Exadata Storage Server.

3. Move the hard disks, flash disks, disk controller and USB flash drive from the original Exadata Storage Server to the new Exadata Storage Server.

Caution:

- Ensure the first two disks, which are the system disks, are in the same first two slots. Failure to do so causes the Exadata Storage Server to function improperly.
- Ensure the flash cards are installed in the same PCIe slots as the original Exadata Storage Server.

4. Power on the new Exadata Storage Server using either the service processor interface or by pressing the power button.

5. Log in to the console using the service processor or the KVM switch.

6. Check the files in the following directories. If they are corrupted, then restore them from the backups.
 - /etc/hosts
 - /etc/modprobe.conf
 - /etc/sysconfig/network
 - /etc/sysconfig/network-scripts

7. Use the ifconfig command to retrieve the new MAC address for eth0, eth1, eth2, and eth3. For example:

 # ifconfig eth0
 eth0 Link encap:Ethernet HWaddr 00:14:4F:CA:D9:AE
 inet addr:10.204.74.184 Bcast:10.204.75.255 Mask:255.255.252.0
 inet6 addr: fe80::214:4fff:feca:d9ae/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:141455 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6340 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:9578692 (9.1 MiB) TX bytes:1042156 (1017.7 KiB)
 Memory:f8c60000-f8c80000

8. Edit the ifcfg-eth0 file, ifcfg-eth1 file, ifcfg-eth2 file, and ifcfg-eth3 file in the /etc/sysconfig/network-scripts directory to change the HWADDR value based on the output from step 7. The following is an example of the ifcfg-eth0 file:

 #### DO NOT REMOVE THESE LINES ####
 #### %GENERATED BY CELL$ ####
DEVICE=eth0
BOOTPROTO=static
ONBOOT=yes
IPADDR=10.204.74.184
NETMASK=255.255.252.0
NETWORK=10.204.72.0
BROADCAST=10.204.75.255
GATEWAY=10.204.72.1
HOTPLUG=no
IPV6INIT=no
HWADDR=00:14:4F:CA:D9:AE

10. Activate the grid disks using the following command:

 CellCLI> ALTER GRIDDISK ALL ACTIVE

 If the Oracle ASM disk on the disks on the cell have not been dropped, then they change to ONLINE automatically, and start getting used.

11. Validate the configuration using the following command:

 CellCLI> ALTER CELL VALIDATE CONFIGURATION

12. Activate the ILOM for ASR.

 See Also:

 - *Oracle Auto Service Request Quick Installation Guide for Oracle Exadata Database Machine*
 - *Oracle Exadata System Software User’s Guide* for information about the CellCLI utility
 - *Oracle Automatic Storage Management Administrator’s Guide* for information about disk repair time

3.3.8 Repurposing a Hard Disk

You may want to delete all data on a disk, and then use the disk for another purpose.

Before repurposing a hard disk, ensure that you have copies of the data that is on the disk.

If you use this procedure for the system disks (disk 0 and disk1), then only the data partitions are erased, not the system partitions.
1. Use the CellCLI LIST command to display the Exadata Storage Server objects. You must identify the grid disks and cell disks on the hard drive. For example:

 CellCLI> LIST PHYSICALDISK
 20:0 D174LX normal
 20:1 D149R0 normal
 ...

2. Determine the cell disks and grid disks on the LUN, using a command similar to the following:

 CellCLI> LIST LUN WHERE physicalDrives='20:0' DETAIL
 name: 0_0
 deviceName: /dev/sda
 diskType: HardDisk
 id: 0_0
 isSystemLun: TRUE
 lunSize: 557.861328125G
 lunUID: 0_0
 physicalDrives: 20:0
 raidLevel: 0
 lunWriteCacheMode: "WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU"
 status: normal

 To get the celldisks and grid disks, use a command similar to the following:

 #cellcli -e "list diskmap" | grep 20:0

 20:0 K68DWJ 0 normal 559G
 CD_00_burd01celadm01 /dev/sda3
 "DATAC1_CD_00_burd01celadm01, RECOC1_CD_00_burd01celadm01"

3. From Oracle ASM, drop the Oracle ASM disks on the hard disk using the following command:

 SQL> ALTER DISKGROUP diskgroup_name DROP DISK asm_disk_name;

4. From Exadata Storage Server, drop the cell disks and grid disks on the hard disk using the following command:

 CellCLI> DROP CELLDISK celldisk_on_this_lun FORCE
To overwrite all data on the cell disk, use the `ERASE` option with the `DROP CELLDISK` command. The following is an example of the command:

```
CellCLI> DROP CELLDISK CD_03_cell01 ERASE=1pass NOWAIT
CellDisk CD_03_cell01 erase is in progress
```

5. Drop the drive for hot removal. For example:

```
CellCLI> ALTER PHYSICALDISK 20:0 DROP FOR REPLACEMENT
```

6. Ensure the blue OK to Remove LED on the disk is lit before removing the disk.

Caution:

Ensure the disk blue LED is turned on before removing the drive. Do not remove the drive if the disk blue LED is unlit, or it may cause your system to crash.

7. Remove the disk to be repurposed, and insert a new disk.

8. Wait for the new hard disk to be added as a LUN.

```
CellCLI> LIST LUN
```

The cell disks and grid disks are automatically created on the new hard disk, and the grid disks are added to the Oracle ASM group.

Related Topics

- *Oracle Exadata System Software User's Guide*

3.3.9 Removing and Replacing the Same Hard Disk

What happens if you accidentally remove the wrong hard disk?

If you inadvertently remove the wrong hard disk, then put the disk back. It will automatically be added back in the Oracle ASM disk group, and its data is resynchronized.

Note:

When replacing disk due to disk failure or disk problems, the LED is lit on the disk for identification.
3.3.10 Re-Enabling a Hard Disk That Was Rejected

If a physical disk was rejected because it was inserted into the wrong slot, you can re-enable the disk.

Run the following command:

```bash
Caution:
The following command removes all data on the physical disk.

CellCLI> ALTER PHYSICALDISK hard_disk_name reenable force
```

The following is an example of the output from the command:

```
Physical disk 20:0 was reenabled.
```

3.4 Maintaining Flash Disks on Oracle Exadata Storage Servers

Data is mirrored across Exadata Cells, and write operations are sent to at least two storage cells. If a flash card in one Oracle Exadata Storage Server has problems, then the read and write operations are serviced by the mirrored data in another Oracle Exadata Storage Server. No interruption of service occurs for the application.

If a flash card fails while in write-back mode, then Oracle Exadata System Software determines the data in the flash cache by reading the data from the surviving mirror. The data is then written to the cell that had the failed flash card. The location of the data lost in the failed flash cache is saved by Oracle Exadata System Software at the time of the flash failure. Resilvering then starts by replacing the lost data with the mirrored copy. During resilvering, the grid disk status is **ACTIVE -- RESILVERING WORKING**. If the PMEM cache is in write-through mode, then the data in the failed PMEM device is already present on the data grid disk, so there is no need for resilvering.

- **Replacing a Flash Disk Due to Flash Disk Failure**
 Each Oracle Exadata Storage Server is equipped with flash devices.

- **About Flash Disk Degraded Performance Statuses**
 If a flash disk has degraded performance, you might need to replace the disk.

- **Replacing a Flash Disk Due to Flash Disk Problems**

- **Performing a Hot Pluggable Replacement of a Flash Disk**
 Starting with Oracle Exadata Database Machine X7, flash disks are hot-pluggable on both Extreme Flash (EF) and High Capacity (HC) storage servers.
• **Enabling and Disabling Write Back Flash Cache for Software Versions 11.2.3.3.1 and Higher**
 Starting with Oracle Exadata System Software release 11.2.3.2.1, Exadata Smart Flash Cache can transparently cache frequently-accessed data to fast solid-state storage, improving query response times and throughput.

• **Enabling and Disabling Write Back Flash Cache for Software Versions Lower Than 11.2.3.3.1**
 Starting with Oracle Exadata System Software release 11.2.3.2.1, Exadata Smart Flash Cache can transparently cache frequently-accessed data to fast solid-state storage, improving query response times and throughput.

• **Enabling Flash Cache Compression**

• **Monitoring Exadata Smart Flash Cache Usage Statistics**

• **Disabling Flash Cache Compression**

3.4.1 Replacing a Flash Disk Due to Flash Disk Failure

Each Oracle Exadata Storage Server is equipped with flash devices.

Starting with Oracle Exadata Database Machine X7, the flash devices are hot pluggable on the Oracle Exadata Storage Servers. When performing a hot-pluggable replacement of a flash device on Oracle Exadata Storage Servers for X7 or later, the disk status should be **Dropped for replacement**, and the power LED on the flash card should be off, which indicates the flash disk is ready for online replacement.

Caution:
Removing a card with power LED on could result in a system crash. If a failed disk has a status of **Failed - dropped for replacement but the power LED is still on**, contact Oracle Support Services.

For Oracle Exadata Database Machine X6 and earlier, the flash devices are hot-pluggable on Extreme Flash (EF) storage servers, but not on High Capacity (HC) storage servers. On HC storage servers, you need to power down the storage servers before replacing them.

To identify a failed flash disk, use the following command:

```bash
CellCLI> LIST PHYSICALDISK WHERE disktype=flashdisk AND status=failed DETAIL
```

The following is an example of the output from an Extreme Flash storage server:

```
name:                          NVME_10
deviceName:                    /dev/nvme7n1
diskType:                      FlashDisk
luns:                          0_10
makeModel:                     "Oracle NVMe SSD"
physicalFirmware:              8DV1RA13
physicalInsertTime:            2016-09-28T11:29:13-07:00
```
The following is an example of the output from an Oracle Flash Accelerator F160 PCIe Card:

CellCLI> LIST PHYSICALDISK WHERE DISKTYPE=flashdisk AND STATUS=failed
DETAIL

 name: FLASH_5_1
 deviceName: /dev/nvme1n1
 diskType: FlashDisk
 luns: 5_1
 makeModel: "Oracle Flash Accelerator F160 PCIe Card"
 physicalFirmware: 8DV1RA13
 physicalInsertTime: 2016-11-30T21:24:45-08:00
 physicalSerial: 1030M03UYM
 physicalSize: 1.4554837569594383T
 slotNumber: "PCI Slot: 5; FDOM: 1"
 status: failed

The following is an example of the output from a Sun Flash Accelerator F40 PCIe card:

 name: FLASH_5_3
 diskType: FlashDisk
 luns: 5_3
 makeModel: "Sun Flash Accelerator F40 PCIe Card"
 physicalFirmware: TI35
 physicalInsertTime: 2012-07-13T15:40:59-07:00
 physicalSerial: 5L002X4P
 physicalSize: 93.13225793838501G
 slotNumber: "PCI Slot: 5; FDOM: 3"
 status: failed

For the PCIe cards, the name and slotNumber attributes show the PCI slot and the FDOM number. For Extreme Flash storage servers, the slotNumber attribute shows the NVMe slot on the front panel.

On Oracle Exadata Database Machine X7 and later systems, all flash disks are in the form of an Add-in-Card (AIC), which is inserted into a PCIe slot on the motherboard. The slotNumber attribute shows the PCI number and FDOM number, regardless of whether it is an EF or HC storage server.

If an flash disk is detected to have failed, then an alert is generated indicating that the flash disk, as well as the LUN on it, has failed. The alert message includes either the PCI slot number and FDOM number or the NVMe slot number. These numbers uniquely identify the field replaceable unit (FRU). If you have configured the system for alert notification, then an alert is sent by e-mail message to the designated address.

A flash disk outage can cause reduction in performance and data redundancy. The failed disk should be replaced with a new flash disk at the earliest opportunity. If the
flash disk is used for flash cache, then the effective cache size for the storage server is reduced. If the flash disk is used for flash log, then flash log is disabled on the disk thus reducing the effective flash log size. If the flash disk is used for grid disks, then the Oracle Automatic Storage Management (Oracle ASM) disks associated with these grid disks are automatically dropped with the **FORCE** option from the Oracle ASM disk group, and a rebalance operation starts to restore the data redundancy.

The following procedure describes how to replace an FDOM due to disk failure on High Capacity storage servers that do not support online flash replacement. Replacing an NVMe drive on Extreme Flash storage servers is the same as replacing a physical disk: you can just remove the NVMe drive from the front panel and insert a new one. You do not need to shut down the storage server.

1. Shut down the storage server. See "Shutting Down Exadata Storage Server"
2. Replace the failed flash disk based on the PCI number and FDOM number. A white Locator LED is lit to help locate the affected storage server.
3. Power up the storage server. The cell services are started automatically. As part of the storage server startup, all grid disks are automatically **ONLINE** in Oracle ASM.
4. Verify that all grid disks have been successfully put online using the following command:

   ```
   CellCLI> LIST GRIDDISK ATTRIBUTES name, asmmodestatus
   data_CD_00_testceladm10     ONLINE
   data_CD_01_testceladm10     ONLINE
   data_CD_02_testceladm10     ONLINE
   ...
   ```

 Wait until `asmmodestatus` shows **ONLINE** or **UNUSED** for all grid disks.

The new flash disk is automatically used by the system. If the flash disk is used for flash cache, then the effective cache size increases. If the flash disk is used for grid disks, then the grid disks are re-created on the new flash disk. If those grid disks were part of an Oracle ASM disk group, then they are added back to the disk group, and the data is rebalanced on them based on the disk group redundancy and **ASM_POWER_LIMIT** parameter.

See Also:

- Performing a Hot Pluggable Replacement of a Flash Disk
- Parts for Exadata Storage Servers for replacement part information and links to the service guide
- V$ASM_OPERATION in *Oracle Database Reference*
- **ASM_POWER_LIMIT** in *Oracle Automatic Storage Management Administrator’s Guide*
- The appropriate PCIe Card User's Guide for your system, which is listed in "Related Documentation"
3.4.2 About Flash Disk Degraded Performance Statuses

If a flash disk has degraded performance, you might need to replace the disk.

You may need to replace a flash disk because the disk is in one of the following statuses:

- warning - predictive failure
- warning - poor performance
- warning - write-through caching
- warning - peer failure

Note:

For Oracle Exadata System Software releases earlier than release 11.2.3.2.2, the status is not present.

An alert is generated when a flash disk is in predictive failure, poor performance, write-through caching or peer failure status. The alert includes specific instructions for replacing the flash disk. If you have configured the system for alert notifications, then the alerts are sent by e-mail message to the designated address.

predictive failure

Flash disk predictive failure status indicates that the flash disk will fail soon, and should be replaced at the earliest opportunity. If the flash disk is used for flash cache, then it continues to be used as flash cache. If the flash disk is used for grid disks, then the Oracle ASM disks associated with these grid disks are automatically dropped, and Oracle ASM rebalance relocates the data from the predictively failed disk to other disks.

When a flash disk has predictive failure due to one flash disk, then the data is copied. If the flash disk is used for grid disks, then Oracle ASM re-partners the associated partner, and does a rebalance. If the flash disk is used for write back flash cache, then the data is flushed from the flash disks to the grid disks.

To identify a predictive failure flash disk, use the following command:

```
CellCLI> LIST PHYSICALDISK WHERE DISKTYPE=flashdisk AND STATUS= "warning - predictive failure" DETAIL
```

```
name:               FLASH_1_1
deviceName:         /dev/nvme3n1
diskType:           FlashDisk
luns:               1_1
makeModel:          "Oracle Flash Accelerator F160 PCIe Card"
physicalFirmware:   BDV1RA13
physicalInsertTime: 2016-11-30T21:24:45-08:00
physicalSerial:     CVMD519000251P6KGN
physicalSize:       1.4554837569594383T
```
poor performance

Flash disk poor performance status indicates that the flash disk demonstrates extremely poor performance, and should be replaced at the earliest opportunity. Starting with Oracle Exadata System Software release 11.2.3.2, an under-performing disk is automatically identified and removed from active configuration. If the flash disk is used for flash cache, then flash cache is dropped from this disk thus reducing the effective flash cache size for the storage server. If the flash disk is used for grid disks, then the Oracle ASM disks associated with the grid disks on this flash disk are automatically dropped with FORCE option, if possible. If DROP...FORCE cannot succeed due to offline partners, then the grid disks are automatically dropped normally, and Oracle ASM rebalance relocates the data from the poor performance disk to other disks.

Oracle Exadata Database Machine then runs a set of performance tests. When poor disk performance is detected by CELLSRV, the cell disk status changes to normal - confinedOnline, and the physical disk status changes to warning - confinedOnline. The following conditions trigger disk confinement:

- Disk stopped responding. The cause code in the storage alert log is CD_PERF_HANG.
- Slow cell disk such as the following:
 - High service time threshold (cause code CD_PERF_SLOW_ABS)
 - High relative service time threshold (cause code CD_PERF_SLOW_RLTV)
- High read or write latency such as the following:
 - High latency on writes (cause code CD_PERF_SLOW_LAT_WT)
 - High latency on reads (cause code CD_PERF_SLOW_LAT_RD)
 - High latency on reads and writes (cause code CD_PERF_SLOW_LAT_RW)
 - Very high absolute latency on individual I/Os happening frequently (cause code CD_PERF_SLOW_LAT_ERR)
- Errors such as I/O errors (cause code CD_PERF_IOERR).

If the disk problem is temporary and passes the tests, then it is brought back into the configuration. If the disk does not pass the tests, then it is marked as poor performance, and Oracle Auto Service Request (ASR) submits a service request to replace the disk. If possible, Oracle ASM takes the grid disks offline for testing. If Oracle ASM cannot take the disks offline, then the cell disk status stays at normal - confinedOnline until the disks can be taken offline safely.

To identify a poor performance flash disk, use the following command:

```cellcli> LIST PHYSICALDISK WHERE DISKTYPE=flashdisk AND STATUS= \
'warning - poor performance' DETAIL
```

<table>
<thead>
<tr>
<th>name</th>
<th>FLASH_1_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskType</td>
<td>FlashDisk</td>
</tr>
<tr>
<td>luns</td>
<td>1_4</td>
</tr>
<tr>
<td>makeModel</td>
<td>"Sun Flash Accelerator F20 PCIe Card"</td>
</tr>
</tbody>
</table>
physicalFirmware: D20Y
physicalInsertTime: 2012-09-27T13:11:16-07:00
physicalSerial: 508002000092e70FMOD2
physicalSize: 22.8880615234375G
slotNumber: "PCI Slot: 1; FDOM: 3"
status: warning - poor performance

The disk status change is associated with the following entry in the cell alert history:

MESSAGE ID date_time info "Hard disk entered confinement status. The LUN n_m changed status to warning - confinedOnline. CellDisk changed status to normal - confinedOnline. Status: WARNING - CONFINEDONLINE Manufacturer: name Model Number: model Size: size Serial Number: serial_number Firmware: fw_release Slot Number: m Cell Disk: cell_disk_name Grid Disk: grid disk 1, grid disk 2 ... Reason for confinement: threshold for service time exceeded"

The following would be logged in the storage server alert log:

CDHS: Mark cd health state change cell_disk_name with newState HEALTH_BAD_ONLINE pending HEALTH_BAD_ONLINE ongoing INVALID cur HEALTH_GOOD Celldisk entering CONFINE ACTIVE state with cause CD_PERF_SLOW_ABS activeForced: 0 inactiveForced: 0 trigger HistoryFail: 0, forceTestOutcome: 0 testFail: 0 global conf related state: numHDsConf: 1 numFDsConf: 0 numHDsHung: 0 numFDsHung: 0 ...

Note:

In Oracle Exadata System Software releases earlier than release 11.2.3.2, use the CALIBRATE command to identify a bad flash disk, and look for very low throughput and IOPS for each flash disk.

If a flash disk exhibits extremely poor performance, then it is marked as poor performance. The flash cache on that flash disk is automatically disabled, and the grid disks on that flash disk are automatically dropped from the Oracle ASM disk group.

write-through caching

Flash disk write-through caching status indicates the capacitors used to support data cache on the PCIe card have failed, and the card should be replaced as soon as possible.
peer failure

Flash disk peer failure status indicates one of the flash disks on the same Sun Flash Accelerator PCIe card has failed or has a problem. For example, if FLASH_5_3 fails, then FLASH_5_0, FLASH_5_1, and FLASH_5_2 have peer failure status. The following is an example:

```
CellCLI> LIST PHYSICALDISK
    36:0    L45F3A   normal
    36:1    L45WAE   normal
    36:2    L45WQW   normal
...
    FLASH_5_0 5L0034XM warning - peer failure
    FLASH_5_1 5L0034JE warning - peer failure
    FLASH_5_2 5L002WJH warning - peer failure
    FLASH_5_3 5L002X4P failed
```

When CellSRV detects a predictive or peer failure in any flash disk used for write back flash cache and only one FDOM is bad, then the data on the bad FDOM is resilvered, and the data on the other three FDOMs is flushed. CellSRV then initiates an Oracle ASM rebalance for the disks if there are valid grid disks. The bad disk cannot be replaced until the tasks are completed. MS sends an alert when the disk can be replaced.

3.4.3 Replacing a Flash Disk Due to Flash Disk Problems

Oracle Exadata Storage Server is equipped with four PCIe cards. Each card has four flash disks (FDOMs) for a total of 16 flash disks. The four PCIe cards are present on PCI slot numbers 1, 2, 4, and 5. Starting with Oracle Exadata Database Machine X7, you can replace the PCIe cards without powering down the storage server. See [Performing a Hot Pluggable Replacement of a Flash Disk](#).

In Oracle Exadata Database Machine X6 and earlier systems, the PCIe cards are not hot-pluggable. The Oracle Exadata Storage Server must be powered down before replacing the flash disks or cards.

Starting with Oracle Exadata Database Machine X7, each flash card on both High Capacity and Extreme Flash storage servers is a field-replaceable unit (FRU). The flash cards are also hot-pluggable, so you do not have to shut down the storage server before removing the flash card.

On Oracle Exadata Database Machine X5 and X6 systems, each flash card on High Capacity and each flash drive on Extreme Flash are FRUs. This means that there is no peer failure for these systems.

On Oracle Exadata Database Machine X3 and X4 systems, because the flash card itself is a FRU, if any FDOMs were to fail, the Oracle Exadata System Software would automatically put the rest of FDOMs on that card to peer failure so that the data can be moved out to prepare for the flash card replacement.

On Oracle Exadata Database Machine V2 and X2 systems, each FDOM is a FRU. There is no peer failure for flash for these systems.

Determining when to proceed with disk replacement depends on the release, as described in the following:
• For Oracle Exadata System Software releases earlier than 11.2.3.2:
 Wait until the Oracle ASM disks have been successfully dropped by querying the
 V$ASM_DISK_STAT view before proceeding with the flash disk replacement. If the
 normal drop did not complete before the flash disk fails, then the Oracle ASM
 disks are automatically dropped with the FORCE option from the Oracle ASM disk
 group. If the DROP command did not complete before the flash disk fails, then refer
 to Replacing a Flash Disk Due to Flash Disk Failure.

• For Oracle Exadata System Software releases 11.2.3.2 and later:
 An alert is sent when the Oracle ASM disks have been dropped, and the flash disk
 can be safely replaced. If the flash disk is used for write-back flash cache, then
 wait until none of the grid disks are cached by the flash disk. Use the following
 command to check the cachedBy attribute of all the grid disks. The cell disk on the
 flash disk should not appear in any grid disk's cachedBy attribute.

 CellCLI> LIST GRIDDISK ATTRIBUTES name, cachedBy

 If the flash disk is used for both grid disks and flash cache, then wait until receiving
 the alert, and the cell disk is not shown in any grid disk's cachedBy attribute.

The following procedure describes how to replace a flash disk on High Capacity
storage servers for Oracle Exadata Database Machine X6 and earlier due to disk
problems.

Note:

On Extreme Flash storage servers for Oracle Exadata Database Machine X6
and all storage servers for Oracle Exadata Database Machine X7 and later,
you can just remove the flash disk from the front panel and insert a new one.
You do not need to shut down the storage server.

1. Stop the cell services using the following command:

 CellCLI> ALTER CELL SHUTDOWN SERVICES ALL

 The preceding command checks if any disks are offline, in predictive failure
 status or need to be copied to its mirror. If Oracle ASM redundancy is intact, then
 the command takes the grid disks offline in Oracle ASM, and then stops the cell
 services. If the following error is displayed, then it may not be safe to stop the cell
 services because a disk group may be forced to dismount due to redundancy.

 Stopping the RS, CELLSRV, and MS services...
 The SHUTDOWN of ALL services was not successful.
 CELL-01548: Unable to shut down CELLSRV because disk group DATA, RECO
 may be
 forced to dismount due to reduced redundancy.
 Getting the state of CELLSRV services... running
 Getting the state of MS services... running
 Getting the state of RS services... running
If the error occurs, then restore Oracle ASM disk group redundancy and retry the command when disk status is back to normal for all the disks.

2. Shut down the storage server.

3. Replace the failed flash disk based on the PCI number and FDOM number. A white Locator LED is lit to help locate the affected storage server.

4. Power up the storage server. The cell services are started automatically. As part of the storage server startup, all grid disks are automatically ONLINE in Oracle ASM.

5. Verify that all grid disks have been successfully put online using the following command:

 CellCLI> LIST GRIDDISK ATTRIBUTES name, asmmodestatus

 Wait until asmmodestatus shows ONLINE or UNUSED for all grid disks.

The new flash disk is automatically used by the system. If the flash disk is used for flash cache, then the effective cache size increases. If the flash disk is used for grid disks, then the grid disks are re-created on the new flash disk. If those grid disks were part of an Oracle ASM disk group, then they are added back to the disk group, and the data is rebalanced on them based on the disk group redundancy and the ASM_POWER_LIMIT parameter.

Related Topics

• Replacing a Flash Disk Due to Flash Disk Failure
 Each Oracle Exadata Storage Server is equipped with flash devices.

• Shutting Down Exadata Storage Server
 When performing maintenance on Exadata Storage Servers, it may be necessary to power down or restart the cell.

• Parts for Exadata Storage Servers
 Each server model has a different layout of internal components, different replaceable parts and different repair procedures.

• V$ASM_OPERATION

See Also:

• Oracle Automatic Storage Management Administrator’s Guide for information about the ASM_POWER_LIMIT parameter

• The appropriate PCIe Card User’s Guide for your system, which is listed in Related Documentation

3.4.4 Performing a Hot Pluggable Replacement of a Flash Disk

Starting with Oracle Exadata Database Machine X7, flash disks are hot-pluggable on both Extreme Flash (EF) and High Capacity (HC) storage servers.

For Oracle Exadata Database Machine X6 and earlier, the flash devices are hot-pluggable on EF storage servers, but not on HC storage servers. For HC storage
servers on Oracle Exadata Database Machine X6 and earlier systems, you must
power down the storage servers before replacing the flash disks.

1. Determine if the flash disk is ready to be replaced.

 When performing a hot-pluggable replacement of a flash device on Oracle
 Exadata Database Machine X7 or later, the disk status should be Dropped for
 replacement, which indicates the flash disk is ready for online replacement.

 CellCLI> LIST PHYSICALDISK WHERE DISKTYPE=flashdisk AND STATUS LIKE
 %dropped for replacement.% DETAIL

 name: FLASH_6_1
 deviceName: /dev/nvme0n1
 diskType: FlashDisk
 luns: 6_0
 makeModel: "Oracle Flash Accelerator F640 PCIe Card"
 physicalFirmware: QDV1RD09
 physicalInsertTime: 2017-08-11T12:25:00-07:00
 physicalSerial: PHLE6514003R6P4BGN-1
 physicalSize: 2.910957656800747T
 slotNumber: "PCI Slot: 6; FDOM: 1"
 status: failed - dropped for replacement

2. Locate the failed flash disk based on the PCI number and FDOM number.

 A white Locator LED is lit to help locate the affected storage server. An amber
 Fault-Service Required LED is lit to identify the affected flash card.

3. Make sure the power LED is off on the card.

 Caution:
 Removing a card with power LED on could result in a system crash. If a
 failed disk has a status of Failed - dropped for replacement but the
 power LED is still on, contact Oracle Support Services.

4. Remove and replace the failed flash disk.

3.4.5 Enabling and Disabling Write Back Flash Cache for Software
Versions 11.2.3.3.1 and Higher

Starting with Oracle Exadata System Software release 11.2.3.2.1, Exadata Smart
Flash Cache can transparently cache frequently-accessed data to fast solid-state
storage, improving query response times and throughput.

Write operations serviced by flash instead of by disk are referred to as write-back
flash cache. This feature can be enabled or disabled, as needed. Note the following
when changing the flash cache mode:

• With Oracle Exadata System Software release 11.2.3.3.1 or higher, you do not
 have to stop cell services or inactivate grid disks.
• Oracle Grid Infrastructure homes and Oracle Database homes must at release 11.2.0.3 BP9 or higher to use write-back flash cache.

Note:

Any time the flash cache is dropped and re-created, there is a performance impact for database operations. While the flash cache is being repopulated, there are more cache misses, which impacts database performance.

• **Enable Write Back Flash Cache for 11.2.3.3.1 or Higher**

Enable write back flash cache on the storage servers to improve query response times and throughput.

• **Disable Write Back Flash Cache for 11.2.3.3.1 or Higher**

Use these steps if you need to disable write back flash cache on the storage servers.

3.4.5.1 Enable Write Back Flash Cache for 11.2.3.3.1 or Higher

Enable write back flash cache on the storage servers to improve query response times and throughput.

Note:

• With release 11.2.3.3.1 or higher, you do not have to stop the cellsrv process or inactivate grid disks.

• To reduce the performance impact on the application, enable the write-back flash cache during a period of reduced workload.

1. Validate all the physical disks are in NORMAL state before modifying Exadata Smart Flash Cache.

 The following command should return no rows:

   ```
   # dcli -l root -g cell_group cellcli -e "list physicaldisk attributes name,status"|grep -v NORMAL
   ```

2. Drop the flash cache.

   ```
   # dcli -l root -g cell_group cellcli -e drop flashcache
   ```

3. **Set the** flashCacheMode **attribute to writeback.**

   ```
   # dcli -l root -g cell_group cellcli -e "alter cell flashCacheMode=writeback"
   ```

4. **Re-create the flash cache.**

   ```
   # dcli -l root -g cell_group cellcli -e create flashcache all
   ```
5. Verify the `flashCacheMode` has been set to writeback.

 # dcli -l root -g cell_group cellcli -e list cell detail | grep
 flashCacheMode

6. Validate the grid disk attributes `cachingPolicy` and `cachedby`.

 # cellcli -e list griddisk attributes name,cachingpolicy,cachedby

3.4.5.2 Disable Write Back Flash Cache for 11.2.3.3.1 or Higher

Use these steps if you need to disable write back flash cache on the storage servers.

Note:
- With release 11.2.3.3.1 or higher, you do not have to stop the cellsrv process or inactivate griddisks.
- To reduce the performance impact on the application, disable the write back flash cache during a period of reduced workload.

1. Validate all the Physical Disks are in NORMAL state before modifying FlashCache.

 The following command should return no rows:

 # dcli -l root -g cell_group cellcli -e "LIST PHYSICALDISK ATTRIBUTES
 name,status"|grep -v NORMAL

2. Determine amount of dirty data in the flash cache.

 # cellcli -e "LIST METRICCURRENT ATTRIBUTES name,metricvalue WHERE name
 LIKE '%FC_BY_DIRTY.*'"

3. Flush the flash cache.

 # dcli -g cell_group -l root cellcli -e "ALTER FLASHCACHE ALL FLUSH"

4. Check the progress of the flushing of flash cache.

 The flushing process is complete when FC_BY_DIRTY is 0 MB.

 # dcli -g cell_group -l root cellcli -e "LIST METRICCURRENT ATTRIBUTES
 name,metricvalue WHERE name LIKE '%FC_BY_DIRTY.*'"

 Or, you can check to see if the attribute `flushstatus` has been set to Completed.

 # dcli -g cell_group -l root cellcli -e "LIST CELLDISK ATTRIBUTES name,
 flushstatus, flusherror" | grep FD
5. After flushing of the flash cache completes, drop the flash cache.

```bash
# dcli -g cell_group -l root cellcli -e drop flashcache
```

6. **Set the** `flashCacheMode` **attribute to writethrough.**

```bash
# dcli -g cell_group -l root cellcli -e "ALTER CELL
flashCacheMode=writethrough"
```

7. Re-create the flash cache.

```bash
# dcli -l root -g cell_group cellcli -e create flashcache all
```

8. **Verify the** `flashCacheMode` **has been set to** writethrough.

```bash
# dcli -l root -g cell_group cellcli -e list cell detail | grep
flashCacheMode
```

3.4.6 Enabling and Disabling Write Back Flash Cache for Software Versions Lower Than 11.2.3.3.1

Starting with Oracle Exadata System Software release 11.2.3.2.1, Exadata Smart Flash Cache can transparently cache frequently-accessed data to fast solid-state storage, improving query response times and throughput.

Write operations serviced by flash instead of by disk are referred to as **write back flash cache**. This feature can be enabled or disabled, as needed. Note the following when changing the flash cache mode:

- The cell services must be shut down before changing the `flashCacheMode` attribute. The cell services can shut down on rolling basis or as a total shutdown.
- If the change is done on a rolling basis, then ensure cell services resynchronization is complete before changing the next cell.
- When changing the flash cache mode on a rolling basis, the grid disk attribute `asmDeactivationOutcome` must be `yes`, and the `asmModeStatus` attribute must be `online` for all grid disks on the current cell before moving to the next cell. To check the grid disk attributes, use the following command:

  ```bash
  LIST GRIDDISK ATTRIBUTES asmDeactivationOutcome, asmModeStatus
  ```

- If the change is done on a non-rolling basis, then shut down the entire cluster before doing the change.
- When changing the flash cache mode on a non-rolling basis, ensure the entire cluster is shut down, including the Oracle Clusterware stack and all the databases.
- Oracle Grid Infrastructure homes and Oracle Database homes must be at Oracle Database 11g release 11.2.0.3 BP9 or later to use write back flash cache.
Any time the flash cache is dropped and re-created, there could be a performance impact when the database starts again, until the cache is warmed up.

- **Enabling Write Back Flash Cache on a Rolling Basis**
 To modify the Flash Cache attribute from writethrough to writeback, the flash cache must be dropped first.

- **Enabling Write Back Flash Cache on a Non-Rolling Basis**
- **Disabling Write Back Flash Cache on a Rolling Basis**
- **Disabling Write Back Flash Cache on a Non-Rolling Basis**

3.4.6.1 Enabling Write Back Flash Cache on a Rolling Basis

To modify the Flash Cache attribute from writethrough to writeback, the flash cache must be dropped first.

You can enable write back flash cache on a rolling basis.

There is a shell script to automate enabling and disabling write back flash cache. Refer to My Oracle Support note 1500257.1 for the script and additional information.

See Also:

My Oracle Support note 888828.1 lists the minimum release requirements for Oracle Exadata System Software, Oracle Grid Infrastructure home, and Oracle Database home

1. Log in as the root user to the first cell to be enabled for write back flash cache.
2. Check that the flash cache is in normal state and no flash disks are degraded or in a critical state.

   ```bash
   # cellcli -e LIST FLASHCACHE detail
   ```

3. Drop the flash cache on the cell.

   ```bash
   # cellcli -e DROP FLASHCACHE
   ```

4. Inactivate the grid disks on the cell.

   ```bash
   # cellcli -e ALTER GRIDDISK ALL INACTIVE
   ```
5. Shut down CELLSRV services.

   ```
   # cellcli -e ALTER CELL SHUTDOWN SERVICES CELLSRV
   ```

6. Set the `flashCacheMode` attribute to `writeback`.

   ```
   # cellcli -e "ALTER CELL FLASHCACHEMODE=writeback"
   ```

7. Restart cell services.

   ```
   # cellcli -e ALTER CELL STARTUP SERVICES CELLSRV
   ```

8. Reactivate the grid disks on the cell.

   ```
   # cellcli -e ALTER GRIDDISK ALL ACTIVE
   ```

9. Re-create the flash cache.

   ```
   # cellcli -e CREATE FLASHCACHE ALL
   ```

10. Check the status of the cell.

    ```
    # cellcli -e LIST CELL DETAIL | grep flashCacheMode
    ```

 The `flashCacheMode` attribute should be set to `writeback`.

11. Check the grid disk attributes `asmDeactivationOutcome` and `asmModeStatus` before moving to the next cell using the following command:

    ```
    CellCLI> LIST GRIDDISK ATTRIBUTES name,asmdeactivationoutcome,asmmodestatus
    ```

 The `asmDeactivationOutcome` attribute should be `yes`, and the `asmModeStatus` attribute should be `online`.

12. Repeat the preceding steps on the next cell.

3.4.6.2 Enabling Write Back Flash Cache on a Non-Rolling Basis

If the attribute is to be modified from `writethrough` to `writeback`, then flash cache must be dropped before modifying the attribute. The following procedure describes the steps to enable write back flash cache on a non-rolling basis:

Note:

There is a shell script to automate enabling and disabling write back flash cache. Refer to My Oracle Support note 1500257.1 for the script and additional information.
1. Log in as the root user to a database node.

2. Shut down the entire cluster.

 # cd $Grid_home/bin
 # ./crsctl stop cluster -all

3. Drop the flash cache for all cells.

 # dcli -g cell_group -l root cellcli -e DROP FLASHCACHE

4. Shut down CELLSRV services.

 # dcli -g cell_group -l root cellcli -e ALTER CELL SHUTDOWN SERVICES CELLSRV

5. Confirm that the flash cache is in writethrough mode.

 # dcli -g cell_group -l root "cellcli -e list cell detail | grep -i flashcachemode"

6. Set the flashCacheMode attribute to writeback.

 # dcli -g cell_group -l root cellcli -e "ALTER CELL FLASHCACHEMODE=writeback"

7. Restart cell services.

 # dcli -g cell_group -l root cellcli -e ALTER CELL STARTUP SERVICES CELLSRV

8. Re-create the flash cache.

 # dcli -g cell_group -l root cellcli -e CREATE FLASHCACHE ALL

9. Restart the cluster:

 # cd $Grid_home/bin
 # ./crsctl start cluster -all

3.4.6.3 Disabling Write Back Flash Cache on a Rolling Basis

If the flashCacheMode attribute is modified from writeback to writethrough and there is existing flash cache, then an error is displayed. The flash cache must be flushed and dropped before changing the attribute to writethrough. Once the flush operation
begins, all caching to the flash cache stops. The following procedure describes the steps to disable write back flash cache on a rolling basis:

Note:

There is a shell script to automate enabling and disabling write back flash cache. Refer to My Oracle Support note 1500257.1 for the script and additional information.

1. Log in as the root user to the first cell to be disabled for write back flash cache.

2. Verify the `asmDeactivationOutcome` attribute is `yes` for all grid disks on the cell using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e "LIST GRIDDISK WHERE asmdeactivationoutcome != 'Yes' attributes name, asmdeactivationoutcome, asmmodestatus"
   ```

 If a grid disk is returned, then you must resolve this issue before proceeding.

3. Check the amount of dirty data in the flash cache using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e "LIST METRICCURRENT ATTRIBUTES name,metricvalue WHERE name LIKE '%FC_BY_DIRTY.*'"
   ```

4. Flush the flash cache using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e ALTER FLASHCACHE ALL FLUSH
   ```

5. Check the status of the flash cache using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e LIST CELLDISK ATTRIBUTES name, flushstatus, flusherror | grep FD
   ```

 The status shows `completed` when the flush is done.

6. Perform the following set of steps on for all cells, one cell at a time. That is, perform steps (a) through (i) on one cell, then perform them on another cell until all the cells are done.

 a. Drop the flash cache using the following command.

   ```
   # cellcli -e DROP FLASHCACHE
   ```

 b. Inactivate all grid disks on the cell using the following command.

   ```
   # cellcli -e ALTER GRIDDISK ALL INACTIVE
   ```

 c. Shut down CELLSRV services using the following command.

   ```
   # cellcli -e ALTER CELL SHUTDOWN SERVICES CELLSRV
   ```

 d. Set the `flashCacheMode` attribute to `writethrough` using the following command.

   ```
   # cellcli -e "ALTER CELL FLASHCACHEMODE=writethrough"
   ```

 e. Restart cell services using the following command.

   ```
   # cellcli -e ALTER CELL STARTUP SERVICES CELLSRV
   ```

 f. Reactivate the grid disks on the cell using the following command.
Re-create the flash cache using the following command.

```
# cellcli -e CREATE FLASHCACHE ALL
```

Check the status of the cell using the following command.

```
# cellcli -e LIST CELL DETAIL | grep flashCacheMode
```

Check the grid disk attributes `asmDeactivationOutcome` and `asmModeStatus` using the following command.

```
# cellcli -e LIST GRIDDISK ATTRIBUTES
```

The `asmDeactivationOutcome` attribute should be `yes`, and the `asmModeStatus` attribute should be `online`.

If the disk status is `SYNCING`, wait until it is `ACTIVE` before proceeding.

3.4.6.4 Disabling Write Back Flash Cache on a Non-Rolling Basis

If the `flashCacheMode` attribute is modified from `writeback` to `writethrough` and there is existing flash cache, then an error is displayed. The flash cache must be flushed and dropped before changing the attribute to `writethrough`. Once the flush operation begins, all caching to the flash cache stops. The following procedure describes the steps to disable write back flash cache on a non-rolling basis:

Note:

- There is a shell script to automate enabling and disabling write back flash cache. Refer to My Oracle Support note 1500257.1 for the script and additional information.
- The flash cache flush operation can be performed prior to shutting down the entire cluster.

1. Log in as the `root` user to the first database node to be disabled for write back flash cache.

2. Check the amount of dirty data in the flash cache using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e "LIST METRICCURRENT ATTRIBUTES name,metricvalue WHERE name LIKE \"FC_BY_DIRTY.\""
   ```

3. Flush the flash cache using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e ALTER FLASHCACHE ALL FLUSH
   ```

4. Check the status as the blocks are moved to disk using the following command. The count reduces to zero.

   ```
   # dcli -g cell_group -l root cellcli -e "LIST METRICCURRENT ATTRIBUTES name, metricvalue WHERE NAME LIKE \"FC_BY_DIRTY.\"
   ```

5. Check the status of the flash disks using the following command:

   ```
   # dcli -g cell_group -l root cellcli -e LIST CELLDISK ATTRIBUTES name, flushstatus, flusherror | grep FD
   ```
The status shows completed when the flush is done.

6. Shut down the database and the entire cluster using the following commands:

   ```bash
   # cd $GI_HOME/bin
   # ./crsctl stop cluster -all
   ```

7. Drop the flash cache across all cells using the following command:

   ```bash
   # dcli -g cell_group -l root cellcli -e DROP FLASHCACHE
   ```

8. Shut down CELLSRV services using the following command:

   ```bash
   # dcli -g cell_group -l root cellcli -e ALTER CELL SHUTDOWN SERVICES CELLSRV
   ```

9. Set the `flashCacheMode` attribute to `writethrough` using the following command:

   ```bash
   # dcli -g cell_group -l root cellcli -e "ALTER CELL FLASHCACHEMODE=writethrough"
   ```

10. Restart cell services using the following command:

    ```bash
    # dcli -g cell_group -l root cellcli -e ALTER CELL STARTUP SERVICES CELLSRV
    ```

11. Re-create the flash cache using the following command:

    ```bash
    # dcli -g cell_group -l root cellcli -e CREATE FLASHCACHE ALL
    ```

12. Check the flash cache mode of the cells using the following command:

    ```bash
    # dcli -g cell_group -l root cellcli -e LIST CELL DETAIL | grep flashCacheMode
    ```

13. Restart the cluster and database using the following commands:

    ```bash
    # cd $GI_HOME/bin
    # ./crsctl start cluster -all
    ```

3.4.7 Enabling Flash Cache Compression

Flash cache compression can be enabled on Oracle Exadata Database Machine X4-2, Oracle Exadata Database Machine X3-2, and Oracle Exadata Database Machine X3-8 Full Rack systems. Oracle Exadata Database Machine X5-2, X5-8, and later systems do not have flash cache compression. Flash cache compression dynamically increases the logical capacity of the flash cache by transparently compressing user data as it is loaded into the flash cache.

Note:

- Oracle Advanced Compression Option is required to enable flash cache compression.
- User data is not retained when enabling flash cache compression.

The following procedure describes how to enable flash cache compression:

1. Perform this step only if writeback flash cache is enabled. If writeback flash cache is not enabled, skip this step. Performing this step when writeback flash cache is not enabled can result in error messages. You can check the flash cache mode by running the following command:

   ```bash
   # cellcli -e LIST CELL DETAIL | grep flashCacheMode
   ```
If writeback flash cache is enabled, then save the user data on the flash cell disks.

cellcli -e ALTER FLASHCACHE ALL FLUSH

During the flash operation, the flushstatus attribute has a value of working. When the flush operation completes successfully, the value is changed to complete. For grid disks, the attribute cachedby should be null. Also, the number of dirty buffers (unflushed) will be 0 after flush is complete.

cellcli -e LIST METRICCURRENT FC_BY_DIRTY
 FC_BY_DIRTY FLASHCACHE 0.000 MB

2. Remove the flash cache from the cell.

cellcli -e DROP FLASHCACHE ALL

3. Remove the flash log from the cell.

cellcli -e DROP FLASHLOG ALL

4. Drop the cell disks on the flash disks.

cellcli -e DROP CELLDISK ALL FLASHDISK

5. Enable flash cache compression using the following commands, based on the system:
 • For Oracle Exadata Database Machine X3-2, Oracle Exadata Database Machine X3-8, and Oracle Exadata Database Machine X4-2 storage servers with Oracle Exadata System Software release 11.2.3.3.1 or higher:

 # cellcli -e ALTER CELL flashcachecompress=true

 • For Oracle Exadata Database Machine X3-2 storage servers with Oracle Exadata System Software release 11.2.3.3.0:

 # cellcli -e ALTER CELL flashCacheCompX3Support=true
 # cellcli -e ALTER CELL flashCacheCompress=true

6. Verify the size of the physical disks has increased.

cellcli -e LIST PHYSICALDISK attributes name,physicalSize,status
WHERE disktype=flashdisk

The status should be normal. Use the following information to validate the expected size when Compression is ON:
 • Aura 2.0/F40/X3:
 – Physical Disk Size: 93.13 G (OFF) or 186.26 G (ON)
 – Flash Cache Size: 1489 G (OFF) or 2979 G (ON)
 • Aura 2.1/F80/X4:
 – Physical Disk Size: 186.26 G (OFF) or 372.53 G (ON)
7. Create the cell disks on the flash disks.

```
# cellcli -e CREATE CELLDISK ALL FLASHDISK
CellDisk FD_00_exampleceladm18 successfully created
...
CellDisk FD_15_exampleceladm18 successfully created
```

8. Create the flash log.

```
# cellcli -e CREATE FLASHLOG ALL
Flash log RaNdOmceladm18_FLASHLOG successfully created
```

9. Create the flash cache on the cell.

```
# cellcli -e CREATE FLASHCACHE ALL
Flash cache exampleceladm18_FLASHCACHE successfully created
```

3.4.8 Monitoring Exadata Smart Flash Cache Usage Statistics

Use the following methods to monitor Exadata Smart Flash Cache usage:

- **ExaWatcher reports**
 Flash Cache size and read, write, and population operation related stats are exposed in the Cell Server Charts and in the FlashCache related stats section.

- **AWR report, in the Exadata Statistics section.**
 - Under **Performance Summary** you can find various statistics related to Flash Cache and its benefits.
 - Under **Exadata Smart Statistics** there is a section for **Flash Cache** with several different reports on Exadata Smart Flash Cache statistics.

- Use the **CellCLI LIST** command to display and monitor metrics for the flash cache.

Related Topics

- **Cell Server Charts**
 Cell server statistics are useful for tracking features that are specific to Exadata storage servers. This page displays statistics related to Smart Flash Cache and Smart IOs.

- **Monitoring Flash Cache Metrics**

3.4.9 Disabling Flash Cache Compression

Flash cache compression can be disabled on Oracle Exadata Database Machine X4-2, Oracle Exadata Database Machine X3-2, and Oracle Exadata Database Machine X3-8 Full Rack systems. Oracle Exadata Database Machine X5-2, X5-8, and later systems do not have flash cache compression.
The following procedure describes how to disable flash cache compression:

1. Save the user data on the flash cell disks.

   ```
   # cellcli -e ALTER FLASHCACHE ALL FLUSH
   
   For grid disks, the attribute `cachedby` should be `null`. Also, the number of dirty buffers (unflushed) will be 0 after flush is complete.
   
   ```cellcli -e LIST METRICCURRENT FC_BY_DIRTY
 FC_BY_DIRTY FLASHCACHE 0.000 MB```

2. Remove the flash cache from the cell.

   ```
   # cellcli -e DROP FLASHCACHE ALL
   
   # cellcli -e LIST METRICCURRENT FC_BY_DIRTY
   FC_BY_DIRTY FLASHCACHE 0.000 MB
   ```

3. Remove the flash log from the cell.

   ```
   # cellcli -e DROP FLASHLOG ALL
   ```

4. Drop the cell disks on the flash disks.

   ```
   # cellcli -e DROP CELLDISK ALL FLASHDISK
   ```

5. Disable Flash Cache Compression using the following commands, based on the system:

 - If Exadata Storage Cell Server image is 11.2.3.3.1 or higher and the Exadata Storage Cell is X3-2 or X4-2:
     ```
     # cellcli -e ALTER CELL flashcachecompress=false
     ```

 - If Exadata Storage Cell Server image is 11.2.3.3.0 and the Exadata Storage Cell is X3-2:
     ```
     # cellcli -e ALTER CELL flashCacheCompX3Support=true
     # cellcli -e ALTER CELL flashCacheCompress=false
     ```

 Note:

 `flashCacheCompress` is set to `false`, but `flashCacheCompX3Support` has to be set to `true`.

© 2010 Oracle Corporation

Chapter 3
Maintaining Flash Disks on Oracle Exadata Storage Servers

3-46
You can verify that Flash Cache Compress has been disabled by viewing the cell attributes:

```
# cellcli -e LIST CELL attributes name,flashCacheCompress
```

Correct values are `FALSE` or a null string.

6. **Verify the size of the physical disks has decreased.**

```
# cellcli -e LIST PHYSICALDISK attributes name,physicalSize,status
WHERE disktype=flashdisk
```

The status should be normal. Use the following information to validate the expected size when Compression is OFF:

- **Aura 2.0/F40/X3:**
 - Physical Disk Size: 93.13 G (OFF) or 186.26 G (ON)
 - Flash Cache Size: 1489 G (OFF) or 2979 G (ON)
- **Aura 2.1/F80/X4:**
 - Physical Disk Size: 186.26 G (OFF) or 372.53 G (ON)
 - Flash Cache Size: 2979 G (OFF) or 5959 G (ON)

7. **Create the cell disks on the flash disks.**

```
# cellcli -e CREATE CELLDISK ALL FLASHDISK
CellDisk FD_00_exampleceladm18 successfully created
...
CellDisk FD_15_exampleceladm18 successfully created
```

8. **Create the flash log.**

```
# cellcli -e CREATE FLASHLOG ALL
Flash log RaNdOmceladm18_FLASHLOG successfully created
```

Verify the flash log is in normal mode.

```
# cellcli -e LIST FLASHLOG DETAIL
```

9. **Create the flash cache on the cell.**

```
# cellcli -e CREATE FLASHCACHE ALL
Flash cache exampleceladm18_FLASHCACHE successfully created
```

Verify the flash cache is in normal mode.

```
# cellcli -e LIST FLASHCACHE DETAIL
```

10. **Verify that flash cache compression is disabled.**

```
# cellcli -e LIST CELL
```
The value of the `flashCacheCompress` attribute should be `false`.

3.5 Maintaining PMEM Devices on Oracle Exadata Storage Servers

If a PMEM device fails, the data is recovered automatically.

If a PMEM device fails, then Oracle Exadata System Software determines the data in the PMEM cache by reading the data from the surviving mirror. The location of the data lost in the failed PMEM cache is saved by Oracle Exadata System Software at the time of the PMEM failure.

If the PMEM cache is in write-back mode, then resilvering starts by replacing the lost data with the mirrored copy. During resilvering, the grid disk status is `ACTIVE -- RESILVERING WORKING`. If the PMEM cache is in write-through mode, then the data in the failed PMEM device is already present on the data grid disk, so there is no need for resilvering.

- **Replacing a PMEM Device Due to Device Failure**
 If the PMEM device has a status of `Failed`, you should replace the PMEM device on the Oracle Exadata Storage Server.

- **About PMEM Device Degraded Performance Statuses**
 If a PMEM device has degraded performance, you might need to replace the module.

- **Replacing a PMEM Device Due to Degraded Performance**
 You can replace the PMEM device only after you power off the server and disconnect the power cords from the server power supplies.

- **Enabling and Disabling Write-Back PMEM Cache**
 Starting with Oracle Exadata System Software release 19.3, the PMEM cache can transparently cache frequently-accessed data to fast solid-state storage, improving query response times and throughput.

3.5.1 Replacing a PMEM Device Due to Device Failure

If the PMEM device has a status of `Failed`, you should replace the PMEM device on the Oracle Exadata Storage Server.

When performing a replacement of a PMEM device on Oracle Exadata Storage Servers model X8 or later, you must power off the server and disconnect the power cords from the server power supplies.

To identify a failed PMEM device, use the following command:

```
CellCLI> LIST PHYSICALDISK WHERE disktype=PMEM AND status=failed DETAIL
```

```
name:                          PMEM_0_1
diskType:                      PMEM
luns:                           P0_D1
makeModel:                     "Intel NMA1XBD128GQS"
physicalFirmware:              1.02.00.5365
physicalInsertTime:            2019-09-28T11:29:13-07:00
```
physicalSerial: 8089-A2-1838-00001234
physicalSize: 126.375G
slotNumber: "CPU: 0; DIMM: 1"
status: failed

In the above output, the slotNumber shows the socket number and DIMM slot number.

If a PMEM device is detected to have failed, then an alert is generated. The alert message includes the slot number and cell disk name. If you have configured the system for alert notification, then an alert is sent by e-mail message to the designated address.

A PMEM fault could cause server to reboot. The failed device should be replaced with a new PMEM device at the earliest opportunity. Until the PMEM device is replaced, the effective PMEM cache size for the storage server is reduced. If the PMEM device is used for PMEM log, then PMEM log is disabled on the disk thus reducing the effective PMEM log size.

1. Power down the storage server with the failed PMEM device and unplug the power cable for the server.

2. Replace the failed PMEM device based on the socket number and DIMM slot number provided in the alert message. A white Locator LED is lit to help locate the affected storage server. When you have located the server, you can use the Fault Remind button to determine the failed DIMM, remove the failed DIMM, and replace it.

Caution:

Do not attempt to remove a faulty DCPMM DIMM when the Do Not Service LED indicator is illuminated, otherwise server performance might be adversely affected.

3. Restart the storage server.

Note:

During the restart, the storage server will shut down a second time to complete the initialization of the new PMEM device.

4. Verify that the replaced PMEM device is being used to cache the grid disks.

You can use the following command, which shows both the flash disks (FD) and the PMEM devices (PM) in use:

```
CellCLI> LIST GRIDDISK ATTRIBUTES name, cachingPolicy, cachedBy
DATA_CD_00_cel01     default     FD_00_cel01, PM_00_cel01
DATA_CD_01_cel01     default     FD_01_cel01, PM_01_cel01
DATA_CD_02_cel01     default     FD_02_cel01, PM_02_cel01
```
The new PMEM device is automatically used by the system. If the PMEM device is used for PMEM cache, then the effective PMEM cache size increases. If the PMEM device is used for PMEM log, then PMEM log is enabled on the device and the PMEM log status is no longer degraded.

3.5.2 About PMEM Device Degraded Performance Statuses

If a PMEM device has degraded performance, you might need to replace the module.

You may need to replace a PMEM device because the module is has the following status:

- **warning - predictive failure**

An alert is generated when a PMEM device is in **predictive failure** status. The alert includes specific instructions for replacing the PMEM device. If you have configured the system for alert notifications, then the alerts are sent by e-mail message to the designated address.

The PMEM device **predictive failure** status indicates that the PMEM device will fail soon, and should be replaced at the earliest opportunity. No new data is cached in the predictively failed PMEM device until it is replaced.

When a disk has **predictive failure** due to one bad PMEM device, the data is copied. If the PMEM device is used for write-back PMEM cache, then the data is flushed from the PMEM device to the flash cache.

To identify a PMEM device with the status **predictive failure**, use the following command:

```
CellCLI> LIST PHYSICALDISK WHERE disktype=PMEM AND status=  
'warning - predictive failure' DETAIL
```

<table>
<thead>
<tr>
<th>name:</th>
<th>PMEM_0_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskType:</td>
<td>PMEM</td>
</tr>
<tr>
<td>luns:</td>
<td>P0_D1</td>
</tr>
<tr>
<td>makeModel:</td>
<td>"Intel NMA1XB128GQS"</td>
</tr>
<tr>
<td>physicalFirmware:</td>
<td>1.02.00.5365</td>
</tr>
<tr>
<td>physicalInsertTime:</td>
<td>2019-11-30T21:45:08-08:00</td>
</tr>
<tr>
<td>physicalSerial:</td>
<td>8089-A2-1838-00001234</td>
</tr>
<tr>
<td>physicalSize:</td>
<td>126.375G</td>
</tr>
<tr>
<td>slotNumber:</td>
<td>"CPU: 0; DIMM: 1"</td>
</tr>
<tr>
<td>status:</td>
<td>warning - predictive failure</td>
</tr>
</tbody>
</table>

3.5.3 Replacing a PMEM Device Due to Degraded Performance

You can replace the PMEM device only after you power off the server and disconnect the power cords from the server power supplies.

An alert is sent when the PMEM device can be safely replaced. If the PMEM device is used for write-back PMEM cache, then wait until none of the grid disks are cached by the PMEM device. Use the following command to check the **cachedBy** attribute of all
the grid disks. The PMEM device should not appear in any grid disk’s `cachedBy` attribute. For example, if the PMEM device `PM_06` is being replaced, you should see output similar to the following:

```
CellCLI> LIST GRIDDISK ATTRIBUTES name, cachingPolicy, cachedBy
DATA_CD_00_cel01     default         FD_00_cel01, PM_00_cel01
DATA_CD_01_cel01     default         FD_01_cel01, PM_01_cel01
DATA_CD_02_cel01     default         FD_02_cel01, PM_02_cel01
DATA_CD_03_cel01     default         FD_03_cel01, PM_03_cel01
DATA_CD_04_cel01     default         FD_04_cel01, PM_04_cel01
DATA_CD_05_cel01     default         FD_05_cel01, PM_05_cel01
DATA_CD_06_cel01     default         FD_02_cel01
DATA_CD_07_cel01     default         FD_03_cel01, PM_07_cel01
DATA_CD_08_cel01     default         FD_00_cel01, PM_08_cel01
DATA_CD_09_cel01     default         FD_01_cel01, PM_09_cel01
DATA_CD_10_cel01     default         FD_02_cel01, PM_10_cel01
DATA_CD_11_cel01     default         FD_03_cel01, PM_11_cel01
```

1. Locate the storage server that contains the failing PMEM device.

A white Locator LED is lit to help locate the affected storage server. When you have located the server, you can use the Fault Remind button to determine the failed DIMM.

⚠️ **Caution:**

> Do not attempt to remove a faulty DCPMM DIMM when the Do Not Service LED indicator is illuminated.

You can locate the PMEM device using the information in the `LIST DISKMAP` command:

```
CellCLI> LIST DISKMAP
Name      PhysicalSerial         SlotNumber        Status  PhysicalSize
CellDisk       DevicePartition    GridDisks
PMEM_0_1  8089-a2-0000-00000460  "CPU: 0; DIMM: 1"  normal      126G
          /dev/dax5.0        PMEMCACHE_PM_00_cel01
PMEM_0_3  8089-a2-0000-000004c2  "CPU: 0; DIMM: 3"  normal      126G
          /dev/dax4.0        PMEMCACHE_PM_02_cel01
PMEM_0_5  8089-a2-0000-00000a77  "CPU: 0; DIMM: 5"  normal      126G
          /dev/dax3.0        PMEMCACHE_PM_03_cel01
PMEM_0_6  8089-a2-0000-000006ff  "CPU: 0; DIMM: 6"  warning      126G
          /dev/dax0.0        PMEMCACHE_PM_04_cel01
PMEM_0_8  8089-a2-0000-00000750  "CPU: 0; DIMM: 8"  normal      126G
          /dev/dax1.0        PMEMCACHE_PM_05_cel01
PMEM_0_10 8089-a2-0000-00000103 "CPU: 0; DIMM: 10" normal      126G
          /dev/dax2.0        PMEMCACHE_PM_01_cel01
PMEM_1_1  8089-a2-0000-000008f6  "CPU: 1; DIMM: 1"  normal      126G
          /dev/dax1.1        PMEMCACHE_PM_06_cel01
PMEM_1_3  8089-a2-0000-000003bb "CPU: 1; DIMM: 3"  normal      126G
          /dev/dax10.0        PMEMCACHE_PM_08_cel01
PMEM_1_5  8089-a2-0000-00000708 "CPU: 1; DIMM: 5"  normal      126G
```

Chapter 3
Maintaining PMEM Devices on Oracle Exadata Storage Servers

3-51
2. Power down the storage server with the failed PMEM device and unplug the power cable for the server.

3. Replace the failed PMEM device based on the socket number and DIMM slot number provided in the alert message or the LIST DISKMAP output.

4. Restart the storage server.

 Note:
 During the restart, the storage server will shut down a second time to complete the initialization of the new PMEM device.

5. Verify that the new PMEM device is being used for the PMEM cache.

 CellCLI> LIST GRIDDISK ATTRIBUTES name, cachingPolicy, cachedBy

The new PMEM device is automatically used by the system. The PMEM cache effective cache size increases.

3.5.4 Enabling and Disabling Write-Back PMEM Cache

Starting with Oracle Exadata System Software release 19.3, the PMEM cache can transparently cache frequently-accessed data to fast solid-state storage, improving query response times and throughput.

Write operations serviced by PMEM cache instead of by disk are referred to as Write-Back PMEM cache. This feature can be enabled or disabled, as needed.

 Note:
 Any time the PMEM cache is dropped and re-created, there is a performance impact for database operations. While the PMEM cache is being repopulated, there are more cache misses, which impacts database performance.

 • Enable Write-Back PMEM Cache
 Starting with Oracle Exadata System Software release 19.3, the PMEM cache can transparently cache frequently-accessed data using remote data memory access (RDMA), improving query response times and throughput.
3.5.4.1 Enable Write-Back PMEM Cache

Starting with Oracle Exadata System Software release 19.3, the PMEM cache can transparently cache frequently-accessed data using remote data memory access (RDMA), improving query response times and throughput.

The PMEM cache runs in Write-Through mode by default.

To reduce the performance impact on the application, enable the Write-Back PMEM cache during a period of reduced workload.

1. Verify that the PMEM cache is in Write-Through mode.

 CellCLI> LIST CELL ATTRIBUTES pmemcachemode
 WriteThrough

2. Validate all the physical disks are in NORMAL state before modifying the PMEM cache.

 The following command should return no rows:

 # dcli -l root -g cell_group cellcli -e "list physicaldisk attributes name,status"|grep -v NORMAL

3. Drop the PMEM cache.

 # dcli -l root -g cell_group cellcli -e drop pmemcache all

4. Set the storage server `pmemCacheMode` attribute to `writeback`.

 # dcli -l root -g cell_group cellcli -e "alter cell pmemcachemode=writeback"

5. Re-create the PMEM cache.

 # dcli -l root -g cell_group cellcli -e create pmemcache all

6. Verify the `pmemCacheMode` has been set to `writeback`.

 CellCLI> LIST CELL ATTRIBUTES pmemcachemode
 WriteBack

3.5.4.2 Disable Write-Back PMEM Cache

Use these steps if you need to disable Write-Back PMEM cache on the storage servers.

You do not have to stop the cellsrv process or inactivate grid disks when disabling Write-Back PMEM cache. However, to reduce the performance impact on the application, disable the Write-Back PMEM cache during a period of reduced workload.
1. Validate all the Physical Disks are in NORMAL state before modifying PMEM cache.
 The following command should return no rows:

   ```bash
   # dcli -l root -g cell_group cellcli -e "LIST PHYSICALDISK ATTRIBUTES
   name,status" | grep -v NORMAL
   ```

2. Flush the PMEM cache.

   ```bash
   # dcli -g cell_group -l root cellcli -e "ALTER PMEMCACHE ALL FLUSH"
   ```
 The PMEM cache flushes the dirty data to the lower layer Write-Back Flash Cache.

3. Check that the flushing operation for the PMEM cache has completed.
 The flushing process is complete when the PMEM devices do not show up in the `cachedBy` attribute for the grid disks.

   ```bash
   CellCLI> LIST GRIDDISK ATTRIBUTES name, cachedBy
   DATA_CD_00_cel01     FD_00_cel01
   DATA_CD_01_cel01     FD_01_cel01
   DATA_CD_02_cel01     FD_03_cel01
   DATA_CD_03_cel01     FD_02_cel01
   DATA_CD_04_cel01     FD_00_cel01
   DATA_CD_05_cel01     FD_02_cel01
   ... 
   ```

4. Drop the PMEM cache.

   ```bash
   # dcli -g cell_group -l root cellcli -e drop pmemcache all
   ```

5. Set the `pmemCacheMode` attribute to writethrough.

   ```bash
   # dcli -g cell_group -l root cellcli -e "ALTER CELL
   pmemCacheMode=writethrough"
   ```

6. Re-create the PMEM cache.

   ```bash
   # dcli -l root -g cell_group cellcli -e create pmemcache all
   ```

7. Verify the `pmemCacheMode` has been set to writethrough.

   ```bash
   CellCLI> LIST CELL ATTRIBUTES pmemcachemode
   WriteThrough
   ```

3.6 Maintaining the M.2 Disks of Oracle Exadata Storage Server

Oracle Exadata Database Machine X7 and later systems come with two internal M.2 devices that contain the system area.
In all previous systems, the first two disks of the Oracle Exadata Storage Server are system disks and the portions on these system disks are referred to as the system area.

Note:

Oracle Exadata Rack and Oracle Exadata Storage Servers can remain online and available while replacing an M.2 disk.

- **Monitoring the Status of M.2 Disks**
 You can monitor the status of a M.2 disk by checking its attributes with the CellCLI `LIST PHYSICALDISK` command.

- **Replacing a M.2 Disk Due to Failure or Other Problems**

3.6.1 Monitoring the Status of M.2 Disks

You can monitor the status of a M.2 disk by checking its attributes with the CellCLI `LIST PHYSICALDISK` command.

The disk firmware maintains the error counters, and marks a drive with Predictive Failure when the disk is about to fail. The drive, not the cell software, determines if it needs replacement.

- Use the CellCLI command `LIST PHYSICALDISK` to determine the status of a M.2 disk:

```bash
CellCLI> LIST PHYSICALDISK WHERE disktype='M2Disk' DETAIL
name: M2_SYS_0
deviceName: /dev/sdm
diskType: M2Disk
makeModel: "INTEL SSDSCKJB150G7"
physicalFirmware: N2010112
physicalInsertTime: 2017-07-14T08:42:24-07:00
physicalSerial: PHDW7082000M150A
physicalSize: 139.7358807373047G
slotNumber: "M.2 Slot: 0"
status: failed

ame: M2_SYS_1
deviceName: /dev/sdn
diskType: M2Disk
makeModel: "INTEL SSDSCKJB150G7"
physicalFirmware: N2010112
physicalInsertTime: 2017-07-14T12:25:05-07:00
physicalSerial: PHDW7082000S2150A
physicalSize: 139.7358807373047G
slotNumber: "M.2 Slot: 1"
status: normal
```

The Exadata Storage Server M.2 disk statuses are:

- normal
3.6.2 Replacing a M.2 Disk Due to Failure or Other Problems

Failure of a M.2 disks reduces redundancy of the system area, and can impact patching, imaging, and system rescue. Therefore, the disk should be replaced with a new disk as soon as possible. When a M.2 disk fails, the storage server automatically and transparently switches to using the software stored on the inactive system disk, making it the active system disk.

An Exadata alert is generated when an M.2 disk fails. The alert includes specific instructions for replacing the disk. If you have configured the system for alert notifications, then the alert is sent by e-mail to the designated address.

M.2 disk is hot-pluggable and can be replaced when the power is on.

After the M.2 disk is replaced, Oracle Exadata System Software automatically adds the new device to the system partition and starts the rebuilding process.

1. Identify the failed M.2 disk.

 CellCLI> LIST PHYSICALDISK WHERE diskType=M2Disk AND status!=normal
 DETAIL
 name: M2_SYS_0
 deviceName: /dev/sda
 diskType: M2Disk
 makeModel: "INTEL SSDSCKJB150G7"
 physicalFirmware: N2010112
 physicalInsertTime: 2017-07-14T08:42:24-07:00
 physicalSerial: PHDW7082000M150A
 physicalSize: 139.73558807373047G
 slotNumber: "M.2 Slot: 0"
 status: failed - dropped for replacement

2. Locate the cell that has the white LED lit.

3. Open the chassis and identify the M.2 disk by the slot number in Step 1. The amber LED for this disk should be lit to indicate service is needed.

 M.2 disks are hot pluggable, so you do not need to power down the cell before replacing the disk.

4. Remove the M.2 disk:
 a. Rotate both riser board socket ejectors up and outward as far as they will go.
 The green power LED on the riser board turns off when you open the socket ejectors.
 b. Carefully lift the riser board straight up to the remove it from the sockets.

5. Insert the replacement M.2 disk:
a. Unpack the replacement flash riser board and place it on an antistatic mat.

b. Align the notch in the replacement riser board with the connector key in the connector socket.

c. Push the riser board into the connector socket until the riser board is securely seated in the socket.

Caution:

If the riser board does not easily seat into the connector socket, verify that the notch in the riser board is aligned with the connector key in the connector socket. If the notch is not aligned, damage to the riser board might occur.

d. Rotate both riser board socket ejectors inward until the ejector tabs lock the riser board in place.

The green power LED on the riser board turns on when you close the socket ejectors.

6. Confirm the M.2 disk has been replaced.

```
CellCLI> LIST PHYSICALDISK WHERE DISKTYPE=M2Disk DETAIL
   name:                  M2_SYS_0
deviceName:            /dev/sdm
diskType:              M2Disk
makeModel:             "INTEL SSDSCKJB150G7"
physicalFirmware:      N2010112
physicalInsertTime:    2017-08-24T18:55:13-07:00
physicalSerial:        PHDW708201G0150A
physicalSize:          139.73558807373047G
slotNumber:            "M.2 Slot: 0"
status:                normal

name:                  M2_SYS_1
deviceName:            /dev/sdn
diskType:              M2Disk
makeModel:             "INTEL SSDSCKJB150G7"
physicalFirmware:      N2010112
physicalInsertTime:    2017-08-24T18:55:13-07:00
physicalSerial:        PHDW708200SZ150A
physicalSize:          139.73558807373047G
slotNumber:            "M.2 Slot: 1"
status:                normal
```

7. Confirm the system disk arrays are have an active sync status, or are being rebuilt.

```
# mdadm --detail /dev/md[2-3][4-5]
/dev/md24:
   Container : /dev/md/imsm0, member 0
   Raid Level : raid1
   Array Size : 104857600 (100.00 GiB 107.37 GB)
   Used Dev Size : 104857600 (100.00 GiB 107.37 GB)
```
Raid Devices : 2
Total Devices : 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Major</th>
<th>Minor</th>
<th>RaidDevice</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>active</td>
</tr>
<tr>
<td>sync</td>
<td>/dev/sdb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>active</td>
</tr>
<tr>
<td>sync</td>
<td>/dev/sda</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

/dev/md25:
- Container: /dev/md/imsm0, member 1
- Raid Level: raid1
- Array Size: 41660416 (39.73 GiB 42.66 GB)
- Used Dev Size: 41660544 (39.73 GiB 42.66 GB)
- Raid Devices: 2
- Total Devices: 2

State : clean
Active Devices : 2
Working Devices : 2
Failed Devices : 0
Spare Devices : 0

UUID : 466173ba:507008c7:6d65ed89:3c40cf23

3.7 Managing the RAM Cache on the Storage Servers

Cell RAM Cache is a cache in front of the Flash Cache and is an extension of the database cache. It is faster than the Flash Cache, but has smaller capacity.

The Cell RAM Cache feature was introduced in Oracle Exadata System Software release 18c (18.1.0.0.0). Cell RAM Cache is disabled by default (`ramCacheMode` is set to `auto`).

- **About the Cell RAM Cache**
 - The Cell RAM Cache provides much lower IO latency for online transaction processing (OLTP) reads.

- **Sizing Recommendations for the Cell RAM Cache**
 - Use the buffer pool advisory section in the Automatic Workload Repository (AWR) reports during their peak OLTP workloads to determine the recommended size of the Cell RAM Cache.
• **Enabling the Cell RAM Cache**
 To enable the Cell RAM Cache feature, set the `ramCacheMode cell` attribute to `on` on each Oracle Exadata Storage Server.

• **Viewing the Cell RAM Cache Size**
 After the `ramCacheMode` attribute is set to `on`, the storage server automatically uses as much free memory as is available on the storage server to create the Cell RAM Cache.

• **Changing the Size of the Cell RAM Cache**
 Cell RAM Cache automatically uses as much free memory as is available on the storage server to create the Cell RAM Cache.

• **Monitoring Cell RAM Cache Usage Statistics**

• **Disabling the Cell RAM Cache**
 To disable the Cell RAM Cache feature, set the `ramCacheMode cell` attribute to `off` on each Oracle Exadata Storage Server.

3.7.1 About the Cell RAM Cache

The Cell RAM Cache provides much lower IO latency for online transaction processing (OLTP) reads.

In an OLTP workload, the `cell single block physical read wait` statistic typically shows up as a top consumer in database processing time. If these reads could be procured from the Cell RAM Cache, you can greatly reduce the read latency and reduce the IO wait time for these reads, improving the performance of OLTP applications.

Alternatively, you can view the Cell RAM Cache as an extension of the database buffer cache. The buffer cache misses become Cell RAM Cache hits, which accelerates OLTP performance because you are getting more cache hits from the combined power of the buffer cache and the Cell RAM Cache.

3.7.2 Sizing Recommendations for the Cell RAM Cache

Use the buffer pool advisory section in the Automatic Workload Repository (AWR) reports during their peak OLTP workloads to determine the recommended size of the Cell RAM Cache.

The default size for the Cell RAM Cache on Exadata Storage Servers without the memory expansion kit is rather limited, so this feature is not enabled by default. To get the acceleration benefits, you should first install memory expansion kits on the storage servers. Then, you can enable the Cell RAM Cache and the Oracle Exadata System Software automatically sizes the Cell RAM Cache based on the free memory on Exadata Storage Servers.

The buffer pool advisory section in the AWR reports during peak OLTP workloads can help determine how you should configure the Cell RAM Cache. For example:
In the above report, with the current buffer cache size (size factor of 1.00), the database performs approximately 338 million physical reads. If you increased the buffer cache by 87% (size factor of 1.87), you would reduce the physical reads to around 12 million.

If you created a Cell RAM Cache that is 87% of the buffer cache size, you could have 338,431,000 reads - 11,971,000 reads, or approximately 326 million reads being satisfied by the Cell RAM Cache. You can size the Cell RAM Cache based on the number of OLTP reads that you would like to benefit from the Cell RAM Cache. The total size of the Cell RAM Cache should be divided by the number of available storage servers to get the target RAM size to use for each storage server.

If you have an Oracle Real Application Clusters (Oracle RAC) database with multiple database instances, then each database instance has an independent buffer pool advisory in the respective AWR report. The physical read savings may vary from instance to instance. The report has already taken into account the case where a buffer cache miss can be satisfied by a cache fusion block transfer from another instance. So the buffer pool advisory report only estimates the actual storage reads after discounting the cache fusion block transfers. To size the Cell RAM Cache for Oracle RAC is very simple: decide how much additional space you need for each instance and add up the values. The sum is the amount of Cell RAM Cache that you need to provision.

Similarly, if you have multiple databases sharing the same set of cells, you can add up the additional buffer cache sizes for each database. The sum is the total amount of Cell RAM Cache you need to provision on the cells.

After you know what size Cell RAM Cache you want, you can then make a decision on which memory expansion kit suits your need best. You can add extra memory for both the database server and the storage server, and you can upgrade the servers in any order.

- Expanding database server memory gives you more memory to use on a given server, and potentially have a bigger buffer cache in addition to larger SGA, PGA, and so on.
• If you expand storage server memory, then the Cell RAM Cache is shared across all database servers. The additional memory can be leveraged by all database servers across all Oracle Virtual Machines (Oracle VM) and database instances. If you run different workloads at different times across different database servers or Oracle VMs, or if you are running a consolidated environment with multiple databases, then expanding the storage server memory might provide more flexibility for maximizing the usage of the additional memory because that memory can be shared across all databases.

3.7.3 Enabling the Cell RAM Cache

To enable the Cell RAM Cache feature, set the `ramCacheMode` cell attribute to `on` on each Oracle Exadata Storage Server.

The Cell RAM Cache feature is disabled by default (`ramCacheMode` is set to `auto`). When you change the `ramCacheMode` to `on` for a storage server, the storage server automatically uses as much free memory as is available on the storage server to create the Cell RAM Cache.

1. Change the value of the `ramCacheMode` attribute on each cell.

 You can use `dcli` to modify multiple cells with a single command, or you can run the following command on each Oracle Exadata Storage Server.

   ```
   CellCLI> ALTER CELL ramCacheMode=on
   Cell host03celadm10 successfully altered
   ```

2. Restart CellSrv.

   ```
   CellCLI> ALTER CELL RESTART SERVICES CELLSRV
   ```

3.7.4 Viewing the Cell RAM Cache Size

After the `ramCacheMode` attribute is set to `on`, the storage server automatically uses as much free memory as is available on the storage server to create the Cell RAM Cache.

The creation of RAM cache takes place asynchronously in the background. If you query the size of the Cell RAM Cache immediately after enabling this feature, you will not see an accurate size. You can monitor the cell `alert.log` to follow the progress of Cell RAM Cache creation.

• To view the current status of the Cell RAM Cache, retrieve the `ramCacheMode`, `ramCacheSize` and `ramCacheMaxSize` attributes for the cell.

   ```
   CellCLI> LIST CELL ATTRIBUTES ramCacheMaxSize,ramCacheMode, ramCacheSize
   18.875G         On          18.875G
   ```
3.7.5 Changing the Size of the Cell RAM Cache

Cell RAM Cache automatically uses as much free memory as is available on the storage server to create the Cell RAM Cache.

After you enable the Cell RAM Cache feature, the storage server automatically uses as much free memory as is available on the Oracle Exadata Storage Server to create the Cell RAM Cache. The size of the Cell RAM Cache can be determined by using the CellCLI LIST CELL ramCacheSize command.

The ramCacheMaxSize attribute determines the maximum amount of memory that can be used for the Cell RAM Cache.

To limit the size of the Cell RAM Cache, modify the value of the ramCacheMaxSize attribute on each storage server.

You can use exadcli to modify multiple storage servers with a single command, or you can run the following command on each Oracle Exadata Storage Server.

CellCLI> ALTER CELL ramCacheMaxSize=1G
Cell host03celadm10 successfully altered

Example 3-1 Limit the Size of the Cell RAM Cache

To limit the maximum size of the Cell RAM Cache to 1 GB, use the following command on to modify multiple Oracle Exadata Storage Servers:

exadcli -c cell01,cell02,cell03 -l celladministrator alter cell ramCacheMaxSize=1G

Related Topics
• Sizing Recommendations for the Cell RAM Cache

3.7.6 Monitoring Cell RAM Cache Usage Statistics

Use the following methods to monitor Cell RAM Cache usage:

• ExaWatcher reports
 RamCache size and read, write, and population operation related stats are exposed via cellsrvstat in the “RamCache related stats” section.
• AWR report, in the Memory Cache section.

There are 3 subsections:
 – Memory Cache Space Usage: For each cell, this table shows the space allocated for the Cell RAM Cache and the percentage of space used in the Cell RAM Cache for OLTP activity.
 – Memory Cache User Reads: For each cell, this table shows the read statistics for the Cell RAM Cache based on the number of reads and the amount of data read (MB).
3.7.7 Disabling the Cell RAM Cache

To disable the Cell RAM Cache feature, set the `ramCacheMode` cell attribute to `off` on each Oracle Exadata Storage Server.

Note:
The Cell RAM Cache feature is disabled by default (`ramCacheMode` is set to `auto`).

1. Change the value of the `ramCacheMode` attribute on each cell.
 You can use `dcli` to modify multiple cells with a single command, or you can run the following command on each Oracle Exadata Storage Server.

   ```
   CellCLI> ALTER CELL ramCacheMode=off
   Cell host03celadm10 successfully altered
   ```

2. Restart CellSrv.
   ```
   CellCLI> ALTER CELL RESTART SERVICES CELLSRV
   ```

3.8 Resizing Grid Disks

You can resize grid disks and Oracle ASM disk groups to shrink one with excess free space and increase the size of another that is near capacity.

Initial configuration of Oracle Exadata Database Machine disk group sizes is based on Oracle best practices and the location of the backup files.

- For internal backups: allocation of available space is 40% for the DATA disk groups, and 60% for the RECO disk groups.
- For external backups: allocation of available space is 80% for the DATA disk group, and 20% for the RECO disk group.

The disk group allocations can be changed after deployment. For example, the DATA disk group allocation may be too small at 60%, and need to be resized to 80%.

If your system has no free space available on the cell disks and one disk group, for example RECO, has plenty of free space, then you can resize the RECO disk group to a smaller size and reallocate the free space to the DATA disk group. The free space available after shrinking the RECO disk group is at a non-contiguous offset from the existing space allocations for the DATA disk group. Grid disks can use space anywhere on the cell disks and do not have to be contiguous.

If you are expanding the grid disks and the cell disks already have sufficient space to expand the existing grid disks, then you do not need to first resize an existing disk group. You would skip steps 2 and 3 below where the example shows the RECO disk group and grid disks are shrunk (you should still verify the cell disks have enough free space).
space before growing the DATA grid disks). The amount of free space the administrator should reserve depends on the level of failure coverage.

If you are shrinking the size of the grid disks, you should understand how space is reserved for mirroring. Data is protected by Oracle ASM using normal or high redundancy to create one or two copies of data, which are stored as file extents. These copies are stored in separate failure groups. A failure in one failure group does not affect the mirror copies, so data is still accessible.

When a failure occurs, Oracle ASM re-mirrors, or rebalances, any extents that are not accessible so that redundancy is reestablished. For the re-mirroring process to succeed, sufficient free space must exist in the disk group to allow creation of the new file extent mirror copies. If there is not enough free space, then some extents will not be re-mirrored and the subsequent failure of the other data copies will require the disk group to be restored from backup. Oracle ASM sends an error when a re-mirror process fails due to lack of space.

You must be using Oracle Exadata System Software release 12.1.2.1.0 or higher, or have the patch for bug 19695225 applied to your software.

This procedure for resizing grid disks applies to bare metal and virtual machine (VM) deployments.

1. Determine the Amount of Available Space
2. Shrink the Oracle ASM Disks in the Donor Disk Group
3. Shrink the Grid Disks in the Donor Disk Group
4. Increase the Size of the Grid Disks Using Available Space
5. Increase the Size of the Oracle ASM Disks

 • Determine the Amount of Available Space
 To increase the size of the disks in a disk group you must either have unallocated disk space available, or you have to reallocate space currently used by a different disk group.

 • Shrink the Oracle ASM Disks in the Donor Disk Group
 If there is no free space available on the cell disks, you can reduce the space used by one disk group to provide additional disk space for a different disk group.

 • Shrink the Grid Disks in the Donor Disk Group
 After shrinking the disks in the Oracle ASM disk group, you then shrink the size of the grid disks on each cell.

 • Increase the Size of the Grid Disks Using Available Space
 You can increase the size used by the grid disks if there is unallocated disk space either already available, or made available by shrinking the space used by a different Oracle ASM disk group.

 • Increase the Size of the Oracle ASM Disks
 You can increase the size used by the Oracle ASM disks after increasing the space allocated to the associated grid disks.

Related Topics
 • Understanding ASM Capacity and Reservation of Free Space in Exadata (My Oracle Support Doc ID 1551288.1)
 • Bug 19695225 - Running Many Create or Alter Griddisk Commands Over Time Causes Cell Disk Metadata Corruption (ORA-600 [addNewSegmentsToGDisk_2]) and Loss of Cell Disk Content (My Oracle Support Doc ID 1991445.1)
3.8.1 Determine the Amount of Available Space

To increase the size of the disks in a disk group you must either have unallocated disk space available, or you have to reallocate space currently used by a different disk group.

You can also use a script available in "Script to Calculate New Grid Disk and Disk Group Sizes in Exadata (My Oracle Support Doc ID 1464809.1)" to assist in determining how much free space is available to shrink a disk group.

1. View the space currently used by the disk groups.

```sql
SELECT name, total_mb, free_mb, total_mb - free_mb used_mb,
       round(100*free_mb/total_mb,2) pct_free
FROM v$asm_diskgroup
ORDER BY 1;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>TOTAL_MB</th>
<th>FREE_MB</th>
<th>USED_MB</th>
<th>PCT_FREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAC1</td>
<td>68812800</td>
<td>9985076</td>
<td>58827724</td>
<td>14.51</td>
</tr>
<tr>
<td>RECOC1</td>
<td>94980480</td>
<td>82594920</td>
<td>12385560</td>
<td>86.96</td>
</tr>
</tbody>
</table>

The example above shows that the DATAC1 disk group has only about 15% of free space available while the RECOC1 disk group has about 87% free disk space. The PCT_FREE displayed here is raw free space, not usable free space. Additional space is needed for rebalancing operations.

2. For the disk groups you plan to resize, view the count and status of the failure groups used by the disk groups.

```sql
SELECT dg.name, d.failgroup, d.state, d.header_status, d.mount_mode,
       d.mode_status, count(1) num_disks
FROM V$ASM_DISK d, V$ASM_DISKGROUP dg
WHERE d.group_number = dg.group_number
AND dg.name IN ('RECOC1', 'DATAC1')
GROUP BY dg.name, d.failgroup, d.state, d.header_status, d.mount_status,
        d.mode_status
ORDER BY 1, 2, 3;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>FAILGROUP</th>
<th>STATE</th>
<th>HEADER_STATUS</th>
<th>MOUNT_S</th>
<th>MODE_STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAC1</td>
<td>EXA01CELADM01</td>
<td>NORMAL</td>
<td>MEMBER</td>
<td>CACHED</td>
<td>ONLINE</td>
</tr>
<tr>
<td>DATAC1</td>
<td>EXA01CELADM02</td>
<td>NORMAL</td>
<td>MEMBER</td>
<td>CACHED</td>
<td>ONLINE</td>
</tr>
<tr>
<td>DATAC1</td>
<td>EXA01CELADM03</td>
<td>NORMAL</td>
<td>MEMBER</td>
<td>CACHED</td>
<td>ONLINE</td>
</tr>
<tr>
<td>DATAC1</td>
<td>EXA01CELADM04</td>
<td>NORMAL</td>
<td>MEMBER</td>
<td>CACHED</td>
<td>ONLINE</td>
</tr>
<tr>
<td>DATAC1</td>
<td>EXA01CELADM05</td>
<td>NORMAL</td>
<td>MEMBER</td>
<td>CACHED</td>
<td>ONLINE</td>
</tr>
<tr>
<td>DATAC1</td>
<td>EXA01CELADM06</td>
<td>NORMAL</td>
<td>MEMBER</td>
<td>CACHED</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>
The above example is for a full rack, which has 14 cells and 14 failure groups for DATAC1 and RECOC1. Verify that each failure group has at least 12 disks in the NORMAL state (num_disks). If you see disks listed as MISSING, or you see an unexpected number of disks for your configuration, then do not proceed until you resolve the problem.

Extreme Flash systems should see a disk count of 8 instead of 12 for num_disks.

3. List the corresponding grid disks associated with each cell and each failure group, so you know which grid disks to resize.

```
SELECT dg.name, d.failgroup, d.path
FROM V$ASM_DISK d, V$ASM_DISKGROUP dg
WHERE d.group_number = dg.group_number
AND dg.name IN ('RECOC1', 'DATAC1')
ORDER BY 1, 2, 3;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>FAILGROUP</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_00_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_01_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_02_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_03_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_04_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_05_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_06_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_07_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_08_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_09_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_10_exa01celadm01</td>
<td></td>
</tr>
<tr>
<td>DATAC1 EXA01CELADM01</td>
<td>o/192.168.74.43/DATAC1_CD_11_exa01celadm01</td>
<td></td>
</tr>
</tbody>
</table>
4. Check the cell disks for available free space.

Free space on the cell disks can be used to increase the size of the DATAC1 grid disks. If there is not enough available free space to expand the DATAC1 grid disks, then you must shrink the RECOC1 grid disks to provide the additional space for the desired new size of DATAC1 grid disks.

```
[root@exa01adm01 tmp]# dcli -g ~/cell_group -l root "cellcli -e list celldisk \n    attributes name,freespace"
  exa01celadm01: CD_00_exa01celadm01 0
  exa01celadm01: CD_01_exa01celadm01 0
  exa01celadm01: CD_02_exa01celadm01 0
  exa01celadm01: CD_03_exa01celadm01 0
  exa01celadm01: CD_04_exa01celadm01 0
  exa01celadm01: CD_05_exa01celadm01 0
  exa01celadm01: CD_06_exa01celadm01 0
  exa01celadm01: CD_07_exa01celadm01 0
  exa01celadm01: CD_08_exa01celadm01 0
  exa01celadm01: CD_09_exa01celadm01 0
  exa01celadm01: CD_10_exa01celadm01 0
  exa01celadm01: CD_11_exa01celadm01 0
  ...
```

In this example, there is no free space available, so you must shrink the RECOC1 grid disks first to provide space for the DATAC1 grid disks. In your configuration there might be plenty of free space available and you can use that free space instead of shrinking the RECOC1 grid disks.

5. Calculate the amount of space to shrink from the RECOC1 disk group and from each grid disk.

The minimum size to safely shrink a disk group and its grid disks must take into account the following:

- Space currently in use (\textit{USED_MB})
- Space expected for growth (\textit{GROWTH_MB})
- Space needed to rebalance in case of disk failure (\textit{DFC_MB}), typically 15% of total disk group size
The minimum size calculation taking the above factors into account is:

Minimum DG size (MB) = (USED MB + GROWTH MB) * 1.15

- USED MB can be derived from V$ASM_DISKGROUP by calculating TOTAL MB - FREE MB
- GROWTH MB is an estimate specific to how the disk group will be used in the future and should be based on historical patterns of growth

For the RECOC1 disk group space usage shown in step 1, we see the minimum size it can shrink to assuming no growth estimates is:

Minimum RECOC1 size = (TOTAL_MB - FREE_MB + GROWTH_MB) * 1.15
= (94980480 - 82594920 + 0) * 1.15 = 14243394 MB = 13,910 GB

In the example output shown in Step 1, RECOC1 has plenty of free space and DATAC1 has less than 15% free. So, you could shrink RECOC1 and give the freed disk space to DATAC1. If you decide to reduce RECOC1 to half of its current size, the new size is 94980480 / 2 = 47490240 MB. This size is significantly above the minimum size we calculated for the RECOC1 disk group above, so it is safe to shrink it down to this value.

The query in Step 2 shows that there are 168 grid disks for RECOC1, because there are 14 cells and 12 disks per cell (14 * 12 = 168). The estimated new size of each grid disk for the RECOC1 disk group is 47490240 / 168, or 282,680 MB.

Find the closest 16 MB boundary for the new grid disk size. If you do not perform this check, then the cell will round down the grid disk size to the nearest 16 MB boundary automatically, and you could end up with a mismatch in size between the Oracle ASM disks and the grid disks.

SQL> SELECT 16*TRUNC(&new_disk_size/16) new_disk_size FROM dual;

Enter value for new_disk_size: 282680

NEW_DISK_SIZE

282672

Based on the above result, you should choose 282672 MB as the new size for the grid disks in the RECOC1 disk group. After resizing the grid disks, the size of the RECOC1 disk group will be 47488896 MB.

6. Calculate how much to increase the size of each grid disk in the DATAC1 disk group.

Ensure the Oracle ASM disk size and the grid disk sizes match across the entire disk group. The following query shows the combinations of disk sizes in each disk group. Ideally, there is only one size found for all disks and the sizes of both the Oracle ASM (total_mb) disks and the grid disks (os_mb) match.

```
SELECT dg.name, d.total_mb, d.os_mb, count(1) num_disks
FROM v$asm_diskgroup dg, v$asm_disk d
WHERE dg.group_number = d.group_number
GROUP BY dg.name, d.total mb, d.os_mb;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>TOTAL MB</th>
<th>OS_MB</th>
<th>NUM_DISKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After shrinking RECOC1’s grid disks, the following space is left per disk for DATAC1:

Additional space for DATAC1 disks = \(RECOC1\text{_current_size} - \ RECOC1\text{_new_size}\)

\[= 565360 - 282672 = 282688 \text{ MB}\]

To calculate the new size of the grid disks for the DATAC1 disk group, use the following:

\[\text{DATAC1_disks\ new_size} = \text{DATAC1_disks\ current_size} + \ new_free_space\ from\ \text{RECOC1}\]

\[= 409600 + 282688 = 692288 \text{ MB}\]

Find the closest 16 MB boundary for the new grid disk size. If you do not perform this check, then the cell will round down the grid disk size to the nearest 16 MB boundary automatically, and you could end up with a mismatch in size between the Oracle ASM disks and the grid disks.

\[\text{SQL} > \text{SELECT} \ 16\text{_TRUNC}((\text{new_disk_size}/16)) \ \text{new_disk_size} \ \text{FROM} \ \text{dual};\]

\[
\begin{array}{l}
\text{NEW_DISK_SIZE} \\
\hspace{1cm}692288
\end{array}
\]

Based on the query result, you can use the calculated size of 692288 MB for the disks in the DATAC1 disk groups because the size is on a 16 MB boundary. If the result of the query is different from the value you supplied, then you must use the value returned by the query because that is the value to which the cell will round the grid disk size.

The calculated value of the new grid disk size will result in the DATAC1 disk group having a total size of 116304384 MB (168 disks \(\times\) 692288 MB).

3.8.2 Shrink the Oracle ASM Disks in the Donor Disk Group

If there is no free space available on the cell disks, you can reduce the space used by one disk group to provide additional disk space for a different disk group.

This task is a continuation of an example where space in the RECOC1 disk group is being reallocated to the DATAC1 disk group.

Before resizing the disk group, make sure the disk group you are taking space from has sufficient free space.

1. Shrink the Oracle ASM disks for the RECO disk group down to the new desired size for all disks.
Use the new size for the disks in the RECO disk group that was calculated in Step 5 of Determine the Amount of Available Space.

SQL> ALTER DISKGROUP recoc1 RESIZE ALL SIZE 282672M REBALANCE POWER 64;

Note:

The ALTER DISKGROUP command may take several minutes to complete. The SQL prompt will not return until this operation has completed.

If the specified disk group has quorum disks configured within the disk group, then the ALTER DISKGROUP ... RESIZE ALL command could fail with error ORA-15277. Quorum disks are configured if the requirements specified in Managing Quorum Disks for High Redundancy Disk Groups are met. As a workaround, you can specify the storage server failure group names (for the ones with a FAILURE_TYPE of REGULAR, not QUORUM) explicitly in the SQL command, for example:

SQL> ALTER DISKGROUP recoc1 RESIZE DISKS IN FAILGROUP exacell01 SIZE 282672M,
exacell02 SIZE 282672M, exacell03 SIZE 282672M REBALANCE POWER 64;

Wait for rebalance to finish by checking the view GV$ASM_OPERATION.

SQL> set lines 250 pages 1000
SQL> col error_code form a10
SQL> SELECT dg.name, o.*
2 FROM gv$asm_operation o, v$asm_diskgroup dg
3 WHERE o.group_number = dg.group_number;

Proceed to the next step ONLY when the query against GV$ASM_OPERATION shows no rows for the disk group being altered.

2. Verify the new size of the ASM disks using the following queries:

SQL> SELECT name, total_mb, free_mb, total_mb - free_mb used_mb,
2 ROUND(100*free_mb/total_mb,2) pct_free
3 FROM v$asm_diskgroup
4 ORDER BY 1;

<table>
<thead>
<tr>
<th>NAME</th>
<th>TOTAL_MB</th>
<th>FREE_MB</th>
<th>USED_MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA1C</td>
<td>68812800</td>
<td>9985076</td>
<td>58827724</td>
</tr>
<tr>
<td>14.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECO1C</td>
<td>47488896</td>
<td>35103336</td>
<td>12385560</td>
</tr>
<tr>
<td>73.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SQL> SELECT dg.name, d.total_mb, d.os_mb, COUNT(1) num_disks
FROM v$asm_diskgroup dg, v$asm_disk d
WHERE dg.group_number = d.group_number
GROUP BY dg.name, d.total_mb, d.os_mb;

<table>
<thead>
<tr>
<th>NAME</th>
<th>TOTAL_MB</th>
<th>OS_MB</th>
<th>NUM_DISKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAC1</td>
<td>409600</td>
<td>409600</td>
<td>168</td>
</tr>
<tr>
<td>RECOC1</td>
<td>282672</td>
<td>565360</td>
<td>168</td>
</tr>
</tbody>
</table>

The above query example shows that the disks in the RECOC1 disk group have been resized to a size of 282672 MG each, and the total disk group size is 47488896 MB.

3.8.3 Shrink the Grid Disks in the Donor Disk Group

After shrinking the disks in the Oracle ASM disk group, you then shrink the size of the grid disks on each cell.

This task is a continuation of a example where space in the RECOC1 disk group is being reallocated to the DATAC1 disk group.

You must have first completed the task Shrink the Oracle ASM Disks in the Donor Disk Group.

1. Shrink the grid disks associated with the RECO disk group on all cells down to the new, smaller size.

For each storage cell identified in Determine the Amount of Available Space in Step 3, shrink the grid disks to match the size of the Oracle ASM disks that were shrunk in the previous task. Use commands similar to the following:

dcli -c exa01celadm01 -l root "cellcli -e alter griddisk
RECO1_CD_00_exa01celadm01 \
,RECO1_CD_01_exa01celadm01 \
,RECO1_CD_02_exa01celadm01 \
,RECO1_CD_03_exa01celadm01 \
,RECO1_CD_04_exa01celadm01 \
,RECO1_CD_05_exa01celadm01 \
,RECO1_CD_06_exa01celadm01 \
,RECO1_CD_07_exa01celadm01 \
,RECO1_CD_08_exa01celadm01 \
,RECO1_CD_09_exa01celadm01 \
,RECO1_CD_10_exa01celadm01 \
,RECO1_CD_11_exa01celadm01 \
size=282672M "

dcli -c exa01celadm02 -l root "cellcli -e alter griddisk
RECO1_CD_00_exa01celadm02 \
,RECO1_CD_01_exa01celadm02 \
,RECO1_CD_02_exa01celadm02 \
,RECO1_CD_03_exa01celadm02 \
,RECO1_CD_04_exa01celadm02 \
,RECO1_CD_05_exa01celadm02 \
,RECO1_CD_06_exa01celadm02 \
,RECO1_CD_07_exa01celadm02 \
,RECO1_CD_08_exa01celadm02 \
,RECO1_CD_09_exa01celadm02 \
,RECO1_CD_10_exa01celadm02 \
,RECO1_CD_11_exa01celadm02 \
size=282672M "

Chapter 3
Resizing Grid Disks
3-71
2. Verify the new size of the grid disks using the following command:

```bash
[root@exa01adm01 tmp]# dcli -g cell_group -l root "cellcli -e list griddisk attributes name,size where name like 'RECOC1.*'"
```

```
exa01celadm01: RECOC1_CD_00_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_01_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_02_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_03_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_04_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_05_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_06_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_07_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_08_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_09_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_10_exa01celadm01 276.046875G
exa01celadm01: RECOC1_CD_11_exa01celadm01 276.046875G
```

The above example shows that the disks in the RECOC1 disk group have been resized to a size of 282672 MB each (276.046875 * 1024).

3.8.4 Increase the Size of the Grid Disks Using Available Space

You can increase the size used by the grid disks if there is unallocated disk space either already available, or made available by shrinking the space used by a different Oracle ASM disk group.

This task is a continuation of an example where space in the RECOC1 disk group is being reallocated to the DATAC1 disk group. If you already have sufficient space to expand an existing disk group, then you do not need to reallocate space from a different disk group.
1. Check that the cell disks have the expected amount of free space.

After completing the tasks to shrink the Oracle ASM disks and the grid disks, you would expect to see the following free space on the cell disks:

```
[root@exa01adm01 tmp]# dcli -g ~/cell_group -l root "cellcli -e list celldisk \ attributes name,freespace"
```

```
exa01celadm01: CD_00_exa01celadm01 276.0625G
exa01celadm01: CD_01_exa01celadm01 276.0625G
exa01celadm01: CD_02_exa01celadm01 276.0625G
exa01celadm01: CD_03_exa01celadm01 276.0625G
exa01celadm01: CD_04_exa01celadm01 276.0625G
exa01celadm01: CD_05_exa01celadm01 276.0625G
exa01celadm01: CD_06_exa01celadm01 276.0625G
exa01celadm01: CD_07_exa01celadm01 276.0625G
exa01celadm01: CD_08_exa01celadm01 276.0625G
exa01celadm01: CD_09_exa01celadm01 276.0625G
exa01celadm01: CD_10_exa01celadm01 276.0625G
exa01celadm01: CD_11_exa01celadm01 276.0625G
... 
```

2. For each storage cell, increase the size of the DATA grid disks to the desired new size.

Use the size calculated in Determine the Amount of Available Space.

```
dcli -c exa01celadm01 -l root "cellcli -e alter griddisk \ DATA1_CD_00_exa01celadm01 \ ,DATA1_CD_01_exa01celadm01 \ ,DATA1_CD_02_exa01celadm01 \ ,DATA1_CD_03_exa01celadm01 \ ,DATA1_CD_04_exa01celadm01 \ ,DATA1_CD_05_exa01celadm01 \ ,DATA1_CD_06_exa01celadm01 \ ,DATA1_CD_07_exa01celadm01 \ ,DATA1_CD_08_exa01celadm01 \ ,DATA1_CD_09_exa01celadm01 \ ,DATA1_CD_10_exa01celadm01 \ ,DATA1_CD_11_exa01celadm01 \ size=692288M "
```

```
dcli -c exa01celadm14 -l root "cellcli -e alter griddisk \ DATA1_CD_00_exa01celadm14 \ ,DATA1_CD_01_exa01celadm14 \ ,DATA1_CD_02_exa01celadm14 \ ,DATA1_CD_03_exa01celadm14 \ ,DATA1_CD_04_exa01celadm14 \ ,DATA1_CD_05_exa01celadm14 \ ,DATA1_CD_06_exa01celadm14 \ ,DATA1_CD_07_exa01celadm14 \ ,DATA1_CD_08_exa01celadm14 \ ,DATA1_CD_09_exa01celadm14 \ ,DATA1_CD_10_exa01celadm14 \`
```

3. Verify the new size of the grid disks associated with the DATAC1 disk group using the following command:

```bash
dcli -g cell_group -l root "cellcli -e list griddisk attributes name,size where name like '\DATAC1.*'"
```

exa01celadm01: DATAC1_CD_00_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_01_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_02_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_03_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_04_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_05_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_06_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_07_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_08_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_09_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_10_exa01celadm01 676.0625G
exa01celadm01: DATAC1_CD_11_exa01celadm01 676.0625G

Instead of increasing the size of the DATA disk group, you could instead create new disk groups with the new free space or keep it free for future use. In general, Oracle recommends using the smallest number of disk groups needed (typically DATA, RECO, and DBFS_DG) to give the greatest flexibility and ease of administration. However, there may be cases, perhaps when using virtual machines or consolidating many databases, where additional disk groups or available free space for future use may be desired.

If you decide to leave free space on the grid disks in reserve for future use, please see the My Oracle Support Note 1684112.1 for the steps on how to allocate free space to an existing disk group at a later time.

Related Topics

- How to resize ASM disks in Exadata (My Oracle Support Doc ID 1684112.1)
- Determine the Amount of Available Space

To increase the size of the disks in a disk group you must either have unallocated disk space available, or you have to reallocate space currently used by a different disk group.

3.8.5 Increase the Size of the Oracle ASM Disks

You can increase the size used by the Oracle ASM disks after increasing the space allocated to the associated grid disks.

This task is a continuation of an example where space in the RECO1 disk group is being reallocated to the DATAC1 disk group.

You must have completed the task of resizing the grid disks before you can resize the corresponding Oracle ASM disk group.
1. Increase the Oracle ASM disks for DATAC1 disk group to the new size of the grid disks on the storage cells.

```sql
SQL> ALTER DISKGROUP data1 RESIZE ALL;
```

This command resizes the Oracle ASM disks to match the size of the grid disks.

Note:

If the specified disk group has quorum disks configured within the disk group, then the `ALTER DISKGROUP ... RESIZE ALL` command could fail with error `ORA-15277`. Quorum disks are configured if the requirements specified in *Oracle Exadata Database Machine Maintenance Guide* are met.

As a workaround, you can specify the storage server failure group names (for the ones of `FAILURE_TYPE "REGULAR", not "QUORUM"`) explicitly in the SQL command, for example:

```sql
SQL> ALTER DISKGROUP data1 RESIZE DISKS IN FAILGROUP exacell01, exacell02, exacell03;
```

2. Wait for the rebalance operation to finish.

```sql
SQL> set lines 250 pages 1000
SQL> col error_code form a10
SQL> SELECT dg.name, o.* FROM gv$asm_operation o, v$asm_diskgroup dg
WHERE o.group_number = dg.group_number;
```

Do not continue to the next step until the query returns zero rows for the disk group that was altered.

3. Verify that the new sizes for the Oracle ASM disks and disk group is at the desired sizes.

```sql
SQL> SELECT name, total_mb, free_mb, total_mb - free_mb used_mb,
ROUND(100*free_mb/total_mb,2) pct_free
FROM v$asm_diskgroup
ORDER BY 1;
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>TOTAL_MB</th>
<th>FREE_MB</th>
<th>USED_MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAC1</td>
<td>116304384</td>
<td>57439796</td>
<td>58864588</td>
</tr>
<tr>
<td>RECOC1</td>
<td>47488896</td>
<td>34542516</td>
<td>12946380</td>
</tr>
</tbody>
</table>

```sql
SQL> SELECT dg.name, d.total_mb, d.os_mb, COUNT(1) num_disks
FROM v$asm_diskgroup dg, v$asm_disk d
```

Chapter 3
Resizing Grid Disks
3-75
WHERE dg.group_number = d.group_number
GROUP BY dg.name, d.total_mb, d.os_mb;

<table>
<thead>
<tr>
<th>NAME</th>
<th>TOTAL_MB</th>
<th>OS_MB</th>
<th>NUM_DISKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAC1</td>
<td>692288</td>
<td>692288</td>
<td>168</td>
</tr>
<tr>
<td>RECOC1</td>
<td>282672</td>
<td>282672</td>
<td>168</td>
</tr>
</tbody>
</table>

The results of the queries show that the RECOC1 and DATAC1 disk groups and disk have been resized.

Related Topics

- **Determine the Amount of Available Space**
 To increase the size of the disks in a disk group you must either have unallocated disk space available, or you have to reallocate space currently used by a different disk group.

3.9 Using the Oracle Exadata System Software Rescue Procedure

In the rare event that both system disks fail simultaneously, you must use the Oracle Exadata Storage Server rescue functionality provided on the Oracle Exadata System Software CELLBOOT USB flash drive.

- **About the Oracle Exadata System Software Rescue Procedure**
 The rescue procedure is necessary when system disks fail, the operating system has a corrupt file system, or there was damage to the boot area.

- **Performing Rescue Using the CELLBOOT USB Flash Drive**
 You can use the CELLBOOT USB flash drive to perform the rescue procedure.

- **Configuring Oracle Exadata Database Machine Storage Servers After Rescue**
 After a successful rescue, you must configure the cell. If the data partitions were preserved, then the cell disks were imported automatically during the rescue procedure.

- **Configuring Oracle Exadata Database Machine Eighth Rack Storage Servers After Rescue**
 For storage servers that are part of an Eighth Rack system, after a successful rescue, you must configure the cell using these steps.

- **Re-creating a Damaged CELLBOOT USB Flash Drive**

3.9.1 About the Oracle Exadata System Software Rescue Procedure

The rescue procedure is necessary when system disks fail, the operating system has a corrupt file system, or there was damage to the boot area.

If only one system disk fails, then use CellCLI commands to recover.

If you are using normal redundancy, then there is only one mirror copy for the cell being rescued. The data may be irrecoverably lost if that single mirror also fails during the rescue procedure. Oracle recommends that you take a complete backup of the data on the mirror copy, and immediately take the mirror copy cell offline to prevent
any new data changes to it prior to attempting a rescue. This ensures that all data residing on the grid disks on the failed cell and its mirror copy is inaccessible during rescue procedure.

The Oracle Automatic Storage Management (Oracle ASM) disk repair timer has a default repair time of 3.6 hours. If you know that you cannot perform the rescue procedure within that time frame, then you should use the Oracle ASM rebalance procedure to rebalance the disk until you can do the rescue procedure.

When using high redundancy disk groups, such as having more than one mirror copy in Oracle ASM for all the grid disks of the failed cell, then take the failed cell offline. Oracle ASM automatically drops the grid disks on the failed cell after the configured Oracle ASM time out, and starts rebalancing data using mirror copies. The default timeout is two hours. If the cell rescue takes more than two hours, then you must re-create the grid disks on the rescued cells in Oracle ASM.

Caution:

Use the rescue procedure with extreme caution. Incorrectly using the procedure can cause data loss.

It is important to note the following when using the rescue procedure:

- The rescue procedure can potentially rewrite some or all of the disks in the cell. If this happens, then you can lose all the content on those disks without possibility of recovery.

 Use extreme caution when using this procedure, and pay attention to the prompts. Ideally, you should use the rescue procedure only with assistance from Oracle Support Services, and when you have decided that you can afford the loss of data on some or all of the disks.

- The rescue procedure does not destroy the contents of the data disks or the contents of the data partitions on the system disks unless you explicitly choose to do so during the rescue procedure.

- Starting in Oracle Exadata System Software release 11.2, the rescue procedure restores the Oracle Exadata System Software to the same release. This includes any patches that existed on the cell as of the last successful boot. Note the following about using the rescue procedure:

 - Cell configuration information, such as alert configurations, SMTP information, administrator e-mail address, and so on is not restored.

 - The network configuration that existed at the end of last successful run of `/usr/local/bin/ipconf` utility is restored.

 - The SSH identities for the cell, and the `root`, `celladmin` and `cellmonitor` users are restored.

 - Integrated Lights Out Manager (ILOM) configurations for Oracle Exadata Storage Servers are not restored. Typically, ILOM configurations remain undamaged even in case of Oracle Exadata System Software failures.

- The rescue procedure does not examine or reconstruct data disks or data partitions on the system disks. If there is data corruption on the grid disks, then do not use the rescue procedure. Instead use the rescue procedure for Oracle Database and Oracle ASM.
After a successful rescue, you must reconfigure the cell, and if you had chosen to preserve the data, then import the cell disks. If you chose not to preserve the data, then you should create new cell disks, and grid disks.

Related Topics
- About Oracle ASM Disk Repair Timer
- ALTER CELL
- Configuring Cells, Cell Disks, and Grid Disks with CellCLI

3.9.2 Performing Rescue Using the CELLBOOT USB Flash Drive

You can use the CELLBOOT USB flash drive to perform the rescue procedure.

1. Connect to the Oracle Exadata Storage Server using the console.
2. Start the Oracle Exadata Storage Server.

 You will see something like the following:

   ```
   Press any key to enter the menu
   Booting Exadata_DBM_0: CELL_USB_BOOT_trying_C0D0_as_HD1 in 4 seconds...
   Booting Exadata_DBM_0: CELL_USB_BOOT_trying_C0D0_as_HD1 in 3 seconds...
   Press any key to see the menu.
   ```

 Note that for old versions of Oracle Exadata System Software, you may see the "Oracle Exadata" splash screen. If the splash screen appears, press any key on the keyboard. The splash screen remains visible for only 5 seconds.

3. In the displayed list of boot options, scroll down to the last option, `CELL_USB_BOOT_CELLBOOT_usb_in_rescue_mode`, and then press Enter.
4. Select the rescue option, and proceed with the rescue.
5. When prompted to restart the system or enter the shell at the end of the first phase of the rescue, perform the following steps:
 a. Choose to enter the shell. Do not choose to restart the system.
 b. Log in to the shell using the rescue root password.
 c. Run the `shutdown -r now` command from the shell.
 d. Press F8 as the cell restarts and before the Oracle Exadata splash screen appears.
 Pressing F8 accesses the boot device selection menu.
 e. Select the RAID controller as the boot device.
 This causes the cell to boot from the hard disks.
3.9.3 Configuring Oracle Exadata Database Machine Storage Servers After Rescue

After a successful rescue, you must configure the cell. If the data partitions were preserved, then the cell disks were imported automatically during the rescue procedure.

1. Re-create the cell disks and grid disks for any disks that were replaced during the rescue procedure.

2. Check the status of the grid disk.
 If the grid disk is inactive, alter its status to active.

 CellCLI> ALTER GRIDDISK ALL ACTIVE

3. Log in to the Oracle Automatic Storage Management (Oracle ASM) instance, and set the disks to ONLINE for each disk group:

 SQL> ALTER DISKGROUP disk_group_name ONLINE DISKS IN FAILGROUP \cell_name WAIT;

 \Note:
 • If the command fails because the disks were already force-dropped, then you need to force-add the disks back to the Oracle ASM disk groups.

 • The grid disk attributes \asmmodestatus and \asmdeactivationoutcome will not report correctly until the ALTER DISKGROUP statement is complete.

4. Reconfigure the cell using the ALTER CELL command.
 The following is an example for the most common parameters:

 CellCLI> ALTER CELL
 smtpServer='my_mail.example.com', -
 smtpFromAddr='john.doe@example.com', -
 smtpPwd=email_address_password, -
5. Re-create the I/O Resource Management (IORM) plan.
6. Re-create the metric thresholds.

Related Topics
- Administering Database Resource Management
- ALTER THRESHOLD

3.9.4 Configuring Oracle Exadata Database Machine Eighth Rack Storage Servers After Rescue

For storage servers that are part of an Eighth Rack system, after a successful rescue, you must configure the cell using these steps.

In Oracle Exadata System Software release 11.2.3.3 and later, no extra steps are needed after cell rescue.

1. **Copy the** `/opt/oracle.SupportTools/resourcecontrol` **utility from another storage server to the** `/opt/oracle.SupportTools/resourcecontrol` **directory on the recovered server.**
2. **Ensure proper permissions are set on the utility.**

   ```bash
   # chmod 740 /opt/oracle.SupportTools/resourcecontrol
   ```
3. **Verify the current configuration.**

   ```bash
   # /opt/oracle.SupprTools/resourcecontrol -show
   ```

 Validated hardware and OS. Proceed.
 Number of cores active: 6
 Number of harddisks active: 6
 Number of flashdisks active: 8

For an Eighth Rack configuration, the output depends on the hardware model:
- X3 storage server: 6 active CPU, 6 hard disks, and 8 flash disks should be enabled
- X4 storage server: 6 active CPU cores, 6 hard disks, and 8 flash disks should be enabled
- X5 HC storage server: 8 active CPU cores, 6 hard disks, and 2 flash disks should be enabled
- X5 EF storage server: 8 active CPU cores and 4 flash disks should be enabled
- X6 HC storage server: 10 active CPU cores, 6 hard disks, and 2 flash disks should be enabled
- X6 EF storage server: 10 active CPU cores and 4 flash disks should be enabled
• X7 HC storage server: 10 active CPU cores, 6 hard disks, and 2 flash disks should be enabled
• X7 EF storage server: 10 active CPU cores and 4 flash disks should be enabled
• X8 HC storage server: 16 active CPU cores, 6 hard disks, and 2 flash disks should be enabled
• X8 EF storage server: 16 active CPU cores and 4 flash disks should be enabled

4. If the configuration shows all the cores and disks enabled, then enable the Eighth Rack configuration.

CellCLI> ALTER CELL eighthRack=true

3.9.5 Re-creating a Damaged CELLBOOT USB Flash Drive

If the CELLBOOT USB flash drive is lost or damaged, then you can create a new one using the following procedure:

Note:
To create a USB flash drive for a machine running Oracle Exadata Storage Server Software release 12.1.2.1.0 or later requires a machine running Oracle Linux 6.

1. Log in to the cell as the root user.
2. Attach a new USB flash drive. This flash drive should have a capacity of at least 1 GB, and up to 8 GB.
3. Remove any other USB flash drives from the system.
4. Run the following commands:
 cd /opt/oracle.SupportTools
 ./make_cellboot_usb -verbose -force

3.10 Changing Existing Elastic Configurations for Storage Cells

You can modify the capacity of your Oracle Exadata Database Machine using elastic configuration.

• Adding a Cell Node
 In this scenario, you want to add a new storage server (or cell) to an existing Oracle Exadata Database Machine that includes disk groups.

• Adding a New Storage Server to an Eighth Rack Cluster
 Perform the following steps to add a new Oracle Exadata Database Machine X7 or later storage server to an existing Oracle Exadata Database Machine X7 or later Eighth Rack.
• **Adding Storage Cells using OEDACLI**
 OEDACLI provides the interface to execute elastic storage expansion for different configurations such as Bare Metal, single Oracle VM or multiple Oracle VMs.

• **Expanding an Existing Exadata Storage Grid**

• **Dropping a Storage Server from an Existing Disk Group or Storage Grid**
 You can remove a storage server from an existing Oracle Exadata Rack.

• **Dropping Storage Servers using OEDACLI**
 OEDACLI provides the interface to drop storage servers for different configuration such as Bare Metal, single Oracle VM or multiple Oracle VMs.

Related Topics

• **Changing Existing Elastic Configurations for Database Servers**
 Elastic configurations provide a flexible and efficient mechanism to change the server configuration of your Oracle Exadata Database Machine.

3.10.1 Adding a Cell Node

In this scenario, you want to add a new storage server (or cell) to an existing Oracle Exadata Database Machine that includes disk groups.

1. If this is a brand new storage server, perform these steps:
 a. Complete all necessary cabling requirements to make the new storage server available to the desired storage grid.
 Refer to the *Oracle Exadata Database Machine Installation and Configuration Guide*.
 b. Image the storage server with the appropriate Oracle Exadata System Software image and provide appropriate input when prompted for the IP addresses.
 c. Skip to step 3.

2. If this is an existing storage server in the rack and you are allocating it to another cluster within the RDMA Network Fabric network, note the IP addresses assigned to the RDMA Network Fabric interfaces (such as `ib0` and `ib1` or `re0` and `re1`) of the storage server being added.

 Perform these steps on any database server in the cluster:
 a. `cd /etc/oracle/cell/network-config`
 b. `cp cellip.ora cellip.ora.orig`
 c. `cp cellip.ora cellip.ora-bak`
 d. `Add the new entries to /etc/oracle/cell/network-config/cellip.ora-bak`.
 e. Copy the edited file to the `cellip.ora` file on all database nodes using the following command, where `database_nodes` refers to a file containing the names of each database server in the cluster, with each name on a separate line:

```
/usr/local/bin/dcli -g database_nodes -l root -f cellip.ora-bak -d /etc/oracle/cell/network-config/cellip.ora
```
3. Add the IP addresses from the step above to the `/etc/oracle/cell/network-config/cellip.ora` file of every Oracle RAC node.

4. If Oracle Auto Service Request (ASR) alerting was set up on the existing storage servers, configure cell Oracle ASR alerting for the storage server being added.
 a. From any existing storage server, list the cell `snmpsubscriber` attribute.

   ```
   cellcli -e LIST CELL ATTRIBUTES snmpsubscriber
   ```

 b. Apply the same `snmpsubscriber` attribute value to the new storage server by running the command below as the `celladmin` user, replacing `snmpsubscriber` with the value from the previous command.

   ```
   cellcli -e "ALTER CELL snmpsubscriber=snmpsubscriber"
   ```

 c. From any existing storage server, list the cell attributes required for configuring cell alerting.

   ```
   cellcli -e LIST CELL ATTRIBUTES
   notificationMethod,notificationPolicy,smtpToAddr,smtpFrom,
   smtpFromAddr,smtpServer,smtpUseSSL,smtpPort
   ```

 d. Apply the same values to the new storage server by running the command below as the `celladmin` user, substituting the placeholders with the values found from the existing storage server.

   ```
   cellcli -e "ALTER CELL
   notificationMethod='notificationMethod',
   notificationPolicy='notificationPolicy',
   smtpToAddr='smtpToAddr',
   smtpFrom='smtpFrom',
   smtpFromAddr='smtpFromAddr',
   smtpServer='smtpServer',
   smtpUseSSL=smtpUseSSL,
   smtpPort=smtpPort"
   ```

5. If needed, create cell disks on the cell being added.
 a. Log in to the cell as `celladmin` and list the `celldisks`.

   ```
   cellcli -e LIST CELLDISK
   ```

 b. If the cell disks are not present on the media types, then create the cell disks.

   ```
   cellcli -e CREATE CELLDISK ALL
   ```

 c. If your system has PMEM devices, then check that the PMEM log was created by default.

   ```
   cellcli -e LIST PMEMLOG
   ```

 You should see the name of the PMEM log. It should look like `cellnodename_PMEMLOG`, and its status should be `normal`.

Chapter 3

Changing Existing Elastic Configurations for Storage Cells
If the PMEM log does not exist, create it.

cellcli -e CREATE PMEMLOG ALL

d. Check that the flash log was created by default.

cellcli -e LIST FLASHLOG

You should see the name of the flash log. It should look like cellnodename_FLASHLOG, and its status should be normal.

If the flash log does not exist, create it.

cellcli -e CREATE FLASHLOG ALL

e. If your system has PMEM devices, then check the current PMEM cache mode and compare it to the PMEM cache mode on existing cells.

 cellcli -e LIST CELL ATTRIBUTES pmemcachemode

To change the PMEM cache mode to match the PMEM cache mode of existing cells, do the following:

i. If the PMEM cache exists and the cell is in WriteBack PMEM cache mode, you must first flush the PMEM cache.

 cellcli -e ALTER PMEMCACHE ALL FLUSH

 Wait for the command to return.

 If the PMEM cache mode is WriteThrough, then you do not need to flush the cache first.

 ii. Drop the PMEM cache.

 cellcli -e DROP PMEMCACHE ALL

iii. Change the PMEM cache mode.

 The value of the pmemCacheMode attribute is either writeback or writethrough. The value has to match the PMEM cache mode of the other storage cells in the cluster.

 cellcli -e "ALTER CELL PMEMCacheMode=writeback_or_writethrough"

 iv. Re-create the PMEM cache.

 cellcli -e CREATE PMEMCACHE ALL

f. Check the current flash cache mode and compare it to the flash cache mode on existing cells.

 cellcli -e LIST CELL ATTRIBUTES flashcachemode
To change the flash cache mode to match the flash cache mode of existing cells, do the following:

i. If the flash cache exists and the cell is in WriteBack flash cache mode, you must first flush the flash cache.

 cellcli -e ALTER FLASHCACHE ALL FLUSH
 Wait for the command to return.

ii. Drop the flash cache.

 cellcli -e DROP FLASHCACHE ALL

iii. Change the flash cache mode.

 The value of the flashCacheMode attribute is either writeback or writethrough. The value has to match the flash cache mode of the other storage cells in the cluster.

 cellcli -e "ALTER CELL flashCacheMode=writeback_or_writethrough"

iv. Create the flash cache.

 cellcli -e CREATE FLASHCACHE ALL

6. Create the grid disks on the cell being added.

 a. Query the size and cachingpolicy attributes of the existing grid disks from an existing cell.

 CellCLI> LIST GRIDDISK ATTRIBUTES
 name,asmDiskGroupName,cachingpolicy,size,offset

 b. For each disk group found by the above command, create grid disks on the new cell that is being added to the cluster.

 Match the size and the cachingpolicy attributes of the existing grid disks for the particular disk group reported by the command above. Grid disks should be created in the order of increasing offset to ensure similar layout and performance characteristics as the existing cells. For example, the LIST GRIDDISK command could return something like this:

 DATA1 default 2.15625T 32M
 DBFS_DG default 33.796875G 2.695465087890625T
 RECOC1 none 552.109375G 2.1562957763671875T

 When creating grid disks, begin with DATA1, then RECOC1, and finally DBFS_DG using the following command:

 cellcli -e CREATE GRIDDISK ALL HARDDISK
 PREFIX=matching_prefix_of_the_corresponding_existing_diskgroup,
 size=size_followed_by_G_or_T,
 cachingPolicy=\'value_from_command_above_for_this_disk_group\',
 comment =\"Cluster cluster_name diskgroup diskgroup_name\"
Caution:
Be sure to specify the EXACT size shown along with the unit (either T or G)

7. Log in to each Oracle RAC node and verify that the newly created grid disks are visible from the Oracle RAC nodes.

In the following example, Grid_home refers to the directory in which the Oracle Grid Infrastructure software is installed.

```
$Grid_home/bin/kfod op=disks disks=all | grep cellName_being_added
```

The kfod command should list all the grid disks created in step 6 above.

8. Add the newly created grid disks to the respective existing Oracle ASM disk groups.

In this example, comma_separated_disk_names refers to the disk names from step 6 corresponding to disk_group_name.

```
SQL> ALTER DISKGROUP disk_group_name ADD DISK 'comma_separated_disk_names';
```

This command kicks off an Oracle ASM rebalance at the default power level.

9. Monitor the progress of the rebalance by querying GV$ASM_OPERATION.

```
SQL> SELECT * FROM GV$ASM_OPERATION;
```

When the rebalance completes, the addition of the cell to the Oracle RAC cluster is complete.

10. Download and run the latest version of Oracle EXAchk to ensure that the resulting configuration implements the latest best practices for Oracle Exadata Database Machine.

3.10.2 Adding a New Storage Server to an Eighth Rack Cluster

Perform the following steps to add a new Oracle Exadata Database Machine X7 or later storage server to an existing Oracle Exadata Database Machine X7 or later Eighth Rack.

1. If configured, drop the PMEM Cache and PMEM log.

```
$ cellcli -e drop pmemcache all
$ cellcli -e drop pmemlog all
```

2. On the new storage server, drop the flash cache, flash log and cell disks.

```
cellcli -e drop flashcache all
cellcli -e drop flashlog all
cellcli -e drop celldisk all
```
3. On the new storage server, enable the `eighthrack` attribute.

 `cellcli -e alter cell eighthRack=true`

4. On the new storage server, create the cell disks.

 `cellcli -e create celldisk all`

5. On the new storage server, create the flash log.

 `cellcli -e create flashlog all`

6. If applicable, on the new storage server, create the PMEM log.

 `cellcli -e create pmemlog all`

7. On any of the existing storage servers, retrieve the value of the cell attribute `flashcachemode`.

 `cellcli -e list cell attributes flashcachemode`

 The `flashcachemode` attribute on the new storage server is set to `WriteThrough` by default. All storage servers should have the same `flashcachemode` attribute setting.

 If the existing storage servers are using `WriteBack` mode, then you should change the attribute `flashcachemode` on the new storage server, as shown here:

 `cellcli -e alter cell flashcachemode=writeback`

8. On the new storage server, create the flash cache.

 `cellcli -e create flashcache all`

9. If the storage servers use PMEM cache, then retrieve the value of the cell attribute `pmemcachemode`.

 `cellcli -e list cell attributes pmemcachemode`

 The `pmemcachemode` attribute on the new storage server is set to `WriteThrough` by default. All storage servers should have the same `pmemcachemode` attribute setting.

 If the existing storage servers are using `WriteBack` mode, then you should change the attribute `pmemcachemode` on the new storage server, as shown here:

 `cellcli -e alter cell pmemcachemode=writeback`

10. If the storage servers use PMEM cache, then, on the new storage server, create the PMEM cache.

 `cellcli -e create pmemcache all`
11. On any of the existing storage servers, obtain information on the grid disk configuration.

 `cellcli -e list griddisk attributes name,offset,size,cachingpolicy`

12. On the new storage server, create the grid disks (repeat for each set of grid disks to match the configuration of the existing storage servers).

 In the following command, replace the italicized text with the corresponding values obtained in step 11.

 `cellcli -e CREATE GRIDDISK ALL HARDDISK PREFIX=matching_prefix_of_the_corresponding_existing_diskgroup, size=size_followed_by_G_or_T, cachingPolicy='value_from_command_above_for_this_disk_group', comment ="Cluster cluster_name diskgroup diskgroup_name"`

13. On the new storage server, validate the grid disks have the same configuration of the grid disks as the existing storage servers (by comparing with the information obtained in step 11).

 `cellcli -e list griddisk attributes name,offset,size,cachingpolicy`

14. (X2 to X8 servers only) If the environment has partition keys (pkeys) implemented, configure pkeys for the RDMA Network Fabric interfaces. Refer to step 6 from Implementing InfiniBand Partitioning across OVM RAC clusters on Exadata (My Oracle Support Doc ID 2075398.1) for this task.

15. On the new storage server, identify the IP address for both ports for either InfiniBand Transport Layer systems based on an InfiniBand Network Layer or InfiniBand Transport Layer systems based on a RoCE Network Layer.

 `cellcli -e list cell attributes name,ipaddress1,ipaddress2`

16. Add the IP addresses from step 15 to the `/etc/oracle/cell/network-config/cellip.ora` file on every database server.

 Perform these steps on any database server in the cluster:
 a. `cd /etc/oracle/cell/network-config`
 b. `cp cellip.ora cellip.ora.orig`
 c. `cp cellip.ora cellip.ora-bak`
 d. Add the new entries to `/etc/oracle/cell/network-config/cellip.ora-bak`
 e. Copy the edited file to the `cellip.ora` file on all database servers using the following command, where `database_nodes` refers to a file containing the names of each database server in the cluster, with each name on a separate line:

 `/usr/local/bin/dcli -g database_nodes -l root -f cellip.ora-bak -d /etc/oracle/cell/network-config/cellip.ora`
17. Connect to any of the Oracle ASM instances and ensure the grid disks from the new storage server are discoverable.

SQL> set pagesize 30
SQL> set linesize 132
SQL> col path format a70
SQL> SELECT inst_id,path FROM gv$asm_disk WHERE header_status='CANDIDATE'
 > ORDER BY inst_id,path;

<table>
<thead>
<tr>
<th>INST_ID</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_00_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_01_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_02_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_03_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_04_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_05_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_00_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_01_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_02_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_03_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_04_celadm11</td>
</tr>
<tr>
<td>1</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_05_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_00_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_01_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_02_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_03_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_04_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/DATA1_CD_05_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_00_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_01_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_02_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_03_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_04_celadm11</td>
</tr>
<tr>
<td>2</td>
<td>/192.168.17.235;192.168.17.236/REC1_CD_05_celadm11</td>
</tr>
</tbody>
</table>

18. Connect to one of the Oracle ASM instances and add the new disks to the existing disk groups.

SQL> ALTER DISKGROUP datacl ADD DISK 'o/192.168.17.235;192.168.17.236/DATA1*';
SQL> ALTER DISKGROUP recoc1 ADD DISK 'o/192.168.17.235;192.168.17.236/REC01*';

Note:
The rebalance operation triggered by adding the disks will run at the default Oracle Maximum Availability Architecture (MAA) best practice power (should be 4). If the application service level performance is not a concern, then consider increasing the power for a faster rebalance.
19. Obtain a report of the number of disks per failure group. 6 disks per failure group are expected for High Capacity (HC) Storage Servers and 4 disks per failure group are expected for Extreme Flash (EF) Storage Servers.

SQL> SELECT d.group_number,dg.name,failgroup,mode_status,COUNT(*)
2> FROM v$asm_disk d,v$asm_diskgroup dg
3> WHERE d.group_number=dg.group_number
4> AND failgroup_type='REGULAR'
5> GROUP BY d.group_number,dg.name,failgroup,mode_status;

<table>
<thead>
<tr>
<th>GROUP_NUMBER</th>
<th>NAME</th>
<th>FAILGROUP</th>
<th>MODE_ST</th>
<th>COUNT(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATAC1</td>
<td>CELADM08</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>DATAC1</td>
<td>CELADM09</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>DATAC1</td>
<td>CELADM10</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>DATAC1</td>
<td>CELADM11</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>RECOC1</td>
<td>CELADM08</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>RECOC1</td>
<td>CELADM09</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>RECOC1</td>
<td>CELADM10</td>
<td>ONLINE</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>RECOC1</td>
<td>CELADM11</td>
<td>ONLINE</td>
<td>6</td>
</tr>
</tbody>
</table>

20. If Oracle Auto Service Request (ASR) alerting was set up on the existing storage servers, configure cell Oracle ASR alerting for the storage server being added.

a. From any existing storage server, list the cell `snmpsubscriber` attribute.

 `cellcli -e LIST CELL ATTRIBUTES snmpsubscriber`

b. Apply the same `snmpsubscriber` attribute value to the new storage server by running the command below as the `celladmin` user, replacing `snmpsubscriber` with the value from the previous command.

 `cellcli -e "ALTER CELL snmpsubscriber=snmpsubscriber"`

c. From any existing storage server, list the cell attributes required for configuring cell alerting.

 `cellcli -e LIST CELL ATTRIBUTES
 notificationMethod,notificationPolicy,smtpToAddr,smtpFrom,
 smtpFromAddr,smtpServer,smtpUseSSL,smtpPort`

d. Apply the same values to the new storage server by running the command below as the `celladmin` user, substituting the placeholders with the values found from the existing storage server.

 `cellcli -e "ALTER CELL
 notificationMethod='notificationMethod',
 notificationPolicy='notificationPolicy',
 smtpToAddr='smtpToAddr',
 smtpFrom='smtpFrom',
 smtpFromAddr='smtpFromAddr',
 smtpServer='smtpServer',
 smtpUseSSL='smtpUseSSL',
 smtpPort='smtpPort'"`
3.10.3 Adding Storage Cells using OEDACLI

OEDACLI provides the interface to execute elastic storage expansion for different configurations such as Bare Metal, single Oracle VM or multiple Oracle VMs.

OEDACLI creates all the objects required on the storage servers and adds the new grid disks to the disk groups. One of the existing storage servers acts as a guide for the configuration of the new storage servers. There is only one rebalance operation triggered even if multiple storage servers are added. The grid disks of the new servers are added to all the disk groups for all the clusters configured.

Prerequisites

- All the new storage servers must be installed in and connected into the physical rack.
- All the new storage servers must have the management and RDMA Network Fabric networks configured.
- OEDACLI must be executed from a machine that has network access to the database servers (bare metal or guest domains) and the storage servers.

1. Generate a new OEDA XML configuration file, reflecting an exact list of the current database servers and storage servers used in the environment.

 Use the OEDA DISCOVER command, where the dirname usually is the directory where OEDACLI is installed and host_names_list is the list of nodes to be discovered, separated by commas or spaces, for example, 'dbnode1,dbnode2,celadm01,celadm02'.

 DISCOVER ES hostnames='host_names_list' location='dirname'

 For an environment with multiple Oracle VMs, the command generates a global XML configuration file containing information of all clusters, and also one XML configuration file for each cluster. In the following commands, you should use the global XML configuration file instead of a cluster-specific configuration file.

2. Create an OEDACLI script to update the XML configuration file using OEDACLI.

 For each cell to be added, the script requires:
 - The name (hostname) of one cell which is part of the current configuration, to be used as a reference for the creation of the objects (cell disks, grid disks, flashcache, and so on)
 - The name (hostname) and IP addresses for the Management and RDMA Network Fabric interfaces.
 - The rack number. For non-interconnected environments this is 1.
 - ULOC is the location on the physical rack. Although it is not used for the storage expansion, pick the value according the information referenced in Oracle Exadata Database Machine System Overview, Part 2 - Cabling Diagrams
Save the following commands in a file named `add_cell_script.cmd`. In this example, two new storage servers are being added: `celadm04` and `celadm05`.

```
CLONE NEWCELL SRCNAME=celadm01 tgtname=celadm04
SET ADMINNET NAME=celadm04, IP=203.0.113.35
SET PRIVNET NAME1=celadm04-priv1, IP1=192.168.216.235, NAME2=celadm04-priv2, IP2=192.168.216.236
SET ILOMNET NAME=celadm04-ilom, IP=203.0.113.135
SET RACK NUM=1, ULOC=39
SAVE ACTION FORCE

CLONE NEWCELL SRCNAME=celadm01 tgtname=celadm05
SET ADMINNET NAME=celadm05, IP=203.0.113.36
SET PRIVNET NAME1=celadm05-priv1, IP1=192.168.216.221, NAME2=celadm05-priv2, IP2=192.168.216.222
SET ILOMNET NAME=celadm05-ilom, IP=203.0.113.136
SET RACK NUM=1, ULOC=14
SAVE ACTION FORCE
SAVE FILE
```

3. Run the script `add_cell_script.cmd`.
 In this example, the `oeda_xml_file` is the file generated in the first step, and `add_cell_script.cmd` is the script created in the previous step.

   ```
   $ oedacli -c oeda_xml_file -f add_cell_script.cmd
   ```

 When you run the script, it updates the OEDA XML configuration file, adding directives and attributes related to the new storage servers. It does not trigger any action on any component (storage servers or database servers).

4. Create an OEDA CLI script to configure the new storage server, or cell.
 The script uses the following settings:
 - The Oracle ASM power limit for rebalance is set to 4, which is an Oracle MAA best practice.
 - The `WAIT` option is set to `FALSE`, which means the disk rebalance operations are run in parallel for every disk group in the cluster. The number of outstanding rebalances that can be run concurrently is limited to the number of database servers. If you set `WAIT` to `TRUE`, then each rebalance operation is run sequentially.

 Save the following commands in a file named `config_cell_script.cmd`. In this example, the cluster name `q1-vm01` is used. You should replace this with the name of your cluster.

   ```
   ALTER CLUSTER ADDCELLS='celadm04,celadm05' power=4, wait=false \  
   WHERE clustername=q1-vm01
   SAVE ACTION
   MERGE ACTIONS
   SAVE FILE
   ```

5. Run the script `config_cell_script.cmd`.
In this example, the `oeda_xml_file` is the file generated in the first step, and `config_cell_script.cmd` is the script created in the previous step.

```shell
$ oedacli -c oeda_xml_file -f config_cell_script.cmd
```

When you run the script, it creates the flash cache, flash log, cell disks and grid disks. It also adds the disks to the Oracle ASM disk groups and adds the storage servers to the cluster.

3.10.4 Expanding an Existing Exadata Storage Grid

In this scenario, you have an Exadata storage cell in an Exadata rack, and you want to add the storage cell to an Exadata storage grid that you most probably want to expand.

1. Decommission the storage cell from its current cluster. To do this, follow the procedure in "Dropping a Storage Server from an Existing Disk Group or Storage Grid".

2. Add the storage cell to the desired Exadata storage grid. To do this, follow the procedure in "Adding a Cell Node".

3. Download and run the latest exachk to ensure that the resulting configuration implements the latest best practices for Oracle Exadata.

3.10.5 Dropping a Storage Server from an Existing Disk Group or Storage Grid

You can remove a storage server from an existing Oracle Exadata Rack.

1. Drop the disks belonging to the storage server to be removed from Oracle Automatic Storage Management (Oracle ASM).

```
Note:

For Oracle Exadata Database Machine VM deployments, the substeps below need to be executed from all the Oracle VM clusters.
```

- Log in to any node in the cluster.
- Query the list of grid disks being used by the cluster for the targeted storage server.

```shell
Grid_home/bin/asmcmd lsdsk --suppressheader | grep cellName_being_removed | awk -F'|' '{print $NF}'
```
c. Drop the Oracle ASM disks returned by the command above from their respective disk groups.

```sql
SQL> ALTER DISKGROUP diskgroup_name DROP DISKS IN FAILGROUP cellName_being_removed;
```

d. The disk drop operation above kicks off a rebalance operation at the default power level. Monitor for the rebalance using the following command:

```sql
SQL> SELECT * FROM gv$asm_operation;
```

Wait until the rebalance completes, that is, wait until `gv$asm_operation` returns no rows.

e. Verify that all the disk groups do not have any references to the disks from the storage server being removed.

```sql
SQL> SELECT path, name, header_status, mode_status, mount_status, state, failgroup FROM v$asm_disk ORDER BY path;
```

The `header_status` column for all the disks belonging to the storage server being removed should show `FORMER`.

Reminder:

For Exadata Oracle VM deployments, the substeps above need to be executed from all the Oracle VM clusters.

2. Clean up the storage server being removed.

Log in to the storage server as `celladmin` and run the following commands. Run the following commands for each set of grid disks:

a. Drop the grid disks.

```bash
cellcli -e drop griddisk all prefix=prefix_of_the_grid_disk
```

b. If flash cache exists and the storage server is in WriteBack flash cache mode, you must first flush the flash cache before dropping it.

```bash
cellcli -e alter flashcache all flush
```

Wait for the command to return.
c. Drop the flash cache.

 cellcli -e drop flashcache all

d. Drop the cell disks.

 cellcli -e drop celldisk all

If you need to erase data securely, you can run the DROP CELLDISK command with the \texttt{erase} option, or the DROP CELL with the \texttt{erase} option.

The time required to complete the erase operation is listed in the table under the DROP CELL command.

3. Remove the entry of the storage server being removed from \
 \texttt{/etc/oracle/cell/network-config/cellip.ora} on all the database server nodes in the cluster.

Run the following steps on any database server node in the cluster:

a. Make a backup copies of the \texttt{cellip.ora} file.

 cd /etc/oracle/cell/network-config
 cp cellip.ora cellip.ora.orig
 cp cellip.ora cellip.ora-bak

b. Remove the entries for the storage server being removed from \texttt{/etc/oracle/cell/network-config/cellip.ora-bak}.

c. Use dcli to copy the updated \texttt{cellip.ora-bak} file to the other database servers.

 In the following command \texttt{database_nodes} refers to a file containing the names of each database server in the cluster. Each database server name is on a separate line in the file.

 /usr/local/bin/dcli -g database_nodes -l root -f cellip.ora-bak -d
 /etc/oracle/cell/network-config/cellip.ora

4. Download and run the latest version of Oracle EXAchk to ensure that the resulting configuration implements the latest best practices for Oracle Exadata Database Machine.

3.10.6 Dropping Storage Servers using OEDACLI

OEDACLI provides the interface to drop storage servers for different configuration such as Bare Metal, single Oracle VM or multiple Oracle VMs.

The procedure to remove the grid disks from the disk groups and drop the objects on the storage server is implemented through only a few commands. There is only one rebalance operation triggered, regardless of the number of storage cells dropped.

Prerequisites

- A valid OEDA XML configuration file, reflecting an exact list of the compute nodes and storage cells used in the environment to be expanded. The first step in this
task generates a new OEDA XML configuration file to ensure that the current configuration is used.

- OEDACLI must be executed from a machine that has network access to the database servers (bare metal or guest domains) and the storage servers.

1. Generate a new OEDA XML configuration file, reflecting an exact list of the current database servers and storage servers used in the environment.

 Use the OEDA DISCOVER command, where the dirname usually is the directory where OEDACLI is installed and host_names_list is the list of nodes to be discovered, separated by commas or spaces, for example, 'dbnode1,dbnode2,celadm01,celadm02'.

 DISCOVER ES hostnames='host_names_list' location='dirname'

 For an environment with multiple Oracle VMs, the command generates a global XML configuration file containing information of all clusters, and also one XML configuration file for each cluster. In the following commands, you should use the global XML configuration file instead of a cluster-specific configuration file.

2. Create an OEDACLI script to update the XML configuration file using OEDACLI.

 In this example, the WAIT option is set to TRUE, which means each rebalance operation is run sequentially. After the rebalance for the last disk group has completed, the storage servers are removed from the configuration.

 Save the following commands in a file named drop_cell_cluster.cmd. In this example, two storage servers are being removed: celadm04 and celadm05. In this example, the clustername q1-vm01 is used. You should replace this with the name of your cluster.

 ALTER CLUSTER DROPCELLS='celadm04,celadm05' power=4, wait=true \
 WHERE clustername=q1-vm01
 SAVE ACTION
 MERGE ACTIONS
 DEPLOY ACTIONS
 SAVE FILE

3. Run the script drop_cell_cluster.cmd.

 In this example, the oeda_xml_file is the file generated in the first step, and drop_cell_cluster.cmd is the script created in the previous step.

 $ oedacli -c oeda_xml_file -f drop_cell_cluster.cmd

 When you run the script, it drops the grid disks from all the Oracle ASM disk groups configured in the cluster, de-configures the cell (drops objects like flash cache, flash log, cell disks, grid disks, and so on).

4. Create an OEDACLI script to remove the storage servers, or cells, from the OEDA XML configuration file.
Save the following commands in a file named drop_cell_xml.cmd.

```
DELETE NEWCELL WHERE SRCNAME='celadm04 celadm05'
SAVE ACTION FORCE
SAVE FILE
```

5. Run the script drop_cell_xml.cmd.

In this example, the `oeda_xml_file` is the file generated in the first step, and `drop_cell_xml.cmd` is the script created in the previous step.

```
$ oedacli -c oeda_xml_file -f drop_cell_xml.cmd
```

When you run the script, it removes the information for the storage servers from the OEDA XML configuration file.
Maintaining Other Components of Oracle Exadata Racks

Besides the database and storage servers, Oracle Exadata Database Machine contains other components, such as power distribution units, ILOM, and network switches.

Note:
- For ease of reading, the name "Oracle Exadata Rack" is used when information refers to both Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.
- All procedures in this chapter are applicable to Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.

- **Replacing a Power Distribution Unit**
- **Resetting a Non-Responsive ILOM**
 If the Integrated Lights Out Manager (ILOM) becomes unresponsive, then manual intervention is needed to reset the Service Processor (SP) on the ILOM.
- **Configuring Service Processor and ILOM Network Settings**
- **Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems**
 Ensure you are using the correct link speed for Oracle Exadata Database Machine X7 and X8 database servers.
- **Verify the Link Speed on Network Ports**
 Ensure you are using the correct link speed for Oracle Exadata Database Machine X7-2 compute nodes.
- **Changing from 1 GbE Connections to 10 GbE Connections**
 1 GbE network connections can be changed to 10 GbE connections.
- **Maintaining the InfiniBand Transport Layer systems based on a RoCE Network Layer Network**
 The InfiniBand Transport Layer systems based on a RoCE Network Layer network connects the database servers and Exadata Storage Servers through the bonded interface to the InfiniBand Transport Layer systems based on a RoCE Network Layer switches in the rack.
- **Maintaining the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network**
 The InfiniBand Transport Layer systems based on an InfiniBand Network Layer network connects the database servers and Exadata Storage Servers through the bonded interface to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches in the rack.
• Modifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration
You can change how the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is configured by changing the IP addresses or host names, or by implementing partitioning.

• Configuring Network Routing on Database Servers
The tasks for network routing are for boot-time routing or real-time routing.

• Changing the DNS Servers
The configuration settings for the Domain Name System (DNS) servers can be changed after initial setup.

• Changing the NTP Servers
The configuration settings for the Network Time Protocol (NTP) servers can be changed after initial setup.

• Changing the Time Zone Settings
You can change the time zones on Oracle Exadata Database Machine after initial configuration and deployment.

• Managing the KVM Switch
The KVM switch is only available in Oracle Exadata Database Machine X2-2 racks and Oracle Exadata Storage Expansion Racks with Exadata Storage Server with Sun Fire X4270 M2 Servers.

4.1 Replacing a Power Distribution Unit
Power distribution units (PDUs) can be replaced while Oracle Exadata Rack is online. PDU-A is on the left, and PDU-B is on the right when viewing the rack from the rear.

• Reviewing the PDU Replacement Guidelines
Before replacing a PDU, review the following guidelines to ensure the procedure is safe and does not disrupt availability.

• Replacing a PDU
This procedure describes how to replace a power distribution unit (PDU).

4.1.1 Reviewing the PDU Replacement Guidelines
Before replacing a PDU, review the following guidelines to ensure the procedure is safe and does not disrupt availability.

• Unlatching the RDMA Network Fabric cables while removing or inserting PDU-A may cause a loss of service due to nodes being removed from the cluster. This could cause the rack to be unavailable. Care should be taken when handling the RDMA Network Fabric cables, which are normally latched securely. Do not place excessive tension on the RDMA Network Fabric cables by pulling them.

• Unhooking the wrong power feeds causes the rack to shut down. Trace the power cables running from the PDU that will be replaced to the power source, and only unplug those feeds.

• Allow time to unpack and repack the PDU replacement parts. Note how the power cords are coiled in the packaging so the failed unit can be repacked the same way.

• Removal of the side panel lessens the amount of time needed to replace the PDU. However, it is not necessary to remove the side panel to replace the PDU.
• Use of a cordless drill or power screwdriver lessens the amount of time needed to replace the PDU. Allow more time for the replacement if using the hand wrench tool provided with the replacement rack. If using a screwdriver, then ensure that there are Torx T30 and T25 bits.

• It may be necessary to remove the server cable arms to move the power cables. If that is the case, then twist the plug connection and flex the cable arm connector to avoid having to unclip the cable arm. If it is necessary to unclip the cable arm, then support the cables with one hand, remove the power cord, and then clip the cable arm. Do not leave the cable arm hanging.

• When removing the T30 screws from the L-bracket, do not remove the T25 screws or nuts that attach the PDU to the bracket until the PDU is out of the rack.

4.1.2 Replacing a PDU

This procedure describes how to replace a power distribution unit (PDU).

1. Use the PDU monitor as follows to identify its network settings, if it is not the reason for the PDU replacement:
 a. Press the reset button for 20 seconds until it starts to count from 5 to 0. While it is counting down, release the button, and then press it once.
 b. Record the network settings, firmware version, and so on, displayed on the LCD screen as the monitor restarts.

 Note:

 If the PDU monitor is not working, then retrieve the network settings by connecting to the PDU over the network, or from the network administrator.

2. Turn off all the PDU breakers.

3. Unplug the PDU power plugs from the AC outlets.

 Note:

 • If the power cords use overhead routing, then put the power plugs in a location where they will not fall or hit anyone.
 • If the rack is on a raised floor, then move the power cords out through the floor cutout. It may be necessary to maneuver the rack over the cutout in order to move the power cords out.

4. Do the following procedure for a PDU-B replacement when there is not side panel access, and the rack does not have an InfiniBand cable harness:

 Note:

 Do not unstrap any cables attached to the cable arms.
a. Unscrew the T25 screws holding the square cable arms to the rack.

b. Move the RDMA Network Fabric cables to the middle, out of the way.

5. Unplug all power cables going from the servers and switches to the PDU. Keep the power cables together in group bundles.

6. Remove the T30 screws from the top and bottom of the L-bracket, and note where the screws go.

7. Note where the PDU sits in the rack frame. It is usually 1 inch back from the rack frame to allow access to the breaker switches.

8. Angle and maneuver the PDU out of the rack.

9. Hold the PDU or lay it down, if there is enough room, while maneuvering the AC power cords through the rack. It may be necessary to cut the cable ties that hold the AC cord flush with the bottom side of the PDU.

10. Pull the cords as near to the bottom or top of the rack as possible where there is more room between the servers to get the outlet plug through the routing hole.

11. Remove the smaller Torx T25 screws, and loosen the nut on the top and bottom to remove the PDU from the L-bracket. The nut does not have to be removed.

12. Attach the L-bracket to the new PDU.

13. Lay the new PDU next to the rack.

14. Route the AC cords through the rack, and to where the outlets are.

Note:

Do not cable tie the AC cord to the new PDU at this time.

15. Place the new PDU in the rack by angling and maneuvering it until the L-brackets sit on the top and bottom rails.

16. Line up the holes and slots so that the PDU sits about 1 inch back from the rack frame.

17. Attach the power cords using the labels on the cords as a guide.

 For example, G5-0 indicates PDU group 5 outlet 0 on the PDU.

18. Attach the InfiniBand cable holders if they were removed in step 4.

 Oracle recommends screwing the holders in by hand at first to avoid stripping the screws.

19. Attach the AC power cords to the outlets.

20. Turn on the breakers.

21. Cable and program the PDU monitor for the network, as needed.

Related Topics

- Sun Rack II Power Distribution Units User’s Guide
- Oracle Rack Cabinet 1242 User’s Guide
- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
4.2 Resetting a Non-Responsive ILOM

If the Integrated Lights Out Manager (ILOM) becomes unresponsive, then manual intervention is needed to reset the Service Processor (SP) on the ILOM.

- Resetting the ILOM Using SSH
- Resetting the ILOM Using the ILOM Remote Console
- Resetting the ILOM Using IPMItool
- Resetting the ILOM Using the SP Reset Pin on Oracle Exadata Database Machine X2-2 Servers and Exadata Storage Servers
- Removing the SP from Sun Fire X4800 Oracle Database Servers and Sun Server X2-8 Oracle Database Servers
 If you could not reset the ILOM on the Sun Fire X4800 Oracle Database Server or Sun Server X2-8 Oracle Database Server using SSH, the remote console or IPMItool, then remove the service processor (SP) from the server, and put it back.
- Unplugging the ILOM Power Supply

See Also:

4.2.1 Resetting the ILOM Using SSH

The following procedure describes how to reset the ILOM by connecting to it using SSH:

1. Connect to the ILOM using SSH from another machine.
2. Enter the following command at the ILOM prompt:
   ```
   reset /SP
   ```

4.2.2 Resetting the ILOM Using the ILOM Remote Console

If it is not possible to connect to the ILOM using SSH, then log in to the ILOM remote console. The following procedure describes how to reset the ILOM using the remote console.

1. Log in to the ILOM remote console.
2. Select Reset SP from the Maintenance tab.
3. Click Reset SP.
4.2.3 Resetting the ILOM Using IPMItool

If you could not connect to the ILOM using SSH or the remote console, then log in to the local host or another host on the ILOM network, and use IPMItool. The following procedure describes how to reset the ILOM using IPMItool:

1. Log in to local host or another host on the ILOM network.
2. Run the following IPMItool command:
 - Using local host:
 $ ipmitool mc reset cold
 Sent cold reset command to MC
 - Using another host:
 $ ipmitool -H ILOM_host_name -U ILOM_user mc reset cold
 Sent cold reset command to MC

 In the preceding command, ILOM_host_name is the host name being used, and ILOM_user is the user name for the ILOM.

4.2.4 Resetting the ILOM Using the SP Reset Pin on Oracle Exadata Database Machine X2-2 Servers and Exadata Storage Servers

If you could not connect to the ILOM using SSH, the remote console, or IPMItool on the Oracle Exadata Database Machine X2-2 server or Exadata Storage Server, then press the SP reset pin. The following procedure describes how to reset the ILOM using the SP reset pin.

1. Obtain a small, non-conductive stick.
2. Go to the rear of the rack.
3. Locate the SP reset pin opening. The SP reset pin opening is the first opening to the right of the NET MGT port.
4. Insert the stick into the opening and press the pin.

4.2.5 Removing the SP from Sun Fire X4800 Oracle Database Servers and Sun Server X2-8 Oracle Database Servers

If you could not reset the ILOM on the Sun Fire X4800 Oracle Database Server or Sun Server X2-8 Oracle Database Server using SSH, the remote console or IPMItool, then remove the service processor (SP) from the server, and put it back.

Messages are displayed at the operating system level. These messages can be ignored. The fans will speed up because there is no fan control.

4.2.6 Unplugging the ILOM Power Supply

If you could not reset to the ILOM using the preceding options, then unplug the power supply, and then plug it back in. This action power cycles the server as well as the ILOM.

4.3 Configuring Service Processor and ILOM Network Settings

The following procedure describes how to configure the service processor (SP) and ILOM network settings:

1. Log in to the SP as the root user using SSH.
2. Use the `version` command to check the SP/ILOM firmware release. The following is an example of the output from the command:

```
-> version
SP firmware 3.2.4.10
SP firmware build number: 93199
SP firmware date: Sat Oct  4 18:42:56 EDT 2014
SP filesystem version: 0.2.10
```

Note:
The `ipmitool` can be used to log into the server SP. This is useful when the SP/ILOM is not accessible from the management network. The following command is used to connect to the SP:

```
# ipmitool sunoem cli
Connected. Use ^D to exit.
-> version
SP firmware 3.2.4.10
SP firmware build number: 93199
SP firmware date: Sat Oct  4 18:42:56 EDT 2014
SP filesystem version: 0.2.10
```

3. Configure the DNS server settings using the `set` command as follows:

```
cd /SP/clients/dns/
/SP/clients/dns
show
/SP/clients/dns
Targets:
Properties:
  auto_dns = enabled
  nameserver = 0.0.0.0
  retries = 1
  searchpath =
  timeout = 5
Commands:
cd
set
show
```
set nameserver=192.68.0.2
set searchpath=yourdomain.com

4. Configure the NTP server settings using the `set` command as follows.

```
cd /SP/clients/ntp/server/1
/SP/clients/ntp/server/1
show
/SP/clients/ntp/server/1
  Targets:
  Properties:
      address = 0.0.0.0
  Commands:
      cd
      set
      show
```

```
set address=192.68.0.1
```

Note:

Two NTP servers can be configured. Set the first NTP server using the `set` command, and then use the path `SP/clients/ntp/server/2` to configure the second server.

5. Use the `set` command to configure the network settings as follows:

```
cd /SP/network
/SP/network
show
/SP/network
  Targets:
      interconnect
      ipv6
      test
  Properties:
      commitpending = (Cannot show property)
      dhcp_clientid = none
      dhcp_server_ip = none
      ipaddress = 0.0.0.0
      ipdiscovery = dhcp
      ipgateway = 0.0.0.0
      ipnetmask = 0.0.0.0
      managementport = MGMT
      pendingipaddress = 0.0.0.0
      pendingipdiscovery = dhcp
      pendingipgateway = 0.0.0.0
      pendingipnetmask = 0.0.0.0
      pendingmanagementport = MGMT
      pendingvlan_id = (none)
      state = enabled
      vlan_id = (none)
  Commands:
      cd
      set
      show
```

6. Configure the corresponding `pendingip*` settings for the `ipaddress`, `ipdiscovery`, `ipgateway`, `ipnetmask`, and `vlan_id`, and then commit the pending settings using the following command:
7. Disconnect from the command line interface after the network configuration is complete.

Note:
Use ^D to exit the session when using the ipmitool.

4.4 Verifying and Modifying the Link Speed on the Client Network Ports for X7 and X8 Systems

Ensure you are using the correct link speed for Oracle Exadata Database Machine X7 and X8 database servers.

Note:
You should configure the client network ports using Oracle Exadata Deployment Assistant (OEDA) during the deployment of the X7 and X8 systems. See the OEDA Customer Network Configuration Page.

The following steps may be necessary to configure a client access port if the OEDA deployment was not performed or was performed incorrectly.

1. For each network interface (designated by x) that does not have the link detected, run the following commands:

 - For 10GbE network interfaces:
     ```
     # ifdown ethx
     # ethtool -s ethx 10000 duplex full autoneg off
     # ifup ethx
     # ethtool ethx
     ```

 For 10Gbits, you must use SFP+ transceivers; SFP28 transceivers do not support 10Gb/s traffic.

 - For 25GbE network interfaces:
     ```
     # ifdown ethx
     # ethtool -s ethx 25000 duplex full autoneg off
     # ifup ethx
     # ethtool ethx
     ```

2. Confirm that the output from the `ethtool` command shows yes for Link detected.

   ```
   Link detected: yes
   ```
3. Edit the appropriate files in `/etc/sysconfig/network-scripts`, where x is the number associated with the network interface.
 a. Locate the `/etc/sysconfig/network-scripts/ifcfg-ethx` file. Add the following lines, if they are not already present in the file:
 • For 10GbE network interfaces:

        ```
        ONBOOT=YES
        ETHTOOL_OPTS="speed 10000 duplex full autoneg off"
        ```

 • For 25GbE network interfaces:

        ```
        ONBOOT=YES
        ETHTOOL_OPTS="speed 25000 duplex full autoneg off"
        ```
 b. Repeat the previous step for all network interfaces that do not have the ETHTOOL_OPTS setting in the associated ifcfg-ethx file and are connected to 10GbE or 25GbE switches.

 The network interface should now show the link as detected. These changes are persistent, and do not need to be repeated after a server reboot.

4. Check the ILOM on each compute node to validate the LAN on Motherboard is properly configured to detect the 25G transceiver.

    ```
    show /HOST/network
    /HOST/network
    Targets:

    Properties:
    active_media = none
    auto_media_detection = enabled
    current_active_media = (none)

    Commands:
    cd
    set
    show
    ```

If the NIC is not working, change the active_media and current_active_media to the proper values:

 • For 25G transceivers (Fiber or Copper) these parameters should be set to SPF28
 • For 10G network using RJ-25 ended CAT6 cables, these parameters should be set to RJ45

4.5 Verify the Link Speed on Network Ports

Ensure you are using the correct link speed for Oracle Exadata Database Machine X7-2 compute nodes.

On Oracle Exadata Database Machine X7-2 compute nodes you might experience issues when connecting to 10GbE switches. These issues include links not being detected or being unable to connect to the gateway.
Resolving 10GbE Network Speed Configuration on Client Network Ports

1. Log in as the root user.

2. Use the `cat` command to review the `/proc/net/bonding/bondeth0` file.

3. For each 10GbE network interface (designated by `x`) that does not have the link detected, run the following commands:

 - `ifdown ethx`
 - `ethtool -s ethx 10000 duplex full autoneg off`
 - `ifup ethx`
 - `ethtool ethx`

4. Confirm that the output from the `ethtool` command shows `yes` for Link detected.

   ```
   Link detected: yes
   ```

5. Edit the appropriate files in `/etc/sysconfig/network-scripts`, where `x` is the number associated with the network interface.

 a. Locate the `/etc/sysconfig/network-scripts/ifcfg-ethx` file. Add the following line, if it is not already present in the file:

   ```
   ETHTOOL_OPTS="speed 10000 duplex full autoneg off"
   ```

 b. Repeat the previous step for all network interfaces that do not have the `ETHTOOL_OPTS` setting in the associated `ifcfg-ethx` file and are connected to 10GbE switches.

 The network interface should now show the link as detected. These changes are persistent, and do not need to be repeated after a server reboot.

4.6 Changing from 1 GbE Connections to 10 GbE Connections

1 GbE network connections can be changed to 10 GbE connections.

This procedure applies to Oracle Exadata Database Machine models X6 and earlier.

When changing the connections, note the following:

- To prevent a single point of failure for a bonded 10 GbE interface on Oracle Exadata Database Machine X2-8, use different ports on the Network Express Modules (NEMs) on the two cards, such as NEM0 NET1 and NEM1 NET0.

- The 10 GbE interfaces are identified as eth4 and eth5 on Sun Fire X4170 M2 Oracle Database Servers, and as eth8 through eth15 on Sun Fire X4800 Oracle Database Servers. Oracle recommends using following on Oracle Exadata Database Machine X2-8:
 - BONDETH0 using interfaces eth9 and eth15
 - 10 GbE NEM0(left)/NET1
 - 10 GbE NEM1(right)/NET3
• Oracle Clusterware is shut down, and the database server is restarted during the procedure.
• Task 1: Verify ping Functionality
• Task 2: Back up the Current Interface Files
• Task 3: Edit the 10 GbE Interface Settings
• Task 4: Verify the 10 GbE Interfaces

4.6.1 Task 1: Verify ping Functionality

Verify the functionality of the `ping` command before any changes using the following commands. By verifying the `ping` command before any changes, you know what is the results should be after changing the interfaces. Similar commands can be used to check other servers that connect to Oracle Exadata Database Machine.

```
# grep "^nameserver" /etc/resolv.conf
nameserver ip_address_1
nameserver ip_address_2

# ping -c 2 ip_address_1
PING ip_address_1 (ip_address_1) 56(84) bytes of data.
64 bytes from ip_address_1: icmp_seq=1 ttl=57 time=1.12 ms
64 bytes from ip_address_1: icmp_seq=2 ttl=57 time=1.05 ms

--- ip_address_1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 1.054/1.087/1.120/0.033 ms
```

If the test is not successful, showing 100% packet loss, then you should expect similar results when this same verification is run in “Task 4: Verify the 10 GbE Interfaces”. If the test is successful, showing 0% packet loss, then you must see similar results after changing the 10 GbE connections.

4.6.2 Task 2: Back up the Current Interface Files

The following procedure describes how to back up the current interface files:

1. Log in as the root user.
2. Create hidden directories for the current and new 10 GbE files in the `/etc/sysconfig/network-scripts` directory similar to the following:

```
# cd /etc/sysconfig/network-scripts
# mkdir .Pre_10GigE_Settings
# mkdir .Post_10GigE_Settings
```

Note:

Linux startup scripts search for files that begin with `ifcfg`, and assume files beginning with `ifcfg` are used for network setup. Placing the backup files in hidden directories avoids them from being used to set up the network interface.
3. Identify the connected 10 GbE interfaces using the following command. Run the command for each 10 GbE interface.

```
# ethtool interface
```

In the preceding command, `interface` is the 10 GbE interface. The interface is eth4 and eth5 for Sun Fire X4170 M2 Oracle Database Servers, and eth8 through eth15 for Sun Fire X4800 Oracle Database Servers.

The following is an example of the output from the command. The speed should be 10000Mb/s, Link detected should be yes, and Duplex should be full.

```
# ethtool eth9
Settings for eth9:
   Supported ports: [ FIBRE ]
   Supported link modes:  1000baseT/Full
                          10000baseT/Full
   Supports auto-negotiation: No
   Advertised link modes:  1000baseT/Full
                          10000baseT/Full
   Advertised auto-negotiation: No
   Speed: 10000Mb/s
   Duplex: Full
   Port: FIBRE
   PHYAD: 0
   Transceiver: external
   Auto-negotiation: on
   Supports Wake-on: umbg
   Wake-on: umbg
   Current message level: 0x00000007 (7)
   Link detected: yes
```

4. Verify the current bonded interface using the following command. An example of the output from the command is also shown.

```
# grep -i bondeth0 ifcfg-eth*
ifcfg-eth1:MASTER=bondeth0
ifcfg-eth2:MASTER=bondeth0
```

5. Copy the 1 GbE interface files to the `.Pre_10GigE_Settings` directory using a command similar to the following:

```
# cp -p ifcfg-eth1 ifcfg-eth2 ./.Pre_10GigE_Settings/.
```

6. Copy the 10 GbE interface files to the `.Pre_10GigE_Settings` directory using a command similar to the following:

```
# cp -p ifcfg-eth9 ifcfg-eth15 ./.Pre_10GigE_Settings/.
```

7. Copy the files from the `.Pre_10GigE_Settings` directory to the `.Post_10GigE_Settings` directory using a command similar to the following:

```
# cp -p ./.Pre_10GigE_Settings/* ./.Post_10GigE_Settings/.
```

4.6.3 Task 3: Edit the 10 GbE Interface Settings

The following procedure describes how to edit the `ifcfg` configuration files:

1. Edit the `ifcfg` configuration files as shown in the following table. The files must be edited in the `.Post_10GigE_Settings/` directory.
<table>
<thead>
<tr>
<th>File Name</th>
<th>Before Modification</th>
<th>After Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifcfg-eth1</td>
<td>ifcfg-eth1 #### DO NOT REMOVE THESE LINES</td>
<td>ifcfg-eth1 #### DO NOT REMOVE THESE LINES</td>
</tr>
<tr>
<td></td>
<td>#### %GENERATED BY CELL% ####</td>
<td>#### %GENERATED BY CELL% ####</td>
</tr>
<tr>
<td></td>
<td>DEVICE=eth1 USERCTL=no ONBOOT=yes BOOTPROTO=None HOTPLUG=no IPV6INIT=no HWADDR=00:21:28:44:d2:5e</td>
<td>DEVICE=eth1 USERCTL=no ONBOOT=yes BOOTPROTO=None HOTPLUG=no IPV6INIT=no HWADDR=00:21:28:44:d2:5e</td>
</tr>
<tr>
<td></td>
<td>MASTER=bondeth0 SLAVE=yes</td>
<td>MASTER=bondeth0 SLAVE=yes</td>
</tr>
<tr>
<td>ifcfg-eth2</td>
<td>ifcfg-eth2 #### DO NOT REMOVE THESE LINES</td>
<td>ifcfg-eth2 #### DO NOT REMOVE THESE LINES</td>
</tr>
<tr>
<td></td>
<td>#### %GENERATED BY CELL% ####</td>
<td>#### %GENERATED BY CELL% ####</td>
</tr>
<tr>
<td></td>
<td>DEVICE=eth2 USERCTL=no ONBOOT=yes BOOTPROTO=None HOTPLUG=no IPV6INIT=no HWADDR=00:21:28:44:d2:f2</td>
<td>DEVICE=eth2 USERCTL=no ONBOOT=yes BOOTPROTO=None HOTPLUG=no IPV6INIT=no HWADDR=00:21:28:44:d2:f2</td>
</tr>
<tr>
<td></td>
<td>MASTER=bondeth0 SLAVE=yes</td>
<td>MASTER=bondeth0 SLAVE=yes</td>
</tr>
<tr>
<td>ifcfg-eth4</td>
<td>ifcfg-eth4 on Oracle Exadata Database Machine X2-2</td>
<td>ifcfg-eth4 on Oracle Exadata Database Machine X2-2</td>
</tr>
<tr>
<td></td>
<td>#### %GENERATED BY CELL% ####</td>
<td>#### %GENERATED BY CELL% ####</td>
</tr>
<tr>
<td></td>
<td>DEVICE=eth_interface USERCTL=no ONBOOT=no BOOTPROTO=None HOTPLUG=no IPV6INIT=no HWADDR=00:1b:21:66:4b:c0</td>
<td>DEVICE=eth_interface USERCTL=no ONBOOT=no BOOTPROTO=None HOTPLUG=no IPV6INIT=no HWADDR=00:1b:21:66:4b:c0</td>
</tr>
<tr>
<td></td>
<td>In the preceding syntax, eth_interface is eth4 for Oracle Exadata Database Machine X2-2, or eth9 for Oracle Exadata Database Machine X2-8 Full Rack</td>
<td>In the preceding syntax, eth_interface is eth4 for Oracle Exadata Database Machine X2-2, or eth9 for Oracle Exadata Database Machine X2-8 Full Rack</td>
</tr>
</tbody>
</table>
DO NOT REMOVE THESE LINES
%GENERATED BY CELL%

<table>
<thead>
<tr>
<th>File Name</th>
<th>Before Modification</th>
<th>After Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifcfg-eth5 on Oracle</td>
<td>DO NOT REMOVE THESE LINES</td>
<td>DO NOT REMOVE THESE LINES</td>
</tr>
<tr>
<td>Exadata Database Machine X2-2</td>
<td>%GENERATED BY CELL%</td>
<td>%GENERATED BY CELL%</td>
</tr>
<tr>
<td>ifcfg-eth15 on Oracle</td>
<td>DEVICE=eth_interface2</td>
<td>DEVICE=eth_interface2</td>
</tr>
<tr>
<td>Exadata Database Machine X2-8 Full Rack</td>
<td>ONBOOT=no</td>
<td>ONBOOT=no</td>
</tr>
<tr>
<td></td>
<td>BOOTPROTO=none</td>
<td>BOOTPROTO=none</td>
</tr>
<tr>
<td></td>
<td>HOTPLUG=no</td>
<td>HOTPLUG=no</td>
</tr>
<tr>
<td></td>
<td>IPV6INIT=no</td>
<td>IPV6INIT=no</td>
</tr>
<tr>
<td></td>
<td>HWADDR=00:1b:21:66:4b:c1</td>
<td>HWADDR=00:1b:21:66:4b:c1</td>
</tr>
<tr>
<td></td>
<td>In the preceding syntax, eth_interface is eth5 for Oracle Exadata Database Machine X2-2, or eth15 for Oracle Exadata Database Machine X2-8 Full Rack</td>
<td>In the preceding syntax, eth_interface is eth5 for Oracle Exadata Database Machine X2-2, or eth15 for Oracle Exadata Database Machine X2-8 Full Rack</td>
</tr>
</tbody>
</table>

2. Copy the edited files to the `/etc/sysconfig/network-scripts` directory using the following command:

```
# cp -fp /etc/sysconfig/network-scripts/.Post_10GigE_Settings/ifcfg-eth* /etc/sysconfig/network-scripts/.
```

3. Restart the database server using the console.

4. Monitor the boot sequence to ensure no errors occurred during bondeth0 initialization.

4.6.4 Task 4: Verify the 10 GbE Interfaces

The following procedure describes how to verify the 10 GbE interfaces:

1. Log in as the root user.

2. Use the `cat` command to review the `/proc/net/bonding/bondeth0` file. The following is an example of the command and output from the command:

```
# cat /proc/net/bonding/bondeth0

Ethernet Channel Bonding Driver: v3.4.0 (October 7, 2008)

Bonding Mode: fault-tolerance (active-backup)
Primary Slave: None
Currently Active Slave: eth9
MII Status: up
MII Polling Interval (ms): 100
Up Delay (ms): 5000
Down Delay (ms): 5000

Slave Interface: eth9
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:1b:21:66:4b:c0

Slave Interface: eth15
MII Status: up
```
Link Failure Count: 0
Permanent HW addr: 00:1b:21:66:4b:c1

In the output, verify the slave interfaces are correct, and the MII statuses for the slave interface are up.

3. **Use the `netstat -nr` command to check the routing table. The routing table should not have changed. The following is an example of the command and output:**

```bash
# netstat -nr
```

```
Kernel IP routing table
Destination   Gateway      Genmask         Flags   MSS Window  irtt Iface
scan_subnet   0.0.0.0      255.255.255.0   U         0 0          0 bondeth0
192.168.80.0  0.0.0.0      255.255.254.0   U         0 0          0 bondib0
192.168.80.0  0.0.0.0      255.255.254.0   U         0 0          0 bondib1
192.168.80.0  0.0.0.0      255.255.254.0   U         0 0          0 bondib2
192.168.80.0  0.0.0.0      255.255.254.0   U         0 0          0 bondib3
mgmt_subnet   0.0.0.0      255.255.254.0   U         0 0          0 eth0
0.0.0.0       scan_gw     0.0.0.0      UG        0 0          0 bondeth0
```

4. **Use the following commands to check the default gateway. The gateway is the SCAN network gateway, and should use bondeth0 on the 10 GbE interfaces.**

```bash
# grep GATEWAY /etc/sysconfig/network
GATEWAY=gw_address
GATEWAYDEV=bondeth0
```

```bash
# ping -c 2 gw_address
PING gw_address (gw_address) 56(84) bytes of data.
64 bytes from gw_address: icmp_seq=1 ttl=57 time=1.12 ms
64 bytes from gw_address: icmp_seq=2 ttl=57 time=1.05 ms

--- gw_address ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 1.054/1.087/1.120/0.033 ms
```

In the preceding commands and output, `gw_address` is the IP address of the default gateway.

5. **If the name servers were responding to the ping command in "Task 1: Verify ping Functionality", then use the following commands to check the name servers. Similar commands can be used to check other servers that connect to Oracle Exadata Database Machine.**

```bash
# grep "^nameserver" /etc/resolv.conf
nameserver ip_address_1
nameserver ip_address_2
```

```bash
# ping -c 2 ip_address_1
PING ip_address_1 (ip_address_1) 56(84) bytes of data.
64 bytes from ip_address_1: icmp_seq=1 ttl=57 time=1.12 ms
64 bytes from ip_address_1: icmp_seq=2 ttl=57 time=1.05 ms

--- ip_address_1 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 1.054/1.087/1.120/0.033 ms
```
4.7 Maintaining the InfiniBand Transport Layer systems based on a RoCE Network Layer Network

The InfiniBand Transport Layer systems based on a RoCE Network Layer network connects the database servers and Exadata Storage Servers through the bonded interface to the InfiniBand Transport Layer systems based on a RoCE Network Layer switches in the rack.

- **Backing Up Settings on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch**
- **Restoring Settings on a InfiniBand Transport Layer systems based on a RoCE Network Layer Switch**
 You can restore the settings from backup on a InfiniBand Transport Layer systems based on a RoCE Network Layer switch.
- **Replacing a Failed InfiniBand Transport Layer systems based on a RoCE Network Layer Switch**
 This procedure describes how to replace a failed InfiniBand Transport Layer systems based on a RoCE Network Layer switch.
- **Verifying the InfiniBand Transport Layer systems based on a RoCE Network Layer Configuration**
 This procedure describes how to verify the InfiniBand Transport Layer systems based on a RoCE Network Layer configuration.
- **Verifying InfiniBand Transport Layer systems based on a RoCE Network Layer Network Operation**
 Verify the InfiniBand Transport Layer systems based on a RoCE Network Layer network is operating properly after making modifications to the underlying hardware.
- **Upgrading the Switch Firmware for InfiniBand Transport Layer systems based on a RoCE Network Layer**
 The `patchmgr` utility is used to upgrade the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.
- **Downgrading the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Software**
 The `patchmgr` utility is used to downgrade the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

4.7.1 Backing Up Settings on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch

The following procedure describes how to back up the InfiniBand Transport Layer systems based on a RoCE Network Layer. The backup only needs to be done once after the switch has been initially configured with the right settings.

1. **Access the switch using SSH, and log in as the `admin` user and password.**
2. **Review the current configuration.**

```
Switch# show running-config
```
3. Copy the current configuration to a file.

You copy the current configuration to a file on the database server or storage server, using the format:

```
Switch# copy running-config
tftp://hostname/directory_name/switch_name-start-config.back
```

You can use any of the supported transport schemes on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch: tftp, ftp, scp or sftp. The `hostname` is the address or name of the remote server, and the `directory_name` is the path to the directory that contains the file on the remote server. The `hostname`, `directory_name`, and file name are case sensitive.

4. Exit from the session.

```
Switch# exit
```

4.7.2 Restoring Settings on a InfiniBand Transport Layer systems based on a RoCE Network Layer Switch

You can restore the settings from backup on a InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

The configuration file that you want to download must be in the correct directory on the remote server. Ensure that the permissions on the file are set correctly. Permissions on the file should be set to world-read.

1. Access the switch using SSH, and log in as the `admin` user and password.

2. Delete any existing backup configuration (or golden configuration) file on the switch for the configuration you are restoring.

 The golden configuration files are:
 - Single rack leaf: `roce_leaf_switch.cfg`
 - Multi-rack leaf: `roce_leaf_switch_multi.cfg`
 - Multi-rack spine: `roce_spine_switch_multi.cfg`

   ```
   rack3sw-rocea0(config)# delete bootflash:roce_leaf_switch.cfg
   Do you want to delete "/roce_leaf_switch.cfg" ? (yes/no/abort) [y] y
   rack3sw-rocea0(config)#
   ```

3. Copy the backup configuration file or golden configuration file to the switch.
You can restore the appropriate golden configuration file based on your system configuration and type of switch. The files are located within the patchmgr switch bundle in the `roce_switch_templates/` directory.

You can also restore a backup configuration file that was created manually and stored in a separate location.

```
[root@server_hostname ~]# scp roce_leaf_switch.cfg admin@100.104.10.21:/
User Access Verification
Password:
roce_leaf_switch.cfg 100% 23KB 23.5KB/s 00:00
```

Note:

You can use any of the supported transport schemes on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch: `tftp`, `ftp`, `scp` or `sftp`.

4. Apply the backup configuration (or golden configuration) file using the `run-script` command.

```
rack3sw-rocea0(config)# run-script bootflash:roce_leaf_switch.cfg | grep 'none'
```

Note:

This command may take up to 1-2 minutes on single-rack switch and up to 3-4 minutes on a multi-rack switch.

5. Save the configuration onto flash.

```
rack3sw-rocea0(config)# copy running-config startup-config
```

6. Exit from the session.

```
rack3sw-rocea0(config)# exit
```

4.7.3 Replacing a Failed InfiniBand Transport Layer systems based on a RoCE Network Layer Switch

This procedure describes how to replace a failed InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

1. Power off both power supplies on the switch by removing the power plugs.
2. Disconnect the cables from the switch. All InfiniBand Transport Layer systems based on a RoCE Network Layer cables should have labels at both ends indicating their locations. If there are any cables that do not have labels, then label them before disconnecting them.
3. Remove the switch from the rack.
4. Install the new switch in the rack.

5. Power on the switch by plugging in the power plugs.

6. Restore the switch settings using the backup, as described in Restoring Settings on a InfiniBand Transport Layer systems based on a RoCE Network Layer Switch.

7. Connect the cables to the new switch. Make sure to connect each cable to the correct port.

8. Complete the steps in Verifying the InfiniBand Transport Layer systems based on a RoCE Network Layer Configuration.

Related Topics

- Part II Cabling Information for Oracle Exadata Database Machine

4.7.4 Verifying the InfiniBand Transport Layer systems based on a RoCE Network Layer Configuration

This procedure describes how to verify the InfiniBand Transport Layer systems based on a RoCE Network Layer configuration.

1. Verify the proper oracle-rdma-release software and adapter firmware versions are being used on the database servers.

```
[root@dbm01adm08 ~]# rpm -qa |grep oracle-rdma-release
oracle-rdma-release-0.11.0-1.el7ora.x86_64
```

The oracle-rdma-release software and adapter firmware versions are automatically maintained on the Oracle Exadata Database Machine storage servers.

2. Visually check all the RDMA Network Fabric cable connections within the rack. The port lights should be on, and the LEDs should be on. Do not press each connector to verify connectivity.

3. Complete the steps described in Verify RoCE Cabling on Oracle Exadata Database Machine X8M-2 and X8M-8 Servers (My Oracle Support Doc ID 2587717.1)

4.7.5 Verifying InfiniBand Transport Layer systems based on a RoCE Network Layer Network Operation

Verify the InfiniBand Transport Layer systems based on a RoCE Network Layer network is operating properly after making modifications to the underlying hardware.

If hardware maintenance has taken place with any component in the InfiniBand Transport Layer systems based on a RoCE Network Layer network, including replacing an RDMA Network Fabric Adapter on a server, a switch, or a cable, or if operation of the InfiniBand Transport Layer systems based on a RoCE Network Layer network is suspected to be substandard, then verify the InfiniBand Transport Layer systems based on a RoCE Network Layer network is operating properly. The following procedure describes how to verify network operation:
The following procedure can be used any time the InfiniBand Transport Layer systems based on a RoCE Network Layer network is performing below expectations.

1. Complete the steps in Verifying the InfiniBand Transport Layer systems based on a RoCE Network Layer Configuration.

2. If there is no load running on any portion of the InfiniBand Transport Layer systems based on a RoCE Network Layer network, such as no databases running, then run the `infinicheck` command to perform full InfiniBand Transport Layer systems based on a RoCE Network Layer network configuration, connectivity and performance evaluation.

Note:
This command evaluates full network maximum throughput and should not be run when there is workload running on any system on the InfiniBand Transport Layer systems based on a RoCE Network Layer network.

This command relies on a fully-configured system.

a. Clear the files that were created during the last run of the `infinicheck` command.

   ```bash
   # /opt/oracle.SupportTools/ibdiagtools/infinicheck -z
   ```

b. Execute the `infinicheck` command.

   ```bash
   # /opt/oracle.SupportTools/ibdiagtools/infinicheck -g hostips -c cellips -b
   ```

The following is a sample of the output from the `infinicheck` command:

```
[root@rack2dbadm01 ~]# /opt/oracle.SupportTools/ibdiagtools/infinicheck
-g hosts -c cellips -b
INFINICHECK
[Network Connectivity, Configuration and Performance]

#### FABRIC TYPE TESTS ####

System type identified: RoCE
Verifying User Equivalence of user=root from all DBs to all CELLS.

    #### RoCE CONFIGURATION TESTS ####
    Checking for presence of RoCE devices on all DBs and CELLS
    [SUCCESS].... RoCE devices on all DBs and CELLS look good
    Checking for RoCE Policy Routing settings on all DBs and CELLS
    [SUCCESS].... RoCE Policy Routing settings look good
    Checking for RoCE DSCP ToS mapping on all DBs and CELLS
```
[SUCCESS].... RoCE DSCP ToS settings look good
Checking for RoCE PFC settings and DSCP mapping on all DBs and CELLS

[SUCCESS].... RoCE PFC and DSCP settings look good
Checking for RoCE interface MTU settings. Expected value : 2300

[SUCCESS].... RoCE interface MTU settings look good
Verifying switch advertised DSCP on all DBs and CELLS ports (~ 2 min)

[SUCCESS].... Advertised DSCP settings from RoCE switch looks good

CONNECTIVITY TESTS

[COMPUTE NODES -> STORAGE CELLS]

(60 seconds approx.)

(Will walk through QoS values: 0-6)

[SUCCESS]............Results OK

[SUCCESS]....... All can talk to all storage cells

[COMPUTE NODES -> COMPUTE NODES]

(60 seconds approx.)

(Will walk through QoS values: 0-6)

[SUCCESS]............Results OK

[SUCCESS]....... All hosts can talk to all other nodes

Verifying Subnet Masks on all nodes

[SUCCESS] Subnet Masks is same across the network

Prechecking for uniformity of rds-tools on all nodes

[SUCCESS].... rds-tools version is the same across the cluster

Snoozing ExaWatcher on all nodes before running performance tests....

[SUCCESS]

PERFORMANCE TESTS

[(1) Storage Cell to Compute Node]

[(1.a) RDS-STRESS perf run]

(2 min(s) 15 second(s) approx)

[INFO].....Performance (rds-stress) test between 192.168.9.15 (rack2celadm01)
and 192.168.9.11 (rack2dbadm01) has been started.

[INFO].....Performance (rds-stress) test between 192.168.9.17 (rack2celadm02)

... [SUCCESS]......Results OK

[(1.b) RDS-STRESS perf run (via ISL)]

(2 min(s) 15 second(s) approx)

[INFO].....Performance (rds-stress) test between 192.168.9.14 (rack2celadm01)
and 192.168.9.11 (rack2dbadm01) has been started.

[INFO].....Performance (rds-stress) test between 192.168.9.16 (rack2celadm02)

... [SUCCESS]......Results OK

[(1.c) IB_SEND_BW perf run]

(2 min(s) 15 second(s) approx)
[INFO].....Performance (ib_send_bw) test between 192.168.9.15 (rack2celadm01) and 192.168.9.11 (rack2dbadm01) has been started.
[INFO].....Performance (ib_send_bw) test between 192.168.9.17 (rack2celadm02) ...
[SUCCESS].....Results OK

[(1.d) IB_SEND_BW (via ISL) perf run]
(2 min(s) 15 second(s) approx)
[INFO].....Performance (ib_send_bw) test between 192.168.9.14 (rack2celadm01) and 192.168.9.11 (rack2dbadm01) has been started.
[INFO].....Performance (ib_send_bw) test between 192.168.9.16 (rack2celadm02) ...
[SUCCESS].....Results OK

[(1.e) IB_SEND_LAT perf run]
(2 min(s) 15 second(s) approx)
[INFO].....Performance (ib_send_lat) test between 192.168.9.15 (rack2celadm01) and 192.168.9.11 (rack2dbadm01) has been started.
[INFO].....Performance (ib_send_lat) test between 192.168.9.17 (rack2celadm02) ...
[SUCCESS].....Results OK

[(1.f) IB_SEND_LAT (via ISL) perf run]
(2 min(s) 15 second(s) approx)
[INFO].....Performance (ib_send_lat) test between 192.168.9.14 (rack2celadm01) and 192.168.9.11 (rack2dbadm01) has been started.
[INFO].....Performance (ib_send_lat) test between 192.168.9.16 (rack2celadm02) ...
[SUCCESS].....Results OK

[(2) Every COMPUTE NODE to another COMPUTE NODE]

[(2.a) RDS-STRESS perf run]
(1 min(s) 15 second(s) approx)
[INFO].....Performance (rds-stress) test between 192.168.9.12 (rack2dbadm02) and 192.168.9.10 (rack2dbadm01) has been started.
[INFO].....Performance (rds-stress) test between 192.168.9.13 (rack2dbadm02) and 192.168.9.11 (rack2dbadm01) has been started.
[SUCCESS].....Results OK
INFINICHECK REPORTS SUCCESS FOR NETWORK CONNECTIVITY and PERFORMANCE
Using Exadata 100G RoCE performance thresholds..

----------DIAGNOSTICS----------
6 Cell ips found: ...
192.168.9.14 | 192.168.9.15 | 192.168.9.16 | 192.168.9.17 |
192.168.9.18 | 192.168.9.19
4 Host ips found: ...

####### Host to Cell Connectivity #######

Analyzing cells_conntest.log...

[SUCCESS]..... All nodes can talk to all other nodes

Now Analyzing Compute Node-Compute Node connectivity

####### Inter-Host Connectivity #######

Analyzing hosts_conntest.log.

[SUCCESS]..... All hosts can talk to all its peers

####### Performance Diagnostics #######

[(1.a) STORAGE CELL to COMPUTE NODE (rds-stress)

Analyzing rds_stress_cells.log.* logfile(s)....

--------Throughput results using rds-stress --------

7168 MB/s and above is expected for runs on quiet machines
rack2dbadm01(192.168.9.11) to rack2celadm01(192.168.9.15) rds-stress:
 11187 MB/s...OK
rack2dbadm02(192.168.9.13) to rack2celadm02(192.168.9.17) rds-stress:
 11194 MB/s...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.19) rds-stress:
 11097 MB/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm01(192.168.9.14) rds-stress:
 11107 MB/s...OK
rack2dbadm02(192.168.9.12) to rack2celadm02(192.168.9.16) rds-stress:
 11121 MB/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm03(192.168.9.18) rds-stress:
 11373 MB/s...OK

####### Performance Diagnostics #######

[(1.b) STORAGE CELL to COMPUTE NODE via ISL (rds-stress)

Analyzing rds_stress_cells.isl.log.* logfile(s)....

--------Throughput results using rds-stress --------

7168 MB/s and above is expected for runs on quiet machines
rack2dbadm01(192.168.9.11) to rack2celadm01(192.168.9.14) rds-stress:
11124 MB/s...OK
rack2dbadm02(192.168.9.13) to rack2celadm02(192.168.9.16) rds-stress:
11109 MB/s...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.18) rds-stress:
10910 MB/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm01(192.168.9.15) rds-stress:
11066 MB/s...OK
rack2dbadm02(192.168.9.12) to rack2celadm02(192.168.9.17) rds-stress:
11045 MB/s...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.19) rds-stress:
10977 MB/s...OK

[(1.c) STORAGE CELL to COMPUTE NODE (ib_send_bw)

Analyzing ib_send_bw.log.* logfile(s)....

--------Verb bw results using ib_send_bw --------
70 Gb/s and above is expected for runs on quiet machines
rack2dbadm01(192.168.9.11) to rack2celadm01(192.168.9.15) ib_send_bw:
98 Gb/s...OK
rack2dbadm02(192.168.9.13) to rack2celadm02(192.168.9.17) ib_send_bw:
100 Gb/s...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.19) ib_send_bw:
98 Gb/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm01(192.168.9.14) ib_send_bw:
98 Gb/s...OK
rack2dbadm02(192.168.9.12) to rack2celadm02(192.168.9.16) ib_send_bw:
97 Gb/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm03(192.168.9.18) ib_send_bw:
98 Gb/s...OK

[(1.d) STORAGE CELL to COMPUTE NODE via ISL (ib_send_bw)

Analyzing ib_send_bw.isl.log.* logfile(s)....

--------Verb bw results using ib_send_bw --------
70 Gb/s and above is expected for runs on quiet machines
rack2dbadm01(192.168.9.11) to rack2celadm01(192.168.9.14) ib_send_bw:
98 Gb/s...OK
rack2dbadm02(192.168.9.13) to rack2celadm02(192.168.9.16) ib_send_bw:
98 Gb/s...OK
100 Gb/s...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.18)
ib_send_bw :
100 Gb/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm01(192.168.9.15)
ib_send_bw :
98 Gb/s...OK
rack2dbadm02(192.168.9.12) to rack2celadm02(192.168.9.17)
ib_send_bw :
99 Gb/s...OK
rack2dbadm01(192.168.9.10) to rack2celadm03(192.168.9.19)
ib_send_bw :
98 Gb/s...OK

[(1.e) STORAGE CELL to COMPUTE NODE (ib_send_bw)

Analyzing ib_send_bw.log.* logfile(s)....

--------Verb latency results using ib_send_bw --------
5 Gb/s and below is expected for runs on quiet machines
rack2dbadm01(192.168.9.11) to rack2celadm01(192.168.9.15)
ib_send_bw :
2.61 us...OK
rack2dbadm02(192.168.9.13) to rack2celadm02(192.168.9.17)
ib_send_bw :
2.61 us...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.19)
ib_send_bw :
2.62 us...OK
rack2dbadm01(192.168.9.10) to rack2celadm01(192.168.9.14)
ib_send_bw :
2.64 us...OK
rack2dbadm02(192.168.9.12) to rack2celadm02(192.168.9.16)
ib_send_bw :
2.59 us...OK
rack2dbadm01(192.168.9.10) to rack2celadm03(192.168.9.18)
ib_send_bw :
2.62 us...OK

[(1.e) STORAGE CELL to COMPUTE NODE (ib_send_bw)

Analyzing ib_send_bw.isl.log.* logfile(s)....

--------Verb latency results using ib_send_bw --------
5 us and below is expected for runs on quiet machines
rack2dbadm01(192.168.9.11) to rack2celadm01(192.168.9.15)
ib_send_bw :
2.64 us...OK
rack2dbadm02(192.168.9.13) to rack2celadm02(192.168.9.16)
ib_send_bw :
2.60 us...OK
rack2dbadm01(192.168.9.11) to rack2celadm03(192.168.9.18)
ib_send_bw :
2.61 us...OK
rack2dbadm01(192.168.9.10) to rack2celadm01(192.168.9.14)

Chapter 4
Maintaining the InfiniBand Transport Layer systems based on a RoCE Network Layer Network
4-26
4.7.6 Upgrading the Switch Firmware for InfiniBand Transport Layer systems based on a RoCE Network Layer

The patchmgr utility is used to upgrade the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

The switch firmware is upgraded in a rolling manner. patchmgr upgrades the switches in the order they are listed in the supplied file, for example roceswitch.lst.

Refer to Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Software for the instructions.

4.7.7 Downgrading the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Software

The patchmgr utility is used to downgrade the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

The switch firmware is downgraded in a rolling manner. patchmgr downgrades the switches in the order they are listed in the supplied file, for example roceswitch.lst.

Refer to Downgrading InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware for the instructions.
4.8 Maintaining the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network

The InfiniBand Transport Layer systems based on an InfiniBand Network Layer network connects the database servers and Exadata Storage Servers through the bonded interface to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches in the rack.

- **Back up and Restore InfiniBand Switch Settings**
 The procedure for backing up and restoring InfiniBand switch settings depends on the firmware on the switch.

- **Alerts May Be Raised During the 2.2.2 Upgrade Process**

- **Replacing a Failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer Card on Database Servers**
 If the InfiniBand Transport Layer systems based on an InfiniBand Network Layer card fails on Oracle Exadata Database Machine X3-8 Full Rack, and Oracle Exadata Database Machine X2-8 Full Rack Database Servers, use these steps to replace it.

- **Replacing a Failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch**
 This procedure describes how to replace a failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch.

- **Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration**
 This procedure describes how to verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer configuration.

- **Using the verify-topology Utility**
 The verify-topology utility can be used to identify various network connection problems.

- **Verifying InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network Operation**
 Verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is operating properly after making modifications to the underlying hardware.

- **Understanding the Network Subnet Manager Master**
 The Subnet Manager manages all operational characteristics of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network.

- **Upgrading the Switch Firmware for InfiniBand Transport Layer systems based on an InfiniBand Network Layer**

- **Downgrading the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Software**
 Use patchmgr to downgrade the switch firmware.

4.8.1 Backing Up and Restoring InfiniBand Switch Settings

The procedure for backing up and restoring InfiniBand switch settings depends on the firmware on the switch.
The InfiniBand firmware release 1.1.3-2 or later has Integrated Lights Out Manager (ILOM) which provides backup and restore capability. The InfiniBand firmware release 1.0.1 does not have ILOM. You can either upgrade to the latest available firmware release and then use the procedure in Backing Up Settings on a Switch with 2.1.3-4 Firmware, or you can manually perform the backup and restore of individual files.

- Backing Up Settings on a Switch with 2.1.3-4 Firmware
- Backing Up Settings on a Switch with 1.1.3-2 Firmware
- Backing Up Settings on a Switch with 1.0.1 Firmware
- Restoring Settings on a Switch with 2.1.3-4 Firmware
- Restoring Settings on a Switch with 1.1.3-2 Firmware
- Restoring Settings on a Switch with 1.0.1 Firmware

See Also:

4.8.1.1 Backing Up Settings on a Switch with 2.1.3-4 Firmware

The following procedure describes how to back up a switch with 2.1.3-4 firmware. The backup only needs to be done once after the switch has been initially configured with the right settings.

1. Navigate to the switch ILOM URL in a browser. For example: http://dbm002-i1.us.example.com.
2. Log in as the ilom-admin user.
3. Select the Maintenance tab.
4. Select the Backup/Restore tab.
5. Select the Backup operation and the Browser method.
6. Enter a passphrase. This is used to encrypt sensitive information, such as user passwords, in the backup.
7. Click Run, and save the resulting XML file in a secure location.
8. Log in to the Sun Datacenter InfiniBand Switch 36 switch as the root user.
9. Use the scp command to copy the following files:
 - root SSH keys: /root/.ssh/authorized_keys
 - nm2user SSH keys (if it exists): /home/nm2user/.ssh/authorized_keys
 - host file: /etc/hosts
 - host file: /etc/opensm/opensm.conf to preserve the openSM settings
10. Save the output from the version command.
4.8.1.2 Backing Up Settings on a Switch with 1.1.3-2 Firmware

The following procedure describes how to back up a switch with 1.1.3-2 firmware. The backup only needs to be done once after the switch has been initially configured with the right settings.

1. Navigate to the switch ILOM URL in a browser. For example: http://dbm002-i1.us.example.com.
2. Log in as the ilom-admin user.
3. Select the Maintenance tab.
4. Select the Backup/Restore tab.
5. Select the Backup operation and the Browser method.
6. Enter a passphrase. This is used to encrypt sensitive information, such as user passwords, in the backup.
7. Click Run, and save the resulting XML file in a secure location.
8. Log in to the Sun Datacenter InfiniBand Switch 36 switch as the root user.
9. Use the scp command to copy the following files:
 - Network configuration: /etc/sysconfig/network-scripts/ifcfg-eth0
 - DNS information: /etc/resolv.conf
 - NTP information: /etc/ntp.conf
 - Time zone information: /etc/localtime
 - openSM settings: /etc/opensm/opensm.conf
 - Host name: /etc/sysconfig/network
 - root SSH keys: /root/.ssh/authorized_keys
 - nm2user SSH keys (if it exists): /home/nm2user/.ssh/authorized_keys
10. Run the hostname command, and then save the output. This is done in case the host name is not set in the /etc/sysconfig/network file.
11. Save the passwords for the root and nm2user accounts.
12. Run the nm2version command, and then save the output.

4.8.1.3 Backing Up Settings on a Switch with 1.0.1 Firmware

The following procedure describes how to back up the settings on a switch with 1.0.1 firmware:

1. Log in to the switch as the root user. If you do not have the password for the root user, then contact Oracle Support Services.
2. Make copies of the following files:
 - Network configuration: /etc/sysconfig/network-scripts/ifcfg-eth0
 - DNS information: /etc/resolv.conf
 - NTP information: /etc/ntp.conf
 - Time zone information: /etc/localtime
• openSM settings: /etc/opensm/opensm.conf
• Host name: /etc/sysconfig/network
• root SSH keys: /root/.ssh/authorized_keys
• nm2user SSH keys (if it exists): /home/nm2user/.ssh/authorized_keys

3. Run the hostname command and save the output, in case the host name is not set in the /etc/sysconfig/network file.

4. Save the passwords for the root and nm2user accounts.

5. Run the nm2version command and save the output.

4.8.1.4 Restoring Settings on a Switch with 2.1.3-4 Firmware

The following procedure describes how to restore the settings on a switch with 2.1.3-4 firmware:

1. Run the version command, and ensure that the switch is at the right firmware level. If not, then upgrade the switch to the correct firmware level.

3. Log in as the ilom-admin user.

4. Select the Maintenance tab.

5. Select the Backup/Restore tab.

6. Select the Restore operation and the Browser method.

7. Click Browse, and select the XML file that contains the switch configuration backup.

8. Enter the passphrase that was used during the backup.

9. Click Run to restore the configuration.

10. Log in to the Sun Datacenter InfiniBand Switch 36 switch as the root user.

11. Restore the following files from the backup:
 • root SSH keys: /root/.ssh/authorized_keys
 • nm2user SSH keys (if it exists): /home/nm2user/.ssh/authorized_keys
 • host file: /etc/hosts
 • host file: /etc/opensm/opensm.conf

12. Restart openSM from the switch CLI using the following commands:

 disablesm
 enablesm

13. Log in as the root user.

14. Restart the switch.
4.8.1.5 Restoring Settings on a Switch with 1.1.3-2 Firmware

The following procedure describes how to restore the settings on a switch with 1.1.3-2 firmware:

1. Run the `version` command, and ensure that the switch is at the right firmware level. If not, then upgrade the switch to the correct firmware level.
3. Log in as the `ilom-admin` user.
4. Select the `Maintenance` tab.
5. Select the `Backup/Restore` tab.
6. Select the `Restore` operation and the `Browser` method.
7. Click `Browse`, and select the XML file that contains the switch configuration backup.
8. Type in the passphrase that was used during the backup.
9. Click `Run` to restore the configuration.
10. Log in to the Sun Datacenter InfiniBand Switch 36 switch as the `root` user.
11. Restore the following files from the backup:
 - Network configuration: `/etc/sysconfig/network-scripts/ifcfg-eth0`
 - DNS information: `/etc/resolv.conf`
 - NTP information: `/etc/ntp.conf`
 - Time zone information: `/etc/localtime`
 - openSM settings: `/etc/opensm/opensm.conf`
 - Host name: `/etc/sysconfig/network`
 - root SSH keys: `/root/.ssh/authorized_keys`
 - nm2user SSH keys (if it exists): `/home/nm2user/.ssh/authorized_keys`
12. Restore the host name by adding the following line to the `/etc/sysconfig/network` file, if it not already in the file.

   ```
   HOSTNAME=switch_host_name
   ```

13. Restore the passwords of the `root` and `nm2user` users using the `passwd` command.
14. Run the following commands in the order shown to restart the services and openSM:

   ```
   service network restart
   service ntpd restart
   disablemsm
   enablemsm
   ```
15. Log in as the `root` user.
16. Restart the switch.
4.8.1.6 Restoring Settings on a Switch with 1.0.1 Firmware

The following procedure describes how to restore the settings to a switch with 1.0.1 firmware:

1. Log in to the switch as the root user. If you do not have the password for the root user, then contact Oracle Support Services.

2. Ensure that the switch is at the right firmware level. If not, then upgrade the switch to the correct firmware level.

3. Restore the following files from the backup:
 - Network configuration: `/etc/sysconfig/network-scripts/ifcfg-eth0`
 - DNS information: `/etc/resolv.conf`
 - NTP information: `/etc/ntp.conf`
 - Time zone information: `/etc/localtime`
 - openSM settings: `/etc/opensm/opensm.conf`
 - Host name: `/etc/sysconfig/network`
 - root SSH keys: `/root/.ssh/authorized_keys`
 - nm2user SSH keys (if it exists): `/home/nm2user/.ssh/authorized_keys`

4. Restore the host name by adding a `HOSTNAME=switch_host_name` line to the `/etc/sysconfig/network` file, if not already present.

5. Restore the passwords of the root and nm2user users using the `passwd` command.

6. Run the following commands in the order shown to restart the services and openSM:

   ```
   service network restart
   service ntpd restart
   disablesm
   enablesm
   ```

7. Log in as the root user.

8. Restart the switch.

4.8.2 Alerts May Be Raised During the 2.2.2 Upgrade Process

During the InfiniBand switch firmware upgrade to 2.2.2, the management server may raise a critical alert regarding the InfiniBand ports being disabled and in the "down" state. The alert is expected and will be cleared quickly, usually within six minutes. No action is required from users.

The following is an example of the alert sequence:

```
27_1 2016-06-16T07:43:48-07:00 critical "InfiniBand Port HCA-1:1 may require attention. State:Down, Physical State:Disabled."

27_2 2016-06-16T07:48:40-07:00 clear "InfiniBand Port HCA-1:1 status is OK."
```
4.8.3 Replacing a Failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer Card on Database Servers

If the InfiniBand Transport Layer systems based on an InfiniBand Network Layer card fails on Oracle Exadata Database Machine X3-8 Full Rack, and Oracle Exadata Database Machine X2-8 Full Rack Database Servers, use these steps to replace it.

Network interface bonding (BONDIB0 through BONDIB3) for database servers in Oracle Exadata Database Machine X3-8 Full Rack, and Oracle Exadata Database Machine X2-8 Full Rack use both ports on the same card for each of the four InfiniBand Transport Layer systems based on an InfiniBand Network Layer cards. If both ports on a single card are disabled, such as the ports fail or cables are removed, then the Oracle Clusterware stack halts. The following procedure describes how to isolate the card, and then restart Oracle Clusterware after correcting the InfiniBand Transport Layer systems based on an InfiniBand Network Layer card problem:

1. Isolate the failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer card as follows:
 a. Stop Oracle Clusterware as the root user using the following command. If Oracle Clusterware is already down, then go to step 1.b.

 # crsctl stop crs

 b. Edit the cellinit.ora file to remove the affected IP address.

 c. Start Oracle Clusterware as the root user using the following command:

 # crsctl start crs

2. Correct the problem with the InfiniBand Transport Layer systems based on an InfiniBand Network Layer card.

3. Return the card to service as follows:
 a. Stop Oracle Clusterware as the root user using the following command:

 # crsctl stop crs

 b. Add the IP address to the cellinit.ora file.

 c. Start Oracle Clusterware as the root user using the following command:

 # crsctl start crs

4.8.4 Replacing a Failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch

This procedure describes how to replace a failed InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch.

1. Power off both power supplies on the switch by removing the power plugs.
2. Disconnect the cables from the switch. All InfiniBand Transport Layer systems based on an InfiniBand Network Layer should have labels at both ends indicating their locations. If there are any cables that do not have labels, then label them before disconnecting them.

3. Remove the switch from the rack.

4. Install the new switch in the rack.

5. Power on the switch by plugging in the power plugs.

6. Restore the switch settings using the backup, as described in "Backing Up and Restoring InfiniBand Switch Settings”.

7. Disable the Subnet Manager using the `disablesm` command.

8. Connect the cables to the new switch. Make sure to connect each cable to the correct port.

9. Run the `verify-topology` command on any of the servers:

 The `verify-topology` command verifies that the right number of database servers are connected to the right number of Exadata Storage Servers.

   ```
   # /opt/oracle.SupportTools/ibdiagtools/verify-topology
   ```

10. Run the `ibdiagnet` command on any host to verify that there are no errors on any of the links in the fabric.

   ```
   ibdiagnet -c 5000 -r
   ```

11. Enable the Subnet Manager using the `enablesm` command.

 ![Note:]

 If the replaced switch was the spine switch, then manually fail the Master Subnet Manager back to the switch by disabling the Subnet Managers on the other switches until this spine switch becomes the master, then re-enable the Subnet Manager on all the other switches.

Related Topics
- Part II Cabling Information for Oracle Exadata Database Machine
- Adding a Sun Datacenter InfiniBand Switch 36 Switch
- Setting the Subnet Manager Master on Oracle Exadata Database Machine Full Rack and Oracle Exadata Database Machine Half Rack

See Also:
- Sun Datacenter InfiniBand Switch 36 Firmware Version 2.1 Documentation at http://docs.oracle.com/cd/E36265_01/index.html
4.8.5 Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration

This procedure describes how to verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer configuration.

1. Verify the proper OpenFabrics Enterprise Distribution (OFED) software and HCA firmware versions are being used on the database servers.

 The OFED software and HCA firmware versions are automatically maintained on the Exadata storage servers.

2. Verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer topology using the following command from a database server or Exadata Storage Server:

   ```
   # /opt/oracle.SupportTools/ibdiagtools/verify-topology
   ```

 If any errors occur, then contact Oracle Support Services.

Related Topics

- **Using the verify-topology Utility**

 The verify-topology utility can be used to identify various network connection problems.

- **Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)**

4.8.6 Using the verify-topology Utility

The verify-topology utility can be used to identify various network connection problems.

The problems you can diagnose using verify-topology include:

- Missing InfiniBand Transport Layer systems based on an InfiniBand Network Layer cable
- Missing InfiniBand Transport Layer systems based on an InfiniBand Network Layer connection
- Incorrectly-seated cable
- Cable connected to the wrong endpoint

The utility is available in the ibdiagtools directory on all servers. To view the options for the verify-topology utility, use the following command:

   ```
   ./verify-topology -h
   ```

 [DB Machine Infiniband Cabling Topology Verification Tool]

Usage: ./verify-topology

 [-v|--verbose]
 [-r|--reuse (cached maps)]
 [-m|--mapfile]
 [-ibn|--ibnetdiscover (specify location of ibnetdiscover output)]
Example 4-1 Using verify-topology to Identify Cables Seated Incorrectly

The following is an example shows the output when using the verify-topology utility. In the example, the error shows the cables are connected incorrectly. Both cables from the server are going to same InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch. If the switch fails, then the server loses connectivity to InfiniBand Transport Layer systems based on an InfiniBand Network Layer network.

[DB Machine Infiniband Cabling Topology Verification Tool]

Bad link: Switch 0x21283a8371a0a0 Port 11A - Sun Port 11B
 Reason : 2.5 Gbps Speed found. Could be 10 Gbps
 Possible cause : Cable isn't fully seated in

Bad link: Switch 0x21283a89eba0a0 Port 11B - Sun Port 11A
 Reason : 2.5 Gbps Speed found. Could be 10 Gbps
 Possible cause : Cable isn't fully seated in

Is every external switch connected to every internal switch............
 [SUCCESS]
Are any external switches connected to each other....................
 [SUCCESS]
Are any hosts connected to spine switch..........................
 [SUCCESS]
Check if all hosts have 2 CAs to different switches..............
 [ERROR]
 Node trnA-db01 has 1 endpoints. (Should be 2)
 Port 2 of this node is not connected to any switch

-------- fattree End Point Cabling verification failed------

Leaf switch check: cardinality and even distribution..............
 [ERROR]

Internal QDR Switch 0x21283a8371a0a0 has fewer than 4 compute nodes
 It has only 3 links belonging to compute nodes
Check if each rack has an valid internal ring....................
 [SUCCESS]

4.8.7 Verifying InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network Operation

Verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is operating properly after making modifications to the underlying hardware.

If hardware maintenance has taken place with any component in the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network, including replacing an InfiniBand HCA on a server, a InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch, or an InfiniBand Transport Layer systems
based on an InfiniBand Network Layer cable, or if operation of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is suspected to be substandard, then verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is operating properly. The following procedure describes how to verify network operation:

Note:

The following procedure can be used any time the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is performing below expectations.

1. Complete the steps in Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration.
2. Run the `ibdiagnet` command to verify InfiniBand Transport Layer systems based on an InfiniBand Network Layer network quality.

   ```bash
   # ibdiagnet -c 1000
   ``

   All errors reported by this command should be investigated. This command generates a small amount of network traffic, and may be run while normal workload is running.
3. Run the `ibqueryerrors.pl` command to report on switch port error counters and port configuration information.

   ```bash
 # ibqueryerrors.pl -rR -s
 RcvSwRelayErrors,XmtDiscards,XmtWait,VL15Dropped

 Errors such as LinkDowned, RcvSwRelayErrors, XmtDiscards, and XmtWait are ignored when using the preceding command.
Note:

- The InfiniBand Transport Layer systems based on an InfiniBand Network Layer counters are cumulative and the errors may have occurred at any time in the past. If there are errors reported, then Oracle recommends clearing the InfiniBand Transport Layer systems based on an InfiniBand Network Layer counters using the `ibclearcounters` command. After running the command, let the system run for a few minutes under load, and then run the `ibquerryerrors` command.

- Some counters, such as `SymbolErrors` or `RcvErrors` can increment when servers are rebooted. Small values for these counters which are less than the `LinkDowned` counter are generally not a problem. The `LinkDowned` counter indicates the number of times the port has gone down usually for valid reasons, such as a reboot, and is not usually an error indicator by itself.

- Any links reporting high, persistent errors especially `SymbolErrors`, `LinkRecovers`, `RcvErrors`, or `LinkIntegrityErrors` may indicate a bad or loose cable or port.

- If there are persistent, high InfiniBand Transport Layer systems based on an InfiniBand Network Layer network error counters, then investigate and correct the problem.

4. If there is no load running on any portion of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network, such as no databases running, then run the `infinicheck` command to perform full InfiniBand Transport Layer systems based on an InfiniBand Network Layer network configuration, connectivity and performance evaluation.

Note:

This command evaluates full network maximum throughput and should not be run when there is workload running on any system on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network.

This command relies on a fully-configured system. The first command clears the files that were created during the last run of the `infinicheck` command.

```
# /opt/oracle.SupportTools/ibdiagtools/infinicheck -z
# /opt/oracle.SupportTools/ibdiagtools/infinicheck
```

The following is an example of the output from the command:

```
Verifying User Equivalence of user=root to all hosts.
(If it isn't setup correctly, an authentication prompt will appear to push keys
```

Chapter 4

Maintaining the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Network
Verifying User Equivalence of user=root to all cells.
(If it isn't setup correctly, an authentication prompt will appear to push keys to all the nodes)

CONNECTIVITY TESTS
[COMPUTE NODES -> STORAGE CELLS]
(30 seconds approx.)
[SUCCESS].......... Connectivity verified
[SUCCESS]....... All hosts can talk to all storage cells

Verifying Subnet Masks on Hosts and Cells
[SUCCESS] Subnet Masks is same across the network

Checking for bad links in the fabric
[SUCCESS]......... No bad fabric links found

[COMPUTE NODES -> COMPUTE NODES]
(30 seconds approx.)
[SUCCESS].......... Connectivity verified
[SUCCESS]....... All hosts can talk to all other nodes

PERFORMANCE TESTS

(1) Every COMPUTE NODE to its STORAGE CELL
(15 seconds approx.)
[SUCCESS]........ Network Bandwidth looks OK.
 To view only performance results run ./infinicheck -d -p

(2) Every COMPUTE NODE to another COMPUTE NODE
(10 seconds approx.)
[SUCCESS]........ Network Bandwidth looks OK.
 To view only performance results run ./infinicheck -d -p

(3) Every COMPUTE NODE to ALL STORAGE CELLS
(45 seconds approx.) (looking for SymbolErrors)

[SUCCESS]....... No port errors found

4.8.8 Understanding the Network Subnet Manager Master

The Subnet Manager manages all operational characteristics of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network.

The operational characteristics of the Subnet Manager include:

- Discover the network topology
- Assign a local identifier to all ports connected to the network
- Calculate and program switch forwarding tables
- Monitor changes in the fabric

The InfiniBand Transport Layer systems based on an InfiniBand Network Layer network can have more than one Subnet Manager, but only one Subnet Manager is active at a time. The active Subnet Manager is the Master Subnet Manager. The other Subnet Managers are the Standby Subnet Managers. If a Master Subnet Manager is shut down or fails, then a Standby Subnet Manager automatically becomes the Master Subnet Manager.

Each Subnet Manager has a priority that can be configured. When there is more than one Subnet Manager on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network, the Subnet Manager with the highest priority becomes the Master Subnet Manager. On Oracle Exadata Database Machine, the Subnet Managers on leaf switches should be configured as priority 5, and the Subnet Managers on spine switches should be configured as priority 8.

The following guidelines determine where Subnet Managers run on Oracle Exadata Database Machine:

- Only run Subnet Managers on the RDMA Network Fabric switches specified for use in your Oracle Engineered System. Running Subnet Manager on any other device is not supported.
- In Exadata-only configurations, when the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network consists of one, two, or three racks cabled together, all switches should run Subnet Manager. The Master Subnet Manager should be run on a spine switch. If the network has only leaf switches, as in Oracle Exadata Database Machine Quarter Racks, then Subnet Manager Master runs on a leaf switch. When the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network consists of four or more racks cabled together, then only spine switches should run Subnet Manager. The leaf switches should disable Subnet Manager.
- In multi-rack configurations, using different types of racks such as Oracle Exadata Database Machine and Oracle Exalogic Elastic Cloud, see My Oracle Support Doc ID 1682501.1.

Related Topics
- Setting the Subnet Manager Master on Oracle Exadata Database Machine Full Rack and Oracle Exadata Database Machine Half Rack
- Setting up the Subnet Manager in a multi-rack cabling configuration containing Exalogic/Big Data Appliance and Exadata/SuperCluster (My Oracle Support Doc ID 1682501.1)

See Also:
Sun Datacenter InfiniBand Switch 36 Firmware Version 2.1 Documentation at http://docs.oracle.com/cd/E36265_01/index.html
4.8.9 Upgrading the Switch Firmware for InfiniBand Transport Layer systems based on an InfiniBand Network Layer

The `patchmgr` utility is used to upgrade and downgrade the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches. The minimum switch firmware release that can use the `patchmgr` utility is release 1.3.3-2. If the switch firmware is at an earlier release, then it is necessary to upgrade the firmware to release 1.3.3-2 using the instructions in My Oracle Support note 888828.1.

Refer to Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Software for the instructions.

4.8.10 Downgrading the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Software

Use `patchmgr` to downgrade the switch firmware.

Refer to Downgrading InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware for the instructions.

4.9 Modifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration

You can change how the InfiniBand Transport Layer systems based on an InfiniBand Network Layer network is configured by changing the IP addresses or host names, or by implementing partitioning.

- Configuring InfiniBand Partitioning
- Changing InfiniBand IP Addresses and Host Names
- Changing InfiniBand Network Information
 This procedure describes how to change the InfiniBand network information.

4.9.1 Configuring InfiniBand Partitioning

Configuring InfiniBand partitioning is described in Implementing InfiniBand Partitioning across Oracle VM Oracle RAC Clusters on Oracle Exadata Database Machine. You can use InfiniBand partitioning with or without Oracle VM.

4.9.2 Changing InfiniBand IP Addresses and Host Names

It may be necessary to change the InfiniBand network information on an existing Oracle Exadata Rack. The change may be needed to support a media server with multiple InfiniBand cards, or keep InfiniBand traffic on a distinct InfiniBand network such as having production, test and QA environments in the same rack.

All InfiniBand addresses must be in the same subnet, with a minimum subnet mask of 255.255.240.0 (or /20). The subnet mask chosen should be wide enough to...
accommodate possible future expansion of the Oracle Exadata Rack and InfiniBand network.

Note:
It is not recommended to use SDP over InfiniBand on Exadata Database Machine.

4.9.3 Changing InfiniBand Network Information

This procedure describes how to change the InfiniBand network information.

The procedure described in this section is based on the following assumptions:

- All changes should be done as the ilom-admin user using the Integrated Lights Out Manager (ILOM) interface.
- Channel bonding is used for the client access network, such that the NET1 and NET2 interfaces are bonded to create BONDETH0. If channel bonding is not used, then replace BONDETH0 with NET1 in the procedure.
- On Oracle Exadata Database Machine X4-2 and later hardware, as of Oracle Exadata System Software release 11.2.3.3.0, the name used for InfiniBand bonding changed from BONDIB0 to IB0 and IB1. These interfaces are changed the same way as the ifcfg-bondib0 interface.
- As of Oracle Exadata System Software release 11.2.2.1.0, the names used for bonding changed. The names are BONDIB0 for the InfiniBand bonding and BONDETH0 for Ethernet bonding. In earlier releases, the names were BOND0 and BOND1, respectively.
- The procedure uses the dcli utility and the root user. This significantly reduces the overall time to complete the procedure by running the commands in parallel on the database servers.
- The dcli utility requires SSH user-equivalence. If SSH user-equivalence is not configured, then some commands must be run explicitly on each database server.
- The database group file, dbs_group, must exist and be located in the /root directory.
- Ensure recent backups of the Oracle Cluster Registry (OCR) exist before changing the InfiniBand network information. OCR backups are located in the $Grid_home/cdata/cluster-name directory, where Grid_home represents the location of your Oracle Grid Infrastructure software installation.
- Starting with Oracle Grid Infrastructure 11g release 2 (11.2), the private network configuration is stored in the Grid Plug and Play (GPNP) profile as well as the OCR. If the GPNP definition is not correct, then Oracle Clusterware CRS does not start. Take a backup of the GPNP profile on all nodes before changing the InfiniBand network information using the following commands:

```
$ cd $Grid_home/gpn/hostnm/profiles/peer/
$ cp -p profile.xml profile.xml.bk
```
1. Determine if the `CLUSTER_INTERCONNECT` parameter is used in the Oracle Database and Oracle ASM instances.

 SQL> SELECT inst_id, name, value FROM gv$parameter WHERE name = 'cluster_interconnects';

 If the `CLUSTER_INTERCONNECT` parameter is set in OCR, then no value is returned. If the `CLUSTER_INTERCONNECT` parameter is defined in the server parameter file (SPFILE), then the query returns an IP address for each instance, and they need to be changed to new IP addresses.

 The following is an example of the commands to change the IP addresses for the Oracle ASM instances. In the example, the IP address 192.168.10.1 is the new IP address assigned to BONDIB0 on the server where the +ASM1 instance runs, 192.168.10.2 is the IP address for BONDIB0 on the server where the +ASM2 instance runs, and so on.

 ALTER SYSTEM SET CLUSTER_INTERCONNECTS='192.168.10.1' SCOPE=SPFILE SID='+ASM1';
 ALTER SYSTEM SET CLUSTER_INTERCONNECTS='192.168.10.2' SCOPE=SPFILE SID='+ASM2';
 ALTER SYSTEM SET CLUSTER_INTERCONNECTS='192.168.10.3' SCOPE=SPFILE SID='+ASM3';

 Use a similar command to change the IP addresses for each Oracle Database instance that was returned.

2. Verify the assignment of the new InfiniBand network information for all servers. Verification should include the InfiniBand IP addresses, netmask, broadcast, and network IP information.

3. Shut down all cluster-managed services on each database server as the oracle user.

 $ srvctl stop home -o db_home -s state_filename -n node_name

 In the preceding command, `db_home` is the full directory name for the Oracle Database home directory, `state_filename` is the path name where you want the state file to be written, and `node_name` is the name of the database server. The following is an example of the command:

 $ srvctl stop home -o /u01/app/oracle/product/11.2.0.3/dbhome_1 -s /tmp/dm02db01_dbhome -n dm02db01

 In the preceding example, `/u01/app/oracle/product/11.2.0.3/dbhome_1` is the Oracle Database home directory, `/tmp/dm02db01_dbhome` is the state file name, and `dm02db01` is the name of the database server.

4. Modify the cluster interconnect interface to use the BONDIB0 interface on the first database server.
Note:

At this point, only Oracle Clusterware, Oracle Clusterware CRS, and Oracle ASM instances are started.

a. Log in as the oracle user.

b. Set $ORACLE_HOME to the Oracle Grid Infrastructure home.

c. Set the base for the ORACLE_SID environment variable.

 The ORACLE_HOME environment variable must be set to the Oracle Grid Infrastructure home.

 $ ORACLE_SID=+ASM1

d. List the available cluster interfaces.

 $ oifcfg iflist

 The following is an example of the output:

 bondeth0 10.128.174.160
 bondeth1 10.128.176.0
 eth0 10.128.174.128
 ib0 192.168.160.0
 ib0 169.254.0.0
 ib1 192.168.160.0
 ib1 169.254.128.0

e. List the currently-assigned cluster interfaces.

 $ oifcfg getif

 The following is an example of the output:

 bondeth0 10.204.76.0 global public
 ib0 192.168.16.0 global cluster_interconnect,asm
 ib1 192.168.16.0 global cluster_interconnect,asm

f. Assign the ib0 and ib1 interfaces new IP addresses as global cluster interconnect interfaces.

 oifcfg setif -global ib0/192.168.8.0:cluster_interconnect
 oifcfg setif -global ib1/192.168.8.0:cluster_interconnect

g. List the current interfaces.

 $ oifcfg getif
The following is an example of the output:

```
bondeth0 10.128.174.160 global public
ib0 192.168.8.0 global cluster_interconnect
ib1 192.168.8.0 global cluster_interconnect
```

The old private interface is removed at a later time.

5. Shut down Oracle Clusterware and Oracle Clusterware CRS on each database server.
 a. Log in as the root user.
 b. Shut down Oracle Clusterware CRS on each database server using the following command:

   ```
   # Grid_home/grid/bin/crsctl stop crs -f
   ```
 c. Disable automatic Oracle Clusterware CRS restart on each database server.

   ```
   # Grid_home/grid/bin/crsctl disable crs
   ```

6. Change the InfiniBand IP addresses on each Oracle Exadata Storage Server.
 a. Log in as the root user.
 b. Run the following commands:

   ```
   # cellcli -e alter cell shutdown services all
   Stopping the RS, CELLSRV, and MS services... The SHUTDOWN of services was successful.

   # service ocrvottargetd stop

   # ipconf
   ```

 For the service command, respond to the prompts to change the BONDIB0 information. The following is an example of the prompts and responses for the ipconf command. Changes are applied after the prompt for basic Integrated Lights Out Manager (ILOM) settings.

   ```
   Logging started to /var/log/cellos/ipconf.log
   Interface ib0 is Linked.  hca: mlx4_0
   Interface ib1 is Linked.  hca: mlx4_0
   Interface eth0 is Linked.  driver/mac: ixgbe/00:00:00:00:cd:01
   Interface eth1 is ... Unlinked.  driver/mac: ixgbe/00:00:00:00:cd:02
   Interface eth2 is ... Unlinked.  driver/mac: ixgbe/00:00:00:00:cd:03
   Interface eth3 is ... Unlinked.  driver/mac: ixgbe/00:00:00:00:cd:04
   ```

<table>
<thead>
<tr>
<th>Network interfaces</th>
<th>Name</th>
<th>State</th>
<th>IP address</th>
<th>Netmask</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ib0</td>
<td>Linked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ib1</td>
<td>Linked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eth0</td>
<td>Linked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4
Modifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration

4-46
Warning. Some network interface(s) are disconnected. Check cables and switches and retry
Do you want to retry (y/n) [y]: n

The current nameserver(s): 192.0.2.10 192.0.2.12 192.0.2.13
Do you want to change it (y/n) [n]:
The current timezone: America/Los_Angeles
Do you want to change it (y/n) [n]:
The current NTP server(s): 192.0.2.06 192.0.2.12 192.0.2.13
Do you want to change it (y/n) [n]:

Network interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>IP address</th>
<th>Netmask</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth0</td>
<td>Linked</td>
<td>192.0.2.151</td>
<td>255.255.252.0</td>
<td>192.0.2.15</td>
</tr>
<tr>
<td>Management</td>
<td>myg.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth1</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth2</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth3</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bondib0</td>
<td>ib0,ib1</td>
<td>192.168.13.101</td>
<td>255.255.252.0</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>myg-priv.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select interface name to configure or press Enter to continue:
obondib0
Selected interface. bondib0
IP address or none [192.168.13.101]: 192.168.10.3
Netmask [255.255.252.0]:255.255.248.0
Fully qualified hostname or none [myg-priv.example.com]:
Continue configuring or re-configuring interfaces? (y/n) [y]: n

Select canonical hostname from the list below
1: myg.example.com
2: myg-priv.example.com
Canonical fully qualified domain name [1]:

Select default gateway interface from the list below
1: eth0
Default gateway interface [1]:

Canonical hostname: myg.example.com
Nameservers: 192.0.2.10 192.0.2.12 192.0.2.13
Timezone: America/Los_Angeles
NTP servers: 192.0.2.06 192.0.2.12 192.0.2.13
Default gateway device: eth0
Network interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>IP address</th>
<th>Netmask</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>eth0</td>
<td>Linked</td>
<td>192.0.2.151</td>
<td>255.255.252.0</td>
<td>192.0.2.15</td>
</tr>
<tr>
<td>Management</td>
<td>myg.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth1</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth2</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eth3</td>
<td>Unlinked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bondib0</td>
<td>ib0,ib1</td>
<td>192.168.10.3</td>
<td>255.255.248.0</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>myg-priv.example.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4

Modifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration
Is this correct (y/n) [y]:

Do you want to configure basic ILOM settings (y/n) [y]: n

Starting the RS services...
Getting the state of RS services... running

Starting MS services...
The STARTUP of MS services was successful.
A restart of all services is required to put new network configuration into effect. MS-CELLSRV communication may be hampered until restart.
Cell myg successfully altered

Stopping the RS, CELLSRV, and MS services...
The SHUTDOWN of services was successful.
ipaddress1=192.168.10.3/21

c. Restart the Oracle Exadata Storage Server.

 # shutdown -r now

7. Restart the cell services.

 # cellcli -e alter cell restart services all

8. Verify the newly-assigned InfiniBand address on Oracle Exadata Storage Server.

 # cellcli -e list cell detail | grep ipaddress1

The following is an example of the output:

ipaddress1: 192.168.10.3/21

9. Change the InfiniBand IP addresses on each database server.
 a. Log in as the root user.
 b. Change to the /etc/sysconfig/network-scripts directory.
 c. Copy the ifcfg-bondib0 file.
 The copied file name must not start with ifcfg.

 # cp ifcfg-bondib0 orig_ifcfg-bondib0

d. Edit the ifcfg-bondib0 file to update the IPADDR, NETMASK, NETWORK and BROADCAST fields.
 Example of original ifcfg-bondib0 file:

 #### DO NOT REMOVE THESE LINES ####
 #### %GENERATED BY CELL% ####
 DEVICE=bondib0
 USERCTL=no
 BOOTPROTO=None
ONBOOT=yes
IPADDR=192.168.20.8
NETMASK=255.255.248.0
NETWORK=192.168.16.0
BROADCAST=192.168.23.255
BONDING_OPTS="mode=active-backup miimon=100 downdelay=5000
updelay=5000"
IPV6INIT=no
MTU=65520

Example of updated ifcfg-bondib0 file:

DO NOT REMOVE THESE LINES
GENERATED BY CELL%
DEVICE=bondib0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes
IPADDR=192.168.10.8
NETMASK=255.255.248.0
NETWORK=192.168.8.0
BROADCAST=192.168.15.255
BONDING_OPTS="mode=active-backup miimon=100 downdelay=5000
updelay=5000"
IPV6INIT=no
MTU=65520

Note:

The MTU size for the InfiniBand interfaces on the database servers should be set as follows:

- For Oracle Exadata System Software release 11.2.3.3 and later, set the MTU size to 7000.
- For Oracle Exadata System Software releases earlier than release 11.2.3.3, set the MTU size to 65520 to ensure a high transfer rate to external devices using TCP/IP over InfiniBand such as media servers or NFS servers.

e. Restart the database server.

 # shutdown -r now

f. Verify the InfiniBand IP address information.

 # ifconfig -a
The following is an example of the BONDIB0 information. It shows the updated InfiniBand network information:

```
inet addr:192.168.10.8 Bcast:192.168.15.255 Mask:255.255.248.0
```

10. Update the `cellinit.ora` and `cellip.ora` files on each database server.

Note:

Do not edit the `cellinit.ora` or `cellip.ora` files when the database or Oracle ASM instance are running. To make changes to the files, perform a procedure similar to the following:

a. i. Create a copy of the file.

   ```
   cp cellinit.ora cellinit.new
   ```

 ii. Edit the `cellinit.new` file with a text editor.

 iii. Replace the old `cellinit.ora` file with the updated `cellinit.new` file.

   ```
   mv cellinit.new cellinit.ora
   ```

a. Log in as the root user.

b. Change to the `/etc/oracle/cell/network-config` directory.

c. Make a backup copy of the `cellip.ora` file.

   ```
   # cp cellip.ora orig_cellip.ora
   ```

Note:

If you are using SSH user-equivalence, then the `dcli` utility can be used. The following is an example of the `dcli` command:

```
# dcli -l root -g /root/dbs_group "cp cellip.ora orig_cellip.ora"
```

d. Make a backup copy of the `cellinit.ora` file.

 The following is an example of the command:

   ```
   # cp cellinit.ora orig_cellinit.ora
   ```
Note:

If you are using SSH user-equivalence, then the `dcli` utility can be used. The following is an example of the `dcli` command:

```
# dcli -l root -g /root/dbs_group "cp cellinit.ora \ orig_cellinit.ora"
```

e. Change the InfiniBand IP addresses in the `cellip.ora` file.

Example of original file:

```plaintext
cell="192.168.20.1"
cell="192.168.20.2"
cell="192.168.20.3"
cell="192.168.20.4"
cell="192.168.20.5"
cell="192.168.20.6"
cell="192.168.20.7"
```

Example of updated file:

```plaintext
cell="192.168.10.1"
cell="192.168.10.2"
cell="192.168.10.3"
cell="192.168.10.4"
cell="192.168.10.5"
cell="192.168.10.6"
cell="192.168.10.7"
```

Note:

If you are using SSH user-equivalence, then the `dcli` utility can be used to copy the updated file from the first database server to the other database servers. The following is an example of using the `dcli` command:

```
# dcli -l root -g /root/dbs_group -f 
/etc/oracle/cell/network-config/cellip.ora

# dcli -l root -g /root/dbs_group "mv /root/cellip.ora \ 
/etc/oracle/cell/network-config/"
```

f. Change the InfiniBand IP addresses in the `cellinit.ora` file.

The file is updated with the subnet ID and its subnet mask.
Example of original file:

```plaintext
ipaddress="192.168.20.8/21"
```

Example of updated file:

```plaintext
ipaddress="192.168.10.8/21"
```

Update the `cellinit.ora` file on each database server. The contents of the file is specific to the database server. The `dcli` utility cannot be used for this step.

g. Run the `ALTER DBSERVER` command on each database server to update the `/etc/oracle/cell/network-config/cellinit.ora` file.

```plaintext
# dbmcli -e alter dbserver interconnect1 = "ib0"
# dbmcli -e alter dbserver interconnect2 = "ib1"
# dbmcli -e alter dbserver interconnect3 = "ib2"
# dbmcli -e alter dbserver interconnect4 = "ib3"
```

11. Update the `/etc/hosts` file on each database server and Oracle Exadata Storage Servers to use the new InfiniBand IP addresses.

a. Log in as the `root` user.

b. Make a backup copy of the `/etc/hosts` file.

```plaintext
# cp /etc/hosts /etc/orig_hosts
```

c. Change the InfiniBand IP addresses for the database servers and Oracle Exadata Storage Server files.

12. Start Oracle Clusterware as the `root` user on each server.

```plaintext
# Grid_home/grid/bin/crsctl start crs
```

13. Verify the cluster interconnect is using the RDS protocol on each database server by examining the Oracle ASM `alert.log`.

The log is in the directory `/u01/app/oracle/diag/asm/+asm/+ASM1.trace`. An entry similar to the following should be listed for the most-recent Oracle ASM restart:

```
CELL interconnect IPC version: Oracle RDS/IP (generic)
```

For Oracle Exadata System Software releases 11.2.0.2 and later, the following command can be used to verify cluster interconnect. The command is run as the `oracle` user on each database server.

```
$ORACLE_HOME/bin/skgxpinfo
```

The output from the command should be `rds`.

If the instance is not using the RDS protocol over InfiniBand, then relink the Oracle software using the following steps:
Note:

Do not use the `relink all` command to relink the Oracle software.

a. As the oracle user, shut down any processes using Oracle software.

b. If you are relinking the Oracle Grid Infrastructure home, then as the root user, run one of the following commands. Do not perform this step if you are not relinking the Oracle Grid Infrastructure home.

- For Oracle Grid Infrastructure release 12.2.0.1 or higher:

  ```bash
  # Grid_home/crs/install/rootcrs.sh -unlock
  ```

- For Oracle Grid Infrastructure release 12.1.0.1 or 12.1.0.2:

  ```bash
  # Grid_home/crs/install/rootcrs.pl -unlock
  ```

c. As the oracle user, change to the `$ORACLE_HOME/rdbms/lib` directory.

d. As the oracle user, run the following command:

```bash
$ make -f ins_rdbms.mk ipc_rds ioracle
```

e. If you are relinking the Oracle Grid Infrastructure home, then as the root user, run one of the following commands. Do not perform this step if you are not relinking the Oracle Grid Infrastructure home.

- For Oracle Grid Infrastructure release 12.2.0.1 or higher:

  ```bash
  # Grid_home/crs/install/rootcrs.sh -unlock
  # Grid_home/bin/crsctl start crs
  ```

- For Oracle Grid Infrastructure release 12.1.0.1 or 12.1.0.2:

  ```bash
  # Grid_home/crs/install/rootcrs.pl -patch
  ```

14. Start all cluster-managed services using the SRVCTL utility.

 a. Log in as the oracle user.

 b. Start the database using the following command, where `Oracle_home` is your Oracle home directory:

   ```bash
   $ srvctl start home -o Oracle_home -s /tmp/dm02db01_dbhome -n dm02db01
   ```

 c. Verify the database instances are running.

   ```bash
   $ srvctl status database -d dbm
   ```

15. Verify the Oracle ASM and database instances are using the new network settings.

 a. Log in to an Oracle ASM and database instance using SQL*Plus.
b. Query the cluster interconnect information.

 SQL> SELECT inst_id, name, value FROM gv$parameter WHERE name = 'cluster_interconnects';

16. Delete the old private network.

 $ oifcfg delif -global bondib0/192.168.16.0

17. Verify that the old interface is not present.

 $ oifcfg getif
 bondeth0 10.204.76.0 global public
 bondib0 192.168.8.0 global cluster_interconnect

18. Enable Oracle Clusterware CRS automatic restart on each database server.
 a. Log in as the root user.
 b. Enable Oracle Clusterware CRS.

 # Grid_home/grid/bin/crsctl enable crs

 Note:
 To use the dcli utility to enable Oracle Clusterware CRS.

 # dcli -l root -g dbs_group "Grid_home/grid/bin/crsctl enable crs"

19. Perform a full restart of Oracle Clusterware on all nodes.

20. Perform a health check of Oracle Exadata Rack using the steps described in My Oracle Support Doc ID 1070954.1.

 Note:
 Oracle EXAchk utility collects data for key software, hardware, and firmware releases, and configuration best practices for Oracle Exadata Rack.

 Oracle recommends you periodically review the current data for key components of Oracle Exadata Rack, and compare them to the supported release levels, and recommended best practices.

 Oracle EXAchk is not a database, network, or SQL performance analysis tool. It is not a continuous monitoring utility, and does not duplicate other monitoring or alerting tools, such as ILOM, or Oracle Enterprise Manager Cloud Control.

21. Verify the private network configuration using the clusterware verification utility, cluvfy.
Related Topics

- Using the ipconf Utility
- Server Control Utility Reference
- Oracle Exadata Database Machine exachk or HealthCheck (My Oracle Support Doc ID 1070954.1)
- Cluster Verification Utility (CLUVFY) FAQ (My Oracle Support Doc ID 316817.1)

4.10 Configuring Network Routing on Database Servers

The tasks for network routing are for boot-time routing or real-time routing.

- **About Network Routing on Database Servers**
 There are three logical network interfaces configured on the database servers.

- **Task 1: Configure for Boot-Time Routing**
- **Task 2: Configure for Real-Time Routing**
- **Task 3: Verify Network Routing Rules and Routes**
- **Removing Network Routing Configuration for Troubleshooting**
- **Returning to Default Routing**
 To return to the default network routing, delete the supplemental files from the `/etc/sysconfig/network-scripts` directory, and then restart the server.

4.10.1 About Network Routing on Database Servers

There are three logical network interfaces configured on the database servers.

The interface names are:

- **Management network:** `eth0`
- **Client access network:** `bond1` or `bondeth0`
- **RDMA Network Fabric network:** `bond0`, `bondib0`, or `ib0` and `ib1`, or `re0` and `re1`

Note:

The tasks in this section are for Oracle Exadata Database Servers that were configured prior to Oracle Exadata System Software release 11.2.3.2.1.

Starting with Oracle Exadata System Software release 11.2.2.3.0, connections that come in on the management network have their responses sent out on the management network interface, and connections on the client access network have their responses sent out on the client access network interface.

For Oracle Exadata System Software releases earlier than release 11.2.2.3.0, the default route for outbound traffic not destined for an IP address on the management or private InfiniBand network is sent out using the client access network. The tasks in this section modify the routing such that traffic that comes in on the management network has the responses sent out on the management network. Similarly, traffic coming in on the client network has the responses sent out on the client network.
The tasks for network routing are for boot-time routing or real-time routing. The following apply to both types of routing:

- These tasks are for database servers running a release earlier than Oracle Exadata System Software release 11.2.2.3.0.
- The following sample IP addresses, netmasks, and gateways are used in the tasks:
 - Management network has IP address 10.149.49.12, netmask 255.255.252.0 (network 10.149.48.0/22), and gateway 10.149.48.1.
 - Client access network has IP address 10.204.78.15, netmask 255.255.255.0 (network 10.204.78.0/24), and gateway 10.1.78.1.

Note:
If the database server has additional networks configured, then files should be set up for the additional networks.

4.10.2 Task 1: Configure for Boot-Time Routing

To configure network routing for boot-time routing, rule and routing files must be created for each database server. The rule and routing files must be located in the `/etc/sysconfig/network-scripts` directory on each database server. For each Ethernet interface on the management network that has a configured IP address, the database server must have `route-ethn` and `rule-ethn` files. For each bonded Ethernet interface, the database server must have `route-bondethn` and `rule-bondethn` files. The following are examples of the content in the files:

<table>
<thead>
<tr>
<th>File</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/sysconfig/network-scripts/rule-eth0</code></td>
<td>from 10.149.49.12 table 220 to 10.149.49.12 table 220</td>
</tr>
<tr>
<td><code>/etc/sysconfig/network-scripts/route-eth0</code></td>
<td>10.149.48.0/22 dev eth0 table 220 default via 10.149.48.1 dev eth0 table 220</td>
</tr>
<tr>
<td><code>/etc/sysconfig/network-scripts/rule-bondeth0</code></td>
<td>from 10.204.78.0/24 table 210 to 10.204.78.0/24 table 210</td>
</tr>
<tr>
<td><code>/etc/sysconfig/network-scripts/route-bondeth0</code></td>
<td>10.204.78.0/24 dev bondeth0 table 210 default via 10.204.78.1 dev bondeth0 table 210</td>
</tr>
</tbody>
</table>

4.10.3 Task 2: Configure for Real-Time Routing

To configure the rules on a running system, use the `/sbin/ip` command to create the same configuration that is performed at startup. The following commands result in the same configuration as the boot-time files:

```
/sbin/ip rule add from 10.149.49.12 table 220
/sbin/ip rule add to 10.149.49.12 table 220
```
Oracle recommends restarting the database server after running the commands to validate that the boot-time configuration is correct.

4.10.4 Task 3: Verify Network Routing Rules and Routes

Use the following command to verify the network routing rules. The command output shows all the rules on the system.

```
# /sbin/ip rule list
0: from all lookup 255
32762: from all to 10.204.78.0/24 lookup 210
32763: from 10.204.78.0/24 lookup 210
32764: from all to 10.149.49.12 lookup 220
32765: from 10.149.49.12 lookup 220
32766: from all lookup main
32767: from all lookup default
```

The default routing table is not changed because two new routing tables are created during the preceding tasks. The new routing tables are used when the rules dictate their use. The following commands show how to check the default and new routing tables:

- To check the default routing table. The following is an example of the command and output.

```
# /sbin/ip route list
table 210
10.204.78.0/24 dev bondeth0  proto kernel  scope link  src 10.204.78.15
192.168.10.0/24 dev bondib0  proto kernel  scope link  src 192.168.10.8
10.149.48.0/22 dev eth0  proto kernel  scope link  src 10.149.49.12
default via 10.149.52.1 dev bondeth0
```

- To check that the supplemental tables include the table name with the command. The following is an example of the command and output.

```
# /sbin/ip route list table 220
table 220
10.149.48.0/22 dev eth0  scope link
default via 10.149.48.1 dev eth0
```

4.10.5 Removing Network Routing Configuration for Troubleshooting

The network routing configuration can be removed to configure or troubleshoot Oracle Exadata Database Machine. Use the following commands to remove the rules and routes:

```
/sbin/ip route del default via 10.149.48.1 dev eth0 table 220
/sbin/ip route del 10.149.48.0/22 dev eth0 table 220
/sbin/ip route del to 10.149.49.12 table 220
/sbin/ip route del from 10.149.49.12 table 220
```
4.10.6 Returning to Default Routing

To return to the default network routing, delete the supplemental files from the /etc/sysconfig/network-scripts directory, and then restart the server.

The following is an example of the commands to remove the files, and restart the server:

/bin/rm -f /etc/sysconfig/network-scripts/rule-eth0
/bin/rm -f /etc/sysconfig/network-scripts/route-eth0
/bin/rm -f /etc/sysconfig/network-scripts/rule-bondeth0
/bin/rm -f /etc/sysconfig/network-scripts/route-bondeth0
shutdown -r now

4.11 Changing the DNS Servers

The configuration settings for the Domain Name System (DNS) servers can be changed after initial setup.

All servers and switches in Oracle Exadata Database Machine should reference the same DNS servers. All domains that Oracle Exadata Database Machine references should be resolvable through each individual DNS server.

The following topics contain the tasks and procedures for setting the Oracle Exadata Database Machine servers and switches to the same DNS servers. Oracle recommends changing the servers one at a time.

- **Change the DNS Server Address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch**
- **Change the DNS Server Address on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch**
 This procedure describes how to change the DNS server address on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch.
- **Change the DNS Server Address on the Cisco Ethernet Switch**
 This procedure describes how to change the DNS server address on the Cisco Ethernet switch.
- **Change the DNS Server Address on the Database Server**
 This procedure describes how to change the DNS server address on the database servers.
- **Change the DNS Server on Oracle Exadata Storage Server**
 This procedure describes how to change the DNS server on Oracle Exadata Storage Servers.
- **Change the DNS Server on the KVM Switch**
 This procedure describes how to change the DNS server configuration using the KVM switch.
4.11.1 Change the DNS Server Address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch

All configuration procedures should be done as the ilom-admin user using the Integrated Lights Out Manager (ILOM) interface. Use one of the following procedures to change the DNS server, depending on firmware release:

1. If your switch is using firmware 2.0.4 or later:
 a. Log in to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch as the ilom-admin user.
 b. Set the DNS address using one of the following options:
 • Using the ILOM web interface:
 Select the Configuration tab and set the DNS server addresses.
 • Using the command line interface, set the DNS server using the following command:

 set /SP/clients/dns nameserver=dns_ip

 In the preceding command, dns_ip is the new IP address of the DNS server. If there is more than one DNS server, then enter a comma-separated list such as set /SP/clients/dns nameserver=dns_ip1,dns_ip2,dns_ip3.

2. If your switch is using firmware earlier than 2.0.4:
 a. Log in to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch as the root user.
 b. Edit the /etc/resolv.conf file.
 Set the DNS server and domain name using an editor such as vi. There should be a line for each DNS server.
 c. Save the file.

4.11.2 Change the DNS Server Address on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch

This procedure describes how to change the DNS server address on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

1. Access the switch using SSH, and log in as the admin user with the administrator password.

 Note:

 If SSH has not been configured, then use Telnet to access the switch as the admin user.
2. Change to **enable** mode.

Switch> enable

When prompted for a password, use the administrator password.

3. Review the current configuration.

Switch# show running-config

4. Erase the current DNS server information.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no ip name-server 192.0.2.2
Switch(config)# no ip name-server 198.51.100.4
Switch(config)# no ip name-server 203.0.113.2
Switch(config)# end
Switch# copy running-config startup-config
Building configuration...
Compressed configuration from 2603 bytes to 1158 bytes [OK]

Note:

Each current DNS IP address to be changed needs to be erased. Invalid IP addresses must also be erased.

5. Set the domain name and then configure up to three DNS servers, as shown in the following example:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip domain-name example.com
Switch(config)# ip name-server 192.0.2.3
Switch(config)# ip name-server 198.51.100.5
Switch(config)# ip name-server 203.0.113.1
Switch(config)# copy running-config startup-config
Building configuration...
Compressed configuration from 2603 bytes to 1158 bytes [OK]

6. Verify the changes.

Switch# show running-config

The following is an example of the output from the command:

Building configuration...
...
ip domain-name example.com
ip name-server 192.0.2.3
ip name-server 198.51.100.5
7. Exit the session.

Switch# exit

4.11.3 Change the DNS Server Address on the Cisco Ethernet Switch

This procedure describes how to change the DNS server address on the Cisco Ethernet switch.

1. Access the switch using one of the following methods, based on the firmware release:
 - Firmware release 12.2 or later:
 Access the switch using SSH, and log in as the admin user with the administrator password.
 - Firmware earlier than release 12.2:
 Access the switch using Telnet, and log in as the admin user using the administrative password.

 Note:
 If SSH has not been configured, then use Telnet to access the switch as the admin user.

2. Change to enable mode.

Switch> enable

When prompted for a password, use the administrator password.

3. Review the current configuration.

Switch# show running-config

4. Erase the current DNS server information.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no ip name-server 192.0.2.2
Switch(config)# no ip name-server 198.51.100.4
Switch(config)# no ip name-server 203.0.113.2
Switch(config)# end
Switch# copy running-config startup-config
Building configuration...
Compressed configuration from 2603 bytes to 1158 bytes [OK]
5. Set the domain name and then configure up to three DNS servers, as shown in the following example:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip domain-name example.com
Switch(config)# ip name-server 192.0.2.3
Switch(config)# ip name-server 198.51.100.5
Switch(config)# ip name-server 203.0.113.1
Switch(config)# copy running-config startup-config
Building configuration...
Compressed configuration from 2603 bytes to 1158 bytes [OK ]
```

6. Verify the changes.

```
Switch# show running-config
The following is an example of the output from the command:

Building configuration...
...
ip domain-name example.com
ip name-server 192.0.2.3
ip name-server 198.51.100.5
ip name-server 203.0.113.1
...
```

7. Exit the session.

```
Switch# exit
```

4.11.4 Change the DNS Server Address on the Database Server

This procedure describes how to change the DNS server address on the database servers.

1. Log in to the database server as the root user.
2. Edit the /etc/resolv.conf file.
 Set the DNS server and domain name using an editor such as vi. There should be a nameserver line for each DNS server.

```
search example.com
nameserver 10.7.7.3
```
3. Set the DNS server in the server ILOM.

 ipmitool sunoem cli 'set /SP/clients/dns nameserver=dns_ip'

In the preceding command, dns_ip is the IP address of the DNS server. If there is more than one DNS server, then enter a comma-separated list such as:

 set /SP/clients/dns nameserver=dns_ip1,dns_ip2,dns_ip3

4. Repeat these steps for each database server.

4.11.5 Change the DNS Server on Oracle Exadata Storage Server

This procedure describes how to change the DNS server on Oracle Exadata Storage Servers.

Note:

The NTP settings can also be set during this procedure.

1. Log in to the Oracle Exadata Storage Server as the root user.
2. Specify a time interval to repair the disk and bring it back online.
 The default DISK_REPAIR_TIME attribute value of 3.6 hours should be long enough for most environments.
 a. Check the repair time for all mounted disk groups.
 Log in to the Oracle ASM instance and run the following query:

      ```
      SQL> SELECT dg.name,a.value FROM v$asm_diskgroup dg, v$asm_attribute a WHERE dg.group_number=a.group_number AND a.name='disk_repair_time';
      ```
 b. Adjust the DISK_REPAIR_TIME parameter, if needed.
 In the following command, h.n is the amount of time in hours, such as 4.6.

      ```
      SQL> ALTER DISKGROUP DATA SET ATTRIBUTE 'DISK_REPAIR_TIME'='h.nH';
      ```
3. Check that putting the grid disks offline will not cause a problem for Oracle ASM.

   ```
   cellcli -e list griddisk attributes name,asmmodestatus,asmdeactivationoutcome
   ```

 The value Yes should be returned for the grid disks. If one or more disks does not return a Yes value, then restore data redundancy for the disk group, and repeat the command until all disk groups return a Yes value.
4. Inactivate all grid disks on the cell.

   ```
   # cellcli -e alter griddisk all inactive
   ```
This command may take more than 10 minutes to complete. Inactivating the grid disks automatically sets the disk to offline in the Oracle ASM instance.

5. Confirm the grid disks are offline.
 a. Check the status of the grid disks.

   ```
   # cellcli -e list griddisk attributes name, asmmodestatus, \ 
   asmdeactivationoutcome
   ```

 The output should show `asmmodestatus=OFFLINE` or `asmmodestatus=UNUSED`, and `asmdeactivationoutcome=Yes` for all grid disks.

 b. List the grid disk to confirm that they are offline.

   ```
   # cellcli -e list griddisk
   ```

6. Shut down the cell services and `ocrvottargetd` service.

   ```
   # cellcli -e alter cell shutdown services all
   # service ocrvottargetd stop
   ```

 Note:

 The `ocrvottargetd` service is not included in some releases.

7. Use the `ipconf` utility to change the DNS settings.

   ```
   # /usr/local/bin/ipconf
   ```

8. Restart the cell services and `ocrvottargetd` service.

   ```
   # service ocrvottargetd start
   # cellcli -e alter cell startup services all
   ```

 The server does not need to reboot.

9. Activate the grid disks when the cell comes online.

   ```
   # cellcli -e alter griddisk all active
   ```

10. Verify the disks are active.

    ```
    # cellcli -e list griddisk
    ```

 The output should show `active`.

11. Verify the grid disk status.

 a. Check that all grid disks are online.

    ```
    # cellcli -e list griddisk attributes name, asmmodestatus
    ```
b. Wait for Oracle ASM synchronization to complete for all grid disks.

Each disk will go to a **SYNCING** state first then **ONLINE**.

The following is an example of the output:

DATA_CD_00_dm01ce101 ONLINE
DATA_CD_01_dm01ce101 SYNCING
DATA_CD_02_dm01ce101 OFFLINE
DATA_CD_03_dm01ce101 OFFLINE
DATA_CD_04_dm01ce101 OFFLINE
DATA_CD_05_dm01ce101 OFFLINE
DATA_CD_06_dm01ce101 OFFLINE
DATA_CD_08_dm01ce101 OFFLINE
DATA_CD_09_dm01ce101 OFFLINE
DATA_CD_10_dm01ce101 OFFLINE
DATA_CD_11_dm01ce101 OFFLINE

Oracle ASM synchronization is complete when all grid disks show
asmmodestatus=ONLINE.

12. Repeat this procedure for each Oracle Exadata Storage Server.

4.11.6 Change the DNS Server on the KVM Switch

This procedure describes how to change the DNS server configuration using the KVM switch.

Note:

- The KVM switch is only available in Oracle Exadata Database Machine X2-2 racks and Oracle Exadata Storage Expansion Racks with Oracle Exadata Storage Server with Sun Fire X4270 M2 Servers.
- The KVM switch does not support NTP.

1. Log in to the KVM switch. You can log in directly on the KVM switch or access the switch using the host name or IP address over the Internet.
2. Select **Appliance** from Unit View.
3. Select **DNS** from Appliance Settings.
4. Select **DNS Configuration**.
5. Enter the DNS configuration. The following configuration options are available:
 - DNS Mode (Manual, DHCP, DHCPv6)
 - DNS Server Addresses (Primary, Secondary, Tertiary)
6. Click **Save**.
4.12 Changing the NTP Servers

The configuration settings for the Network Time Protocol (NTP) servers can be changed after initial setup.

All servers and switches in Oracle Exadata Database Machine should reference the same NTP servers so that the servers are synchronized to the same time.

The following topics contain the tasks and procedures for setting the Oracle Exadata Database Machine servers and switches to the same NTP server addresses. Oracle recommends changing the servers one at a time.

Note:

- These procedures assume that there is not a large time discrepancy between the two NTP servers. Use the command `ntpq -p` to see if the system is healthy first before performing the NTP server update.
- Up to two NTP servers can be configured for use with Oracle Exadata Database Machine.

- **Set the NTP Server Address on the Database Servers**
 You can set or change the Network Time Protocol (NTP) server address on the database server of Oracle Exadata Database Machine.

- **Set the NTP Server Address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch**
 You can set or change the Network Time Protocol (NTP) server address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch.

- **Set the NTP Server Address on the Cisco 9336C RoCE Switch**
 You can set or change the Network Time Protocol (NTP) server on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

- **Set the NTP Server Address on the Cisco Ethernet Switch**
 You can set or change the Network Time Protocol (NTP) server on the Cisco Ethernet switch.

- **Set the NTP Server on Oracle Exadata Storage Servers**
 You can set or change the Network Time Protocol (NTP) server on Oracle Exadata Storage Servers.

4.12.1 Set the NTP Server Address on the Database Servers

You can set or change the Network Time Protocol (NTP) server address on the database server of Oracle Exadata Database Machine.

1. If the database server operating system is Oracle Linux 5 or 6:
 a. Stop the NTP services on the database server.

      ```bash
      # service ntpd stop
      ```
b. Update the `ntp.conf` file with the IP address of the new NTP server.

c. Start the NTP services on the database server.

```
# service ntpd start
```

d. Repeat Steps 1.a through 1.c for each database server.

2. If the database server operating system is Oracle Linux 7:

a. Stop the time synchronization service on the database server.

```
# systemctl stop chronyd
```

b. Update the `/etc/chrony.conf` file with the IP address of the new NTP server.

c. Start the time synchronization service on the database server.

```
# systemctl start chronyd
```

d. Repeat Steps 2.a through 2.c for each database server.

4.12.2 Set the NTP Server Address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch

You can set or change the Network Time Protocol (NTP) server address on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch.

Note:

Do not manually edit the files on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

1. Log in as the `ilom-admin` user.

2. Set the date, time zone, and NTP server using one of the following methods:

 • Using the Configuration page on the Integrated Lights Out Manager (ILOM) graphical interface.

 • Manually, using the following commands:

```
set /SP/clock timezone=preferredTZ
set /SP/clients/ntp/server/1 address=ntp_ip1
set /SP/clients/ntp/server/2 address=ntp_ip2
set /SP/clock usentpserver=enabled
```

In the preceding commands, `preferredTZ` is the preferred time zone, and `ntp_ip1` and `ntp_ip2` are the NTP server IP addresses. It is not necessary to configure both NTP servers, but at least one should be configured.
4.12.3 Set the NTP Server Address on the Cisco 9336C RoCE Switch

You can set or change the Network Time Protocol (NTP) server on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

1. Access the switch using SSH, and log in as the admin user and password.

2. Review the current configuration.

Switch# show running-config

3. Erase the current NTP server configuration.

In this example, the current IP addresses are 10.10.10.1 and 10.8.8.1.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no ntp server 10.10.10.1
Switch(config)# no ntp server 10.8.8.1
Switch(config)# end
Switch# copy running-config

Note:
Each current NTP IP address being changed needs to be erased. Invalid IP addresses must also be erased.

4. Configure up to two NTP servers.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# feature ntp
Switch(config)# ntp server 10.7.7.1 prefer
Switch(config)# ntp server 10.9.9.1
Switch(config)# clock protocol ntp
Switch(config)# end
Switch# copy running-config
Building configuration...
Compressed configuration from 2603 bytes to 1158 bytes [OK]

5. Verify the changes.

Switch# show running-config

The following is an example of the output from the command:

Building configuration...
...
ntp server 192.168.10.10 prefer
...
6. Save the configuration.

Switch# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
Compressed configuration from 14343 bytes to 3986 bytes [OK]

7. Exit from the session.

Switch# exit

4.12.4 Set the NTP Server Address on the Cisco Ethernet Switch

You can set or change the Network Time Protocol (NTP) server on the Cisco Ethernet switch.

1. Access the switch using one of the following methods, based on the firmware version:
 a. Firmware versions earlier than version 12.2: Access the switch using Telnet, and log in as the administrator using the administrative password.
 b. Firmware version 12.2 or later: Access the switch using SSH, and log in as the admin user with the admin password.

 Note:
 If SSH has not been configured, then use Telnet to access the switch as the admin user.

2. Change to enable mode. When prompted for a password, use the administrator password.

 Switch> enable

3. Review the current configuration.

 Switch# show running-config

4. Erase the current NTP server configuration.
 In this example, the current IP addresses are 10.10.10.1 and 10.8.8.1.

 Switch# configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 Switch(config)# no ntp server 10.10.10.1
 Switch(config)# no ntp server 10.8.8.1
 Switch(config)# end
 Switch# write memory
 Building configuration...
 Compressed configuration from 2603 bytes to 1158 bytes [OK]
5. Configure up to two NTP servers.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# feature ntp
Switch(config)# ntp server 10.7.7.1 prefer
Switch(config)# ntp server 10.9.9.1
Switch(config)# clock protocol ntp
Switch(config)# end
Switch# write memory
Building configuration...
Compressed configuration from 2603 bytes to 1158 bytes [OK]

6. Verify the changes.

Switch# show running-config

The following is an example of the output from the command:

Building configuration...
...
ntp server 192.168.10.10 prefer
...

7. Save the configuration.

Switch# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
Compressed configuration from 14343 bytes to 3986 bytes [OK]

8. Exit from the session.

Switch# exit

4.12.5 Set the NTP Server on Oracle Exadata Storage Servers

You can set or change the Network Time Protocol (NTP) server on Oracle Exadata Storage Servers.

Note:
The DNS settings can also be set during this procedure.
WARNING:

If you do not complete the steps to ensure taking the grid disks offline will not impact Oracle ASM operation, then you can cause a database outage.

1. Log in to the cell as the root user.

2. Check the time interval to repair the disk and bring it back online and specify a new value if needed.

 The default DISK_REPAIR_TIME attribute value of 3.6 hours should be long enough for most environments.

 a. Check the repair time for all mounted disk groups by logging in to the Oracle ASM instance, and running the following query:

   ```sql
   SQL> SELECT dg.name,a.value FROM v$asm_diskgroup dg, v$asm_attribute a \ WHERE dg.group_number=a.group_number AND a.name='disk_repair_time';
   ```

 b. If a non-default value has been specified, and the current setting will not give you enough time to implement the NTP server change, then adjust the parameter by issuing a command similar to the following:

   ```sql
   SQL> ALTER DISKGROUP DATA SET ATTRIBUTE 'DISK_REPAIR_TIME'='3.6H';
   ```

 Specify the time using the format \(h.n \)H, where \(h.n \) is the amount of time in hours, such as 4.6.

3. Check that taking the grid disks offline will not cause a problem for Oracle ASM.

   ```bash
   cellcli -e list griddisk attributes name, asmmodestatus, asmdeactivationoutcome
   ```

 The asmdeactivationoutcome value should be Yes for the grid disks. If one or more disks does not return a Yes value, then restore data redundancy for the disk group, and repeat the command until all grid disks return a Yes value.

4. Inactivate all grid disks on the cell.

   ```bash
   # cellcli -e alter griddisk all inactive
   ```

 This command may take more than 10 minutes to complete. Inactivating the grid disks automatically sets the disks to offline in the Oracle ASM instance.

5. Confirm the grid disks are offline.

 a. Check the status of the grid disks.

   ```bash
   # cellcli -e list griddisk attributes name, asmmodestatus, \ asmdeactivationoutcome
   ```

 The output should show asmmodestatus=OFFLINE or asmmodestatus=UNUSED, and asmdeactivationoutcome=Yes for all grid disks.
b. List the grid disk to confirm that they are offline.

 # cellcli -e list griddisk

6. Shut down the cell services and `ocrvottargetd` service.

 # cellcli -e alter cell shutdown services all
 # service ocrvottargetd stop

Note:
The `ocrvottargetd` service is not included in some releases.

7. Use the `ipconf` utility to change the NTP settings.

 # /usr/local/bin/ipconf

8. Restart the cell services. The server does not need to reboot.

 # service ocrvottargetd start
 # cellcli -e alter cell startup services all

9. Activate the grid disks when the cell services come online.

 # cellcli -e alter griddisk all active

10. Verify the disks are active.

 # cellcli -e list griddisk

 The output should show active.

11. Verify the grid disks are online.

 # cellcli -e list griddisk attributes name, asmmodestatus

 The following is an example of the output:

 DATA_CD_00_dm01cel01 ONLINE
 DATA_CD_01_dm01cel01 SYNCING
 DATA_CD_02_dm01cel01 OFFLINE
 DATA_CD_03_dm01cel01 OFFLINE
 DATA_CD_04_dm01cel01 OFFLINE
 DATA_CD_05_dm01cel01 OFFLINE
 DATA_CD_06_dm01cel01 OFFLINE
 DATA_CD_07_dm01cel01 OFFLINE
 DATA_CD_08_dm01cel01 OFFLINE
 DATA_CD_09_dm01cel01 OFFLINE
 DATA_CD_10_dm01cel01 OFFLINE
 DATA_CD_11_dm01cel01 OFFLINE
Each disk will go to a **SYNCING** state first then **ONLINE**. Wait for Oracle ASM synchronization to complete for all grid disks.

Oracle ASM synchronization is complete when all grid disks show a value of **ONLINE** for `asmmodestatus`.

12. Repeat this procedure for each Oracle Exadata Storage Server.

Related Topics

- **Change the DNS Server on Oracle Exadata Storage Server**
 This procedure describes how to change the DNS server on Oracle Exadata Storage Servers.

4.13 Changing the Time Zone Settings

You can change the time zones on Oracle Exadata Database Machine after initial configuration and deployment.

The following components need to be modified when changing the time zone settings:

- Storage servers
- Database servers
- RDMA Network Fabric switches
- Ethernet switch

Note:

Cell services and Oracle Clusterware services must be stopped before changing the time zone settings.

- **Change Time Zone Settings on Storage Servers**
 Use these steps to change the time zone setting on storage servers.

- **Change Time Zone Settings on the Database Servers**
 After modifying the time zone setting on the storage cells, you can change the time zone setting on the database servers.

- **Change Time Zone Settings on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches**
 You can change the time zone setting on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

- **Change Time Zone Settings on the Cisco 9336C RoCE Switch**
 You can change the time zone setting on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

- **Task 4: Change Time Zone Settings on the Ethernet Switch**
 You can change the time zone setting on the Ethernet switch.
4.13.1 Change Time Zone Settings on Storage Servers

Use these steps to change the time zone setting on storage servers.

Complete the setting changes to all storage servers before changing the settings on the database servers.

1. Log in as the root user on the database server node.
2. Stop the Oracle Clusterware stack on all nodes.
 Use a command similar to the following, where $Grid_{home}$ is the location of your Oracle Grid Infrastructure software installation.

```
# Grid_home/bin/crsctl stop crs
```
3. Log in as the root user on the storage server.
4. Stop the processes on the storage server.

   ```
   # cellcli -e alter cell shutdown services all
   ```
5. Run the ipconf script.

   ```
   # /opt/oracle.cellos/ipconf
   ```

 a. Proceed through the script prompts until you get to the time zone prompts. Do not change any other settings.

 Each Country is identified by a number and once it is selected, you will see another set of numbers for the different time zones within that country. The following is an example of the time zone prompts for changing the time zone from Antarctica to the United States. The number for the United States is 230.

   ```
   The current timezone: Antarctica/McMurdo
   Do you want to change it (y/n) [n]: y
   Setting up local time...
   1) Andorra
   2) United Arab Emirates
   3) Afghanistan
   .
   .
   15) Aruba
   16) Aaland Islands
   Select country by number, [n]ext, [l]ast: 230
   Selected country: United States (US). Now choose a zone
   1) America/New_York
   2) America/Detroit
   3) America/Kentucky/Louisville
   ```
15) America/North_Dakota/New_Salem
16) America/Denver
Select zone by number, [n]ext: 1

Selected timezone: America/New_York
Is this correct (y/n) [y]:

b. Proceed through the rest of the script prompts, but do not change any other values. Do not change ILOM settings.

After responding to all change requests, the script generates new files.

Info. Run /opt/oracle.cellos/validations/init.d/saveconfig
/opt/oracle.cellos/validations/init.d/saveconfig started at 2017_05_12_10_28
Copy cell configs from /opt/oracle/cell/cellsrv/deploy/config to /opt/oracle.cellos/iso/lastGoodConfig/cell/cellsrv/deploy/config
[INFO] Copying ssh host settings from //etc/ssh to /opt/oracle.cellos/iso/lastGoodConfig/etc/ssh ...
uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

6. Verify the time zone changes have been propagated to the following files. Examples of the changes are shown for the files.
 • /opt/oracle.cellos/cell.conf:

 $VAR1 = {
 'Hostname' => 'xdserver.example.com',
 'Ntp servers' => [
 '10.141.138.1',
],
 'Timezone' => 'America/New_York',
 }

 • /etc/sysconfig/clock:

 ZONE="America/New_York"
 UTC=false
 ARC=false
 #ZONE="Antarctica/McMurdo"
 #ZONE="America/New_York"
 #ZONE="America/Los_Angeles"

 The uncommented ZONE value (line not preceded by #) is the current setting.

 • /etc/localtime:

 Run the command strings /etc/localtime command to verify the change. The last line shows the time zone.

 ~^Ip
 EST5EDT,M3.2.0,M11.1.0

7. Restart the storage server.
8. Use the `date` command to see the current time zone. The following is an example of the output from the command:

```
# date
Tue Jan 29 12:44:21 EDT 2019
```

9. Review the `$ADR_BASE/diag/asm/cell/host_name/alert.log` file. The time that processes were restarted should match the current and correct time.

10. Repeat steps 3 through 9 on each cell.

4.13.2 Change Time Zone Settings on the Database Servers

After modifying the time zone setting on the storage cells, you can change the time zone setting on the database servers.

Before starting this procedure, you should have already stopped the Oracle Clusterware stack and modified the time zone on the storage cells, as described in Change Time Zone Settings on Storage Servers.

1. As the root user, copy the file `/etc/localtime` from any of the storage cells to the database server.

   ```
   # scp root@cell_name:/etc/localtime /etc/localtime
   ```

2. Copy the file `/etc/sysconfig/clock` from any of the storage cells to the database server.

   ```
   # scp root@cell_name:/etc/sysconfig/clock /etc/sysconfig/clock
   ```

3. Change the Oracle Clusterware settings to prevent the CRS stack from starting automatically after restarting the database server.

   ```
   # Grid_home/bin/crsctl disable crs
   ```

4. Reboot the database server.

   ```
   shutdown -r now
   ```

5. Verify the date has been changed on the database server. Use the `date` command verify the change for the time zone.

   ```
   # date
   Tue Jan 29 13:08:46 EDT 2017
   ```

6. Change the Oracle Clusterware settings to automatically restart the CRS stack after restarting the database server.

   ```
   # Grid_home/bin/crsctl enable crs
   ```

7. Start the CRS stack on the database server.

   ```
   # Grid_home/bin/crsctl start crs
   ```
4.13.3 Change Time Zone Settings on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches

You can change the time zone setting on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

1. Connect to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch using SSH as the ilom-admin user.

   ```
   ssh -l ilom-admin switch_hostname
   ```

2. Use the `version` command to check the version of the switch software.

 The following is an example of the output from the command:

   ```
   $ version
   SUN DCS 36p version: 2.2.2-7
   Build time: Aug 26 2016 10:00:25
   SP board info:
   Manufacturing Date: 2012.06.23
   Serial Number: "ABCDE1234"
   Hardware Revision: 0x0007
   Firmware Revision: 0x0000
   BIOS version: SUN0R100
   BIOS date: 06/22/2010
   ```

3. Administer the switch as follows, depending on the software version:

 - If the software version is 1.1.3-2 or later, then administration of the switch is done using ILOM as follows:
 a. Log in to ILOM using the web address `http://switch_alias`.
 b. Select the **Configuration** tab. Or, in the left-side navigation, select **ILOM Administration**, then **Date and Time**.
 c. Select the **Clock** tab.
 d. Click the **Enabled** check box next to **Synchronize Time Using NTP**.
 e. In the Server 1 text box, enter the correct IP address for the primary NTP server.
 f. In the Server 2 text box, type the IP address of the secondary NTP server you want to use.
 g. Click **Save**.

 - If the software version is earlier than 1.1.3-2, then log in to the switch using SSH as follows:
 a. Log in to the switch using the following command:

       ```
       #ssh -l root {switch_ip | switch_name}
       ```
b. Stop the ntpd daemon using the following command:

```
# service ntpd stop
```

c. Save a copy of the /etc/localtime file using the following command:

```
# cp /etc/localtime /etc/localtime.backup
```

d. Identify the file in the /usr/share/zoneinfo directory for the time zone. The following is an example for the United States:

```
#cd /usr/share/zoneinfo/US
#ls
Alaska  Aleutian  Arizona  Central  Eastern  East-Indiana
Hawaii  Indiana-Starke  Michigan  Mountain  Pacific  Samoa
```

e. Copy the appropriate file to the /etc/localtime directory. The following is an example of the command:

```
# cp /usr/share/zoneinfo/US/Eastern /etc/localtime
```

f. Manually set the current date and time to values near the current time.

g. Synchronize the time to the NTP server for the new time zone using the date command with the MMddHHmmCCyy format for Month, Day, Hour, Minute, Century, Year. The following is an example of the command:

```
# date 013110452013
# ntpd -q -g
```

h. Validate the date using the following command:

```
# date
```

i. Restart the ntpd daemon using the following command:

```
# service ntpd start
```

4.13.4 Change Time Zone Settings on the Cisco 9336C RoCE Switch

You can change the time zone setting on the InfiniBand Transport Layer systems based on a RoCE Network Layer switch.

1. Access the switch using SSH, and log in as the admin user.
2. Use the `configure terminal` command to begin configuration.
3. Set the clock using the following commands:
 a. To change the time zone:
      ```
      clock timezone zone hours_offset minutes_offset
      ```

In the preceding syntax:
• **zone** is the name of the time zone to be displayed when standard time is in effect. The default time zone is UTC.

• **hours_offset** is the hours offset from UTC

• **minutes_offset** are the minutes offset from UTC

b. To set summer time (daylight savings time) in areas where it starts and ends on a particular day of the week each year, use the following command:

```
clock summer-time zone recurring [week day month hh:mm week day month hh:mm[offset]]
```

In the preceding syntax, the values of **week day month hh:mm** are listed twice, once for the starting time and again for the ending time.

• **recurring** specifies that summer time starts and ends on the specified days every year. Summer time is disabled by default. If you specify `clock summer-time zone recurring` without any other parameters, the summer time rules default to the United States rules.

• **week** is the week of the month, between 1 to 5. The first occurrence of week is the start date and the second occurrence is the end date.

• **day** is the day of the week, such as Sunday or Monday. The first occurrence of week is the start date and the second occurrence is the end date.

• **month** is the month, such as January or June. The first occurrence of week is the start date and the second occurrence is the end date.

• **hh:mm** is the time in 24-hour format in hours and minutes, such as 15:42

• **offset** is the number of minutes to add during summer time. The default is 60.

Example 4-2 Setting the Time Zone on the InfiniBand Transport Layer systems based on a RoCE Network Layer Switch

The following is an example of setting the time zone to US Eastern time with summer time enabled:

```
dbm0sw-rocea0#configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
dbm0sw-rocea0(config)#clock timezone EST -5 0
dbm0sw-rocea0(config)#clock summer-time EDT recurring
dbm0sw-rocea0(config)#end
```

Building configuration...
Compressed configuration from 6421 bytes to 2041 bytes[OK]

```
dbm0sw-rocea0#show clock
12:03:43.516 EDT Wed May 12 2012
```

4.13.5 Task 4: Change Time Zone Settings on the Ethernet Switch

You can change the time zone setting on the Ethernet switch.
1. Use Telnet to connect to the Ethernet switch.
2. Use the `enable` command to enter privileged mode.
3. Use the `configure terminal` command to begin configuration.
4. Set the clock using the following commands:
 a. To change the time zone:

      ```
      clock timezone zone hours_offset minutes_offset
      ```

 In the preceding syntax:
 - `zone` is the name of the time zone to be displayed when standard time is in effect. The default time zone is UTC.
 - `hours_offset` is the hours offset from UTC
 - `minutes_offset` are the minutes offset from UTC

 b. To set summer time (daylight savings time) in areas where it starts and ends on a particular day of the week each year, use the following command:

      ```
      clock summer-time zone recurring [week day month hh:mm week day month hh:mm[offset]]
      ```

 In the preceding syntax, the values of `week day month hh:mm` are listed twice, once for the starting time and again for the ending time.
 - `recurring` specifies that summer time starts and ends on the specified days every year. Summer time is disabled by default. If you specify `clock summer-time zone recurring` without any other parameters, the summer time rules default to the United States rules.
 - `week` is the week of the month, between 1 to 5. The first occurrence of `week` is the start date and the second occurrence is the end date.
 - `day` is the day of the week, such as Sunday or Monday. The first occurrence of `week` is the start date and the second occurrence is the end date.
 - `month` is the month, such as January or June. The first occurrence of `week` is the start date and the second occurrence is the end date.
 - `hh:mm` is the time in 24-hour format in hours and minutes, such as 15:42
 - `offset` is the number of minutes to add during summer time. The default is 60.

Example 4-3 Setting the Time Zone on the Ethernet Switch

The following is an example of setting the time zone to US Eastern time with summer time enabled:

```
$ telnet dbmcisco-ip
Connected to switch name
Escape character is '^]'.
```

User Access Verification
4.14 Managing the KVM Switch

The KVM switch is only available in Oracle Exadata Database Machine X2-2 racks and Oracle Exadata Storage Expansion Racks with Exadata Storage Server with Sun Fire X4270 M2 Servers.

- Configuring the KVM Switch
 This procedure describes how to configure the KVM (Keyboard, Video, Mouse) switch.
- Configuring the KVM Switch to Access a Server
- Accessing a Server Using the KVM Switch

4.14.1 Configuring the KVM Switch

This procedure describes how to configure the KVM (Keyboard, Video, Mouse) switch.

The switch is configured with all the connected components powered off.

Note:

The KVM switch is only available in Oracle Exadata Database Machine X2-2 racks and Oracle Exadata Storage Expansion Racks with Exadata Storage Server with Sun Fire X4270 M2 Servers.

1. Pull the KVM tray out from the front of the rack, and open it using the handle.
2. Touch the touch pad.
3. Toggle between the host and KVM interface by pressing the Ctrl key on the left side twice, similar to a double-click on a mouse.
4. Select **Target Devices** from the Unit View of the user interface. The number of sessions shown should be 22 for Oracle Exadata Database Machine Full Rack, 11 for Oracle Exadata Database Machine Half Rack, and 5 for Oracle Exadata Database Machine Quarter Rack. The number of sessions should be 18 for Oracle Exadata Storage Expansion Full Rack, 9 for Oracle Exadata Storage Expansion Half Rack, and 4 for Oracle Exadata Storage Expansion Quarter Rack.
5. Return to the Target Devices screen.
6. Select **Local** from User Accounts.
7. Click **Admin** under Users.
8. Set a password for the Admin account. Do not modify any other parameters.
9. Click **Save**.
10. Select **Network** from Appliance Settings. The Network Information screen appears.
12. Enter the values for Address, Subnet, Gateway, and the IP addresses of the DNS servers.
13. Click **Save**.
14. Connect the KVM LAN1 Ethernet port to the management network.
15. Verify the port has been configured correctly by checking the MAC address on the Network Information screen. The address should match the label next to the LAN1/LAN2 ports on the rear of the KVM switch.
16. Select **Overview** from Appliance.
17. Enter a name for the KVM switch.
18. Click **Save**.
19. Restart the KVM switch by selecting **Reboot** under Overview.
20. Examine the firmware version of the switch by selecting **Versions** from Appliance Settings. There are two version numbers shown, Application and Boot, as shown in the following:

 Required version is:
 Application 1.2.10.15038
 Boot 1.6.15020
The recommended firmware version is 1.2.8 or later.

If the firmware is 1.2.3 or earlier, then it can be upgraded from a network browser. If it is version 1.2.3 or later, then it can be upgraded from the local keyboard using a flash drive plugged in to the KVM USB port. To upgrade the firmware, do the following:

a. Select **Overview** from Appliance.
b. Select **Upgrade Firmware** from the Tools list.
c. Select the method to upgrade.
d. Click **Upgrade**.
e. Confirm the firmware version.

See Also:
6. Repeat steps 2 through 5 for each server in the rack. Each server boots up through BIOS, and boots the operating system with the default factory IP configuration.

4.14.3 Accessing a Server Using the KVM Switch

The following procedure describes how to access a server using the KVM switch:

Note:
The KVM switch is only available in Oracle Exadata Database Machine X2-2 racks and Oracle Exadata Storage Expansion Racks with Exadata Storage Server with Sun Fire X4270 M2 Servers.

1. Select **Target Devices** from Unit View.
2. Click the system name in the Name column using the left mouse button.
3. Click the KVM session.
Managing Oracle VM Domains on Oracle Exadata Database Machine

Oracle VM user domains on Oracle Exadata Database Machine are managed using the `xm(1)` command run from the management domain (also known as domain-0, or dom0). For a full list of Oracle VM administrative commands, run the `xm help` command.

Note:

The following `xm` subcommands are not supported on Oracle Exadata Database Machine:

- `mem-set`
- `mem-max`
- `migrate`
- `restore`
- `resume`
- `save`
- `suspend`
- `sched-*`
- `cpupool-*`
- `tmem-*`

Note:

Unless otherwise noted, all commands run in the following procedures are run as the `root` user.

- **Oracle VM and Oracle Exadata Database Machine**
 When deploying Oracle Exadata Database Machine, you can decide to implement Oracle VM on the database servers.

- **Migrating a Bare Metal Oracle RAC Cluster to an Oracle RAC Cluster in Oracle VM**

- **Showing Running Domains**

- **Monitoring a User Domain Console**

- **Monitoring Oracle VMs with Oracle Enterprise Manager**
 The Exadata plug-in for Oracle Enterprise Manager discovers, manages, and monitors virtualized Oracle Exadata Database Machine in conjunction with the Virtualization Infrastructure plug-in of Oracle Enterprise Manager.
• Starting a User Domain
• Disabling User Domain Automatic Start
• Shutting Down a User Domain From Within the User Domain
• Shutting Down a User Domain From Within the Management Domain
• Backing Up and Restoring Oracle Databases on Oracle VM User Domains
 Backing up and restoring Oracle databases on Oracle VM user domains is the
 same as backing up and restoring Oracle databases on physical nodes.
• Modifying the Memory Allocated to a User Domain
• Modifying the Number of Virtual CPUs Allocated to a User Domain
• Increasing the Disk Space in a User Domain
 You can increase the size of Logical Volume Manager (LVM) partitions, swap
 space, and file systems in a user domain.
• Expanding /EXAVMIMAGES After Adding the Database Server Disk Expansion Kit
 With the addition of a disk expansion kit to the database server, it is important to
 follow proper procedures to add this additional space to the /EXAVMIMAGES file
 system.
• Creating Oracle VM Oracle RAC Clusters
 This procedure creates Oracle VM Oracle RAC clusters using Oracle Exadata
 Deployment Assistant (OEDA) configuration tool and deployment tool.
• Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI
 You can expand an existing Oracle RAC cluster on Oracle VMOracle RAC by
 adding guest domains using the Oracle Exadata Deployment Assistant command-
 line interface (OEDACLI).
• Creating a User Domain Without Oracle Grid Infrastructure and Oracle Database
• Moving a User Domain to a Different Database Server
 User domains can move to different database servers.
• Backing up the Management Domain and User Domains in an Oracle VM
 Deployment
• Recovering an Oracle VM Deployment
 You can recover an Oracle VM from a snapshot-based backup when severe
 disaster conditions damage the Oracle VM, or when the server hardware is
 replaced to such an extent that it amounts to new hardware.
• Removing an Oracle RAC Cluster Running in Oracle VM
 You can remove all Oracle RAC nodes of an Oracle VM cluster, including the
 databases running within the cluster and all data stored on the Oracle Exadata
 Storage Server used by those databases.
• Deleting a User Domain from an Oracle VM Oracle RAC Cluster
 You can remove a single Oracle RAC node from an Oracle VM cluster.
• Implementing Tagged VLAN Interfaces
 This topic describes the implementation of tagged VLAN interfaces in Oracle VM
 environments on Exadata.
• Implementing InfiniBand Partitioning across Oracle VM Oracle RAC Clusters on
 Oracle Exadata Database Machine
 For Oracle Real Application Clusters (Oracle RAC) clusters running in Oracle VM
 on Oracle Exadata Database Machine, you can isolate the network traffic on the
InfiniBand network for each Oracle RAC clusters using custom InfiniBand partitioning, dedicated partition keys, and partitioned tables.

- **Running Oracle EXAchk in Oracle VM Environments**
 Oracle EXAchk version 12.1.0.2.2 and higher supports virtualization on Oracle Exadata Database Machine.

5.1 Oracle VM and Oracle Exadata Database Machine

When deploying Oracle Exadata Database Machine, you can decide to implement Oracle VM on the database servers.

Oracle VM Server and one or more Oracle VM guests are installed on every database server. You can configure Oracle VM environments on your initial deployment using scripts created by Oracle Exadata Deployment Assistant (OEDA) or you can migrate an existing environment to Oracle VM.

- **About Oracle VM**
 Oracle VM enables you to deploy the Oracle Linux operating system and application software within a supported virtualization environment.

- **Maximum Supported Virtual Machines on Oracle Exadata Database Machine**
 For Oracle Exadata Database Servers, the maximum number of supported virtual machines is eight.

- **Supported Operations in the Management Domain (dom0)**
 Manually modifying the dom0 can result in configuration issues for Oracle VM Server, which can degrade performance or cause a loss of service.

- **Oracle VM Resources**
 Two fundamental parts of the Oracle VM infrastructure – networking and storage – are configured outside of the Oracle VM.

5.1.1 About Oracle VM

Oracle VM enables you to deploy the Oracle Linux operating system and application software within a supported virtualization environment.

If you use Oracle VM on Oracle Exadata Database Machine, then they provide CPU, memory, operating system, and sysadmin isolation for your workloads. You can combine VMs with network and I/O prioritization to achieve full stack isolation. For consolidation, you can create multiple trusted databases or pluggable databases in an Oracle VM, allowing resources to be shared more dynamically.

An Oracle VM environment consists of an Oracle VM Server, virtual machines, and resources. An Oracle VM Server is a managed virtualization environment providing a lightweight, secure, server platform which runs virtual machines, also known as domains.

Oracle VM Server is installed on a bare metal computer. The hypervisor present on each Oracle VM Server is an extremely small-footprint virtual machine manager and scheduler. It is designed so that it is the only fully privileged entity in the system. It controls only the most basic resources of the system, including CPU and memory usage, privilege checks, and hardware interrupts.

The hypervisor securely executes multiple virtual machines on one host computer. Each virtual machine runs in its own domain and has its own guest operating system. A primary management domain, dom0, an abbreviation for *domain zero*, also runs as...
a guest on top of the hypervisor. Dom0 has privileged access to the hardware and device drivers.

A user domain (domU) is an unprivileged domain that can access the InfiniBand HCA. DomU is started and managed on an Oracle VM Server by dom0. Because a user-domain operates independently of other domains, a configuration change applied to the virtual resources of a domU does not affect any other domains. A failure of the domU does not impact any other domains.

The terms "domain", "guest", and "virtual machine" are often used interchangeably, but they have subtle differences:

- A domain is a configurable set of resources, including memory, virtual CPUs, network devices and disk devices, in which virtual machines run.
- A domain or virtual machine is granted virtual resources and can be started, stopped and restarted independently of other domains or the host server itself.
- A guest is a virtualized operating system running within a domain. Guest operating systems each have their own management domain called a user domain, abbreviated to domU.

Up to 8 guests can run on the same Oracle VM Server, each within its own domain. These domains are unprivileged domains that can access the InfiniBand HCA. Each domU is started alongside dom0 running on Oracle VM Server. Other domains never interact with dom0 directly. Their requirements are handled by the hypervisor itself. Dom0 only provides a means to administer the hypervisor.

You use Oracle Exadata Deployment Assistant (OEDA) to create and configure Oracle VMs on Oracle Exadata Database Machine.

5.1.2 Maximum Supported Virtual Machines on Oracle Exadata Database Machine

For Oracle Exadata Database Servers, the maximum number of supported virtual machines is eight.

For the software prerequisites, refer to My Oracle Support documents 888828.1.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)

5.1.3 Supported Operations in the Management Domain (dom0)

Manually modifying the dom0 can result in configuration issues for Oracle VM Server, which can degrade performance or cause a loss of service.

WARNING:

Oracle does not support any changes that are made to the dom0 beyond what is documented. Oracle does not support running any third party software within the dom0.
If you are in doubt whether an operation on the dom0 is supported, contact Oracle Support Services.

5.1.4 Oracle VM Resources

Two fundamental parts of the Oracle VM infrastructure – networking and storage – are configured outside of the Oracle VM.

Networking

When specifying the configuration details for your Oracle Exadata Rack using Oracle Exadata Deployment Assistant (OEDA), you provide input on how the required network IP addresses for Oracle VM environments should be created. The generated OEDA setup files are transferred to the Oracle Exadata Rack and used to create the network addresses.

Storage

Oracle VM always requires a location to store environment resources that are essential to the creation and management of virtual machines. These resources include ISO files (virtual DVD images), VM configuration files and VM virtual disks. The location of such a group of resources is called a storage repository.

On Oracle Exadata Database Machine, storage for the Oracle VMs is configured as OCFS2 (Oracle Cluster File System) storage.

If you need more storage space for Oracle VM, you can purchase a disk expansion kit. The additional disk space can be used to support more Oracle VM guests (up to a maximum of 8) by expanding /EXAVMIMAGES or to increase the size of the /u01 partition in each domU.

Maximum Supported VMs on Exadata

For any existing Exadata Database Server, the maximum number of supported VMs is eight. For software prerequisites, refer to My Oracle Support notes 888828.1 and 1270094.1.

- **Storage Configuration for Management Domain**
 The management domain (dom0) contains the image repository and Oracle VM configuration files.

- **Storage Configuration for User Domain**
 The user domain (domU) is a virtualized database node.

Related Topics

- **Expanding /EXAVMIMAGES After Adding the Database Server Disk Expansion Kit**
 With the addition of a disk expansion kit to the database server, it is important to follow proper procedures to add this additional space to the /EXAVMIMAGES file system.

- **Using Oracle Exadata Deployment Assistant**

5.1.4.1 Storage Configuration for Management Domain

The management domain (dom0) contains the image repository and Oracle VM configuration files.

The management domain contains the following directories:
• /EXAVMIMAGES, where the images used to create the guests are stored. The ZIP files in this directory contain the ISO files.
• /conf
• /GuestImages, where the files representing each user domain are stored.

The management domain exists on the physical disk /dev/sda. There are three disk partitions:
• /dev/sda1 — Mounted as /boot.
• /dev/sda2 — Used for swap.
• /dev/sda3 — Used for the volume group VGExaDb.

The logical volumes created for the management domain are:
• /dev/VGExaDb/LVDbSys2 — Used by dbnodeupdate.sh while performing a backup
• /dev/VGExaDb/LVDbSys3 — Mounted as /
• /dev/VGExaDb/LVDbSwap1 — Used for swap space
• /dev/VGExaDb/LVDoNotRemoveOrUse — Used by dbnodeupdate.sh while performing a backup
• /dev/VGExaDb/LVDbExaVMImages — Mounted as /EXAVMIMAGES

The /EXAVMIMAGES directory is where the configuration files for each virtual machine are located. The files are named using the format /EXAVMIMAGES/GuestImages/nodename/vm.cfg. Each virtual machine also has image files that point back to the ISO files in the image repository. The following files, except for pv1_vgeexadb.img, are created with reflinks, an OCFS2 feature:
• /EXAVMIMAGES/GuestImages/user-domain-name/System.img
• /EXAVMIMAGES/GuestImages/user-domain-name/gridversion.img
• /EXAVMIMAGES/GuestImages/user-domain-name/dbversion.img

5.1.4.2 Storage Configuration for User Domain

The user domain (domU) is a virtualized database node.

Each user domain has 4 virtual disks at the management domain (dom0) level. This can be seen from /EXAVMIMAGES/GuestImages/user_domain_name/vm.cfg. These 4 virtual disks are in turn soft linked to 4 files under /EXAVMIMAGES/GuestImages/user_domain_name, which are the real disk image files as described below:
• /dev/xvda, for the system image file System.img
• /dev/xvdb, for the Oracle Grid Infrastructure image file, for example, grid12.1.0.2.2.img. This virtual disk is 50 GB in size and is mounted as /u01/app/version/grid.
• /dev/xvdc, for the Oracle Database image file, for example, db12.1.0.2.2-3.img. This virtual disk is 50 GB in size and is mounted as /u01/app/oracle/product/version/dbhome_1.
• /dev/xvdd, for the pv1_vgeexadb.img image file
The System.img (/dev/xvda) disk has 2 partitions created on pre-grub2 images and 3 partitions on grub2 images.

• Pre-Grub2 image
 – Partition 1 — The boot partition (/boot) for the user domain (512 MB), represented as xvda1 in the user domain.
 – Partition 2 — Where the bios-grub is stored (24.5 GB), represented as xvda2 in the user domain.

• Grub2 image
 – Partition 1 — The boot partition (/boot) for the user domain (512 MB), represented as xvda1 in the user domain.
 – Partition 2 — The EFI boot partition on Oracle Exadata Database MachineX7 and later systems
 – Partition 3 — Where the bios-grub is stored (24.5 GB), represented as xvda3 in the user domain.

The pv1_vgexadb.img (/dev/xvdd) disk has 1 partition. The disk partition /dev/xvdd1 is 62 GB in size.

For pre-grub2 images, 2 physical volumes (PVs) are laid on top of the xvda2 and xvdd1 partitions. On grub2 images, 2 physical volumes (PVs) are laid on top of the xvda3 and xvdd1 partitions. A volume group (VgExaDb) of size 86.49G is laid on top of these physical volumes. This volume group contains the following logical volumes (LVMs):

• /dev/VGExaDb/LVDbSys1 (24 GB) — used for the root file system /. This LVM is confined to the xvda2 partition (for pre-grub2 images) or the xvda3 partition (for grub2 images).

• /dev/VGExaDb/LVDbSys2 (24 GB) — used for dbnodeupdate backups.

• /dev/VGExaDb/LVDbOra1 (24 GB) — used for the /u01 file system which holds the diagnostic_dest area.

• /dev/VGExaDb/LVDbSwap1 (16 GB) — used for swap

• /dev/VGExaDb/LVDbDoNotRemoveOrUse (1 GB) — a reserved LVM used by dbnodeupdate

• /dev/VGExaDb/LVDbVdnodenamedgname (128 MB) — for the quorum disks.

All but the first and last LVMs in the list above are contained in the xvdd1 partition.

5.2 Migrating a Bare Metal Oracle RAC Cluster to an Oracle RAC Cluster in Oracle VM

Note:

This topic applies only to two-socket x86 servers. It does not apply to eight-socket servers such as Oracle Exadata Database Machine X5-8.
The migration of a bare metal Oracle RAC cluster to an Oracle RAC cluster in Oracle VM can be achieved in the following ways:

- Migrate to Oracle RAC cluster in Oracle VM using the existing bare metal Oracle RAC cluster with zero downtime.
- Migrate to Oracle RAC cluster in Oracle VM by creating a new Oracle RAC cluster in Oracle VM with minimal downtime.
- Migrate to Oracle RAC cluster in Oracle VM using Oracle Data Guard with minimal downtime.
- Migrate to Oracle RAC cluster in Oracle VM using Oracle Recovery Manager (RMAN) backup and restore with complete downtime.

The conversion of a bare metal Oracle RAC cluster to an Oracle RAC cluster in Oracle VM has the following implications:

- Each of the database servers will be converted to an Oracle VM Server on which a management domain (dom0) is created along with one or more user domains, depending on the number of Oracle RAC clusters being deployed. Each user domain on a database server will belong to a particular Oracle RAC cluster.
- As part of the conversion procedure, the bare metal Oracle RAC cluster will be converted to one Oracle RAC cluster in Oracle VM to start with. There will be one user domain per database server.
- At the end of the conversion, the cell disk and grid disk configuration of the storage cells are the same as they were at the beginning of the conversion.
- The management domain will use a small portion of the system resources on each database server. Typically a management domain uses 8 GB of memory and 4 virtual CPUs. This has to be taken into consideration while sizing the SGA of the databases running on the Oracle RAC cluster in Oracle VM.
- Refer to My Oracle Support note 2099488.1 for the complete instructions.

Related Topics

- Migration of a Bare metal RAC cluster to an OVM RAC cluster on Exadata (Doc ID 2099488.1)

5.3 Showing Running Domains

The following procedure describes how to show running domains:

1. Connect to the management domain (domain zero, or dom0).
2. Run the `xm list` command. The following is an example of the output:

```
Example
# xm list

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th>Mem</th>
<th>VCPUs</th>
<th>State</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain-0</td>
<td>0</td>
<td>8192</td>
<td>4</td>
<td>r-------</td>
<td>409812.7</td>
</tr>
<tr>
<td>dm01db01vm01</td>
<td>8</td>
<td>8192</td>
<td>2</td>
<td>-b------</td>
<td>156610.6</td>
</tr>
<tr>
<td>dm01db01vm02</td>
<td>9</td>
<td>8192</td>
<td>2</td>
<td>-b------</td>
<td>152169.8</td>
</tr>
<tr>
<td>dm01db01vm03</td>
<td>10</td>
<td>10240</td>
<td>4</td>
<td>-b------</td>
<td>150225.9</td>
</tr>
<tr>
<td>dm01db01vm04</td>
<td>16</td>
<td>12288</td>
<td>8</td>
<td>-b------</td>
<td>113519.3</td>
</tr>
<tr>
<td>dm01db01vm05</td>
<td>12</td>
<td>12288</td>
<td>8</td>
<td>-b------</td>
<td>174101.6</td>
</tr>
<tr>
<td>dm01db01vm06</td>
<td>13</td>
<td>12288</td>
<td>8</td>
<td>-b------</td>
<td>169115.9</td>
</tr>
<tr>
<td>dm01db01vm07</td>
<td>14</td>
<td>8192</td>
<td>4</td>
<td>-b------</td>
<td>175573.0</td>
</tr>
</tbody>
</table>
```
5.4 Monitoring a User Domain Console

The following procedure describes how to monitor a user domain console:

1. Connect as the root user to the management domain.
2. Obtain the domain name using the `xm list` command.
3. Use the following command to attach to the user domain console:
   ```
   # xm console DomainName
   ``
   In the preceding command, `DomainName` is the name of the domain.
4. Press CTRL+] to disconnect from the console.

5.5 Monitoring Oracle VMs with Oracle Enterprise Manager

The Exadata plug-in for Oracle Enterprise Manager discovers, manages, and monitors virtualized Oracle Exadata Database Machine in conjunction with the Virtualization Infrastructure plug-in of Oracle Enterprise Manager.

With virtualized Exadata, one Exadata Database Machine target is created for each physical Database Server instead of one DB Machine target for each DB cluster deployed through Oracle Exadata Deployment Assistant (OEDA). Compute nodes, Exadata Storage Servers, InfiniBand switches, compute node ILOM, PDU, KVM, and Cisco switch targets are discovered by the Exadata plug-in. The physical server (physical Oracle Server target), Dom0 (Virtual Platform target), and DomU (virtual Oracle Server target) are discovered and monitored by the Virtualization Infrastructure (VI) plug-in.

- Refer to Virtualized Exadata Database Machine in Oracle Enterprise Manager Exadata Management Getting Started Guide for instructions on how to discover Oracle VM domains on Oracle Exadata Database Machine.

5.6 Starting a User Domain

The following procedure describes how to start a user domain:

- Use the following command to start the user domain:
  ```
 # xm create /EXAVMIMAGES/GuestImages/DomainName/vm.cfg
 Using config file "/EXAVMIMAGES/GuestImages/dm01db01vm04/vm.cfg".
 Started domain dm01db01vm04 (id=23)
  ```

  In the preceding command, `DomainName` is the name of the domain.

**Note:**

To see Oracle Linux boot messages during user domain startup, connect to the console during startup using the `-c` option. To disconnect from the console after startup is complete, press CTRL+].
5.7 Disabling User Domain Automatic Start

The following procedure describes how to disable a user domain from automatically starting when the management domain is started:

1. Connect to the management domain.
2. Remove the symbolic link to the user domain configuration file in the `/etc/xen/auto` directory using the following command:
   
   ```bash
 # rm /etc/xen/auto/DomainName.cfg
   ```

   In the preceding command, `DomainName` is the name of the domain.

5.8 Shutting Down a User Domain From Within the User Domain

The following procedure describes how to shut down a user domain from within a user domain:

1. Connect as the root user to the user domain.
2. Use the following command to shut down the domain:
   
   ```bash
 # shutdown -h now
   ```

5.9 Shutting Down a User Domain From Within the Management Domain

The following procedure describes how to shut down a user domain from within a management domain:

1. Connect as the root user to the management domain.
2. Use the following command to shut down the domain:
   
   ```bash
 # xm shutdown DomainName -w
   ```

   In the preceding command, `DomainName` is the name of the domain.

---

**Note:**

Use the `-w` option so that the `xm` command waits until the domain shutdown completes before returning. The `xm shutdown` command performs the same orderly shutdown as running `shutdown -h now` within the user domain.

To shut down all user domains within the management domain, use the following command:

```bash
xm shutdown -a -w
```
The following is an example of the output:

Domain dm01db01vm04 terminated
All domains terminated

5.10 Backing Up and Restoring Oracle Databases on Oracle VM User Domains

Backing up and restoring Oracle databases on Oracle VM user domains is the same as backing up and restoring Oracle databases on physical nodes.

- When backing up Oracle databases on Oracle VM user domains you must set the following four parameters in the `/etc/sysctl.conf` file on the database nodes (user domains). If you are using Oracle Exadata storage to hold the backups, the parameters need to be set in the `/etc/sysctl.conf` file on the Exadata storage cells as well.

```plaintext
net.core.rmem_default = 4194304
net.core.wmem_default = 4194304
net.core.rmem_max = 4194304
net.core.wmem_max = 4194304
```

- If you are using Exadata storage, each Oracle VM RAC cluster requires its own Oracle Automatic Storage Management (Oracle ASM) disk group to be designated as the fast recovery area (FRA) such as `+RECO`. Refer to the "Exadata Database Machine Backup and Restore Configuration and Operational Best Practices" white paper for details.

- If you are using Oracle ZFS Storage Appliance, refer to the "Protecting Exadata Database Machine with the Oracle ZFS Storage Appliance: Configuration Best Practices" white paper for details.

5.11 Modifying the Memory Allocated to a User Domain

The following procedure describes how to modify the memory allocated to a user domain:

**Note:**

If you are decreasing the amount of memory allocated to a user domain, you must first review and adjust the SGA size of databases running in the user domain and the corresponding huge pages operating system configuration. Failing to do so may result in user domain that cannot start because too much memory is reserved for huge pages when the Linux operating system attempts to boot. See My Oracle Support note 361468.1 for details.
Chapter 5

Modifying the Memory Allocated to a User Domain

1. Connect to the management domain.

2. Use the following command to determine the amount of free memory available, when increasing the allocation:

   ```bash
 # xm info | grep free_memory
   ```

3. Shut down the user domain gracefully using the name obtained from the `xm list` command. Use the `-w` option so the `xm` command waits until the domain is shut down before returning.

   ```bash
 # xm shutdown DomainName -w
   ```

   In the preceding command, `DomainName` is the name of the domain.


5. Edit the memory and maxmem settings in the `/EXAVMIMAGES/GuestImages/DomainName/vm.cfg` file using a text editor. The memory and maxmem settings must be identical values.

6. Use the following command to start the user domain:

   ```bash
 # xm create /EXAVMIMAGES/GuestImages/DomainName/vm.cfg
   ```

   To see Oracle Linux boot messages during user domain startup, connect to the console during startup using the `-c` option. To disconnect from the console after startup is complete, press CTRL+].
5.12 Modifying the Number of Virtual CPUs Allocated to a User Domain

Note the following about modifying the number of virtual CPUs (vCPUs):

- All actions to modify the number of vCPUs allocated to a user domain are performed in the management domain.
- The number of vCPUs allowed for a user domain may be changed dynamically to a lower value or to a higher value provided it does not exceed the setting of maxvcpus parameter for the user domain.
- It is possible to over-commit vCPUs such that the total number of vCPUs assigned to all domains exceeds the number of physical CPUs on the system. However, over-committing CPUs should be done only when competing workloads for oversubscribed resources are well understood and concurrent demand does not exceed physical capacity.

The following procedure describes how to modify the number of virtual CPUs allocated to a user domain:

1. Determine the number of physical CPUs as follows:
   a. Use the following command in the management domain:

      ```
 # xm info | grep -A3 nr_cpus
 nr_cpus : 24
 nr_nodes : 2
 cores_per_socket : 6
 threads_per_core : 2
 ...

 In the output, note that the nr_nodes line refers to the number of sockets. The Exadata database server where the command is run is a 2-socket 6 cores per socket processor, resulting in 24 physical CPU threads (2 sockets x 6 cores/socket = 12 cores. 12 cores x 2 threads per core = 24 CPU threads).

 b. Use the following command to determine the current setting of vCPUs configured and online for a user domain:

      ```
      # xm list DomainName -l | grep vcpus
      (vcpus 4)
      (online_vcpus 2)
      ```

 In the preceding command, DomainName is the name of the user domain. The output from the command indicates the maximum number of vCPUs for the user domain is 4, and the current number of online vCPUs is 2. This user domain may have the number of online vCPUs adjusted to any value not greater than the vcpus parameter while the user domain remains online. The user domain must be taken offline to increase the number of online vCPUs to a value higher than the vcpus parameter.

2. Reduce or increase the number of vCPUs as follows:

 - To reduce the number of vCPUs:
 a. Determine the currently allocated number of vCPUs for the user domain using the following command:
xm list DomainName

b. Reduce the currently allocated number of vCPUs using the following command:

xm vcpu-set DomainName vCPUs_preferred

In the preceding command, `vCPUs_preferred` is the value of the preferred number of vCPUs

• To increase the number of vCPUs

 a. Determine the current settings of the `vcpus` parameter using the following command:

 # xm list DomainName -l | grep vcpus

 (vcpus 4)
 (online_vcpus 2)

 b. If the preferred number of vCPUs is less than or equal to the value of the `vcpus` parameter, then run the following command to increase the number of online vCPUs.

 # xm vcpu-set DomainName vCPUs_preferred

 In the preceding command, `vCPUs_preferred` is the value of the preferred number of vCPUs

c. If the preferred number of vCPUs is greater than the value of the `vcpus` parameter, then the user domain must be taken offline to increase the number of online vCPUs to a value higher than the `vcpus` parameter. Do the following:

 i. Shut down the user domain.

 ii. Create a backup copy of the `/EXAVMIMAGES/GuestImages/DomainName/vm.cfg` file.

 iii. Edit the `/EXAVMIMAGES/GuestImages/DomainName/vm.cfg` file to set the `vcpus` parameter to the desired number of vCPUs.

 Note: By default a user domain will online the number of vCPUs configured via the `vcpus` parameter. If you want a user domain to start with some vCPUs offline, then add the `maxvcpus` parameter to `vm.cfg`, setting it to the maximum number of vCPUs the user domain is permitted to have online. Set the `vcpus` parameter to the number of vCPUs to online when the user domain starts. For example, to start a user domain with 2 vCPUs online and to allow an additional 6 vCPUs to be added to the user domain while it remains online, use the following settings in `vm.cfg`:

  ```
  maxvcpus=8
  vcpus=2
  ```

 iv. Start the user domain.

5.13 Increasing the Disk Space in a User Domain

You can increase the size of Logical Volume Manager (LVM) partitions, swap space, and file systems in a user domain.

• Adding a New LVM Disk to a User Domain
5.13.1 Adding a New LVM Disk to a User Domain

This procedure describes how to add a new LVM disk to a user domain to increase the amount of usable LVM disk space in a user domain. This procedure is done so that the size of a file system or swap LVM partition can be increased. This procedure is performed while the system remains online.

Note:

This procedure requires steps be run in the management domain (Domain-0), and in the user domain.

Run all steps in this procedure as the root user.

1. In the management domain, verify the free disk space in /EXAVMIMAGES using the following command:

```
# df -h /EXAVMIMAGES
```

The following is an example of the output from the command:

```
Filesystem            Size  Used Avail Use% Mounted on
/dev/sda3            721G  111G  611G  16% /EXAVMIMAGES
```

2. In the management domain, select a name for the new disk image, and verify that the name is not already used in the user domain.

```
# ls -l /EXAVMIMAGES/GuestImages/DomainName/new_disk_image_name
ls: /EXAVMIMAGES/GuestImages/DomainName/new_disk_image_name: No such file or directory
```

In the preceding command, DomainName is the name of the domain, and new_disk_image_name is the new disk image name.

3. In the management domain, create a new disk image.

```
# qemu-img create /EXAVMIMAGES/GuestImages/DomainName/new_disk_image_name size
```
In the following example of the command, the new disk image name is pv2_vgexadb.img, and the image size is 10 GB.

```
# qemu-img create /EXAVMIMAGES/GuestImages/DomainName/pv2_vgexadb.img 10G
```

4. In the user domain, determine an available disk name. In the following example, disk names xvda through xvdd are used, and disk name xvde is unused.

```
# lsblk -id
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda 202:0    0  13G  0 disk
xvdb 202:16   0  20G  0 disk /u01/app/12.1.0.2/grid
xvdc 202:32   0  20G  0 disk /u01/app/oracle/product/12.1.0.2/dbhome_1
xvdd 202:48   0  41G  0 disk
```

5. In the management domain, attach the new disk image to the user domain in read/write mode. In the following example, the new disk image is presented in the user domain as device /dev/xvde.

```
# xm block-attach DomainName  \file:/EXAVMIMAGES/GuestImages/DomainName/new_disk_image_name /dev/xvde w
```

6. In the user domain, verify the disk device is available. In the following example, disk name xvde is available in the user domain.

```
# lsblk -id
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvda 202:0    0  13G  0 disk
xvdb 202:16   0  20G  0 disk /u01/app/12.1.0.2/grid
xvdc 202:32   0  20G  0 disk /u01/app/oracle/product/12.1.0.2/dbhome_1
xvdd 202:48   0  41G  0 disk
xvde 202:64   0  10G  0 disk
```

7. In the user domain, partition the new disk device. In the following example, disk device /dev/xvde is partitioned.

```
# parted /dev/xvde mklabel gpt
# parted -s /dev/xvde mkpart primary 0 100%
# parted -s /dev/xvde set 1 lvm on
```

The parted mkpart command may report the following message. This message can be ignored:

```
Warning: The resulting partition is not properly aligned for best performance.
```

8. In the user domain, create an LVM physical volume on the new disk partition. In the following example, an LVM physical volume is created on disk partition /dev/xvde1.

```
# pvcreate /dev/xvde1
```

9. In the user domain, extend the volume group and verify the additional space in the volume group. In the following example, disk name xvde is now available in the user domain.

```
# vgextend VGExaDb /dev/xvde1
# vgsdisplay -s
```

10. In the management domain, make a backup of the user domain configuration file vm.cfg.

```
# cp /EXAVMIMAGES/GuestImages/DomainName/vm.cfg \   /EXAVMIMAGES/GuestImages/DomainName/vm.cfg.backup
```
11. In the management domain, obtain the UUID of the user domain using the following command:

 # grep ^uuid /EXAVMIMAGES/GuestImages/DomainName/vm.cfg

In the following example, the user domain UUID is 49ffddce4efe43f5910d0c61c87bba58.

 # grep ^uuid /EXAVMIMAGES/GuestImages/dm01db01vm01/vm.cfg
 uuid = 49ffddce4efe43f5910d0c61c87bba58

12. In the management domain, generate a UUID for the new disk image using the following command:

 # uuidgen | tr -d '-'

In the following example, the new disk UUID is 0d56da6a5013428c97e73266f81c3404.

 # uuidgen | tr -d '-'
 0d56da6a5013428c97e73266f81c3404

13. In the management domain, create a symbolic link from /OVS/Repositories to the new disk image using the following command:

 # ln -s /EXAVMIMAGES/GuestImages/DomainName/newDiskImage.img /OVS/Repositories/user_domain_uid/VirtualDisks/new_disk_uuid.img

In the following example, a symbolic link is created to the new disk image file pv2_vgexadb.img for user domain dm01db01vm01. The UUID for user domain dm01db01vm01 is 49ffddce4efe43f5910d0c61c87bba58. The UUID for the new disk image is 0d56da6a5013428c97e73266f81c3404.

 # ln -s /EXAVMIMAGES/GuestImages/dm01db01vm01/pv2_vgexadb.img /OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/0d56da6a5013428c97e73266f81c3404.img

14. In the management domain, append an entry for the new disk to the disk parameter in the user domain configuration file vm.cfg. This makes the new disk image attach automatically to the user domain during the next startup. The new entry matches the following format:

 'file:/OVS/Repositories/user_domain_uid/VirtualDisks/new_disk_uuid.img,disk_device,w'

The following is an example of an original disk parameter entry in the vm.cfg file:

 disk=['file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/76197586bc914d3d9fa9d4f092c95b2.img,xvda,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/78470933af6b4253b9ce27814ceddbbd.img,xvdb,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/20d5528f5e9e4df8a96f151a13d2006b.img,xvdc,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/058af368db2c4f27971bba1f19286681.img,xvdd,w']

The following example shows an entry appended to the disk parameter for a new disk image that is accessible within the user domain as disk device /dev/xvde:

 disk=['file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/76197586bc914d3d9fa9d4f092c95b2.img,xvda,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/78470933af6b4253b9ce27814ceddbbd.img,xvdb,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/20d5528f5e9e4df8a96f151a13d2006b.img,xvdc,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/058af368db2c4f27971bba1f19286681.img,xvdd,w', 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/0d56da6a5013428c97e73266f81c3404.img', '/dev/xvde']
5.13.2 Increasing the Size of the root File System

This procedure describes how to increase the size of the system partition and / (root) file system.

This procedure is performed while the file system remains online.

Note:

There are two system partitions, LVDbSys1 and LVDbSys2. One partition is active and mounted. The other partition is inactive and used as a backup location during upgrade. The size of both system partitions must be equal.

Keep at least 1 GB of free space in the VGExaDb volume group. The free space is used for the LVM snapshot created by the dbnodeupdate.sh utility during software maintenance. If you make snapshot-based backups of the / (root) and /u01 directories as described in "Creating a Snapshot-Based Backup of Oracle Linux Database Server," then keep at least 6 GB of free space in the VGExaDb volume group.

1. Collect information about the current environment.
 a. Use the df command to identify the amount of free and used space in the root partition (/)

   ```bash
   # df -h /
   ``

   The following is an example of the output from the command:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/VGExaDb-LVDbSys1</td>
<td>12G</td>
<td>5.1G</td>
<td>6.2G</td>
<td>46%</td>
<td>/</td>
</tr>
</tbody>
</table>

   Note:

   The active root partition may be either LVDbSys1 or LVDbSys2, depending on previous maintenance activities.

   b. Use the lvs command to display the current logical volume configuration.

   ```bash
 # lvs -o lv_name,lv_path,vg_name,lv_size
   ```
The following is an example of the output from the command:

<table>
<thead>
<tr>
<th>LV</th>
<th>Path</th>
<th>VG</th>
<th>LSize</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDbOra1</td>
<td>/dev/VGExaDb/LVDbOra1</td>
<td>VGExaDb</td>
<td>10.00g</td>
</tr>
<tr>
<td>LVDbSwap1</td>
<td>/dev/VGExaDb/LVDbSwap1</td>
<td>VGExaDb</td>
<td>8.00g</td>
</tr>
<tr>
<td>LVDbSys1</td>
<td>/dev/VGExaDb/LVDbSys1</td>
<td>VGExaDb</td>
<td>12.00g</td>
</tr>
<tr>
<td>LVDbSys2</td>
<td>/dev/VGExaDb/LVDbSys2</td>
<td>VGExaDb</td>
<td>12.00g</td>
</tr>
</tbody>
</table>

2. Verify there is available space in the volume group VGExaDb using the `vgdisplay` command.

   # vgdisplay VGExaDb -s

   The following is an example of the output from the command:

   "VGExaDb" 53.49 GiB [42.00 GiB used / 11.49 GiB free]

   The volume group must contain enough free space to increase the size of both system partitions, and maintain at least 1 GB of free space for the LVM snapshot created by the `dbnodeupdate.sh` utility during upgrade. If there is not sufficient free space in the volume group, then add a new disk to LVM.

3. Resize both LVDbSys1 and LVDbSys2 logical volumes using the `lvextend` command.

   # lvextend -L +size /dev/VGExaDb/LVDbSys1
   # lvextend -L +size /dev/VGExaDb/LVDbSys2

   In the preceding command, `size` is the amount of space to be added to the logical volume. The amount of space added to each system partition must be the same.

   The following example extends the logical volumes by 10 GB:

   # lvextend -L +10G /dev/VGExaDb/LVDbSys1
   # lvextend -L +10G /dev/VGExaDb/LVDbSys2

4. Resize the file system within the logical volume using the `resize2fs` command.

   # resize2fs /dev/VGExaDb/LVDbSys1
   # resize2fs /dev/VGExaDb/LVDbSys2

5. Verify the space was extended for the active system partition using the `df` command.

   # df -h /

Related Topics

- Adding a New LVM Disk to a User Domain
5.13.3 Increasing the Size of the /u01 File System

This procedure describes how to increase the size of the /u01 file system.

This procedure is performed while the file system remains online.

Note:
Keep at least 1 GB of free space in the VGExaDb volume group. The free space is used for the LVM snapshot created by the dbnodeupdate.sh utility during software maintenance. If you make snapshot-based backups of the / (root) and /u01 directories as described in "Creating a Snapshot-Based Backup of Oracle Linux Database Server," then keep at least 6 GB of free space in the VGExaDb volume group.

1. Collect information about the current environment.
   a. Use the df command to identify the amount of free and used space in the /u01 partition.

   ```bash
 # df -h /u01
   ```

   The following is an example of the output from the command:

   ```
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/VGExaDb-LVDbOra1 9.9G 1.7G 7.8G 18% /u01
   ```

   b. Use the lvs command to display the current logical volume configuration used by the /u01 file system.

   ```bash
 # lvs -o lv_name,lv_path,vg_name,lv_size /dev/VGExaDb/LVDbOra1
   ```

   The following is an example of the output from the command:

   ```
 LV Path VG LSize
 LVDbOra1 /dev/VGExaDb/LVDbOra1 VGExaDb 10.00g
   ```

2. Verify there is available space in the volume group VGExaDb using the vgdisplay command.

   ```bash
 # vgdisplay VGExaDb -s
   ```

   The following is an example of the output from the command:

   ```
 "VGExaDb" 53.49 GiB [42.00 GiB used / 11.49 GiB free]
   ```

   If the output shows there is less than 1 GB of free space, then neither the logical volume nor file system should be extended. Maintain at least 1 GB of free space in
the VGExaDb volume group for the LVM snapshot created by the
dbnodeupdate.sh utility during an upgrade. If there is not sufficient free space in
the volume group, then add a new disk to LVM.

3. Resize the logical volume using the lvextend command.

```bash
lvextend -L +sizeG /dev/VGExaDb/LVDbOra1
```

In the preceding command, size is the amount of space to be added to the logical
volume.

The following example extends the logical volume by 10 GB:

```bash
lvextend -L +10G /dev/VGExaDb/LVDbOra1
```

4. Resize the file system within the logical volume using the resize2fs command.

```bash
resize2fs /dev/VGExaDb/LVDbOra1
```

5. Verify the space was extended using the df command.

```bash
df -h /u01
```

**Related Topics**

- Adding a New LVM Disk to a User Domain

### 5.13.4 Increasing the Size of the Grid Infrastructure Home or Database Home File System

You can increase the size of the Oracle Grid Infrastructure or Oracle Database home
file system in a user domain.

The Oracle Grid Infrastructure software home and the Oracle Database software home
are created as separate disk image files in the management domain. The disk image
files are located in the /EXAVMIMAGES/GuestImages/DomainName/ directory. The
disk image files are attached to the user domain automatically during virtual machine
startup, and mounted as separate, non-LVM file systems in the user domain.

1. Connect to the user domain, and check the file system size using the df
   command, where $ORACLE_HOME is an environment variable that points to the
   Oracle Database home directory, for example, /u01/app/oracle/product/
   12.1.0.2/dbhome_1.

```bash
df -h $ORACLE_HOME
```

The following is an example of the output from the command:

```
Filesystem Size Used Avail Use% Mounted on
/dev/xvdc 20G 6.5G 13G 35% /u01/app/oracle/product/12.1.0.2/dbhome_1
```
2. Connect to the management domain, and then shut down the user domain using the `xm` command and specifying the name of the domain.

```
xm shutdown DomainName
```

3. Create an OCFS reflink to serve as a backup of the disk image that will be increased, where `version` is the release number for example, `12.1.0.2.1-3`.

```
cd /EXAVMIMAGES/GuestImages/DomainName
reflink dbversion.img before_resize.dbversion.img
```

4. Create an empty disk image using the `qemu-img` command, and append it to the database home disk image.

The empty disk image size is the size to extend the file system. The last command removes the empty disk image after appending to the database home disk image.

```
qemu-img create emptyfile 10G
cat emptyfile >> dbversion.img
rm emptyfile
```

5. Check the file system using the `e2fsck` command.

```
e2fsck -f dbversion.img
```

6. Resize the file system using the `resize2fs` command.

```
resize2fs dbversion.img
```

7. Start the user domain.

```
xm create /EXAVMIMAGES/GuestImages/DomainName/vm.cfg
```

8. Connect to the user domain, and verify the file system size was increased.

```
df -h $ORACLE_HOME
```

The following is an example of the output from the command:

```
Filesystem Size Used Avail Use% Mounted on
/dev/xvdc 30G 6.5G 22G 23% /u01/app/oracle/product/12.1.0.2/dbhome_1
```

9. Connect to the management domain, and remove the backup image.

Use a command similar to the following where `back_up_image.img` is the name of the backup image file:

```
cd /EXAVMIMAGES/GuestImages/DomainName
rm back_up_image.img
```
5.13.5 Increasing the Size of the Swap Area

This procedure describes how to increase the amount of swap configured in a user domain.

1. Verify there is available space in the volume group `VGExaDb` using the `vgdisplay` command.

   ```
 # vgdisplay VGExaDb -s
 ``

 The following is an example of the output from the command:

   ```
   "VGExaDb" 53.49 GiB [42.00 GiB used / 11.49 GiB free]
   ```

 If the command shows that there is less than 1 GB of free space, then neither the logical volume nor file system should be extended. Maintain at least 1 GB of free space in the `VGExaDb` volume group for the LVM snapshot created by the `dbnodeupdate.sh` utility during an upgrade. If there is not sufficient free space in the volume group, then add a new disk to LVM.

2. Create a new logical volume of the size to increase swap space using the `lvcreate` command.

 In the following example, a new 8 GB logical volume named `LVDbSwap2` is created.

   ```
   # lvcreate -L 8G -n LVDbSwap2 VGExaDb
   ```

3. Setup the new logical volume as a swap device with a unique label, such as `SWAP2`, using the `mkswap` command. The unique label is a device LABEL entry that is currently unused in the `/etc/fstab` file.

   ```
   # mkswap -L SWAP2 /dev/VGExaDb/LVDbSwap2
   ```

4. Enable the new swap device using the `swapon` command.

   ```
   # swapon -L SWAP2
   ```

5. Verify the new swap device is enabled using the `swapon` command.

   ```
   # swapon -s
   ```

 The following is an example of the output from the command:

   ```
   Filename         Type            Size      Used     Priority
   /dev/dm-3        partition       8388604   306108   -1
   /dev/dm-4        partition       8388604   0         -2
   ```

6. Edit the `/etc/fstab` file to add the new swap device by copying the existing swap entry, and then changing the LABEL value in the new entry to the label used to
create the new swap device. In the following example, the new swap device was added to the /etc/fstab file as LABEL=SWAP2.

```bash
# cat /etc/fstab
LABEL=DBSYS   /                       ext4    defaults        1 1
LABEL=BOOT    /boot                   ext4    defaults,nodev        1 1
tmpfs         /dev/shm                tmpfs   defaults,size=7998m 0
devpts        /dev/pts                devpts gid=5,mode=620 0 0
sysfs         /sys                    sysfs   defaults        0 0
proc          /proc                   proc    defaults        0 0
LABEL=SWAP    swap                    swap    defaults        0 0
LABEL=SWAP2   swap                    swap    defaults        0 0
LABEL=DBORA   /u01                    ext4    defaults        1 1
/dev/xvdb     /u01/app/12.1.0.2/grid  ext4    defaults        1 1
/dev/xvdc      /u01/app/oracle/product/12.1.0.2/dbhome_1       ext4
defaults    1 1
```

Related Topics

- Adding a New LVM Disk to a User Domain

5.14 Expanding /EXAVMIMAGES After Adding the Database Server Disk Expansion Kit

With the addition of a disk expansion kit to the database server, it is important to follow proper procedures to add this additional space to the /EXAVMIMAGES file system.

- Expanding /EXAVMIMAGES on Management Domain on Release 18.1.x or Later
 If you are using a release of Oracle Exadata System Software release 18c (18.1.0) or later, then use this procedure to expand the /EXAVMIMAGES file system on the management domain following the addition of a disk expansion kit.

- Expanding /EXAVMIMAGES on Management Domain on Release 12.2.x
 If you are using Oracle Exadata System Software release 12.2.x, then use this procedure to expand the /EXAVMIMAGES file system on the management domain following the addition of a disk expansion kit.

- Expanding /EXAVMIMAGES on Management Domain on Releases Earlier than 12.2.x
 If you are using a release of Oracle Exadata System Software that is release 12.1.x or earlier, then use this procedure to expand the /EXAVMIMAGES directory on the management domain following the addition of a disk expansion kit.

5.14.1 Expanding /EXAVMIMAGES on Management Domain on Release 18.1.x or Later

If you are using a release of Oracle Exadata System Software release 18c (18.1.0) or later, then use this procedure to expand the /EXAVMIMAGES file system on the management domain following the addition of a disk expansion kit.

During deployment, all available disk space on a database server will be allocated in the management domain (dom0) with the majority of the space allocated to /
EXAVMIMAGES for user domain storage. The /EXAVMIMAGES file system is created on /dev/VGExaDb/LVDbExaVMImages.

In the example below, dm01db01 is the name of the management domain, and dm01db01vm01 is a user domain.

1. Ensure reclaimdisks.sh has been run in the management domain by using the -check option.

 Note that the last line reads "Layout: DOM0". If reclaimdisks.sh was not run, it would read "Layout: DOM0 + Linux".

 [root@dm01db01 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -check
 Model is ORACLE SERVER X6-2
 Number of LSI controllers: 1
 Physical disks found: 4 (252:0 252:1 252:2 252:3)
 Logical drives found: 1
 Linux logical drive: 0
 RAID Level for the Linux logical drive: 5
 Physical disks in the Linux logical drive: 4 (252:0 252:1 252:2 252:3)
 Dedicated Hot Spares for the Linux logical drive: 0
 Global Hot Spares: 0
 Valid. Disks configuration: RAID5 from 4 disks with no global and dedicated hot spare disks.
 Valid. Booted: DOM0. Layout: DOM0.

2. Add the disk expansion kit to the database server.

 The kit consists of 4 additional hard drives to be installed in the 4 available slots. Remove the filler panels and install the drives. The drives may be installed in any order.

3. Verify that the RAID reconstruction is completed by seeing the warning and clear messages in the alert history.

 This may take several hours to complete. The example below shows that it took approximately 7 hours. Once the clear message (message 1_2 below) is present, the reconstruction is completed and it is safe to proceed.

 [root@dm01db01 ~]# dbmcli -e list alerthistory
 1_1 2016-02-15T14:01:00-08:00 warning "A disk expansion kit was installed. The additional physical drives were automatically added to the existing RAID5 configuration, and reconstruction of the corresponding virtual drive was automatically started."
 1_2 2016-02-15T21:01:00-08:00 clear "Virtual drive reconstruction due to disk expansion was completed."

4. Collect information about the current environment.

 [root@dm01db01 ~]# df -h /EXAVMIMAGES
 Filesystem Size Used Avail Use% Mounted on
 /dev/sda3 1.6T 44G 1.5T 3% /EXAVMIMAGES
5. Stop all user domains by running the command `xm shutdown -a -w` from the management domain.

After all user domains are shut down, only Domain-0 (the management domain) should be listed.

6. Run `parted` to view the sector start and end values.

Check the size of the disk against the end of the third partition. If you see a request to fix the GPT, respond with F.

```
[root@dm01db01 ~]# parted /dev/sda
GNU Parted 2.1 Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) unit s
(parted) print
Warning: Not all of the space available to /dev/sda appears to be used, you can fix the GPT to use all of the space (an extra 4679680000 blocks) or continue with the current setting? Fix/Ignore? F
Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number  Start       End           Size         File system  Name
       Flags      Start       End           Size         File system  Name
1       boot       64s         1046591s      1046528s     ext3         primary       boot
4       bios_grub  1046592s    1048639s      2048s                     primary       bios_grub
2       lvm        1048640s    240132159s   239083520s    primary       lvm
(parted) q
```
The partition table shown above lists partition 2 as ending at sector 240132159 and disk size as 8189440000 sectors. You will use these values in step 7.

7. Create a fourth partition.

The start sector is the end of the third partition from step 6 plus 1 sector (240132159+1=240132160). The end sector of the fourth partition is the size of the disk minus 34 (8189440000-34=8189439966).

[root@dm01db01 ~]# parted -s /dev/sda mkpart primary 240132160s 8189439966s

This command produces no output.

8. Set the LVM flag for the fourth partition.

[root@dm01db01 ~]# parted -s /dev/sda set 3 lvm on

Warning: WARNING: the kernel failed to re-read the partition table on /dev/sda (Device or resource busy). As a result, it may not reflect all of your changes until after reboot.

9. Review the updated partition table.

[root@dm01db01 ~]# parted -s /dev/sda unit s print

Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64s</td>
<td>1046591s</td>
<td>1046528s</td>
<td>ext4</td>
<td>primary</td>
<td>boot</td>
</tr>
<tr>
<td>4</td>
<td>1046592s</td>
<td>1048639s</td>
<td>2048s</td>
<td></td>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1048640s</td>
<td>240132159s</td>
<td>239083520s</td>
<td></td>
<td>primary</td>
<td>bios_grub</td>
</tr>
<tr>
<td>3</td>
<td>240132160s</td>
<td>8189439966s</td>
<td>7949307807s</td>
<td></td>
<td>primary</td>
<td>lvm</td>
</tr>
</tbody>
</table>

10. Restart the Exadata server.

[root@dm01db01 ~]# shutdown -r now

11. Check the size of the disk against the end of the fourth partition.

[root@dm01db01 ~]# parted -s /dev/sda unit s print

Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64s</td>
<td>1048639s</td>
<td>1048576s</td>
<td>ext4</td>
<td>primary</td>
<td>boot</td>
</tr>
<tr>
<td>4</td>
<td>1048640s</td>
<td>3509759966s</td>
<td>3508711327s</td>
<td></td>
<td>primary</td>
<td></td>
</tr>
</tbody>
</table>
12. Create a LVM physical volume (PV) on the newly created fourth partition.

 [root@dm01db01 ~]# lvm pvcreate --force /dev/sda3
 Physical volume "/dev/sda3" successfully created

13. Extend the LVM volume group VGExaDb to the newly created third partition.

 [root@dm01db01 ~]# lvm vgextend VGExaDb /dev/sda3
 Volume group "VGExaDb" successfully extended

14. Dismount the /EXAVMIMAGES OCFS2 partition.

 [root@dm01db01 ~]# umount /EXAVMIMAGES/

15. Extend the logical volume that contains the OCFS2 partition to include the rest of the free space.

 [root@dm01db01 ~]# lvm lvextend -l +100%FREE /dev/VGExaDb/
 LVDbExaVMImages
 Size of logical volume VGExaDb/LVDbExaVMImages changed from 1.55 TiB
 (406549 extents) to
 3.73 TiB (977798 extents).
 Logical volume LVDbExaVMImages successfully resized.

16. Resize the OCFS2 file system to the rest of the logical volume.

 The tunefs.ocfs2 command typically runs very quickly and does not produce output.

 [root@dm01db01 ~]# tunefs.ocfs2 -S /dev/VGExaDb/LVDbExaVMImages

17. Mount the OCFS2 partition and then view the file system disk space usage for this partition.

 [root@dm01db01 ~]# mount -a

 [root@dm01db01 ~]# ls -al /EXAVMIMAGES/
 total 4518924
 drwxr-xr-x 3 root root 3896 Jul 18 18:01 .
 drwxr-xr-x 26 root root 4096 Jul 24 14:50 ..
 drwxr-xr-x 2 root root 3896 Jul 18 17:51 lost+found
 drwxr-xr-x 1 root root 26843545600 Jul 18 18:01 System.first.boot.
 12.2.1.1.8.180510.1.img

 [root@dm01db01 ~]# df -h /EXAVMIMAGES/
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/VGExaDb-LVDbExaVMImages 3.8T 9.0G 3.8T 1% /EXAVMIMAGES

18. Restart the user domains.
Chapter 5

Expanding /EXAVMIMAGES After Adding the Database Server Disk Expansion Kit

5.14.2 Expanding /EXAVMIMAGES on Management Domain on Release 12.2.x

If you are using Oracle Exadata System Software release 12.2.x, then use this procedure to expand the /EXAVMIMAGES file system on the management domain following the addition of a disk expansion kit.

During deployment, all available disk space on a database server will be allocated in the management domain (dom0) with the majority of the space allocated to /EXAVMIMAGES for user domain storage. The /EXAVMIMAGES file system is created on /dev/VGExaDb/LVDbExaVMImages.

In the example below, dm01db01 is the name of the management domain, and dm01db01vm01 is a user domain.

1. Ensure reclaimdisks.sh has been run in the management domain by using the -check option.

 Note that the last line reads "Layout: DOM0". If reclaimdisks.sh was not run, it would read "Layout: DOM0 + Linux".

 [root@dm01db01 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -check
 Model is ORACLE SERVER X5-2
 Number of LSI controllers: 1
 Physical disks found: 4 (252:0 252:1 252:2 252:3)
 Logical drives found: 1
 Linux logical drive: 0
 RAID Level for the Linux logical drive: 5
 Physical disks in the Linux logical drive: 4 (252:0 252:1 252:2 252:3)
 Dedicated Hot Spares for the Linux logical drive: 0
 Global Hot Spares: 0
 Valid. Disks configuration: RAID5 from 4 disks with no global and dedicated hot spare disks.
 Valid. Booted: DOM0. Layout: DOM0.

2. Add the disk expansion kit to the database server.

 The kit consists of 4 additional hard drives to be installed in the 4 available slots. Remove the filler panels and install the drives. The drives may be installed in any order.

3. Verify that the RAID reconstruction is completed by seeing the warning and clear messages in the alert history.

 This may take several hours to complete. The example below shows that it took approximately 7 hours. Once the clear message (message 1_2 below) is present, the reconstruction is completed and it is safe to proceed.

 [root@dm01db01 ~]# dbmcli -e list alerthistory

 1_1 2016-02-15T14:01:00-08:00 warning "A disk
expansion kit was installed. The additional physical drives were automatically added to the existing RAID5 configuration, and reconstruction of the corresponding virtual drive was automatically started.

1_2 2016-02-15T21:01:01-08:00 clear
"Virtual drive reconstruction due to disk expansion was completed."

4. Collect information about the current environment.

[root@dm01db01 ~]# df -h /EXAVMIMAGES
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 1.6T 44G 1.5T 3% /EXAVMIMAGES

[root@dm01db01 ~]# xm list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 94039.1
dm01db01vm01.example.com 4 16384 2 -b---- 3597.3

5. Stop all user domains by running the command `xm shutdown -a -w` from the management domain.

After all user domains are shut down, only Domain-0 (the management domain) should be listed.

[root@dm01db01 ~]# xm shutdown -a -w
Domain dm01db01vm01.example.com terminated
All domains terminated

[root@dm01db01 ~]# xm list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 94073.4

6. Run `parted` to view the sector start and end values.

Check the size of the disk against the end of the second partition. If you see a request to fix the GPT, respond with F.

root@dm01db01 ~]# parted /dev/sda
GNU Parted 2.1Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) unit s
(parted) print
Warning: Not all of the space available to /dev/sda appears to be used, you can fix the GPT to use all of the space (an extra 4679680000 blocks) or continue with the current setting? Fix/Ignore? F
Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64s</td>
<td>1048639s</td>
<td>1048576s</td>
<td>ext3</td>
<td>primary boot</td>
</tr>
<tr>
<td>2</td>
<td>1048640s</td>
<td>3509759966s</td>
<td>3508711327s</td>
<td>primary lvm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3509759967s</td>
<td>8189439966s</td>
<td>4679680000s</td>
<td>primary lvm</td>
<td></td>
</tr>
</tbody>
</table>

(parted) q

The partition table shown above lists partition 2 as ending at sector 3509759966s and disk size as 8189440000. You will use these values in step 7.

7. Create a third partition.

The start sector is the end of the second partition from step 6 plus 1 sector (3509759966+1=3509759967). The end sector of the third partition is the size of the disk minus 34 (8189440000-34=8189439966).

[root@dm01db01 ~]# parted -s /dev/sda mkpart primary 3509759967s 8189439966s

This command produces no output.

8. Set the LVM flag for the third partition.

[root@dm01db01 ~]# parted -s /dev/sda set 3 lvm on
Warning: WARNING: the kernel failed to re-read the partition table on /dev/sda (Device or resource busy). As a result, it may not reflect all of your changes until after reboot.

9. Review the updated partition table.

[root@dm01db01 ~]# parted -s /dev/sda unit s print
Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64s</td>
<td>1048639s</td>
<td>1048576s</td>
<td>ext4</td>
<td>primary boot</td>
</tr>
<tr>
<td>2</td>
<td>1048640s</td>
<td>3509759966s</td>
<td>3508711327s</td>
<td>primary lvm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3509759967s</td>
<td>8189439966s</td>
<td>4679680000s</td>
<td>primary lvm</td>
<td></td>
</tr>
</tbody>
</table>

10. Reboot the Exadata server.

[root@dm01db01 ~]# shutdown -r now
11. Check the size of the disk against the end of the third partition.

```
[root@dm01db01 ~]# parted -s /dev/sda unit s print
Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt
Number Start       End           Size           File system  Name
Flags
1      64s       1048639s     1048576s     ext4         primary
  boot
2      1048640s  3509759966s  3508711327s  primary
  lvm
3      3509759967s 8189439966s 4679680000s primary lvm
```

12. Create a LVM physical volume (PV) on the newly created third partition.

```
[root@dm01db01 ~]# lvm pvcreate --force /dev/sda3
Physical volume "/dev/sda3" successfully created
```

13. Extend the LVM volume group VGExaDb to the newly created third partition.

```
[root@dm01db01 ~]# lvm vgextend VGExaDb /dev/sda3
Volume group "VGExaDb" successfully extended
```

14. Dismount the /EXAVMIMAGES OCFS2 partition.

```
[root@dm01db01 ~]# umount /EXAVMIMAGES/
```

15. Extend the logical volume that contains the OCFS2 partition to include the rest of the free space.

```
[root@dm01db01 ~]# lvm lvextend -l +100%FREE /dev/VGExaDb/LVDbExaVMImages
Size of logical volume VGExaDb/LVDbExaVMImages changed from 1.55 TiB (406549 extents) to 3.73 TiB (977798 extents).
Logical volume LVDbExaVMImages successfully resized.
```

16. Resize the OCFS2 file system to the rest of the logical volume.

The `tunefs.ocfs2` command typically runs very quickly and does not produce output.

```
[root@dm01db01 ~]# tunefs.ocfs2 -S /dev/VGExaDb/LVDbExaVMImages
```

17. Mount the OCFS2 partition and then view the file system disk space usage for this partition.

```
[root@dm01db01 ~]# mount -a
[root@dm01db01 ~]# ls -al /EXAVMIMAGES/
total 4518924
    drwxr-xr-x 3 root root 3896 Jul 18 18:01 .
```
18. Restart the user domains.

Related Topics
• Shutting Down a User Domain From Within the Management Domain
• Starting a User Domain

5.14.3 Expanding /EXAVMIMAGES on Management Domain on Releases Earlier than 12.2.x

If you are using a release of Oracle Exadata System Software that is release 12.1.x or earlier, then use this procedure to expand the /EXAVMIMAGES directory on the management domain following the addition of a disk expansion kit.

During deployment, all available disk space on a database server will be allocated in the management domain with the majority of the space allocated to /EXAVMIMAGES for user domain storage. The /EXAVMIMAGES file system is created on /dev/sda3.

In the example below, dm01db01 is the name of the management domain, and dm01db01vm01 is a user domain.

1. Ensure reclaimdisks.sh has been run by using the -check option.

 Note that the last line reads "Layout: DOM0". If reclaimdisks.sh was not run, it would read "Layout: DOM0 + Linux".

 [root@dm01db01 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -check
 Model is ORACLE SERVER X5-2
 Number of LSI controllers: 1
 Physical disks found: 4 (252:0 252:1 252:2 252:3)
 Logical drives found: 1
 Linux logical drive: 0
 RAID Level for the Linux logical drive: 5
 Physical disks in the Linux logical drive: 4 (252:0 252:1 252:2 252:3)
 Dedicated Hot Spares for the Linux logical drive: 0
 Global Hot Spares: 0
 Valid. Disks configuration: RAID5 from 4 disks with no global and dedicated hot spare disks.
 Valid. Booted: DOM0. Layout: DOM0.

2. Add the disk expansion kit to the database server.

 The kit consists of 4 additional hard drives to be installed in the 4 available slots. Remove the filler panels and install the drives. The drives may be installed in any order.
3. Verify that the RAID reconstruction is completed by seeing the warning and clear messages in the alert history.

This may take several hours to complete. The example below shows that it took approximately 7 hours. Once the clear message (message 1_2 below) is present, the reconstruction is completed and it is safe to proceed.

```
[root@dm01db01 ~]# dbmcli -e list alerthistory

  1_1  2016-02-15T14:01:00-08:00   warning   "A disk expansion kit was installed. The additional physical drives were automatically added to the existing RAID5 configuration, and reconstruction of the corresponding virtual drive was automatically started."

  1_2  2016-02-15T21:01:01-08:00   clear     "Virtual drive reconstruction due to disk expansion was completed."
```

4. Collect information about the current environment.

```
[root@dm01db01 ~]# cat /proc/partitions |grep sda
  8   0 4094720000  sda
  8   1  524288  sda1
  8   2 119541760 sda2
  8   3 1634813903 sda3

[root@dm01db01 ~]# df -h /EXAVMIMAGES
Filesystem         Size  Used Avail Use% Mounted on
/dev/sda3          1.6T   44G  1.5T   3% /EXAVMIMAGES

[root@dm01db01 ~]# xm list
Name                                        ID   Mem VCPUs      State
Time(s)                                      Time(s)
Domain-0                                     94039.1 8192     4     r-----
dl01db01vm01.example.com                    3597.3 16384     2     -b-----
```

5. Stop all user domain guests by running the command `xm shutdown -a -w` from the management domain.

After all user domain guests are shut down, only Domain-0 (dom0) should be listed.

```
[root@dm01db01 ~]# xm shutdown -a -w
Domain dm01db01vm01.example.com terminated
All domains terminated

[root@dm01db01 ~]# xm list
Name                                        ID   Mem VCPUs      State
Time(s)                                      Time(s)
Domain-0                                     94073.4 8192     4     r------
6. Run `parted` to verify the partition size.

If you see a request to fix the GPT, respond with `F`.

```
root@dm01db01 ~]# parted /dev/sda
GNU Parted 2.1 Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print
Warning: Not all of the space available to /dev/sda appears to be used, you can
fix the GPT to use all of the space (an extra 4679680000 blocks) or
continue with the current setting? Fix/Ignore? F

Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 4193GB
Partition Table: gpt

Number Start End Size File system Name Flags
1 32.8kB 537MB 537MB ext3 primary boot
2 537MB 123GB 122GB primary lvm
3 123GB 1797GB 1674GB primary

(parted) q
```

The partition table shown above lists partition 3 as 1674 GB. The size of the disk that contains this partition (/dev/sda) is 4193 GB.

7. Run `parted` to view the sector start and end values.

```
root@dm01db01 ~]# parted -s /dev/sda unit s print
Model: LSI MR9361-8i (scsi)
Disk /dev/sda: 8189440000s
Partition Table: gpt

Number Start End Size File system Name
1 64s 1048639s 1048576s ext3 primary boot
2 1048640s 240132159s 239083520s primary lvm
3 240132160s 3509759965s 3269627806s primary

The partition table shown above lists partition 3 as starting at sector 240132160 and disk size as 8189440000. You will use these values in step 10.

8. Dismount the /EXAVMIMAGES file system on the management domain.

```
[root@dm01db01 ~]# umount /EXAVMIMAGES
```

9. Remove partition 3.

```
[root@dm01db01 ~]# parted -s /dev/sda rm 3
```
This command produces no output.

10. Re-create the partition specifying the same starting sector and the new end of the partition sector. The new end of partition sector is calculated by subtracting 34 from the disk size, for example: 8189440000 - 34 = 8189439966

 [root@dm01db01 ~]# parted -s /dev/sda mkpart primary 240132160s 8189439966s

You might encounter the following warning:

Warning: WARNING: the kernel failed to re-read the partition table on /dev/sda (Device or resource busy). As a result, it may not reflect all of your changes until after reboot.

If you encounter this error, restart the Exadata database server to apply the changes in the partition table.

11. Mount the /EXAVMIMAGES partition again and view the file system disk space usage for this partition.

 [root@dm01db01 ~]# mount /EXAVMIMAGES

 [root@dm01db01 ~]# df -h /EXAVMIMAGES

 Filesystem Size Used Avail Use% Mounted on
 /dev/sda3 1.6T 44G 1.5T 3% /EXAVMIMAGES

 Note that the size of the file system is still the same, 1.6 TB, as in step 4.

12. Verify that the partition table as seen by the kernel shows the updated size for partition 3.

 The output for sda3 should now be larger compared to the output observed earlier in step 4.

 [root@dm01db01 ~]# cat /proc/partitions |grep sda

 8 0 4094720000 sda
 8 1 524288 sda1
 8 2 119541760 sda2
 8 3 3974653903 sda3

13. Expand the file system.

 You can do this while the file system is mounted and processes are running. Note the updated file system size, compared to the value in step 4. The tunefs.ocfs2 command typically runs very quickly and should have no output normally.

 [root@dm01db01 ~]# tunefs.ocfs2 -S /dev/sda3

 [root@dm01db01 ~]# df -h /EXAVMIMAGES

 Filesystem Size Used Avail Use% Mounted on
 /dev/sda3 3.8T 44G 3.7T 2% /EXAVMIMAGES
14. Restart the user domains.

Related Topics

- Shutting Down a User Domain From Within the Management Domain
- Starting a User Domain

5.15 Creating Oracle VM Oracle RAC Clusters

This procedure creates Oracle VM Oracle RAC clusters using Oracle Exadata Deployment Assistant (OEDA) configuration tool and deployment tool.

The requirements for adding an Oracle VM Oracle RAC cluster are as follows:

- The system has already been deployed with one or more Oracle VM Oracle RAC clusters.
- System has available resources, such as memory, CPU, local disk space, and Oracle Exadata Storage Server disk space.
- OEDA deployment files used for initial system configuration are available.

1. Verify there are sufficient resources to add a new guest in the kvmhost.
 If you are creating an Oracle VM Oracle RAC cluster, then verify resources in all kvmmhosts where you are creating a new guest.

2. Use the following command to verify the Oracle Exadata Storage Server disk space:

   ```
   # dcli -l celladmin -g cell_group "cellcli -e 'list celldisk attributes name, diskType, freeSpace where freeSpace>0'"
   ```

3. Download the latest OEDA from My Oracle Support note 888828.1, and place it on a system capable of running a graphic-based program.
 By default, database servers in Oracle Exadata Database Machine contain only packages required to run Oracle Database, and are not capable of running OEDA configuration tool.

4. Obtain the OEDA template files used to deploy the system.

5. Run the OEDA configuration tool as follows:
 a. Click Import.
 b. Select and open the XML file used to deploy the system with the name `CustomerName-NamePrefix.xml`.
 c. Click Next as needed to get to the Define Clusters page, and verify the IP address and host name information as you navigate the pages. If there have been no networking changes since the initial deployment, then no changes are needed.
 d. Increment the number of clusters on the Define Clusters page.
 e. Select the new cluster tab to edit the cluster information. Do not change any other clusters.
 f. Enter a unique cluster name for the cluster.
g. Select the Oracle VM Server and CELL components for the new cluster, and then click **Add**.

Note:
The recommended practice for best performance and simplest administration is to select all cells.

h. Click **Next** as needed to get to the new cluster page. Do not change any other clusters.

i. Enter the information for the new cluster. Information includes the virtual guest size, disk group details, and database name. The database name must be unique for all databases that use the same Oracle Exadata Storage Servers.

j. Click **Next** to get to the Review and Edit page, and verify the information for the new cluster.

k. Click **Next** as needed to get to the Generate page.

l. Click **Next** to generate the new configuration files.

m. Select the destination directory for the configuration files.

n. Click **Save**.

Note: If the Oracle VM Defaults were altered for this new cluster, then configuration details for existing clusters will be re-written to match the new template settings. For example, if you previously deployed `vm01` as SMALL with `memory=8GB`, and then change the SMALL template to `memory=10GB` for this new VM, then the new OEDA XML files show `vm01` with `memory=10GB` even though there was no intent to change `vm01`.

o. Click **Installation Template** on the Finish page to review the details of the new cluster.

p. Click **Finish** to exit the configuration tool.

6. Verify the XML file for the new cluster exists and has the name `CustomerName-NamePrefix-ClusterName.xml` in the destination folder.

7. Obtain the deployment files for the Oracle Grid Infrastructure and Oracle Database releases selected, and place them in the OEDA `WorkDir` directory.

8. Run the OEDA Deployment Tool using the `-cf` option to specify the XML file for the new cluster, and the `-l` option to list the steps using the following command:

```bash
$ ./install.sh -cf ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -l
```
Chapter 5
Creating Oracle VM Oracle RAC Clusters

You should see output similar to the following:

Initializing

1. Validate Configuration File
2. Update Nodes for Eighth Rack
3. Create Virtual Machine
4. Create Users
5. Setup Cell Connectivity
6. Calibrate Cells
7. Create Cell Disks
8. Create Grid Disks
9. Configure Alerting
10. Install Cluster Software
11. Initialize Cluster Software
12. Install Database Software
13. Relink Database with RDS
14. Create ASM Diskgroups
15. Create Databases
16. Apply Security Fixes
17. Install Exachk
18. Create Installation Summary
19. Resecure Machine

9. Skip the following steps when adding new Oracle VM clusters in an existing Oracle VM environment on Oracle Exadata Database Machine:
 - (For Eight Rack systems only) 2. Update Nodes for Eighth Rack
 - 6. Calibrate Cells
 - 7. Create Cell Disks
 - 19. Resecure Machine

Note:
The step numbers change based on the selected hardware configuration. Use the step names to identify the correct steps on your system.

For example, to execute step 1, run the following command:

```
$ ./install.sh -cf \
ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -s 1
```

To make OEDA run only a subset of the steps, you can specify a range, for example:

```
$ ./install.sh -cf \
ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -r 3-5
```

10. For all other systems, run all steps except for the Configure Alerting step using the XML file for the new cluster.
To run an individual step, use a command similar to the following, which executes the first step:

```
$ ./install.sh -cf \
ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -s 1
```

5.16 Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI

You can expand an existing Oracle RAC cluster on Oracle VM Oracle RAC by adding guest domains using the Oracle Exadata Deployment Assistant command-line interface (OEDACLI).

OEDACLI is the preferred method if you have a known, good version of the OEDA XML file for your cluster.

Note:

During the execution of this procedure, the existing Oracle RAC cluster nodes along with their database instances incur zero downtime.

Use cases for this procedure include:

- You have an existing Oracle RAC cluster that uses only a subset of the database servers of an Oracle Exadata Rack, and now the nodes not being used by the cluster have become candidates for use.
- You have an existing Oracle RAC cluster on Oracle Exadata Database Machine that was recently extended with additional database servers.
- You have an existing Oracle RAC cluster that had a complete node failure and the node was removed and replaced with a newly re-imaged node.

Before preforming the steps in this section, the new database servers should have been set up as detailed in [Adding a New Database Server to the Cluster](#), including the following:

- The new database server is installed and configured on the network with a kvmhost or management domain.
- Download the latest Oracle Exadata Deployment Assistant (OEDA); ensure the version you download is the July 2019 release, or later.
- You have an OEDA configuration XML file that accurately reflects the existing cluster configuration. You can validate the XML file by generating an installation template from it and comparing it to the current configuration. See the OEDACLI command SAVE FILES.
- Review the OEDA Installation Template report for the current system configuration to obtain node names and IP addresses for existing nodes. You will need to have new host names and IP addresses for the new nodes being added. The new host names and IP addresses required are:
 - Administration host names and IP addresses (referred to as ADMINNET) for the management domain (kvmhost) and the user domains (guests).
– Private host names and IP addresses (referred to as PRIVNET) for the management domain (kvmhost) and the user domains (guests).

– Integrated Lights Out Manager (ILOM) host names and IP addresses for the management domain (kvmhost).

– Client host names and IP addresses (referred to as CLIENTNET) for the user domains (guests).

– Virtual IP (VIP) host names and IP addresses (referred to as VIPNET) for the user domains (guests).

– Physical rack number and location of the new node in the rack (in terms of U number)

• Each management domain or kvmhost has been imaged or patched to the same image in use on the existing database servers. The current system image must match the version of the /EXAVMIMAGES/ System.first.boot.*.img file on the new management domain (kvmhost) node.

Note:
The ~/dom0_group file referenced below is a text file that contains the host names of the management domains or kvmhosts for all existing and new nodes being added.

Check the image version across all management domains or kvmhosts are the same.

dcli -g ~/dom0_group -l root "imageinfo -ver"

exa01adm01: 19.2.0.0.0.190225
exa01adm02: 19.2.0.0.0.190225
exa01adm03: 19.2.0.0.0.190225

If any image versions differ, you must upgrade the nodes as needed so that they match.

Ensure that the System.first.boot version across all management domains or kvmhosts matches the image version retrieved in the previous step.

dcli -g ~/dom0_group -l root "ls -1 /EXAVMIMAGES/
System.first.boot*.img"

exa01adm01: /EXAVMIMAGES/System.first.boot.19.2.0.0.0.190225.img
exa01adm02: /EXAVMIMAGES/System.first.boot.19.2.0.0.0.190225.img
exa01adm03: /EXAVMIMAGES/System.first.boot.19.2.0.0.0.190225.img

If any nodes are missing the System.first.boot.img file that corresponds to the current image, then obtain the required file. See the “Supplemental README note” for your Exadata release in My Oracle Support Doc ID 888828.1 and look for the patch file corresponding to this description, “DomU System.img OS image for V.V.0.0.0 VM creation on upgraded dom0s”

• Place the klone.zip files (gi-klone*.zip and db-klone*.zip) in the /EXAVMIMAGES location on the freshly imaged management domain or kvmhost.
node you are adding to the cluster. These files can be found in the /EXAVMIMAGES directory on the management domain or kvmhost node from where the system was initially deployed.

The steps here show how to add a new management domain or kvmhost node called exa01adm03 that will have a new user domain or guest called exa01adm03vm01. The steps show how to extend an existing Oracle RAC cluster onto the user domain (guest) using OEDACLI commands. The existing cluster has management domain (kvmhost) nodes named exa01adm01 and exa01adm02 and user domain(guest) nodes named exa01adm01vm01 and exa01adm02vm01.

1. Add the management domain (kvmhost) information to the OEDA XML file using the CLONE COMPUTE command.

In the examples below, the OEDA XML file is assumed to be in:
unzipped_OEDA_location/ExadataConfigurations.

```
OEDACLI> LOAD FILE NAME=exa01_original_deployment.xml
OEDACLI> CLONE COMPUTE SRCNAME  = exa01adm01 TGTNAME = exa01adm03
SET ADMINNET NAME=exa01adm03,IP=xx.xx.xx.xx
SET PRIVNET NAME1=exa01adm03-priv1,IP1= xx.xx.xx.xx,
SET PRIVNET NAME2=exa01adm03-priv2,IP2= xx.xx.xx.xx
SET ILOMNET NAME=exa01adm03-c,IP=xx.xx.xx.xx
SET RACK NUM=NN,ULOC=XX
```

```
OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS FORCE
OEDACLI> SAVE FILE NAME=exa01_plus_adm03_node.xml
```

At this point we have a new XML file that has the new compute node management domain (kvmhost) in the configuration. This file will be used by the subsequent steps.

2. Add the new guest information to the OEDA XML file using the CLONE GUEST command and deploy the guest.

```
OEDACLI> LOAD FILE NAME=exa01_plus_adm03_node.xml
OEDACLI> CLONE GUEST SRCNAME  = exa01adm01vm01 TGTNAME = exa01adm03vm01
WHERE STEPNAME=CREATE_GUEST
SET PARENT NAME = exa01adm03
SET ADMINNET NAME=exa01adm03vm01,IP=xx.xx.xx.xx
SET PRIVNET NAME1=exa01db03vm01-priv1,IP1= xx.xx.xx.xx,
SET PRIVNET NAME2=exa01db03vm01-priv2,IP2= xx.xx.xx.xx
SET CLIENTNET NAME=exa01client03vm01,IP=xx.xx.xx.xx
SET VIPNET NAME=exa01client03vm01-vip,IP=xx.xx.xx.xx
```

```
OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS
OEDACLI> DEPLOY ACTIONS
```

If you prefer that OEDACLI runs all steps automatically, omit the following clause above, WHERE STEPNAME=CREATE_GUEST and skip step 3 below.
At this point we have a guest created on our new compute node.

3. Use OEDA CLI to extend the cluster to the new guest.

Note:

Continue using the same XML file, `exa01_plus_adm03_node.xml` in this example. You will continue to update this file as you proceed through these steps. At the very end of the procedure, this XML file will properly reflect the new state of the clusters.

```plaintext
OEDA CLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = CREATE_USERS

OEDA CLI> SAVE ACTION
OEDA CLI> MERGE ACTIONS
OEDA CLI> DEPLOY ACTIONS

OEDA CLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = CELL_CONNECTIVITY

OEDA CLI> SAVE ACTION
OEDA CLI> MERGE ACTIONS
OEDA CLI> DEPLOY ACTIONS

OEDA CLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = ADD_NODE

OEDA CLI> SAVE ACTION
OEDA CLI> MERGE ACTIONS
OEDA CLI> DEPLOY ACTIONS

OEDA CLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = EXTEND_DBHOME

OEDA CLI> SAVE ACTION
OEDA CLI> MERGE ACTIONS
OEDA CLI> DEPLOY ACTIONS

OEDA CLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = ADD_INSTANCE

OEDA CLI> SAVE ACTION
OEDA CLI> MERGE ACTIONS
OEDA CLI> DEPLOY ACTIONS

OEDA CLI prints out messages similar to the following as each step completes:

Deploying Action ID : 39 CLONE GUEST TGTNAME=exa01adm03vm01 where STEPNAME = ADD_INSTANCE

Deploying CLONE GUEST
Cloning Guest
Cloning Guest : exa01adm03vm01.us.oracle.com_id
Adding new instance for database [dbm] on exa01adm03vm01.us.oracle.com
Setting up Huge Pages for Database..[dbm]
Adding instance dbm3 on host exa01adm03vm01.us.oracle.com
Successfully completed adding database instance on the new node
[elapsed Time [Elapsed = 249561 mS [4.0 minutes] Fri Jun 28 13:35:52 PDT 2019]]
Done...
Done

4. Save the current state of the configuration and generate configuration information.

OEDACLI> SAVE FILES LOCATION=/tmp/exa01_plus_adm03_config

The above command writes all the configuration files to the directory /tmp/exa01_plus_adm03_config. Save a copy of these files in a safe place since they now reflect the changes made to your cluster.

5. Gather an Oracle EXAchk report and examine it to ensure the cluster is in good health.

Related Topics
- OEDA Command Line Interface
- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)

5.17 Creating a User Domain Without Oracle Grid Infrastructure and Oracle Database

A user domain can be created without Oracle Grid Infrastructure and Oracle Database installed on the system. The new user domain has the following characteristics:

- Operating system image is Oracle Linux
- Access to the management, client, and InfiniBand networks
- No Oracle Grid Infrastructure and Oracle Database is installed

The following procedure creates a user domain without Oracle Grid Infrastructure and Oracle Database installed:

1. Allocate new, unused, IP addresses and host names for the new user domain. IP addresses and host names are needed for the management network, client (SCAN) network, and the private InfiniBand network.

   **Note:**
   Ensure the intended InfiniBand network IP addresses are unused by using the `ping` command for each address. The `ibhosts` command cannot be used to determine all InfiniBand network IP addresses in use because it does not contain entries for user domains.

2. If necessary, obtain an updated user domain (domU) system image file.
The `exadata.img.domu_maker` command that you will run later in this procedure to create a user domain requires the user domain (domU) system image file `System.first.boot.version.img` in `/EXAVMIMAGES`, where `version` matches the management domain Exadata software version as determined by running the "imageinfo -ver" command in the management domain.

For example, when `exadata.img.domu_maker` is run to create a new user domain and the management domain Exadata software version is `12.1.2.1.1.150316.2`, the user domain (domU) system image file `/EXAVMIMAGES/System.first.boot.12.1.2.1.1.150316.2.img` must exist.

```
imageinfo -ver
12.1.2.1.1.150316.2
```

```
ls -l /EXAVMIMAGES/System.first.boot.12.1.2.1.1.150316.2.img
-rw-r--r-- 1 root root 13958643712 Mar 23 12:25 /EXAVMIMAGES/System.first.boot.12.1.2.1.1.150316.2.img
```

If the user domain (domU) system image file does not exist, then it must be obtained from My Oracle Support and placed in `/EXAVMIMAGES` in the management domain. See My Oracle Support note 888828.1 for additional information.

3. In the management domain, copy an existing XML configuration file from a deployed user domain to a new file name using the following command:

```
cp /EXAVMIMAGES/conf/existingDomainName-vm.xml /EXAVMIMAGES/conf/newDomainName-vm.xml
```

In the preceding command, `existingDomainName-vm.xml` is the XML configuration file of the deployed user domain, and `newDomainName-vm.xml` is the name of the new file.

In the following example, the configuration file for user domain "dm01db01vm01" is copied to `nondbdomain-vm.xml`.

```
cp /EXAVMIMAGES/conf/dm01db01vm01-vm.xml /EXAVMIMAGES/conf/nondbdomain-vm.xml
```

4. In the management domain, edit the new XML file as follows:
   
   a. Change all `<Hostname>` tags to match the new host names for the respective networks.

   b. Change all `<IP_address>` tags to match the new IP addresses for the respective networks.

   c. Change the `<virtualMachine>` tag to contain the new host name.

   d. Change the `<hostName>` tag to contain the new host name.

   e. Delete the entire `<disk id="disk_2">` and `<disk id="disk_3">` elements, including all their sub-elements. You must delete the entire entry between the starting `<disk>` tag to the corresponding closing `</disk>`.

5. In the management domain, allocate InfiniBand network GUIDs for the new user domain using the `/opt/exadata_ovm/exadata.img.domu_maker allocate-guids` command.

```
/opt/exadata_ovm/exadata.img.domu_maker allocate-guids \
/EXAVMIMAGES/conf/newDomainName-vm.xml \
/EXAVMIMAGES/conf/final-newDomainName-vm.xml
```

6. In the management domain, create the new user domain using the `/opt/exadata_ovm/exadata.img.domu_maker` command.
5.18 Moving a User Domain to a Different Database Server

User domains can move to different database servers.

The target Oracle Exadata Database Server must meet the following requirements:

- The target database server must have the same Oracle Exadata System Software release installed with Oracle VM.
- The target database server must have the same network visibility.
- The target database server must have access to the same Oracle Exadata Storage Servers.
- The target database server must have sufficient free resources (CPU, memory, and local disk storage) to operate the user domain.
  - It is possible to over-commit virtual CPUs such that the total number of virtual CPUs assigned to all domains exceeds the number of physical CPUs on the system. Over-committing CPUs can be done only when the competing workloads for over-subscribed resources are well understood and the concurrent demand does not exceed physical capacity.
  - It is not possible to over-commit memory.
  - Copying disk images to the target database server may increase space allocation of the disk image files because the copied files are no longer able to benefit from the disk space savings gained by using OCFS2 reflinks.
- The user domain name must not be already in use on the target database server.

The following procedure moves a user domain to a new database server in the same Oracle Exadata System Software configuration. All steps in this procedure are performed in the management domain.

1. Shut down the user domain.
   
   ```
 # /opt/exadata_owm/exadata.img.domu_maker start-domain \
 /EXAVMIMAGES/conf/final-newDomainName-vm.xml
   ```

2. Copy the user domain disk image and configuration files to the target database server.

   In the following examples, replace `DomainName` with the name of the domain.

   ```
 # scp -r /EXAVMIMAGES/GuestImages/DomainName/ target:/EXAVMIMAGES/GuestImages
   ```

3. Obtain the UUID of the user domain.

   ```
 # grep ^uuid /EXAVMIMAGES/GuestImages/DomainName/vm.cfg
   ```

   An example of the user domain UUID is `49ffddce4efe43f5910d0c87bba58`. 

4. Using the UUID of the user domain, copy the user domain symbolic links from /OVS/Repositories to the target database server.

```bash
tar cpvf - /OVS/Repositories/UUID/ | ssh target_db_server "tar xpvf -C /
```

5. Start the user domain on the target database server.

```bash
xm create /EXAVMIMAGES/GuestImages/DomainName/xm.cfg
```

## 5.19 Backing up the Management Domain and User Domains in an Oracle VM Deployment

In an Oracle VM deployment, you need to back up the management domain (dom0) and the user domains (domU):

- **Backing up the Management Domain dom0 Using Snapshot-Based Backup**
  This procedure describes how to take a snapshot-based backup of the management domain, dom0.

- **Backing up the User Domains**
  You can create a backup of all the user domains on a host, or of individual user domains.

### 5.19.1 Backing up the Management Domain dom0 Using Snapshot-Based Backup

This procedure describes how to take a snapshot-based backup of the management domain, dom0.

The logical volume `/dev/VGExaDb/LVDoNotRemoveOrUse` is a placeholder to make sure there is always free space available to create a snapshot. If you run `dbserver_backup.sh`, then the placeholder LVM is removed by the script, the free space is used for a snapshot, and the LVM is re-created after the snapshot is created. If you follow the manual procedure described here, then you have to perform all these tasks manually.

The values shown in the steps below are examples. All steps must be performed as the root user.

1. **Prepare a destination to hold the backup.**
   The destination should reside outside of the local machine, such as a writable NFS location, and be large enough to hold the backup tar file(s). For non-customized partitions, the space needed for holding the backup is around 60 GB.

   The following commands may be used to prepare the backup destination.

   ```bash
 # mkdir -p /remote_FS
 # mount -t nfs -o rw,intr,soft,proto=tcp,nolock ip_address:/nfs_location/ /remote_FS
   ```
2. Take a snapshot-based backup of the file system hosting the / (root) directory.

   a. **Check for the existence of the LVDoNotRemoveOrUse logical volume.**

      If this volume is present, then remove the volume to make space for the snapshot. Execute the script below to check for the existence of the LVDoNotRemoveOrUse logical volume and remove it if present.

      ```
 lvm lvdisplay --ignorelockingfailure /dev/VGExaDb/LVDoNotRemoveOrUse
 if [$? -eq 0]; then
 # LVDoNotRemoveOrUse logical volume exists.
 lvm lvremove -f /dev/VGExaDb/LVDoNotRemoveOrUse
 if [$? -ne 0]; then
 echo "Unable to remove logical volume: LVDoNotRemoveOrUse. Unable to proceed with backup"
 fi
 fi

 If the LVDoNotRemoveOrUse logical volume does not exist, then investigate the reason and do not proceed with the steps below.

 b. **Create a snapshot named LVDbSys3_snap for the file system hosting the / (root) directory.**

 This example assumes LVDbSys3 is the active partition.

         ```
         # lvcreate -L1G -s -n LVDbSys3_snap /dev/VGExaDb/LVDbSys3
         
         c. **Label the snapshot.**

         ```
 # e2label /dev/VGExaDb/LVDbSys3_snap DBSYS0VS_SNAP

 d. **Mount the snapshot.**

         ```
         # mkdir /root/mnt
         
         # mount /dev/VGExaDb/LVDbSys3_snap /root/mnt -t ext4
         
         e. **Change to the directory for the backup.**

         ```
 # cd /root/mnt

 f. **Create the backup file.**

         ```
         # tar -pjcvf /remote_FS/mybackup.tar.bz2 */boot > /tmp/backup_tar.stdout 2> /tmp/backup_tar.stderr
         
         g. **Check the /tmp/backup_tar.stderr file for any significant errors.**

         Errors about failing to tar open sockets, and other similar errors, can be ignored.
3. Unmount the snapshot and remove the snapshot for the root directory.

```bash
cd /
umount /root/mnt
#/bin/rmdir /root/mnt
lvremove /dev/VGExaDb/LVDbSys3_snap
```

4. Unmount the NFS share.

```bash
umount /remote_FS
```

5. Recreate the /dev/VGExaDb/LVDoNotRemoveOrUse logical volume.

```bash
lvm lvcreate -n LVDoNotRemoveOrUse -L1G VGExaDb
```

5.19.2 Backing up the User Domains

You can create a backup of all the user domains on a host, or of individual user domains.

There are three ways to back up the user domains:

- **Method 1:** Back up all user domains in the storage repository using Oracle Cluster File System (OCFS) reflinks to get a consistent backup
  
  This method backs up the storage repository that is the /EXAVMIMAGES OCFS2 file system. This method provides a more robust and a comprehensive backup than method 2 or 3. Method 3 provides a quicker and an easier backup method, especially in role separated environments.
  
  Method 1 is best-suited for when a management domain (dom0) administrator is responsible for user domain backups.

- **Method 2:** Back up individual user domains in the storage repository using Oracle Cluster File System (OCFS) reflinks to get a consistent backup.
  
  You select which user domains you want to back up from the /EXAVMIMAGES OCFS2 file system. The user domains are located in the /EXAVMIMAGES/GuestImages/user directories.
  
  Method 2 is best-suited for when a management domain (dom0) administrator is responsible for user domain backups.

- **Method 3:** Back up a user domain using snapshot-based backup
  
  This method backs up a single user domain using snapshot-based backup from inside the user domain.
  
  Method 3 is ideal where a user domain administrator is responsible for the user domain backups.

- **Method 1:** Back up All the User Domains
  You can back up all the user domains by backing up the storage repository that is the /EXAVMIMAGES OCFS2 file system.

- **Method 2:** Back up Individual User Domains
  You can back up an individual user domain by backing up its specific folder in /EXAVMIMAGES file system.
• **Method 3: Back up a User Domain from Inside the User Domain**
  You can take a snapshot-based backup of a user domain from inside the user domain, which can then be used to restore the user domain to a workable state.

### 5.19.2.1 Method 1: Back up All the User Domains

You can back up all the user domains by backing up the storage repository that is the `/EXAVMIMAGES` OCFS2 file system.

The backup destination should reside outside of the local machine, such as a writable NFS location, and be large enough to hold the backup. The space needed for the backup is proportional to the number of Oracle VMs deployed on the system, up to a maximum space of about 1.6 TB.

This procedure assumes there are 15 or less user domains per management domain.

1. Use the following script to prepare the backup destination and prepare the user domains for backup.

   ```bash
 ScriptStarttime=$(date +%s)
 printf "This script is going to remove the directory /EXAVMIMAGES/Backup.
 If that is not acceptable, exit the script by typing n, manually remove /EXAVMIMAGES/Backup and come back to rerun the script. Otherwise, press y to continue :"
 read proceed
 if [[${proceed} == "n"]] || [[${proceed} == "N"]]; then
 exit 0
 fi
 rm -rf /EXAVMIMAGES/Backup

 ## Create the Backup Directory
 mkdirStartTime=$(date +%s)
 find /EXAVMIMAGES -type d|grep -v 'lost+found'| awk '{print "mkdir -p /EXAVMIMAGES/Backup"$1}'|sh
 mkdirEndTime=$(date +%s)
 mkdirTime=$(expr ${mkdirEndTime} - ${mkdirStartTime})
 echo "Backup Directory creation time :" ${mkdirTime} " seconds"

 ## Create reflinks for files not in /EXAVMIMAGES/GuestImages
 relinkothesStartTime=$(date +%s)
 find /EXAVMIMAGES/ -not -path "/EXAVMIMAGES/GuestImages/*" -not -path "/EXAVMIMAGES/Backup/*" -type f|awk '{print "relink",$0,"/EXAVMIMAGES/Backup"$0}'|sh
 relinkothesEndTime=$(date +%s)
 relinkothesTime=$(expr ${relinkothesEndTime} - ${relinkothesStartTime})
 echo "Reflink creation time for files other than in /EXAVMIMAGES/GuestImages :" ${relinkothesTime} " seconds"

 ## Pause the user domains
 for hostName in `xm list|egrep -v '^Domain-0|^Name'|awk '{print $1}'`
   ```
do
PauseStartTime=$(date +%s)
xm pause ${hostName}
PauseEndTime=$(date +%s)
PauseTime=$(expr ${PauseEndTime} - ${PauseStartTime})
echo "PauseTime for guest - ${hostName} :" ${PauseTime}" seconds"

## Create reflinks for all the files in /EXAVMIMAGES/GuestImages
relinkStartTime=$(date +%s)
find /EXAVMIMAGES/GuestImages/${hostName} -type f|awk '{print "reflink", $0,"/EXAVMIMAGES/Backup"$0}'}|sh
relinkEndTime=$(date +%s)
relinkTime=$(expr ${relinkEndTime} - ${relinkStartTime})
echo "Reflink creation time for guest - ${hostName} :" ${relinkTime}" seconds"

## Unpause the user domains
unPauseStartTime=$(date +%s)
xm unpause ${hostName}
unPauseEndTime=$(date +%s)
unPauseTime=$(expr ${unPauseEndTime} - ${unPauseStartTime})
echo "unPauseTime for guest - ${hostName} :" ${unPauseTime}" seconds"
done

ScriptEndtime=$(date +%s)
ScriptRunTime=$(expr ${ScriptEndtime} - ${ScriptStarttime})
echo ScriptRunTime ${ScriptRunTime}" seconds"

2. Create a backup of the snapshot.
   Backup the reflink files in the /EXAVMIMAGES/Backup directory that was created with the script in Step 1 to a remote location. For example:
   a. Create a tarball file comprising of all files under /EXAVMIMAGES/Backup.
   b. Copy the tarball to a remote location.
   This allows for restore operations if the management domain (Dom0) is permanently lost or damaged.
3. Remove the reflinks created by the script.

5.19.2.2 Method 2: Back up Individual User Domains

You can back up an individual user domain by backing up its specific folder in /EXAVMIMAGES file system.

The backup destination should reside outside of the local machine, such as a writable NFS location, and be large enough to hold the backup. The space needed for the backup is proportional to the number of Oracle VMs deployed on the system, up to a maximum space of about 1.6 TB.

1. Use the following script to prepare the backup destination and prepare the user domain for backup.

   printf "This script is going to remove the directory /EXAVMIMAGES/Backup."
If that is not acceptable, exit the script by typing n, manually remove /EXAVMIMAGES/Backup and come back to rerun the script. Otherwise, press y to continue :
read proceed

if [[ ${proceed} == "n" ]] || [[ ${proceed} == "N" ]]
then
  exit 0
fi

rm -rf /EXAVMIMAGES/Backup

printf "Enter the name of the user domains to be backed up :"
read userDomainName

## Create the Backup Directory

mkdirStartTime=$(date +%s)
find /EXAVMIMAGES/GuestImages/${userDomainName} -type d|grep -v 'lost+found'|awk '{print "mkdir -p /EXAVMIMAGES/Backup"$1}'|sh
mkdirEndTime=$(date +%s)
mkdirTime=$(expr ${mkdirEndTime} - ${mkdirStartTime})

echo "Backup Directory creation time :" ${mkdirTime} " seconds"

## Pause the user domain

PauseStartTime=$(date +%s)
xm pause ${userDomainName}
PauseEndTime=$(date +%s)
PauseTime=$(expr ${PauseEndTime} - ${PauseStartTime})

echo "PauseTime for guest - ${userDomainName} :" ${PauseTime} " seconds"

## Create reflinks for all the files in /EXAVMIMAGES/GuestImages/${userDomainName}

relinkStartTime=$(date +%s)
find /EXAVMIMAGES/GuestImages/${userDomainName} -type f|awk '{print "relink", $0, "/EXAVMIMAGES/Backup$0'}|sh
relinkEndTime=$(date +%s)
relinkTime=$(expr ${relinkEndTime} - ${relinkStartTime})

echo "Reflink creation time for guest - ${userDomainName} :" ${relinkTime} " seconds"

## Unpause the user domain

unPauseStartTime=$(date +%s)
xm unpause ${userDomainName}
unPauseEndTime=$(date +%s)
unPauseTime=$(expr ${unPauseEndTime} - ${unPauseStartTime})

echo "unPauseTime for guest - ${userDomainName} :" ${unPauseTime} " seconds" done

ScriptEndTime=$(date +%s)
ScriptRunTime=$(expr ${ScriptEndTime} - ${ScriptStartTime})
echo ScriptRunTime ${ScriptRunTime} " seconds"
2. Create a backup of the snapshot.

   Backup the reflink files in the /EXAVMIMAGES/Backup directory that was created with the script in Step 1 to a remote location. For example:
   
   a. Create a tarball file comprising of all files under /EXAVMIMAGES/Backup.
   
   b. Copy the tarball to a remote location.

   This allows for restore operations if the management domain (Dom0) is permanently lost or damaged.

3. Remove the reflinks created by the script.

5.19.2.3 Method 3: Back up a User Domain from Inside the User Domain

You can take a snapshot-based backup of a user domain from inside the user domain, which can then be used to restore the user domain to a workable state.

All steps are performed from inside the user domain.

Note:

This method of backing up a user domain from inside the user domain using LVM snapshots will have limited usage in terms of recovery. Such a backup can only be used for recovery purposes when the user domain is still bootable and allows login as the root user. This means the damage is such that some files have been lost or damaged but can be restored from the tar backup after the user domain has booted up and the / (root) partition and the boot partitions are mounted. If that is not the case and the damage is such that the user domain does not boot, then you need a backup taken using methods 1 or 2 above to recover the user domain, and you need to perform the recovery procedure at the user domain level using the recovery procedure described below.

This procedure backs up the following:

- LVDbSys1
- LVDbOra1
- /boot partition
- Grid Infrastructure home
- RDBMS home

All steps must be performed as the root user.

1. Prepare a destination to hold the backup.

   In the following example, ip_address is the IP address of the NFS server, and nfs_location is the NFS location holding the backups.

   # mkdir -p /remote_FS

   # mount -t nfs -o rw,intr,soft,proto=tcp,nolock ip_address:/nfs_location/ /remote_FS
2. Take a snapshot-based backup of the file systems containing / (root) and the /u01 directories, as follows:

   a. Create a snapshot named LVDbSys1_snap for the file system containing the root directory.
      The volume group must have at least 1 GB of free space for the command to succeed.
      
      ```
 # lvcreate -L1G -s -n LVDbSys1_snap /dev/VGExaDb/LVDbSys1
      ```

   b. Label the snapshot.
      
      ```
 # e2label /dev/VGExaDb/LVDbSys1_snap DBSYS_SNAP
      ```

   c. Mount the snapshot.
      
      ```
 # mkdir /root/mnt
 # mount /dev/VGExaDb/LVDbSys1_snap /root/mnt -t ext4
      ```

   d. Create a snapshot named u01_snap for the /u01 directory.
      
      ```
 # lvcreate -L256M -s -n u01_snap /dev/VGExaDb/LVDbOra1
      ```

   e. Label the snapshot.
      
      ```
 # e2label /dev/VGExaDb/u01_snap DBORA_SNAP
      ```

   f. Mount the snapshot.
      
      ```
 # mkdir -p /root/mnt/u01
 # mount /dev/VGExaDb/u01_snap /root/mnt/u01 -t ext4
      ```

   g. Change to the directory for the backup.
      
      ```
 # cd /root/mnt
      ```

   h. Create the backup file to back up the two snapshots taken above, the /boot partition, the Oracle Database home directory, and the Oracle Grid Infrastructure home directory.
      In the following example: Grid_home is the location of the Oracle Grid Infrastructure home, for example, /u01/app/18.1.0/grid; DB_home is the location of the Oracle Database home, for example, /u01/app/oracle/product/18.1.0/dbhome_1.
      
      ```
 # tar -pjcvf /remote_FS/mybackup.tar.bz2 * /boot Grid_home DB_home > /tmp/backup_tar.stdout 2> /tmp/backup_tar.stderr
      ```

   i. Check the /tmp/backup_tar.stderr file for any significant errors.
      Errors about failing to tar open sockets, and other similar errors, can be ignored.
3. Unmount and remove the snapshots for the file system containing the root directories.

```shell
cd /
umount /root/mnt/u01
umount /root/mnt
/bin/rmdir /root/mnt
lvremove /dev/VGExaDb/u01_snap
lvremove /dev/VGExaDb/LVDbSys1_snap
```

4. Unmount the NFS share.

```shell
umount /remote_FS
```

### 5.20 Recovering an Oracle VM Deployment

You can recover an Oracle VM from a snapshot-based backup when severe disaster conditions damage the Oracle VM, or when the server hardware is replaced to such an extent that it amounts to new hardware.

For example, replacing all hard disks leaves no trace of original software on the system. This is similar to replacing the complete system as far as the software is concerned. In addition, it provides a method for disaster recovery of the database servers using an LVM snapshot-based backup taken when the database server was healthy before the disaster condition.

The recovery procedures described in this section do not include backup or recovery of storage servers or the data in an Oracle Database. Oracle recommends testing the backup and recovery procedures on a regular basis.

- **Overview of Snapshot-Based Recovery of Database Servers**
  The recovery of the Oracle VM consists of a series of tasks.

- **Scenario 1: Recovering a Management Domain and Its User Domains from Backup**
  You can recover the management domain and all its user domains from a backup.

- **Scenario 2: Re-imaging the Management Domain and Restoring User Domains from Backups**
  This procedure re-images the management domain and reconstructs all the user domains.

- **Scenario 3: Restoring and Recovering User Domains from Snapshot Backups**
  Use this procedure to restore lost or damaged files of a user domain using a snapshot-based user domain backup taken from inside a user domain.

#### 5.20.1 Overview of Snapshot-Based Recovery of Database Servers

The recovery of the Oracle VM consists of a series of tasks.

The recovery procedures use the `diagnostics.iso` image as a virtual CD-ROM to restart the Oracle VM in rescue mode using the Integrated Lights Out Manager (ILOM). At a high-level, the steps look like this:

1. Re-create the following:
   - Boot partitions
• Physical volumes
• Volume groups
• Logical volumes
• File system
• Swap partition

2. Activate the swap partition.
3. Ensure the /boot partition is the active boot partition.
4. Restore the data.
5. Reconfigure GRUB.
6. Restart the server.

5.20.2 Scenario 1: Recovering a Management Domain and Its User Domains from Backup

You can recover the management domain and all its user domains from a backup.

The following procedures step you through the recovery process. Chose one of the following procedures, based on the version of Oracle Exadata System Software that is installed on your system.

⚠️ WARNING:
All existing data on the disks is lost during these procedures.

• Recovering a Management Domain and Its User Domains (Releases Prior to 12.2.1.1.0)
  You can recover a management domain from a snapshot-based backup when severe disaster conditions damage the dom0, or when the server hardware is replaced to such an extent that it amounts to new hardware.

• Recovering a Management Domain and Its User Domains (Releases 12.2.1.1.0 and Later)
  You can recover a management domain from a snapshot-based backup when severe disaster conditions damage the management domain, or when the server hardware is replaced to such an extent that it amounts to new hardware.

• Recovering a Management Domain and Its User Domains (Release 18.1 and X7 and Later)
  You can recover a management domain from a snapshot-based backup when severe disaster conditions damage the management domain, or when the server hardware is replaced to such an extent that it amounts to new hardware.

Related Topics
• Backing up the Management Domain dom0 Using Snapshot-Based Backup
  This procedure describes how to take a snapshot-based backup of the management domain, dom0.
5.20.2.1 Recovering a Management Domain and Its User Domains (Releases Prior to 12.2.1.1.0)

You can recover a management domain from a snapshot-based backup when severe disaster conditions damage the dom0, or when the server hardware is replaced to such an extent that it amounts to new hardware.

To use this recovery method, it is assumed that you have previously completed the steps in Backing up the Management Domain dom0 Using Snapshot-Based Backup.

1. Prepare an NFS server to host the backup archive `mybackup.tar.bz2`.

   The NFS server must be accessible by IP address. For example, on an NFS server with the IP address `nfs_ip`, where the directory `/export` is exported from NFS mounts, put the `mybackup.tar.bz2` file in the `/export` directory.

2. Attach the `/opt/oracle.SupportTools/diagnostics.iso` file from any healthy database server as virtual media to the ILOM of the management domain to be restored.

   The following example shows how to set up a virtual CD-ROM using the ILOM interface:
   a. Copy the `diagnostics.iso` file to a directory on the machine that will be using the ILOM interface.
   b. Log in to the ILOM web interface.
   c. In the Oracle ILOM web interface, click Remote Control, and then click Redirection.
   d. Select Use Video Redirection.
   e. After the console launches, click Storage in the KVMS menu.
   f. To add a storage image, such as a DVD image, to the Storage Devices dialog box, click Add.
   g. Open the `diagnostics.iso` file.
h. To redirect storage media from the Storage Device dialog box, select the storage media and click Connect.
   After a connection to the device has been established, the label on the Connect button in the Storage Device dialog box changes to Disconnect.

i. Select Host Control from the Host Management tab.

j. Select CDROM as the next boot device from the list of values.

k. Click Save.
   When the system is booted, the diagnostics.iso image is used.

3. Restart the system from the ISO image file.
   You can restart the system using one of the following methods:
   • Choose the CD-ROM as the boot device during startup
   • Preset the boot device by running the ipmitool command from any other machine that can reach the ILOM of the management domain to be restored:

   ```
 # ipmitool -H ILOM_ip_address_or_hostname -U root chassis bootdev cdrom
 # ipmitool -H ILOM_ip_address_or_hostname -U root chassis power cycle
   ```

4. Log in to the diagnostics shell as the root user.
   When the system displays the following:

   Choose from following by typing letter in '()':
   (e)nter interactive diagnostics shell. Must use credentials from Oracle
support to login (reboot or power cycle to exit the shell),
(re)store system from NFS backup archive,

Type `e` to enter the diagnostics shell, and log in as the root user.

Note:
If you do not have the password for the root user, then contact Oracle Support Services.

5. If required, use `/opt/MegaRAID/MegaCli/MegaCli64` to configure the disk controller to set up the disks.

6. Remove the logical volumes, the volume group, and the physical volume, in case they still exist after the disaster.

   ```bash
 # lvm vgremove VGExaDb --force
 # lvm pvremove /dev/sda2 --force
   ```

7. Remove the existing partitions and clean up the drive.

   ```bash
 # parted
 GNU Parted 2.1
 Using /dev/sda
 Welcome to GNU Parted! Type 'help' to view a list of commands.
 (parted) rm 1
 sda: sda2 sda3
 (parted) rm 2
 sda: sda3
 (parted) rm 3
 sda:
 (parted) q
 # dd if=/dev/zero of=/dev/sda bs=64M count=2
   ```

8. Create the three partitions on `/dev/sda`.
   a. Get the end sector for the disk `/dev/sda` from a surviving dom0 and store it in a variable:

      ```bash
 # end_sector=$(parted -s /dev/sda unit s print|perl -ne '/^Disk\s+\S+s+\(\d+\)s/ and print $1')
      ```

   b. Create the boot partition, `/dev/sda1`.

      ```bash
 # parted -s /dev/sda mklabel gpt mkpart primary 64s 1048639s set 1 boot on
      ```

   c. Create the partition that will hold the LVMs, `/dev/sda2`.

      ```bash
 # parted -s /dev/sda mkpart primary 1048640s 240132159s set 2 lvm on
      ```
d. Create the OCFS2 storage repository partition, /dev/sda3.

```
parted -s /dev/sda mkpart primary 240132160s ${end_sector}s set 3
```

9. Use the /sbin/lvm command to re-create the logical volumes and mkfs to create file systems.

a. Create the physical volume and the volume group.

```
lvm pvcreate /dev/sda2
lvm vgcreate VGExaDb /dev/sda2
```

b. Create the logical volume for the file system that will contain the / (root) directory and label it.

```
lvm lvcreate -n LVDbSys3 -L30G VGExaDb
mkfs.ext4 /dev/VGExaDb/LVDbSys3
e2label /dev/VGExaDb/LVDbSys3 DBSYS0VS
```

c. Create the logical volume for the swap directory, and label it.

```
lvm lvcreate -n LVDbSwap1 -L24G VGExaDb
mkswap -L SWAP /dev/VGExaDb/LVDbSwap1
```

d. Create the logical volume for the backup partition, and build a file system on top of it.

```
lvm lvcreate -n LVDbSys2 -L30G VGExaDb
mkfs.ext4 /dev/VGExaDb/LVDbSys2
```

e. Create the logical volume for the reserved partition.

```
lvm lvcreate -n LVDoNotRemoveOrUse -L1G VGExaDb
```

```
Note:
Do not create any file system on this logical volume.
```

f. Create a file system on the /dev/sda1 partition, and label it.

```
mkfs.ext3 -I 128 /dev/sda1
tune2fs -c 0 -i 0 /dev/sda1
e2label /dev/sda1 BOOT
```

10. Create mount points for all the partitions, and mount the respective partitions.

For example, if /mnt is used as the top level directory, the mounted list of partitions may look like:

- /dev/VGExaDb/LVDbSys3 on /mnt


The following example mounts the root file system, and creates two mount points:

```bash
mount /dev/VGExaDb/LVDbSys3 /mnt -t ext4
mkdir /mnt/boot
mount /dev/sda1 /mnt/boot -t ext3
```

11. **Bring up the network on eth0 and assign the host's IP address and netmask to it.**

```bash
ifconfig eth0 ip_address_for_eth0 netmask netmask_for_eth0 up
route add -net 0.0.0.0 netmask 0.0.0.0 gw gateway_ip_address
```

12. **Mount the NFS server holding the backups.**

```bash
mkdir -p /root/mnt
mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/location_of_backup /root/mnt
```

13. **From the backup which was created in Backing up the Management Domain dom0 Using Snapshot-Based Backup, restore the root directory (/) and the boot file system.**

```bash
tar -pjxvf /root/mnt/backup-of-root-and-boot.tar -C /mnt
```

14. **Unmount the restored /dev/sda1 partition, and remount it on /boot.**

```bash
umount /mnt/boot
mkdir /boot
mount /dev/sda1 /boot -t ext3
```

15. **Set up the grub boot loader using the command below:**

```bash
grub --device-map=/boot/grub/device.map << DOM0_GRUB_INSTALL
root (hd0,0)
setup (hd0)
quit
DOM0_GRUB_INSTALL
```

16. **Unmount the /boot partition.**

```bash
umount /boot
```

17. **Detach the diagnostics.iso file.**

   This can be done by clicking **Disconnect** on the ILOM web interface console, where you clicked **Connect** in step 2.h to attach the DVD ISO image.

18. **Check the restored /etc/fstab file and remove any reference to /EXAVMIMAGES and /dev/sda3.**

```bash
cd /mnt/etc
Comment out any line that references /EXAVMIMAGES or /dev/sda3.
```
19. Restart the system.

   # shutdown -r now

   This completes the restoration procedure for the management domain (dom0).

20. Convert to eighth rack, if required.

   If the recovery is on an Oracle Exadata Database Machine Eighth Rack, then perform the procedure described in Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery.

21. When the server comes back up, build an OCFS2 file system on the /dev/sda3 partition.

   # mkfs -t ocfs2 -L ocfs2 -T vmstore --fs-features=local /dev/sda3 --force

22. Mount the OCFS2 partition /dev/sda3 on /EXAVMIMAGES.

   # mount -t ocfs2 /dev/sda3 /EXAVMIMAGES

23. In /etc/fstab, uncomment the commented out references to /EXAVMIMAGES and /dev/sda3 that was performed in step 18.

24. Mount the backup NFS server that holds the storage repository (/EXAVMIMAGES) backup to restore the /EXAVMIMAGES file system which holds all the user domain images.

   # mkdir -p /root/mnt
   # mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/location_of_backup /root/mnt

25. Restore the /EXAVMIMAGES file system.

   To restore all user domains, use this command:

   # tar -Spxvf /root/mnt/backup-of-exavmimages.tar -C /EXAVMIMAGES

   To restore a single user domain from the backup, use the following command instead:

   # tar -Spxvf /root/mnt/backup-of-exavmimages.tar -C /EXAVMIMAGES EXAVMIMAGES/<user-domain-name-to-be-restored>

26. Bring up each user domain.

   # xm create /EXAVMIMAGES/GuestImages/user_domain_hostname/vm.cfg

   At this point all the user domains should come up along with Oracle Grid Infrastructure and the Oracle Database instances. The database instances should join the Oracle Real Application Clusters (Oracle RAC) cluster formed by the other surviving management domain nodes.
5.20.2.2 Recovering a Management Domain and Its User Domains (Releases 12.2.1.1.0 and Later)

You can recover a management domain from a snapshot-based backup when severe disaster conditions damage the management domain, or when the server hardware is replaced to such an extent that it amounts to new hardware.

To use this recovery method, it is assumed that you have previously completed the steps in Backing up the Management Domain dom0 Using Snapshot-Based Backup.

1. Prepare an NFS server to host the backup archive mybackup.tar.bz2.
   The NFS server must be accessible by IP address. For example, on an NFS server with the IP address nfs_ip, where the directory /export is exported from NFS mounts, put the mybackup.tar.bz2 file in the /export directory.

2. Attach the /opt/oracle.SupportTools/diagnostics.iso file from any healthy database server as virtual media to the ILOM of the management domain to be restored.
   The following example shows how to set up a virtual CD-ROM using the ILOM interface:
   a. Copy the diagnostics.iso file to a directory on the machine that will be using the ILOM interface.
   b. Log in to the ILOM web interface.
   c. In the Oracle ILOM web interface, click Remote Control, and then click Redirection.
   d. Select Use Video Redirection.
   e. After the console launches, click Storage in the KVMS menu.
   f. To add a storage image, such as a DVD image, to the Storage Devices dialog box, click Add.
   g. Open the diagnostics.iso file.
h. To redirect storage media from the Storage Device dialog box, select the storage media and click **Connect**.

   After a connection to the device has been established, the label on the Connect button in the Storage Device dialog box changes to **Disconnect**.

i. Select **Host Control** from the Host Management tab.

j. Select **CDROM** as the next boot device from the list of values.

k. Click **Save**.

   When the system is booted, the **diagnostics.iso** image is used.

3. Restart the system from the ISO image file.

   You can restart the system using one of the following methods:
   - Choose the CD-ROM as the boot device during start up.
   - Preset the boot device by running the `ipmitool` command from any other machine that can reach the ILOM of the management domain to be restored:

     ```bash
 # ipmitool -H ILOM_ip_address_or_hostname -U root chassis bootdev cdrom
 # ipmitool -H ILOM_ip_address_or_hostname -U root chassis power cycle
     ```

4. Log in to the diagnostics shell as the **root** user.

   When the system displays the following:

   Choose from following by typing letter in '()':

   (e)nter interactive diagnostics shell. Must use credentials from Oracle
support to login (reboot or power cycle to exit the shell),
(restore system from NFS backup archive,

Type e to enter the diagnostics shell, and log in as the root user.

**Note:**

If you do not have the password for the root user, then contact Oracle Support Services.

5. If required, use /opt/MegaRAID/MegaCli/MegaCli64 to configure the disk controller to set up the disks.

6. Remove the logical volumes, the volume group, and the physical volume, in case they still exist after the disaster.

```bash
lvm vgremove VGExaDb --force
lvm pvremove /dev/sda2 --force
```

7. Remove the existing partitions and clean up the drive.

```bash
parted
GNU Parted 2.1
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) rm 1
[12064.253824] sda: sda2
(parted) rm 2
[12070.579094] sda:
(parted) q

dd if=/dev/zero of=/dev/sda bs=64M count=2
```

8. Create the two partitions on /dev/sda.

   a. Get the end sector for the disk /dev/sda from a surviving dom0 and store it in a variable:

   ```bash
 # end_sector_logical=$(parted -s /dev/sda unit s print|perl -ne '/^Disk\s+\S+:\s+\S+\(d\)s/ and print $1/')
 # end_sector=$(expr $end_sector_logical - 34)

 The values for the start and end sectors in the commands below were taken from a surviving management domain. Because these values can change over time, it is recommended that these values are checked from a surviving management domain using the following command:

   ```bash
   # parted -s /dev/sda unit $ print
   ```
b. Create the boot partition, /dev/sda1.

```
# parted -s /dev/sda mklabel gpt mkpart primary 64s 1048639s set 1 boot on
```

c. Create the partition that will hold the LVMs, /dev/sda2.

```
# parted -s /dev/sda mkpart primary 1048640s 350979966s set 2 lvm on
```

9. Use the /sbin/lvm command to re-create the logical volumes and mkfs to create file systems.

a. Create the physical volume and the volume group.

```
# lvm pvcreate /dev/sda2
# lvm vgcreate VGExaDb /dev/sda2
```

b. Create the logical volume for the file system that will contain the / (root) directory and label it.

```
# lvm lvcreate -n LVDbSys3 -L 30G VGExaDb
# mkfs -t ext4 -b 4096 /dev/VGExaDb/LVDbSys3
# e2label /dev/VGExaDb/LVDbSys3 DBSYS0VS
```

c. Create the logical volume for the swap directory, and label it.

```
# lvm lvcreate -n LVDbSwap1 -L 24G VGExaDb
# mkswap -L SWAP /dev/VGExaDb/LVDbSwap1
```

d. Create the logical volume for the backup partition, and build a file system on top of it.

```
# lvm lvcreate -n LVDbSys2 -L 30G VGExaDb
# mkfs -t ext4 -b 4096 /dev/VGExaDb/LVDbSys2
```

e. Create the logical volume for the reserved partition.

```
# lvm lvcreate -n LVDoNotRemoveOrUse -L 1G VGExaDb
```

Note:

Do not create any file system on this logical volume.

f. Create the logical volume for the guest storage repository.

```
# lvm lvcreate -l 100%FREE -n LVDbExaVMImages VGExaDb
```

g. Create a file system on the /dev/sda1 partition, and label it.
In the `mkfs.ext3` command below, the `-I 128` option is needed to set the inode size to 128.

```
# mkfs.ext3 -I 128 /dev/sda1
# tune2fs -c 0 -i 0 /dev/sda1
# e2label /dev/sda1 BOOT
```

10. Create mount points for all the partitions, and mount the respective partitions.

For example, if `/mnt` is used as the top-level directory, the mounted list of partitions might look like:

- `/dev/VGExaDb/LVDbSys3 on /mnt`
- `/dev/sda1 on /mnt/boot`

The following example mounts the root file system, and creates two mount points:

```
# mount /dev/VGExaDb/LVDbSys3 /mnt -t ext4
# mkdir /mnt/boot
# mount /dev/sda1 /mnt/boot -t ext3
```

11. Bring up the network on `eth0` and assign the host's IP address and netmask to it.

```
# ifconfig eth0 ip_address_for_eth0 netmask netmask_for_eth0 up
# route add -net 0.0.0.0 netmask 0.0.0.0 gw gateway_ip_address
```

12. Mount the NFS server holding the backups.

```
# mkdir -p /root/mnt
# mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/location_of_backup /root/mnt
```

13. From the backup which was created in Backing up the Management Domain dom0 Using Snapshot-Based Backup, restore the root directory (`/`) and the boot file system.

```
# tar -pjxvf /root/mnt/backup-of-root-and-boot.tar -C /mnt
```

14. Unmount the restored `/dev/sda1` partition, and remount it on `/boot`.

```
# umount /mnt/boot
# mkdir -p /boot
# mount /dev/sda1 /boot -t ext3
```

15. Set up the grub boot loader using the command below:

```
# grub --device-map=/boot/grub/device.map << DOM0_GRUB_INSTALL
root (hd0,0)
setup (hd0)
quit
DOM0_GRUB_INSTALL
```
16. Unmount the `/boot` partition.

 # umount /boot

17. Detach the `diagnostics.iso` file.

 This can be done by clicking **Disconnect** on the ILOM web interface console, where you clicked **Connect** in step 2.h to attach the DVD ISO image.

18. Check the restored `/etc/fstab` file and remove any reference to `/EXAVMIMAGES`.

 # cd /mnt/etc

 Comment out any line that references `/EXAVMIMAGES`.

19. Restart the system.

 # shutdown -r now

 This completes the restoration procedure for the management domain (dom0).

20. Convert to Eighth Rack, if required.

 If the recovery is on an Oracle Exadata Database Machine Eighth Rack, then perform the procedure described in *Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery*.

21. When the server comes back up, build an OCFS2 file system on the `LVDbExaVMImages` logical volume, which was created in step 9.f.

 # mkfs -t ocfs2 -L ocfs2 -T vmstore --fs-features=local /dev/VGExaDb/LVDbExaVMImages --force

22. Mount the OCFS2 partition on `/EXAVMIMAGES`.

 # mount -t ocfs2 /dev/VGExaDb/LVDbExaVMImages /EXAVMIMAGES

23. In `/etc/fstab`, uncomment the commented out references to `/EXAVMIMAGES` and `/dev/mapper/VGExaDb-LVDbExaVMImages` that was performed in step 18.

24. Mount the backup NFS server that holds the storage repository (`/EXAVMIMAGES`) backup to restore the `/EXAVMIMAGES` file system.

 # mkdir -p /root/mnt
 # mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/location_of_backup /root/mnt

25. Restore the `/EXAVMIMAGES` file system.

 To restore all user domains, use this command:

 # tar -Spxvf /root/mnt/backup-of-exavmimages.tar -C /EXAVMIMAGES
To restore a single user domain from the backup, use the following command instead:

```
# tar -Spxvf /root/mnt/backup-of-exavmimages.tar -C /EXAVMIMAGES
EXAVMIMAGES/<user-domain-name-to-be-restored>
```

26. Bring up each user domain.

```
# xm create /EXAVMIMAGES/GuestImages/user_domain_hostname/vm.cfg
```

At this point all the user domains should come up along with Oracle Grid Infrastructure and the Oracle Database instances. The database instances should join the Oracle Real Application Clusters (Oracle RAC) cluster formed by the other surviving management domain nodes.

5.20.2.3 Recovering a Management Domain and Its User Domains (Release 18.1 and X7 and Later)

You can recover a management domain from a snapshot-based backup when severe disaster conditions damage the management domain, or when the server hardware is replaced to such an extent that it amounts to new hardware.

1. Prepare an NFS server to host the backup archive `mybackup.tar.bz2`.
 The NFS server must be accessible by IP address. For example, on an NFS server with the IP address `nfs_ip`, where the directory `/export` is exported from NFS mounts, put the `mybackup.tar.bz2` file in the `/export` directory.

2. Attach the `/opt/oracle.SupportTools/diagnostics.iso` file from any healthy database server as virtual media to the ILOM of the management domain to be restored.
 The following example shows how to set up a virtual CD-ROM using the ILOM interface:
 a. Copy the `diagnostics.iso` file to a directory on the machine that will be using the ILOM interface.
 b. Log in to the ILOM web interface.
 c. In the Oracle ILOM web interface, click Remote Control, and then click Redirection.
 d. Select Use Video Redirection.
 e. After the console launches, click Storage in the KVMS menu.
 f. To add a storage image, such as a DVD image, to the Storage Devices dialog box, click Add.
 g. Open the `diagnostics.iso` file.
To redirect storage media from the Storage Device dialog box, select the storage media and click Connect.

After a connection to the device has been established, the label on the Connect button in the Storage Device dialog box changes to Disconnect.

Select Host Control from the Host Management tab.

Select CDROM as the next boot device from the list of values.

Click Save.

When the system is booted, the diagnostics.iso image is used.

3. Restart the system from the ISO image file.

You can restart the system using one of the following methods:

- Choose the CD-ROM as the boot device during start up.
- Preset the boot device by running the ipmitool command from any other machine that can reach the ILOM of the management domain to be restored:

```
# ipmitool -H ILOM_ip_address_or_hostname -U root chassis bootdev cdrom
# ipmitool -H ILOM_ip_address_or_hostname -U root chassis power cycle
```

4. Log in to the diagnostics shell as the root user.

When the system displays the following:

Choose from following by typing letter in '()':

(e)nter interactive diagnostics shell. Must use credentials from Oracle
support to login (reboot or power cycle to exit the shell),
(re)store system from NFS backup archive,

Type e to enter the diagnostics shell, and log in as the root user.

Note:
If you do not have the password for the root user, then contact Oracle Support Services.

5. If required, use /opt/MegaRAID/MegaCli/MegaCli64 to configure the disk controller to set up the disks.

6. Remove the logical volumes, the volume group, and the physical volume, in case they still exist after the disaster.

 # lvm vgremove VGExaDb --force
 # lvm pvremove /dev/sda3 --force

7. Remove the existing partitions, then verify all partitions were removed.

 # parted
 GNU Parted 2.1
 Using /dev/sda
 Welcome to GNU Parted! Type 'help' to view a list of commands.
 (parted) print
 Model: AVAGO MR9361-16i (scsi)
 Disk /dev/sda: 4193GB
 Sector size (logical/physical): 512B/512B
 Partition Table: gpt

 Number Start End Size File system Name Flags
 1 32.8kB 537MB 537MB ext4 primary boot
 2 537MB 805MB 268MB fat32 primary boot
 3 805MB 4193GB 4192GB primary lvm

 (parted) rm 1
 [1730.498593] sda: sda2 sda3
 (parted) rm 2
 [1736.203794] sda: sda3

 (parted) rm 3
 [1738.546845] sda:
 (parted) print
 Model: AVAGO MR9361-16i (scsi)
 Disk /dev/sda: 4193GB
 Sector size (logical/physical): 512B/512B
 Partition Table: gpt

 Number Start End Size File system Name Flags

 (parted) q
 Information: You may need to update /etc/fstab.
8. Create the three partitions on /dev/sda.

a. Get the end sector for the disk /dev/sda from a surviving management domain (dom0) and store it in a variable:

```bash
# end_sector_logical=$(parted -s /dev/sda unit s print|perl -ne '/Disk\a+\S+:\S+\(\d+)s/ and print $1'/)
# end_sector=$( expr $end_sector_logical - 34 )
# echo $end_sector
```

The values for the start and end sectors in the commands below were taken from a surviving management domain. Because these values can change over time, it is recommended that these values are checked from a surviving dom0. For example, for an Oracle Exadata Database Machine X7-2 database server with 8 hard disk drives, you might see the following:

```bash
# parted -s /dev/sda unit s print
Model: AVAGO MR9361-16i (scsi)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number  Start     End          Size         File system  Name   Flags
Flags
1       64s       1048639s     1048576s     ext4         primary boot
2       1048640s  1572927s     524288s      fat32        primary boot
3       1572928s  8189439966s  8187867039s               primary lvm
```

Note:

The s (sector) value for the following sub-steps are based on a system with 8 hard disk drives. If you have 4 hard disk drives, then you need to view the partition table from the management domain on a surviving node and adjust the sector values accordingly.

b. Create the boot partition, /dev/sda1.

```bash
# parted -s /dev/sda mklabel gpt mkpart primary 64s 1048639s set 1 boot on
```

c. Create the partition that will hold the LVMs, /dev/sda2.

```bash
# parted -s /dev/sda mkpart primary fat32 1048640s 1572927s set 2 boot on
```

d. Create the partition that will hold the LVMs, /dev/sda3.

```bash
# parted -s /dev/sda mkpart primary 1572928s 8189439966s set 3 lvm on
```
9. Use the `/sbin/lvm` command to re-create the logical volumes and `mkfs` to create the file systems.
 a. Create the physical volume and the volume group.

   ```
   # lvm pvcreate /dev/sda3
   # lvm vgcreate VGExaDb /dev/sda3
   ```

 b. Create the logical volume for the file system that will contain the `/` (root) directory and label it.

   ```
   # lvm lvcreate -n LVDbSys3 -L30G VGExaDb
   # mkfs -t ext4 /dev/VGExaDb/LVDbSys3
   # e2label /dev/VGExaDb/LVDbSys3 DBSYSOV5
   ```

 c. Create the logical volume for the swap directory, and label it.

   ```
   # lvm lvcreate -n LVDbSwap1 -L24G VGExaDb
   # mkswap -L SWAP /dev/VGExaDb/LVDbSwap1
   ```

 d. Create the logical volume for the backup partition, and build a file system on top of it.

   ```
   # lvm lvcreate -n LVDbSys2 -L30G VGExaDb
   # mkfs -t ext4 /dev/VGExaDb/LVDbSys2
   ```

 e. Create the logical volume for the guest storage repository.

   ```
   # lvm lvcreate -l 100%FREE -n LVDbExaVMImages VGExaDb
   ```

 f. Create a file system on the `/dev/sda1` partition, and label it.

   ```
   # mkfs.ext4 /dev/sda1
   # e2label /dev/sda1 BOOT
   # tune2fs -l /dev/sda1
   ```

 g. Create a file system on the `/dev/sda2` partition, and label it.

   ```
   # mkfs.vfat -v -c -F 32 -s 2 /dev/sda2
   # dosfslabel /dev/sda2 ESP
   ```

10. Create mount points for all the partitions, and mount the respective partitions.

 For example, if `/mnt` is used as the top-level directory, the mounted list of partitions might look like:

 - `/dev/VGExaDb/LVDbSys3 on /mnt`
 - `/dev/sda1 on /mnt/boot`
 - `/dev/sda2 on /mnt/boot/efi`

 The following example mounts the root (/) file system, and creates three mount points:

    ```
    # mount /dev/VGExaDb/LVDbSys3 /mnt -t ext4
    # mkdir /mnt/boot
    ```
11. Bring up the network on eth0 and (if not using DHCP) assign the host's IP address and netmask to it.

 If you are using DHCP then you do not have to manually configure the IP address for the host.

 # ip address add ip_address_for_eth0/netmask_for_eth0 dev eth0
 # ip link set up eth0
 # ip route add default via gateway_ip_address dev eth0

12. Mount the NFS server holding the backups.

 # mkdir -p /root/mnt
 # mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/
 location_of_backup /root/mnt

13. From the backup which was created in Backing up the Management Domain dom0 Using Snapshot-Based Backup, restore the root directory (/) and the boot file system.

 # tar -pjxvf /root/mnt/backup-of-root-and-boot.tar -C /mnt

14. Use the efibootmgr command to set the boot device.

 a. Disable and delete the Oracle Linux boot device. If you see the entry ExadataLinux_1, then remove this entry and recreate it.

 For example:

 # efibootmgr
 BootCurrent: 000F
 Timeout: 1 seconds
 BootOrder: 000F,0008,0001,0002,0003,0004,0005,0007,0008,0009,000A,
 000D,000E
 Boot0000* ExadataLinux_1
 Boot0001* NET0:PXE IP4 Intel(R) I210 Gigabit Network Connection
 Boot0002* NET1:PXE IP4 Oracle Dual Port 10GBase-T Ethernet
 Controller
 Boot0003* NET2:PXE IP4 Oracle Dual Port 10GBase-T Ethernet
 Controller
 Boot0004* PCIE1:PXE IP4 Oracle Dual Port 25Gb Ethernet Adapter
 Boot0005* PCIE1:PXE IP4 Oracle Dual Port 25Gb Ethernet Adapter
 Boot0007* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
 Boot0008* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
 Boot0009* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
 Boot000A* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
 Boot000D* Oracle Linux
 Boot000E* UEFI OS
 Boot000F* USB:SUN
In this example, you would disable and remove Oracle Linux (Boot00D) and ExadataLinux_1 (Boot000). Use commands similar to the following to disable and delete the boot devices:

Disable 'Oracle Linux':
efibootmgr -b 000D -A

Delete 'Oracle Linux':
efibootmgr -b 000D -B

Disable old 'ExadataLinux_1':
efibootmgr -b 0000 -A

Delete old 'ExadataLinux_1':
efibootmgr -b 0000 -B

b. Recreate the boot entry for ExadataLinux_1 and then view the boot order entries.

efibootmgr -c -d /dev/sda -p 2 -l '©\EFI\XEN\XEN.EFI©' -L
ExadataLinux_1

efibootmgr
BootCurrent: 000F
Timeout: 1 seconds
BootOrder: 0000,0001,0002,0003,0004,0005,0007,0008,0009,000A,000E,000F
Boot0001* NET0:PXE IP4 Intel(R) I210 Gigabit Network Connection
Boot0002* NET1:PXE IP4 Oracle Dual Port 10GBase-T Ethernet Controller
Boot0003* NET2:PXE IP4 Oracle Dual Port 10GBase-T Ethernet Controller
Boot0004* PCIE1:PXE IP4 Oracle Dual Port 25Gb Ethernet Adapter
Boot0005* PCIE1:PXE IP4 Oracle Dual Port 25Gb Ethernet Adapter
Boot0007* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot0008* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot0009* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot000A* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot000E* UEFI OS
Boot000F* USB:SUN
Boot0000* ExadataLinux_1

In the output from the efibootmgr command, make note of the boot order number for ExadataLinux_1 and use that value in the following commands:

efibootmgr -b (entry number) -A
efibootmgr -b (entry number) -a

For example, in the previous output shown in step 14.a, ExadataLinux_1 was listed as (Boot000). So you would use the following commands:

efibootmgr -b 0000 -A
efibootmgr -b 0000 -a

c. Set the correct boot order.
Set `ExadataLinux_1` as the first boot device. The remaining devices should stay in the same boot order, except for `USB:SUN`, which should be last.

```bash
# efibootmgr -o
0000,0001,0002,0003,0004,0005,0007,0008,0009,000A,000E,000F
```

The boot order should now look like the following:

```bash
# efibootmgr
BootCurrent: 000F
Timeout: 1 seconds
BootOrder: 0000,0001,0002,0003,0004,0005,0007,0008,0009,000A,000E,000F
Boot0000* ExadataLinux_1
Boot0001* NET0:PXE IP4 Intel(R) I210 Gigabit Network Connection
Boot0002* NET1:PXE IP4 Oracle Dual Port 10GBase-T Ethernet Controller
Boot0003* NET2:PXE IP4 Oracle Dual Port 10GBase-T Ethernet Controller
Boot0004* PCIE1:PXE IP4 Oracle Dual Port 25Gb Ethernet Adapter
Boot0005* PCIE1:PXE IP4 Oracle Dual Port 25Gb Ethernet Adapter
Boot0007* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot0008* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot0009* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot000A* PCIE3:PXE IP4 Oracle Quad Port 10GBase-T Adapter
Boot000E* UEFI OS
Boot000F* USB:SUN
```

d. Check the boot order using the `ubiosconfig` command.

```bash
# ubiosconfig export all -x /tmp/ubiosconfig.xml
```

Make sure the `ExadataLinux_1` entry is the first child element of `boot_order`.

```
<boot_order>
  <boot_device>
    <description>ExadataLinux_1</description>
    <instance>1</instance>
  </boot_device>
  <boot_device>
    <description>NET0:PXE IP4 Intel(R) I210 Gigabit Network Connection</description>
    <instance>1</instance>
  </boot_device>
  ...
```

15. Check the restored `/etc/fstab` file and remove any reference to `/EXAVMIMAGES`.

```bash
# cd /mnt/etc
```

Comment out any line that references `/EXAVMIMAGES`.
 This can be done by clicking Disconnect on the ILOM web interface console, where you clicked Connect in step 2.h to attach the DVD ISO image.

17. Unmount the restored /dev/sda1 partitions so /dev/sda1 can be remounted on /boot.

 # umount /mnt/boot/efi
 # umount /mnt/boot
 # umount /mnt
 # umount /root/mnt

18. Restart the system.

 # shutdown -r now

 This completes the restoration procedure for the management domain (dom0).

19. Convert to Eighth Rack, if required.

 If the recovery is on an Oracle Exadata Database Machine Eighth Rack, then perform the procedure described in Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery.

20. When the server comes back up, build an OCFS2 file system on the LVDbExaVMImages logical volume, which was created in step 9.e.

 # mkfs -t ocfs2 -L ocfs2 -T vmstore --fs-features=local /dev/VGExaDb/LVDbExaVMImages --force

21. Mount the OCFS2 partition on /EXAVMIMAGES.

 # mount -t ocfs2 /dev/VGExaDb/LVDbExaVMImages /EXAVMIMAGES

22. In /etc/fstab, uncomment the commented out references to /EXAVMIMAGES and /dev/mapper/VGExaDb-LVDbExaVMImages that was performed in step 15.

23. Mount the backup NFS server that holds the storage repository (/EXAVMIMAGES) backup to restore the /EXAVMIMAGES file system.

 # mkdir -p /root/mnt
 # mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/location_of_backup /root/mnt

24. Restore the /EXAVMIMAGES file system.

 To restore all user domains, use this command:

 # tar -Spzxf /root/mnt/backup-of-exavmimages.tar -C /EXAVMIMAGES
To restore a single user domain from the backup, use the following command instead:

```
# tar -Spxvf /root/mnt/backup-of-exavmimages.tar -C /EXAVMIMAGES
EXAVMIMAGES/<user-domain-name-to-be-restored>
```

25. Bring up each user domain.

```
# xm create /EXAVMIMAGES/GuestImages/user_domain_hostname/vm.cfg
```

At this point all the user domains should come up along with Oracle Grid Infrastructure and the Oracle Database instances. The database instances should join the Oracle RAC cluster formed by the other surviving management domain nodes.

5.20.3 Scenario 2: Re-imaging the Management Domain and Restoring User Domains from Backups

This procedure re-images the management domain and reconstructs all the user domains.

The following procedure can be used when the management domain is damaged beyond repair and no backup exists for the management domain, but there is a backup available of the storage repository (/EXAVMIMAGES file system) housing all the user domains.

1. Re-image the management domain with the image used in the other management domains in the rack using the procedure described in Re-Imaging the Oracle Exadata Database Server.

2. Run the following commands:

```
# /opt/oracle.SupportTools/switch_to_ovm.sh
# /opt/oracle.SupportTools/reclaimdisks.sh -free -reclaim
```

3. If the recovery is on Oracle Exadata Database Machine eighth rack, then perform the procedure described in Configuring Oracle Exadata Database Machine Eighth Rack Oracle Linux Database Server After Recovery.

4. Rebuild the OCFS2 file system on the /dev/sda3 partition.

```
# umount /EXAVMIMAGES
# mkfs -t ocfs2 -L ocfs2 -T vmstore --fs-features=local /dev/sda3 --force
```

5. Mount the OCFS2 partition /dev/sda3 on /EXAVMIMAGES.

```
# mount -t ocfs2 /dev/sda3 /EXAVMIMAGES
```
6. Mount the backup NFS server to restore the /EXAVMIMAGES file system which holds the user domain images.

```
# mkdir -p /remote_FS
# mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/location_of_backup /remote_FS
```

7. Restore the /EXAVMIMAGES file system.

```
# tar -Spxvf /remote_FS/backup-of-exavmimages.tar -C /EXAVMIMAGES
```

Note:

The restore process of storage repository restores the user domain specific files (files under /EXAVMIMAGES/GuestImages/user_domain/) as regular files and not as OCFS2 reflinks, which is what these files in the storage repository were originally at the time of the user domain creation. Consequently, the space usage in /EXAVMIMAGES may go up after the restoration process when compared to the original space usage at the time of the backup.

8. Manually configure the network bridges.

 a. Determine the version of the ovmutils RPM.

```
# rpm -qa|grep ovmutils
```

 b. If the version of the ovmutils RPM is earlier than 12.1.2.2.0, perform these steps:

 i. Back up /opt/exadata_omv/exadata.img.domu_maker. You will need the backup copy later.

```
# cp /opt/exadata_omv/exadata.img.domu_maker /opt/exadata_omv/exadata.img.domu_maker-orig
```

 ii. Open the /opt/exadata_omv/exadata.img.domu_maker file in a text editor such as vi, and search for g_do_not_set_bridge=yes. This string should be located a few lines below the case statement option network-discovery).

 Change the string to g_do_not_set_bridge=no.

 Save and exit /opt/exadata_omv/exadata.img.domu_maker.

 iii. Run /opt/exadata_omv/exadata.img.domu_maker manually for every XML file in the /EXAVMIMAGES/conf directory.

```
# cd /EXAVMIMAGES/conf
# ls -l|while read file; do /opt/exadata_omv/exadata.img.domu_maker
    network-discovery $file /tmp/netdisc-$file; done
```
iv. **Restore** `/opt/exadata_ovm/exadata.img.domu_maker` from the backup copy.

   ```bash
   # cp /opt/exadata_ovm/exadata.img.domu_maker-orig /opt/exadata_ovm/exadata.img.domu_maker
   ```

c. If the version of the ovmutils RPM is 12.1.2.2.0 or later, then run the following command:

   ```bash
   # /opt/exadata_ovm/exadata.img.domu_maker add-bonded-bridge-dom0 vmbondeth0 eth4 eth5
   ```

9. For each user domain directory in the `/EXAVMIMAGES/GuestImages` directory, perform the following steps:

a. Get the UUID of the user domain.

   ```bash
   # grep ^uuid /EXAVMIMAGES/GuestImages/user_domain_hostname/vm.cfg
   | awk -F"=" '{print $2}' | sed s/"/"/g | sed s/"/"/g
   ```

 The command returns the `uuid` value, which is used in the commands below.

b. Create a sub-directory for the UUID.

   ```bash
   # mkdir -p /OVS/Repositories/uuid
   ```

c. Create a symbolic link for the `vm.cfg` file for the `user_domain_hostname` in the new UUID directory.

   ```bash
   # ln -s /EXAVMIMAGES/GuestImages/user_domain_hostname/vm.cfg /OVS/Repositories/uuid/vm.cfg
   ```

d. Configure autostart for the `user_domain_hostname`.

   ```bash
   # ln -s /OVS/Repositories/uuid/vm.cfg /etc/xen/auto/user_domain_hostname.cfg
   ```

e. Create the `VirtualDisks` sub-directory.

   ```bash
   # mkdir VirtualDisks
   ```

f. Enter the `VirtualDisks` directory.

   ```bash
   # cd VirtualDisks
   ```

g. Create four symbolic links in this directory using the four disk image names in the `vm.cfg` file, pointing to the four `.img` files in `/EXAVMIMAGES/GuestImages/user_domain_hostname` directory.

 For example, the following is a sample disk entry in a sample `vm.cfg` file in a `/OVS/Repositories/uuid` directory:

   ```bash
   disk = ['file:/OVS/Repositories/6e7c7109c1bc4eb2a79f8
   4e595e0b27/VirtualDisks/dfd641a1c6a484bd69643da704ff98594.img', ...
   ```
You can list the four *.img files in the /EXAVMIMAGES/GuestImages/
user_domain_hostname directory:

ls /EXAVMIMAGES/GuestImages/user_domain_name/*.img

In this example, the following commands can be used to create the four symbolic links where dbm01db08vm01 is the user domain host name:

ln -s /EXAVMIMAGES/GuestImages/dbm01db08vm01/System.img
$(grep ^disk /EXAVMIMAGES/GuestImages/dbm01db08vm01/vm.cfg|awk
 -F:" 'print $2'|awk -F"" 'print $1'|awk -F"/ " 'print $6')

ln -s /EXAVMIMAGES/GuestImages/dbm01db08vm01/grid12.1.0.2.2.1.img
$(grep ^disk /EXAVMIMAGES/GuestImages/dbm01db08vm01/vm.cfg|awk
 -F:" 'print $3'|awk -F"" 'print $1'|awk -F"/ " 'print $6')

ln -s /EXAVMIMAGES/GuestImages/dbm01db08vm01/db12.1.0.2.2.3.img
$(grep ^disk /EXAVMIMAGES/GuestImages/dbm01db08vm01/vm.cfg|awk
 -F:" 'print $4'|awk -F"" 'print $1'|awk -F"/ " 'print $6')

ln -s /EXAVMIMAGES/GuestImages/dbm01db08vm01/pv1_vgexadb.img
$(grep "disk " /EXAVMIMAGES/GuestImages/dbm01db08vm01/vm.cfg|awk
 -F:" 'print $5'|awk -F"" 'print $1'|awk -F"/ " 'print $6')

10. Restart each user domain.

xm create /EXAVMIMAGES/GuestImages/user_domain_hostname/vm.cfg

At this point all the user domains should start along with the Oracle Grid Infrastructure and the database instances. The node should join the Oracle RAC cluster formed by the other surviving management domain nodes.

5.20.4 Scenario 3: Restoring and Recovering User Domains from Snapshot Backups

Use this procedure to restore lost or damaged files of a user domain using a snapshot-based user domain backup taken from inside a user domain.

To use this procedure, the user domain backup must have been created using the procedure described in Method 3: Back up a User Domain from Inside the User Domain.
1. Log in to the user domain as the root user.

2. Mount the backup NFS server to restore the damaged or lost files.

 # mkdir -p /root/mnt

 # mount -t nfs -o ro,intr,soft,proto=tcp,nolock nfs_ip:/
 location_of_backup /root/mnt

3. Extract the damaged or lost files from the backup to a staging area.

 Prepare a staging area to hold the extracted files. The backup LVM LVDbSys2 can be used for this:

 # mkdir /backup-LVM

 # mount /dev/mapper/VGExaDb-LVDbSys2 /backup-LVM

 # mkdir /backup-LVM/tmp_restore

 # tar -pjxvf /root/mnt/tar_file_name -C /backup-LVM/tmp_restore

 absolute_path_of_file_to_be_restored

4. Restore the damaged or lost files from the temporary staging area as needed.

5. Restart the user domain.

5.21 Removing an Oracle RAC Cluster Running in Oracle VM

You can remove all Oracle RAC nodes of an Oracle VM cluster, including the databases running within the cluster and all data stored on the Oracle Exadata Storage Server used by those databases.

To remove only a subset of user domains of a Oracle VM cluster, refer to the next section.

There are two main steps to remove a Oracle VM cluster:

- Remove the user domain files from the management domain.
- Remove the unused Oracle Exadata grid disks.

Note:

If the Oracle Exadata Deployment Assistant xml configuration files are to be reused later, then they will be not synchronized because the definition for the removed user domain still exists in Oracle Exadata Deployment Assistant files.

1. Run the following example script as the grid software owner on any user domain to be removed.
The example shell script generates two scripts, `list_griddisk.sh` and `drop_griddisk.sh`, that are run later in this procedure. Do not run the generated scripts until instructed.

```bash
#!/bin/bash

# Run this script as the Grid Infrastructure software owner.
# This script identifies griddisks used by this cluster and the cells to
# which they belong, then creates two shell scripts - the list script to
# show the current status, and the drop script to drop the griddisks.
# In order for the drop script to succeed, the griddisks must not be in
# use, meaning databases and CRS are down, and the list script returns no
# output.
# The generated scripts are designed to run via dcli -x

ORACLE_SID=$(awk -F: '/^+ASM/{print $1}' /etc/oratab)
ORAENV_ASK=NO . oraenv >/dev/null

listGriddiskScript=list_griddisk.sh
dropGriddiskScript=drop_griddisk.sh

rm -f $listGriddiskScript $dropGriddiskScript

gridDiskList=$(asmcmd lsdsk --suppressheader | awk -F/ '{print $NF}')
if [[ ${PIPESTATUS[0]} != 0 ]]; then echo "asmcmd failed - exiting"; exit 1; fi

cellList=$(echo "$gridDiskList" | awk -F_ '{print $NF} | sort -u)

for cell in $cellList; do
    myGriddisks=$(echo "$gridDiskList" | grep ${cell}$ | tr \n ',')
    echo "[[ $(hostname -s) == $cell ]] && cellcli -e 'LIST GRIDDISK \"myGriddisks\",' attributes name, asmDiskGroupName, asmModeStatus \where asmModeStatus != UNKNOWN" >> $listGriddiskScript
    echo >> $listGriddiskScript
done

chmod +x $listGriddiskScript

echo

echo "Run the following command to list griddisks in use by this cluster:"
echo

echo "# dcli -l celladmin -c ${cellList//$\n/,} -x $listGriddiskScript"
echo

for cell in $cellList; do
    myGriddisks=$(echo "$gridDiskList" | grep ${cell}$ | tr \n ',')
    echo "[[ $(hostname -s) == $cell ]] && cellcli -e 'DROP GRIDDISK \"myGriddisks\",'
```
${myGriddisks%,}" >> $dropGriddiskScript
 echo >> $dropGriddiskScript
done

 chmod +x $dropGriddiskScript
 echo
 echo "Stop CRS on all nodes in this cluster, then run the following"
 echo "command to drop all griddisks used by this cluster:"
 echo
 echo "# dcli -l celladmin -c ${cellList//$©
©/,} -
 x $dropGriddiskScript"
 echo

 exit

2. Shut down the databases and Oracle Grid Infrastructure in all user domains that
 will be removed:

 # Grid_home/bin/crsctl stop crs -f

3. Run the list_griddisk.sh script generated earlier from any user domain that will
 be removed.

 Note:
 - Run the script using the dcli command to connect as the celladmin
 user to all Oracle Exadata Storage Servers in the configuration.
 - Before running the dcli command, set up a passwordless SSH
 connection between the grid software owner on the database server
 and the celladmin user on the cells. Otherwise, the command will
 keep prompting you to enter the password.

 The following is an example of the command:

 $ dcli -l celladmin -c dm01celadm01,dm01celadm02,dm01celadm03
 -x list_griddisk.sh

 The list_griddisk.sh script should not output any grid disks. Grid disks returned
 from the list_griddisk.sh script are considered still in use.
 Do not proceed until the list_griddisk.sh script returns empty output indicating
 no grid disks are in use. Verify that Oracle Grid Infrastructure and the databases
 are shut down on all user domains to be dropped.

4. Run the drop_griddisk.sh script generated earlier from any user domain that you
 want to remove.
Run the script using the `dcli` command to connect as the `celladmin` user to all Oracle Exadata Storage Servers in the configuration.

```
$ dcli -l celladmin -c dm01celadm01,dm01celadm02,dm01celadm03 \
- x drop_griddisk.sh
```

5. Run the `exadata.img.domu_maker` command from the management domain of each user domain you want to remove.

This command removes the user domains, where `DomainName` is the name of the user domain.

```
# /opt/exadata_ovm/exadata.img.domu_maker remove-domain DomainName
```

In the following example, the commands remove the two user domains for a two-node Oracle VM RAC cluster in which the user domain `dm01db01vm04` runs on the management domain `dm01db01`, and the user domain `dm01db02vm04` runs on the management domain `dm01db02`.

```
[root@dm01db01 ~] # /opt/exadata_ovm/exadata.img.domu_maker \
remove-domain dm01db01vm04
[INFO] Start with command line: /opt/exadata_ovm/exadata.img.domu_maker \
  remove-domain dm01db01vm04
[INFO] Shutting down DomU dm01db01vm04
[INFO] Autostart link for dm01db01vm04 deleted from /etc/xen/auto
[INFO] Deleted OVM repository /OVS/Repositories/\n  7bfd49d6bd5a4b2db2e46e8234788067 for DomU dm01db01vm04
[INFO] Deleted guest vm /EXAVMIMAGES/GuestImages/dm01db01vm04 for \n  DomU dm01db01vm04

[root@dm01db02 ~] # /opt/exadata_ovm/exadata.img.domu_maker \
remove-domain dm01db02vm04
[INFO] Start with command line: /opt/exadata_ovm/exadata.img.domu_maker \
  remove-domain dm01db02vm04
[INFO] Shutting down DomU dm01db02vm04
[INFO] Autostart link for dm01db02vm04 deleted from /etc/xen/auto
[INFO] Deleted OVM repository /OVS/Repositories/\n  1d29719ff26a4a17aca99b2f89fd8032 for DomU dm01db02vm04
[INFO] Deleted guest vm /EXAVMIMAGES/GuestImages/dm01db02vm04 \n  for DomU dm01db02vm04
```

5.22 Deleting a User Domain from an Oracle VM Oracle RAC Cluster

You can remove a single Oracle RAC node from an Oracle VM cluster.

The Oracle Exadata grid disks remain in use by the remaining nodes in the cluster, and must not be dropped.
Note:

If Oracle Exadata Deployment Assistant xml configuration files are to be reused later, then they will be not synchronized because the definition for the removed user domain still exists in Oracle Exadata Deployment Assistant files.

1. **Delete the cluster node.**

2. **Use the following command to shut down and remove the user domain, where** DomainName **is the name of the domain:**

   ```
   # /opt/exadata_ovm/exadata.img.domu_maker remove-domain DomainName
   ```

 This command removes the user domain files from the management domain.

Related Topics

- *Oracle Clusterware Administration and Deployment Guide*

5.23 Implementing Tagged VLAN Interfaces

This topic describes the implementation of tagged VLAN interfaces in Oracle VM environments on Exadata.

Oracle databases running in Oracle VM guests on Oracle Exadata Database Machine are accessed through the client Ethernet network defined in the Oracle Exadata Deployment Assistant (OEDA) configuration tool. Client network configuration in both the management domain (dom0) and user domains (domU’s) is done automatically when the OEDA installation tool creates the first user domain during initial deployment.

The following figure shows a default bonded client network configuration:
The network has the following configuration:

1. In the dom0, eth slave interfaces (for example, eth1 and eth2, or eth4 and eth5) that allow access to the domU client network defined in OEDA are discovered, configured, and brought up, but no IP is assigned.

2. In the dom0, bondeth0 master interface is configured and brought up, but no IP is assigned.

3. In the dom0, bridge interface vmbondeth0 is configured, but no IP is assigned.

4. In the dom0, one virtual backend interface (vif) per domU that maps to that particular domU's bondeth0 interface is configured and brought up, but no IP is assigned. These vifs are configured on top of the bridge interface vmbondeth0, and the mapping between the dom0 vif interface and its corresponding user domain interface bondeth0 is defined in the user domain configuration file called `vm.cfg`, located in `/EXAVMIMAGES/GuestImages/user domain name`.

For default installations, a single bondeth0 and a corresponding vmbondeth0 bridge interface is configured in the dom0 as described above. This bondeth0 interface is based on the default Access Virtual Local Area Network (Access VLAN). The ports on the switch used by the slave interfaces making up bondeth0 are configured for Access VLAN.

Using VLAN Tagging

If there is a need for virtual deployments on Exadata to access additional VLANs on the client network, such as enabling network isolation across user domains, then
802.1Q-based VLAN tagging is a solution. The following figure shows a client network configuration with VLAN tagging.

Figure 5-2 NIC Layout for Oracle Virtual Environments with VLAN Tagging

For instructions on how to configure and use such additional VLAN tagged interfaces on the client network, see My Oracle Support note 2018550.1. The Access VLAN must stay working and configured before and after these instructions are followed. At no time is the Access VLAN to be disabled.

Related Topics
• Implementing Tagged VLAN Interfaces in Oracle VM Environments on Exadata (My Oracle Support Doc ID 2018550.1)

5.24 Implementing InfiniBand Partitioning across Oracle VM Oracle RAC Clusters on Oracle Exadata Database Machine

For Oracle Real Application Clusters (Oracle RAC) clusters running in Oracle VM on Oracle Exadata Database Machine, you can isolate the network traffic on the InfiniBand network for each Oracle RAC clusters using custom InfiniBand partitioning, dedicated partition keys, and partitioned tables.

• About InfiniBand Partitioning Across Oracle RAC Clusters Running in Oracle VM
 An InfiniBand partition defines a group of InfiniBand nodes or members that are allowed to communicate with one another.
5.24.1 About InfiniBand Partitioning Across Oracle RAC Clusters Running in Oracle VM

An InfiniBand partition defines a group of InfiniBand nodes or members that are allowed to communicate with one another.

One of the key requirements of consolidated systems from a security standpoint is network isolation across the multiple environments within a consolidated system. For consolidations achieved using Oracle VM Oracle Real Application Clusters (Oracle RAC) clusters on Oracle Exadata, this means isolation across the different Oracle RAC clusters such that network traffic of one Oracle RAC cluster is not accessible to another Oracle RAC cluster. For the Ethernet networks, this is accomplished using VLAN tagging as described in My Oracle Support DocID 2018550.1. For the InfiniBand network, this is accomplished using custom InfiniBand partitioning, dedicated partition keys, and partitioned tables.

With InfiniBand partitioning, partitions identified by unique partition keys are created and are managed by the master subnet manager. Members are then assigned to these custom partitions. Members within a partition can only communicate among themselves (depending on the membership as explained in the Appendix 1 of My Oracle Support DocID 2018550.1). A member of one partition cannot communicate with a member of a different partition regardless of the membership. Continuing along these lines, the Oracle VM Oracle RAC nodes of one particular cluster are assigned one dedicated partition for the clusterware communication and one partition for communication with the storage cells. This way, the nodes of one Oracle RAC cluster will not be able to communicate with the nodes of another Oracle RAC cluster that belong to a different partition. The nodes in each Oracle RAC cluster have different partition keys assigned to them.

By default, the InfiniBand subnet manager provides a single partition that is identified by the partition key 0x7FFF (limited membership) or 0xFFFF (full membership). In Oracle VM deployments on Oracle Exadata Database Machine where custom InfiniBand partitioning is not used, the partition key 0xFFFF is used across all the user domains.
With non-default custom partitions in place for implementing isolation across the Oracle VM Oracle RAC clusters, the configuration changes to what is shown in the next image. New interfaces clib0, clib1 (for the cluster pkey) and stib0, stib1 (for the storage pkey) exist in each of the user domains (domU’s).

There is no change to InfiniBand interfaces in the management domain (dom0).
5.24.2 Requirements for Implementing InfiniBand Partitioning across OVM RAC Clusters

Before configuring InfiniBand partitioning, ensure that:

- You have configured OVM on your Exadata system.
- All the user domains and storage cells are using the default partition key 0xFFFF.
- You have set up passwordless secure shell (ssh) access for the root user from one of the management domains (dom0 node) to all the OVM RAC cluster nodes, storage cells, and InfiniBand switches.
- InfiniBand switches are installed with firmware versions 2.0.4 or above.
- You have an understanding of InfiniBand partitioning.
5.24.3 About InfiniBand Partitioning Network Configuration

Plan and allocate sets of IP addresses and netmasks for each Oracle VM RAC cluster that will be used by the cluster pkey interfaces and the storage pkey interfaces when InfiniBand partitioning gets implemented in the cluster.

Within an Oracle VM RAC cluster, the cluster pkey IP address and netmask should be on a separate subnet from the storage pkey IP address and netmask.

The tables below can be used as reference for one particular RAC cluster:

Table 5-1 Existing Configuration

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>IP Address</th>
<th>Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>ib0</td>
<td>192.168.12.153</td>
<td>255.255.248.0</td>
</tr>
<tr>
<td>ib1</td>
<td>192.168.12.154</td>
<td>255.255.248.0</td>
</tr>
</tbody>
</table>

The following table shows the new IP addresses and netmasks required by the pkey interfaces while implementing InfiniBand Partitioning for that one Oracle RAC cluster.

Table 5-2 New IP Addresses and Netmasks Required by the pkey Interfaces

<table>
<thead>
<tr>
<th>Interface Name</th>
<th>IP Address</th>
<th>Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>clib0</td>
<td>192.168.112.1</td>
<td>255.255.248.0</td>
</tr>
<tr>
<td>clib1</td>
<td>192.168.112.2</td>
<td>255.255.248.0</td>
</tr>
<tr>
<td>stib0</td>
<td>192.168.114.1</td>
<td>255.255.240.0</td>
</tr>
<tr>
<td>stib1</td>
<td>192.168.114.2</td>
<td>255.255.240.0</td>
</tr>
</tbody>
</table>

5.24.4 Configuring InfiniBand Partitioning across Oracle VM RAC Clusters

The steps for configuring InfiniBand Partitioning across Oracle RAC clusters running in Oracle VM are described here.

In this procedure, the Oracle RAC clusters incur a minimal downtime. The downtime occurs when the Oracle RAC cluster is restarted to use the new interfaces.

Before you start this task, download and untar the file create_pkeys.tar. This file can be downloaded from Implementing InfiniBand Partitioning across OVM RAC clusters on Exadata (My Oracle Support Doc ID 2075398.1). The file should be downloaded to one of the management domain (dom0) nodes. This is the node that you will use for running all the scripts in this procedure. This node will be referred to as driver_dom0 in this procedure.

When you untar the file, you should get three files:

- create_pkeys_on_switch.sh
- run_create_pkeys.sh
- create_pkey_files.sh
1. Allocate IP addresses to be used by the pkey interfaces.

Plan and allocate sets of IP addresses and netmasks for each Oracle VM RAC cluster that will be used by the cluster pkey interfaces and the storage pkey interfaces when InfiniBand partitioning gets implemented in the cluster.

Refer to the topic About InfiniBand Partitioning Network Configuration for an example.

2. On the InfiniBand switches, create a dedicated partition (cluster pkey) for each Oracle RAC cluster to be used by the clusterware and create one partition (storage pkey) to be used by all the Oracle VM RAC clusters and the storage cells for communication between the Oracle RAC cluster nodes and the storage cells.

You assign a pkey to each partition as a simplified means of identifying the partition to the Subnet Manager. Pkeys are 15-bit integers. Values 0x0001 and 0x7fff are default partitions. Use values between 0x0002 and 0x7ffe for your pkeys.

a. Enable password-less ssh equivalence for the root user from the driver_dom0 management domain (dom0) node to all the switches on the InfiniBand fabric.

Use a command similar to the following where ib_switch_list refers to a file that contains the list of all the InfiniBand switches on the fabric, with each switch name on a separate line.

```
# dcli -g ib_switch_list -l root ±k
```

b. Run the script create_pkeys_on_switch.sh from driver_dom0 to create and configure the partition keys on the InfiniBand switches.

Note:

Each execution of the script create_pkeys_on_switch.sh creates exactly one partition. You must run the script once for each partition to be created. For example, an environment that contains two Oracle VM RAC clusters will have a total of three partitions: one storage partition and two cluster partitions (one per Oracle RAC cluster). In this example, you will need to run create_pkeys_on_switch.sh three times.

You must run the script on only one node (driver_dom0). The script creates the partitions in all the switches provided as input during the execution of the script.

c. After you finish running the script, verify the partitions were created on all the switches.

```
# /usr/local/sbin/smpartition list active no-page
```

The following example output shows the default partitions (0x0001 and 0x7fff), and an additional partition, 0x0004. The partition with pkey 0x0004 is
configured for IPoIB and has two member ports that are assigned full membership of the partition.

```plaintext
# Sun DCS IB partition config file
#! version_number : 1
#! version_number : 12
Default=0x7fff, ipoib:
   ALL_CAS=full,
   ALL_SWITCHES=full,
   SELF=full;
SUN_DCS=0x0001, ipoib:
   ALL_SWITCHES=full;
   = 0x0004,ipoib:
   0x0021280001cf3787=full,
   0x0021280001cf205b=full;
```

At this stage ensure that you have created all the required partitions.

3. On the Oracle VM RAC nodes and on the storage cells, generate all the relevant network configuration files for the new IP over InfiniBand (IPoIB) interfaces.

Each partition requires a new IPoIB network interface.

This step makes the following changes on the Oracle RAC cluster nodes:

- **Modifies these files:**
 - `/etc/sysconfig/network-scripts/ifcfg-ib0`
 - `/etc/sysconfig/network-scripts/ifcfg-ib1`

- **Removes these files:**
 - `/etc/sysconfig/network-scripts/rule-ib0`
 - `/etc/sysconfig/network-scripts/rule-ib1`
 - `/etc/sysconfig/network-scripts/route-ib0`
 - `/etc/sysconfig/network-scripts/route-ib1`

- **Creates the following new files in** `/etc/sysconfig/network-scripts`:
 - `ifcfg-clib0`, `ifcfg-clib1`
 - `rule-clib0`, `rule-clib1`
 - `route-clib0`, `route-clib1`
 - `ifcfg-stib0`, `ifcfg-stib1`
 - `rule-stib0`, `rule-stib1`
 - `route-stib0`, `route-stib1`
Note:

If this step fails, before you rerun this step:

- Restore all the files from /etc/sysconfig/network-scripts/backup-for-pkeys to /etc/sysconfig/network-scripts.
- Remove the newly created files listed in this step.

a. Make sure passwordless ssh is set up from the driver_dom0 node to all the Oracle RAC cluster nodes and the storage cells that need to be configured for partition keys.

b. Make sure run_create_pkeys.sh and create_pkey_files.sh are executable and they are in the same directory on driver_dom0.

c. Run run_create_pkeys.sh.

For cluster nodes, you need to run the script a total of four times for every cluster node with a node_type value of compute.

The syntax for this script is:

```
run_create_pkeys.sh node_name interface_name pkey_id
node_type pkey_ipaddr pkey_netmask pkey_interfaceType
```

- **node_name** specifies the cluster node.
- **interface_name** is either ib0 or ib1.
- **pkey_id** specifies the pkey without the 0x prefix. The value used here is the cluster partition key derived from the cluster pkey_id value entered in step 2.
- **node_type** is either compute or cell.
- **pkey_ipaddr** specifies the IP address.
- **pkey_netmask** specifies the netmask in CIDR format, for example, /21.
- **pkey_interfaceType** is cluster or storage for compute node types, or storage for cell node types.

Note:

The pkey_ipaddr and pkey_netmask of the cluster pkey interface must be on a different subnet from the pkey_ipaddr and pkey_netmask of the storage pkey interface.

You can use the following command to derive the partition key values to be used for the run_create_pkeys.sh script from the pkey_id value entered in step 2.

```
FinalHexValue=$(echo "obase=16;ibase=2;$(expr 1000000000000000 + $(echo "obase=2;ibase=16;$\{echo $HexValue\}tr [:lower:]")) mod 1000000000000000"
```
FinalHexValue is the value that will be entered in the command here and HexValue is the value entered in step 2 for pkey_id.

The following table provides an example of the inputs for the four runs for a cluster node:

<table>
<thead>
<tr>
<th>Run</th>
<th>Interface Name</th>
<th>pkey_id</th>
<th>node_type</th>
<th>pkey_ipaddress</th>
<th>pkey_netmask</th>
<th>pkey_interfaceType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ib0</td>
<td>a000</td>
<td>compute</td>
<td>192.168.12.15</td>
<td>/21</td>
<td>cluster</td>
</tr>
<tr>
<td>2</td>
<td>ib1</td>
<td>a000</td>
<td>compute</td>
<td>192.168.12.15</td>
<td>/21</td>
<td>cluster</td>
</tr>
<tr>
<td>3</td>
<td>ib0</td>
<td>aa00</td>
<td>compute</td>
<td>192.168.114.15</td>
<td>/20</td>
<td>storage</td>
</tr>
<tr>
<td>4</td>
<td>ib1</td>
<td>aa00</td>
<td>compute</td>
<td>192.168.114.15</td>
<td>/20</td>
<td>storage</td>
</tr>
</tbody>
</table>

You use these values in each execution of the script, denoted by the Run column, as shown in this example, where vm-guest-1 is the name of the cluster node.

```
# ./run_create_pkeys.sh vm-guest-1 ib0 a000 compute 192.168.12.153 /21 cluster
```

At this stage all the required networking files listed at the beginning of this step have been created for the new pkey-enabled network interfaces on the Oracle VM RAC cluster nodes.

Oracle Grid Infrastructure has also been modified to make use of the new network interfaces upon restart. The output of the command `$GRID_HOME/bin/oifcfg getif` should list clib0 and clib1 in the list of interfaces to be used for the cluster interconnect.

4. Modify Oracle ASM and Oracle RAC CLUSTER_INTERCONNECTS parameter.

 a. Log in to each of the Oracle ASM instances in the Oracle RAC cluster using SQL*Plus as SYS, and run the following command:

   ```
   ALTER SYSTEM SET
   cluster_interconnects=’<cluster_pkey_IP_address_of_ib0>:<cluster_pkey_IP_address_of_ib1>’ scope=spfile
   sid=’<name_of_current_ASM_instance>’;
   ```

 For example:

   ```
   ALTER SYSTEM SET
   scope=spfile sid=’+ASM1’;
   ```
b. Log in to each of the database instances in the Oracle RAC cluster using SQL*Plus, and run the same command for the Oracle RAC instance:

For example:

```
ALTER SYSTEM SET
scope=spfile sid='RACDB1';
```

c. Shut down and disable CRS auto-start on all the Oracle RAC cluster nodes.

```
# Grid_home/bin/crsctl stop crs
# Grid_home/bin/crsctl disable crs
```

At this stage Oracle Grid Infrastructure, the Oracle ASM instances, and the Oracle Database instances have been modified to make use of the newly created network interfaces.

5. Modify `cellip.ora` and `cellinit.ora` on all the cluster nodes (user domains).

Perform these steps on any one database server node of the cluster (user domain for an Oracle VM RAC cluster).

a. Make a backup of the `cellip.ora` and `cellinit.ora` files.

```
# cd /etc/oracle/cell/network-config
# cp cellip.ora cellip.ora-bak
# cp cellinit.ora cellinit.ora-bak
```

b. Modify the `cellip.ora-bak` file to replace the existing IP address with the two storage pkey IP addresses of every storage cell that will be setup in step 7. The two IP addresses are separated by a semi-colon (`;`).

c. Make sure ssh equivalence is set up for the root user to all the cluster nodes from this cluster node.

d. Replace the `cellip.ora` file on all the cluster nodes.

Use the following commands to backup and then replace the `cellip.ora` file on all the cluster nodes. In this example `cluster_nodes` refers to a file containing the names of all the Oracle RAC cluster nodes of the Oracle VM RAC cluster, with each node on a separate line.

```
# /usr/local/bin/dcli -g cluster_nodes -l root
"/bin/cp /etc/oracle/cell/network-config/cellip.ora /etc/oracle/cell/network-config/cellip-orig.ora"
```

```
# /usr/local/bin/dcli -g cluster_nodes -l root -f cellip.ora-bak -d /etc/oracle/cell/network-config/cellip.ora
```

e. Manually edit the `/etc/oracle/cell/network-config/cellinit.ora-bak` file to replace the existing IP addresses and netmask with the two storage pkey IP addresses and netmask of the cluster node which was used in step 3.

f. Make sure ssh equivalence is set up for the root user to all the cluster nodes from this cluster node.
g. Replace the cellinit.ora file on all the cluster nodes.

The IP address and netmask were used in the third and fourth run of step 3. Use the following commands to backup and then replace the cellinit.ora file on all the cluster nodes. In this example, cluster_nodes refers to a file containing the names of all the Oracle RAC cluster nodes of the Oracle VM RAC cluster, with each node on a separate line.

```
# /usr/local/bin/dcli -g cluster_nodes -l root 
"/bin/cp /etc/oracle/cell/network-config/cellinit.ora /etc/oracle/cell/network-config/cellinit-orig.ora"

# /usr/local/bin/dcli -g cluster_nodes -l root -f cellinit.ora-bak -d /etc/oracle/cell/network-config/cellinit.ora
```

6. In the management domains (dom0s), modify the user domain configuration file for each user domain to use the partition key applicable to that user domain.

Modify all the relevant vm.cfg files in the management domain. This step is applicable only for Oracle VM environments. Log in to all the management domains and manually edit /EXAVMIMAGES/GuestImages/user_domain_name/vm.cfg to include the partition keys created in step 2.

For example, modify the line:

```
ib_pkeys = [{"pf":"40:00.0","port":"1","pkey":['0xffff'],},
             {"pf":"40:00.0","port":"2","pkey":['0xffff'],}],
```

to:

```
ib_pkeys = [{"pf":"40:00.0","port":"1","pkey":['0xa000','0xaa00'],},
             {"pf":"40:00.0","port":"2","pkey":['0xa000','0xaa00'],}],
```

In this example, 0xa000 is the cluster partition key derived from the cluster pkey_id value entered in step 2, and 0xaa00 is the storage partition key derived from the storage pkey_id value.

You can use the following command to derive the partition key values to use in vm.cfg from the pkey_id values entered in step 2.

```
FinalHexValue=$(echo "obase=16;ibase=2;$(expr 10000000000000000 + $(echo "obase=2;ibase=16;$(echo $HexValue|tr [:lower:] [:upper:])")|bc)"|bc|tr [:upper:] [:lower:]))
```

FinalHexValue is the value that you enter in vm.cfg and HexValue is the value entered in step 2 for pkey_id.
Note:

If your environment has multiple Oracle VM RAC clusters, the next two steps (step 7 and step 8) should be performed only once AFTER steps 3 through step 6 have been executed for all the Oracle VM RAC clusters.

7. Modify the storage cells to use the newly created IPoIB interfaces.
 a. Make sure `run_create_pkeys.sh` and `create_pkey_files.sh` are available and that they are in the same directory on the same `driver_dom0` node used in the previous steps.
 b. Make sure passwordless ssh is set up from the `driver_dom0` node to all the storage cells that need to be configured for partition keys.
 c. Run `run_create_pkeys.sh`.

 For storage servers, you need to run the script twice for every storage server with a `node_type` value of `cell`.

 The syntax for this script is:

```
run_create_pkeys.sh node_name interface_name pkey_id
node_type pkey_ipaddr pkey_netmask pkey_interfaceType
```

- `node_name` specifies the storage server.
- `interface_name` is either `ib0` or `ib1`.
- `pkey_id` specifies the pkey without the `0x` prefix. The value used here is the cluster partition key derived from the storage pkey_id value entered in step 2.
- `node_type` is either `compute` or `cell`.
- `pkey_ipaddr` specifies the IP address.
- `pkey_netmask` specifies the netmask in CIDR format, for example, `/21`.
- `pkey_interfaceType` is `cluster` or `storage` for compute node types, or `storage` for cell node types.

You can use the following command to derive the partition key values to be used for the `run_create_pkeys.sh` script from the `pkey_id` value entered in step 2.

```
FinalHexValue=$(echo "obase=16;ibase=2;$(expr 1000000000000000 + $(echo "obase=2;ibase=16;$(echo $HexValue|tr [:lower:] [:upper:])" |bc))" |bc|tr [:upper:] [:lower:]
```

`FinalHexValue` is the value that will be entered in the command here and `HexValue` is the value entered in step 2 for `pkey_id`.

The following table provides an example of the inputs for the two runs for a storage server:
Table 5-4 Two Runs for Storage Servers

<table>
<thead>
<tr>
<th>Run</th>
<th>Interface Name</th>
<th>pkey_id</th>
<th>node_type</th>
<th>pkey_ipaddress</th>
<th>pkey_netmask</th>
<th>pkey_interfaceType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ib0</td>
<td>aa00</td>
<td>cell</td>
<td>192.168.114.1</td>
<td>/20</td>
<td>storage</td>
</tr>
<tr>
<td>2</td>
<td>ib1</td>
<td>aa00</td>
<td>cell</td>
<td>192.168.114.2</td>
<td>/20</td>
<td>storage</td>
</tr>
</tbody>
</table>

You use these values in each execution of the script, denoted by the Run column, as shown in this example, where cell01 is the name of the storage server.

```bash
# ./run_create_pkeys.sh cell01 ib0 aa00 cell 192.168.114.1 /20 storage
```

Note:

You can ignore the following messages from the script. The restart of the storage cells at the end of this task will take care of these issues.

```
Network configuration altered. Please issue the following commands as root to restart the network and open IB stack:
service openibd restart
service network restart
A restart of all services is required to put new network configuration into effect. MS-CELLSRV communication may be hampered until restart.
```

At this stage the storage servers (cells) have been modified to use the new network interfaces upon restart.

8. Modify the `/opt/oracle.cellos/cell.conf` file on each storage server and restart the storage servers.

a. Make a backup of the `/opt/oracle.cellos/cell.conf` file.

```bash
# cd /opt/oracle.cellos
# cp cell.conf cell.conf-prepkey
```

b. Change the Pkey configuration lines in `/opt/oracle.cellos/cell.conf`.

Change this line:

```
<Pkeyconfigured>no</Pkeyconfigured>
```

To:

```
<Pkeyconfigured>yes</Pkeyconfigured>
```
Change this line for the 2 private interfaces ib0 and ib1:

```xml
<IP_enabled>yes</IP_enabled>
```

to:

```xml
<IP_enabled>no</IP_enabled>
```

c. Make sure Oracle Grid Infrastructure is stopped on all Oracle VM RAC nodes.
d. Restart all the storage cell servers.

```bash
# shutdown -r now
```
e. Verify that the new pkey-enabled network interfaces are in use.

```bash
# cellcli -e list cell detail | egrep 'interconnect|ipaddress'
```
The output should show the new pkey-enabled interfaces (stib0 and stib1) along with the new set of IP addresses.

9. Restart the Oracle RAC clusters.
a. Log in to the corresponding management domain of each of the user domain nodes.
b. Run the following commands:

```bash
# xm shutdown user_domain_name
# xm create /EXAVMIMAGES/GuestImages/user_domain_name/vm.cfg
```

10. Start and verify the Oracle Grid Infrastructure stack is fully started on all the cluster nodes.
a. Start and enable auto-start of the Oracle Grid Infrastructure stack on all the Oracle RAC cluster nodes.

```bash
# $GRID_HOME/bin/crsctl start crs
# $GRID_HOME/bin/crsctl enable crs
```
b. After Oracle Grid Infrastructure has started on all the nodes, verify the `cluster_interconnects` parameter is set to use the newly configured pkey interfaces.

Log in to a database instance and run the following query:

```sql
SQL> SELECT inst_id, value FROM gv$parameter WHERE name = 'cluster_interconnects'
```
c. Remove the old cluster interconnect interfaces from the Oracle Cluster Registry (OCR).

```
# Grid_home/bin/oifcfg delif -global ib0/<old subnet>
# Grid_home/bin/oifcfg delif -global ib1/<old subnet>
```

5.24.5 Implementing InfiniBand Partitioning across OVM RAC Clusters: Setting up Limited Membership

The 12.1.0.2 October 2016 Database Bundle Patch introduces a security enhancement feature where the GUIDs of the database nodes can be assigned to the storage pkey with limited membership instead of full membership, as was the case prior to the 12.1.0.2 October 2016 Bundle Patch. This addresses a security concern where one RAC node from one RAC cluster could talk to a RAC node from another RAC cluster using the storage pkey interfaces.

Full Membership and Limited Membership

An InfiniBand partition defines a group of InfiniBand nodes that are allowed to communicate with one another. With InfiniBand partitioning, you define custom or unique partition keys that are managed by the master subnet manager, and assign members to the custom partition keys. Members with the same partition key can only communicate amongst themselves. A member of one partition key cannot communicate with a member that has a different partition key, regardless of membership type. The OVM RAC cluster nodes of one cluster are assigned one partition key for clusterware communication and another partition key for communication with storage cells. This way, the nodes of one RAC cluster will not be able to communicate with the nodes of another RAC cluster, which have a different partition key assigned to them. This is very similar conceptually to tagged VLANs in the Ethernet world.

Partition keys (pkeys) are 15-bit integers and have a value of 0x1 to 0x7FFF. An additional bit, the membership bit, identifies the membership of a member of the partition. Memberships can be:

- **Full**: The membership bit is set to 1. Members with full membership can communicate with each other as well as members with limited membership within the same partition key.
- **Limited**: The membership bit is set to 0. Members with limited membership within a partition cannot communicate with each other. However, they can communicate with other members with full membership within the same partition.

Combined together, the pkey and the membership bit comprise a 16-bit integer. The most significant bit is the membership bit.

By default, the InfiniBand subnet manager provides a single partition and it is identified by the partition key 0x7FFF (limited membership) or 0xFFFF (full membership).

An HCA port can participate in a maximum of 128 partitions. Each partition key provides a new IPoIB network interface. For example, InfiniBand port 1 with partition key 0xa001 will result in a new network interface. These interfaces are named with meaningful names through the `ifcfg-<interface>` file parameters.
An InfiniBand node can be a member of multiple partitions. When a packet arrives at a database node, the partition key (pkey) of the packet is matched with the Subnet Manager configuration. This validation prevents a database node from communicating with another database node outside of the partitions of which it is a member.

Every node within the infiniBand fabric has a partition key table which you can see in /sys/class/infiniband/mlx4_0/ports/[1-2]/pkeys. Every Queue Pair (QP) of the node has an index (pkey) associated with it that maps to an entry in that table. Whenever a packet is sent from the QP’s send queue, the indexed pkey is attached with it. Whenever a packet is received on the QP’s receive queue, the indexed pkey is compared with that of the incoming packet. If it does not match, the packet is silently discarded. The receiving Channel Adapter does not know it arrived and the sending Channel Adapter gets no acknowledgement as well that it was received. The sent packet simply gets manifested as a lost packet. It is only when the pkey of the incoming packet matches the indexed pkey of the QP’s receive queue, a handshake is made and the packet is accepted and an acknowledgment is sent to the sending channel adapter. This is how only members of the same partition are able to communicate with each other and not with hosts that are not members of that partition (which means those hosts that does not have that pkey in their partition table).

The steps below describe how to set up this enhancement on a pkey-enabled environment that has the 12.1.0.2 October 2016 Database Bundle Patch applied. There are two possible scenarios, as described below:

Case 1. Implementing the feature on a pkey-enabled environment in a rolling manner

In this case, you have already applied the 12.1.0.2 October 2016 Database Bundle Patch.

Perform the steps below on one node at a time.

1. Shut down the Grid Infrastructure on the node.

   ```
   # $GI_HOME/bin/crsctl stop crs
   ```

2. Determine the two port GUIDs of the dom0 (control domain) which manages this user domain OVM RAC cluster node.

   ```
   # /usr/sbin/ibstat | grep Port
   ```

3. Login to the Infiniband Switch where the SM master is running as root.

4. Run the commands below on the InfiniBand switch.

   ```
   # /usr/local/sbin/smpartition start
   # /usr/local/sbin/smpartition modify -n <storage pkey name> -port <Port GUID1 of the dom0 from step 2> -m limited
   # /usr/local/sbin/smpartition modify -n <storage pkey name> -port <Port GUID2 of the dom0 from step 2> -m limited
   # /usr/local/sbin/smpartition commit
   ```

5. Modify the *vm.cfg* file for this OVM RAC user domain node in the dom0.

 a. Login to the dom0 as root.

 b. Edit /EXAVMIMAGES/GuestImages/<user domain name>/vm.cfg and modify the partition keys as shown in the example below.

Chapter 5

Implementing InfiniBand Partitioning across Oracle VM Oracle RAC Clusters on Oracle Exadata Database Machine

Page 5-103
Modify this line:

```python
ib_pkeys = [{"pf":'40:00.0','port':'1','pkey':
    ['0xclpkey','0x<stpkey']},
    {"pf":'40:00.0','port':'2','pkey':
    ['0xclpkey','0x<stpkey']},
]
```

to this:

```python
ib_pkeys = [{"pf":'40:00.0','port':'1','pkey':
    ['0xclpkey','0x<mod_stpkey']},
    {"pf":'40:00.0','port':'2','pkey':
    ['0xclpkey','0x<mod_stpkey']},
]
```

<mod_stpkey> is derived from <stpkey> using the formula below:

```bash
mod_stpkey=$(echo "obase=16;ibase=2;$\(echo $stpkey|tr \[:lower:] \[:upper:]\)|bc - 1000000000000000)"|bc|tr \[:upper:] \[:lower:]
```

Note that <stpkey> and <mod_stpkey> in the formula above are specified without the "0x" prefix.

6. Modify the `/etc/sysconfig/network-scripts/ifcfg-stib*` files on the user domain RAC nodes.

 Edit the PKEY_ID in those files using the formula below:

   ```bash
   mod_stpkey=$(echo "obase=16;ibase=2;$\(echo $stpkey|tr \[:lower:] \[:upper:]\)|bc - 1000000000000000)"|bc|tr \[:upper:] \[:lower:]
   ```

 Note that <stpkey> and <mod_stpkey> in the formula above are specified without the "0x" prefix.

7. Modify `/opt/oracle.cellos/pkey.conf` on the user domain RAC nodes.

 Edit the Pkey for the storage network pkey interfaces (stib*):

 Change:

   ```bash
   <Pkey>0xstpkey</Pkey>
   ```

 to:

   ```bash
   <Pkey>0xmod_stpkey</Pkey>
   ```

 mod_stpkey is derived from stpkey using the formula below:

   ```bash
   mod_stpkey=$(echo "obase=16;ibase=2;$\(echo $stpkey|tr \[:lower:] \[:upper:]\)|bc - 1000000000000000)"|bc|tr \[:upper:] \[:lower:]
   ```

 stpkey and mod_stpkey used in the formula above are specified without the "0x" prefix.

8. Restart the OVM RAC user domain node.

 a. Login to the dom0 as root.

 b. Run the following commands:

   ```bash
   # xm shutdown <user domain name>
   # xm create /EXAVMINAGES/GuestImages/<user domain name>/vm.cfg
   ```

9. Verify the Grid Infrastructure stack is fully up on the cluster node.
10. Repeat the steps on the remaining cluster nodes, one node at a time.

Case 2. Implementing the feature on a pkey-enabled environment while you apply the 12.1.0.2 October 2016 Database Bundle Patch in a rolling manner

Perform the steps below on one node at a time.

1. Apply the 12.1.0.2 October 2016 Database Bundle Patch on the cluster node.
2. Run the steps 1 through 10 from Case 1 above on the node where the patch was applied.
3. Move on to the next cluster node and repeat steps 1 and 2 above.

Note:
Once the dom0 GUIDs are converted to limited membership, deployment of any new cluster will have the October 2016 Database Bundle Patch as a prerequisite.

5.25 Running Oracle EXAchk in Oracle VM Environments

Oracle EXAchk version 12.1.0.2.2 and higher supports virtualization on Oracle Exadata Database Machine.

To perform the complete set of Oracle EXAchk audit checks in an Oracle Exadata Database Machine Oracle VM environment, Oracle EXAchk must be installed in and run from multiple locations, as follows:

• From one management domain (dom0)
• From one user domain (domU) in each Oracle VM Oracle Real Application Clusters (Oracle RAC) cluster

For example, an Oracle Exadata Database Machine Quarter Rack with 2 database servers containing 4 Oracle VM Oracle RAC clusters (2 nodes per cluster for a total of 8 domU’s across both database servers) requires running Oracle EXAchk 5 separate times, as follows:

1. Run Oracle EXAchk in the first user domain (domU) for the first cluster.
2. Run Oracle EXAchk in the first user domain (domU) for the second cluster.
3. Run Oracle EXAchk in the first user domain (domU) for the third cluster.
4. Run Oracle EXAchk in the first user domain (domU) for the fourth cluster.
5. Run Oracle EXAchk in the first management domain (dom0).

The audit checks performed by Oracle EXAchk are specified in the following table:
Table 5-5 Audit Checks Performed by Oracle EXAchk

<table>
<thead>
<tr>
<th>Where to Install and Run Oracle EXAchk</th>
<th>Audit Checks Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management domain (dom0)</td>
<td>Hardware and operating system level checks for:</td>
</tr>
<tr>
<td></td>
<td>• Database servers (management domains)</td>
</tr>
<tr>
<td></td>
<td>• Storage servers</td>
</tr>
<tr>
<td></td>
<td>• RDMA Network Fabric</td>
</tr>
<tr>
<td></td>
<td>• RDMA Network Fabric switches</td>
</tr>
<tr>
<td>User domain (domU)</td>
<td>Operating system level checks for user domains, and checks for Oracle Grid Infrastructure and Oracle Database</td>
</tr>
</tbody>
</table>

Oracle EXAchk Command Line Options

Oracle EXAchk requires no special command line options. It automatically detects that it is running in an Oracle Exadata Database Machine Oracle VM environment and whether it is running in a management domain or user domain and performs the applicable audit checks. For example, in the simplest case, you can run Oracle EXAchk with no command line options:

```
./exachk
```

When Oracle EXAchk is run in the management domain, it performs audit checks on all database servers, storage servers, and RDMA Network Fabric switches accessible through the RDMA Network Fabric.

To run Oracle EXAchk on a subset of servers or switches, use the following command line options:

Table 5-6 Command Line Options for Oracle EXAchk

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-clusternodes</td>
<td>Specifies a comma-separated list of database servers.</td>
</tr>
<tr>
<td>-cells</td>
<td>Specifies a comma-separated list of storage servers.</td>
</tr>
<tr>
<td>-ibswitches</td>
<td>Specifies a comma-separated list of RDMA Network Fabric switches.</td>
</tr>
</tbody>
</table>

For example, for an Oracle Exadata Database Machine Full Rack where only the first Quarter Rack is configured for virtualization, but all components are accessible through the RDMA Network Fabric, you can run a command similar to the following from the database server dm01adm01:

```
./exachk -clusternodes dm01adm01, dm01adm02  
-cell dm01celadm01, dm01celadm02, dm01celadm03  
-ibswitches dm01swibs0, dm01sw-iba0, dm01sw-ibb0
```
Related Topics

- *Oracle ORAchk and EXAchk User’s Guide*
Managing Oracle VM Domains Using KVM

Oracle VM user domains on Oracle Exadata Database Machine running Oracle Exadata System Software release 19.3.0 are managed using the `vm_maker` utility run from the management domain.

The Kernel Virtual Machine (KVM) is a module of the Linux kernel. The KVM module allows a program to access and make use of the virtualization capabilities of modern processors, by exposing the `/dev/kvm` interface. Qemu is the software that actually performs the emulation. Qemu is an open source machine emulator and virtualizer.

For a full list of Oracle VM administrative commands, run the `/opt/exadata_ovm/vm_maker --help` command.

Note:

Unless otherwise noted, all commands run in the following procedures are run as the `root` user.

- **Oracle VM and Oracle Exadata Database Machine**
 When deploying Oracle Exadata Database Machine, you can decide to implement Oracle VM on the database servers.

- **Migrating a Bare Metal Oracle RAC Cluster to an Oracle RAC Cluster in Oracle VM**
 You can move an existing Oracle RAC cluster into a virtual environment that is managed by KVM.

- **Showing Running Domains**
 Use the `vm-maker` utility to list the running domains.

- **Starting a Guest**
 You can start a guest manually, or configure the guest to start automatically when the kvmhost is started.

- **Monitoring a Guest Console During Startup**
 To see Oracle Linux boot messages during guest startup, use the `--console` option with the `vm_maker --start-domain` command.

- **Disabling Guest Automatic Start**
 You can disable a guest from automatically starting when the kvmhost is started.

- **Shutting Down a User Domain From Within the User Domain**

- **Shutting Down a Guest From Within the kvmhost**
 You can shut down a guest from within a kvmhost.

- **Backing Up and Restoring Oracle Databases on KVM Guests**
 Backing up and restoring Oracle databases on KVM guests is the same as backing up and restoring Oracle databases on physical nodes.
• **Modifying the Memory Allocated to a Guest**
 You can modify the memory allocated to a guest using *vm_maker*.

• **Modifying the Number of Virtual CPUs Allocated to a Guest**
 You can dynamically modify the number of virtual CPUs allocated to a guest with the *vm_maker --set vcpu* command.

• **Increasing the Disk Space in a User Domain**
 You can increase the size of Logical Volume Manager (LVM) partitions, swap space, and file systems in a user domain.

• **Expanding /EXAVMIMAGES on the kvmhost**
 You can expand the */EXAVMIMAGES* file system on the kvmhost following the addition of a disk expansion kit.

• **Creating Oracle VM Oracle RAC Clusters**
 This procedure creates Oracle VM Oracle RAC clusters using Oracle Exadata Deployment Assistant (OEDA) configuration tool and deployment tool.

• **Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI**
 You can expand an existing Oracle RAC cluster on Oracle VM Oracle RAC by adding guest domains using the Oracle Exadata Deployment Assistant command-line interface (OEDACLI).

• **Moving a Guest to a Different Database Server**
 Guests can move to different database servers.

• **Implementing Tagged VLAN Interfaces**
 This topic describes the implementation of tagged VLAN interfaces in Oracle VM environments on Oracle Exadata Database Machine.

• **About RDMA Network Fabric Partitioning Across Oracle RAC Clusters Running in Oracle VM**
 An RDMA Network Fabric partition defines a group of RDMA Network Fabric nodes or members that are allowed to communicate with one another.

• **Using Oracle EXAchk in Oracle VM Environments**
 Oracle EXAchk version 12.1.0.2.2 and higher supports virtualization on Oracle Exadata Database Machine.

6.1 Oracle VM and Oracle Exadata Database Machine

When deploying Oracle Exadata Database Machine, you can decide to implement Oracle VM on the database servers.

Oracle VM Server and one or more Oracle VM guests are installed on every database server. You can configure Oracle VM environments on your initial deployment using scripts created by Oracle Exadata Deployment Assistant (OEDA) or you can migrate an existing environment to Oracle VM.

• **About Oracle VM**
 Oracle VM enables you to deploy the Oracle Linux operating system and application software within a supported virtual environment that is managed by KVM.

• **Maximum Supported Virtual Machines on Oracle Exadata Database Machine**
 When using RDMA over Converged Ethernet (RoCE), the maximum number of supported virtual machines is 12.
• **Supported Operations in the KVMHost**
 Manually modifying the kvmhost can result in configuration issues, which can degrade performance or cause a loss of service.

• **Oracle VM Resources**
 Two fundamental parts of the Oracle VM infrastructure – networking and storage – are configured outside of the Oracle VM.

6.1.1 About Oracle VM

Oracle VM enables you to deploy the Oracle Linux operating system and application software within a supported virtual environment that is managed by KVM.

If you use Oracle VM on Oracle Exadata Database Machine, then Oracle VM provides CPU, memory, operating system, and sysadmin isolation for your workloads. You can combine virtual machines (VMs) with network and I/O prioritization to achieve full stack isolation. For consolidation, you can create multiple trusted databases or pluggable databases in an Oracle VM, allowing resources to be shared more dynamically.

Starting with Oracle Exadata System Software release 19.3.0, KVM is the virtualization technology used with Oracle Exadata Database Machine systems configured with RDMA over Converged Ethernet (RoCE) interconnects. An Oracle VM environment consists of a management server (the kvmhost), virtual machines, and resources. A kvmhost is a managed virtual environment providing a lightweight, secure, server platform which runs VMs, also known as guests.

The kvmhost is installed on a bare metal computer. The hypervisor on each kvmhost is an extremely small-footprint VM manager and scheduler. It is designed so that it is the only fully privileged entity in the system. It controls only the most basic resources of the system, including CPU and memory usage, privilege checks, and hardware interrupts.

The hypervisor securely executes multiple VMs on one host computer. Each VM runs in its own guest and has its own operating system. A primary kvmhost also runs as a guest on top of the hypervisor. The kvmhost has privileged access to the hardware and device drivers. This is the environment from where you manage the guest.

A guest is an unprivileged VM that can access the RoCE interface. The guest is started and managed on an Oracle VM Server by the kvmhost. Because a guest operates independently of other VMs, a configuration change applied to the virtual resources of a guest does not affect any other guests. A failure of the guest does not impact any other guests.

The terms "guest" and "virtual machine" are often used interchangeably.

When using KVM, you can have up to 12 guests on the same kvmhost.

Each guest is started alongside the kvmhost. The guests never interact with the kvmhost directly. Their requirements are handled by the hypervisor itself. The kvmhost only provides a means to administer the hypervisor.

You use Oracle Exadata Deployment Assistant (OEDA) to create and configure Oracle VMs on Oracle Exadata Database Machine.
6.1.2 Maximum Supported Virtual Machines on Oracle Exadata Database Machine

When using RDMA over Converged Ethernet (RoCE), the maximum number of supported virtual machines is 12.

For the software prerequisites, refer to My Oracle Support documents 888828.1.

Related Topics

• Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)

6.1.3 Supported Operations in the KVMHost

Manually modifying the kvmhost can result in configuration issues, which can degrade performance or cause a loss of service.

WARNING:

Oracle does not support any changes that are made to the kvmhost beyond what is documented. Third-party applications can be installed on the kvmhost and user domains, but if there are issues with the Oracle software, then Oracle Support Services may request the removal of the third-party software while troubleshooting the cause.

If you are in doubt whether an operation on the kvmhost is supported, contact Oracle Support Services.

6.1.4 Oracle VM Resources

Two fundamental parts of the Oracle VM infrastructure – networking and storage – are configured outside of the Oracle VM.

Networking

When specifying the configuration details for your Oracle Exadata Rack using Oracle Exadata Deployment Assistant (OEDA), you provide input on how the required network IP addresses for Oracle VM environments should be created. The generated OEDA setup files are transferred to the Oracle Exadata Rack and used to create the network addresses.

Storage

Oracle VM always requires a location to store environment resources that are essential to the creation and management of virtual machines (VMs). These resources include ISO files (virtual DVD images), VM configuration files and VM virtual disks. The location of such a group of resources is called a storage repository.

On Oracle Exadata Database Machine, storage for the Oracle VMs uses an XFS file system.
If you need more storage space for Oracle VM, you can purchase a disk expansion kit. The additional disk space can be used to support more Oracle VM guests by expanding /EXAVMIMAGES or to increase the size of the /u01 partition in each user domain.

Maximum Supported VMs on Exadata

For any existing Exadata Database Server, the maximum number of supported VMs is eight if using InfiniBand and 12 if using RDMA over Converged Ethernet (RoCE). For software prerequisites, refer to My Oracle Support notes 888828.1 and 1270094.1.

Related Topics

• Expanding /EXAVMIMAGES After Adding the Database Server Disk Expansion Kit
 With the addition of a disk expansion kit to the database server, it is important to follow proper procedures to add this additional space to the /EXAVMIMAGES file system.

• Using Oracle Exadata Deployment Assistant

6.2 Migrating a Bare Metal Oracle RAC Cluster to an Oracle RAC Cluster in Oracle VM

You can move an existing Oracle RAC cluster into a virtual environment that is managed by KVM.

Note:

This topic applies only to two-socket x86 servers. It does not apply to eight-socket servers such as Oracle Exadata Database Machine X8M-8.

The migration of a bare metal Oracle RAC cluster to an Oracle RAC cluster in Oracle VM can be achieved in the following ways:

• Migrate to Oracle RAC cluster in Oracle VM using the existing bare metal Oracle RAC cluster with zero downtime.

• Migrate to Oracle RAC cluster in Oracle VM by creating a new Oracle RAC cluster in Oracle VM with minimal downtime.

• Migrate to Oracle RAC cluster in Oracle VM using Oracle Data Guard with minimal downtime.

• Migrate to Oracle RAC cluster in Oracle VM using Oracle Recovery Manager (RMAN) backup and restore with complete downtime.

The conversion of a bare metal Oracle RAC cluster to an Oracle RAC cluster in Oracle VM has the following implications:

• Each of the database servers will be converted to an Oracle VM Server on which a kvmhost is created along with one or more guests, depending on the number of Oracle RAC clusters being deployed. Each guest on a database server will belong to a particular Oracle RAC cluster.
As part of the conversion procedure, the bare metal Oracle RAC cluster will be converted to one Oracle RAC cluster in Oracle VM to start with. There will be one guest per database server.

At the end of the conversion, the cell disk and grid disk configuration of the storage cells are the same as they were at the beginning of the conversion.

The kvmhost will use a small portion of the system resources on each database server. Typically a kvmhost uses 16 GB or 6% of the available machine RAM, whichever is more. A kvmhost also uses 4 virtual CPUs. These resource requirements have to be taken into consideration when sizing the SGA of the databases running on the Oracle RAC cluster in Oracle VM.

Refer to My Oracle Support note 2099488.1 for the complete instructions.

Related Topics

- Migration of a Bare metal RAC cluster to an OVM RAC cluster on Exadata (Doc ID 2099488.1)

6.3 Showing Running Domains

Use the `vm-maker` utility to list the running domains.

1. Connect to the management domain.
2. Run the command `/opt/exadata_ovm/vm_maker --list-domains` to list the domains.

   ```
   # /opt/exadata_ovm/vm_maker --list-domains
   dm01db01vm01.us.oracle.com(55) : running
   dm01db01vm02.us.oracle.com(57) : running
   dm01db01vm03.us.oracle.com(59) : running
   ```

 To view memory or CPU distribution for the domains, there are separate commands:
 - `/opt/exadata_ovm/vm_maker --list --memory`
 - `/opt/exadata_ovm/vm_maker --list --vcpu`

6.4 Starting a Guest

You can start a guest manually, or configure the guest to start automatically when the kvmhost is started.

1. Connect to the kvmhost.
2. To manually start a guest, use `vm_maker` to start the guest.

 In the following example, db01_guest01.example.com is the name of the guest.

   ```
   # /opt/exadata_ovm/vm_maker --start-domain db01_guest01.example.com
   [INFO] Running 'virsh start db01_guest01.example.com...'
   Domain db01_guest01.example.com started
   [INFO] Attempting to ping db01_guest01.example.com...
   [INFO] Ping successful.
   ```
3. To configure autostart for a guest, use the `vm_maker --autostart` command.

In the following example, `db01_guest01.example.com` is the name of the guest.

```bash
# /opt/exadata_ovm/vm_maker --autostart db01_guest01.example.com --enable
[INFO] Running 'virsh autostart db01_guest01.example.com'...
Domain db01_guest01.example.com marked as autostarted
```

6.5 Monitoring a Guest Console During Startup

To see Oracle Linux boot messages during guest startup, use the `--console` option with the `vm_maker --start-domain` command.

1. Connect as the `root` user to the kvmhost.
2. Obtain the guest name using the `/opt/exadata_ovm/vm_maker --list-domains` command.
3. Use the following command to attach to the guest console, as part of starting the guest:

 In the following command, `GuestName` is the name of the guest.

   ```bash
   # vm_maker --start-domain GuestName --console
   ```
4. Press `CTRL+]` to disconnect from the console.

6.6 Disabling Guest Automatic Start

You can disable a guest from automatically starting when the kvmhost is started.

1. Connect to the kvmhost.
2. Use `vm_maker` to disable autostart for the guest.

 In the following example, `db01_guest01.example.com` is the name of the guest.

   ```bash
   # /opt/exadata_ovm/vm_maker --autostart db01_guest01.example.com --disable
   [INFO] Running 'virsh autostart db01_guest01.example.com --disable'...
   Domain db01_guest01.example.com unmarked as autostarted
   ```

6.7 Shutting Down a User Domain From Within the User Domain

The following procedure describes how to shut down a user domain from within a user domain:

1. Connect as the `root` user to the user domain.
2. Use the following command to shut down the domain:

   ```bash
   # shutdown -h now
   ```
6.8 Shutting Down a Guest From Within the kvmhost

You can shut down a guest from within a kvmhost.

1. Connect as the root user to the kvmhost.

2. Use the following command to shut down the guest, where GuestName is the name of the guest:

```
# /opt/exadata_ovm/vm_maker --stop-domain GuestName
```

To shut down all guests within the kvmhost, use the following command:

```
# /opt/exadata_ovm/vm_maker --stop-domain --all
```

The following is an example of the output:

```
[INFO] Running 'virsh shutdown db01_guest01.example.com'...
Domain db01_guest01.example.com is being shutdown
```

6.9 Backing Up and Restoring Oracle Databases on KVM Guests

Backing up and restoring Oracle databases on KVM guests is the same as backing up and restoring Oracle databases on physical nodes.

- If you are using Exadata storage servers, then each Oracle Real Application Clusters (Oracle RAC) cluster running in guests requires its own Oracle Automatic Storage Management (Oracle ASM) disk group to be designated as the fast recovery area (FRA), such as +RECO. Refer to the Exadata Database Machine Backup and Restore Configuration and Operational Best Practices white paper for details.

- If you are using Oracle ZFS Storage Appliance, refer to the Protecting Exadata Database Machine with the Oracle ZFS Storage Appliance: Configuration Best Practices white paper for details.

6.10 Modifying the Memory Allocated to a Guest

You can modify the memory allocated to a guest using vm_maker.

This operation requires a guest restart. You can let vm_maker restart the guest after changing the memory configuration.

1. Connect to the kvmhost.

2. If you are increasing the amount of memory used by the guest, then use the following command to determine the amount of free memory available:

```
# /opt/exadata_ovm/vm_maker --list --memory
```
In the output, the lowest value between Available memory (now) and Available memory (delayed) is the limit for free memory.

Note:

When assigning free memory to a guest, reserve approximately 1% to 2% of free memory for storing metadata and control structures.

3. If you are decreasing the amount of memory used by the guest, then you must first review and adjust the memory usage of the databases running in the guest.
 a. Review the SGA size of databases and reduce if necessary.
 b. Review the huge pages operating system configuration for the databases and reduce if necessary.

If you do not first reduce the memory requirements of the databases running in the guest, then the guest might fail to restart because too much memory is reserved for huge pages when the Oracle Linux operating system attempts to boot. See My Oracle Support Doc ID 361468.1 for details.

4. Specify a new size for the memory.

For example, if you want to increase the memory used to 32 GB for the `db01_guest01.example.com` guest, you would use the following command:

```
# /opt/exadata_ovm/vm_maker --set --memory 32G --domain db01_guest01.example.com --restart-domain
```

This command shuts down the guest, modifies the memory settings, and then restarts the guest.

Related Topics
- HugePages on Oracle Linux 64-bit (My Oracle Support Doc ID 361468.1)

6.11 Modifying the Number of Virtual CPUs Allocated to a Guest

You can dynamically modify the number of virtual CPUs allocated to a guest with the `vm_maker --set vcpu` command.

All actions to modify the number of vCPUs allocated to a guest are performed in the `kvmhost`.

It is possible to over-commit vCPUs such that the total number of vCPUs assigned to all guests exceeds the number of physical CPUs on the system. However, over-committing CPUs should be done only when competing workloads for oversubscribed resources are well understood and concurrent demand does not exceed physical capacity.

1. Determine the number of physical CPUs.

```
# /opt/exadata_ovm/vm_maker --list vcpu --domain db01_guest01.example.com
```
2. Modify the number of allocated vCPUs.

 For example, if you want to change the number of vCPUs allocated to 4 for the db01_guest01.example.com guest, you would use the following command:

 # /opt/exadata_ovm/vm_maker --set vcpu 4 --domain db01_guest01.example.com

6.12 Increasing the Disk Space in a User Domain

 You can increase the size of Logical Volume Manager (LVM) partitions, swap space, and file systems in a user domain.

 - **Adding a New LVM Disk to a Guest**
 You can add a new LVM disk to a guest to increase the amount of usable LVM disk space in a guest.

 - **Increasing the Size of the root File System**
 This procedure describes how to increase the size of the system partition and / (root) file system.

 - **Increasing the Size of the /u01 File System**
 This procedure describes how to increase the size of the /u01 file system.

 - **Increasing the Size of the Grid Infrastructure Home or Database Home File System**
 You can increase the size of the Oracle Grid Infrastructure or Oracle Database home file system in a guest.

 - **Increasing the Size of the Swap Area**
 You can increase the amount of swap configured in a guest.

6.12.1 Adding a New LVM Disk to a Guest

 You can add a new LVM disk to a guest to increase the amount of usable LVM disk space in a guest.

 You might add an LVM disk to a guest so that the size of a file system or swap LVM partition can be increased. This procedure is performed while the system remains online.

 Note:
 This procedure requires steps be run in the kvmhost, and in the guest.
 Run all steps in this procedure as the root user.

1. In the kvmhost, verify the free disk space in /EXAVMIMAGES.

 # df -h /EXAVMIMAGES
The following is an example of the output from the command:

```
Filesystem          Size  Used Avail Use% Mounted on
/dev/sda3           721G  111G  611G  16% /EXAVMIMAGES
```

2. In the kvmhost, select a name for the new disk image, and verify that the name is not already used in the guest.

```
# ls -l /EXAVMIMAGES/GuestImages/DomainName/new_disk_image_name
ls: /EXAVMIMAGES/GuestImages/DomainName/new_disk_image_name: No such file or \ directory
```

In the preceding command, `DomainName` is the name of the domain, and `new_disk_image_name` is the new disk image name.

3. In the kvmhost, create a new disk image and attach it to the guest.

```
#  /opt/exadata_ovm/vm_maker --create --disk-image /EXAVMIMAGES/new_disk_image_name --size size --filesystem xfs --attach --domain DomainName
```

4. In the guest, list the available disk images.

```
/opt/exadata_ovm/vm_maker --list --disk-image --domain DomainName
```

5. In the guest, partition the new disk device. In the following example, disk device `/dev/xvde` is partitioned.

```
# parted /dev/xvde mklabel gpt
# parted -s /dev/xvde mkpart primary 0 100%
# parted -s /dev/xvde set 1 lvm on
```

The `parted mkpart` command may report the following message. This message can be ignored:

```
Warning: The resulting partition is not properly aligned for best performance.
```

6. In the guest, create an LVM physical volume on the new disk partition.

In the following example, an LVM physical volume is created on disk partition `/dev/xvde1`.

```
# pvcreate /dev/xvde1
```

7. In the guest, extend the volume group and verify the additional space in the volume group. In the following example, disk name `xvde` is now available in the guest.

```
# vgextend VGExaDb /dev/xvde1
# vgdisplay -s
```

Chapter 6
Increasing the Disk Space in a User Domain

6-11
8. In the kvmhost, make a backup of the guest configuration file `vm.cfg`.

   ```
   # cp /EXAVMIMAGES/GuestImages/DomainName/vm.cfg  
   /EXAVMIMAGES/GuestImages/DomainName/vm.cfg.backup
   ```

9. In the kvmhost, obtain the UUID of the guest using the following command:

   ```
   # grep ^uuid /EXAVMIMAGES/GuestImages/DomainName/vm.cfg
   ```

 In the following example, the guest UUID is `49ffddce4efe43f5910d0c61c87bba58`.

   ```
   # grep ^uuid /EXAVMIMAGES/GuestImages/dm01db01vm01/vm.cfg
   uuid = 49ffddce4efe43f5910d0c61c87bba58
   ```

10. In the kvmhost, generate a UUID for the new disk image using the following command:

    ```
    # uuidgen | tr -d '-'
    ```

 In the following example, the new disk UUID is `0d56da6a5013428c97e73266f81c3404`.

    ```
    # uuidgen | tr -d '-'
    0d56da6a5013428c97e73266f81c3404
    ```

11. In the kvmhost, create a symbolic link from `/OVS/Repositories` to the new disk image using the following command:

    ```
    # ln -s /EXAVMIMAGES/GuestImages/DomainName/newDiskImage.img  
    /OVS/Repositories/user_domain_uuid/VirtualDisks/new_disk_uuid.img
    ```

 In the following example, a symbolic link is created to the new disk image file `pv2_vgexadb.img` for guest `dm01db01vm01`. The UUID for guest `dm01db01vm01` is `49ffddce4efe43f5910d0c61c87bba58`. The UUID for the new disk image is `0d56da6a5013428c97e73266f81c3404`.

    ```
    # ln -s /EXAVMIMAGES/GuestImages/dm01db01vm01/pv2_vgexadb.img  
    /OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/  
    0d56da6a5013428c97e73266f81c3404.img
    ```

12. In the kvmhost, append an entry for the new disk to the disk parameter in the guest configuration file `vm.cfg`. This makes the new disk image attach automatically to the guest during the next startup. The new entry matches the following format:

    ```
    'file:/OVS/Repositories/user_domain_uuid/VirtualDisks/new_disk_uuid.img,disk_device,w'
    ```
The following is an example of an original disk parameter entry in the `vm.cfg` file:

disk=['file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 76197586bc914d3d9fa94df092c95be2.img,xvda,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 78470933af6b4253b9ce27814ceddbbd.img,xvdb,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 20d5528f5f9e4fd8a96f151a13d2006b.img,xvdc,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 058af368db2c4f27971bbee1f19286681.img,xvdd,w']

The following example shows an entry appended to the disk parameter for a new disk image that is accessible within the guest as disk device `/dev/xvde`:

disk=['file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 76197586bc914d3d9fa94df092c95be2.img,xvda,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 78470933af6b4253b9ce27814ceddbbd.img,xvdb,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 20d5528f5f9e4fd8a96f151a13d2006b.img,xvdc,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 058af368db2c4f27971bbee1f19286681.img,xvdd,w',
 'file:/OVS/Repositories/49ffddce4efe43f5910d0c61c87bba58/VirtualDisks/
 0d56da6a5013428c97e73266f81c3404.img,xvde,w']

6.12.2 Increasing the Size of the root File System

This procedure describes how to increase the size of the system partition and `/ (root)` file system.

This procedure is performed while the file system remains online.
Note:

There are two system partitions, LVDbSys1 and LVDbSys2. One partition is active and mounted. The other partition is inactive and used as a backup location during upgrade. The size of both system partitions must be equal.

Keep at least 1 GB of free space in the VGExaDb volume group. The free space is used for the LVM snapshot created by the dbnodeupdate.sh utility during software maintenance. If you make snapshot-based backups of the / (root) and /u01 directories as described in Creating a Snapshot-Based Backup of Oracle Linux Database Server, then keep at least 6 GB of free space in the VGExaDb volume group.

1. Collect information about the current environment.
 a. Use the df command to identify the amount of free and used space in the root partition (/)

      ```
      # df -h /
      ``

      The following is an example of the output from the command:

      | Filesystem       | Size | Used | Avail | Use% | Mounted on |
      |------------------|------|------|-------|------|------------|
      | /dev/mapper/VGExaDb-LVDbSys1 | 12G  | 5.1G | 6.2G  | 46%  | /          |

      Note:
The active root partition may be either LVDbSys1 or LVDbSys2, depending on previous maintenance activities.

   b. Use the lvs command to display the current logical volume configuration.

      ```
 # lvs -o lv_name,lv_path,vg_name,lv_size
 ``

 The following is an example of the output from the command:

 | LV | Path | VG | LSize |
 |---------------|--------------------------|--------------|---------|
 | LVDbOra1 | /dev/VGExaDb/LVDbOra1 | VGExaDb | 10.00g |
 | LVDbSwap1 | /dev/VGExaDb/LVDbSwap1 | VGExaDb | 8.00g |
 | LVDbSys1 | /dev/VGExaDb/LVDbSys1 | VGExaDb | 12.00g |
 | LVDbSys2 | /dev/VGExaDb/LVDbSys2 | VGExaDb | 12.00g |

2. Verify there is available space in the volume group VGExaDb using the vgdisplay command.

      ```
      # vgdisplay VGExaDb -s
      ```
The following is an example of the output from the command:

"VGExaDb" 53.49 GiB [42.00 GiB used / 11.49 GiB free]

The volume group must contain enough free space to increase the size of both system partitions, and maintain at least 1 GB of free space for the LVM snapshot created by the `dbnodeupdate.sh` utility during upgrade. If there is not sufficient free space in the volume group, then add a new disk to LVM.

3. Resize both LVDbSys1 and LVDbSys2 logical volumes using the `lvextend` command.

```bash
# lvextend -L +size /dev/VGExaDb/LVDbSys1
# lvextend -L +size /dev/VGExaDb/LVDbSys2
```

In the preceding command, `size` is the amount of space to be added to the logical volume. The amount of space added to each system partition must be the same.

The following example extends the logical volumes by 10 GB:

```bash
# lvextend -L +10G /dev/VGExaDb/LVDbSys1
# lvextend -L +10G /dev/VGExaDb/LVDbSys2
```

4. Resize the file system within the logical volume using the `resize2fs` command.

```bash
# resize2fs /dev/VGExaDb/LVDbSys1
# resize2fs /dev/VGExaDb/LVDbSys2
```

5. Verify the space was extended for the active system partition using the `df` command.

```bash
# df -h /
```

Related Topics
- Adding a New LVM Disk to a User Domain

6.12.3 Increasing the Size of the `/u01` File System

This procedure describes how to increase the size of the `/u01` file system.

This procedure is performed while the file system remains online.

Note:
Keep at least 1 GB of free space in the `VGExaDb` volume group. The free space is used for the LVM snapshot created by the `dbnodeupdate.sh` utility during software maintenance. If you make snapshot-based backups of the `/` (root) and `/u01` directories as described in "Creating a Snapshot-Based Backup of Oracle Linux Database Server," then keep at least 6 GB of free space in the `VGExaDb` volume group.
1. Collect information about the current environment.
 a. Use the `df` command to identify the amount of free and used space in the /u01 partition.

      ```
      # df -h /u01
      ```

 The following is an example of the output from the command:

      ```
      Filesystem Size Used Avail Use% Mounted on
      /dev/mapper/VGExaDb-LVDbOra1 9.9G 1.7G 7.8G 18% /u01
      ```

 b. Use the `lvs` command to display the current logical volume configuration used by the /u01 file system.

      ```
      # lvs -o lv_name,lv_path,vg_name,lv_size /dev/VGExaDb/LVDbOra1
      ```

 The following is an example of the output from the command:

      ```
      LV Path                  VG       LSize
      LVDbOra1 /dev/VGExaDb/LVDbOra1  VGExaDb 10.00g
      ```

2. Verify there is available space in the volume group VGExaDb using the `vgdisplay` command.

   ```
   # vgdisplay VGExaDb -s
   ```

 The following is an example of the output from the command:

   ```
   "VGExaDb" 53.49 GiB [42.00 GiB used / 11.49 GiB free]
   ```

 If the output shows there is less than 1 GB of free space, then neither the logical volume nor file system should be extended. Maintain at least 1 GB of free space in the VGExaDb volume group for the LVM snapshot created by the `dbnodeupdate.sh` utility during an upgrade. If there is not sufficient free space in the volume group, then add a new disk to LVM.

3. Resize the logical volume using the `lvextend` command.

   ```
   # lvextend -L +sizeG /dev/VGExaDb/LVDbOra1
   ```

 In the preceding command, `size` is the amount of space to be added to the logical volume.

 The following example extends the logical volume by 10 GB:

   ```
   # lvextend -L +10G /dev/VGExaDb/LVDbOra1
   ```

4. Resize the file system within the logical volume using the `resize2fs` command.

   ```
   # resize2fs /dev/VGExaDb/LVDbOra1
   ```
5. Verify the space was extended using the `df` command.

```
# df -h /u01
```

Related Topics

- Adding a New LVM Disk to a User Domain

6.12.4 Increasing the Size of the Grid Infrastructure Home or Database Home File System

You can increase the size of the Oracle Grid Infrastructure or Oracle Database home file system in a guest.

The Oracle Grid Infrastructure software home and the Oracle Database software home are created as separate disk image files in the kvmhost. The disk image files are located in the `/EXAVMIMAGES/GuestImages/DomainName/` directory. The disk image files are attached to the guest automatically during virtual machine startup, and mounted as separate, non-LVM file systems in the guest.

1. Connect to the guest, and check the file system size using the `df` command, where `$ORACLE_HOME` is an environment variable that points to the Oracle Database home directory, for example, `/u01/app/oracle/product/12.1.0.2/dbhome_1`.

```
# df -h $ORACLE_HOME
```

The following is an example of the output from the command:

```
Filesystem  Size  Used Avail Use% Mounted on
/dev/xvdc    20G  6.5G   13G  35% /u01/app/oracle/product/12.1.0.2/dbhome_1
```

2. Connect to the kvmhost, and then shut down the guest.

```
# opt/exadata_ovm/vm_maker --stop-domain DomainName
```

3. Create an OCFS reflink to serve as a backup of the disk image that will be increased, where `version` is the release number for example, `12.1.0.2.1`.

```
# cd /EXAVMIMAGES/GuestImages/DomainName
# reflink dbversion.img before_resize.dbversion.img
```

4. Create an empty disk image using the `qemu-img` command, and append it to the database home disk image.

The empty disk image size is the size to extend the file system. The last command removes the empty disk image after appending to the database home disk image.

```
# qemu-img create emptyfile 10G
# cat emptyfile >> dbversion.img
# rm emptyfile
```
5. Check the file system using the `e2fsck` command.

 # e2fsck -f dbversion.img

6. Resize the file system using the `resize2fs` command.

 # resize2fs dbversion.img

7. Start the guest.

 # /opt/exadata_ovm/vm_maker --start-domain DomainName --console

8. Connect to the guest, and verify the file system size was increased.

 # df -h $ORACLE_HOME

 The following is an example of the output from the command:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/xvdc</td>
<td>30G</td>
<td>6.5G</td>
<td>22G</td>
<td>23%</td>
<td>/u01/app/oracle/product/12.1.0.2/dbhome_1</td>
</tr>
</tbody>
</table>

9. Connect to the kvmhost, and remove the backup image.

 Use a command similar to the following where `back_up_image.img` is the name of the backup image file:

 # cd /EXAVMIMAGES/GuestImages/DomainName
 # rm back_up_image.img

6.12.5 Increasing the Size of the Swap Area

You can increase the amount of swap configured in a guest.

1. Verify there is available space in the volume group `VGExaDb` using the `vgdisplay` command.

 # vgdisplay VGExaDb -s

 The following is an example of the output from the command:

 "VGExaDb" 53.49 GiB [42.00 GiB used / 11.49 GiB free]

 If the command shows that there is less than 1 GB of free space, then neither the logical volume nor file system should be extended. Maintain at least 1 GB of free space in the `VGExaDb` volume group for the LVM snapshot created by the `dbnodeupdate.sh` utility during an upgrade. If there is not sufficient free space in the volume group, then add a new disk to LVM.

2. Create a new logical volume of the size to increase swap space using the `lvcreate` command.
In the following example, a new 8 GB logical volume named LVDbSwap2 is created.

```
# lvcreate -L 8G -n LVDbSwap2 VGExaDb
```

3. Setup the new logical volume as a swap device with a unique label, such as SWAP2, using the `mkswap` command. The unique label is a device LABEL entry that is currently unused in the `/etc/fstab` file.

```
# mkswap -L SWAP2 /dev/VGExaDb/LVDbSwap2
```

4. Enable the new swap device using the `swapon` command.

```
# swapon -L SWAP2
```

5. Verify the new swap device is enabled using the `swapon` command.

```
# swapon -s
```

The following is an example of the output from the command:

```
Filename     Type      Size  Used   Priority
/dev/dm-3    partition   8388604  306108 -1
/dev/dm-4    partition   8388604   0 -2
```

6. Edit the `/etc/fstab` file to add the new swap device by copying the existing swap entry, and then changing the LABEL value in the new entry to the label used to create the new swap device. In the following example, the new swap device was added to the `/etc/fstab` file as LABEL=SWAP2.

```
# cat /etc/fstab
LABEL=DBSYS   /                       ext4    defaults        1 1
LABEL=BOOT    /boot                   ext4    defaults,nodev        1 1
tmpfs         /dev/shm                tmpfs   defaults          0 0
devpts        /dev/pts                devpts gid=5,mode=620 0 0
sysfs         /sys                    sysfs   defaults        0 0
proc          /proc                   proc    defaults        0 0
LABEL=SWAP    swap                    swap    defaults        0 0
LABEL=SWAP2   swap                    swap    defaults        0 0
LABEL=DBORA   /u01                    ext4    defaults        1 1
/dev/xvdb     /u01/app/12.1.0.2/grid  ext4    defaults        1 1
/dev/xvdc     /u01/app/oracle/product/12.1.0.2/dbhome_1   ext4
```

Related Topics

- Adding a New LVM Disk to a User Domain
6.13 Expanding /EXAVMIMAGES on the kvmhost

You can expand the /EXAVMIMAGES file system on the kvmhost following the addition of a disk expansion kit.

During deployment, all available disk space on a database server will be allocated in the kvmhost with the majority of the space allocated to /EXAVMIMAGES for guest storage. The /EXAVMIMAGES file system is created on /dev/VGExaDb/LVDbExaVMImages.

In the example below, dm01db01 is the name of the kvmhost, and dm01db01vm01 is a guest.

1. Ensure reclaimdisks.sh has been run in the kvmhost by using the -check option.
 Note that the last line reads ”Layout: DOM0”. If reclaimdisks.sh was not run, it would read ”Layout: DOM0 + Linux”.

 [root@dm01db01 ~]# /opt/oracle.SupportTools/reclaimdisks.sh -check
 Model is ORACLE SERVER X6-2
 Number of LSI controllers: 1
 Physical disks found: 4 (252:0 252:1 252:2 252:3)
 Logical drives found: 1
 Linux logical drive: 0
 RAID Level for the Linux logical drive: 5
 Physical disks in the Linux logical drive: 4 (252:0 252:1 252:2 252:3)
 Dedicated Hot Spares for the Linux logical drive: 0
 Global Hot Spares: 0
 Valid. Disks configuration: RAID5 from 4 disks with no global and dedicated hot spare disks.
 Valid. Booted: DOM0. Layout: DOM0.

2. Add the disk expansion kit to the database server.
 The kit consists of 4 additional hard drives to be installed in the 4 available slots. Remove the filler panels and install the drives. The drives may be installed in any order.

3. Verify that the RAID reconstruction is completed by seeing the warning and clear messages in the alert history.
 This may take several hours to complete. The example below shows that it took approximately 7 hours. Once the clear message (message 1_2 below) is present, the reconstruction is completed and it is safe to proceed.

 [root@dm01db01 ~]# dbmcli -e list alerthistory
 1_1 2016-02-15T14:01:00-08:00 warning "A disk expansion kit was installed. The additional physical drives were automatically added to the existing RAID5 configuration, and reconstruction of the corresponding virtual drive was automatically started."
 1_2 2016-02-15T21:01:01-08:00 clear
"Virtual drive reconstruction due to disk expansion was completed."

4. Collect information about the current environment.

[root@dm01db01 ~]# df -h /EXAVMIMAGES
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 1.6T 44G 1.5T 3% /EXAVMIMAGES

[root@dm01db01 ~]# /opt/exadata_ovm/vm_maker --list --domain domain_name --detail

5. Stop all guests by running `vm_maker` from the kvmhost.
 After all guests are shut down, only the kvmhost should be listed.

[root@dm01db01 ~]# /opt/exadata_ovm/vm_maker --stop-domain -all
All domains terminated

[root@dm01db01 ~]# /opt/exadata_ovm/vm_maker --list --domain

6. Run `parted` to view the sector start and end values.
 Check the size of the disk against the end of the third partition. If you see a request to fix the GPT, respond with `F`.

root@dm01db01 ~]# parted /dev/sda
GNU Parted 2.1Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) unit s
(parted) print
Warning: Not all of the space available to /dev/sda appears to be used, you can fix the GPT to use all of the space (an extra 4679680000 blocks) or continue with the current setting? Fix/Ignore? F

Model: LSI MR9361-8i (scci)
Disk /dev/sda: 8189440000s
Sector size (logical/physical): 512B/512B
Partition Table: gpt

<table>
<thead>
<tr>
<th>Number</th>
<th>Start</th>
<th>End</th>
<th>Size</th>
<th>File system</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64s</td>
<td>1046591s</td>
<td>1046528s</td>
<td>ext3</td>
<td>primary</td>
</tr>
<tr>
<td>boot</td>
<td>1046592s</td>
<td>1048639s</td>
<td>2048s</td>
<td>primary</td>
<td></td>
</tr>
<tr>
<td>bios_grub</td>
<td>1048640s</td>
<td>240132159s</td>
<td>239083520s</td>
<td>primary</td>
<td></td>
</tr>
</tbody>
</table>

(parted) q

The partition table shown above lists partition 2 as ending at sector 240132159 and disk size as 8189440000 sectors. You will use these values in step 7.
7. Create a fourth partition.

 The start sector is the end of the third partition from step 6 plus 1 sector
 \((240132159+1=240132160)\). The end sector of the fourth partition is the size of the
 disk minus 34 \((8189440000-34=8189439966)\).

 [root@dm01db01 ~]# parted -s /dev/sda mkpart primary 240132160s
 8189439966s

 This command produces no output.

8. Set the LVM flag for the fourth partition.

 [root@dm01db01 ~]# parted -s /dev/sda set 3 lvm on
 Warning: WARNING: the kernel failed to re-read the partition table
 on /dev/sda (Device or
 resource busy). As a result, it may not reflect all of your changes
 until after reboot.

9. Review the updated partition table.

 [root@dm01db01 ~]# parted -s /dev/sda unit s print
 Model: LSI MR9361-8i (scsi)
 Disk /dev/sda: 8189440000s
 Sector size (logical/physical): 512B/512B
 Partition Table: gpt
 Number Start End Size File system Name
 Flags
 1 64s 1046591s 1046528s ext4 primary
 boot
 4 1046592s 1048639s 2048s primary
 bios_grub
 2 1048640s 240132159s 239083520s primary
 lvm
 3 240132160s 8189439966s 7949307807s primary lvm

10. Restart the Exadata server.

 [root@dm01db01 ~]# shutdown -r now

11. Check the size of the disk against the end of the fourth partition.

 [root@dm01db01 ~]# parted -s /dev/sda unit s print
 Model: LSI MR9361-8i (scsi)
 Disk /dev/sda: 8189440000s
 Sector size (logical/physical): 512B/512B
 Partition Table: gpt
 Number Start End Size File system Name
 Flags
 1 64s 1048639s 1048576s ext4 primary
 boot
 4 1048640s 3509759966s 3508711327s primary
 lvm
12. Create a LVM physical volume (PV) on the newly created fourth partition.

```bash
[root@dm01db01 ~]# lvm pvcreate --force /dev/sda3
Physical volume "/dev/sda3" successfully created
```

13. Extend the LVM volume group VGExaDb to the newly created third partition.

```bash
[root@dm01db01 ~]# lvm vgextend VGExaDb /dev/sda3
Volume group "VGExaDb" successfully extended
```

14. Dismount the /EXAVMIMAGES OCFS2 partition.

```bash
[root@dm01db01 ~]# umount /EXAVMIMAGES/
```

15. Extend the logical volume that contains the OCFS2 partition to include the rest of the free space.

```bash
[root@dm01db01 ~]# lvm lvextend -l +100%FREE /dev/VGExaDb/
LVDbExaVMImages
Size of logical volume VGExaDb/LVDbExaVMImages changed from 1.55 TiB (406549 extents) to
3.73 TiB (977798 extents).
Logical volume LVDbExaVMImages successfully resized.
```

16. Resize the OCFS2 file system to the rest of the logical volume.

The `tunefs.ocfs2` command typically runs very quickly and does not produce output.

```bash
[root@dm01db01 ~]# tunefs.ocfs2 -S /dev/VGExaDb/LVDbExaVMImages
```

17. Mount the OCFS2 partition and then view the file system disk space usage for this partition.

```bash
[root@dm01db01 ~]# mount -a
[root@dm01db01 ~]# ls -al /EXAVMIMAGES/
total 4518924
```

```bash
drwxr-xr-x  3 root root        3896 Jul 18 18:01 .
drwxr-xr-x 26 root root        4096 Jul 24 14:50 ...
drwxr-xr-x  2 root root        3896 Jul 18 17:51 lost+found
```

```bash
-rw-r-----  1 root root 26843545600 Jul 18 18:01 System.first.boot.12.2.1.1.8.180510.1.img
```

```bash
[root@dm01db01 ~]# df -h /EXAVMIMAGES/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/VGExaDb-LVDbExaVMImages 3.8T 9.0G 3.8T 1% /EXAVMIMAGES
```

18. Restart the guests.
Related Topics

- Shutting Down a User Domain From Within the Management Domain
- Starting a User Domain

6.14 Creating Oracle VM Oracle RAC Clusters

This procedure creates Oracle VM Oracle RAC clusters using Oracle Exadata Deployment Assistant (OEDA) configuration tool and deployment tool.

The requirements for adding an Oracle VM Oracle RAC cluster are as follows:

- The system has already been deployed with one or more Oracle VM Oracle RAC clusters.
- System has available resources, such as memory, CPU, local disk space, and Oracle Exadata Storage Server disk space.
- OEDA deployment files used for initial system configuration are available.

1. Verify there are sufficient resources to add a new guest in the kvmhost.
 If you are creating an Oracle VM Oracle RAC cluster, then verify resources in all kvmhosts where you are creating a new guest.

2. Use the following command to verify the Oracle Exadata Storage Server disk space:

   ```
   # dcli -l celladmin -g cell_group "cellcli -e 'list celldisk attributes name, diskType, freeSpace where freeSpace>0'"
   ```

3. Download the latest OEDA from My Oracle Support note 888828.1, and place it on a system capable of running a graphic-based program.
 By default, database servers in Oracle Exadata Database Machine contain only packages required to run Oracle Database, and are not capable of running OEDA configuration tool.

4. Obtain the OEDA template files used to deploy the system.

5. Run the OEDA configuration tool as follows:
 a. Click **Import**.
 b. Select and open the XML file used to deploy the system with the name `CustomerName-NamePrefix.xml`.
 c. Click **Next** as needed to get to the Define Clusters page, and verify the IP address and host name information as you navigate the pages. If there have been no networking changes since the initial deployment, then no changes are needed.
 d. Increment the number of clusters on the Define Clusters page.
 e. Select the new cluster tab to edit the cluster information. Do not change any other clusters.
 f. Enter a unique cluster name for the cluster.
 g. Select the Oracle VM Server and CELL components for the new cluster, and then click **Add**.
The recommended practice for best performance and simplest administration is to select all cells.

h. Click **Next** as needed to get to the new cluster page. Do not change any other clusters.

i. Enter the information for the new cluster. Information includes the virtual guest size, disk group details, and database name. The database name must be unique for all databases that use the same Oracle Exadata Storage Servers.

j. Click **Next** to get to the Review and Edit page, and verify the information for the new cluster.

k. Click **Next** as needed to get to the Generate page.

l. Click **Next** to generate the new configuration files.

m. Select the destination directory for the configuration files.

n. Click **Save**.

If the Oracle VM Defaults were altered for this new cluster, then configuration details for existing clusters will be re-written to match the new template settings. For example, if you previously deployed vm01 as SMALL with memory=8GB, and then change the SMALL template to memory=10GB for this new VM, then the new OEDA XML files show vm01 with memory=10GB even though there was no intent to change vm01.

o. Click **Installation Template** on the Finish page to review the details of the new cluster.

p. Click **Finish** to exit the configuration tool.

6. Verify the XML file for the new cluster exists and has the name `CustomerName-NamePrefix-ClusterName.xml` in the destination folder.

7. Obtain the deployment files for the Oracle Grid Infrastructure and Oracle Database releases selected, and place them in the OEDA WorkDir directory.

8. Run the OEDA Deployment Tool using the `-cf` option to specify the XML file for the new cluster, and the `-l` option to list the steps using the following command:

   ```
   $ ./install.sh -cf ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -l
   ```

You should see output similar to the following:

```
Initializing
1. Validate Configuration File
2. Update Nodes for Eighth Rack
```
3. Create Virtual Machine
4. Create Users
5. Setup Cell Connectivity
6. Calibrate Cells
7. Create Cell Disks
8. Create Grid Disks
9. Configure Alerting
10. Install Cluster Software
11. Initialize Cluster Software
12. Install Database Software
13. Relink Database with RDS
14. Create ASM Diskgroups
15. Create Databases
16. Apply Security Fixes
17. Install Exachk
18. Create Installation Summary
19. Resecure Machine

9. Skip the following steps when adding new Oracle VM clusters in an existing Oracle
VM environment on Oracle Exadata Database Machine:

- (For Eight Rack systems only) 2. Update Nodes for Eighth Rack
- 6. Calibrate Cells
- 7. Create Cell Disks
- 19. Resecure Machine

Note:
The step numbers change based on the selected hardware
configuration. Use the step names to identify the correct steps on your
system.

For example, to execute step 1, run the following command:

```
$ ./install.sh -cf \
ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -s 1
```

To make OEDA run only a subset of the steps, you can specify a range, for
example:

```
$ ./install.sh -cf \
ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -r 3-5
```

10. For all other systems, run all steps except for the Configure Alerting step using the
XML file for the new cluster.

To run an individual step, use a command similar to the following, which executes
the first step:

```
$ ./install.sh -cf \
ExadataConfigurations/CustomerName-NamePrefix-ClusterName.xml -s 1
```
6.15 Expanding an Oracle VM Oracle RAC Cluster on Exadata Using OEDACLI

You can expand an existing Oracle RAC cluster on Oracle VM Oracle RAC by adding guest domains using the Oracle Exadata Deployment Assistant command-line interface (OEDACLI).

OEDACLI is the preferred method if you have a known, good version of the OEDA XML file for your cluster.

Note:

During the execution of this procedure, the existing Oracle RAC cluster nodes along with their database instances incur zero downtime.

Use cases for this procedure include:

- You have an existing Oracle RAC cluster that uses only a subset of the database servers of an Oracle Exadata Rack, and now the nodes not being used by the cluster have become candidates for use.
- You have an existing Oracle RAC cluster on Oracle Exadata Database Machine that was recently extended with additional database servers.
- You have an existing Oracle RAC cluster that had a complete node failure and the node was removed and replaced with a newly re-imaged node.

Before performing the steps in this section, the new database servers should have been set up as detailed in Adding a New Database Server to the Cluster, including the following:

- The new database server is installed and configured on the network with a kvmhost or management domain.
- Download the latest Oracle Exadata Deployment Assistant (OEDA); ensure the version you download is the July 2019 release, or later.
- You have an OEDA configuration XML file that accurately reflects the existing cluster configuration. You can validate the XML file by generating an installation template from it and comparing it to the current configuration. See the OEDACLI command SAVE FILES.
- Review the OEDA Installation Template report for the current system configuration to obtain node names and IP addresses for existing nodes. You will need to have new host names and IP addresses for the new nodes being added. The new host names and IP addresses required are:
 - Administration host names and IP addresses (referred to as ADMINNET) for the management domain (kvmhost) and the user domains (guests).
 - Private host names and IP addresses (referred to as PRIVNET) for the management domain (kvmhost) and the user domains (guests).
 - Integrated Lights Out Manager (ILOM) host names and IP addresses for the management domain (kvmhost).
– Client host names and IP addresses (referred to as CLIENTNET) for the user domains (guests).
– Virtual IP (VIP) host names and IP addresses (referred to as VIPNET) for the user domains (guests).
– Physical rack number and location of the new node in the rack (in terms of U number)

• Each management domain or kvmhost has been imaged or patched to the same image in use on the existing database servers. The current system image must match the version of the /EXAVMIMAGES/ System.first.boot.*.img file on the new management domain (kvmhost) node.

Note:

The `~/dom0_group` file referenced below is a text file that contains the host names of the management domains or kvmhosts for all existing and new nodes being added.

Check the image version across all management domains or kvmhosts are the same.

```
dcli -g ~/dom0_group -l root "imageinfo -ver"
```

```
exa01adm01: 19.2.0.0.0.190225
exa01adm02: 19.2.0.0.0.190225
exa01adm03: 19.2.0.0.0.190225
```

If any image versions differ, you must upgrade the nodes as needed so that they match.

Ensure that the `System.first.boot` version across all management domains or kvmhosts matches the image version retrieved in the previous step.

```
dcli -g ~/dom0_group -l root "ls -l /EXAVMIMAGES/
System.first.boot*.img"
```

```
exa01adm01: /EXAVMIMAGES/System.first.boot.19.2.0.0.0.190225.img
exa01adm02: /EXAVMIMAGES/System.first.boot.19.2.0.0.0.190225.img
exa01adm03: /EXAVMIMAGES/System.first.boot.19.2.0.0.0.190225.img
```

If any nodes are missing the `System.first.boot.img` file that corresponds to the current image, then obtain the required file. See the “Supplemental README note” for your Exadata release in My Oracle Support Doc ID 888828.1 and look for the patch file corresponding to this description, “DomU System.img OS image for V.V.0.0.0 VM creation on upgraded dom0s”

• Place the `klone.zip` files (gi-klone*.zip and db-klone*.zip) in the `/EXAVMIMAGES` location on the freshly imaged management domain or kvmhost node you are adding to the cluster. These files can be found in the `/EXAVMIMAGES` directory on the management domain or kvmhost node from where the system was initially deployed.
The steps here show how to add a new management domain or kvmhost node called exa01adm03 that will have a new user domain or guest called exa01adm03vm01. The steps show how to extend an existing Oracle RAC cluster onto the user domain (guest) using OEDACLI commands. The existing cluster has management domain (kvmhost) nodes named exa01adm01 and exa01adm02 and user domain(guest) nodes named exa01adm01vm01 and exa01adm02vm01.

1. Add the management domain (kvmhost) information to the OEDA XML file using the CLONE COMPUTE command.

 In the examples below, the OEDA XML file is assumed to be in: unzipped_OEDA_location/ExadataConfigurations.

   ```
   OEDACLI> LOAD FILE NAME=exa01_original_deployment.xml
   OEDACLI> CLONE COMPUTE SRCNAME  = exa01adm01 TGTNAME = exa01adm03
   SET ADMINNET NAME=exa01adm03,IP=xx.xx.xx.xx
   SET PRIVNET NAME1=exa01adm03-priv1,IP1= xx.xx.xx.xx,
   SET PRIVNET NAME2=exa01adm03-priv2,IP2= xx.xx.xx.xx
   SET ILOMNET NAME=exa01adm03-c,IP=xx.xx.xx.xx
   SET RACK NUM=NN,ULOC=XX
   OEDACLI> SAVE ACTION
   OEDACLI> MERGE ACTIONS FORCE
   OEDACLI> SAVE FILE NAME=exa01_plus_adm03_node.xml
   ```

 At this point we have a new XML file that has the new compute node management domain (kvmhost) in the configuration. This file will be used by the subsequent steps.

2. Add the new guest information to the OEDA XML file using the CLONE GUEST command and deploy the guest.

   ```
   OEDACLI> LOAD FILE NAME=exa01_plus_adm03_node.xml
   OEDACLI> CLONE GUEST SRCNAME  = exa01adm01vm01 TGTNAME = exa01adm03vm01
   WHERE STEPNAME=CREATE_GUEST
   SET PARENT NAME = exa01adm03
   SET ADMINNET NAME=exa01adm03vm01,IP=xx.xx.xx.xx
   SET PRIVNET NAME1=exa01db03vm01-priv1,IP1= xx.xx.xx.xx,
   SET PRIVNET NAME2=exa01db03vm01-priv2,IP2= xx.xx.xx.xx
   SET CLIENTNET NAME=exa01client03vm01,IP=xx.xx.xx.xx
   SET VIPNET NAME=exa01client03vm01-vip,IP=xx.xx.xx.xx
   OEDACLI> SAVE ACTION
   OEDACLI> MERGE ACTIONS
   OEDACLI> DEPLOY ACTIONS
   ```

 If you prefer that OEDACLI runs all steps automatically, omit the following clause above, WHERE STEPNAME=CREATE_GUEST and skip step 3 below.

 At this point we have a guest created on our new compute node.

3. Use OEDACLI to extend the cluster to the new guest.
Note:
Continue using the same XML file, exa01_plus_adm03_node.xml in this example. You will continue to update this file as you proceed through these steps. At the very end of the procedure, this XML file will properly reflect the new state of the clusters.

OEDACLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = CREATE_USERS

OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS
OEDACLI> DEPLOY ACTIONS

OEDACLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = CELL_CONNECTIVITY

OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS
OEDACLI> DEPLOY ACTIONS

OEDACLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = ADD_NODE

OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS
OEDACLI> DEPLOY ACTIONS

OEDACLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = EXTEND_DBHOME

OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS
OEDACLI> DEPLOY ACTIONS

OEDACLI> CLONE GUEST TGTNAME=exa01adm03vm01 WHERE STEPNAME = ADD_INSTANCE

OEDACLI> SAVE ACTION
OEDACLI> MERGE ACTIONS
OEDACLI> DEPLOY ACTIONS

OEDACLI prints out messages similar to the following as each step completes:

Deploying Action ID : 39 CLONE GUEST TGTNAME=exa01adm03vm01 where STEPNAME = ADD_INSTANCE
Deploying CLONE GUEST
Cloning Guest
Cloning Guest : exa01adm03vm01.us.oracle.com_id
Adding new instance for database [dbm] on exa01adm03vm01.us.oracle.com
Setting up Huge Pages for Database..[dbm]
Adding instance dbm3 on host exa01adm03vm01.us.oracle.com
Successfully completed adding database instance on the new node
4. Save the current state of the configuration and generate configuration information.

```
OEDACLI> SAVE FILES LOCATION=/tmp/exa01_plus_adm03_config
```

The above command writes all the configuration files to the directory `/tmp/exa01_plus_adm03_config`. Save a copy of these files in a safe place since they now reflect the changes made to your cluster.

5. Gather an Oracle EXAchk report and examine it to ensure the cluster is in good health.

Related Topics

- OEDA Command Line Interface
- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)

6.16 Moving a Guest to a Different Database Server

Guests can move to different database servers.

The target Oracle Exadata Database Machine database server must meet the following requirements:

- The target database server must have the same Oracle Exadata System Software release installed with Oracle VM.
- The target database server must have the same network visibility.
- The target database server must have access to the same Oracle Exadata Database Machine storage servers.
- The target database server must have sufficient free resources (CPU, memory, and local disk storage) to operate the guest.
 - It is possible to over-commit virtual CPUs such that the total number of virtual CPUs assigned to all domains exceeds the number of physical CPUs on the system. Over-committing CPUs can be done only when the competing workloads for over-subscribed resources are well understood and the concurrent demand does not exceed physical capacity.
 - It is not possible to over-commit memory.
 - Copying disk images to the target database server may increase space allocation of the disk image files because the copied files are no longer able to benefit from the disk space savings gained by using OCFS2 reflinks.
- The guest name must not be already in use on the target database server.

The following procedure moves a guest to a new database server in the same Oracle Exadata System Software configuration. All steps in this procedure are performed in the `kvmhost`.
1. Shut down the guest.

 # /opt/exadata_ovm/vm_maker --stop-domain GuestName

2. Copy the guest disk image and configuration files to the target database server. In the following examples, replace GuestName with the name of the domain.

 # scp -r /EXAVMIMAGES/GuestImages/GuestName/ target:/EXAVMIMAGES/GuestImages

3. Obtain the UUID of the guest.

 # grep ^uuid /EXAVMIMAGES/GuestImages/GuestName/vm.cfg

 An example of the guest UUID is 49ffddce4efe43f5910d0c61c87bba58.

4. Using the UUID of the guest, copy the guest symbolic links from /OVS/Repositories to the target database server.

 # tar cpvf - /OVS/Repositories/UUID/ | ssh target_db_server "tar xpvf - -C /"

5. Start the guest on the target database server.

 # /opt/exadata_ovm/vm_maker --start-domain GuestName

6.17 Implementing Tagged VLAN Interfaces

This topic describes the implementation of tagged VLAN interfaces in Oracle VM environments on Oracle Exadata Database Machine.

Oracle databases running in Oracle VM guests on Oracle Exadata Database Machine are accessed through the client Ethernet network defined in the Oracle Exadata Deployment Assistant (OEDA) configuration tool. Client network configuration in both the kvmhost and guests is done automatically when the OEDA installation tool creates the first guest during initial deployment.

The following figure shows a default bonded client network configuration:
The network has the following configuration:

1. In the kvmhost, eth slave interfaces (for example, eth1 and eth2, or eth4 and eth5) that allow access to the guest client network defined in OEDA are discovered, configured, and brought up, but no IP is assigned.

2. In the kvmhost, bondeth0 master interface is configured and brought up, but no IP is assigned.

3. In the kvmhost, bridge interface vmbondeth0 is configured, but no IP is assigned.

4. In the kvmhost, one virtual backend interface (VIF) per guest that maps to that particular guest's bondeth0 interface is configured and brought up, but no IP is assigned. These VIFs are configured on top of the bridge interface vmbondeth0, and the mapping between the kvmhost VIF interface and its corresponding guest interface bondeth0 is defined in the guest configuration file called vm.cfg, located in /EXAVMIMAGES/GuestImages/guest name.

For default installations, a single bondeth0 and a corresponding vmbondeth0 bridge interface is configured in the kvmhost as described above. This bondeth0 interface is based on the default Access Virtual Local Area Network (Access VLAN). The ports on the switch used by the slave interfaces making up bondeth0 are configured for Access VLAN.

Using VLAN Tagging

If there is a need for virtual deployments on Exadata to access additional VLANs on the client network, such as enabling network isolation across guests, then 802.1Q-
based VLAN tagging is a solution. The following figure shows a client network configuration with VLAN tagging.

Figure 6-2 NIC Layout for Oracle Virtual Environments with VLAN Tagging

For instructions on how to configure and use such additional VLAN tagged interfaces on the client network, see My Oracle Support note 2018550.1. The Access VLAN must stay working and configured before and after these instructions are followed. At no time is the Access VLAN to be disabled.

Related Topics
- Implementing Tagged VLAN Interfaces in Oracle VM Environments on Exadata (My Oracle Support Doc ID 2018550.1)

6.18 About RDMA Network Fabric Partitioning Across Oracle RAC Clusters Running in Oracle VM

An RDMA Network Fabric partition defines a group of RDMA Network Fabric nodes or members that are allowed to communicate with one another.

One of the key requirements of consolidated systems from a security standpoint is network isolation across the multiple environments within a consolidated system. For consolidations achieved using Oracle VM Oracle Real Application Clusters (Oracle RAC) clusters on Oracle Exadata, this means isolation across the different Oracle RAC clusters such that network traffic of one Oracle RAC cluster is not accessible to another Oracle RAC cluster. For the Ethernet networks, this is accomplished using VLAN tagging as described in My Oracle Support DocID 2018550.1.
For InfiniBand Transport Layer systems based on a RoCE Network Layer (X8M), isolation is accomplished via Server Level Isolation via Access VLAN settings. By default the RDMA Network Fabric ports for the Cisco Nexus 9336c Ethernet Leaf Switches are set to switchport access vlan 3888. This setting should be suitable for the majority of RDMA over Converged Ethernet (RoCE) switch and host configurations. In the extraordinary situation it is necessary to implement server level isolation, then the Leaf ports connected to the hosts that require isolation must be modified to an access VLAN value such as switchport access vlan 3889.

Note:

The ports on the Cisco Nexus 9336c Ethernet Leaf Switches that are available to modify for example, Host ports) are listed in RDMA Network Fabric Cabling Tables X8M. Additionally, limit the switchport access vlan IDs to a range of 2744-3967 to prevent any other conflicts on the system.

6.19 Using Oracle EXAchk in Oracle VM Environments

Oracle EXAchk version 12.1.0.2.2 and higher supports virtualization on Oracle Exadata Database Machine.

- **Running Oracle EXAchk in Oracle VM Environments**

 To perform the complete set of Oracle EXAchk audit checks in an Oracle Exadata Database Machine Oracle VM environment, Oracle EXAchk must be installed in and run from multiple locations.

- **Audit Checks Performed by Oracle EXAchk**

 Oracle EXAchk runs different audit checks on the kvmhost and the guests.

- **Oracle EXAchk Command Line Options for Oracle Exadata Database Machine**

6.19.1 Running Oracle EXAchk in Oracle VM Environments

To perform the complete set of Oracle EXAchk audit checks in an Oracle Exadata Database Machine Oracle VM environment, Oracle EXAchk must be installed in and run from multiple locations.

1. Run Oracle EXAchk from one kvmhost.
2. Run Oracle EXAchk from one guest in each Oracle Real Application Clusters (Oracle RAC) cluster running in Oracle VM.

For example, an Oracle Exadata Database Machine Quarter Rack with two database servers containing 4 Oracle VM Oracle RAC clusters (2 nodes per cluster for a total of 8 guests across both database servers) requires running Oracle EXAchk five separate times, as follows:

1. Run Oracle EXAchk in the first guest for the first cluster.
2. Run Oracle EXAchk in the first guest for the second cluster.
3. Run Oracle EXAchk in the first guest for the third cluster.
4. Run Oracle EXAchk in the first guest for the fourth cluster.
5. Run Oracle EXAchk in the first kvmhost.
6.19.2 Audit Checks Performed by Oracle EXAchk

Oracle EXAchk runs different audit checks on the kvmhost and the guests.

When you install and run Oracle EXAchk on the kvmhost, it performs the following hardware and operating system level checks:

- Database servers (kvmhosts)
- Storage servers
- RDMA Network Fabric
- RDMA Network Fabric switches

When you install and run Oracle EXAchk on the guest, it performs operating system checks for guests, and checks for Oracle Grid Infrastructure and Oracle Database.

6.19.3 Oracle EXAchk Command Line Options for Oracle Exadata Database Machine

Oracle EXAchk requires no special command line options. It automatically detects that it is running in an Oracle Exadata Database Machine Oracle VM environment. However, you can use command line options to run Oracle EXAchk on a subset of servers or switches.

Oracle EXAchk automatically detects whether it is running in a kvmhost or guest and performs the applicable audit checks. For example, in the simplest case, you can run Oracle EXAchk with no command line options:

```
./exachk
```

When Oracle EXAchk is run in the kvmhost, it performs audit checks on all database servers, storage servers, and RDMA Network Fabric switches accessible through the RDMA Network Fabric network.

To run Oracle EXAchk on a subset of servers or switches, use the following command line options:

Options

- `-clusternodes`: Specifies a comma-separated list of database servers.
- `-cells`: Specifies a comma-separated list of storage servers.
- `-ibswitches`: Specifies a comma-separated list of RDMA Network Fabric switches.

Example 6-1 Running Oracle EXAchk on a Subset of Nodes and Switches

For example, for an Oracle Exadata Database Machine Full Rack where only the first Quarter Rack is configured for virtualization, but all components are accessible
through the RDMA Network Fabric network, you can run a command similar to the following from the database server dm01adm01:

```
./exachk -clusternodes dm01adm01,dm01adm02
    -cells dm01celadm01,dm01celadm02,dm01celadm03
    -ibswitches dm01swibs0,dm01sw-iba0,dm01sw-ibb0
```

Related Topics

• *Oracle ORAchk and EXAchk User’s Guide*
There are different types of software used on an Oracle Exadata Database Machine that need be updated regularly.

- **About Updating Exadata Software**

- **Planning for Software Maintenance**
 Before starting a software update, you should review best practices, determine the version to which you will upgrade, and obtain the proper patching software.

- **About Upgrading to Oracle Linux 7 on Exadata Servers**
 When you upgrade to Oracle Exadata System Software release 19.1.0, the Oracle Linux version is upgraded from Oracle Linux 6 to Oracle Linux 7.

- **Overview of Performing Exadata Software Updates**
 For each software update of the Exadata components, there are various actions required to complete the software update.

- **Updating Oracle Exadata Database Machine Database Servers**
 Use the following information and procedures when updating database servers within Oracle Exadata Database Machine.

- **Updating Database Servers Running Oracle Exadata System Software Release 11.2.2.4.2**
 Updates for database servers running Oracle Exadata System Software release 11.2.2.4.2 include an update that prepares the servers to use yum.

- **Updating Software on Oracle Exadata Storage Servers**
 Use the following information and procedures when updating storage servers within Oracle Exadata Database Machine.

- **Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware**
 You use a separate update utility that is shipped with the Oracle Exadata System Software update to update and downgrade the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

- **Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware**
 You use the same update utility that is shipped with the storage server update to update and downgrade the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

- **Upgrading Oracle Java SE on Oracle Linux**
 You can upgrade Oracle Java SE (JDK) running Oracle Linux 6 on database servers and storage servers.

- **Setting up SSH Equivalence**
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

- **Troubleshooting Software Updates on Oracle Exadata Database Machine**
 Review these topics if you encounter errors or problems when updating the software on Oracle Exadata Database Machine.
7.1 About Updating Exadata Software

Exadata software updates apply to three major components:

- Exadata storage servers
- Exadata database servers
- Exadata RDMA Network Fabric switches

Exadata storage server and Exadata database server updates generally contain updates for:

- Oracle Linux operating system
- Oracle Exadata System Software
- Firmware (for example: disk, flash, RAID controller, ILOM, HCA)

The updates do not modify the Oracle Grid Infrastructure home, Oracle Database home (other than relinking during the `dbnodeupdate.sh -c` step), or customer-installed software.

While it is generally recommended for components to stay in step with the recommended minimum release, you can choose to update different components at different times. For example, you could update RDMA Network Fabric switches at a later time than Exadata storage servers and Exadata database servers. However, you must check My Oracle Support Doc ID 888828.1 for any dependencies.

It is not mandatory to apply each and every Oracle Exadata System Software update that comes out. For example, you can skip two or three releases and update directly to a newer release. Oracle recommends that you update database servers twice a year.

Upgrading is allowed under the following circumstances:

1. The product version of the target release is higher than the installed software, and
2. The date code of the target release is higher than the installed software.

For example, consider a system that is currently running image version 12.1.1.1.2.150411, which consists of product version 12.1.1.1.2 and date code 150411.

- Upgrading to 12.1.2.1.2.150617.1 is allowed because both rules are satisfied.
- Upgrading to 12.1.2.1.1.150316.2 is not allowed because date code 150411 of the installed software is higher than date code 150316 of the target release.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
- Understanding the Exadata Software Image Version
 The Exadata image version number contains the product version, a date code, and a build number.
7.2 Planning for Software Maintenance

Before starting a software update, you should review best practices, determine the version to which you will upgrade, and obtain the proper patching software.

- **Understanding Exadata Database Machine Software and Updates**
 Understanding the different types of software updates required for Exadata Database Machine helps you plan an update schedule.

- **Configuration and Operational Best Practices for Software Maintenance**
 As part of planning your software update, you should review the different methods of performing updates and the best practices for updating the software.

- **Understanding the Exadata Software Image Version**
 The Exadata image version number contains the product version, a date code, and a build number.

- **Rules for Updating to Newer Exadata Version**
 When upgrading, you need to consider both the product version and date code of the installed and target releases.

- **Exadata Patchmgr Update Utility**
 Patchmgr is the utility used to update software for Exadata infrastructure components.

7.2.1 Understanding Exadata Database Machine Software and Updates

Understanding the different types of software updates required for Exadata Database Machine helps you plan an update schedule.

- **What Software Do You Update on Oracle Exadata Database Machine?**
 The software that runs on Oracle Exadata Database Machine is divided into two categories.

- **Software Release Types**
 The primary software categories Exadata Infrastructure software and Grid Infrastructure and Database software are further broken down by the release type.

- **Software Release Availability**
 Each software release type has a different frequency of availability.

- **Software Update Frequency**
 You should plan to update your Exadata software on a regular basis.

- **Software Update Utilities**
 When updating software on Oracle Exadata Database Machine, you use specific utilities, depending on the component being updated.

7.2.1.1 What Software Do You Update on Oracle Exadata Database Machine?

The software that runs on Oracle Exadata Database Machine is divided into two categories.

- Oracle Exadata Database Machine infrastructure software
- Oracle Grid Infrastructure and Oracle Database software
The following table describes the two primary categories of software that run on an Oracle Exadata Database Machine.

<table>
<thead>
<tr>
<th>Software</th>
<th>Components Installed On</th>
<th>Software Content</th>
<th>Example Software Version</th>
</tr>
</thead>
</table>
| Oracle Exadata Database Machine infrastructure software | • Exadata storage servers
• Exadata database servers
• Exadata RDMA Network Fabric switches | • Oracle Linux operating system
• Oracle VM Server (on database servers for Oracle VM configurations)
• Oracle Exadata System Software
• Firmware (for example: disk, flash, RAID controller, ILOM, HCA, RDMA Network Fabric switch firmware) | Oracle Exadata System Software on storage servers and database servers:
• 12.2.1.1.0
• 12.1.2.3.4
InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch firmware:
• 2.2.4-3
• 2.1.8-1
InfiniBand Transport Layer systems based on a RoCE Network Layer switch firmware:
• 7.0(3)I7(6) |
| Oracle Grid Infrastructure and Oracle Database software | Exadata database servers | • Oracle Grid Infrastructure (Grid home)
• Oracle Database (Database home) | 12.2.0.1.0
12.1.0.2.160117
11.2.0.4.161018 |

When an Oracle Exadata Database Machine is deployed, all of the software described in the table is installed and configured to deliver high performance and availability for Oracle Database. Extensive end-to-end testing ensures all software components supplied with Oracle Exadata Database Machine work seamlessly together.

My Oracle Support Doc ID 888828.1 is the primary source of information for software that runs on Oracle Exadata Database Machine. It contains the following information:

- List of all current and previous releases
- Minimum requirements for feature usage
- Compatibility requirements between Oracle Exadata System Software version and Oracle Database software version
- Compatibility requirements for specific hardware releases
- Guidelines for related products when used with Oracle Exadata Database Machine
- References to other pertinent information sources for Oracle Exadata Database Machine software maintenance

Related Topics

- [Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)]
7.2.1.2 Software Release Types

The primary software categories Exadata Infrastructure software and Grid Infrastructure and Database software are further broken down by the release type.

<table>
<thead>
<tr>
<th>Software</th>
<th>Release type</th>
<th>Description and Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata Infrastructure software</td>
<td>Feature release</td>
<td>The first four digits represent a Exadata feature release, for example, 12.2.1.1.0. A feature release contains new features, bug fixes, and security fixes. It may be used to update any prior feature or sustaining release. You can update directly to feature release 12.2.1.1.0 from any prior release from 11.2.3.3.1 to 12.1.2.3.4, inclusive.</td>
</tr>
<tr>
<td>Exadata Infrastructure software</td>
<td>Sustaining release</td>
<td>The fifth digit represents a cumulative update to a feature release, for example, 12.1.2.3.4. A sustaining release contains bug fixes and security fixes. A given feature release will have approximately four sustaining releases. A sustaining release may be used to update any prior feature or sustaining release. You can update directly to sustaining release 12.1.2.3.4 from any prior release from 11.2.3.3.1 to 12.1.2.3.3, inclusive.</td>
</tr>
<tr>
<td>Exadata Infrastructure software</td>
<td>Interim patch</td>
<td>An interim patch is one-off bug fix made available to customers who cannot wait until the fix is included in a sustaining release or feature release. Installation of an interim patch is done on an as-needed basis and is not a regularly scheduled planned maintenance event.</td>
</tr>
<tr>
<td>Oracle Grid Infrastructure and</td>
<td>Major or maintenance release</td>
<td>The first and second digits represent a major and maintenance database release, for example, 12.2 or 12.1. A major release or maintenance release contains new features, bug fixes, and security fixes.</td>
</tr>
<tr>
<td>Software</td>
<td>Release type</td>
<td>Description and Content</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Oracle Grid Infrastructure and Oracle Database software</td>
<td>Patch set release</td>
<td>The forth digit represents a patch set release, for example, 12.2.0.1 or 12.1.0.2. A patch set release contains primarily bug fixes. However, some minor new features and change in functionality may be included in a patch set release.</td>
</tr>
<tr>
<td>Oracle Grid Infrastructure and Oracle Database software</td>
<td>Proactive Bundle Patch</td>
<td>The fifth digit represents a cumulative update to a patch set release, for example, 12.1.0.2.170117 or 11.2.0.4.161018. The proactive bundle patch contains bug fixes and security fixes. It is a superset of the standard Oracle Grid Infrastructure PSU (GIPSU). Only the Proactive Bundle Patch can be installed on Exadata systems, not the standard PSU (with the exception of Oracle Database 12.1.0.1, which uses the standard GIPSU). For Oracle Database 11.2, the proactive bundle patch is called Database Patch for Exadata.</td>
</tr>
<tr>
<td>Oracle Grid Infrastructure and Oracle Database software</td>
<td>Interim patch</td>
<td>An interim patch is one-off bug fix made available to customers who cannot wait until the fix is included in a subsequent patch set release or database patch for Exadata. Installation of an interim patch is done on an as-needed basis and is not a regularly scheduled planned maintenance event.</td>
</tr>
</tbody>
</table>

7.2.1.3 Software Release Availability

Each software release type has a different frequency of availability.

Exadata sustaining releases and quarterly Grid Infrastructure and Database Proactive Bundle Patches are released on regular quarterly cycle as part of the Oracle Critical Patch Update (CPU) program. Oracle provides these quarterly releases is to address proactive, critical fixes and security vulnerabilities.
Related Topics

- [My Oracle Support Document 742060.1](#)

7.2.1.4 Software Update Frequency

You should plan to update your Exadata software on a regular basis.

These examples show three high-level quarterly software maintenance plans over a four year cycle using typical intervals between releases.

Note:

Release frequency may vary from what is documented here, particularly for releases that contain new features.

- [Example 7-1 Production System Software Maintenance Plan](#)
- [Example 7-2 Production System Software Maintenance Plan with Reduced Updates](#)
- [Example 7-3 Development and Test System Software Maintenance Plan](#)
Example 7-1 Production System Software Maintenance Plan

Goal — Minimize risk by applying critical and security fixes as they become available, and adopting new feature releases as late as possible. Where possible do not adopt a new Exadata feature release and new Database feature release simultaneously.

Figure 7-1 Frequency of Production System Software Updates

<table>
<thead>
<tr>
<th>Action</th>
<th>Y1 Q1</th>
<th>Y1 Q2</th>
<th>Y1 Q3</th>
<th>Y1 Q4</th>
<th>Y2 Q1</th>
<th>Y2 Q2</th>
<th>Y2 Q3</th>
<th>Y2 Q4</th>
<th>Y3 Q1</th>
<th>Y3 Q2</th>
<th>Y3 Q3</th>
<th>Y3 Q4</th>
<th>Y4 Q1</th>
<th>Y4 Q2</th>
<th>Y4 Q3</th>
<th>Y4 Q4</th>
<th>Y4 Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update to next Exadata sustaining release</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Update to next Exadata feature release</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Update to next Database Proactive Bundle Patch</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Update to next Database patch set release</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Update to next Database major or maintenance release</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Example 7-2 Production System Software Maintenance Plan with Reduced Updates

Goal — Minimize maintenance time by applying alternating quarterly updates. Where possible do not adopt a new Exadata feature release and new Database feature release simultaneously.
Figure 7-2 Frequency of Reduced Production System Software Updates

<table>
<thead>
<tr>
<th>Action</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update to next Exadata sustaining release</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update to next Exadata feature release</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update to next Database Proactive Bundle Patch</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update to next Database patch set release</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Update to next Database major or maintenance release</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 7-3 Development and Test System Software Maintenance Plan

Goal — Adopt the latest features and software updates as soon as possible.
Figure 7-3 Frequency of Development and Test System Software Updates

<table>
<thead>
<tr>
<th>Action</th>
<th>Y1</th>
<th>Y1</th>
<th>Y1</th>
<th>Y2</th>
<th>Y2</th>
<th>Y2</th>
<th>Y3</th>
<th>Y3</th>
<th>Y3</th>
<th>Y4</th>
<th>Y4</th>
<th>Y4</th>
<th>Y5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update to next Exadata sustaining release</td>
<td>X</td>
</tr>
<tr>
<td>Update to next Exadata feature release</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update to next Database Proactive Bundle Patch</td>
<td>X</td>
</tr>
<tr>
<td>Update to next Database patch set release</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Update to next Database major or maintenance release</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

7.2.1.5 Software Update Utilities

When updating software on Oracle Exadata Database Machine, you use specific utilities, depending on the component being updated.

<table>
<thead>
<tr>
<th>Update Type</th>
<th>Utility</th>
<th>Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Type</td>
<td>Utility</td>
<td>Components</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Oracle Exadata Database Machine infrastructure | patchmgr | • Oracle Exadata Database Machine storage servers
• Oracle Exadata Database Machine database servers
• RDMA Network Fabric switches | Oracle Exadata Database Machine software update tool that updates all software (Oracle Linux, Oracle Exadata System Software, firmware) on Oracle Exadata Database Machine database servers, storage servers, or RDMA Network Fabric switches. For example, patchmgr updates Oracle Exadata Database Machine storage servers and database servers to Oracle Exadata System Software version 12.2.1.1.0, or InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches to version 2.2.4-3.
Software update tool that applies a Proactive Bundle Patch to an Oracle Grid Infrastructure home or Oracle Database home. For example, OPatch applies Proactive Bundle Patch 12.1.0.2.170117 to 12.1.0.2 Oracle Grid Infrastructure and Oracle Database homes.
<table>
<thead>
<tr>
<th>Update Type</th>
<th>Utility</th>
<th>Components</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Grid Infrastructure and Oracle Database software patch set, major</td>
<td>Oracle Universal Installer</td>
<td>Oracle Exadata Database Machine Database</td>
<td>Software installation tool that installs an Oracle Grid Infrastructure and Oracle Database patch set, major, or maintenance release, and upgrades Oracle Grid Infrastructure. For example, Oracle Universal Installer installs Oracle Database 12.2.0.1, or installs and upgrades Oracle Grid Infrastructure from 12.1.0.2 to 12.2.0.1. Use the version of Oracle Universal Installer bundled with the Oracle Grid Infrastructure and Oracle Database release to which you are upgrading.</td>
</tr>
<tr>
<td>release, or maintenance release.</td>
<td></td>
<td>Machine database servers</td>
<td></td>
</tr>
<tr>
<td>Upgrade of an Oracle Database</td>
<td>Database Upgrade Assistant (DBUA)</td>
<td>Oracle Exadata Database Machine Database</td>
<td>Database tool that upgrades a database to a later patch set, major, or maintenance release. For example, DBUA upgrades a database from 12.1.0.1 to 12.1.0.2, or from 12.1.0.2 to 12.2.0.1. Use DBUA bundled with the Oracle Grid Infrastructure and Oracle Database release to which you are upgrading.</td>
</tr>
<tr>
<td>software</td>
<td></td>
<td>Machine database servers</td>
<td></td>
</tr>
<tr>
<td>Oracle Grid Infrastructure and</td>
<td>Fleet Patching and Provisioning (previously</td>
<td>Oracle Exadata Database Machine Database</td>
<td>Software maintenance tool that provisions, patches, and upgrades Oracle Grid Infrastructure and Oracle Database software on one or more clusters from a centralized server. Use Fleet Patching and Provisioning as a feature of Oracle Clusterware.</td>
</tr>
<tr>
<td>Oracle Database software</td>
<td>named Rapid Home Provisioning (RHP))</td>
<td>Machine database servers</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7: Planning for Software Maintenance

7.2.2 Configuration and Operational Best Practices for Software Maintenance

As part of planning your software update, you should review the different methods of performing updates and the best practices for updating the software.

- **Understanding Rolling and Non-Rolling Updates**
 Software updates can be performed in rolling manner while the database remains online and available, or non-rolling manner where Oracle Clusterware and Oracle Database are shutdown.

- **Online Updates for Oracle Linux Kernel and Oracle Database Interim Fixes**
 Online updates of qualified fixes are supported for Oracle Linux and Oracle Database.

- **Configuration Practices for Optimal Software Maintenance**
 When configuring an Exadata Database Machine, it is important to adopt features that will lessen the impact and risk of performing software updates.

- **Operational Practices for Optimal Software Maintenance**

- **Version Compatibility and Mixed Version Support**
 It is recommended that software for all components be updated regularly to stay in step with the recommended minimum release in order to maintain the most stable and secure system.

- **Ordering of Updates**
 In general, when performing software updates, the updates may be applied to components in any order based on business needs and maintenance window requirements.
7.2.2.1 Understanding Rolling and Non-Rolling Updates

Software updates can be performed in rolling manner while the database remains online and available, or non-rolling manner where Oracle Clusterware and Oracle Database are shutdown.

The manner an update is performed does not affect how often it should be done, but does determine how long it will take. In general there are two methods:

- **Rolling software updates** — A rolling software update is one that is performed to one of a particular component at a time while the others remain online servicing requests. Note the following key points about rolling software updates:
 - Rolling updates have less application downtime compared to non-rolling updates.
 - The overall length of time to complete the update is longer because one component is offline and updated at a time, while all other components remain online and operational.
 - The impact to existing database connections differs depending on the component being updated.
 - Rolling updates for Exadata Oracle Exadata Database Machine storage servers or RDMA Network Fabric switches — All databases remain fully online and available for the duration of the rolling update. There is no disruption to database connections.
 - Rolling updates for Oracle Exadata Database Machine database servers, Oracle Grid Infrastructure, or Oracle Database — Multi-instance databases using Oracle Real Application Clusters (Oracle RAC) remain available for the duration of the update. However, database connections on the server being updated will be disrupted when the local database instance is shutdown. Use Oracle RAC features for client high availability to minimize application disruption, as described in Table 7-1.

- **Non-Rolling software updates** — A non-rolling software update is one that is performed to all of a particular component while those components are offline. Note the following key points about non-rolling software updates:
 - Non-rolling updates are faster than rolling updates for overall maintenance time because multiple components are updated in parallel.
 - Because all of a particular component are offline for the duration of the update, a database (or all databases on a system) will also be offline for the duration of the update, resulting in a complete outage to the application.
 - Important applications serviced by the Oracle Exadata Database Machine being updated in a non-rolling manner are often moved to a standby system in environments using Oracle Data Guard.

- **Combination of rolling and non-rolling software updates** — When multiple components are updated in the same maintenance window, it is possible to use a combination of rolling and non-rolling methods to achieve the desired balance of application downtime and maintenance time. One typical combination used in the situation where an application does not handle connection disruption efficiently is to perform Oracle Exadata Database Machine storage server and RDMA Network Fabric switch updates in a rolling manner, then performing Oracle Grid
Infrastructure, Oracle Database, and Oracle Exadata Database Machine database server updates in a non-rolling manner.

The `patchmgr` update utility manages the update orchestration in a rolling or non-rolling manner for Oracle Exadata Database Machine infrastructure components (storage servers, database servers, and RDMA Network Fabric switches).

The following table describes which update method is supported for each component type.

Table 7-1 Rolling versus Non-Rolling Upgrades

<table>
<thead>
<tr>
<th>Method</th>
<th>Component Support</th>
<th>Database Availability Impact During Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling</td>
<td>Oracle Exadata Database Machine storage servers</td>
<td>No impact. Oracle RAC and single instance databases remain fully available on all nodes in the cluster.</td>
</tr>
<tr>
<td>Rolling</td>
<td>RDMA Network Fabric switches</td>
<td>No impact. Oracle RAC and single instance databases remain fully available on all nodes in the cluster.</td>
</tr>
<tr>
<td>Rolling</td>
<td>Oracle Exadata Database Machine database servers</td>
<td>Local connections are disconnected and all local instances are shutdown. Oracle RAC databases remain available through other nodes in the cluster.</td>
</tr>
<tr>
<td>Rolling</td>
<td>Oracle Grid Infrastructure</td>
<td>Local connections are disconnected and all local instances are shutdown. Oracle RAC databases remain available through other nodes in the cluster.</td>
</tr>
<tr>
<td>Rolling</td>
<td>Oracle Database - Proactive Bundle Patch</td>
<td>For the database home being updated, local connections are disconnected and local instances are shutdown. Oracle RAC databases remain available through other nodes in the cluster. Databases running from other Oracle Database software homes are unaffected.</td>
</tr>
</tbody>
</table>
Table 7-1 (Cont.) Rolling versus Non-Rolling Upgrades

<table>
<thead>
<tr>
<th>Method</th>
<th>Component Support</th>
<th>Database Availability Impact During Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Rolling</td>
<td>• Oracle Exadata Database Machine storage servers</td>
<td>Databases unavailable</td>
</tr>
<tr>
<td></td>
<td>• Oracle Exadata Database Machine database servers</td>
<td>Move workload to Oracle Data Guard or Oracle GoldenGate standby systems to minimize impact.</td>
</tr>
<tr>
<td></td>
<td>• Oracle Grid Infrastructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oracle Database - Proactive Bundle Patch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oracle Database - Patch Set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oracle Database - Release</td>
<td></td>
</tr>
</tbody>
</table>

7.2.2.2 Online Updates for Oracle Linux Kernel and Oracle Database Interim Fixes

Online updates of qualified fixes are supported for Oracle Linux and Oracle Database.

Typically, planned software updates require that the component be restarted after the update. For example, an Exadata database server must be restarted after applying an Exadata software release to update the system firmware and to make active a new Oracle Linux kernel. Similarly, an Oracle database instance must be stopped and restarted to apply a software update to the database home.

Oracle supplies some interim fixes, however, that can be applied online, such that a component does not require a restart to apply the fix and make them active. Online updates of qualified fixes are supported for the following components:

- Oracle Linux kernel on Exadata database servers using the Ksplice Offline Client.
- Oracle Database using OPatch Online Patching.

Online updates are typically performed as a temporary measure when a critical fix must be applied to the system before the next scheduled planned software maintenance.

Related Topics

- HOWTO: Install ksplice kernel updates for Exadata Database Nodes (My Oracle Support Doc ID 2207063.1)
- RDBMS Online Patching Aka Hot Patching (My Oracle Support Doc ID 761111.1)

7.2.2.3 Configuration Practices for Optimal Software Maintenance

When configuring an Exadata Database Machine, it is important to adopt features that will lessen the impact and risk of performing software updates.
Configuration Practice

<table>
<thead>
<tr>
<th>Configuration Practice</th>
<th>Use for Software Maintenance</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle ASM high redundancy disk groups</td>
<td>Rolling updates - Exadata storage servers</td>
<td>When performing storage server updates in a rolling manner with the databases remaining online, it is highly recommended to configure Oracle ASM disk groups with high redundancy. High redundancy disk groups can tolerate the failure of a disk in another storage server during rolling updates. During rolling, or online, storage server updates, the disks for the storage server being updated are taken offline on one storage server by patchmgr while it is updated. After the update completes the disks are resynchronized by Oracle ASM, and then patchmgr starts to update the next storage server. While disks are offline the disk group has reduced redundancy. A normal redundancy disk group with reduced redundancy during a rolling update may dismount and have data loss if a disk fails in another storage server. Oracle ASM disk group redundancy is typically set during initial system configuration. Therefore, consider how you plan to perform storage server updates, rolling or non-rolling, prior to system configuration. An Oracle Data Guard physical standby system can also provide protection against disk failure during rolling storage server update.</td>
</tr>
<tr>
<td>Configuration Practice</td>
<td>Use for Software Maintenance</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Oracle RAC features for client high availability</td>
<td>Rolling updates - Exadata database servers, Oracle Grid Infrastructure or Oracle Database software</td>
<td>When performing Exadata database server, Oracle Grid Infrastructure, or Oracle Database software updates in a rolling manner on one database server at a time while database services remain running on the other servers in the cluster, the database services must be stopped on the Exadata database server being updated. To minimize the impact to client applications connected to database instances that will be stopped during maintenance, configure client applications to use database services, Fast Application Notification (FAN), Fast Connection Failover (FCF), and Application Continuity.</td>
</tr>
<tr>
<td>Oracle Data Guard physical standby database</td>
<td>Any rolling or non-rolling update (except Oracle Database patch set and release updates)</td>
<td>Oracle Data Guard Standby-First Patch Apply provides support for different Exadata infrastructure, Oracle Grid Infrastructure, and Oracle Database software between a primary database and its physical standby database for the purpose of applying and validating Oracle patches in rolling fashion with minimal risk to the primary database.</td>
</tr>
<tr>
<td>Oracle Data Guard transient logical standby database</td>
<td>Any rolling or non-rolling update</td>
<td>Use Oracle Data Guard logical standby database to reduce database upgrade downtime for patch set and release updates. Database upgrade downtime is reduced by allowing the logical standby database to be upgraded to the new version and kept synchronized while the primary database remains online running the current version.</td>
</tr>
</tbody>
</table>
Configuration Practice | **Use for Software Maintenance** | **Purpose**
--- | --- | ---
Oracle GoldenGate | Any rolling or non-rolling update | Use Oracle GoldenGate to reduce database upgrade downtime for patch set and release updates. Downtime during a database upgrade is reduced by allowing the target database to be upgraded to the new version and kept synchronized while the source database remains online running the current version.

Related Topics
- “Client High Availability with Services, FAN, FCF, and Application Continuity” in *Oracle Database 2 Day + Real Application Clusters Guide*
- Oracle Patch Assurance - Data Guard Standby-First Patch Apply (My Oracle Support Doc ID 1265700.1)
- “Patching, Upgrading, and Downgrading Databases in an Oracle Data Guard Configuration” in *Oracle Data Guard Concepts and Administration*
- “Configuring Oracle GoldenGate to Maintain a Live Standby Database” in *Administering Oracle GoldenGate for Windows and UNIX*

7.2.2.4 Operational Practices for Optimal Software Maintenance

The following operational practices enable optimal software maintenance:

- **Run Oracle EXAchk regularly** — As a general health check tool to ensure an Exadata system continues to meet the current and constantly evolving best practices, run Oracle EXAchk monthly. The exactchk report should be utilized as follows:
 - Baseline comparison - Compare the current report against an accepted baseline report using the report comparison feature (`-diff` option).
 - Critical issue exposure - Review the report for exposure to critical issues. Take prompt action to resolve critical issues reported by Oracle EXAchk.
 - Version recommendation - Review the report for version recommendation. The MAA Scorecard section evaluates current software versions for consistency, compatibility, and whether or not it is current.

- **Qualify maintenance readiness with Oracle EXAchk** — Prior to performing software maintenance, run Oracle EXAchk to ensure the system is in a healthy state. Correct any **FAIL** or **WARNING** checks before updating any software. After software maintenance is complete, run Oracle EXAchk again to confirm system health.

- **Update software at regular intervals** — All software should be updated regularly. Maintaining software at current or recent releases provides the following benefits: better software security, more stable sustaining releases, continued compatibility with newer related software, better support and faster resolution of issues, and ability to supply fixes for newly discovered issues.
• **Use the latest versions of the update utilities** — Use the latest version of software update utilities Oracle EXAchk, patchmgr, and OPatch. Oracle EXAchk is updated regularly to contain new features, fixes, best practice health checks, and version recommendations. Patchmgr for database servers is updated regularly to contain new features, fixes, and workarounds for known database server update issues. OPatch is updated regularly to contain new features and fixes.

• **Perform storage server updates separately from RDMA Network Fabric switch updates** — Do not update storage servers and RDMA Network Fabric switches concurrently. RDMA Network Fabric network connections must be stable during some critical stages of storage server updates. RDMA Network Fabric switch firmware upgrade requires switch reboot, which disrupts some connections on the RDMA Network Fabric network.

• **Avoid unsupported system changes** — Oracle Exadata Database Machine is an integrated system and engineered to be the best platform for running Oracle Database. Oracle Exadata Database Machine storage servers and RDMA Network Fabric switches contain all software necessary to run Oracle Database and are configured to run Oracle Database optimally. Software updates to Oracle Exadata Database Machine storage servers and RDMA Network Fabric switches are performed using patchmgr. Configuration or installed software may not be altered manually (without using patchmgr) in any way unless the Oracle Exadata Database Machine documentation contains steps to perform the desired change. While making an unsupported manual change may have the desired immediate effect, there are many potential negative consequences, such as:
 – Failed future patchmgr software updates
 – Inability to rescue the system
 – Inability to diagnose a software defect efficiently

Contact Oracle Support Services for further guidance if a desired Oracle Exadata Database Machine storage server or RDMA Network Fabric switch change is not documented.

• **Minimize database server customization** — Oracle Exadata Database Machine is an integrated system and engineered to be the best platform for running Oracle Database. Oracle Exadata Database Machine database servers contain all software necessary to run Oracle Database and are configured to run Oracle Database optimally. Software updates to Oracle Exadata Database Machine database servers are performed using patchmgr. However, it may be necessary to manually install additional, site-specific software, such as monitoring agents or backup agents.

It is supported to manually customize database servers, but note that customizing the operating system by adding or updating packages may require additional actions when applying a future Oracle Exadata System Software update with patchmgr (for example, removing customization prior to updating Oracle Exadata Database Machine servers and reapplying the customization after the update completes) because the additional software may add new dependencies which are not provided by a future Oracle Exadata System Software update. It is recommended to minimize database server customization. See the topic **Updating Oracle Exadata Database Machine Database Servers** for additional details.

• **Test supported configuration changes** — Database server site-specific customization must be tested completely, including verifying database servers reboot properly after making configuration changes. Custom configuration
changes that prevent successful system reboot will cause future Oracle Exadata System Software updates to fail.

7.2.2.5 Version Compatibility and Mixed Version Support

It is recommended that software for all components be updated regularly to stay in step with the recommended minimum release in order to maintain the most stable and secure system.

However, it is supported to update only a subset of components during a software maintenance window while the remaining components remain at an earlier version. For example, the following scenarios are supported:

- Update a subset of Oracle Exadata Database Machine storage servers to a higher version of the Oracle Exadata System Software while the remaining storage servers remain at the earlier Oracle Exadata System Software version.
- Update Oracle Exadata Database Machine storage servers to a higher version of the Oracle Exadata System Software while the database servers remain at the earlier Oracle Exadata System Software version.
- Update Oracle Exadata Database Machine database servers to a higher version of the Oracle Exadata System Software while the storage servers remain at the earlier Oracle Exadata System Software version.
- Update Oracle Exadata Database Machine storage servers to a higher version of the Oracle Exadata System Software while RDMA Network Fabric switches remain at the earlier Oracle Exadata System Software version.
- Update RDMA Network Fabric switches to a higher version of the Oracle Exadata System Software while Oracle Exadata Database Machine storage servers remain at the earlier Oracle Exadata System Software version.
- Update Oracle Exadata Database Machine storage servers to a higher version of the Oracle Exadata System Software while Oracle Grid Infrastructure or Oracle Database software remains at an earlier release, patch set, and quarterly patch level.

While mixed versions are supported (within the same component or across different components), it is highly recommended that this be only a temporary configuration that exists for the purpose and duration of rolling upgrade.

If mixing versions the following rules and considerations must be observed:

- A specific generation of Oracle Exadata Database Machine hardware will have a minimum required Oracle Exadata System Software version. For example, Oracle Exadata Database Machine X6 hardware requires Oracle Exadata System Software release 12.1.2.3.1 or higher.
- A specific Oracle Database release requires a minimum Oracle Exadata System Software release to fully support Oracle Exadata Database Machine features. For example, Oracle Database 12c Release 2 (12.2) requires Oracle Exadata System Software release 12.2.1.1.0 or higher on storage servers to support all Oracle Exadata Database Machine offload features.
- Features supplied with a new Oracle Exadata System Software release may require a minimum Oracle Grid Infrastructure or Oracle Database software release, patch set, or patch. For example, the Oracle Exadata Database Machine feature Smart Scan Offload for Compressed Index Scan requires Oracle Database 12.2 and Oracle Exadata System Software 12.2 on storage servers.
• Oracle Grid Infrastructure supports mixed version for limited duration for the purposes of rolling update only (for example, updating from release 12.1.0.2 to 12.2.0.1, or updating from release 12.1.0.2.161018 to 12.1.0.2.170117). Some Oracle Clusterware functionality is restricted while the cluster is in rolling upgrade mode.

• Oracle Database supports mixed version for Proactive Bundle Patch for the purposes of rolling update only (for example, updating from release 12.1.0.2.161018 to 12.1.0.2.170117).

Related Topics
• Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
• Whats New in Oracle Exadata Database Machine 12c Release 2 (12.2.1.1.0)

7.2.2.6 Ordering of Updates

In general, when performing software updates, the updates may be applied to components in any order based on business needs and maintenance window requirements.

The recommended order for applying software updates is:

1. Oracle Grid Infrastructure and Oracle Database software
2. Oracle Exadata Database Machine database server software
3. Oracle Exadata Database Machine storage server software
4. RDMA Network Fabric switch software

There are exceptions where specific update ordering is required, which are documented in the Oracle Exadata System Software supplemental README for the version being updated to. Some examples of required update ordering are:

• Oracle Grid Infrastructure and Oracle Database 18c require Oracle Exadata System Software version 18.1.4 or higher. When updating a system with Oracle Exadata System Software release 12.2 and Oracle Grid Infrastructure 12c to Oracle Exadata System Software release 18 and Oracle Grid Infrastructure 18c, respectively, all Oracle Exadata Database Machine components must be updated first to Oracle Exadata System Software release 18.1.4 or higher before updating Oracle Grid Infrastructure and Oracle Database to release 18c.

• When updating a system with Oracle ASM Cluster File System (Oracle ACFS) configured, the Oracle Grid Infrastructure home must contain the fix for bug 22810422 before updating the database server (non-Oracle VM or Oracle VM) to Oracle Exadata System Software release 12.2.

• When updating an Oracle VM configuration from Oracle Exadata System Software release 12.1 to release 12.2, all user domains must be updated to Oracle Exadata System Software release 12.2 before updating the management domain to Oracle Exadata System Software release 12.2.

• When updating an Oracle VM configuration, the Oracle Grid Infrastructure home in user domain must be running the Proactive Bundle Patch release 12.1.0.2.161018 (October 2016) or later before updating a user domain to Oracle Exadata System Software release 12.2.

In general, software update ordering requirements occur when updating one or more components to a later version that contains new features, for example, when updating
Oracle Exadata System Software from release 12.1 to release 12.2. Refer to the Oracle Exadata System Software supplemental README for the software version being updated to for additional details.

Related Topics
- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)

7.2.3 Understanding the Exadata Software Image Version

The Exadata image version number contains the product version, a date code, and a build number.

The Exadata version installed on an Exadata storage server or an Exadata database server is determined with the `imageinfo` command. The image version of an Exadata release consists of three components. For example, if the command `imageinfo -ver` returns `12.1.2.1.1.150316.2`, then:

- The product version is `12.1.2.1.1`
- The date code is `150316`
- The Oracle-internal build number is `2`. This component is not always used.

In most circumstances it is sufficient to reference a release by the product version only, for example, `12.1.2.1.1`. However, when upgrading, you need to consider both the product version and date code of the installed and target releases.

Starting with the 12.2.0.2.0 release, the product version no longer uses the legacy nomenclature such as `12.2.0.2`. Instead, the product version is a three field format consisting of: `Year.Update.Revision`, for example `18.1.0`.

7.2.4 Rules for Updating to Newer Exadata Version

When upgrading, you need to consider both the product version and date code of the installed and target releases.

In most circumstances it is sufficient to reference a release by the product version only, for example, `12.1.2.1.1`.

Upgrading to a specific target version must adhere to the following rules, which are enforced by patchmgr:

1. The product version of the target release must be higher than the installed software
 and
2. The date code of the target release must be higher than the installed software.

For example, consider an Exadata Database Machine that is currently running image version `12.1.1.1.2.150411`, which consists of product version `12.1.1.1.2` and date code `150411`.

- Upgrading to `12.1.2.1.2.150617.1` is allowed because both rules are satisfied.
- Upgrading to `12.1.2.1.1.150316.2` is not allowed because date code `150411` of the installed software is higher than date code `150316` of the target release.
7.2.5 Exadata Patchmgr Update Utility

Patchmgr is the utility used to update software for Exadata infrastructure components.

- **About the Exadata Patchmgr Update Utility**
 Patchmgr is designed to simplify the software update process.

- **Obtaining Patchmgr**
 You can download the patchmgr utility from My Oracle Support.

- **Patchmgr Syntax**
 Patchmgr is a utility used to update software for Oracle Exadata Database Machine infrastructure components.

- **patchmgr Options**
 You can use a variety of options with the `patchmgr` command.

7.2.5.1 About the Exadata Patchmgr Update Utility

Patchmgr is designed to simplify the software update process.

Patchmgr has the following capabilities:

- With a single invocation updates all Oracle Exadata Database Machine storage servers, database servers, or RDMA Network Fabric switches.

- Orchestrates the software update across components one at a time when performing a rolling update.

- Parallelizes the software update to all components at the same time when performing a non-rolling update.

- Updates all component software, as required, such as firmware, operating system, and Oracle Exadata System Software.
 - Database servers contain all software necessary to run Oracle Database and are configured to run Oracle Database optimally. However, it may be necessary to manually install additional, site-specific software, such as monitoring agents or backup agents. It is supported to manually customize database servers, but note that customizing the operating system by adding or updating packages may require additional actions when applying a future Oracle Exadata System Software update with patchmgr.

 - Storage server or RDMA Network Fabric switch configuration or installed software may not be altered manually (update without using patchmgr) in any way unless Oracle Exadata Database Machine documentation contains steps to perform the desired change.

- Patchmgr may be run from an Engineered System running Oracle Linux, as the root user or a non-root user.

- Multiple invocations of patchmgr may be run from the same software directory.

When updating database servers, patchmgr manages the following as needed:

- Stops and starts databases and clusterware
- Stops and starts user domains (domUs)
- Stops and starts Oracle Enterprise Manager Cloud Control agents
- Unmounts remote network mounts
• Performs a root file system operating system backup that can be used for rollback
• Relinks database home and Oracle Grid Infrastructure home binaries
• Applies updated best practices configuration changes and workarounds for known issues

7.2.5.2 Obtaining Patchmgr

You can download the patchmgr utility from My Oracle Support.

Prior to Oracle Exadata System Software release 19.3.0, the storage server and RDMA Network Fabric switch updates use the version of patchmgr that is bundled with the Oracle Exadata System Software release to which you are updating. Starting with Oracle Exadata System Software release 19.3.0, there is a separate download for patchmgr for the RDMA Network Fabric switches and the storage servers, for example:

- 19.3.0.0.0.190910.switch.patch.zip for both InfiniBand Transport Layer systems based on an InfiniBand Network Layer and InfiniBand Transport Layer systems based on a RoCE Network Layer switches.
- 19.3.0.0.0.190910.patch.zip for cells

Patchmgr for database server is packaged in dbserver.patch.zip and is available as a separate download from My Oracle Support note 1553103.1 or patch 21634633.

It is recommended to always use the latest patchmgr from My Oracle Support when updating Oracle Exadata Database Machine database servers. The patchmgr utility is updated frequently to address known issues and best practices, and to support new hardware.

Related Topics

- dbnodeupdate.sh and dbserver.patch.zip: Updating Exadata Database Server Software using the DBNodeUpdate Utility and patchmgr (My Oracle Support Doc ID 1553103.1)

7.2.5.3 Patchmgr Syntax

Patchmgr is a utility used to update software for Oracle Exadata Database Machine infrastructure components.

Prerequisites

Patchmgr is run on the "driving system", which is an Oracle Exadata Database Machine database server or a non-Oracle Exadata Database Machine system running Oracle Linux. This allows patchmgr to run from a central server to update multiple Oracle Exadata Database Machine systems. If patchmgr is run from an Oracle Exadata Database Machine database server, then that database server cannot be in the group file supplied to patchmgr.
Syntax

Patchmgr syntax differs depending on the component to be updated, however, the general patchmgr syntax is:

```
./patchmgr -component component_list_file -action required_arguments
[optional_arguments]
```

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>component</td>
<td>Represents the component to update. Valid values are -cells, -dbnodes, -ibsswitches, or -roceswitches</td>
</tr>
<tr>
<td>component_list_file</td>
<td>A text file containing the host names of components to update. For example, if updating Oracle Exadata Database Machine storage servers (using -cells), then component_list_file will contain the list of all host names of the storage servers.</td>
</tr>
<tr>
<td>action</td>
<td>The action to perform. In most cases the action is specific to the component being updated.</td>
</tr>
<tr>
<td>required_arguments</td>
<td>The additional arguments required for certain actions.</td>
</tr>
<tr>
<td>optional_arguments</td>
<td>Any optional arguments required for certain actions.</td>
</tr>
</tbody>
</table>

Usage Notes

- Starting with Oracle Exadata System Software release 19.3, the options are prefixed with --. Prior to this release, the options were prefixed with -.
- Multiple invocations of patchmgr may be run concurrently from the same software directory by using the -log_dir option. This allows patchmgr to update multiple Oracle Exadata Database Machine systems concurrently from the same software directory.
- Patchmgr may be run as the root user or as a non-root user. The user running patchmgr must have root-level SSH equivalence configured to the servers or switches that patchmgr will update. To run patchmgr as a non-root user, the -log_dir option must be used.
- Prior releases used the dbnodeupdate.sh utility to update database servers. dbnodeupdate.sh has been integrated with and is replaced by patchmgr.

Patchmgr Syntax for Storage Servers

```
./patchmgr --cells cell_host_file [--patch_check_prereq |--rollback_check_prereq [--rolling] [--unkey] [ --ignore_alerts] [--ignore_date_validations]] [--patch | --rollback [--rolling] [--unkey] [--ignore_alerts]] [--cleanup [--unkey]]
```
Patchmgr Syntax for Database Servers

```bash
```

Patchmgr Syntax for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches

```bash
./patchmgr --ibswitches ibswitch_list_file {--upgrade | --downgrade} [--ibswitch_precheck] [--unkey] [--force [yes|no]]
```

Patchmgr Syntax for InfiniBand Transport Layer systems based on a RoCE Network Layer Switches

```bash
```

Note:

Unlike the other components, when using `patchmgr` for updating InfiniBand Transport Layer systems based on a RoCE Network Layer switches, you must prefix each option with `--`. Using `-` is not supported.

Examples

Example 7-4 Run storage server update pre-requisite checks, then update storage servers

```bash
./patchmgr -cells cell_group -patch_check_prereq
./patchmgr -cells cell_group -patch
```

Example 7-5 Update storage servers in a rolling manner

The following command updates storage servers in a rolling manner, receive email notifications as the update proceeds, and remove passwordless SSH access to cells after the update is complete.

```bash
./patchmgr -cells cell_group -patch -rolling -unkey -smtp_from "dbm01@example.com" -smtp_to "admin1@example.com,admin2@example.com"
```

Example 7-6 Update multiple storage servers at one time

The following commands update storage servers on three Oracle Exadata Database Machine systems simultaneously from the same software directory; one update using a rolling update, the others updates are non-rolling.
In this example:

- Each patchmgr command must be run from a separate terminal window.
- Each patchmgr execution uses a unique logging directory name automatically generated based on the content of the `component_list_file`.

```
(terminal1) ./patchmgr -cells cell_group_exa01 -patch -rolling -log_dir auto
(terminal2) ./patchmgr -cells cell_group_exa02 -patch -log_dir auto
(terminal3) ./patchmgr -cells cell_group_exa03 -patch -log_dir auto
```

To have a subsequent patchmgr execution use an altered `component_list_file` with different content, yet use the same logging directory as a prior patchmgr execution, use the `-get log_dir` option to obtain the logging directory. For example:

1. The logging directory for the initial patchmgr execution is generated automatically.

   ```
   ./patchmgr -cells cell_group -patch -log_dir auto
   ```

2. Assume the last cell failed to update and patchmgr will be re-run for the last cell only, using the same logging directory as the initial patchmgr execution. Use the `-get log_dir` option to obtain the logging directory using the original `component_list_file`.

   ```
   ./patchmgr -cells cell_group -patch -log_dir auto -get log_dir
   log_dir=/tmp/patch_12.2.1.1.1.170419/log/dm01cel01_dm01cel02_cacce4ee
   ```

3. Update the `cell_group` file to contain only the last cell, or use a different file that contains only the last cell. Specify the logging directory from the initial patchmgr execution so all logs for this group of cells are created in the same logging directory.

   ```
   ./patchmgr -cells cell_group -patch -log_dir /tmp/
   patch_12.2.1.1.1.170419/log/dm01cel01_dm01cel02_cacce4ee
   ```

Example 7-7 Backup database servers then perform the update

The following commands backup the Oracle Exadata Database Machine database servers, run the pre-requisite checks for the database server update, and then update the database servers in a non-rolling manner.

```
./patchmgr -dbnodes dbnode_group -backup -iso_repo /tmp/
p25640941_122111_Linux-x86-64.zip -target_version 12.2.1.1.1.170419
./patchmgr -dbnodes dbnode_group -precheck -iso_repo /tmp/
p25640941_122111_Linux-x86-64.zip -target_version 12.2.1.1.1.170419
./patchmgr -dbnodes dbnode_group -upgrade -nobackup -iso_repo /tmp/
p25640941_122111_Linux-x86-64.zip -target_version 12.2.1.1.1.170419
```

Related Topics

- [Setting up SSH Equivalence](#)

Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.
7.2.5.4 patchmgr Options

You can use a variety of options with the `patchmgr` command.

The following options are supported when updating a database node with `patchmgr`:

Table 7-2 Options for patchmgr: Required Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-dbnodeslist_file</code></td>
<td>Specifies the name of the database node list file. The file has one host name or IP address per line.</td>
</tr>
</tbody>
</table>

Table 7-3 Options for patchmgr: Action Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-precheck</code></td>
<td>Runs the pre-update validation checks on the database nodes specified in the list file, without actually doing the update.</td>
</tr>
<tr>
<td><code>-upgrade</code></td>
<td>Upgrades the database nodes specified in the list file.</td>
</tr>
<tr>
<td><code>-backup</code></td>
<td>Backs up the database nodes specified in the list file.</td>
</tr>
<tr>
<td><code>-rollback</code></td>
<td>Rolls back the database nodes specified in the list file.</td>
</tr>
<tr>
<td><code>-cleanup</code></td>
<td>Removes all temporary content on the database nodes specified in the host list in a non-rolling fashion. This option is typically used after an upgrade or rollback operation.</td>
</tr>
</tbody>
</table>
| `-get property` | Returns information about the specified property. Property can be:
 • `log_dir` Returns the log directory. |

Table 7-4 Options for patchmgr: Supporting Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| `-iso_repo repo_location` | Specifies the path to a zipped ISO file. It is recommended that the file be in the same directory as the `dbnodeupdate.zip` file.
 This option or the `-yum_repo` option must be specified for `-backup`, `-precheck` and `-upgrade` actions.
 This option cannot be used with the `-yum_repo` option. |
Table 7-4 (Cont.) Options for patchmgr: Supporting Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-yum_repo repo_location</code></td>
<td>Specifies the URL to a yum HTTP repository. This option or the <code>-iso_repo</code> option must be specified for <code>-backup</code>, <code>-precheck</code> and <code>-upgrade</code> actions. This option cannot be used with the <code>-iso_repo</code> option.</td>
</tr>
<tr>
<td><code>-log_dir log_directory_or_auto</code></td>
<td>Specifies the absolute path to the log directory, or you can specify <code>auto</code> to use a log directory that is based on the launch directory and the content of the nodes list file. Specifying the <code>-log_dir</code> option enables you to run multiple patch manager invocations and also to run patch manager as a non-root user.</td>
</tr>
<tr>
<td><code>-nobackup</code></td>
<td>Specifies that a backup on the database nodes for an upgrade action should not be performed.</td>
</tr>
<tr>
<td><code>-target_version version</code></td>
<td>Specifies the full release version being updated to. You can find this information in the README file for the patch.</td>
</tr>
<tr>
<td><code>-unkey</code></td>
<td>Removes passwordless SSH access to the database nodes before exiting.</td>
</tr>
<tr>
<td><code>-rolling</code></td>
<td>Specifies that the update is to be done in a rolling fashion. If not specified, the update is done in a non-rolling fashion.</td>
</tr>
<tr>
<td></td>
<td>Note: Rollbacks are always done in a rolling fashion, even if this option is not specified.</td>
</tr>
<tr>
<td></td>
<td>Note: Prechecks and cleanups are always done in a non-rolling fashion, even if the <code>-rolling</code> option is specified.</td>
</tr>
<tr>
<td><code>-allow_active_network_mounts</code></td>
<td>Allows <code>dbnodeupdate</code> to run with active NFS or SMB mounts. This is equivalent to the <code>dbnodeupdate.sh -A</code> command.</td>
</tr>
<tr>
<td><code>-force_remove_custom_rpms</code></td>
<td>Removes any custom RPMs when the database node is updated from Oracle Linux 5 to Oracle Linux 6. This is equivalent to the <code>dbnodeupdate.sh -R</code> command.</td>
</tr>
<tr>
<td><code>-nomodify_at_prereq</code></td>
<td>No RPM changes at prerequisite check. This is equivalent to the <code>dbnodeupdate.sh -N</code> command.</td>
</tr>
</tbody>
</table>
Table 7-5 Options for patchmgr: Mail Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-smtp_from "from_email"</td>
<td>Specifies the from email address for the patchmgr notification.</td>
</tr>
<tr>
<td>-smtp_to "to_email1 to_email2 to_email3 ..."</td>
<td>Specifies the to email addresses for the patchmgr notification.</td>
</tr>
<tr>
<td>-smtp_set_envelope_sender</td>
<td>Specifies that the same from address in Return-Path: mail header should be used.</td>
</tr>
</tbody>
</table>

7.3 About Upgrading to Oracle Linux 7 on Exadata Servers

When you upgrade to Oracle Exadata System Software release 19.1.0, the Oracle Linux version is upgraded from Oracle Linux 6 to Oracle Linux 7.

Oracle Exadata System Software release 19.1.0 provides support for Oracle Database 19c, which runs on Oracle Linux 7. When you upgrade to Oracle Exadata System Software release 19.1.0 the operating system is upgraded at the same time.

If you use quorum disks on your Exadata Database Machine, then refer to My Oracle Support note 2453054.1.

Related Topics
- Exadata Oracle Linux 6 to Oracle Linux 7 Quorumdisk Migration FAQ (Doc ID 2453054.1)

7.4 Overview of Performing Exadata Software Updates

For each software update of the Exadata components, there are various actions required to complete the software update.

- Actions to Perform Before Any Software Maintenance
 Perform you update any software on your Exadata Database Machine, you should perform these actions.

- Overview of Performing Exadata Storage Server Updates
 A high level look at the process for updating Exadata storage servers.

- Overview of Performing Exadata Database Servers Updates
 When updating Exadata database servers, there are different steps for virtualized environments.

- Overview of Performing InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Updates
 Patchmgr manages the update orchestration in a rolling manner for InfiniBand Transport Layer systems based on a RoCE Network Layer switches

- Overview of Performing InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Updates
 Patchmgr manages the update orchestration in a rolling manner for InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches
• Overview of Performing Oracle Grid Infrastructure and Oracle Database Updates
The steps for updating Oracle Grid Infrastructure or Oracle Database software depend on the type of software update you are performing.

• Using sudo When Performing Software Updates
You can use `sudo` when running `dbnodeupdate.sh` and `patchmgr` (and `dbnodeupdate Orchestration`).

7.4.1 Actions to Perform Before Any Software Maintenance

Perform any update to your Exadata Database Machine, you should perform these actions.

• **Identify the target release** — The target release can be determined by one of the following:
 – Version recommendations in the MAA Scorecard section of the Oracle ExaCHK report.

• **Run Oracle ExaCHK** — Ensure software maintenance readiness of the system by running the latest version of Oracle ExaCHK (see My Oracle Support Document 1070954.1). Review the report for the following:
 1. Correct any FAIL or WARNING checks that deviate from your baseline.
 2. Review the MAA Scorecard section for version recommendations. Oracle ExaCHK evaluates current software versions for consistency, compatibility, and whether or not it is current.
 3. Review the MAA Scorecard section for exposure to critical issues. Target version choice should resolve any critical issue exposure.

It is recommended to run the latest version of Oracle ExaCHK in the following times:
 – Every month to maintain a system that continues to adhere to Exadata best practices
 – The week before the software update to ensure maintenance readiness
 – The day before the software update to ensure maintenance readiness
 – Immediately after completing the software update

• **Run prerequisite checks** —
 1. Download the target software release(s) and the latest versions of the software update utilities (patchmgr, OPatch, and so on) from My Oracle Support.
 2. Run the prerequisite checks and correct any issues. The initial prerequisite check run should be performed days or weeks in advance of the maintenance window to allow time to correct issues. Run prerequisite checks again immediately before the update.
Note:

Special consideration must be given to running database server prerequisite checks and the -nomodify_at_prereq flag. See Updating Exadata Database Servers for details.

- **Review the latest documentation**
 1. Review My Oracle Support Document 1270094.1 for recently published critical issues that are not yet automatically checked by Oracle ExaCHK.
 2. Review the Supplemental README in My Oracle Support for the target software version for known issues discovered after the software was released.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
- Oracle Exadata Database Machine exachk or HealthCheck (My Oracle Support Doc ID 1070954.1)
- Exadata Critical Issues (My Oracle Support Doc ID 1270094.1)

7.4.2 Overview of Performing Exadata Storage Server Updates

A high level look at the process for updating Exadata storage servers.

Patchmgr manages the update orchestration in a rolling or non-rolling manner for storage servers. When using the -rolling option, Oracle recommends that you use Oracle ASM high redundancy disk groups to tolerate the failure of a disk in another storage server during the update.

1. Download the target Exadata software from My Oracle Support and stage it on the driving system. See My Oracle Support document 888828.1.
2. Create a file that contains the list of storage servers to update. This file will be specified as the `component_list_file`.
3. Configure SSH equivalence from the user that will run patchmgr to root on all storage servers in the `component_list_file`.
4. Run patchmgr prerequisite check and correct any issues.
5. If storage servers will be updated non-rolling, then stop Oracle Clusterware and all databases accessing the storage servers.
6. Run patchmgr to update storage servers in a non-rolling (default) or rolling (-rolling option) manner.
7. If storage servers were updated non-rolling, then restart Oracle Clusterware and all databases.

Related Topics

- Setting up SSH Equivalence
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.
7.4.3 Overview of Performing Exadata Database Servers Updates

When updating Exadata database servers, there are different steps for virtualized environments.

Note:
Patchmgr manages the update orchestration in a rolling or non-rolling manner for Exadata database servers. When using the `-rolling` option, Oracle recommends that you use Oracle RAC features for client high availability to minimize the impact to client applications connected to database instances that will be stopped during maintenance.

- **Steps for Updating Non-Virtualized Configurations**
 An overview of the steps involved in updating an Exadata database server that does not have Oracle VM configured.

- **Steps for Updating Virtualized Configurations**
 The management domains (dom0s) and user domains (domUs) are updated independently using separate patchmgr executions.

7.4.3.1 Steps for Updating Non-Virtualized Configurations

An overview of the steps involved in updating an Exadata database server that does not have Oracle VM configured.

1. Download the latest patchmgr from My Oracle Support Patch 21634633 and stage it on the driving system.
2. Download the target Exadata software from My Oracle Support and stage it on the driving system. See My Oracle Support Document 888828.1.
3. Create the `component_list_file` containing the list of database servers to update.
4. Configure SSH equivalence from the user that will run patchmgr to root on all database servers in the `component_list_file`.
5. Run patchmgr backup to backup database server root file system and operating system.
6. Run patchmgr prerequisite check and correct any issues.
7. Run patchmgr to update database servers in a non-rolling (default) or rolling (`-rolling` option) manner.

Related Topics

- **Setting up SSH Equivalence**
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.
7.4.3.2 Steps for Updating Virtualized Configurations

The management domains (dom0s) and user domains (domUs) are updated independently using separate patchmgr executions.

Updating the Management domain (dom0)

- Download the latest patchmgr from My Oracle Support Patch 21634633 and stage it on the driving system.
- Download the target dom0 Exadata software from My Oracle Support and stage it on the driving system. See My Oracle Support Patch Document 888828.1.
- Create the `component_list_file` containing the list of database server dom0s to update.
- Configure SSH equivalence from the user that will run patchmgr to root on all database server dom0s in the `component_list_file`.
- Run patchmgr backup to backup database server dom0 root file system and operating system.
- Run patchmgr prerequisite check and correct any issues.
- Run patchmgr to update database server dom0s in a non-rolling (default) or rolling (`-rolling` option) manner.

Updating the User domains (domU)

1. Download the latest patchmgr from My Oracle Support Patch 21634633 and stage it on the driving system.
2. Download the target domU Exadata software from My Oracle Support and stage it on the driving system. See My Oracle Support document 888828.1.
3. Create the `component_list_file` containing the list of database server domUs to update.
4. Configure SSH equivalence from the user that will run patchmgr to root on all database server domUs in the `component_list_file`.
5. Run patchmgr backup to backup database server domU root file system and operating system.
6. Run patchmgr prerequisite check and correct any issues.
7. Run patchmgr to update database server domUs in a non-rolling (default) or rolling (`-rolling` option) manner.

Related Topics

- [Setting up SSH Equivalence](https://support.oracle.com/knowledge/Oracle-Servers_and-Cloud-Platform/Exadata/Setting%20up%20SSH%20Equivalence)

Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.
7.4.4 Overview of Performing InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Updates

Patchmgr manages the update orchestration in a rolling manner for InfiniBand Transport Layer systems based on a RoCE Network Layer switches

Note:
Perform storage server updates separately from RDMA Network Fabric switch updates. Do not update storage servers and RDMA Network Fabric switches concurrently. RDMA Network Fabric network connections must be stable during some critical stages of storage server updates. RDMA Network Fabric switch firmware upgrade requires switch reboot, which disrupts some connections on the RDMA Network Fabric network.

The general steps for using patchmgr are:

1. Download the target Exadata software from My Oracle Support and stage it on the driving system. See My Oracle Support document 888828.1.
2. Create the component_list_file containing the list of InfiniBand Transport Layer systems based on a RoCE Network Layer switches to update.
3. Configure SSH equivalence from the user that will run patchmgr to root on all InfiniBand Transport Layer systems based on a RoCE Network Layer switches in the component_list_file.
4. Run patchmgr prerequisite check and correct any issues.
5. Run patchmgr to update InfiniBand Transport Layer systems based on a RoCE Network Layer switches. InfiniBand Transport Layer systems based on a RoCE Network Layer switches are always updated in a rolling manner.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
- Setting up SSH Equivalence
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

7.4.5 Overview of Performing InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Updates

Patchmgr manages the update orchestration in a rolling manner for InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches
Perform storage server updates separately from RDMA Network Fabric switch updates. Do not update storage servers and RDMA Network Fabric switches concurrently. RDMA Network Fabric network connections must be stable during some critical stages of storage server updates. RDMA Network Fabric switch firmware upgrade requires switch reboot, which disrupts some connections on the RDMA Network Fabric network.

The general steps for using patchmgr are:

1. Download the target Exadata software from My Oracle Support and stage it on the driving system. See My Oracle Support document 888828.1.

2. Create the component_list_file containing the list of InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches to update.

3. Configure SSH equivalence from the user that will run patchmgr to root on all InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches in the component_list_file.

4. Run patchmgr prerequisite check and correct any issues.

5. Run patchmgr to update InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches. InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches are always updated in a rolling manner.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
- Setting up SSH Equivalence

Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

7.4.6 Overview of Performing Oracle Grid Infrastructure and Oracle Database Updates

The steps for updating Oracle Grid Infrastructure or Oracle Database software depend on the type of software update you are performing.

Updating to a New Proactive Bundle Patch

Updates to a new Proactive Bundle Patch may be performed in-place or out-of-place. Both in-place and out-of-place methods support rolling and non-rolling updates.

- In-place

The update is applied to the current software home using OPatch while the Oracle Grid Infrastructure or Oracle Database software is shutdown on the node being updated.

This is the default method of applying a Proactive Bundle Patch update for Oracle Grid Infrastructure or Oracle Database software, as described in the Proactive Bundle Patch README. The steps to apply the Proactive Bundle Patch must be performed on each node.
• **Out-of-place (recommended)**

A new software home is prepared and updated while the Oracle Grid Infrastructure and Oracle Database software remains running. Once the new homes are prepared, Oracle Grid Infrastructure and Oracle Database are quickly stopped, switched to the new home, and restarted.

Out-of-place has significant advantage over in-place updates:

- There is less risk because the new home can be prepared while the Oracle Grid Infrastructure and Oracle Database software remains online.
- There is less downtime because switching to the new software home is faster than applying an update in-place.
- Rollback is faster because it is possible to simply switch back to the original software home.

The recommended way to adopt out-of-place updates is to use Fleet Patching and Provisioning (previously called Rapid Home Provisioning), which provides the following advantages:

- Distributes software updates to all nodes in the cluster.
- Orchestrates updates across the cluster in a rolling or non-rolling manner with a single command.
- Provides control over database service relocation to maintain application availability.

Out-of-place software updates are also supported by Oracle Enterprise Manager Cloud Control.

Out-of-place software updates without Fleet Patching and Provisioning or Oracle Enterprise Manager Cloud Control may be accomplished by following My Oracle Support Document 2087150.1.

OJVM Patch Set Update

The OJVM patch set update (PSU) is a separate software update for database homes that addresses OJVM security vulnerabilities. It is installed separately from the standard Proactive Bundle Patch. The OJVM PSU patch may be installed in a rolling manner under certain situations.

Updating to a New Patch Set Release, Major Release, or Maintenance Release

To update to a higher patch set, maintenance, or major release for grid infrastructure or database, follow the step-by-step instructions in My Oracle Support.

Related Topics

- Minimal downtime patching via cloning 12c ORACLE_HOME directories with OPlan (My Oracle Support Doc ID 2087150.1)
- RAC Rolling Install Process for the "Oracle JavaVM Component Database PSU" (OJVM PSU) Patches (My Oracle Support Doc ID 2217053.1)
- 12.2 Grid Infrastructure and Database Upgrade steps for Exadata Database Machine running 11.2.0.3 and later on Oracle Linux (My Oracle Support Doc ID 2111010.1)
- 11.2.0.2, 11.2.0.3, 11.2.0.4 or 12.1.0.1 to 12.1.0.2 Grid Infrastructure and Database Upgrade on Exadata Database Machine running Oracle Linux (My Oracle Support Doc ID 1681467.1)
7.4.7 Using sudo When Performing Software Updates

You can use **sudo** when running **dbnodeupdate.sh** and **patchmgr** (and dbnodeupdate Orchestration).

- **Running patchmgr (and dbnodeupdate Orchestration) Using sudo**
 You can run patchmgr (which is packaged in dbserver.patch.zip) using **sudo** to perform any of patchmgr's functionalities, such as patching cells, patching RDMA Network Fabric switches, or orchestrating dbnodeupdate.sh execution.

- **Running dbnodeupdate.sh Using sudo**
 Before using dbnodeupdate.sh using **sudo**, you configure the /etc/sudoers file.

7.4.7.1 Running patchmgr (and dbnodeupdate Orchestration) Using sudo

You can run patchmgr (which is packaged in dbserver.patch.zip) using **sudo** to perform any of patchmgr's functionalities, such as patching cells, patching RDMA Network Fabric switches, or orchestrating dbnodeupdate.sh execution.

Patchmgr is packaged in dbserver.patch.zip. Perform the following steps to set up the /etc/sudoers file for running patchmgr using **sudo**:

1. Log in as the **root** user and edit /etc/sudoers using **visudo**.
   ```bash
   # visudo
   ```

2. Add the following entry to the bottom of the sudoers file to allow non-root users, such as the **oracle** user, to run patchmgr as root.
   ```bash
   oracle  ALL=(ALL)    NOPASSWD:SETENV: /u01/stage/patch/dbserverpatch/patchmgr
   ```

3. As root, create the /u01/stage/patch/dbserverpatch directory and unzip dbserver.patch.zip:

   ```bash
   # mkdir -p /u01/stage/patch/dbserverpatch/
   # cp dbserver.patch.zip /u01/stage/patch/dbserverpatch/
   # cd /u01/stage/patch/dbserverpatch/
   # unzip dbserver.patch.zip
   ```
4. Move everything under the /u01/stage/patch/dbserverpatch/
dbserver_patch_x.yymmdd directory to /u01/stage/patch/dbserverpatch/.

mv /u01/stage/patch/dbserverpatch/dbserver_patch_x.yymmdd/* /u01/stage/patch/dbserverpatch/

Note:

- Patchmgr expects root SSH equivalence on all database nodes that will be updated, even when run using sudo.
- The above setup requires that the entire contents of /u01/stage/patch/dbserverpatch be owned by root.
- If you update dbserver.patch.zip, then you must place the new version in the same location as specified by sudoers.

To verify that the setup is correct, run patchmgr in prereq check mode as the oracle user:

[oracle]$ cd /u01/stage/patch/dbserverpatch/

[oracle]$ sudo ./patchmgr -dbnodes dbgroup -precheck -yum_repo http://my-yum-repo/yum/EngineeredSystems/exadata/dbserver/12.1.2.1.3/base/x86_64/ -target_version 12.1.2.1.3.151021

7.4.7.2 Running dbnodeupdate.sh Using sudo

Before using dbnodeupdate.sh using sudo, you configure the /etc/sudoers file.

1. Log in as the root user and edit /etc/sudoers using visudo.

visudo

2. Add the following entry (all on one line) to the bottom of the sudoers file to allow non-root users, such as the oracle user, to run dbnodeupdate.sh as root:

Note:

The first field in the line specifies the non-root user who is granted sudo access for the dbnodeupdate.sh command. The line below uses the oracle user as an example. You can specify a different user if necessary.

oracle ALL=(ALL) NOPASSWD:SETENV: /u01/stage/patch/dbnodeupdate/dbnodeupdate.sh
3. As root, create the /u01-stage/patch/dbnodeupdate directory and unzip dbnodeupdate.zip:

```
# mkdir -p /u01/stage/patch/dbnodeupdate
# cp dbnodeupdate.zip /u01/stage/patch/dbnodeupdate
# cd /u01/stage/patch/dbnodeupdate
# unzip dbnodeupdate.zip
```

To verify that the setup is correct, run dbnodeupdate.sh in prereq check mode as the oracle user:

```
[oracle]$ cd /u01/stage/patch/dbnodeupdate

[oracle]$ sudo ./dbnodeupdate.sh -u -l http://my-yum-repo/yum/EngineeredSystems/exadata/dbserver/12.1.2.1.3/base/x86_64/ -v
```

dbnodeupdate exits if it is run without root privileges.

Note:

- The above setup requires that everything in /u01/stage/patch/dbnodeupdate be owned by the root user.
- If you update the dbnodeupdate utility, then you must place the new version in the same location as specified by sudoers.

7.5 Updating Oracle Exadata Database Machine Database Servers

Use the following information and procedures when updating database servers within Oracle Exadata Database Machine.

- **Overview of Oracle Exadata Database Machine Database Server Updates**
 When updating database servers, there is more than one software that needs to be updated.

- **Update Paths for Exadata Database Servers**

- **Installing, Updating, and Managing Non-Oracle Software**
 Installing and updating non-Oracle branded RPMs on Oracle Exadata Database Machine database servers are allowed as long as kernel and RDMA Network Fabric packages remain untouched.

- **Customization Levels and Impact**

- **Update Utility for Exadata Database Servers**
 Patchmgr is the update utility for updating Oracle Exadata database servers.

- **Update Tool Execution Host**

- **Running the Update Utility as a Non-root User and Running Multiple Invocations Concurrently**
• Recommended Timeline for Updating Exadata Database Servers
• Preparing and Populating the YUM Repository with the Oracle Exadata Channel Content
• Managing Exadata Obsoleted Packages
• Updating Individual Packages
• Running Prerequisite Checks
• Backing up Exadata Database Servers Before Planned Maintenance
 Oracle recommends making a backup of the Exadata database servers before making any changes when updating to a next release.
• Running the Update
 You can perform the actual update of Exadata database servers in a rolling (using the \texttt{-rolling} flag) or non-rolling fashion. The default is non-rolling.
• Rolling Back Updates

7.5.1 Overview of Oracle Exadata Database Machine Database Server Updates

When updating database servers, there is more than one software that needs to be updated.

Oracle Exadata Database Machine database server release updates contain updates for the following components within a database server:

• Oracle Linux operating system
• Firmware (Disk, RAID controller, ILOM, HCA)
• Oracle Exadata System Software

The software and firmware components that are updated for a specific release depend on the current Oracle Exadata System Software release the database server is running and the release you are updating to. Oracle Linux operating system packages and Oracle Exadata System Software are always updated while firmware may be updated for only a small selection of the components or not at all.

Updates for Oracle Exadata Database Machine database servers can be applied independently from the storage servers or RDMA Network Fabric switches unless otherwise specified in My Oracle Support Note 888828.1.

Updating database servers is always performed in-place. This means the active operating system is updated. The actual update is performed using YUM, but the command to do this is wrapped in an Oracle Exadata Database Machine utility called patchmgr.

The YUM command is wrapped in the update utility to maintain strict ordering of validation and preparation steps during the update process. Also by using a utility Oracle can enforce application of fixes for known issues and best practices.

Oracle Clusterware processes and Oracle Real Application Clusters (Oracle RAC) database instances must not be running on a database server that is being updated. To reduce application-level impact, follow the client failover best practices described in the “Client Failover Best Practices for Highly Available Oracle Databases” white paper.
If you cannot afford cluster-wide downtime, you can update database servers in a rolling fashion. This means updating one database server at a time. If you can afford cluster-wide downtime, you can update all database servers in parallel. Non-rolling updates reduce the overall time required to complete the upgrade at the expense of having a full database outage.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
- Client Failover Best Practices for Highly Available Oracle Databases

7.5.2 Update Paths for Exadata Database Servers

To update Exadata database servers running Oracle Linux 5.5 or later and Oracle Exadata software release 11.2.2.4.2 or later, you must use the “update utility” for applying Exadata software updates.

To update Exadata database servers running Exadata software releases older than 11.2.2.4.2, you should first update the servers to Oracle Linux 5.5 and Exadata Software release 11.2.2.4.2 or later before you can use the update utility. See the table below for details.

Table 7-6 Update Paths

<table>
<thead>
<tr>
<th>Currently Installed Oracle Exadata Software Release</th>
<th>Currently Installed Oracle Linux Release</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 11.2.2.4.2 or later</td>
<td>Release 5.5. or later</td>
<td>Update to the target release using the update utility.</td>
</tr>
</tbody>
</table>
| Releases earlier than 11.2.2.4.2 | Release 5.5. or later | 1. Use patch 13513611 to update the database servers to release 11.2.2.4.2. Refer to the steps in section 8 of the patch 13513611 README.
2. Update to a later release using the update utility. |
| Releases earlier than 11.2.2.4.2 | Releases earlier than 5.5 | 1. Update to release 11.2.3.2.0. Refer to My Oracle Support note 1284070.1 for details.
2. Update to a later release using the update utility. |

Related Topics

- Updating key software components on database hosts to match those on the cells (My Oracle Support Doc ID 1284070.1)
7.5.3 Installing, Updating, and Managing Non-Oracle Software

Installing and updating non-Oracle branded RPMs on Oracle Exadata Database Machine database servers are allowed as long as kernel and RDMA Network Fabric packages remain untouched.

Note that customizing the operating system by adding or updating packages may introduce problems when applying an Oracle Exadata System Software update because the non-Oracle software may add new dependencies which will not be provided by the Oracle Exadata System Software update. For this reason it is recommended to stay close to the Oracle Exadata Database Machine image and customize as little as possible.

Note:
Oracle Exadata Database Machine does not ship with 32-bit software. This means any customization that introduces 32-bit RPMs on the system will break the Oracle Exadata System Software update and will need to be removed.

In case you have added or updated packages supplied by the Oracle Exadata Database Machine image, you can remove the `exadata-sun-computenode-exact` RPM when needed as follows:

```
[root@dm01 ]# rpm -e exadata-sun-computenode-exact
```

If you have installed customized packages, it is recommended that you have scripts to automate the removal (to run before updating Oracle Exadata System Software) and installation (to run after the Oracle Exadata System Software update) of those packages. After the Oracle Exadata System Software update, verify that the customized packages are still compatible and are still needed, before re-installing them.

Note:
Packages should not be forced in using the `rpm -Uvh --nodeps` command, unless directed by Oracle Support Services.

The same principle applies for customizations other than installation of additional software. Oracle recommends customizing the operating system as little as possible. Be aware that while changes on the database server are allowed within the earlier described boundaries, it is not possible for Oracle to anticipate each and every customization on every configuration item of the operating system.

There are certain common standards that Oracle Exadata Database Machine utilities depend on. These standards are based on best practices and have been validated over time. By moving away from Oracle Exadata Database Machine standards, systems might be missing optimal settings, and risk is introduced because it is difficult for Oracle to anticipate and validate software for one-off configurations. This is why customizations can cause unexpected results. As a result of adding software or
customizing system configuration, you might require changes or additional steps to the standard Oracle Exadata Database Machine update process. With or without customizations, it is highly recommended to validate Oracle Exadata System Software updates on test systems before doing them on production systems.

Related Topics

• Running Prerequisite Checks

7.5.4 Customization Levels and Impact

The table below provides some guidance in the risks associated with customizing Exadata database servers. While the prerequisite check checks for most customizations, certain configuration changes might need to be rolled back in order to make updating the database server possible. If still needed, the changes can be restored after the update process.

Table 7-7 Customizations and Their Risks

<table>
<thead>
<tr>
<th>Item</th>
<th>Customization Level</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default provided Engineered System Software Stack</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Setting up interactive shell profiles for system users (root/oracle)</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Using all free space in VGExaDb</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Installing additional (non-Exadata) rpm packages</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Customizing file system with different mount points</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Updating packages shipped with the current Exadata image</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Customizing configuration files, changing basic operating system functionality</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Installing additional (non-Exadata) non-rpm packages</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Changing LVM layout</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

7.5.5 Update Utility for Exadata Database Servers

Patchmgr is the update utility for updating Oracle Exadata database servers.

Starting with release 12.2.1.1.0, Exadata software updates for the Exadata database server can be applied only through the patchmgr utility.
The patchmgr utility supports all hardware generations and Exadata storage server releases starting with 11.2.3.1.0, Exadata database servers running Oracle Virtual Server (dom0), and Exadata Virtual Machines (domU). The README files for the Oracle Exadata System Software updates specify whether the update itself is applicable for a particular hardware generation or not. The README is not shipped with dbserver.patch.zip but with the Oracle Exadata System Software update zip file.

The utility also supports Exadata software updates from Oracle Linux 5 to Oracle Linux 6 or updates from Oracle Linux 6 to Oracle Linux 7.

The utility takes care of the orchestration. You can perform the update in a rolling or non-rolling fashion across one or multiple Exadata database servers.

The update utility performs the following tasks:

- Automates all preparation, update, and validation steps, including:
 - Stopping the databases, Grid Infrastructure stack or domU’s
 - Stopping Oracle Enterprise Manager Cloud Control agents,
 - Un-mounting remote network mounts (when required)
- Uses the built-in dbserver_backup.sh script to perform a backup of the file system hosting the operating system before updating the Exadata database server.
- Applies Oracle best practices and fixes for the latest known issues.
- Verifies that the update was successful, relinks the Oracle binaries, and starts the Oracle stack and domU’s

Related Topics

- **Obtaining Patchmgr**
 You can download the patchmgr utility from My Oracle Support.
- **Backing up Exadata Database Servers Before Planned Maintenance**
 Oracle recommends making a backup of the Exadata database servers before making any changes when updating to a next release.
- **dbnodeupdate.sh and dbserver.patch.zip: Updating Exadata Database Server Software using the DBNodeUpdate Utility and patchmgr (My Oracle Support Doc ID 1553103.1)**

7.5.6 Update Tool Execution Host

If you are planning to update all Exadata database servers at once, it is a requirement to run the update utility from a Linux node outside the group of Exadata database servers being updated. This is because the update utility cannot update the Exadata database server it is currently running on. If you have no other systems running Oracle Linux or Oracle Solaris you can run the update utility from one of the Exadata database servers. In such cases be sure that the Exadata database server where the update utility is running is not listed in the dbs_group file you specify.
You need to set up ssh equivalence for the root user from the driving node to the root user of all Exadata database servers that will be updated.

Related Topics

- Setting up SSH Equivalence
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

7.5.7 Running the Update Utility as a Non-root User and Running Multiple Invocations Concurrently

By default the update utility assumes you want to run as root. It is however possible to run the update utility as a non-root user from a remote host. It is also possible to run multiple invocations at the same time. This allows you to update multiple logical groups of Exadata Database Servers concurrently. To do this, you run the update utility with the -log_dir flag.

Ensure that ssh equivalence is set up for the current user to the root user of the Exadata database servers to be updated.

The following example shows the option of running as a non-root user and running multiple-invocations.

```
[oracle@nonExadataHost ]$ ./patchmgr -dbnodes ~/dbs_group -upgrade -
iso_repo /u01/ /p23557378_121223_Linux-x86-64.zip
-target_version 12.1.2.4.0.160710 -log_dir auto
```

-log_dir specifies the absolute path to the log directory or the keyword auto for the utility to generate and set a path to the log directory that is based on the launch directory and content of nodes list file. If you want to make sure you are using the same log directory in later invocations where the list of Exadata database servers changes, use the -get log_dir flag to obtain the -log_dir location used on previous sessions. For example, if the following command:

```
[oracle@nonExadata ]$ ./patchmgr -dbnodes ~/dbs_group_test -log_dir auto -get log_dir
```

This command returns output similar to the following:

```
log_dir=/u01/test/dbserver_patch_5.160715/log/dbm01_dbm02_e8f1f75
```

Use the log_dir value in subsequent commands. For example:

```
[oracle@nonExadata ]$ ./patchmgr -dbnodes ~/dbs_group_test -precheck
-log_dir /u01/test/dbserver_patch_5.160715/log/dbm01_dbm02_e8f1f75
-iso_repo /u01/test/dbserver_patch_5.160715/p23557378_121223_Linux-x86-64.zip
-target_version 12.1.2.2.3.160720 -allow_active_network_mounts
```

Related Topics

- Update Utility for Exadata Database Servers
7.5.8 Recommended Timeline for Updating Exadata Database Servers

Oracle recommends the following timeline for updating Exadata database servers. By following this approach, you allow yourself time to perform any necessary corrective actions.

Note:
Before making any changes, including prerequisite check, you should make a backup.

Table 7-8 Timeline for Performing Updates

<table>
<thead>
<tr>
<th>When</th>
<th>Tasks</th>
</tr>
</thead>
</table>
| Weeks to days before the update | • Download the latest dbserver.patch.zip from My Oracle Support note 1553103.1.
• Download the latest Exachk from My Oracle Support note 1070954.1.
• Research release-specific My Oracle Support note for known issues.
• Research Exadata Critical Issues from My Oracle Support note 1270094.1.
• Run Exachk.
• Perform a first prerequisite check.
Note: Sometimes the update utility needs to make minimal changes to the Exadata database server to make YUM dependency checks work. If you wish to ensure no modifications are made, run the prerequisite check with the `-nomodify_at_prereq` flag.
For details, see Running Prerequisite Checks.
• Correct findings that need attention. You can ignore any dependency problems if you are unable to remove rpms at this point. Because `-nomodify_at_prereq` was specified, broken dependencies can be expected. |
| Just before the update | • Download the latest dbserver.patch.zip from My Oracle Support note 1553103.1.
• Download the latest Exachk from My Oracle Support note 1070954.1.
• Research release-specific My Oracle Support note for known issues.
• Research Exadata Critical Issues from My Oracle Support note 1270094.1.
• Run Exachk and perform corrective actions as needed. |
Table 7-8 (Cont.) Timeline for Performing Updates

<table>
<thead>
<tr>
<th>When</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>At update time</td>
<td>• Perform a “backup only” run using the -backup flag.</td>
</tr>
<tr>
<td></td>
<td>See Backing up Exadata Database Servers Before Planned Maintenance for details.</td>
</tr>
<tr>
<td></td>
<td>• Perform a second prerequisite check.</td>
</tr>
<tr>
<td></td>
<td>This time, omit the -nomodify_at_prereq flag to allow the update utility to make the required changes to get YUM dependencies to work. See Running Prerequisite Checks for details.</td>
</tr>
<tr>
<td></td>
<td>• Remove any blocking rpms and re-run the prerequisite check to validate if all changes are complete.</td>
</tr>
<tr>
<td></td>
<td>• Perform the update. Use the -nobackup flag to skip the backup because you already made a “backup only” run. See Running the Update for details.</td>
</tr>
<tr>
<td>After the update</td>
<td>• Run Exachk.</td>
</tr>
<tr>
<td></td>
<td>• Reinstall any non-Exadata rpms that you removed before the Exadata update.</td>
</tr>
</tbody>
</table>

7.5.9 Preparing and Populating the YUM Repository with the Oracle Exadata Channel Content

The Exadata software update procedure for Exadata database servers uses the Unbreakable Linux Network (ULN) for distribution. The updates are distributed as a set of packages (rpms) grouped in a channel. You need to ensure that these packages are available locally before performing the prerequisite check or update.

A channel can be subscribed to by a local non-Exadata database server. Channel content is then downloaded to the local server and the repository is made available as a YUM repository which is used to update Exadata database servers. If no Internet connection is available from the data center or if ULN synchronization is not possible, then a ready-to-use YUM repository can be downloaded as an ISO image.

Note:

Each Exadata Storage Server Update comes with its own channel/ISO image. This ISO image and ULN channel are not intended to be a complete replacement of a generic Linux ULN channel. The Exadata ISO and ULN channel contain only the Oracle Exadata channel content. If your environment uses other Linux packages for which updates are not contained in the Oracle Exadata ULN channel or ISO image, you should update those packages using Linux ULN channels as needed.
Use the following methods to build a YUM repository for hosting the Exadata software update. The update utility uses the local YUM repository to update the Exadata database servers.

- **Downloading the ISO Image as a YUM Repository from My Oracle Support and Passing the Location of the Compressed Image to the Update Utility**
- **Setting Up a Local Mirror as a YUM HTTP Repository from the ULN Oracle Exadata Channel on a Separate Server**
- **Downloading the ISO Image as a YUM Repository from My Oracle Support and Making It Available as a YUM HTTP Repository on a Web Server**

7.5.9.1 Downloading the ISO Image as a YUM Repository from My Oracle Support and Passing the Location of the Compressed Image to the Update Utility

The Oracle Exadata channel holding the Oracle Exadata software update is available as a downloadable image (a compressed ISO file) from My Oracle Support and can be used in two ways:

- Use the file location of the compressed file as an argument for the update utility using the `-iso_repos` flag.
- Publish using HTTP and use the URL for the update utility using the `-yum_repos` flag.

The file location of the compressed file can be passed directly to the update utility which is recommended for the following conditions:

- There is no separate server available to be used as a repository YUM HTTP server.
- The Exadata database servers do not have customized software that requires updates from additional ULN channels.
- The simplest method is preferred.

Note:

The compressed ISO image should only exist on the node running the update utility. The distribution of the compressed ISO image is handled by the update utility.

You can perform a prerequisite check (`-precheck`) to verify the repository is usable.

7.5.9.2 Setting Up a Local Mirror as a YUM HTTP Repository from the ULN Oracle Exadata Channel on a Separate Server

This method is recommended for the following conditions:

- There is a large number of Exadata database servers to update.
- The single repository server is accessible to all the Exadata database servers.
An infrastructure exists for building a local ULN mirror on a separate Linux server.

Exadata database servers have customized software that requires updates from other ULN channels.

The mirror server is a separate Linux server that holds the downloaded Exadata software update for Exadata database servers as downloaded from ULN. The Exadata database servers connect to this local mirror (YUM HTTP repository) to retrieve updates.

Note:

Do not use an Exadata database server as the local ULN mirror. Doing so may lead to dependency conflicts between the packages required by ULN to construct the repository, and the packages installed or updated on the Exadata database server by the Exadata software update. If no separate server is available, then use the ISO image method instead. See "Downloading the ISO Image as a YUM Repository from My Oracle Support and Passing the Location of the Compressed Image to the Update Utility".

When setting up a local repository for the first time, you may need additional Linux subscriptions, depending on the Linux release being used for the server that will be hosting the YUM repository. The server should subscribe to the following additional ULN channels in order for the repositories to be built:

- For 64-bit systems: Enterprise Linux 5 systems: el5_x86_64_addons are required.
- For 64-bit systems: Oracle Linux 5 systems: el5_x86_64_addons are required.
- For 64-bit systems: Oracle Linux 6 systems: ol6_x86_64_addons are required.

Note:

After registration, depending on the operating system running your local ULN mirror, the system server automatically subscribes to el5_x86_64_latest, ol5_x86_64_latest, or ol6_x86_64_latest.

Review the prerequisites and server setup procedure as described in "How to create a local Unbreakable Linux Network mirror" at http://www.oracle.com/technetwork/articles/servers-storage-admin/yum-repo-setup-1659167.html to create and maintain a local ULN mirror as YUM repository. For step 5 in the above instructions, in addition to the listed channels, perform the following step for Exadata:

- Add the channels listed in the Oracle Exadata patch README, such as exadata_dbserver_12.1.2.3.2_x86_64_base.

The Oracle Exadata channel to subscribe to depends on the Oracle Exadata software release you want to update to. See the patch README for the release for details.

The YUM mirror creation procedure mentioned in the link above provides a script (uln-yum-mirror) which you can use to populate the local mirror. Running the script as root starts the rpm download from ULN to a local directory holding the repository.
You need to install a web server and configure its “document Root” directory to point to this repository location on disk so that the Oracle Exadata channel content is made available to the Oracle Exadata Linux database servers using the HTTP web server. This is described in step 7 from the mentioned instructions.

When you run the update utility, you specify the URL to the repository location. This URL should always be at the level of the “repodata” directory. You can run a prerequisite check (–precheck) to verify that the repository works. See the prerequisite check example using YUM repository in “Running Prerequisite Checks.”

Note:

Exadata database servers must be running Exadata release 12.1.2.2.0 or later to access YUM repositories listening on IPv6 addresses only.

7.5.9.3 Downloading the ISO Image as a YUM Repository from My Oracle Support and Making It Available as a YUM HTTP Repository on a Web Server

You can download, uncompress, and place the ISO image channel holding the Oracle Exadata software update on a web server that has HTTP connectivity to every Oracle Exadata database server. This method is recommended for the following conditions:

- There is a large number of database servers to update.
- The single repository server is accessible from all the database servers.

Note:

If you run the update utility on a non-Exadata system against this ISO image, this is taken care of locally on each database server. In such cases there is no need to set up a local mirror.

- The database servers do not have customized software that requires updates from additional ULN channels.

Note:

If the database servers have custom software installed it is better to use an HTTP YUM repository and not the ISOs, because this improves flexibility in adding back/installing rpms.

Use the following procedure to make the ISO image of the Oracle Exadata channel content available on a Linux-based server running an HTTP server. You can adapt the instructions for other operating systems. In this procedure, the ISO image is copied to the `/u01/app/oracle/stage` directory. The “Document Root” entry in the web server document is `/var/www/html`. The procedure uses release 12.1.1.1.0 as an example.
Note:
Oracle recommends that a separate server (non Exadata database server) be used as the web server.

1. Create the ISO image mount point as the root user using the following commands:

 [root@nonExadataHost]# mkdir -p /var/www/html/yum/unknown/EXADATA/dbserver/12.1.1.1.0/base
 [root@nonExadataHost]# mkdir -p /u01/app/oracle/stage

2. Copy the compressed ISO image to the web server into /u01/app/oracle/stage.

3. Uncompress and mount the ISO image as the root user using the following commands:

 [root@nonExadataHost]# unzip p17997668_121110_Linux-x86-64.zip
 [root@nonExadataHost]# mount -o loop /u01/app/oracle/stage/121110_base_repo.iso /var/www/html/yum/unknown/EXADATA/dbserver/12.1.1.1.0/base

4. Start the httpd service as the root user. This assumes httpd is installed.

 [root@nonExadataHost]# service httpd start

5. Identify and test the YUM HTTP repository by connecting to it using a web browser. The following is an example of the repository URL.

 http://yum-repo/yum/unknown/EXADATA/dbserver/12.1.1.1.0/base/x86_64/

6. Run the prerequisite check as the root user to verify that the repository is set up properly. See Running Prerequisite Checks.

7.5.10 Managing Exadata Obsoleted Packages

If you are updating to release 11.2.3.3.0 or later, some packages on the Exadata database server become obsolete. While updating an Exadata database server, the update utility prints the exclude rpm list and obsolete rpm list in the log file.

The following example shows the exclusion and obsolete lists from the log file. In this example, an exclusion list has not yet been created by the user.

RPM exclusion list : Not in use (add rpms to /etc/exadata/yum/exclusion.lst and restart dbnodeupdate.sh)
RPM obsolete list : /etc/exadata/yum/obsolete.lst (lists rpms to be removed by the update)

: RPM obsolete list is extracted from exadata-sun-computenode-11.2.3.3.0.131014.1-1.x86_64.rpm

To see which packages will become obsolete, review the contents of the obsolete.lst file. This file lists the packages defined to be obsolete by Exadata; these packages will be removed during the update when no action is taken. Packages
manually added to this list are ignored. The following is a small sample of the
\texttt{obsolete.lst} file:

\begin{verbatim}
[root@dm01]# cat /etc/exadata/yum/obsolete.lst
Generated by dbnodeupdate.sh runid: 021213024645
at.x86_64
java-*-openjdk
rhino.noarch
jline.noarch
jpackage-utils.noarch
\end{verbatim}

To prevent a package listed in the \texttt{obsolete.lst} file from being removed, create the
\texttt{/etc/exadata/yum/exclusion.lst} file, and put in the rpm name (wildcards are allowed) for the packages you want to keep. Place the \texttt{/etc/exadata/yum/exclusion.lst} file on all Exadata database servers where you want to use it.

The following example shows a package added to the exclusion list:

\begin{verbatim}
[root@dm01]# cat /etc/exadata/yum/exclusion.lst
java-*-openjdk
\end{verbatim}

After you have added an entry to the \texttt{exclusion.lst} file and re-run the update
utility, the utility detects the exclusion list. The rpm packages on the exclusion list are
still shown in the \texttt{obsolete.lst} file, but the listed packages in the \texttt{exclusion.lst}
file will not be removed during the update.

7.5.11 Updating Individual Packages

Due to security findings or customization, you may need to update individual (general purpose) Linux packages supplied by the Exadata release. You can do this by removing the \texttt{exadata-sun-computenode-exact} rpm first.

Removing this rpm does not impact any functionality, but it removes a “lock”. By removing this “lock”, you are allowed to update specific individual Linux rpms.

If needed, you can remove the \texttt{exadata-sun-computenode-exact} rpm as follows:

\begin{verbatim}
[root@dm01]# rpm -e exadata-sun-computenode-exact
\end{verbatim}

When updating to a new release, the update utility tries to “restore” the “lock” (\texttt{exadata-sun-computenode-exact}). For example, this is possible if newer packages are shipped in the newer release.

If the \texttt{exadata-sun-computenode-exact} rpm cannot be restored, the update utility falls back to \texttt{exadata-sun-computenode-minimum}.

\begin{tcolorbox}[colback=blue!5!white,colframe=blue!50!white]
\textbf{Note:}

Do not force in packages using the \texttt{rpm -Uvh --nodeps} command, unless directed by Oracle Support Services.
\end{tcolorbox}
7.5.12 Running Prerequisite Checks

You should always run prerequisite checks before doing the actual update. The prerequisite checks do not require downtime and execute important validations such as:

- Validation of the Exadata release (minimum is 11.2.2.4.2 running Oracle Linux 5.5)
- Validation of user input
- Validation of the installation media (YUM repository, either ISO or HTTP)
- Validation of disk space and snapshots
- Validation of YUM settings that are important for the update to finish successfully
- Known issues / best practices

The most important validation executed by the update utility is the YUM dependency check. The YUM dependency check is a YUM update dry-run command (introduced in 11.2.3.3.0) that does not do the actual YUM update but does validate dependencies. This is a final test in determining whether or not the update can proceed. It is often due to customizations that prevent successful updates. For example, installation of additional RPMs might require dependent packages that are not in the YUM repository. If this happens, you need to take corrective action to resolve the conflict.

The YUM dependency check (dry-run) is validated against minimum and exact dependencies. These dependencies are enforced by non-functional Exadata RPMs and help administrators stay exactly at (or close to) the original Exadata release when customizing the system. The update utility uses the `exadata-sun-computenode-exact` and the `exadata-sun-computenode-minimum` RPMs as follows:

- The `exadata-sun-computenode-exact` rpm ensures that only a specific release of Oracle Exadata branded packages is allowed during the update. (release = x)
- The `exadata-sun-computenode-minimum` rpm ensures that a specific or later release of Oracle Exadata branded packages is allowed during the update. (release >= x)

With `exadata-sun-computenode-exact` rpm, the system appears as if it were freshly imaged to the newer release because all the Oracle Exadata packages are exactly the same as on a vanilla installation. The `exadata-sun-computenode-minimum` rpm, however, sets the minimum dependencies, and enforces that all packages are installed, but it also allows packages to be at a later version. A vanilla installation always starts with both RPMs. To allow customization or updates, you need to remove `exadata-sun-computenode-exact`.

By default, the update utility attempts to match the exact dependencies when updating to a later Exadata release. When exact dependencies conflict and cannot be enforced, the utility falls back and attempts to apply the `exadata-sun-computenode-minimum` rpm to enforce minimum dependencies. In such cases the `exadata-sun-computenode-exact` rpm is not installed.

Missing or not updating with exact dependencies is allowed and not a problem. If a system needs to be updated to the exact dependencies, then the conflict needs to be resolved first. Check the log file to see what packages conflict, remove them cautiously, and then re-run the update utility in prerequisite check mode.
If the prerequisite check fails due to dependency issues, you can view the errors on-screen. The update utility’s log file has more details and shows which dependencies failed. When both exact and minimum dependencies do not match, the update cannot proceed.

For such cases, check the log file to determine what caused the dependencies to fail. After removing the failed dependencies, re-run the update utility to ensure that at least the minimum dependencies can be enforced.

Note:

The update utility may need to remove certain packages during prerequisite check in order to make sure the YUM prerequisite check works as some Exadata storage server updates have known dependencies that need to be resolved. While the removal of such RPMs during the prerequisite check should be rare and should never impact Exadata functionality it is understood that not all systems allow a prerequisite check to make modifications. For such systems it is recommended to use the `-nomodify_at_prereq` flag. When this flag is used, the update utility will not remove packages from your system, but it will generate a list of packages that would have been removed (installed or not). When this flag is used, the dependency check may fail. For this reason it is recommended that you re-run the dependency check without the `-nomodify_at_prereq` flag after you have performed a backup-only run in your planned maintenance window.

When dependency errors occur during the prerequisite check or before the update starts, do the following to resolve the problem:

- Analyze the YUM errors in the log file. Search for *Error*.
- Depending on the issue, you may need to de-install, install, or update the rpm packages causing the dependency issue or conflict. The log file lists the failed dependencies.

After the update, you may re-install custom rpm packages that you de-installed, assuming you still require the packages and the packages are compatible with the updated system.

By default, prerequisite check warnings such as active NFS mounts result in a failed check. If you want to allow active NFS mounts, then starting in release 12.1.2.1.1 you can use the `-allow_active_network_mounts` flag.

For more options, see the update utility built-in help.

Prerequisite Check Examples

The following command shows an example of a prerequisite check that does not remove any RPMs using ISO. The command is run as root.

```
[root@dm01 ]# ./patchmgr -dbnodes dbs_group -precheck -iso_repo /u01/exa/
p22750145_121230_Linux-x86-64.zip -target_version 12.1.2.3.0.160207.3 -nomodify_at_prereq
```

- `dbnodes` specifies the list of database nodes to be updated.
-precheck specifies the prerequisite check action.

-iso_repo specifies the location of the ISO (YUM) repository on the node running the updating utility. This can be replaced by -yum_repo <location>.

-target_version specifies the target release the database servers are being updated to.

-nomodify_at_prereq specifies no RPMs will be removed at prerequisite check time.

The following command shows an example of a prerequisite check that allows the removal of necessary RPMs using ISO. The command is run as a non-root user.

```
[oracle@nonExadataHost ]$ ./patchmgr -dbnodes dbs_group -precheck -iso_repo /u01/exa/p22750145_121230_Linux-x86-64.zip -target_version 12.1.2.3.0.160207.3 -log_dir auto
```

Related Topics

• Troubleshooting Exadata Database Server Updates
 You can use the log files generated by the update utility to troubleshoot updates.

• Update Utility for Exadata Database Servers

7.5.13 Backing up Exadata Database Servers Before Planned Maintenance

Oracle recommends making a backup of the Exadata database servers before making any changes when updating to a next release.

This means running the update utility in backup-only mode before running the prerequisite check without the -nomodify_at_prereq flag or before making any other (manual) changes to make the prerequisite / dependency check pass. The backup-only action backs up the active root and /boot file system only and is sufficient for rolling back (failed) updates.

Note:
The update utility’s built-in backup (dbserver_backup.sh) is insufficient for recovering from non-booting system failures. It is recommend having additional (validated) backup/restore procedures in place to recover the entire database server from failures such as double disk failures.

For regular and virtualized Exadata database servers (domU), when the active system image is running from a file system on /dev/mapper/VGExaDb-LVDbSys1, the backup is made onto /dev/mapper/VGExaDb-LVDbSys2 (and vice versa). For Exadata database servers running dom0 with /dev/mapper/VGExaDb-LVDbSys2 as the active image, the backup goes to /dev/mapper/VGExaDb-LVDbSys3 (and vice versa).

This means that upon rollback of an update the active system image for regular database servers and domU will become /dev/mapper/VGExaDb-LVDbSys2, and for dom0 will become /dev/mapper/VGExaDb-LVDbSys3.
The process of backing up an active system partition requires the default LVM scheme for the Sys* LVM's and both LVM's to be the same size. This is because it is impossible to back up a larger LVM partition to a smaller LVM partition. Resizing LVM VGExaDb-LVDbSys1 partition is allowed as long as VGExaDb-LVDbSys2 is resized to the same size.

While the backup is running, an LVM snapshot takes care of a consistent view of the file system. This LVM snapshot is maintained by the backup script and will always claim 1G of free VG space in VGExaDb.

Space for the snapshot is guaranteed by Oracle by using a placeholder LVM called /dev/VGExaDb/LVDoNotRemoveOrUse. When the backup script runs, it removes this placeholder, making sure there is always 1G of free space available for a snapshot. After the backup is completed, the snapshot is removed and the /dev/VGExaDb/LVDoNotRemoveOrUse LVM is re-created.

You can perform the backup while all system services are up and running. Starting with release 12.1.2.1.1, the utility supports active network mounts (NFS) with the -allow_active_network_mounts flag.

The time it takes to run the backup depends on how busy the system is and on the size and type of data that is backed up. For example, backing up millions of small files can take significantly longer than backing up a couple of larger files. For this reason it is recommended to make sure directories holding database .aud files are not found on the root file system. Note the following:

- You can have only one backup. Running a new backup means overwriting the existing backup.
- Re-running the update utility with the -backup flag (or in default updating mode) will overwrite existing backups.
- All files in /boot and found on the active Sys LVM's are backed up. Files in, for example, /u01, are not backed up.

Examples for “Backup Only”

The following example shows running “backup only” as root:

```
[root@dm01 ]# ./patchmgr -dbnodes dbs_group -backup -iso_repo /u01/exa/p22750145_121230_Linux-x86-64.zip -target_version 12.1.2.3.0.160207.3 -allow_active_network_mounts
```

- `-dbnodes` specifies the list of database nodes to be updated.
- `-backup` specifies the “backup only” action.
- `-iso_repo` specifies the location of the ISO (YUM) repository on the node running the update utility. Alternatively, you can use the `-yum_repo` flag, which specifies the HTTP location of the YUM repository.
- `-target_version` specifies the target release for which the backup is run.
- `-allow_active_network_mounts` ensures active network mounts remain active while performing the backup.

The following example shows a “backup only” action run as a non-root user:

```
[oracle@nonExadataHost ]$ ./patchmgr -dbnodes ~/dbs_group_scab -backup -iso_repo /u01/iso/p23557378_121223_Linux-x86-64.zip
```
-target_version 12.1.2.3.160720 -allow_active_network_mounts -smtp_from "sender@somedomain.com"
-smtp_to "recipient@example.com"

Related Topics

• Recovering Oracle Linux Database Server with Uncustomized Partitions

7.5.14 Running the Update

You can perform the actual update of Exadata database servers in a rolling (using the -rolling flag) or non-rolling fashion. The default is non-rolling.

You can also perform the update as root or as a non-root user (using the -log_dir flag), as described in "Running the Update Utility as a Non-root User and Running Multiple Invocations Concurrently".

The update proceeds only if the “minimum dependency check” succeeds. You may need to remove customizations for the update to proceed.

By default the update creates a backup on the inactive system image. If you have already taken a backup before running the prerequisite check without using the -nomodify_at_prereq flag, you can skip the backup using the -nobackup flag when performing the update.

Note:

Use the -nobackup flag only if a backup was already made before running the prerequisite check without the -nomodify_at_prereq flag.

The update action requires the following mandatory flags:

• -upgrade to specify the update action
• -iso_repo (for ISO image) or -yum_repo (for HTTP locations) to point to the YUM repository (see Example 7-9)
• -target_version to specify the release you want to update to. The patch README always has this information.

You can specify additional flags to allow active remote network mounts during backup and updating (-allow_active_network_mounts) and specify mail recipients for updating status notification (-smtp_from "addr" and -smtp_to "addr1 addr2 addr3 ...")

Example 7-8 Running Update Using ISO Image for YUM Repository

The following example shows an update action run as root and using an ISO image for the YUM repository. Active network mounts are allowed, and mail information is specified for status notification:

[root@dm01]# ./patchmgr -dbnodes ~/dbs_group -upgrade -iso_repo /u01/iso/p23557378_121223_Linux-x86-64.zip -target_version 12.1.2.3.160720 -allow_active_network_mounts -smtp_from"sender@somedomain.com" -smtp_to "recipient@example.com"
The following example shows an update action run as a non-root user from a remote host using an ISO YUM repository. Active network mounts are allowed, and mail information is specified for status notification:

```
[oracle@nonExadataHost ]$ ./patchmgr -dbnodes ~/dbs_group -upgrade -
iso_repo /u01/iso/p23557378_121223_Linux-x86-64.zip
-target_version 12.1.2.2.3.160720 -allow_active_network_mounts -log_dir
da -smtp_from "sender@somedomain.com"
smtp_to "receiver@somedomain.com" -nobackup
```

Example 7-9 Running Update Using HTTP Location for YUM Repository

The following example shows an update action run as root using HTTP for the YUM repository. Active network mounts are allowed, and mail information is specified for status notification:

```
[root@dm01 ]$ ./patchmgr -dbnodes ~/dbs_group -upgrade -yum_repo http://
yum-repo/yum/ol6/EXADATA/dbserver/12.1.2.2.3/base/x86_64/
-target_version 12.1.2.2.3.160720 -allow_active_network_mounts -smtp_from
"sender@somedomain.com" -smtp_to "receiver@somedomain.com"
-nobackup
```

The following example shows an update action run as a non-root user from a remote host using HTTP for the YUM repository. Active network mounts are allowed, and mail information is specified for status notification:

```
[oracle@nonExadataHost ]$ ./patchmgr -dbnodes ~/dbs_group -upgrade -
yum_repo http://yum-repo/yum/ol6/EXADATA/dbserver/12.1.2.2.3/base/x86_64/
-target_version 12.1.2.2.3.160720 -allow_active_network_mounts -log_dir
auto -smtp_from "sender@somedomain.com"
smtp_to "receiver@somedomain.com" -nobackup
```

Related Topics

- Running Prerequisite Checks
- Installing, Updating, and Managing Non-Oracle Software
- Backing up Exadata Database Servers Before Planned Maintenance

7.5.15 Rolling Back Updates

A backup enables you to roll back updates, regardless of whether the update failed or succeeded. This backup is stored on the inactive system partition, as described in "Backing up Exadata Database Servers Before Planned Maintenance".

When rolling back an update, the update utility performs the following actions:

- Shuts down the stack and domU's.
- Deactivates the active system partition, and activates the inactive system partition.
- Restores /boot from the inactive partition.
• Updates the grub boot-loader.

Having only one inactive system partition limits the rollback options to only the previous active image.

Note:

- For systems being updated to Oracle Linux 6, a backup must be performed before proceeding with the update. The backup is automatic when updating LVM-enabled systems from Oracle Linux 5 to Oracle Linux 6.
- Database servers running as Oracle VM Server (dom0) switch between LVDbSys2 and LVDbSys3 as the active system partition when rolling back.
- Database servers running as Oracle VM (domU) have smaller sizes for LVDbSys1 compared to physical hardware deployments.

Example 7-10 Rolling back an update using patchmgr

```
[root@dm01 ]# ./patchmgr -dbnodes dbs_group -rollback -target_version 12.1.2.3.0.160207
```

- *-dbnodes* specifies the list of database nodes to be updated.
- *-rollback* specifies the rollback action.
- *-target_version* specifies the target release to roll back to.

For more options see the update utility's built-in help.

Note:

Firmware updates are not rolled back when rolling back to a previous image. The Oracle Exadata System Software releases support later firmware releases. After rolling back, run the following commands to apply older firmware versions when needed:

```
/etc/init.d/lsidiag stop

/etc/init.d/lsi_mrdsnmpd stop

/opt/oracle.cellos/CheckHWnFWProfile -action updatefw -mode exact
```

The last command only applies to releases 11.2.3.3.0 or later.
Updates for database servers running Oracle Exadata System Software release 11.2.2.4.2 include an update that prepares the servers to use yum.

The steps to prepare the servers are done using the `dbnodeupdate.sh` utility. For this reason, updates from Oracle Exadata System Software release 11.2.2.4.2 require two runs of the `dbnodeupdate.sh` utility with different arguments. The utility provides instructions about which command to run and when to it.

When updating the database servers, the following assumptions are made:

- The Oracle Exadata System Software release is 11.2.2.4.2.
- The database servers are running Oracle Linux 5.5 or later.
- The database server update is available as a local ULN mirror or as a local ISO image.

Preparing to Use the dbnodeupdate.sh Utility on Database Servers with Release 11.2.2.4.2

This procedure describes how to download and prepare the utility on the server.

Running the dbnodeupdate.sh Utility

You can use the `dbnodeupdate.sh` utility on database servers running release 11.2.2.4.2.

7.6.1 Preparing to Use the dbnodeupdate.sh Utility on Database Servers with Release 11.2.2.4.2

This procedure describes how to download and prepare the utility on the server.

The `dbnodeupdate.sh` utility is available from My Oracle Support from Doc ID 1553103.1. The `dbnodeupdate.sh` utility can update releases running 11.2.2.4.2 directly to Oracle Linux 6.

1. Download the `dbnodeupdate.sh` utility from My Oracle Support.
2. Log in as the `root` user on the database server.
3. Put the compressed file in the `/u01/dbnodeupdate` directory on the database server. Create this directory if it does not exist.
4. Uncompress the `p16486998_12xxxx_Linux-x86-64.zip` package file in the `/u01/dbnodeupdate` directory using the following command:


   ```
   [root@dm01 ]# unzip p16486998_12xxxx_Linux-x86-64.zip
   ```
Note:

- When using a compressed ISO, upload it to the database server and place it in the /u01/dbnodeupdate directory, provided there is free space available. Create this directory if it does not exist.
- When using a local ULN mirror, make sure the HTTP location is available.
- When making ISO contents available on a web server, upload the contents to the web server, mount it, and verify the URL.
- A user with sudo privileges can use sudo to run the dbnodeupdate.sh utility.

Related Topics

- dbnodeupdate.sh and dbserver.patch.zip: Updating Exadata Database Server Software using the DBNodeUpdate Utility and patchmgr (My Oracle Support Doc ID 1553103.1)
- Preparing and Populating the YUM Repository with the Oracle Exadata Channel Content

7.6.2 Running the dbnodeupdate.sh Utility

You can use the dbnodeupdate.sh utility on database servers running release 11.2.2.4.2.

1. Log in as the root user on the database server.
2. Run the dbnodeupdate.sh utility using the following command, where repo is the HTTP location of the ULN mirror or the location of the compressed ISO image:

   ```bash
   [root@dm01 ]# ./dbnodeupdate.sh -u -l repo
   ```

 The database server restarts automatically.

 Note:

 Just before the restart, instructions for the next step are provided onscreen.

3. Run the following command after the restart mentioned in step 2. The utility automatically remounts the ISO image when a compressed ISO image is used.

   ```bash
   [root@dm01 ]# ./dbnodeupdate.sh -u -p 2
   ```

4. Run the following command to complete the update.

   ```bash
   [root@dm01 ]# ./dbnodeupdate.sh -c
   ```
During the completion process, the utility performs post-update checks, applies best practices, relinks the Oracle homes, and starts the stack.

Note:
The update process might still be running when the `dbnodeupdate.sh -c` command is entered. When this happens, the utility waits until it can determine the image status. The system may restart while waiting to make pending updates effective. If this happens, then re-enter the `dbnodeupdate.sh -c` command when the system is back online.

7.7 Updating Software on Oracle Exadata Storage Servers

Use the following information and procedures when updating storage servers within Oracle Exadata Database Machine.

- **Overview of Oracle Exadata Database Machine Storage Server Updates**
 When updating storage servers, there is more than one type of software that needs to be updated and different methods of performing the updates.

- **Scheduling Automated Updates of Storage Servers**
 Starting with Oracle Exadata System Software release 18.1.0.0.0, you can schedule software updates for the storage servers.

- **Update Utility for Oracle Exadata Storage Server**

- **Recommended Timeline for Updating Oracle Exadata Storage Server**

- **Preparing Exadata Storage Servers for Update**
 Perform these preparation steps before updating the Exadata storage servers.

- **Running the Update for Exadata Storage Servers**

- **Rolling Back Updates for Exadata Storage Servers**

7.7.1 Overview of Oracle Exadata Database Machine Storage Server Updates

When updating storage servers, there is more than one type of software that needs to be updated and different methods of performing the updates.

Oracle Exadata System Software release updates contain updates for the following components within an Oracle Exadata Database Machine storage server:

- **Oracle Linux operating system**

- **Firmware (Flash, Disk, RAID controller, Integrated Lights Out Manager (ILOM), HCA)**

- **Oracle Exadata System Software**

What software and firmware that is updated depends on the current Oracle Exadata System Software release the storage server is on and the release it is updated to. Oracle Linux operating system packages and Oracle Exadata System Software are always updated, while firmware updates are applied only on a small selection of the components, or not at all.
Updates for Oracle Exadata Database Machine storage server can be applied independently from the updates to Oracle Exadata Database Machine database server or RDMA Network Fabric switches unless specified otherwise. It is not mandatory to apply each and every Oracle Exadata System Software update that comes out. For example, you can skip two or three releases and update directly to a newer release.

Updating the Oracle Exadata System Software is always performed “out of place”. This means that a new version of the operating system including the Oracle Exadata System Software is installed on the inactive system partition. The utility to update the Oracle Exadata System Software ships with the update itself.

If you cannot afford cluster-wide downtime, you can update the storage servers in a rolling fashion. Rolling means updating one storage server at a time. If you can afford the cluster-wide downtime, you can update all storage servers in parallel. Non-rolling updates reduce the overall time required.

Starting with Oracle Exadata System Software release 18c (18.1.0), there is a more scalable alternative to using patchmgr for software updates. The storage servers automatically verify preconditions and download the update software from a URL that you specify. Each storage server downloads the software to its active partition, and then loads the software on its passive partition. At a specified time, the storage servers reboot to the new version. The storage servers use the Oracle Automatic Storage Management (Oracle ASM) disk deactivation status to determine when it is safe to deactivate the disks and reboot the storage server to the new software version. These scheduled updates invoke the same scripts that are currently used by the patchmgr process.

7.7.2 Scheduling Automated Updates of Storage Servers

Starting with Oracle Exadata System Software release 18.1.0.0.0, you can schedule software updates for the storage servers.

Perform the following steps from an external server, for example, an Oracle Exadata Database Server.

If you are accessing the Software Update store using the HTTPS protocol, then TLS certificate checks are required by default. If the certificate for the web server that hosts the software update cannot be validated, then the following error is returned:

CELL-00076: An error occurred during download of software update:
source https://example.com:port is not available.

CELL-00092: The store©s TLS certificate cannot be authenticated with known CA certificates

1. Copy the software update ZIP file to a directory which is hosted by a web server.

2. If you are using Oracle Exadata System Software 18c (18.1.0) or 18c (18.1.1), then the patch file must have a name like 18.1.1.0.0.171018.patch.zip.

 If the downloaded patch has a name like p26875767_181100_Linux-x86-64.zip, then rename the file to 18.1.1.0.0.17018.patch.zip. Rename the ZIP file to use the release number and date string that is used for the directory name within the ZIP file. For example, when you unzip the patch p26875767_181100_Linux-x86-64.zip it extracts the directory patch_18.1.1.0.0.171018.
If you are using Oracle Exadata System Software release 18.1.2 or higher, then the patch downloaded from My Oracle Support is automatically renamed for you during the validation step.

3. Determine approximate time to perform the software update of the storage servers.

4. Create a file on the external server that contains the list of cells to be updated. Name this file `cells`.

5. Use `dcli` to schedule the update of the cells.
 a. Setup passwordless access, if needed.

      ```
      $ dcli -g cells -k
      ```

 b. Specify the location of the software update ZIP file to use during the update.

      ```
      $ dcli -g cells cellcli -e 'alter softwareUpdate store="https://host/exa-updates/cell"'
      ```

 c. Specify the time to start the update of the Oracle Exadata System Software on the storage servers.

 If you specify the time before providing the software store location, then the software update download might start before the proper store location has been set.

     ```
     $ dcli -g cells cellcli -e 'alter softwareUpdate time="1 AM Thursday"'
     ```

6. Wait for the updates to occur.

Management Server (MS) will the start file download and run pre-checks up to one week before the scheduled update. MS will generate an alert if any cell does not update as scheduled.

Related Topics

- ALTER SOFTWAREUPDATE

7.7.3 Update Utility for Oracle Exadata Storage Server

You use the `patchmgr` update utility for updating Oracle Exadata storage servers. For Exadata storage server updates the utility is packaged (and shipped) with the update itself and is available for download from My Oracle Support as storage server update.

Note:

The `patchmgr` used for updating Exadata storage servers is not the same as the `patchmgr` used for applying the Exadata database server software update.

Whether or not the utility supports the Exadata hardware you have depends on the Exadata storage server release you are trying to update to. The utility orchestrates the
update process across the specified Exadata storage servers. The utility allows running the update in a rolling or non-rolling fashion. You can run the update utility from Exadata database servers or from other servers running Oracle Linux or Oracle Solaris.

The update utility performs the following tasks:

- Automates the preparation, update, and validation steps
- Automates rollbacks

The update utility supports multiple sessions: you can run multiple updates concurrently from the same server starting with release 12.1.2.3.2 for Exadata storage servers and starting with release 11.2.3.1.0 for Exadata database servers. This means multiple racks can be updated concurrently from the same server. The update utility can be run as root or as a non-root user. By default the update utility assumes it should run as the root user. If however you want to enable multiple session support or run as a non-root user, then you need to use the -log_dir flag. The -log_dir flag supports two types of arguments: either a location on disk or the keyword auto. If you specify auto, the update utility creates its own log directory based on the storage servers listed in the cell_group file. This behavior causes the update utility to create new directories for each run of updates in the same cluster where one or more clusters were added or removed from the cell_group file. In order to obtain (and reuse) such a directory, the update utility provides the -get flag to determine the log directory for your session. The -get flag scans the working directory for directories in the log directory and returns the directory for your cell_group. For example, the following command:

```
[oracle@nonExadataHost ]#/patchmgr -dbnodes ~/cell_group -log_dir auto -get log_dir
```

The previous comment might return output similar to the following:

```
log_dir=/u01/test/patch_12.1.2.4.0.160802/log/dbm02celadm01_dbm02celadm02_9cfbc690
```

In a subsequent update session, you can re-use the log directory location:

```
[oracle@nonExadataHost ]#/patchmgr -cells ~/cell_group -patch_check_prereq -log_dir /u01/test/patch_12.1.2.4.0.160802/log/dbm02celadm01_dbm02celadm02_9cfbc690
```

7.7.4 Recommended Timeline for Updating Oracle Exadata Storage Server

Note:

It is highly recommended to validate Oracle Exadata System Software updates on test systems before doing them on production systems.
By following the approach below, you allow yourself time to perform any necessary corrective actions.

Table 7-9 Timeline for Performing Updates

<table>
<thead>
<tr>
<th>When</th>
<th>Tasks</th>
</tr>
</thead>
</table>
| Weeks to days before the update | • Download the Oracle Exadata System Software update you require from My Oracle Support note 888828.1
• Download the latest Oracle EXAchk from My Oracle Support note 1070954.1
• Review the release-specific My Oracle Support note for known issues
• Run Oracle EXAchk
• Perform prerequisite check. See Preparing Exadata Storage Servers for Update for details.
• Correct findings that need attention and re-run the above steps as needed. |
| At update time | • Download the Oracle Exadata System Software update from My Oracle Support note 888828.1
• Download the latest Oracle EXAchk from My Oracle Support note 1070954.1
• Review the release-specific My Oracle Support note for known issues
• Run Oracle EXAchk and perform corrective actions as needed
• Perform prerequisite check and corrective actions as needed.
• Perform the update. See Running the Update for Exadata Storage Servers for details. |
| After the update | • Run Oracle EXAchk. |

7.7.5 Preparing Exadata Storage Servers for Update

Perform these preparation steps before updating the Exadata storage servers.

You can perform the update (and rollback) action in a rolling or non-rolling method. You can also perform a prerequisite check in a rolling or non-rolling method. The default is non-rolling.

1. Set up SSH equivalence for the user that is driving the update utility.
2. Download and run Oracle ExaCHK. Review and address any open issues. See My Oracle Support note 1070954.1.
4. Check prerequisites for your method of update or rollback.
 Prerequisites for performing a rolling update:
 a. Verify that your Grid Infrastructure home and Database home software versions and patch levels meet the minimum required for Exadata storage server rolling cell update as documented in My Oracle Support note 888828.1
b. Verify `failgroup_repair_time` or `disk_repair_time` for each Oracle ASM disk group.

When applying the update in a rolling manner, the update utility updates one server at a time, first taking all grid disks and ASM disks offline, then applying the update to the server, then bringing all ASM disks and grid disks back online. The Oracle ASM repair timeout attributes, `disk_repair_time` and `failgroup_repair_time`, need to be set to a value large enough to allow a single storage server update to complete. The default values of 3.6h and 24h, respectively, are the recommended values. Note that during a rolling storage server update disk groups with `compatible.asm >= 12.1.0.2.0` will use the value of `failgroup_repair_time`, and disk groups with `compatible.asm < 12.1.0.2.0` will use the value of `disk_repair_time`.

Verify ASM repair timeout attributes are set to default or higher values. Use the following command to check repair time attributes for all mounted disk groups in the Oracle ASM instance.

```sql
SQL> col attribute format a30
SQL> col value format a10
SQL> select dg.name as diskgroup, a.name as attribute, a.value from v$asm_diskgroup dg, v$asm_attribute a where dg.group_number=a.group_number and (a.name like '%repair_time' or a.name = 'compatible.asm');
```

<table>
<thead>
<tr>
<th>DISKGROUP</th>
<th>ATTRIBUTE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>disk_repair_time</td>
<td>3.6h</td>
</tr>
<tr>
<td>DATA</td>
<td>failgroup_repair_time</td>
<td>24.0h</td>
</tr>
<tr>
<td>DATA</td>
<td>compatible.asm</td>
<td></td>
</tr>
<tr>
<td>12.1.0.2.0</td>
<td>disk_repair_time</td>
<td>3.6h</td>
</tr>
<tr>
<td>RECO</td>
<td>failgroup_repair_time</td>
<td>24.0h</td>
</tr>
<tr>
<td>RECO</td>
<td>compatible.asm</td>
<td></td>
</tr>
<tr>
<td>12.1.0.2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the Oracle ASM repair timer for any disk group is lower than the default value, then set the repair timer to the default value for the duration of the update. You may set it back to its current value after the update successfully finishes for all storage servers.

Prerequisites for performing a non-rolling update:

a. Shut down and stop the Oracle components on each Exadata database server using the following commands, where `Grid_home` is the directory where the Oracle Grid Infrastructure software is installed:

```bash
[root@dm01 ]# dcli -g dbs_group -l root "Grid_home/bin/crsctl stop crs"
```
If Oracle Clusterware was not stopped using the preceding command, then use the following command to force it to stop:

```
[root@dm01 ]# crsctl stop crs -f
```

b. Use the following command to check Oracle Clusterware status, where `Grid_home` is the directory where the Oracle Grid Infrastructure software is installed:

```
[root@dm01 ]# dcli -g dbs_group -l root "Grid_home/bin/crsctl check crs"
```

All Oracle Clusterware components must be offline. If you are performing a non-rolling update in a configuration running Oracle VM, then you must check the Oracle Clusterware state in all VM clusters.

5. Check if your system meets the following conditions:
 - Oracle Exadata Database Machine hardware uses Sun servers.
 - The installed Oracle Exadata Software release is earlier than release 11.2.2.2.0.
 - The installed Linux ofa package is earlier than 1.5.1-4.0.28.

If the system meets all of the preceding conditions, then Exadata storage servers running Oracle Linux may encounter a file system corruption that results in the root file system mounted as read-only after reboot. Follow the instructions in My Oracle Support note 1589868.1 before updating the storage servers and database servers.

6. Unzip the update. It will extract into the `patch_release.date_code` directory. Change to this patch directory.

7. Download any patchmgr plug-ins attached to the My Oracle Support note for your target release and install them as documented in the My Oracle Support note. Oracle recommends reviewing the My Oracle Support notes, issues, and workarounds listed in the release note just before starting to actually apply the update.

8. Clean up any previous update utility runs using the `-cleanup` flag.
Note:

The first time the storage servers are updated the -reset_force flag should be used before running cleanup.

Example using -reset_force as the root user:

[root@dm01]# ./patchmgr -cells ~/cell_group -reset_force

Example using -reset_force as a non-root user:

[oracle@nonExadataHost]# ./patchmgr -cells ~/cell_group -log_dir auto -reset_force

Example using -cleanup as the root user:

[root@dm01]# ./patchmgr -cells ~/cell_group -cleanup

Example using -cleanup as a non-root user:

[oracle@nonExadataHost]$./patchmgr -cells ~/cell_group -log_dir auto -cleanup

9. Run prerequisite check.
Example running prerequisite check for a rolling update as the root user from an Exadata database server:

[root@dm01]# ./patchmgr -cells ~/cell_group -patch_check_prereq -rolling -smtp_from "sender@example.com" -smtp_to receiver@example.com

Example running prerequisite check for a non-rolling update as a non-root user from a non-Exadata database server:

[oracle@nonExadataHost]$./patchmgr -cells ~/cell_group -log_dir auto -patch_check_prereq -smtp_from "sender@example.com" -smtp_to "receiver@example.com"

Related Topics

- Overview of Oracle Exadata Database Machine Storage Server Updates
 When updating storage servers, there is more than one type of software that needs to be updated and different methods of performing the updates.

- Setting up SSH Equivalence
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

- Oracle Exadata Database Machine exachk or HealthCheck (My Oracle Support Doc ID 1070954.1)
7.7.6 Running the Update for Exadata Storage Servers

After performing the prerequisite steps in Preparing Exadata Storage Servers for Update, you can perform the actual update step.

Note the following when applying the update to the Exadata storage servers:

- Do not use the serial console or the ILOM web-based console to start the update utility.

 There is a known issue of a system halt on the serial console when a write is attempted to stderr or stdout. If an update is started from the serial console, then it may halt.

 You are using the serial console if the output from the following command is serial.

  ```
  [root@dm01 ]# ./echo $consoletype
  ```

- When needed, use the ILOM web-based console to monitor the storage server during the update. You will need to use the ILOM web-based console in case troubleshooting is required.

- To obtain ILOM and serial console access for the storage servers, use SSH to the ILOM host name or IP address as the root user. Do the following to start the serial console:

  ```
  start /SP/console
  ```

To stop it press the Escape key (ESC) followed by .

- Start a new login session for each update or rollback procedure. Do not run a rollback procedure from the same login session where an update was applied. Do not run an update from a login session where a rollback procedure was run.

- Do not interrupt the update process.

- If you must use a storage server as the patchmgr utility launch system, then do not use /opt/oracle as the staging area for the update. This causes the update to fail and corrupt the storage server. Use the /tmp directory as the staging area, that is, unzip the files for the update in /tmp.

- Storage servers automatically reboot, as needed, during the update process. Do not reboot or power cycle storage servers while applying updates.

- Do not edit or open log files in writable mode. You may use any of the following to view a log: view, less, more, or tail. You may cause the update process to be interrupted if you edit the log files during the update.

- At the end of the patchmgr session, the patchmgr.stdout log file is divided into individual storage server log files with names in the format of cell_name.log. In addition, the /var/log/cellos content from the inactive cell partition is copied to the /var/log/cellos/inactive_partition directory. To locate the inactive partition, use the following command:

  ```
  [root@dm01 ]# ./imageinfo -inactive -sys
  ```
Examples running update:

Running the update in a rolling fashion as root from an Exadata database server:

```
[root@dm01 ]# ./patchmgr -cells ~/cell_group -patch -rolling -smtp_from
"sender@somedomain.com" -smtp_to receiver@somedomain.com
```

Running the update in a non-rolling fashion as a non-root user from a non-Exadata
database server:

```
[oracle@nonExadataHost ]$ ./patchmgr -cells ~/cell_group -log_dir auto -patch -
smtp_from "sender@somedomain.com" -smtp_to "receiver@somedomain.com"
```

After the update is done, clean up the storage servers using the -cleanup option to
clean up all the temporary update or rollback files. This option cleans the stale update
and rollback states as well as cleaning up to 1.5 GB of disk space on the storage
server. Use this option before retrying a halted or failed run of the update utility. See
step 8 for details.

7.7.7 Rolling Back Updates for Exadata Storage Servers

You can roll back updated Exadata storage servers only when they are updated
successfully. This means the imageinfo command must return success for active
image status. Storage servers with incomplete or failed updates cannot be rolled back.
Rollbacks can be done in a rolling or non-rolling fashion.

1. Check the version that the storage servers will be rolled back to and the
flashCacheMode setting with the following commands:

```
[root@dm01 ]# dcli -l root -g cell_group imageinfo -ver -inactive
[root@dm01 ]# dcli -l root -g cell_group cellcli -e 'list cell attributes
flashCacheMode
```

Note:

If you need to roll back storage servers to releases earlier than release
11.2.3.2.0 with writeback flash cache enabled, you need to convert the
flash cache to writethrough flash cache before performing the rollback
action. Disable the writeback flash cache using the script in My Oracle
Support note 1500257.1. Storage servers being rolled back to release
11.2.3.2.0 or later retain the flash cache mode that is currently set.

2. Check the prerequisites for rollback using the following command:

```
[root@dm01 ]# ./patchmgr -cells cell_group -rollback_check_prereq [-rolling]
```

3. Perform the rollback.

Example of a non-rolling rollback run as root:

```
[root@dm01 ]# ./patchmgr -cells ~/cell_group -rollback
```

Example of a rolling rollback run as a non-root user:

```
[oracle@nonExadataHost ]#./patchmgr -cells ~/cell_group -rollback -log_dir auto
```
Firmware updates are not rolled back when rolling back to a previous image. After rolling back, run the following command to apply older firmware versions when needed:

/etc/init.d/lsidiag stop
/etc/init.d/lsi_mrdsnmpd stop
/opt/oracle.cellos/CheckHWnFWProfile -action updatefw -mode exact

4. Clean up the Exadata storage servers using the -cleanup option to clean up all the temporary update or rollback files. This option cleans the stale update and rollback states as well as cleaning up to 1.5 GB of disk space on the Exadata storage servers. Use this option before retrying a halted or failed run of the patchmgr utility.

[root@dm01]# ./patchmgr -cells cell_group -cleanup

7.8 Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware

You use a separate update utility that is shipped with the Oracle Exadata System Software update to update and downgrade the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

Note the following when updating the InfiniBand Transport Layer systems based on a RoCE Network Layer switch firmware:

- The update of the InfiniBand Transport Layer systems based on a RoCE Network Layer switches is executed using patchmgr.
- Download the appropriate patch ZIP file to any machine with access to the InfiniBand Transport Layer systems based on a RoCE Network Layer switches. Refer to My Oracle Support note 888828.1 for the patch information.
- For the initial X8M release, the minimum switch firmware release that can use the update utility is release 7.0(3)i7(6).
- The cisco user is used by patchmgr during the firmware updates. patchmgr configures ssh passwordless-access, which requires you to provide the password of the admin user for the switch.
- Switch firmware is always updated in a rolling manner.

Note:
The patchmgr used for updating InfiniBand Transport Layer systems based on a RoCE Network Layer switch firmware is not the same as that used for the Oracle Exadata Database Machine database server or storage server software updates.
Perform storage server updates separately from RDMA Network Fabric switch updates. Do not update storage servers and RDMA Network Fabric switches concurrently. RDMA Network Fabric network connections must be stable during some critical stages of storage server updates. RDMA Network Fabric switch firmware upgrade requires switch reboot, which disrupts some connections on the RDMA Network Fabric network.

- **Preparing for InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Upgrades or Downgrades**
 You must follow a specific order when updating the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

- **Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Software**
 Update the InfiniBand Transport Layer systems based on a RoCE Network Layer switches using the `patchmgr` command.

- **Downgrading InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware**
 Downgrading firmware means reapplying the older firmware update, which is shipped with the Oracle Exadata Database Machine storage server update.

7.8.1 Preparing for InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Upgrades or Downgrades

You must follow a specific order when updating the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

1. Log in to a server that has access to the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

2. Using SSH, connect to the switch as the admin user.

 You can instruct the `patchmgr` utility to configure SSH equivalency for the `cisco` user during its initial run.

3. Use the `show version` command to determine the version of the software the InfiniBand Transport Layer systems based on a RoCE Network Layer switch is running.

```bash
# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2019, Cisco and/or its affiliates.
All rights reserved.
...

Software
   BIOS: version 05.33
   **NXOS: version 7.0(3)I7(6)**
   BIOS compile time: 09/08/2018
   NXOS image file is: bootflash://nxos.7.0.3.17.6.bin
   NXOS compile time: 3/5/2019 13:00:00 [03/05/2019 22:04:55]

Hardware
   cisco Nexus9000 C9336C-FX2 Chassis
```
4. Download the appropriate patch file to the server.
 Starting with Oracle Exadata System Software release 19.3.0, the updates for
 the switches are in a separate patch. Refer to My Oracle Support note
 888828.1 for patch information.

5. Unzip the update.
 The files are unzipped to the `patch_switch_release` directory.

6. Create a file listing all the InfiniBand Transport Layer systems based on a RoCE
 Network Layer switches that need to be updated, with one switch per line.
 The following is an example of the file listing all the switches to update:

   ```
   [root@dm01 ]# cat roceswitches.lst
   myroceswitch-01
   myroceswitch-02
   ```

7. Change to the directory in the unzipped patch contents that contains the version of
 `patchmgr` needed to update the switch. For example,
 `patch_switch_19.3.0.0.0.190915`.

8. Run the prerequisite check prior to either upgrading or downgrading the firmware.
 Use either the `--upgrade` or `--downgrade` command.

   ```
   ./patchmgr --roce-switches roceswitches.lst {--upgrade | --downgrade} --roceswitch-precheck [--force]
   [-log_dir full_path_to_log_directory ]
   ```

 The `--force` option overrides failures in the InfiniBand Transport Layer systems
 based on a RoCE Network Layer topology and connectivity from the servers to the
 switches. This does not affect the upgrade of the switch.

 You can also validate the configuration of the InfiniBand Transport Layer systems
 based on a RoCE Network Layer switch using a gold image template with the
 `--verify-config` option instead of the `--roceswitch-precheck` option.
Here is an example of the output:

```
[patch_switch_19.3.0.0.0.190915]# ./patchmgr --roceswitches
switch_roce.lst --verify-config
2019-09-17 09:18:03 -0700: Working: Initiate config verify on RoCE
switches from . Expect up to 6
minutes for each switch

[NOTE] Password equivalency is NOT setup for user 'cisco' to rack01sw-
rocea0 from this host.
Set it up? (y/n): y
enter switch 'rack01sw-rocea0' 'admin' password:
checking if 'rack01sw-rocea0' is reachable....[OK]
generating key pair for user 'cisco'.....[OK]
setting up SSH equivalency for 'cisco' on 'rack01sw-rocea0'...[OK]
2019-09-17 09:21:35 -0700: 1 of 1: Verifying config on switch rack01sw-
rocea
02019-09-17 09:21:35 -0700: [INFO] Dumping current running config
locally as file: /tmp/patch_switch_19.3.0.0.0.190915/run.rack01sw-rocea0.cfg
2019-09-17 09:21:37 -0700: [SUCCESS ] Backed up switch config
successfully
2019-09-17 09:21:37 -0700: [INFO] Validating running config against
template [1/3]:
/tmp/patch_switch_19.3.0.0.0.190915/roce_switchTemplates/
roce_leaf_switch.cfg
2019-09-17 09:21:37 -0700: [INFO] Config matches template:
/tmp/patch_switch_19.3.0.0.0.190915/roce_switchTemplates/
roce_leaf_switch.cfg
2019-09-17 09:21:38 -0700: [SUCCESS] Config validation successful!
2019-09-17 09:21:38 -0700: [SUCCESS]: Config check on RoCE
switch(es)
2019-09-17 09:21:38 -0700: [SUCCESS]: Completed run of command:
./patchmgr --roceswitches switch_roce.lst --verify-config
2019-09-17 09:21:38 -0700: [INFO] : config attempted on nodes in file
switch_roce.lst:
[rack01sw-rocea0]
2019-09-17 09:21:38 -0700: [INFO]: For details, check the following
files in
/tmp/patch_switch_19.3.0.0.0.190915:
2019-09-17 09:21:38 -0700: [INFO]: - updateRoceSwitch.log
2019-09-17 09:21:38 -0700: [INFO]: - updateRoceSwitch.trc
2019-09-17 09:21:38 -0700: [INFO]: - patchmgr.stdout
2019-09-17 09:21:38 -0700: [INFO]: - patchmgr.stderr
2019-09-17 09:21:38 -0700: [INFO]: - patchmgr.log
2019-09-17 09:21:38 -0700: [INFO]: - patchmgr.trc
2019-09-17 09:21:38 -0700: [INFO]: Exit status:0
```

If the output from the command shows overall status is SUCCESS, then proceed with the upgrade. If the output from the command shows overall status is FAIL, then review the error summary in the output to determine which checks failed, and then correct the errors. After correcting all the errors, rerun the prerequisite checks until it is successful.
7.8.2 Updating InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Software

Update the InfiniBand Transport Layer systems based on a RoCE Network Layer switches using the `patchmgr` command.

You should have completed the steps in Preparing for InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Upgrades or Downgrades before starting this task.

- Use the `patchmgr` command to update the switches.

```
# ./patchmgr --roce-switches roceswitches.lst --upgrade [--force]
```

The `--force` option overrides failures in the InfiniBand Transport Layer systems based on a RoCE Network Layer topology and connectivity from the servers to the switches. This does not affect the upgrade of the switch.

7.8.3 Downgrading InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware

Downgrading firmware means reapplying the older firmware update, which is shipped with the Oracle Exadata Database Machine storage server update.

The current storage server update determines what release you can downgrade to. This may be different for each release and may not be the firmware you were on before the update. For more information on the older firmware shipped with the release you are updating to, see the patch README file.

Complete all steps in this task as the `root` user.

Before starting this procedure, you should have completed the steps in Preparing for InfiniBand Transport Layer systems based on a RoCE Network Layer Switch Firmware Upgrades or Downgrades.

1. Use the `patchmgr` command to downgrade the firmware on the InfiniBand Transport Layer systems based on a RoCE Network Layer switches.

```
# ./patchmgr --roce-switches roceswitches.lst --downgrade [--force]
```

The `--force` option overrides failures in the InfiniBand Transport Layer systems based on a RoCE Network Layer topology and connectivity from the servers to the switches. This does not affect the upgrade of the switch.
2. **Use the `show version` command to verify the firmware on the switch has been downgraded.**

```
# show version
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2019, Cisco and/or its affiliates.
All rights reserved.
...

Software
  BIOS: version 05.33
  **NXOS: version 7.0(3)I7(6)**
  BIOS compile time: 09/08/2018
  NXOS image file is: bootflash://nxos.7.0.3.17.6.bin
  NXOS compile time: 3/5/2019 13:00:00 [03/05/2019 22:04:55]

Hardware
  cisco Nexus9000 C9336C-FX2 Chassis
  Intel(R) Xeon(R) CPU D-1526 @ 1.80GHz with 24571632 kB of memory.
  Processor Board ID FDO23040CS1

  Device name: scaqaj07sw-rocea0
  bootflash: 115805356 kB
  Kernel uptime is 17 day(s), 20 hour(s), 50 minute(s), 25 second(s)

  Last reset at 188268 usecs after Mon Aug 12 17:14:40 2019
    Reason: Module PowerCycled
    System version:
    Service: HW check by card-client

  plugin
    Core Plugin, Ethernet Plugin

  Active Package(s):
```

7.9 Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware

You use the same update utility that is shipped with the storage server update to update and downgrade the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

The minimum switch firmware release that can use the update utility is release 1.3.3-2. Switch firmware is always updated in a rolling manner.

Note:

The `patchmgr` used for updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch firmware is not the same as that used for the Oracle Exadata Database Machine database server software update.
Perform storage server updates separately from RDMA Network Fabric switch updates. Do not update storage servers and RDMA Network Fabric switches concurrently. RDMA Network Fabric network connections must be stable during some critical stages of storage server updates. RDMA Network Fabric switch firmware upgrade requires switch reboot, which disrupts some connections on the RDMA Network Fabric network.

- **Preparing for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Updates**

 You must follow a specific order when updating the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

- **Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Software**

 Update the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches using the `patchmgr` command.

- **Downgrading InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware**

 Downgrading firmware means reapplying the older firmware update, which is shipped with the Oracle Exadata System Software update.

7.9.1 Preparing for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Updates

You must follow a specific order when updating the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

- If a spine switch is present in the rack, it needs to be updated first.
- If a spine switch is not in the rack, then update the switch running the subnet manager first.
- If the subnet manager is not running on the switches, then perform the update in any order.

To update the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches, the switch firmware must be at release 1.3.3-2 or later. If the switch firmware is at an earlier release, then update the firmware to release 1.3.3-2 using the instructions in My Oracle Support note 888828.1.:

1. Log in as the `root` user to an Oracle Exadata Database Machine database server that has `root` user SSH access to the switches.

 The database server must be on the same InfiniBand Transport Layer systems based on an InfiniBand Network Layer network as the switches.

2. Use the `version` command to determine the version of the software the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch is running.

   ```
   [root@dbm01-ibs0 ~]# version
   SUN DCS 36p version: 2.1.8-1
   Build time: Sep 18 2015 10:26:47
   SP board info:
   Manufacturing Date: 2015.07.01
   Serial Number: "NCDLD0049"
   Hardware Revision: 0x0200
   ```
3. Download the appropriate patch file to the database server.
 Refer to My Oracle Support note 888828.1 for patch information.

4. Uncompress the update.
 The files are uncompressed to the `patch_release` directory.

5. Create a file listing all the InfiniBand Transport Layer systems based on an
 InfiniBand Network Layer switches that need to be updated, with one switch per
 line.

 Use the command `ibswitches` to identify the switches in your rack. Note that
 switches from Engineered Systems other than Oracle Exadata Database Machine
 might be visible on the same fabric but should probably not be updated at this
 time.

 The following is an example of the file constructed after running the `ibswitches` command:

 `[root@dm01]# cat ibswitches.lst
 myibswitch-01
 myibswitch-02

 ![Note:]

 If no file name is provided, then the command will be executed on all
 InfiniBand Transport Layer systems based on an InfiniBand Network
 Layer switches discovered from this host by running `ibswitches` command.

6. Change to the `patch_release` directory.

7. Run the prerequisite check.

 `[root@dm01]# ./patchmgr --ibswitches ibswitches.lst --upgrade --
 ibswitch_precheck [--force] [--unkey]

 ![Note:]

 Starting with Oracle Exadata System Software release 19.3.0, the
 `patchmgr` command uses `--` instead of a single hyphen before keywords.

 The `--unkey` option removes passwordless SSH access to the InfiniBand
 Transport Layer systems based on an InfiniBand Network Layer switches before
 exiting.

 The `--force` option overrides failures in the InfiniBand Transport Layer systems
 based on an InfiniBand Network Layer topology and connectivity from the servers
 to the switches. This does not affect the upgrade of the switch.
If the output from the command shows overall status is SUCCESS, then proceed with the upgrade. If the output from the command shows overall status is FAIL, then review the error summary in the output to determine which checks failed, and then correct the errors. After correcting all the errors, rerun the prerequisite checks until it is successful.

Related Topics

- Exadata Database Machine and Exadata Storage Server Supported Versions (My Oracle Support Doc ID 888828.1)
- Setting up SSH Equivalence
 Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

7.9.2 Updating InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Software

Update the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches using the `patchmgr` command.

The minimum switch firmware release that can use the `patchmgr` utility is release 1.3.3-2. The switch firmware is upgraded in a rolling manner.

- If a spine switch is present in the rack, then the spine switch is upgraded first.
- If a spine switch is not in the rack, then upgrade the switch that is running the Subnet Manager first.
- If the Subnet Manager is not running on the switches, then perform the upgrade in any order.

You should have completed the steps in Preparing for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware Updates before starting this task.

1. Log in as the root user to a database server in the Oracle Exadata Rack that has root user SSH access to the switches.
 The database server must be on the same InfiniBand Transport Layer systems based on an InfiniBand Network Layer network as the switches.

2. Download the appropriate patch file to the database server.
 Refer to My Oracle Support note 888828.1 for patch information.

3. Uncompress the patch files.
 The files are uncompressed to the `patch_release.date` directory.

4. Change to the `patch_release.date` directory.

5. Run the prerequisite checks using `patchmgr`.
 The `--unkey` option removes passwordless SSH access to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches before exiting.
The `--force` option overrides failures in the InfiniBand Transport Layer systems based on an InfiniBand Network Layer topology and connectivity from the servers to the switches. This does not affect the upgrade of the switch.

```
# ./patchmgr --ibswitches ibswitches.lst --upgrade --ibswitch_precheck [--force] [--unkey]
```

Note:

Starting with Oracle Exadata System Software release 19.3.0, the `patchmgr` command uses `--` instead of a single hyphen before keywords.

If the output from the command shows overall status is `SUCCESS`, then proceed with the upgrade.

If the output from the command shows overall status is `FAIL`, then review the error summary in the output to determine which checks failed, and then correct the errors.

After the errors have been corrected, rerun the prerequisite checks until it is successful.

6. Upgrade the switches using the following command:

```
[root@dm01 ]# ./patchmgr --ibswitches ibswitches.lst --upgrade [--force] [--unkey]
```

7. Check the output from the command, and verify the upgrade.

 The output should show `SUCCESS`. If there are errors, then correct the errors and run the upgrade command again.

7.9.3 Downgrading InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switch Firmware

Downgrading firmware means reapplying the older firmware update, which is shipped with the Oracle Exadata System Software update.

The current Oracle Exadata System Software update determines what release you can downgrade to. This may be different for each release and may not be the firmware you were on before the update. For more information on the older firmware shipped with the release you are updating to, see the patch README file.

Complete all steps in this task as the root user.

1. Run the `patchmgr` command with the `--precheck` option to verify the switch firmware is ready to be downgraded.

 The `ibswitches.lst` file is a file that contains the host names of all the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches that need to be updated, with one switch per line.

```
# ./patchmgr --ibswitches ibswitches.lst --downgrade --ibswitch_precheck [--force] [--unkey]
```
Note:

Starting with Oracle Exadata System Software release 19.3.0, the `patchmgr` command uses `--` instead of a single hyphen before keywords.

The `--unkey` option removes passwordless SSH access to the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches before exiting.

The `--force` option overrides failures in the InfiniBand Transport Layer systems based on an InfiniBand Network Layer topology and connectivity from the servers to the switches. This does not affect the upgrade of the switch.

2. Use the `patchmgr` command to downgrage the firmware on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches.

```shell
# ./patchmgr --ibswitches ibswitches.lst --downgrade [--force] [--unkey]
```

3. Use the `version` command to verify the firmware on the switch has been downgraded.

```shell
# version
SUN DCS 36p version: 2.1.8-1
Build time: Sep 18 2015 10:26:47
SP board info:
Manufacturing Date: 2015.07.01
Serial Number: "NCDLD0049"
Hardware Revision: 0x0200
Firmware Revision: 0x0000
BIOS version: SUN0R100
BIOS date: 06/22/2010
```

7.10 Upgrading Oracle Java SE on Oracle Linux

You can upgrade Oracle Java SE (JDK) running Oracle Linux 6 on database servers and storage servers.

Starting with Oracle Exadata System Software release 12.1.2.1.0, the Oracle Exadata Database Machine servers include the Java JDK package. Earlier releases of Oracle Exadata System Software do not use the JDK package. If a server running an earlier release of Oracle Exadata System Software has a package installed, such as `java-version-openjdk`, the package is not used by Oracle Exadata Database Machine and can be removed. See My Oracle Support note 1405320.1 for details.

To update the JDK package, you must download and update the JDK RPM package, and then reconfigure MS to use the new JDK package. You can update the JDK package by either by configuring YUM to use ULN (currently available only for Oracle Linux 6) or by direct package download (for those not able to use ULN).

- **Stop the MS Process**
 Before updating the JDK package, you must stop the Management Server (MS)
• **Download and Update the Java JDK Package**
 Depending on your current environment, you can use one of three procedures to
download and update the JDK package.

• **Reconfigure Management Server (MS)**
 After you update the Java JDK package, you must reconfigure the MS processes
to use the updated JDK version.

7.10.1 Stop the MS Process

Before updating the JDK package, you must stop the Management Server (MS)

Note:

These steps are only applicable to on-premise deployments and
management domains (dom0). Guest domains (domUs) do not have MS
installed.

1. Log in as the **root** user to the server.
2. Stop MS.
 - For database servers:
     ```
     dbmcli -e alter dbserver shutdown services ms
     ```
 - For storage servers:
     ```
     cellcli -e alter cell shutdown services ms
     ```

7.10.2 Download and Update the Java JDK Package

Depending on your current environment, you can use one of three procedures to
download and update the JDK package.

Using YUM and Unbreakable Linux Network (ULN) is only supported for Oracle
Exadata Database Machine on-premise database servers running Oracle Linux 6. It is
not supported for storage servers or Oracle VM environments, either management
domains (dom0) or user domains (domU).

Use one of the following methods to download and update the JDK package:

• **Using YUM and ULN to Update the JDK Package on Database Servers**
 If the database servers for your on-premise Oracle Exadata Database Machine
 are running Oracle Linux 6, then you can use YUM and Unbreakable Linux
 Network (ULN) to simplify the update process.

• **Manually Update the JDK Package on Oracle Exadata System Software versions
 12.1.2.1.0 to 12.1.2.2.0**
 Update the JDK 7 package to the latest release by downloading the latest version
 of the package and using the `rpm` utility to install it.
Manually Update the JDK Package on Oracle Exadata System Software Release 12.1.2.2.1 and Later

Update the JDK 8 package to the latest release by downloading the latest version of the package and using the `rpm` utility to install it.

7.10.2.1 Using YUM and ULN to Update the JDK Package on Database Servers

If the database servers for your on-premise Oracle Exadata Database Machine are running Oracle Linux 6, then you can use YUM and Unbreakable Linux Network (ULN) to simplify the update process.

You can either download the JDK package directly, or use YUM and ULN. Using YUM and ULN for updating the JDK package involves the following tasks:

- **Configuring YUM to Connect to the Oracle Public Repository**
 The Oracle Linux YUM server offers a free and convenient way to install the latest Oracle Linux packages. Unbreakable Linux Network (ULN) enables you to update patches and errata for a specific version.

- **Registering an Oracle Linux 6 System with ULN**
 After you have configured the access to the YUM repository, you must register your Oracle Linux database servers with ULN.

- **Upgrading JDK on Database Servers Using ULN**

7.10.2.1.1 Configuring YUM to Connect to the Oracle Public Repository

The Oracle Linux YUM server offers a free and convenient way to install the latest Oracle Linux packages. Unbreakable Linux Network (ULN) enables you to update patches and errata for a specific version.

This procedure is only supported for Oracle Exadata Database Machine on-premise database servers running Oracle Linux 6. It is not supported for storage servers or Oracle VM environments, either management domains (dom0) or user domains (domU).

Oracle Linux Yum Server is the Public Repository. For more information on how to obtain updates from the Oracle Linux Yum Server, see http://yum.oracle.com. For more information about ULN, see http://linux.oracle.com.

1. As the root user on a database server, verify that the RHNS-CA-CERT certificate is not expired.

   ```
   # yum list installed
   ```
 If the certificate is expired, refer to My Oracle Support Doc ID 2207336.1 to fix the issue.

2. Switch to the `/etc/yum.repos.d` directory.

   ```
   # cd /etc/yum.repos.d
   ```

3. Download the repository configuration file.

 Use the `curl` utility to download the repository configuration file that is appropriate for your system. You can alternatively copy the contents of http://
yum.oracle.com/public-yum-release.repo into a file, where release corresponds to the Oracle Linux release, for example ol6.

For example, to get the configuration for the Oracle Linux 6 repository using curl, use the following command:

```
```

for more information.

4. On a database server, install the rhn-setup package to enable uln_register.

WARNING:

Do not register your storage servers with ULN or the public yum server.

```
# yum install rhn-setup.noarch
```

WARNING:

If you are not using the latest release of Oracle Linux, you will need to edit the file /etc/yum.repos.d/public-yum-ol6.repo and enable the correct repository to match the system version. Contact Oracle Support Services and refer to My Oracle Support Doc ID 2241729.1.

Related Topics

- ULN-CA-CERT to be Updated With SHA-2 Certificates on December 15, 2016 My Oracle Support Doc ID 2207336.1)
- Exadata: yum groupinstall "Desktop" failed with Error: Package: exadata-sun-computenode-exact-12.1.2.3.2.160721-1.noarch (installed) Requires: libudev(x86-64) = 147-2.73.0.1.el6... Updated By: libudev-147-2.73.0.1.el6_8.2.x86_64 (ol6_latest) My Oracle Support Doc ID 2241729.1)

7.10.2.1.2 Registering an Oracle Linux 6 System with ULN

After you have configured the access to the YUM repository, you must register your Oracle Linux database servers with ULN.

WARNING:

Do not register your storage servers with ULN or the public yum server.

1. Run uln_register to register your system with ULN.

```
# uln_register
```
If you do not have a ULN account, you can register at https://linux.oracle.com. Registering for ULN requires a valid customer support identifier (CSI) for Oracle Linux or Oracle VM support.

When you register your system, if a proxy server is required, then use the `--proxy` option to specify the HTTP proxy to use.

```bash
# uln_register --proxy=proxy_hostname:port_number
```

If your proxy requires authentication, then use the additional options `--proxyUser` and `--proxyPassword` to specify the user name and password.

```bash
# uln_register --proxy=proxy_hostname:port_number
--proxyUser=username --proxyPassword=password
```

2. When prompted, enter your ULN user name, password, and CSI.

3. On the Create Profile — Hardware page, enter the required information.
 a. Enter a name for the system that will allow you to identify it on ULN.
 b. Choose whether to upload hardware and software profile data that allows ULN to select the appropriate packages for your system.

7.10.2.1.3 Upgrading JDK on Database Servers Using ULN

Before starting this step, make sure you have completed the steps in Stop the MS Process.

After you have configured the YUM repository and registered your database server with ULN, you can download the RPM from the ULN channel.
For Oracle Exadata System Software versions 12.1.2.1.0 to 12.1.2.2.0, the Oracle Exadata Database Server includes the JDK 7 package installed as an RPM. To update the RPM, use the ULN channel *Java SE 7 for Oracle Linux*. Make sure you look for JDK 7--do not use JDK 8 or later.

For Oracle Exadata System Software versions 12.1.2.2.1 and later, the Oracle Exadata Database Server includes the JDK 8 package installed as an RPM. To update the RPM, use the ULN channel *Java SE 8 for Oracle Linux*. Make sure you look for the JDK 8.

WARNING:

Do not register your storage servers with ULN.

1. With a web browser, log in to https://linux.oracle.com/.
2. Find the Oracle Exadata Database Server on which you want to install Oracle Java SE and click on the name of that system.

 In the following image, the server names have been blanked out.

3. Click in *Manage Subscriptions*.
4. Using the arrow buttons, move the desired Java SE channel from the *Available channels* list to the *Subscriber Channels* list, then click *Save Subscriptions*.
5. When prompted, click **Accept** to accept the license agreement.

6. On the database server, from the `yum.repos.d` directory, upgrade the JDK.

```
# yum check-update jdk
Loaded plugins: rhnplugin, ulninfo
This system is receiving updates from ULN.
ol6_x86_64_JavaSE7_public
By downloading and/or using this software program you agree that your
use is
subject to the applicable license agreement at https://linux.oracle.com
/licenses.html.

exadata_dbserver_18.1.4.0.0_x86_64_base                        | 1.2
kB 00:00
exadata_dbserver_18.1.4.0.0_x86_64_base/primary                | 436
kB 00:00
exadata_dbserver_18.1.4.0.0_x86_64_base                        470/470
ol6_x86_64_JavaSE7_public                                      | 1.2
kB 00:00
ol6_x86_64_JavaSE7_public/primary                              | 5.9
kB 00:00
ol6_x86_64_JavaSE7_public                                      16/16
ol6_x86_64_ksplice                                             | 1.2
kB 00:00
ol6_x86_64_ksplice/primary                                     | 160
kB 00:00
ol6_x86_64_ksplice                                             1436/1436
public_ol6_latest                                              40132/40132
...
Running transaction
  Installing : jdk1.8.0_172-1.8.0_172-fcs.x86_64               1/1
Unpacking JAR files...
  rt.jar...
  jsse.jar...
```
charsets.jar...
localedata.jar...
fjxrt.jar...
Verifying : jdk1.8.0_172-1.8.0_172-
fcs.x86_64 1/1
Installed:
 jre.x86_64 0:1.8.0_172-
fcs

Complete!

To complete the JDK update, continue with the steps in Reconfigure Management Server (MS).

7.10.2.2 Manually Update the JDK Package on Oracle Exadata System
Software versions 12.1.2.1.0 to 12.1.2.2.0

Update the JDK 7 package to the latest release by downloading the latest version of
the package and using the rpm utility to install it.

Before starting this step, make sure you have completed the steps in Stop the MS Process.

With Oracle Exadata System Software versions 12.1.2.1.0 to 12.1.2.2.0, the Oracle Exadata Storage Server includes the JDK 7 package installed as an RPM.

Following any upgrades to the server image (using dbnodeupdate or patchmgr), check the JDK version. If the JDK package is reverted to an older version during the upgrade, then use the procedures here to update the JDK package to the latest version.

1. Download the latest version of JDK 7 using the links found in My Oracle Support Doc ID 1439822.1. Do not download JDK 8 or later.
2. Extract the contents of the ZIP file.
3. Locate the JDK RPM.
 The name of the file is similar to jdk-version-linux-x64.rpm, for example jdk-7u91-linux-x64.rpm.
4. Copy only the RPM file to the target server.
 The file can be placed in a temporary directory, such as /tmp.
5. As the root user, determine the current version of the installed JDK RPM.

rpm -q jdk

6. If the JDK package is installed and needs to be updated, then use the rpm command to install the update.

rpm -Uvh /tmp/jdk-version-linux-x64.rpm
7. Verify the JDK package was updated.

```
# rpm -q jdk
```

8. Removed the staged update file.

```
# rm -f /tmp/jdk-version-linux-x64.rpm
```

To complete the JDK update, continue with the steps in Reconfigure Management Server (MS).

Related Topics

- All Java SE Downloads on MOS (My Oracle Support Doc ID 1439822.1)
- HOWTO: Update JDK on Exadata Database Nodes (My Oracle Support Doc ID 2069987.1)
- HOWTO: Update JDK on Exadata Storage Cell Nodes (My Oracle Support Doc ID 2075464.1)

7.10.2.3 Manually Update the JDK Package on Oracle Exadata System Software Release 12.1.2.2.1 and Later

Update the JDK 8 package to the latest release by downloading the latest version of the package and using the `rpm` utility to install it.

Before starting this step, make sure you have completed the steps in Stop the MS Process.

With Oracle Exadata System Software release 12.1.2.2.1 and later, the Oracle Exadata servers includes the JDK 8 package installed as an RPM.

Following any upgrades to the server image (using `dbnodeupdate` or `patchmgr`), check the JDK version. If the JDK package is reverted to an older version during the upgrade, then use the procedures here to update the JDK package to the latest version.

1. Download the latest version of JDK 8 using the links found in My Oracle Support Doc ID 1439822.1. **Download only JDK 8 updates.**
2. Extract the contents of the ZIP file.
3. Locate the JDK RPM.

 The name of the file is similar to `jdk-version-linux-x64.rpm`, for example `jdk-8u172-linux-x64.rpm`.
4. Copy only the RPM file to the target server.

 The file can be placed in a temporary directory, such as `/tmp`.
5. As the `root` user, determine the current version of the installed JDK RPM.

```
# rpm -qa|grep jdk
jdk1.8.0_66-1.8.0_66-fcs.x86_64
```
6. If the JDK package is installed and needs to be updated, then use the `rpm` command to install the update.

```
# rpm -Uvh /tmp/jdk-version-linux-x64.rpm
```

7. Verify the JDK package was updated.

With JDK 8, the updated package does not replace the currently installed package, so you will see two versions of the JDK package installed.

```
# rpm -qa | grep jdk
jdk1.8.0_66-1.8.0_66-fcs.x86_64
jdk1.8.0_172-1.8.0_172-fcs.x86_64
```

8. Remove the older JDK package from the server.

If the older version was update 66, then the command would be as follows:

```
# rpm -e --nodeps jdk.1.8.0_66-1.8.0_66-fcs.x86_64
```

9. Verify only the updated JDK is available on the server.

```
# rpm -qa |grep jdk
jdk1.8.0_172-1.8.0_172-fcs.x86_64
```

10. Removed the staged update file.

```
# rm -f /tmp/jdk-version-linux-x64.rpm
```

To complete the JDK update, continue with the steps in Reconfigure Management Server (MS).

Related Topics

- All Java SE Downloads on MOS (My Oracle Support Doc ID 1439822.1)
- HOWTO: Update JDK on Exadata Database Nodes (My Oracle Support Doc ID 2069987.1)
- HOWTO: Update JDK on Exadata Storage Cell Nodes (My Oracle Support Doc ID 2075464.1)

7.10.3 Reconfigure Management Server (MS)

After you update the Java JDK package, you must reconfigure the MS processes to use the updated JDK version.

These steps are only applicable on physical deployments and management domains (dom0) on virtual deployments because user domains (domUs) do not have MS installed.

1. Log in to the database server or storage server as `root`.
2. Verify the MS process is still stopped.
• For database servers:

dbmcli -e alter dbserver shutdown services ms

• For storage servers:

cellcli -e alter cell shutdown services ms

3. For Oracle Exadata System Software release 12.2.x, version 12.2.1.1.4 or later, or Oracle Exadata System Software release 18c, version 18.1.2 or later, perform the following steps (not needed for other releases):
 a. Go to the UNIX scripts directory.
 • For database servers:

 cd /opt/oracle/dbserver/dbms/deploy/scripts/unix

 • For storage servers:

 cd /opt/oracle/cell/cellserv/deploy/scripts/unix

 b. Redeploy MS.
 • For database servers:

 sh setup_dynamicDeploy DB

 • For storage servers:

 sh setup_dynamicDeploy

4. Restart the MS.
 • For database servers:

 dbmcli -e alter dbserver startup services ms

 • For storage servers:

 cellcli -e alter cell startup services ms

7.11 Setting up SSH Equivalence

Before updating software on your Oracle Exadata Database Machine, you must configure SSH equivalence.

You can run the Exadata update utilities for Oracle Exadata Database Server and Oracle Exadata Storage Server as either root or as a non-root user from any server running Oracle Linux. The utility can perform precheck, update, and rollback actions on any Exadata server as long as SSH equivalence is set up for the root user for the target Exadata server.
1. Prepare a file named `cell_group` or `dbs_group` that has one storage server or database server host name or IP address per line for each storage server or database server you want to update.

2. Check for existing SSH equivalence.
 The following command should require no password prompts and no interaction. It should return the list of host names in the `cell_group` file.

   ```bash
   [oracle@nonExadataHost ]# ./dcli -g cell_group -l root 'hostname -i'
   ```

3. Set up SSH equivalence if not already done so from the launch server.
 Do not do this step if you already have root SSH equivalence.
 Generate SSH keys using the following command:

   ```bash
   [oracle@nonExadataHost ]# ssh-keygen [-t rsa]
   ```

 You can use the `-t` option to specify the key type, such as RSA or DSA. If you do not include the `-t` option, then RSA is configured by default.

 Accept the defaults so that the SSH keys are created for the root user.

4. Push the SSH keys to set up SSH equivalence.
 Enter the root password when prompted.

   ```bash
   [oracle@nonExadataHost ]# dcli -g cell_group -l root -k
   ```

 Note:
 Customers in secure environments may have chosen to disable SSH access to Oracle Exadata Storage Server. During normal operations, Oracle Exadata Storage Server does not require SSH access. However, administrative utilities such as the update utility require SSH access. See the subsection "Unlocking a Cell Temporarily" in the topic Disabling SSH on Storage Servers in the Oracle Exadata System Software User’s Guide for information on unlocking storage servers.

7.12 Troubleshooting Software Updates on Oracle Exadata Database Machine

Review these topics if you encounter errors or problems when updating the software on Oracle Exadata Database Machine

- **Troubleshooting Exadata Database Server Updates**
 You can use the log files generated by the update utility to troubleshoot updates.

- **Monitoring, Validating, and Troubleshooting Exadata Storage Server Updates**
• **Troubleshooting a Failing Prerequisite Check Due to Dependency Problems on Exadata Database Server**
 When you run a prerequisite check or an update on Exadata database servers that have custom rpms installed, conflicts may cause the prerequisite check or update to fail.

• **Troubleshooting a Multilib Problem on Exadata Database Server**

7.12.1 Troubleshooting Exadata Database Server Updates

You can use the log files generated by the update utility to troubleshoot updates.

The update utility orchestrates updating the Exadata database servers. Updating database nodes with the patchmgr tool is less verbose because it prints only minimal information to the screen. If additional information is required, you can view the patchmgr logs and the dbnodeupdate.sh logs that patchmgr copies over from other servers, if available. The log file (dbnodeupdate.log) and the diag file (dbnodeupdate.<runid>.diag) will eventually exist on two locations:

- **On each updated database server, in the */var/log/cellos* directory
- **Consolidated on the node running the update utility.**

On the node running the update utility, if the -log_dir flag was set to "auto", the log files will be stored in the *log/<directory based on contents of nodes in list file>* directory, relative from the directory where the update utility is started from. For example, if the update utility is located in */u01/dbserver.patch*, then the log directory may be */u01/dbserver.patch/dm01db01_dm01db02_e8f1f753*.

Important files found in the log directory are:

- *patchmgr.log* contains the consolidated screen output from running the remote update commands on the different database servers.
- *<hostname>_dbnodeupdate.<runid>.diag* is the diag file for the specific run on a database server.
- *<hostname>_dbnodeupdate.log* contains dbnodeupdate.log output appended from */var/log/cellos* from the remote database server.

When a prerequisite check, backup, update, or rollback fails, error messages on screen should provide information on which step failed on which node. Consult the log files mentioned above if more information is required. Search the log file for the start of a new run (search for "zzz").

Check if the time matches your run. If it matches, note the runid for further reference. Then search for **ERROR**.

If an update action fails before the actual YUM update, you can retry the update after resolving the error. If the update aborted half way, it is recommended that you roll back, resolve the error, and retry.

In rare cases, patchmgr may be unable to determine the status of an update, whether the update was successful or not. In such cases, it displays a message that the update failed. However, it is possible that the update still completed successfully. To determine the actual status of the update:

- **Check the image status of the (database) node. You can do this by running the imageinfo command.** The Image status line displays the status.
• Check the version of the Exadata software. This can also be determined from the `imageinfo` command.

If the image status is success, and the Exadata version is the new expected version, then the update was successful and you can ignore the `update failed` message. Then:

• Run `dbnodeupdate.sh -c` manually on the particular node to perform the completion steps of the update.
• Remove the completed node from the (database) node file.
• Rerun `patchmgr` to perform the update on the remaining nodes.

Other things to check if the update fails include:

• The correct syntax for using `patchmgr` to update database nodes can be found in the `patchmgr` online help.
• SSH equivalence must be configured before using `patchmgr`.
• Download the latest `dbserver.patch.zip` from My Oracle Support note 1553103.1.
• Open a service request with Oracle Support Services to analyze why the `patchmgr` orchestration failed.

Related Topics

• **Exadata Patchmgr Update Utility**
 Patchmgr is the utility used to update software for Exadata infrastructure components.

• **`dbnodeupdate.sh` and `dbserver.patch.zip`: Updating Exadata Database Server Software using the `DBNodeUpdate Utility` and `patchmgr` (My Oracle Support Doc ID 1553103.1)**

7.12.2 Monitoring, Validating, and Troubleshooting Exadata Storage Server Updates

The recommended way to monitor Exadata storage servers being updated is through e-mail alerts. These alerts can be set up by specifying email addresses in the `-smtp_from` and `-smtp_to` flags in the update utility.

If needed for troubleshooting, you can monitor update activity using `less -rf patchmgr.stdout` from another terminal session or window to see raw log details from the update utility.

You can also monitor activity of the storage server by logging in to the serial console or web-based ILOM console of individual storage servers being updated 5 minutes after the update utility has started. Waiting 5 minutes allows the update utility time to reset the ILOM. Resetting the ILOM disconnects you from the ILOM web console and serial console. You can reconnect once the ILOM has been reset. By waiting 5 minutes, you avoid having to reconnect. You lose the connection during any ILOM update, and need to reconnect. The ILOM does not show any update actions. When needed it is helpful to monitor the activities of the normal cell boot, reboot, and other activities to ensure that the process is proceeding correctly.

Verify the update status after the `patchmgr` utility completes as follows:
Check image status and history using the `imageinfo` and `imagehistory` commands on each cell. A successful update to a system with high capacity or high performance drives shows output similar to the following.

Kernel version: 2.6.39-400.281.1.el6uek.x86_64 #1 SMP Fri Jun 17 20:10:16 PDT 2016 x86_64
Cell version: OSS_12.1.2.3.2_LINUX.X64_160721
Cell rpm version: cell-12.1.2.3.2_LINUX.X64_160721-1.x86_64

Active image version: 12.1.2.3.2.160721
Active image kernel version: 2.6.39-400.281.1.el6uek
Active image activated: 2016-07-21 13:04:34 -0500
Active image status: success
Active system partition on device: /dev/md5
Active software partition on device: /dev/md7

Cell boot usb partition: /dev/sdac1
Cell boot usb version: 12.1.2.3.2.160721

Inactive image version: 12.1.2.3.1.160411
Inactive image status: success
Inactive system partition on device: /dev/md6
Inactive software partition on device: /dev/md8

Inactive marker for the rollback: /boot/I_am_hd_boot.inactive
Inactive grub config for the rollback: /boot/grub/grub.conf.inactive
Inactive kernel version for the rollback: 2.6.39-400.128.21.el5uek
Rollback to the inactive partitions: Possible

A successful update to a system with extreme flash drives shows a similar output but has a different path for USB:

Kernel version: 2.6.39-400.281.1.el6uek.x86_64 #1 SMP Fri Jun 17 20:10:16 PDT 2016 x86_64
Cell version: OSS_12.1.2.3.2_LINUX.X64_160721
Cell rpm version: cell-12.1.2.3.2_LINUX.X64_160721-1.x86_64

Active image version: 12.1.2.3.2.160721
Active image kernel version: 2.6.39-400.281.1.el6uek
Active image activated: 2016-07-21 13:04:34 -0500
Active image status: success
Active system partition on device: /dev/md5
Active software partition on device: /dev/md7

Cell boot usb partition: /dev/sda1
Cell boot usb version: 12.1.2.3.2.160721

Inactive image version: 12.1.2.3.1.160411
Inactive image status: success
Inactive system partition on device: /dev/md6
Inactive software partition on device: /dev/md8

Inactive marker for the rollback: /boot/I_am_hd_boot.inactive
Inactive grub config for the rollback: /boot/grub/grub.conf.inactive
Inactive kernel version for the rollback: 2.6.39-400.128.21.el5uek
Rollback to the inactive partitions: Possible

Related Topics

• Running the Update for Exadata Storage Servers

7.12.3 Troubleshooting a Failing Prerequisite Check Due to Dependency Problems on Exadata Database Server

When you run a prerequisite check or an update on Exadata database servers that have custom rpms installed, conflicts may cause the prerequisite check or update to fail.

When doing a prerequisite check or an update, the update utility makes two dependency checks: checks against “minimum dependencies” and checks against “exact dependencies”.

To triage a dependency failure, look in the log file. This can be either dbnodeupdate.log on the target Exadata database server or <hostname>_dbnodeupdate.log in the log directory from where the update utility (patchmgr) was launched.

To locate the start of each run in the log file, search for a line that starts with “zzz”. For example:

zzz - /u01/patches/YUM/dbnodeupdate.sh called with arguments -u -l /u01/patches/YUM/p23564643_121232_Linux-x86-64.zip -v -N at 2016-08-23 23:31:54

The date stamp should match the time of the run you are researching. Each run is identified with a unique runid which can also be found at the start of each run in the same log file:

[1472009516][2016-08-23 23:31:59 -0400][INFO]/u01/patches/YUM/dbnodeupdate.sh[InitLogfile][] # dbnodeupdate.sh script rel. : 5.160809 started at (runid :230816233155)

You can check for custom rpms, if any, by looking at the diag file of the specific run. The diag file is identified by the runid and can be found in /var/log/cellos on the target Exadata database server or in the directory driving the update utility. The filename for this example would be dbnodeupdate.230816233155.diag. In that file, look for the section with heading RunDetectCustomRpmsSh and rpm -qa --qf "%{n}-%{v}-%{r}.%{arch}\n. You can find details on the (additional) packages installed (if any).

In the log file, search down from the start (“zzz”) for “Exact dependencies” (case sensitive) for the results of the “minimum” and “exact” dependency checks. In this case it says:

Exact dependencies : Will fail on a next update
Minimum dependencies : Will fail on a next update
As long as the minimum dependencies check passes, updates or prerequisite checks won't fail. When both minimum and exact dependencies fail, you need to find out what caused the error.

In order to find the dependency that is causing the error, search for "[ExecUpgrade][] Performing yum package dependency". This is where the YUM run (typically a dry-run first) is executed. When there is a dependency problem, you should see a YUM message starting with “Error:”. For example:

```
--> Finished Dependency Resolution
Error: Package: krb5-devel-1.10.3-33.el6.x86_64 (@ol6_latest)
Requires: krb5-libs = 1.10.3-33.el6
Removing: krb5-libs-1.10.3-33.el6.x86_64 (installed)
        krb5-libs = 1.10.3-33.el6
Updated By: krb5-libs-1.10.3-42z1.el6_7.x86_64
            (exadata_generated_160616114412)
        krb5-libs = 1.10.3-42z1.el6_7
You could try using --skip-broken to work around the problem
```

In the example error message above, the krb5-devel-1.10.3-33.el6.x86_64 (krb5-devel) package is installed from a non-Exadata channel (ol6_latest). This krb5-devel package depends on krb5-libs. However in this Exadata update the krb5-libs package is not available. YUM fails the dependency check because updating krb5-libs is not possible without also updating krb5-devel. Because a new version of krb5-devel is not included in the Exadata update the package should be either "pre-updated" or removed. Pre-updating means updating the individual package manually before running the Exadata update. This can be done using the command rpm ±Uvh <package-name>.

Removing the custom package is recommended and should be done using the following rpm command:

```
[root@dm01 ]# rpm -e krb5-devel
```

After removing the rpm that is causing the error, restart the update or prerequisite check.

Related Topics

- Running Prerequisite Checks

7.12.4 Troubleshooting a Multilib Problem on Exadata Database Server

If you have custom packages with different architectures installed on database servers, you may see a similar problem as that described in Troubleshooting a Failing Prerequisite Check Due to Dependency Problems on Exadata Database Server. This typically happens when i686 packages are installed on an Exadata database server.
Note:

While non-64-bit (x86_64) packages are supported, it is recommended to stay away from 32-bit software. When you need specific functionality from a third party, it is recommended to ask for a 64-bit version.

Typically Exadata-branded x86_64 bit rpms are updated in an Exadata update. However, when you have installed similar packages of non-x86_64 bit architecture, the update utility cannot update the 64-bit packages. You would see the following error in the log file:

```
--> Finished Dependency Resolution
Error: Multilib version problems found. This often means that the root cause is something else and multilib version checking is just pointing out that there is a problem. Eg.:

1. You have an upgrade for libuuid which is missing some dependency that another package requires. Yum is trying to solve this by installing an older version of libuuid of the different architecture. If you exclude the bad architecture yum will tell you what the root cause is (which package requires what). You can try redoing the upgrade with --exclude libuuid.otherarch ... this should give you an error message showing the root cause of the problem.

2. You have multiple architectures of libuuid installed, but yum can only see an upgrade for one of those architectures. If you don't want/need both architectures anymore then you can remove the one with the missing update and everything will work.

3. You have duplicate versions of libuuid installed already. You can use "yum check" to get yum show these errors.

...you can also use --setopt=protected_multilib=false to remove this checking, however this is almost never the correct thing to do as something else is very likely to go wrong (often causing much more problems).

Protected multilib versions: libuuid-2.17.2-12.24.0.1.el6.x86_64 != libuuid-2.17.2-12.18.0.1.el6.i686

The solution for multilib problems is to remove the i686 or i386 package by running “rpm -e <package_name.i686>".
The Oracle Exaddata Database Machine Command-Line Interface (DBMCLI) utility is used to manage database servers and provides many of the features that are provided with SQL*Plus, including the use of script files.

- **Overview of the DBMCLI Utility**
  The DBMCLI utility is the command-line administration tool for configuring database servers, and managing objects in the server environment.

- **About DBMCLI Administration Commands**
  DBMCLI administrative commands do not act directly on objects.

- **About DBMCLI Object Commands**
  DBMCLI has object commands, object types, and object attributes.

- **About DBMCLI Object Types**

- **DBMCLI Object Attributes**

- **Monitoring Database Server with Metrics**
  You can monitor a database server by viewing its metrics.

- **DBMCLI Command Reference**
  DBMCLI has both administrative and object commands.

### 8.1 Overview of the DBMCLI Utility

The DBMCLI utility is the command-line administration tool for configuring database servers, and managing objects in the server environment.

DBMCLI runs on each server to enable you to configure an individual database server. You use DBMCLI to start and stop the server, to manage server configuration information, and to enable or disable servers. The command-line utility is already installed when Oracle Exaddata Database Machine is shipped.

- **Starting DBMCLI**
- **Understanding Command Syntax and Options for DBMCLI**
- **Reserved Words**
- **DBMCLI Command-Line Editing**
- **DBMCLI Input and Output Options**
- **Comments in DBMCLI Scripts**
- **Line Continuation in DBMCLI Commands**

### 8.1.1 Starting DBMCLI

You can start DBMCLI from the operating system command line on the database server that you want to manage or remotely from a network-attached client using Secure Shell (SSH). The command-line syntax is as follows:
The `port_number` in the preceding command specifies the HTTP port number of the database server. If the `port_number` argument is omitted, then the DBMCLI utility uses the value assigned to the `HTTP_PORT` variable in the `cellinit.ora` file on the database server. The file is located in the `/opt/oracle/dbserver/dbms/deploy/config/` directory. If the `HTTP_PORT` variable in the `cellinit.ora` file is not set, then the port number defaults to 8888.

The following table lists the options that can be used with the DBMCLI command:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n</code></td>
<td>Runs the DBMCLI utility in non-interactive mode. This option suppresses the command prompt and disables the command-line editing features.</td>
</tr>
<tr>
<td><code>-m</code></td>
<td>Runs DBMCLI monitor (read-only) mode.</td>
</tr>
<tr>
<td><code>-xml</code></td>
<td>Causes output to be displayed in XML format for the Oracle Enterprise Manager.</td>
</tr>
<tr>
<td><code>-v</code>, <code>-vv</code>, and <code>-vvv</code></td>
<td>Sets the log level. The <code>-v</code> option is for fine, <code>-vv</code> is for finer, and <code>-vvv</code> is for the finest level.</td>
</tr>
<tr>
<td><code>-x</code></td>
<td>Suppresses the banner.</td>
</tr>
<tr>
<td><code>-e command</code></td>
<td>Runs the specified DBMCLI command. DBMCLI exits after running the command. For example:</td>
</tr>
<tr>
<td></td>
<td><code>$ dbmcli -e list dbserver detail</code></td>
</tr>
<tr>
<td></td>
<td><code>$ dbmcli -e &quot;list dbserver attributes name where name - like &quot;.*dbm01&quot;&quot;</code></td>
</tr>
</tbody>
</table>

DBMCLI uses the database server operating system authentication. DBMCLI does not have a login parameter or a connect command. The directory from which DBMCLI is invoked is the default directory for unqualified file access in DBMCLI SPOOL and START commands.

### See Also:

“DESCRIBE DBSERVER” for additional information about the offloadEfficiency attribute

### 8.1.2 Understanding Command Syntax and Options for DBMCLI

DBMCLI syntax is as follows:

```
{admin-command | object-command object} [options] ;
```

In the preceding syntax, the following arguments are used:

- `admin-command` is an administrative action.
- `object-command` is an action performed on an object.
• **object** is an object or target on which a command performs an action.

• **options** extend the use of a command combination to include additional parameters for the command.

When using the DBMCLI utility, the following rules apply:

• Commands, objects, and options are not case-sensitive except where explicitly stated, such as in string patterns used in filtering strings with the `LIKE` operator.

• Use single quotation marks or double quotation marks around the name of an object that includes spaces or punctuation. The use of quotation marks should match. For example, "this is incorrect" is incorrect because the first mark is double quotation marks, and the second is a single quotation mark.

• The current, local cell is the cell to which all DBMCLI commands apply.

• A semicolon (;) is optional at the end of a DBMCLI command.

• A hyphen (-) is used at the end of a line to continue a long command onto the next line. If you are using hyphens in names or to denote negative values, it must be immediately followed by an alphanumerical value.

### 8.1.3 Reserved Words

The following are DBMCLI reserved words:

```
ALERTDEFINITION
ALERTHISTORY
ALL
ALTER
BMC
CONFIGUREBMC
CREATE
DESCRIBE
DETAIL
DROP
FORCE
LED
LIST
LUN
MAIL
MEMORY
METRICDEFINITION
METRICCURRENT
METRICHISTORY
MS
NULL
OFF
ON
PHYSICALDISK
RESTART
RS
SHUTDOWN
SNMP
STARTUP
THRESHOLD
VALIDATE
```

If these keywords are used as values in commands, then they must be enclosed in quotation marks.
8.1.4 DBMCLI Command-Line Editing

The DBMCLI utility supports command-line history and editing, similar to BSD editline and GNU readline functionality. Most of the command editing features of DBMCLI are similar to modern shells, such as bash and tcsh.

8.1.5 DBMCLI Input and Output Options

The database command-line utility reads commands from standard input and writes output to standard output. You can use the host operating system options for redirecting input and output to compose and process command scripts. For example, you can perform the following redirection:

$$ dbmcli < command-script-in > results-out$$

In the preceding example, the output from DBMCLI commands in the command-script-in file are written to the results-out file.

8.1.6 Comments in DBMCLI Scripts

You can add single-line comments to DBMCLI scripts using several formats. You can begin the comment line with REMARK, REM or -- (two hyphens).

For example, the following are valid syntax for comments:

REMARK This is a comment
REM This is a comment
-- This is a comment

8.1.7 Line Continuation in DBMCLI Commands

To continue a long command on to the next line, insert a hyphen (-) at the end of the line. Then, press Enter, and continue typing the command.

For example:

DBMCLI> LIST dbserver WHERE name LIKE '%.dbm04' -
            attributes name, status, comment

8.2 About DBMCLI Administration Commands

DBMCLI administrative commands do not act directly on objects.

DBMCLI uses the following administration commands:

- HELP
- SET
- SPOOL
- START
8.3 About DBMCLI Object Commands

DBMCLI has object commands, object types, and object attributes.

The following DBMCLI commands operate on Oracle Database objects:

- ALTER
- CREATE
- DESCRIBE
- DROP
- LIST

Related Topics
- DBMCLI Command Reference

8.4 About DBMCLI Object Types

The following Oracle Exadata System Software object types can be used with DBMCLI object commands:

- ALERTDEFINITION — An alert definition provides a definition for every alert that can be produced on the database server. Alerts are defined on metrics and other sources of alerts.
- ALERTHISTORY — An alert history provides a list of alerts that have occurred on the database server.
- DBSERVER — The current or local database server.
- IBPORT — The InfiniBand Transport Layer systems based on an InfiniBand Network Layer ports for the database server.
8.5 DBMCLI Object Attributes

Each DBMCLI object has a set of attributes that are assigned when the object is created or altered. Attribute filters and lists are used to specify which attributes and objects are displayed in the output of the LIST command.

All attributes can be displayed, but only some can be modified directly by the user. To display a list of attributes and determine which ones can be modified, use the DESCRIBE command.

• Restrictions on Values of Common Attributes
  Review the following restrictions for the values of attributes used by multiple DBMCLI objects.
  • Attribute Lists in LIST Command
  • Attribute Filters in LIST Commands

Related Topics
• LIST
• DESCRIBE

8.5.1 Restrictions on Values of Common Attributes

Review the following restrictions for the values of attributes used by multiple DBMCLI objects.

• The value of the name attribute must be less than 256 characters and composed only of the following ASCII characters (alphanumeric and underscore only):
• Lowercase alphabetic characters (a to z)
• Uppercase alphabetic characters (A to Z)
• Numbers (0 to 9)
• Underscore (_)
• Hyphen (-), but may require the use of double quotes, for example "hyphenated-string"

- The value of the comment attribute must be less than 256 characters.

See the syntax of each DBMCLI command for any additional restrictions on attribute values.

8.5.2 Attribute Lists in LIST Command

You can specify which attributes to display for the LIST command with the following optional clause:

```plaintext
ATTRIBUTES { ALL | attribute1 [, attribute2] ... }
```

ALL displays all possible object attributes for the LIST object combination.

8.5.3 Attribute Filters in LIST Commands

You can specify which objects to display with the LIST command using the following optional clause:

```plaintext
WHERE attribute-filter1 [AND attribute-filter2] ...
```

Each `attribute-filterN` has the following syntax:

```plaintext
attribute [NOT | !] operator comparison_value
```

In the preceding syntax, the following arguments are used:

- **operator**: The supported operators are listed in Table 8-1. These operators can be combined with NOT or !.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Tests for equality between string, status, or numeric attributes. For example: status NOT = normal</td>
</tr>
<tr>
<td>&gt;</td>
<td>Tests for values greater than the numeric attributes. For example: size &gt; 139920M</td>
</tr>
<tr>
<td>&lt;</td>
<td>Tests for values less than the numeric attributes. For example: freeSpace !&lt; 100M</td>
</tr>
</tbody>
</table>
Table 8-1  (Cont.) Supported Operators in Attribute Filters

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIKE</td>
<td>Tests for a regular expression match with a string attribute using case-sensitive matching. For example: LIKE 'GR_IO_RQ.*'</td>
</tr>
</tbody>
</table>

- `comparison_value`: When used with the supported operators, `comparison_value` is one of the following value types:
  - Numeric
  - Literal: Value such as `active` or `normal`
  - Datetime: Time value supported only for `ALERTHISTORY`
  - String: Value delimited by single quotation marks ("\") or double quotation marks (""")
  - NULL: Unassigned strings or empty lists

8.6 Monitoring Database Server with Metrics

You can monitor a database server by viewing its metrics.

Metrics are of the following type:
- Cumulative: Statistics since the metric was created.
- Instantaneous: Values at the time the metric is collected.
- Rate: Computed value for metric by averaging statistics over a period of time.

8.6.1 About Metrics

Metrics are recorded observations of important run-time properties or internal instrumentation values of the database server and its components, such as CPU. Metrics are a series of measurements that are computed and retained in memory for an interval of time, and stored on a disk for a more permanent history.

Metric values typically record either the absolute value of a cumulative counter or a rate of change in a cumulative counter over an observed time period. Some metrics are used to record the time of state transitions as well.

Metric values can cause alerts to signal by comparing those values against threshold boundaries. Metrics can be associated with warning and critical thresholds when extreme values in the metric might indicate a problem or other event of interest to an administrator.
8.6.2 Displaying Metrics

You can use the DBMCLI LIST command to display and monitor metrics for database objects. You can display metric definitions, current metrics, and metric history using the LIST command.

- **Displaying Specific Attributes for Metrics**
  Use the ATTRIBUTES keyword to list the specific attributes you want to view in the output.

- **Displaying Metric Definitions**
  Use the LIST METRICDEFINITION command to display the metric definitions for a database server.

- **Displaying Current Metrics**
  Use the LIST METRICCURRENT command to display the current metric values for a database server.

- **Displaying Metric History**
  Use the LIST METRICCHISTORY command to display the metric history for a database server.

8.6.2.1 Displaying Specific Attributes for Metrics

Use the ATTRIBUTES keyword to list the specific attributes you want to view in the output.

This example shows the LIST METRICCHISTORY command with the name, metrictype, and alertState attributes specified. The output is limited to a one hour time period. A portion of the output is shown in following the command.

```
LIST METRICCHISTORY ATTRIBUTES name, metrictype, alertState -
WHERE collectionTime > '2019-07-12T13:00:00-05:00' -
AND collectionTime < '2019-07-12T14:00:00-05:00'
```

```
DS_TEMP Instantaneous normal
DS_FANS Instantaneous normal
DS_BBU_CHARGE Instantaneous normal
DS_BBU_TEMP Instantaneous normal
DS_CPUT Instantaneous normal
DS_CPUT_MS Instantaneous normal
DS_FSUT Instantaneous normal
DS_FSUT Instantaneous normal
DS_FSUT Instantaneous normal
DS_MEMUT Instantaneous normal
DS_MEMUT_MS Instantaneous normal
DS_RUNQ Instantaneous normal
DS_SWAP_IN_BY_SEC Instantaneous normal
DS_SWAP_OUT_BY_SEC Instantaneous normal
DS_SWAP_USAGE Instantaneous normal
DS_VIRTMEM_MS Instantaneous normal
N_HCA_MB_RCV_SEC Rate normal
N_HCA_MB_TRANS_SEC Rate normal
N_IB_MB_RCV_SEC Rate normal
N_IB_MB_RCV_SEC Rate normal
```
8.6.2.2 Displaying Metric Definitions

Use the LIST METRICDEFINITION command to display the metric definitions for a database server.

A metric definition listing shows the configuration of a metric. Example 8-1 shows how to display attributes for the METRICDEFINITION object.

Example 8-1  Displaying Metric Definitions

DBMCLI> LIST METRICDEFINITION DS_CPUT DETAIL

DBMCLI> LIST METRICDEFINITION WHERE name LIKE 'DS_SWAP_*' -
ATTRIBUTES name, metricType, description

Related Topics
• DESCRIBE METRICDEFINITION
• LIST METRICDEFINITION

8.6.2.3 Displaying Current Metrics

Use the LIST METRICCURRENT command to display the current metric values for a database server.

A current metric listing shows a set of observations on the current value of an individual metric. Example 8-2 shows how to display attributes for the METRICCURRENT object.

Example 8-2  Displaying Current Metric Values

DBMCLI> LIST METRICCURRENT DS_FANS DETAIL

DBMCLI> LIST METRICCURRENT WHERE objectType = 'DBSERVER'
AND
metricValue != 0 ATTRIBUTES name, metricObjectName,
metricValue, collectionTime

Related Topics
• DESCRIBE METRICCURRENT
• LIST METRICCURRENT
8.6.2.4 Displaying Metric History

Use the `LIST METRIC HISTORY` command to display the metric history for a database server.

A metric history listing shows a collection of past individual observations of all metric values. Example 8-3 shows how to display attributes for the METRIC HISTORY object.

The retention period for metric history files is specified by the `metricHistoryDays` attribute. You can modify this setting with the `DBMCLI ALTER DBSERVER` command.

Example 8-3    Displaying Metric History Values

```
DBMCLI> LIST METRIC HISTORY DS_TEMP WHERE alertState='critical' DETAIL
```
```
DBMCLI> LIST METRIC HISTORY WHERE objectType = 'DBSERVER' AND metricValue != 0
 AND collectionTime > '2014-08-12T09:51:07-07:00'
 -ATTRIBUTES name, metricObjectName, metricValue, collectionTime
```

Related Topics
- `LIST METRIC HISTORY`
- `ALTER DBSERVER`

The `ALTER DBSERVER` command changes the attributes of the database server.

8.6.3 Database Server Metrics

Database server metrics provide information about the server, such as CPU utilization, memory or network interconnections.

To display database server metrics, use an object type attribute equal to `DBSERVER` with the `METRIC CURRENT`, `METRIC DEFINITION`, and `METRIC HISTORY` objects. Example 8-4 shows how to display database server metrics.

The following list describes the metric names and descriptions for database server metrics. The database server for the metric is specified by the `metricObjectName` attribute of the `METRIC CURRENT` and `METRIC HISTORY` objects.

- `DS_BBU_CHARGE`: Disk controller battery charge.
- `DS_BBU_TEMP`: Temperature of disk controller battery.
- `DS_CPUT`: The server CPU utilization which is the instantaneous percentage of time over the previous minute that the system CPUs were not idle (from `/proc/stat`).
- `DS_CPUT_MS`: The percentage of CPU time used by MS.
- `DS_FANS`: The instantaneous number of working fans on the server.
- `DS_FILESYSTEM_UTIL`: The percentage of total space utilized on the file system that is currently in use. This metric shows the space utilization in the various files systems on the server.
- `DS_MEMUT`: The percentage of total physical memory used on the server.
- `DS_MEMUT_MS`: The percentage of physical memory used by MS.
The instantaneous average number (over the preceding minute) of processes in the Linux run queue marked running or uninterruptible (from /proc/loadavg).

- **DS_SWAP_IN_BY_SEC**: The number of swap pages read in KB per second.
- **DS_SWAP_OUT_BY_SEC**: The number of swap pages written in KB per second.
- **DS_SWAP_USAGE**: The percentage of swap space used.
- **DS_TEMP**: The instantaneous temperature (Celsius) of the server, provided by the Baseboard Management Controller (BMC).
- **DS_VIRTMEM_MS**: The amount of virtual memory used by MS in megabytes.
- **N_NIC_KB_RCV_SEC**: The number of kilobytes received by the Ethernet interfaces per second.
- **N_NIC_KB_TRANS_SEC**: The number of kilobytes transmitted by the Ethernet interfaces per second.
- **InfiniBand Transport Layer systems based on an InfiniBand Network Layer metrics, not applicable to Oracle Exadata Database Machine X8M servers:**
  - **N_HCA_MB_RCV_SEC**: The number of megabytes received by the InfiniBand interfaces per second.
  - **N_HCA_MB_TRANS_SEC**: The number of megabytes transmitted by the InfiniBand interfaces per second.
  - **N_IB_MB_RCV_SEC**: The number of megabytes received by an InfiniBand port per second.
  - **N_IB_MB_TRANS_SEC**: The number of megabytes transmitted by an InfiniBand port per second.
  - **N_IB_UTIL_RCV**: The percentage of an InfiniBand port capacity utilized for receiving data.
  - **N_IB_UTIL_TRANS**: The percentage of an InfiniBand port capacity utilized for transmitting data.

**Example 8-4  Displaying Database Server Metrics**

CellCLI> LIST METRICCURRENT DS_CPUT DETAIL

name: DS_CPUT
alertState: normal
collectionTime: 2014-12-17T15:54:25-08:00
metricObjectName: abcd2x3
metricType: Instantaneous
metricValue: 6.7 %
objectType: DBSERVER

**8.7 DBMCLI Command Reference**

DBMCLI has both administrative and object commands.

The following commands are available with the DBMCLI utility:

- **ALTER**
8.7.1 ALTER

Purpose
The ALTER command performs an action on or changes attributes of a single database server object or multiple objects. The ALTER command can be used to change an attribute or to take an action upon the object.

Syntax
ALTER { object_type object_name[, object_name]... operation
    | attribute_name = attribute_value
    [, attribute_name = attribute_value]...
}

Usage Notes
The following arguments can be used with the command:

- object_type can be the following:
  - ALERTHISTORY
  - DBSERVER
  - IBPORT (not available in user domain (domU) environments)
  - THRESHOLD (not available in user domain (domU) environments)
  - USER (not available in user domain (domU) environments)
- object_name is the name or identifier of an alert history, database server, LUN, or threshold.
- operation is a valid action for the specified object_type.

When multiple objects are the target of an ALTER command, there is the possibility of partial success. If an error occurs, then the command is interrupted, and the remaining objects are not changed.

- ALTER ALERTHISTORY
- ALTER DBSERVER
The ALTER DBSERVER command changes the attributes of the database server.
8.7.1.1 ALTER ALERTHISTORY

**Purpose**

The `ALTER ALERTHISTORY` command changes the attributes of all or specified alert histories.

**Syntax**

```sql
ALTER ALERTHISTORY { ALL | alertid1 [,alertid2 ...] }
examinedBy=user_name
```

**Usage Notes**

The following arguments can be used with the command:

- `alertidn`: The identifier of the alerts to be changed.
- `user_name`: The name of the user who acknowledged the alert.

**Examples**

Example 8-5 shows the `ALTER` command used with the `ALERTHISTORY` object to update the `examinedBy` attribute. The `examinedBy` attribute is the only `ALERTHISTORY` attribute that can be modified.

**Example 8-5  Altering ALERTHISTORY Attributes**

```
DBMCLI> ALTER ALERTHISTORY 1671443714 -
examinedBy="jdoe"
```

```
DBMCLI> ALTER ALERTHISTORY ALL examinedBy="jdoe"
```

8.7.1.2 ALTER DBSERVER

The `ALTER DBSERVER` command changes the attributes of the database server.

**Syntax**

```
ALTER DBSERVER {
 SHUTDOWN SERVICES { RS | MS | ALL }
 RESTART SERVICES { RS | MS | ALL }
 RESTART BMC
 STARTUP SERVICES { RS | MS | ALL }
 LED { ON | OFF }
 VALIDATE { MAIL | SNMP | CONFIGURATION }
 VALIDATE SYSLOGCONF facility.priority
 CONFIGUREBMC
 | snmpuser=((user_clause)[,(user_clause)[,..]]) |
```
Usage Notes

The following table lists the arguments and options for the `ALTER DBSERVER` command:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTDOWN SERVICES</td>
<td>MS (Management Server)</td>
<td>The MS service is shut down.</td>
</tr>
<tr>
<td></td>
<td>RS (Restart Server)</td>
<td>The RS service is shut down.</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>The ALL option shuts down the MS and RS services.</td>
</tr>
<tr>
<td>RESTART SERVICES</td>
<td>MS</td>
<td>The MS service is shut down, and then started.</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>The RS service is shut down, and then started.</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>The ALL option shuts down, then starts up, the MS and RS services.</td>
</tr>
<tr>
<td>RESTART BMC</td>
<td>n/a</td>
<td>Restarts the Baseboard Management Controller (BMC).</td>
</tr>
<tr>
<td>STARTUP SERVICES</td>
<td>MS</td>
<td>The MS service is started.</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>The RS service is started.</td>
</tr>
<tr>
<td></td>
<td>ALL</td>
<td>The ALL option starts up the MS and RS services.</td>
</tr>
<tr>
<td>LED</td>
<td>ON</td>
<td>LED ON and LED OFF operations turn on and off the chassis LED.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>You can manually set the LED to light to indicate that a database server requires maintenance. The LED is also set to light automatically if a component fails.</td>
</tr>
<tr>
<td>Argument</td>
<td>Options</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>VALIDATE</td>
<td>MAIL</td>
<td>The VALIDATE MAIL operation sends a test message using the e-mail attributes configured for the database server.</td>
</tr>
<tr>
<td></td>
<td>SNMP</td>
<td>The VALIDATE SNMP operation sends a test message using the SNMP attributes configured for the database server.</td>
</tr>
<tr>
<td></td>
<td>CONFIGURATION</td>
<td>The VALIDATE SNMP TYPE=ASR operation validates ASR on Exadata Storage Server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The VALIDATE CONFIGURATION operation validates the server configuration.</td>
</tr>
<tr>
<td>VALIDATE SYSLOGCONF</td>
<td>facility.priority</td>
<td>The VALIDATE SYSLOGCONF facility.priority sends a test message for the specified facility and priority.</td>
</tr>
<tr>
<td>CONFIGUREBMC</td>
<td>n/a</td>
<td>Configures the BMC for hardware alerts to the local database server so that Management Server can pick up the alerts.</td>
</tr>
<tr>
<td>Argument</td>
<td>Options</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| `snmpuser` or `snmpuser.name` | `user_clause` | Defines the user who receives SNMP alerts. You can either supply a list of user clauses for all SNMP users, or individual user clauses using the attribute `snmpuser.name`. The `user_clause` is of the form:  

```plaintext
([name=user1,]
 authProtocol=auth_type,
 authPassword=*,
 privProtocol=priv_type,
 privPassword=*) ,

\

(name=user2,
 authProtocol=auth_type,
 authPassword=*,
 privProtocol=priv_type,
 privPassword=*,)
```

If updating a single user, then do not include the phrase name=user1, in the `user_clause`.  

| attributes | N/A | The attributes that can be changed using the `ALTER DBSERVER` command are shown as modifiable in Example 8-35. |

---

**Note:**

In user domain (domU) environments, the following commands are not permitted:

- `ALTER DBSERVER CONFIGUREBMC`
- `ALTER DBSERVER RESTART BMC`
- `ALTER DBSERVER LED { ON | OFF }

The following are additional usage notes for the `ALTER DBSERVER` command:
• It may be necessary to restart, shut down, or start up a database server for the following reasons:
  – Software upgrades
  – Service outages that include any condition under which a database server is not responding to service requests

• To set up the database server to send notifications about alerts, you can configure the following database server attributes:
  – smtpServer
  – smtpPort
  – smtpUser
  – smtpPwd
  – smtpUseSSL
  – smtpFrom
  – smtpFromAddr
  – smtpToAddr
  – snmpSubscriber
  – snmpUser
  – snmpEngineID
  – notificationMethod
  – notificationPolicy
  – emailSubscriber

The smtpToAddr attribute can be set to a list of comma-delimited e-mail addresses that are the recipients of the alert notification. The list must be enclosed in quotation marks.

The snmpSubscriber attribute can be set to a list of SNMP targets to which the SNMP alert notification is sent. These targets are specified as follows:

```plaintext
snmpSubscriber=
 (host=host[,port=port][,community=community][,type=user_type]
 [,fromP=ip
 [,asrPort="ASRManager_port"]
 [,host=host[,port=port][,community=community][,type=user_type]
 [,fromP=ip
 [,asrPort="ASRManager_port"]]) ...)```

Note:

- The `ALTER DBSERVER ... snmpSubscriber` command replaces the existing value set for `snmpSubscriber`. To add to the list of SNMP targets ensure that you include the existing values in the command. The following message is displayed after running the command:

 snmpSubscriber {0} has been replaced with {1}.

- The `snmpSubscriber` attribute is used to configure Oracle Auto Service Request (ASR).

- The SNMP alerts conform to MIBs (management information base) which are included with each installation of Oracle Exadata System Software. The MIB files on the database server are available at `/opt/oracle/dbserver/dbms/deploy/config/`. Type `ASR` and `v3ASR` alerts conform to SUN-HW-TRAP-MIB, which is available in the `SUB-HW-TRAP-MIB.mib` file. The other alert types conform to the `cell_alert MIB`, which is available in the `cell_alert.mib` file. The SNMP alerts and MIB conform to SNMP version 1 (SNMPv1). However, the Auto Service Request alerts conform to SNMP version 2c (SNMPv2c).

 The default value for `port` is 162. The default value for `community` is public.

 The `notificationMethod` attribute value can be `mail`, `snmp`, `none`, or a combination of `mail` and `snmp`, such as `notificationMethod='mail,snmp'`. The default value is `mail`.

 The `snmpSubscriber` types are `ASR`, `v3`, and `v3ASR`. For types `v3` and `v3ASR`, a `snmpUser` must be defined, and the user name is provided instead of `community`.

 For the `v3ASR` type, the user must be defined with `authProtocol=SHA, and privProtocol=AES`. These are the only protocols supported by ASR Manager. Setting the `snmpSubscriber` as type `v3ASR` also sets the ILOM properties and rules for traps sent by ILOM.

 If type is not specified, the default is version 1, `cell_alert` traps. There is no string to specify this type. To use this type, just omit the type field.

 The `fromIP` field enables you to specify an IP address from which the trap is sent. If this field is not specified, it defaults to the IP address associated with eth0. Use this field if the default IP address is not registered with Oracle ASR Manager. Oracle ASR Manager only processes SNMP traps that are sent from IP addresses that it recognizes.

 The `fromIP` field is allowed only for `snmpSubscriber` with type set to either `ASR` or `v3ASR`. The default value for `port` is 162. The default value for `community` is public.
For example:

```
DBMCLI> alter dbserver
snmpSubscriber=((host=asrhost, port=162, community=public, fromIP="1.1.1.1", type=ASR))
```

The following example returns an error because the type is not ASR or v3ASR.

```
DBMCLI> alter dbserver
snmpSubscriber=((host=localhost, port=162, community=public, fromIP="1.1.1.1"))
DBM-00068: The fromIP field is only supported for ASR SNMP subscribers.
```

The `asrmPort` field enables you to specify the port number on an Oracle ASR Manager machine that MS uses to communicate with Oracle ASR Manager. This port must be the same as the HTTP port of Oracle ASR Manager's HTTP Receiver. You can check this by running "asr show_http_receiver" on the Oracle ASR Manager machine.

The `asrmPort` field is allowed only for `snmpSubscriber` with type set to either ASR or v3ASR. The default value for this port is 16161.

The `snmpUser` attribute defines the user who receives SNMP alerts. This command can only be run in interactive mode. There are two methods for configuring this attribute.

```
snmpuser=((user_clause)[(user_clause)[...]])
```

```
snmpuser.name=(user_clause)
```

- If you specify `snmpuser`, then you must provide a `user_clause` for every configured user. If you omit a user, then that user will no longer receive SNMP alerts. The `((user_clause)[(user_clause)[...]])` string that you provide overwrites the previous string used for the `snmpuser` attribute.
- If you specify `snmpuser.name`, then you must provide a `user_clause` for only the specified user. This allows you to add, delete, or modify each user individually, without having to supply the entire `snmpuser` attribute string each time.
- If you use `snmpuser=' '`, then all SNMP users are removed. If you use `snmpuser.name=' '`, then only the specified user is removed. You cannot remove an SNMP user while it is still referenced by a V3 SnmpSubscriber.

Each method uses a `user_clause`, which has the following format:

```
((name=user1[, authProtocol=auth_type, authPassword=*,\nprivProtocol=priv_type, privPassword=*,\n(name=user2, authProtocol=auth_type, authPassword=*,\nprivProtocol=priv_type, privPassword=*,,),...,])
```

If updating a single user, then do not include the phrase `name=user1`, in the `user_clause`, because you have already supplied the name as part of `snmpuser.name`.
– **name** is the user name.
– Only * is allowed for the password values in the command. Passwords are not stored or displayed. Secure hash keys are computed and used for trap authentication and encryption.
– **authProtocol** is the authentication protocol. Options are MD5 or SHA. The **authProtocol** must be specified for the **snmpUser** attribute.
 The system prompts for the authentication password. The authentication password must have 8 to 12 alphanumeric characters.
– **privProtocol** is encryption protocol. Options are none, AES, or DES. The default is none when the **privProtocol** attribute is not specified.
 The system prompts for an encryption password if the encryption protocol is specified. The password is exactly 8 alphanumeric characters, and they are case sensitive.

The **smtpUseSSL** attribute enables Secure Socket Layer (SSL) encryption on the e-mail notifications when the attribute is set to true.

The **notificationPolicy** attribute value can be none or a combination of critical, warning, or clear, such as notificationPolicy='warning,clear.'

– The **critical** value refers to hardware-generated alerts or alerts generated by Automatic Diagnostic Repository (ADR) or Baseboard Management Controller (BMC). The **critical** value also refers to a metric alert when the value exceeds the critical threshold specified in the metric definition.
– The **warning** value refers to a metric alert when the value exceeds the warning threshold specified in the metric definition.
– The **clear** value refers to a metric alert when the value is below the threshold boundary after having previously exceeded a warning or critical threshold.
– The **maintenance** value refers to all hardware-related errors. The hardware errors are reported as "Maintenance" in e-mail message subject lines.

• For each subscriber, the host must be specified as either a domain name or an IP address. Enclose the host name or IP address in quotation marks if it contains non-alphanumeric characters. Port and community values are optional. The default port value is 162. The default community value is public. The type value is optional. The default value for type is NULL. The types ASR, V3, and v3ASR are the only supported non-NULL value.
• After startup of the Management Server (MS), the **snmpSubscriber** list entries with type ASR or v3ASR are added to the ILOM for the database server. This ensures that when an ILOM is replaced, the entries are set for the new ILOM. If the entries are removed from the ILOM, then they must be manually added to the ILOM using the ALTER DBSERVER ... **snmpUser**= command.
• The **snmpSubscriber** with type=asr or type=v3ASR should only be configured to point to Oracle ASR Manager.
• To validate that e-mail messages are successfully sent for database server alerts or events, use the **ALTER** command with the **VALIDATE MAIL** option. The validation process sends a test e-mail message to the configured recipient. If that test e-mail message is not received, then an e-mail configuration setting is not valid.
• The emailFormat attribute can be html or text. By default, e-mail notifications are sent in HTML format. Change the value to text to receive plain text e-mail notifications.

• The ALTER DBSERVER snmpEngineID command is used by the SNMP managers to subscribe to alerts from the database servers. The snmpEngineID parameter can be up to 20 characters. It should be unique for each target within a data center. The default is the database server name. This default is used if the snmpEngineID attribute is not set before the SNMP users are defined.

The engine identifier should not be changed after SNMP users are defined. Any change to an engine identifier causes the user keys to be re-computed, and user passwords must be re-entered.

• If the database server name is changed, then you must choose a unique database server name.

• If an ipaddressN attribute is modified, then the network configuration file /etc/oracle/cell/network-config/cellinit.ora is modified.

• The ALTER DBSERVER snmpSubscriber command configures the Oracle ASR subscriber, and sends traps.

• The ALTER DBSERVER emailSubscriber command sets a list of comma-delimited e-mail addresses that are the recipients of alert notifications for specific alert types. The following is an example of the syntax:

 ALTER DBSERVER emailSubscriber =
 ((email="email_address1",
 alertType="alert_type")
 [, (email="email_address2",alertType="alert_type"), ...])

 The e-mail address must be a valid e-mail address. The email parameter is mandatory. The alertType parameter specifies the type of alert, and is optional. The alert types are HARDWARE, SOFTWARE, METRIC or ADR. If the alert type is not specified, then the subscription is for all alert types.

 An empty input string removes the current set of subscribers.

 The notification policy must be set before alert notifications can be received. The policy applies to all e-mail subscribers. The notification policy for these alerts are the same as for snmpSubscriber alerts.

• The syslogconf attribute extends syslog rules for a database server. The attribute can be used to designate that syslog messages be forwarded to a specified management server. On the management server, the forwarded messages are directed to a file, console, or management application, depending on the syslog configuration on the management server. The following shows the syntax for the attribute:

 syslogconf = ('selector @node' [, 'selector @node']...)

 In the preceding syntax, selector is the message type, and node is the specified server. Both variables follow syslog.conf standard syntax rules.

 – The facility option for the syslogconf attribute must be one of the following:
 auth, authpriv, cron, daemon, ftp, kern, lpr, mail, mark, news, security,
syslog, user, uucp, local0, local1, local2, local3, local4, local5, local6, local7, none, or *

- The priority option for the syslogconf attribute must be one of the following: alert, crit, debug, emerg, err, error, info, notice, panic, warn, warning, none, or * (asterisk).

- The ALTER DBSERVER VALIDATE syslogconf selector command sends a test log message. The test message is directed as specified by rules in the /etc/syslog.conf file. If the syslogconf assignment extends the syslog rules, then a test message is forwarded to the specified management servers.

- Starting with Oracle Exadata System Software release 19.1.0, you can use the syslogFormat attribute to change the standard format for syslog to any format by setting the value to the desired format string. Setting the syslogFormat attribute to an empty string removes the format change, reverting the syslog format to the default format. If the format string contains a control character, it must be preceded by a backslash when entering the command. See Example 8-22 for examples.

- Starting with Oracle Exadata System Software release 19.3.0, you can use the syslogFormat attribute to enable sending syslog in an encrypted format. For the complete configuration steps, refer to Encrypting System Log Information.

- You can turn off the diagnostic pack attachment to emails by running the following command:

 ALTER DBSERVER diagPackEmailAttach=FALSE

- Starting with Oracle Exadata System Software release 19.1.0, the httpsAccess attribute can be used to specify a list of IP addresses or IP subnet masks that control who can access the RESTful service via HTTPs. The value you specify for httpsAccess overwrites any previous value. You can use the following values for httpsAccess:

 - ALL — to allow access to all hosts (Default)
 - NONE — to disable the HTTPs port completely
 - IP1, IP2,..., IPn — to only allow access to hosts with IP addresses IP1, IP2,..., IPn where IPn is a valid IP address in IPv4, IPv4 subnet, IPv6 or IPv4-embedded IPv6 format. You can specify a maximum of 512 IP addresses for the access control list.

 Additionally, instead of a single IP address, you can use the / character to specify a range of IP addresses using a subnet mask. For example the range '192.168.10.0/24' corresponds to hosts having IP addresses from 192.168.10.1 to 192.168.10.255. If you specify an IP address range, you need to enclose the IP address string in quotes.

- To set up CA-certified security certificates on the cell for use with ExaCLI, use the following attributes:

 - Note:
 The following attributes can be used only if you are running the ALTER CELL command from ExaCLI.
securityPubKey - Specifies the URL to the public key file.
securityPrivKey - Specifies the URL to the private key file.
securityPrivKeyPW - Specifies the password to use if the private key file is encrypted.

For example:

ExaCLI> alter cell securityPubKey="http://www.example.com/security/newkey.crt", -
 securityPrivKey="http://www.example.com/security/newkey.key", -
 securityPrivKeyPW=*

password=***************

After you upload the CA-certified security certificate, you must restart MS before the new security certificate is visible.

CellCLI> alter cell restart services ms

See Also:
Using a CA-Certified Security Certificate

Examples

Example 8-6 shows how to set the asrmPort field for an snmpSubscriber.
Example 8-7 shows how to enable and disable the auto diagpack upload feature.
Example 8-8 shows how to set up e-mail notifications for the database server.
Example 8-9 shows how to validate the e-mail setup on a database server.
Example 8-10 shows how to change the format of e-mail messages.
Example 8-11 shows how to validate the SNMP setup on a database server.
Example 8-12 shows how to specify the type of e-mail alerts. In the example, one subscriber gets hardware and software alerts, and the other subscriber gets ADR alerts.
Example 8-13 shows how to modify the SNMP user.
Example 8-14 shows how to modify a single SNMP user.
Example 8-15 shows how to start up and shut down database server services.
Example 8-16 shows how to set the LED on the database server.
Example 8-17 shows the pending core count for capacity-on-demand. The server must be restarted in order for the new core count to be active.
Example 8-18 shows how to add a rule using the syslogconf attribute.
Example 8-19 shows how to add and validate a rule with test message.
Example 8-20 shows how to remove the `syslog.conf` rule.

Example 8-21 shows how to restrict HTTPS Access to the Exadata RESTful service to a specific range of IP addresses.

Example 8-6 Setting the `asrmPort` for an `snmpSubscriber`

```
DBMCLI> ALTER DBSERVER
snmpSubscriber=((host=host1, port=162, community=public, type=asr, asrmPort=16161))
```

Example 8-7 Enabling/Disabling Auto Diagpack Upload

You can enable or disable this feature by setting the `diagPackUploadEnabled` attribute on the `dbserver` object.

Set the attribute to `false` to disable this feature, `true` to enable it. The default is `true`.

```
DBMCLI> ALTER DBSERVER diagPackUploadEnabled=FALSE
```

Example 8-8 Configuring E-mail Notifications for a Database Server

```
DBMCLI> ALTER DBSERVER smtpServer='my_mail.example.com',
        smtpFromAddr='john.doe@example.com',
                smtpFrom='John Doe',
        smtpToAddr='jane.smith@example.com',
                snmpSubscriber=((host=host1), (host=host2)),
                notificationPolicy='clear',
                notificationMethod='mail,snmp'
```

Example 8-9 Validating E-mail on a Database Server

```
DBMCLI> ALTER DBSERVER VALIDATE MAIL
```

Example 8-10 Changing the Format of E-mail Messages

```
DBMCLI> ALTER DBSERVER emailFormat='text'
DBMCLI> ALTER DBSERVER emailFormat='html'
```

Example 8-11 Validating SNMP on a Database Server

```
DBMCLI> ALTER DBSERVER VALIDATE SNMP
```

Example 8-12 Specifying the Type of E-mail Alert

```
ALTER DBSERVER
emailSubscriber=
    ((email="email1@example.com",alertType="HARDWARE,SOFTWARE"),
    (email="email2@example.com",alertType="ADR"))
```
Example 8-13 Modifying the SNMP User

This example shows the initial configuration of a single SNMP user, where the administrator is prompted to enter the passwords.

CellCLI> ALTER CELL snmpuser = ((name=ASR, authprotocol=md5, authpassword=*, privprotocol=AES, privpassword=*))

snmpUser ASR authpassword: password
Confirm snmpUser ASR authpassword: password
snmpUser ASR privpassword: password
Confirm snmpUser ASR privpassword: password

Example 8-14 Modifying a Single SNMP User

The following code examples show adding an SNMP user, changing that user’s password, and then removing that user.

adding users individually
CellCLI> ALTER CELL snmpuser.user2=(authprotocol=SHA,authpassword=*)

snmpUser user2 authpassword: password
Confirm snmpUser user2 authpassword: password

snmpUser ((name=user1, authProtocol=SHA, privProtocol=AES)) has been replaced with
((name=user1, authProtocol=SHA, privProtocol=AES), (name=user2, authProtocol=SHA)).
Cell cell01 successfully altered

changing a password of an existing user
CellCLI> ALTER CELL snmpuser.user2 = (authprotocol=SHA,authpassword=welcome2)

Cell cell01 successfully altered

delete a user individually
CellCLI> ALTER CELL snmpuser.user2=''

snmpUser ((name=user1, authProtocol=SHA, privProtocol=AES), (name=user2, authProtocol=SHA)) has been replaced with ((name=user1, authProtocol=SHA, privProtocol=AES)).
Cell cell01 successfully altered

Example 8-15 Starting Up and Shutting Down Database Server Services

DBMCLI> ALTER DBSERVER SHUTDOWN SERVICES MS

DBMCLI> ALTER DBSERVER RESTART SERVICES MS
Example 8-16 Setting the Database Server LED Off and On

DBMCLI> ALTER DBSERVER LED OFF
DBMCLI> ALTER DBSERVER LED ON

Example 8-17 Setting Pending Core Count

This example shows how to increase the number of active physical cores on a database server before restarting the server. Use the LIST DBSERVER command to verify the correct value is set.

DBMCLI> ALTER DBSERVER pendingCoreCount=20

Example 8-18 Using the syslogconf Attribute

DBMCLI> ALTER DBSERVER syslogconf=('*.err;authpriv.none @loghost', - '* emerg @loghost')

Example 8-19 Adding and Validating a Rule

DBMCLI> ALTER DBSERVER syslogconf=('kern.crit @loghost')
DBMCLI> ALTER DBSERVER VALIDATE syslogconf 'kern.crit'

Example 8-20 Removing All syslog.conf Rules

DBMCLI> ALTER DBSERVER syslogconf=''

Example 8-21 Restricting HTTPS Access to the Exadata RESTful Service

The following command allows HTTPs port access to hosts having IP addresses in the range from 192.168.10.1 to 192.168.10.255.

DBMCLI> ALTER DBSERVER httpsAccess="192.168.10.0/24"

Example 8-22 Setting the Syslog Format to a Custom String Then Reverting to the Default Format

DBMCLI> ALTER DBSERVER syslogformat="%TIMESTAMP:::date-rfc3339% %HOSTNAME% %syslogtag% %syslogseverity-text%:%msg:::sp-if-no-1st-sp%msg:::drop-last-lf\n"
DBMCLI> ALTER DBSERVER syslogformat="%TIMESTAMP% %HOSTNAME% %msg%\n"
DBMCLI> ALTER DBSERVER syslogformat=""

Related Topics

- CREATE DIAGPACK
- Restrictions on Values of Common Attributes
 Review the following restrictions for the values of attributes used by multiple DBMCLI objects.
8.7.1.3 ALTER IBPORT

Purpose

The ALTER IBPORT command performs an action on all InfiniBand Transport Layer systems based on an InfiniBand Network Layer ports, or specific ports.

Note:

This command does not work on Oracle Exadata Database Machine X8M servers.

Syntax

ALTER IBPORT {ALL | ibport_name [, ibport_name] ...} RESET COUNTERS

Usage Notes

The RESET COUNTERS option resets all counters on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.

Example 8-23 Altering IBPORT Attributes

This example shows the how to reset the IBPORT counters for all ports, or for a specific port.

DBMCLI> ALTER IBPORT ALL RESET COUNTERS

 InfiniBand Port HCA-1:1 successfully altered.
 InfiniBand Port HCA-1:2 successfully altered.

DBMCLI> ALTER IBPORT "HCA-1:1" RESET COUNTERS

 InfiniBand Port HCA-1:1 successfully altered.

8.7.1.4 ALTER THRESHOLD

Purpose

The ALTER THRESHOLD command updates the attribute values of all thresholds or the specified thresholds.

Syntax

ALTER THRESHOLD { ALL | threshold_name [, threshold_name ...] }
 attribute_name = attribute_value
 [, attribute_name = attribute_value]...

Usage Notes

The attributes that can be changed with the ALTER command are shown as modifiable in Example 8-43.
Examples

Example 8-24 shows how to alter threshold attributes.

Example 8-24 Altering Threshold Attributes

DBMCLI> ALTER THRESHOLD temp warning=30

DBMCLI> ALTER THRESHOLD ALL occurrences=3

See Also:

"CREATE" for additional information about setting threshold attributes

8.7.1.5 ALTER USER

Purpose

The **ALTER USER** command changes the attributes of a user.

Syntax

```
ALTER USER username attribute_name = attribute_value \[, attribute_name = attribute_value, ...]
```

Usage Notes

- The *username* cannot be root, dbadmin or dbmmonitor. Those are reserved.
- The user name should be unique.
- The system prompts for a password for the new user. The password must have 12 to 40 alphanumeric characters or special characters !@#$%^&*() with at least one digit, one lowercase letter, and one uppercase letter. Starting with Oracle Exadata System Software release 18.1.0.0.0, the password can be 8 to 40 characters in length and can also utilize the special characters - and _.
- The new password cannot be the same as the current password for the user.

Example 8-25 Using the ALTER USER Command

DBMCLI> ALTER USER scott password=TOPsecret2345

8.7.2 CREATE

Purpose

The **CREATE** command creates a new object and assigns initial attributes to the object.
Syntax

CREATE object_type [name] [attributename=attribute_value [, attributename=attribute_value] ...]

Usage Notes

• object_type can be as follows:
 - DBSERVER
 - DIAGPACK
 - ROLE
 - THRESHOLD
 - USER
• name is the name of the new object.
• attribute_value is the name of a modifiable attribute for the object_type.
• attribute_value is the initial setting for the attribute.
• When multiple objects are valid as the target of a CREATE command, there is the possibility of partial success. If an error occurs, then the command is interrupted, and the remaining objects are not created.

• CREATE DBSERVER
• CREATE DIAGPACK
• CREATE ROLE
• CREATE THRESHOLD
• CREATE USER

Related Topics
• About DBMCLI Object Types

8.7.2.1 CREATE DBSERVER

Purpose

The CREATE DBSERVER command creates the DBSERVER object type.

Syntax

CREATE DBSERVER [name]
 [interconnect1=intValue1 [, interconnect2=intValue2 ...]]
 [{ , ipaddress1=ipValue1 [, ipaddress2=ipValue2 ...] }]
 [[, attributeName = attributeValue ...]]

Usage Notes

The attributes that can be set are shown as modifiable in DESCRIBE DBSERVER.
• This command can be used to assign the ASR value to the `snmpSubscriber` attribute.

• If a name is not provided, then the default is to set the database server name to the network host name of the server with hyphens in the network name replaced with underscores. You can display the network name with the `uname -n` command. If you change the database server name, then you must choose a unique database server name.

 If you provide a name, ensure that the name meets the guidelines.

• One to four interconnects can be specified. The `interconnect1` attribute must be specified if the `interconnect2` attribute is specified. The `interconnect1` and `interconnect2` attributes must be specified if `interconnect3` is specified, and so on.

• If `interconnectn` and `ipaddressn` are specified, then an `ipaddressn` entry is automatically written to the `/etc/oracle/cell/network-config/cellinit.ora` file.

• Interconnects use the RDMA Network Fabric (ibN or reN).

• Starting with Oracle Exadata System Software release 19.1.0, the `httpsAccess` attribute can be used to specify a list of IP addresses or IP subnet masks that control who can access the RESTful service via HTTPS. The value you specify for `httpsAccess` overwrites any previous value. You can use the following values for `httpsAccess`:

 – ALL — to allow access to all hosts (Default)
 – NONE — to disable the HTTPS port completely
 – IP1, IP2,..., IPn — to only allow access to hosts with IP addresses IP1, IP2,..., IPn where IPn is a valid IP address in IPv4, IPv4 subnet, IPv6 or IPv4-embedded IPv6 format. You can specify a maximum of 512 IP addresses for the access control list.

 Additionally, instead of a single IP address, you can use the `/` character to specify a range of IP addresses using a subnet mask. For example the range `192.168.10.0/24` corresponds to hosts having IP addresses from 192.168.10.1 to 192.168.10.255. If you specify an IP address range, you need to enclose the IP address string in quotes.

Examples

Example 8-26 shows the `CREATE DBSERVER` command with the `interconnectn` attribute.

Example 8-27 shows how to create a `DBSERVER` object that restricts HTTPS access to the RESTful server to a set of hosts.

Example 8-26 Creating a DB Server and setting the `interconnectn` attribute for the `DBSERVER` object

For racks that use InfiniBand Transport Layer systems based on an InfiniBand Network Layer:

```
DBMCLI> CREATE DBSERVER interconnect1=ib0, interconnect2=ib1
```
For racks that use InfiniBand Transport Layer systems based on a RoCE Network Layer:

```
DBMCLI> CREATE DBSERVER interconnect1=re0, interconnect2=re1
```

Example 8-27 Creating a DBServer with Restricted HTTPs Access

This example shows how to create a DBSERVER object that allows HTTPs port access only from hosts having IP addresses in the range 192.168.10.1 to 192.168.10.255.

For racks that use InfiniBand Transport Layer systems based on an InfiniBand Network Layer:

```
DBMCLI> CREATE DBSERVER interconnect1=ib0, httpsAccess="192.168.10.0/24"
```

For racks that use InfiniBand Transport Layer systems based on a RoCE Network Layer:

```
DBMCLI> CREATE DBSERVER interconnect1=re0, httpsAccess="192.168.10.0/24"
```

Related Topics

- **ALTER DBSERVER**
 The ALTER DBSERVER command changes the attributes of the database server.
- **Restrictions on Values of Common Attributes**
 Review the following restrictions for the values of attributes used by multiple DBCLI objects.
- **DESCRIBE DBSERVER**

8.7.2.2 CREATE DIAGPACK

Purpose

The CREATE DIAGPACK command creates a diagnostic package, which contains logs and traces that you can use to troubleshoot problems in your system. You can also send the package to Oracle Support, as needed.

Syntax

```
CREATE DIAGPACK packStartTime=time, [durationInHrs=duration]
```

or

```
CREATE DIAGPACK alertName=alertName
```

Usage Notes

When an alert occurs, a diagnostic package is created automatically. This package contains logs and traces related to the alert.

The CREATE DIAGPACK command enables you to generate diagnostic packages manually.
• The **packStartTime** parameter specifies when to start collecting the logs and traces. The format of **packStartTime** is:

`yyyy_MM_ddTHH_mm_ss`

For example: `2015_07_07T09_00_00`

You can also specify the keyword **now** for **packStartTime**. The **packStartTime** cannot be in the future and cannot be older than 7 days. The value of **packStartTime** is used as part of the name of the diagnostic package.

• The **durationInHrs** parameter specifies the number of hours of logs and traces to include in the diagnostic package. Valid values are from 1 (default) to 6.

Every diagnostic package includes logs 1 hour before and 1 hour after the **packStartTime**. For example, if you specify a time of `12_00_00`, then logs will collected from `11_00_00` to `13_00_00`, unless the end time is in the future.

• The **alertName** parameter specifies the alert name for which to create the diagnostic package. You can run the **LIST ALERTHISTORY** command to view the alert names.

Name of Diagnostic Packages

The name of the diagnostic package is formed as follows:

`hostname + packStartTime + unique package ID`

For example: `scaqab04adm08_2016_05_17T11_58_54_5_1.tar.bz2`

For alerts, the name of the diagnostic package is formed as:

`hostname + timestamp of when the package was created + alert ID`

For example: `scaqab04adm08_2016_05_17T11_58_54_5_1.tar.bz`

Location of Diagnostic Packages

The location of the diagnostic packages is `/opt/oracle/dbserver/dbms/deploy/log`.

Status of Diagnostic Packages

You can run the **LIST DIAGPACK** command to get a list of diagnostic packages in your system, and their status.

Privileges Needed to Create, List, and Download Diagnostic Packages

Users need to be granted roles before they can download the diagnostic packages. Use **DBMCLI** to grant the following privileges to a role:

- Privilege to create diagnostic packages:

  ```
  grant privilege CREATE ON DIAGPACK to ROLE role
  ```
Privilege to list diagnostic packages and check their status:

```sql
grant privilege LIST ON DIAGPACK to ROLE role
```

Privilege to download diagnostic packages:

```sql
grant privilege DOWNLOAD ON DIAGPACK to ROLE role
```

You can then grant the role to users. For example, if you named your role `diagpack_role`, the following command grants the role to the user `fred`.

```sql
DBMCLI> GRANT ROLE diagpack_role TO USER fred
```

During deployment, Oracle Exadata Deployment Assistant (OEDA) creates an Exadata storage software user called CELLDIAG. You can use this user to connect to a cell remotely using ExaCLI or REST API. This user has privileges to create, list, and download diagnostic packages.

Downloading Diagnostic Packages

You can download diagnostic packages using any of the following methods. Note that you need the DOWNLOAD ON DIAGPACK privilege before you can download diagnostic packages.

- **Using the REST API**

 To download the diagnostic package by name, use the following URL, where `hostname` specifies the host name of the server and `diagpackname` specifies the name of the diagnostic package. The URL must point to the secure socket port, which is 7879 by default:

  ```
  https://hostname:7879/diagpack/download?name=diagpackname
  ```

 If the user is not already logged in, the URL will prompt for a user name and password.

 Diagnostic packages can also be accessed at

  ```
  https://hostname:7879/diagpack
  ```

 For example:

  ```
  https://dbnode01.example.com:7879/diagpack
  ```

 The page then prompts the user to log in:

  ```
  User: fred
  Password: *******
  ```

 Based on the user's privileges, various sections of this page could be hidden. The form to create a new diagpack will not be shown if the user does not have the CREATE ON DIAGPACK privilege. Similarly, the list of alerts and their
diagnostic packages will not be shown if the user does not have the LIST ON DIAGPACK privilege.

To download the diagnostic package by alert name, use the following URL, where hostname specifies the host name of the server and alertName specifies the alert name of the diagnostic package:

https://hostname:7879/diagpack/download?alert=alertName

This is the same alert name that is used in AlertHistory. It looks like 1, 2, 3 for stateless alerts, and 1_1, 2_1, 3_1, 3_2 for stateful alerts.

- Using the download ExaCLI command

ExaCLI enables you to run CellCLI commands on storage nodes remotely from compute nodes. To run the download command, run the following commands on a compute node:

1. Start up ExaCLI and connect to the cell containing the diagnostic pack. Use a command similar to the following where hostname specifies the host name of the cell:

   ```
   exacli -l celladministrator -c hostname
   Password=********
   ```

2. Run the download command. Use a command similar to the following where name specifies the name of the diagnostic package to download, and destinationFolder specifies the directory where you want to save the downloaded diagnostic package:

   ```
   exacli> download diagpack name destinationFolder
   ```

- Getting the diagnostic package from the alert emails

The alert emails include diagnostic packages for all alerts except INFO, CLEAR, and WARNING. Diagnostic packages are generated for critical alerts only.

Turning Off the Diagnostic Pack Attachment in Emails

To turn off the diagnostic pack attachment in emails, use the command alter dbserver diagPackEmailAttach=FALSE. The diagnostic packs are still generated and stored on the system. To download the diagnostic packs, see the section "Downloading Diagnostic Packages."

Examples

Example 8-28 Using "now" for packStartTime

This example creates a diagnostic package using NOW as the start time and the default duration of one hour.

The output is a single compressed file in the directory /opt/oracle/dbserver/dbms/deploy/log.

```
DBMCLI> create diagpack packStartTime="now"
Processing: dm01db01_diag_2015_07_08T17_53_58_1
Use 'list diagPack' to check its status.
```
Example 8-29 Specifying a duration

This example creates 3 diagnostic packages under /opt/oracle/dbserver/dbms/deploy/log:

- The first package has a start time of 2015_07_07T09_00_00.
- The second package has a start time of 2015_07_07T10_00_00.
- The third package has a start time of 2015_07_07T11_00_00.

```
DBMCLI> create diagpack packStartTime="2015_07_07T09_00_00",
durationInHrs=3
```

Processing: dm01db01_diag_2015_07_07T09_00_00_1
dm01db01_diag_2015_07_07T10_00_00_1 (In queue...)
dm01db01_diag_2015_07_07T11_00_00_1 (In queue...)
Use 'list diagPack' to check its status.

Related Topics

- About Automatic Diagnostic Repository
- LIST ALERTHISTORY
- LIST DIAGPACK
- Using the ExaCLI Utility

8.7.2.3 CREATE ROLE

Purpose

The CREATE ROLE command creates a role for a user accessing a database server.

Syntax

CREATE ROLE role_name1 [, role_name2, ...]

Usage Notes

The role name should be unique.

Examples

Example 8-30 shows how to create a role.

```
Example 8-30  Creating a Role

DBMCLI> CREATE ROLE dbmonitor
```

8.7.2.4 CREATE THRESHOLD

Purpose

The CREATE THRESHOLD command creates a threshold object that specifies the conditions for generation of a metric alert.

Syntax

CREATE THRESHOLD name attributename=value [, attributename=value]...
Usage Notes

The attributes that can be specified are comparison, critical, occurrences, observation, and warning.

- The name argument is required. The name is comprised of a metric name and an object name with the format metricName.objectName, such as db_io_rq_sm_sec.db123 or ct_io wt_rq.interactive. Use the LIST METRICCURRENT metric command to display the available object name for metric. The object name is optional.

- When a object name is not specified, then the threshold is applied to all metric objects for the given metric.

- The comparison attribute is required with a condition value. The value must be '<', '<=', '>=', '>', or '>'.

- The occurrences attribute specifies the number of consecutive measurements over the threshold value that trigger a state change.

 When specifying occurrences and observations, you need the specified number of consecutive occurrences of sample averages over the number of observations to cause an alert. For example, if the following five observations (observations=5) happen on a database server, then the average sample would be 10 because the number of consecutive occurrences (occurrences=2) had values of 5 and 15.

 Observation 1: 0
 Observation 2: 30
 Observation 3: 0
 Observation 4: 5
 Observation 5: 15

- The observation attribute is the number of measurements over which measured values are averaged.

- A state change to the value set in warning or critical causes a stateful alert to be generated.

Example 8-31 Creating a Threshold

This example shows how to create a threshold.

DBMCLI> CREATE THRESHOLD temp comparison='>', critical=30

See Also:

- Oracle Exadata System Software User’s Guide for information about metrics
- “LIST ALERTDEFINITION” for information about metrics and thresholds
8.7.2.5 CREATE USER

Purpose

The CREATE USER command creates a user.

Syntax

CREATE USER name PASSWORD = *

Usage Notes

- The user name should be unique.
- The username cannot be root, dbadmin or dbmonitor. Those are reserved.
- The system prompts for a password for the new user. The password must have 12 to 40 alphanumeric characters or special characters !@#$%^&*() with at least one digit, one lowercase letter, and one uppercase letter. Starting with Oracle Exadata System Software release 18.1.0.0.0, the password can be 8 to 40 characters in length and can also utilize the special characters - and _.
- The new password cannot be the same as the current password for the user.

Example 8-32 Creating a User

DBMCLI> CREATE USER jdoe PASSWORD = *
password:
Confirm password: password
User jdoe successfully created.

8.7.3 DESCRIBE

Purpose

The DESCRIBE command displays a list of attributes for the object type that is provided as an argument. The tag modifiable indicates whether an attribute can be modified using the ALTER command.

Syntax

DESCRIBE object_type

Usage Notes

- The object_type is one of the supported object types.
- The list of attributes can be used as arguments in the LIST command.
- DESCRIBE does not display all of the attributes for the objects.
- DESCRIBE ALERTDEFINITION
- DESCRIBE ALERTHISTORY
- DESCRIBE DBSERVER
- DESCRIBE IBPORT
Purpose

The `DESCRIBE ALERTDEFINITION` command displays a list of attributes for the `ALERTDEFINITION` object type.

Syntax

```
DESCRIBE ALERTDEFINITION
```

Usage Notes

Table 8-2 lists the attributes for the `DESCRIBE ALERTDEFINITION` command.

Table 8-2 DESCRIBE ALERTDEFINITION Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alertShortName</td>
<td>Abbreviated name for the alert. If the alert is based on a metric, then the short name is the same as the corresponding metric name attribute.</td>
</tr>
<tr>
<td>alertSource</td>
<td>Source of the alert, such as BMC or ADR.</td>
</tr>
</tbody>
</table>
| alertType | Type of the alert. Values are stateful or stateless.
| | • Stateful alerts are automatically cleared on transition to normal.
| | • Stateless alerts are never cleared. You can change the alert by setting the `examinedBy` attribute. |
| description | Description for the alert. |
| metricName | Metric name if the alert is based on a metric. |
| name | Identifier for the alert. |

Examples

Example 8-33 shows the `DESCRIBE` command with the `ALERTDEFINITION` object.
Example 8-33 Describing the ALERTDEFINITION Object

DBMCLI> DESCRIBE ALERTDEFINITION

name
alertShortName
alertSource
alertType
description
metricName

8.7.3.2 DESCRIBE ALERTHISTORY

Purpose
The DESCRIBE ALERTHISTORY command displays a list of attributes for the ALERTHISTORY object type.

Syntax
DESCRIBE ALERTHISTORY

Usage Notes
The following table lists the attributes for the DESCRIBE ALERTHISTORY command.

Table 8-3 DESCRIBE ALERTHISTORY Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alertAction</td>
<td>Recommended action to perform for this alert.</td>
</tr>
<tr>
<td>alertMessage</td>
<td>Brief explanation of the alert.</td>
</tr>
<tr>
<td>alertSequenceID</td>
<td>Unique sequence ID for the alert. When an alert changes its state, such as warning to critical or critical to clear, another occurrence of the alert is created with the same sequence number and a time stamp of the transition.</td>
</tr>
<tr>
<td>alertShortName</td>
<td>Abbreviated name for the alert. If the alert is based on a metric, then the short name is the same as the corresponding metric name attribute.</td>
</tr>
<tr>
<td>alertType</td>
<td>Type of the alert. Values are stateful or stateless.</td>
</tr>
<tr>
<td></td>
<td>• Stateful alerts are automatically cleared on transition to normal.</td>
</tr>
<tr>
<td></td>
<td>• Stateless alerts are never cleared. You can change the alert by setting the examinedBy attribute.</td>
</tr>
<tr>
<td>beginTime</td>
<td>Time stamp when an alert changes its state.</td>
</tr>
<tr>
<td>endTime</td>
<td>Time stamp for the end of the period when an alert changes its state.</td>
</tr>
<tr>
<td>examinedBy</td>
<td>Administrator who reviewed the alert.</td>
</tr>
<tr>
<td>failedMail</td>
<td>Intended e-mail recipient when a notification failed.</td>
</tr>
<tr>
<td>failedSNMP</td>
<td>Intended SNMP subscriber when a notification failed.</td>
</tr>
<tr>
<td>metricObjectName</td>
<td>Object, such as database server disk for which a metric threshold has caused an alert.</td>
</tr>
<tr>
<td>metricValue</td>
<td>Value of the metric that caused the alert.</td>
</tr>
</tbody>
</table>
Table 8-3 (Cont.) DESCRIBE ALERTHISTORY Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Unique identifier for the alert.</td>
</tr>
<tr>
<td>notificationState</td>
<td>Number indicating progress in notifying subscribers to alert messages:</td>
</tr>
<tr>
<td></td>
<td>• 0: never tried</td>
</tr>
<tr>
<td></td>
<td>• 1: sent successfully</td>
</tr>
<tr>
<td></td>
<td>• 2: retrying, up to 5 times</td>
</tr>
<tr>
<td></td>
<td>• 3: 5 failed retries</td>
</tr>
<tr>
<td>sequenceBeginTime</td>
<td>Time stamp when an alert sequence ID is first created.</td>
</tr>
<tr>
<td>severity</td>
<td>Severity level. Values are clear, info, warning, or critical.</td>
</tr>
</tbody>
</table>

Examples

Example 8-34 shows the DESCRIBE command with the ALERTHISTORY object.

Example 8-34 Describing the ALERTHISTORY Object

```
DBMCLI> DESCRIBE ALERTHISTORY
```

```
name
alertAction
alertMessage
alertSequenceID
alertShortName
alertType
beginTime
endTime
examinedBy
failedMail
failedSNMP
metricObjectName
metricValue
notificationState
sequenceBeginTime
severity
```

Related Topics

- DESCRIBE METRICDEFINITION

8.7.3.3 DESCRIBE DBSERVER

Purpose

The DESCRIBE DBSERVER command displays a list of attributes for the DBSERVER object type.
Syntax

DESCRIBE DBSERVER

Usage Notes

The following table lists the attributes for the DESCRIBE DBSERVER command.

Table 8-4 DESCRIBE DBSERVER Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accountLockInDays</td>
<td>Number of days after a password expires before a user account is locked.</td>
</tr>
<tr>
<td>bbuStatus</td>
<td>Status of hard disk controller battery-backed unit (BBU).</td>
</tr>
<tr>
<td>comment</td>
<td>User-supplied text string.</td>
</tr>
<tr>
<td>cpuCount</td>
<td>Number of CPUs on the database server.</td>
</tr>
<tr>
<td>diagHistoryDays</td>
<td>Number of days ADR files are retained. The default is 7 days.</td>
</tr>
<tr>
<td>diagPackEmailAttach</td>
<td>Whether a diagpack is included as an attachment in the alert email or not. The default is true.</td>
</tr>
<tr>
<td>diagPackUploadEnabled</td>
<td>Whether the auto diagpack upload feature is enabled or not. The default is true.</td>
</tr>
<tr>
<td>emailFormat</td>
<td>File format for e-mail messages. The value can be HTML or text.</td>
</tr>
<tr>
<td>fanCount</td>
<td>Count of working fans and total fans, displayed as working/total.</td>
</tr>
<tr>
<td>fanStatus</td>
<td>Status of the fan. The value can be normal, warning, or critical.</td>
</tr>
<tr>
<td>httpsAccess</td>
<td>Control list of IP addresses for HTTPs port access to the Exadata RESTful Service</td>
</tr>
<tr>
<td>id</td>
<td>Global unique identifier (GUID) supplied by the hardware vendor.</td>
</tr>
<tr>
<td>interconnect1-4</td>
<td>Interconnect 1 to 4 for the database server. For example: bondeth0.</td>
</tr>
<tr>
<td>interconnectCount</td>
<td>Number of network interconnects.</td>
</tr>
<tr>
<td>ipaddress1-4</td>
<td>IP address 1 to 4 for the database server.</td>
</tr>
<tr>
<td>kernelVersion</td>
<td>Version of the host kernel software.</td>
</tr>
<tr>
<td>location</td>
<td>Physical location of the cell hardware supplied by the user.</td>
</tr>
<tr>
<td>locatorLEDStatus</td>
<td>Status of cell LOCATE LED. The value can be on or off.</td>
</tr>
<tr>
<td>makeModel</td>
<td>Make and model of the cell hardware supplied by the vendor.</td>
</tr>
</tbody>
</table>
Table 8-4 (Cont.) DESCRIBE DBSERVER Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>metricCollection</td>
<td>Indicator for whether Management Server performs metric collection. Values are TRUE or FALSE. If set to FALSE, then all collection and alert mining is stopped. The default setting is TRUE.</td>
</tr>
<tr>
<td>metricHistoryDays</td>
<td>Number of days metric history files are retained. The default is 7 days.</td>
</tr>
<tr>
<td>msVersion</td>
<td>Version of the management server.</td>
</tr>
<tr>
<td>name</td>
<td>Name of the database server.</td>
</tr>
<tr>
<td>notificationMethod</td>
<td>Notification method for alerts. The value should be mail, snmp, none, or both mail and snmp.</td>
</tr>
<tr>
<td>notificationPolicy</td>
<td>Indicator for severity alerts to be sent to subscribers. The value for notificationPolicy should be none or any combination of critical, warning, and clear.</td>
</tr>
<tr>
<td>powerCount</td>
<td>Count of power supplies, displayed as working/total.</td>
</tr>
<tr>
<td>powerStatus</td>
<td>Status of the power. The value can be normal, warning, or critical.</td>
</tr>
<tr>
<td>pwdExpInDays</td>
<td>The number of days before a user's password expires.</td>
</tr>
<tr>
<td>pwdExpWarnInDays</td>
<td>The number of days before a user's password expires that a warning message is issued during login attempts.</td>
</tr>
<tr>
<td>releaseImageStatus</td>
<td>Indicator for knowing whether imaging is successful or not.</td>
</tr>
<tr>
<td>releaseTrackingBug</td>
<td>Patch number for the cell software, such as 11223344.</td>
</tr>
<tr>
<td>releaseVersion</td>
<td>Release number for the cell software, such as 11.2.2.3.0.</td>
</tr>
<tr>
<td>remotePwdChangeAllowed</td>
<td>Whether or not a user password can be changed remotely through REST services.</td>
</tr>
<tr>
<td>rescuePlan</td>
<td>A list of commands that you can run after a server rescue to restore settings, such as thresholds and notifications, to the last known values.</td>
</tr>
<tr>
<td>smtpFrom</td>
<td>SMTP e-mail user name that appears in alert notifications.</td>
</tr>
<tr>
<td>smtpFromAddr</td>
<td>SMTP e-mail address from which alert notifications are sent.</td>
</tr>
<tr>
<td>smtpPort</td>
<td>SMTP e-mail server port used to send alert notifications.</td>
</tr>
<tr>
<td>smtpPwd</td>
<td>Password of the SMTP e-mail user that sends alert notifications.</td>
</tr>
</tbody>
</table>
Table 8-4 (Cont.) DESCRIBE DBSERVER Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>smtpServer</td>
<td>SMTP e-mail server used to send alert notifications.</td>
</tr>
<tr>
<td>smtpSubscriber</td>
<td>List of hosts that subscribe to the SNMP alert notifications.</td>
</tr>
<tr>
<td>smtpToAddr</td>
<td>Address to which e-mail is sent. It can be a comma-delimited list in quotation marks to allow multiple subscribers to alerts.</td>
</tr>
<tr>
<td>smtpUser</td>
<td>SMTP e-mail user name that is displayed in alert notifications.</td>
</tr>
<tr>
<td>smtpUseSSL</td>
<td>Specification to use Secure Socket Layer (SSL) authentication.</td>
</tr>
<tr>
<td>status</td>
<td>Status of the database server.</td>
</tr>
<tr>
<td>syslogConf</td>
<td>Rules for the system logging utility syslogd.</td>
</tr>
<tr>
<td>temperatureReading</td>
<td>Current temperature (Celsius) of the cell obtained from the BMC.</td>
</tr>
<tr>
<td>temperatureStatus</td>
<td>Status of the temperature. The value can be normal, warning, or critical.</td>
</tr>
<tr>
<td>traceLevel</td>
<td>Level for which trace messages are written. This can be a valid Java logging level (SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST) or a valid Oracle Diagnostic Logging (ODL) logging level (INCIDENT_ERROR:1, ERROR:1, WARNING:1, NOTIFICATION:1, NOTIFICATION:16, TRACE:1, TRACE:16, TRACE:32). The default is FINE.</td>
</tr>
<tr>
<td>upTime</td>
<td>Time (days, hours:minutes) since the system was restarted.</td>
</tr>
</tbody>
</table>

Examples

Example 8-35 Describing the DBSERVER Object

DBMCLI> DESCRIBE DBSERVER

name modifiable
bbuStatus modifiable
comment modifiable
coreCount modifiable
cpuCount modifiable
diagHistoryDays modifiable
diagPackEmailAttach modifiable
diagPackUploadEnabled modifiable
eMailFormat modifiable
eMailSubscriber modifiable
fanCount modifiable
fanStatus modifiable
httpsAccess modifiable
iaasIdleInUse modifiable
iaasMode modifiable
iaasReason modifiable
id
interconnectCount modifiable
interconnect1 modifiable
interconnect2 modifiable
interconnect3 modifiable
interconnect4 modifiable
interconnect5 modifiable
interconnect6 modifiable
interconnect7 modifiable
interconnect8 modifiable
ipaddress1
ipaddress2
ipaddress3
ipaddress4
ipaddress5
ipaddress6
ipaddress7
ipaddress8
kernelVersion
locatorLEDStatus
location modifiable
makeModel
metricCollection modifiable
metricHistoryDays modifiable
msVersion
notificationMethod modifiable
notificationPolicy modifiable
pendingCoreCount modifiable
powerCount
powerStatus
releaseImageStatus
releaseVersion
releaseTrackingBug
securityCert modifiable
smtpFrom
smtpFromAddr modifiable
smtpPort
smtpPwd
smtpServer modifiable
smtpToAddr modifiable
smtpUser
smtpUseSSL modifiable
snmpSubscriber modifiable
snmpUser modifiable
status
syslogConf modifiable
temperatureReading
temperatureStatus
traceLevel modifiable
upTime
8.7.3.4 DESCRIBE IBPORT

Purpose

The DESCRIBE IBPORT command displays a list of attributes for the IBPORT object type.

Note:

This command does not work on Oracle Exadata Database Machine X8M servers.

Syntax

DESCRIBE IBPORT

Usage Notes

Table 8-5 DESCRIBE IBPORT Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>activeSlave</td>
<td>Indicator whether the port is currently the active port for the bonded IP.</td>
</tr>
<tr>
<td>dataRate</td>
<td>The data rate of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>hcaFWVersion</td>
<td>The version of the host channel adapter firmware.</td>
</tr>
<tr>
<td>id</td>
<td>The Global unique identifier (GUID) of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>lid</td>
<td>The local identifier of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port. It is unique within the subnet, and the 16-bit identifiers are used within a network by switches for routing.</td>
</tr>
<tr>
<td>linkDowned</td>
<td>The number of times the port training state machine has failed the link error recovery process, and halted the link.</td>
</tr>
<tr>
<td>linkIntegrityErrs</td>
<td>The number of link integrity errors.</td>
</tr>
<tr>
<td>linkRecovers</td>
<td>The number of times the port training state machine has successfully completed the link error recovery process.</td>
</tr>
<tr>
<td>name</td>
<td>The name of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>physLinkState</td>
<td>The physical link state.</td>
</tr>
<tr>
<td>portNumber</td>
<td>The port number of the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
</tbody>
</table>
Table 8-5 (Cont.) DESCRIBE IBPORT Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcvConstraintErrs</td>
<td>The number of received constraint errors experienced by the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>rcvData</td>
<td>The number of 32-bit data words received by the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>rcvErrs</td>
<td>The number of packets received at the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port containing an error.</td>
</tr>
<tr>
<td>rcvRemotePhysErrs</td>
<td>The number of physical errors experienced at the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>status</td>
<td>The link status.</td>
</tr>
<tr>
<td>symbolErrs</td>
<td>The number of minor link errors experienced at the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>vl15Dropped</td>
<td>The number of incoming VL15 packets dropped at the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port due to resource limitations, such as lack of buffers.</td>
</tr>
<tr>
<td>xmtConstraintErrs</td>
<td>The number of transmitted constraint errors experienced at the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>xmtData</td>
<td>The number of 32-bit data words transmitted on the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port.</td>
</tr>
<tr>
<td>xmtDiscards</td>
<td>The number of outbound packets discarded by the InfiniBand Transport Layer systems based on an InfiniBand Network Layer port because the port was down or congested.</td>
</tr>
</tbody>
</table>

Example 8-36 Describing the IBPORT Object

This example shows the possible output for the DESCRIBE IBPORT command.

```
DBMCLI> DESCRIBE IBPORT

name
activeSlave
dataRate
hcaFWVersion
id
iid
linkDowned
linkIntegrityErrs
linkRecovers
physLinkState
portNumber
rcvConstraintErrs
```
8.7.3.5 DESCRIBE LUN

Purpose
The DESCRIBE LUN command displays a list of attributes for the LUN object type.

Syntax
DESCRIBE LUN

Usage Notes

Table 8-6 DESCRIBE LUN Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviceName</td>
<td>Operating system device name for the LUN. For example, /dev/c1d5</td>
</tr>
<tr>
<td>diskType</td>
<td>The type of disk.</td>
</tr>
<tr>
<td>errorCount</td>
<td>Number of errors on this LUN.</td>
</tr>
<tr>
<td>id</td>
<td>Identifier assigned by the system.</td>
</tr>
<tr>
<td>lunSize</td>
<td>Raw size of the LUN before being converted to a database server disk.</td>
</tr>
<tr>
<td>lunUID</td>
<td>Unique identifier assigned by the system.</td>
</tr>
<tr>
<td>name</td>
<td>Unique name assigned to the LUN. This might be different (or extended from) the LUN ID if the ID is not unique.</td>
</tr>
<tr>
<td>overProvisioning</td>
<td>Indicator of the percentage of over-provisioned blocks in flash storage that are still available for a particular LUN. This attribute is only used for flash disks.</td>
</tr>
<tr>
<td>raidLevel</td>
<td>Value of the RAID level that is used on the LUN. For example: RAID 0.</td>
</tr>
<tr>
<td>status</td>
<td>Status of the LUN, which can be normal, warning, or critical.</td>
</tr>
</tbody>
</table>

Example 8-37 Describing the LUN Object
This example shows the DESCRIBE command with the LUN object.

 DBMCLI> DESCRIBE LUN
 name
8.7.3.6 DESCRIBE METRICCURRENT

Purpose

The DESCRIBE METRICCURRENT command displays a list of attributes for the METRICCURRENT object type.

Syntax

DESCRIBE METRICCURRENT

Usage Notes

Table 8-7 DESCRIBE METRICCURRENT Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alertState</td>
<td>Indicator of the alert state. Values are normal, warning, or critical.</td>
</tr>
<tr>
<td>collectionTime</td>
<td>Time stamp when the metric value was collected.</td>
</tr>
<tr>
<td>metricObjectName</td>
<td>Name of the object, such as database server being measured.</td>
</tr>
<tr>
<td>metricType</td>
<td>Specification for how the statistic was created or defined.</td>
</tr>
<tr>
<td>metricValue</td>
<td>Value of the metric when it was collected.</td>
</tr>
<tr>
<td>name</td>
<td>Unique name of the current metric.</td>
</tr>
<tr>
<td>objectType</td>
<td>Options are DBSERVER, DBSERVER_FILESYSTEM, and IBPORT.</td>
</tr>
</tbody>
</table>

Example 8-38 Describing the METRICCURRENT Object

This example shows the DESCRIBE command with the METRICCURRENT object.

```
DBMCLI> DESCRIBE METRICCURRENT
    name
    alertState
    collectionTime
    metricObjectName
    metricType
    metricValue
    objectType
```
Related Topics

- DESCRIBE METRICDEFINITION

8.7.3.7 DESCRIBE METRICDEFINITION

Purpose

The DESCRIBE METRICDEFINITION command displays a list of attributes for the METRICDEFINITION object type.

Syntax

DESCRIBE METRICDEFINITION

Usage Notes

Table 8-8 lists the attributes for the DESCRIBE METRICDEFINITION command.

Table 8-8 DESCRIBE METRICDEFINITION Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>Description of the metric.</td>
</tr>
<tr>
<td>metricType</td>
<td>Indicator of how the statistic was created or defined. The options are as</td>
</tr>
<tr>
<td></td>
<td>follows:</td>
</tr>
<tr>
<td></td>
<td>cumulative: Cumulative statistics since the metric was created.</td>
</tr>
<tr>
<td></td>
<td>instantaneous: Value at the time that the metric is collected.</td>
</tr>
<tr>
<td></td>
<td>rate: Rates computed by averaging statistics over observation periods.</td>
</tr>
<tr>
<td></td>
<td>transition: Transition metrics are collected at the time their value</td>
</tr>
<tr>
<td></td>
<td>has changed and typically capture important transitions in hardware</td>
</tr>
<tr>
<td></td>
<td>status.</td>
</tr>
<tr>
<td>name</td>
<td>Unique name of the metric definition. The value of the name attribute is</td>
</tr>
<tr>
<td></td>
<td>a composite of abbreviations. The attribute value starts with an</td>
</tr>
<tr>
<td></td>
<td>abbreviation of the object type on which the metric is defined:</td>
</tr>
<tr>
<td></td>
<td>DS_ (database server)</td>
</tr>
<tr>
<td></td>
<td>N_ (network)</td>
</tr>
<tr>
<td>objectType</td>
<td>Options are DBSERVER, DBSERVER_FILESYSTEM, and IBPORT.</td>
</tr>
<tr>
<td>persistencePolicy</td>
<td>Amount of time metric values are stored.</td>
</tr>
<tr>
<td>unit</td>
<td>Unit for the metric explicitly, and is related to the metric collected:</td>
</tr>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>% (percentage)</td>
</tr>
<tr>
<td></td>
<td>F (Fahrenheit)</td>
</tr>
<tr>
<td></td>
<td>C (Celsius)</td>
</tr>
</tbody>
</table>
Example 8-39 Describing the METRICDEFINITION Object

This example shows the DESCRIBE command with the METRICDEFINITION object.

DBMCLI> DESCRIBE METRICDEFINITION

name
description
metricType
objectType
persistencePolicy
unit

8.7.3.8 DESCRIBE METRICHISTORY

Purpose

The DESCRIBE METRICHISTORY command displays a list of attributes for the METRICHISTORY object type.

Syntax

DESCRIBE METRICHISTORY

Usage Notes

Table 8-9 lists the attributes for the DESCRIBE METRICHISTORY command.

Table 8-9 DESCRIBE METRICHISTORY Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alertState</td>
<td>Indicator of the alert state. Values are normal, warning, or critical.</td>
</tr>
<tr>
<td>collectionTime</td>
<td>Time stamp when the metric value was collected.</td>
</tr>
<tr>
<td>memory</td>
<td>The metrics in Management Server memory. This attribute can be used instead of the collectionTime attribute when the collection time is less than an hour.</td>
</tr>
<tr>
<td>metricObjectName</td>
<td>Name of the object, such as database server disk being measured.</td>
</tr>
<tr>
<td>metricType</td>
<td>Specification for how the statistic was created or defined.</td>
</tr>
<tr>
<td>metricValue</td>
<td>Value of the metric when it was collected.</td>
</tr>
<tr>
<td>metricValueAvg</td>
<td>Average value of the metric.</td>
</tr>
<tr>
<td>metricValueMax</td>
<td>Maximum value of the metric.</td>
</tr>
<tr>
<td>metricValueMin</td>
<td>Minimum value of the metric.</td>
</tr>
<tr>
<td>name</td>
<td>Unique name of the current metric.</td>
</tr>
<tr>
<td>objectType</td>
<td>Options are DBSERVER, DBSERVER_FILESYSTEM, and IBPORT.</td>
</tr>
<tr>
<td>over</td>
<td>Specification for amount of time in minutes for the aggregation. This attribute works in conjunction with the max, min and avg keywords.</td>
</tr>
</tbody>
</table>
Example 8-40 Describing the METRICHISTORY Object

This example shows the DESCRIBE command with the METRICHISTORY object.

DBMCLI> DESCRIBE METRICHISTORY

name
alertState
collectionTime
memory
metricObjectName
metricType
metricValue
metricValueAvg
metricValueMax
metricValueMin
objectType
over

8.7.3.9 DESCRIBE PHYSICALDISK

Purpose

The DESCRIBE PHYSICALDISK command displays a list of attributes for the PHYSICALDISK object type.

Syntax

DESCRIBE PHYSICALDISK

Usage Notes

The following table lists the attributes for the DESCRIBE PHYSICALDISK command.

Table 8-10 DESCRIBE PHYSICALDISK Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctrlHwVersion</td>
<td>Controller version. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>diskType</td>
<td>Type of the disk, whether it is a HARDDISK or a FLASHDISK.</td>
</tr>
<tr>
<td>enclosureDeviceId</td>
<td>Identifier for the hard disk enclosure. This attribute is only applicable to Oracle Exadata System Software on Oracle Exadata Storage Server.</td>
</tr>
<tr>
<td>errCmdTimeoutCount</td>
<td>Count of the number of command timeout SCSI errors on the disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>errHardReadCount</td>
<td>Count of the number of hard read errors on the disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>errHardWriteCount</td>
<td>Count of the number of hard write errors on the disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
</tbody>
</table>
Table 8-10 (Cont.) DESCRIBE PHYSICALDISK Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errMediaCount</td>
<td>Count of the number of media errors on the hard disk. This attribute is only applicable to Oracle Exadata System Software on Oracle Exadata Storage Server.</td>
</tr>
<tr>
<td>errOtherCount</td>
<td>Count of unclassified errors on the hard disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>errSeekCount</td>
<td>Count of the number of SCSI seek errors on the disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>hotPlugCount</td>
<td>Count of the times the disk has been inserted into the rack. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>lastFailureReason</td>
<td>Type of the most-recent error on the disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>luns</td>
<td>List of LUNs converted from this disk.</td>
</tr>
<tr>
<td>makeModel</td>
<td>Model description provided by the system.</td>
</tr>
<tr>
<td>name</td>
<td>Unique name of the physical disk.</td>
</tr>
<tr>
<td>physicalFirmware</td>
<td>System-assigned name of the firmware for the disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>physicalInsertTime</td>
<td>Time that the disk was inserted.</td>
</tr>
<tr>
<td>physicalInterface</td>
<td>Interface type used by the hard disk. For example, SAS</td>
</tr>
<tr>
<td>physicalPort</td>
<td>Port on the controller for this disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>physicalRPM</td>
<td>Disk revolutions per minute. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>physicalSerial</td>
<td>System-assigned unique ID.</td>
</tr>
<tr>
<td>physicalSize</td>
<td>Size of the disk in bytes.</td>
</tr>
<tr>
<td>physicalUseType</td>
<td>Intended use of the disk. For example, Data Drive.</td>
</tr>
<tr>
<td>sectorRemapCount</td>
<td>Count of all sector remap operations for the physical disk. This attribute is only applicable to Oracle Exadata System Software on HP Oracle Database Machine.</td>
</tr>
<tr>
<td>slotNumber</td>
<td>Physical location of disk.</td>
</tr>
</tbody>
</table>

Table 8-10 (Cont.) DESCRIBE PHYSICALDISK Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Status of the physical disk. Values can be as follows:</td>
</tr>
<tr>
<td></td>
<td>• failed: disk has failed. In earlier releases, this status was called</td>
</tr>
<tr>
<td></td>
<td>critical.</td>
</tr>
<tr>
<td></td>
<td>• normal: disk is functioning normally</td>
</tr>
<tr>
<td></td>
<td>• not present: disk has been removed</td>
</tr>
<tr>
<td></td>
<td>• peer failure: flash disk failure only</td>
</tr>
<tr>
<td></td>
<td>• poor performance: disk is performing poorly</td>
</tr>
<tr>
<td></td>
<td>• predictive failure: disk is expected to fail</td>
</tr>
<tr>
<td></td>
<td>• write-through caching: flash disk caching only.</td>
</tr>
</tbody>
</table>

Example 8-41 Describing the PHYSICALDISK Object on a Hard Drive in a Database Server

This example shows the DESCRIBE command with the PHYSICALDISK object on Oracle Exadata Storage Server.

DBMCLI> DESCRIBE PHYSICALDISK

name
ctrlFirmware
diskType
enclosureDeviceId
errMediaCount
errOtherCount
luns
makeModel
physicalFirmware
physicalInsertTime
physicalInterface
physicalSerial
physicalSize
slotNumber
status

8.7.3.10 DESCRIBE ROLE

Purpose

The DESCRIBE ROLE command displays a list of attributes for the ROLE object type.

Syntax

DESCRIBE ROLE
Usage Notes

Table 8-11 DESCRIBE ROLE Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Unique name of the user assigned the role.</td>
</tr>
<tr>
<td>privileges</td>
<td>Privileges granted to the role.</td>
</tr>
</tbody>
</table>

Examples

Example 8-42 Describing the ROLE Object

This example shows the DESCRIBE command with the ROLE object.

```
DBMCLI> DESCRIBE ROLE
   name
   privileges
```

8.7.3.11 DESCRIBE THRESHOLD

Purpose

The DESCRIBE THRESHOLD command displays a list of attributes for the THRESHOLD object type.

Syntax

DESCRIBE THRESHOLD

Usage Notes

Table 8-12 lists the attributes for the DESCRIBE THRESHOLD command.

Table 8-12 DESCRIBE THRESHOLD Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>comparison</td>
<td>Operator for comparing the metric value to the threshold value (>, >=, =, <, <=) to determine whether the value violates the threshold.</td>
</tr>
<tr>
<td>critical</td>
<td>Limit beyond which the metric value is considered to be in the critical state for generating alerts.</td>
</tr>
<tr>
<td>name</td>
<td>Unique name of the threshold.</td>
</tr>
<tr>
<td>observation</td>
<td>Number of measurements over which the rate metric is averaged before being compared with the threshold value.</td>
</tr>
<tr>
<td>occurrences</td>
<td>Number of consecutive violations of the threshold limit by the metric value before the appropriate alert is issued.</td>
</tr>
<tr>
<td>warning</td>
<td>Limit beyond which the metric value is considered to be in the warning state for generating alerts.</td>
</tr>
</tbody>
</table>
Example 8-43 Describing the THRESHOLD Object

This example shows the DESCRIBE command with the THRESHOLD object.

```
DBMCLI> DESCRIBE THRESHOLD

name
comparison          modifiable
critical            modifiable
observation         modifiable
occurrences          modifiable
warning              modifiable
```

8.7.3.12 DESCRIBE USER

Purpose

The DESCRIBE USER command displays a list of attributes for the USER object type.

Syntax

DESCRIBE USER

Usage Notes

The following table lists the attributes for the DESCRIBE USER command.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Unique name of the user.</td>
</tr>
<tr>
<td>roles</td>
<td>Roles assigned to the user.</td>
</tr>
</tbody>
</table>

Example 8-44 Describing the USER Object

This example shows the DESCRIBE command with the USER object.

```
DBMCLI> DESCRIBE USER

name
roles
```

8.7.4 DROP

Purpose

The DROP command removes the named objects from the database server or resets a database server.
Syntax

DROP object_type [object_name [, object_name]...] [options]

Usage Notes

• object_type can be one of the following:
 – ALERTHISTORY
 – DBSERVER
 – ROLE
 – THRESHOLD
 – USER
• object_name is the name of a database server disk, role, threshold, or user.
• When multiple objects are the target of a DROP command, there is the possibility of partial success. If an error occurs, then the command is interrupted, and the remaining objects are not dropped.

• DROP ALERTHISTORY
• DROP DBSERVER
• DROP ROLE
• DROP THRESHOLD
• DROP USER

Related Topics

• About DBMCLI Object Types

8.7.4.1 DROP ALERTHISTORY

Purpose

The DROP ALERTHISTORY command removes alerts from the alert history of a database server.

Syntax

DROP ALERTHISTORY {ALL | alert1 [, alert2], ...}

Usage Notes

• In the command, alertN is the name of the alert to be dropped from the history.
• When dropping stateful alerts, you must drop all members of the alert sequence at the same time. If you do not drop all members, then an error is issued by the system.

Example 8-45 Dropping a Database Server Alert History

DBMCLI> DROP ALERTHISTORY 1, 2_1, 2_2
8.7.4.2 DROP DBSERVER

Purpose
The DROP DBSERVER command resets MS on the database server to its original state.

Syntax
DROP DBSERVER

Usage Notes
- Any thresholds that were set for the database server are also dropped for the database server.
- The DBSERVER attributes are set to their default values.

Example 8-46 Dropping a Database Server

DBMCLI> DROP DBSERVER

8.7.4.3 DROP ROLE

Purpose
The DROP ROLE command removes user roles from the cell.

Syntax
DROP ROLE { ALL | role_name1 [, role_name2, ...]} [FORCE]

Usage Notes
The FORCE option drops the role even if the role has been granted to a user.

Example 8-47 Dropping a Role

DBMCLI> DROP ROLE r1,r2

8.7.4.4 DROP THRESHOLD

Purpose
The DROP THRESHOLD command removes all or the specified thresholds from the database server.

Syntax
DROP THRESHOLD { ALL | threshold_name [, threshold_name ...] }

8-58
Example 8-48 Dropping Thresholds

DBMCLI> DROP THRESHOLD temp

8.7.4.5 DROP USER

Purpose
The DROP USER command removes a user from a database server.

Syntax
DROP USER { ALL | user1 [, user2]... }

Usage Notes
• user(n) is the name of a user to drop.

Example 8-49 Dropping a User

DBMCLI> DROP USER jdoe

8.7.5 GRANT

Purpose
The GRANT command sets attributes for privileges and roles.

Syntax
GRANT object_type [name] TO sub_object_type [sub_object_name]

Usage Notes
• object_type can be as follows:
 – PRIVILEGE
 – ROLE
• The following can be used for PRIVILEGE object type:
 – name is in the following format:

 { ALL ACTIONS | action } ON { ALL OBJECTS | object } \[
 {[ALL ATTRIBUTES | ATTRIBUTES attribute1 [, attribute2, ...]]} \[
 {[WITH ALL OPTIONS | WITH OPTIONS option1 [, option2, ...]]}

 – The sub_object_type must be ROLE.
 – The sub_object_name is the name of the role.
• The following can be used for the ROLE object type:
 – name is the role name.
The `sub_object_type` must be `USER`.

The `sub_object_name` is the name of the user.

- **GRANT PRIVILEGE**
- **GRANT ROLE**

8.7.5.1 GRANT PRIVILEGE

Purpose

The `GRANT PRIVILEGE` command sets the access privileges for a role.

Syntax

```
GRANT PRIVILEGE { ALL ACTIONS | action } ON { ALL OBJECTS | object } \
{ ALL ATTRIBUTES | ATTRIBUTES attribute1 [, attribute2, ...] } \
{ WITH ALL OPTIONS | WITH OPTIONS option1 [, option2, ...] } \
TO ROLE { ALL | role1 [, role2, ...] }
```

Usage Notes

- **action** is the command. Examples: `alter`, `create`, `describe`, `drop`, `export`, `import`, `list`.

 Notes:
 - The `grant` and `revoke` commands cannot be granted.
 - `create user` and `drop user` cannot be granted.
 - `create role` and `drop role` cannot be granted.

- **object** is object type for the action. It can be any DBMCLI object. Examples: `dbserver`, `threshold`, `ibport`, `alerthistory`, `role`.

- **attribute** are the attributes for the object. To get a list of attributes for an object, run the `LIST object_type` command.

- **option** are the options for the object. Examples: `DETAIL`, `LIMIT`, `ORDER BY`, `WHERE`.

- **role** is the name of the role to grant privileges.

- The **ALL ACTIONS** argument grants privileges for all actions.
- The **ALL OBJECTS** argument grants privileges for all objects.
- The **ALL ATTRIBUTES** argument grants privileges for all attributes.
- The **WITH ALL OPTIONS** argument grants privileges for all options.

- Specifying attributes and **WITH OPTIONS** is optional. If they are not specified, then all attributes and options are granted with the privilege.

Examples

Example 8-50 shows how to grant privileges to a role.

Example 8-51 shows how to grant all attributes and options for a specified action and object to a role.
Example 8-52 shows how to grant all options with a specified action, object and attributes to a role.

Example 8-53 shows how to grant all attributes with a specified action, object, and options to a role.

Example 8-50 Granting Privileges to a Role

```
DBMCLI> GRANT PRIVILEGE list on alerthistory ATTRIBUTES
alertAction,alertMessage        \   
   WITH OPTIONS detail TO ROLE dbmonitor
```

Example 8-51 Granting All Attributes and Options to a Role

```
DBMCLI> GRANT PRIVILEGE { ALL ACTIONS | action } ON { ALL OBJECTS | object } to ROLE role1
```

Example 8-52 Granting All Options with Specified Action, Object and Attributes

```
DBMCLI> GRANT PRIVILEGE { ALL ACTIONS | action } ON { ALL OBJECTS | object } \   
   ATTRIBUTES attribute1 [, attribute2, ...] to ROLE role1
```

Example 8-53 Granting All Attributes with Specified Action, Object and Options

```
DBMCLI> GRANT PRIVILEGE { ALL ACTIONS | action } ON { ALL OBJECTS | object } \   
   WITH OPTIONS option1 [, option, ...] to ROLE role1
```

8.7.5.2 GRANT ROLE

Purpose

The **GRANT ROLE** command sets the role for a user.

Syntax

```
GRANT ROLE { ALL | role1 [, role2, ...] } TO USER { ALL | user1 [, 
user2...] }
```

Usage Notes

- **role** is the name of the role.
- The **ALL** argument grants all roles to the user.
- The **TO USER ALL** argument grants the role to all users.

Example 8-54 Granting a Role to a User

This example shows how to grant a role to a user.

```
DBMCLI> GRANT ROLE dbmonitor TO USER agarcia
```
8.7.6 HELP

Purpose

The HELP command displays syntax and usage descriptions for all DBMCLI commands.

Syntax

HELP [help_topic]

If no topic argument is provided, HELP displays the name of all available topics. If a topic is specified, then detailed help text is displayed for that topic.

Example 8-55 shows examples of the HELP command.

Example 8-55 Display Help Text with the HELP Command

DBMCLI> HELP
DBMCLI> HELP ALTER
DBMCLI> HELP DROP ALERTHISTORY

8.7.7 LIST

Purpose

The LIST command displays attributes for database server objects. Objects displayed are identified by name or by filters. The attributes displayed for each object are determined by the specified attribute list.

Syntax

LIST object_type [name | attribute_filters] [attribute_list] [DETAIL] [ORDER BY order_by_attribute_list] [LIMIT integer]

Usage Notes

• object_type can be the following:
 – ALERTDEFINITION
 – ALERTHISTORY
 – DBSERVER
 – IBPORT (not available in user domain (domU) environments)
 – LUN (not available in user domain (domU) environments)
 – METRICCURRENT
 – METRICDEFINITION
 – METRICHISTORY
 – PHYSICALDISK (not available in user domain (domU) environments)
 – ROLE
 – THRESHOLD
• Using LIST with only an object_type (without the DETAIL option or an attribute list) displays the names of the existing objects of this type and a default list of attributes.
 – For an object type that has a status attribute, the object name and the status are displayed.
 – For the METRICHISTORY object type, the collection time, the object name, and value are displayed.
 – For the PHYSICALDISK and LUN object types, the ID attribute is displayed.
 – For the ALERTHISTORY object type, the time and alert message are displayed.
 – For the KEY object type, the key value is displayed.
• The attributes displayed for each object are determined by the specified attribute list. Attribute values that are strings with embedded blank spaces or tabs must be enclosed in quotation marks.
• Attribute filters determine the specific objects that are displayed. Because of the amount of metrics, you should use filters when using the LIST METRICCURRENT or LIST METRICHISTORY commands to narrow the output of the command.
• In the default format without the DETAIL option, each object is displayed on a separate line, with successive attribute values separated by tabs in the order of the specified list of attributes.
• In the DETAIL format, each attribute of a specific object is displayed on a separate line, with an attribute name followed by its value. If no attribute list is provided, then all attributes that have values are displayed. Blank lines separate each object in the display. DETAIL is similar to the ATTRIBUTES ALL option, only the format is different.
• Attributes that are not set are not listed with the DETAIL option. However, attributes that are set to an empty value are listed with the DETAIL option.
• ORDER BY orders the objects by attributes in ascending or descending order. The default is ascending.
• LIMIT sets a limit on the number of objects to display.
• LIST ALERTDEFINITION
• LIST ALERTHISTORY
• LIST DBSERVER
• LIST DIAGPACK
• LIST IBPORT
• LIST LUN
• LIST METRICCURRENT
• LIST METRICDEFINITION
• LIST METRICHISTORY
• LIST PHYSICALDISK
• LIST ROLE
• LIST THRESHOLD
8.7.7.1 LIST ALERTDEFINITION

Purpose
The LIST ALERTDEFINITION command displays all available sources of the alerts on the database server.

Syntax
LIST ALERTDEFINITION [name | attribute_filters] [attribute_list] [DETAIL]

Usage Notes
The list of attributes that can be displayed is shown in Example 8-33.

Examples
Example 8-56 shows the LIST command with the ALERTDEFINITION object.

Example 8-56 Listing ALERTDEFINITION Attributes
DBMCLI> LIST ALERTDEFINITION HardwareAlert DETAIL
 name: HardwareAlert
 alertShortName: Hardware
 alertSource: Hardware
 alertType: Stateless
 description: "Hardware Alert"
 metricName:

8.7.7.2 LIST ALERTHISTORY

Purpose
The LIST ALERTHISTORY command displays all alerts that occurred on the database server.

Syntax
LIST ALERTHISTORY [name | attribute_filters] [attribute_list] [DETAIL]

Usage Notes
The list of attributes that can be displayed is shown in Example 8-34.

A WHERE clause can include the ageInMinutes attribute to specify the list is limited to those alerts which have the specified age. For example, the following command would show the alerts created in the previous 15 minutes:

DBMCLI> LIST ALERTHISTORY WHERE ageInMinutes < 15
Examples

Example 8-57 shows the LIST command with the ALERTHISTORY object.

Example 8-57 Listing ALERTHISTORY Attributes

```
DBMCLI> LIST ALERTHISTORY 1_1 DETAIL
name:                   1_1
alertDescription:       "Data hard disk of size 300GB in slot 3 entered predictive failure status"
alertMessage:           "Data hard disk entered predictive failure status.
Status        : WARNING - PREDICTIVE FAILURE
Manufacturer  : HITACHI  Model
Number  : H10303SCSUN300G  Size          : 300GB
Serial Number : 1026GZKMDE
Firmware      : A2A8  Slot Number   : 3"
alertSequenceID:        1
alertShortName:         Hardware
alertType:              Stateful
beginTime:              2014-09-22T20:18:23-05:00
examinedBy:             
metricObjectName:       252:3
notificationState:      0
sequenceBeginTime:      2014-09-22T20:18:23-05:00
severity:               critical
alertAction:            "Informational. The hard disk has entered predictive failure status. A white DB server locator LED has been turned on to help locate the affected cell, and an amber service action LED has been lit on the drive to help locate the affected drive. Detailed information on this problem can be found at https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1112995.1
Automatic Service Request has been notified with Unique Identifier: c84839be-e8d8-4e5e-b315-e145ccd7cbc8."
```

8.7.7.3 LIST DBSERVER

Purpose

The **LIST DBSERVER** command displays all alerts that occurred on the database server.

Syntax

```
LIST DBSERVER [ name | attribute_filters ] [attribute_list] [DETAIL]
```

Usage Notes

The list of attributes that can be displayed is shown in **Example 8-35**.

Examples

Example 8-58 shows the output of the **LIST DBSERVER DETAIL** command.

Example 8-59 shows how to display the value of the **rescuePlan** attribute.

Example 8-60 shows how to retrieve the value of the **httpsAccess** attribute.
Example 8-58 Listing DBSERVER Attributes

DDBMCLI> LIST DBSERVER DETAIL

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>myexadb03</td>
</tr>
<tr>
<td>bbuStatus</td>
<td>normal</td>
</tr>
<tr>
<td>cpuCount</td>
<td>24</td>
</tr>
<tr>
<td>diagHistoryDays</td>
<td>7</td>
</tr>
<tr>
<td>fanCount</td>
<td>16/16</td>
</tr>
<tr>
<td>fanStatus</td>
<td>normal</td>
</tr>
<tr>
<td>httpsAccess</td>
<td>ALL</td>
</tr>
<tr>
<td>id</td>
<td>1029FMM085</td>
</tr>
<tr>
<td>interconnectCount</td>
<td>2</td>
</tr>
<tr>
<td>ipaddress1</td>
<td>192.168.10.25/22</td>
</tr>
<tr>
<td>kernelVersion</td>
<td>2.6.39-400.220.0.el6uek.x86_64</td>
</tr>
<tr>
<td>locatorLEDStatus</td>
<td>on</td>
</tr>
<tr>
<td>makeModel</td>
<td>Oracle Corporation SUN FIRE X4170 M2</td>
</tr>
<tr>
<td>metricHistoryDays</td>
<td>7</td>
</tr>
<tr>
<td>msVersion</td>
<td>OSS_MAIN_LINUX.X64_140921</td>
</tr>
<tr>
<td>powerCount</td>
<td>2/2</td>
</tr>
<tr>
<td>powerStatus</td>
<td>normal</td>
</tr>
<tr>
<td>releaseImageStatus</td>
<td>success</td>
</tr>
<tr>
<td>releaseVersion</td>
<td>12.1.2.1.0.140728</td>
</tr>
<tr>
<td>releaseTrackingBug</td>
<td>17885582</td>
</tr>
<tr>
<td>snmpSubscriber</td>
<td>host=10.133.131.130, port=162, community=public, type=asr</td>
</tr>
<tr>
<td>status</td>
<td>online</td>
</tr>
<tr>
<td>temperatureReading</td>
<td>20.0</td>
</tr>
<tr>
<td>temperatureStatus</td>
<td>normal</td>
</tr>
<tr>
<td>upTime</td>
<td>55 days, 5:12</td>
</tr>
<tr>
<td>msStatus</td>
<td>running</td>
</tr>
<tr>
<td>rsStatus</td>
<td>running</td>
</tr>
</tbody>
</table>

DDBMCLI> LIST DBSERVER ATTRIBUTES status,uptime

<table>
<thead>
<tr>
<th>Status</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>online</td>
<td>161 days, 3:11</td>
</tr>
</tbody>
</table>

Example 8-59 Displaying the rescuePlan Attribute

DDBMCLI> LIST DBSERVER ATTRIBUTES rescuePlan

CREATE ROLE "listdbserverattrs"

GRANT PRIVILEGE list ON DBSERVER ATTRIBUTES bbuStatus, coreCount WITH ALL OPTIONS TO ROLE "listdbserverattrs"

ALTER DBSERVER diagHistoryDays="7", metricHistoryDays="7", bbuLearnSchedule="MONTH 1 DATE 17 HOUR 2 MINUTE 0", alertSummaryStartTime="2016-09-26T08:00:00-07:00", alertSummaryInterval=weekly, pendingCoreCount="128" force
Example 8-60 Displaying the HTTPs Access Control List

This example shows how to view the HTTPs access control list for the Exadata RESTful service.

DBMCLI> LIST DBSERVER ATTRIBUTES httpsAccess ALL

The value of ALL is the default value and allows access to all hosts.

8.7.7.4 LIST DIAGPACK

Purpose

The LIST DIAGPACK command lists the diagnostic packages in your system, along with their status.

Syntax

LIST DIAGPACK [DETAIL]

Usage Notes

The location of the diagnostic packages is /opt/oracle/dbserver/dbms/deploy/log.

Examples

Example 8-61 Output of the LIST DIAGPACK Command

This example shows the output of the LIST DIAGPACK command.

DBMCLI> LIST DIAGPACK
dbm04adm01_2016_06_07T12_28_23_17_1.tar.bz2
dbm04adm01_2016_04_11T12_51_05_16_1.tar.bz2

Example 8-62 Output of the LIST DIAGPACK command with the DETAIL option

This example shows the output of the LIST DIAGPACK command with the DETAIL option.

DBMCLI> LIST DIAGPACK DETAIL
 name: dbm04adm01_2019_08_07T12_28_23_17_1.tar.bz2
 alertDescription: "Hard disk of size 600GB in slot 5 failed"
 alertName: 17_1
 diagPackHostName: dbm04adm01
 packStartTime: 2016-06-07T12:28:23-07:00

 name: dbm04adm01_2019_08_11T12_51_05_16_1.tar.bz2
 alertDescription: "InfiniBand Port HCA-4:1 may require attention. State:Down, Physical State:Disabled."
 alertName: 16_1
 diagPackHostName: dbm04adm01
 packStartTime: 2016-04-11T12:51:05-07:00
8.7.7.5 LIST IBPORT

Purpose

The `LIST IBPORT` command displays attributes for InfiniBand Transport Layer systems based on an InfiniBand Network Layer ports determined by the specified attributes and filters.

> **Note:**

This command does not work on Oracle Exadata Database Machine X8M servers.

Syntax

```
LIST IBPORT  [ name | attribute_filters ] [attribute_list] [DETAIL]
```

Usage Notes

The list of attributes that can be displayed is shown in Example 8-36.

If the `activeSlave` attributes for both InfiniBand Transport Layer systems based on an InfiniBand Network Layer ports on a server are not listed, then active-active bonding is being used. If an `activeSlave` attribute is `TRUE`, then active-passive bonding is being used.

Example 8-63 Listing IBPORT Attributes

This example demonstrates the output you might see from the `LIST IBPORT` command.

```
DBMCLI> LIST IBPORT
   HCA-1:1       Active
   HCA-1:2       Active

DBMCLI> LIST IBPORT DETAIL
   name:           HCA-1:1
   activeSlave:    TRUE
   dataRate:       "40 Gbps"
   hcaFWVersion:   2.7.0
   id:             0x00212800013e8c67
   lid:            20
   linkDowned:     0
   linkIntegrityErrs: 0
   linkRecovers:   0
   physLinkState:  LinkUp
```
8.7.7.6 LIST LUN

Purpose
The LIST LUN command displays attributes for LUNs determined by the specified attributes and filters.

Syntax
LIST LUN [name | attribute_filters] [attribute_list] [DETAIL]

Usage Notes
The list of attributes that can be displayed is shown in Example 8-37.

Examples
Example 8-64 shows the LIST command with the LUN object, and the corresponding output.
Example 8-64 Listing LUN Attributes

DBMCLI> LIST LUN
 0_0 0_0 normal

DBMCLI> LIST LUN 0_0 DETAIL
 name: 0_0
 diskType: HardDisk
 id: 0_0
 lunSize: 556.9289999008179G
 lunUID: 0_0
 raidLevel: 5
 lunWriteCacheMode: "WriteBack, ReadAheadNone, Direct,
 No Write Cache if Bad BBU"
 status: normal

8.7.7.7 LIST METRICCURRENT

Purpose
The LIST METRICCURRENT command displays a list of collections of all metrics.

Syntax

LIST METRICCURRENT [name | attribute_filters] [attribute_list]
[DETAIL]

Usage Notes
• The list of attributes that can be displayed is shown in Example 8-38.
• To reduce the size of the output when you run the LIST METRICCURRENT command, use filters.

Examples
Example 8-65 shows the LIST command with filters to display information about the METRICCURRENT object, and the corresponding output.

Example 8-65 Listing METRICCURRENT Attributes

DBMCLI> LIST METRICCURRENT attributes name, objecttype
 DS_BBU_CHARGE DBSERVER
 DS_BBU_TEMP DBSERVER
 DS_CPUT DBSERVER
 DS_CPUT_MS DBSERVER
 DS_FANS DBSERVER
 DS_FSUT DBSERVER_FILESYSTEM
 DS_FSUT DBSERVER_FILESYSTEM
 DS_FSUT DBSERVER_FILESYSTEM
 DS_MEMUT DBSERVER
 DS_MEMUT_MS DBSERVER
 DS_RUNQ DBSERVER
 DS_SWAP_IN_BY_SEC DBSERVER
 DS_SWAP_OUT_BY_SEC DBSERVER
DS_SWAP_USAGE DBSERVER
DS_TEMP DBSERVER
DS_VIRTMEM_MS DBSERVER
N_HCA_MB_RCV_SEC DBSERVER
N_HCA_MB_TRANS_SEC DBSERVER
N_IB_MB_RCV_SEC IBPORT
N_IB_MB_RCV_SEC IBPORT
N_IB_MB_TRANS_SEC IBPORT
N_IB_UTIL_RCV IBPORT
N_IB_UTIL_RCV IBPORT
N_IB_UTIL_TRANS IBPORT
N_IB_UTIL_TRANS IBPORT
N_NIC_KB_RCV_SEC DBSERVER
N_NIC_KB_TRANS_SEC DBSERVER
N_NIC_NW DBSERVER

DBMCLI> LIST METRICCURRENT where objectType='IBPORT'
N_IB_MB_RCV_SEC HCA-1:1 0.026 MB/sec
N_IB_MB_RCV_SEC HCA-1:2 0.009 MB/sec
N_IB_MB_TRANS_SEC HCA-1:1 0.021 MB/sec
N_IB_MB_TRANS_SEC HCA-1:2 0.004 MB/sec
N_IB_UTIL_RCV HCA-1:1 0.0 %
N_IB_UTIL_RCV HCA-1:2 0.0 %
N_IB_UTIL_TRANS HCA-1:1 0.0 %
N_IB_UTIL_TRANS HCA-1:2 0.0 %

DBMCLI> LIST METRICCURRENT where name = DS_CPUT and metricobjectname=myexadb04 detail
name: DS_CPUT
alertState: normal
metricObjectName: myexadb04
metricType: Instantaneous
metricValue: 0.9 %
objectType: DBSERVER

DBMCLI> LIST METRICCURRENT DS_FSUT
DS_FSUT / 50 %
DS_FSUT /boot 18 %
DS_FSUT /u01 82 %

Related Topics
• Attribute Filters in LIST Commands

8.7.7.8 LIST METRICDEFINITION

Purpose
The LIST METRICDEFINITION command displays a list of metric definitions on the database server.
Syntax

LIST METRICDEFINITION [name | attribute_filters] [attribute_list] [DETAIL]

Usage Notes

The list of attributes that can be displayed is shown in Example 8-39.

Examples

Example 8-66 shows the LIST command with the METRICDEFINITION object, and the corresponding output.

Example 8-66 Listing METRICDEFINITION Attributes

DBMCLI> LIST METRICDEFINITION
 DS_BBU_CHARGE
 DS_BBU_TEMP
 DS_CPUT
 DS_CPUT_MS
 DS_FANS
 DS_FSUT
 DS_MEMUT
 DS_MEMUT_MS
 DS_RUNQ
 DS_SWAP_IN_BY_SEC
 DS_SWAP_OUT_BY_SEC
 DS_SWAP_USAGE
 DS_TEMP
 DS_VIRTMEM_MS
 N_HCA_MB_RCV_SEC
 N_HCA_MB_TRANS_SEC
 N_IB_MB_RCV_SEC
 N_IB_MB_TRANS_SEC
 N_IB_UTIL_RCV
 N_IB_UTIL_TRANS
 N_NIC_KB_RCV_SEC
 N_NIC_KB_TRANS_SEC
 N_NIC_KB_SEC

8.7.7.9 LIST METRICHISTORY

Purpose

The LIST METRICHISTORY command displays a list of individual metrics.

Syntax

LIST METRICHISTRY [name | attribute_filters] [attribute_list]
 [over_specification] [MEMORY] [DETAIL]

Usage Notes

- The list of attributes that can be displayed is shown in Example 8-40.
- The retention period for metric history entry files is specified by the metricHistoryDays database server attribute. You can modify this setting with the DBMCLI ALTER DBSERVER command.
- The over_specification syntax is as follows:
OVER number [aggregation_type [aggregation_type]...]

In the preceding syntax, number is amount of time in minutes for the aggregation, and aggregation_type can be max, min, or avg.

- A WHERE clause can include the ageInMinutes attribute to specify the list is limited to those metrics which have the specified age. For example, the following command would show the metrics created in the previous 15 minutes:

 DBMCLI> LIST METRIC HISTORY WHERE ageInMinutes < 15

Examples

Example 8-67 shows the LIST METRIC HISTORY command with the name and collectionTime attributes.

Example 8-68 shows the LIST METRIC HISTORY command with the ds_cput attribute.

Example 8-67 Listing METRIC HISTORY Using the Name and CollectionTime Attributes

DBMCLI> LIST METRIC HISTORY WHERE name LIKE 'DS_.*' AND collectionTime > '2014-03-27T17:48:16-05:00'

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
<th>Collection Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS_FANS</td>
<td>myexadb03</td>
<td>16</td>
</tr>
<tr>
<td>DS_TEMP</td>
<td>myexadb03</td>
<td>20.0 C</td>
</tr>
<tr>
<td>DS_BBU_CHARGE</td>
<td>myexadb03</td>
<td>52.0 %</td>
</tr>
<tr>
<td>DS_BBU_TEMP</td>
<td>myexadb03</td>
<td>45.0 C</td>
</tr>
<tr>
<td>DS_CPUT</td>
<td>myexadb03</td>
<td>0.3 %</td>
</tr>
<tr>
<td>DS_CPUT_MS</td>
<td>myexadb03</td>
<td>0.0 %</td>
</tr>
<tr>
<td>DS_FSUT</td>
<td>/</td>
<td>73 %</td>
</tr>
<tr>
<td>DS_FSUT</td>
<td>/boot</td>
<td>18 %</td>
</tr>
<tr>
<td>DS_FSUT</td>
<td>/u01</td>
<td>43 %</td>
</tr>
<tr>
<td>DS_MEMUT</td>
<td>myexadb03</td>
<td>42 %</td>
</tr>
<tr>
<td>DS_MEMUT_MS</td>
<td>myexadb03</td>
<td>0.3 %</td>
</tr>
<tr>
<td>DS_MEMUT_MS</td>
<td>myexadb03</td>
<td>0.3 %</td>
</tr>
<tr>
<td>DS_RUNQ</td>
<td>myexadb03</td>
<td>0.2</td>
</tr>
<tr>
<td>DS_SWAP_IN_SEC</td>
<td>myexadb03</td>
<td>0.0 KB/sec</td>
</tr>
<tr>
<td>DS_SWAP_OUT_SEC</td>
<td>myexadb03</td>
<td>0.0 KB/sec</td>
</tr>
<tr>
<td>DS_SWAP_USAGE</td>
<td>myexadb03</td>
<td>0 %</td>
</tr>
<tr>
<td>DS_VIRT_MEM_MS</td>
<td>myexadb03</td>
<td>981 MB</td>
</tr>
<tr>
<td>DS_VIRT_MEM_MS</td>
<td>myexadb03</td>
<td>981 MB</td>
</tr>
</tbody>
</table>

Example 8-68 Listing METRIC HISTORY for the ds_cput Attribute

DBMCLI> LIST METRIC HISTORY ds_cput OVER 10 MIN MAX MEMORY

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
<th>Collection Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS_CPUT</td>
<td>myexadb03</td>
<td>1.0 %</td>
</tr>
<tr>
<td>DS_CPUT</td>
<td>myexadb03</td>
<td>0.7 %</td>
</tr>
<tr>
<td>DS_CPUT</td>
<td>myexadb03</td>
<td>0.8 %</td>
</tr>
</tbody>
</table>
8.7.7.10 LIST PHYSICALDISK

Purpose

The LIST PHYSICALDISK command displays attributes for one or more physical disks determined by the specified attributes and filters.

Syntax

LIST PHYSICALDISK [name | attribute_filters] [attribute_list] [DETAIL]

Usage Notes

The list of attributes that can be displayed is shown in Example 8-41.

Examples

Example 8-69 shows the LIST command with the PHYSICALDISK object, and the corresponding output.

Example 8-69 Listing Physical Disk Attributes

DBMCLI> LIST PHYSICALDISK
 252:0 G08VKE normal
 252:1 GYVAXE normal
 252:2 G0725E normal
 252:3 G0889E normal

8.7.7.11 LIST ROLE

Purpose

The LIST ROLE command displays the specified attributes for a role.

Syntax

LIST ROLE [name | filters] [attribute_list] [DETAIL]

Usage Notes

- name is the name of the role.
- filters is an expression that determines which roles are displayed.
8.7.7.12 LIST THRESHOLD

Purpose
The LIST THRESHOLD command displays attributes for one or more thresholds determined by the specified attributes and filters.

Syntax
LIST THRESHOLD [name | attribute_filters] [attribute_list] [DETAIL]

Usage Notes
The list of attributes that can be displayed is shown in Example 8-43.

Examples
Example 8-71 shows the LIST command with the THRESHOLD object, and the corresponding output.

Example 8-71 Listing Threshold Attributes

DBMCLI> LIST THRESHOLD
DS_CPUT.myexadb04
DS_TEMP.myexadb04

DBMCLI> LIST THRESHOLD DS_CPUT.myexadb04 detail
name: DS_CPUT.myexadb04
comparison: >
warning: 90.0

DBMCLI> LIST THRESHOLD DS_TEMP.myexadb04 detail
name: DS_TEMP.myexadb04
comparison: >
critical: 30.0

8.7.7.13 LIST USER

Purpose
The LIST USER command displays the specified attributes for a user.
Syntax

LIST USER [name | filters] [attribute_list] [DETAIL]

Usage Notes

• name is the user name.
• filters is an expression that determines which users are displayed.
• attribute_list is the attributes to display. The ALL option can be used to display all attributes.
• The DETAIL option formats the output as an attribute on each line, with an attribute descriptor preceding each value.

Examples

Example 8-72 shows the LIST USER command.

Example 8-72 Using the LIST USER Command

```
DBMCLI> LIST USER DETAIL

DBMCLI> LIST USER where name like 'jdoe' DETAIL

name:                jdoe
roles:               role=db_monitor
Privileges:          object=dbserver
                    verb=list
attributes=all attributes
options= all options
```

8.7.8 REVOKE

Purpose

The REVOKE command removes privileges and roles.

Syntax

REVOKE object_type [name] FROM sub_object_type [sub_object_name]

Usage Notes

• object_type can be as follows:
 – PRIVILEGE
 – ROLE
• The following can be used for PRIVILEGE object type:
 – name is in the following format:

```
{ ALL ACTIONS | action } ON { ALL OBJECTS | object } { ALL
  ATTRIBUTES | \ 
  ATTRIBUTES attribute1 [, attribute2, ...] } { WITH ALL OPTIONS
```
WITH OPTIONS option1 [, option2, ...] }

- The `sub_object_type` must be `ROLE`.
- The `sub_object_name` is a role name, a comma-delimited list of role names, or the keyword `ALL`.

• The following can be used for the `ROLE` object type:
 - `name` is a role name, a comma-delimited list of role names, or the keyword `ALL`.
 - The `sub_object_type` must be `USER`.
 - The `sub_object_name` is the name of the user, a comma-delimited list of user names, or the keyword `ALL`.

• `REVOKE PRIVILEGE`
• `REVOKE ROLE`

8.7.8.1 REVOKE PRIVILEGE

Purpose

The `REVOKE PRIVILEGE` command revokes privileges from a role.

Syntax

```
REVOKE PRIVILEGE { ALL ACTIONS | action } ON { ALL OBJECTS | object }
{ ALL ATTRIBUTES | ATTRIBUTES attribute1 [, attribute2...] } { WITH ALL OPTIONS | WITH OPTIONS option1 [, option2, ...] } FROM ROLE { ALL | role1 [, role2, ...] }
```

Usage Notes

- `action` is the command.
- `object` is object type for the action.
- `attribute` are the attributes for the object.
- `option` are the options for the object.
- `role` is the name of the role from which to revoke privileges.
- The `ALL ACTIONS` argument revokes privileges for all actions.
- The `ALL OBJECTS` argument revokes privileges for all objects.
- The `ALL ATTRIBUTES` argument revokes privileges for all attributes.
- The `WITH ALL OPTIONS` argument revokes privileges for all options.

Examples

Example 8-73 shows the `REVOKE PRIVILEGE` command.
Example 8-73 Revoking a Privilege

DBMCLI> REVOKE PRIVILEGE ALL ACTIONS ON ALL OBJECTS ALL ATTRIBUTES -
 WITH ALL OPTIONS FROM ROLE ALL

DBMCLI> REVOKE PRIVILEGE list ON dbserver ATTRIBUTES name -
 WITH OPTIONS detail FROM ROLE db_monitor

8.7.8.2 REVOKE ROLE

Purpose
The REVOKE ROLE command revokes the role for a user.

Syntax
REVOKE ROLE { ALL | role1 [, role2, ...] } FROM USER { ALL | user1 [, user2...] }

Usage Notes
- role1 and role2 are the names of roles.
- user1 and user2 are the names of users.
- The ALL argument revokes all roles from the user.
- The FROM USER ALL argument revokes the role from all users.

Examples
Example 8-74 shows how to revoke a role from a user.

Example 8-74 Revoking a Role From a User

DBMCLI> REVOKE ROLE db_monitor FROM USER jdoe

8.7.9 SET

Purpose
The SET command sets a variable to alter the DBMCLI environment settings for the current session.

Syntax
SET DATEFORMAT {LOCAL | STANDARD}
SET ECHO [ON | OFF]

Usage Notes
The SET DATEFORMAT command controls the format of displayed dates. For commands that accept dates, the standard date-time format is recommended. The local format is also accepted. The standard format is recommended for scripts because that format is less sensitive to the time zone, region, and locale changes that might occur when running a script.
The `SET ECHO` command controls whether to echo commands in a script that is run with `@` or `START`. The `ON` option displays the commands on screen. The `OFF` option suppresses the display. The `SET ECHO` command does not affect the display of commands entered interactively or redirected from the operating system.

Example 8-75 Setting the Date Format with the SET Command

SET DATEFORMAT STANDARD

8.7.10 SPOOL

Purpose
The `SPOOL` command writes (spools) the results of commands to the specified file.

Syntax

SPOOL [file_name [CREATE | REPLACE | APPEND] | OFF]

Usage Notes
If you issue `SPOOL file_name` with no option, then the output is spooled to that file whether or not the file already exists. The `REPLACE` option is the default behavior.

Table 8-14 SPOOL Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEND</td>
<td>Adds the results to the end of the file specified.</td>
</tr>
<tr>
<td>CREATE</td>
<td>Creates a new file with the name specified, and raises an error if the file exists.</td>
</tr>
<tr>
<td>file_name</td>
<td>Names the file to which the results are written. It can be specified with a fully-qualified path name, or with a partially-qualified path name relative to the current directory.</td>
</tr>
<tr>
<td>no option</td>
<td>Displays the name of the current spool target file, if any.</td>
</tr>
<tr>
<td>OFF</td>
<td>Stops writing (spooling) output to the file.</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Replaces the contents of an existing specified file. If the file does not exist, then REPLACE creates the file. This is the default behavior.</td>
</tr>
</tbody>
</table>

8.7.11 START

Purpose
The `START` command runs the DBMCLI commands in the specified script file.

Syntax

START file_name
Usage Notes

The START option is file_name. It is the name of the script file that contains the DBMCLI commands. If the file name does not include a fully-qualified path, then the DBMCLI utility searches for the file relative to the current directory.

The START command is useful when entering long or multiple DBMCLI commands. For example, all the commands in Example 8-8 can be entered in a text file named alter_dbserver, then run as follows, assuming that the alter_dbserver file is in the current directory:

START alter_dbserver
Using the ExaCLI Utility

The ExaCLI utility enables you to manage database and cell nodes remotely.

- **ExaCLI Command Reference**
- **ExaCLI Security**
 The authentication process is performed for every ExaCLI session.
- **Creating Users for Use with ExaCLI**
 To use ExaCLI, users must be created on the remote node, and the users must be assigned roles that have privileges appropriate for the user.
- **Differences in Commands Between ExaCLI and DBMCLI/CellCLI**
- **Certificates**
 Security certificates allow the remote nodes to confirm their identity to ExaCLI.
- **Executing Commands Remotely Using URLs**
 In addition to executing commands on a remote node through `exacli`, you can also execute them through URLs.

9.1 ExaCLI Command Reference

ExaCLI is a command-line administration tool that runs on database and cell nodes and enables you to manage nodes remotely.

Overview

You can use ExaCLI to manage cell and database node configuration and objects in the remote node's environment. ExaCLI is installed when a cell or database node is imaged. ExaCLI supports the same command syntax as DBMCLI and CellCLI. The main difference is that ExaCLI manages cell and database nodes from a remote host whereas DBMCLI runs directly on a database node, and CellCLI runs directly on a cell node.

There are two main reasons to use ExaCLI:

- Many companies, especially government organizations, require root access or the SSH service on the cell and database nodes to be disabled as part of the compliance requirements.
- Service providers that host Exadata machines provide access to a virtual machine running on the cell and database node. Customers are not allowed to SSH into the cell or database node to manage the node using CellCLI or DBMCLI.

For such cases, the only way to manage the cell or database node is by using ExaCLI running on a remote node.

Prerequisites

- Users created on the cell or database node that have been granted the necessary privileges. See Creating Users for Use with ExaCLI for more information.
- Java version 1.8 or later
 You can determine the version of Java by running the `java -version` command. In addition, the `JAVA_HOME` environment variable must be set to point to the installation directory of the proper version of Java.

File Path
/usr/local/sbin/exacli

Syntax
You run ExaCLI from the operating system command line.

```
exacli -c [username@]remotehost[:port] [-l username] [--xml] 
[--cookie-jar [filename]] [-e {command | 'command[; command]' | @batchfile}]
```

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-c [username@]remotehost</code> or <code>--connect</code> [username@]remotehost[:port]</td>
<td>Specifies the remote node to which you want to connect. ExaCLI prompts for the user name if not specified. ExaCLI can connect to both cells and compute nodes. The default port for compute node MS is 7879. You can specify the remote host using an IPv6 address. The IPv6 addresses must be enclosed in square brackets and single quotes as shown in Example 9-2.</td>
</tr>
<tr>
<td><code>-l username</code> or <code>--login-name username</code></td>
<td>Specifies the user name to log into the remote node.</td>
</tr>
<tr>
<td><code>--xml</code></td>
<td>Displays the output in XML format.</td>
</tr>
<tr>
<td><code>--cookie-jar [filename]</code></td>
<td>Specifies the filename of the cookie jar to use. If <code>filename</code> is not specified, the cookie is stored in a default cookie jar located at <code>HOME/.exacli/cookiejar</code>, where <code>HOME</code> is the home directory of the OS user running the ExaCLI command. The presence of a valid cookie allows the ExaCLI user to execute commands without requiring to login in subsequent ExaCLI sessions.</td>
</tr>
<tr>
<td><code>-e command</code> or <code>@batchFile</code></td>
<td>Specifies either the ExaCLI commands to run or a batch file. ExaCLI exits after running the commands. If specifying multiple commands to run, enclose the commands in single quotes to prevent the shell from interpreting the semicolon. Omit this option to start an interactive ExaCLI session.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>--cert-proxy proxy[:port]</td>
<td>Specifies the proxy server to use when downloading certificates. If port is omitted, port 80 is used by default.</td>
</tr>
<tr>
<td>-n or --no-prompt</td>
<td>Suppresses prompting for user input.</td>
</tr>
</tbody>
</table>

Usage Notes

- **Notes for the --cookie-jar option:**
 - The user name and password are sent to the remote node for authentication. On successful authentication, the remote node issues a cookie (the login credentials) that is stored in the specified filename on the database node. If filename is not specified, the cookie is stored in a default cookie jar located at HOME/.exacli/cookiejar, where HOME is the home directory of the operating system user running the ExaCLI command.
 - Permissions for the cookie jar file are set to rwx- --- --- (600).
 - The operating system user running the ExaCLI command is the owner of the cookie-jar file.
 - A cookie jar can contain multiple cookies from multiple users on multiple nodes in parallel sessions.
 - Cookies are invalidated after 24 hours.
 - If the cookie is not found or is no longer valid, ExaCLI prompts for the password. The new cookie is stored in the cookie jar identified by filename, or the default cookie jar if filename is not specified.
 - Even without the --cookie-jar option, ExaCLI still checks for cookies from the default cookie jar. However, if the cookie does not exist or is no longer valid, the new cookie will not be stored in the default cookie jar if the --cookie-jar option is not specified.

- **Notes for the -e option:**
 - ExaCLI exits after running the commands.
 - If specifying multiple commands to run, be sure to enclose the commands in single quotes to prevent the shell from interpreting the semi-colon.
 - The batch file is a text file that contains one or more ExaCLI commands to run.

- **Notes for the -n (--no-prompt) option:**
 - If ExaCLI needs additional information from the user, for example, if ExaCLI needs to prompt the user for a password (possibly because there were no valid cookies in the cookie-jar) or to prompt the user to confirm the remote node's identity, then ExaCLI prints an error message and exits.

Examples

The following examples show how use ExaCLI after the users have been created and granted the necessary privileges. See Creating Users for Use with ExaCLI for examples of creating users and assigning privileges to them.
Example 9-1 Connecting to a User on a Cell using ExaCLI

Connect to cell node cellnode01 as the celladministrator user. ExaCLI prompts for a password if the default cookie jar does not contain a valid cookie for the celladministrator user. Because the --cookie-jar option is not specified, the cookie is not stored in the cookie jar.

$ exacli -l celladministrator -c cellnode01

The following command is equivalent.

$ exacli -c celladministrator@cellnode01

Example 9-2 Connecting to a Remote Host Using an IPv6 Address

You can specify the remote host using an IPv6 address. The IPv6 addresses must be enclosed in square brackets and single quotes.

$ exacli -c 'scott@[2001:db8:a0b:12f0::1]'

$exacli -c '[2001:db8:a0b:12f0::1]' -l scott

Example 9-3 Creating a Cookie for ExaCLI Connections

The user celladministrator and password are sent to cellnode01 for authentication. On successful authentication, the cell node sends back a cookie which is stored in the default cookie jar. The specified commands are then executed on the cell node. Note that

Tip:

Multiple commands must be enclosed in single quotes.

$ exacli -l celladministrator -c cellnode01 --cookie-jar -e 'list cell;
list celldisk'
Password=************

Example 9-4 Creating a Cookie for ExaCLI Connections

The user celladministrator and password are sent to cellnode01 for authentication. On successful authentication, the cell node sends back a cookie which is stored in the default cookie jar. The specified commands are then executed on the cell node.
Tip:

Multiple commands must be enclosed in single quotes.

$ exacli -l celladministrator -c cellnode01 --cookie-jar -e 'list cell;
list celldisk'
Password=************

Example 9-5 Using a Cookie when Executing ExaCLI Commands

After creating a cookie, as shown in the previous example, ExaCLI does not prompt for password for subsequent ExaCLI sessions for the celladministrator user because it uses the cookie from the default cookie jar.

$ exacli -l celladministrator -c cellnode01 -e list griddisk detail

If you execute connect as a user other than celladministrator, and a cookie does not exist for that user, you are prompted for a password.

$ exacli -c user1@cellnode01 -e list griddisk detail
Password=************

Example 9-6 Viewing DBSERVER Details using ExaCLI

In this example, ExaCLI connects to the dbnode01 node as the dbnodeadministrator user and lists the DBSERVER object attributes in detail.

$ exacli -l dbnodeadministrator -c dbnode01 --cookie-jar -e list dbserver detail

The login and password are sent to the database node for authentication. On successful authentication, the database node returns a cookie with the login credentials which gets stored in the cookie jar on the machine running ExaCLI.

Example 9-7 Viewing the ALERTHISTORY for a DBSERVER using ExaCLI

In this example, ExaCLI connects to the dbnode01 node as the dbnodeadministrator user and lists the ALERTHISTORY object. ExaCLI does not prompt for password if there is a valid cookie in the default cookie jar.

$ exacli -c dbnodeadministrator@dbnode01 -e list alerthistory

Example 9-8 Using a Command Batch File with ExaCLI

In this example, the file commandFile is stored in the local directory (from where the ExaCLI command is called) and contains the following information:

list dbserver detail
list alerthistory
ExaCLI connects as the **dbnodeadministrator** user to the **dbnode01** database node, and, on successful authentication, runs the commands in **commandFile**.

$ exacli -l dbnodeadministrator -c dbnode01 -e @commandFile

9.2 ExaCLI Security

The authentication process is performed for every ExaCLI session.

Because ExaCLI runs DBMCLI and CellCLI commands on a remote node, user access must be authenticated before the commands can be executed. ExaCLI connects to an Oracle Exadata System Software user on the remote node that has been granted the necessary privileges to run the specified commands.

The presence of a valid cookie allows the ExaCLI user to execute commands without requiring to log in for each session. A **cookie** is a token that contains the login credentials issued by the remote node and stored on the host machine running ExaCLI. A cookie issued by the remote node is invalidated after 24 hours. A repository of cookies is called a cookie jar.

The same cookie jar can be used by multiple simultaneous ExaCLI sessions connecting to multiple remote nodes, even when they are using different login names. For example, **exadcli** connects to multiple remote nodes using multiple ExaCLI sessions, but they all use the same cookie jar.

The cookie jar is configured with read and write permissions for the operating system user. The file is not readable, writable, or executable for anyone else.

9.3 Creating Users for Use with ExaCLI

To use ExaCLI, users must be created on the remote node, and the users must be assigned roles that have privileges appropriate for the user.

- Use DBMCLI or CellCLI on the remote node to create the users and roles, and grant privileges.

Note:

When creating a user on the cell or database node, the user password must be 8 to 40 alphanumeric characters or special characters (!@#$%^&*()-_) with at least one digit, one lowercase letter and one uppercase letter. The new password cannot be the same as the current password for the user.

Example 9-9 Create and Configure a User With All Privileges for Use with ExaCLI

Create the users and roles on the remote node using DBMCLI (for database nodes) or CellCLI (for cell nodes). These are the users that are allowed to connect to the remote node using ExaCLI. You use roles to assign privileges to users.

- **Database node example:**
The following example creates an administrator role and grants all privileges to that role. It then creates a user called dbadministrator and grants the administrator role to that user.

DBMCLI> CREATE ROLE administrator
DBMCLI> GRANT PRIVILEGE ALL ACTIONS ON ALL OBJECTS ALL ATTRIBUTES - WITH ALL OPTIONS TO ROLE administrator
DBMCLI> CREATE USER dbnodeadministrator password=* DBMCLI> GRANT ROLE administrator TO USER dbnodeadministrator

• Cell node example:

This following example creates an administrator role and grants all privileges to that role. It then creates a user called celladministrator and grants the administrator role to that user:

CellCLI> CREATE ROLE administrator
CellCLI> GRANT PRIVILEGE ALL ACTIONS ON ALL OBJECTS ALL ATTRIBUTES - WITH ALL OPTIONS TO ROLE administrator
CellCLI> CREATE USER celladministrator password=* CellCLI> GRANT ROLE administrator TO USER celladministrator

Example 9-10 Creating a Cell Node User for Cell Monitoring with ExaCLI

This example creates a user called cellmon who has privileges to only view object details.

CellCLI> CREATE ROLE monitor
CellCLI> GRANT PRIVILEGE list ON ALL OBJECTS ALL ATTRIBUTES - WITH ALL OPTIONS TO ROLE monitor
CellCLI> CREATE USER cellmon password=* CellCLI> GRANT ROLE monitor TO USER cellmon

Example 9-11 Creating a Database Node User for Node Monitoring with ExaCLI

This example creates a user called dbnodemon that has privileges to view object details.

DBMCLI> CREATE ROLE monitor
DBMCLI> GRANT PRIVILEGE list ON ALL OBJECTS ALL ATTRIBUTES - WITH ALL OPTIONS TO ROLE monitor
DBMCLI> CREATE USER dbnodemon password=* DBMCLI> GRANT ROLE monitor TO USER dbnodemon

Related Topics

• Creating Users and Roles in Oracle Exadata System Software User's Guide

9.4 Differences in Commands Between ExaCLI and DBMCLI/CellCLI

ExaCLI supports the exact same command syntax as DBMCLI and CellCLI.
Not all CellCLI commands can be executed through ExaCLI. The following commands are not supported on ExaCLI:

- Restarting cell services (the `restart` option in the `ALTER CELL` command)
- Starting cell services (the `startup` option in the `ALTER CELL` command)
- Shutting down cell services (the `shutdown` option in the `ALTER CELL` command)
- User management commands (`CREATE USER`, `ALTER USER`, `DROP USER`)
- Role management commands (`CREATE ROLE`, `DROP ROLE`, `GRANT ROLE`, `REVOKE ROLE`)
- Privilege management commands (`GRANT PRIVILEGE`, `REVOKE PRIVILEGE`)
- `CALIBRATE`
- `DESCRIBE`
- `HELP`
- Getting the following cell attributes: `rsStatus`, `cellsrvStatus`, `msStatus` using the `LIST CELL` command
- `SET`
- `SPOOL`
- `START`

9.5 Certificates

Security certificates allow the remote nodes to confirm their identity to ExaCLI.

All communication between ExaCLI and Management Server (MS) running on the remote node is over HTTPS. Management Server is deployed with a default self-signed security certificate for HTTPS access. Optionally, you can upload a different security certificate issued by a Certificate Authority (CA).

Trusted CA Certificates can be listed by executing the following command on the machine where ExaCLI is run. The first `$` below is the shell prompt.

```
$ JAVA_HOME/bin/keytool -list -v -keystore $JAVA_HOME/jre/lib/security/cacerts -storepass password
```

- **Using the Default Self-Signed Certificate**
 A security certificate must be signed by a trusted certificate authority (CA) for ExaCLI to accept it without a warning.

- **Using a CA-Certified Security Certificate**
 The Oracle Exadata Database Machine administrator must supply CA-certified security certificates, if they are needed for your environment.
9.5.1 Using the Default Self-Signed Certificate

A security certificate must be signed by a trusted certificate authority (CA) for ExaCLI to accept it without a warning.

When ExaCLI connects to a remote node that does not have a security certificate signed by a trusted CA, a warning message is generated requesting the user to verify the certificate. When verified, ExaCLI remembers the security certificate and the users are not prompted to verify the certificate again for subsequent commands. Every cell and compute node is automatically configured with a self-signed certificate during install or Management Server (MS) deployment.

Example of accepting the self-signed security certificate (non-CA certificate):

```
$ exacli -l celladministrator --cookie-jar -c cellnode01
This connection is unsecure. You have asked ExaCLI to connect to cell
cellnode01 securely.
The identity of cellnode01 cannot be verified.
Got certificate from server:
CN=cellnode01,OU=Oracle Exadata,O=Oracle Corporation,L=Redwood
City,ST=California,C=US
Do you want to accept and store this certificate? (Press y/n)
```

Example of accepting the self-signed security certificate (non-CA certificate) for a database node:

```
$ exacli -l dbadministrator --cookie-jar -c dbnode01
This connection is unsecure. You have asked ExaCLI to connect to dbserver
dbnode01 securely.
The identity of dbnode01 cannot be verified.
Got certificate from server:
CN=dbnode01,OU=Oracle Exadata,O=Oracle Corporation,L=Redwood
City,ST=California,C=US
Do you want to accept and store this certificate? (Press y/n)
```

9.5.2 Using a CA-Certified Security Certificate

The Oracle Exadata Database Machine administrator must supply CA-certified security certificates, if they are needed for your environment.

ExaCLI accepts valid CA-Certified security certificates without any prompts and without requiring you to accept the certificates.

1. Modify security attributes for the cell or compute node.

 To upload the CA-certified security certificates, you modify the `securityPubKey` and the `securityPrivKey` attributes for a cell or compute node. `securityPubKey` and `securityPrivKey` form a key pair for secure communication.
 - The `securityPubKey` attribute specifies a URL that contains the public key.
 - The `securityPrivKey` attribute specifies a URL that contains the private key.

 If the private key is encrypted, you can provide the password using the `securityPrivKeyPW` attribute.
The following commands show examples of uploading a CA-certified security certificate:

Example for cell node, including the prompt for a password after entering the command:

```
$ exacli -l celladministrator -c cellnode -
  -e 'alter cell securityPubKey="http://www.example.com/security/
  newkey.crt", -
  securityPrivKey="http://www.example.com/security/
  newkey.private.key", -
  securityPrivKeyPW='

password=**************
```

Example for database node, including the prompt for a password after entering the command:

```
$ exacli -l dbadministrator -c computenode -
  -e 'alter dbserver securityPubKey="http://www.example.com/security/
  newkey.crt", -
  securityPrivKey="http://www.example.com/security/
  newkey.private.key", -
  securityPrivKeyPW='

password=**************
```

2. Restart the Management Server (MS) for the cell or compute nodes.

After you upload the CA-certified security certificate individually to every node in the cluster, you must restart the MS before the new security certificate is visible.

Restart MS on a cell.

CELLCLI> alter cell restart services ms

Restarting MS services...
The RESTART of MS services was successful.

Restart the MS on a compute node.

DBMCLI> alter dbserver restart services ms

Restarting MS services...
The RESTART of MS services was successful.

9.6 Executing Commands Remotely Using URLs

In addition to executing commands on a remote node through `exacli`, you can also execute them through URLs.

Before using URLs to execute commands on the remote node, you have to create users, roles, and privileges, as described in Creating Users for Use with ExaCLI.
The format of the URL is:

https://remotenode:port/MS/RESTService/?cmd=command_to_run

If the remote node is a cell node, the port is 443. If the remote node is a database node, the port is 7879.

When you submit the URL in a browser, the browser displays a warning about the certificate. If the warning is about a new certificate, the warning is usually acceptable. If the warning is about a changed certificate, you should make sure that the certificate is acceptable.

The browser then prompts for the user name and password. If you do not enter the correct password 5 times in succession, then the account is locked. You have to wait 30 minutes until you can try to login again to the same account.

The results of the command are returned in plain text.

If you submit further requests in the same session, the browser will not display warnings about the certificate and will not prompt for user name and password, unless the session cookie has expired.

The following example runs the list dbserver detail command:

https://dbnode:7879/MS/RESTService/?cmd=list+dbserver+detail

The following example runs the list cell detail command:

https://cellnode:443/MS/RESTService/?cmd=list+cell+detail

You can also specify the URL in a RESTful format. For example:

https://cellnode:443/MS/RESTService/celldisk/list?where=size>1g

You can also run the URL using curl. The steps are:

1. Download and store the server certificate.

 (openssl s_client -showcerts -connect remote_node:port < /dev/null | openssl x509 -outform PEM > mycertfile.pem) >& /dev/null

 You need to do this only once. curl will not proceed unless you provide a valid certificate.

2. Provide a user name and password.

 curl -u username:password -c cookiejar --cacert mycertfile.pem 'https://remote_node:port /MS/RESTService/login'

3. Run the command.
Database node example:

curl -b cookiejar --cacert mycertfile.pem 'https://remote_node:port/MS/RESTService/?cmd=list+dbserver+detail'

Cell node example:

curl -b cookiejar --cacert mycertfile.pem 'https://remote_node:port/MS/RESTService/?cmd=list+cell+detail'
10
Using the exadcli Utility

The **exadcli** utility facilitates centralized management across an Oracle Exadata system by automating the execution of ExaCLI commands.

exadcli executes the commands on a set of remote nodes and returns the output to the centralized management location where the **exadcli** utility was run.

- **exadcli Command Reference**
 The **exadcli** utility runs commands on multiple remote nodes in parallel threads.

- **Using exadcli for the First Time**
 This is a multi-step example that describes the demonstrates how to configure your Oracle Exadata Database Machine to use **exadcli**.

- **exadcli Examples**
 These examples show how use ExaCLI after the users have been created and granted the necessary privileges.

10.1 exadcli Command Reference

The **exadcli** utility runs commands on multiple remote nodes in parallel threads.

- **Overview**
- **Prerequisites**
- **File Path**
- **Syntax**
- **Options**
- **Usage Notes**

Overview

exadcli enables you to issue an ExaCLI command to be run on multiple remote nodes. Remote nodes are referenced by their host name or IP address. Unlike **dcli**, **exadcli** can only execute ExaCLI commands. Other commands, such as shell commands, cannot be executed using **exadcli**.

The **exadcli** utility is installed when the database node is imaged. **exadcli** does not support an interactive session with a remote application on the remote node.

exadcli connects in parallel to the remote nodes and authenticates the user. Command output (stdout and stderr) is collected and displayed after the copy and command execution finishes on the specified remote nodes.

exadcli runs ExaCLI in a “no-prompt” mode. This means that if user interaction is needed (for example, if you need to enter a password or if you need to verify that the certificate from a remote node is valid), then **exadcli** exits with an error. The command **exadcli** --authenticate can be used to log into every cell or database.
node using the same password. The authentication token is stored in the cookie jar and future `exadcli` sessions will not need to enter an password.

Prerequisites

- To use `exadcli`, you have to set up users and roles on all the remote nodes.
- Before using `exadcli`, you must use ExaCLI to accept the identity certificate of cell or database nodes. This needs to be done only once per cell (unless the cell is upgraded or a new certificate is uploaded to the remote database or cell node), for example:

  ```
  $ exacli -l dbnodeadministrator -c dbnode01 --cookie-jar
  No cookies found for dbnodeadministrator@dbnode01.
  Password: ************
  
  EXA-30016: This connection is not secure. You have asked ExaCLI to connect to cell dbnode01:7879 securely. The identity of dbnode01:7879 cannot be verified.
  Got certificate from server:
  C=US,ST=California,L=Redwood City,O=Oracle Corporation,OU=Oracle Exadata,CN=localhost
  Do you want to accept and store this certificate? (Press y/n) y
  exacli dbnodeadministrator@dbnode01:7879> exit
  ```

 You must accept the certificate on every cell or database node. See **Using `exadcli` for the First Time** for a complete example of configuring access prior to using `exadcli`.

- Java version 1.8 or later

 You can determine the version of Java by running the `java -version` command. In addition, the `JAVA_HOME` environment variable must be set to point to the installation directory of the proper version of Java.

File Path

```
/usr/local/sbin/exadcli
```

Syntax

You run ExaCLI from the operating system command line.

```
exadcli options command[; command]
```

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c host [, host]</td>
<td>Specifies a comma-delimited list of target remote nodes to which ExaCLI commands are sent.</td>
</tr>
<tr>
<td>--connect=host [, host]</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>-g filename</code></td>
<td>Specifies a file containing a list of target remote nodes to which commands are sent. The remote nodes can be identified by host names or IP addresses.</td>
</tr>
<tr>
<td><code>--group-file=filename</code></td>
<td></td>
</tr>
<tr>
<td><code>-l username</code></td>
<td>Specifies the user to log in as on the remote nodes. This is a DBMCLI or CellCLI user, not an operating system user.</td>
</tr>
<tr>
<td><code>--login-user=username</code></td>
<td></td>
</tr>
<tr>
<td><code>-t --list</code></td>
<td>Displays the target remote nodes that are named with the <code>-c</code> option or in the group file identified by the <code>-g</code> option.</td>
</tr>
<tr>
<td><code>-x filename</code></td>
<td>Specifies the command file to execute on the remote nodes. The command file contains a list of ExaCLI commands.</td>
</tr>
<tr>
<td><code>--exec-file=filename</code></td>
<td></td>
</tr>
<tr>
<td><code>--authenticate</code></td>
<td>Prompts for the user password. The user will be authorized on all remote nodes using the password and the authorization is stored in the default cookie jar.</td>
</tr>
<tr>
<td><code>--max-lines=maxlines</code></td>
<td>Limits the maximum output lines from a remote node. Default is 100,000 lines.</td>
</tr>
<tr>
<td><code>--xml</code></td>
<td>Causes the output to be displayed in XML format. This option is passed through to ExaCLI.</td>
</tr>
</tbody>
</table>

Note:
exadcli does not have an interactive mode. You can specify the commands to execute using the `-x` option, or you can specify the commands at the end of the command-line.
Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Displays the help message.</td>
</tr>
<tr>
<td>--help</td>
<td>Specifies ExaCLI commands to execute on the remote nodes. To specify multiple commands, enclose the command string in single quotes and separate each command with the semicolon character <code>;</code>.</td>
</tr>
<tr>
<td>command</td>
<td>Specifies the cookie jar file. This option is passed through to ExaCLI.</td>
</tr>
<tr>
<td>--cookie-jar [filename]</td>
<td>This option is deprecated, because <code>exadcli</code> now always uses the cookie jar.</td>
</tr>
</tbody>
</table>

Usage Notes

- **Return values from `exadcli` are:**
 - 0: Commands were run successfully on all the remote nodes.
 - 1: One or more remote nodes could not be reached or remote execution returned a non-zero status.
 - 2: A local error prevented any command execution.
• If any remote nodes are down or do not respond, then a message is written to stderr listing the unresponsive remote nodes. The operation continues on other remote nodes, and the return code after completion is 1.

• If you restart the Management Server (MS), then you must re-authenticate exadcli using the exadcli --authenticate command.

$ exadcli -c dbnode01,dbnode02,dbnode03 -l dbnodeadministrator --authenticate

Related Topics
• ExaCLI Command Reference

10.2 Using exadcli for the First Time

This is a multi-step example that describes how to configure your Oracle Exadata Database Machine to use exadcli.

This example shows how to configure access to cell nodes. The same procedure with minor changes can be used for configuring access to database nodes.

1. Use CellCLI to create the celladministrator user on each node and grant privileges to those users.

 Connect to each remote node and use CellCLI to create the user and assign privileges. In this example, the user is granted all privileges, but you can grant a limited set of privileges that contains only the privileges needed to execute the exadcli commands.

 CellCLI> CREATE ROLE administrator
 CellCLI> GRANT PRIVILEGE ALL ACTIONS ON ALL OBJECTS ALL ATTRIBUTES - > WITH ALL OPTIONS TO ROLE administrator
 CellCLI> CREATE USER celladministrator password=*
 CellCLI> GRANT ROLE administrator TO USER celladministrator

2. On the node where you plan to run exadcli, use ExaCLI to accept the security certificate for each node.

 exacli -l celladministrator -c cell01 --cookie-jar

 No cookies found for celladministrator@cell01.
 Password: ********
 EXA-30016: This connection is not secure. You have asked ExaCLI to connect to cell cell01 securely. The identity of cell01 cannot be verified.
 Got certificate from server:
 C=US,ST=California,L=Redwood City,O=Oracle Corporation,OU=Oracle Exadata,CN=localhost
 Do you want to accept and store this certificate? (Press y/n) y
 exacli celladministrator@cell01> exit
Repeat this step for both cell02 and cell03.

3. Use exadcli to connect to cells cell01, cell02, and cell03 as the celladministrator user with the --authenticate option.

```
$ exadcli -c cell01,cell02,cell03 -l celladministrator --authenticate
Password: ********
cell01: Password: ********
cell02: Password: ********
cell03: Password: ********
```

exadcli stores the credentials in ~/.exacli/cookiejar so that further exadcli commands to the same cells will not prompt for a password.

4. Optional: Create a mycells file as the celladministrator user that contains a list of the nodes on which you want to run the commands.

```
$ cat mycells
cell01
cell02
cell03
```

5. Use exadcli to run a command using the mycells file.

```
$ exadcli -g mycells -l celladministrator list cell
cell01: cell01   online
cell02: cell02   online
cell03: cell03   online
```

If you did not create the mycells file, you can instead specify the remote nodes on the command line using the -c option.

```
$ exadcli -c cell01,cell02,cell03 -l celladministrator list cell detail
```

10.3 exadcli Examples

These examples show how use ExaCLI after the users have been created and granted the necessary privileges.

See Creating Users for Use with ExaCLI for examples of creating users and assigning privileges to them.

For an example of configuring exadcli access to storage cells for the first time, see Using exadcli for the First Time.
Example 10-1 Using the AUTHENTICATE Option to Re-Authenticate exadcli

Connect to nodes dbnode01,dbnode02,dbnode03 as the dbnodeadministrator user and store the credentials in ~/.exacli/cookiejar so that further exadcli commands to the same nodes do not prompt for a password.

$ exadcli -c dbnode01,dbnode02,dbnode03 -l dbnodeadministrator -- authenticate

Example 10-2 Using exadcli to View the DBSERVER Information

You can use exadcli to execute a command on multiple node, such as listing DBSERVER information.

$ exadcli -c dbnode01,dbnode02,dbnode03 -l dbnodeadministrator list dbserver

Example 10-3 Using exadcli to View the Detailed Cell Information

Using exadcli you can retrieved the detailed cell information for multiple nodes with a single command.

$ exadcli -c cell01,cell02,cell03 -l celladministrator list cell detail

Example 10-4 Using a Node List and Command File with exadcli

You can use input files with exadcli to avoid repeatedly entering the list of nodes to access, or to provide a list of ExaCLI commands to execute. This example assumes you have created a text file named mycells or mydbnodes that contains the host names of the remote nodes. This example also uses an input files named cellcommands.txt and dbcommands.txt.

$ cat cellcommands.txt
list cell
list griddisk attributes name, size order by size,name desc
list celldisk where status!=normal attributes name, status

$ exadcli -g mycells -l celladministrator -x cellcommands.txt
cell01: cell01 online
cell01: DBFS_DG_CD_11_cell01 29.125G
cell01: DBFS_DG_CD_10_cell01 29.125G
cell01: DBFS_DG_CD_09_cell01 29.125G
...
cell02: cell02 online
cell02: DBFS_DG_CD_11_cell02 29.125G
cell02: DBFS_DG_CD_10_cell02 29.125G
cell02: DBFS_DG_CD_09_cell02 29.125G
...
cell03: cell03 online
cell03: DBFS_DG_CD_11_cell03 29.125G
cell03: DBFS_DG_CD_10_cell03 29.125G
cell03: DBFS_DG_CD_09_cell03 29.125G

$ cat dbcommands.txt
list dbserver
list metriccurrent where objectType='IBPORT'
list physicaldisk

$ exadcli -g mydbnodes -l dbnodeadministrator -x dbcommands.txt
dbnodes01: dbnode01 online
dbnodes01: N_IB_MB_RCV_SEC HCA-1:1 0.061 MB/sec
dbnodes01: N_IB_MB_RCV_SEC HCA-1:2 0.001 MB/sec
...
dbnodes01: N_IB_UTIL_TRANS HCA-4:1 0.0 %
dbnodes01: N_IB_UTIL_TRANS HCA-4:2 0.0 %
dbnodes01: 39:0 71HKPE normal
...
dbnodes02: dbnode02 online
dbnodes02: N_IB_MB_RCV_SEC HCA-1:1 0.023 MB/sec
dbnodes02: N_IB_MB_RCV_SEC HCA-1:2 0.036 MB/sec
...

Related Topics
 • exadcli Command Reference
Replacement Units

This appendix lists the information you need to identify and replace components in Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.

There are two types of replacement units, FRUs (field replaceable units), and CRUs (customer replaceable units). FRUs are installed by trained Oracle field technicians. CRUs are installed by the customer.

Note:

- For ease of reading, the name "Oracle Exadata Rack" is used when information refers to both Oracle Exadata Database Machine and Oracle Exadata Storage Expansion Rack.
- All replacement parts for Oracle Exadata Database Machine, except database servers, are applicable to Oracle Exadata Storage Expansion Racks.

- Understanding Repair Categories
 Repair categories describe the potential impact of a repair action.

- Regulatory and Certificate Compliance

- Compliance with the European Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Directive
 Parts that have the RoHS:Y or RoHS:YL designation are compliant with the European Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Directive

- Managing Disk Controller Batteries
 This section applies only to Exadata systems prior to X6 that use batteries. Newer systems have CVPM02 (Cache Vault), which is a super cap and not a battery.

- Managing F20 PCIe Energy Storage Modules
 Sun Flash Accelerator F20 PCIe cards are used in Oracle Exadata Database Machine X3 models.

- LED Status Descriptions
 The LEDs on the Oracle Exadata Rack components help you identify the component that needs servicing.

- Parts and Repair Procedures for Oracle Database Servers
 Each server model has a different layout of internal components, different replaceable parts and different repair procedures.

- Parts for Exadata Storage Servers
 Each server model has a different layout of internal components, different replaceable parts and different repair procedures.
11.1 Understanding Repair Categories

Repair categories describe the potential impact of a repair action.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Scenario Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Swap (HS)</td>
<td>Repair part is hot swappable, and may be replaced without shutting down the host system. Commands may be needed before and after replacement to protect data.</td>
<td>• Disks
• Fans
• Power supplies</td>
</tr>
<tr>
<td>Infrastructure Repair (IR)</td>
<td>Repair of connectivity component within Oracle Exadata Rack. No downtime of the rack is required, however, individual components may require downtime.</td>
<td>• External cables
• RDMA Network Fabric switch
• Ethernet switch
• KVM switch/KMM tray</td>
</tr>
<tr>
<td>Database Server Offline (DBO)</td>
<td>Repair of the part requires one database server in Oracle Exadata Database Machine be shut down. No downtime of the rack is required, however individual server nodes may require downtime and be taken outside of the cluster temporarily. If the system is currently running, then it should be shut down gracefully. See Powering On and Off Oracle Exadata Rack for additional information. If monitoring the system using Oracle Enterprise Manager Cloud Control, then avoid unnecessary alerts by putting the target in a blackout state. Refer to Oracle Enterprise Manager Cloud Control Administrator's Guide for additional information.</td>
<td>• System boards
• PCIe cards
• Memory
• Processors
• Power distribution units</td>
</tr>
</tbody>
</table>
Table 11-1 (Cont.) Oracle Exadata Rack Repair Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Scenario Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata Storage Server Offline (EBO)</td>
<td>Repair of the part requires one Exadata Storage Server within Oracle Exadata Rack be shut down. No downtime of the rack is required, however individual server nodes may require downtime and be taken outside of the cluster temporarily. Temporary performance impact due to rebalancing to maintain data redundancy may occur. If the system is currently running, then it should be shut down gracefully. See Powering On and Off Oracle Exadata Rack for additional information. If monitoring the system using Oracle Enterprise Manager Cloud Control, then avoid unnecessary alerts by putting the target in a blackout state. Refer to Oracle Enterprise Manager Cloud Control Administrator’s Guide for additional information.</td>
<td>• System boards • PCIe cards • Memory • Processors</td>
</tr>
</tbody>
</table>

11.2 Regulatory and Certificate Compliance

Parts used in Oracle Exadata Database Machine and Oracle Exadata Rack comply with the following regulations and certifications:

- Regulations
 - Safety: UL/CSA 60950-1, EN 60950-1:2006 CB Scheme with all country differences
 - RFI/EMI: EN 55022, EN 61000-3-12
 - Immunity: EN 55024
 - Emissions and Immunity: EN 300 386

- Certifications
 - North America (NRTL), European Union (EU), International CB Scheme, BSMI (Taiwan), C-Tick (Australia), CCC (PRC), MSIP (Korea), CU EAC (Customs Union), VCCI (Japan)

- European Union Directives

Note:

In some cases, as applicable, regulatory and certification compliance were obtained at the component level.
11.3 Compliance with the European Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Directive

Parts that have the RoHS:Y or RoHS:YL designation are compliant with the European Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Directive

- RoHS:Y compliance is based on present information and belief, this equipment/part number complies with the European Union RoHS Directive, 2002/95/EC, and amending and guidance documents, and does not contain any restricted substances above the homogeneous materials' maximum concentration values, except for selected exemptions allowed by law (excluding the exemption for lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission as well as network management for telecommunications).

- RoHS:YL compliance is based on present information and belief, this equipment/part number complies with the European Union RoHS Directive, 2002/95/EC, and amending and guidance documents, and does not contain any restricted substances above the homogeneous materials' maximum concentration values, except for selected exemptions allowed by law (including the exemption for lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission as well as network management for telecommunications).

- If a part description contained in a parts list does not contain RoHS:Y or RoHS:YL in its description, this indicates that the part is not RoHS compliant or the information necessary to confirm its compliance has yet to be provided by the product team.

11.4 Managing Disk Controller Batteries

This section applies only to Exadata systems prior to X6 that use batteries. Newer systems have CVPM02 (Cache Vault), which is a super cap and not a battery.

- About Disk Controller Batteries
 The disk controllers in Oracle Exadata storage servers and database servers have battery-backed write cache to accelerate write performance.

- Monitoring Batteries in the Database Servers

- Replacing Batteries in Disk Controllers
11.4.1 About Disk Controller Batteries

The disk controllers in Oracle Exadata storage servers and database servers have battery-backed write cache to accelerate write performance.

Note:

This applies only to Exadata systems prior to X6 that use batteries. Newer systems have CVPM02 (Cache Vault), which is a super cap and not a battery.

If the battery charge capacity degrades such that the battery can no longer protect the cached data for a power loss of 48 hours or more, then the write cache is disabled and the disk controller switches to write through mode. This results in reduced write performance, but there is no data loss. Oracle Exadata Storage Servers generate an alert when battery charge capacity is insufficient or the temperature is high, and when the battery should be replaced.

Battery charge capacity degrades over time, and its life expectancy is inversely proportional to the operating temperature. The worst case life expectancy of the battery in Oracle Exadata Rack is as follows:

<table>
<thead>
<tr>
<th>Inlet Ambient Temperature</th>
<th>Battery Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25 degrees Celsius (77 degrees Fahrenheit)</td>
<td>3 years</td>
</tr>
<tr>
<td>< 32 degrees Celsius (89.6 degrees Fahrenheit)</td>
<td>2 years</td>
</tr>
</tbody>
</table>

11.4.2 Monitoring Batteries in the Database Servers

The battery charge capacity in the database servers can be monitored using the following command:

```
# /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -a0 | grep "Full Charge" -A5 | sort \n| grep Full -A1
```

The following is an example of the output from the command:

```
Full Charge Capacity: 1357 mAh
Max Error: 2 %
```

Proactive battery replacement should be done on batteries that show capacity less than 800 mAh and have maximum error less than 10%. Immediately replace any battery that has less than 674 mAh or has maximum error more than 10%.

The battery temperature can be monitored using the following command:

```
/opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -a0 | grep BatteryType; \n/opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -a0 | grep -i temper
```

The following is an example of the output from the command:

```
BatteryType: iBBU08
Temperature: 38 C
```
If the battery temperature is greater than or equal to 55 degrees Celsius, then determine the cause, and correct the problem.

Note:
Exadata Storage Servers generate an alert when battery charge capacity is insufficient or the temperature is high, and when the battery should be replaced.

11.4.3 Replacing Batteries in Disk Controllers

If the battery charge capacity in the disk controllers falls below the minimum threshold, then Oracle will replace the failed batteries at no extra charge, if the system is covered either by the Oracle Premier Support for Systems or occurs during the warranty period.

For customers with Premier Support for Systems, Oracle attempts to proactively replace the batteries in Oracle Exadata Rack before the end of the estimated lifetime, on a best efforts basis.

11.5 Managing F20 PCIe Energy Storage Modules

Sun Flash Accelerator F20 PCIe cards are used in Oracle Exadata Database Machine X3 models.

- **About F20 PCIe Energy Storage Modules**
 The Sun Flash Accelerator F20 PCIe card includes an energy storage module (ESM) to ensure data integrity during a power interruption, functioning similar to a battery backup.

- **Replacing Flash ESM**

11.5.1 About F20 PCIe Energy Storage Modules

The Sun Flash Accelerator F20 PCIe card includes an energy storage module (ESM) to ensure data integrity during a power interruption, functioning similar to a battery backup.

Sun Flash Accelerator F20 PCIe cards accelerate performance in Oracle Exadata Rack by caching frequently-accessed Oracle Database data and avoids the need to do physical I/O to the disk in Exadata Storage Server. Write operations to the flash cards are temporarily staged in volatile local DRAM memory on the card to speed write operations. The data in the DRAM is protected by an Energy Storage Module (ESM) which provides enough electrical power, in the event of a power failure, to move the data in the DRAM to the local flash.

The flash modules used in Oracle Exadata X3 systems have an expected endurance of 10 years or more, even in write intensive applications. Flash endurance is determined primarily by the total data written to flash across many years, as well as the type of data written. No application runs at maximum flash write IOPS for every
second of every day for years. Applications also do many reads and have periods of high and low activity, such as day versus night, quarter close, end of a trading day, and so on. A very highly write intensive application might average 25 percent of the maximum flash write IOPS when measured over many months. Each Exadata X3 storage server has a total flash write endurance of over 50 PB for typical database data. In a full rack, if the application writes an average of 250,000 8K flash IOPS (25 percent of maximum writes) for 10 years, then it will write a total of 41 PB of data to each cell. This is less than the 50 PB per cell endurance.

If the ESM does not have sufficient charge, then the F20 PCIe card operates in fail-safe write-through mode, bypassing the DRAM memory and writing all data directly to flash. This results in reduced write performance, but there is no data loss. Exadata Storage Server generates an alert when the ESM capacity is insufficient, and the ESM should be replaced.

The charge capacity of the ESM degrades over time, and its life expectancy is inversely proportional to the operating temperature. The worst case life expectancy of the ESM in Oracle Exadata Rack is as follows:

<table>
<thead>
<tr>
<th>Type of Exadata Storage Server</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata Storage Server with Sun Fire X4275 Servers</td>
<td>3 years</td>
</tr>
<tr>
<td>Exadata Storage Server with Sun Fire X4270 M2 Servers</td>
<td>4 years</td>
</tr>
</tbody>
</table>

Related Topics

- Monitoring Hard Disk Controller Write-through Caching Mode
 The hard disk controller on each Oracle Exadata Storage Server periodically performs a discharge and charge of the controller battery. During the operation, the write cache policy changes from write-back caching to write-through caching.

11.5.2 Replacing Flash ESM

If the charge capacity in the F20 PCIe ESM falls below the minimum threshold, then Oracle will replace the failed ESM modules at no extra charge, if the system is covered either by the Oracle Premier Support for Systems or occurs during the warranty period.

For customers with Premier Support for Systems, Oracle attempts to proactively replace the F20 PCIe ESM in the Oracle Exadata Rack before the end of the estimated lifetime, on a best efforts basis.

11.6 LED Status Descriptions

The LEDs on the Oracle Exadata Rack components help you identify the component that needs servicing.

- Exadata Database Server X5-2 and later LEDs
- Sun Server X4-2 Oracle Database Server LEDs
- Sun Server X3-2 Oracle Database Server LEDs
- Sun Fire X4170 M2 Oracle Database Server LEDs
11.6.1 Exadata Database Server X5-2 and later LEDs

The following table describes the color codes of the LEDs on Oracle Server X5-2 and later Oracle Database Servers.

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Oracle Server X5-2 and later Oracle Database Server fan module | - Top Fan Fault LED is off: The system is powered on and the fan module is functioning correctly.
- Top Fan Fault LED is amber: The fan module is faulty. The front and rear panel Fault-Service Required LEDs are also lit if the system detects a fan module fault. |
| Oracle Server X5-2 and later Oracle Database Server power supply | - AC OK LED is green: Power supply can be removed during a hot-swap procedure.
- Fault-Service Required LED is amber: The power supply is faulty. The front and rear panel Fault-Service Required LEDs are also lit if the system detects a power supply fault. |
Table 11-2 (Cont.) Oracle Server X5-2 and later Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Oracle Server X5-2 and later Oracle Database Server servers | • OK to Remove LED is blue: The storage drive can be removed safely during a hot-swap procedure.
• Fault-Service Required LED is amber: The system is running but the storage drive is faulty. The front and rear panel Fault-Service Required LEDs are also lit if the system detects a storage drive fault.
• OK/Activity LED is green: Data is being read from or written to the storage drive. |

The following table describes the disk status based on the LEDs.

Table 11-3 Disk Status of Oracle Server X5-2 and later Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Off (until Oracle ASM rebalance and flash cache flush complete)
• On (when it is safe to remove the disk) | On | On |

Note:

The OK to Remove LED is initially off when a disk enters predictive failure status. After both (if applicable) the Oracle ASM rebalance and flash cache flush operations complete, then it’s safe to replace the disk without compromising redundancy, and the OK to Remove LED is turned on.

11.6.2 Sun Server X4-2 Oracle Database Server LEDs

Table 11-4 describes the color codes of the LEDs on Sun Server X4-2 Oracle Database Servers.
Table 11-4 Sun Fire X4170 M2 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Server X4-2 Oracle Database Server</td>
<td></td>
</tr>
<tr>
<td>fan module</td>
<td>• Fan Status LED is green: The system is powered on and the fan module is functioning correctly.</td>
</tr>
<tr>
<td></td>
<td>• Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault.</td>
</tr>
<tr>
<td>Sun Server X4-2 Oracle Database Server</td>
<td></td>
</tr>
<tr>
<td>power supply</td>
<td>• OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.</td>
</tr>
<tr>
<td></td>
<td>• Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.</td>
</tr>
<tr>
<td></td>
<td>• AC Present LED is green: Power supply can be removed during a hot-swap procedure.</td>
</tr>
<tr>
<td>Sun Server X4-2 Oracle Database Server</td>
<td></td>
</tr>
<tr>
<td>servers</td>
<td>• OK to Remove LED is blue: The storage drive can be removed safely during a hot-swap procedure.</td>
</tr>
<tr>
<td></td>
<td>• Service Action Required LED is amber: The system is running but the storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.</td>
</tr>
<tr>
<td></td>
<td>• OK/Activity LED is green: Data is being read from or written to the storage drive.</td>
</tr>
</tbody>
</table>

Table 11-5 describes the disk status based on the LEDs.

Table 11-5 Disk Status of Sun Server X4-2 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.3 Sun Server X3-2 Oracle Database Server LEDs

Table 11-6 describes the color codes of the LEDs on Sun Server X3-2 Oracle Database Servers.
Table 11-6 Sun Server X3-2 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Server X3-2 Oracle Database Server fan module | - Fan Status LED is green: The system is powered on and the fan module is functioning correctly.
- Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| Sun Server X3-2 Oracle Database Server power supply | - OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.
- Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
- AC Present LED is green: Power supply can be removed during a hot-swap procedure. |
| Sun Server X3-2 Oracle Database Server servers | - OK to Remove LED is blue: The storage drive can be removed safely during a hot-swap procedure.
- Service Action Required LED is amber: The system is running but the storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
- OK/Activity LED is green: Data is being read from or written to the storage drive. |

Table 11-7 describes the disk status based on the LEDs.

Table 11-7 Disk Status of Sun Server X3-2 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.4 Sun Fire X4170 M2 Oracle Database Server LEDs

Table 11-8 describes the color codes of the LEDs on Sun Fire X4170 M2 Oracle Database Servers.
Table 11-8 Sun Fire X4170 M2 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Fire X4170 M2 Oracle Database Server fan module | • Fan Status LED is green: The system is powered on and the fan module is functioning correctly.
• Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| Sun Fire X4170 M2 Oracle Database Server power supply | • OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.
• Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
• AC Present LED is green: Power supply can be removed during a hot-swap procedure. |
| Sun Fire X4170 M2 Oracle Database Server servers | • OK to Remove LED is blue: The storage drive can be removed safely during a hot-swap procedure.
• Service Action Required LED is amber: The system is running but the storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
• OK/Activity LED is green: Data is being read from or written to the storage drive. |

Table 11-9 describes the disk status based on the LEDs.

Table 11-9 Disk Status of Sun Fire X4170 M2 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.5 Sun Fire X4170 Oracle Database Server LEDs

Table 11-10 describes the color codes of the LEDs on Sun Fire X4170 Oracle Database Servers.
Table 11-10 Sun Fire X4170 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Fire X4170 Oracle Database Server fan module | • Power/OK LED is green: The system is powered on and the fan module is functioning correctly.
• Service Action Required LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| Sun Fire X4170 Oracle Database Server power supply | • OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.
• Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
• AC Present LED is green: Power supply can be removed during a hot-swap procedure. |
| Sun Fire X4170 Oracle Database Server servers | • OK to Remove LED is blue: A storage drive can be removed safely during a hot-swap procedure.
• Service Action Required LED is amber: The system is running and the storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
• OK/Activity LED is green: Data is being read from or written to the storage drive. |

Table 11-11 describes the disk status based on the LEDs.

Table 11-11 Disk Status of Sun Fire X4170 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>Flashing</td>
<td>Flashing</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>Flashing</td>
<td>Flashing</td>
</tr>
</tbody>
</table>

11.6.6 Exadata Database Server X5-8 and Later LEDs

The color codes of the LEDs on Exadata Database Server X5-8 and later models are as follows:

- Dual PCIe Card Carriers (DPCC):
 - Fault-Service Required LED is amber. If lit, there is a fault condition that requires service. This LED blinks rapidly when you use Oracle ILOM to activate the LED as a locator.
• OK/Activity LED is green. A steady light indicates the PCIe is ready, and in use by the operating system. A flashing green light indicates the DPCC is booting. If the LED is not lit, then power is not present.

• Hard drives:
 – OK to Remove LED is blue. If this LED is lit, then the hard drive can safely be removed.
 – Fault-Service Required LED is amber. If this LED is lit, then a fault was detected in the hard drive. If flashing, this LED indicates the drive is not functioning correctly, which is related to a status of predictive failure, poor performance, or critical.
 – OK/Activity LED is green: This LED flashes to indicate drive activity. The rate at which the LED blinks can vary by activity. If the LED is a steady green, then the storage drive is functioning normally. If the LED is not lit, then power is not present or the Oracle ILOM boot is not complete.

• Power supplies:
 – PSU Fault-Service Required LED is amber. If this LED is lit, then a fault was detected in the power supply.
 – PSU OK LED is green. If the LED is a steady green, then the power supply is functioning normally.
 – AC OK LED is green. If the LED is a steady green, then the power supply is connected to a properly rated AC power source.

• Service processor (SP) modules:
 – Network Activity LEDs: A steady green light indicates a live network. This LED lights when the network port is active. If the LED is not lit, it indicates that there is no activity, and the link is not operational. When there is network traffic, the LED flashes green.
 – Network Speed LEDs: If the LED is not lit, it indicates a 10BASE-T link (if link up) (10 Gigabit Ethernet 10GBASE-T). If there is a steady amber light, it indicates a 100BASE-T link (Fast Ethernet 100 BASE-TX). If the light is a steady green light, it indicates a 1000BASE-T link (Gigabit Ethernet 1000BASE-T).
 – Chassis Fault-Service Required LED is amber. If this LED is lit, then a fault was detected in the system module.
 – Power/System OK LED: Green indicates full power mode. It flashes quickly during server start up and when AC power cords are connected to the server. It flashes slowly in standby power mode.
 – Temperature Fault LED is amber. If lit, this LED indicates the internal server temperature exceeds the upper threshold.
 – SP OK LED is green. When this LED is lit, it indicates the service processor and Oracle ILOM are operational. If the LED is flashing, it indicates the SP is booting.
 – Locator LED is white: This LED is lit when activated by Oracle ILOM or the recessed Locate button. This LED enables you to locate a server quickly and easily.
11.6.7 Sun Server X4-8 Oracle Database Server LEDs

Table 11-12 describes the color codes of the LEDs on Sun Server X4-8 Oracle Database Server.

Table 11-12 Sun Server X4-8 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Server X4-8 Oracle Database Server Back Panel PCIe Card Carriers (DPCC) | • ATTN Button LED: Press to remove and to add the PCIe to the operating system.
• Service Action Required (fault) LED is amber: There is a fault condition.
• OK LED is green: PCIe is ready, and in use by the operating system. |
| Sun Server X4-8 Oracle Database Server hard drives | • Hot Swap LED is blue: The hard drive can safely be removed.
• Fault is amber: The hard drive is faulty.
• Activity is green: Flashing indicates drive activity, and standby. |
| Sun Server X4-8 Oracle Database Server power supply | • PSU Fault LED is amber: The power supply has a fault condition.
• PSU OK LED is green: The power supply is on.
• AC LED is green: AC is connected to the power supply. |
| Sun Server X4-8 Oracle Database Server service processor (SP) modules | • 10/1000/1000Base-T Ethernet LED (left): Green indicates link is established at 1 gigabit. Amber and on indicates link is established at 100 megabits. Amber and off indicates link is established at 10 megabits.
• 10/1000/1000Base-T Ethernet LED (bottom) is green: There is activity on the link.
• Chassis Service Action Required (fault) LED is amber: There is a fault condition.
• Chassis Power OK LED: Green indicates full power mode. It flashes quickly during SP boot when AC power cords are connected to the server. It flashes slowly in standby power mode.
• Chassis Over-temperature LED is amber: The internal server temperature exceeds the upper threshold.
• SP module OK LED: It is green and on when SP is functional. It flashes green three times when SP module first receives power. It is yellow when SP is not functional.
• Chassis Locate LED is white: It has been activated by the ILOM or Locate button. |

Table 11-13 describes the disk status based on the LEDs.
Table 11-13 Disk Status of Sun Server X4-8 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required</td>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
</tr>
<tr>
<td>(Amber)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

11.6.8 Sun Server X2-8 Oracle Database Server LEDs

Table 11-14 describes the color codes of the LEDs on Sun Server X2-8 Oracle Database Servers.

Table 11-14 Sun Server X2-8 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Server X2-8 Oracle Database Server Back</td>
<td>• ATTN Button LED: Press to remove and to add the EM to the operating system.</td>
</tr>
<tr>
<td>Panel PCIe Express Modules (EM)</td>
<td>• Service Action Required (fault) LED is amber: There is a fault condition.</td>
</tr>
<tr>
<td></td>
<td>• OK LED is green: EM is ready, and in use by the operating system.</td>
</tr>
<tr>
<td>Sun Server X2-8 Oracle Database Server</td>
<td>• Hot Swap LED is blue: The hard drive can safely be removed.</td>
</tr>
<tr>
<td>hard drives</td>
<td>• Fault is amber: The hard drive is faulty.</td>
</tr>
<tr>
<td></td>
<td>• Activity is green: Flashing indicates drive activity, and standby.</td>
</tr>
<tr>
<td>Sun Server X2-8 Oracle Database Server Network</td>
<td>• 10 Gb Ethernet port Activity LED: Green indicates link is established at 100 megabits. Amber indicates link is at 10 megabits, and not at full capacity.</td>
</tr>
<tr>
<td>Express Modules (NEM)</td>
<td>• 10 Gb Ethernet port Link LED is green: There is activity on the link.</td>
</tr>
<tr>
<td></td>
<td>• 10/1000/1000Base-T Ethernet LED (top): Green indicates link is established at 1 gigabit. Amber and on indicates link is established at 100 megabits. Amber and off indicates link is established at 10 megabits.</td>
</tr>
<tr>
<td></td>
<td>• 10/1000/1000Base-T Ethernet LED (bottom) is green: There is activity on the link.</td>
</tr>
<tr>
<td></td>
<td>• NEM Locate LED is white: It has been activated by the ILOM or Locate button.</td>
</tr>
<tr>
<td></td>
<td>• OK to Remove LED is blue: Not used.</td>
</tr>
<tr>
<td></td>
<td>• Service Action Required (fault) LED is amber: There is a fault condition.</td>
</tr>
<tr>
<td></td>
<td>• Power OK LED is green: The system is powered on.</td>
</tr>
</tbody>
</table>
Table 11-14 (Cont.) Sun Server X2-8 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Server X2-8 Oracle Database Server power supply | • PSU Fault LED is amber: The power supply has a fault condition.
• PSU OK LED is green: The power supply is on.
• AC LED is green: AC is connected to the power supply. |
| Sun Server X2-8 Oracle Database Server service processor (SP) modules | • 10/1000/1000Base-T Ethernet LED (left): Green indicates link is established at 1 gigabit. Amber and on indicates link is established at 100 megabits. Amber and off indicates link is established at 10 megabits.
• 10/1000/1000Base-T Ethernet LED (bottom) is green: There is activity on the link.
• Chassis Service Action Required (fault) LED is amber: There is a fault condition.
• Chassis Power OK LED: Green indicates full power mode. It flashes quickly during SP boot when AC power cords are connected to the server. It flashes slowly in standby power mode.
• Chassis Over-temperature LED is amber: The internal server temperature exceeds the upper threshold.
• SP module OK LED: It is green and on when SP is functional. It flashes green three times when SP module first receives power. It is yellow when SP is not functional.
• Chassis Locate LED is white: It has been activated by the ILOM or Locate button. |

Table 11-15 describes the disk status based on the LEDs.

Table 11-15 Disk Status of Sun Server X2-8 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

11.6.9 Sun Fire X4800 Oracle Database Server LEDs

Table 11-16 describes the color codes of the LEDs on Sun Fire X4800 Oracle Database Servers.
<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Fire X4800 Oracle Database Server Back Panel PCIe Express Modules (EM) | • ATTN Button LED: Press to remove and to add the EM to the operating system.
• Service Action Required (fault) LED is amber: There is a fault condition.
• OK LED is green: EM is ready, and in use by the operating system. |
| Sun Fire X4800 Oracle Database Server hard drives | • Hot Swap LED is blue: The hard drive can safely be removed.
• Fault is amber: The hard drive is faulty.
• Activity is green: Flashing indicates drive activity, and standby. |
| Sun Fire X4800 Oracle Database Server Network Express Modules (NEM) | • 10 Gb Ethernet port Activity LED: Green indicates link is established at 100 megabits. Amber indicates link is at 10 megabits, and not at full capacity.
• 10 Gb Ethernet port Link LED is green: There is activity on the link.
• 10/1000/1000Base-T Ethernet LED (top): Green indicates link is established at 1 gigabit. Amber and on indicates link is established at 100 megabits. Amber and off indicates link is established at 10 megabits.
• 10/1000/1000Base-T Ethernet LED (bottom) is green: There is activity on the link.
• NEM Locate LED is white: It has been activated by the ILOM or Locate button.
• OK to Remove LED is blue: Not used.
• Service Action Required (fault) LED is amber: There is a fault condition.
• Power OK LED is green: The system is powered on. |
| Sun Fire X4800 Oracle Database Server power supply | • PSU Fault LED is amber: The power supply has a fault condition.
• PSU OK LED is green: The power supply is on.
• AC LED is green: AC is connected to the power supply. |
Table 11-16 (Cont.) Sun Fire X4800 Oracle Database Server LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Fire X4800 Oracle Database Server service processor (SP) modules | • 10/1000/1000Base-T Ethernet LED (left): Green indicates link is established at 1 gigabit. Amber and on indicates link is established at 100 megabits. Amber and off indicates link is established at 10 megabits.
• 10/1000/1000Base-T Ethernet LED (bottom) is green: There is activity on the link.
• Chassis Service Action Required (fault) LED is amber: There is a fault condition.
• Chassis Power OK LED: Green indicates full power mode. It flashes quickly during SP boot when AC power cords are connected to the server. It flashes slowly in standby power mode.
• Chassis Over-temperature LED is amber: The internal server temperature exceeds the upper threshold.
• SP module OK LED: It is green and on when SP is functional. It flashes green three times when SP module first receives power. It is yellow when SP is not functional.
• Chassis Locate LED is white: It has been activated by the ILOM or Locate button. |

Table 11-17 describes the disk status based on the LEDs.

Table 11-17 Disk Status of Sun Fire X4800 Oracle Database Server Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>Flashing</td>
<td>Flashing</td>
<td>Flashing</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

11.6.10 Exadata Storage Server X7-2 and X8-2 LEDs

The following table describes the color codes of the LEDs on Exadata Storage Server X7-2 and X8-2 servers.
Table 11-18 Exadata Storage Server X7-2 and X8-2 LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata Storage Server fan module</td>
<td>• Top Fan Fault LED is off: The system is powered on and the fan module is functioning correctly.</td>
</tr>
<tr>
<td></td>
<td>• Top Fan Fault LED is amber: The fan module is faulty. The front and rear panel Fault-Service Required LEDs are also lit if the system detects a fan module fault.</td>
</tr>
<tr>
<td>Exadata Storage Server power supply</td>
<td>• Fault-Service Required LED is amber: The power supply is faulty. The front and rear panel Fault-Service Required LEDs are also lit if the system detects a power supply fault.</td>
</tr>
<tr>
<td></td>
<td>• AC OK LED is green: Power supply can be removed during a hot-swap procedure.</td>
</tr>
<tr>
<td>Exadata Storage Servers</td>
<td>• OK to Remove LED is blue: The storage drive can be removed safely during a hot-swap procedure.</td>
</tr>
<tr>
<td></td>
<td>• Fault-Service Required LED is amber: The system is running but the storage drive is faulty. The front and rear panel Fault-Service Required LEDs are also lit if the system detects a storage drive fault.</td>
</tr>
<tr>
<td></td>
<td>• OK/Activity LED is green: Data is being read from or written to the storage drive.</td>
</tr>
<tr>
<td></td>
<td>• Do Not Service LED is white/on: The storage server should not be powered off for services; otherwise it could cause a forced dismount of the Oracle Automatic Storage Management (Oracle ASM) disk group and compromise data availability.</td>
</tr>
<tr>
<td></td>
<td>• Do Not Service LED is off: The storage server can be powered off for services.</td>
</tr>
</tbody>
</table>

The following table describes the disk status based on the LEDs.

Table 11-19 Disk Status of Exadata Storage Server X7-2 and X8-2 Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault-Service Required LED (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove LED (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.11 Exadata Storage Server X5-2 Servers

Table 11-20 describes the color codes of the LEDs on Exadata Storage Server X5-2 Servers.
Table 11-20 LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata Storage Server X5-2 Servers fan module</td>
<td>• Fan Status LED is off: The system is powered on and the fan module is functioning correctly.</td>
</tr>
<tr>
<td></td>
<td>• Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault.</td>
</tr>
<tr>
<td>Exadata Storage Server X5-2 Servers power supply</td>
<td>• OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.</td>
</tr>
<tr>
<td></td>
<td>• Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.</td>
</tr>
<tr>
<td></td>
<td>• AC Present LED is green: Power supply can be removed during a hot-swap procedure.</td>
</tr>
<tr>
<td>Exadata Storage Server X5-2 Servers servers</td>
<td>• OK to Remove LED is blue: A storage drive can safely be removed during a hot-swap procedure.</td>
</tr>
<tr>
<td></td>
<td>• Service Action Required LED is amber: The storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.</td>
</tr>
<tr>
<td></td>
<td>• OK/Activity LED is green: Data is being read from or written to the storage drive.</td>
</tr>
</tbody>
</table>

Table 11-21 describes the disk status based on the LEDs.

Table 11-21 Disk Status of Exadata Storage Server X5-2 Servers Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.12 Exadata Storage Server X4-2L Servers

Table 11-22 describes the color codes of the LEDs on Exadata Storage Server X3-2 Servers.
Table 11-22 LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Exadata Storage Server X4-2L Servers fan module | • Fan Status LED is green: The system is powered on and the fan module is functioning correctly.
• Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| Exadata Storage Server X4-2L Servers power supply | • OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.
• Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
• AC Present LED is green: Power supply can be removed during a hot-swap procedure. |
| Exadata Storage Server X4-2L Servers servers | • OK to Remove LED is blue: A storage drive can safely be removed during a hot-swap procedure.
• Service Action Required LED is amber: The storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
• OK/Activity LED is green: Data is being read from or written to the storage drive. |

Table 11-25 describes the disk status based on the LEDs.

Table 11-23 Disk Status of Exadata Storage Server X4-2L Servers Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.13 Exadata Storage Server X3-2 Servers

Table 11-24 describes the color codes of the LEDs on Exadata Storage Server X3-2 Servers.
Table 11-24 LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Fan Status LED | - Fan Status LED is green: The system is powered on and the fan module is functioning correctly.
- Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| OK to Remove LED | - OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.
- Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
- AC Present LED is green: Power supply can be removed during a hot-swap procedure. |
| OK to Remove LED | - OK to Remove LED is blue: A storage drive can safely be removed during a hot-swap procedure.
- Service Action Required LED is amber: The storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
- OK/Activity LED is green: Data is being read from or written to the storage drive. |

Table 11-25 describes the disk status based on the LEDs.

Table 11-25 Disk Status of Exadata Storage Server X3-2 Servers Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.14 Exadata Storage Server with Sun Fire X4270 M2 Servers

Table 11-26 describes the color codes of the LEDs on Exadata Storage Server with Sun Fire X4270 M2 Servers.
Table 11-26 LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Exadata Storage Server with Sun Fire X4270 M2 Servers fan module | • Fan Status LED is green: The system is powered on and the fan module is functioning correctly.
• Fan Status LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| Exadata Storage Server with Sun Fire X4270 M2 Servers power supply | • OK to Remove LED is green: The power supply can be removed safely during a hot-swap procedure.
• Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
• AC Present LED is green: Power supply can be removed during a hot-swap procedure. |
| Exadata Storage Server with Sun Fire X4270 M2 Servers servers | • OK to Remove LED is blue: A storage drive can safely be removed during a hot-swap procedure.
• Service Action Required LED is amber: The storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
• OK/Activity LED is green: Data is being read from or written to the storage drive. |

Table 11-27 describes the disk status based on the LEDs.

Table 11-27 Disk Status of Exadata Storage Server with Sun Fire X4270 M2 Servers Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

11.6.15 Exadata Storage Server with Sun Fire X4275 Servers LEDs

Table 11-28 describes the color codes of the LEDs on Exadata Storage Server with Sun Fire X4275 Servers.
Table 11-28 Exadata Storage Server with Sun Fire X4275 Servers LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Exadata Storage Server with Sun Fire X4275 Servers | • OK to Remove LED is blue: A storage drive can safely be removed during a hot-swap procedure.
 • Service Action Required LED is amber: The storage drive is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a storage drive fault.
 • OK/Activity LED is green: Data is being read from or written to the storage drive. |
| Exadata Storage Server with Sun Fire X4275 Servers fan module | • Power/OK LED is green: The system is powered on and the fan module is functioning correctly.
 • Service Action Required LED is amber: The fan module is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a fan module fault. |
| Exadata Storage Server with Sun Fire X4275 Servers power supply | • AC Present LED is green: Power supply can be removed during a hot-swap procedure.
 • Service Action Required LED is amber: The power supply is faulty. The front and rear panel Service Action Required LEDs are also lit if the system detects a power supply fault.
 • OK to Remove LED is blue: The power supply can safely be removed during a hot-swap procedure. |

Table 11-29 describes the disk status based on the LEDs.

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata Storage Server with Sun Fire X4275 Servers</td>
<td></td>
</tr>
</tbody>
</table>

Table 11-29 Disk Status of Exadata Storage Server with Sun Fire X4275 Servers Based on LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Predictive Failure</th>
<th>Poor Performance</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Action Required (Amber)</td>
<td>Flashing</td>
<td>Flashing</td>
<td>On</td>
</tr>
<tr>
<td>OK to Remove (Blue)</td>
<td>Off</td>
<td>Flashing</td>
<td>Flashing</td>
</tr>
</tbody>
</table>

11.6.16 Sun Flash Accelerator F20 PCIe Card LEDs

Table 11-30 describes the color codes of the LEDs on Sun Flash Accelerator F20 PCIe cards.
Table 11-30 Sun Flash Accelerator F20 PCIe Card LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMod 3, 2, 1, 0</td>
<td>LED is green: It flashes when there is read/write activity in the corresponding FMod. It is on when the corresponding FMod is present.</td>
</tr>
<tr>
<td>ESM OK LED</td>
<td>LED is green: It is on when the ESM is adequately charged and capable of providing enough emergency power to retain data integrity in the event of a power interruption. It is off when the system is down, and it flashes when the ESM is charging.</td>
</tr>
<tr>
<td>ESM Service Required LED</td>
<td>LED is amber indicates the ESM is not retaining enough reserve power to support write-back mode. The card is functioning in write-through (caching) mode. Service is required.</td>
</tr>
<tr>
<td>Power LED</td>
<td>LED is on: Indicates the card is on.</td>
</tr>
</tbody>
</table>

11.6.17 Sun Datacenter InfiniBand Switch 36 Switch LEDs

Table 11-31 describes the color codes of the LEDs on Sun Datacenter InfiniBand Switch 36 switches.

Table 11-31 Sun Datacenter InfiniBand Switch 36 Switch LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
</table>
| Sun Datacenter InfiniBand Switch 36 chassis | • Locator LED is white: It flashes when identifying itself. It is on when there is no function, and off when disabled.
• Attention LED is amber: There is a fault condition. It flashes when there is no function.
• OK LED is green: Switch is functioning correctly. It flashes when there is no function. |
| Sun Datacenter InfiniBand Switch 36 link status | Link LED is green: It is on when link is established. It is off when link is down, and it flashes when there are symbol errors. |
| Sun Datacenter InfiniBand Switch 36 network management ports | • Link speed LED: Green indicates 1000BASE-T. Amber indicates 100BASE-T. Off indicates no link. Flashing indicates no function.
• Activity LED: Flashing indicates packet activity. On indicates no function. Off indicates no activity. |
Table 11-31 (Cont.) Sun Datacenter InfiniBand Switch 36 Switch LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun Datacenter InfiniBand Switch 36 power supply</td>
<td>• OK LED is green: Indicates 12 VDC is supplied. Flashing indicates no function.</td>
</tr>
<tr>
<td></td>
<td>• Attention LED is amber: There is a fault, and 12 VDC shut down. Flashing indicates no function.</td>
</tr>
<tr>
<td></td>
<td>• AC LED is green: AC power is present and good. Flashing indicates no function.</td>
</tr>
</tbody>
</table>

11.6.18 Cisco Nexus 9336C-FX2 Switch LEDs

This topic describes the color codes of the LEDs on Cisco Nexus 9336C-FX2 switches.

Table 11-32 Cisco Nexus 9336C-FX2 Switch LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch chassis Beacon (BCN) LED</td>
<td>• Flashing blue: Operator activated LED to identify the switch.</td>
<td>The BCN LED is located on the left side of the front of the switch</td>
</tr>
<tr>
<td></td>
<td>• Off: Default status, switch is not being identified.</td>
<td></td>
</tr>
<tr>
<td>Switch chassis Status (STS) LED</td>
<td>• Flashing amber: Switch is booting up.</td>
<td>The STS LED is located on the left side of the front of the switch</td>
</tr>
<tr>
<td></td>
<td>• Amber or Red: Temperature of the switch has exceeded the minor alarm threshold</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Off: The switch has no power.</td>
<td></td>
</tr>
<tr>
<td>Switch chassis Environment (ENV) LED</td>
<td>• Green: The fans and power supplies are functioning correctly.</td>
<td>The ENV LED is located on the left side of the front of the switch</td>
</tr>
<tr>
<td></td>
<td>• Amber: At least one power supply or fan has stopped functioning.</td>
<td></td>
</tr>
<tr>
<td>Cisco Nexus 9336C-FX2 network ports</td>
<td>• Green: The port admin state is enabled, Small form-factor pluggable (SFP) transceiver is present, and the interface is connected.</td>
<td>The port LEDs appear as triangles pointing up or down to the nearest port.</td>
</tr>
<tr>
<td></td>
<td>• Amber: The port admin state is disabled, the SFP is absent, or both.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Off: The port admin state is enabled, SFP is present, but the interface is not connected.</td>
<td></td>
</tr>
</tbody>
</table>
Table 11-32 (Cont.) Cisco Nexus 9336C-FX2 Switch LED Status Descriptions

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Status</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch chassis lane link</td>
<td>• One or more are lit: The lane is being checked</td>
<td>The Lane Link LEDs indicate which of the break out lanes are being checked.</td>
</tr>
<tr>
<td></td>
<td>• None: All four lanes are being checked</td>
<td></td>
</tr>
<tr>
<td>Power supply OK and Fault LEDs</td>
<td>• OK-Green, Fault-Off: Power supply is functioning correctly.</td>
<td>The power supply LEDs are located on the left front portion of the power</td>
</tr>
<tr>
<td></td>
<td>• OK-Flashing Green, Fault-Off: Power supply is connected to a power</td>
<td>supply. Combination of states indicated by the Okay and Fault LEDs indicate</td>
</tr>
<tr>
<td></td>
<td>source but not outputting power to the switch. The power supply</td>
<td>the status for the module.</td>
</tr>
<tr>
<td></td>
<td>might not be installed in the chassis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OK-Off, Fault-Off: Power supply is not receiving power or is shut</td>
<td></td>
</tr>
<tr>
<td></td>
<td>down.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OK-Green, Fault-Flashing Amber: Power supply warning, indicating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>possible high voltage, high power, low voltage, power supply warning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>condition, or power supply fan not operating correctly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OK-Green, Fault-Amber: Power supply failure.</td>
<td></td>
</tr>
<tr>
<td>Fan Module STS LED</td>
<td>• Green: Fan module is operating correctly.</td>
<td>The fan module LED is located below the air holes on the front of the</td>
</tr>
<tr>
<td></td>
<td>• Red: Fan module is not operational.</td>
<td>module.</td>
</tr>
<tr>
<td></td>
<td>• Off: Fan module does not have power.</td>
<td></td>
</tr>
</tbody>
</table>

11.7 Parts and Repair Procedures for Oracle Database Servers

Each server model has a different layout of internal components, different replaceable parts and different repair procedures.

- **Oracle Server X8-2 and X8M-2 Database Server Parts**
- **Oracle Server X7-2 Oracle Database Server Parts**
- **Oracle Server X6-2 Oracle Database Server Parts**
- **Oracle Server X5-2 Oracle Database Server Parts**
- **Sun Server X4-2 Oracle Database Server Parts**
 The Exadata X4–2 Database Machine has several replaceable parts.
- **Sun Server X3-2 Oracle Database Server Parts**
 The Sun Server X3-2 Database Machine has several replaceable parts.
• Sun Fire X4170 M2 Oracle Database Server Parts
• Sun Fire X4170 Oracle Database Server Parts
• Oracle Server X8M-8 and X8-8 Database Server Parts
• Oracle Server X7-8 Oracle Database Server Parts
• Oracle Server X5-8 and X6-8 Oracle Database Server Parts
• Sun Server X4-8 Oracle Database Server Parts
• Sun Server X2-8 Oracle Database Server Parts
• Sun Fire X4800 Oracle Database Server Parts

11.7.1 Oracle Server X8-2 and X8M-2 Database Server Parts

The following image shows the front view of Oracle Server X8-2 and X8M-2 Database Servers.

Figure 11-1 Front View of Oracle Server X8-2 and X8M-2 Database Servers

The following image shows the rear view of the Oracle Server.

Figure 11-2 Rear View of Oracle Server X8-2 and X8M-2 Database Servers

The following table lists the replaceable parts for Oracle Server X8-2 and X8M-2 database servers. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-33 Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

Chapter 11 Parts and Repair Procedures for Oracle Database Servers
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7339763</td>
<td>BD LP DUAL SFP28 ADAPTER WHITNEY+ PCIe3.0x8</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See "Servicing PCIe Cards (CRU)" in Oracle Exadata X8-2 Database Server Service Manual at http://docs.oracle.com/cd/E93359_01/html/E93386/gqvjk.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-33 (Cont.) Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7330698</td>
<td>DIMM, 32 GB, RDIMM, DDR4, 2666 2Rx4 1.2V</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing the DIMMs (CRU)" in Oracle Exadata X8-2 Database Server Service Manual at http://docs.oracle.com/cd/E93359_01/html/E93386/gqvkr.html#scrolltoc</td>
</tr>
</tbody>
</table>
| 8200116 | Power supply, AC, A266, F, 12V, 1200W | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right.
The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-33 (Cont.) Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8200428</td>
<td>CPU INTEL CLX P8260 (B1) 2.4 GHz 165W 24c 8S 1TB (S-RF9H)</td>
<td>DBO</td>
<td>FRU</td>
<td>See "Servicing Processors (FRU)" in Oracle Exadata X8-2 Database Server Service Manual at http://docs.oracle.com/cd/E93359_01/html/E93386/gqtmk.html#scrolltoc</td>
</tr>
</tbody>
</table>

Table 11-33 (Cont.) Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7104073</td>
<td>Assembly, Dual 40Gb/Sec (4x) QDR RDMA Fabric Host Channel Adapter Module M3</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>

4. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```

See Also: Oracle Exadata System Software User's Guide
Table 11-33 (Cont.) Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-33 (Cont.) Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7119792 (X8M-2)</td>
<td>CX5 100GbE Adapter Dual Port QSFP28</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See Verifying the InfiniBand Transport Layer systems based on a RoCE Network Layer Configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>

See Also: The CheckHWnFWProfile Utility
Table 11-33 (Cont.) Replacement Parts for Oracle Server X8-2 and X8M-2 Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Press F2 after restarting the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Set the boot order.</td>
</tr>
</tbody>
</table>

11.7.2 Oracle Server X7-2 Oracle Database Server Parts

The following image shows the front view of Oracle Server X7-2 Oracle Database Server.
The following image shows the rear view of Oracle Server.

Figure 11-4 Rear View of X7-2 Oracle Database Server

The following table lists the replaceable parts for X7-2 Oracle Server. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-34 Replacement Parts for Oracle Server X7-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1719 | Assembly, slim-rail, 1U - 2U, snap in | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
Table 11-34 (Cont.) Replacement Parts for Oracle Server X7-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>370-5621</td>
<td>3 volt lithium battery</td>
<td>DBO</td>
<td>FRU</td>
<td>See “Servicing the Battery (CRU)” in Oracle Server X7-2 Service Manual at http://docs.oracle.com/cd/E72435_01/html/E72445/gqviv.html#scrolltoc</td>
</tr>
<tr>
<td>7322171</td>
<td>Cable, interlock, 125 mm</td>
<td>DBO</td>
<td>FRU</td>
<td>See “Servicing Other Cables” in Oracle Server X7-2 Service Manual at http://docs.oracle.com/cd/E72435_01/html/E72445/gqvev.html#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7046442</td>
<td>Assembly, Dual 40Gb/Sec (4x) QDR InfiniBand Host Channel Adapter Module M3</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>

See Also: Oracle Exadata System Software User’s Guide
Table 11-34 (Cont.) Replacement Parts for Oracle Server X7-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7051223 | Assembly, Dual 25 GbE SFP28 LP, X8 PCIe 3.0, RoHS:Y | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 7330698 | DIMM, 32 GB, RDIMM, DDR4, 2666 | DBO | CRU | See "Servicing the DIMMs (CRU)" in Oracle Server X7-2 Service Manual at http://docs.oracle.com/cd/E72435_01/html/E72445/gqvkr.html#scrolltoc |
Table 11-34 (Cont.) Replacement Parts for Oracle Server X7-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7333459</td>
<td>Power supply, AC, A266, F, 12V, 1200W</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Replace the CMA.</td>
</tr>
</tbody>
</table>
Table 11-34 (Cont.) Replacement Parts for Oracle Server X7-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-34 (Cont.) Replacement Parts for Oracle Server X7-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

11.7.3 Oracle Server X6-2 Oracle Database Server Parts

The following image shows the front view of Oracle Server X6-2 Oracle Database Server.

Figure 11-5 Front View of Oracle Server X6-2 Oracle Database Server

The following image shows the rear view of Oracle Server X6-2 Oracle Database Server.

The top hard disk drives are, from left to right HDD1, and HDD3. The lower drives are, from left to right, HDD0, and HDD2.

Figure 11-6 Rear View of Oracle Server X6-2 Oracle Database Server

The following table lists the replaceable parts for X6-2 Oracle Server. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-35 Replacement Parts for Oracle Server X6-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1719</td>
<td>Assembly, slim-rail, 1U - 2U, snap in</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-35 (Cont.) Replacement Parts for Oracle Server X6-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7014226</td>
<td>Cable, interlock, 125 mm</td>
<td>DBO</td>
<td>FRU</td>
<td>See "Servicing the Power, FIM, Disk Backplane Data, and DVD Cables" in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/gnyov.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-35 (Cont.) Replacement Parts for Oracle Server X6-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7046442</td>
<td>Assembly, dual port, QDR CX3, host channel adapter</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See “Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See Also: Oracle Exadata System Software User’s Guide</td>
</tr>
</tbody>
</table>
Table 11-35 (Cont.) Replacement Parts for Oracle Server X6-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7078072</td>
<td>DIMM, 32 GB, RDIMM, DDR4, 2400</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing the DIMMs (CRU)” in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/z40003f01425075.htm#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>7079395</td>
<td>Power supply, AC, A256, F, 12V, 600W</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies. 2. See “Servicing Power Supplies (CRU)” in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/z40000091014153.html#scrolltoc 3. Replace the CMA.</td>
</tr>
<tr>
<td>7085209</td>
<td>HBA, 12 Gbps SAS PCIe 8-port internal RAID with flash module</td>
<td>DBO</td>
<td>FRU</td>
<td>See “Servicing the Internal HBA Card (FRU)” in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/goeht.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-35 (Cont.) Replacement Parts for Oracle Server X6-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7086346</td>
<td>Cable, super cap, 620M, 6-pin, straight, SAS3 HBA</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing the Internal HBA SAS Cable assembly” in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/z40003eb1420346.html#scrolltoc</td>
</tr>
<tr>
<td>7095106</td>
<td>CPU, E5-2699 v4, 2.2 GHz, 145W, 22 core, C-1 (SR1XD)</td>
<td>DBO</td>
<td>FRU</td>
<td>See "Servicing Processors (FRU)" in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/z40001d31037480.html#scrolltoc</td>
</tr>
<tr>
<td>7097205</td>
<td>Assembly, 8-slot backplane, 1U/2U</td>
<td>DBO</td>
<td>FRU</td>
<td>See "Servicing the Disk Backplane (FRU)" in Oracle Server X6-2 Service Manual at http://docs.oracle.com/cd/E62159_01/html/E62171/z40011771417642.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-35 (Cont.) Replacement Parts for Oracle Server X6-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

11.7.4 Oracle Server X5-2 Oracle Database Server Parts

Figure 11-7 shows the front view of Oracle Server X5-2 Oracle Database Server.

Figure 11-7 Front View of Oracle Server X5-2 Oracle Database Server

Figure 11-8 shows the rear view of Oracle Server X5-2 Oracle Database Server.

The top hard disk drives are, from left to right HDD1, and HDD3. The lower drives are, from left to right, HDD0, and HDD2.

Figure 11-8 Rear View of Oracle Server X5-2 Oracle Database Server

Table 11-36 lists the replaceable parts for Oracle Server X5-2 Oracle Database Servers.
Table 11-36 Replacement Parts for Oracle Server X5-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1719</td>
<td>Assembly, slim-rail, 1U - 2U, snap in</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-36 (Cont.) Replacement Parts for Oracle Server X5-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7046442</td>
<td>Assembly, dual port, QDR CX3, host channel adapter</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See “Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the</td>
</tr>
</tbody>
</table>
Table 11-36 (Cont.) Replacement Parts for Oracle Server X5-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

Following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-36 (Cont.) Replacement Parts for Oracle Server X5-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7079395 | Power supply, AC, A256, F, 12V, 600W | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right.
The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-36 (Cont.) Replacement Parts for Oracle Server X5-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Press F2 after restarting the server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Set the boot order.</td>
</tr>
</tbody>
</table>
11.7.5 Sun Server X4-2 Oracle Database Server Parts

The Exadata X4–2 Database Machine has several replaceable parts.

The following image shows the front view of Sun Server X4-2 Oracle Database Server.

![Figure 11-9 Front View of Sun Server X4-2 Oracle Database Server](image)

The following image shows the rear view of Sun Server X4-2 Oracle Database Server.

![Figure 11-10 Rear View of Sun Server X4-2 Oracle Database Server](image)

The following tables lists the replaceable parts for Sun Server X4-2 Oracle Database Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

See Also:

Table 11-37 Replacement Parts for Sun Server X4-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7013526</td>
<td>Fan module</td>
<td>HS</td>
<td>CRU</td>
<td>See "Servicing Fan Modules (CRU)" in Sun Server X4-2 Service Manual at http:///docs.oracle.com/cd/E36975_01/html/E38045/z4000091014194.html#scrolltoc</td>
</tr>
<tr>
<td>7018701</td>
<td>DIMM, 16 GB, DDR3, 2RX4, 1600, 1.35 V</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing the DIMMs (CRU)" in Sun Server X4-2 Service Manual at http:///docs.oracle.com/cd/E36975_01/html/E38045/z40003f01425075.html#scrolltoc</td>
</tr>
<tr>
<td>7020774</td>
<td>Heat sink, CPU 1U, 60 mm FIN</td>
<td>DBO</td>
<td>FRU</td>
<td>See "Servicing Storage Drives (CRU)" in Sun Server X4-2 Service Manual at http:///docs.oracle.com/cd/E36975_01/html/E38045/z4000091011460.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-37 (Cont.) Replacement Parts for Sun Server X4-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7046442</td>
<td>Assembly, dual port, QDR CX3, host channel adapter</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See "Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>7048710</td>
<td>1-slot PCI Express riser assembly</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Risers (CRU)" in Sun Server X4-2 Service Manual at http://docs.oracle.com/cd/E36975_01/html/E38045/z40000f91037394.html#scrolltoc</td>
</tr>
<tr>
<td>7057184</td>
<td>Assembly, battery carrier remote</td>
<td>HS</td>
<td>FRU</td>
<td>"Replacing a Disk Controller BBU on a Database Server"</td>
</tr>
</tbody>
</table>
Table 11-37 (Cont.) Replacement Parts for Sun Server X4-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Press F2 after restarting the server.
3. Set the boot order. |
| 7060020 | Universal upgrade remote battery kit | EBO | FRU | "Replacing a Disk Controller BBU on a Database Server" |
| 7060951 | Power supply, AC, A256, F, 12V, 600W | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right.
The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
Table 11-37 (Cont.) Replacement Parts for Sun Server X4-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7069232</td>
<td>CPU, E5-2697 v2, 12-core, 2.7 GHz</td>
<td>DBO</td>
<td>FRU</td>
<td>See "Servicing Processors (FRU)" in Sun Server X4-2 Service Manual at http://docs.oracle.com/cd/E36975_01/html/E38045/z40001d31037480.html#scrolltoc</td>
</tr>
</tbody>
</table>

Related Topics

• Oracle Exadata System Software User’s Guide

11.7.6 Sun Server X3-2 Oracle Database Server Parts

The Sun Server X3-2 Database Machine has several replaceable parts.

The following image shows the front view of Sun Server X3-2 Oracle Database Server.

Figure 11-11 Front View of Sun Server X3-2 Oracle Database Server

The following image shows the rear view of Sun Server X3-2 Oracle Database Server.

Figure 11-12 Rear View of Sun Server X3-2 Oracle Database Server

The following table lists the replaceable parts for Sun Server X3-2 Oracle Database Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-38 Replacement Parts for Sun Server X3-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-3993</td>
<td>Battery, 3V, 390mAh, LITH, COIN</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing the Battery (CRU)” in Sun Server X3-2 (formerly Sun Fire X4170 M3) Service Manual at http://docs.oracle.com/cd/E22368_01/html/E27242/z40003f01423753.htm#scrolltoc</td>
</tr>
<tr>
<td>350-1719</td>
<td>Assembly, slim-rail, 1U-2U Snap-in</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See “Attach Tool-less Slide-Rail Assemblies” in Sun Server X3-2 (formerly Sun Fire X4170 M3) Installation Guide at http://docs.oracle.com/cd/E22368_01/html/E27242/z4000671011466.html#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>375-3696</td>
<td>InfiniBand (CX2) dual port CX2 4xQDR PCI-e</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See “Servicing PCIe Cards (CRU)” in Sun Server X3-2 (formerly Sun Fire X4170 M3) Service Manual at http://docs.oracle.com/cd/E22368_01/html/E27242/z40000f91037409.html#z40000f91407682</td>
</tr>
</tbody>
</table>
Note: If the drive is part of the ZFS root pool, then see http://docs.oracle.com/cd/E53394_01/html/E54801/gitgntn.html |
Table 11-38 (Cont.) Replacement Parts for Sun Server X3-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7020774</td>
<td>Heat sink, CPU 1U, 60 mm FIN</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
</tbody>
</table>
Table 11-38 (Cont.) Replacement Parts for Sun Server X3-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7026878</td>
<td>CPU, E5-2690, 2.9 GHz Intel 8-Core 135 W, RoHS:Y</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-38 (Cont.) Replacement Parts for Sun Server X3-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7047410 | Power supply, AC, A256, 12V, 600W | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
Table 11-38 (Cont.) Replacement Parts for Sun Server X3-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7047503</td>
<td>Assembly, 6 Gb SAS RAID disk PCIe HBA, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>

2. See “Servicing PCIe Cards (CRU)” in Sun Server X3-2 (formerly Sun Fire X4170 M3) Service Manual at http://docs.oracle.com/cd/E22368_01/html/E27242/z40000f91037409.html#z40000f91407682

3. Verify the new hardware meets the hardware and firmware specifications using the following command:

 /opt/oracle.SupportTools/CheckHWnFWprofile

Note: Do not run any controller commands in the service manual when replacing the disk.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7050794</td>
<td>6 Gb SAS RAID PCI battery module (LiON), BBU-08, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See Sun Storage 6 Gb SAS PCIe RAID HBA, Internal Installation Guide For HBA Models SGX-SAS6-R-INT-Z and SG-SAS6-R-INT-Z at http://docs.oracle.com/cd/E19221-01/html/E22410/index.html</td>
</tr>
<tr>
<td>7057184</td>
<td>Assembly, battery carrier remote</td>
<td>HS</td>
<td>FRU</td>
<td>"Replacing a Disk Controller BBU on a Database Server"</td>
</tr>
</tbody>
</table>
Table 11-38 (Cont.) Replacement Parts for Sun Server X3-2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7060020</td>
<td>Universal upgrade remote battery kit</td>
<td>EBO</td>
<td>FRU</td>
<td>"Replacing a Disk Controller BBU on a Database Server"</td>
</tr>
</tbody>
</table>

Related Topics

• *Oracle Exadata System Software User’s Guide*

11.7.7 Sun Fire X4170 M2 Oracle Database Server Parts

The following image shows the front view of Sun Fire X4170 M2 Oracle Database Server.

Figure 11-13 Front View of Sun Fire X4170 M2 Oracle Database Server

1. Hard disk drives. The top drives are, from left to right HDD1, and HDD3. The lower drives are, from left to right, HDD0, and HDD2.

The following image shows the rear view of Sun Fire X4170 M2 Oracle Database Server.

Figure 11-14 Rear View of Sun Fire X4170 M2 Oracle Database Server

1. InfiniBand host channel adapter
2. Gigabit Ethernet ports

The following table lists the replaceable parts for Sun Fire X4170 M2 Oracle Database Servers.

> **Note:**
>
> All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-39 Replacement Parts for Sun Fire X4170 M2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-2233</td>
<td>Type A247 760 watt power supply, RoHS:Y</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies. 2. See "Servicing Power Supplies" in Sun Fire X4170 M2 Server Service Manual at http://docs.oracle.com/cd/E19762-01/E22369-02/hotswap.html#50581538_pgflid-1098206 3. Replace the CMA.</td>
</tr>
<tr>
<td>371-4889</td>
<td>2.93 GHz Intel 6-Core Xeon X5670, 12 MB, 95 W, RoHS:Y</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See "Servicing CPUs" in Sun Fire X4170 M2 Server Service Manual at http://docs.oracle.com/cd/E19762-01/E22369-02/motherboard_x4170.html#50581523_23425</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 371-4919 | 1U Extended rail rack mount kit | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
| 371-4982 | 6 GB SAS RAID PCI battery module, RoHS:Y (LiON), BBU-08 | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
| 371-4984 | Six-Core Intel Xeon X5675 processors (3.06 GHz), 12 MB, 95 W, RoHS:Y | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
| 375-3696 | InfiniBand (CX2) dual port CX2 4xQDR PCI-e | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
Table 11-39 (Cont.) Replacement Parts for Sun Fire X4170 M2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>375-3701</td>
<td>6 Gb SAS RAID disk PCIe HBA, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Verify the new hardware meets the hardware and firmware specifications using the following command: /opt/oracle.SupportTools/CheckHwnFWprofile</td>
</tr>
<tr>
<td>375-3617</td>
<td>Dual 10 GbE SFP+LP, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td></td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 541-4081 | System board assembly, RoHS:Y | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
3. Verify the new hardware meets the hardware and firmware specifications using the following command: `/opt/oracle.SupportTools/CheckHWnFWprofile`. |
Table 11-39 (Cont.) Replacement Parts for Sun Fire X4170 M2 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-2883</td>
<td>1-slot x8 PCI Express riser assembly, 1U, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Risers" in Sun Fire X4170 M2 Server Service Manual at http://docs.oracle.com/cd/E19762-01/E22369-02/motherboard_x4170.html#50581523_71527</td>
</tr>
<tr>
<td>541-2885</td>
<td>1-slot x16 PCI Express riser assembly, 1U, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Risers" in Sun Fire X4170 M2 Server Service Manual at http://docs.oracle.com/cd/E19762-01/E22369-02/motherboard_x4170.html#50581523_71527</td>
</tr>
<tr>
<td>541-2732</td>
<td>USB assembly, DVD filler panel, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>See the external service label on the top cover for replacement instructions</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Exadata System Software User's Guide

11.7.8 Sun Fire X4170 Oracle Database Server Parts

The following image shows the front view of Sun Fire X4170 Oracle Database Server.
Figure 11-15 Front View of Sun Fire X4170 Oracle Database Server

1. Hard disk drives. The top drives are, from left to right HDD1, and HDD3. The lower drives are, from left to right, HDD0, and HDD2.

The following image shows the rear view of Sun Fire X4170 Oracle Database Server.

Figure 11-16 Rear View of Sun Fire X4170 Oracle Database Server

1. RDMA Network Fabric host channel adapter
2. Gigabit Ethernet ports

The following table lists the replaceable parts for Sun Fire X4170 Oracle Database Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-40 Replacement Parts for Sun Fire X4170 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 150-3993 | Panasonic BR2032 battery, RoHS:Y for system board | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering On and Off Oracle Exadata Rack" for additional information.
| 300-2143 | 760 watt power supply, HS RoHS:Y | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
| 371-4288 | 4 GB registered DDR3-1333 DIMM, RoHS:Y | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 371-4300 | 2.53 GHz Quad-Core Intel Xeon E5540, 8MB, 80W, RoHS:Y | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4746</td>
<td>Battery module, RoHS:Y for 6 Gb SAS RAID disk PCI, BBU-07</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>371-4919</td>
<td>1U extended rail rack mount kit</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>375-3606</td>
<td>Sun dual-port QDR (40 Gb/s) InfiniBand host channel adapter PCIe, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See "Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>
Table 11-40 (Cont.) Replacement Parts for Sun Fire X4170 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>375-3644</td>
<td>6 Gb SAS RAID disk PCIe HBA, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHwFwProfile</td>
</tr>
<tr>
<td>501-7696</td>
<td>Power distribution board, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>511-1283</td>
<td>8-slot disk backplane, SAS DVD, RoHS:Y</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-40 (Cont.) Replacement Parts for Sun Fire X4170 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 530-3927 | Power distribution board to system board cable, RoHS:Y | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 530-4228 | 4x Mini SAS/SATA cable, SFF-8087 to SFF-8087, 690mm, RoHS:Y | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 540-7355 | 146 GB 10 K RPM SAS disk assembly, RoHS:Y with the following:
• Bracket
| 540-7868 | 146 GB 10 K RPM SAS disk assembly, RoHS:Y with the following:
• Bracket
| 541-2075 | Bus_bar, power, 1U +2U, RoHS:Y | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
Table 11-40 (Cont.) Replacement Parts for Sun Fire X4170 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-2112</td>
<td>Fan power board, RoHS:Y with the following:</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td>• Bottom bracket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fan board</td>
<td></td>
<td></td>
<td>3. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
<tr>
<td>541-2542</td>
<td>System board assembly with tray, RoHS:Y</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
<tr>
<td>541-2545</td>
<td>Xeon Heatsink with grease:RoHS:Y</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>541-2636</td>
<td>Light pipe assembly, RoHS:Y</td>
<td>DBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>541-2732</td>
<td>USB assembly, DVD filler panel, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>See the external service label on the top cover for replacement instructions</td>
</tr>
<tr>
<td>541-2883</td>
<td>1-slot x8 PCIe riser assembly with the following:</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td>541-2885</td>
<td>1-slot x16 PCIe riser assembly with the following:</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
</tbody>
</table>
Table 11-40 (Cont.) Replacement Parts for Sun Fire X4170 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 541-3512 | Connector board assembly, SAS DVD with the following:
• Bracket, RoHS:Y
• Connector board, SATA DVD, RoHS:Y
• Magnetic interlock switch, RoHS:Y | DBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.

Related Topics
• Oracle Exadata System Software User’s Guide

11.7.9 Oracle Server X8M-8 and X8-8 Database Server Parts

The following image shows the front view of Oracle Server X8M-8 and X8-8 Database Server.

Figure 11-17 Front View of Oracle Database Server X8M-8 and X8-8

The following image shows the rear view of Oracle Database Server X8M-8.
Figure 11-18 Rear View of Oracle Database Server X8M-8

The following image shows the rear view of Oracle Server X8-8 Database Server.

Figure 11-19 Rear View of Oracle Server X8-8 Database Server

The following table lists the replaceable parts for Oracle Database Server X8M-8 and X8-8.

Table 11-41 Replacement Parts for Oracle Database Server X8M-8 and X8-8

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-3993-01</td>
<td>BATTERY 3V 390MAH LITH COIN</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing the System Battery (CRU)" in Oracle Exadata Database Server X8-8 Service Manual at https://docs.oracle.com/cd/E93360_01/html/E96097/gsmmp.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-41 (Cont.) Replacement Parts for Oracle Database Server X8M-8 and X8-8

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7091860</td>
<td>Assembly, fan module</td>
<td>DBO</td>
<td>FRU</td>
<td>See “Servicing Fan Modules (CRU) and Fan Frames (CRU)” in Oracle Exadata Database Server X8-8 Service Manual at https://docs.oracle.com/cd/E93360_01/html/E96097/gsurh.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-41 (Cont.) Replacement Parts for Oracle Database Server X8M-8 and X8-8

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7119792 (X8M-8)</td>
<td>CX5 100GbE Adapter Dual Port QSFP28</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Cards and Carriers (CRU)" in Oracle Exadata Database Server X8-8 Service Manual at http://docs.oracle.com/cd/E93360_01/html/E96097/gnsdm.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-41 (Cont.) Replacement Parts for Oracle Database Server X8M-8 and X8-8

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7090552 | KIT, RACKRAIL, SPACER, BRACKETS, HARDWARE | IR | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
<p>| 7330699 | Assembly, RDIMM, 64 GB, DDR4, 2666, 4Rx4, 1.2v | DBO | CRU | See "Servicing DIMMs (CRU)" in Oracle Exadata Database Server X8-8 Service Manual at https://docs.oracle.com/cd/E93360_01/html/E96097/gsumt.html#scrolltoc |</p>
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-41 (Cont.) Replacement Parts for Oracle Database Server X8M-8 and X8-8

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8200431</td>
<td>CPU INTEL CLX P8268 (B1) 2.9 GHz 205W 24c 8S 1TB (S-RF95)</td>
<td>DBO</td>
<td>FRU</td>
<td>See “Servicing CPU Module (CMOD) Components (FRU)” in Oracle Exadata Database Server X8-8 Service Manual at http://docs.oracle.com/cd/E93360_01/html/E96097/gnsdq.html#scrolltoc</td>
</tr>
</tbody>
</table>

11.7.10 Oracle Server X7-8 Oracle Database Server Parts

The following image shows the front view of Oracle Server X7-8 Oracle Database Server.

Figure 11-20 Front View of Oracle Server X7-8 Oracle Database Server

The following image shows the rear view of Oracle Server X7-8 Oracle Database Server.
The following table lists the replaceable parts for Oracle Server X7-8 Database Server.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1662</td>
<td>Universal rail kit</td>
<td>IR</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7091860</td>
<td>Assembly, fan module</td>
<td>DBO</td>
<td>FRU</td>
<td>See “Servicing Fan Modules (CRU) and Fan Frames (CRU)” in Oracle Server X7-8 Service Manual at https://docs.oracle.com/cd/E71925_01/html/E71936/gsurh.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-42 (Cont.) Replacement Parts for Oracle Exadata X7-8 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7090552</td>
<td>KIT, RACKRAIL, SPACER, BRACKETS, HARDWARE</td>
<td>IR</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See “Installing the Server Into a Rack” in Oracle Server X7-8 Installation Guide at http://docs.oracle.com/cd/E71925_01/html/E71931/gqpuu.html#scrolltoc</td>
</tr>
<tr>
<td>7330699</td>
<td>Assembly, RDIMM, 64 GB, DDR4, 2666, 4Rx4, 1.2v</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing DIMMs" in Oracle Server X7-8 Service Manual at https://docs.oracle.com/cd/E71925_01/html/E71936/gsumt.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-42 (Cont.) Replacement Parts for Oracle Exadata X7-8 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

11.7.11 Oracle Server X5-8 and X6-8 Oracle Database Server Parts

The following image shows the front view of Oracle Server X5-8 Oracle Database Server.
Figure 11-22 Front View of Oracle Server X5-8 Oracle Database Server

The following image shows the back view of Oracle Server X5-8 Oracle Database Server.

Figure 11-23 Back View of Oracle Server X5-8 Oracle Database Server

The following table lists the replaceable parts for Oracle Server X5-8 and X6-8 Oracle Database Server.

See Also:

Table 11-43 Replacement Parts for Oracle Exadata X5-8 and X6-8 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1662</td>
<td>Universal rail kit</td>
<td>IR</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-43 (Cont.) Replacement Parts for Oracle Exadata X5-8 and X6-8 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7051223</td>
<td>Dual 10 GBE, I2 SFP + PCIe 2.0, LP</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing PCIe Cards and the Dual PCIe Card Carriers (DPCCs)” in Oracle Server X5-8 Service Manual at https://docs.oracle.com/cd/E56301_01/html/E56311/gnsdm.html</td>
</tr>
<tr>
<td>7064767</td>
<td>Cable assembly, mini SAS r/a to straight, 280mm</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing the SAS Cable” in Oracle Server X5-8 Service Manual at https://docs.oracle.com/cd/E56301_01/html/E56311/gnsgu.html</td>
</tr>
</tbody>
</table>
Table 11-43 (Cont.) Replacement Parts for Oracle Exadata X5-8 and X6-8 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7069359</td>
<td>Assembly, rack mount</td>
<td>IR</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage with Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 11-43 (Cont.) Replacement Parts for Oracle Exadata X5-8 and X6-8 Oracle Database Server

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7100477</td>
<td>Sun Quad Port GbE PCIe 2.0 Low Profile Adapter, UTP</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing PCIe Cards and the Dual PCIe Card Carriers (DPCCs)” in Oracle Server X5-8 Service Manual at https://docs.oracle.com/cd/E56301_01/html/E56311/gnsdm.html</td>
</tr>
</tbody>
</table>

11.7.12 Sun Server X4-8 Oracle Database Server Parts

The following image shows the front view of Sun Server X4-8 Oracle Database Server.

Figure 11-24 Front View of Sun Server X4-8 Oracle Database Server

The following image shows the rear view of Sun Server X4-8 Oracle Database Server.
The following table lists the replaceable parts for Sun Server X4-8 Oracle Database Servers.

Table 11-44 Replacement Parts for Sun Server X4-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1662</td>
<td>Universal rail kit</td>
<td>IR</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-44 (Cont.) Replacement Parts for Sun Server X4-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7046442</td>
<td>Dual port, QDR CX3, HCA</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing PCIe Cards and the Dual PCIe Card Carriers (DPCCs)” in Sun Server X4-8 Service Manual at http://docs.oracle.com/cd/E40591_01/html/E40317/gnsdm.html</td>
</tr>
<tr>
<td>7051223</td>
<td>Dual 10 GBE, I2 SFP + PCIe 2.0, LP</td>
<td>DBO</td>
<td>CRU</td>
<td>See “Servicing PCIe Cards and the Dual PCIe Card Carriers (DPCCs)” in Sun Server X4-8 Service Manual at http://docs.oracle.com/cd/E40591_01/html/E40317/gnsdm.html</td>
</tr>
</tbody>
</table>
Table 11-44 (Cont.) Replacement Parts for Sun Server X4-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7064767</td>
<td>Cable assembly, mini SAS r/a to straight, 280mm</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing the SAS Cable" in Sun Server X4-8 Service Manual at http://docs.oracle.com/cd/E40591_01/html/E40317/gnsgu.html</td>
</tr>
</tbody>
</table>
Table 11-44 (Cont.) Replacement Parts for Sun Server X4-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7069359</td>
<td>Assembly, rack mount</td>
<td>IR</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-44 (Cont.) Replacement Parts for Sun Server X4-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7100477</td>
<td>Sun Quad Port GbE PCIe 2.0 Low Profile Adapter, UTP</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Cards and the Dual PCIe Card Carriers (DPCCs)" in Sun Server X4-8 Service Manual at http://docs.oracle.com/cd/E40591_01/html/E40317/gnsmdm.html</td>
</tr>
</tbody>
</table>

11.7.13 Sun Server X2-8 Oracle Database Server Parts

The following image shows the front view of Sun Server X2-8 Oracle Database Server.
1. Power supplies.
2. Hard disk drives. The top drives are, from left to right, XL4, XL5, XL6, and XL7. The lower drives are, from left to right, XL0, XL1, XL2, and XL3.
3. CPU modules. The modules are, from bottom to top, BL0, BL1, BL2, and BL3.

The following image shows the rear view of Sun Fire X4800 Oracle Database Server.

1. Fan modules.
2. Network Express Module.
3. InfiniBand EM (CX2) dual port PCI Express modules.
The following table lists the replaceable parts for Sun Server X2-8 Oracle Database Servers.

Note:
All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
 `/opt/oracle.SupportTools/CheckHWnFWprofile` |
| 150-1204 | 3V, lithium battery for service processor, RoHS:Y | HS | CRU | |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-2159</td>
<td>Power supply unit, AC, A239, F, 12V, 165A, 2Kw</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies. 2. See "Removing and Installing a Power Supply (CRU)" in Sun Server X2-8 (formerly Sun Fire X4800 M2) Service Manual at http://docs.oracle.com/cd/E20815_01/html/E20819/gjfdt.html#scrolltoc 3. Replace the CMA.</td>
</tr>
</tbody>
</table>

Chapter 11
Parts and Repair Procedures for Oracle Database Servers

ORACLE

11-111
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

2. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
``` |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-5057</td>
<td>CPU, Intel Xeon E7-8870, 10-core, 2.4GHz, 130 W</td>
<td>DBO</td>
<td>FRU</td>
<td>1. See "Replacing a CPU and Heatsink Assembly (FRU)" in Sun Server X2-8 (formerly Sun Fire X4800 M2) Service Manual at http://docs.oracle.com/cd/E20815_01/html/E20819/gjgrp.html#scrolltoc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Verify the new hardware meets the hardware and firmware specifications using the following command: /opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
 /opt/oracle.SupportTools/CheckHWnFWprofile |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4982</td>
<td>6 Gb SAS RAID PCI battery module, RoHS:Y (LiION), BBU-08</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>

Chapter 11
Parts and Repair Procedures for Oracle Database Servers

11-115
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Verify the new hardware meets the hardware and firmware specifications using the following command: /opt/oracle.SupportTools/CheckHWWnFWprofile</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```

Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

/ opt/oracle.SupportTools/CheckHWnFWprofile |
| | | | FRU for replacement | 2. Verify the new hardware meets the hardware and firmware specifications using the following command:

/ opt/ oracle.SupportTools/CheckHWnFWprofile |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```

Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

/opt/oracle.SupportTools/CheckHWnFWprofile |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
 `/opt/oracle.SupportTools/CheckHWnFWprofile` |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
/opt/oracle.SupportTools/CheckHWnFWprofile |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>540-7637</td>
<td>Network Express Module (NEM) - 4x 10 GbE + PassThru for 4x GbE NEM</td>
<td>HS</td>
<td>CRU</td>
<td>See "Removing and Installing a NEM or a NEM Filler (CRU)" in Sun Server X2-8 (formerly Sun Fire X4800 M2) Service Manual at http://docs.oracle.com/cd/E20815_01/html/E20819/gjfse.html#scrolltoc</td>
</tr>
</tbody>
</table>
| | | | | 2. Verify the new hardware meets the hardware and firmware specifications using the following command:
| | | | | /opt/oracle.SupportTools/CheckHWnFWprofile |
Table 11-45 (Cont.) Replacement Parts for Sun Server X2-8 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 542-0300 | 300 GB 10 K RPM 2.5 inch SAS HDD and bracket | HS | CRU | See “Removing and Installing a Hard Drive (CRU)” in Sun Server X2-8 (formerly Sun Fire X4800 M2) Service Manual at http://docs.oracle.com/cd/E20815_01/html/E20819/gjfex.html#scrolltoc
Note: If the drive is part of the ZFS root pool, then see http://docs.oracle.com/cd/E53394_01/html/E54801/gitgn.html |

Related Topics
- Oracle Exadata System Software User's Guide

11.7.14 Sun Fire X4800 Oracle Database Server Parts

The following image shows the front view of Sun Fire X4800 Oracle Database Server.

Figure 11-28 Front View of Sun Fire X4800 Oracle Database Server

![Figure 11-28 Front View of Sun Fire X4800 Oracle Database Server](image-url)
1. Power supplies.

2. Hard disk drives. The top drives are, from left to right, XL4, XL5, XL6, and XL7. The lower drives are, from left to right, XL0, XL1, XL2, and XL3.

3. CPU modules. The modules are, from bottom to top, BL0, BL1, BL2, and BL3.

The following image shows the rear view of Sun Fire X4800 Oracle Database Server.

![Rear View of Sun Fire X4800 Oracle Database Server](image)

1. Fan modules.

2. Network Express Module.

3. InfiniBand EM (CX2) dual port PCI Express modules.

The following table lists the replaceable parts for Sun Fire X4800 Oracle Database Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-46 Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| | | | | 2. Verify the new hardware meets the hardware and firmware specifications using the following command:
| | | | | /opt/oracle.SupportTools/CheckHWnFWprofile |
| 150-1204 | 3V, lithium battery for service processor, RoHS:Y | HS | CRU |
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>300-2159</td>
<td>Power supply unit, AC, A239, F, 12V, 165A, 2Kw</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies. 2. See “Removing and Installing a Power Supply (CRU)” in Sun Fire X4800 Server Service Manual at http://docs.oracle.com/cd/E19140-01/html/821-0282/gjfdt.html#scrollto 3. Replace the CMA.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
```
/opt/oracle.SupportTools/
CheckHWnFWprofile
``` |
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
```
/opt/oracle.SupportTools/CheckHWnFWprofile
``` |
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

2. Verify the new hardware meets the hardware and firmware specifications using the following command: /opt/oracle.SupportTools/CheckHWnFWprofile |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 371-4982 | 6 Gb SAS RAID PCI battery module, RoHS:Y (LiON), BBU-08 | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See “Shutting Down Exadata Storage Server” for additional information.
3. Verify the new hardware meets the hardware and firmware specifications using the following command:
/opt/oracle.SupportTools/CheckHWnFWprofile |

Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

Chapter 11
Parts and Repair Procedures for Oracle Database Servers

ORACLE
11-134
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>

Chapter 11
Parts and Repair Procedures for Oracle Database Servers

11-135
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command: `/opt/oracle.SupportTools/CheckHWnFWprofile` |
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
``` |
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
``` |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
`/opt/oracle.SupportTools/CheckHWnFWprofile` |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
2. Verify the new hardware meets the hardware and firmware specifications using the following command:
/opt/oracle.SupportTools/CheckHWnFWprofile |
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FRU for replacement</td>
<td>2. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><code>/opt/oracle.SupportTools/CheckHWnFPrFile</code></td>
</tr>
</tbody>
</table>
Table 11-46 (Cont.) Replacement Parts for Sun Fire X4800 Oracle Database Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>542-0246</td>
<td>DIMM, 16 GB (2 x 8 GB), DDR3, 1066MHZ</td>
<td>DBO</td>
<td>CRU</td>
<td>1. See "Removing and Installing DIMMs (CRU)" in Sun Fire X4800 Server Service Manual at http://docs.oracle.com/cd/E19140-01/html/821-0282/gjfvw.html#scrolltoc 2. Verify the new hardware meets the hardware and firmware specifications using the following command: /opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
<tr>
<td>542-0300</td>
<td>300 GB 10 K RPM 2.5-inch SAS HDD and bracket</td>
<td>HS</td>
<td>CRU</td>
<td>See "Removing and Installing a Hard Drive (CRU)" in Sun Fire X4800 Server Service Manual at http://docs.oracle.com/cd/E19140-01/html/821-0282/gjfex.html#scrolltoc Note: If the drive is part of the ZFS root pool, then see http://docs.oracle.com/cd/E53394_01/html/E54801/gitgn.html</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Exadata System Software User's Guide
11.8 Parts for Exadata Storage Servers

Each server model has a different layout of internal components, different replaceable parts and different repair procedures.

- Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and Extended (XT) Server Parts
- Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash Parts
 The Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash server has several replaceable parts.
- Oracle Exadata Storage Server X7-2 High Capacity Server Parts
- Oracle Exadata Storage Server X7-2 Extreme Flash Parts
 The Oracle Exadata Storage Server X7-2 Extreme Flash server has several replaceable parts.
- High Capacity Exadata Storage Server X6-2 Servers Parts
- Extreme Flash Exadata Storage Server X6-2 Servers Parts
 The Oracle Exadata Storage Server X6-2 Extreme Flash server has several replaceable parts.
- High Capacity Exadata Storage Server X5-2 Servers Parts
 The High Capacity Exadata Storage Server X5-2 Server has several replaceable parts.
- Extreme Flash Exadata Storage Server X5-2 Servers Parts
- Exadata Storage Server X4-2L Servers Parts
- Exadata Storage Server X3-2L Servers Parts
- Exadata Storage Server with Sun Fire X4270 M2 Servers Parts
- Exadata Storage Server with Sun Fire X4275 Servers Parts

11.8.1 Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and Extended (XT) Server Parts

The following figure shows the front view of the Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT servers.

Figure 11-30 Front View of Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT servers

The following figure shows the rear view of the Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT servers.
Figure 11-31 Rear View of Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT servers

The following table lists the replaceable parts for Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT servers. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-47 Replacement Parts for Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 8200116 | Power Supply, A266 F, 1200W, AC Input | HS | FRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7046442 (X8-2)</td>
<td>Assembly, dual port, QDR CX3, Host Channel Adapter</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWNFWprofile</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7119792 (X8M-8)</td>
<td>CX5 100GbE Adapter Dual Port QSFP28</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See “Servicing PCIe Cards” in Oracle Exadata Storage Server X8-2 EF, HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtcq.html#scrolltoc 3. See Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration. 4. Verify the new hardware meets the hardware and firmware specifications using the following command: <code>/opt/oracle.SupportTools/CheckHWnFWprofile</code></td>
</tr>
<tr>
<td>7357761</td>
<td>Assembly, Drive, 14TB 3.5” SAS3/7200 rpm Coral with encryption</td>
<td>HS</td>
<td>FRU</td>
<td>See “Servicing Storage Drives” in Oracle Exadata Storage Server X8-2 EF, HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtcms.html#scrolltoc</td>
</tr>
<tr>
<td>7353916</td>
<td>RDIMM 16GB, DDR4 2666, 1Rx4 1.2V</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the DIMMs” in Oracle Exadata Storage Server X8-2 EF, HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtcms.html#scrolltoc</td>
</tr>
<tr>
<td>7332895</td>
<td>HBA, 12 Gbps SAS PCIe 16-port internal RAID with flash module</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Internal HBA Card and HBA Super Capacitor” in Oracle Exadata Storage Server X8-2 EF, HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtv.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-47 (Cont.) Replacement Parts for Oracle Exadata Storage Server X8M-2 and X8-2 High Capacity and XT Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>8200426</td>
<td>CPU INTEL CLX G5218 (B1) 2.3 GHz, 125W 16C 4S 1TB (S-RF8T)</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing Processors" in Oracle Exadata Storage Server X8-2 EF,HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtnk.html#scrolltoc</td>
</tr>
</tbody>
</table>
11.8.2 Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash Parts

The Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash server has several replaceable parts.

The front view of the Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash server is almost identical to the X7-2 server. The main difference is the product logo.

Figure 11-32 Front View of Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash Server

The rear view of the Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash server is almost identical to the X7-2 server. The main difference is the product logo.

Figure 11-33 Rear View of Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash Server

The following table lists the replaceable parts for Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash servers. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-48 Replacement Parts for Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-48 (Cont.) Replacement Parts for Oracle Exadata Storage Server X8M-2 and X8-2
Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 8200116 | Power Supply, A266 F, 12V, 1200W, AC Input | HS | FRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right.
The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
Table 11-48 (Cont.) Replacement Parts for Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7046442 | Assembly, dual 40Gb/Sec (4x) QDR InfiniBand Host Channel Adapter Module M3 | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
4. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```

| 7119792 | CX5 100GbE Adapter Dual Port QSFP28 (X8M-8) | DBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
4. Verify the new hardware meets the hardware and firmware specifications using the following command:

```
/opt/oracle.SupportTools/CheckHWnFWprofile
```
Table 11-48 (Cont.) Replacement Parts for Oracle Exadata Storage Server X8M-2 and X8-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7353916</td>
<td>DIMM, 16 GB, RDIMM, DDR4, 2666, 1Rx4 1.2V</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the DIMMs" in Oracle Exadata Storage Server X8-2 EF,HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtcq.html#scrolltoc</td>
</tr>
<tr>
<td>8200426</td>
<td>CPU, INTEL CLX G5218 (B1), 2.3 GHz, 125W, 16 CORE, 4S 1TB (S-RF8T)</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing Processors" in Oracle Exadata Storage Server X8-2 EF,HC, and XT Service Manual at http://docs.oracle.com/cd/E93361_01/html/E93395/gqtmnk.html#scrolltoc</td>
</tr>
</tbody>
</table>
11.8.3 Oracle Exadata Storage Server X7-2 High Capacity Server Parts

The following figure shows the front view of the Oracle Exadata Storage Server X7-2 High Capacity Server.

Figure 11-34 Front View of Oracle Exadata Storage Server X7-2 High Capacity Server

The following figure shows the rear view of the Oracle Exadata Storage Server X7-2 High Capacity Server.

Figure 11-35 Rear View of Oracle Exadata Storage Server X7-2 High Capacity Server

The following table lists the replaceable parts for Oracle Exadata Storage Server X7-2 High Capacity Servers. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-49 Replacement Parts for Oracle Exadata Storage Server X7-2 High Capacity Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1719 | Assembly, 1U-2U Snap-in, slim rail rack | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 370-5621 | 3 volt lithium battery | EBO | FRU | See "Servicing the Battery" in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/gqtfb.html#scrolltoc |
| 7333459 | Power Supply, A266, 1200W, AC Input | HS | FRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right.
The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7046442 | Assembly, dual 40Gb/Sec (4x) QDR InfiniBand Host Channel Adapter Module M3 | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
4. Verify the new hardware meets the hardware and firmware specifications using the following command:
 /opt/oracle.SupportTools/CheckHWnFWprofile |
| 7332759 | Assembly, drive, 10 TB, 3.5 inch, SAS/7200rpm | HS | FRU | See "Servicing Storage Drives" in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/gqtcsh.html#scrolltoc |
Table 11-49 (Cont.) Replacement Parts for Oracle Exadata Storage Server X7-2 High Capacity Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7341587</td>
<td>M.2,150GB,SATA, 22x80mm,SSD,INTEL, DC S3520</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Internal M.2 Flash SSDs" in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/grly.html#scrolltoc</td>
</tr>
</tbody>
</table>

11.8.4 Oracle Exadata Storage Server X7-2 Extreme Flash Parts

The Oracle Exadata Storage Server X7-2 Extreme Flash server has several replaceable parts.

The following figure shows the front view of the Oracle Exadata Storage Server X7-2 Extreme Flash server.
Figure 11-36 Front View of Oracle Exadata Storage Server X7-2 Extreme Flash Server

![Front View of Oracle Exadata Storage Server X7-2 Extreme Flash Server](image1)

The following figure shows the rear view of the Oracle Exadata Storage Server X7-2 Extreme Flash server.

Figure 11-37 Rear View of Oracle Exadata Storage Server X7-2 Extreme Flash Server

![Rear View of Oracle Exadata Storage Server X7-2 Extreme Flash Server](image2)

The following table lists the replaceable parts for Oracle Exadata Storage Server X7-2 Extreme Flash servers. Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-50 Replacement Parts for Oracle Exadata Storage Server X7-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1719 | Assembly, 1U-2U Snap-in, slim rail rack | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
Table 11-50 (Cont.) Replacement Parts for Oracle Exadata Storage Server X7-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7333459 | Power Supply, A266, 1200W, AC Input | HS | FRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right.
The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
Table 11-50 (Cont.) Replacement Parts for Oracle Exadata Storage Server X7-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7046442 | Assembly, dual 40Gb/Sec (4x) QDR InfiniBand Host Channel Adapter Module M3 | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
4. Verify the new hardware meets the hardware and firmware specifications using the following command:
 `/opt/oracle.SupportTools/CheckHWnFWprofile` |
| 7332759 | Assembly, drive, 10 TB, 3.5 inch, SAS/7200rpm | HS | FRU | See “Servicing Storage Drives” in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/gqtc.html#scrolltoc |
| 7332895 | HBA, 12 Gb SAS PCIe 16-port internal RAID with flash module | EBO | FRU | See “Servicing an Internal HBA Card and HBA Super Capacitor” in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/gqtv.html#scrolltoc |
Table 11-50 (Cont.) Replacement Parts for Oracle Exadata Storage Server X7-2 Extreme Flash

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7341587</td>
<td>M.2,150GB,SATA, 22x80mm,SSD, INTEL, DC S3520</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Internal M.2 Flash SSDs" in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/grlly.html#scrolltoc</td>
</tr>
<tr>
<td>7335943</td>
<td>Assembly, 6.4 TB eMLC flash F640 NVMe card</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing PCIe Cards" in Oracle Exadata Storage Server X7-2 EF and HC Service Manual at http://docs.oracle.com/cd/E72463_01/html/E72479/gqtcq.html#scrolltoc</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Exadata System Software User's Guide
- Maintaining the Hard Disks of Oracle Exadata Storage Servers

11.8.5 High Capacity Exadata Storage Server X6-2 Servers Parts

The following figure shows the front view of the Oracle Exadata Storage Server X6-2 High Capacity server.
The following figure shows the rear view of the Oracle Exadata Storage Server X6-2 High Capacity server.

The following table lists the replaceable parts for Oracle Exadata Storage Server X6-2 High Capacity servers.

Note:
All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-51 Replacement Parts for High Capacity Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1719 | Assembly, 1U-2U Snap-in, slim rail rack | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 370-5621 | 3 volt lithium battery | EBO | FRU | See "Servicing the Battery" in Oracle Exadata Storage Server X6-2 High Capacity Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63692/z40000f91037456.html#scrolltoc |
Table 11-51 (Cont.) Replacement Parts for High Capacity Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7044130 | Power Supply, A258, 1000W, AC Input | HS | FRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
Table 11-51 (Cont.) Replacement Parts for High Capacity Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7046442 | Assembly, dual port, QDR CX3, host channel adapter | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
3. See “Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration”.
4. Verify the new hardware meets the hardware and firmware specifications using the following command:
 /opt/oracle.SupportTools/CheckHWnFWprofile |
| 7066824 | Assembly, drive, 8 TB, 3.5 inch, SAS/ 7200rpm | HS | FRU | See “Servicing Storage Drives and Rear Drives” in Oracle Exadata Storage Server X6-2 High Capacity Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63692/z40000091011460.html#scrolltoc |
Table 11-51 (Cont.) Replacement Parts for High Capacity Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7090170</td>
<td>Flash drive, MLC, OSA ID, USB, 8 GB</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Internal USB Flash Drive" in Oracle Exadata Storage Server X6-2 High Capacity Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63692/ceiicfbd.html#scrolltoc</td>
</tr>
</tbody>
</table>

Related Topics

11.8.6 Extreme Flash Exadata Storage Server X6-2 Servers Parts

The Oracle Exadata Storage Server X6-2 Extreme Flash server has several replaceable parts.

The following figure shows the front view of the Oracle Exadata Storage Server X6-2 Extreme Flash server.

Figure 11-40 Front View of Oracle Exadata Storage Server X6-2 Extreme Flash Server

The following figure shows the rear view of the Oracle Exadata Storage Server X6-2 Extreme Flash server.

Figure 11-41 Rear View of Oracle Exadata Storage Server X6-2 Extreme Flash Server

The following table lists the replaceable parts for Oracle Exadata Storage Server X6-2 Extreme Flash servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-52 Replacement Parts for Extreme Flash Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1719 | Assembly, 1U-2U Snap-in, slim rail rack | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
| 370-5621 | 3 volt lithium battery | EBO | FRU | See "Servicing the Battery" in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/z40000f91037456.html#scrolltoc |
| 7014226 | Cable, interlock, 125 mm | EBO | FRU | See "Servicing NVMe Cables" in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/goioo.html#scrolltoc |
| 7017231 | Indicator assembly, right | EBO | FRU | See "Servicing the Front LED/USB Indicator Modules" in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/goipz.html#scrolltoc |
| 7044130 | Power Supply, A258, 1000 Watt AC Input | HS | FRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
Table 11-52 (Cont.) Replacement Parts for Extreme Flash Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7045042</td>
<td>Fan assembly, 2U, 80 x 80, Ferrite, center_rotate</td>
<td>HS</td>
<td>FRU</td>
<td>See “Servicing Fan Modules” in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/z4000091014194.html#scrolltoc</td>
</tr>
</tbody>
</table>
| 7046442 | Assembly, dual port, QDR CX3, host channel adapter | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.
3. See “Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration”.
4. Verify the new hardware meets the hardware and firmware specifications using the following command: `/opt/oracle.SupportTools/CheckHWnFWprofile` |
| 7064634 | Assembly, switch, PCI-e, X8, IDT | EBO | FRU | See “Servicing PCIe Cards” in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/z4000091037409.html#scrolltoc |
| 7078070 | DIMM, 16 GB, RDIMM, DDR4, 2400 | EBO | FRU | See “Servicing the DIMMs” in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/celcjrjg.html#scrolltoc |
Table 11-52 (Cont.) Replacement Parts for Extreme Flash Exadata Storage Server X6-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7090170</td>
<td>Flash drive, MLC, OSA ID, USB, 8 GB</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Internal USB Flash Drives" in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/ceicfb5.html#scrolltoc</td>
</tr>
<tr>
<td>7093931</td>
<td>Assembly, SSD, 3.2 TB, eMLC-NAND, SFF-2.5 inch NVMe 1.0, X4</td>
<td>HS</td>
<td>FRU</td>
<td>See "Servicing the NVMe Storage Drive" in Oracle 3.2 TB NVMe SSD User Guide at http://docs.oracle.com/cd/E65386_01/html/E65389/z40002cc9112.html#scrolltoc</td>
</tr>
<tr>
<td>7096185</td>
<td>Assembly, indicator, left</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Front LED/USB Indicator Modules" in Oracle Exadata Storage Server X6-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E62172_01/html/E63689/goipz.html#scrolltoc</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Exadata System Software User’s Guide
- Maintaining the Hard Disks of Oracle Exadata Storage Servers
11.8.7 High Capacity Exadata Storage Server X5-2 Servers Parts

The High Capacity Exadata Storage Server X5-2 Server has several replaceable parts.

The following image shows the front view of High Capacity Exadata Storage Server X5-2 Servers.

Figure 11-42 Front View of High Capacity Exadata Storage Server X5-2 Servers

The following image shows the rear view of High Capacity Exadata Storage Server X5-2 Servers.

Figure 11-43 Rear View of High Capacity Exadata Storage Server X5-2 Servers

The following table lists the replaceable parts for High Capacity Exadata Storage Server X5-2 Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-53 Replacement Parts for High Capacity Exadata Storage Server X5-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1719</td>
<td>Assembly, 1U-2U Snap-in, slim rail rack</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td>370-5621</td>
<td>3 volt lithium battery</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Battery” in Oracle Exadata Storage Server X5-2 High Capacity Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55080/z40000f91037456.html#scrolltoc</td>
</tr>
<tr>
<td>7023515</td>
<td>Disk backplane assembly, 2 rear</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing Storage Drives and Rear Drives” in Oracle Exadata Storage Server X5-2 High Capacity Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55080/z40000091011460.html#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7044130</td>
<td>Power Supply, A258, 1000W, AC Input</td>
<td>HS</td>
<td>FRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Replace the CMA.</td>
</tr>
<tr>
<td>7046442</td>
<td>Assembly, dual port, QDR CX3, host channel adapter</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See “Powering Off Database Servers” for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See “Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>/opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>7066824</td>
<td>Assembly, drive, 4 TB, 3.5 inch, SAS/7200rpm</td>
<td>HS</td>
<td>FRU</td>
<td>See “Servicing Storage Drives and Rear Drives” in Oracle Exadata Storage Server X5-2 High Capacity Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55080/z40000091011460.html#scrolltoC</td>
</tr>
<tr>
<td>7078070</td>
<td>DIMM, 8 GB, RDIMM, DDR4, 2133</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the DIMMs” in Oracle Exadata Storage Server X5-2 High Capacity Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55080/ceicjagi.html#scrolltoC</td>
</tr>
<tr>
<td>7090170</td>
<td>Flash drive, MLC, OSA ID, USB, 8 GB</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Internal USB Flash Drive” in Oracle Exadata Storage Server X5-2 High Capacity Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55080/ceiicfbd.html#scrolltoC</td>
</tr>
</tbody>
</table>
Table 11-53 (Cont.) Replacement Parts for High Capacity Exadata Storage Server X5-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

Related Topics
- [Oracle Exadata System Software User's Guide](#)

11.8.8 Extreme Flash Exadata Storage Server X5-2 Servers Parts

The following image shows the front view of Extreme Flash Exadata Storage Server X5-2 Servers.

Figure 11-44 Front View of Extreme Flash Exadata Storage Server X5-2 Servers

The following image shows the rear view of Extreme Flash Exadata Storage Server X5-2 Servers.
The following table lists the replaceable parts for Extreme Flash Exadata Storage Server X5-2 Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-54 Replacement Parts for Extreme Flash Exadata Storage Server X5-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1719 | Assembly, 1U-2U Snap-in, slim rail rack | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.
Table 11-54 (Cont.) Replacement Parts for Extreme Flash Exadata Storage Server X5-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>370-5621</td>
<td>3 volt lithium battery</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Battery” in Oracle Exadata Storage Server X5-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55031/z40000f91037456.htm#scrolltoc</td>
</tr>
<tr>
<td>7014226</td>
<td>Cable, interlock, 125 mm</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing NVMe Cables” in Oracle Exadata Storage Server X5-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55031/goioo.html#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7044130</td>
<td>Power Supply, A258, 1000 Watt AC Input</td>
<td>HS</td>
<td>FRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies. 2. See “Servicing Power Supplies” in Oracle Exadata Storage Server X5-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55031/z40000091014153.html#scrolltoc 3. Replace the CMA.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7046442</td>
<td>Assembly, dual port, QDR CX3, host channel adapter</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See "Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command: /opt/oracle.SupportTools/CheckHWnFWprofile</td>
</tr>
</tbody>
</table>

Table 11-54 (Cont.) Replacement Parts for Extreme Flash Exadata Storage Server X5-2 Servers

Chapter 11
Parts for Exadata Storage Servers

ORACLE
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7064634</td>
<td>Assembly, switch, PCI-e, X8, IDT</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing PCIe Cards" in Oracle Exadata Storage Server X5-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55031/z40000f91037409.htm#scrolltoc</td>
</tr>
<tr>
<td>7078070</td>
<td>DIMM, 8 GB, RDIMM, DDR4, 2133</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the DIMMs" in Oracle Exadata Storage Server X5-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55031/ceicjagi.html#scrolltoc</td>
</tr>
<tr>
<td>7090170</td>
<td>Flash drive, MLC, OSA ID, USB, 8 GB</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Internal USB Flash Drives" in Oracle Exadata Storage Server X5-2 Extreme Flash Service Manual at http://docs.oracle.com/cd/E41033_01/html/E55031/ceiicfbd.html#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7093931</td>
<td>Assembly, SSD, 1.6 TB, eMLC-NAND, SFF-2.5 inch NVMe 1.0, X4</td>
<td>HS</td>
<td>FRU</td>
<td>See “Servicing the NVMe Storage Drive” in Oracle 1.6 TB NVMe SSD User Guide at http://docs.oracle.com/cd/E54943_01/html/E54944/z40002cc9112.htm l#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-54 (Cont.) Replacement Parts for Extreme Flash Exadata Storage Server X5-2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>

Related Topics

- Oracle Exadata System Software User's Guide
- Maintaining the Hard Disks of Oracle Exadata Storage Servers

11.8.9 Exadata Storage Server X4-2L Servers Parts

The following image shows the front view of Exadata Storage Server X4-2L Servers. The hard drives are numbered from left to right, starting in the lower left. The drives in the bottom row are numbers 0, 1, 2, and 3. The drives in the middle row are numbers 4, 5, 6, and 7. The drives in the top row are numbers 8, 9, 10, and 11.

Figure 11-46 Front View of Exadata Storage Server X4-2L Servers

The following image shows the rear view of Exadata Storage Server X4-2L Servers.
Figure 11-47 Rear View of Exadata Storage Server X4-2L Servers

The following table lists the replaceable parts for Exadata Storage Server X4-2L Servers.

Note:
All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-55 Replacement Parts for Exadata Storage Server X4-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7014226</td>
<td>Cable, interlock, 125 mm</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing Cables (FRU)” in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/baefjbc.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-55 (Cont.) Replacement Parts for Exadata Storage Server X4-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7106353</td>
<td>4 TB 7200 rpm SAS HDD with bracket</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing Storage Drives and Rear Drives (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z4000091011460.html#scrolltoc</td>
</tr>
<tr>
<td>7017231</td>
<td>Indicator assembly, right</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Front LED/USB Indicator Modules (FRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40001d31014236.html#scrolltoc</td>
</tr>
<tr>
<td>7018701</td>
<td>DIMM, 16 GB, DDR3, 1600, 2Rx4, 1.35V</td>
<td>EBO</td>
<td>CRU</td>
<td>See "Servicing the DIMMs (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/ceicjagi.html#scrolltoc</td>
</tr>
<tr>
<td>7020486</td>
<td>DIMM, 8 GB, DDR3, 1600, 2Rx4, 1.35V</td>
<td>EBO</td>
<td>CRU</td>
<td>See "Servicing the DIMMs (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/ceicjagi.html#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>7023515</td>
<td>Disk backplane assembly, 2 rear</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Front and Rear Storage Drive Backplanes (FRU)” in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40007ac1419009.html#scrolltoc</td>
</tr>
<tr>
<td>7027479</td>
<td>Disk backplane assembly, 4-Slot 3.5” RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Front and Rear Storage Drive Backplanes (FRU)” in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40007ac1419009.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-55 (Cont.) Replacement Parts for Exadata Storage Server X4-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7044130</td>
<td>Power Supply, A258, 1000 Watt AC Input</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies. 2. See "Servicing Power Supplies (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40000091014153.html#scrolltoc 3. Replace the CMA.</td>
</tr>
<tr>
<td>7045042</td>
<td>Fan assembly, 2U, 80 x 80, Ferrite, center_rotate</td>
<td>HS</td>
<td>CRU</td>
<td>See "Servicing Fan Modules (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40000091014194.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-55 (Cont.) Replacement Parts for Exadata Storage Server X4-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7046442</td>
<td>Assembly, dual port, QDR CX3, host channel adapter</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. See "Servicing PCIe Cards (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40000f91037409.html\#scrolltocontent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. See "Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4. Verify the new hardware meets the hardware and firmware specifications using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><code>/opt/oracle.SupportTools/CheckHWnFWprofile</code></td>
</tr>
</tbody>
</table>

Chapter 11
Parts for Exadata Storage Servers

11-187
Table 11-55 (Cont.) Replacement Parts for Exadata Storage Server X4-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7047503</td>
<td>Assembly, 6 GB, SAS RAID disk PCIe HBA, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing Storage Drives and Rear Drives (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40000910111460.html#scrolltoc</td>
</tr>
<tr>
<td>7048864</td>
<td>Indicator assembly, left, 2U</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Front LED/USB Indicator Modules (FRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40001d31014236.html#scrolltoc</td>
</tr>
<tr>
<td>7057184</td>
<td>Assembly, battery carrier remote</td>
<td>HS</td>
<td>FRU</td>
<td>"Replacing a Disk Controller BBU on a Database Server"</td>
</tr>
<tr>
<td>7058152</td>
<td>Assembly, motherboard, X4-2L</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Motherboard Assembly (FRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40001d31037512.html#scrolltoc</td>
</tr>
<tr>
<td>7060020</td>
<td>Universal upgrade remote battery kit</td>
<td>EBO</td>
<td>FRU</td>
<td>"Replacing a Disk Controller BBU on a Database Server"</td>
</tr>
<tr>
<td>7069200</td>
<td>Assembly, 800 GB eMLC flash PCIe card</td>
<td>EBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Cards (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40000f91037409.html#scrolltoc</td>
</tr>
</tbody>
</table>
Table 11-55 (Cont.) Replacement Parts for Exadata Storage Server X4-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7069242</td>
<td>CPU, E5-2630 v2, 6-core, 2.6 Ghz</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing Processors (FRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z40001d31037480.html#scrolltoc</td>
</tr>
<tr>
<td>7070656</td>
<td>Disk assembly, 1.2 TB, SAS2</td>
<td>HS</td>
<td>CRU</td>
<td>See "Servicing Storage Drives and Rear Drives (CRU)" in Sun Server X4-2L Service Manual at http://docs.oracle.com/cd/E36974_01/html/E38145/z4000091011460.html#scrolltoc</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Exadata System Software User's Guide

11.8.10 Exadata Storage Server X3-2L Servers Parts

The following image shows the front view of Exadata Storage Server X3-2L Servers. The hard drives are numbered from left to right, starting in the lower left. The drives in the bottom row are numbers 0, 1, 2, and 3. The drives in the middle row are numbers 4, 5, 6, and 7. The drives in the top row are numbers 8, 9, 10, and 11.

Figure 11-48 Front View of Exadata Storage Server X3-2L Servers

The following image shows the rear view of Exadata Storage Server X3-2L Servers.
The following table lists the replaceable parts for Exadata Storage Server X3-2L Servers.

Note:
All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-56 Replacement Parts for Exadata Storage Server X3-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>150-3993</td>
<td>Battery, 3V, 390MAH, LITH, COIN</td>
<td>DBO</td>
<td>CRU</td>
<td>See "Servicing the Battery (CRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z40000f91037456.htm#scrolltoc</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>350-1719</td>
<td>Assembly, 1U-2U Snap-in, slim rail rack</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
<tr>
<td>371-4982</td>
<td>6 Gb SAS RAID PCI battery module (LiON), BBU-08, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-56 (Cont.) Replacement Parts for Exadata Storage Server X3-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>375-3696</td>
<td>InfiniBand (CX2) dual port CX2 4xQDR PCI-e</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information. 2. See "Servicing PCIe Cards (CRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z40000f91037409_.html</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>375-3701</td>
<td>Assembly, 6 Gb SAS RAID disk PCIe HBA, RoHS:Y</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Powering Off Database Servers" for additional information.</td>
</tr>
</tbody>
</table>
| | | | | 3. Verify the new hardware meets the hardware and firmware specifications using the following command: /
| | | | | /opt/oracle.SupportTools/CheckHWnFWprofile |

Note: Do not run any controller commands in the service manual when replacing the disk.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7010036</td>
<td>3TB - 7200 RPM 3.5-inch SAS, disk assembly with bracket and disk</td>
<td>HS</td>
<td>CRU</td>
<td>See "Servicing Storage Drives and Rear Drives (CRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z4000091011460.html</td>
</tr>
<tr>
<td></td>
<td>Note: Do not run any controller commands in the service manual when replacing the disk.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7014226</td>
<td>Cable, interlock, 125 mm</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing Cables (FRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/baefbfc.html</td>
</tr>
</tbody>
</table>
Table 11-56 (Cont.) Replacement Parts for Exadata Storage Server X3-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7017223</td>
<td>Indicator assembly, left</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Front LED/USB Indicator Modules (FRU)” in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z40001d31014236.html</td>
</tr>
<tr>
<td>7017231</td>
<td>Indicator assembly, right</td>
<td>EBO</td>
<td>FRU</td>
<td>See “Servicing the Front LED/USB Indicator Modules (FRU)” in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z40001d31014236.html</td>
</tr>
<tr>
<td>7020486</td>
<td>DIMM, 8 GB, DDR3, 1600, 2Rx4, 1.35V</td>
<td>EBO</td>
<td>CRU</td>
<td>See “Servicing the DIMMs (CRU)” in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/ceicjagi.html</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>7023515</td>
<td>Disk backplane assembly, 2 rear</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Front and Rear Storage Drive Backplanes (FRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z40007ac1419009.html</td>
</tr>
<tr>
<td>7026993</td>
<td>Assembly, 400 GB eMLC Flash PCIE card, with LP bracket</td>
<td>EBO</td>
<td>CRU</td>
<td>See "Servicing PCIe Cards (CRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E23393_01/html/E27229/z40000f91037409.html</td>
</tr>
<tr>
<td>7027479</td>
<td>Disk backplane assembly, 4-Slot 3.5" RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>See "Servicing the Disk Backplane (FRU)" in Sun Server X3-2L (formerly Sun Fire X4270 M3) Service Manual at http://docs.oracle.com/cd/E22368_01/html/E27242/z40011771417642.html</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>7044130</td>
<td>Power Supply, A258, 1000 Watt AC Input</td>
<td>HS</td>
<td>CRU</td>
<td>1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Replace the CMA.</td>
</tr>
</tbody>
</table>
Table 11-56 (Cont.) Replacement Parts for Exadata Storage Server X3-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 7047257 | Power supply, AC, A258 1000 Watt | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |
2. Press F2 after restarting the server.
3. Set the boot order. |
Table 11-56 (Cont.) Replacement Parts for Exadata Storage Server X3-2L Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>7057184</td>
<td>Assembly, battery carrier remote</td>
<td>HS</td>
<td>FRU</td>
<td>“Replacing a Disk Controller BBU on a Database Server”</td>
</tr>
<tr>
<td>7060020</td>
<td>Universal upgrade remote battery kit</td>
<td>EBO</td>
<td>FRU</td>
<td>“Replacing a Disk Controller BBU on a Database Server”</td>
</tr>
</tbody>
</table>

Related Topics

- Oracle Exadata System Software User's Guide

11.8.11 Exadata Storage Server with Sun Fire X4270 M2 Servers

Parts

The following image shows the front view of Exadata Storage Server with Sun Fire X4270 M2 Servers.

Figure 11-50 Front View of Exadata Storage Server with Sun Fire X4270 M2 Servers

1. Hard disk drives. The top drives are, from left to right, HDD2, HDD5, HDD8, and HDD11. The middle drives are, from left to right, HDD1, HDD4, HDD7, and HDD10. The bottom drives are, from left to right, HDD0, HDD3, HDD6, and HDD9.

The following image shows the rear view of Exadata Storage Server with Sun Fire X4270 M2 Servers.
1. Power supplies.
2. InfiniBand host channel adapter PCI Express module.
3. Sun Flash Accelerator F20 PCIe Cards.

The following table lists the replaceable parts for Exadata Storage Server with Sun Fire X4270 M2 Servers.

Note:
All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-57 Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 300-2235 | Power supply, A249, 1200 W, 12 V, 2U, RoHS:Y | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
3. Replace the CMA. |

Chapter 11
Parts for Exadata Storage Servers

11-201
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 350-1502 | Universal rack mount kit | EBO | CRU | 1. If the system is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4415</td>
<td>24 GB solid state flash memory module;</td>
<td>EBO</td>
<td>CRU</td>
<td>1. See "Maintaining Flash Disks on Oracle Exadata Storage Servers".</td>
</tr>
<tr>
<td></td>
<td>RoHS:Y</td>
<td></td>
<td></td>
<td>2. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 371-4650 | Energy Storage Module (ESM) 5.5 v 11F capacitive backup power module, RoHS:Y | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.
3. Reset the value for uptime using the following command:

```
set clear_fault_action=true
```
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4743</td>
<td>4 GB USB 2.0 flash drive, RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Do the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a. Remove the system from the rack.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. Remove the top cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. Remove the F20 PCIe cards in slots 2 and 5, including the PCIe riser.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d. Replace the USB flash drive next to the F20 card in PCIe slot 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e. Restore the system by reversing steps a through d.</td>
</tr>
</tbody>
</table>
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 375-3696 | InfiniBand (CX2) dual port CX2 4xQDR PCI-e | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 375-3701 | 6 Gb SAS RAID disk PCIe HBA, RoHS:Y| EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.
Note: Do not run any controller commands in the service manual when replacing the disk. |
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 511-1500 | F20 PCIe flash accelerator F20 SAS HBA, (non-populated) RoHS:Y | EBO | CRU | 1. See "Maintaining Flash Disks on Oracle Exadata Storage Servers".
2. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2
Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>541-3356</td>
<td>x8/x8 switched PCIe riser assembly, RoHS:Y with the following: • x8/x8 switch PCIe riser • bracket</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information. 2. See “Servicing PCIe Risers” in Sun Fire X4270 M2 Server Service Manual at http://docs.oracle.com/cd/E19245-01/821-0488-12/motherboard.html#50516003_53252</td>
</tr>
</tbody>
</table>
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-4081</td>
<td>System board assembly, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. See "Shutting Down Exadata Storage Server" for additional information.</td>
</tr>
</tbody>
</table>
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: Do not run any controller commands in the service manual when replacing the disk.
Table 11-57 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4270 M2 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>542-0247</td>
<td>2TB - 7200 RPM 3.5-inch SAS, disk assembly with bracket and disk</td>
<td>HS</td>
<td>CRU</td>
<td>See “Servicing Storage Drives and Boot Drives” in Sun Fire X4270 M2 Server Service Manual at http://docs.oracle.com/cd/E19245-01/821-0488-12/hotswap.html#50516002_61628 Note: Do not run any controller commands in the service manual when replacing the disk.</td>
</tr>
</tbody>
</table>
| 560-2952 | Cable kit, Hyde, RoHS:Y with the following:
- Disk Backplane power cable
- 24-slot DBP power cable
- 12/24 slot Disk Backplane signal cable
- Fan signal cable
- Fan power cable | EBO | FRU | Refer to the entries for the individual items in the kit |
| 7010036 | 3TB - 7200 RPM 3.5-inch SAS, disk assembly with bracket and disk | HS | CRU | See “Servicing Storage Drives and Boot Drives” in Sun Fire X4270 M2 Server Service Manual at http://docs.oracle.com/cd/E19245-01/821-0488-12/hotswap.html#50516002_61628 **Note:** Do not run any controller commands in the service manual when replacing the disk. |

11.8.12 Exadata Storage Server with Sun Fire X4275 Servers Parts

The following figure shows the front view of Sun Fire X4275 Servers.
1. Hard disk drives. The top drives are, from left to right, HDD2, HDD5, HDD8, and HDD11. The middle drives are, from left to right, HDD1, HDD4, HDD7, and HDD10. The bottom drives are, from left to right, HDD0, HDD3, HDD6, and HDD9.

The following figure shows the rear view of Sun Fire X4275 servers.

The following table lists the replaceable parts for Exadata Storage Server with Sun Fire X4275 Servers.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-58 Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 150-3993 | Panasonic BR2032 battery, RoHS:Y for system board | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully.
| 300-1897 | 1050 watt power supply, RoHS:Y | HS | CRU | 1. Remove rear left side of the CMA, and then swing it back and out to the right. The telescopic cross member supporting the cables directly behind the server can be retracted to access both power supplies.
<p>| | | | | 3. Replace the CMA. |</p>
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1502</td>
<td>Screw mount slide rail rackmount kit for Exadata Storage Server, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the system is currently running, then it should be shut down gracefully.</td>
</tr>
<tr>
<td>371-4288</td>
<td>4 GB registered DDR3-1333 DIMM, RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
</tbody>
</table>
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 371-4300 | 2.53GHz Quad-Core Intel Xeon E5540, 8MB, 80W, RoHS:Y | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
| 371-4415 | 24 GB solid state flash memory module; RoHS:Y | EBO | CRU | 1. See "Maintaining Flash Disks on Oracle Exadata Storage Servers".
2. If the server is currently running, then it should be shut down gracefully.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4650</td>
<td>Energy Storage Module (ESM) 5.5 v 11F capacitive backup power module, RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Reset the value for uptime using the following command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>set clear_fault_action=true</td>
</tr>
</tbody>
</table>
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4743</td>
<td>4 GB USB 2.0 flash drive, RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. See "Servicing PCIe Cards" in Sun Fire X4170, X4270, and X4275 Servers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>motherboard.html#50634787_pgfId-1287272</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Do the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a. Remove the system from the rack.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. Remove the top cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. Remove the F20 PCIe cards in slots 2 and 5, including the PCIe riser.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d. Replace the USB flash drive under the F20 card next to PCIe slot 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e. Restore the system by reversing steps a through d.</td>
</tr>
</tbody>
</table>
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 371-4746 | Battery module, RoHS:Y for 6 Gb SAS RAID disk PCI, BBU-07 | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully.
| 375-3606 | Sun dual-port QDR (40 Gb/s) InfiniBand host channel adapter PCIe, RoHS:Y | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully.
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>375-3644</td>
<td>6 Gb SAS RAID disk PCIe HBA, RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. See "Servicing PCIe Cards" in Sun Fire X4170, X4270, and X4275 Servers Service Manual at link</td>
</tr>
</tbody>
</table>

Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>511-1500</td>
<td>F20 PCIe flash accelerator F20 SAS HBA, (non-populated) RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. See "Maintaining Flash Disks on Oracle Exadata Storage Servers".</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
</tbody>
</table>
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>530-3892</td>
<td>4x Mini SAS/SATA cable, SFF-8087, 670mm, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. 2. See "Servicing Cables" in Sun Fire X4170, X4270, and X4275 Servers Service Manual at http://docs.oracle.com/cd/E19477-01/820-5830-13/infrastructure_x4170_x4270.html#50634783_pgfId-1287782</td>
</tr>
<tr>
<td>530-3927</td>
<td>Power distribution board to system board cable, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. 2. See "Servicing the Power Distribution Board" in Sun Fire X4170, X4270, and X4275 Servers Service Manual at http://docs.oracle.com/cd/E19477-01/820-5830-13/infrastructure_x4275.html#50634784_pgfId-1287132</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 530-4228 | 4x Mini SAS/SATA cable, SFF-8087, 690mm, RoHS:Y | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
| 541-2073 | Power distribution board/bus bar assembly, RoHS:Y with the following: | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-2075</td>
<td>Bus_bar, power, 1U +2U, RoHS:Y</td>
<td>EBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. 2. See “Servicing the Motherboard Assembly” in Sun Fire X4170, X4270, and X4275 Servers Service Manual at http://docs.oracle.com/cd/E19477-01/820-5830-13/infrastructure_x4275.html#50634784_pgfId-1287132</td>
</tr>
<tr>
<td>541-2542</td>
<td>System board assembly with tray, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. 2. See “Servicing the Motherboard Assembly” in Sun Fire X4170, X4270, and X4275 Servers Service Manual at http://docs.oracle.com/cd/E19477-01/820-5830-13/infrastructure_x4275.html#50634784_pgfId-1287132</td>
</tr>
<tr>
<td>Part Number</td>
<td>Description</td>
<td>Repair Category</td>
<td>Coverage under Basic Warranty</td>
<td>Repair Procedure</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 541-2884 | x8/x8 PCIe riser assembly with the following:
 • x8/x8 PCIe riser, RoHS:Y
 • Bracket, RoHS:Y | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully.
| 541-3310 | Xeon Heatsink with grease:RoHS:Y | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 541-3356 | x8/x8 switched PCIe riser assembly, RoHS:Y with the following: | EBO | CRU | 1. If the server is currently running, then it should be shut down gracefully.
| 541-3385 | Connector board assembly with the following: | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>541-3386</td>
<td>12-slot disk backplane, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
<tr>
<td>541-3387</td>
<td>SAS expander card assembly, RoHS:Y with the following: • Bracket, RoHS:Y • SAS expander board, RoHS:Y</td>
<td>EBO</td>
<td>FRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully.</td>
</tr>
</tbody>
</table>
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 541-3388 | Left indicator assembly, RoHS:Y with the following: • Left bracket, RoHS:Y • Left LED board, RoHS:Y • Indicator cable, RoHS:Y | EBO | FRU | 1. If the system is currently running, then it should be shut down gracefully.
| 541-3389 | Right indicator assembly, RoHS:Y with the following: • Right bracket, RoHS:Y • Right LED board, RoHS:Y • Indicator cable, RoHS:Y | EBO | FRU | 1. If the system is currently running, then it should be shut down gracefully.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
| 541-3394 | Fan board assembly with the following:
 • Top bracket, RoHS:Y
 • Bottom bracket, RoHS:Y
 • Fan board, RoHS:Y | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
| 542-0166 | 600 GB 15 K RPM SAS disk assembly, RoHS:Y with bracket and disk | HS | CRU | 1. See "Maintaining the Hard Disks of Oracle Exadata Storage Servers"
Note: Do not run any controller commands in the service manual when replacing the disk. |
Table 11-58 (Cont.) Replacement Parts for Exadata Storage Server with Sun Fire X4275 Servers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage under Basic Warranty</th>
<th>Repair Procedure</th>
</tr>
</thead>
</table>
 Note: Do not run any controller commands in the service manual when replacing the disk. |
| 560-2937 | Exadata Storage Server cable kit with the following:
 • 10-pin backplane power cable, RoHS:Y
 • 20-pin backplane 12C cable, RoHS:Y
 • 6-pin fan power cable, RoHS:Y
 • 16-pin FAN 12C cable, RoHS:Y | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.

Related Topics

- **Shutting Down Exadata Storage Server**
 When performing maintenance on Exadata Storage Servers, it may be necessary to power down or restart the cell.
11.9 Parts for RDMA Network Fabric Switches

This topic lists the replaceable parts for the RDMA Network Fabric switches used with Oracle Exadata Rack.

See Cables and Cable Accessories for Oracle Exadata Rack for information about RDMA Network Fabric cables.

- Parts for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches
 This topic lists the replaceable parts for the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches used with Oracle Exadata Rack.

- Parts for InfiniBand Transport Layer systems based on a RoCE Network Layer Switches
 This topic lists the replaceable parts for the InfiniBand Transport Layer systems based on a RoCE Network Layer switches used with Oracle Exadata Rack.

11.9.1 Parts for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches

This topic lists the replaceable parts for the InfiniBand Transport Layer systems based on an InfiniBand Network Layer switches used with Oracle Exadata Rack.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-59 Replacement Parts for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-59 (Cont.) Replacement Parts for InfiniBand Transport Layer systems based on an
InfiniBand Network Layer Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-59 (Cont.) Replacement Parts for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-59 (Cont.) Replacement Parts for InfiniBand Transport Layer systems based on an InfiniBand Network Layer Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>

11.9.2 Parts for InfiniBand Transport Layer systems based on a RoCE Network Layer Switches

This topic lists the replaceable parts for the InfiniBand Transport Layer systems based on a RoCE Network Layer switches used with Oracle Exadata Rack.

> **Note:**

Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-60 Replacement Parts for Cisco Nexus 9336C Switch for Oracle Exadata Database Machine X8M

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-60 (Cont.) Replacement Parts for Cisco Nexus 9336C Switch for Oracle Exadata Database Machine X8M

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>

11.10 Parts for Cisco Switch

You can replace parts for the Cisco switch used with Oracle Exadata Rack.

- **Parts for Cisco Catalyst 4948 Switch**
 You can replace parts for the Cisco switch used with Oracle Exadata Database Machine X6 or earlier.

- **Parts for Cisco Nexus 9348 Switch**
 You can replace parts for the Cisco Ethernet switch used with Oracle Exadata Rack X7 or later.

- **Parts for Cisco Nexus 93108TC Switch**
 You can replace parts for the Cisco Ethernet switch used with Oracle Exadata Rack X7 or later.
11.10.1 Parts for Cisco Catalyst 4948 Switch

You can replace parts for the Cisco switch used with Oracle Exadata Database Machine X6 or earlier.

Note:
Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-61 Replacement Parts for Cisco Switch for Oracle Exadata Database Machine X6 or Earlier

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-61 (Cont.) Replacement Parts for Cisco Switch for Oracle Exadata Database Machine X6 or Earlier

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>

11.10.2 Parts for Cisco Nexus 9348 Switch

You can replace parts for the Cisco Ethernet switch used with Oracle Exadata Rack X7 or later.

Note:

> Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.
Table 11-62 Replacement Parts for Cisco Nexus 9348 Switch for Oracle Exadata Database Machine X7 or Later

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>7361148</td>
<td>Cisco Nexus 9348, Port-Side Exhaust</td>
<td>IR</td>
<td>CRU</td>
<td>See "Installing the Switch Chassis" in Cisco Nexus 9348GC-FXP ACI Mode Hardware Installation Guide at https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/hw/aci_9348gcfxp_hi g/guide/b_c9348gc_fxp_ac i_mode_hardware_install_guide/b_c9348gc_fxp_ac i_mode_hardware_install_guide_ch apter_011.html</td>
</tr>
</tbody>
</table>
Table 11-63 Replacement Parts for Cisco Switch for Oracle Exadata Database Machine X6 or Earlier

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
11.10.3 Parts for Cisco Nexus 93108TC Switch

You can replace parts for the Cisco Ethernet switch used with Oracle Exadata Rack X7 or later.

Note:

Refer to this table only if you have a basic warranty. All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-64 Replacement Parts for Cisco Nexus 93108TC Switch for Oracle Exadata Database Machine X7 or Later

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-64 (Cont.) Replacement Parts for Cisco Nexus 93108TC Switch for Oracle Exadata Database Machine X7 or Later

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>

Chapter 11
Parts for Cisco Switch

11-245
Table 11-65 Replacement Parts for Cisco Switch for Oracle Exadata Database Machine X6 or Earlier

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>

11.11 Parts for KVM Switch and KMM Tray

The following table lists the replacement parts for the KVM switch and KMM tray.
Table 11-66 Replacement Parts for KVM/KMM

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>

11.12 Parts for Power Distribution Units

The following table lists the replacement parts for the power distribution units (PDUs). Given the number of cables and connections, Oracle recommends the Oracle Exadata Rack rack be shut down when replacing power distribution unit parts.
Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-2379</td>
<td>13A/250V 90 degree IEC 320 Sheet E to IEC 320 C13 cord, 1 meter, RoHS:Y</td>
<td>HS</td>
<td>CRU</td>
<td>Not applicable</td>
</tr>
<tr>
<td>180-2380</td>
<td>13A/250V 90 degree IEC 320 Sheet E to IEC 320 C13 cord, 2 meter, RoHS:Y</td>
<td>HS</td>
<td>CRU</td>
<td>Not applicable</td>
</tr>
<tr>
<td>371-4000</td>
<td>Three-phase PDU: 15kV, 5-Pin, IEC309, 32A, 5 PIN 230/400V, 3ph IP44, International, RoHS:Y</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>371-4001</td>
<td>Three-phase PDU: 24 kVA, high voltage for Oracle Exadata Database Machine X2-8 Full Rack</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>371-4199</td>
<td>Single-phase PDU: 15kVA, with three 30A/250V 2-Pole/3-Wire NEMA L6-30P Plugs, North America, RoHS:Y</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>371-5039</td>
<td>Single-phase PDU: 22k VA Hubbell CS8265C Plug No X-Option</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>371-5040</td>
<td>Single-phase PDU: 22k VA Blue 32A IEC 60309 Plug No X-Option</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
</tbody>
</table>
Table 11-67 (Cont.) Replacement Parts for Power Distribution Units

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>371-4510</td>
<td>Three-phase PDU; 24 kVA, low voltage for Oracle Exadata Database Machine X2-8 Full Rack</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>7051908</td>
<td>Three-phase PDU: 15kVA, IEC309 60A, 4 PIN, 250VAC, 3ph IP67, North America, RoHS:Y</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>7078660</td>
<td>Three-phase PDU: 37kVA, RMII, low voltage</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
<tr>
<td>7078664</td>
<td>Three-phase PDU: 37kVA, RMII, high voltage</td>
<td>IR</td>
<td>FRU</td>
<td>See "Replacing a Power Distribution Unit"</td>
</tr>
</tbody>
</table>

11.13 Cables and Cable Accessories for Oracle Exadata Rack

The following table lists the replacement cables and cable accessories for Oracle Exadata Rack.

Note:

All replacement parts shown in the following table are considered FRU when covered under Premier Support of Systems warranty.

Table 11-68 Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
| 350-1287 | Slim rail, CMA, 1U-2U for Exadata Storage Server | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
Table 11-68 (Cont.) Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>350-1546</td>
<td>Cable management arm (CMA) 1U, RoHS:Y for database server</td>
<td>DBO</td>
<td>CRU</td>
<td>1. If the server is currently running, then it should be shut down gracefully. 2. See “Installing the Cable Management Arm” in Sun Fire X4170, X4270, and X4275 Servers Installation Manual at http://docs.oracle.com/cd/E19477-01/820-5827-13/rack_install.html#50614309_99582</td>
</tr>
<tr>
<td>350-1637</td>
<td>Label assembly, EV2, 2-way, upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
<tr>
<td>350-1638</td>
<td>Label assembly EV2, 3-way, service upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
<tr>
<td>350-1639</td>
<td>Label assembly EV2, 4-way, service upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
<tr>
<td>350-1640</td>
<td>Label assembly EV2, 5-way, service upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
<tr>
<td>350-1641</td>
<td>Label assembly EV2, 6-way, service upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
<tr>
<td>350-1642</td>
<td>Label assembly EV2, 7-way, service upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
<tr>
<td>350-1643</td>
<td>Label assembly EV2, 8-way, service upgrade, label</td>
<td>HS</td>
<td>CRU</td>
<td>See Oracle Exadata Database Machine System Overview</td>
</tr>
</tbody>
</table>
Table 11-68 (Cont.) Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
2. Verify the InfiniBand network configuration.
Note: There is a loss of redundancy when replacing cables. |
2. Verify the InfiniBand network configuration.
Note: There is a loss of redundancy when replacing cables. |
2. Verify the InfiniBand network configuration. |
2. Verify the InfiniBand network configuration. |
Table 11-68 (Cont.) Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
Table 11-68 (Cont.) Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
2. Verify the InfiniBand network configuration. |
2. Verify the InfiniBand network configuration. |
| 7015400 | Power cable, jumper, SR2, 2m C14RA, 10A, C13 | HS | CRU | See "Replacing a Power Distribution Unit". |
| 7042273 | Slim rail, cable management arm, 1U-2U for Exadata Storage Server | EBO | FRU | 1. If the server is currently running, then it should be shut down gracefully.
Table 11-68 (Cont.) Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
2. Verify the InfiniBand network configuration.
Note: Purchase 2 QSFP SR Transceiver (Part Number X2124A-N) for each passive fiber cable. |
2. Verify the InfiniBand network configuration.
Note: Purchase 2 QSFP SR Transceiver (Part Number X2124A-N) for each passive fiber cable. |
2. Verify the InfiniBand network configuration.
Note: Purchase 2 QSFP SR Transceiver (Part Number X2124A-N) for each passive fiber cable. |
2. Verify the InfiniBand network configuration. |
Table 11-68 (Cont.) Replacement Cables for Oracle Exadata Rack

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Repair Category</th>
<th>Coverage with Basic Warranty</th>
<th>Repair</th>
</tr>
</thead>
</table>
2. Verify the InfiniBand network configuration. |
2. Verify the InfiniBand network configuration. |
2. Verify the InfiniBand network configuration. |
| 7119779 | QSFP28 Copper Cable assembly: 1 meters | HS | CRU | |
| 7119780 | QSFP28 Copper Cable assembly: 2 meters | HS | CRU | |
| 7119781 | QSFP28 Copper Cable assembly: 3 meters | HS | CRU | |
| 7119727 | QSFP28 Copper Cable assembly: 5 meters | HS | CRU | |

Related Topics
- **Powering On and Off Oracle Exadata Rack**
 This section contains the procedures for powering on and off the components of an Oracle Exadata Rack.
- **Verifying the InfiniBand Transport Layer systems based on an InfiniBand Network Layer Configuration**
 This procedure describes how to verify the InfiniBand Transport Layer systems based on an InfiniBand Network Layer configuration.
Index

A
AC Present LED, 11-8
active cores, 2-31
add database node
 and quorum disks, 2-112
administration commands
 DBMCLI, 8-4
alert messages
 battery learn cycle, 3-10
 alert notifications, 8-14
 ALERTDEFINITION object type
 attributes, 8-39
 ALERTHISTORY object type
 attributes, 8-40
alerts
 configuring notifications, 8-14
 Oracle Enterprise Manager Cloud Control, 1-13
ALTER ALERTHISTORY DBMCLI command, 8-14
ALTER DBMCLI command, 8-13
ALTER DBSERVER DBMCLI command, 8-14
ALTER IBPORT DBMCLI command, 8-28
ALTER ALERTHISTORY DBMCLI command, 8-28
ALTER USER DBMCLI command, 8-29
altering
 database server attributes, 8-14
 ambient temperature range, 1-23
attributes (continued)
 USER object type, 8-56
 Automatic Diagnostic Repository (ADR)
 alert listings, 8-64
 definitions, 8-64
B
Baseboard Management Controller (BMC), 8-11, 8-14
batteries
 learn cycle, 3-10
 monitoring, 11-5
 replacing, 11-6
 replacing disk controller BBUs, 1-23
BMC
 See Baseboard Management Controller
BONDETH0, 4-43
BONDIB0, 4-43
Buffer Pool Advisory, 3-59
C
CALIBRATE command, 3-16
capacity-on-demand, 2-31
Cell RAM Cache, 3-58
 sizing, 3-59
certificate compliance, 11-3
changing
 IP addresses, 4-42
 network settings on Oracle Exadata Storage Server, 1-4
checking rebalance status, 3-3
Cisco 4948 switch
 setting password, 1-19
Cisco 93018 switch
 setting password, 1-18
Cisco 93108 switch
 setting password, 1-20
Cisco 9336c RoCE switch
 setting password, 1-17
Cisco 9348 switch
 setting password, 1-18, 1-20
Cisco Ethernet
 setting NTP server, 4-69
Cisco switch
 setting password, 1-18
cloning Oracle Database homes
 Linux-based servers, 2-86
cloning Oracle Grid infrastructure
 Linux-based servers, 2-82
cluster verification utility, 2-75
command-line editing
 DBMCLI, 8-4
commands
 administration, 8-4
 objects, 8-5
comment attributes
 restrictions, 8-6, 8-14
comments in scripts
 DBMCLI, 8-4
compliance, 11-3
configuration files
 ntp.conf file for Linux, 4-66
configuring
 eighth rack after rescue, 2-72, 2-73
 mail on database servers, 8-14
cookie, 9-6
cookie jar, 9-6
CREATE DBMCLI command, 8-29
CREATE DBSERVER DBMCLI command, 8-30
CREATE DIAGPACK DBMCLI command, 8-32
CREATE ROLE DBMCLI command, 8-36
CREATE THRESHOLD DBMCLI command, 8-36
CREATE USER DBMCLI command, 8-38
creating users
 cell node, 9-6
 database node, 9-6
database servers (continued)
 shutting down services, 8-14
 starting services, 8-14
 validating mail, 8-14
 validating SNMP, 8-14
DBMCLI
 syntax, 8-2
DBMCLI commands
 ALTER, 8-13
 ALTER ALTERHISTORY, 8-14
 ALTER DBSERVER, 8-14
 ALTER IBPORT, 8-28
 ALTER THRESHOLD, 8-28
 ALTER USER, 8-29
 CREATE, 8-29
 CREATE DBSERVER, 8-30
 CREATE DIAGPACK, 8-32
 CREATE ROLE, 8-36
 CREATE THRESHOLD, 8-36
 CREATE USER, 8-38
 DESCRIBE ALERTDEFINITION, 8-39
 DESCRIBE ALERTHISTORY, 8-40
 DESCRIBE DBSERVER, 8-41
 DESCRIBE IBPORT, 8-46
 DESCRIBE LUN, 8-48
 DESCRIBE METRICCURRENT, 8-49
 DESCRIBE METRICDEFINITION, 8-50
 DESCRIBE METRICHISTORY, 8-51
 DESCRIBE PHYSICALDISK, 8-52
 DESCRIBE ROLE, 8-54
 DESCRIBE THRESHOLD, 8-55
 DESCRIBE USER, 8-56
 DROP ALERTHISTORY, 8-57
 DROP DBSERVER, 8-58
 DROP ROLE, 8-58
 DROP THRESHOLD, 8-58
 DROP USER, 8-59
 GRANT, 8-59
 GRANT PRIVILEGE, 8-60
 GRANT ROLE, 8-61
 HELP, 8-62
 LIST ALERTDEFINITION, 8-64
 LIST ALERTHISTORY, 8-64
 LIST DBSERVER, 8-65
 LIST DIAGPACK, 8-67
 LIST IBPORT, 8-68
 LIST LUN, 8-69
 LIST METRICCURRENT, 8-70
 LIST METRICDEFINITION, 8-71
 LIST METRICHISTORY, 8-72
 LIST PHYSICALDISK, 8-74
 LIST ROLE, 8-74
 LIST THRESHOLD, 8-75
 LIST USER, 8-75
 REVOKE, 8-76

Database Machine Command-Line Interface
 administration commands, 8-4
 command-line editing, 8-4
 comments in scripts, 8-4
 input and output options, 8-4
 line continuation, 8-4
 object attributes, 8-6
 object commands, 8-5
 object types, 8-5
 reserved words, 8-3
 starting, 8-1
database server metrics, 8-11
database servers
 configuring mail, 8-14
 modifying attributes, 8-14
 reconfiguring eighth rack Oracle Linux
database server, 2-72, 2-73
 recovering Linux-based servers, 2-55
 restarting services, 8-14
DBMCLI commands (continued)
REVOKE PRIVILEGE, 8-77
REVOKE ROLE, 8-78
SET, 8-78
START, 8-79
DBSERVER object type
attributes, 8-41
DESCRIBE ALERTDEFINITION DBMCLI command, 8-39
DESCRIBE ALERTHISTORY DBMCLI command, 8-40
DESCRIBE DBSERVER DBMCLI command, 8-41
DESCRIBE IBPORT DBMCLI command, 8-46
DESCRIBE LUN DBMCLI command, 8-48
DESCRIBE METRICCURRENT DBMCLI command, 8-49
DESCRIBE METRICDEFINITION DBMCLI command, 8-50
DESCRIBE METRICHISTORY DBMCLI command, 8-51
DESCRIBE PHYSICALDISK DBMCLI command, 8-52
DESCRIBE ROLE DBMCLI command, 8-54
DESCRIBE THRESHOLD DBMCLI command, 8-55
DESCRIBE USER DBMCLI command, 8-56
disable
write back flash cache, 3-36
Write-Back PMEM cache, 3-53
disk controller battery BBUs, 1-23
disk controllers, 2-3
disk failures
replacing hard disks, 3-12
replacing M.2 disks, 3-56
displaying
current metrics, 8-10
LUNs, 8-69
metric definitions, 8-10, 8-71
metric history, 8-11
physical disks, 8-74
DNS
changing settings, 1-4
Do Not Service LED, 3-6
Do-Not-Service LED, 11-19
downgrading InfiniBand Transport Layer systems
based on an InfiniBand Network Layer switches, 7-83
DROP ALERTHISTORY DBMCLI command, 8-57
DROP DBSERVER DBMCLI command, 8-58
DROP ROLE DBMCLI command, 8-58
DROP THRESHOLD DBMCLI command, 8-58
DROP USER DBMCLI command, 8-59
E
e2fsck command, 5-21, 6-17
enable
write back flash cache, 3-35
enableSmartStorage attribute, 3-6
enabling Smart Scan
Oracle Exadata Extended (XT) Storage Servers, 3-6
Energy Storage Modules, 11-215
replacing, 11-7
resetting uptime, 11-199, 11-215
ESM
See Energy Storage Modules
ethernet switches
10GbE, 2-21, 4-9, 4-10
ethtool, 2-21, 4-9, 4-10
Exadata health check utility, 4-43
exadata.img.domu_maker command, 5-82
exadcli
requirements, 10-1
exadcli syntax, 10-1
examinedBy attribute
ALERTHISTORY, 8-14
extending
logical volume, 2-42
F
Fault-Service Required LED, 11-8
FDOM, 3-31
file deletion policy, 2-13
firmware levels, 3-12, 3-14
flash devices
online replacement, 3-33
replacing, 3-25
flash devices in database servers
online replacement, 2-15
flash disks, 3-31
monitoring, 2-14
status, 2-14
write-through caching, 3-31
G
gateway
unable to connect, 2-21, 4-9, 4-10
GRANT DBMCLI command, 8-59
GRANT PRIVILEGE DBMCLI command, 8-60
GRANT ROLE DBMCLI command, 8-61
grid disks
resizing, 3-63
guests
disabling automatic startup, 6-7
enabling automatic startup, 6-6
guests (continued)
modifying memory allocations, 6-8
monitoring, 6-7
shutdown command, 6-8
starting, 6-6

H
hard disk failures, 3-6
hard disks
monitoring, 3-8
removing in error, 3-23
replacing, 3-12, 3-14
repurposing, 3-21
status, 3-8
hardware replacement
X8-2 High Capacity and Extended (XT) Servers, 11-146
X8M-2 High Capacity and Extended (XT) Servers, 11-146
health check utility, 4-43
HELP DBMCLI command, 8-62
hyphen
line continuation, 8-4

I
IB0, 4-43
IB1, 4-43
IBPORT object type
attributes, 8-46
identifying
bad hard disk, 3-16
bad performance, 3-28
poor performance flash disk, 3-28
predictive failure flash disk, 3-28
predictive failure PMEM device, 3-50
ILOM
rules list, 1-12
imageinfo command, 7-23
imaging
Linux-based database server, 2-78
increasing active cores, 2-31
InfiniBand
bonding names, 4-43
interfaces, 4-43
InfiniBand Transport Layer systems based on an RoCE Network Layer
switch upgrade, 4-27
InfiniBand Transport Layer systems based on an RoCE Network Layer switch, 7-36
setting NTP server, 4-68
InfiniBand Transport Layer systems based on a RoCE Network Layer switches replacing, 4-19

InfiniBand Transport Layer systems based on an InfiniBand Network Layer
switch downgrade, 7-83
switch time zone, 4-67
switch upgrade, 4-42, 7-82
InfiniBand Transport Layer systems based on an InfiniBand Network Layer switch, 7-36
input and output options
DBMCLI, 8-4
IP addresses
changing, 4-42
ipconf utility, 1-4
ipconf.pl, 2-24
IPMItool
resetting the Service Processor, 4-6

K
KVM
accessing servers, 4-84
configuration, 4-81

L
leaf switches, 4-40
replacing, 4-19
LED
AC Present, 11-8
DoNotService, 3-6
Fan Status, 11-8
Fault-Service Required, 11-8
OK to Remove, 11-8
Power/System OK, 11-8
levator command, 5-23
line continuation
DBMCLI, 8-4
link not detected, 2-21, 4-9, 4-10
LIST ALERTDEFINITION DBMCLI command, 8-64
LIST ALERTHISTORY DBMCLI command, 8-64
LIST DBSERVER DBMCLI command, 8-65
LIST DIAGPACK DBMCLI command, 8-67
LIST IBPORT DBMCLI command, 8-68
LIST LUN DBMCLI command, 8-69
LIST METRICCURRENT DBMCLI command, 8-70
LIST METRICDEFINITION DBMCLI command, 8-71
LIST METRICHISTORY DBMCLI command, 8-71
LIST PHYSICALDISK DBMCLI command, 8-74
LIST ROLE DBMCLI command, 8-74
LIST THRESHOLD DBMCLI command, 8-75
LIST USER DBMCLI command, 8-75
listing PCI slot numbers, 3-31
locating
 NEM Locate LED, 11-16, 11-18
 service processor chassis LED, 11-13,
 11-15, 11-17, 11-19
Logical Volume Manager, 2-33
LUN object type
 attributes, 8-48
LUNs
 displaying information, 8-69
LVDoNotRemoveOrUse logical volume, 5-47
lvextend command, 5-18, 5-20, 6-13, 6-15
lvs command, 5-18, 5-20, 6-13, 6-15

M
M.2 disks, 3-6
 maintaining, 3-54
 replacing, 3-56
 status, 3-55
mail
 configuring on database servers, 8-14
 validating on database servers, 8-14
management domain
 recovering, 5-69
memory expansion kit, 2-20
memory expansion kits, 3-59
metric definitions
 displaying, 8-10, 8-71
metric history
 displaying, 8-11
 retention period, 8-11, 8-72
metric names, 8-50
METRICCURRENT object type
 attributes, 8-49
METRICDEFINITION object type
 attributes, 8-50
METRIC HISTORY object type
 attributes, 8-51
metrics
 about, 8-8
 database servers, 8-11
 descriptions, 8-11
 displaying current, 8-10
 displaying definitions, 8-10, 8-71
 displaying history, 8-11
 names, 8-11
 short names, 8-50
migrate_ids.sh script, 1-41
mirroring, 3-63
mkswap command, 5-23
modifying
 database server attributes, 8-14
monitoring
 flash disks, 2-14
 hard disks, 3-8

moving drives, 3-19
MTU sizes, 4-43

N
name attributes
 METRICDEFINITION, 8-50
 restrictions, 8-6, 8-14
network interfaces
 viewing, 2-24
NTP server
 storage cell, 4-70
ntp.conf file
 for Linux, 4-66

O
object attributes
 DBMCLI, 8-6
object types
 ALERTHISTORY, 8-40
 ALTERDEFINITION, 8-39
 DBMCLI, 8-5
 DBSERVER, 8-41
 IBPORT, 8-46
 LUN, 8-48
 METRICCURRENT, 8-49
 METRICDEFINITION, 8-50
 METRIC HISTORY, 8-51
 PHYSICALDISK, 8-52
 THRESHOLD, 8-55
 USER, 8-56
OEDA CLI
 add storage server, 3-91
 drop storage server, 3-95
OK to Remove LED, 11-8
online updates, 7-16
Oracle ASM disk groups
 Partner Status Table (PST), 2-91
Oracle Enterprise Manager Cloud Control
 alerts, 1-13
 monitoring Exadata Database Machine, 1-13
 Oracle Exadata Plug-in, 1-13
 Oracle Systems Infrastructure Plug-in, 1-13
Oracle EXAchk, 4-43, 7-19
Oracle Exadata Extended (XT) Storage Servers, 3-5
 data, 3-6
 enabling Smart Scan, 3-6
 use cases, 3-6
Oracle Exadata Plug-in for Oracle Enterprise
 Manager Cloud Control, 1-13
Oracle Linux 7, 7-31
Oracle Maximum Availability Architecture, 3-6
Oracle Systems Infrastructure Plug-in for Oracle Enterprise Manager Cloud Control, 1-13
Oracle VMs
 adding new LVM disks, 5-15, 6-10
 attaching to the guest console, 6-7
 attaching to the user domain console, 5-9
 creating clusters, 5-37, 6-24
 new disk images, 5-15, 6-10
 determining virtual CPU settings, 5-13, 6-9
 disabling automatic startup, 5-10
 disk image file location, 5-21, 6-17
 e2fsck command, 5-21, 6-17
 exadata.img.domu_maker command, 5-82
 generating UUIDs, 5-17, 6-12
 increasing /u01 file system, 5-20, 6-15
 root file system, 5-18, 6-13
 swap area, 5-23, 6-18
 lvcreate command, 5-23
 lvextend command, 5-18, 5-20, 6-13, 6-15
 lvs command, 5-18, 5-20, 6-13, 6-15
 mkswap command, 5-23
 modifying memory allocations, 5-11, 6-8
 virtual CPUs, 5-13
 virtual CPUs allocated, 6-9
 monitoring guests, 6-7
 monitoring user domains, 5-9
 moving guests, 6-31
 moving user domains, 5-46
 qemu-img command, 5-21, 6-17
 removing a singlecluster, 5-85
 removing clusters, 5-82
 resize2fs command, 5-18, 5-20, 5-21, 6-13, 6-15, 6-17
 showing user domains, 5-8
 shutting down guests, 6-8
 shutting down user domains, 5-10, 6-7
 starting guests, 6-6
 starting user domains, 5-9
 swapon command, 5-23
 vgdisplay command, 5-18, 5-20, 5-23, 6-13, 6-15
 xm list command, 5-8

P

Partner Status Table (PST)
 Oracle ASM disk groups, 2-91
passwords
 changing
 Cisco 4948 Ethernet passwords, 1-19
 Cisco 93108 Ethernet passwords, 1-18, 1-20

Q

qemu-img command, 5-21, 6-17
quorum disks, 2-91
removing, 2-110
quorum failure groups
 and Oracle VM, 2-91
 requirements, 2-91

R

RAM cache, 3-58
ramCacheMaxSize, 3-62
re-enabling a rejected disk, 3-24
rebalance status, 3-3
rebalancing, 3-63
reconfiguring Eighth Rack storage servers, 3-80
reconfiguring eighth racks, 2-72, 2-73
reconfiguring storage servers, 3-79
recovering
 Linux-based database servers, 2-55
recreating
 CELLBOOT USB flash drive, 3-81
reducing the size of the logical volume, 2-42
redundancy, 3-63
regulatory compliance, 11-3
relocating voting disks
 Linux-based servers, 2-75
removing a disk in error, 3-23
removing storage servers, 3-93
repair categories, 11-2
replacement parts
 X8-2 EF storage servers, 11-151
replacing
 disk controller BBUs, 1-23
 Energy Storage Modules, 11-7
 flash devices, 3-25
 hard disks, 3-12, 3-14
 hot pluggable flash disks, 3-33
 hot-pluggable flash disks in database servers, 2-15
 InfiniBand Transport Layer systems based on
 a RoCE Network Layer switches, 4-19
 leaf switches, 4-19
 M.2 disks, 3-56
 PDUs, 4-3
 physical disks, 3-12, 3-14
 PMEM devices, 3-48
 spine switches, 4-19, 4-34
 replacing quorum disks, 2-110
 repurposing disks, 3-21
 reserved words
 reserved for DBMCLI, 8-3
 resetting
 ILOMs, 4-5
 resize2fs command, 5-18, 5-20, 5-21, 6-13, 6-15, 6-17
 resizing
 grid disks, 3-63

resizing LVM partitions, 2-33
 df command, 2-34, 2-40
 lvextend command, 2-34, 2-40, 2-42
 lvreduce command, 2-42
 lvs command, 2-34, 2-40
 resize2fs command, 2-34, 2-40
 tune2fs command, 2-34, 2-40
 vgdisplay command, 2-40
resourceControl.sh script
 increasing active cores, 2-31
restarting services on database servers, 8-14
REVOKE DBMCLI command, 8-76
REVOKE PRIVILEGE DBMCLI command, 8-77
REVOKE ROLE DBMCLI command, 8-78

S

scheduling
 Oracle Exadata System Software updates, 7-65
script files
 comments, 8-4
 line continuation, 8-4
 running in DBMCLI, 8-79
scripts
 drop_griddisk.sh, 5-82
 list_griddisk.sh, 5-82
SET DBMCLI command, 8-78
setting
 battery learn cycle, 3-10
 Cisco Ethernet
 NTP server, 4-69
 InfiniBand Transport Layer systems based on
 a RoCE Network Layer switch
 NTP server, 4-68
 InfiniBand Transport Layer systems based on
 an InfiniBand Network Layer
 switch date, 4-67
 switch time zone, 4-67
shutdown command, 1-7
shutting down all guests, 6-8
shutting down all user domains, 5-10
SNMP
 validating on database servers, 8-14
software updates
 best practices, 7-19
 components, 7-2
 release version requirements, 7-2
spine switches
 replacing, 4-19, 4-34
SPOOL DBMCLI command, 8-79
START DBMCLI command, 8-79
starting
 DBMCLI, 8-1
 starting services on database servers, 8-14
stateful alerts, 8-39, 8-40
stateless alerts, 8-39, 8-40
status
 flash disks, 2-14
 hard disks, 3-8
 M.2 disks, 3-55
 physical disks, 3-8
 predictive failure, 3-14
Storage server X6-2 EF
 images, 11-167
 parts, 11-167
Storage server X6-2 HC
 images, 11-162
 parts, 11-162
storage servers
 reconfiguring, 3-79
 reconfiguring Eighth Rack servers, 3-80
 scheduling software updates, 7-65
swapon command, 5-23
syntax
 DBMCLI commands, 8-2
 exadcli, 10-1
syslog
 format, 8-14
system area, 3-6
system partitions, 3-6

T
THRESHOLD object type
 attributes, 8-55
Top Fan Fault LED, 11-8

U
unable to connect to gateway, 2-21, 4-9, 4-10
 updating, 7-36
 Oracle Exadata System Software, 7-65
upgrading
 to Oracle Linux 7, 7-31
upgrading InfiniBand Transport Layer systems
 based on a RoCE Network Layer switches, 4-27
upgrading InfiniBand Transport Layer systems
 based on an InfiniBand Network Layer switches, 4-42, 7-82
user domain
 storage configuration, 5-6
user domains (continued)
 monitoring, 5-9
 shutting down, 5-10
 starting, 5-9
USER object type
 attributes, 8-56
using CALIBRATE, 3-31
utilities
 cluster verification, 2-75
 ipconf, 1-4
 Oracle EXAchk, 4-43

V
validating
 mail on database servers, 8-14
 SNMP on database servers, 8-14
verifying
 database server configuration, 2-3
 firmware, 3-12, 3-14, 11-29, 11-38, 11-45,
 11-52, 11-61, 11-79, 11-146, 11-155,
 11-158, 11-171, 11-175, 11-182
 firmware X8-2 EF, 11-151
 hardware, 11-29, 11-38, 11-45, 11-52, 11-61,
 11-79, 11-146, 11-155, 11-158,
 11-171, 11-175, 11-182
 hardware X8-2 EF, 11-151
 physical drive configuration, 2-7
 virtual drive configuration, 2-7
vgdisplay command, 5-18, 5-20, 5-23, 6-13, 6-15
virtual CPUs
 modifying the number, 5-13
 modifying the number allocated, 6-9
virtual machines
 maximum supported number, 5-4
vm_maker console option, 6-7

W
write back flash cache
 disabling, 3-36
 enabling, 3-35
Write-Back PMEM cache
 disabling, 3-53
write-through caching, 3-31

X
xm console command, 5-9
xm list command, 5-8
xm shutdown command, 5-10