Oracle® Database Appliance X7-2 Deployment and User's Guide

F95876-03
Copyright © 2016, 2024, Oracle and/or its affiliates.

Primary Author: Aparna Kamath

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience xxix
Documentation Accessibility xxix
Related Documents XXX
Conventions xxx
1 Oracle Database Appliance Checklists
Checklist for System Requirements 1-1
Deployment Checklist for Oracle Database Appliance Bare Metal Systems 1-6
Checklist for Custom Network Address Configuration 1-8
2 Introduction to Oracle Database Appliance
About Oracle Database Appliance 2-1
Oracle Database Appliance Software Terminology 2-3
About the Browser User Interface 2-4
3 Readying Oracle Database Appliance for Deployment
Attaching Network and Storage Cables to Oracle Database Appliance X7-2-HA 3-1
Attaching Network Cables to Oracle Database Appliance X7-2S or X7-2M 3-4
Attaching Power Cords and Initializing Components 3-5
Configuring Oracle Integrated Lights Out Manager 3-6
Powering On Oracle Database Appliance the First Time 3-7
4 Provisioning Oracle Database Appliance Bare Metal System
Verifying Cabling and Network Connections 4-1
Plumbing the Network 4-3
Downloading Oracle Database Appliance Software 4-7
Installing Oracle Database Appliance Software 4-8
Creating the Appliance 4-9
5 Implementing Multi-User Access on Oracle Database Appliance
About Multi-User Access on Oracle Database Appliance 5-2
About Users, Roles, Entitlements, and Operations on a Multi-User Access Enabled Oracle Database Appliance System 5-4
About Granting and Revoking Resource Access 5-6
Using Passwordless Multi-User Access on Oracle Database Appliance 5-6
About Passwordless Multi-User Access on Oracle Database Appliance 5-7
Provisioning Oracle Database Appliance with Passwordless Multi-User Access 5-9
Creating, Viewing, and Deleting Users on Oracle Database Appliance with Passwordless Multi-User Access 5-10
Changing the Password for a User Account on Oracle Database Appliance with Passwordless Multi-User Access 5-11
Provisioning Oracle Database Appliance with Multi-User Access 5-12
Creating, Viewing, and Deleting Users on Oracle Database Appliance with Multi-User Access 5-14
Activating a New User on Oracle Database Appliance with Multi-User Access 5-15
Granting and Revoking Resource Access on Oracle Database Appliance with Multi-User Access 5-16
Viewing Roles, Operations, and Entitlements on Oracle Database Appliance with Multi-User Access 5-17
Managing Databases and Database Homes on Oracle Database Appliance with Multi-User Access 5-19
Changing the Password for a User Account on Oracle Database Appliance with Multi-User Access 5-20
Resetting the Password for a Locked User Account on Oracle Database Appliance with Multi-User Access 5-21
Example JSON Files to Create a Single-Node Passwordless Multi-User Enabled Appliance 5-22
Example JSON File to Create a High-Availability Passwordless Multi-User Enabled Appliance 5-27
Example JSON Files to Create a Single-Node Passwordless Multi-User Enabled DB System 5-31
Example JSON File to Create a High-Availability Passwordless Multi-User Enabled DB System 5-35
6 Oracle Database Appliance Postinstallation Tasks
Configuring CPU Core Count 6-1
Securing Oracle ILOM Service Processors 6-2
Changing Oracle Database Appliance Passwords 6-2
7 Re-imaging Oracle Database Appliance
Uninstalling Oracle Database Appliance Components 7-1
Reimaging an Oracle Database Appliance Baremetal System 7-4
Performing Secure Erase of Data on Storage Disks 7-6
Redeployment of Oracle Database Appliance 7-7
8 Patching Oracle Database Appliance
About Patching Oracle Database Appliance 8-2
About Patching Prechecks 8-4
About Enabling NUMA on Oracle Database Appliance 8-6
Minimizing Downtime When Patching Oracle Database Appliance 8-7
About Updating Databases and Database Homes 8-8
Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line 8-9
Patching Oracle Database Appliance DB Systems Using the Command-Line 8-25
Patching Oracle Database Appliance Bare Metal Systems Using the Browser User Interface 8-31
Patching Oracle Database Appliance DB Systems Using the Browser User Interface 8-32
Updating Oracle Database Appliance Repository with Database Clone Files For Bare Metal Systems 8-34
Patching Databases Using ODACLI Commands or the BUI 8-35
Patching Existing Database Homes Using ODACLI or the BUI 8-36
Patching Non-Provisioned Oracle Database Appliance Systems 8-37
Applying Additional Patches and Updates on Bare Metal Systems 8-38
Enabling Kernel Updates 8-38
Applying Out-of-Cycle Database Patches 8-39
Cleaning Up the Patch Repository 8-41
About Upgrading to a Different Database Home 8-42
Setting Dynamic Default Parameters 8-42
$9 \quad$ Upgrading Oracle Database Appliance to Release 19.23 Using Data Preserving Reprovisioning
About Upgrading Using Data Preserving Reprovisioning 9-1
Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI 9-4
Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI 9-38
Upgrading Oracle Database Appliance to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the BUI 9-45
Patching Databases Using ODACLI Commands or the BUI 9-51
Patching Existing Database Homes Using ODACLI or the BUI 9-52

10 Managing Oracle Databases

About Administrative Groups and Users on Oracle Database Appliance 10-2
About Data Migration Options for Oracle Database Appliance 10-3
About Creating Database Homes on Oracle ACFS Storage 10-3
About Standard Edition High Availability for Oracle Database Appliance 10-5
About Enterprise Edition High Availability for Oracle Database Appliance 10-6
About Transparent Database Encryption (TDE) in Oracle Database Appliance 10-7
Working with Databases 10-8
Viewing Databases 10-9
Creating a Database Using the Browser User Interface 10-9
Managing Database Homes on Oracle ACFS Storage 10-12
Creating a Database Using ODACLI Commands 10-13
Cloning a Database from Backup 10-14
Cloning an Oracle ACFS Database 10-16
Modifying a Database 10-18
Moving a Database from One Oracle Home to Another 10-19
Upgrading a Database 10-20
Upgrading a Database Manually Using AutoUpgrade 10-21
Deleting a Database 10-28
Working with Database Homes 10-28
About Managing Multiple Oracle Homes on Oracle Database Appliance 10-29
Viewing Database Homes 10-30
Creating a Database Home 10-30
Deleting a Database Home 10-30
Migrating Databases 10-31
About Migrating Databases 10-31
Configuring a Static Listener 10-32
Migrating a Database 10-33
Registering a Database 10-34
About Registering a TDE-Enabled Database 10-35
About Managing Multiple Database Instances Using Instance Caging 10-41
Oracle EM Express and DB Console 10-41
11 Managing Storage
About Managing Storage 11-1
Storage on Single Node Platforms 11-2
Storage Options for Single Node Systems 11-2
Adding NVMe Storage Disks 11-3
Replacing NVMe Storage Disks 11-5
Storage on Multi Node Platforms 11-6
About Expanding Storage on Multi-Node Systems 11-6
Preparing for a Storage Upgrade 11-9
Adding Solid-State Drives (SSDs) for Data Storage 11-10
Adding the Storage Expansion Shelf 11-14
12 Managing Networks
About Network Infrastructure and VLANs on Oracle Database Appliance 12-1
Viewing Configured Networks and Network Interfaces 12-2
Creating a Network 12-3
Creating a Non-Bonded Physical Network 12-3
Updating a Network 12-4
Deleting a Network 12-4
13 Backup, Restore and Recover Databases
About Database Backup and Recovery Options 13-1
Configuring NFS Backup and Restore on Oracle Database Appliance 13-9
Configuring an NFS Backup Location 13-9
Backing Up the Database to NFS Location 13-12
Restoring the Database from NFS Backup 13-15
Configuring Agent Proxy Settings for Object Store Access 13-17
Creating a Database Backup Policy 13-18
Updating a Database with a Backup Policy 13-19
Updating a Backup Policy 13-19
Backing Up a Database Using the Browser User Interface 13-19
Viewing Backup Reports 13-20
Recovering a Database Using the Browser User Interface 13-20
Deleting a Backup Using the Browser User Interface 13-21
Deleting a Backup Policy 13-21
Using the CLI to Backup, Restore, and Recover 13-21
Preparing for Database Backup to Disk 13-22
Preparing for Database Backup to NFS Location 13-23
Preparing for Database Backup to Oracle Cloud 13-24
Backing Up a Database with the CLI 13-25
Recovering a Database with the CLI 13-26
Restoring a Database with the CLI 13-28
Restoring Archivelog with the CLI 13-31
Deleting Backups with the CLI 13-31
14 Using Oracle Data Guard for Disaster Management and Recovery on Oracle Database Appliance
About Oracle Data Guard on Oracle Database Appliance 14-2
Configuring Oracle Data Guard on Oracle Database Appliance 14-2
Viewing Oracle Data Guard Status on Oracle Database Appliance 14-12
Performing Oracle Data Guard Operations 14-12
Creating an Oracle Data Guard Network 14-13
Migrating an Oracle Database from One System to Another Using Integrated Oracle Data Guard 14-14
Patching Oracle Data Guard Databases on Oracle Database Appliance 14-20
Upgrading Oracle Data Guard Databases on Oracle Database Appliance 14-22
Enabling Oracle Active Data Guard on Existing Configurations 14-23
Registering Oracle Data Guard on Oracle Database Appliance 14-23
Deconfiguring Oracle Data Guard on Oracle Database Appliance 14-28
15 Managing CPU Pools on Oracle Database Appliance Bare Metal and KVM Deployments
About CPU Pools 15-1
Creating a CPU Pool in a Bare Metal or KVM Deployment 15-3
Remapping CPU Pools in a Bare Metal or KVM Deployment 15-4
Viewing CPU Pools in a Bare Metal or KVM Deployment 15-5
Modifying a CPU Pool in a Bare Metal or KVM Deployment 15-6
Deleting a CPU Pool in a Bare Metal or KVM Deployment 15-6
Viewing CPU Pool Audit Records in a Bare Metal or KVM Deployment 15-7
About Over-Subscribed CPU Pools 15-7
16 Managing an Oracle Database Appliance KVM Deployment
About Oracle Database Appliance KVM Deployment 16-2
About Oracle Database Appliance KVM Virtualization Architecture 16-3
About Virtual Machines and Oracle Database Appliance KVM Deployments 16-4
About KVM DB Systems on Oracle Database Appliance 16-7
Deploying Multiple Databases on DB Systems on Oracle Database Appliance 16-10
Managing DB Systems in KVM Deployment 16-15
Creating a DB System in a KVM Deployment 16-16
Listing DB Systems in a KVM Deployment 16-22
Describing a DB System in a KVM Deployment 16-22
Modifying a DB System in a KVM Deployment 16-23
Attaching and Detaching a Network for a DB System in a KVM Deployment 16-25
Starting a DB System in a KVM Deployment 16-26
Stopping a DB System in a KVM Deployment 16-27
Deleting a DB System in a KVM Deployment 16-27
Managing Backup, Restore, and Recovery on a DB System in a KVM Deployment 16-28
Managing Shared CPU Pool with DB System in a KVM Deployment 16-29
Managing Oracle Data Guard on a DB System in a KVM Deployment 16-32
Setting Up and Configuring a KVM Deployment for Applications 16-32
Managing VM Storage in KVM Deployment 16-33
Creating a VM Storage in a KVM Deployment 16-33
Viewing VM Storage in a KVM Deployment 16-34
Modifying VM Storage in a KVM Deployment 16-34
Deleting a VM Storage in a KVM Deployment 16-35
Managing Virtual Networks in KVM Deployment 16-36
Creating a Virtual Network in a KVM Deployment 16-36
Viewing Virtual Networks in a KVM Deployment 16-37
Starting and Stopping Virtual Networks in a KVM Deployment 16-38
Modifying a Virtual Network in a KVM Deployment 16-38
Deleting a Virtual Network in a KVM Deployment 16-39
Managing Virtual Disks in KVM Deployment 16-39
Creating a Virtual Disk in a KVM Deployment 16-40
Viewing Virtual Disks in a KVM Deployment 16-41
Cloning a Virtual Disk in a KVM Deployment 16-41
Modifying a Virtual Disk in a KVM Deployment 16-42
Deleting a Virtual Disk in a KVM Deployment 16-43
Managing Virtual Machines in KVM Deployment 16-43
Creating a Virtual Machine in a KVM Deployment 16-44
Cloning a Virtual Machine in a KVM Deployment 16-48
Modifying a Virtual Machine in a KVM Deployment 16-48
Viewing Virtual Machines in a KVM Deployment 16-50
Starting and Stopping Virtual Machines in a KVM Deployment 16-50
Deleting a Virtual Machine in a KVM Deployment 16-51
About Overcommitting Memory or CPUs in an Oracle Database Appliance KVM System 16-51
Example JSON File to Create a Single-Node DB System 16-52
Example JSON File to Create a High-Availability DB System 16-60
17 Oracle Database Appliance Command-Line Interface
About Oracle Database Appliance Command-Line Interface 17-2
Managing ODACLI Privileges and Security with SUDO 17-4
ODACLI Command Changes with Multi-User Access on Oracle Database Appliance 17-6
odacli Network Commands 17-13
odacli configure-firstnet 17-13
odacli create-network 17-16
odacli delete-network 17-18
odacli delete-networkinterface 17-19
odacli describe-network 17-20
odacli describe-networkinterface 17-22
odacli list-networks 17-23
odacli list-networkinterfaces 17-23
odacli modify-network 17-24
odacli Multi-User Access Commands 17-25
odacli list-domains 17-27
odacli describe-domain 17-28
odacli list-tenants 17-28
odacli describe-tenant 17-29
odacli create-user 17-30
odacli activate-user 17-31
odacli list-users 17-32
odacli describe-user 17-33
odacli authorize-user 17-34
odacli delete-user 17-35
odacli list-user-roles 17-36
odacli describe-user-role 17-37
odacli list-user-entitlements 17-37
odacli describe-user-entitlement 17-39
odacli list-user-operations 17-39
odacli describe-user-operation 17-40
odacli list-resources-access 17-41
odacli describe-resource-access 17-42
odacli grant-resource-access 17-43
odacli revoke-resource-access 17-44
odacli reset-password 17-45
odacli change-password 17-45
odacli Apply Patch and Update Commands 17-46
odacli cleanup-patchrepo 17-48
odacli create-prepatchreport 17-49
odacli describe-prepatchreport 17-52
odacli list-prepatchreports 17-62
odacli delete-prepatchreport 17-63
odacli list-availablepatches 17-63
odacli describe-component 17-65
odacli describe-latestpatch 17-70
odacli list-agentconfig-parameters 17-72
odacli modify-agentconfig-parameters 17-73
odacli delete-agentconfig-parameters 17-75
odacli update-database 17-77
odacli update-dbhome 17-79
odacli update-dcsadmin 17-80
odacli update-dcsagent 17-81
odacli update-dcscomponents 17-82
odacli update-registry 17-82
odacli update-repository 17-90
odacli update-server 17-91
odacli update-storage 17-93
odacli update-server-postcheck 17-94
odaadmcli orachk 17-94
Data Preserving Reprovisioning Commands 17-95
odacli create-preupgradereport 17-96
odacli describe-preupgradereport 17-96
odacli delete-preupgradereport 17-97
odacli detach-node 17-97
odacli restore-node 17-98
odacli upgrade-dbsystem 17-99
odacli Appliance Commands 17-99
odacli set-credential 17-100
odacli create-appliance 17-100
odacli describe-system 17-101
odacli ping-agent 17-103
odacli list-nodes 17-104
odacli list-featuretracking 17-104
odacli Backup and Recovery Commands 17-107
odacli create-backup 17-109
odacli create-backupconfig 17-110
odacli create-objectstoreswift 17-112
odacli describe-backupconfig 17-113
odacli delete-backup 17-113
odacli delete-backupconfig 17-114
odacli describe-backupreport 17-115
odacli describe-objectstoreswift 17-116
odacli delete-objectstoreswift 17-117
odacli describe-schedule 17-118
odacli irestore-database 17-118
odacli list-backupconfigs 17-122
odacli list-backupreports 17-122
odacli list-objectstoreswifts 17-123
odacli list-schedules 17-123
odacli list-tdebackupreports 17-124
odacli recover-database 17-125
odacli restore-archivelog 17-127
odacli restore-tdewallet 17-128
odacli modify-backupconfig 17-129
odacli modify-objectstoreswift 17-130
odacli modify-schedule 17-131
odacli Oracle Data Guard Commands 17-132
odacli configure-dataguard 17-133
odacli deconfigure-dataguard 17-137
odacli describe-dataguardstatus 17-139
odacli failover-dataguard 17-140
odacli list-dataguardstatus 17-140
odacli reinstate-dataguard 17-141
odacli register-dataguard 17-142
odacli switchover-dataguard 17-142
odacli CPU Core Commands 17-143
odacli list-cpucores 17-143
odacli describe-cpucore 17-144
odacli modify-cpucore 17-144
odacli CPU Pool Commands for Bare Metal and KVM 17-145
odacli create-cpupool 17-146
odacli remap-cpupools 17-148
odacli list-cpupools 17-149
odacli describe-cpupool 17-149
odacli modify-cpupool 17-149
odacli delete-cpupool 17-150
odacli list-auditrecords 17-151
odacli describe-auditrecord 17-152
odacli Database Commands 17-152
odacli clone-database 17-153
odacli create-database 17-163
odacli delete-database 17-167
odacli describe-database 17-169
odacli list-databases 17-170
odacli modify-database 17-171
odacli move-database 17-175
odacli register-database 17-176
odacli upgrade-database 17-179
odacli DBHome Commands 17-181
odacli configure-dbhome-storage 17-181
odacli list-dbhome-storages 17-182
odacli describe-dbhome-storage 17-184
odacli modify-dbhome-storage 17-185
odacli create-dbhome 17-185
odacli delete-dbhome 17-186
odacli describe-dbhome 17-187
odacli list-dbhomes 17-188
odacli Database Storage Commands 17-188
odacli create-dbstorage 17-189
odacli delete-dbstorage 17-190
odacli describe-dbstorage 17-191
odacli describe-dgstorage 17-192
odacli list-dbstorages 17-194
odacli list-dgstorages 17-195
odacli modify-dbstorage 17-196
odacli modify-dgstorage 17-197
odacli Diagnostics Collection Commands 17-198
odacli create-diagcollection 17-199
odacli describe-diagcollection 17-200
odacli list-diagcollections 17-200
odacli delete-diagcollection 17-201
odacli Job Commands 17-202
odacli create-jobdata-retention-policy 17-202
odacli create-purge-jobdata-job 17-204
odacli delete-jobdata-retention-policy 17-207
odacli describe-job 17-209
odacli list-jobs 17-211
odacli list-pendingjobs 17-215
odacli list-jobdata-retention-policy 17-215
odacli list-purge-jobdata-jobs 17-216
odacli list-scheduled-executions 17-217
Log Commands 17-218
odaadmcli manage diagcollect 17-218
odacli create-auto-logclean-policy 17-220
odacli delete-auto-logclean-policy 17-221
odacli create-logcleanjob 17-221
odacli describe-logcleanjob 17-223
odacli list-auto-logclean-policy 17-224
odacli list-logcleanjobs 17-224
odacli list-logspaceusage 17-225
odacli Oracle Auto Service Request Commands 17-226
odacli configure-asr 17-226
odacli describe-asr 17-229
odacli delete-asr 17-229
odacli export-asrconfig 17-230
odacli modify-asr 17-231
odacli test-asr 17-232
Adaptive Classification and Redaction (ACR) Commands 17-233
odacli describe-acr 17-233
odacli enable-acr 17-234
odacli redact-acr 17-234
odacli list-acr 17-235
odacli disable-acr 17-235
odacli OS Commands 17-236
odacli list-osconfigurations 17-236
odacli modify-osconfigurations 17-237
odaadmcli Hardware Monitoring Commands 17-238
odaadmcli show localdisk 17-238
odaadmcli show cooling 17-239
odaadmcli show env_hw 17-239
odaadmcli show fs 17-240
odaadmcli show memory 17-241
odaadmcli show network 17-241
odaadmcli show power 17-242
odaadmcli show processor 17-243
odaadmcli show server 17-243
Storage Commands 17-244
odaadmcli asmops diskgroup 17-245
odaadmcli expand storage 17-246
odacli list-dgdisks 17-246
odacli validate-storagetopology 17-248
odaadmcli power disk 17-248
odaadmcli show controller 17-249
odaadmcli show disk 17-250
odaadmcli show diskgroup 17-251
odaadmcli show raidsyncstatus 17-252
odaadmcli show storage 17-253
odaadmcli stordiag 17-254
18 Oracle Database Appliance Command-Line Interface for KVM
About Command-Line Interface for Kernel-Based Virtual Machine (KVM) 18-1
About ODACLI Commands Supported on Oracle KVM Database System 18-3
odacli DB System Commands for KVM 18-5
odacli create-dbsystem 18-6
odacli modify-dbsystem 18-7
odacli modify-dbfileattributes 18-9
odacli list-dbsystems 18-10
odacli describe-dbsystem 18-11
odacli describe-dbsystem-image 18-18
odacli start-dbsystem 18-19
odacli stop-dbsystem 18-19
odacli delete-dbsystem 18-20
odacli VM Storage Commands for KVM 18-21
odacli create-vmstorage 18-22
odacli list-vmstorages 18-23
odacli describe-vmstorage 18-23
odacli modify-vmstorage 18-23
odacli delete-vmstorage 18-24
odacli Virtual Disk Commands for Oracle KVM 18-24
odacli create-vdisk 18-25
odacli list-vdisks 18-26
odacli describe-vdisk 18-26
odacli modify-vdisk 18-26
odacli clone-vdisk 18-27
odacli delete-vdisk 18-27
odacli CPU Pool Commands for Bare Metal and KVM 18-28
odacli create-cpupool 18-29
odacli remap-cpupools 18-30
odacli list-cpupools 18-31
odacli describe-cpupool 18-32
odacli modify-cpupool 18-32
odacli delete-cpupool 18-33
odacli list-auditrecords 18-33
odacli describe-auditrecord 18-34
odacli VM Network Commands for KVM 18-35
odacli create-vnetwork 18-35
odacli list-vnetworks 18-36
odacli describe-vnetwork 18-37
odacli start-vnetwork 18-37
odacli stop-vnetwork 18-37
odacli modify-vnetwork 18-38
odacli delete-vnetwork 18-38
odacli Virtual Machine Commands for Oracle KVM 18-39
odacli create-vm 18-40
odacli list-vms 18-41
odacli describe-vm 18-41
odacli modify-vm 18-42
odacli start-vm 18-44
odacli stop-vm 18-45
odacli migrate-vm 18-46
odacli clone-vm 18-46
odacli delete-vm 18-47
19 Configuring and Using Oracle Auto Service Request (Oracle ASR)
About Configuring Oracle ASR 19-1
Configuring Internal Oracle ASR 19-3
Registering with External Oracle ASR Manager 19-5
Configuring External Oracle ASR When Oracle ASR Manager Does Not Run on an Oracle Database Appliance 19-7
Testing Oracle ASR 19-11
Managing an Oracle ASR Configuration 19-12
Additional Resources for Oracle ASR 19-13
20 Troubleshooting Oracle Database Appliance
Troubleshooting Data Preserving Reprovisioning Upgrades 20-2
Viewing Oracle Database Appliance Error Correlation Reports 20-14
About Enabling Linux Kernel Core Extractor for Troubleshooting 20-15
Viewing Details About DCS Error Messages 20-17
Collecting Diagnostics Data Using the BUI 20-18
Resolving Errors When Updating DCS Components During Patching 20-18
Viewing Component Information on the Appliance 20-27
Errors When Logging into the Browser User Interface 20-30
Errors when re-imaging Oracle Database Appliance 20-31
Using Oracle Autonomous Health Framework for Running Diagnostics 20-31
About Installing Oracle Autonomous Health Framework 20-32
Using the Oracle ORAchk Health Check Tool 20-33
Generating and Viewing Oracle ORAchk Health Check Tool Reports in the Browser User Interface 20-34
Generating and Viewing Database Security Assessment Reports in the Browser User Interface 20-34
Running Oracle Trace File Analyzer (TFA) Collector Commands 20-35
Sanitizing Sensitive Information in Diagnostic Collections 20-37
Enabling Adaptive Classification and Redaction (ACR) 20-39
Sanitizing Sensitive Information in Oracle Trace File Analyzer Collections 20-40
Redacting and Sanitizing Entities in the BUI 20-40
Sanitizing Sensitive Information in Oracle ORAchk Output 20-41
Running the Disk Diagnostic Tool 20-43
Running the Oracle Database Appliance Hardware Monitoring Tool 20-43
Disabling the Browser User Interface 20-44
A Oracle Database Appliance Software Configuration Defaults
Directory Paths for Oracle Database Appliance A-1
Port Numbers and Protocols of Oracle Database Appliance Components A-2
Location of Log Files A-4
Oracle Groups and User Configurations for Oracle Database Appliance A-5
B Oracle Database Appliance Storage Defaults
About Database File Storage B-1
Oracle ACFS Mount Points and Storage Space B-2
Displaying Mounted Disk Details B-3
Usable Space on Oracle Database Appliance $X 7-2$ S and $X 7-2 M$ B-4
Usable Space on Oracle Database Appliance X7-2-HA B-5
Usable Free Space with Oracle ASM B-6
C Creating an Appliance Using JSON File
Loading and Saving Appliance Configurations C-1
Readme for the Command odacli create-appliance C-2
Example JSON Files to Create a Single Node Appliance with the CLI C-2
Example JSON File to Create a Multi-Node Appliance with the CLI C-7
D Database Shapes for Oracle Database Appliance
About Database Shapes and Classes D-1
Database Shapes for the OLTP Class D-2
Database Shapes for the In-Memory Class D-4
Database Shapes for the DSS Class D-5
Index

List of Examples

4-1 Example of a Bonded Configuration 4-4
4-2 Example of a Non-Bonded Configuration 4-5
4-3 Example of Configuring VLAN 4-5
5-1 JSON File to Create a Single Node Oracle Database Appliance with Role Separation and Passwordless Multi-User Access 5-23
5-2 JSON File to Create a Single Node Oracle Database Appliance without Role Separation and with Passwordless Multi-User Access 5-25
5-3 JSON File to Create a High-Availability Oracle Database Appliance with Role Separation and with Passwordless Multi-User Access 5-27
5-4 JSON File to Create a Single-Node Oracle KVM Database System with Role Separation and Passwordless Multi-User Access 5-31
5-5 JSON File to Create a Single-Node Oracle KVM Database System without Role Separation and with Passwordless Multi-User Access 5-34
5-6 JSON File to Create Two-Node Oracle KVM Database System without Role Separation and with Passwordless Multi-User Access 5-35
5-7 JSON File to Create Two-Node Oracle KVM Database System with Role Separation and with Passwordless Multi-User Access 5-37
7-1 Options for the Secure Erase Tool 7-7
10-1 Sample output of TDE-enabled database registered in bare metal deployments 10-38
10-2 Sample output of TDE-enabled database registered in Oracle Database Appliance DB System deployments 10-39
10-3 Sample output of TDE-enabled database registered in Oracle Database Appliance when password-protected wallet (ewallet.p12) exists but not the autologin TDE wallet (cwallet.sso) 10-40
16-1 JSON File to Create a Single-Node Oracle KVM Database System with Role Separation 16-52
16-2 JSON File to Create a Single-Node Oracle KVM Database System without Role Separation 16-54
16-3 JSON File to Create a Single-Node Oracle KVM Database System with the --template/-t option 16-55
16-4 JSON File to Create a Single-Node Oracle KVM Database System with the --template- annotated/-ta option 16-57
16-5 JSON File to Create Two-Node Oracle KVM Database System without Role Separation 16-60
16-6 JSON File to Create Two-Node Oracle KVM Database System with Role Separation 16-62
16-7 JSON File to Create Two-Node Oracle KVM Database System with Standard Edition High- Availability Enabled 16-64
16-8 JSON File to Create Two-Node Oracle KVM Database System with Oracle RAC Database 16-65
16-9 JSON File to Create A High-Availability Oracle KVM Database System with the --template/-t option 16-67
16-10 JSON File to Create A High-Availability Oracle KVM Database System with the --template/-t option 16-69
16-11 JSON File to Create A High-Availability Oracle KVM Database System with the --template- annotated/-ta option 16-71
17-1 SUDO Example 1: Allow a User to Perform Any ODACLI Operation 17-4
17-2 SUDO Example 2: Allow a User to Perform Only Selected ODACLI Operations 17-5
17-3 Configuring the First Network as a Bonded Network 17-14
17-4 Configuring the First Network as a Non-Bonded Network 17-15
17-5 Configuring the Speed of the Network Interface 17-16
17-6 Creating a Network 17-17
17-7 Creating a VLAN Network 17-17
17-8 Deleting a Network 17-18
17-9 Deleting a Network Interface 17-19
17-10 Deleting btbond1 Network Interface is Not Allowed 17-20
17-11 Deleting Network Interface When Network Exists is Not Allowed 17-20
17-12 Displaying Network Details 17-21
17-13 Displaying Network Details 17-21
17-14 Displaying Network Details 17-22
17-15 Displaying a List of Networks 17-23
17-16 Displaying a List of Network Interfaces 17-24
17-17 Modifying a Network 17-25
17-18 17-28
17-19 17-28
17-20 17-29
17-21 17-30
17-22 17-31
17-23 17-32
17-24 17-32
17-25 17-33
17-26 17-34
17-27 17-35
17-28 17-36
17-29 17-37
17-30 17-38
17-31 17-39
17-32 17-40
17-33 17-41
17-34 17-42
17-35 17-43
17-36 17-43
17-37 17-44
17-38 17-45
17-3917-46
17-40 Deleting RDBMS and GI components for a specific release 17-48
17-41 Deleting Clone Files 17-49
17-42 Creating Pre-Check Report 17-50
17-43 Creating Pre-Check Report for Updating Database and Applying Datapatch 17-50
17-44 Patch pre-checks report with rolling mode patching supported when Expander or Controller upgrade is not required 17-53
17-45 Patch pre-checks report with rolling mode patching not supported when Expander or Controller upgrade is required 17-54
17-46 Displaying the Patch Pre-Checks Report for Operating System, Oracle Grid Infrastructure, and ORAchk 17-55
17-47 Pre-checks report for storage 17-59
17-48 Pre-checks report for updating database home 17-60
17-49 Displaying All Patch Pre-Checks Reports 17-62
17-50 Deleting A Patch Pre-Checks Report 17-63
17-51 Displaying All Available Patches on Bare Metal System 17-64
17-52 Displaying All Available Patches on DB System 17-64
17-53 Displaying patch details for components for High-Availability Oracle Database Appliance Systems for a release 17-65
17-54 List DB Home Details 17-69
17-55 List the Server Components and Versions 17-69
17-56 Listing the Latest Supported Versions 17-71
17-57 Displaying the HttpProxyPort 17-72
17-58 Displaying the agent configuration 17-72
17-59 Displaying Oracle ASM configuration 17-73
17-60 Setting Multiple Parameters 17-74
17-61 Setting Oracle RDBMS Parameters 17-74
17-62 Updating the RDBMS Parameter for all DB systems in the Bare Metal System 17-75
17-63 Deleting configuration parameters 17-76
17-64 Deleting processes configuration parameter 17-77
17-65 Updating an Oracle Database 17-78
17-66 Updating an Oracle Database Home 17-80
17-67 Updating DCS Admin 17-80
17-68 Updating the Agent 17-81
17-69 Updating DCS Components 17-82
17-70 Update Registry Report 17-85
17-71 Updating the Repository 17-91
17-72 Updating the Server 17-93
17-73 Updating the Storage 17-94
17-74 Running odaadmcli orachk 17-95
17-75 Running odaadmcli orachk for a component 17-95
17-76 17-9617-77Resetting the oda-admin Password in Interactive Mode17-9717-97
17-9817-9817-99
17-83 Example Command to View the Bill of Materials from the Command Line for Bare Metal Deployments 17-102
17-84 17-10417-8517-104
17-86 Example Command to View the Features Report from the Command Line 17-105
17-87 Create a Manual Database Backup 17-110
17-88 Create a Level 0 Database Backup 17-110
17-89 Create a Backup of only the TDE Wallet 17-110
17-90 Create a Backup of the database and TDE Wallet 17-110
17-91 Create a Backup Configuration for disk 17-112
17-92 Create a Backup Configuration for NFS location 17-112
17-93 Create a Backup Configuration with separate backup locations for database backup and TDE Wallet backup 17-112
17-94 Create a Backup Configuration with single backup location for database backup 17-112
17-95 Describing a Backup Configuration 17-113
17-96 Delete a Level 0 or Level 1 Backup 17-114
17-97 Delete a Long Term Backup Report 17-114
17-98 Deleting a Backup Configuration 17-115
17-99 Display Details of a Specific Backup Report 17-115
17-100 Describing the Swift Object Store 17-117
17-101 Deleting the Oracle Object Store Credentials 17-117
17-102 Display Schedule Details 17-118
17-103 Restoring a Database to the Same System 17-121
17-104 Restoring a Database to a Different System 17-121
17-105 Restoring a Database with TDE Wallet backup from a backup report 17-121
17-106 Restoring a Database with TDE Wallet backup specified on the CLI 17-121
17-107 Restoring to a standby database when Oracle Data Guard is configured 17-121
17-108 Recovering a Database that was associated with a CPU Pool 17-121
17-109 Displaying a List of Backup Configuration 17-122
17-110 Display a List of all Backup Reports 17-123
17-111 Displaying a List of ObjectStore Swift Credentials 17-123
17-112 Display a List of Scheduled Database Backups 17-124
17-113 Viewing the TDE backup report 17-125
17-114 Recovering a Database to a Point-in-Time 17-126
17-115 Recovering a Database to the latest 17-127
17-116 Recovering a Database to an SCN 17-127
17-117 Restoring the TDE Wallet while performing database recovery, if TDE wallets are lost 17-127
17-118 Recovering a Database that was associated with a CPU Pool 17-127
17-119 Restoring archivelog 17-128
17-120 Restoring TDE wallet for a database from a backup location 17-129
17-121 Revise a Backup Configuration for Disk 17-130
17-122 Changing the Oracle Casper ObjectStore Password 17-131
17-123 Changing the Oracle ObjectStore User Name 17-131
17-124 Modify the Time the Backup Occurs 17-132
17-125 Disable Scheduled Database Backups 17-132
17-126 Configuring Oracle Data Guard interactively on the command line 17-133
17-127 Configuring Oracle Data Guard using JSON file 17-136
17-128 Sample JSON for configuring Oracle Data Guard on Oracle Database Appliance High- Availability Deployments 17-136
17-129 Deconfiguring Oracle Data Guard on the Primary Machine 17-138
17-130 Viewing Oracle Data Guard configuration status 17-139
17-131 Performing Failover Oracle Data Guard 17-140
17-132 Viewing Oracle Data Guard status on primary and standby databases 17-141
17-133 Performing reinstate operation on Oracle Data Guard 17-141
17-134 Switching over Oracle Data Guard 17-143
17-135 Displaying a List of Cores 17-143
17-136 Displaying the Current Core Configuration 17-144
17-137 Enabling CPU Cores 17-145
17-138 Cloning a Database in a new database home 17-154
17-139 Cloning a Database in an existing database home 17-158
17-140 Cloning a Database and associating it with the same CPU Pool as the parent database 17-162
17-141 Cloning a Database and associating it with a different CPU pool 17-162
17-142 Cloning a TDE-enabled database 17-162
17-143 Cloning a database and opening the clone in read only mode 17-163
17-144 Creating a TDE-enabled database 17-166
17-145 Creating a Database in Interactive Mode 17-167
17-146 Creating a Database Against a Different Version 17-167
17-147 Creating a Database associated with a CPU Pool 17-167
17-148 Deleting a Database Named hrmsdb 17-168
17-149 17-169
17-150 Displaying Database Details 17-170
17-151 Displaying a List of Databases 17-171
17-152 Modifying the Database Shape (Template) and Database Class 17-173
17-153 Converting Oracle RAC or Oracle RAC One Node Database to Single-instance Oracle Database 17-174
17-154 Specifying the target node when converting database 17-174
17-155 Changing the TDE Wallet Password 17-174
17-156 Re-keying the TDE Master Encryption Password 17-174
17-157 Removing a CPU pool 17-174
17-158 Moving a Database from one Oracle home to another 17-175
17-159 Registering a Migrated Database 17-178
17-160 Upgrading an Oracle Database 17-180
17-161 Creating Database Home Storage 17-182
17-162 Listing Database Home Storage on a Single-Node System 17-183
17-163 Listing Database Home Storage on a High-Availability System 17-183
17-164 Describing Database Home Storage 17-184
17-165 Modifying Database Home Storage 17-185
17-166 Creating an Oracle Database Home 17-186
17-167 Deleting an Empty Database Home 17-187
17-168 Displaying Oracle Database Home Details 17-187
17-169 Displaying a List of Oracle Home Directories 17-188
17-170 Creating Database Storage 17-190
17-171 Deleting Empty Database Storage 17-191
17-172 Displaying Database Oracle ACFS Storage Details 17-192
17-173 Displaying Database Oracle ASM Storage Details 17-192
17-174 Displaying Disk Group Storage 17-193
17-175 Displaying a List of all Database Storage 17-195
17-176 Displaying Disk Group Storage 17-196
17-177 Modifying the Database Storage 17-197
17-178 Releasing a physical disk HDD_E0_S10_577135552 which has two logical partitions on two different disk groups 17-198
17-179 Creating a diagnostics collection 17-199
17-180 Describing a diagnostics collection 17-200
17-181 Listing all diagnostics collections 17-201
17-182 Deleting a diagnostics collection 17-202
17-183 Creating a default policy to purge all the jobs and scheduled executions older than 30 days 17-203
17-184 Set up a retention policy of 10 days for the schedule 'archive_log_backup' 17-204
17-185 Creating a job to purge job data 17-205
17-186 Purging job data older than 5 hours, including all jobs and scheduled executions related records 17-205
17-187 Purging job data for multiple jobs 17-206
17-188 Purging job data for specific job data schedules older than 5 days 17-207
17-189 Deleting the job data retention policies 17-208
17-190 Displaying Details for a Job 17-209
17-191 Viewing Error Correlation Report 17-209
17-192 Displaying a List of Jobs 17-213
17-193 Displaying Specified Number of Older Jobs 17-213
17-194 Displaying Jobs in a Date Range 17-213
17-195 17-215
17-196 Listing all job retention policies 17-215
17-197 Listing history, statistics, and rules for job data purge jobs 17-216
17-198 Displaying a List of Scheduled and Executed Jobs 17-217
17-199 Masking Sensitive Data in Log Collection 17-220
17-200 Creating Automatic Jobs to Purge Logs 17-221
17-201 Creating Jobs to Purge Logs 17-222
17-202 Displaying Log Cleanup Jobs 17-223
17-203 Listing Jobs to Purge Logs 17-224
17-204 Listing Jobs to Purge Logs 17-225
17-205 Displaying a List of Logs 17-226
17-206 Configuring Oracle ASR with a Proxy Server 17-227
17-207 Configuring an External Oracle ASR 17-228
17-208 Displaying Oracle ASR Details for ASR Type Internal 17-229
17-209 Deleting Oracle ASR From the System 17-230
17-210 Exporting the Internal Oracle ASR Configuration 17-230
17-211 Modifying Oracle ASR to use a New Proxy Server 17-232
17-212 Testing the Oracle ASR Configuration 17-232
17-213 17-233
17-214 17-234
17-215 17-234
17-216 17-235
17-217 17-235
17-218 Displaying a List of Configured and Suggested Memlock and HugePage Configurations 17-236
17-219 Updating the HugePage and Memlock Parameters to the Suggested Values 17-237
17-220 Displaying Environment and Hardware Details 17-240
17-221 Displaying Filesystem Details 17-240
17-222 Display Memory Details 17-241
17-223 Showing Network Details 17-242
17-224 Displaying Power Supply Details 17-242
17-225 Displaying Processor Details 17-243
17-226 Displaying Server Details 17-244
17-227 Listing All Available Disks on the System 17-247
17-228 Listing Disks with the Specified Disk Path on the System 17-247
17-229 Powering a Disk Off 17-249
17-230 Checking the Disk Status 17-249
17-231 Showing Controller Details 17-249
17-232 Displaying the Status of All Disks 17-250
17-233 Displaying the Status of a Single Disk 17-250
17-234 Listing All Diskgroups 17-252
17-235 Displaying DATA Configurations 17-252
17-236 Displaying the RAID SYNC Status 17-253
17-237 Displaying Storage Devices 17-253
17-238 Displaying NVMe Details 17-255
20-1 Example Command to View the Bill of Materials from the Command Line for Bare Metal Deployments 20-27
20-2 Example Command to View the Bill of Materials from the Command Line for Virtualized Platforms 20-29
20-3 Example Command to View the Bill of Materials Report from the Stored Location 20-29
20-4 Block dumps before redaction 20-38
20-5 Block dumps after redaction 20-38
20-6 Redo dumps before redaction 20-38
20-7 Redo dumps after redaction 20-38
20-8 Describing current status of ACR 20-39
20-9 Enabling ACR: 20-39
20-10 Disabling ACR 20-39
20-11 Enabling ACR during provisioning of the appliance 20-40
20-12 Masking or Sanitizing Sensitive Data in a Specific Collection 20-40
20-13 Sanitizing Sensitive Information in Specific Collection IDs 20-41
20-14 Sanitizing a File with Relative Path 20-41
20-15 Sanitizing Oracle Autonomous Health Framework Debug Log 20-42
20-16 Running Full Sanity Check 20-42
20-17 Printing the Reverse Map of Sanitized Elements 20-42
20-18 Collecting log file information for a time period, masking sensitive data 20-45
B-1 Oracle ACFS Storage Space B-3
B-2 Determining Storage on the DATA Disk Group B-4
C-1 JSON File to Create a Single Node Oracle Database Appliance with Role Separation C-3
C-2 JSON File to Create a Single Node Oracle Database Appliance without Role Separation C-5
C-3 JSON File to Create a Multi-Node Oracle Database Appliance with Role Separation C-8
C-4 JSON File to Create a Multi-Node Oracle Database Appliance with Enterprise Edition High Availability Enabled C-11
C-5 JSON File to Create a Multi-Node Oracle Database Appliance with Standard Edition High Availability Enabled C-12

List of Figures

3-1 Front of Oracle Database Appliance Power Panel 3-8

List of Tables

1-1 Checklist for System Configuration Information for Oracle Database Appliance 1-1
1-2 Deployment Checklist for Bare Metal Systems 1-6
1-3 Default IP Address Requirements for Oracle Database Appliance 1-8
2-1 Software for Oracle Database Appliance 2-3
3-1 Location of Network Ports and Power Cabling for Oracle Database Appliance X7-2-HA 3-2
3-2 Location of Ports and Power Cabling for Oracle Database Appliance 3-2
3-3 Transceivers for the SFP Ports - 10GB/1GB 3-3
3-4 Transceivers for the SFP Ports - 25GB 3-3
3-5 Networking Cables for the SFP Ports - 10GB/1GB 3-3
3-6 Networking Cables for the SFP Ports - 25GB 3-3
3-7 Location of Network Ports and Power Cabling for Oracle Database Appliance 3-4
3-8 Description of Callouts for Powering On Oracle Database Appliance 3-8
7-1 Command Options for Cleanup Utility 7-2
10-1 Operating System Groups and Users on Oracle Database Appliance 10-2
11-1 Storage Options for Oracle Database Appliance $\mathrm{X7}$-2S and $\mathrm{X7}$-2M 11-2
11-2 Storage Options for Oracle Database Appliance X7-2-HA 11-9
14-1 Oracle Data Guard protection modes and transport modes 14-5
20-1 Command Options for tfactl Tool 20-35
A-1 Port Numbers and Protocols of Oracle Database Appliance Components A-2
A-2 Default Operating System Groups and Users Configuration for Oracle Database Appliance A-5
B-1 Oracle ACFS Mount Points and Related Oracle ASM Disk Groups and Volume Information B-3
B-2 Usable Disk Capacity on Oracle Database Appliance X7-2S and X7-2M B-4
B-3 Usable Disk Capacity for High Performance on Oracle Database Appliance X7-2-HA B-5
B-4 Usable Disk Capacity for High Capacity on Oracle Database Appliance X7-2-HA B-6
B-5 Oracle ASM Calculations B-7
B-6 Definition of Terminology B-7
D-1 Oracle Database Appliance X7-2S OLTP Database Shapes D-3
D-2 Oracle Database Appliance X7-2M OLTP Database Shapes D-3
D-3 Oracle Database Appliance X7-2-HA OLTP Database Shapes D-4
D-4 Oracle Database Appliance X7-2S In-Memory Database Shapes D-4
D-5 Oracle Database Appliance X7-2M and X7- 2-HA In-Memory Database Shapes D-5
D-6 Oracle Database Appliance X7-2S DSS Database Shapes D-6
D-7 Oracle Database Appliance X7-2M and X7-2-HA DSS Database Shapes D-6

Preface

Oracle Database Appliance is an optimized, prebuilt database system that is easy to deploy, operate, and manage. By integrating hardware and software, Oracle Database Appliance eliminates the complexities of nonintegrated, manually assembled solutions. Oracle Database Appliance reduces the installation and software deployment times from weeks or months to just a few hours while preventing configuration and setup errors that often result in suboptimal, hard-to-manage database environments.

- Audience
- Documentation Accessibility
- Related Documents
- Conventions

Audience

This guide is intended for anyone who configures, maintains, or uses Oracle Database Appliance:

- System administrators
- Network administrators
- Database administrators
- Application administrators and users

This book does not include information about Oracle Database architecture, tools, management, or application development that is covered in the main body of Oracle Documentation, unless the information provided is specific to Oracle Database Appliance. Users of Oracle Database Appliance software are expected to have the same skills as users of any other Linux-based Oracle Database installations.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc\&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc\&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc\&id=trs if you are hearing impaired.

Related Documents

For more information about Oracle Database Appliance, go to http: //www.oracle.com/ goto/oda/docs and click the appropriate release.

For more information about using Oracle Database, go to http://docs.oracle.com/ database/ and select the database release from the menu.

For more information about Oracle Integrated Lights Out Manager 3.2, see https:// docs.oracle.com/cd/E37444_01/.

For more details about other Oracle products that are mentioned in Oracle Database Appliance documentation, see the Oracle Documentation home page at http://docs.oracle.com.

Conventions

The following text conventions are used in this document:

Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action or terms defined in the text. Italic
monospace type indicates book titles, emphasis, or placeholder variables for which	
you supply particular values.	
\# prompt	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Oracle Database Appliance Checklists

Use these checklists to ensure you have completed the tasks required for setting up, deploying, and patching Oracle Database Appliance.

- Checklist for System Requirements

Before you begin the deployment, ensure that you have the system information described in this checklist ready. This checklist applies to baremetal and virtualized platform deployments.

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.
- Checklist for Custom Network Address Configuration

Use the checklist to identify the IP addresses required for Oracle Database Appliance.

Checklist for System Requirements

Before you begin the deployment, ensure that you have the system information described in this checklist ready. This checklist applies to baremetal and virtualized platform deployments.

Table 1-1 Checklist for System Configuration Information for Oracle Database Appliance

Component	Information Required	Comments
Host Name	The name for the Oracle Database Appliance System. The name must conform with the RFC 952 standard, which allows alphanumeric characters and hyphens (-), but does not allow underscores (_). The name should not begin with a numeral or hyphen and should not end in a hyphen. Oracle recommends that you use all lowercase characters for the host name.	Use this space to note the values for your appliance. Host Name:
Domain Name	Your domain name. For example: example.com	Domain Name:
Region	The region where you plan to operate the Oracle Database Appliance system.	Region:
Timezone	The time zone where you plan to operate the Oracle Database Appliance system.	Timezone:

Table 1-1 (Cont.) Checklist for System Configuration Information for Oracle Database Appliance

Component	Information Required	Comments
Diskgroup Redundancy	Determine the redundancy level for DATA, RECO, and FLASH: If there are up to two disks, then you can select the disk group redundancy as Normal or Flex. If there are more than two disk drives, then you can select the redundancy as Normal (two way mirror), High (three way mirror), or Flex. If you select High redundancy, then DATA, RECO, and FLASH are all High Redundancy.	Use this space to note the values for your appliance.
Number of Enabled CPU Cores	Based on your capacity-ondemand (CoD) license, this value specifies the number of enabled CPU cores	Use this space to note the values for your appliance.
Backup	Determine the backup location. For external backup, you need an NFS device.	Backup location:
Percentage of Storage Reserved for Data	Determine the amount of reserves for DATA storage. The percentage must be a whole number between 10 and 90, and determines how the disks are partitioned between DATA and RECO. For example, if you specify 80 , then 80% of storage is reserved for DATA and the remaining 20% is for RECO.	Use this space to note the values for your appliance.
System Password	The password set for the root user of the system, operating system users, database users, and pdbadmin. The password is also used to set the database SYS and SYSTEM passwords. Ensure that the password you provide is in compliance with common security practices.	You must provide a system password when you deploy your appliance.
DNS Server	(Optional) DNS server details. If configuring DNS, a minimum of one DNS Server IP is required.	DNS Server details:
NTP Server	(Optional) Network Time Protocol (NTP) server details.	NTP Server details:

Table 1-1 (Cont.) Checklist for System Configuration Information for Oracle Database Appliance

Component	Information Required	Comments
Network Information for the client access network	Obtain the following network information:	Use this space to note the values for your appliance.
	- Node 0 Name: such as example0	
	- Node 0 Public IP Address	
	- Node 1 Name (For HA Models): such as example1	
	- Node 1 Public IP Address (For HA Models)	
	- Node 0 Virtual IP Name (For HA Models): for example, example0-vip	
	- Node 0 Public Virtual IP Address (For HA Models)	
	- Node 1 Virtual IP Name (For HA Models): for example, example1-vip	
	- Node 1 Public Virtual IP Address (For HA Models)	
	- SCAN Name (For HA Models): for example, example-scan	
	- SCAN IP Addresses: Two SCAN IP addresses are required - Netmask - Gateway IP	
	The Public and private network must not be in same subnet, they must be in non-related separate subnet.	
	Obtain the following additional network information for virtualized platforms:	
	- OVM Node0 Dom0 Host Name	
	- OVM Node0 Dom0 IP Address	
	- OVM Node1 Dom0 Host Name	
	- OVM Node1 Dom0 IP Address	

Table 1-1 (Cont.) Checklist for System Configuration Information for Oracle Database Appliance

Component	Information Required	Comments
Network Information for the Oracle Integrated Lights Out Manager (ILOM) network	Obtain the following ILOM network information: - ILOM host name - ILOM IP address - Subnet mask - Gateway IP - ILOM Password: default is changeme. For HA systems, ensure that you have the information to configure two ILOM networks.	Use this space to note the values for your appliance.
User and group information	Determine how you want to configure your users and groups and whether or not you want to allow operating system role separation. The default is two users with six groups. Operating System Role Separation: Yes/No Customization of Users and Groups: Yes/No Groups and IDs: - Grid Infrastructure User - Grid Infrastructure User ID - Database User - Database User ID - Install Group - Install Group ID - DBA Operating System Group - DBA Operating System Group ID - ASM Admin Group - ASM Admin Group ID - ASM Operating System Group - ASM Operating System Group ID - ASM DBA Group - ASM DBA Group ID	Use this space to note the values for your appliance.

Table 1-1 (Cont.) Checklist for System Configuration Information for Oracle Database Appliance

Component	Information Required	Comments
Initial Database Details (if you	(Optional) If you choose to create	Use this space to note the values
want to create one during	an initial database during	
deplor your appliance.		
deployment, determine the		
following configuration details:		

Table 1-1 (Cont.) Checklist for System Configuration Information for Oracle Database Appliance

Component	Information Required	Comments
Oracle Auto Service Request	(Optional) Do you want to (Oracle ASR) information configure and enable Oracle ASR at deployment or later? If required, then ensure that you have the following information.	Oracle Auto Service Request (Oracle ASR) information for your appliance
	- ASR Type	

Deployment Checklist for Oracle Database Appliance Bare Metal Systems

This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Table 1-2 Deployment Checklist for Bare Metal Systems

Component	Tasks
Register your hardware Support Identifier (SI)	Add your hardware Support Identifier (SI) to your My Oracle Support account profile. Your hardware SI is supplied when you purchase Oracle Database Appliance. If you acquire new software licenses, then you must also register your new software SIs. The SI registration process can take up to 24 hours to complete.
Plug in the Appliance	- Plug in all the cables including the power cords, and then wait for the SP OK light to become solid green. Do not power up yet. - If there is no video port available on your Oracle Database Appliance hardware model, then use the Server Management Serial Port to connect to a laptop, or determine the DHCP address assigned to it. Note: Serial port must be set to 115200 , so make sure the baud rate speed matches.
Configure Oracle Integrated Lights Out Manager (Oracle ILOM) on Node0 and Node1	Before you configure Oracle ILOM:
	- Connect an Ethernet cable from the NET MGT port to your site's management network. The NET MGT port is a 1 GbE port for Oracle ILOM and by default, is configured for DHCP. - Obtain the Oracle ILOM host name and IP address, the netmask, and the gateway addresses from the DHCP server. - Have a new password ready to replace the default Oracle ILOM password
	Log into the Oracle ILOM console and follow the procedure in the topic Configuring Oracle Integrated Lights Out Manager.

Table 1-2 (Cont.) Deployment Checklist for Bare Metal Systems

Component	Tasks
Power ON	- Power on each node and log in as root user with welcome1 password. - Verify cabling: \# /opt/oracle/dcs/bin/odacli validatestoragetopology - Verify interconnect networking. Run the commands \# ethtool p1p1 and \# ethtool p1p2. Follow the steps described in the topic Verifying Cabling and Network Connections.
Plumb the network	Ensure that you have recorded the IP address and netmask address. Set up a temporary network connection to Oracle Database Appliance. Use the command odacli configure-firstnet on Node0, for both single- and multi-node systems. Log into the Oracle ILOM console and follow the procedure in the topic Plumbing the Network.
Download Oracle Database Appliance Software	Log into My Oracle Support and download the software files for deployment. Refer to the Oracle Database Appliance Release Notes for the latest software.
Install Oracle Database Appliance	Upload the zip files to a temporary location on Oracle Database Appliance and then update the repository and install the software. Follow the steps and run the commands described in the topic Installing Oracle Database Appliance Software.
Create Appliance	- Set the Browser User Interface password for the oda-admin user. - Log into the Browser User Interface and configure system, network, and users and groups. Ensure that you have the information mentioned in Checklist for System Requirements available to you. Follow the steps described in the topic Creating an Appliance.
Perform postinstallation tasks	Configure CPU core count. Change the passwords for Browser User Interface, Oracle users and groups, and Oracle ILOM. Follow the steps described in the chapter Oracle Database Appliance Postinstallation Tasks.
Cleanup Deployments	If your deployment failed for some reason, then run the cleanup script and redeploy the appliance. For steps to run the cleanup script, see the topic Uninstalling Oracle Database Appliance Components.

Related Topics

- Verifying Cabling and Network Connections

After powering on Oracle Database Appliance, verify that the network connections are set up correctly.

- Configuring Oracle Integrated Lights Out Manager

Configure Oracle Integrated Lights Out Manager (Oracle ILOM) to manage Oracle Database Appliance independent of the operating system.

- Plumbing the Network

Plumb the Oracle Database Appliance network with the public internet protocol (IP) information assigned to a node, to enable provisioning of the Oracle Database Appliance software.

- Installing Oracle Database Appliance Software Install Oracle Database Appliance software, before creating the appliance.
- Creating the Appliance

Create the appliance using the Browser User Interface or ODACLI commands.

- Oracle Database Appliance Postinstallation Tasks

Complete these administrative tasks after you have deployed software, but before the system is operational.

- Uninstalling Oracle Database Appliance Components Use the Oracle Database Appliance cleanup deploy utility, /opt/oracle/oak/onecmd/ cleanup.pl to uninstall Oracle Database Appliance components.

Checklist for Custom Network Address Configuration

Use the checklist to identify the IP addresses required for Oracle Database Appliance.

- Note:

Oracle does not recommend changing the default Host Private Address. You cannot change the private network after deploying the appliance.

Table 1-3 Default IP Address Requirements for Oracle Database Appliance

Type of IP	IP Address Default Values	Your Values As Applicable
Client Access Network	No default	No default
Additional Network	No default	No default
Oracle Integrated Lights Out Manager (ILOM)	No default	No default
Host Private Addresses	InfiniBand has bonded interface ibbond0. The system configures icbond0 on non-InfiniBand High-Availability systems. The subnets 192.168.16.0/24 and 192.168.17.0/24 are configured.	Not applicable: the private addresses are defined before deployment and should not be changed

Introduction to Oracle Database Appliance

Oracle Database Appliance saves time and money by simplifying deployment, maintenance, and support of database solutions for organizations of every size. Oracle Database Appliance hardware models are optimized to run Oracle Database Standard Edition and Enterprise Edition.

- About Oracle Database Appliance Understand Oracle Database Appliance hardware models, deployment plans, and database options.
- Oracle Database Appliance Software Terminology Understand the software patches available for Oracle Database Appliance.
- About the Browser User Interface

Use the Oracle Appliance Manager Browser User Interface to deploy and manage the appliance, databases, networks, jobs, CPU pools,compute instances, and database systems.

About Oracle Database Appliance

Understand Oracle Database Appliance hardware models, deployment plans, and database options.

About Oracle Database Appliance Hardware Models

Choose the Oracle Database Appliance hardware model that suits your business needs.

Oracle Database Appliance Hardware Model	Deployment Use Case
Oracle Database Appliance X9-2S, X9-2L, X9-2-	Oracle Database Appliance X9-2S is a small
HA	configuration designed for smaller or entry- level deployments. Oracle Database Appliance X9-2L is a large

- Oracle Database Appliance X9-2L is a large configuration designed for larger databases.
- Oracle Database Appliance X9-2-HA is a large configuration designed for larger databases and high-availability.
Oracle Database Appliance X8-2S, X8-2M, X8-2- • Oracle Database Appliance X8-2S is a small HA configuration designed for smaller or entrylevel deployments.
- Oracle Database Appliance X8-2M is a medium-sized configuration designed for performance.
- Oracle Database Appliance X8-2-HA is a large configuration designed for larger databases and high-availability.

Oracle Database Appliance Hardware Model	Deployment Use Case
Oracle Database Appliance X7-2S, X7-2M, X7-2HA	- Oracle Database Appliance X7-2S is a small configuration designed for smaller or entrylevel deployments. - Oracle Database Appliance X7-2M is a medium-sized configuration designed for performance. - Oracle Database Appliance X7-2-HA is a large configuration designed for larger databases and high-availability.
Oracle Database Appliance X6-2S, X6-2M, X6-2L	- Oracle Database Appliance X6-2S is a small configuration designed for smaller or entrylevel deployments. - Oracle Database Appliance X6-2M is a medium-sized configuration designed for performance. - Oracle Database Appliance X6-2L is a large configuration designed for larger databases.
Oracle Database Appliance X6-2-HA	Highly-available two-node Oracle RAC clusters that can support both Oracle RAC and single-instance databases.
Oracle Database Appliance X5-2	Highly-available two-node Oracle RAC clusters that can support both Oracle RAC and single-instance databases.

You cannot expand or reconfigure Oracle Database Appliance to a different configuration. For example, you cannot expand Oracle Database Appliance X7-S to Oracle Database Appliance X7-2M. For Oracle Database Appliance hardware configuration details, see the Oracle Database Appliance Owner's Guide.

About Oracle Database Appliance Deployment Plans

Oracle Database Appliance X8-2S and X8-2M are single node systems that you deploy as a bare metal platform.

Oracle Database Appliance X8-2-HA is a two-node system with the option to deploy as a bare metal platform or a virtualized platform.

Oracle Database Appliance X7-2S and X7-2M are single node systems that you deploy as a bare metal platform.

Oracle Database Appliance X7-2-HA is a two-node system with the option to deploy as a bare metal platform or a virtualized platform.

Oracle Database Appliance X6-2S, X6-2M, X6-2L are single node systems that you deploy as a bare metal platform.

Oracle Database Appliance X6-2-HA is a two-node system with the option to deploy as a bare metal platform or a virtualized platform.

Oracle Database Appliance X5-2 is a two-node system with the option to deploy as a bare metal platform or a virtualized platform.

About Database Deployment Options for Oracle Database Appliance

The following Oracle Database editions are available:

Database Edition	Supported Releases
Oracle Database Enterprise Edition	Oracle Database release 19c, 18c, 12.2.0.1, and
	12.1 .0 .2
Oracle Database Standard Edition 2	Oracle Database release 19c, 18c, 12.2.0.1, and
	12.1 .0 .2

, Note:

It is important to understand your Oracle Database licensing before you create databases. You cannot provision Oracle Database Enterprise Edition and Standard Edition databases in the same bare metal platform, or the same ODA_BASE virtualized deployment, subject to Oracle Database licensing requirements. Review the Oracle Database Licensing Information User Manual for the Oracle Database release to review supported options and products.

Oracle Database Appliance Software Terminology

Understand the software patches available for Oracle Database Appliance.
The table describes the Oracle Database Appliance patches that are available for download and the purpose of the patch.

Note:

Some hardware models may not use the patches listed in the table.

Table 2-1 Software for Oracle Database Appliance

Patch	Description
Oracle Database Appliance patch bundle (quarterly patch release)	Use the patch bundle to update to the latest release after Oracle Database Appliance is deployed. The patch updates the Oracle Database Appliance server, storage, and database components.
Oracle Database Appliance Grid	Use to perform an initial deployment of Oracle Database Appliance and also to patch your deployment to the latest release. Infrastructure/Database Clone The bundle contains the latest Grid Infrastructure and Database components, Oracle Database Appliance Manager software, Oracle Linux and hardware drivers for deployment on an Oracle Database Appliance that is shipped from factory state. If you reimage Oracle Database Appliance with the Bare Metal ISO Image, download the Grid Infrastructure/Database Clone patch to deploy Oracle Database Appliance.
	Use the Database Software Clone files to get the latest Database clone binaries for Oracle Database releases 19c, 12.2.0.1, and 12.1.0.2. The RDBMS clone files are needed to create Oracle databases and database homes.
Oracle Database Clone	Use to reimage the appliance and reset the system back to the factory configuration.

Note:

See the Oracle Database Appliance Release Notes for the patch numbers and download locations and the component versions available in the patch bundle.

Note:

Starting with Oracle Database 18c, Oracle provides quarterly updates in the form of Release Updates (Updates) and Release Update Revisions (Revisions). Oracle no longer releases patch sets. For more information, see My Oracle Support Note 2285040.1.

Oracle Database releases are of type version and version_full releases. The version release is designated in the form major release version.0.0.0.0. The major release version is based on the last two digits of the year in which an Oracle Database version is released for the first time. The version_full release is an update of a version release and is designated based on the major release version, the quarterly release update version (Update), and the quarterly release update revision version (Revision).

Prior to Oracle Database release 18c, changing the first or second digit in the release number was an upgrade, and changing the fourth digit indicated an update. With 18c and later releases, changing the first digit is an upgrade, and changing the second indicates an update.

About the Browser User Interface

Use the Oracle Appliance Manager Browser User Interface to deploy and manage the appliance, databases, networks, jobs, CPU pools,compute instances, and database systems.

The Browser User Interface provides a user-friendly interface to quickly view and perform many of the tasks needed to deploy, patch, and manage your bare metal system. The Oracle Database Appliance Deployment and User's Guide for your hardware model describes how to use the Browser User Interface to perform many of the tasks related to deployment, patching, and management of your appliance.

Use the links in the side navigation to view and manage the following:

- Appliance

- Appliance information
- System information
- Disk group information including storage utilization such as free and used space
- Information about all databases that use a storage disk group
- All the patches and hardware and software components installed on the appliance
- List of RPMs and RPM Drift information
- Network
- View network details
- Create, update, and delete networks
- View interface details

- Oracle ASR

- View Oracle Auto Service Request (Oracle ASR) configuration details
- Configure, modify, test, and delete Oracle ASR

- Patch Manager

- Update the patch repository with Oracle Database Appliance patches
- View component details of the patch and versions that are installed on the appliance
- View component details of the patch and versions that are available, but not yet installed, on the appliance
- Run patch prechecks before applying the patch
- Update the server and storage components
- Compute Instances
- Create KVM deployment on Oracle Database Appliance
- Create view, modify, and, delete virtual storage, virtul network, and virtual disks
- Create view, modify, and, delete, start, and stop virtual machines
- DB Systems
- Create Database System
- List and describe Database System
- Modify, delete, start, and stop Database System
- CPU Pools
- Create view, modify, and, delete CPU pool for bare metal and KVM deployments

Use the links in the top navigation to view and manage the following:

- Database
- Create a database
- View database details
- Apply a backup policy for the database
- Create a manual backup
- Recover a database from a backup
- View and update the database backup schedule and update the archive log backup schedule for the database
- Modify associated networks, database shape and class, and the associated backup policy for a database
- Create, update, and delete backup policies
- Create, update, and delete database homes
- Create and delete database backup
- Clone a database from a database backup or an Oracle ACFS database snapshot
- Patch database homes
- Move databases from one Oracle home to another
- Object Store
- Create Object Store Credentials for backup and recovery
- View the details for Object Store Credentials, including the endpoint URL, user name, and tenant
- Update and delete Object Store Credentials
- Monitoring
- View the status of hardware, storage, memory, cooling, networking, and power
- View monitoring information for each node, in the case of High-Availability deployments
- View system health status and drilldown to details of incidents
- Click the hardware image to view details
- Security
- View audit records and create and view database security assessment reports
- Activity
- View a list of jobs, details, and status
- Click a job description to view job details

Expand Resources in the upper right corner of the Browser User Interface to perform the following tasks:

- There are links to access the Oracle Database Appliance blogs, FAQs, and Documentation.
- Click About to view the Oracle Database Appliance release that is installed on the appliance.

Expand Account in the upper right corner of the Browser User Interface to perform the following tasks:

- Click ILOM Setting to change the root password. To enable first-time login and access to Oracle ILOM, a default Administrator (root) account and its password are provided with the system.
- Click Change Password to change the oda-admin password.
- Click Sign Out to sign out of the Browser User Interface. If you do not sign out, the system automatically signs you out after a period of inactivity. A warning will appear 2 minutes before the session expires.

Doc Search

You can access the Oracle Database Appliance documentation set from the Browser User Interface. There is a search box at the top right hand corner on the BUI. Search results are links to documentation pages shown as a new window in the BUI. When you click the Help button, links from the documentation relevant to the context of the tab are displayed.

Along with the search results from the Oracle Database Appliance documentation pages, BUI also provides relevant Frequently Asked Questions (FAQs) for the search query. Additionally, you can also search on DCS error codes such as DCS-10001, DCS-10032, and so on in the search box and get the links to documentation pages contains these error codes. When you specify the search query, relevant documentation links, FAQs and DCS error codes links are displayed under separate sections in a new window in the BUI.

For the latest updates to the documentation for a release, see the online Oracle Database Appliance documentation library at https://docs.oracle.com/en/engineered-systems/oracle-database-appliance/index.html.

Readying Oracle Database Appliance for Deployment

Before deploying Oracle Database Appliance, perform these setup tasks.

- Attaching Network and Storage Cables to Oracle Database Appliance X7-2-HA Connect Oracle Database Appliance X7-2-HA to either a 10GBase-T (copper) or 25GbE SFP28 (fiber) network.
- Attaching Network Cables to Oracle Database Appliance X7-2S or X7-2M Connect Oracle Database Appliance X7-2S or X7-2M to either a 10GBase-T (copper) or 25GbE SFP28 (fiber) network.
- Attaching Power Cords and Initializing Components Attach power cords for Oracle Database Appliance.
- Configuring Oracle Integrated Lights Out Manager Configure Oracle Integrated Lights Out Manager (Oracle ILOM) to manage Oracle Database Appliance independent of the operating system.
- Powering On Oracle Database Appliance the First Time

Use this procedure the first time you power on Oracle Database Appliance.

Attaching Network and Storage Cables to Oracle Database Appliance X7-2-HA

Connect Oracle Database Appliance X7-2-HA to either a 10GBase-T (copper) or 25GbE SFP28 (fiber) network.

The SFP28 ports support 10Gb and 25Gb fibre and twinaxial cable (twinax), depending on the SFP modules used in these ports. For 10GBase-T public networking, use the Cat-6 network cables. To use the SFP28 ports, use the correct transceivers and cables to meet your switch bandwidth. The following sections show the cabling options for 25GbE SFP28 (fiber) network ports. In the figures, callout 4 identifies the ports for the 10GBase-T (copper) network. Callout 5 identifies the ports for the 25GbE SFP28 (fiber) network.

Connect the Fiber and Copper Network Cables for Oracle Database Appliance X7-2-HA
Connect the network cables for Oracle Database Appliance X7-2-HA.

Location of Network Ports and Power Cabling

Table 3-1 Location of Network Ports and Power Cabling for Oracle Database Appliance X7-2-HA

Callout Number	Description
1	Interconnect Port 25GbE p1p1
2	Interconnect Port 25GbE p1p2 Dark blue SAS cable between PCle slot 2 in Node0 (SAS0) and the dark blue port in the top IO module in the storage shelf (port0)
4	Light blue SAS cable between PCle slot 3 in Node0 (SAS1) and the light blue port in the bottom IO module in the storage shelf (port0)
5	Dark red SAS cable between PCle slot 2 in Node1 (SAS1) and the dark red port in the top IO module in the storage shelf (port1)
6	Light red SAS cable between PCle slot 3 in Node1 (SASO) and the light red port in the bottom IO module in the storage shelf (port1)

Connect the Fiber and Copper Network Cables for Oracle Database Appliance X7-2

Table 3-2 Location of Ports and Power Cabling for Oracle Database Appliance

Callout Number	Description
1	Power cables to the power supply unit (PSU)
2	ILOM NET MGT port. Service processor 10/100/1000Base-T network interface
3	(Optional) ILOM SER MGT port. Service processor RJ-45 serial port

Table 3-2 (Cont.) Location of Ports and Power Cabling for Oracle Database Appliance

Callout Number	Description
4	10 GbE network interface port with RJ-45 connector (btbond1)
5	(Optional) 25 GbE dual-rate SFP28 (fiber network) ports (btbond1). Use either one of the ports: RJ-45 connector port or the SFP28 (fiber network) ports.

Fiber Cables

For optical cables, you must purchase either Short Range (SR) or Long Range (LR) SFP transceivers for each of the network ports, and then plug in the appropriate optical cable. Currently, Oracle sells both the SR and LR SFP transceivers. In addition to these transceivers, you must purchase the appropriate LC-LC terminated fiber optic cables from a third-party vendor.

Table 3-3 Transceivers for the SFP Ports - 10GB/1GB

Name	Part Number
10Gbps Dual Rate SFP SR Transceiver	2129 A
10Gbps SFP LR Transceiver	$5562 \mathrm{~A}-\mathrm{Z}$

Table 3-4 Transceivers for the SFP Ports - 25GB

Name	Part Number
SFP short range Transceiver 7118017	
SFP long range Transceiver	7118020

Copper Cables

You can purchase the following copper cables from Oracle. These cables have built-in SFP connectors.

Table 3-5 Networking Cables for the SFP Ports - 10GB/1GB

Name	Length	Part Number
TwinAx passive copper cable: 1 meter	1 m	7105137
TwinAx passive copper cable: 3 meter	3 m	7105140
TwinAx passive copper cable: 5 meter	5 m	7151141

Table 3-6 Networking Cables for the SFP Ports - 25GB

Name	Length	Part Number
Copper splitter cable assembly: 1 meter QSFP28	1 m	7118355
to 4 SFP28		
Copper splitter cable assembly: 2 meter QSFP28 to 4 SFP28	2 m	7118356

Table 3-6 (Cont.) Networking Cables for the SFP Ports - 25GB

Name	Length	Part Number
Copper splitter cable assembly: 3 meter QSFP28 to 4 SFP28	3 m	7118357
Copper splitter cable assembly: 5 meter QSFP28 to 4 SFP28	5 m	7118358
TwinAx passive copper cable: 1 meter	1 m	7118359
TwinAx passive copper cable: 3 meter	2 m	7118360
TwinAx passive copper cable: 5 meter	3 m	7118361
TwinAx passive copper cable: 5 meter	5 m	7118362

Attaching Network Cables to Oracle Database Appliance X7-2S or X7-2M

Connect Oracle Database Appliance X7-2S or X7-2M to either a 10GBase-T (copper) or 25GbE SFP28 (fiber) network.

The SFP28 ports support 10Gb and 25Gb fibre and twinaxial cable (twinax), depending on the SFP modules used in these ports. Use standard Cat-6 network cables to connect to the onboard 10GBase-T (copper) network ports.

The following sections show the cabling options for 25GbE SFP28 (fiber) network ports. In the figures, callout 4 identifies the ports for the 10GBase-T (copper) network and callout 5 identifies the ports for the 25GbE SFP28 (fiber) network.

Connect the Fiber and Copper Network Cables for Oracle Database Appliance X7-2S or X7-2M

Connect the Fiber and Copper Network Cables for Oracle Database Appliance $\mathrm{X} 7-2 \mathrm{~S}$ or X7-2M

Location of Network Ports and Power Cabling
Table 3-7 Location of Network Ports and Power Cabling for Oracle Database Appliance

Callout Number	Description
1	Power cables to the power supply unit (PSU)
2	ILOM NET MGT port. Service processor 10/100/1000Base-T network interface

Table 3-7 (Cont.) Location of Network Ports and Power Cabling for Oracle Database Appliance

Callout Number	Description
3	(Optional) ILOM SER MGT port. Service processor RJ-45 serial port
4	10 GbE network interface port with RJ-45 connector (btbond1)
5	(Optional) 25 GbE dual-rate SFP28 (fiber network) ports (btbond1). Use either one of the ports: RJ-45 connector port or the SFP28 (fiber network) ports.

Fiber Cables

For optical cables, you must purchase either Short Range (SR) or Long Range (LR) SFP transceivers for each of the network ports, and then plug in the appropriate optical cable. Currently, Oracle sells both the SR and LR SFP transceivers. In addition to these transceivers, you must purchase the appropriate LC-LC terminated fiber optic cables from a third-party vendor.

Name	Part Number
10Gbps Dual Rate SFP SR Transceiver	2129 A
10Gbps SFP LR Transceiver	$5562 \mathrm{~A}-\mathrm{Z}$

Copper Cables

You can purchase the following copper cables from Oracle. These cables have built-in SFP connectors:

Name	Length	Part Number
TwinAx passive copper cable: 1 m	1 m	7105137
TwinAx passive copper cable: 3 m	3 m	7105140
TwinAx passive copper cable: 5 m	5 m	7151141

Attaching Power Cords and Initializing Components

Attach power cords for Oracle Database Appliance.

Caution:

Before plugging in the power cords, ensure that the electrical outlets providing the power are grounded.

If you use only a single AC circuit, then connect both power cords for each component to that circuit. If you want to maintain $\mathrm{N}+1$ power supply redundancy, then use two separate AC circuits. Connect one power cord from each AC circuit into each component.

For more information about cabling with the supplied Cable Management Arm, refer to Oracle Database Appliance Owner's Guide.

Configuring Oracle Integrated Lights Out Manager

Configure Oracle Integrated Lights Out Manager (Oracle ILOM) to manage Oracle Database Appliance independent of the operating system.

Deploying a new Oracle Database Appliance requires a direct connection to the system to configure the Oracle Integrated Lights Out Manager (ILOM) and the first network. If you use the serial port, ensure that the baud rate speeds match. After the first public network interface is configured, you can perform the remaining deployment steps on the Oracle Database Appliance system or from a remote system.

Configuring Oracle ILOM Using IP Address Assigned by DHCP

Ensure that the ILOM NIC is enabled and that ipv4 is enabled.

1. Using a client system's browser, enter the IP address or host name assigned by DHCP into the browser address field and press Enter. For example, https://129.xxx.xx.xx.
2. At the login page, enter the default user name, root and the default password, changeme. The Oracle ILOM web interface is displayed.

Configuring Oracle ILOM Using Static IP Address

1. Using a client system, establish a secure shell (SSH) connection by entering the following on the command line:
```
ssh -l root sp_ip_address
```

where sp_ip_address is the IP address assigned by DHCP.
2. Enter the default user name, root, and the default password, changeme.

The Oracle ILOM CLI prompt appears. Change the default password to a secure password of your choice.
3. Set the working directory.
cd /SP/network
4. Specify a static Ethernet configuration as follows:

```
set pendingipaddress=xxx.xxx.xx.xx
set pendingipnetmask=yyy.yyy.yyy.y
set pendingipgateway=zzz.zzz.zz.zzz
set commitpending=true
set state=enabled
```

$x x x . x x x . x x . x x, y y y . y y y . y y y . y$ and $z z z . z z z . z z . z z z$ are the IP address, netmask, and gateway (respectively) for your ILOM and network configuration.
5. Verify changes and then exit:

```
show /SP/network
exit
```


Configuring Oracle ILOM Using the IPMI tool

To assign IP addresses to Oracle ILOM manually, follow these steps:

1. Open the IPMI tool.
\# ipmitool -I open sunoem cli
2. Go to $S P /$ network and verify that the port is enabled:
show /SP/network
3. If the port is not enabled, then enable the port.
```
# ipmitool -I open sunoem cli "set /SP/network state=enabled"
```

4. In $S P /$ network, verify that ipv4 is enabled.
5. If ipv6 is enabled, then disable ipv6 and enable ipv4.
\# ipmitool -I open sunoem cli "set /SP/network/ipv6 state=disabled"
\# ipmitool -I open sunoem cli "set /SP/network/ipv4 state=enabled"

Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Powering On Oracle Database Appliance the First Time

Use this procedure the first time you power on Oracle Database Appliance.
When you power on Oracle Database Appliance for the first time, the system automatically defines your public network interface based on which of the public interface ports are connected. For Oracle Database Appliance X7-2-HA, the dual-port 10/25 GbE SFP28 PCle adapter is used for the cluster interconnect.

- Note:

After you connect power cords, the green SP OK light-emitting diode (LED) lights blink for a few minutes, and then turn to steady ON. The cooling fans also may turn on. However, these events do not indicate that the system is started. You must complete all of the steps in this section to turn on the appliance properly. Read through the entire section to understand the sequence required for initial system startup.

1. (For Oracle Database Appliance X7-2-HA) Turn on the attached storage shelf, or shelves, before powering on the server nodes.
2. Push the recessed power button to turn on the appliance.

Note:

The fully-initialized state is indicated by the green SP OK LEDs staying steadily lit. If any of the green LED lights on the server are still blinking, then wait for them to complete their initialization steps.

Refer to the figures and to the following callout table to identify the power button and the system initialization status indicator lights.

Figure 3-1 Front of Oracle Database Appliance Power Panel

Table 3-8 Description of Callouts for Powering On Oracle Database Appliance

Callout	Function
1	SP OK LED light, located on the front panel of the appliance. 2
Recessed On/Off power button, which is located on the front panel of the appliance. Push this button only once. Do not repeatedly push the power button.	
Green Power OK LED, located on the front panel. These lights must be in the steady ON position (Green light does not blink) before you log on to the system.	

Oracle Database Appliance does not use the DO NOT SERVICE indicator.
3. Wait for Oracle Database Appliance to complete startup.

Note:

Do not repeatedly push the power buttons. Startup can take several minutes to complete.

Oracle Database Appliance is ready for use when the green Power OK LEDs (callout 3) on the front of the system remains steadily on.

Provisioning Oracle Database Appliance Bare Metal System

Understand the process to configure Oracle Database Appliance bare metal system.
The Browser User Interface is the preferred method of deploying your bare metal platform configuration. The Browser User Interface provides all of the fields necessary to provision Oracle Database Appliance, including configuring the system, network, database, and Oracle Auto Service Request (Oracle ASR). If you prefer to use the command-line interface, you must create a JSON file to configure the deployment options.

- Verifying Cabling and Network Connections

After powering on Oracle Database Appliance, verify that the network connections are set up correctly.

- Plumbing the Network

Plumb the Oracle Database Appliance network with the public internet protocol (IP) information assigned to a node, to enable provisioning of the Oracle Database Appliance software.

- Downloading Oracle Database Appliance Software

Download Oracle Database Appliance software and copy to a temporary location before applying updates to your appliance.

- Installing Oracle Database Appliance Software Install Oracle Database Appliance software, before creating the appliance.
- Creating the Appliance

Create the appliance using the Browser User Interface or ODACLI commands.

- About Enabling Oracle ASMFD on Oracle Database Appliance Understand how you can enable Oracle ASMFD on bare metal systems and DB systems on Oracle Database Appliance.

Verifying Cabling and Network Connections

After powering on Oracle Database Appliance, verify that the network connections are set up correctly.

Run the validation scripts only on Oracle Database Appliance HA models.

1. Log into the Oracle Database Appliance console and access the server node with user name as root and password welcome1.
2. Run validation scripts on both nodes, to verify cabling. For example:
```
# /opt/oracle/dcs/bin/odacli validate-storagetopology
INFO : ODA Topology Verification
INFO : Running on NodeO
INFO : Check hardware type
SUCCESS : Type of hardware found : X7-2
INFO : Check for Environment(Bare Metal or Virtual Machine)
SUCCESS : Type of environment found : Bare Metal
```

```
INFO : Check number of Controllers
SUCCESS : Number of ahci controller found : 1
SUCCESS : Number of External SCSI controllers found : 2
INFO : Check for Controllers correct PCIe slot address
SUCCESS : Internal RAID controller :
SUCCESS : External LSI SAS controller 0 : 3b:00.0
SUCCESS : External LSI SAS controller 1 : 5e:00.0
INFO : Check if JBOD powered on
SUCCESS : 2JBOD : Powered-on
INFO : Check for correct number of EBODS(2 or 4)
SUCCESS : EBOD found : 4
INFO : Check for External Controller 0
SUCCESS : Cable check for port 0 on controller 0
SUCCESS : Cable check for port 1 on controller 0
SUCCESS : Overall Cable check for controller 0
INFO : Check for External Controller 1
SUCCESS : Cable check for port 0 on controller 1
SUCCESS : Cable check for port 1 on controller 1
SUCCESS : Overall Cable check for controller 1
INFO : Check for overall status of cable validation on NodeO
SUCCESS : Overall Cable Validation on NodeO
SUCCESS : JBODO Nickname set correctly
SUCCESS : JBOD1 Nickname set correctly
```

3. If there is a storage expansion shelf connected to the appliance, then power it on. Run the storagetopology command on both nodes to make sure the cabling is correct. For example:
```
# /opt/oracle/dcs/bin/odacli validate-storagetopology
INFO : ODA Topology Verification
INFO : Running on NodeO
INFO : Check hardware type
SUCCESS : Type of hardware found : X7-2
INFO : Check for Environment(Bare Metal or Virtual Machine)
SUCCESS : Type of environment found : Bare Metal
INFO : Check number of Controllers
SUCCESS : Number of ahci controller found : 1
SUCCESS : Number of External SCSI controllers found : 2
INFO : Check for Controllers correct PCIe slot address
SUCCESS : Internal RAID controller :
SUCCESS : External LSI SAS controller 0 : 3b:00.0
SUCCESS : External LSI SAS controller 1 : 5e:00.0
INFO : Check if JBOD powered on
SUCCESS : 2JBOD : Powered-on
INFO : Check for correct number of EBODS(2 or 4)
SUCCESS : EBOD found : 4
INFO : Check for External Controller 0
SUCCESS : Cable check for port 0 on controller 0
SUCCESS : Cable check for port 1 on controller 0
SUCCESS : Overall Cable check for controller 0
INFO : Check for External Controller 1
SUCCESS : Cable check for port 0 on controller 1
SUCCESS : Cable check for port 1 on controller 1
SUCCESS : Overall Cable check for controller 1
INFO : Check for overall status of cable validation on NodeO
SUCCESS : Overall Cable Validation on NodeO
```

```
SUCCESS : JBODO Nickname set correctly
SUCCESS : JBOD1 Nickname set correctly
```

4. Verify the interconnect network:
```
# ethtool p1p1
Settings for p1p1:
Supported ports: [ FIBRE ]
Supported link modes: 1000baseT/Full
Supported pause frame use: Symmetric Receive-only
Supports auto-negotiation: Yes
Advertised link modes: 1000baseT/Full
10000baseT/Full
Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 25000Mb/s <<<<<<<<<<<<<<<<<<<<<<<<<< check speed
Duplex: Full
Port: Direct Attach Copper
PHYAD: 1
Transceiver: internal
Auto-negotiation: on
Current message level: 0x00000000 (0)
Link detected: yes
# ethtool p1p2
Settings for p1p2:
Supported ports: [ FIBRE ]
Supported link modes: 1000baseT/Full
Supported pause frame use: Symmetric Receive-only
Supports auto-negotiation: Yes
Advertised link modes: 1000baseT/Full
10000baseT/Full
Advertised pause frame use: No
Advertised auto-negotiation: Yes
Speed: 25000Mb/s <<<<<<<<<<<<<<<<<<<<<<<<<<< check speed
Duplex: Full
Port: Direct Attach Copper
PHYAD: 1
Transceiver: internal
Auto-negotiation: on
Current message level: 0x00000000 (0)
Link detected: yes
```


Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Plumbing the Network

Plumb the Oracle Database Appliance network with the public internet protocol (IP) information assigned to a node, to enable provisioning of the Oracle Database Appliance software.

1. Connect to Oracle ILOM remote console, then log into Oracle Database Appliance as root.
2. Run the command configure-firstnet on both nodes. You can choose to enable Link Aggregation Control Protocol (LACP) on the bonding interface when you run odacli configure-firstnet.
```
# /opt/oracle/dcs/bin/odacli configure-firstnet
Using bonding public interface (yes/no) [yes]:
Select the Interface to configure the network on (btbond1) [btbond1]:
Use LACP bonding on btbond1 (yes/no) [no]:
Configure DHCP on btbond1 (yes/no) [no]:
INFO: You have chosen Static configuration
Use VLAN on btbond1 (yes/no) [no]:
```

Note that On Oracle Database Appliance X7-2, Link Aggregation Control Protocol (LACP) can be configured on bonded networks, and not non-bonded networks.
3. Complete the network configuration as prompted and configure the public network interface. Also provide the netmask and gateway IP address.

You use this network connection to transfer the software to the server node.

Example 4-1 Example of a Bonded Configuration

For a bonded configuration, answer yes to using a bonding public interface and configure the first network to use a btbond1 interface without configuring DHCP.

```
# /opt/oracle/dcs/bin/odacli configure-firstnet
Select the Interface to configure the network on (btbond1 btbond2 sfpbond1)
[btbond1]:
Use LACP bonding on btbond1 (yes/no) [no]: yes
INFO: network interface [btbondl] setup in LACP mode
Configure DHCP on btbond1 (yes/no) [no]:
INFO: You have chosen Static configuration
Use VLAN on btbond1 (yes/no) [no]:
Enter the IP address to configure : 10.209.13.109
Enter the Netmask address to configure : 255.255.252.0
Enter the Gateway address to configure[10.209.12.1] :
INFO: Plumbing the IPs now
INFO: Restarting the network
Shutting down interface btbond1: [ OK ]
Shutting down interface btbond2: [ OK ]
Shutting down interface p3p1: [ OK ]
Shutting down interface p3p2: [ OK ]
Shutting down interface sfpbond1: [ OK ]
Shutting down loopback interface: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface btbond1: Determining if ip address 10.209.13.109 is
already in use for device btbond1...
[ OK ]
Bringing up interface btbond2: [ OK ]
Bringing up interface sfpbondl: [ OK ]
```


Example 4-2 Example of a Non-Bonded Configuration

To create a non-bonded configuration and disable VLAN capabilities, answer no to using a bonding public interface.

```
# /opt/oracle/dcs/bin/odacli configure-firstnet
Using bonding public interface (yes/no) [yes]: no
INFO: Breaking the bonding on btbond1
INFO: remove bonding module: rmmod bonding
INFO: remove slave setup in /etc/sysconfig/network-scripts/ifcfg-em2
INFO: remove slave setup in /etc/sysconfig/network-scripts/ifcfg-em3
INFO: Restarting the network
Shutting down interface em1: [ OK ]
Shutting down loopback interface: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface em1: [ OK ]
Bringing up interface em2: [ OK ]
Bringing up interface em3: [ OK ]
INFO: Restarting the DCS agent
initdcsagent stop/waiting
initdcsagent start/running, process }5762
Select the Interface to configure the network on (em2 em3) [em2]:
Configure DHCP on em2 (yes/no) [no]:
INFO: You have chosen Static configuration
Enter the IP address to configure : 10.31.102.101
Enter the Netmask address to configure : 255.255.240.0
Enter the Gateway address to configure[10.31.96.1] :
INFO: Plumbing the IPs now
INFO: Restarting the network
Shutting down interface em1: [ OK ]
Shutting down interface em2: [ OK ]
Shutting down interface em3: [ OK ]
Shutting down loopback interface: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface em1: [ OK ]
Bringing up interface em2: Determining if ip address 10.31.102.101 is already
in use for device em2...
[ OK ]
Bringing up interface em3: [ OK ]
```


Example 4-3 Example of Configuring VLAN

```
# /opt/oracle/dcs/bin/odacli configure-firstnet
Using bonding public interface (yes/no) [yes]:
Select the Interface to configure the network on (btbond1) [btbond1]:
Configure DHCP on btbond1 (yes/no) [no]:
INFO: You have chosen Static configuration
Use VLAN on btbond1 (yes/no) [no]:yes
Configure VLAN on btbond1, input VLAN ID [2 - 4094] 122
INFO: using network interface btbond1.122
Enter the IP address to configure : 192.0.2.24
Enter the Netmask address to configure : 192.0.2.24
Enter the Gateway address to configure[192.0.2.24] :
INFO: Restarting the network
Shutting down interface btbond1: [ OK ]
```

```
Shutting down interface em1: [ OK ]
Shutting down interface p1p1: [ OK ]
Shutting down interface p1p2: [ OK ]
Shutting down loopback interface: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface btbond1:
Determining if ip address 192.0.2.24 is already in use for device btbond1...
    [ OK ]
Bringing up interface em1: [ OK ]
Bringing up interface plp1:
Determining if ip address 192.0.2.24 is already in use for device
p1p1... [ OK ]
Bringing up interface p1p2:
Determining if ip address 192.0.2.24 is already in use for device p1p2...
    [ OK ]
Bringing up interface btbond1.122:
Determining if ip address 192.0.2.24 is already in use for device
btbond1.122...
                            [ OK
INFO: Restarting the DCS agent
initdcsagent stop/waiting
initdcsagent start/running, process 32104
```


Configuring LACP after Deployment

Use the -o option with the odacli configure-firstnet command to enable or disable LACP on a bonding interface.

Enabling LACP on a bonding interface after deployment:

```
# odacli configure-firstnet -o
INFO: Configure network option
Select the Interface to configure the network on (btbond1 btbond3 btbond5)
[btbond1]:btbond3
Use LACP bonding on btbond3 (yes/no) [no]: yes
INFO: network interface [btbond3] setup in LACP mode
```

Disabling LACP on a bonding interface after deployment:

```
# odacli configure-firstnet -o
INFO: Configure network option
Select the Interface to configure the network on (btbond1 btbond3 btbond5)
[btbond1]:btbond3
Use LACP bonding on btbond3 (yes/no) [yes]: no
INFO: network interface [btbond3] setup in active-backup mode
```


Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Downloading Oracle Database Appliance Software

Download Oracle Database Appliance software and copy to a temporary location before applying updates to your appliance.

1. Download the software files from My Oracle Support to a temporary location on an external client. Refer to the release notes for details about the software for the latest release.

For example, download the Oracle Database Appliance GI Clone for ODACLI/DCS stack (patch 30403673) and Oracle Database Appliance RDBMS Clone for ODACLI/DCS stack (patch 30403662) for 19.23:
p30403673_1923000_Linux-x86-64.zip
p30403662_1923000_Linux-x86-64.zip
2. Unzip the software - it contains README.html and one or more zip files for the patch.

```
unzip p30403673_1923000_Linux-x86-64.zip
unzip p30403662_1923000_Linux-x86-64.zip
```

The GI and RDBMS Clone files for release 19.23 are extracted.

```
odacli-dcs-19.23.0.0.0-date-GI-19.23.0.0.zip
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip
```

3. Copy the software files from the external client to Oracle Database Appliance. Use the scp or sftp protocol to copy the bundle.

Example using scp command:

```
scp software_file root@oda_host:/tmp
```

Example using sftp command:
sftp root@oda_host

Enter the root password, and then copy the file.
put software_file

For example, for release 19.23:

```
put odacli-dcs-19.23.0.0.0-date-GI-19.23.0.0.zip
put odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip
```

The GI and RDBMS Clone files are copied to the temporary location on the appliance. You can update the repository, and create the appliance, as explained in the next topic.

Related Topics

Installing Oracle Database Appliance Software

Install Oracle Database Appliance software, before creating the appliance.
Ensure that the Oracle Database Appliance patches are downloaded and available for updating the repository, as described in the topic Downloading Oracle Database Appliance Software.

Starting with Oracle Database Appliance release 19.12, the sizes of volumes / u 01 and /opt are smaller than the corresponding sizes in earlier releases. The size of /u01 is now 40GB and the size of /opt is now 30GB. A new ACFS file system, mounted at /opt/oracle/oak/ pkgrepos/orapkgs/clones, is created during provisioning. The DATA disk group provides space of 150 GB for the file system. The Oracle Grid Infrastructure and Oracle Database clone files are stored on this file system.

(1) Important:

If you want to install third-party software on your Oracle Database Appliance, then ensure that the software does not impact the Oracle Database Appliance software. The version lock on Oracle Database Appliance RPMs displays a warning if the thirdparty software tries to override Oracle Database Appliance RPMs. You must restore the affected RPMs before patching Oracle Database Appliance so that patching completes successfully.

(1) Important:

To ensure that your deployment has the latest Oracle Database Appliance firmware, download the latest server patch and update the repository. Then, run the odacli describe-component command to check whether the firmware is current or out-ofdate. If the firmware is not current, then run the odacli update-server and odacli update-storage commands before you deploy the Oracle Database Appliance software. If the firmware is current, then you can deploy the Oracle Database Appliance software as described in this topic, without updating the server and storage. Before updating the server or storage, ensure that you run the odacli create-prepatchreport command to generate the prechecks report, otherwise an error is displayed.

1. Verify the current system version by running the following command on both nodes:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-component -v

On a single-node Oracle Database Appliance system, run the command odacli describe-component without the -v option.
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-component
2. Update the repository with Oracle Grid Infrastructure and Database software only. To prevent space issues in /opt, it is recommended that you add other repositories after the bare metal instance is provisioned.

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
GI_clone_file,/tmp/DB_clone_file
```

For example, for release 19.23:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip,/tmp/odacli-dcs-19.23.0.0.0-
date-GI-19.23.0.0.zip
```

3. Confirm that the repository update is successful:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
4. Delete the software zip files from the temporary location on the appliance to save space:
[root@odal opt]\# rm software_file
rm: remove regular file software_file? y

You have now updated the repository with the Oracle Database Appliance software, and can create your appliance, as described in the next topic.

Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Creating the Appliance

Create the appliance using the Browser User Interface or ODACLI commands.

- Note:

If you plan to enable multi-user access, then refer to the chapter Implementing MultiUser Access on Oracle Database Appliance before you create your appliance.

Creating the Appliance using ODACLI Commands

You can use the command odacli create-appliance and a JSON file that includes your appliance configuration settings to deploy the appliance instead of using the Browser User Interface. Review the readme in the / opt/oracle/dcs/sample directory carefully along with the provided JSON example files. Create a JSON file with the necessary changes based on your environment and requirements.

See Also:

Creating an Appliance Using a JSON File in this guide for example JSON files and the procedure to create a JSON file.

Note:

It is important to review the readme and the examples carefully before creating your JSON file. If you do not enter your network and Oracle ILOM information correctly based on your setup, you will lose network access to both the host and Oracle ILOM.

Creating the Appliance using the Browser User Interface (BUI)

Follow these steps to create the appliance using the BUI:
Ensure that ports 7070 and 7093 on the network between Oracle Database Appliance and the client machine, are open.

1. Navigate to the Browser User Interface. You are prompted to set the password for the odaadmin user.
https://ODA-host-ip-address:7093/mgmt/index.html
2. Log into the Browser User Interface with the new password.

When you launch the Browser User Interface on an unconfigured appliance, the Appliance page notifies you that the appliance is not configured and provides a link to the pages needed to configure and create the appliance.

, Note:

If you face any issues when logging into the Oracle Database Appliance Browser User Interface, then see the topic Errors When Logging into the Browser User Interface in the chapter Troubleshooting Oracle Database Appliance.

3. Click Create Appliance.

4. In the Create Appliance page, if you want to create the appliance from a saved configuration, click Browse, and select the JSON file. The information from the saved configuration file is loaded. You can retain or edit the fields. Otherwise, manually, provide the values to create the appliance.
5. In the System Information tab, specify the values as follows.
a. System Name: Enter the host name.

The host name can contain alphanumeric characters and dashes (-), but cannot start with a number or dash (-) or end with dash (-). Do not exceed 30 characters.
b. Domain Name: Enter the domain name.
c. Region: Select the region of the world where the Oracle Database Appliance is located.
d. Time Zone: Select the time zone where the Oracle Database Appliance is located.
e. (Optional) DNS Servers: Enter addresses for one or more DNS servers.
f. (Optional) NTP Servers: Enter addresses for one or more NTP servers.
g. Diskgroup Redundancy: If there are two disks, then you can select the disk group redundancy as Normal or Flex. To select the the redundancy as High, there must exist more than four disks, and a quorum disk. If five or more disks are configured, then the quorum disk is not required. Select Normal, High, or Flex, as per your deployment requirement.
The Flex parameter defines the disk group redundancy. Flex redundancy requires at least 3 storage devices, including a quorum. For a database to be placed on Oracle ASM, you can set the database redundancy during its creation. For a database to be placed on Oracle ACFS, the database inherits the redundancy of the ACFS file system. You can specify an ACFS file system redundancy during its creation. You can set the disk group redundancy only during appliance creation. The database redundancy can be set anytime you create the database.

The redundancy level for DATA, RECO, and FLASH can be set to Normal, Flex, or High based on whether there are two, four, or more disks.

Note: For Oracle Database Appliance hardware models other than X8-2, the redundancy level for REDO is always High.
h. Data Storage Percentage: Enter a whole number between 10 and 90 to define the percentage of storage reserved for DATA, the remainder is reserved for RECO. For example, if you enter 80 , then 80% of the storage for DATA and 20% for RECO.
i. Disk Group for Database Home Storage: Select the disk group, whether DATA or RECO depending on your hardware model, and specify the size to be allocated. This chooses the disk group from which the ACFS storage required for database homes is allocated.
j. System Password and Confirm Password: Enter the system password in both fields.

The system password is the password set for UNIX and root users. The password must begin with an alpha character and cannot contain quotation marks. Do not exceed 30 characters.
k. Specify the DNS Servers and NTP Servers details.

Starting with Oracle Database Appliance release 19.16, if you specify DNS servers, then ensure that all host names (except SCAN) are resolvable to one and only one IP address through the given domain name and DNS servers. These include Client Access Network Host Name, VIP Name, and ILOM Host Name. This does not apply to SCAN names as they can resolve to multiple IP addresses. If any of the above host names does not resolve to an IP address or resolves to multiple IP addresses, then the the following error is displayed:

DCS-10045:Validation error encountered: Hostname 'hostname1' does not resolve to a unique IP address.
6. In the Network Information tab, configure the primary client access network, virtual networks, and an Oracle Integrated Lights Out Manager (Oracle ILOM) network. You are only required to configure the client access network. The ILOM configuration is optional if you already configured the ILOM for the appliance and you do not need to make changes.

Specify the following, depending on whether it is a single-node or two-node Oracle Database Appliance deployment:
a. Client Access Network Host Name: For Node0, enter the host name for the primary client access network.
b. Client Access Network IP Address: For Node0, enter the IP address for the primary client access network.
c. VIP Name for Node0: Enter the name of the virtual IP network for Node0.
d. VIP IP Address for Node0: Enter the virtual IP address that resides on Node0 and is shared between the nodes.
e. VIP Name for Node1: Enter the name of the virtual IP network for Node0.
f. VIP IP Address for Node1: Enter the virtual IP address that resides on Node1 and is shared between the nodes.
g. (Optional) ILOM Host Name: Enter the name of the Oracle ILOM host for NodeO and Node1.
h. (Optional) ILOM Network IP Address: Enter the IP address for the ILOM for Node0 and Node1.
i. (Optional) ILOM Network Subnet Mask: Enter the subnet mask address for the ILOM.
j. (Optional) ILOM Network Gateway: Enter the gateway address for the ILOM.
k. Client Access Network Subnet Mask: Enter the subnet mask address for the primary client access network.
I. Client Access Network Gateway: Enter the gateway address for the primary client access network.
m. Client Access Network Interface: Enter the interface for the primary client access network.
n. SCAN Name: Specify the Single Client Access Name (SCAN).
o. SCAN IP Address: Specify the SCAN IP address. You can specify up to three SCAN IP addresses.

Specify the VIP address and SCAN only for high-availability deployments.
7. Determine how you want to configure your users and groups and whether or not you want to allow operating system role separation:

- Two users with six groups: Customize Users and Groups, select No. Allow OS Role Separation, select Yes. This is the default configuration.
- Two customized users with six customized groups: Customize Users and Groups, select Yes. Allow OS Role Separation, select Yes.
- Single user with two groups: Customize Users and Groups, select No. Allow OS Role Separation, select No
- Single user with six groups: Customize Users and Groups, select Yes. Allow OS Role Separation, select No. SAP deployments use this configuration.

8. Do you want to create an initial database? Select Yes and go to Step 9 or select No and go to Step 10.
9. Enter the following information to configure an initial database:
a. DB Name: Enter a name for the database.

The name must contain alphanumeric characters and cannot exceed 8 characters.
b. (Optional) DB Unique Name: Enter a globally unique name for the database.

Databases with the same DB Name within the same domain (for example, copies of a database created for reporting or a physical standby) must have a different DB Unique Name that is unique within the enterprise. The name must contain alphanumeric, underscore ($_$), dollar (\$), and pound (\#) characters, but must begin with an alphabetic
character. No other special characters are permitted in a database name. The unique name cannot exceed 30 characters.
c. DB Version: Select a database bundle patch number.
d. CDB: Select Yes or No to specify whether or not you want a Container Database (CDB).
e. PDB Name: Enter a name for the pluggable database (PDB).

The name must begin with an alphanumeric character. The following characters are valid: alphanumeric characters, and underscore ($_$).
f. PDB Admin User: Enter an Admin user name for the pluggable database (PDB).
g. Database Edition: Select the Oracle Database edition, either Standard Edition and Enterprise Edition. Your license determines which database edition you are eligible to create in the appliance.
For Oracle Database 19c Standard Edition, you can only create single-instance Oracle Database, with or without high-availability.
h. SYS and PDB Admin User Password: Provide a password for the database.
i. Deployment: Select a deployment type from the list. The options are RAC, RAC-One, or SI (single-instance database). If you select a single instance database, then select the node for the SI database deployment.
For Standard Edition Oracle Database 19c or later, you can choose to enable high availability for single-instance databases. For Standard Edition Oracle Database 19.6 or later, if you choose to create a single-instance database, then the high availability feature is available by default. To disable high-availability, set the value in the Enable High Availability field to No.

For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to enable high availability for single-instance databases. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, if you choose to create a single-instance database, then the high availability feature is disabled by default. To enable high-availability, set the value in the Enable High Availability field to Yes.
If you select a single instance database, then you have the option to create the database on either NodeO or Node1. The default is NodeO.
j. Shape: Select a database shape from the list.
k. In the Database Class field, select a database class from the drop-down list. If an option is not available in the list, it is not supported for the database edition on the Oracle Database Appliance or the version that you selected. The default is OLTP.
I. In the Storage field, select ACFS or ASM from the drop-down list. The default is Oracle ASM.
m. If you specified the disk group redundancy as Flex, then you can select the Database Redundancy value as Mirror or High.
n. Data Files on Flash Storage: Select Yes or No.

This option is only available if the HA system has HDD storage drives.
o. Configure EM Express: Select Yes or No.

Select Yes to configure the Oracle Enterprise Manager Database Express (EM Express) console for Oracle Database 12.2.1.0 or 12.1.0.2. Selecting Yes enables you to use the console to manage the database.
p. Character set: Select a character set.
q. National Characterset: Select a national characterset.
r. Language: Select the database language.
s. Territory: Select a territory or location from the list.
t. For Oracle Database Enterprise Edition 19c or later, you can choose to enable Transparent Database Encryption (TDE). Select Yes or No in the Enable TDE option. Specify and confirm the TDE Password. By default, the TDE option is disabled.
10. In the Diagnostics Information tab, configure and enable Oracle ASR or choose to enable trace file redaction.

Enable Trace File Redaction: Select Yes if you want to redact sensitive information in diagnostics collections.

You can configure and enable Oracle Auto Service Request (Oracle ASR) now or later:

- To not enable Oracle ASR during deployment, select No and click Submit. After deployment, you can configure an internal Oracle ASR or register with an external Oracle ASR Manager from either the Browser User Interface or command-line interface.
- Internal Oracle ASR: choose to configure Oracle ASR Manager on Oracle Database Appliance or use Oracle ASR Manager configured on another server in the same network as your appliance.
- External Oracle ASR: If you already have Oracle ASR Manager configured elsewhere, you can register Oracle Database Appliance with your existing Oracle ASR Manager.
- To enable Oracle ASR, select Yes and complete the fields:
a. Select Internal or External in the ASR Type field.
b. ASR User Name: Enter the e-mail address associated with the My Oracle Support account under which the server is registered.
c. Password: Enter the password associated with the My Oracle Support account under which the server is registered.
d. (Optional) Specify the HTTPS Port Number for the ASR manager. The default port number is 16162.
e. HTTP Proxy used for Upload to ASR: Select Yes or No.
f. Proxy Server Name: If you are using a proxy for upload, enter the proxy server name.
g. Proxy Port: If you are using a proxy for upload, enter the proxy port.
h. (Optional) HTTP Proxy Requires Authentication: If you are using a proxy for upload, select Yes if you require authentication. If you do not require authentication, select No.
i. Proxy User Name: If you are using a proxy for upload, enter the proxy user name.
j. (Optional) Proxy Password: If you are using a proxy for upload and require authentication, enter the proxy password.

11. Click Submit. When prompted, click Yes to confirm that you want to start the job to deploy the appliance.
12. Verify that the appliance is deployed. Run the odacli describe-system command. For high-availability deployments, run the command on both nodes.

The job to create the appliance takes time to complete. To monitor the job progress, click the Activity tab. Click the job number to view the tasks.

After deployment, the root and database users SYS, SYSTEM, and PDBADMIN are set to the system password. The oracle and grid passwords are set to the default password. Change these passwords to comply with your user security protocols.

Related Topics

- Errors When Logging into the Browser User Interface If you have problems logging into the Browser User Interface, then it may be due to your browser or credentials.

Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Related Topics

- Reimaging an Oracle Database Appliance Baremetal System Reimage Oracle Database Appliance to perform a bare metal restore of Oracle Database Appliance.

Related Topics

- Implementing Multi-User Access on Oracle Database Appliance Understand how multi-user access can be implemented on Oracle Database Appliance, its advantages and restrictions and the associated life cycle management changes for your appliance.
- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

About Enabling Oracle ASMFD on Oracle Database Appliance

Understand how you can enable Oracle ASMFD on bare metal systems and DB systems on Oracle Database Appliance.

Oracle ASM Filter Driver (Oracle ASMFD) simplifies the configuration and management of disk devices by eliminating the need to rebind disk devices used with Oracle ASM each time the system is restarted.

By default, Oracle ASMFD is enabled on Oracle Database Appliance bare metal systems and DB systems. To disable Oracle ASMFD on Oracle Database Appliance bare metal system and DB system, specify "enableAFD": "FALSE" in the JSON file when you provision the bare metal system and DB system. If Oracle ASMFD is not enabled on Oracle Database Appliance bare metal system, then you cannot enable Oracle ASMFD on Oracle Database Appliance DB system. If Oracle ASMFD is enabled on Oracle Database Appliance bare metal system, then you can choose to enable or disable Oracle ASMFD on Oracle Database Appliance DB system by specifying the parameter "enableAFD": "TRUE" or "enableAFD": "FALSE" in the DB system JSON file during provisioning of the DB system.

For DB systems, if the "enableAFD" attribute is not specified in the JSON file during provisioning, then the Oracle ASMFD configuration on the DB system is the same as the bare metal system Oracle ASMFD configuration.

For more information about specifying the "enableAFD" attribute in the JSON files when provisioning bare metal and DB systems, see the example JSON files provided in the chapters Creating an Appliance Using JSON File and Managing an Oracle Database Appliance KVM Deployment in this book.

Note:

To identify if Oracle ASMFD is enabled or not, check whether the /etc/ oracleafd.conf file exists or not. Oracle ASMFD is enabled if this file exists, otherwise, Oracle ASMFD is disabled.

Implementing Multi-User Access on Oracle Database Appliance

Understand how multi-user access can be implemented on Oracle Database Appliance, its advantages and restrictions and the associated life cycle management changes for your appliance.

Caution:

You can enable multi-user access only at the time of provisioning Oracle Database Appliance on bare metal systems and cannot rollback multi-user access after you provision and deploy your appliance. The Oracle Database Appliance administration model changes when you deploy the Multi-User Access feature. Evaluate your role separation requirements before using this feature. Deploying on a test system first can help with the evaluation and assessment of the new administration model.

Note:

You can enable multi-user access on Oracle Database Appliance DB systems when you create the DB system either using ODACLI commands or Browser User Interface (BUI).

- About Multi-User Access on Oracle Database Appliance

Before provisioning your appliance, understand how multi-user access can enhance the security of the system and provide an efficient mechanism for role separation.

- About Users, Roles, Entitlements, and Operations on a Multi-User Access Enabled Oracle Database Appliance System
Understand the users, roles, entitlements, and operations when you provision your appliance with multi-user access enabled.
- About Granting and Revoking Resource Access

Muti-user access allows exclusive or shared access to resources. Review this example about shared resource access.

- Using Passwordless Multi-User Access on Oracle Database Appliance Understand how you can implement passwordless multi-user access on Oracle Database Appliance, its advantages and restrictions, and the associated life cycle management changes for your appliance.
- Provisioning Oracle Database Appliance with Multi-User Access You can enable multi-user access only when you provision Oracle Database Appliance, using CLI commands or the Browser User Interface.
- Creating, Viewing, and Deleting Users on Oracle Database Appliance with Multi-User Access
After provisioning the appliance with multi-user access enabled, you can create users with specific entitlements.
- Activating a New User on Oracle Database Appliance with Multi-User Access Understand how to activate a new user on multi-user access enabled Oracle Database Appliance.
- Granting and Revoking Resource Access on Oracle Database Appliance with Multi-User Access
You can grant and revoke resource access on the appliance.
- Viewing Roles, Operations, and Entitlements on Oracle Database Appliance with MultiUser Access
You can view roles and entitlements on the appliance.
- Managing Databases and Database Homes on Oracle Database Appliance with Multi-User Access
The custom user created on multi-user access Oracle Database Appliance can deploy and manage databases and database homes.
- Changing the Password for a User Account on Oracle Database Appliance with Multi-User Access
Understand how to manage passwords on multi-user access Oracle Database Appliance.
- Resetting the Password for a Locked User Account on Oracle Database Appliance with Multi-User Access
Understand how to reset the password on multi-user access Oracle Database Appliance.
- Example JSON Files to Create a Single-Node Passwordless Multi-User Enabled Appliance Follow these JSON file examples to create a JSON file to deploy a single node appliance with the command odacli create-appliance.
- Example JSON File to Create a High-Availability Passwordless Multi-User Enabled Appliance
Follow the JSON file example to create a JSON file to deploy a high-availability appliance with the command odacli create-appliance.
- Example JSON Files to Create a Single-Node Passwordless Multi-User Enabled DB System
Follow the JSON file example to create a JSON file to deploy a single-node DB System, with role separation, with the command odacli create-dbsystem.
- Example JSON File to Create a High-Availability Passwordless Multi-User Enabled DB System
Follow the JSON file example to create a JSON file to deploy a two-node DB System, with role separation, with the command odacli create-dbsystem.

About Multi-User Access on Oracle Database Appliance

Before provisioning your appliance, understand how multi-user access can enhance the security of the system and provide an efficient mechanism for role separation.

Currently, a single Oracle Database Appliance account with user name and password is used to securely connect to the appliance, run ODACLI commands, or log into BUI. The root user performs all administration on an Oracle Database Appliance. With multi-user access, you have the option of providing separate access to database administrators to manage databases. Display of resources within the Browser User Interface are also filtered as per user role. The root access is restricted to the Oracle Database Appliance system administrator to access system logs or debug issues that require root access.

When you enable multi-user access, you create multiple users with different roles that restrict them from accessing resources created by other users and also restrict the set of operations they can perform using ODACLI commands or Browser User Interface (BUI). The same user
credentials that you set up, can be used for logging into the BUI and running ODACLI commands. The BUI also displays resources and information based on access to the set of resources. A separate Multi-User Access Management tab is available only to the odaadmin user to administer the users and resources in the system.

Note:

When you enable multi-user access, the Oracle Database Appliance administrator is odaadmin. This user has access to all the resources on the appliance and can run any operations using ODACLI or the BUI using the same set of credentials. When you do not enable multi-user access, the user name you use to log into BUI is odaadmin.

Note:

The authentication token support for ODACLI session management is linked to a multi-user access user account. Since root is an operating system administrative user and not a multi-user access user, auth token based session management system is not supported when a user logs in as root. Therefore, you must provide an Oracle Database Appliance account user name and password to run any ODACLI command.

Benefits of enabling multi-user access

- Multi-user access feature supports user lifecycle management such as creation, activation, updation, deactivation, deletion, and credential management.
- By using multi-user access, multiple departments such as finance and human resources within the same organization can use Oracle Database Appliance as a consolidation platform for hosting their databases in a secure manner as only the authorized users in the respective departments can access their departmental databases and perform lifecycle management operations on the databases.
- Organizations that have root access policy restrictions can use multi-user access and create separate users with restricted roles.
- Without multi-user access, all databases were created as the default database user chosen during provisioning. Hence, even in a sudo-based multi-user environment, the ODA administrator could not track usage of resources. Now such reporting is possible at the database level.
- Multi-user access feature supports token-based session management. A user enters the password only when they run the first odacli command. Subsequently, a token is generated and till it expires, the user is not required to enter the password again. Each time an odacli command is run, the existing token is refreshed with a new token that has the expiry of 120 mins or the value configured by the odaadmin user. This means if the odacli session is not idle for the expiry duration, the user does not need to enter the password again.
- Both Basic Auth and mTLS modes of authentication are supported. ODACLI and BUI uses Basic Auth. Users such as oracle and grid can also run certain operations on the DCS agent using mTLS-based authentication. Basic Auth is a password-based authentication scheme. mTLS is a certificate-based authentication scheme where both the client (user)
and the server (DCS agent) mutually present and authenticate each other's certificate before the authentication is deemed complete.
- Multi-user access provides for user account locking on multiple failed login attempts and password expiration. You can also unlock and reset the account in case the password is forgotten.
- Note:

You can enable multi-user access only at the time of provisioning Oracle Database Appliance and cannot rollback multi-user access after you provision and deploy your appliance. Provision the feature on your test system first, and then deploy this feature on your production system.

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

- ODACLI Command Changes with Multi-User Access on Oracle Database Appliance Understand the ODACLI command changes when you enable multi-user access.

About Users, Roles, Entitlements, and Operations on a MultiUser Access Enabled Oracle Database Appliance System

Understand the users, roles, entitlements, and operations when you provision your appliance with multi-user access enabled.

人 Note:

Note that in a multi-user access enabled deployment, the oda-admin user is not present. The ODA admin user name is odaadmin. The first user with administrative privileges is called odaadmin. This user can log into the BUI and run ODACLI commands. This user can also create other user accounts with roles and entitlements as required.

About Roles, Entitlements, and Operations

Each user can be assigned one or more roles in a multi-user enabled Oracle Database Appliance system. Each role encompasses a set of entitlements that authorizes a user to perform only a specific set of operations using ODACLI or BUI. Each entitlement in turn, is a group of a similar set of operations. For example, PROVISIONDB-MGMT is an entitlement that encompasses provisioning-related operations such as create-database, clone-database, delete-database, register-database. Similarly, BACKUPDB-MGMT encompasses backup related operations such as create-backup, delete-backup, irestore-database, recover-database, and so on. The ODA-DB role has access to a collection of entitlements such as PROVISIONDB-MGMT, BACKUPDB-MGMT, and PATCHDB-MGMT. A user with the ODA-DB role can perform all the database lifecycle management operations on the databases that they own. Additionally, if a user with the role of ODA-DB is granted the ODA-GRID role as well, this user can now perform Oracle Grid Infrastructure-related operations.

Roles can be internal or external. Internal roles are assigned to system users and are used internally for the purpose of administration of the Oracle Database Appliance system. For example, the ODA-ADMINISTRATOR role is assigned to the Oracle Database Appliance system administrator to manage the appliance or associated entities. Another example is a DB system communicating with the bare metal using a system user with the role of ODA-DBVMINFRA.

External roles can be granted to the new users created by odaadmin, the Oracle Database Appliance system administrator. For example, the odaadmin creates a new user odadb1 with the role of $O D A-D B$. Now this user odadb1 is entitled to create databases and perform lifecycle management operations because of the role granted to them. A user can have one or more roles.

The topic ODACLI Command Changes with Multi-User Access on Oracle Database Appliance describes the ODACLI commands that have changes for multi-user access and the entitlements required to run the commands.

Multi-User Access User Roles

When you enable multi-user access on Oracle Database Appliance, the following user roles are available:

- ODA-ADMINISTRATOR: This is an internal role assigned to the first user (odaadmin) created during the provisioning of an Oracle Database Appliance. This role entitles odaadmin to run all ODACLI commands or perform all Browser User Interface (BUI) operations. This role cannot be assigned to the new users that odaadmin creates. The odaadmin account is an administrator role that can run any operation (command) on any resource. For example, user oda1 creates a database db1 and user oda2 creates a database db 2 . Each user can now perform lifecycle management operations on their respective database only. But, odaadmin can patch both databases by running odacli commands. This allows both DBAs (oda1 and oda2) and an overall administrator (odaadmin) to perform functions specific to their role.
- ODA-DB: This is an external role available to odaadmin to assign to newly-created users. This role entitles the user to perform database management operations such as create, modify, restore, recover, backup, patch, clone, move, register, and delete.
- ODA-OAKDROOT: This is an internal role that is assigned to system user oakdroot created during provisioning and is used by OAKD to run certain operations such as getdisks and release-disks on the DCS agent. OAKD communicates with DCS through mTLS certificates-based authentication. Hence, this user does not have any password associated with it. Do not use this role to connect by SSH to the appliance or log into the Browser User Intercae to run ODACLI commands. None of the password management commands such as change-password apply to this user.
- ODA-GRID: This is an internal role assigned to the grid user. This role entitles the user to run Oracle Grid Infrastructure-related operations.
- ODA-DBVMINFRA: This is an internal role assigned to the DBVM user created on the bare metal system when the DB system is provisioned. This role entitles the user to synchronize metadata between the DB system and the bare metal system.

Related Topics

- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.
- ODACLI Command Changes with Multi-User Access on Oracle Database Appliance Understand the ODACLI command changes when you enable multi-user access.

About Granting and Revoking Resource Access

Muti-user access allows exclusive or shared access to resources. Review this example about shared resource access.

Muti-user access allows exclusive or shared access to resources. It is recommended that each user creates their own database home and then creates databases in the home. This provides for an efficient method of separation of duties where each user has exclusive access to their databases. However, in certain exceptional situations, such as lack of disk space, a user can request the administrator odaadmin to grant them shared access to a resource owned by another user.

For example, if user oda1 wants to create a database of version 19c and there is already a database home DBH2 of the same version created by another user oda2. With the consent of user oda2, user oda1 can now request the odaadmin user to grant them shared access to database home DBH2. Once the shared access is granted, user odal can now create a database db1 on the shared database home DBH2 and manage it. Note that user oda1 can connect to the database db1 only through the SYS user password and not as a password-less connection based on operating system authentication, as the database home DBH2 is still owned by user oda2. Oracle Database Appliance resources such as database home, database storage, and databases can be shared accross users in a similar fashion on an on-demand basis. However, there are restrictions to the secondary owner managing the shared resource.

Using Passwordless Multi-User Access on Oracle Database Appliance

Understand how you can implement passwordless multi-user access on Oracle Database Appliance, its advantages and restrictions, and the associated life cycle management changes for your appliance.

Caution:

You can enable passwordless multi-user access only at the time of provisioning Oracle Database Appliance on bare metal and DB systems and cannot rollback multi-user access after you provision and deploy your appliance. The Oracle Database Appliance administration model changes when you deploy the passwordless multi-user access feature. Evaluate your role separation requirements before using this feature. Deploying on a test system first can help with the evaluation and assessment of the new administration model.
Existing bare metal and DB system deployments that do not have multi-user access enabled or have the earlier multi-user access feature which requires a password when you first run an odacli command, cannot be converted to a passwordless multiuser access deployment.

Note:

Starting with Oracle Database Appliance release 19.23, a passwordless flavor of the multi-user access feature is also available. You can provision a DB system with either flavor of multi-user access on a bare metal system that does not have multi-user access enabled. On such a bare metal system, you can still use role separation and resource ownership capabilities that multi-user access or multi-user access passwordless provides.

- About Passwordless Multi-User Access on Oracle Database Appliance Before provisioning your appliance, understand how passwordless multi-user access can enhance the security of the system and provide an efficient mechanism for role separation.
- Provisioning Oracle Database Appliance with Passwordless Multi-User Access You can enable passwordless multi-user access only when you provision Oracle Database Appliance using CLI commands. Passwordless multi-user access feature provisioning and management is not supported through the Browser User Interface (BUI).
- Creating, Viewing, and Deleting Users on Oracle Database Appliance with Passwordless Multi-User Access
After provisioning the appliance with passwordless multi-user access enabled, you can create users with specific entitlements.
- Changing the Password for a User Account on Oracle Database Appliance with Passwordless Multi-User Access
Understand how to manage passwords on multi-user access Oracle Database Appliance.

About Passwordless Multi-User Access on Oracle Database Appliance

Before provisioning your appliance, understand how passwordless multi-user access can enhance the security of the system and provide an efficient mechanism for role separation.

Oracle Database Appliance supports enabling of passwordless multi-user access at the time of provisioning of Oracle Database Appliance, on bare metal systems and DB systems. You must specify the "isMultiUserAccessPLEnabled": true option in the JSON file used for provisioning bare metal systems and DB systems. For more information, see the example JSON file with this option in this chapter.

When you enable passwordless multi-user access, you create multiple users with different roles that restrict them from accessing resources created by other users and also restrict the set of operations they can perform using ODACLI commands.

Note:

You can enable passwordless multi-user access on Oracle Database Appliance bare metal and DB systems at the time of provisioning using ODACLI commands. You cannot use the Browser User Interface (BUI) to enable passwordless multi-user access on Oracle Database Appliance bare metal systems. However, you can use the BUI on the Oracle Database Appliance bare metal system to enable multi-user access on Oracle Database Appliance DB systems at the time of provisoning.

Benefits of enabling passwordless multi-user access

- If your corporate policies prevent direct usage of Oracle Database Appliance user account passwords by employing tools or software that allow access to Oracle Database Appliance through your corporate credentials, then you can configure passwordless multi-user access and run commands on your appliance without the need for specifying your Oracle Database Appliance account password when you first run an ODACLI command or when your authentication token expires. This does not compromise the security of the system as all communication to the Oracle Database Appliance server is through a strong and secure system generated password, unique for every user.
- Passwordless multi-user access feature provides role separation and supports user lifecycle management such as creation, deletion, and credential management.
- By using passwordless multi-user access, multiple departments such as finance and human resources within the same organization can use Oracle Database Appliance as a consolidation platform for hosting their databases in a secure manner as only the authorized users in the respective departments can access their departmental databases and perform lifecycle management operations on the databases.
- Organizations that have root access policy restrictions can use passwordless multi-user access and create separate users with restricted roles.
- Without multi-user access, all databases were created as the default database user chosen during provisioning. Hence, even in a sudo-based multi-user environment, the ODA administrator could not track usage of resources. Now such reporting is possible at the database level.
- For passwordless multi-user access, you do not have to specify the Oracle Database Appliance account password when you first run an ODACLI command or when the authentication token expires. The Oracle Database Appliance system generates a strong and secure password for every user. This password is internally stored by the system and used when you run odacli commands.
- Both Basic Auth and mTLS modes of authentication are supported. ODACLI uses Basic Auth. Users such as oracle and grid can also run certain operations on the DCS agent using mTLS-based authentication. Basic Auth is a password-based authentication scheme. mTLS is a certificate-based authentication scheme where both the client (user) and the server (DCS agent) mutually present and authenticate each other's certificate before the authentication is deemed complete.

Note:
You can enable passwordless multi-user access only at the time of provisioning Oracle Database Appliance and cannot rollback passwordless multi-user access after you provision and deploy your appliance. Provision the feature on your test system first, and then deploy this feature on your production system.

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

- ODACLI Command Changes with Multi-User Access on Oracle Database Appliance Understand the ODACLI command changes when you enable multi-user access.

Provisioning Oracle Database Appliance with Passwordless Multi-User Access

You can enable passwordless multi-user access only when you provision Oracle Database Appliance using CLI commands. Passwordless multi-user access feature provisioning and management is not supported through the Browser User Interface (BUI).

Provision your appliance as described in the chapter Provisioning Oracle Database Appliance Bare Metal System.

Caution:

You can enable passwordless multi-user access only at the time of provisioning Oracle Database Appliance on bare metal systems and cannot rollback multi-user access after you provision and deploy your appliance. The Oracle Database Appliance administration model changes when you deploy the passwordless multiuser access feature. Evaluate your role separation requirements before using this feature. Deploying on a test system first can help with the evaluation and assessment of the new administration model.

Overall Steps in Provisioning Oracle Database Appliance with Passwordless Multi-User Access Enabled

1. Enable passwordless multi-user access.

- To provision your appliance using a JSON file, add the attribute
"isMultiUserAccessPLEnabled": true in the prov_req.json file. If the attribute is set to false or does not exist in the prov_req.json file, then passwordless multi-user access is not enabled during provisioning of the appliance. Note that you can set either multi-user access or passwordless multi-user access in the JSON file, not both.
"isRoleSeparated": true,
"isMultiUserAccessPLEnabled": true,
"osUserGroup": \{
"groups": [\{
"groupId": 1001,
"groupName": "oinstall",
"groupRole": "oinstall"
\},

2. Connect to the Oracle Database Appliance network and run the odacli configurefirstnet command using the Oracle ILOM console.
3. Log into Oracle Database Appliance as the root user and run the odacli createappliance -r prov.json command with "isMultiUserAccessPLEnabled": true in the prov.json file.
4. After the provisoning job is submitted, log out as root and log in as the odaadmin user using a PAM utility or passwordless SSH and check the status of the provisioning job and ensure that it is successful.
5. The system creates Oracle Database Appliance accounts for odaadmin, oracle, and grid users. These are Oracle Database Appliance system users and their accounts are activated during created. The user odaadmin is created with the role of ODA-ADMINISTRATOR while the oracle and grid users are created with the role of ODA_DB and ODA_GRID respectively.
6. The system configures the multi-user access repository with a list of roles and entitlements, used for assigning to the users in the system.
7. You can now log into the appliance using the PAM utility that is integrated with the appliance. The PAM utility prompts you for your corporate credentials and on successful authentication, logs you into the appliance as an Oracle Database Appliance user as per the mapping defined by the PAM utility administrator. Alternatively, you can set up passwordless SSH to log into the appliance.
8. After the bare metal system is provisioned, log in as the odaadmin user and run the odacli create-dbsystem -p prov.json command with "isMultiUserAccessPLEnabled": true in the prov.json file.
9. After the DB system is provisioned, log in as the odaadmin user through the PAM utility or passwordless SSH and create additional users, if required.
10. Log into the DB system as the oracle user through the PAM utility or passwordless SSH and create databases for the oracle user.
11. Log into DB system as a custom user through the PAM utility or passwordless SSH and create databases for the custom user.

Related Topics

- Provisioning Oracle Database Appliance Bare Metal System Understand the process to configure Oracle Database Appliance bare metal system.
- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

Creating, Viewing, and Deleting Users on Oracle Database Appliance with Passwordless Multi-User Access

After provisioning the appliance with passwordless multi-user access enabled, you can create users with specific entitlements.

After you provision your appliance with multi-user access enabled, do the following:
Creating, Viewing, and Deleting Users with ODACLI Commands

1. Connect to the appliance as the odaadmin user.
ssh odaadmin@oda-box hostname/IP
2. Run any ODACLI command and provide the odaadmin password when prompted.
3. On successful authentication, create a user with the following command:
odacli create-user -u username -r comma-separated role names

For example, create a user dbuser1 with lifecycle management privileges for dabatases:
odacli create-user -u dbuser1 -r ODA-DB

The odaadmin user creates dbuser1 and assigns a temporary password.
4. After the user is created successfully, the dbuser1 can log into the appliance with the temporary password.
5. The dbuser1 is in the Inactive state. Activate the user with the following command:

```
odacli activate-user
```

You are prompted to change the password. Enter the temporary password, the new password, and confirm the new password.
6. Use the new password to connect by SSH into the appliance and run ODACLI commands or connect to the Browser User Interface.
7. The odaadmin user can view all the users in the system:
\# odacli list-users
8. The odaadmin user can view details for a user in the system:
\# odacli describe-user -u user_id
9. Delete a user in the system. Note that only the odaadmin user can delete a user in the system.
\# odacli delete-user -u user_id

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

Changing the Password for a User Account on Oracle Database Appliance with Passwordless Multi-User Access

Understand how to manage passwords on multi-user access Oracle Database Appliance.

Changing the Password on Passwordless Multi-User Access Enabled System Using ODACLI Commands

- You can change password for an Oracle Database Appliance user, whose account is active. This command resets the password of this user account to a new randomly generated password.
odacli change-password

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

Provisioning Oracle Database Appliance with Multi-User Access

You can enable multi-user access only when you provision Oracle Database Appliance, using CLI commands or the Browser User Interface.

Provision your appliance as described in the chapter Provisioning Oracle Database Appliance Bare Metal System.

Caution:

You can enable multi-user access only at the time of provisioning Oracle Database Appliance on bare metal systems and cannot rollback multi-user access after you provision and deploy your appliance. The Oracle Database Appliance administration model changes when you deploy the Multi-User Access feature. Evaluate your role separation requirements before using this feature. Deploying on a test system first can help with the evaluation and assessment of the new administration model.

- Note:

You can specify the token expiration duration, password expiration duration, maximum failed login attempts, and other details when you provision multi-user access enabled Oracle Database Appliance with JSON file. You can also specify these values as a one-time activity from the Browser User Interface when you configure multi-user access and provision Oracle Database Appliance using the Browser User Interface.

Overall Steps in Provisioning Oracle Database Appliance with Multi-User Access Enabled

1. Enable multi-user access.

- If you provision your appliance using a JSON file, then add the attribute "isMultiUserAccessEnabled": true in the prov_req.json file. If the attribute is set to false or does not exist in the prov_req. j son file, then multi-user access is not enabled during provisioning of the appliance.
"isRoleSeparated": true,
"isMultiUserAccessEnabled": true,
"osUserGroup": \{
"groups": [\{
"groupId": 1001,
"groupName": "oinstall",
"groupRole": "oinstall"
\},

You can also set the multi-user access attributes by adding the following in the JSON file:

```
},
    "asr": null,
    "multiUserAccess": {
        "dcsUserPasswdExpDurationInDays": 90,
            "tokenExpirationInMins": 120,
        "maxNumFailedLoginAttempts": 3
    }
}
```

The values for these attributes are as follows:

- Token expiration duration in minutes: The minimum value you can specify is 10 minutes, the maximum value is 600 minutes, and the default is 120 minutes.
- Password expiration duration in days: The minimum value you can specify is 30 days, the maximum value is 180 days, and the default is 90 days.
- Maximum failed login attempts allowed: The minimum value you can specify is 2 , the maximum value is 5 , and the default is 3 .
- If you create the appliance using the Browser User Interface (BUI), then select the Enable Multi-User Access (N/A for DB System) checkbox in the BUI login page.

2. Provide passwords for odaadmin, oracle, and grid users. These are Oracle Database Appliance system users and their accounts are activated during created. The user odaadmin is created with the role of ODA-ADMINISTRATOR while the oracle and grid users are created with the role of ODA_DB and ODA_GRID respectively.
3. The system configures the multi-user access repository with a list of roles and entitlements, used for assigning to the users in the system.
4. You can now log into the appliance with the newly-created user credentials and deploy databases.

Provisioning Oracle Database Appliance Using the Browser User Interface with MultiUser Access Enabled

1. Access the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. For the first login, since the odaadmin role is not configured, you are prompted to provide the ODA password and enable multi-user access.
3. Select Enable Multi-User Access (N/A for DB System) and provide a strong password for the ODA user.
4. Click Configure Multi-User Settings and then set the User Password Expiry Duration (In Days), Session Expiration for CLI (minutes), and Maximum Failed Login Attempts. Click Save to save these settings and return to the Login page on the BUI.
5. Click Submit. A confirmation message is displayed on successful creation of the user.
6. Click OK. You are redirected to the Login page.
7. Specify the User Name and ODA Password and click Login. Note that the ODA admin user name is odaadmin if multi-user access is enabled. If multi-user access is not enabled, then the ODA admin user name is oda-admin.
8. In the Create Appliance page, specify the details for creating the appliance. See the topic Creating the Appliance for detailed information about the information you need to provide.
9. Select Assign same password for admin, oracle, grid users if you want to specify the same password for all users. Otherwise, specify different passwords for the system admin, oracle, and grid users.
10. Click Submit to create the appliance with multi-user access enabled.
11. The job is submitted and a confirmation page appears with a link to the job. Click the link to view the job progress, tasks, and status. After you close the Job confirmation page, you can click the Activity tab to monitor the job progress. Click the job number to view the tasks and status details. Click Refresh to refresh the page.

Related Topics

- Provisioning Oracle Database Appliance Bare Metal System Understand the process to configure Oracle Database Appliance bare metal system.
- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

Creating, Viewing, and Deleting Users on Oracle Database Appliance with Multi-User Access

After provisioning the appliance with multi-user access enabled, you can create users with specific entitlements.

After you provision your appliance with multi-user access enabled, do the following:
Creating, Viewing, and Deleting Users with ODACLI Commands

1. Connect to the appliance as the odaadmin user.
ssh odaadmin@oda-box hostname/IP
2. Run any ODACLI command and provide the odaadmin password when prompted.
3. On successful authentication, create a user with the following command:
```
odacli create-user -u username -r comma-separated role names
```

For example, create a user dbuser1 with lifecycle management privileges for dabatases:
odacli create-user -u dbuser1 -r ODA-DB

The odaadmin user creates dbuser1 and assigns a temporary password.
4. After the user is created successfully, the dbuser1 can log into the appliance with the temporary password.
5. The dbuser 1 is in the Inactive state. Activate the user with the following command:
odacli activate-user

You are prompted to change the password. Enter the temporary password, the new password, and confirm the new password.
6. Use the new password to connect by SSH into the appliance and run ODACLI commands or connect to the Browser User Interface.
7. The odaadmin user can view all the users in the system:
\# odacli list-users
8. The odaadmin user can view details for a user in the system:
\# odacli describe-user -u user_id
9. Delete a user in the system. Note that only the odaadmin user can delete a user in the system.
\# odacli delete-user -u user_id

Creating, Viewing, and Deleting Users with Browser User Interface

1. Log into the Browser User Interface as the odaadmin user:
https://host-ip-address:7093/mgmt/index.html
2. Click the Multi-User Access tab.
3. Click the Users link on the left-hand pane.
4. Click Create User.
5. In the Create User page, provide the User ID, specify the Role, and provide the ODA Password for this user. Note that the same user credentials work for login for BUI and ODACLI commands.
6. Optionally, click Generate mTLS Certificate to enable mTLS-based authentication.
7. Click Create.
8. The job is submitted and a confirmation page appears with a link to the job. Click the link to view the job progress, tasks, and status. After you close the Job confirmation page, you can click the Activity tab to monitor the job progress. Click the job number to view the tasks and status details. Click Refresh to refresh the page.
9. In the Multi-User Access tab, on the Users page, click on the link for the user whose details you want to view.
10. To delete a user, log in as the the odaadmin user. In the Actions drop-down list, select Delete. Note that only a user of type Custom can be deleted.

Related Topics

- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

Activating a New User on Oracle Database Appliance with MultiUser Access

Understand how to activate a new user on multi-user access enabled Oracle Database Appliance.

Activating the New User on Multi-User Access Enabled System Using ODACLI Commands

1. After a new user is created by odaadmin successfully, the new user, for example, dbuser1 can log into the appliance with the temporary password.
2. Activate the user with the following command:
odacli activate-user

You are prompted to change the password. Enter the temporary password, the new password, and confirm the new password.

Activating the New User on Multi-User Access Enabled System Using Browser User Interface

1. After a new user is created by odaadmin, log into the Browser User Interface as the new user:
https://host-ip-address:7093/mgmt/index.html
2. Specify the User Name and the temporary password in the ODA Password field.
3. Since this is a new account, the Account Status is Inactive. You are prompted to specify and confirm a new password.
4. Specify and confirm the Password and click Submit.
5. On successful password change, log into the Browser User Interface with the new password.

Related Topics

- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

Granting and Revoking Resource Access on Oracle Database Appliance with Multi-User Access

You can grant and revoke resource access on the appliance.
Granting and Revoking Resource Access with ODACLI Commands

- Grant or revoke access to a resource in a multi-user access enabled system:
\# odacli grant-resource-access -ri resource_ID -u user_name
\# odacli revoke-resource-access -ri resource_ID -u user_name
- View access to a DCS resource in a multi-user access system:
\# odacli describe-resource-access -ri resource_ID
- View access to all DCS resources defined in a multi-user access system:

```
# odacli list-resources-access -ao -rn resource_name -rt resource_type
```


Granting and Revoking Resource Access with Browser User Interface

1. Log into the Browser User Interface as odaadmin:
https://host-ip-address:7093/mgmt/index.html
2. Click the Multi-User Access tab.
3. Click the Resources link on the left-hand pane.
4. Click on a Resource to view more details.
5. For a Resource, in the Actions drop down list, select Grant Resource Access to grant the user shared access to a resource. Select the User Name from the drop-down list and click Grant. Click Yes to confirm and submit the job.
6. Select Revoke Resource Access to revoke access to a resource from a user. Select the User Name from the drop-down list and click Revoke. Click Yes to confirm and submit the job.

Related Topics

- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

Viewing Roles, Operations, and Entitlements on Oracle Database Appliance with Multi-User Access

You can view roles and entitlements on the appliance.

Viewing Roles, Operations, and Entitlements with ODACLI Commands

- Note:

For Oracle Database Appliance release 19.13, the multi-user access feature is available for standalone Oracle Database Appliance systems. During provisioning, a single domain and tenancy is created by default and all users are created within the default domain and tenancy.

- View all the roles defined in the system:
\# odacli list-user-roles
- View details for a user role in the system:

```
# odacli describe-user-role -n role_name
```

- View all the entitlements defined in the system:
\# odacli list-user-entitlements
- View details for an entitlement in the system:

```
# odacli describe-user-entitlement -n entitlement_name
```

- View all the operations defined in the system:
\# odacli list-user-operations
- View details for an operation in the system:
\# odacli describe-user-operation -n operation_name
- View the domains defined in the system. In this release, this is the default domain.
\# odacli list-domains
- View details for a domain in the system:
\# odacli describe-domain -dn domain_name
- View the tenants in a multi-user access enabled domain. In this release, this is the default tenancy.
\# odacli list-tenants
- View details for a tenant in a multi-user access enabled domain:
\# odacli describe-tenant -tn tenant_name

Viewing Roles, Operations, and Entitlements with Browser User Interface

1. Log into the Browser User Interface as odaadmin:
https://host-ip-address:7093/mgmt/index.html
2. Click the Multi-User Access tab.
3. Click the Roles link on the left-hand pane. The roles defined in the system are displayed. These roles cannot be edited or updated.
4. Click on a Role to view more details.
5. Click the Entitlements link on the left-hand pane. The entitlements defined in the system are displayed. These entitlements cannot be edited or updated.
6. Click on an Entitlement to view more details.

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

Managing Databases and Database Homes on Oracle Database Appliance with Multi-User Access

The custom user created on multi-user access Oracle Database Appliance can deploy and manage databases and database homes.

After you create a custom dbuser1 on an Oracle Database Appliance with multi-user access enabled, manage databases as follows:

Creating and Listing Databases and Database Homes Using ODACLI Commands

1. Connect to the appliance as dbuser1.
ssh dbuser1@oda-box hostname/IP
2. Create a database:
odacli create-database -n dbName -v dbVersion
3. Run the odacli list-databases to view the databases owned by dbuser1:
odacli list-databases

Another user with the ODA-DB role cannot use the resource owned by dbuser1 to create a database home, thus ensuring role separation.
4. Use the -all option on the appliance when multi-user access is enabled to view all the databases in the system.
odacli list-databases -all
5. Use the -all option on the appliance when multi-user access is enabled to view all the database homes in the system.
odacli list-dbhomes -all

Creating and Listing Databases and Database Homes Using Browser User Interface

1. Log into the Browser User Interface as dbuser1:
https://host-ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Show All Databases. A list of all databases in the system is displayed.

- View Details: View the details of the database.
- Modify: Modify the database
- Move: Move the database
- Upgrade: Upgrade the database
- Delete: Delete the database.
- Grant Access: Grant access privilege to the database to a user.
- Revoke Access: Revoke access privilege to the database from a user.
- View Pre-patch reports: View prechecks report for patching.

4. Click the Database Home link on the left hand pane. A list of all database homes in the system is displayed.
5. For a database home, you can click the Actions dropdown list, and select from the following options:

- View Database: View the details of the database home.
- Delete: Delete the database.
- Grant Access: Grant access privilege to the database home to a user.
- Revoke Access: Revoke access privilege to the database home from a user.
- View Pre-patch reports: View prechecks report for patching.

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

Changing the Password for a User Account on Oracle Database Appliance with Multi-User Access

Understand how to manage passwords on multi-user access Oracle Database Appliance.

Changing the Password on Multi-User Access Enabled System Using ODACLI Commands

- You can change password for an Oracle Database Appliance user, whose account is active:
odacli change-password

Changing the Password on Multi-User Access Enabled System Using Browser User Interface

1. Log into the Browser User Interface as the user whose password you want to change:
https://host-ip-address:7093/mgmt/index.html
2. To change the Account password at any time: Click on the Account drop down list in the top right-hand side of Browser User Interface and select Change Password.
3. Specify the Old Password and also specify and confirm the new Password and click Submit.

Related Topics

- odacli Multi-User Access Commands Use odacli commands to enable multi-user access for the appliance.

Resetting the Password for a Locked User Account on Oracle Database Appliance with Multi-User Access

Understand how to reset the password on multi-user access Oracle Database Appliance.

Resetting Password for a Locked User Account on Multi-User Access Enabled System Using ODACLI Commands

- Unlock the odaadmin user account that is locked due to multiple failed login attempts or password expiry.

1. Log in as root.
2. Run the following:
/opt/oracle/dcs/bin/resetCredsForOdaAdmin.sh

A temporary password is assigned to the odaadmin user.
3. Log in as the odaadmin user with the temporary password.
4. Run the following command:
odacli reset-password

You are prompted to provide the temporary password and specify and confirm the new password. After the command runs successfully, the user account is unlocked.

- Unlock any non-admin user account that is locked due to multiple failed login attempts or password expiry.

1. Log in as odaadmin.
2. Run the following command:
odacli authorize-user

After you provide a temporary password, the account is unlocked.
3. Log in as the user whose account was locked, with the temporary password.
4. Run the following command:

```
odacli reset-password
```

You are prompted to provide the old password, the temporary password and specify and confirm the new password. After the command runs successfully, the user account is unlocked and reactivated.

Resetting Password for a Locked User Account on Multi-User Access Enabled System Using Browser User Interface

- Unlock the non-admin user account that is locked due to multiple failed login attempts or password expiry as follows:

1. Log into the Browser User Interface as the odaadmin user:
https://host-ip-address:7093/mgmt/index.html
2. In the Multi-User Access tab, on the Users page, click on the link for the user whose password you want to reset. Note that you can reset the password for users of type Custom only. The Account Status for the user is LockedFailedLogin.
3. In the Actions drop down list, select Authorize Password Reset.
4. In the Authorize Password Reset page, specify the Old Password, specify and confirm the Temporary ODA Password, and click Authorize.
5. Now, log into the Browser User Interface as the user whose account is being unlocked. Specify the User Name and the temporary password in the ODA Password field.
6. Since the account was locked, the Account Status is CredentialReset. You are prompted to specify and confirm a new password.
7. Specify and confirm the Password and click Submit.
8. On successful password change, log into the Browser User Interface with the new password.

Related Topics

- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.

Example JSON Files to Create a Single-Node Passwordless Multi-User Enabled Appliance

Follow these JSON file examples to create a JSON file to deploy a single node appliance with the command odacli create-appliance.

Use the example JSON files and the information located in the readme as a template to create a file for your environment. Examples and the readme are located in the /opt/oracle/dcs/ sample directory.

(Note:

If you do not enter your network and Oracle ILOM information correctly based on your setup, then network access is lost to both the host and Oracle ILOM.

When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

Note: To configure Oracle ASR during provisioning, always specify the asrType parameter in the JSON file.

Example 5-1 JSON File to Create a Single Node Oracle Database Appliance with Role Separation and Passwordless Multi-User Access

The following is an example of a JSON file that creates a single node appliance on Oracle Database Appliance. The example uses role separation and enables passwordless multi-user access.

```
    {
"instance" : {
    "name" : "odambox",
    "instanceBaseName" : "odambox-c",
    "dbEdition" : "EE",
    "timeZone" : "UTC",
    "ntpServers" : ["xx.x.x.x"],
    "dnsServers" : ["x.x.x.xx","xx.x.x.xx","xx.x.x.xx"],
    "domainName" : "example.com",
    "isRoleSeparated" : true,
    "isMultiUserAccessPLEnabled" : true,
    "osUserGroup" : {
        "groups" : [ {
            "groupId" : 1001,
            "groupName" : "oinstall",
            "groupRole" : "oinstall"
        }, {
            "groupId" : 1002,
            "groupName" : "dbaoper",
            "groupRole" : "dbaoper"
        }, {
            "groupId" : 1003,
            "groupName" : "dba",
            "groupRole" : "dba"
        }, {
            "groupId" : 1004,
            "groupName" : "asmadmin",
            "groupRole" : "asmadmin"
        }, {
            "groupId" : 1005,
            "groupName" : "asmoper",
            "groupRole" : "asmoper"
        }, {
            "groupId" : 1006,
            "groupName" : "asmdba",
            "groupRole" : "asmdba"
        } ],
        "users" : [ {
            "userId" : 1000,
            "userName" : "oracle",
            "userRole" : "oracleUser"
        }, {
            "userId" : 1001,
            "userName" : "grid",
            "userRole" : "gridUser"
        } ]
    }
},
    "users": [
```

```
            "id": 1000,
                    "name": "ugrid",
                            "role": "gridUser"
                    },
                    {
            "id": 1001,
            "name": "uoracle",
            "role": "oracleUser"
                    }
                ]
            },
            "multiUserAccess": {
                "isMultiUserAccessPLEnabled": true
            }
    },
"sysOraHomeStorage": {
        "volumeSize": "160",
        "diskgroup": "DATA"
    }
"nodes" : [ {
    "nodeNumber" : "0",
    "nodeName" : "odambox",
    "network" : [ {
            "nicName" : "btbond1",
            "ipAddress" : "xx.x.x.xx",
            "subNetMask" : "xxx.xxx.xxx.x",
            "gateway" : "xx.x.x.x",
            "networkType" : [ "Public" ],
            "isDefaultNetwork" : true
        },
    ],
    "ilom" : {
        "ilomName":"odambox-c",
        "ipAddress":"xx.x.x.xx",
        "subNetMask":"xxx.xxx.xx.x",
        "gateway":"xx.x.x.x"
        }
} ],
"grid" : {
    "diskGroup" : [ {
        "diskGroupName" : "DATA",
        "redundancy" : "NORMAL",
        "diskPercentage" :80
    }, {
        "diskGroupName" : "RECO",
        "redundancy" : "NORMAL",
        "diskPercentage" :20
    } ],
"scan" : null,
"vip": null,
    "language" : "en",
    "enableAFD":"TRUE"
},
"database" : {
    "dbName" : "myTestDb",
```

```
        "databaseUniqueName": "myTestDb_sea1kj",
        "dbEdition" : "EE",
        "dbVersion" : "19.23.0.0",
        "dbHomeId":null,
        "instanceOnly" : false,
        "isCdb" : true,
        "pdBName" : "pdb1",
        "pdbAdminuserName" : "pdbuser",
        "enableTDE":true,
        "adminPassword" : "password",
        "dbType" : "SI",
        "dbTargetNodeNumber" : null,
        "dbClass" : "OLTP",
        "dbShape" : "odb1",
        "dbStorage" : "ACFS",
        "dbCharacterSet" : {
            "characterSet" : "AL32UTF8",
            "nlsCharacterset" : "AL16UTF16",
            "dbTerritory" : "AMERICA",
            "dbLanguage" : "AMERICAN"
        },
        "dbConsoleEnable" : false,
        "backupConfigId":null,
        "rmanBkupPassword": null
    },
    "asr" :{
    "asrType": "INTERNAL",
    "userName":"john.smith@example.com",
    "password":"password",
    "proxyServerName":"www-proxy.example.com",
    "proxyPort":"80",
    "proxyUserName":"proxy-user",
    "proxyPassword":"proxy-password",
    "httpsPortNumber":"16163"
    }
}
```


Example 5-2 JSON File to Create a Single Node Oracle Database Appliance without Role Separation and with Passwordless Multi-User Access

The following is an example of a JSON file that creates an Oracle Database Appliance without using role separation and with passwordless multi-user access. This example creates two groups (oinstall and dba) and one user (oracle).

```
{
    "instance" : {
    "name" : "odambox",
    "instanceBaseName" : "odambox-c",
    "dbEdition" : "EE",
    "timeZone" : "UTC",
    "ntpServers" : ["xx.x.x.xx"],
    "dnsServers" : ["xx.x.x.xx","xx.x.x.xx","xx.x.x.xx"],
    "domainName" : "example.com",
    "isRoleSeparated" : false,
    "isMultiUserAccessPLEnabled" : true,
    "osUserGroup" : {
```

```
        "groups" : [ {
            "groupId" : 1001,
            "groupName" : "oinstall",
            "groupRole" : "oinstall"
        }, {
            "groupId" : 1002,
            "groupName" : "dba",
            "groupRole" : "dba"
        } ],
            "multiUserAccess": {
                "isMultiUserAccessPLEnabled": true
            }
    },
"nodes" : [ {
    "nodeNumber" : "0",
    "nodeName" : "odambox",
    "network" : [ {
            "nicName" : "btbond1",
            "ipAddress" : "xx.x.x.xx",
            "subNetMask" : "xxx.xxx.xxx.x",
            "gateway" : "xx.x.x.x",
            "networkType" : [ "Public" ],
            "isDefaultNetwork" : true
        },
    ],
    "ilom" : {
        "ilomName":"odambox-c",
        "ipAddress":"xx.x.x.xx",
        "subNetMask":"xxx.xxx.xxx.x",
        "gateway":"xx.x.x.x"
        }
} ],
"grid" : {
    "diskGroup" : [ {
        "diskGroupName" : "DATA",
        "redundancy" : "NORMAL",
        "diskPercentage" :80
    }, {
        "diskGroupName" : "RECO",
        "redundancy" : "NORMAL",
        "diskPercentage" :20
    } ],
"scan" : null,
"vip": null,
    "language" : "en",
    "enableAFD":"TRUE"
},
"database" : {
    "dbName" : "myTestDb",
    "databaseUniqueName":"myTestDb_sea1kj",
    "dbEdition" : "EE",
    "dbVersion" : "19.21.0.0",
    "dbHomeId":null,
    "instanceOnly" : false,
    "isCdb" : true,
    "pdBName" : "pdb1",
```

```
        "pdbAdminuserName" : "pdbuser",
        "enableTDE":true,
        "adminPassword" : "password",
        "dbType" : "SI",
        "dbTargetNodeNumber" : null,
        "dbClass" : "OLTP",
        "dbShape" : "odb1",
        "dbStorage" : "ACFS",
        "dbCharacterSet" : {
            "characterSet" : "AL32UTF8",
            "nlsCharacterset" : "AL16UTF16",
            "dbTerritory" : "AMERICA",
            "dbLanguage" : "AMERICAN"
        },
        "dbConsoleEnable" : false,
        "backupConfigId":null,
        "rmanBkupPassword": null
    },
    "asr" :{
    "asrType": "INTERNAL",
    "userName":"john.smith@example.com",
    "password":"password",
    "proxyServerName":"www-proxy.example.com",
    "proxyPort":"80",
    "proxyUserName":"proxy-user",
    "proxyPassword":"proxy-password",
    "httpsPortNumber":"16163"
    }
}
```


Example JSON File to Create a High-Availability Passwordless Multi-User Enabled Appliance

Follow the JSON file example to create a JSON file to deploy a high-availability appliance with the command odacli create-appliance.

Use the example JSON files and the information located in the readme as a template to create a file for your environment. Examples and the readme are located in the /opt/oracle/dcs/ sample directory.

- Note:

It is important to review the readme and the examples carefully before creating your JSON file. If you do not enter your network and Oracle ILOM information correctly based on your setup, then network access is lost to both the host and Oracle ILOM.

Example 5-3 JSON File to Create a High-Availability Oracle Database Appliance with Role Separation and with Passwordless Multi-User Access

The following is an example of a JSON file that creates a high-availability appliance on Oracle Database Appliance bare metal platform. The example uses role separation and with
passwordless multi-user access. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "instance":{
        "name":"odahabox",
        "instanceBaseName":"odahabox",
        "dbEdition":"EE",
        "timeZone":"UTC",
        "ntpServers" : ["10.0.3.14"],
        "dnsServers" : ["10.0.4.10","10.0.4.11","10.0.4.12"],
        "domainName":"example.com",
        "isRoleSeparated":true,
        "isMultiUserAccessPLEnabled" : true,
        "osUserGroup":{
            "groups":[
                {
                    "groupId":1001,
                    "groupName":"oinstall",
                            "groupRole":"oinstall"
            },
            {
            "groupId":1002,
            "groupName":"dbaoper",
            "groupRole":"dbaoper"
            },
            {
            "groupId":1003,
            "groupName":"dba",
            "groupRole":"dba"
            },
            {
            "groupId":1004,
            "groupName":"asmadmin",
            "groupRole":"asmadmin"
            },
            {
            "groupId":1005,
            "groupName":"asmoper",
            "groupRole":"asmoper"
            },
            {
                        "groupId":1006,
                        "groupName":"asmdba",
                            "groupRole":"asmdba"
            }
        ],
        "users":[
            {
            "userId":101,
            "userName":"grid",
            "userRole":"gridUser"
            },
            {
            "userId":102,
            "userName":"oracle",
```

```
                    "userRole":"oracleUser"
            }
            ]
        },
        "users": [
            {
                            "id": 1000,
                            "name": "ugrid",
                            "role": "gridUser"
                },
                {
                            "id": 1001,
                            "name": "uoracle",
                            "role": "oracleUser"
                    }
            ]
        },
        "multiUserAccess": {
            "isMultiUserAccessPLEnabled": true
        }
},
    "objectStoreCredentials":null
},
"sysOraHomeStorage": {
    "volumeSize": "160",
    "diskgroup": "DATA"
}
"nodes":[
    {
        "nodeNumber":"0",
        "nodeName":"odahaboxc1n2",
        "network":[
            {
                    "nicName":"btbond1",
                    "ipAddress":"10.31.98.133",
                    "subNetMask":"255.255.240.0",
                    "gateway":"10.31.96.1",
                    "networkType":[
                    "Public"
                    ],
                    "isDefaultNetwork":true
            }
        ],
        "ilom":{
            "ilomName":"odahabox2-c",
            "ipAddress":"10.31.16.140",
            "subNetMask":"255.255.240.0",
            "gateway":"10.31.16.1"
        }
    },
    {
        "nodeNumber":"1",
        "nodeName":"odahaboxc1n1",
        "network":[
            {
                    "nicName":"btbond1",
```

```
                    "ipAddress":"10.31.98.132",
                "subNetMask":"255.255.240.0",
                    "gateway":"10.31.96.1",
                    "networkType":[
                        "Public"
                ],
                    "isDefaultNetwork":true
                }
            ],
            "ilom":{
                    "ilomName":"odahabox1-c",
                    "ipAddress":"10.31.16.139",
                    "subNetMask":"255.255.240.0",
                    "gateway":"10.31.16.1"
            }
    }
],
"grid":{
    "diskGroup":[
        {
            "diskGroupName":"DATA",
            "redundancy":"HIGH",
            "diskPercentage":80
        },
        {
            "diskGroupName":"RECO",
            "redundancy":"HIGH",
            "diskPercentage":20
        },
    ],
    "scan":{
            "scanName":"odahaboxc1-scan",
            "ipAddresses":[
                    "10.31.98.182",
            "10.31.98.183"
        ]
    },
    "vip":[
            {
            "nodeNumber":"0",
            "vipName":"odahaboxc1n2-vip",
            "ipAddress":"10.31.98.159"
        },
        {
            "nodeNumber":"1",
            "vipName":"odahaboxc1n1-vip",
            "ipAddress":"10.31.98.158"
        }
    ],
    "language":"en",
    "enableAFD":"TRUE"
},
"database":{
    "dbName": "myTestDb",
    "databaseUniqueName":"myTestDb_sea1kj",
    "dbVersion":"19.21.0.0",
```

```
    "dbHomeId":null,
    "instanceOnly":false,
    "isCdb":true,
    "pdBName":"pdb1",
    "pdbAdminuserName":"pdbuser",
    "enableTDE":true,
    "adminPassword":"password",
    "dbType":"RAC",
    "dbTargetNodeNumber":null,
    "dbClass":"OLTP",
    "dbShape":"odb1",
    "dbStorage":"ACFS",
    "dbCharacterSet":{
        "characterSet":"AL32UTF8",
            "nlsCharacterset":"AL16UTF16",
            "dbTerritory":"AMERICA",
            "dbLanguage":"AMERICAN"
        },
        "dbConsoleEnable":false,
        "backupConfigId":null
    },
    "asr":null
}
```


Example JSON Files to Create a Single-Node Passwordless Multi-User Enabled DB System

Follow the JSON file example to create a JSON file to deploy a single-node DB System, with role separation, with the command odacli create-dbsystem.

Use the example JSON file to create a file for your environment.

Note:

It is important to review the readme and the examples carefully before creating your JSON file.

Example 5-4 JSON File to Create a Single-Node Oracle KVM Database System with Role Separation and Passwordless Multi-User Access

The following is an example of a JSON file that creates a single-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. The example uses role separation and passwordless multi-user access. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "system": {
    "name": "test_example",
    "shape": "odb2",
    "customMemorySize": "24G",
    "timeZone": "America/Los_Angeles",
```

```
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"enableRoleSeparation": true,
"customRoleSeparation": {
    "groups": [
        {
            "name": "oinstall",
            "id": 1001,
            "role": "oinstall"
            },
            {
            "name": "dbaoper",
            "id": 1002,
            "role": "dbaoper"
            },
            {
            "name": "dba",
            "id": 1003,
            "role": "dba"
            },
            {
            "name": "asmadmin",
            "id": 1004,
            "role": "asmadmin"
            },
            {
            "name": "asmoper",
            "id": 1005,
            "role": "asmoper"
            },
            {
            "name": "asmdba",
            "id": 1006,
            "role": "asmdba"
            }
        ],
        "users": [
            {
            "name": "grid",
            "id": 1000,
            "role": "gridUser"
            },
            {
            "name": "oracle",
            "id": 1001,
            "role": "oracleUser"
            }
        ]
"users": [
            {
            "id": 1000,
            "name": "ugrid",
            "role": "gridUser"
            },
            {
            "id": 1001,
```

```
                "name": "uoracle",
                    "role": "oracleUser"
                }
            ]
        },
        "multiUserAccess": {
        "isMultiUserAccessPLEnabled": true
        }
    },
        }
    },
    "database": {
        "name": "db19",
        "uniqueName": "db19",
        "domainName": "example.com",
        "version": "19.23.0.0.240416",
        "edition": "EE",
        "type": "SI",
        "dbClass": "OLTP",
        "shape": "odb2",
        "role": "PRIMARY",
        "targetNodeNumber": null,
        "enableDbConsole": false,
        "enableFlashStorage": false,
        "enableFlashCache": false,
        "enableUnifiedAuditing": true,
        "enableEEHA": true,
        "enableSEHA": false,
        "redundancy": null,<<< if diskgroup redundancy is FLEX, then database
redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can be null
        "characterSet": {
            "characterSet": "AL32UTF8",
            "nlsCharacterset": "AL16UTF16",
            "dbTerritory": "AMERICA",
            "dbLanguage": "ENGLISH"
        },
        "enableTDE": false,
        "isCdb": true,
            "pdbName": "pdb1",
            "pdbAdminUser": "pdbadmin"
    },
    "network": {
        "domainName": "test_domain",
        "ntpServers": [
            "xx.xxx.xx.xxx"
        ],
        "dnsServers": [
            "xx.xxx.xx.xxx"
        ],
        "nodes": [
            {
            "name": "node1",
            "ipAddress": "xx.xx.xx.xxx",
            "netmask": "xxx.xxx.xxx.x",
            "gateway": "xx.xx.xx.x",
            "number": 0
```

```
            }
        ],
    "publicVNetwork": "vnet1"
    },
    "grid": {
            "language": "en",
            "enableAFD": true
    }
}
```


Example 5-5 JSON File to Create a Single-Node Oracle KVM Database System without Role Separation and with Passwordless Multi-User Access

The following is an example of a JSON file that creates a single-node Oracle KVM Database System on Oracle Database Appliance bare metal platform, without role separation and with passwordless multi-user access. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "system": {
        "name": "test example",
        "shape": "odb2",
        "customMemorySize": "24G",
        "timeZone": "America/Los_Angeles",
        "diskGroup": "DATA",
        "cpuPoolName": "shared_dbsystem_cpupool",
    "database": {
        "name": "db19",
        "uniqueName": "db19",
        "domainName": "example.com",
        "version": "19.23.0.0.240416",
        "edition": "EE",
        "type": "SI",
        "dbClass": "OLTP",
        "shape": "odb4",
        "role": "PRIMARY",
        "targetNodeNumber": null,
        "enableDbConsole": false,
        "enableUnifiedAuditing": true,
        "redundancy": "HIGH",<<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
            "characterSet": {
            "characterSet": "AL32UTF8",
            "nlsCharacterset": "AL16UTF16",
            "dbTerritory": "AMERICA",
            "dbLanguage": "ENGLISH"
        },
        "enableTDE": false,
        "isCdb": true,
            "pdbName": "pdb1",
            "pdbAdminUser": "pdbadmin"
    },
    "users": [
            {
                    "id": 1000,
```

```
                                    "name": "ugrid",
                                    "role": "gridUser"
                },
                {
                            "id": 1001,
                            "name": "uoracle",
                            "role": "oracleUser"
                    }
            ]
        },
        "multiUserAccess": {
            "isMultiUserAccessPLEnabled": true
        }
    },
    "network": {
        "domainName": "test_domain",
        "ntpServers": [],
        "dnsServers": [
            "xx.xxx.xx.xxx"
        ],
        "nodes": [
            {
                "name": "node1",
                "ipAddress": "xx.xx.xx.xxx",
                    "netmask": "xxx.xxx.xxx.x",
                        "gateway": "xx.xx.xx.x",
                "number": 0
            }
        ],
    "publicVNetwork": "vnet1"
        },
    "grid": {
        "language": "en",
        "enableAFD": true
    }
}
```


Example JSON File to Create a High-Availability Passwordless Multi-User Enabled DB System

Follow the JSON file example to create a JSON file to deploy a two-node DB System, with role separation, with the command odacli create-dbsystem.

Use the example JSON file to create a file for your environment.

Example 5-6 JSON File to Create Two-Node Oracle KVM Database System without Role Separation and with Passwordless Multi-User Access

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform, without role separation and with
passwordless multi-user access. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "system": {
        "name": "test_system",
        "shape": "odb2",
        "customMemorySize": "24G",
        "timeZone": "America/Los_Angeles",
        "diskGroup": "DATA",
        "cpuPoolName": "shared_dbsystem_cpupool",
        },
    "database": {
        "name": "dbtest",
        "uniqueName": "dbtest",
        "domainName": "test_domain",
        "version": "19.23.0.0.240416",
        "edition": "EE",
        "type": "SI",
        "dbClass": "OLTP",
        "shape": "odb2",
        "role": "PRIMARY",
        "targetNodeNumber": "0",
        "enableDbConsole": false,version
        "enableUnifiedAuditing": true,
        "enableEEHA": true,
        "redundancy": "MIRROR", <<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
            "characterSet": {
                "characterSet": "AL32UTF8",
                "nlsCharacterset": "AL16UTF16",
            "dbTerritory": "AMERICA",
            "dbLanguage": "AMERICAN"
        },
            "enableTDE": false,
            "isCdb": true,
                "pdbName": "pdb1",
                "pdbAdminUser": "pdbadmin"
    },
        "users": [
            {
            "id": 1000,
            "name": "ugrid",
            "role": "gridUser"
            },
            {
                    "id": 1001,
                            "name": "uoracle",
                    "role": "oracleUser"
            }
        ]
        },
        "multiUserAccess": {
            "isMultiUserAccessPLEnabled": true
        }
```

```
    },
    "network": {
        "domainName": "test_domain",
        "ntpServers": [],
        "dnsServers": [
            "xx.xxx.xx.xxx"
        ],
        "nodes": [
            {
            "name": "node1",
            "ipAddress": "xx.xx.xxx.xx",
            "netmask": "xxx.xxx.xxx.x",
            "gateway": "xx.xx.xxx.x",
            "number": 0,
            "vipName": "nodel-vip",
            "vipAddress": "xx.xx.xxx.xx"
            },
            {
            "name": "node2",
            "ipAddress": "xx.xx.xxx.xx",
            "netmask": "xxx.xxx.xxx.x",
            "gateway": "xx.xx.xxx.x",
            "number": 1,
            "vipName": "node2-vip",
            "vipAddress": "xx.xx.xxx.xx"
            }
    ],
    "publicVNetwork": "vnet1",
    "scanName": "test-scan",
    "scanIps": [
            "xx.xx. xxx.xx",
            "XX.XX.XXX.XX"
    ]
    },
    "grid": {
    "language": "en",
        "enableAFD": true
    }
}
```


Example 5-7 JSON File to Create Two-Node Oracle KVM Database System with Role Separation and with Passwordless Multi-User Access

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. The example uses role separation and with passwordless multi-user access. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
\{

```
"system": {
    "name": "test_system",
    "shape": "odb2",
    "customMemorySize": "24G",
    "timeZone": "America/Los_Angeles",
    "diskGroup": "DATA",
```

```
        "cpuPoolName": "shared_dbsystem_cpupool",
        "enableRoleSeparation": true,
        "customRoleSeparation": {
            "groups": [
            {
                            "name": "oinstall",
                            "id": 1001,
                            "role": "oinstall"
            },
            {
            "name": "dbaoper",
            "id": 1002,
            "role": "dbaoper"
            },
            {
            "name": "dba",
            "id": 1003,
            "role": "dba"
            },
            {
            "name": "asmadmin",
            "id": 1004,
            "role": "asmadmin"
            },
            {
            "name": "asmoper",
            "id": 1005,
            "role": "asmoper"
            },
            {
            "name": "asmdba",
            "id": 1006,
            "role": "asmdba"
            }
            ],
            "users": [
            {
            "name": "grid",
            "id": 1000,
            "role": "gridUser"
            },
            {
            "name": "oracle",
            "id": 1001,
            "role": "oracleUser"
            }
        ]
    }
},
"users": [
    {
            "id": 1000,
            "name": "ugrid",
            "role": "gridUser"
            },
            {
```

```
                    "id": 1001,
                    "name": "uoracle",
                        "role": "oracleUser"
                }
            ]
        },
        "multiUserAccess": {
            "isMultiUserAccessPLEnabled": true
        }
    },
    "database": {
        "name": "dbtest",
        "uniqueName": "dbtest",
        "domainName": "test_domain",
        "version": "19.23.0.0.240416",
        "edition": "EE",
        "type": "SI",
        "dbClass": "OLTP",
        "shape": "odb2",
        "role": "PRIMARY",
        "targetNodeNumber": "0",
        "enableDbConsole": false,
        "enableUnifiedAuditing": true,
        "enableEEHA": true,
        "redundancy": null, <<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
    "characterSet": {
            "characterSet": "AL32UTF8",
            "nlsCharacterset": "AL16UTF16",
            "dbTerritory": "AMERICA",
            "dbLanguage": "AMERICAN"
        },
        "enableTDE": false,
        "isCdb": true,
            "pdbName": "pdb1",
            "pdbAdminUser": "pdbadmin"
    },
    "network": {
        "domainName": "test_domain",
        "ntpServers": [],
        "dnsServers": [
            "xx.xxx.xx.xxx"
        ],
        "nodes": [
            {
                    "name": "node1",
                    "ipAddress": "xx.xx.xxx.xx",
                    "netmask": "xxx.xxx.xxx.x",
                            "gateway": "xx.xx.xxx.x",
                    "number": 0,
                    "vipName": "node1-vip",
                    "vipAddress": "xx.xx.xxx.xx"
            },
            {
            "name": "node2",
```

```
                "ipAddress": "xx.xx.xxx.xx",
                "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xx.xx.xxx.xx"
                }
        ],
        "publicVNetwork": "vnet1",
        "scanName": "test-scan",
        "scanIps": [
        "xx.xx.xxx.xx",
        "xx.xx.xxx.xx"
        ]
    },
    "grid": {
    "language": "en",
        "enableAFD": true
    }
}
```


Oracle Database Appliance Postinstallation Tasks

Complete these administrative tasks after you have deployed software, but before the system is operational.

- Configuring CPU Core Count

Oracle Database Appliance is delivered with all cores on each server enabled. Follow this procedure to reduce the number of cores, if required.

- Securing Oracle ILOM Service Processors

Change the Oracle ILOM default password after completing Oracle Database Appliance deployment.

- Changing Oracle Database Appliance Passwords

After deploying your appliance, ensure that you change the following passwords for securing your system.

Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Configuring CPU Core Count

Oracle Database Appliance is delivered with all cores on each server enabled. Follow this procedure to reduce the number of cores, if required.

1. To reduce the number of cores, run the following command on Node 0 only:

Set the cores in multiples of 2 , for example, 12 :
[root@oakl opt]\# /opt/oracle/dcs/bin/odacli modify-cpucore --cores 12

When you run the command, the nodes are restarted to apply the changes.
2. Check if the job completed successfully:
[root@oak1 opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
3. Verify that the core count is updated on both nodes:
[root@oak1 opt]\# /opt/oracle/dcs/bin/odacli describe-cpucore

Securing Oracle ILOM Service Processors

Change the Oracle ILOM default password after completing Oracle Database Appliance deployment.

Do not change the default password until after you have completed software deployment on the Oracle Database Appliance.

Changing Oracle ILOM Password from the Console

1. In the Oracle ILOM console, from the Administration menu, select User Management, and then navigate to the User Accounts subtab.
2. Select root user and click Edit.
3. Change the root user password.

Changing Oracle ILOM Password Using CLI Commands

1. Connect to the Oracle ILOM service processor (SP) through SSH:
\# ssh -l root SP-ipaddr
2. Set the new password:
```
-> set /SP/users/root password=new_password
Changing password for user /SP/users/root/password...
Enter new password again: *********
New password was successfully set for user /SP/users/root
```


Changing Oracle Database Appliance Passwords

After deploying your appliance, ensure that you change the following passwords for securing your system.

Changing the Oracle Installation Owner Passwords

During deployment, the root and database users SYS, SYSTEM and PDBADMIN are set to the system password. After deployment, the oracle and grid passwords are also set to the system password. Change the passwords to comply with your enterprise user security protocols. Refer to the Oracle Database Appliance Security Guide and Oracle Database Security Guide for information about the required configuration and best practices to secure database systems.

Changing the oda-admin User Password through the Command-Line

1. Log in to the appliance as root.
2. Run the odacli set-credential command to reset the password. Enter the new password when prompted.
```
# odacli set-credential --username oda-admin
Enter 'user' password:
Retype 'user' password:
```


Changing the the oda-admin User Password through the Browser User Interface

1. Log into the Browser User Interface using the user name oda-admin.
2. Click About, then User Settings in the upper right corner of the Browser User Interface.
3. Enter the password in the Password field and the Password Confirmation field, then click Submit.

A confirmation message is displayed.
4. Click About, then click Sign Out.
5. Log back into the Browser User Interface with the new password.
, Note:
The oda-admin password expiration period is 90 days.

Re-imaging Oracle Database Appliance

Bare metal operating system re-imaging installs Oracle Database Appliance operating system software on the local (boot) drive.

Bare Metal is a non-virtualized Oracle Database Appliance configuration. Oracle Database Appliance ships from the factory with a bare metal configuration, default ISO image and Appliance Manager installed. Use the OS ISO Image to restore the OS to the "shipped from factory" state. Use only when necessary. Reimaging does not patch the firmware or update the component versions; it only re-images the local system disk from an operating system perspective. After imaging is completed, provision the bare metal system.

- Uninstalling Oracle Database Appliance Components Use the Oracle Database Appliance cleanup deploy utility, /opt/oracle/oak/onecmd/ cleanup.pl to uninstall Oracle Database Appliance components.
- Reimaging an Oracle Database Appliance Baremetal System Reimage Oracle Database Appliance to perform a bare metal restore of Oracle Database Appliance.
- Performing Secure Erase of Data on Storage Disks

With this release, you can securely erase data from storage devices. Running the secure erase tool deletes the data on the storage disk permanently.

- Redeployment of Oracle Database Appliance Understand the process to redeploy Oracle Database Appliance.

Related Topics

- Errors when re-imaging Oracle Database Appliance Understand how to troubleshoot errors that occur when re-imaging Oracle Database Appliance.

Uninstalling Oracle Database Appliance Components

Use the Oracle Database Appliance cleanup deploy utility, /opt/oracle/oak/onecmd/ cleanup.pl to uninstall Oracle Database Appliance components.

About the Cleanup Utility

Use the cleanup deploy utility to do the following:

- Uninstall Oracle Auto Service Request (Oracle ASR)
- Uninstall Oracle Trace File Analyzer (TFA)
- Uninstall Oracle ORAchk Health Check Tool
- Uninstall Oracle Grid Infrastructure and the Oracle stack
- Reset or delete the Oracle Linux udev rules
- Delete users and groups that were created when the appliance was created.

The script removes the firstnet config and the client access VLAN UNIX_DB, but does not delete any other VLANs. The script also resets any disabled CPU cores and enables all of the cores.

The cleanup utility runs in two modes: default and force mode. In the default mode, the commands used as part of cleanup do not use the force option. The Oracle ASM disk status is changed from MEMBER to FORMER, but ASM header on the disk is not erased. The default mode can be used only for cleaning up or re-provisioning of the same system.

Note:

For High-Availability systems, run the cleanup utility on both nodes sequentially. Ensure that the cleanup utility has completed on the first node, and then start the process on the second node.

Running the Cleanup Utility for a Baremetal Deployment

```
# perl /opt/oracle/oak/onecmd/cleanup.pl [-griduser grid_user] [-dbuser
db_user] [-groups comma separated list of groups] [-omausers
dbuser1,dbuser2,dbuser3][-erasedata][-nodpr] [-nossh] [f]
```

When the grid_user and db_user are the same (roleSeparation=false), you must run the script for each user (-gridUser and -dbUser).

For example:

```
cleanup.pl -griduser grid -dbuser oracle -omausers dbuser1,dbuser2,dbuser3
```

Table 7-1 Command Options for Cleanup Utility

Option	Description
grid_user	Describes the Oracle Grid Infrastructure user name. The default user is grid.
	Describes the database user name. The default user is oracle Example with grid and oracle users:
	cleanup. pl -griduser grid -dbuser
oracle	

Table 7-1 (Cont.) Command Options for Cleanup Utility

Option	Description
erasedata	Completely erases all disks on the Oracle Database system. It is mandatory to run this option if intention of cleanup is to reuse or move these disks on other systems. This option needs to be run on the first node when running on high- availability systems. Example of secure erase: cleanDefNet checkHeader cleanup. pl -erasedata
	Cleans up the default public network.
	Checks for OAK/ASM header on disks after
successfully running the cleanup script. Use this to	
validate if the OAK/ASM header was erased by the	
cleanup script or not.	
Example of checking disk header:	

Table 7-1 (Cont.) Command Options for Cleanup Utility

Option	Description
f	In the force mode, all commands use the force option. The ASM disk header is erased. The oakd header on the disk is erased in both default and force modes. Example of default mode: cleanup. pl Example of force mode: cleanup. $\mathrm{pl}-\mathrm{f}$

Note:

The cleanup utility for bare metal deployments produces a log file. The utility tries to create the log file at /opt/oracle/oak/log/hostname/cleanup/
cleanup_timestamp.log. If the log cannot be created in that location, then the log is created at /tmp/cleanup_timestamp.log.

Related Topics

- Deployment Checklist for Oracle Database Appliance Bare Metal Systems This checklist provides an overview of the tasks to setup and deploy Oracle Database Appliance bare metal systems for the first time.

Reimaging an Oracle Database Appliance Baremetal System

Reimage Oracle Database Appliance to perform a bare metal restore of Oracle Database Appliance.

Bare metal restore uses Oracle Integrated Lights Out Manager (Oracle ILOM) to re-image the Oracle Database Appliance node. The ILOM must be configured before performing a bare metal restore or reimage. Generally, the ILOM is configured as part of readying for deploying Oracle Database Appliance.

Download the Oracle Database Appliance Bare Metal ISO image to your local machine before you launch the Oracle ILOM console.

Follow these steps to reimage your appliance. For Oracle Database Appliance High-Availability deployment, follow these steps on both nodes.

1. Open a browser and connect to Oracle Integrated Lights Out Manager (ILOM) on Node 0 as root.
https://ilom-ip-address
2. Launch the Remote Console.
a. Expand Remote Control in the left navigation.
b. Click the Redirection tab.
c. Click Launch for the Remote Console in the Actions menu.

The state of the system determines what appears on the Console page.
3. Add the image.
a. Click the KVMS tab, then select Storage.
b. Click Add.
c. Browse to the Oracle Database Appliance Bare Metal ISO Image, highlight the image, then click Select.
d. Click Connect.

The mounting of the ISO image is successful when the Connect button changes to a Disconnect button.
e. Click OK

The CD-ROM icon in the top right corner is highlighted.
4. Configure the CD-ROM as the next boot device.
a. Expand Host Management in the left menu of the ILOM Remote Console tab.
b. Click Host Control.
c. Select CDROM from the Next Boot Device menu, then click Save.
5. Power cycle the node.
a. Click Power Control in the Host Management menu.
b. Select Power Cycle , then click Save.

When the node comes back after the power cycle, re-imaging starts automatically. The Oracle Linux page appears, followed by the Running Post-Install scripts page.

The Running Post-Install scripts page is a static page and might give the impression that the reimaging process is not progressing. The post-install process during re-imaging will wait until the synchronization between the partitions of the two mirrored local hard disks is complete, which can take 15 to 20 minutes to complete.
To check the progress of re-synchronization, press the ALT-F2 key combination to open a second console and enter the following command:
\# cat /proc/mdstat

When the re-synchronization is complete, re-imaging is completed and the machine restarts.

After the machine restarts, the system is ready for you to deploy the Oracle software on the appliance to create an Oracle Database Appliance bare metal platform.

Related Topics

- Creating the Appliance

Create the appliance using the Browser User Interface or ODACLI commands.

Performing Secure Erase of Data on Storage Disks

With this release, you can securely erase data from storage devices. Running the secure erase tool deletes the data on the storage disk permanently.

You may want to consolidate storage disks between appliances. For example, you can use X7-2 disks on X6-2 models, and may want to consolidate all X6-2 disks on one system, and use all new $X 7-2$ storage disks on another system. In such cases, use secure erase to erase headers from disks before re-imaging the disks, since the storage disks across the appliances may have different partition ratios.

Note:

The secure erase tool conforms to the NIST 800-88 standard, also called NIST Special Publication 800-88 (NIST SP 800-88), Guidelines for Media Sanitization. Running the secure erase tool removes data from storage disks permanently. If you have any data on the disk, then take a backup of your storage disk before running the secure erase tool.

Follow the steps to run the secure erase tool:

1. Stop oakd and the database and Oracle Grid Infrastructure before running the secure erase tool.

On bare metal systems, run the command:
\# odaadmcli stop oak

On Virtualized Platforms:
\# oakcli stop oak

To stop Oracle Clusterware resources:

```
# crsctl stop crs -f
```

2. Run the secure erase tool:
\# /opt/oracle/oak/bin/odaeraser.py
3. You can also run the secure erase tool when running the cleanup tool:
\# /opt/oracle/oak/onecmd/cleanup.pl -erasedata

Example 7-1 Options for the Secure Erase Tool

Option	Description
-a, --all	Erases all disks. For example:
	\# /opt/oracle/oak/bin/odaeraser.py --all
--disk disk1,disk2	Erases specified disks. For example:
	```# /opt/oracle/oak/bin/odaeraser.py --disk e0_pd_00,e0_pd_01```
--dryrun	Runs the tool in the test mode
--type HDDISSDINVMe	Erases the type of disk specified
-v, --verbose	Displays verbose output
-h, --help	Displays all CLI options for the tool

## Redeployment of Oracle Database Appliance

Understand the process to redeploy Oracle Database Appliance.
After cleaning up the system and erasing the header, you can continue deployment of Oracle Database Appliance as follows:

1. Download Oracle Database Appliance software.
2. Install Oracle Database Appliance software.
3. Create the appliance.

For the above steps, run the procedures as described in this guide.

## Patching Oracle Database Appliance

To keep Oracle Database Appliance running with the latest software, check for and apply
Oracle Database Appliance patch bundles when they are released.

- About Patching Oracle Database Appliance

Use the Oracle Database Appliance Patch Bundle to patch your appliance.

- About Patching Prechecks

Patching prechecks are designed to detect and flag problems that might be encountered during patching.

- About Enabling NUMA on Oracle Database Appliance Understand how you can enable NUMA on bare metal, KVM, and DB Systems on Oracle Database Appliance.
- Minimizing Downtime When Patching Oracle Database Appliance Understand best practices to minimize downtime when you apply patches to your Oracle Database Appliance deployment.
- About Updating Databases and Database Homes

Understand how to update a database and database home using either the Browser User Interface or odacli commands.

- Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.
- Patching Oracle Database Appliance DB Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance DB system deployment and existing Oracle Database home in the DB system, using CLI commands.
- Patching Oracle Database Appliance Bare Metal Systems Using the Browser User Interface
Upload the Oracle Database Appliance Server Patch to the patch repository, deploy the patch bundle using the Browser User Interface, and then update the DCS admin, DCS components, and DCS agent using CLI commands.
- Patching Oracle Database Appliance DB Systems Using the Browser User Interface Upload the Oracle Database Appliance Server Patch to the patch repository, deploy the patch bundle using the Browser User Interface, and then update the DCS agent and components using CLI commands.
- Updating Oracle Database Appliance Repository with Database Clone Files For Bare Metal Systems
Follow these steps to update the Oracle Database Appliance repository with Oracle Database clone files for the latest release using CLI commands.
- Patching Databases Using ODACLI Commands or the BUI Use ODACLI commands or the Browser User Interface to patch databases to the latest release in your deployment.
- Patching Existing Database Homes Using ODACLI or the BUI Use ODACLI or BUI to patch database homes in your deployment to the latest release.
- Patching Non-Provisioned Oracle Database Appliance Systems Oracle Database Appliance supports patching of non-provisioned single-node or high availablity systems by running odacli update-server command.
- Applying Additional Patches and Updates on Bare Metal Systems Configure additional patch repositories and patch your operating system and databases to ensure that your deployment has the latest updates and security fixes.
- Cleaning Up the Patch Repository Use the Browser User Interface or Command Line Interface to delete obsolete or old patches from the repository.
- About Upgrading to a Different Database Home Understand how to upgrade to a different database home using either the Browser User Interface or odacli commands.
- Setting Dynamic Default Parameters You can set dynamic default parameters using the BUI.


## About Patching Oracle Database Appliance

Use the Oracle Database Appliance Patch Bundle to patch your appliance.
Patches offer new features and may improve the functionality of existing features.

## About Out of Place Patching

Starting with Oracle Database Appliance release 19.11, Oracle Database Appliance uses the out-of-place patching model. This means that a new software Oracle home is created when patching an Oracle Grid Infrastructure or Oracle Database home. Starting with Oracle Database Appliance release 19.11, the patches for Oracle Grid Infrastructure and Oracle Database are available as images. All procedures remain the same.

## About MySQL Server and DCS Agent

Starting with Oracle Database Appliance release 19.10, DCS Agent uses MySQL server as its metadata store. MySQL server is automatically installed and configured, during provisioning, when creating the appliance. Similarly, during patching, the odacli update-dcscomponents command automatically installs and configures MySQL server. MySQL server processes do not run with root operating system user account. Instead, MySQL server processes run with a new operating system user account called odamysql. Note that the odamysql operating system user is created only for ownership purposes and the odamysql user account owns only the MySQL directories. The odamysql operating system user cannot log into the appliance. The odamysql operating system user account for MySQL ensures role separation between the user owning Oracle databases on the appliance and the metadata used for DCS operations.

## About Oracle Database Appliance Patch Bundles

The Oracle Database Appliance Patch Bundle contains the latest patches for DCS Admin, DCS Components, OAK, Oracle ILOM, firmware, enhancements, and fixes.

The Oracle Database Appliance Release Notes include information about the latest Oracle Database Appliance patch bundle and a list of component versions in the patch bundle. Oracle recommends updating the appliance with the latest Oracle Database Appliance software version to take advantage of new features, fixes, and the latest supported component versions. See the Oracle Database Appliance Release Notes for the upgrade paths.

## Caution:

Do not patch Oracle Database Appliance using generic patches for Oracle Grid Infrastructure or Oracle Linux. Also do not use individual infrastructure patches, such as firmware patches. You must only use Oracle Database Appliance patches. If you use patches that are not intended for Oracle Database Appliance, or if you use OPatch, or a similar patching tool, then the metadata maintained by Oracle Database Appliance is not updated, and you cannot complete future patch updates. If you apply out-of-cycle Oracle Database Release Update (RU), then ensure that you also follow the recommendations described in the Readme for the RU.

The patch bundle provides all relevant patches for the entire system, including the following:

- Oracle Database Appliance server
- BIOS
- Hardware drivers
- Hardware Management Pack (HMP) and firmware drivers for various components
- Oracle Appliance Manager
- Oracle Linux
- Java Runtime Environment (JRE)
- Oracle Integrated Lights Out Manager (Oracle ILOM)
- Oracle Auto Service Request (Oracle ASR)
- Oracle Intelligent Platform Management Interface (Oracle IPMI)
- Network Card Patches for relevant hardware models


## About Updating Oracle Linux RPMs

While not recommended, you can update some Oracle Linux RPMs for Oracle Database Appliance. Do not update or customize Oracle Linux kernel, Oracle Optimal Flexible Architecture, Oracle InfiniBand, or related software. Other software may be installed, updated, or customized. However, the Oracle Database Appliance update may not carry newer version dependencies of customized components. Therefore, you might be required to remove and subsequently reapply site-specific changes to successfully update Oracle Database Appliance in the future.

## Caution:

For Oracle Database Appliance, do not update the following:

- Oracle Linux Kernel (kernel)
- Oracle Optimal Flexible Architecture (ofa)
- Oracle RDMA packages (oracle-rdma-release)

For storage, do not apply any RPM updates.

## About Patching Prechecks

Patching prechecks are designed to detect and flag problems that might be encountered during patching.

The prechecks view the state of the appliance, including the version and hardware specific upgrades, verify that the necessary conditions and checks are complete before attempting an upgrade, and identify conditions that might cause an upgrade to fail. You can avoid potential patching problems by correcting the conditions and resolving the issues before applying the patch.

The prechecks commands are available on Oracle Database Appliance release 12.2.1.2.0 or later. Update the DCS Agent to ensure that the latest updated prechecks are available when you run these commands.

Components Verified by Patching Prechecks

Check	Component Verified
System patching prechecks	Checks that the DCS Agent is online on all nodes
	Checks that there is sufficient space for the update
	Validates the minimum agent version and validates   the patching tag

## Check

Server patching prechecks

## Component Verified

For operating system:

- Validates supported versions
- Validates minimum supported versions
- Validates patching tag
- Validates whether patch location is available
- Verifies OS patch
- Validates command execution

For Oracle ILOM:

- Validates supported versions
- Validates minimum supported versions
- Validates patching tag
- Validates whether patch location is available
- Checks for Oracle ILOM patch version
- Validates Patch location
- Validates command execution
- Validates connectivity to Oracle ILOM

For Oracle Grid Infrastructure:

- Validates supported Oracle Grid Infrastructure versions
- Validates available space
- Validates whether Oracle Clusterware is running
- Validates patching tag
- Validates whether system is provisioned
- Validates whether Oracle ASM is online
- Validates the minimum agent version
- Validates the central inventory
- Validates patching locks
- Validates whether clones location exists
- Validates DB start dependencies
- Validates DB stop dependencies
- Validates command execution

For Oracle ORAchk:

- Runs the ORAchk tool that performs operating system level prechecks.
- Validates command execution

For server:

- Validates whether server patching can be performed in local mode or not
- Validates command execution

Confirms that the bare metal system is upgraded, in the case of DB systems.
Verifies and confirms that the database start/stop dependencies are correct.
Confirms that patching locks are not present.
Verifies that the central inventory is accurate.

Check	Component Verified
Database home patching prechecks	Confirms that Oracle Grid Infrastructure is installed
	Confirms that the DCS Agent is at the required version
	Confirms that Oracle Clusterware is running on all nodes
	Confirms that Oracle Grid Infrastructure is upgraded
	Validates that there is sufficient disk space available
	Checks if the disk group for database homes on Oracle ACFS is configured
	Checks whether the clone file is present in the repository
	Checks whether the /u01/app/odaorabase directory exists. If the directory exists, then the check confirms that there is a valid symbolic link.
Database home patching with out-of-place patching prechecks	The check creates a database home and verifies that all databases can be moved from the source home to new home.
	This check validates that the--local option can be used for the database home.
Storage prechecks	Validates storage patch location and tag
	Validates patching location and tag
	Validates command execution
	Validates Oracle ASM disk groups status
	Validates rolling patch (for high-availability deployment)

## About Enabling NUMA on Oracle Database Appliance

Understand how you can enable NUMA on bare metal, KVM, and DB Systems on Oracle Database Appliance.

NUMA (Non-Uniform Memory Access) can help facilitate efficient use of the underlying NUMA hardware. On Oracle Database Appliance, you can enable NUMA for databases on bare metal and DB systems, CPU pools, and for KVM applications.

## About Enabling NUMA During Provisioning of Oracle Database Appliance

When you provision Oracle Database Appliance with release 19.23, NUMA is automatically enabled on the database, DB system and CPU pools. Hence, when you create a database, DB system, or CPU pool on an Oracle Database Appliance release 19.23 deployment, NUMA is automatically enabled and no additional configuration is required. NUMA is not enabled by default for application VMs.

## About Enabling NUMA After Patching Oracle Database Appliance

NUMA is enabled by default starting with Oracle Database Appliance release 19.12. When you patch to Oracle Database Appliance release 19.23 from 19.11 or earlier, the odacli updateserver command sets NUMA at the system level. New databases created after patching are NUMA-enabled. For existing databases, enable NUMA by running the command alter system set "enable_numa_support"=true on the database.

After patching the bare metal system to release 19.23 from 19.11 or earlier, as a one-time activity, you must run the command odacli remap-cpupools to enable NUMA on all existing CPU pools (BM, VM, dbsystem).

For existing DB systems, run the command odacli modify-dbsystem --enable-numa to enable NUMA for the dbsystem and the database of the DB system.

NUMA is not enabled by default for application VMs. For new and existing application VMs, run the command odacli modify-vm --enable-numa to enable NUMA for the VM configuration. You must also enable NUMA for the components inside the VM such as operating system and application running inside the VM. The command odacli modify-dbsystem --enable-numa is only supported on application VMs with even number of CPU cores so that CPU cores can be evenly distributed to NUMA nodes. In Oracle Database Appliance, one CPUcore is equal to 2 vCPU.

See the topic Patching Oracle Database Appliance Bare Metal Systems Using the CommandLine for more details about the steps to patch your deployment and enable NUMA.

## Related Topics

- Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.
- Patching Oracle Database Appliance DB Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance DB system deployment and existing Oracle Database home in the DB system, using CLI commands.
- Remapping CPU Pools in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to remap CPU pools in a bare metal or KVM deployment.
- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Minimizing Downtime When Patching Oracle Database Appliance

Understand best practices to minimize downtime when you apply patches to your Oracle Database Appliance deployment.

## Recommendations for Minimizing Downtime During Patching

- To minimize database patching downtime, it is recommended that you use Oracle RAC or Oracle RAC One Node on an Oracle Database Appliance high-availability system.
- If available, use Oracle Data Guard and patch the standby system first. After you patch the standby system, switch the workload to the standby system, patch the primary system, and then switch the workload back to the primary system. For more information, see Patching Oracle Data Guard Databases on Oracle Database Appliance in this guide.
- Always use Oracle Database Appliance Backup and Recovery (ODABR) to back up the system disks to ensure easy restore, if the patching operation fails. ODABR restores the system disk to pre-patching state.
- The odacli update-storage command has a --rolling option for storage devices (SSD and HDD) to minimize patching downtime. There could be other shared storage component firmware that require a system restart and do not support rolling. Oracle Database Appliance storage patching can be deferred, but it is not recommended. Note that the --rolling option cannot be used with the odacli update-storage command on single-node Oracle Database Appliance systems.


## Minimizing Downtime using the --local Option During Patching

To minimize downtime, use the --local option with the odacli update-server and odacli update-dbhome commands. Update the DCS components and then run the odacli createprepatchreport command. There is no downtime during the prepatch process. After analyzing the prepatch report, use the --local option to continue patching Oracle Database Appliance.

## - Note:

Before patching databases, ensure that the server patching operation on both nodes has completed successfully.

- See Also:

Oracle Database High Availability Overview and Best Practices Guide in the Oracle Database 19c Documentation Library

## About Updating Databases and Database Homes

Understand how to update a database and database home using either the Browser User Interface or odacli commands.

## About Updating Databases and Database Homes

Oracle Database Appliance provides the following options to patch or update databases and database homes:

- Patch or update each database home. The database home is patched out-of-place. When patching database home, Oracle Database Appliance automatically provisions a destination database home if needed, records the source database home, target version, and destination database home mapping in the metadata repository, and then moves all databases running in the source database home to the destination database home. Use the odacli update-dbhome command or the BUI to patch all databases from a single source database home to a single destination database home. Use this option if there are no constraints on your system for space usage or for provisioning a new database home.
- Patch or update selected databases in a database home to a specific database home. You must specify the target database and destination database home when
patching. You can use the odacli update-database command or the BUI to patch a specific database to a specific database home or to control when and how many database homes are provisioned. Using the update-database workflow also provides an option to run the operation again, if the patching operation failed. The abort and revert options available with the update-database workflow are not supported when the target database is a singleinstance database.

Before patching the database or database home, upload the Oracle Database clone files for the database version, to the repository, and then create the database home. See Patching Oracle Database Appliance Using the CLI for the procedure to update the repository with the latest Oracle Database clone files.

## (1) Important:

The odacli update-database command that enabled association of a backup configuration with database was deprecated in Oracle Database Appliance release 19.6. Starting with Oracle Database Appliance release 19.17, the odacli updatedatabase command enables database patching and is similar to the patching functionality that the odacli update-dbhome command provides, with a few differences as described in the Oracle Database Appliance Deployment Guide for your hardware model.

Before you run the odacli update-dbhome command, you must create the prepatch report for the database home by running the command odacli create-prepatchreport -d. Similarly, before you run the odacli update-database command, you must create the prepatch report either for the source database home or target database by running the command odacli create-prepatchreport -d or odacli create-prepatchreport -db respectively. The source and destination database homes must be consistent in the prepatch report and when specifying them in the odacli update-database command. If you do not create the prepatch report before the patch operation, then the odacli update-database and odacli updatedbhome commands fail with an error message prompting you to run the patching pre-checks.

For more information about the options for the update-dbhome and odacli update-database commands, see the chapter Oracle Database Appliance Command-Line Interface.

## Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.

To patch your Oracle Database Appliance deployment and your existing database homes to the current release, you must download the Oracle Database Appliance Server patch, Oracle Grid Infrastructure clone files, and Oracle Database clone files and update the repository on the bare metal system.

## (1) Important:

Oracle recommends always patching from within the previous four Oracle Database Appliance releases because these patching paths are tested. If you patch from any earlier Oracle Database Appliance release, then you may encounter errors.

## Note:

Run the steps in this procedure in the same order as documented. Run the odacli update-dcsadmin, odacli update-dcscomponents, and odacli update-dcsagent commands before running the odacli update-server command.

## , Note:

Note that for DCS Agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified.

## (1) Important:

Ensure that there is sufficient space on your appliance to download the patches.

## (1) Important:

If you want to install third-party software on your Oracle Database Appliance, then ensure that the software does not impact the Oracle Database Appliance software. The version lock on Oracle Database Appliance RPMs displays a warning if the thirdparty software tries to override Oracle Database Appliance RPMs. You must restore the affected RPMs before patching Oracle Database Appliance so that patching completes successfully.

## (!) Important:

If you have configured Oracle ASR and are patching your appliance to Oracle Database Appliance release 19.23, then after updating the DCS agent, delete the existing Oracle ASR configuration and reconfigure it, before you run the odacli update-server command to patch your appliance.

The Oracle Database Appliance Backup Recovery (ODABR) tool helps recover a system to the pre-patch state, should any potential errors occur during the patching process that may render the system unusable. Download and install the latest version of the Oracle Database Appliance Backup Recovery (ODABR) tool to enable creation of snapshots before patching. See My Oracle Support Note 2466177.1 for the procedure to install ODABR.
https://support.oracle.com/rs?type=doc\&id=2466177.1
Follow these steps to apply patches to your Oracle Database Appliance and update existing database homes.

1. Download the Oracle Database Appliance Server Patch for the ODACLI/DCS stack (patch 36524605), Oracle Grid Infrastructure clone files (patch 30403673), and Oracle Database clone files (patch 30403662) from My Oracle Support to a temporary location on an external client. Refer to the release notes for details about the patch numbers and software for the latest release.

For example, download the server patch for 19.23:

```
p36524605_1923000_Linux-x86-64.zip
```

2. Unzip the software - it contains README.html and one or more zip files for the patch.
```
unzip p35938481_1923000_Linux-x86-64.zip
```

The zip file contains the following software file:

```
oda-sm-19.23.0.0.0-date-server.zip
```

3. Copy all the software files from the external client to Oracle Database Appliance. For HighAvailability deployments, copy the software files to only one node. The software files are copied to the other node during the patching process. Use the scp or sftp protocol to copy the bundle.

Example using scp command:
\# scp software_file root@oda_host:/tmp

Example using sftp command:
\# sftp root@oda_host

Enter the root password, and copy the files.

```
put software_file
```

4. Update the repository with the server software file:
```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
software_file
```

For example, for 19.23:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/oda-
sm-19.23.0.0.0-date-server.zip
```

5. Confirm that the repository update is successful:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
6. Update DCS admin:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsadmin -v 19.23.0.0.0
7. Update the DCS components:
```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-dcscomponents -v
19.23.0.0.0
```

The odacli update-dcscomponents command updates the Zookeeper, MySQL, and updates other DCS components such as the DCS Agent, DCS CLI, and DCS Controller on Oracle Database Appliance.

If the DCS components are updated, then the message "status" : "Success" is displayed on the command line. For failed updates, fix the error and then proceed with the update by re-running the odacli update-dcscomponents command. See the topic Resolving Errors When Updating DCS Components During Patching about more information about DCS components checks errors.

## Note:

Note that for DCS Agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified in this procedure.
8. Update the DCS agent:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-dcsagent -v 19.23.0.0.0
9. Update the repository with the Oracle Grid Infrastructure clone file and the Oracle Database clone file:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
software_file
```

For example, for 19.23:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-GI-19.23.0.0.zip
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip
```

10. Run patching pre-checks. You must run the odacli create-prepatchreport command before you patch your server; otherwise, the odacli update-server command fails with an error message prompting you to run the patching pre-checks. Note that odacli create-prepatchreport supports the -l option, which runs the prechecks on the local node only. However, to be able to patch the system by running the command odacli update-server, the command odacli create-prepatchreport must be run without the -l option, so that the prechecks can be performed on both nodes before patching is started on any of the two nodes.
```
[root@odal opt]# /opt/oracle/dcs/bin/odacli create-prepatchreport -s -v
version
```

For example, for 19.23:

```
[root@odal opt]# /opt/oracle/dcs/bin/odacli create-prepatchreport -s -v
19.23.0.0.0
```

Note that running the odacli create-prepatchreport command creates the target Oracle Grid Infrastructure home, which the server patching operation uses.
11. Verify that the patching pre-checks ran successfully:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-prepatchreport

## For example:

[root@oda1 opt]\# odacli describe-prepatchreport -i 677d73d2-5eed-46e5-a06fd5ca2649d36e

Patch pre-check report

Job ID: 677d73d2-5eed-46e5-a06f-d5ca2649d36e
Description: Patch pre-checks for [OS, ILOM, GI, ORACHKSERVER,
SERVER]
Status: SUCCESS
Created: April 8, 2024 3:37:19 PM CST
Result: All pre-checks succeeded
Node Name
---------------
n1

Pre-Check Status Comments
$\qquad$

OS
Validate supported versions Success Validated minimum supported versions.
Validate patching tag Success Validated patching tag: 19.23.0.0.0
Is patch location available Success Patch location is available.
Verify OS patch Success Verified OS patch
Validate command execution Success Validated command execution

ILOM
Validate ILOM server reachable Success Successfully connected with ILOM server using public IP and USB interconnect
Validate supported versions Success Validated minimum supported versions. Validate patching tag Success Validated patching tag: 19.23.0.0.0. Is patch location available Success Patch location is available. Checking Ilom patch Version Success Successfully verified the versions Patch location validation Success Successfully validated location Validate command execution Success Validated command execution GI
Validate GI metadata Success Successfully validated GI metadata Validate supported GI versions Success Validated minimum supported versions.
Validate available space Success Validated free space under /u01
Is clusterware running Success Clusterware is running
Validate patching tag Success Validated patching tag: 19.23.0.0.0.
Is system provisioned Success Verified system is provisioned
Validate ASM in online Success ASM is online
Validate kernel log level Success Successfully validated the OS log level
Validate minimum agent version Success GI patching enabled in current DCSAGENT version
Validate Central Inventory Success oraInventory validation passed

```
Validate patching locks Success Validated patching locks
Validate clones location exist Success Validated clones location
Validate DB start dependencies Success DBs START dependency check passed
Validate DB stop dependencies Success DBs STOP dependency check passed
Validate space for clones Success Clones volume is already created
volume
Evaluate GI patching Success Successfully validated GI patching
Validate command execution Success Validated command execution
 ORACHK
Running orachk Success Successfully ran Orachk
Validate command execution Success Validated command execution
 SERVER
Validate local patching Success Successfully validated server local
 patching
Validate command execution Success Validated command execution
Node Name

n2
Pre-Check Status Comments
------------------------------ ----------
--
 OS
Validate supported versions Success Validated minimum supported versions.
Validate patching tag Success Validated patching tag: 19.23.0.0.0.
Is patch location available Success Patch location is available.
Verify OS patch Success Verified OS patch
Validate command execution Success Validated command execution
 ILOM
Validate ILOM server reachable Success Successfully connected with ILOM
 server using public IP and USB
 interconnect
Validate supported versions Success Validated minimum supported versions.
Validate patching tag Success Validated patching tag: 19.23.0.0.0.
Is patch location available Success Patch location is available.
Checking Ilom patch Version Success Successfully verified the versions
Patch location validation Success Successfully validated location
Validate command execution Success Validated command execution
 GI
Validate GI metadata Success Successfully validated GI metadata
Validate supported GI versions Success Validated minimum supported
versions.
Validate available space Success Validated free space under /u01
Is clusterware running Success Clusterware is running
Validate patching tag Success Validated patching tag: 19.23.0.0.0.
Is system provisioned Success Verified system is provisioned
Validate ASM in online Success ASM is online
Validate kernel log level Success Successfully validated the OS log
 level
Validate minimum agent version Success GI patching enabled in current
 DCSAGENT version
Validate Central Inventory Success oraInventory validation passed
Validate patching locks Success Validated patching locks
Validate clones location exist Success Validated clones location
```

```
Validate DB start dependencies Success DBs START dependency check passed
Validate DB stop dependencies Success DBs STOP dependency check passed
Validate space for clones Success Clones volume is already created
volume
Evaluate GI patching Success Successfully validated GI patching
Validate command execution Success Validated command execution
 ORACHK
Running orachk Success Successfully ran Orachk
Validate command execution Success Validated command execution
__SERVER_
Validate local patching Success Successfully validated server local
 patching
Validate command execution Success Validated command execution
```

Use the command odacli describe-prepatchreport to view details of the pre-patch report. Fix the warnings and errors mentioned in the report and proceed with the server patching.
12. Apply the server update. Note that you can use the --local option with the odacli update-server command to update the local node.

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-server -v version
```

For example, for 19.23:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-server -v 19.23.0.0.0
```

13. Confirm that the server update is successful:
```
[root@odal opt]# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
```


## Note:

After successful server update, it is recommended that you delete any ODABR snapshot you created before starting the server update. If you want to retain any ODABR snapshot when you update the storage and other components, then consider that the presence of active ODABR snapshots may affect system performance. See My Oracle Support Note 2466177.1 for the procedure to create and delete ODABR snapshots: https://support.oracle.com/rs? type=doc\&id=2466177.1
14. Before you update the storage components, run the odacli create-prepatchreport command with the -st option.

```
[root@odal opt]# /opt/oracle/dcs/bin/odacli create-prepatchreport -st -v
version
```

For example, for 19.23:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli create-prepatchreport -st -v
19.23.0.0.0
```

15. Verify that the patching pre-checks ran successfully:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-prepatchreport

For example:

```
[root@oda1 opt]# odacli describe-prepatchreport -i 95887f92-7be7-4865-
a311-54318ab385f2
Patch pre-check report

 Job ID: 95887f92-7be7-4865-a311-54318ab385f2
 Description: Patch pre-checks for [STORAGE]
 Status: SUCCESS
 Created: April 8, 2024 12:52:37 PM HKT
 Result: All pre-checks succeeded
Node Name

node1
```

```
Pre-Check Status
```

Pre-Check Status
Comments
--------------------------------------
-------------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:
19.23.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag
Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Success Rolling mode patching allowed
as
there is no expander and
controller
upgrade.
Validate command execution Success Validated command
execution
Node Name
-_-------------
node2
Pre-Check Status
Comments
-----------------------------------------
-------------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:

```
```

19.23.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag
Storage patch tag validation
location
Verify ASM disks status
online
Validate rolling patch
as
controller
upgrade.
Validate command execution Success Validated command
execution

```

Use the command odacli describe-prepatchreport to view details of the pre-patch report. The pre-patch report also indicates whether storage patching can be rolling or not, based on whether an Expander or Controller update is also required.
Fix the warnings and errors mentioned in the report and proceed with the storage components patching.
16. Update the storage components.

Specify the --rolling option to patch shared disks in a rolling fashion. Note that if you patch from an Oracle Database Appliance release that requires the expander to be patched, then you cannot use the --rolling option during storage patching.
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-storage -v version --
rolling

```

For example, for 19.23:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-storage -v 19.23.0.0.0
--rolling

```
17. Starting with Oracle Database Appliance release 19.11, Oracle Database homes are not created on the local disk. Oracle Database homes are created on an Oracle ACFSmanaged file system. For a database user oracle, the new database homes are created under /u01/app/odaorahome/oracle/.

If the database home is not already configured on Oracle ACFS, then before patching the database home, configure the database home storage with the odacli configure-dbhome-storage command. For example:
[root@oda1 opt]\# odacli configure-dbhome-storage -dg DATA

The command does not cause storage allocation or creation of volumes or file systems. The command only sets the disk group location in the metadata.

For information about managing database homes on Oracle ACFS, see the topic Managing Database Home Storage.
18. To patch existing Oracle Database Homes to release 19.23, ensure that the repository is updated with the Oracle Database clone files. If you have not updated the repository with the Oracle Database clone files, then update the repository. Note that you must update the DCS agent before you update the repository with the Oracle Database clone files.
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
DB_software_file
[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip

```
 , Note:

You have the option to patch each database home using the odacli updatedbhome command or patch selected databases in a database home to a specific database home using the odacli update-database command.
19. To patch all databases in a specified database home:
a. If you want to patch each database home by running the odacli update-dbhome command, then create the prepatch report first. Run the patching pre-checks and review the prepatch report. You must run the odacli create-prepatchreport command before you patch your Oracle Database homes; otherwise, the odacli update-dbhome command fails with an error message prompting you to run the patching pre-checks.
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport --
dbhome --dbhomeid DB_Home_ID -v release_number
[root@oda1 opt]\# odacli describe-prepatchreport -i Job_ID
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport --
dbhome --dbhomeid d03d5187-1c20-470a-9d51-49a0d6f60772 -v 19.23.0.0.0
[root@odal opt]\# odacli describe-prepatchreport -i 6f040374-d271-4711-
a7db-e6c04597ad69
Patch pre-check report
-------------------------------------_--------------------------------------------
Job ID: 6f040374-d271-4711-a7db-e6c04597ad69
Description: Patch pre-checks for [DB, ORACHKDB]: DbHome
is OraDB19000_home1
Status: SUCCESS
Created: April 8, 2024 8:59:48 AM HKT
Result: All pre-checks succeeded

```
Node Name
node1
Pre-Check Status
Comments


```

19.23.0.0.0.
Is system provisioned Success Verified system is
provisioned
Validate minimum agent version Success Validated minimum agent
version
Is GI upgraded Success Validated GI is
upgraded
Validate available space for Success Validated free space required
under
db
odaorahome
Validate dbHomesOnACFS Success User has configured diskgroup
for
configured
ACFS
Validate Oracle base Success Successfully validated Oracle
Base
Is DB clone available Success Successfully validated clone
file
exists
Evaluate DBHome patching with Success Successfully validated
updating
RHP
RHP.
Validate command execution
execution
__ORACHK__
Running orachk Success Successfully ran
Orachk
Validate command execution Success Validated command
execution

```

If the disk group for database homes on Oracle ACFS is not set up as described in step 17, then the prepatch report lists the error The system is not set up to create database homes on ACFS. Run the odacli configure-dbhome-storage command to configure the disk group for database homes on Oracle ACFS.
Note that running the odacli create-prepatchreport command creates the target Oracle Grid Infrastructure home, which the database patching operation uses.
b. If the pre-patch report does not show any errors, then update the database home to the latest release. You need not use the \(-f\) option with the odacli update-dbhome command. Note that you can use the --local option with the odacli update-dbhome command to update the local node.
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dbhome --dbhomeid
DB_Home_ID -v release_number

```

For example, for 19.23:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dbhome --dbhomeid
7c67c5b4-f585-4ba9-865f-c719c63c0a6e -v 19.23.0.0.0

```
20. To patch a specific database to a specific database home:
a. If you want patch selected databases in a database home to a specific database home using the odacli update-database command, then create the prepatch report first.
Run the patching pre-checks and review the prepatch report. You must run the odacli create-prepatchreport command before you patch your Oracle database; otherwise, the odacli update-database command fails with an error message prompting you to run the patching pre-checks.
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport -db -
dbid DATABASE_ID -to a68f9947-DB_HOME_ID

```

For example, for 19.23:
```

[root@oda1 ~]\# odacli describe-prepatchreport -i efa93519-
a365-4e9a-9f25-ad3c653cccef
Patch pre-check report
----------------------------------------------------------------------------
Job ID: efa93519-a365-4e9a-9f25-ad3c653cccef
Description: Patch pre-checks for [SINGLEDB,
ORACHKSINGLEDB]: Target DB is db10181, Destination DbHome is
OraDB19000_home8
Status: SUCCESS
Created: April 8, 2024 11:19:03 AM PDT
Result: All pre-checks succeeded
Node Name
----------------
node1
Pre-Check Status Comments
------------------------------ --------
---------------------------------------
SINGLEDB
Is system \overline{provisioned Success Verified system is provisioned}
Validate dbHomesOnACFS Success User has configured disk group for
configured Database homes on ACFS
Validate Oracle base Success Successfully validated Oracle Base
Evaluate DB clone availability Success Successfully validated clone file
exists
Evaluate DB patching with RHP Success Successfully validated patching DB
with RHP.
Validate command execution Success Validated command execution
ORACHK
Running \overline{Orachk Success Successfully ran Orachk}
Validate command execution Success Validated command execution
Node Name
---------------
node2
Pre-Check Status Comments

```

SINGLEDB
\(\overline{\text { Is }}\) system provisioned Success Verified system is provisioned
Validate dbHomesOnACFS Success User has configured disk group for
configured Database homes on ACFS
Validate Oracle base Success Successfully validated Oracle Base
Evaluate DB clone availability Success Successfully validated clone file
exists
Evaluate DB patching with RHP Success Successfully validated patching DB with RHP.
Validate command execution Success Validated command execution

ORACHK
Running orachk Success Successfully ran Orachk
Validate command execution Success Validated command execution
b. If the pre-patch report does not show any errors, then update the databases to the latest release.
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-database -i
database_ID/-n database_name -to destination_dbhome_ID

```

\section*{For example, for 19.23:}
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-database -i
c05458c7-0f1d-4260-8e62-003b3ec26d74/-n db10181 -to dc98eaa9-289c-4710-
a898-ca6287a07a9c
[root@oda1 ~]\# odacli describe-job -i
d442a7d4-594f-48e2-8b02-9124811bb7b4
Job details
-------------------------------------------------------------------
ID: d442a7d4-594f-48e2-8b02-9124811bb7b4
Description: DB Patching: database ID is
c05458c7-0f1d-4260-8e62-003b3ec26d74
Status: Success
Created: April 8, 2024 3:23:43 PM PDT
Message:
Task Name Node Name Start Time End Time Status
--------------------------------------- -----------------------------
----------
Creating wallet for DB Client nodel April 8, 2024 3:24:42 PM PDT April
8, 2024 3:24:42 PM PDT Success
Patch databases by RHP node1 April 8, 2024 3:24:42 PM PDT April 8, 2024
3:29:34 PM PDT Success
Updating database metadata node2 April 8, 2024 3:29:34 PM PDT April 8,
2024 3:29:34 PM PDT Success
Set log_archive_dest for Database node1 April 8, 2024 3:29:34 PM PDT
April 8, 2024 3:29:37 PM PDT Success
Generating and saving BOM node1 April 8, 2024 3:29:37 PM PDT April 8,
2024 3:31:44 PM PDT Success
Generating and saving BOM node2 April 8, 2024 3:29:37 PM PDT April 8,
2024 3:31:44 PM PDT Success

```
```

TDE parameter update node2 April 8, 2024 3:32:25 PM PDT April 8, 2024
3:32:25 PM PDT Success

```
21. Confirm that the patch jobs are successful:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli list-jobs
22. If you are patching your appliance from Oracle Database Appliance release 19.11 or earlier, then run the following steps. You must also run these steps if your appliance was previously patched to Oracle Database Appliance release 19.12 or later, but you did not run these steps when patching to release 19.12.
a. After patching the bare metal systems and database homes, enable NUMA (NonUniform Memory Access) on existing databases of release 19.12 or earlier, by running the following SQL*Plus command:

SQL> alter system set "_enable_numa_support"=true scope=spfile sid='*';
Restart the database after running the command to ensure that the changes take effect.

For more information about enabling NUMA, see the topic About Enabling NUMA on Oracle Database Appliance.
b. If you have deployed DB systems, VMs, or CPU pools, perform the following steps:
i. Run the odacli remap-cpupools command:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli remap-cpupools

If the odacli remap-cpupools command fails with the error DCS-10001:Internal error encountered: Not enough physical CPUs available for CPU Pool 'cpupool_name' on node ' node_name', run the odacli remap-cpupools command again with the --use_reserved-cores option. For information about the command options, see the chapter Oracle Database Appliance Command-Line Interface for KVM.
ii. If you have DB systems in your deployment, then run the odacli modifydbsystem command. If you have VMs in your KVM deployment and you want to enable NUMA for the VMs, then run the odacli modify-vm --enable-numa command for VMs. That is:
For DB systems:
```

odacli modify-dbsystem --enable-numa

```

For VMs:
odacli modify-vm --enable-numa

\section*{Note:}

For bare metal systems and DB systems on Oracle Database Appliance X7-2S and X8-2S, the database init.ora parameter _enable_numa_support is set to FALSE even when NUMA is enabled. This is expected because these hardware models are single socket systems.

\section*{Related Topics}
- Patching Existing Database Homes Using ODACLI or the BUI Use ODACLI or BUI to patch database homes in your deployment to the latest release.

\section*{Related Topics}
- Oracle Database Appliance Release Notes

\section*{Related Topics}
- Resolving Errors When Updating DCS Components During Patching Understand how to troubleshoot errors when updating DCS components during patching.

\section*{Related Topics}
- About Enabling NUMA on Oracle Database Appliance Understand how you can enable NUMA on bare metal, KVM, and DB Systems on Oracle Database Appliance.
- Patching Oracle Database Appliance DB Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance DB system deployment and existing Oracle Database home in the DB system, using CLI commands.
- Managing Database Homes on Oracle ACFS Storage Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to manage database home storage in Oracle Database Appliance.
- About Creating Database Homes on Oracle ACFS Storage When you create new Oracle Database homes, they are created on Oracle ACFS file system which are stored on Oracle Database Appliance storage disks. You can create new Oracle Database homes using the odacli create-database or odacli create-dbhome commands, or when you patch an existing database home.
- odacli modify-vm Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Patching Oracle Database Appliance DB Systems Using the Command-Line}

\section*{Follow these steps to apply patches to your Oracle Database Appliance DB system deployment and existing Oracle Database home in the DB system, using CLI commands.}

To patch your Oracle Database Appliance DB systems deployment and your existing database homes to the current release, you must download the Oracle Database Appliance Server Patch and update the bare metal system repository.

\section*{- Note:}

Run the commands in this topic in the same order as documented. Run the odacli update-dcsadmin, odacli update-dcscomponents, and odacli update-dcsagent commands before running the odacli update-server command.

\section*{人 Note:}

Note that for DCS agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified.

Ensure that you have patched your Oracle Database Appliance bare metal deployment to release 19.23 before you patch your DB system.

Follow these steps to apply patches to your Oracle Database Appliance DB system deployment and update the existing database home in the DB system.
1. Ensure that the Oracle Database Appliance Server Patch for the ODACLI/DCS stack (patch 36524605), Oracle Grid Infrastructure clone files (patch 30403673), and Oracle Database clone files (patch 30403662) are available in the repository. Run the odacli list-availablepatches command in the bare metal system to view whether the clone files are available in the system.
[root@odal opt]\# odacli list-availablepatches
2. Connect to the DB system.
3. Update DCS admin:
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsadmin -v 19.23.0.0.0
4. Update the DCS components:
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dcscomponents -v 19.23.0.0.0

If the DCS components are updated, then the message "status" : "Success" is displayed on the command line. For failed updates, fix the error and then proceed with the
update by re-running the odacli update-dcscomponents command. See the topic Resolving Errors When Updating DCS Components During Patching about more information about DCS components checks errors.

\section*{Note:}

Note that for DCS agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified.
5. Update the DCS agent:
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsagent -v
19.23.0.0.0

```
6. Run patching pre-checks. You must run the odacli create-prepatchreport command before you patch your server; otherwise, the odacli update-server command fails with an error message prompting you to run the patching pre-checks.
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport -s -
v version

```

For example, for 19.23:
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport -s v 19.23.0.0.0
7. Verify that the patching pre-checks ran successfully:
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli describe-prepatchreport

```

For example:
```

[root@dbsystem1 ~]\# odacli describe-prepatchreport -i
f7e6fb22-1fc0-4aa1-937c-9669dbbb8ae6
Patch pre-check report
----------------------------------------------------------------------------
Job ID: f7e6fb22-1fc0-4aa1-937c-9669dbbb8ae6
Description: Patch pre-checks for [OS, GI, ORACHKSERVER,
SERVER]
Status: SUCCESS
Created: April 8, 2024 3:38:03 PM CET
Result: All pre-checks succeeded
Node Name
----------------
node1
Pre-Check Status
Comments
----------------------------- --------
---------------------------------------

```
\begin{tabular}{|c|c|c|}
\hline OS & & \\
\hline Validate supported versions versions. & Success & Validated minimum supported \\
\hline Validate patching tag 19.23.0.0.0. & Success & Validated patching tag: \\
\hline Is patch location available available. & Success & Patch location is \\
\hline Verify OS patch patch & Success & Verified OS \\
\hline Validate command execution execution & Success & Validated command \\
\hline GI & & \\
\hline Validate GI metadata metadata & Success & Successfully validated GI \\
\hline Validate supported GI versions versions. & Success & Validated minimum supported \\
\hline Validate available space under /u01 & Success & Validated free space \\
\hline Is clusterware running running & Success & Clusterware is \\
\hline Validate patching tag 19.23.0.0.0. & Success & Validated patching tag: \\
\hline Is system provisioned provisioned & Success & Verified system is \\
\hline Validate BM versions components & Success & Validated BM server \\
\hline versions & & \\
\hline Validate kernel log level \(\log\) & Success & Successfully validated the OS \\
\hline level & & \\
\hline Validate minimum agent version current & Success & GI patching enabled in \\
\hline & & DCSAGENT \\
\hline version & & \\
\hline Validate Central Inventory passed & Success & oraInventory validation \\
\hline Validate patching locks locks & Success & Validated patching \\
\hline Validate clones location exist location & Success & Validated clones \\
\hline Evaluate GI patching patching & Success & Successfully validated GI \\
\hline Validate command execution execution & Success & Validated command \\
\hline ORACHK & & \\
\hline Running orachk & Success & Successfully ran \\
\hline Orachk & & \\
\hline Validate command execution execution & Success & Validated command \\
\hline SERVER & & \\
\hline Validate local patching & Success & Successfully validated server \\
\hline
\end{tabular}
local
patching
Validate command execution Success Validated command
execution

Node Name
node2

Pre-Check Status
Comments

--
_OS__
\(\overline{\text { Validate supported versions } \quad \text { Success }}\) Validated minimum supported
versions.
Validate patching tag Success Validated patching tag:
19.23.0.0.0.

Is patch location available Success Patch location is
available.
Verify OS patch Success Verified OS
patch
Validate command execution Success Validated command execution
\(\qquad\)
Validate GI metadata Success Successfully validated GI
metadata
Validate supported GI versions Success Validated minimum supported
versions.
Validate available space Success Validated free space
under /u01
Is clusterware running Success Clusterware is running
Validate patching tag Success Validated patching tag:
19.23.0.0.0.

Is system provisioned Success Verified system is provisioned
Validate BM versions Success Validated BM server
components
versions
Validate kernel log level Success Successfully validated the OS \(\log\)
level
Validate minimum agent version Success GI patching enabled in current

\section*{version}

Validate Central Inventory Success oraInventory validation passed
Validate patching locks Success Validated patching
locks
Validate clones location exist Success Validated clones
```

location
Evaluate GI patching Success Successfully validated GI
patching
Validate command execution Success Validated command
execution
ORACHK
Running orachk Success Successfully ran
Orachk
Validate command execution Success Validated command
execution
SERVER
Validate local patching Success Successfully validated server
local
patching
Validate command execution Success Validated command
execution

```

Use the command odacli describe-prepatchreport to view details of the pre-patch report. Fix the warnings and errors mentioned in the report and proceed with the server patching.
8. Apply the server update. Note that you can use the --local option with the odacli update-server command to update the local node.
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-server -v version

```

For example, for 19.23:
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-server -v
19.23.0.0.0

```

You can use the \(-f\) option to override precheck failures and complete the server patching.
9. Confirm that the server update is successful:
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
10. To patch existing Oracle Database Homes to release 19.23:
a. On the bare metal system, run the command odacli describe-dbsystem-image to check that the repository is updated with the required Oracle Database clone files. If the database clone file is not displayed in the command output, then run the command odacli update-repository on the bare metal system to update the repository with the database clone files:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/ DB_software_file
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/ odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip
b. Run the patching pre-checks and review the prepatch report. You must run the odacli create-prepatchreport command before you patch your Oracle Database homes; otherwise, the odacli update-dbhome command fails with the error message prompting you to run the patching pre-checks.
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport
--dbhome --dbhomeid DB_Home_ID -v release_number
[root@dbsystem1 opt]\# odacli describe-prepatchreport -i Job_ID

```
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport
--dbhome --dbhomeid 7c67c5b4-f585-4ba9-865f-c719c63c0a6e -v 19.23.0.0.0
[root@dbsystem1 opt]\# odacli describe-prepatchreport -i
39ef1eeb-70d3-47ad-b3f5-48960ca0607b

Alternatively, you can use the odacli update-database to update the databases in your deployment:
```

[root@dbsystem1 opt]\# odacli create-prepatchreport --database --
database-id database_ID --to-home dest_dbhome_ID
[root@dbsystem1 opt]\# odacli update-database --id database_ID --to-home
dest_dbhome_ID

```
c. If there are no errors, then update the database home to the latest release. You need not use the \(-f\) option with the odacli update-dbhome command. Note that you can use the --local option with the odacli update-dbhome command to update the local node. You can also use the --node option to specify the node containing the database to update.
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dbhome --
dbhomeid DB_Home_ID -v release_number

```

For example, for 19.23:
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dbhome -dbhomeid 7c67c5b4-f585-4ba9-865f-c719c63c0a6e -v 19.23.0.0.0
11. Confirm that the patch jobs are successful:
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli list-jobs

\section*{Related Topics}
- About Enabling NUMA on Oracle Database Appliance

Understand how you can enable NUMA on bare metal, KVM, and DB Systems on Oracle Database Appliance.
- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli describe-dbsystem-image

Use the odacli describe-dbsystem-image command to view the supported Oracle Grid Infrastructure and Oracle Database versions and the availability of the clone files and Database System KVM image in the Oracle Database Appliance system.

\section*{Patching Oracle Database Appliance Bare Metal Systems Using the Browser User Interface}

Upload the Oracle Database Appliance Server Patch to the patch repository, deploy the patch bundle using the Browser User Interface, and then update the DCS admin, DCS components, and DCS agent using CLI commands.

\section*{Updating the Patch Repository Using the Browser User Interface}
1. Download the Oracle Database Appliance patches from My Oracle Support and save them in a directory on the appliance. See the Oracle Database Appliance Release Notes for a list of available patches and links to download the patches.
2. Log into the Browser User Interface.
https://Node0-host-ip-address:7093/mgmt/index.html

\section*{3. Click Repository Manager.}
4. In the Update Patch Repository page, enter the absolute file path and patch name, then click Update Repository to start the update repository job. You can list more than one file to update to the repository with a comma separated list, without spaces, or you can update each file, one at a time.
5. Click Activity to monitor the progress. When the job completes successfully, the Patch Repository is updated.

Updating the DCS Admin, DCS Components, and DCS Agent After Updating the Repository and Before Patching

Before patching your appliance using the Browser User Interface, you must update the DCS admin, DCS agent, and DCS components manually through CLI commands.

Follow these steps:
1. In the BUI, click Appliance and then click Infrastructure Patching on the lefthand pane.
2. Using ODACLI commands, update the DCS admin, DCS components, and DCS agent:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsadmin -v 19.23.0.0.0
[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-dcscomponents -v
19.23.0.0.0
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsagent -v 19.23.0.0.0

```

If the DCS components are updated, then the message "status" : "Success" is displayed on the command line. For failed updates, fix the error and then proceed with the update.

\section*{Note:}

You must log into the Browser User Interface again after running the odacli update-dcscomponents command.

\section*{Running Patching Prechecks and Patching Server, and Storage Using the Browser User Interface}
1. Do not have any jobs running or pending during the update window.
2. In the BUI, click the Appliance tab, and then click Infrastructure Patching on the lefthand pane.
3. In the SERVER section, view the Component Details. If you just updated the Patch Repository, click Refresh.

After the patch is uploaded to the Patch Repository, the Component Details on the page are updated with the Installed Version and Available Version for each component.
4. Click Precheck to run patching prechecks. You must run the patching prechecks before updating the server and other components. Click View Pre-check Reports to view the patching prechecks report. If there are no errors in the report, then click Apply Patch to begin the job to patch the server components. For high-availability systems, when updating the server on the bare metal system, you can select the Node to Update. You can choose the node that you want to update or you can choose to update both nodes.

When the job finishes, go to the next step. Click View Jobs for the job status.
5. In the STORAGE section, click Refresh to refresh the Component Details. Click Precheck to run patching prechecks. You must run the patching prechecks before updating the storage components. Click View Pre-check Reports to view the patching prechecks report. If there are no errors in the report, then click Apply Patch to begin the job to patch the storage components. Click View Jobs for the job status.

For high-availability environment, you can select the Rolling check box to perform rolling patching of storage components.
All patching-related information is logged in the dcs-agent log file at/opt/oracle/dcs/log/ dcs-agent.log.

\section*{Patching Oracle Database Appliance DB Systems Using the Browser User Interface}

Upload the Oracle Database Appliance Server Patch to the patch repository, deploy the patch bundle using the Browser User Interface, and then update the DCS agent and components using CLI commands.

\section*{Updating the Patch Repository Using the Browser User Interface}
1. Download the Oracle Database Appliance patches from My Oracle Support and save them in a directory on the appliance. See the Oracle Database Appliance Release Notes for a list of available patches and links to download the patches.
2. Log into the Browser User Interface within the bare metal system, with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
3. Click the Appliance tab, and then click Infrastructure Patching on the lefthand pane.
4. In the Update Repository tab, on the Update Patch Repository page, enter the absolute file path and patch name, then click Update Repository to start the update repository job. You can list more than one file to update to the repository with a comma separated list, without spaces, or you can update each file, one at a time.
5. Click Activity to monitor the progress. When the job completes successfully, the Patch Repository is updated.

Updating the DCS Admin, DCS Components, and DCS Agent After Updating the Repository and Before Patching

Before patching your DB system using the Browser User Interface, you must update the DCS admin, DCS agent, and DCS components manually, through CLI commands.
Follow these steps:
1. In the BUI, click Appliance and then click Infrastructure Patching on the lefthand pane.
2. Using ODACLI, update the DCS admin, DCS components, and DCS agent:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsadmin -v 19.23.0.0.0
[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-dcscomponents -v
19.23.0.0.0
[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-dcsagent -v 19.23.0.0.0

```

If the DCS components are updated, then the message "status" : "Success" is displayed on the command line. For failed updates, fix the error and then proceed with the update.

\section*{Note:}

You must log into the Browser User Interface again after running the odacli update-dcscomponents command.

Running Patching Prechecks and Patching Server and Storage Components Using the Browser User Interface
1. Do not have any jobs running or pending during the update window.
2. Log into the Browser User Interface within the DB system with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
3. Click the Appliance tab, and then click Infrastructure Patching on the lefthand pane.
4. In the SERVER section, view the Component Details. If you just updated the Patch Repository, click Refresh.

After the patch is uploaded to the Patch Repository, the Component Details on the page are updated with the Installed Version and Available Version for each component.
5. Click Precheck to run patching prechecks. You must run the patching prechecks before updating the server and other components. Click View Pre-check Reports to view the patching prechecks report. If there are no errors in the report, then click Apply Patch to begin the job to patch the server components. For high-availability systems, when updating the server on the bare metal system, you can select the Node to Update. You can choose the node that you want to update or you can choose to update both nodes.
When the job finishes, go to the next step. Click View Jobs for the job status.
6. In the STORAGE section, click Refresh to refresh the Component Details. Click Precheck to run patching prechecks. You must run the patching prechecks before updating the storage components. Click View Pre-check Reports to view the patching prechecks report. If there are no errors in the report, then click Apply Patch to begin the job to patch the storage components. Click View Jobs for the job status.

For high-availability environment, you can select the Rolling check box to perform rolling patching of storage components.
7. Click Activity to monitor the progress, and verify that the job completes successfully.

\section*{Updating Oracle Database Appliance Repository with Database Clone Files For Bare Metal Systems}

Follow these steps to update the Oracle Database Appliance repository with Oracle Database clone files for the latest release using CLI commands.

To create new databases of a specific release version, you must update the Oracle Database Appliance repository with the Oracle Database clone files for a release. Follow these steps to update the repository with Oracle Database clone files for the latest release.
1. Download the Oracle Database clone software file for a release, for example, p30403662_1923000_Linux-x86-64.zip, and extract the Oracle Database clone software:
For example, download the Oracle Database clone software patch for 19.23:
unzip /tmp/p30403662_1923000_Linux-x86-64.zip
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip
2. Copy all the software files from the external client to Oracle Database Appliance. For HighAvailability deployments, copy the software files to only one node. The software files are copied to the other node during the patching process. Use the scp or sftp protocol to copy the bundle.

Example using scp command:
\# scp software_file root@oda_host:/tmp
Example using sftp command:
\# sftp root@oda_host

Enter the root password, and copy the files.
```

put software_file

```
3. Update the repository with latest release database software:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-db-clone-file.zip/

```

For example, for 19.23:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip

```

Follow the same steps to update the repository with the database clone software for other supported database versions.
4. Confirm that the repository update is successful:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli list-jobs
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID

```
5. Delete the software zip files from the temporary location on the appliance to save space:
```

[root@odal opt]\# rm software_file
rm: remove regular file software_file? y

```

\section*{Patching Databases Using ODACLI Commands or the BUI}

Use ODACLI commands or the Browser User Interface to patch databases to the latest release in your deployment.

Before patching the database home, upload the Oracle Database clone files for the database version, to the repository. See Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI for the procedure to update the repository with the latest Oracle Database clone files.

\section*{(1) Important:}

You must run the odacli create-prepatchreport command before you patch the Oracle databases; otherwise, the odacli update-database command fails with an error message prompting you to run the patching pre-checks.

\section*{Patching Databases on Oracle Database Appliance using ODACLI Commands}

Run the following command to patch a database using the CLI:
```

odacli update-database [-a] [-dp] [-f] [-i db_id] [-imp] [-l] [-n db_name] [-
ni node] [-r] [-to db_home_id] [-j] [-h]

```

For more information about the options for the update-database command, see the chapter Oracle Database Appliance Command-Line Interface.

\section*{Patching Databases on Oracle Database Appliance using BUI}
1. Log into the Browser User Interface with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Navigate to the Database tab.
3. Select the database you want to patch.
4. Click Update.
5. If you select Apply Data Patch, then the Data Patch for the specified database is applied and you cannot select any other options.
6. On a high-availability system, you can also select the node in the Select Node to Update list.
7. Select Ignore Missing Patches to ignore missing patches.
8. Select Force Run to force the operation to run.
9. Select the destination database home.
10. In the Patching Options
- Abort: To abort previously unfinished or failed patching operation.
- Revert: To revert previously unfinished or failed patching operation.
- None: To patch the database.
11. Click Update.
12. If you have not run the pre-checks earlier, then an error is displayed when you submit the job to update the database.
13. In the Database page, select the Database and then click Precheck to run pre-checks for patching the database.

Click Activity for job status.
14. In the Database page, for the database to be patched, click Actions and select View Prepatch reports to view the pre-check report. Fix any errors, and then select Action as Apply to patch the database.
15. Verify that the patching job completes successfully.

\section*{Patching Existing Database Homes Using ODACLI or the BUI}

Use ODACLI or BUI to patch database homes in your deployment to the latest release.
Before patching the database, upload the Oracle Database clone files for the database version, to the repository. See Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI for the procedure to update the repository with the latest Oracle Database clone files.

\section*{Patching Database Homes on Oracle Database Appliance using ODACLI Commands}

Run the following command to patch a database home using the CLI:
```

odacli update-dbhome -i dbhome_id -v version [-f] [-imp] [-p] [-l] [-u
node_number] [-j] [-h]

```

For more information about the options for the update-dbhome command, see the chapter Oracle Database Appliance Command-Line Interface.

\section*{Patching Database Homes on Oracle Database Appliance using BUI}
1. Log into the Browser User Interface with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Navigate to the Database Home tab.
3. Select the database home you want to patch.
4. Select the Patch Version for the database home.
5. To patch multiple database homes, select each database home to be patched and the patch version for each database home.
6. Select the Node to Update. You can choose the node that you want to update or you can choose to update all nodes.
7. Click Patch. Select Precheck to run pre-checks before patching the database. Click Activity for job status.
8. On the Patch page, for the database to be patched, click Actions and select View Prepatch reports to view the pre-check report. Fix any errors, and then select Action as Apply to patch the database.
9. Select Ignore Precheck Failures to ignore failures reported in the prechecks reported. It is recommended that you fix errors reported in the precheck results.
10. Select Ignore Missing Patches to ignore missing patches.
11. Verify that the patching job completes successfully.

\section*{Patching Non-Provisioned Oracle Database Appliance Systems}

Oracle Database Appliance supports patching of non-provisioned single-node or high availablity systems by running odacli update-server command.

A non-provisioned Oracle Database Appliance system does not have Oracle Grid Infrastructure or Oracle Database installed or running on it. You can upgrade Oracle ILOM and storage firmware on an unprovisioned system without running the odacli create-appliance command by reimaging the system using the bare metal ISO image of Oracle Database release 19.19 or later. Then patch the system with the server patches of the same release as the bare metal ISO image by running the odacli update-server command. When you reimage your system, the DCS infrastructure is updated automatically.

Follow these steps to update the firmware:
1. Reimage the Oracle Database Appliance using the bare metal ISO image for Oracle Database Appliance release 19.19 or later.
2. Update the repository with the server patch for the Oracle Database Appliance release you want to patch to, for example 19.19 or later.
3. For running odacli update-server on Oracle Database Appliance imaged with ISO of release 19.19:
```

odacli update-server -v 19.19.0.0.0 -sko -f

```

For Oracle Database Appliance release 19.19, you can use the -sko option to skip ORAchk failures and proceed with the server patching, and the -f option to override precheck failures and complete the server patching.
4. For running odacli update-server on Oracle Database Appliance imaged with ISO of release 19.11 or later, follow these steps:
a. Create the pre-patch report for the odacli update-server command by specifying the -s option.
odacli create-prepatchreport -v 19.11.0.0.0-s

Fix the warnings and errors mentioned in the report and proceed with the server patching.
b. Update the server:
odacli update-server -v 19.11.0.0.0 -f

For Oracle Database Appliance release 19.11 or later, you can use the -f option to override precheck failures and complete the server patching.

\section*{Applying Additional Patches and Updates on Bare Metal Systems}

Configure additional patch repositories and patch your operating system and databases to ensure that your deployment has the latest updates and security fixes.
- Enabling Kernel Updates

Oracle Ksplice enables you to update your systems with the latest kernel security and bug fix updates.
- Applying Out-of-Cycle Database Patches The out-of-cycle patching feature enables administrators to patch databases in the Oracle Database Appliance deployment with the latest Oracle Database Release Update, outside of the Oracle Database Appliance releases.

\section*{Enabling Kernel Updates}

Oracle Ksplice enables you to update your systems with the latest kernel security and bug fix updates.

You can download and install the latest Oracle Ksplice updates (uptrack-updates) with either the local ULN repository or ULN channel.
Follow these steps to install Oracle KSplice:
1. Register your server with Unbreakable Linux Network (ULN). By default, you are registered for the Oracle Linux Latest channel for your operating system and hardware.
2. Log in to Unbreakable Linux Network:
https://www.oracle.com/in/linux/
3. Ensure that you have access to the Internet on the server where you want to use Ksplice. For example, if you are using a proxy server, then set the proxy server and port values in the shell with commands similar to the following:
\# export http_proxy=http://proxy.company.com:port
\# export https_proxy=http://proxy.company.com:port
4. Register the server:
\# uln_register
5. Set up the local repository as described in the Oracle Ksplice user documentation. This enables you to download the latest Ksplice update packages at regular intervals without requiring a direct connection to the Oracle Uptrack server or to ULN.
6. To update a system to a specific effective kernel version, install the uptrack-updates package for the current kernel.
```

yum -y install uptrack-updates-'uname -r'

```

You can also download the uptrack-updates RPM from the Ksplice channel and install the RPM manually. For example:
```


# rpm -Uvh uptrack-

updates-4.14.35-1902.11.3.1.el7uek.x86_64-20200325-0.noarch.rpm

```

人 See Also:
Oracle Linux Ksplice User's Guide for information about configuring Oracle Ksplice at:
https://docs.oracle.com/cd/E37670_01/E39380/html/ksplice-enhanced-offline.html

\section*{Applying Out-of-Cycle Database Patches}

The out-of-cycle patching feature enables administrators to patch databases in the Oracle Database Appliance deployment with the latest Oracle Database Release Update, outside of the Oracle Database Appliance releases.

You can apply Oracle Database Release Update (RU) patches manually using OPatch. Refer to the relevant section in this topic to run the OPatch for your database version.

\section*{Note:}

The OPatch commands and procedures described in this topic are examples, and may need modifications based on a specific Oracle Database Release Update (RU). Always refer to the Readme of the Oracle Database Release Update (RU) for additional commands and steps.

\section*{Note:}

It is strongly recommended that you patch your deployment through the Oracle Database Appliance releases, whenever possible.

\section*{Note:}

You can apply out-of-cycle patches to baremetal and DB system deployments using this procedure.

\section*{Using OPatchauto to Manually Patch Oracle Database Release 12c and Later}
1. Confirm that the dcs-agent and other components are updated to the latest release.
\# odacli describe-component
\# odacli list-dbhomes
2. Update OPatch to the latest version, if available:
a. Download the latest OPatch version from My Oracle Support.
b. Copy the files to the local host and extract them to the ORACLE_HOME/OPatch directory.
c. Update the OPatch tool as oracle user.
```

/bin/rm -rf \$ORACLE_HOME/OPatch/
su - oracle -c /usr/bin/unzip -q -o OPatch_zip_location/
p6880880_122010_Linux-x86-64.zip -d \$ORACLE_HOME

```
3. Download the latest database patches from My Oracle Support and copy the files to the local host.
scp patchfilename root@hostname:directory
4. Unzip patches to an empty directory, for example, /tmp/patchesDir as oracle user. This creates sub directories under / tmp/patchesDir with bug numbers. If the patch you are applying is a Release Update (RU), then the patch directory has multiple subdirectories.
/usr/bin/unzip -o location_of_patches/p29301631_180000_Linux-x86-64.zip -
d/tmp/patchesDir
5. For Oracle Database Appliance High-Availability deployments, set up SSH Keys for secure connection.
6. Analyze the patches.
```

\$ORACLE_HOME/OPatch/opatchauto apply directory_with_patches_extracted -
analyze -oh \$ORALCE_HOME -log /tmp/opatchAutoAnalyzePatch.log

```
7. As root user, apply the patches.
\$ORACLE_HOME/OPatch/opatchauto apply directory_to_extract_patches oh \$ORACLE_HOME -inplace
8. When patching is completed on both nodes, run utlrp.sql and catcon.pl scripts to recompile invalid objects in the database.
9. Update the registry to ensure that system component values are registered.
```


# odacli update-registry -n dbhome -f

```

\section*{Cleaning Up the Patch Repository}

Use the Browser User Interface or Command Line Interface to delete obsolete or old patches from the repository.

\section*{About Cleaning Up the Patch Repository}

After patching Oracle Database Appliance with the latest patches, old unused clone files may remain and consume space in the repository. Cleanup repository deletes the unused clone/ patch files to reclaim space. You can clean up the repository using the Browser User Interface or ODACLI commands.

\section*{Cleaning Up the Patch Repository Using ODACLI command}
```


# odacli cleanup-patchrepo [-cl clones] | [-v version [-comp component]]| [-l

local|-n NodeID]

```

Specify the clone file names and the node from which you want to delete the old patches.
For details about the command options, see the chapter Oracle Database Appliance Command-Line Interface.

\section*{Cleaning Up the Patch Repository Using the Browser User Interface}

Follow these steps to clean up the patch repository:
1. In the Browser User Interface, click Patch Manager.
2. Click the Cleanup Repository tab, and then click Refresh to list the available patches in the repository.
3. Select the Components, such as old Oracle Grid Infrastructure or Oracle Database clone files that you want to clean up from the repository, and the Patch Version, for example, an older release of Oracle Database Appliance.
4. Click Cleanup Clone Files to clean up clone files for selected components from the repository at /opt/oracle/oak/pkgrepos/orapkgs/clones/.
5. Click Cleanup Repository to submit the cleanup repository job.
6. Click Activity to monitor the progress. When the job completes successfully, the Patch Repository is updated.

\section*{Related Topics}
- odacli cleanup-patchrepo Use the odacli cleanup-patchrepo command to delete obsolete or old patches from the repository.

\section*{About Upgrading to a Different Database Home}

Understand how to upgrade to a different database home using either the Browser User Interface or odacli commands.

\section*{Prerequisites for Upgrading Database Homes}

You can upgrade database homes of the following releases:
- Oracle Database 12.2 to 19c
- Oracle Database 12.1 to 19c

Before upgrading to a different database home, upload the Oracle Database clone files for the database version, to the repository, and then create the database home. See Patching Oracle Database Appliance Using the CLI for the procedure to update the repository with the latest Oracle Database clone files.

\section*{About Upgrading Database Homes Using the Browser User Interface}

Follow these steps to upgrade to a different database home using the Browser User Interface.
1. Log into the Browser User Interface with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Click the Database tab, and then select a database, click Actions, and then click Upgrade.
3. Verify that the database upgrade job completes successfully.

\section*{About Upgrading Database Homes Using the Command-Line Interface}

Run the following command to upgrade to a different database home using the CLI:
```

odacli upgrade-database -i Comma separated list of database ids -from source
dbhome id -to destination dbhome id [-j] [-h]

```

For more information about the options for the upgrade-database command, see the chapter Oracle Database Appliance Command-Line Interface.

\section*{Setting Dynamic Default Parameters}

You can set dynamic default parameters using the BUI.
Setting Dynamic Default Parameters Using the Browser User Interface
Follow these steps:
1. From the Appliance page, click Parameter Repository.
2. The Parameter Repository page lists all the parameters in the repository. Currently, parameters of type RDBMS are supported.
3. Select Update Parameter to create a new configuration property.
4. In the Update Parameter page, specify the Parameter Name and Value, and provide an optional Description. Specify whether you want to create the parameter for the Bare Metal or DB System. You can also specify the whether the parameter applies to All DB Systems or you can select the DB system for which you want to create the parameter.
5. Click OK.
6. Confirm the action to submit the job. Monitor the job progress and check that it completes successfully.
7. To update a parameter, select the Update option from the Actions menu.
8. You can edit the Value, Description, and select whether the parameter applies to Bare Metal or DB System. You can also select the DB system for which you want to update the parameter or choose to apply the parameter to All DB Systems.
9. Click Update.
10. To delete a parameter, select the Delete option from the Actions menu. You can delete the parameter from the Bare Metal or DB System. You can also select the DB system for which you want to delete the parameter or choose to delete the parameter from All DB Systems.
11. Click Delete.

\section*{Upgrading Oracle Database Appliance to Release 19.23 Using Data Preserving Reprovisioning}

Understand how you can upgrade your Oracle Database Appliance deployment from Oracle Database Appliance release 19.19, 19.20, 19.21, or 19.22 to Oracle Database Appliance release 19.23 on Oracle Linux 8.

If your deployment is on Oracle Database Appliance release 19.23, then patch your appliance as described in the chapter Patching Oracle Database Appliance.
- About Upgrading Using Data Preserving Reprovisioning Understand how you can upgrade your appliance from Oracle Database Appliance releases 19.19, 19.20, 19.21, and 19.22 to Oracle Database Appliance release 19.23.
- Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.
- Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI
Follow these steps to upgrade your Oracle Database Appliance DB system deployment using CLI commands.
- Upgrading Oracle Database Appliance to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the BUI
Follow these steps to upgrade your Oracle Database Appliance deployment and existing Oracle Database homes, using the Browser User Interface (BUI).
- Patching Databases Using ODACLI Commands or the BUI Use ODACLI commands or the Browser User Interface to patch databases to the latest release in your deployment.
- Patching Existing Database Homes Using ODACLI or the BUI Use ODACLI or BUI to patch database homes in your deployment to the latest release.

\section*{About Upgrading Using Data Preserving Reprovisioning}

Understand how you can upgrade your appliance from Oracle Database Appliance releases 19.19, 19.20, 19.21, and 19.22 to Oracle Database Appliance release 19.23.

\section*{Note:}

To upgrade to Oracle Database Appliance release 19.23, you must be on Oracle Database Appliance release 19.19 at the minimum. To patch your appliance to Oracle Database Appliance release 19.18, refer to the Oracle Database Appliance Deployment and User's Guide for your hardware model in the Oracle Database Appliance release 19.19 documentation library.

\section*{Note:}

Data Preserving Reprovisioning does not support encrypted Oracle ACFS. Use the acfsutil encr info command to check whether Oracle ACFS encryption is enabled. If Oracle ACFS encryption is enabled, then disable Oracle ACFS encryption using the acfsutil encr off command before you proceed with the upgrade. You can enable Oracle ACFS encryption after the upgrade. For more information, see the Oracle Automatic Storage Management Administrator's Guide in the Oracle Database 19c documentation library.

Starting with Oracle Database Appliance release 19.21, the operating system of the appliance is Oracle Linux 8. You must upgrade the system to Oracle Linux 8, before updating Oracle Grid Infrastructure and databases to 19.23. You use Data Preserving Reprovisioning to upgrade your appliance running Oracle Linux 7 to Oracle Database Appliance release 19.23 with Oracle Linux 8.

\section*{About Upgrading Using Data Preserving Reprovisioning}

Data Preserving Reprovisioning enables reprovisioning of an already deployed Oracle Database Appliance system without modifying the storage and the databases on the appliance. This is achieved by saving the information of the source system, capturing them as server data archive files. Then, the appliance is reimaged to Oracle Database Appliance release 19.23 and the saved metadata is used to directly reprovision the system and bring back all the resources such as databases, DB systems, Oracle ASR, and others.

When you upgrade your Oracle Database Appliance hardware models \(\mathrm{X} 9-2, X 8-2\), and \(\mathrm{X} 7-2\) to Oracle Database Appliance release 19.23, you upgrade the operating system to Oracle Linux 8. Data Provisioning Reprovisioning enables you to perform this upgrade, and has the following features:
- The odacli create-preupgradereport command runs prechecks on the system, such as detection of databases, DB systems that are inactive, Oracle Data Guard and TDEenabled database settings. There are errors, warnings, and alerts reported if the system is determined to not be ready for the upgrade. You must review the errors, warnings, and alerts reported and take corrective actions as the report suggests. This will ensure that no failures occur later in the process, which can prevent the resources from being restarted.
- During the first step of detaching the node, information about the system is collected and preserved in a server archive file. Make sure this file is saved outside the Oracle Database Appliance system before reimaging the system with the Oracle Database Appliance release 19.23 ISO image. The settings preserved in the file are used to reprovision the system after reimaging the appliance. The stored information includes details about the Oracle ACFS volumes that store database homes, DB system cluster settings, VLAN, custom networks, CPU and Oracle AFD settings. These settings are migrated after the reimage and the third step in this process reprovisions these settings.

\section*{Steps in the Data Preserving Reprovisioning for Upgrade Process}

There are four steps in this process:
1. Detach resources and software from the source version of the appliance: This step saves the metadata about the databases, listeners, networks, DB systems, application KVMs, CPU pools, Oracle ASR, and other configuration details in archive files, namely, the server data archive files. Then, the services running on the system are shutdown and uninstalled to prepare the environment for reimage in step 2. The data on the storage is kept intact.

The server data archive files are generated after the successful detach of nodes. You must save the server data archive files in a location outside the appliance which is being upgraded, and copy these files back to the appliance to restore the system in step 3.

\section*{WARNING:}

Make sure to save these files in a location outside the Oracle Database Appliance system. These files are needed to reprovision the system after you reimage the appliance in Step 2 of this process. Without these files, the system cannot be reprovisioned in Step 3 and you will lose all data stored in the Oracle ASM disk groups.
2. Reimage nodes using the Oracle Database Appliance ISO image: The procedure is similar to imaging the appliance. This step installs Oracle Linux 8 as the operating system.
3. Restore nodes using the Data Preserving Reprovisioning method: After successful completion of the previous step, the operating system and DCS software are already on the required target version. However, to update firmware, you must patch your deployment using the Server Patch. After successfully patching the appliance, you can restore the system, by restoring the Oracle Grid Infrastructure, databases, listeners, networks, DB systems, application KVMs, CPU pools, Oracle ASR, and other services on the nodes.
4. Upgrade DB systems: After reprovisioning databases, application KVMs, and DB systems, upgrade the DB systems to Oracle Linux 8.

The procedure for each step is detailed in the subsequent topics in this chapter.

\section*{Customizations to the Appliance and Their Persistence After Upgrade}

As part of the upgrade process, the Data Preserving Reprovisioning procedure involves reimage of the appliance with the latest ISO image. Hence, any prior customizations to the operating system configuration or settings are lost during the reimage. Note the impact on the following customizations during the Data Preserving Reprovisioning process:
- Custom RPMs: If your appliance has any custom operating system RPMs installed from Oracle Linux Yum repository, then the prechecks report lists these custom RPMs. You must uninstall these RPMs and then continue with the next step in the upgrade process for bare metal system and DB system upgrades. You can reinstall these custom RPMs as required, after the upgrade.
- Multi-User Access Enabled Systems: If your deployment did not have multi-user access configured before the upgrade, the newly-upgraded deployment will not have multi-user access enabled. The upgrade restores your deployment to the same configuration that existed prior to the upgrade, but with the software upgraded to Oracle Database Appliance release 19.23.
- Fixes applied by STIG and CIS scripts: Since the system is reimaged during the upgrade progess, fixes applied on the appliance to conform with Security Technical Implementation Guides (STIG) and Center for Internet Security (CIS) benchmarks are lost, on both bare metal and DB systems.

\section*{Related Topics}
- Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.
- Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI
Follow these steps to upgrade your Oracle Database Appliance DB system deployment using CLI commands.
- About Upgrading Using Data Preserving Reprovisioning Understand how you can upgrade your appliance from Oracle Database Appliance releases 19.19, 19.20, 19.21, and 19.22 to Oracle Database Appliance release 19.23.
- Upgrading Oracle Database Appliance to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the BUI
Follow these steps to upgrade your Oracle Database Appliance deployment and existing Oracle Database homes, using the Browser User Interface (BUI).

\section*{Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI}

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.

To upgrade your Oracle Database Appliance deployment to the current release running Oracle Linux 8, you must download the Oracle Database Appliance Server patch and update the repository on the bare metal system.

\section*{WARNING:}

Do not run cleanup.pl either before or after running the odacli detach-node command. Running cleanup.pl erases all the Oracle ASM disk groups on the storage and you cannot reprovision your Oracle Database Appliance system.

\section*{, Note:}

Run the steps in this procedure in the same order as documented. Run the odacli update-dcsadmin, odacli update-dcscomponents, and odacli update-dcsagent commands in the order documented.
, Note:
For high-availability systems, run all the commands on one node only unless specified in the procedure step.

\section*{Note:}

Note that for DCS agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified.

\section*{Note:}

If Oracle ASR configuration type is Internal, and if there are external assets registered with Oracle ASR Manager, then after upgrading the internal Oracle ASR appliance, ensure that you upgrade the external assets when you upgrade your appliance using Data Preserving Reprovisioning.

If Oracle ASR configuration type is External, then ensure that you upgrade the appliance using Data Preserving Reprovisioning before upgrading the appliance with the external Oracle ASR. You can check the Oracle ASR configuration type with the odacli describe-asr command.

\section*{(1) Important:}

Ensure that there is sufficient space on your appliance to download the patches.

\section*{(!) Important:}

If you want to install third-party software on your Oracle Database Appliance, then ensure that the software does not impact the Oracle Database Appliance software. The version lock on Oracle Database Appliance RPMs displays a warning if the thirdparty software tries to override Oracle Database Appliance RPMs. You must restore the affected RPMs before patching Oracle Database Appliance so that patching completes successfully.

Follow these steps to upgrade your Oracle Database Appliance bare metal system to Oracle Linux 8 and Oracle Database Appliance release 19.23:

\section*{Step 1: Detaching Nodes for Upgrade Using Data Preserving Reprovisioning}
1. Download the Oracle Database Appliance Server Patch for the ODACLI/DCS stack (patch 35938481) from My Oracle Support to a temporary location on an external client. Refer to the release notes for details about the patch numbers and software for the latest release. For example, download the server patch for 19.23:
p35938481_1923000_Linux-x86-64.zip
2. Unzip the software - it contains README.html and one or more zip files for the patch.
unzip p35938481_1923000_Linux-x86-64.zip

The zip file contains the following software file:
oda-sm-19.23.0.0.0-date-server.zip
3. Copy all the software files from the external client to Oracle Database Appliance. For HighAvailability deployments, copy the software files to only one node. The software files are copied to the other node during the patching process. Use the scp or sftp protocol to copy the bundle.

Example using scp command:
\# scp software_file root@oda_host:/tmp

Example using sftp command:
\# sftp root@oda_host

Enter the root password, and copy the files.
```

put software_file

```
4. Update the repository with the server software file:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
software_file

```

For example, for 19.23:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/oda-
sm-19.23.0.0.0-date-server.zip

```
5. Confirm that the repository update is successful:
```

[root@odal opt]\# odacli describe-job -i 6c5e8990-298d-4070-
aeac-76f1e55e5fe5
Job details

```


6. Update the DCS admin:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-dcsadmin -v 19.23.0.0.0
{
"jobId" : "95178f45-b72f-46ef-b971-741f3fad51c4",
"status" : "Created",
"message" : null,
"reports" : [ ],

```
```

    "createTimestamp" : "April 8, 2024 07:45:54 AM UTC",
    "resourceList" : [ ],
    "description" : "DcsAdmin patching",
    "updatedTime" : "April 8, 2024 07:45:54 AM UTC",
    "jobType" : null
    }

# odacli describe-job -i 95178f45-b72f-46ef-b971-741f3fad51c4

Job details

ID:	$95178 \mathrm{f} 45-\mathrm{b} 72 \mathrm{f}-46 \mathrm{ef}-\mathrm{b} 971-741 \mathrm{f} 3 \mathrm{fad} 51 \mathrm{c} 4$
Description:	DcsAdmin patching
Status: Success	
Created: April 8, $2024 \mathrm{7}: 45: 54$ AM UTC	
Message:	


Task Name	Node Name	Start
Time	End	
Time	Status	

--------------------------------------- ------------------------------
---------------------------------------------
---------------------------------------- -------------
Patch location validation node1 April 8, 2024
7:45:58 AM UTC April 8, 2024 7:45:58 AM UTC Success
Patch location validation node2 April 8, 2024
7:45:58 AM UTC April 8, 2024 7:45:58 AM UTC Success
Dcs-admin upgrade node1 April 8, 2024
7:45:59 AM UTC April 8, 2024 7:45:59 AM UTC Success
Dcs-admin upgrade node2 April 8, 2024
7:45:59 AM UTC April 8, 2024 7:45:59 AM UTC Success

```
7. Update the DCS components:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-dcscomponents -v
19.23.0.0.0
{
"jobId" : "e9862ac9-ed92-4934-a71a-93cea4c20a68",
"status" : "Success",
"message" : " DCS-Agent shutdown is successful. Skipping MySQL upgrade
on OL7 Metadata schema update is done. dcsagent RPM upgrade is successful.
dcscli RPM upgrade is successful. dcscontroller RPM upgrade is successful.
Successfully reset the Keystore password. HAMI is not enabled Skipped
removing old Libs. Successfully ran setupAgentAuth.sh ",
"reports" : null,
"createTimestamp" : "April 8, 2024 13:47:22 PM GMT",
"description" : "Update-dcscomponents job completed and is not part of
Agent job list",
"updatedTime" : "April 8, 2024 13:49:44 PM GMT"
}

```

If the DCS components are updated, then the message "status" : "Success" is displayed on the command line. For failed updates, fix the error and then proceed with the update by re-running the odacli update-dcscomponents command. See the topic Resolving Errors When Updating DCS Components During Patching about more information about DCS components checks errors.

\section*{Note:}

Note that for DCS agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified in this procedure.
8. Update the DCS agent:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-dcsagent -v 19.23.0.0.0
[root@oda1 opt]\# odacli describe-job -i a9cac320-cebe-4a78-b6e5-
ce9e0595d5fa
Job details
------------------------------------------------------------------------
ID: a9cac320-cebe-4a78
Status: Success
Created: April 8, 2024 3:35:01 PM UTC
Message:
Task Name Start End Time Status
-----------------------------------------
----------------------------------- ------------------------------------------
----------
Dcs-agent upgrade to version April 8, 2024 3:35:01 PM UTC
April 8, 2024 3:38:50 PM UTC Success
19.22.0.0.0
Update System version April 8, 2024 3:38:50 PM UTC
April 8, 2024 3:38:50 PM UTC Success

```
9. Similarly, log into each DB system and update the DCS components, DCS admin, and DCS agent on every DB system in your deployment:
```

[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsadmin -v
19.23.0.0.0
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dcscomponents -v
19.23.0.0.0
[root@dbsystem1 opt]\# /opt/oracle/dcs/bin/odacli update-dcsagent -v
19.23.0.0.0

```
10. On bare metal system, create the pre-upgrade report to run upgrade pre-checks. If there are errors reported in the report, review the report to resolve the failure in the "Action" column of the report. Fix the errors and repeat the step to run the preupgrade report until all checks pass. If there are alerts in the report, review them and perform the recommended action, if any. Then proceed to run the detach-node operation.
```

[root@oda1 opt]\# odacli create-preupgradereport -bm
[root@odal opt]\# odacli describe-preupgradereport -i ID

```

\section*{For example:}
```

[root@oda1 opt]\# odacli describe-preupgradereport -i 31d5304a-
d234-4f87-84ec-0297020f518a
Upgrade pre-check report
-------------------------------------------------------------------------------
Job ID: 31d5304a-d234-4f87-84ec-0297020f518a
Description: Run pre-upgrade checks for Bare Metal
Status: SUCCESS
Created: April 8, 2024 7:15:28 AM UTC
Result: All pre-checks succeeded

```
Node Name

node1

 GI
\(\overline{\text { Check presence of databases Success }}\) No additional database
found None
not managed by ODA registered in
CRS
Check custom filesystems Success All file systems are owned and
used None
 by OS users provisioned by
ODA
_OS
\(\overline{C h e c k}\) Required OS files Success All the required files are
present None
Check Additional OS RPMs Success No RPMs outside of base ISO
were None
 found on the
system
 STORAGE
Check Required Storage files Success All the required files are
present None
Validate OAK Disks Success All OAK disks are in valid
state None
Validate ASM Disk Groups Success All ASM disk groups are in valid
state None
Validate ASM Disks Success All ASM disks are in valid
state None
Check Database Home Storage Success The
volume (s) None
volumes
orahome_sh,odabase_n0,odabase_n1
 state is
```

CONFIGURED.
Check space under /opt Success Free space on /opt: 142750.87 MB
is None
MB
Check space in ASM disk Success Space required for creating
local None
group(s)
database
GB
GB
__SYS__
Validate Hardware Type
supported None
Validate ILOM interconnect Success ILOM interconnect is not
enabled None
Validate System Version Success
is None
supported
Verify System Timezone Success Succesfully verified the time
zone None
file
Verify Grid User None Success Grid user is
on
nodes
Check Audit Files Alert Audit files found
under These files will be lost after
/u01/app/oracle/product/
12.1.0.2/ reimage. Backup the audit files to a
dbhome_1/rdbms/
audit, location outside the ODA system
/u01/app/oracle/product/
11.2.0.4/
audit,
audit

$\overline{\mathrm{Vali}} \overline{\mathrm{Da}} \mathrm{ta}$ Database Status	
is None	Success
	Database 'myTestDb' is running and
state	in 'CONFIGURED'
Validate Database Version	Success Version '19.17.0.0.221018'

```
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{for None} & & \\
\hline & & database 'myTestDb' is \\
\hline \multicolumn{3}{|l|}{supported} \\
\hline Validate Database Datapatch completely None & Success & Database 'myTestDb' is \\
\hline Application Status datapatch & & applied with \\
\hline Validate TDE wallet presence TDE None & Success & Database 'myTestDb' is not \\
\hline & & enabled. Skipping TDE wallet \\
\hline \multicolumn{3}{|l|}{presence} \\
\hline \multicolumn{3}{|l|}{check.} \\
\hline Validate Database Home passed None & Success & Database home location check \\
\hline location & & for database \\
\hline \multicolumn{3}{|l|}{myTestDb_uniq} \\
\hline \begin{tabular}{l}
Validate Database Status in \\
None
\end{tabular} & Success & Database 's' is running and is \\
\hline & & 'CONFIGURED' \\
\hline \multicolumn{3}{|l|}{state} \\
\hline Validate Database Version & Success & Version '12.1.0.2.220719' \\
\hline \multirow[t]{2}{*}{for None} & & \\
\hline & & database 's' is \\
\hline \multicolumn{3}{|l|}{supported} \\
\hline Validate Database Datapatch applied None & Success & Database 's' is completely \\
\hline Application Status datapatch & & with \\
\hline Validate TDE wallet presence enabled. None & Success & Database 's' is not TDE \\
\hline & & Skipping TDE wallet presence \\
\hline \multicolumn{3}{|l|}{check.} \\
\hline Validate Database Home passed None & Success & Database home location check \\
\hline location & & for database \\
\hline \multicolumn{3}{|l|}{S} \\
\hline \multirow[t]{2}{*}{Validate Database Status in None} & Success & Database 'QyZ60' is running and is \\
\hline & & 'CONFIGURED' \\
\hline \multicolumn{3}{|l|}{state} \\
\hline Validate Database Version & Success & Version '11.2.0.4.210119' \\
\hline \multirow[t]{2}{*}{for None} & & \\
\hline & & database 'QyZ60' is \\
\hline \multicolumn{3}{|l|}{supported} \\
\hline Validate TDE wallet presence enabled. None & Success & Database 'Qyz60' is not TDE \\
\hline & & Skipping TDE wallet presence \\
\hline \multicolumn{3}{|l|}{check.} \\
\hline Validate Database Home passed None & Success & Database home location check \\
\hline location & & for database \\
\hline \multicolumn{3}{|l|}{QyZ60} \\
\hline Validate Database Status & Success & Database 'EX68' is running and is \\
\hline
\end{tabular}
```

in None
state
Validate Database Version
for None
supported
Validate Database Datapatch
on None
Application Status
skipped.
Validate TDE wallet presence
enabled. None
check.
Validate Database Home Success Database home location check
passed None
location
EX68
Validate Database Status
in None
state
Validate Database Version
for None
supported
Validate Database Datapatch
completely None
Application Status
datapatch
Validate TDE wallet presence
enabled. None
check.
Validate Database Hom
passed None
location
DH1G0
_CERTIFICATES__
Check using custom Success Using Default key
pair None
certificates
Check the agent of the DB
are None
System accessible
accessible
__DBSYSTEMS__
Validate DB System DCS Success node1: SUCCESS
None
component
versions

```
```

Validate DB System DCS Success node1: SUCCESS
None
component
versions
Node Name
---------------
node2
Check Status
Message
Action
------------------------------ --------
---------------------------------------
--------------------------------------
GI
Chec\overline{k presence of databases Success No additional database}
found None
not managed by ODA
CRS
Check custom filesystems Success All file systems are owned and
used None
ODA
_OS
Check Required OS files Success All the required files are
present None
Check Additional OS RPMs Success No RPMs outside of base ISO
were None
system
STORAGE
Check Required Storage files Success All the required files are
present None
Validate OAK Disks Success All OAK disks are in valid
state None
Validate ASM Disk Groups Success All ASM disk groups are in valid
state None
Validate ASM Disks Success All ASM disks are in valid
state None
Check Database Home Storage Success The
volume (s) None
volumes
orahome_sh,odabase_n0,odabase_n1
state is
CONFIGURED.
Check space under /opt Success Free space on /opt: 143154.76 MB
is None
more than required space: 1024

```
```

Check space in ASM disk Success Space required for creating
local None
group(s) homes is present in ACFS
database
home storage. Required: 78
GB
Available: 245
GB
SYS
Validate Hardware Type Success Current hardware is
supported None
Validate ILOM interconnect Success ILOM interconnect is not
enabled None
Validate System Version Success System version 19.22.0.0.0
is None
supported
Verify System Timezone Success Succesfully verified the time
zone None
file
Verify Grid User None
Verify Grid Version Success Oracle Grid Infrastructure is
running None
on
nodes
Check Audit Files Alert Audit files found
under
These files will be lost after
/u01/app/oracle/product/
12.1.0.2/ reimage. Backup the audit files to a
dbhome_1/rdbms/
audit, location outside the ODA system
/u01/app/oracle/product/
11.2.0.4/
audit,
audit,
admin
__DB__
Vali\overline{date Database Status Success Database 'myTestDb' is running and}
is None
state
Validate Database Version Success Version '19.17.0.0.221018'
for None
supported

```
```

Validate Database Datapatch Success Database 'myTestDb' is
completely None
Application Status
datapatch
Validate TDE wallet presence
TDE None
presence
check.
Validate Databa
location
myTestDb_uniq
Validate Database Status
in None
state
Validate Database Version
for None
supported
Validate Database Datapatch
applied None
Application Status
datapatch
Validate TDE wallet presence
enabled. None
check.
Validate Database Home
passed None
location
s
Validate Database Status
in None
state
Validate Database Version
for None
supported
Validate TDE wallet presence
enabled. None
check.
Validate Database Home
passed None
location
Qyz60
Validate Database Status Success Database 'EX68' is running and is
in None
state

```
```

Validate Database Version Success Version '18.14.0.0.210420'
for None
supported
Validate Database Datapatch
applied None
Application Status
datapatch
Validate TDE wallet presence
enabled. None
check.
Validate Database Home Success Database home location check
passed None
location
EX68
Validate Database Status Success Database 'DH1G0' is running and is
in None
state
Validate Database Version
for None
supported
Validate Database Datapatch
completely None
Application Status
datapatch
Validate TDE wallet presence
enabled. None
check.
Validate Database
passed None
location
DH1GO
__CERTIFICATES_
Check using custom Success Using Default key
pair None
certificates
Check the agent of the DB
are None
System accessible
accessible
DBSYSTEMS
_-DBSYSTEM_
Validate DB System DCS
None
component
versions
Validate DB System DCS Success node1: SUCCESS

```
component
versions
11. On the bare metal system, detach the system for an operating system upgrade. Click Yes when prompted to continue.

\section*{WARNING:}

Ensure that there is no hardware or networking change after issuing the command odacli detach-node.
[root@oda1 restore]\# odacli detach-node -all

For example:
```

[root@oda1 restore]\# odacli detach-node -all
*******************************************************************************
*****
IMPORTANT
***************************************************************************
*****
'odacli detach-node' will bring down the databases and grid services on the
system. The files that belong to the databases, which are stored on ASM or
ACFS,
are left intact on the storage. The databases will be started up back after
re-imaging the ODA system using 'odacli restore-node' commands. As a good
precautionary measure, please backup all the databases on the system
before you
start this process. Do not store the backup on this ODA machine since the
local
file system will be wiped out as part of the re-image.
***************************************************************************
*****

```
Do you want to continue (yes/no) [no] : yes
[root@oda1 opt]\# odacli describe-job -i 20b7fced-0aaa-474e-
aa80-18e31c215e1c
Job details

\section*{Creating INIT file}

January 8, 2024 4:22:19 PM UTC Creating firstnet response file January 8, 2024 4:22:19 PM UTC
Saving Appliance data
January 8, 2024 4:23:19 PM UTC
Saving OS files
January 8, 2024 4:22:19 PM UTC
Saving CPU cores information January 8, 2024 4:22:19 PM UTC
Saving storage files
January 8, 2024 4:22:19 PM UTC
Saving System
January 8, 2024 4:22:19 PM UTC
Saving Volumes
January 8, 2024 4:22:40 PM UTC
Saving File Systems
January 8, 2024 4:22:56 PM UTC
Saving Networks
January 8, 2024 4:22:56 PM UTC
Saving Quorum Disks
January 8, 2024 4:22:57 PM UTC
Saving Database Storages
January 8, 2024 4:23:00 PM UTC
Saving Database Homes
January 8, 2024 4:23:00 PM UTC
+-- Saving OraDB19000_home1
January 8, 2024 4:23:00 PM UTC
+-- Saving OraDB19000_home2
January 8, 2024 4:23: 000 PM UTC
+-- Saving OraDB19000_home3
January 8, 2024 4:23: 000 PM UTC
+-- Saving OraDB19000_home4
January 8, 2024 4:23:0̄0 PM UTC
+-- Saving OraDB19000_home5
January 8, 2024 4:23: 00 PM UTC
Saving Databases
January 8, 2024 4:23:19 PM UTC
+-- Saving provDb0
January 8, 2024 4:23:04 PM UTC
+-- Saving cPjuHX4S
January 8, 2024 4:23:08 PM UTC
+-- Saving PJSloXqa
January 8, 2024 4:23:11 PM UTC
+-- Saving 0
January 8, 2024 4:23:15 PM UTC
+-- Saving mydb
January 8, 2024 4:23:19 PM UTC
Saving Object swift stores
January 8, 2024 4:23:19 PM UTC
Saving Database Backups
January 8, 2024 4:23:19 PM UTC
Saving NFS Backups
January 8, 2024 4:23:19 PM UTC
Creating databases version list

April 8, 2024 4:22:19 PM UTC
Success
April 8, 2024 4:22:19 PM UTC

\section*{Success}

April 8, 2024 4:22:19 PM UTC
Success
April 8, 2024 4:22:19 PM UTC Success

April 8, 2024 4:22:19 PM UTC Success

April 8, 2024 4:22:19 PM UTC Success

April 8, 2024 4:22:19 PM UTC
Success
April 8, 2024 4:22:19 PM UTC
Success
April 8, 2024 4:22:40 PM UTC
Success
April 8, 2024 4:22:56 PM UTC
Success
April 8, 2024 4:22:56 PM UTC Success

April 8, 2024 4:22:57 PM UTC
Success
January 8, 2024 4:23:00 PM UTC Success

January 8, 2024 4:23:00 PM UTC
Success
January 8, 2024 4:23:00 PM UTC
Success
January 8, 2024 4:23:04 PM UTC
Success
January 8, 2024 4:23:08 PM UTC
Success
January 8, 2024 4:23:11 PM UTC
Success
January 8, 2024 4:23:15 PM UTC Success

January 8, 2024 4:23:19 PM UTC

\section*{Success}

January 8, 2024 4:23:19 PM UTC
Success
January 8, 2024 4:23:19 PM UTC
Success
January 8, 2024 4:23:19 PM UTC

January 8, 2024 4:23:19 PM UTC Success
Converting files for old DPR
January 8, 2024 4:23:19 PM UTC
compatibility
Detach node - DPR January 8, 2024 4:23:19 PM UTC
January 8, 2024 4:23:19 PM UTC
Deconfiguring Appliance
January 8, 2024 4:32:18 PM UTC
Deconfiguring Databases
January 8, 2024 4:25:33 PM UTC
+-- Deconfiguring provDb0
January 8, 2024 4:23:59 PM UTC
+-- Deconfiguring cPjuHX4S
January 8, 2024 4:24:18 PM UTC
+-- Deconfiguring PJSlOXqa
Success
January 8, 2024 4:23:19 PM UTC
Success
January 8, 2024 4:23:19 PM UTC
Success
January 8, 2024 4:23:19 PM UTC
Success
January 8, 2024 4:23:59 PM UTC

January 8, 2024 4:24:36 PM UTC
+-- Deconfiguring 0
January 8, 2024 4:24:18 PM UTC

January 8, 2024 4:25:07 PM UTC
+-- Deconfiguring mydb
January 8, 2024 4:25:33 PM UTC
Saving database backup reports
January 8, 2024 4:25:33 PM UTC
Resizing Quorum Disks
January 8, 2024 4:25:33 PM UTC
January 8, 2024 4:25:33 PM UTC Success
Deconfiguring Grid Infrastructure January 8, 2024 4:25:33 PM UTC
January 8, 2024 4:32:18 PM UTC Success
Backup Quorum Disks January 8, 2024 4:32:18 PM UTC
January 8, 2024 4:32:18 PM UTC Success
Creating the server data archive files January 8, 2024 4:32:18 PM UTC
January 8, 2024 4:32:20 PM UTC Success
12. Important: Save the files generated by the system deconfiguration and store them outside of the Oracle Database Appliance system. The server archive file is generated at /opt/ oracle/oak/restore/out. For Oracle Database Appliance high-availability systems, use the server archive file from node 0 .
```

In /opt/oracle/oak/restore/out:
[root@oda1 out]\# ls -lrt
total }5
-rw-r--r-- 1 root root 14325 Sep 13 09:28 serverarchive_cluster_name.zip
-rw-r--r-- 1 root root 65 Sep 13 09:28
serverarchive_cluster_name.zip.sha256
[root@oda1 out]\# scp serverarchive_cluster_name.zip root@host_outside_ODA
[root@oda1 out]\# scp serverarchive_cluster_name.zip.sha256
root@host_outside_ODA

```

There is a checksum file (SHA256) generated for the server archive file. Use this checksum to ensure the file transfer was complete. The file serverarchive_cluster_name.zip.sha256 contains the SHA256 checksum of the file when serverarchive_cluster_name.zip was generated. After using scp to copy the file outside appliance, generate the checksum using the sha256sum command. The checksum
must match the checksum present in the serverarchive_cluster_name.zip.sha256 file. For example:
```

\$ cat serverarchive_oda1.zip.sha256
7580347b642c2f6689b126d9cb27d0.bf8be1f810c580663ad592d35e42d47ae6
\$ sha256sum serverarchive_oda1.zip
7580347b642c2f6689b126d9cb27d0bf8be1f810c580663ad592d35e42d47ae6
serverarchive_cluster_namen1.zip

```

\section*{WARNING:}

Make sure to save these files in a location outside the Oracle Database Appliance system. These files are needed to reprovision the system after you reimage the appliance in Step 2 of this process. Without these files, the system cannot be reprovisioned in Step 3 and you will lose all data stored in the Oracle ASM disk groups.

\section*{Step 2: Reimaging Nodes for Upgrading Using Data Preserving Reprovisioning}

\section*{WARNING:}

Do not run cleanup.pl either before or after reimaging the nodes. Running cleanup.pl erases all the Oracle ASM disk groups on the storage and you cannot reprovision your Oracle Database Appliance system.

Follow these steps to reimage nodes:
1. Download the Oracle Database Appliance release 19.23 bare metal ISO image and reimage the appliance as described in the topic Reimaging an Oracle Database Appliance Baremetal System.
2. Plumb the network as described in the topic Plumbing the Network.

\section*{(1) Important:}

For high-availability systems, serverarchive_cluster_name.zip contains the file configure-firstnet.rsp. The configure-firstnet.rsp file contains the values that you need to provide when running odacli configure-firstnet after reimaging the system. Extract the file configure-firstnet.rsp, use any text editor to open the file, and then provide the IP address that was saved in in the file.

\section*{Step 3: Reprovisioning Nodes Using Data Preserving Reprovisioning Method}

\section*{WARNING:}

Do not run cleanup.pl before you run the command odacli restore-node -g. Running cleanup.pl erases all the Oracle ASM disk groups on the storage and you cannot reprovision your Oracle Database Appliance system with all databases intact. However, after you run the command odacli restore-node \(-g\) at least once, and the process of reprovisioning has started, the clean up is specific to the attempt of reprovisioning and does not erase the Oracle ASM disk groups. If the command odacli restore-node -g has failed, then cleanup.pl can be used to clean up failures in that step. In such a case, the command odacli restore-node -g must be attempted again to complete the provisioning.

Follow these steps to reprovision the nodes:
1. Update the repository with the Oracle Database Appliance release 19.23.0.0.0 Server Patch:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
software_file

```

For example, for 19.23:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/oda-
sm-19.23.0.0.0-date-server.zip
[root@oda1 opt]\# odacli describe-job -i 73638e01-
afc2-4a64-846c-460b816e227e
Job details
-------------------------------------------------------------------------
ID: 73638e01-afc2-4a64-846c-460b816e227e
Description: Repository Update
Status: Success
Created: January 8, 2024 5:54:02 AM HKT
Message: /tmp/oda-sm-19.23.0.0.0-date-server.zip

| Task Name | Node NameEnd Time |
| :--- | :--- | ---: |
| Time |  |

--------------------------------------- ----------------------------
------------------------------------- -----------------------------------------
----------

```

\begin{tabular}{lllll}
Unzip bundle & node2 & & January 8, 2024 \\
5:54:42 AM HKT January 8, 2024 & 5:55:01 AM HKT & Success & \\
Delete PatchBundles & node2 & & January 8, 2024 \\
5:55:01 AM HKT January 8, 2024 & 5:55:01 AM HKT & Succes &
\end{tabular}
2. In this upgrade process, after you reimaged the appliance with Oracle Database Appliance release 19.23 ISO image, the operating system is now on Oracle Linux 8. Apply the server patch to update the firmware and storage. Create the pre-patch report for patching the firmware.
For example:
```

[root@odal opt]\# odacli create-prepatchreport -s -v 19.22.0.0.0
[root@oda1 opt]\# odacli describe-prepatchreport -i 2d24a7e0-4b25-4e9f-8cf7-
ea261673ead6
Patch pre-check report
----------------------------------------------------------------------------
Job ID: 2d24a7e0-4b25-4e9f-8cf7-ea261673ead6
Description: Patch pre-checks for [OS, ILOM, SERVER]
Status: SUCCESS
Created: January 8, 2024 3:23:04 AM UTC
Result: All pre-checks succeeded

```
Node Name
node1
Pre-Check Status
Comments

_OS
Validate supported versions Success Validated minimum supported
versions.
Validate patching tag Success Validated patching tag:
19.22.0.0.0.
Is patch location available Success Patch location is
available.
Verify OS patch Success There are no packages available
for
update
Validate command execution Success Skipped command execution
verfication
 - Instance is not
provisioned
 ILOM
Validate ILOM server reachable Success Successfully connected with
ILOM
 server using public IP and
USB
interconnect
Validate supported versions Success Validated minimum supported
versions.
```

Validate patching tag Success Validated patching tag:
19.22.0.0.0.
Is patch location available Success Patch location is
available.
Checking Ilom patch Version Success Successfully verified the
versions
Patch location validation Success Successfully validated
location
Validate command execution Success Skipped command execution
verfication
- Instance is not
provisioned
SERVER
Validate local patching Success Successfully validated server
local
patching
Validate command execution Success Skipped command execution
verfication
- Instance is not
provisioned

```
3. Apply the server update.
[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-server -v version

For example:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-server -v 19.23.0.0.0
4. Confirm that the server update is successful:
[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
5. Before you update the storage components, run the odacli create-prepatchreport command with the -st option.
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport -st -v
version

```

For example, for 19.23:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli create-prepatchreport -st -v
19.23.0.0.0

```
6. Verify that the patching pre-checks ran successfully:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-prepatchreport

\section*{For example:}
```

[root@odal opt]\# odacli describe-prepatchreport -i 95887f92-7.be7-4865-
a311-54318ab385f2
Patch pre-check report
--------------------------------------------------------------------------------
Job ID: 95887f92-7be7-4865-a311-54318ab385f2
Description: Patch pre-checks for [STORAGE]
Status: SUCCESS
Created: April 8, 2024 12:52:37 PM HKT
Result: All pre-checks succeeded
Node Name
---------------
node1
Pre-Check Status
Comments
---------------------------------------
-_----------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:
19.23.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag
Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Success Rolling mode patching allowed
as
there is no expander and
controller
upgrade.
Validate command execution Success Validated command
execution
Node Name
---------------
node2
Pre-Check Status
Comments
---------------------------------------
------------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:
19.23.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag

```
```

Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Success Rolling mode patching allowed
as
controller
upgrade.
Validate command execution Success Validated command
execution

```

Use the command odacli describe-prepatchreport to view details of the pre-patch report. The pre-patch report also indicates whether storage patching can be rolling or not, based on whether an Expander or Controller update is also required.

Fix the warnings and errors mentioned in the report and proceed with the storage components patching.
7. Update the storage components.

Specify the --rolling option to patch shared disks in a rolling fashion. Note that if you patch from an Oracle Database Appliance release that requires the expander to be patched, then you cannot use the --rolling option during storage patching.
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-storage -v version --
rolling

```

For example, for 19.23:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-storage -v 19.23.0.0.0
--rolling

```
8. Update the repository with the 19.23 Oracle Grid Infrastructure clone file as follows:
a. Download the Oracle Database Appliance GI Clone for ODACLI/DCS stack (patch 30403673) from My Oracle Support to a temporary location on an external client. Refer to the release notes for details about the patch numbers and software for the latest release.
p30403673_1923000_Linux-x86-64.zip
b. Unzip the software - it contains README.html and one or more zip files for the patch.
unzip p30403673_1923000_Linux-x86-64.zip

The zip file contains the following software file:
odacli-dcs-19.23.0.0.0-date-GI-19.23.0.0.zip
c. Copy all the software files from the external client to Oracle Database Appliance. For High-Availability deployments, copy the software files to only one node. The software files are copied to the other node during the patching process. Use the scp or sftp protocol to copy the bundle.

Example using scp command:
\# scp software_file root@oda_host:/tmp

Example using sftp command:
\# sftp root@oda_host

Enter the root password, and copy the files.
put software_file
d. Update the repository with the Oracle Grid Infrastructure software file:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-GI-19.23.0.0.zip

```

For example, for 19.23:
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-GI-19.23.0.0.zip

```
e. Confirm that the repository update is successful:
```

[root@oda1 opt]\# odacli describe-job -i 6c5e8990-298d-4070-
aeac-76f1e55e5fe5
Job details

```

```

    ID: 6c5e8990-298d-4070-aeac-76f1e55e5fe5
        Description: Repository Update
            Status: Success
            Created: January 8, 2024 3:21:21 PM UTC
            Message: /tmp/oda-sm-19.23.0.0.0-date-server.zip
    ```

9. Update the repository with the server data archive files generated in Step 1: Detaching Nodes for Upgrade Using Data Preserving Reprovisioning of this upgrade process.
```

[root@oda1 opt]\# /opt/oracle/dcs/bin/odacli update-repository -f
server_archive_file_path

```

For example:
```

[root@odal opt]\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
serverarchive_cluster_name.zip
[root@oda1 opt]\# odacli describe-job -i 33787134-0ebd-4d96-
ad6f-268.bdc154bd3
Job details
------------------------------------------------------------------------
ID: 33787134-0ebd-4d96-ad6f-268bdc154bd3
Description: Repository Update
Status: Success
Created: January 8, 2024 3:35:16 AM UTC
Message: /tmp/serverarchive_node.zip
Task Name Start End Time Status
-----------------------------------------
----------------------------------- ----------------------------------------
----------
Unzip bundle January 8, 2024 3:35:16 AM UTC
January 8, 2024 3:35:17 AM UTC Success

```
10. (Optional) If External Oracle ASR was configured before detaching the node, follow these steps to update the repository with Oracle ASR Manager configuration files:
a. On the appliance running Oracle ASR Manager, run the odacli export-asrconfig command to create a zip of Oracle ASR configuration files.
b. Copy this zip file to the current machine.
c. Run the odacli update-repository command to update the repository with the Oracle ASR manager zip file.
Run these steps only if the External Oracle ASR type was configured on the machine before detaching the node.
11. Restore Oracle Grid Infrastructure. If Oracle ASR was configured before detaching the node, then running the odacli restore-node -g command prompts for Oracle ASR user password. Note that the restore process may take some time and the network services are restarted.
```

[root@oda1 opt]\# odacli restore-node -g
Enter new system password:
Retype new system password:
Enter ASR user's password:
[root@oda1 opt]\# odacli describe-job -i 1b110e62-ca70-44f6-9eba-
e5fa3fc693eb
Job details
ID: 1b110e62-ca70-44f6-9eba-e5fa3fc693eb
Description: Restore node service - GI
Status: Success
Created: January 8, 2024 3:36:15 AM UTC
Message: The system will reboot, if required, to enable
the licensed number of CPU cores

```

```

January 8, 2024 3:43:10 AM UTC Success
Unzipping storage configuration files January 8, 2024 3:43:10 AM UTC
January 8, 2024 3:43:10 AM UTC Success
Reloading multipath devices
January 8, 2024 3:43:11 AM UTC Success
Restart oakd
January 8, 2024 3:43:22 AM UTC Success
Restart oakd
January 8, 2024 3:44:33 AM UTC Success
Restore Quorum Disks
January 8, 2024 3:44:33 AM UTC
Creating GI home directories
January 8, 2024 3:44:33 AM UTC
Extract GI clone
January 8, 2024 3:45:55 AM UTC
Creating wallet for Root User
January 8, 2024 3:46:00 AM UTC
Creating wallet for ASM Client
January 8, 2024 3:46:05 AM UTC
Grid stack creation
January 8, 2024 3:59:40 AM UTC
GI Restore with RHP
January 8, 2024 3:56:12 AM UTC
Updating GIHome version
January 8, 2024 3:56:18 AM UTC
Post cluster OAKD configuration
January 8, 2024 4:00:39 AM UTC
Mounting disk group DATA
January 8, 2024 4:00:40 AM UTC
Mounting disk group RECO
January 8, 2024 4:00:55 AM UTC
Setting ACL for disk groups
January 8, 2024 4:01:07 AM UTC Success
Register Scan and Vips to Public Network January 8, 2024 4:01:07 AM UTC
January 8, 2024 4:01:09 AM UTC Success
Adding Volume ACFSCLONE to Clusterware January 8, 2024 4:01:25 AM UTC
January 8, 2024 4:01:29 AM UTC Success
Adding Volume COMMONSTORE to Clusterware January 8, 2024 4:01:29 AM UTC
January 8, 2024 4:01:33 AM UTC Success
Adding Volume DATCPJUHX4S to Clusterware January 8, 2024 4:01:33 AM UTC
January 8, 2024 4:01:37 AM UTC Success
Adding Volume DATO to Clusterware January 8, 2024 4:01:37 AM UTC
January 8, 2024 4:01:41 AM UTC Success
Adding Volume DATPJSLOXQA to Clusterware January 8, 2024 4:01:41 AM UTC
January 8, 2024 4:01:44 AM UTC Success
Adding Volume DATPROVDB to Clusterware January 8, 2024 4:01:44 AM UTC
January 8, 2024 4:01:48 AM UTC Success
Adding Volume ODABASE_NO to Clusterware January 8, 2024 4:01:48 AM UTC
January 8, 2024 4:01:52 AM UTC Success
Adding Volume ORAHOME_SH to Clusterware January 8, 2024 4:01:52 AM UTC
January 8, 2024 4:01:56 AM UTC Success
Adding Volume RECO to Clusterware January 8, 2024 4:01:56 AM UTC
January 8, 2024 4:02:00 AM UTC Success
Enabling Volume(s) January 8, 2024 4:02:00 AM UTC
January 8, 2024 4:03:52 AM UTC Success
Discover OraHomeStorage - Node Restore January 8, 2024 4:05:46 AM UTC

```
```

January 8, 2024 4:05:50 AM UTC Success
Provisioning service creation
January 8, 2024 4:05:53 AM UTC
Persist new agent state entry
January 8, 2024 4:05:53 AM UTC
Persist new agent state entry
January 8, 2024 4:05:53 AM UTC
Restart DCS Agent
January 8, 2024 4:05:55 AM UTC

```
Success
```

Success
January 8, 2024 4:05:53 AM UTC

```
 January 8, 2024 4:05:53 AM UTC
```

```
 January 8, 2024 4:05:53 AM UTC
```

    January 8, 2024 4:05:53 AM UTC
    Success
Success
January 8, 2024 4:05:53 AM UTC
January 8, 2024 4:05:53 AM UTC
Success
Success
January 8, 2024 4:05:53 AM UTC
January 8, 2024 4:05:53 AM UTC
Success

```
Success
```

To skip restore of Oracle ASR configuration during the restore-node operation, use the --skip-asr parameter in the odacli restore-node command. For example:

```
odacli restore-node -g -sa
```

12. Restore the database.

When you create Oracle Database homes with Oracle Database Appliance release 19.11 or later, the database homes are created on an Oracle ACFS-managed file system and not on the local disk. For a database user oracle, the new database homes are created under/u01/app/odaorahome/oracle/.

Run the odacli list-dbhome-storages command to check if the storage for database homes is configured. If the database home is not already configured on Oracle ACFS, then before restoring the database home, configure the database home storage with the odacli configure-dbhome-storage command. For example:

```
[root@oda1 opt]# odacli list-dbhome-storages
[root@odal opt]# odacli configure-dbhome-storage -dg DATA
```

The command does not cause storage allocation or creation of volumes or file systems. The command only sets the disk group location in the metadata. For information about managing database homes on Oracle ACFS, see the topic Managing Database Home Storage.
13. To restore homes that existed on the local drive prior to the reimage, ensure that you update the repository with the Oracle Database clones for the specific Oracle Database release, and then restore the databases. For database homes on Oracle ACFS-managed file system locations, you do not need to update the repository.

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-DB-19.23.0.0.zip
```

Restore the databases:

```
[root@oda1 opt]# odacli restore-node -d
[root@oda1 opt]# odacli describe-job -i 8.b080e66-b9f0-49c7-
ac7e-24907e87066f
Job details
```

```
 ID: 8b080e66-b9f0-49c7-ac7e-24907e87066f
```

            ID: 8b080e66-b9f0-49c7-ac7e-24907e87066f
    Description: Restore node service - Database
    Description: Restore node service - Database
            Status: Success
            Status: Success
            Created: January 8, 2024 4:07:28 AM UTC
    ```
 Created: January 8, 2024 4:07:28 AM UTC
```

Message:


January 8, 2024 4:08:35 AM UTC Success
+-- Clear all listeners from Database January 8, 2024 4:08:35 AM UTC January 8, 2024 4:08:36 AM UTC Success
+-- Create adrci directory
January 8, 2024 4:08:39 AM UTC Success
+-- Run SqlPatch
January 8, 2024 4:08:48 AM UTC Success
Restore database: PJSloXqa
January 8, 2024 4:09:44 AM UTC Success
+-- Adding database to GI
January 8, 2024 4:08:51 AM UTC Success
+-- Adding database instance(s) to GI January 8, 2024 4:08:51 AM UTC January 8, 2024 4:08:51 AM UTC Success
+-- Modifying SPFILE for database January 8, 2024 4:08:51 AM UTC January 8, 2024 4:09:16 AM UTC Success
+-- Restore password file for database January 8, 2024 4:09:16 AM UTC January 8, 2024 4:09:16 AM UTC Skipped
+-- Start instance(s) for database January 8, 2024 4:09:16 AM UTC
January 8, 2024 4:09:30 AM UTC Success
+-- Persist metadata for database January 8, 2024 4:09:30 AM UTC
January 8, 2024 4:09:31 AM UTC Success
+-- Clear all listeners from Database January 8, 2024 4:09:31 AM UTC January 8, 2024 4:09:32 AM UTC Success
+-- Create adrci directory January 8, 2024 4:09:34 AM UTC
January 8, 2024 4:09:34 AM UTC Success
+-- Run SqlPatch
January 8, 2024 4:09:44 AM UTC Success
Restore database: provDb
January 8, 2024 4:11:04 AM UTC Success
+-- Adding database to GI
January 8, 2024 4:09:47 AM UTC Success
+-- Adding database instance(s) to GI January 8, 2024 4:09:47 AM UTC January 8, 2024 4:09:47 AM UTC Success
+-- Modifying SPFILE for database January 8, 2024 4:09:47 AM UTC
January 8, 2024 4:10:15 AM UTC Success
+-- Restore password file for database January 8, 2024 4:10:15 AM UTC January 8, 2024 4:10:15 AM UTC Skipped
+-- Start instance(s) for database January 8, 2024 4:10:15 AM UTC
January 8, 2024 4:10:33 AM UTC Success
+-- Persist metadata for database January 8, 2024 4:10:33 AM UTC
January 8, 2024 4:10:33 AM UTC Success
+-- Clear all listeners from Database January 8, 2024 4:10:33 AM UTC
January 8, 2024 4:10:34 AM UTC Success
+-- Create adrci directory
January 8, 2024 4:10:36 AM UTC Success
+-- Run SqlPatch
January 8, 2024 4:11:04 AM UTC Success
Restore database: cPjuHX4S
January 8, 2024 4:12:02 AM UTC Success
+-- Adding database to GI
January 8, 2024 4:11:08 AM UTC Success
+-- Adding database instance(s) to GI January 8, 2024 4:11:08 AM UTC
January 8, 2024 4:11:08 AM UTC Success
+-- Modifying SPFILE for database January 8, 2024 4:11:08 AM UTC
January 8, 2024 4:11:34 AM UTC Success
+-- Restore password file for database January 8, 2024 4:11:34 AM UTC

January 8, 2024 4:11:34 AM UTC Skipped
+-- Start instance(s) for database January 8, 2024 4:11:34 AM UTC
January 8, 2024 4:11:49 AM UTC Success
+-- Persist metadata for database January 8, 2024 4:11:49 AM UTC
January 8, 2024 4:11:49 AM UTC Success
+-- Clear all listeners from Database January 8, 2024 4:11:49 AM UTC January 8, 2024 4:11:50 AM UTC Success
+-- Create adrci directory January 8, 2024 4:11:52 AM UTC
January 8, 2024 4:11:52 AM UTC Success
+-- Run SqlPatch
January 8, 2024 4:11:52 AM UTC
January 8, 2024 4:12:02 AM UTC Success
Restore database: mydb
January 8, 2024 4:12:02 AM UTC
January 8, 2024 4:13:15 AM UTC Success
+-- Adding database to GI January 8, 2024 4:12:02 AM UTC
January 8, 2024 4:12:05 AM UTC Success
+-- Adding database instance(s) to GI January 8, 2024 4:12:05 AM UTC
January 8, 2024 4:12:05 AM UTC Success
+-- Modifying SPFILE for database January 8, 2024 4:12:05 AM UTC
January 8, 2024 4:12:41 AM UTC Success
+-- Restore password file for database January 8, 2024 4:12:41 AM UTC January 8, 2024 4:12:41 AM UTC Skipped
+-- Start instance(s) for database January 8, 2024 4:12:41 AM UTC January 8, 2024 4:13:01 AM UTC Success
+-- Persist metadata for database January 8, 2024 4:13:01 AM UTC
January 8, 2024 4:13:01 AM UTC Success
+-- Clear all listeners from Database January 8, 2024 4:13:01 AM UTC
January 8, 2024 4:13:02 AM UTC Success
+-- Create adrci directory
January 8, 2024 4:13:05 AM UTC Success
+-- Run SqlPatch
January 8, 2024 4:13:15 AM UTC
Restore Object Stores
January 8, 2024 4:13:16 AM UTC
Object Store Swift Creation
January 8, 2024 4:13:16 AM UTC
Save password in wallet
January 8, 2024 4:13:16 AM UTC
Object Store Swift persist
January 8, 2024 4:13:16 AM UTC
Remount NFS backups
January 8, 2024 4:13:16 AM UTC
Restore BackupConfigs
January 8, 2024 4:13:28 AM UTC
Backup config creation
January 8, 2024 4:13:16 AM UTC
Backup config metadata persist
January 8, 2024 4:13:16 AM UTC
Backup config creation
January 8, 2024 4:13:28 AM UTC
Libopc existence check
January 8, 2024 4:13:17 AM UTC
Installer existence check
January 8, 2024 4:13:17 AM UTC
Container validation
January 8, 2024 4:13:17 AM UTC Success
Object Store Swift directory creation January 8, 2024 4:13:18 AM UTC

January 8, 2024 4:13:18 AM UTC Success
Install Object Store Swift module January 8, 2024 4:13:18 AM UTC January 8, 2024 4:13:28 AM UTC Success
Backup config metadata persist January 8, 2024 4:13:28 AM UTC January 8, 2024 4:13:28 AM UTC Reattach backupconfigs to DBs January 8, 2024 4:13:28 AM UTC
Restore backup reports
Success
January 8, 2024 4:13:28 AM UTC

January 8, 2024 4:13:28 AM UTC
Success
January 8, 2024 4:13:28 AM UTC

If the databases have Oracle Data Guard configured, then the restore operation also restores Oracle Data Guard. For example:

```
[root@odal opt]# odacli restore-node -d
[root@oda1 opt]# odacli describe-job -i d5aec86e-767f-4e28-b782-
bc3e607f4eb1
Job details
--
 ID: d5aec86e-767f-4e28-b782-bc3e607f4eb1
 Description: Restore node service - Database
 Status: Success
 Created: January 8, 2024 4:41:43 AM GMT
 Message:
```



```
Save metadata for o1
January 8, 2024 4:41:49 AM GMT
Save metadata for eOdO3SyN
January 8, 2024 4:41:49 AM GMT
Save metadata for eOdO2SyN
January 8, 2024 4:41:49 AM GMT
Restore database: 01
January 8, 2024 4:43:15 AM GMT
+-- Adding database to GI
January 8, 2024 4:41:51 AM GMT
+-- Adding database instance(s) to GI January 8, 2024 4:41:51 AM GMT
January 8, 2024 4:41:51 AM GMT Success
+-- Modifying SPFILE for database January 8, 2024 4:41:51 AM GMT
January 8, 2024 4:42:29 AM GMT Success
+-- Restore password file for database January 8, 2024 4:42:29 AM GMT
January 8, 2024 4:42:29 AM GMT Skipped
+-- Start instance(s) for database January 8, 2024 4:42:29 AM GMT
January 8, 2024 4:43:04 AM GMT Success
+-- Persist metadata for database January 8, 2024 4:43:04 AM GMT
January 8, 2024 4:43:04 AM GMT Success
+-- Clear all listeners from Database January 8, 2024 4:43:04 AM GMT
January 8, 2024 4:43:05 AM GMT Success
+-- Create adrci directory
January 8, 2024 4:43:07 AM GMT
+-- Run SqlPatch
January 8, 2024 4:43:15 AM GMT
Restore Object Stores
January 8, 2024 4:43:16 AM GMT
Object Store Swift Creation
January 8, 2024 4:43:16 AM GMT
Save password in wallet
January 8, 2024 4:43:16 AM GMT
Object Store Swift persist
January 8, 2024 4:43:16 AM GMT
Object Store Swift Creation
January 8, 2024 4:43:16 AM GMT
Save password in wallet
January 8, 2024 4:43:16 AM GMT
Object Store Swift persist
January 8, 2024 4:43:16 AM GMT
Remount NFS backups
January 8, 2024 4:43:16 AM GMT
Restore BackupConfigs
January 8, 2024 4:43:35 AM GMT
Backup config creation
January 8, 2024 4:43:26 AM GMT
Libopc existence check
January 8, 2024 4:43:17 AM GMT
Installer existence check
January 8, 2024 4:43:17 AM GMT
Container validation
January 8, 2024 4:43:17 AM GMT Success
Object Store Swift directory creation January 8, 2024 4:43:17 AM GMT
January 8, 2024 4:43:17 AM GMT Success
Install Object Store Swift module January 8, 2024 4:43:17 AM GMT
January 8, 2024 4:43:26 AM GMT Success
```

```
Backup config metadata persist January 8, 2024 4:43:26 AM GMT
January 8, 2024 4:43:26 AM GMT
Backup config creation
January 8, 2024 4:43:35 AM GMT
Libopc existence check
January 8, 2024 4:43:26 AM GMT
Installer existence check
January 8, 2024 4:43:26 AM GMT
Container validation
January 8, 2024 4:43:27 AM GMT
Object Store Swift directory creation January 8, 2024 4:43:27 AM GMT
January 8, 2024 4:43:27 AM GMT Success
Install Object Store Swift module January 8, 2024 4:43:27 AM GMT
January 8, 2024 4:43:35 AM GMT Success
Backup config metadata persist January 8, 2024 4:43:35 AM GMT
January 8, 2024 4:43:35 AM GMT
Reattach backupconfigs to DBs
January 8, 2024 4:43:35 AM GMT
Restore backup reports
January 8, 2024 4:43:35 AM GMT
Restore dataguard
January 8, 2024 4:43:36 AM GMT
Restore dataguard services
January 8, 2024 4:43:41 AM GMT
Success
 January 8, 2024 4:43:26 AM GMT
 Success
 January 8, 2024 4:43:26 AM GMT
 Success
 January 8, 2024 4:43:26 AM GMT
 Success
 January 8, 2024 4:43:26 AM GMT
 Success
 Success
 January 8, 2024 4:43:35 AM GMT
 Success
 January 8, 2024 4:43:35 AM GMT
 Success
 January 8, 2024 4:43:35 AM GMT
 Success
 January 8, 2024 4:43:36 AM GMT
 Success
```

14. If your source deployment had shared CPU pool or custom vnetwork associated with any of the DB systems, or had Oracle KVM deployments, then restore the Oracle KVM deployments.
```
[root@oda1 opt]# odacli restore-node -kvm
[root@oda1 opt]# odacli describe-job -i 2662bdfc-6505-43cf-
b1e9-22a34c7b1c31
Job details
\begin{tabular}{|c|c|}
\hline ID: & 2662bdfc-6505-43cf-b1e9-22a34c7b1c31 \\
\hline Description: & Restore node service - KVM \\
\hline Status: & Success \\
\hline Created: & January 8, 2024 9:21:29 PM UTC \\
\hline Message: & \\
\hline
\end{tabular}
```



15. Restore Oracle DB systems, if your source deployment had any earlier. Note: If your source deployment had shared CPU pool or custom vnetwork associated with any of the DB systems, then run the KVM restore operation before restoring the DB systems.

```
[root@odal opt]# odacli restore-node -dbs
[root@oda1 opt]# odacli describe-job -i
5b81e5ae-1186-45fb-936b-4d21eb803eb8
Job details
```

ID:	5b81e5ae-1186-45fb-936b-4d21eb803eb8
Description:	Restore node service - DBSYSTEM
Status:	Success
Created:	January 8, 2024 4:20:47 AM PDT
Message:	



```
Start DB Systems oda1 January 8, 2024
4:21:12 AM PDT January 8, 2024 4:21:36 AM PDT Success
Wait DB Systems VM bootstrap oda1
4:21:36 AM PDT January 8, 2024 4:23:45 AM PDT
Export clones repository for DB odal
4:23:45 AM PDT January 8, 2024 4:23:47 AM PDT
Systems post
restore
Export ASM client cluster config on BM oda1 January 8, 2024
4:23:47 AM PDT January 8, 2024 4:23:50 AM PDT
Import ASM client cluster config to odal
4:23:50 AM PDT January 8, 2024 4:25:19 AM PDT
OLR (within DB
Systems)
Import ASM client cluster config to oda1 January 8, 2024
4:25:19 AM PDT January 8, 2024 4:26:18 AM PDT Success
OCR (within DB Systems)
```

After upgrading your deployment to Oracle Database Appliance release 19.23, patch your databases to release 19.23 as described in this chapter.

## Related Topics

- Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.

- Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI
Follow these steps to upgrade your Oracle Database Appliance DB system deployment using CLI commands.
- About Upgrading Using Data Preserving Reprovisioning

Understand how you can upgrade your appliance from Oracle Database Appliance releases 19.19, 19.20, 19.21, and 19.22 to Oracle Database Appliance release 19.23.

- Upgrading Oracle Database Appliance to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the BUI
Follow these steps to upgrade your Oracle Database Appliance deployment and existing Oracle Database homes, using the Browser User Interface (BUI).


## Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI

Follow these steps to upgrade your Oracle Database Appliance DB system deployment using CLI commands.

After upgrading Oracle Database Appliance bare metal system to Oracle Database Appliance Release 19.23, you can upgrade your Oracle Database Appliance DB systems, one DB system at a time, to the current release. Oracle Grid Infrastructure inside DB systems are updated to release 19.23 only after upgrading them to Oracle Linux 8 . Similarly, the databases inside the DB system can be updated to release 19.23 only after completing the DB system upgrade.

Download the Oracle Database Appliance VM template and update the repository on the bare metal system.

## (1) Important:

Ensure that there is sufficient space on your appliance to download the patches.

Note:
You must import the latest Oracle Grid Infrastructure clone files applicable to the DB system to the repository. For example, if the restored DB system runs Oracle Grid Infrastructure release 19.20, 19.19, or 19.18, then the Oracle Grid Infrastructure clone file 19.23.0.0.240416 must be present in the repository. Similary, if the restored DB system runs Oracle Grid Infrastructure release 21.8, then the Oracle Grid Infrastructure clone 21.8.0.0.221018 must be present in the repository.

Follow these steps to upgrade your Oracle Database Appliance DB system deployment to Oracle Linux 8 and Oracle Database Appliance release 19.23. Run the commands in these steps on the bare metal system.

1. Download the Oracle Database Appliance VM template. Refer to the release notes for details about the patch numbers and software for the latest release.
For example, download the VM template for 19.23:
p32451228_1923000_Linux-x86-64.zip
2. Unzip the software - it contains README.html and one or more zip files for the patch.
unzip p32451228_1923000_Linux-x86-64.zip
The zip file contains the following software file:
odacli-dcs-19.23.0.0.0-date-ODAVM-19.23.0.0.zip
3. Copy all the software files from the external client to Oracle Database Appliance. For HighAvailability deployments, copy the software files to only one node. The software files are copied to the other node during the upgrade process. Use the scp or sftp protocol to copy the bundle.
Example using scp command:
\# scp software_file root@oda_host:/tmp
Example using sftp command:
\# sftp root@oda_host
Enter the root password, and copy the files.
put software_file
4. Update the repository with the VM template:
```
[root@odal opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
software_file
```

For example, for 19.23:

```
[root@odal opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
odacli-dcs-19.23.0.0.0-date-ODAVM-19.23.0.0.zip
```

5. Confirm that the repository update is successful:
[root@odal opt]\# /opt/oracle/dcs/bin/odacli describe-job -i job_ID
6. Create the pre-upgrade report to run upgrade pre-checks. If there are errors reported in the report, review the report to resolve the failure in the Action column of the report. Fix the errors and repeat the step to run the preupgrade report until all checks pass. If there are alerts in the report, review them and perform the recommended action, if any. Then proceed to run the upgrade DB system operation.
[root@oda1 opt]\# odacli create-preupgradereport -dbs dbs1
Job details

[root@oda1 opt ~]\# odacli describe-job -i ebba922c-e134-474f-8612-3.b0728.bf87e8

Job details

	ID   Description:   Status:   Created:   Message:	```ebba922c-e134-474f-8612-3b0728.bf87e8 Patch pre-upgrade checks for upgrade Success January 8, 2024 4:27:41 AM UTC Use 'odacli describe-preupgradereport```
to check results		
Task Name		Start
Time		End Time

```
Running prechecks for upgrade January 8, 2024 4:27:41 AM UTC
January 8, 2024 4:28:13 AM UTC Success
Running pre-upgrade check: DBSYSTEM January 8, 2024 4:27:41 AM UTC
January 8, 2024 4:27:41 AM UTC Success
Run DBSystem upgrade prechecks January 8, 2024 4:27:42 AM UTC
January 8, 2024 4:28:13 AM UTC Success <=============== BM Task issues a
job inside DB System
Check pre-check status January 8, 2024 4:28:13 AM UTC
January 8, 2024 4:28:13 AM UTC Success
```

View the pre-upgrade report:

```
[root@oda1 opt]# odacli describe-preupgradereport -i 1570e7be-a201-4f9f-
aba8-2ef358f2355a
Upgrade pre-check report
\begin{tabular}{rl}
Job ID: & 1570 e7be-a201-4f9f-aba8-2ef358f2355a \\
Description: & Run pre-upgrade checks for DB System: dbs1 \\
Status: & SUCCESS \\
Created: January 8, 2024 4:39:42 PM UTC \\
Result: & All pre-checks succeeded
\end{tabular}
```

Node Name
----------------
node1
Check Status
Message Action



__DBSYSTEM
$\overline{\text { Validate }} \overline{\mathrm{B}}$ System State Success DB System 'dbs1' is in None
'CONFIGURED' state
Verify existence of DBVM image Success DB System image version
'19.22.0.0.0' None
is present in repository
Verify existence of Database Success Database clone
version None
clone '19.20.0.0.230717' is present in
repository
Verify existence of GI clone Success GI clone version
'19.23.0.0.240416' None
is present in repository
Node Name
----------------
node2
Check Status
Message Action
----------------------------------------
----------------------------------------


_ DB $\qquad$   Validate Database Status	Success	Database 'x8II4Deb' is running and
is None		
		in 'CONFIGURED' state
Validate Database Datapatch completely None	Success	Database 'x8II4Deb' is
Application Status		applied with datapatch
Validate TDE wallet presence database None	Success	TDE Wallet Management of
		'x8II4Deb' is ODA. Skipping TDE wallet presence check.
Validate Database Home passed None	Success	Database home location check
location		for database x8II4DebU
_ SYS		
Validate System Version is   None	Success	System version 19.20.0.0.0
		supported
Verify System Timezone zone None	Success	Succesfully verified the time
		file
Verify Grid User   verified   None	Success	Grid user is
Verify Grid Version running None	Success	Oracle Grid Infrastructure is
		on the '19.20.0.0.230717' version
on		
		all nodes
Verify number of Databases active None	Success	Only one database is
Verify number of Database configured None	Success	Only one database home is
```__OS Check Required OS files present None```	Success	All the required files are
CERTIFICATES__ Succes		
Check using custom pair None certificates	Success	Using Default key
Check the agent of the DB are None	Success	All the agents of the DB systems
System accessible		accessible

7. From the bare metal system, upgrade the DB system.
[root@oda1 restore]\# odacli upgrade-dbsystem -n DBSystemName

For example:

```
[root@oda1 restore]# odacli upgrade-dbsystem -n dbs1
Enter password for system dbs1:
```



```
4:52:28 PM UTC January 8, 2024 4:52:29 PM UTC Success
Set DB System as reconfiguring node1 January 8, 2024
4:52:29 PM UTC January 8, 2024 4:52:30 PM UTC Success
Change Database file ownership node1 January 8, 2024
4:52:30 PM UTC January 8, 2024 4:52:36 PM UTC Success
Restore node - DPR node1 January 8, 2024
4:52:36 PM UTC January 8, 2024 5:02:47 PM UTC
Set upgraded DB System as configured node1
5:02:47 PM UTC January 8, 2024 5:02:47 PM UTC
```

```
    Success
```

 Success
 January 8, }202
January 8, }202
Success

```
    Success
```

After upgrading your deployment to Oracle Database Appliance release 19.23, patch your databases to release 19.23 as described in this chapter.

Related Topics

- Managing Database Homes on Oracle ACFS Storage

Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to manage database home storage in Oracle Database Appliance.

- About Creating Database Homes on Oracle ACFS Storage

When you create new Oracle Database homes, they are created on Oracle ACFS file system which are stored on Oracle Database Appliance storage disks. You can create new Oracle Database homes using the odacli create-database or odacli create-dbhome commands, or when you patch an existing database home.

- Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.

- Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI
Follow these steps to upgrade your Oracle Database Appliance DB system deployment using CLI commands.
- About Upgrading Using Data Preserving Reprovisioning Understand how you can upgrade your appliance from Oracle Database Appliance releases 19.19, 19.20, 19.21, and 19.22 to Oracle Database Appliance release 19.23.
- Upgrading Oracle Database Appliance to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the BUI Follow these steps to upgrade your Oracle Database Appliance deployment and existing Oracle Database homes, using the Browser User Interface (BUI).

Upgrading Oracle Database Appliance to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the BUI

Follow these steps to upgrade your Oracle Database Appliance deployment and existing Oracle Database homes, using the Browser User Interface (BUI).

Download the Oracle Database Appliance patches from My Oracle Support and save them in a directory on the appliance. See the Oracle Database Appliance Release Notes for a list of available patches and links to download the patches.

Follow these steps to upgrade your Oracle Database Appliance system deployment to release 19.23 and upgrade to Oracle Linux 8 using BUI. Before reprovisioning the appliance using the BUI, you must update the DCS admin, DCS components, and DCS agent as follows:

1. Download the Oracle Database Appliance Server Patch for the ODACLI/DCS stack (patch 35938481) from My Oracle Support to a temporary location on an external client. Refer to the release notes for details about the patch numbers and software for the latest release. For example, download the server patch for 19.23:
```
p35938481_1923000_Linux-x86-64.zip
```

2. Unzip the software - it contains README.html and one or more zip files for the patch.
```
unzip p35938481_1923000_Linux-x86-64.zip
```

The zip file contains the following software file:

```
oda-sm-19.23.0.0.0-date-server.zip
```

3. Copy all the software files from the external client to Oracle Database Appliance. For HighAvailability deployments, copy the software files to only one node. The software files are copied to the other node during the patching process. Use the scp or sftp protocol to copy the bundle.
Example using scp command:
\# scp software_file root@oda_host:/tmp

Example using sftp command:

```
# sftp root@oda_host
```

Enter the root password, and copy the files.
put software_file
4. Update the repository with the server software file:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/
software_file
```

For example, for 19.23:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/oda-
sm-19.23.0.0.0-date-server.zip
```

5. Confirm that the repository update is successful:
```
[root@oda1 opt]# odacli describe-job -i 6c5e8990-298d-4070-
aeac-76f1e55e5fe5
Job details
```

```
    ID: 6c5e8990-298d-4070-aeac-76f1e55e5fe5
```

 ID: 6c5e8990-298d-4070-aeac-76f1e55e5fe5
 Description: Repository Update
 Description: Repository Update
 Status: Success
 Status: Success
 Created: January 08, 2024 3:21:21 PM UTC
    ```
    Created: January 08, 2024 3:21:21 PM UTC
```

Message: /tmp/oda-sm-19.23.0.0.0-date-server.zip

6. Update DCS admin:

```
[root@odal opt]# /opt/oracle/dcs/bin/odacli update-dcsadmin -v 19.23.0.0.0
[root@oda1 opt]# odacli describe-job -i c00f38cd-299d-445b-b623-
b24f664d48f9
Job details
```


7. Update the DCS components:

```
[root@odal opt]# /opt/oracle/dcs/bin/odacli update-dcscomponents -v
19.23.0.0.0
{
    "jobId" : "e9862ac9-ed92-4934-a71a-93cea4c20a68",
    "status" : "Success",
    "message" : " DCS-Agent shutdown is successful. Skipping MySQL upgrade
on OL7 Metadata schema update is done. dcsagent RPM upgrade is successful.
dcscli RPM upgrade is successful. dcscontroller RPM upgrade is successful.
Successfully reset the Keystore password. HAMI is not enabled Skipped
removing old Libs. Successfully ran setupAgentAuth.sh ",
    "reports" : null,
    "createTimestamp" : "January 08, 2024 13:47:22 PM GMT",
    "description" : "Update-dcscomponents job completed and is not part of
Agent job list",
    "updatedTime" : "January 08, 2024 13:49:44 PM GMT"
}
```

If the DCS components are updated, then the message "status" : "Success" is displayed on the command line. For failed updates, fix the error and then proceed with the update by re-running the odacli update-dcscomponents command. See the topic Resolving Errors When Updating DCS Components During Patching about more information about DCS components checks errors.

Note:
Note that for DCS agent update to be complete, both the odacli updatedcscomponents and odacli update-dcsagent commands must be run. Ensure that both commands are run in the order specified in this procedure.
8. Update the DCS agent:

```
[root@oda1 opt]# /opt/oracle/dcs/bin/odacli update-dcsagent -v 19.23.0.0.0
[root@oda1 opt]# odacli describe-job -i a9cac320-cebe-4a78-b6e5-
ce9e0595d5fa
Job details
---------------------------------------------------------------------
    ID: a9cac320-cebe-4a78-b6e5-ce9e0595d5fa
    Description: DcsAgent patching
    Status: Success
    Created: January 08, 2024 3:35:01 PM UTC
    Message:
Task Name Start End Time Status
----------------------------------------- S
----------------------------------- ------------------------------------------
----------
Dcs-agent upgrade to version January 08, 2024 3:35:01 PM UTC
January 08, 2024 3:38:50 PM UTC Success
19.22.0.0.0
Update System version January 08, 2024 3:38:50 PM UTC
January 08, 2024 3:38:50 PM UTC Success
```


Reprovisioning the Appliance Using BUI

After updating the DCS admin, DCS components, and DCS agent, reprovision the BUI as follows:

1. Navigate to the BUI and log in as the oda-admin user.
https://Node0-host-ip-address:7093/mgmt/index.html
2. In the BUI, click Data Preserving Re-provisioning.
3. In the Re-provision tab, under Run Pre-checks, click Create Pre-Upgrade Report to create a preupgrade report.
4. After the job completes successfully and the preupgrade report is generated, select the report in the drop down list, and click View Pre-Upgrade Report.
5. View the preupgrade report and fix any issues displayed in the report. Click Back to navigate to the Data Preserving Re-provisioning page.
6. If the preupgrade report does not have any failures, then click Next to start the detach node process.
7. Click Detach Node. Click Force Run if you are aware of the issues and still want to proceed with the operation. Click Yes to confirm.
8. Click Activity to monitor the progress. When the job completes successfully, navigate to the Re-provision tab and click Next. The BUI displays a message to reimage the appliance. The detach node operation creates a server data archive file at /opt/ oracle/oak/restore/out. Save a copy of the archive to a location outside of the appliance, to prepare for the reimage.

WARNING:

Make sure to save these files in a location outside the Oracle Database Appliance system. These files are needed to reprovision the system after you reimage the appliance in Step 2 of this process. Without these files, the system cannot be reprovisioned in Step 3 and you will lose all data stored in the Oracle ASM disk groups.
9. Manually reimage the nodes as described in the topic Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI.
10. After reimaging the nodes, log into the BUI:
https://Node0-host-ip-address: 7093/mgmt/index.html

The BUI prompts you to specify the admin password. Select the option to Enable MultiUser Access only if it was enabled prior to the detach node operation.
11. Navigate to the Infrastructure Patching tab and apply the server and storage patches.
12. Copy the server archive file produced during the detach node operation to the appliance and specify the absolute file path to the archive. In the Re-provision tab, specify the Server Archive Location and click Update Repository.
13. Specify the GI Clone Location and click Update Repository.
14. After the repository is updated successfully, click Restore Node. If your deployment is multi-user enabled, then specify New System Password, Oracle User Password, and Grid User Password.
15. If your deployment had Oracle ASR configured when the detach-node operation was run, and you do not want to restore Oracle ASR configuration, then select Skip Restore of ASR configuration. If you want to restore Oracle ASR configuration, then specify the ASR Password. If you select Yes in the HTTPS Proxy Requires Authentication field, then specify the Proxy Password.
16. Click Yes.
17. After the restore node job completes successfully, you can restore databases.

Restoring Databases Using the BUI

1. If database storage is not configured on Oracle ACFS, then you must configure database storage before restoring the database.
2. In the Restore Database tab, select the Disk Group Name and specify the Size in GB.
3. Click Configure to submit the job to configure the database home storage.
4. Update the repository with the database clones. Specify the Database Clone Location and click Update Repository.
5. After the repository is updated with all the required database clones, click Restore Databases to restore the databases. Confirm that you want to submit the job.
6. If you have configured Oracle KVM, shared CPU pool, or custom vnetwork resources, then restore VM instances after restoring the databases.

Restoring VM Instances and DB Systems Using the BUI

1. In the Restore VM Instances tab, click Restore VM Instances.
2. To restore DB systems, navigate to the Restore DB Systems tab, and click Restore DB Systems.
3. After the VM instances and DB systems are restored, you can upgrade DB systems.

Upgrading DB Systems Using BUI

1. In the Upgrade DB Systems tab, specify the DB System Clone Location and click Update Repository.
2. After updating the repository, choose a DB system from the Select DB System drop-down list, and click Create Pre-Upgrade Report to create the preupgrade report for the DB system.
3. After the preupgrade report is generated, select the report in the drop down list, and click View Pre-Upgrade Report.
4. View the preupgrade report and fix any issues displayed in the report. Click Back to navigate to the Data Preserving Re-provisioning page.
5. If the preupgrade report does not have any failures, then continue with the Oracle Linux 8 upgrade. Choose a DB system from the Select DB System drop-down list and click Upgrade.
6. Specify System Password and click Yes.
7. Check the status of the job and verify that it completed successfully.
8. Repeat this procedure to upgrade all DB systems in your deployment.

After upgrading your deployment to Oracle Database Appliance release 19.23, patch your databases to release 19.23 as described in this chapter.

Related Topics

- Upgrading Bare Metal System to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI

Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.

- Upgrading DB Systems to Oracle Linux 8 and Oracle Database Appliance Release 19.23 Using the CLI
Follow these steps to upgrade your Oracle Database Appliance DB system deployment using CLI commands.

Patching Databases Using ODACLI Commands or the BUI

Use ODACLI commands or the Browser User Interface to patch databases to the latest release in your deployment.

Before patching the database home, upload the Oracle Database clone files for the database version, to the repository. See Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI for the procedure to update the repository with the latest Oracle Database clone files.

(1) Important:

You must run the odacli create-prepatchreport command before you patch the Oracle databases; otherwise, the odacli update-database command fails with an error message prompting you to run the patching pre-checks.

Patching Databases on Oracle Database Appliance using ODACLI Commands

Run the following command to patch a database using the CLI:

```
odacli update-database [-a] [-dp] [-f] [-i db_id] [-imp] [-l] [-n db_name] [-
ni node] [-r] [-to db_home_id] [-j] [-h]
```

For more information about the options for the update-database command, see the chapter Oracle Database Appliance Command-Line Interface.

Patching Databases on Oracle Database Appliance using BUI

1. Log into the Browser User Interface with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Navigate to the Database tab.
3. Select the database you want to patch.
4. Click Update.
5. If you select Apply Data Patch, then the Data Patch for the specified database is applied and you cannot select any other options.
6. On a high-availability system, you can also select the node in the Select Node to Update list.
7. Select Ignore Missing Patches to ignore missing patches.
8. Select Force Run to force the operation to run.
9. Select the destination database home.
10. In the Patching Options

- Abort: To abort previously unfinished or failed patching operation.
- Revert: To revert previously unfinished or failed patching operation.
- None: To patch the database.

11. Click Update.

12. If you have not run the pre-checks earlier, then an error is displayed when you submit the job to update the database.
13. In the Database page, select the Database and then click Precheck to run pre-checks for patching the database.

Click Activity for job status.
14. In the Database page, for the database to be patched, click Actions and select View Prepatch reports to view the pre-check report. Fix any errors, and then select Action as Apply to patch the database.
15. Verify that the patching job completes successfully.

Patching Existing Database Homes Using ODACLI or the BUI

Use ODACLI or BUI to patch database homes in your deployment to the latest release.
Before patching the database, upload the Oracle Database clone files for the database version, to the repository. See Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI for the procedure to update the repository with the latest Oracle Database clone files.

Patching Database Homes on Oracle Database Appliance using ODACLI Commands

 Run the following command to patch a database home using the CLI:```
odacli update-dbhome -i dbhome_id -v version [-f] [-imp] [-p] [-l] [-u
node_number] [-j] [-h]
```

For more information about the options for the update-dbhome command, see the chapter Oracle Database Appliance Command-Line Interface.

## Patching Database Homes on Oracle Database Appliance using BUI

1. Log into the Browser User Interface with the oda-admin user name and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Navigate to the Database Home tab.
3. Select the database home you want to patch.
4. Select the Patch Version for the database home.
5. To patch multiple database homes, select each database home to be patched and the patch version for each database home.
6. Select the Node to Update. You can choose the node that you want to update or you can choose to update all nodes.
7. Click Patch. Select Precheck to run pre-checks before patching the database.

Click Activity for job status.
8. On the Patch page, for the database to be patched, click Actions and select View Prepatch reports to view the pre-check report. Fix any errors, and then select Action as Apply to patch the database.
9. Select Ignore Precheck Failures to ignore failures reported in the prechecks reported. It is recommended that you fix errors reported in the precheck results.
10. Select Ignore Missing Patches to ignore missing patches.
11. Verify that the patching job completes successfully.

## Related Topics

- Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.


## Related Topics

- Oracle Database Appliance Release Notes

Managing Oracle Databases

## Manage the Oracle Databases on your Oracle Database Appliance.

- About Administrative Groups and Users on Oracle Database Appliance Oracle Database Appliance Browser User Interface deployment creates operating system groups and users whose members are granted system administration privileges on the appliance.
- About Data Migration Options for Oracle Database Appliance Oracle Database Appliance supports the use of standard Oracle Database loading and migration tools.
- About Creating Database Homes on Oracle ACFS Storage When you create new Oracle Database homes, they are created on Oracle ACFS file system which are stored on Oracle Database Appliance storage disks. You can create new Oracle Database homes using the odacli create-database or odacli create-dbhome commands, or when you patch an existing database home.
- About Standard Edition High Availability for Oracle Database Appliance Oracle Database Appliance supports Standard Edition High Availability solution with Oracle Grid Infrastructure that provides cluster-based failover for Oracle Database 19c Standard Edition.
- About Enterprise Edition High Availability for Oracle Database Appliance Oracle Database Appliance supports Enterprise Edition High Availability solution with Oracle Grid Infrastructure that provides cluster-based failover for Oracle Database 19.15 and 21.6 Enterprise Edition.
- About Transparent Database Encryption (TDE) in Oracle Database Appliance Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in tables and tablespaces.
- Working with Databases

Use the Browser User Interface to display a list of databases, database details, and create and delete databases. You can use CLI commands to manage your databases.

- Working with Database Homes Use the Browser User Interface to display a list of database homes, details, and create and delete database homes.
- Migrating Databases

Review these topics to learn how to prepare for and migrate an entire database to your Oracle Database Appliance.

- About Registering a TDE-Enabled Database Understand the process to register TDE-enabled databases.
- About Managing Multiple Database Instances Using Instance Caging Use instance caging to manage your system resources on Oracle Database Appliance.
- Oracle EM Express and DB Console

You can use Oracle Enterprise Manager Database Express (EM Express), or the Database Control Console (DB Console) to manage your database.

## About Administrative Groups and Users on Oracle Database Appliance

Oracle Database Appliance Browser User Interface deployment creates operating system groups and users whose members are granted system administration privileges on the appliance.

During configuration, two administrative accounts are created for Oracle Database Appliance: the user grid, with a user ID (UID) of 1001, and the user oracle, with a UID of 1000. The user grid is the Oracle Grid Infrastructure installation owner. The user oracle is the Oracle Database installation owner, and the owner of all Oracle Database homes (Oracle homes). By default, these users are members of operating system groups whose members are granted privileges to start up and administer Oracle Database and Oracle Automatic Storage Management.

The following table describes the Oracle system privileges groups, and information about the operating system authentication groups:

Table 10-1 Operating System Groups and Users on Oracle Database Appliance

Oracle System Privileges	Group Name	Group ID (GID)	grid is a   member	oracle is a   member
Oracle Inventory group   (OINSTALL)	oinstall	1001	yes (primary   group)	yes (primary   group)
OSOPER for dbaoper group	dbaoper	1002	yes	yes
OSDBA group	dba	1003	no	yes
OSASM group for Oracle   ASM	asmadmin	1004	yes	no
OSOPER for ASM group	asmoper	1005	yes	no
OSDBA for ASM group	asmdba	1006	yes	yes

To change the Group Name and GID from the default values on Oracle Database Appliance bare metal platforms, change the default values from the Browser User Interface during the deployment. If you create an initial database during deployment, then the password for the SYS and SYSTEM users is the password that you set in the Browser User Interface.

To change the Group Name and GID from the default values on the Oracle Database Appliance Virtualized Platform, use the -advance parameter with the command oakcli deploy. If you create an initial database during deployment, then the password for the SYS and SYSTEM users is the ROOT password from the Configurator.

## - Note:

Change the password for both users as soon as possible after configuration to prevent unauthorized access to your database using these privileged accounts.

## About Data Migration Options for Oracle Database Appliance

Oracle Database Appliance supports the use of standard Oracle Database loading and migration tools.

If you are loading data or migrating data from an existing database to Oracle Database Appliance, then you can use the standard Oracle Database loading and migration tools. These tools include the following:

- Oracle GoldenGate
- SQL*Loader
- Oracle Data Pump
- transportable tablespaces
- RMAN

You can also use the RMAN utility to back up and recover databases on Oracle Database Appliance.

## About Creating Database Homes on Oracle ACFS Storage

When you create new Oracle Database homes, they are created on Oracle ACFS file system which are stored on Oracle Database Appliance storage disks. You can create new Oracle Database homes using the odacli create-database or odacli create-dbhome commands, or when you patch an existing database home.

Oracle Database homes are created on an Oracle ACFS-managed file system. For a database user oracle, the new database homes are created under /u01/app/odaorahome/oracle/.

The mount / $\mathrm{u} 01 / \mathrm{app} /$ odaorahome is a shared file system for a high-availability system. On a high-availability system, /u01/app/odaorahome/ is a shared ORACLE_HOME between the nodes. Existing database homes continue to remain on the local disks.

The ORACLE_BASE location has also changed to an Oracle ACFS-based file system. On high-availability system, the ORACLE_BASE is not shared between the nodes. Each node has its own Oracle ACFS file system for ORACLE_BASE. The new ORACLE_BASE for the database homes are created under the mount /u01/app/odaorabase/.

The disk space for the Oracle ACFS file system is located in the DATA or RECO disk group. You must specify the disk group for the Oracle ACFS file system. For Oracle Database Appliance X8-2 hardware model and single-node systems, the Oracle ACFS file system must be located in the DATA disk group. You can specify the initial size of the ORACLE_HOME volume. The default value is 80 GB . You can set a value from 25 GB to 1024 GB . The initial volume size for ORACLE_BASE is fixed at 10GB. Note that for these volumes, AUTOEXTEND is off. You can extend the volume size with the odacli modify-dbhome-storage command.

## Changes When Provisioning Oracle Database Appliance Release 19.23

As part of the provisioning request, you must specify the disk group and size of the volume in the json file in the sysOraHomeStorage section.

```
"sysOraHomeStorage" : {
 "diskgroup" : "DATA",
```

```
 "volumeSize" : "80"
},
```

If you do not specify the values in the json file, then the following error is displayed during provisioning:

```
DCS-10045:Validation error encountered: Missing argument : sysOraHomeStorage
```

If the values are invalid, then the following errors may be displayed during provisioning:

```
DCS-10024:Input parameter 'Disk Group' contains unacceptable value 'DATAL'.
Allowed values are '[DATA, RECO]'. (case insensitive)
DCS-10045:Validation error encountered: Required volumeSize value in
sysOraHomeStorage should be in the range of 25GB to 1024GB.
```


## Changes When Patching to Oracle Database Appliance Release 19.23

If you have patched your appliance from Oracle Database Appliance release 19.6 or later to 19.23, then run the odacli configure-dbhome-storage command before creating a new database home. Otherwise, the following error is displayed when creating a new database home:

```
odacli create-dbhome -v 19.8.0.0.200714
DCS-10601:The system is not set up to create database homes on ACFS.
```

Once the disk group for the volumes are setup, new database homes are created on the Oracle ACFS file system.

## Related Topics

- odacli configure-dbhome-storage

Use the odacli configure-dbhome-storage command to configure the database home storage.

- odacli list-dbhome-storages

Use the odacli list-dbhome-storages command to view the database home storage resources after the volumes for ORACLE_HOME and ORACLE_BASE are created.

- odacli describe-dbhome-storage

Use the odacli describe-dbhome-storage command to view information such as how much space is available (at a volume or diskgroup level).

- odacli modify-dbhome-storage

Use the odacli modify-dbhome-storage command to modify database home storage and add additional disk space.

- Managing Database Homes on Oracle ACFS Storage Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to manage database home storage in Oracle Database Appliance.


## About Standard Edition High Availability for Oracle Database Appliance

Oracle Database Appliance supports Standard Edition High Availability solution with Oracle Grid Infrastructure that provides cluster-based failover for Oracle Database 19c Standard Edition.

## About Standard Edition High Availability for Oracle Database 19c

With Standard Edition High Availability, when there is an instance or a node failure, the database automatically fails over to the other node, after attempting to restart on the local node. The database is restarted on the surviving node, thereby providing high availability for Oracle Standard Edition databases.

If your Oracle Database deployment contains Standard Edition 2 Oracle Real Application Cluster (Oracle RAC) databases of releases earlier than 19c, then they must be converted to a Standard Edition High Availability configuration as part of the upgrade to Oracle Database 19c.

For more details about this feature, refer to the Oracle Database Documentation Library at https://docs.oracle.com/en/database/oracle/oracle-database/index.html.

About Standard Edition High Availability for Oracle Database Appliance Release 19.23
Standard Edition High Availability for Oracle Database 19c is supported on Oracle Database Appliance for high availability deployments, that is, deployments that have two server nodes, shared storage, and server interconnects.

Oracle Database Appliance enables automatic configuration for failover at deployment time for Oracle Database 19c Standard Edition single-instance databases. Both nodes have Oracle Homes for Standard Edition single-instance databases.

Single-instance Oracle Database 19c Standard Edition databases created using the ODACLI commands or the Browser User Interface (BUI) have Standard Edition High Availability enabled by default. You can also choose to disable the High Availability option. To enable Standard Edition High Availability for existing Standard Edition Oracle RAC databases of releases earlier than 19c, you must convert these Oracle RAC databases to single-instance databases, and then upgrade to single-instance Oracle Database 19c Standard Edition database with Standard Edition High Availability enabled by default.

## About Provisioning, Upgrading, and Relocating Standard Edition High Availability Oracle Database

To create a single-instance Oracle Database 19c with Standard Edition High Availability, use the following command:

```
odacli create-database -u db_unique_name -n db_name -dh db_home -y SI -g
target_node
```

To upgrade a Standard Edition Oracle RAC Database to Oracle Database 19c Standard Edition, convert the Oracle RAC Database to a single-instance Oracle Database:
odacli modify-database -in db_name -y single-instance

Then, upgrade the single-instance database to Oracle Database 19c with Standard Edition High Availability as follows:

```
odacli upgrade-database -i db_id -to destination_dbhome -sh
```

To relocate a Standard Edition High Availability Oracle Database from one node to another outside of a failover, use the following command, specifying either the target node or the target host in the command:

```
odacli modify-database -in db_name -g target_node
```

or:
odacli modify-database -in db_name -th target_host

For detailed information about these ODACLI command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

## Related Topics

- Oracle Database Appliance Command-Line Interface The command-line interface has different classes of tools to manage Oracle Database Appliance.


## About Enterprise Edition High Availability for Oracle Database Appliance

Oracle Database Appliance supports Enterprise Edition High Availability solution with Oracle Grid Infrastructure that provides cluster-based failover for Oracle Database 19.15 and 21.6 Enterprise Edition.

## About Enterprise Edition High Availability for Oracle Database

With Enterprise Edition High Availability, when there is an instance or a node failure, the database automatically fails over to the other node, after attempting to restart on the local node. The database is restarted on the surviving node, thereby providing high availability for Oracle Enterprise Edition databases.

For more details about this feature, refer to the Oracle Database Documentation Library at https://docs.oracle.com/en/database/oracle/oracle-database/index.html.

About Enterprise Edition High Availability for Oracle Database Appliance Release 19.23
Enterprise Edition High Availability for Oracle Database 19.23 is supported on Oracle Database Appliance for high availability deployments, that is, deployments that have two server nodes, shared storage, and server interconnects.

Oracle Database Appliance enables automatic configuration for failover at deployment time for Oracle Database 19.23 Enterprise Edition single-instance databases. Both nodes have Oracle Homes for Enterprise Edition single-instance databases.

To enable Enterprise Edition High Availability for existing Enterprise Edition Oracle RAC database of release 19.23, you must convert these Oracle RAC databases to single-instance databases, and then upgrade to single-instance Oracle Database 19.23 Enterprise Edition database with Enterprise Edition High Availability enabled by default.

## About Provisioning, Upgrading, and Relocating Enterprise Edition High Availability Oracle Database

To create a single-instance Oracle Database 19.23 with Enterprise Edition High Availability, use the following command:

```
odacli create-database -u db_unique_name -n db_name -dh db_home -y SI -g
target_node -ha
```

To upgrade an Enterprise Edition Oracle RAC Database to Oracle Database 19.23 Enterprise Edition, convert the Oracle RAC Database to a single-instance Oracle Database:

```
odacli modify-database -in db_name -y single-instance
```

Then, upgrade the single-instance database to Oracle Database 19.23 with Enterprise Edition High Availability as follows:

```
odacli upgrade-database -i db_id -to destination_dbhome -ha
```

To relocate an Enterprise Edition High Availability Oracle Database from one node to another outside of a failover, use the following command, specifying either the target node or the target host in the command:

```
odacli modify-database -in db_name -g target_node
```

or:
odacli modify-database -in db_name -th target_host

For detailed information about these ODACLI command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

## Related Topics

- Oracle Database Appliance Command-Line Interface

The command-line interface has different classes of tools to manage Oracle Database Appliance.

## About Transparent Database Encryption (TDE) in Oracle Database Appliance

Transparent Data Encryption (TDE) enables you to encrypt sensitive data that you store in tables and tablespaces.

After the data is encrypted, this data is transparently decrypted for authorized users or applications when they access this data. TDE helps protect data stored on media (also called data at rest) in the event that the storage media or data file is stolen.

Oracle Database uses authentication, authorization, and auditing mechanisms to secure data in the database, but not in the operating system data files where data is stored. To protect these data files, Oracle Database provides Transparent Data Encryption (TDE).

TDE encrypts sensitive data stored in data files. To prevent unauthorized decryption, TDE stores the encryption keys in a security module external to the database, called a keystore.

Oracle Database Appliance provides the option to create TDE-enabled databases, backup, recover, and restore TDE-enabled databases, backup and restore TDE wallet, re-keying of TDE master encryption key, and changing the password of password-protected Keystore.

Note:
To enable Transparent Data Encryption (TDE), you must deploy Enterprise Edition Oracle Database 19c or later.

- See Also:

Using Transparent Data Encryption in the Oracle Database Advanced Security Guide

## Caution:

When you enable TDE, you are prompted to set a password for the TDE wallet. Provide a strong password for security compliance. Set the password carefully, and ensure that this password is available to you at all times for database management operations. Failure to provide the TDE wallet password when prompted, will cause an error in accessing encrypted data.

## Working with Databases

Use the Browser User Interface to display a list of databases, database details, and create and delete databases. You can use CLI commands to manage your databases.

## , Note:

Oracle Database Appliance enables unified auditing for databases created in new database homes. Unified audit trail captures audit information and places them in one location and in one format. This consolidated view enables auditors to co-relate audit information from different components. Having a single audit trail also improves management and security of the audit trail. For more information about unified audit trail for Oracle Database, see Oracle Database Security Guide.

- Viewing Databases

Use the Oracle Appliance Manager Browser User Interface to display a list of Oracle databases and database details, create, upgrade, and delete a database in Oracle Database Appliance.

- Creating a Database Using the Browser User Interface Use the Oracle Appliance Manager Browser User Interface to create a database in Oracle Database Appliance.
- Managing Database Homes on Oracle ACFS Storage Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to manage database home storage in Oracle Database Appliance.
- Creating a Database Using ODACLI Commands Create a database from the command-line interface.
- Cloning a Database from Backup Use the Browser User Interface to clone a database from a backup.
- Cloning an Oracle ACFS Database Create a database from an existing Oracle ACFS database using ODACLI commands or BUI.
- Modifying a Database Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to modify a database in Oracle Database Appliance.
- Moving a Database from One Oracle Home to Another Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to move a database from one Oracle home to another of the same database version.
- Upgrading a Database

Use the Oracle Appliance Manager Browser User Interface to upgrade an Oracle database to a different database home version.

- Upgrading a Database Manually Using AutoUpgrade Use AutoUpgrade to manually upgrade an earlier release of Oracle database on Oracle Database Appliance.
- Deleting a Database

Use the Oracle Appliance Manager Browser User Interface to delete an Oracle database.

## Viewing Databases

Use the Oracle Appliance Manager Browser User Interface to display a list of Oracle databases and database details, create, upgrade, and delete a database in Oracle Database Appliance.

1. Log into the Browser User Interface:
https://host name or ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. (Optional) Click the database name, in blue font, to display more details about the database.
4. (Optional) Click Actions next to a database entry to view more details, upgrade or delete the database.

## Creating a Database Using the Browser User Interface

Use the Oracle Appliance Manager Browser User Interface to create a database in Oracle Database Appliance.

Ensure that the repository is updated with Oracle RDBMS Clone files for a database version, before creating the database as described in Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI.

## Note:

For Standard Edition Oracle Database 19c or later, you cannot create Oracle RAC Or Oracle RAC One Node Database. You can only create single-instance Oracle Database. For Standard Edition Oracle Database 19.6 or later, you can choose to enable high availability for single-instance database. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to enable high availability for single-instance databases.

The Browser User Interface provides a quick and easy method of creating new databases. The Create New Database page in the Browser User Interface is populated with default options for most of the configuration options. Drop-down lists enable you to quickly view and select from a list of available options. You can use the drop-down list to create a new database Oracle Database Home (ORACLE_HOME) for the database or select an existing ORACLE_HOME that you created earlier.

Oracle Database 19.23 is supported on both Oracle Automatic Storage Management (Oracle ASM) and Oracle ASM Cluster file system (Oracle ACFS). When databases are created in Oracle ACFS, each database is configured with its own Oracle ACFS file system for the datafiles and uses the following naming convention:/u02/app/db user/oradata/db unique name. The default size of this mount point is 100 GB .

The fields in the Browser User Interface adjust, depending on the database version you select. Follow these steps to create a database:

1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Create Database to display the Create Database page.
4. Select Create Database on the Create Database page.
5. Enter the following information on the Create Database page to configure the database:
a. In the DB Name field, enter a name for the database. The name db1 appears in the field as an example of a database name, but the field is not populated. You must enter a name.

The name must contain lowercase alphanumeric characters and cannot exceed 8 characters. The Oracle system identifier (SID) is always set to the database name.
b. (Optional) In the DB Unique Name field, enter a name to define a unique name for the database.
c. In the Use Existing DB Home field, select Yes or No.
d. In the DB Version field, select a database bundle patch number from the drop-down list.

Available database versions with available clones appear in the list in descending order. Supported versions that are not available in the repository appear in light gray font at the bottom of the list. Search is available for the list. To add a supported version to the repository, download the RDBMS clone file and update the repository.
e. For the CDB option on Oracle Database releases later than 12.1, select Yes or No, depending on whether or not you want the database to be a container database (CDB). The default is Yes.
f. In the PDB Name field, enter a name for the pluggable database (PDB).

Alphanumeric characters and underscore ( $\_$) are valid. The name must begin with an alphanumeric character and cannot exceed 30 characters. The name pdb1 appears in the field in italic text as an example, but it is not populated. You must enter a name.
g. In the PDB Admin User field, enter a name.

The field shows pdbadmin as an example, you must enter a name. Alphanumeric characters and underscore ( $\_$) are valid.
h. In the Database Edition field, enter the edition for which you have a license, either Enterprise Edition or Standard Edition.
For Standard Edition Oracle Database 19c or later, you can only create single-instance Oracle Database. For Standard Edition Oracle Database 19.6 or later, you can choose to enable high availability for single-instance database. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to enable high availability for single-instance databases.
i. For single-instance Oracle Database deployment, specify the Node, either Node0 or Node1. The default is Node0. Specify whether you want to Enable High Availability.
j. In the Shape field, select a database shape from the drop-down list. The shape determines the number of cores and total memory allocated to the database. The default is odb1.
k. In the Database Class field, select a database class from the drop-down list. If an option is not available in the list, it is not supported for the database edition on the Oracle Database Appliance or the version that you selected. The default is OLTP.
I. In the Storage field, select ACFS or ASM from the drop-down list. The default is Oracle ASM.
m . If the disk group redundancy was set to Flex during the appliance creation, then you can select the Database Redundancy value as Mirror or High.
n. Select the Networks you want to associate with the database.
o. For the Configure EM Express or Configure EM Console option, select Yes or No. The default is No.

Select Yes to configure the Oracle Enterprise Manager Database Express (EM Express) console for Oracle Database 19.23. Selecting Yes enables you to use the console to manage the database.
p. In the SYS and PDB Admin User Password field, enter the password for the SYS, SYSTEM, and PDB Admin.

The password must begin with an alpha character and cannot exceed 30 characters. Quotation marks are not allowed.
q. In the Confirm Password field, enter the password again to confirm.
r. In the Characterset field, select an option from the drop-down list. The default is AL32UTF8.
s. In the National Characterset field, select an option from the drop-down list. The default is AL16UTF16.
t. In the Language field, select a database language from the drop-down list. The default is American.
u. In the Territory field, select a territory or location for the database from the drop-down list. The default is America.
v. For Oracle Database Enterprise Edition 19c or later, you can choose to enable Transparent Database Encryption (TDE). Select Yes or No in the Enable TDE option. Specify and confirm the TDE Password. By default, the TDE option is disabled.
6. Click Create. When prompted, click Yes to confirm that you want to start the job to create the database.
The job is submitted and a confirmation page appears with a link to the job. Click the link to view the job progress, tasks, and status.
After you close the Job confirmation page, you can click the Activity tab to monitor the job progress. Click the job number to view the tasks and status details. Click Refresh to refresh the page.

## Managing Database Homes on Oracle ACFS Storage

Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to manage database home storage in Oracle Database Appliance.

## Managing Database Home Storage Using the Browser User Interface

1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Database Home Storage on the left pane.
4. If Database Home Storage is not configured, then click on the Configure Database Home Storage button.
5. Select the Disk Group Name and specify the Size in GB.
6. Click Create. When prompted, click Yes to confirm that you want to start the job to configure the database home storage.
7. You can also view a list of all Database Home storages from the Database tab and view details for each database.
8. To modify Database Home Storage, select Modify in the Actions drop down list.

## Managing Database Home Storage Using ODACLI Commands

1. Use the odacli configure-dbhome-storage command to configure the database home storage:
\# odacli configure-dbhome-storage -dg DATA
2. Use the odacli list-dbhome-storages command to list the database home storages:
\# odacli list-dbhome-storages
3. Use the odacli describe-dbhome-storages command to describe a database home storage:
odacli describe-dbhome-storage -i 67622ce6-0a00-4fec-b948-7a0ba7922311

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

## Related Topics

- odacli configure-dbhome-storage

Use the odacli configure-dbhome-storage command to configure the database home storage.

- odacli list-dbhome-storages

Use the odacli list-dbhome-storages command to view the database home storage resources after the volumes for ORACLE_HOME and ORACLE_BASE are created.

- odacli describe-dbhome-storage

Use the odacli describe-dbhome-storage command to view information such as how much space is available (at a volume or diskgroup level).

- odacli modify-dbhome-storage Use the odacli modify-dbhome-storage command to modify database home storage and add additional disk space.


## Creating a Database Using ODACLI Commands

Create a database from the command-line interface.

## - Note:

If you provisioned the appliance without creating an initial database, then you must create a Oracle home. If the version of the database home is different from the migrated database, create a database home for the migrated database. You might want to create a database home specifically for the migrated database.

## Caution:

When you create a database with Transparent Data Encryption (TDE) enabled, you are prompted to set a password for the TDE wallet. Provide a strong password for security compliance. Enter this password carefully when setting it for the first time, and ensure that this password is available to you at all times for database management operations. Failure to provide the TDE wallet password when prompted, will cause an error in accessing encrypted data.

This example creates a new database named PRODDB with database version 19.23, and a new database home, if a database home does not exist.

1. Use the odacli list-dbhomes command to display a list of database homes and verify that a database home exists for the database version.

Note the ID if you want to use an existing database home or if you want to get more details. Use the odacli describe-dbhomes command to get more details about a specific database home.

```
odacli list-dbhomes
```



```
(continued)
Home Location
--
/u01/app/orauser/product/19.0.0.0/dbhome_1
```

2. Create a database home if a database home does not exist for the database version.

If you want to create a database home for specifically for the migrated database, you can use the odacli create-dbhome command, or you can create the database home when you create the database. The example creates a database home for database version 19.23.0.0.0.
\# odacli create-dbhome -v 19.23.0.0.0
3. Create a database. You can use an existing database home ID or you can create a database home when creating the database.
To create a database named PRODDB that uses an existing database home with ID b727bf80-c99e-4846-ac1f-28a81a725df6:

```
odacli create-database -n PRODDB -io -dh b727bf80-c99e-4846-
```

ac1f-28a81a725df6

To create a database named PRODDB with database version 19.23.0.0.0 and a database home:
\# odacli create-database -n PRODDB -v 19.23.0.0.0 -io

To create a TDE-enabled database named PRODDB:

```
odacli create-database -n PRODDB -t
```


## Cloning a Database from Backup

Use the Browser User Interface to clone a database from a backup.
When you backup a database in Oracle Database Appliance, a backup report is created. Save the backup report as a JSON file and you can use the file to create a database on the same appliance, or a different appliance.

The following are the prerequisites to cloning a database from a backup:

1. The source database backup location must be Object Store or External FRA (Network File System).
2. If you use Object Store backup location, then obtain Object Store Credentials for the host.
3. If you use an External FRA (Network File System) backup location, then obtain the Network File System (NFS) mount point location.
4. Create a backup policy using the object store credentials or NFS mount point as the backup destination.
5. Attach the backup policy to the database that you want to backup. If the source database does not have TDE enabled, then providing the Backup Encryption password is mandatory when attaching Objectstore backup policy. However, the Backup Encryption password is optional when attaching the NFS backup policy. If the source database has TDE enabled,
then you need not specify the Backup Encryption password, irrespective of backup destination.
6. Create a manual backup of the database and save the backup report generated when the backup completes.
Follow these steps to create a database from backup:
7. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
8. Click the Database tab.
9. Click Create Database to display the Create Database page.
10. Click Clone Database from Backup, then click Next to display the Clone Database from Backup page.
11. Select the Backup Destination from which you want to create the database. If your backup destination is ObjectStore:
a. Select Backup Destination as ObjectStore.
b. Select your Object Store Credential Name.
c. Enter the password in the Backup Encryption Passwords field and the Confirm Backup Encryption Passwords field.
If your backup destination is Network File System (NFS):
a. Select Backup Destination as External FRA.
b. Enter the password in the Backup Encryption Passwords field and the Confirm Backup Encryption Passwords field.
12. Click Browse and select the backup report from which you want to create the database.

When the backup report is loaded, additional fields appear on the page and are populated based on the backup report. You can edit some of the fields.
For Standard Edition Oracle Database 19c or later, you cannot clone Oracle RAC or Oracle RAC One Node Database. You can only clone a single-instance Oracle Database. For Standard Edition Oracle Database 19.6 or later, you can choose to enable highavailability for single-instance database. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to enable high availability for singleinstance databases.
7. In the DB Name field, enter a name for the database.

The name must contain lowercase alphanumeric characters and cannot exceed 8 characters. The Oracle system identifier (SID) is always set to the database name.
8. Enter the password in the SYS and PDB Admin User Password field and the Confirm Password field.
9. Specify the Networks.
10. If your source database has Transparent Database Encryption (TDE) enabled, then you can enable TDE on the cloned database. If the source database has TDE enabled, then the backup report has the TDE wallet backup location and the TDE Wallet Backup Location field in the BUI displays this value. Specify and confirm the TDE Password.
11. Click Create.
12. Click Yes to confirm that you want to clone a database from the selected Object Store or External FRA.

When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
13. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.
\# odacli describe-job -i jobId

## Cloning an Oracle ACFS Database

Create a database from an existing Oracle ACFS database using ODACLI commands or BUI.
Cloning enables to:

- Create a database from another database without bringing down the source database
- Create multiple databases from a gold image, thus ensuring standardized mass deployments
- Optimize space utilization, by use of Oracle ACFS snapshots in cloning
- Create different types of databases, from a single source database type. For example, you can create single-instance databases, Oracle RAC databases, or Oracle RAC One Node databases from any type of source database
- Depending on the available memory and CPU cores, specify a supported database shape such as odb1s, odb2, and so on, to create any class of database from any source database.
- Create clone databases on a standby system. Since standby systems are not production systems, they are a better choice for seeding test or development environments.
- Run clone database from a database home that is different from that of the source database.
- Create clone database from a read-only source database.
- Create read-only clone database from any source database.

Following are the prerequisites to clone a database:

- Ensure that Oracle Clusterware is running on all nodes, and the source database is up and running.
- The source database must use Oracle ACFS storage.
- The source database must not be a multitenant container database (CDB).
- The source database must be opened in either read-write mode, or read-only mode if it is a primary database. A standby database can be in mounted or read-only open mode.
- The source database must not be in backup mode.
- The source database must be in archive mode.
- All data files of the source database must be in the same Oracle ACFS directory.


## Note:

For Standard Edition Oracle Database 19c or later, you cannot clone Oracle RAC or Oracle RAC One Node Database. You can only clone a single-instance Oracle Database. For Standard Edition Oracle Database 19.6 or later, you can choose to enable high-availability for single-instance database.

## Cloning an Oracle ACFS Database Using Command Line Interface

1. Run the odacli clone-database command.
```
odacli clone-database --databaseUniqueName --dbname --dbshape --dbtype --
sourcedbname --associated-networks --cpupool --dbhomeid --disable-ha --
enable-ha --newhome --read-only --tdepassword--json
```

For cloning, you can create a new database home or select an existing database home. To create a new database home, specify the --newhome option. To use an existing database home, specify the --dbhomeid. Specify the unique name of the database, the name for the new database, the database shape, the type of database, and the source database name. For TDE-enabled database, also specify the --tdepassword option. The TDE password of the new database must be the same as the TDE password of the source database.

For information about all the command options, see the ODACLI Command Reference chapter.

## Cloning an Oracle ACFS Database Using the Browser User Interface

1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Create Database to display the Create Database page.
4. Click Clone a Database, then click Next to display the Clone Database page.
5. In the Clone Database page, you can create a new database home or select an existing database home.
6. To create a new database home, select the Create New DB Home and then provide the values as described in this procedure.
7. To specify an existing database home, select the Source Database Name from which you want to create the database and the DB Home Name.

For Oracle Database 19c Standard Edition, you can only create single-instance Oracle Database, with or without high-availability. For Standard Edition Oracle Database 19.6 or later, you can choose to enable high-availability for single-instance database. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to enable high availability for single-instance databases.
8. Select the Database Shape (template) for your new database. The database shape you select determines the total memory allocated to the database.
9. In the DB Name field, enter a name for the database.

The name must contain lowercase alphanumeric characters and cannot exceed 8 characters. The Oracle system identifier (SID) is always set to the database name.
10. Specify the DB Unique Name for the database. If the database unique name is not provided, then the name of the database is set to the database name.
11. Specify the Networks.
12. Enter the password in the SYS and PDB Admin User Password field and the Confirm Password field. For Transparent Database Encryption (TDE) enabled database, specify the TDE wallet password. The TDE password is the same as the TDE password of the source database.
13. Click Create.
14. Click Yes to confirm that you want to clone a database from the selected source database.

When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
15. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.
\# odacli describe-job -i jobId

## Related Topics

- odacli clone-database

Use the odacli clone-database command to clone a new database from a source database.

## Modifying a Database

Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to modify a database in Oracle Database Appliance.

## Modifying a Database Using the Browser User Interface

1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. For the database that you want to modify, select Modify in the Actions drop down list.
4. In the Modify Database page, you can attach or detach associated networks and backup policy, and modify database shape and class. You can also change TDE wallet management from EXTERNAL to ODA for Oracle Database 19c and later databases.
5. To modify the Database Class or Database Shape, select the new value in the drop down list.
6. To attach or detach networks, modify the values in the Attach Networks and Detach Networks fields.
7. To remove the associated backup policy from the database, do not select any value in the Select Back up Policy drop down list.
8. If you configured Oracle Flex disk group when you created the database, you can also modify the database redundancy. If the database you are modifying is an Oracle ACFS Database, then the database redundancy for all cloned Oracle ACFS databases is modified.
9. You can choose to change the Backup Encryption Password. If the database has TDE enabled, then the RMAN Backup Encryption password is not used.
10. Select the Specify TDE Option to perform these operations:

- Select Re-key TDE Master Encryption Key to re-key the TDE master encryption key of the database. Specify the Current TDE Wallet password.
- Select Change Password for TDE Wallet and specify the Current TDE Password and the New TDE Password.
- If the TDE wallet management is set to EXTERNAL, then you can view and select the Change TDE Wallet Management option, and set it to ODA.

11. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to Enable High Availability for single-instance databases.
12. For Standard Edition Oracle Database 19.6 or later, you can choose to Enable High Availability for single-instance databases.
13. Click Modify. When prompted, click Yes to confirm that you want to start the job to modify the database.

## Modifying a Database Using ODACLI Commands

1. Use the odacli modify-database command to modify the configuration of a database, such as backup configuration, database class, database type, TDE key, or to change the TDE wallet management from EXTERNAL to ODA.
\# odacli modify-database -s database_shape -cl database_class -i dbid

For example:

```
odacli modify-database -i 1941d594-c777-4eca-9fce-18b778d5c153 -s odb2 -
cl DSS
```

For example, the following command re-keys the TDE master encryption key of the database after accepting the current TDE Wallet password.

```
odacli modify-database -n testdb -rkt
Enter TDE wallet password:
```

For more information about the odacli modify-database command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

## Related Topics

- odacli modify-database

Use the odacli modify-database command to modify the configuration of a database, such as backup configuration, database class, and database type, and to change TDE wallet management from EXTERNAL to ODA.

## Moving a Database from One Oracle Home to Another

Use the Oracle Appliance Manager Browser User Interface or ODACLI commands to move a database from one Oracle home to another of the same database version.

Moving a Database Using the Browser User Interface

1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. For the database that you want to modify, select Move in the Actions drop down list.
4. Select the Destination Database Home where you want to move the database. The destination database home must be of the same base version. Select Ignore Missing Patches to ignore missing patches. For high-availability environment, you can select the Non-Rolling check box to perform non-rolling move of the database home.
5. Click Move. When prompted, click Yes to confirm that you want to start the job to move the database.

## Moving a Database Using ODACLI Commands

1. Use the odacli move-database command to move a database from one Oracle home to another home of the same database version.
\# odacli move-database -i database_ID -dh destination_database_home_ID

For more information about the odacli move-database command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

## Related Topics

- odacli move-database

Use the command odacli move-database to move a database from one Oracle home to another home of the same database version.

## Upgrading a Database

Use the Oracle Appliance Manager Browser User Interface to upgrade an Oracle database to a different database home version.

Before upgrading to a different database home, you must upload the Oracle RDBMS clone files to the repository and create the database home.

## Note:

You cannot upgrade Oracle RAC or Oracle RAC One Node Database to a destination database home of Standard Edition Oracle Database 19c or later. You must first convert Oracle RAC Or Oracle RAC One Node Database to single-instance Oracle Database using the odacli modify-database command and then upgrade the single-instance Oracle Database to a destination database home of Standard Edition 19c or later.

1. Log into the Browser User Interface:
https://host name or ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Actions next to the database that you want, then select Upgrade.
4. Select the destination database home version from the list of available versions for the upgrade.

When upgrading single-instance Standard Edition Oracle Database 18.9 or later to Standard Edition Oracle Database 19c or later, you can also choose to enable or disable High Availability.

When upgrading single-instance Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can also choose to enable or disable High Availability.
5. You can also change the TDE wallet management option if TDE is enabled for the source database and the TDE Wallet Management is set to External. Select Change TDE Wallet Management to set the TDE Wallet Management to ODA.
6. Click Upgrade.

## Upgrading a Database Manually Using AutoUpgrade

Use AutoUpgrade to manually upgrade an earlier release of Oracle database on Oracle Database Appliance.

Starting with Oracle Database Appliance release 19.17, you cannot manage releases of Oracle Database earlier than 19c using ODACLI or BUI. To upgrade Oracle databases of release 12.1, 12.2, and 18c on Oracle Database Appliance, use OPatch to patch the databases or use Oracle Database Upgrade Assistant (DBUA) or AutoUpgrade to upgrade these databases manually with Oracle Database Appliance 19.17 or later.
Ensure the following:

- The Oracle Database Appliance server must be on Oracle Database Appliance release 19.19 or later.
- The repository must be updated with the target database clone version on the source and target Oracle Database Appliance systems.

1. Create the destination DB home for the database:
```
#odacli create-dbhome -v 19.18.0.0.230117
[root@oda1 ~]# odacli list-dbhomes
ID Name DB
Version DB Edition Home
Location Status
--
--
--
f90adcc1-f64a-41ce-b72d-154db155b1fa OraDB19000_home1
19.18.0.0.230117 EE /u01/app/ōdaorahome/oracle/
product/19.0.0.0/dbhome_1 CONFIGURED
562a7428-9ea7-4878-9005-62c9d732a12b OraDB12102_home1
12.1.0.2.220719 EE /u01/app/odaorahome/oracle/
product/12.1.0.2/dbhome_1 CONFIGURED
```

2. Disable SSHCleanerJob and configure SSH user equivalence between both nodes in case of Oracle Database Appliance High-Availability systems.
```
[root@oda1 ~]# odacli list-schedules|grep "Name\|SSH"
ID Name
Description
CronExpression Disabled
44ad4fe2-4893-4c7d-a61c-15845cb74aa5 SSHCleanerJob SSH
cleaner job to clean up stale SSH keys 0 0/30 * 1/1 * ?
```

```
* false
[root@oda1 ~]# odacli modify-schedule -i 44ad4fe2-4893-4c7d-
a61c-15845cb74aa5 -d
Modify job schedule success
[root@oda1 ~]# odacli list-schedules|grep "Name\|SSH"
ID Name
Description
CronExpression Disabled
44ad4fe2-4893-4c7d-a61c-15845cb74aa5 SSHCleanerJob SSH
cleaner job to clean up stale SSH keys 0 0/30 * 1/1 * ?
* true
[oracle@oda1 ~]$ /u01/app/odaorahome/oracle/product/19.0.0.0/dbhome_1/
deinstall/sshUserSetup.sh -user oracle -hosts "oda1 oda2" -
noPromptPassphrase
```

3. Create the AutoUpgrade configuration file as the oracle operating system user on the first node.
[oracle@oda1 ~]\$ cat autoupgrade.conf
global.autoupg_log_dir=/u01/app/odaorabase/oracle/autoupgrade
upg1.dbname=italy
upg1.start_time=NOW
upg1.source_home=/u01/app/odaorahome/oracle/product/12.1.0.2/dbhome_1
upg1.target_home=/u01/app/odaorahome/oracle/product/19.0.0.0/dbhome_1
upg1.sid=italy11
upg1.log dir=/u01/app/odaorabase/oracle/autoupgrade/italy
upg1.upgrade_node=localhost
upg1.target_version=19
upg1.run_utlrp=yes
upg1.timezone_upg=no
4. Change the Fast Recovery Area to Oracle ACFS if the database was created on Oracle ASM.
a. Verify whether the dbstorage of the database is ACFS or ASM.
\# odacli list-databases


b. If the dbstorage is ASM, then create a vmstorage temporarily or use an existing one and create with a slightly larger size than db_recovery_file_dest_size.

c. Create a folder on the vmstorage and change ownership of the folder to oracle: dba .
```
[root@oda1 ~]# mkdir /u05/app/sharedrepo/tempfra/italy
[root@odal ~]# chown oracle:dba /u05/app/sharedrepo/tempfra/italy
```

d. Change db_recovery_file_dest to ACFS.

SQL> alter system set db_recovery_file_dest='/u05/app/sharedrepo/ tempfra/italy/' scope=both;
5. Run prechecks and review the findings.

```
[oracle@oda1 ~]$ /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/jdk/bin/java -jar /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/rdbms/admin/autoupgrade.jar -config ~/autoupgrade.conf -mode
analyze
AutoUpgrade 22.4.220712 launched with default internal options
Processing config file ...
+---------------------------------
| Starting AutoUpgrade execution |
+----------------------------------
1 CDB(s) plus 2 PDB(s) will be analyzed
Type 'help' to list console commands
upg> Job 100 completed
------------------- Final Summary ----------------------
Number of databases [1]
Jobs finished[1]
Jobs failed
[0]
Please check the summary report at:
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/
status.html
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/
status.log
```

6. Run AutoUpgrade in fixup mode to fix issues that could prevent a successful upgrade (if any).
```
[oracle@oda1 ~]$ /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/jdk/bin/java -jar /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/rdbms/admin/autoupgrade.jar -config ~/autoupgrade.conf -mode
fixups
AutoUpgrade 22.4.220712 launched with default internal options
Processing config file ...
+----------------------------------
| Starting AutoUpgrade execution |
+----------------------------------
1 CDB(s) plus 2 PDB(s) will be processed
Type 'help' to list console commands
upg> Job }101\mathrm{ completed
------------------- Final Summary ------------------------
Number of databases [1]
Jobs finished

Jobs failed

Please check the summary report at:
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/
status.html
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/
status.log

\section*{7. Re-run prechecks and review the findings.}
```

[oracle@oda1 ~]\$ /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/jdk/bin/java -jar /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/rdbms/admin/autoupgrade.jar -config ~/autoupgrade.conf -mode
analyze
AutoUpgrade 22.4.220712 launched with default internal options
Processing config file ...
+---------------------------------
| Starting AutoUpgrade execution |
+----------------------------------
1 CDB(s) plus 2 PDB(s) will be analyzed
Type 'help' to list console commands
upg> Job }102\mathrm{ completed
------------------- Final Summary -----------------------
Number of databases [ 1 ]
Jobs finished
Jobs failed
[0]
Please check the summary report at:
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/
status.html
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/
status.log

```
8. Upgrade the database.
[oracle@oda1 ~]\$ /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/jdk/bin/java -jar /u01/app/odaorahome/oracle/product/19.0.0.0/ dbhome_1/rdbms/admin/autoupgrade.jar -config ~/autoupgrade.conf -mode deploy

AutoUpgrade 22.4.220712 launched with default internal options Processing config file ...
+-----------------------------------
| Starting AutoUpgrade execution |
+---------------------------------
1 CDB(s) plus \(2 \operatorname{PDB}(s)\) will be processed
Type 'help' to list console commands
upg> Job 103 completed
-------------------- Final Summary --------------------------
Number of databases [1]
Jobs finished
[1]
Jobs failed
[0]
Jobs restored

Jobs pending
[0]
---- Drop GRP at your convenience once you consider it is no longer needed ----

Drop GRP from italy1: drop restore point AUTOUPGRADE_9212_ROME121020

Please check the summary report at:
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/ status.html
/u01/app/odaorabase/oracle/autoupgrade/cfgtoollogs/upgrade/auto/status/ status.log

Note: once you confirmed that database was running as expected from all perspective and downgrade surely would not be needed, drop the restore point which was created by AutoUpgrade tool as the output also instructed ---- Drop GRP at your convenience once you consider it is no longer needed ----

Drop GRP from italy1: drop restore point AUTOUPGRADE_9212_ROME121020
9. Enable SSHCleaner job and remove SSH user equivalence in case of Oracle Database Appliance high-availability system.
```

[root@oda1 ~]\# odacli list-schedules|grep "Name\|SSH"
ID
Name
Description
CronExpression Disabled
44ad4fe2-4893-4c7d-a61c-15845cb74aa5 SSHCleanerJob SSH
cleaner job to clean up stale SSH keys 0 0/30 * 1/1 * ?

* true
[root@oda1 ~]\# odacli modify-schedule -i 44ad4fe2-4893-4c7d-
a61c-15845cb74aa5 -e
Modify job schedule success
[root@oda1 ~]\# odacli list-schedules|grep "Name\|SSH"
ID Name
Description
CronExpression Disabled
44ad4fe2-4893-4c7d-a61c-15845cb74aa5 SSHCleanerJob SSH
cleaner job to clean up stale SSH keys 0 0/30 * 1/1 * ?
* false
Remove local and remote node from /home/oracle/.ssh/authorized_keys files
on both nodes as oracle OS user using "vi" command
[oracle@oda1 ~]\$ vi /home/oracle/.ssh/authorized_keys
[oracle@oda2 ~]\$ vi /home/oracle/.ssh/authorized_keys
Remove all id* files under /home/oracle/.ssh as oracle OS user on both
nodes
[oracle@oda1 ~]\$ rm /home/oracle/.ssh/id*
[oracle@oda2 ~]\$ rm /home/oracle/.ssh/id*

```
10. Sync up the DCS metadata of the database.

```

Discover DBHome		oda1		April 18,
2023 12:05:01 PM CEST	April 18, 2023	12:05:04 PM	CEST	Success
iscover DBHome		oda1		April 18,
2023 12:05:04 PM CEST	April 18, 2023	12:05:07 PM	CEST	Success
iscover DB: rome		oda1		April 18, 2023
09 PM CEST	2023	20 PM CE		

[root@oda1 ~]\# odacli list-databases

```

```

DB Home ID
--------------------------------------- ---------------------
-------------------- ------- -------- -------- ---------------------
------------- ------------------------------------------
222a1d47-24ea-4a00-82f0-20d7fe17f59e italy RAC
19.18.0.0.230117 true OLTP EE odb2 ACFS
CONFIGURED f90adcc1-f64a-41ce-b72d-154db155b1fa

```
11. If you edited db_recovery_file_dest in step 4, then revert the change.
```

[oracle@oda1 ~]\$ export ORACLE_HOME=/u01/app/odaorahome/oracle/product/
19.0.0.0/dbhome_1
[oracle@oda1 ~]\$ export PATH=$ORACLE_HOME/bin:$PATH
[oracle@oda1 ~]\$ export ORACLE_SID=italy1
[oracle@oda1 ~]\$ sqlplus / as sysdba
SQL> alter system set
db_recovery_file_dest='+RECO(FG\$FILEGROUP_TEMPLATE_MIRROR)' scope=both;

```
12. Take a full backup.
```

[oracle@oda1 ~]\# odacli create-backup -n italy -bt Regular-L0

```
13. Remove the temporary vmstorage.
```

[oracle@oda1 ~]\# odacli delete-vmstorage -n tempfra

```

\section*{Deleting a Database}

Use the Oracle Appliance Manager Browser User Interface to delete an Oracle database.
1. Log into the Browser User Interface:
https://host name or ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Actions next to the database that you want, then select Delete.
4. In the Confirmation dialog, select Force Delete to force the deletion and Erase All to erase the database, and then click OK to confirm the action.

\section*{Working with Database Homes}

Use the Browser User Interface to display a list of database homes, details, and create and delete database homes.
- About Managing Multiple Oracle Homes on Oracle Database Appliance Create and manage one or more Oracle home directories and Oracle databases on Oracle Database Appliance.
- Viewing Database Homes

Use the Browser User Interface to display a list of database homes and database home details, including databases associated with a DB home.
- Creating a Database Home

Use the Browser User Interface to create database homes in Oracle Database Appliance.
- Deleting a Database Home

Use the Browser User Interface to delete an Oracle database home.

\section*{About Managing Multiple Oracle Homes on Oracle Database Appliance}

Create and manage one or more Oracle home directories and Oracle databases on Oracle Database Appliance.

Oracle home is the directory in which you install Oracle Database binaries, and from which Oracle Database runs. Oracle Database Appliance supports multiple Oracle homes, including support of different release Oracle Database homes. You can create multiple Oracle databases on a given Oracle home. Use Oracle Appliance Manager Browser User Interface to create and manage multiple Oracle homes and databases on Oracle Database Appliance. Oracle Database Appliance Manager automatically creates an Oracle Database Oracle home that is compliant with Oracle's Optimal Flexible Architecture (OFA) standards.

Check the Oracle Database Appliance Release Notes to obtain information about the specific Oracle software releases supported for your Oracle Database Appliance platform.

When you use ODACLI commands to create multiple homes on Oracle Database Appliance, the commands start the Oracle Home cloning process. In Oracle Database Appliance deployments, the user oracle is the default software installation owner.

You can use the Browser User Interface or the command-line interface to create and manage databases.

Use ODACLI commands to create, list, describe, and delete databases on Oracle Database Appliance. The odacli create-database command enables you to create a database with minimal user input. When you run this command without any additional options, the command creates a new database home (ORACLE_HOME). You can create a database in an existing home by using the --dbhomeid option. To find the dbhomeid, use the odacli listdbhomes command.

Alternatively, you can use the Browser User Interface to create list, describe and delete databases and database homes. You can display a list of all Database Homes that includes the database home name, ID, version, the date and time that the database home was created and the location on the same page. You can also create and delete database homes on the Browser User Interface.

\section*{Caution:}

Do not apply Oracle Database patches directly to Oracle Databases on Oracle Database Appliance. Only use Oracle Database Appliance patch bundles, which are tested to work across the whole software stack. If a one-off database patch is required, it may be applied to the Oracle Home. When you apply the Oracle Database Appliance patch bundle, it may cause a conflict during future patching events and you might need to roll back and then re-apply the patch.

\section*{Viewing Database Homes}

Use the Browser User Interface to display a list of database homes and database home details, including databases associated with a DB home.
1. Log in to the Browser User Interface:
https://ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Database Home on the left menu to view all database homes. The name, ID, version, location and date and time stamp of when the database home was created appears on the page.
4. (Optional) Click Actions next to a database home entry, then View Databases to see the databases that are associated with the database home.

\section*{Creating a Database Home}

Use the Browser User Interface to create database homes in Oracle Database Appliance.

Before you can create a database home, the Oracle Database Appliance RDBMS Clone file image must be in the repository. Follow these steps to create a database home:
1. Log in to the Browser User Interface:
https://ip-address:7093/mgmt/index.html
2. Click the Database tab, then click Database Home.
3. Click Create Database Home.
4. Select a database version from the list of available versions, then select the database edition, either Enterprise Edition or Standard Edition, per your licensing agreement.
5. Click Create. When prompted, click Yes to confirm that you want to start the job.

\section*{Deleting a Database Home}

Use the Browser User Interface to delete an Oracle database home.
You can delete a database home (DB Home) if it is not associated with any databases.
1. Log into the Browser User Interface:
https://host name or ip-address:7093/mgmt/index.html
2. Click the Database tab.
3. Click Database Home on the left menu to view all database homes. The name, ID, version, location and date and time stamp of when the database home was created appears on the page.
4. Click Actions next to a database home entry, then Delete, and then confirm the action to delete a database home.

\section*{Migrating Databases}

Review these topics to learn how to prepare for and migrate an entire database to your Oracle Database Appliance.
- About Migrating Databases

You can migrate an entire active container database (CDB) or non-CDB database to an Oracle Database Appliance machine by using the RMAN duplicate command.
- Configuring a Static Listener Configure a static listener before you duplicate a database.
- Migrating a Database Use the RMAN Duplicate command to migrate the entire database to the appliance.
- Registering a Database Use the odacli register-database command to register the migrated database with the appliance.

\section*{About Migrating Databases}

You can migrate an entire active container database (CDB) or non-CDB database to an Oracle Database Appliance machine by using the RMAN duplicate command.

When using RMAN Duplicate, ensure to have network connectivity from source and target databases:
- Source database: The existing database to be migrated.
- Target database: The new database created on an Oracle Database Appliance environment.

If you do not have network connectivity between the source and the target environments, you can use the offline migration method. Offline migration uses RMAN backup sets for duplication, which does not require connectivity to the primary database.

At a high level, the procedure involves the following steps:

\section*{1. Deploy or update Oracle Database Appliance to the latest version.}

Confirm that the provisioning completed successfully. On bare metal systems, use the command odacli list-jobs and the command odacli describe-job to verify the status.
2. Create an instance only database from the command-line interface.
- On bare metal systems, use the command odacli create-database with the instanceonly flag on an Oracle Database Appliance machine. The new database is the target database.

Creating an instance only database also creates the following:
- ACFS Filesystem used to store the database files
- Directory structures that are required by the database instance/rman duplicate command
- Password file for the SYS user
3. Configure a static listener.
4. Migrate the existing database to the target database using the backup and restore operations.

\section*{5. Register the migrated database with the appliance.}

\section*{- Note:}

You can only migrate and register a database of the same storage type. For example, to migrate and register an Oracle ACFS database, you must create an Oracle ACFS database and then migrate and register it. Similarly, to to migrate an Oracle ASM database, you must create an Oracle ASM database and then migrate it.

\section*{Configuring a Static Listener}

Configure a static listener before you duplicate a database.
The static listener is only required when using RMAN Duplicate command.
Perform the following steps to manually configure the listener.ora file:
1. Log in as a grid user.
2. Navigate to /u01/app/19.0.0.0/grid/network/admin/ directory.
3. Edit the default listener.ora file and append the static database entry.
```

SID_LIST_LISTENER=
(SID_LIST=
(SID_DESC=
(GLOBAL_DBNAME=db_unique_name with domain)
(ORACLE_HOME=db home)
(SID_NAME=db unique name)
(ENVS="TNS_ADMIN=database home/network/admin"))
)

```

For example, the following file is edited for an 19.23.0.0.0 database named PRODDB in the example.com domain:
```

SID_LIST_LISTENER=
(SID_LIST=
(SID_DESC=
(GLOBAL_DBNAME=PRODDB.example.com)
(ORACLE_HOME=/u01/app/oracle/product/19.0.0.0/dbhome_2)
(SID_NAME=PRODDB)
(ENVS="TNS_ADMIN=/u01/app/oracle/product/19.0.0.0/
dbhome_2/network/admin"))
)

```
4. Save the file.
5. Restart the listener.
```

srvctl stop listener -l listener
srvctl start listener -l listener

```

\section*{Migrating a Database}

Use the RMAN Duplicate command to migrate the entire database to the appliance.
Before migrating the database, verify that a network connection exists between the source and destination databases.
1. Verify that the sysdba connection to the auxiliary database is working. Use the password that you defined when you created the database with the --instanceonly flag.
```

sqlplus sys/password@hostname:PORT/GLOBAL_DBNAME as sysdba << EOF
select 1 from dual;
exit;
EOF

```

The following example uses the Welcome_12 password for myhost on port 1521 for PRODDB.example.com.
```

sqlplus sys/Welcome_12@myhost:1521/PRODDB.example.com as sysdba << EOF
select 1 from dual;
exit;
EOF

```
2. As oracle user, set the ORACLE_HOME and ORACLE_SID environment variables.
```

ORACLE HOME=path of Oracle Home against which the AUX DB is created
ORACLE_SID=database unique name

```
3. Display a list of all database storage configured on the appliance and database storage identifiers (ID).

Use the odacli list-dbstorages to display the storage IDs for all configured filesystems.
\begin{tabular}{|c|c|c|c|}
\hline ID Type & DBUnique & Name & Status \\
\hline 68d13446-f26c-49ee-ab75-a393732aa88a & Asm & rdb1 & Configured \\
\hline ff2023d9-338d-4cff-8bb4-e73a89e32ce 4 & Acfs & PRODDB & Configured \\
\hline
\end{tabular}
4. Display the database storage details, including the DATA, RECO and REDO locations, for each database storage ID.

For example, use the odacli describe-dbstorage command to display information about the ACFS storage for ID 9fe39332-cc1a-4b4b-8393-165524a6ef6b.
```


# odacli describe-dbstorage -i ff2023d9-338d-4cff-8bb4-e73a89e32ce4

DBStorage details

```
```

ID: ff2023d9-338d-4cff-8bb4-e73a89e32ce4
DB Name: PRODDB
DBUnique Name: PRODDB
DB Resource ID: c5b77384-634e-4dc8-b10b-fa2831d2c59b
Storage Type: Acfs
DATA Location: /u02/app/oracle/oradata/PRODDB
RECO Location: /u03/app/oracle/fast_recovery_area/
REDO Location: /u03/app/oracle/redo/
State: ResourceState(status=Configured)
Created: June 22, 2019 12:07:12 PM SGT
UpdatedTime: June 22, 2019 12:26:39 PM SGT

```
5. Duplicate the database.

Use the RMAN duplicate database command to duplicate the database.
```

rman target sys/Welcome__12@source database hostname:PORT
(Continued)
/Service Name auxiliary sys/Welcome_12@Hostname of the target
database:1521/service name
RUN {
SET NEWNAME FOR DATABASE TO NEW;
duplicate target database to PRODDB from active database
SPFILE
SET cluster database 'false'
SET audit_file_dest '/u01/app/oracle/admin/PRODDB/adump'
SET db_create_file_dest '/u02/app/oracle/oradata/PRODDB'
SET db_create_online_log_dest_1 '/u03/app/oracle/redo'
SET db_recovery_file_dest '/u03/app/oracle/fast_recovery_area'
SET control_files '/tmp/control_PRODDB.ctl' nofilenamecheck;
}

```

\section*{Registering a Database}

Use the odacli register-database command to register the migrated database with the appliance.

The dbclass, dbshape, servicename and password are mandatory for registering the database. The dbclass and dbshape determine the sga_target and pga_target settings. The database init. ora parameters are reset as part of the odacli register-database command. Review the init. ora parameters after registration and ensure that the parameters set correctly.

Follow these steps to register a database:
1. Ensure that the sqlpatches are in the Oracle Database Appliance environment. If the patches are not in the environment, copy the \(\$ 0 \mathrm{H} / \mathrm{sql}\) patch directories from the source database home to the \(\$ 0 \mathrm{H}\) in Oracle Database Appliance before executing the odacli register-database command

The odacli register-database command invokes the datapatch utility for applying the post patch SQLs. If the source database has any sqlpatches applied that are not present in the Oracle Database Appliance environment, then the datapatch will fail.
2. Register the database with Oracle Database Appliance.
```


# odacli register-database -c OLTP -s odb1 -sn example_service

Enter SYS, SYSTEM and PDB Admin user password:
Retype SYS, SYSTEM and PDB Admin user password:
{
"jobId" : "317b430f-ad5f-42ae-bb07-13f053d266e2",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "August 08, 2021 05:55:49 AM EDT",
"description" : "Database service registration with
db service name: example_service",
"updatedTime" : "August 08, 2018 05:55:49 AM EDT"
}

# odacli describe-job -i "317b430f-ad5f-42ae-bb07-13f053d266e2"

Job details

```

 ID: 317b430f-ad5f-42ae-bb07-13f053d266e2
 Description: Database service registration with
 db service name: example_service
 Status: Success
 Created: August 08, 2018 5:55:49 AM EDT
 Message:
\begin{tabular}{ll}
Task Name & Start Time \\
restore control file & August 08, 2018 5:55:49 AM EDT \\
move spfile to right location & August 08, 2018 5:56:08 AM EDT \\
register DB with clusterware & August 08, 2018 5:56:13 AM EDT \\
reset db parameters & August 08, 2018 5:57:05 AM EDT \\
Running DataPatch & August 08, 2018 5:57:36 AM EDT
\end{tabular}
(Continued)
 End Time Status
--
August 08, 2018 5:56:08 AM EDT Success
August 08, 2018 5:56:13 AM EDT Success
August 08, 2018 5:57:05 AM EDT Success
August 08, 2018 5:57:36 AM EDT Success
August 08, 2018 5:57:49 AM EDT Success
3. Use the odacli list-databases command to view the registered database.

\section*{About Registering a TDE-Enabled Database}

Understand the process to register TDE-enabled databases.
Starting with Oracle Database Appliance release 19.12, a new attribute called TDE Wallet Management is added to the database. The TDE Wallet Management value can be either EXTERNAL, which means TDE is not configured by Oracle Database Appliance, or the value can be ODA, which means TDE is configured by Oracle Database Appliance. If the database is not TDE-enabled, then the value of the TDE Wallet Management attribute is NULL. If a database of release 18 c or later is registered, then its TDE wallet management attribute value is ODA by
default. If a database of release earlier than 18 c is registered, then the TDE wallet management attribute value is EXTERNAL by default. The examples with sample output are provided at the end of this topic.

For Oracle Database release 19c or later, if the TDE Wallet Management value is EXTERNAL, then you can change this value to ODA using the --change-tdewallet-mgmt option in the odacli modify-database command. You must provide the TDE password when prompted.

For Oracle Database release 12c, the TDE Wallet Management value can be changed from EXTERNAL to ODAwhile upgrading the database to 19c or later using the --change-tdewalletmgmt option in the odacli upgrade-database command.

\section*{Note:}

Oracle Database Appliance does not support the conversion of a non-TDE database to a TDE-enabled database.

\section*{Prerequisites to Register a TDE-Enabled Database}

Following are the prerequisites to register a TDE-enabled database:
- You can use either the software keystore or the hardware keystore to configure TDE.
- If TDE is configured using the software keystore, then you must use only the SQLNET.ENCRYPTION_WALLET_LOCATION parameter.
- If TDE is configured using the software keystore, then for bare metal deployments, password-protected wallet (ewallet.p12) and autologin TDE wallet (cwallet.sso) must be available in the location/opt/oracle/dcs/commonstore/wallets/tde/db_uniquename/.
- If autologin TDE wallet (cwallet.sso) is not present but password-protected wallet (ewallet.p12) is present, then TDE password must be provided in the register database request.
- For Oracle Database Appliance DB systems deployments, if TDE is configured using Software keystore, then TDE must be configured using the WALLET_ROOT parameter and TDE wallets must be at location +DATA/DB_UNIQUE_NAME/tde.
- The instance name of the database being registered must be same as the database name. This condition also applies to the databases that do not have TDE enabled.

\section*{When TDE Wallet Management value is EXTERNAL}

Following are the restrictions when the TDE Wallet Management value is EXTERNAL:
- TDE wallet re-key using ODACLI commands is not supported. You can connect to the database and re-key the TDE wallet.
```


# odacli modify-database -in db_name -rkt

Enter TDE wallet password:
DCS-10040:Operation 'Re-Key of TDE wallet' is not supported: TDE wallet
management is not ODA.

```
- TDE wallet password change using ODACLI commands is not supported.
```


# odacli modify-database -in db_name -ctp

Enter current TDE wallet password:
Enter new TDE wallet password:

```

Retype new TDE wallet password:
DCS-10040:Operation 'Password change of TDE wallet' is not supported: TDE wallet management is not ODA.
- TDE wallet backup is not supported.
\# odacli create-backup -in database_name -c tdewallet
DCS-10040:Operation 'Backup of TDE wallet' is not supported: TDE wallet management is not ODA.
- TDE wallet is not backed up while performing database backup.
```


# odacli create-backup -in database_name -bt regular-10

{
"jobId" : "49153a90-d4bd-45e7-b3b7-46078621b895",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "August 24, 2021 05:59:53 AM UTC",
"resourceList" : [ ],
"description" : "Create regular-l0 Backup[TAG:auto][Db:db_name]
[OSS:example]",
"updatedTime" : "August 24, 2021 05:59:53 AM UTC"
}

# odacli describe-job -i 49153a90-d4bd-45e7-b3b7-46078621b895

Job details
------------------------------------------------------------------
ID: 49153a90-d4bd-45e7-b3b7-46078621b895
Description: Create regular-10 Backup[TAG:auto][Db:db_name]
[OSS:example]
Status: Success
Created: August 24, 2021 5:59:53 AM UTC
Message:

```

```


# odacli describe-backupreport -i b75c7ffa-68f8-4eea-8f12-bfe30b8c92f7 |

grep -i tde
"tdeWalletLoc" : null,

```
- Restore of TDE wallet is not supported.
```


# odacli restore-tdewallet -in db_name

Enter TDE wallet password:
DCS-10040:Operation 'Restore of TDE wallet' is not supported: TDE wallet
management is not ODA.

```
- Cloning of TDE-enabled database is not supported.
```

odacli clone-database -n db_name2 -f db_name -u db_name2
Enter SYS user password:
Retype SYS user password:
DCS-10040:Operation 'Cloning of TDE database' is not supported: TDE wallet
management is not ODA.

```
- When you move the database from one database home to another database home, the SQLNET.ENCRYPTION_WALLET_LOCATION parameter is updated in the destination database home.
- When you upgrade the database, the SQLNET.ENCRYPTION_WALLET_LOCATION parameter is updated in the new database home.
- When you update the database home, the SQLNET.ENCRYPTION_WALLET_LOCATION parameter is updated in the new database home.
- When you delete a database, the TDE wallet is not deleted.
- For Oracle Database Appliance DB systems, only databases that have TDE configured using the WALLET_ROOT parameter can be registered.

\section*{Example 10-1 Sample output of TDE-enabled database registered in bare metal deployments}
```


# odacli describe-database -in mydb

    Database details
    -----------------------------------------------------------------------
                            ID: 47de99d6-62cc-4623-a38c-1ac880e7082c
            Description: mydb
                        DB Name: mydb
            DB Version: 19.11.0.0.210420
            DB Type: SI
            DB Role: PRIMARY
        DB Target Node Name: node1
            DB Edition: EE
                DBID: 2987837625
    Instance Only Database: false
CDB: false
PDB Name:
PDB Admin User Name:
High-Availability Enabled: false
Class: OLTP
Shape: odb1
Storage: ASM
DB Redundancy:

```
```

    CharacterSet: AL32UTF8
    National CharacterSet: AL16UTF16
Language: AMERICAN
Territory: AMERICA
Home ID: 6717bed4-104a-415b-8d26-c0de634a2c85
Console Enabled: false
TDE Enabled: false
TDE Wallet Management: External
Level O Backup Day: Sunday
AutoBackup Enabled: true
Created: May 18, 2021 3:33:13 AM UTC
DB Domain Name: example_domain
Associated Networks: Public-network
CPU Pool Name:

```

\section*{Example 10-2 Sample output of TDE-enabled database registered in Oracle Database Appliance DB System deployments}
```


# odacli describe-database -in mydb

odacli describe-database -in mydb
Database details
-----------------------------------------------------------------
ID: 47de99d6-62cc-4623-a38c-1ac880e7082c
Description: mydb
DB Name: mydb
DB Version: 19.11.0.0.210420
DB Type: SI
DB Role: PRIMARY
DB Target Node Name: node1
DB Edition: EE
DBID: 2987837625
Instance Only Database: false
CDB: false
PDB Name:
PDB Admin User Name:
High-Availability Enabled:false
Class: OLTP
Shape: odb1
Storage: ASM
DB Redundancy:
CharacterSet: AL32UTF8
National CharacterSet: AL16UTF16
Language: AMERICAN
Territory: AMERICA
Home ID: 6717bed4-104a-415b-8d26-c0de634a2c85
Console Enabled: false
TDE Enabled: false
TDE Wallet Management: ODA
Level O Backup Day: Sunday
AutoBackup Enabled: true
Created: May 18, 2021 4:33:13 AM UTC
DB Domain Name: example_domain
Associated Networks: Public-network
CPU Pool Name:

```

\section*{Example 10-3 Sample output of TDE-enabled database registered in Oracle Database Appliance when password-protected wallet (ewallet.p12) exists but not the autologin TDE wallet (cwallet.sso)}
```


# odacli register-database -sn example_service --dbclass OLTP --dbshape odb2

Enter SYS user password:
DCS-10011:Input parameter 'TDE wallet password' cannot be NULL.Required to
generate Autologin wallet at /opt/oracle/dcs/commonstore/wallets/tde/db_name
odacli register-database -sn example_service --dbclass OLTP --dbshape odb2 -
tp
Enter SYS, SYSTEM and PDB Admin user password:
Retype SYS, SYSTEM and PDB Admin user password:
Enter TDE wallet password
Retype TDE wallet password:
{
"jobId" : "4903.b711-f144-4aed-9bf6-31c79dbce261",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "August 25, 2021 05:42:13 AM UTC",
"resourceList" : [ ],
"description" : "Database service registration with db service name:
example_service",
"updatedTime" : "August 25, 2021 05:42:14 AM UTC"
}

# odacli describe-job -i 4903b711-f144-4aed-9bf6-31c79dbce261

```
Job details

\title{
About Managing Multiple Database Instances Using Instance Caging
}

\section*{Use instance caging to manage your system resources on Oracle Database Appliance.}

Oracle Database provides a method for managing CPU allocations on a multi-CPU server that runs multiple database instances. This method is called instance caging. Instance caging uses an initialization parameter to limit the number of CPUs that an instance can use simultaneously.

Instance caging and Oracle Database Resource Manager (the Resource Manager) work together to support your desired service levels across multiple instances. Consolidation can minimize idle resources, maximize efficiency, and lower costs.

Oracle Database Appliance templates are already tuned for the size of each database instance workload. They are designed to run on a specific number of cores. Instance caging ensures that each database workload is restricted to the set of cores allocated by the template, enabling multiple databases to run concurrently with no performance degradation, up to the capacity of Oracle Database Appliance. You can select database template sizes larger than your current needs to provide for planned growth.

\section*{Note:}

Oracle strongly recommends that you use the Oracle Database Appliance templates, because they implement best practices and are configured specifically for Oracle Database Appliance.

The Oracle Database Appliance Manager interface refers to the database sizing templates as database classes.

By default, instance caging is not enabled on Oracle Database Appliance. To enable instance caging, set the initialization parameter, RESOURCE MANAGER PLAN, for each database on Oracle Database Appliance. The parameter specifies the plan to be used by the Resource Manager for the current instance. Setting this parameter directs the Resource Manager to allocate core resources among databases. If a plan is not specified with this parameter, then the Resource Manager and instance caging are not enabled.

Instance caging allocation of core resources is enabled in accordance with the Oracle Database Appliance database template size that you select for each database. The CPU_COUNT initialization parameter is set in the template. Use the CPU_COUNT setting that matches the size of each database to consolidate, and follow the standard instructions for configuring instance caging.

\section*{Oracle EM Express and DB Console}

You can use Oracle Enterprise Manager Database Express (EM Express), or the Database Control Console (DB Console) to manage your database.

The EM Express console is available for supported releases of Oracle Database. The consoles are web-based tools for managing Oracle Databases.

The EM Express console provides the following features:
- Support for basic administrative tasks, such as storage and user management
- Comprehensive solutions for performance diagnostics and tuning
- Performance advisors in a graphic user interface
- Oracle Database utilities in a graphic user interface, such as SQL*Loader and Oracle Recovery Manager (RMAN)
EM Express is built inside the database server and cannot perform actions outside the database.

\section*{Managing Storage}

Understand the storage options and how to manage storage for your Oracle Database Appliance deployment.
- About Managing Storage

You can add storage at any time without shutting down your databases or applications.
- Storage on Single Node Platforms

Review storage options on Oracle Database Appliance single node platforms.
- Storage on Multi Node Platforms

Review storage options on Oracle Database Appliance multi node platforms.

\section*{About Managing Storage}

You can add storage at any time without shutting down your databases or applications.
Oracle Database Appliance uses raw storage to protect data in the following ways:
- Fast Recovery Area (FRA) backup. FRA is a storage area (directory on disk or Oracle ASM diskgroup) that contains redo logs, control file, archived logs, backup pieces and copies, and flashback logs.
- Mirroring. Double or triple mirroring provides protection against mechanical issues.

The amount of available storage is determined by the location of the FRA backup (external or internal) and if double or triple mirroring is used. External NFS storage is supported for online backups, data staging, or additional database files.

Oracle Database Appliance X7-2M and X7-2-HA models provide storage expansion options from the base configuration.

\section*{- Note:}

The storage expansion shelf is no longer available for Oracle Database Appliance X7-2-HA and other older models. You can repurpose an existing storage expansion shelf from one Oracle Database Appliance system to another.

When you add storage, Oracle Automatic Storage Management (Oracle ASM) automatically rebalances the data across all of the storage including the new drives. Rebalancing a disk group moves data between disks to ensure that every file is evenly spread across all of the disks in a disk group and all of the disks are evenly filled to the same percentage. Oracle ASM automatically initiates a rebalance after storage configuration changes, such as when you add disks.

The redundancy level for FLASH is based on the DATA and RECO selection. If you choose High redundancy (triple mirroring), then FLASH is also High redudancy.

\section*{WARNING:}

Pulling a drive before powering it off will crash the kernel, which can lead to data corruption. Do not pull the drive when the LED is an amber or green color. When you need to replace an NVMe drive, use the software to power off the drive before pulling the drive from the slot. If you have more than one disk to replace, complete the replacement of one disk before starting replacement of the next disk.

\section*{Storage on Single Node Platforms}

Review storage options on Oracle Database Appliance single node platforms.
- Storage Options for Single Node Systems

Oracle Database Appliance X7-2S and X7-2M have NVMe storage configurations with storage expansion options.
- Adding NVMe Storage Disks Depending on the available drives, you can expand Oracle Database Appliance X7-2M storage to add NVMe disks or replace existing NVMe disks.
- Replacing NVMe Storage Disks Understand how you can replace existing NVMe disks on Oracle Database Appliance.

\section*{Storage Options for Single Node Systems}

Oracle Database Appliance X7-2S and X7-2M have NVMe storage configurations with storage expansion options.

Table 11-1 Storage Options for Oracle Database Appliance X7-2S and X7-2M
\begin{tabular}{|c|c|c|}
\hline Configuration & Oracle Database Appliance X7-2S & Oracle Database Appliance X7-2M \\
\hline Base Configuration & Two (2) 6.4TB NVMe drives populated in slots 0 and 1. & Two (2) 6.4TB NVMe drives populated in slots 0 and 1. \\
\hline Expansion Options & None & \begin{tabular}{l}
Options: \\
- Three (3) 6.4TB NVMe drives populated in slots 2 to 4. Order Qty 3-7120558 (one 6.4TB NVMe SSD) and upgrade to Oracle Database Appliance release 18.5 or later. \\
- Six (6) 6.4TB NVMe drives populated in slots 2 to 7. Order Qty 6-7120558 (one 6.4TB NVMe SSD) and upgrade to Oracle Database Appliance release 18.5 or later.
\end{tabular} \\
\hline
\end{tabular}

\section*{Adding NVMe Storage Disks}

Depending on the available drives, you can expand Oracle Database Appliance \(\mathrm{X} 7-2 \mathrm{M}\) storage to add NVMe disks or replace existing NVMe disks.

Use the ODAADMCLI commands to perform appliance storage maintenance tasks, including perform storage diagnostics and collect diagnostic logs for storage components.

\section*{Preparing for a Storage Upgrade}
1. Check the disk health of the existing storage disks.
\# odaadmcli show disk
2. Run the the odaadmcli show disk and asmcmd lsdsk -p commands to view and review the storage disk information in OAKD and Oracle Automatic Storage Management (Oracle ASM).
\# odaadmcli show disk
\# asmcmd lsdsk -p
3. Use ORAchk to confirm Oracle ASM and Oracle Clusterware health.

\section*{Adding NVMe Storage Disks}

The default configuration for Oracle Database Appliance \(\mathrm{X} 7-2 \mathrm{~S}\) or \(\mathrm{X} 7-2 \mathrm{M}\) includes two (2) NVMe disks. You cannot expand storage for Oracle Database Appliance X7-2S.

For Oracle Database Appliance \(\mathrm{X7} 7 \mathrm{-2M}\), you can expand storage by adding three (3) additional disks for a total of five (5) NVMe disks or by adding six (6) additional disks for a total of eight (8) NVMe disks. When you expand storage, adding just one or two NVMe drives is not supported.

\section*{WARNING:}

Pulling a drive before powering it off will crash the kernel, which can lead to data corruption. Do not pull the drive when the LED is an amber or green color. When you need to replace an NVMe drive, use the software to power off the drive before pulling the drive from the slot. If you have more than one disk to replace, complete the replacement of one disk before starting replacement of the next disk.

Follow all these steps to add NVMe storage disks:
1. Before adding the NVMe disks, ensure that the current disks are online in oakd and Oracle ASM. Otherwise, the prechecks fail. For example, for 3-disks expansion from slots 2 to 4, the disks in slots 0 and 1 must be online in Oracle ASM and oakd. For 3-disks expansion from slots 5 to 7 when slots 0 to 4 are filled, then all disks in slots 0 to 4 must be online. For 6-disks expansion from slots 2 to 7, all disks in slots 0 and 1 must be online.
2. Insert each disk one at a time in the appropriate slot and wait for the disk to power ON.
3. The disk automatically powers on when you insert the disk in the slot. Wait for one minute and then check disk status. If the disk is in the ON state, then you need not power on the disk manually. If the disk state is OFF as per the disk status, and then power on the disk manually, and then check the status again.
```


# odaadmcli power disk status slot_number

# odaadmcli power disk on slot_number

```

For example, to add three (3) NVMe disks, insert the disks in slots 2 to 4.
```


# odaadmcli power disk status pd_02

# odaadmcli power disk on pd_02

# odaadmcli power disk status pd_03

# odaadmcli power disk on pd_03

# odaadmcli power disk status pd_04

# odaadmcli power disk on pd_04

```
4. Repeat steps 2 and 3 for each disk to be added.
5. Run the odaadmcli expand storage command to add the new storage disks. Note: You must run this step to add the storage disk. Otherwise, the newly-added disk is not visible to OAKD and hence does not display when you run the odaadmcli show disk or odaadmcli show storage commands. The newly-added disk is recognized by OAKD after the odaadmcli expand storage command completes running successfully.
\# odaadmcli expand storage -ndisk number_of_disks

For example, to add three (3) NVMe drives:
```

\#odaadmcli expand storage -ndisk 3
Running precheck, it may take a few minutes.
Precheck passed.
Check the progress of expansion of storage by executing 'odaadmcli show
disk'
Waiting for expansion to finish. It may take several minutes to complete
depending upon the number of disks being expanded

```
6. Check the status of the new disk in OAKD with the odaadmcli show disk command. The disk must have the status Online and Good in OAKD. Check the status of the new disk in Oracle ASM with the asmcmd lsdsk -p command. The disk must be in CACHED MEMBER ONLINE NORMAL state.
```


# odaadmcli show disk

```
\# asmcmd lsdsk -p

\section*{Replacing NVMe Storage Disks}

Understand how you can replace existing NVMe disks on Oracle Database Appliance.

\section*{Preparing for a Storage Upgrade}
1. Update Oracle Database Appliance to the latest Patch Bundle before expanding storage.
\# odacli describe-component
2. Check the disk health of the existing storage disks.
\# odaadmcli show disk
3. Run the the odaadmcli show disk and asmcmd lsdsk -p commands to view and review the storage disk information in OAKD and Oracle Automatic Storage Management (Oracle ASM).
\# odaadmcli show disk
\# asmcmd lsdsk -p
4. Use ORAchk to confirm Oracle ASM and Oracle Clusterware health.

\section*{Replacing NVMe Storage Disks}

Follow all these steps to replace NVMe storage disks:

\section*{WARNING:}

Pulling a drive before powering it off will crash the kernel, which can lead to data corruption. Do not pull the drive when the LED is an amber or green color. When you need to replace an NVMe drive, use the software to power off the drive before pulling the drive from the slot. If you have more than one disk to replace, complete the replacement of one disk before starting replacement of the next disk.
1. Power OFF the NVMe disk before removing it from the slot.
2. Wait for one minute for OAKD to complete the operation for disk removal.
3. Insert the new disk in the slot.
4. Wait for at least 2-3 minutes between inserting each disk for OAKD to complete the operation to add the disk to Oracle ASM and OAK.
5. Check the status of the new disk in OAKD with the odaadmcli show disk command. The disk must have the status Online and Good in OAKD. Check the status of the new disk in

Oracle ASM with the asmcmd lsdsk -p command. The disk must be in CACHED MEMBER ONLINE NORMAL state.
\# odaadmcli show disk
\# asmcmd lsdsk -p

\section*{Storage on Multi Node Platforms}

Review storage options on Oracle Database Appliance multi node platforms.
- About Expanding Storage on Multi-Node Systems Oracle Database Appliance X7-2-HA platforms have options for high performance and high capacity storage configurations.
- Preparing for a Storage Upgrade Review and perform these best practices before adding storage to the base shelf or adding the expansion shelf.
- Adding Solid-State Drives (SSDs) for Data Storage Add a pack of solid-state drives (SSDs) for data storage into the existing Oracle Database Appliance base configuration to fully populate the base storage shelf.
- Adding the Storage Expansion Shelf Use the following procedure only if you want to repurpose an existing storage expansion shelf from one Oracle Database Appliance system to another.

\section*{About Expanding Storage on Multi-Node Systems}

Oracle Database Appliance X7-2-HA platforms have options for high performance and high capacity storage configurations.

Oracle Database Appliance X7-2-HA are shipped with the base configuration of 16 TB SSD raw storage for DATA and 3.2 TB SSD raw storage for REDO, leaving 15 available slots to expand the storage. If you choose to expand the storage, you can fill the 15 slots with either SSD or HDD drives. For a high performance configuration, you can expand storage by adding 15 SSDs. If you want to add 15 HDDs, then the high performance configuration changes to a high capacity configuration. In this case, you must reimage and redeploy the appliance.

In all configurations, the base storage and the storage expansion shelf each have four (4) 800 GB SSDs for REDO disk group and five (5) 3.2 TB SSDs (either for DATA/RECO in the SSD option or FLASH in the HDD option).

\section*{Note:}

With Oracle Database Appliance release 18.8, you can add 7.68 TB SSDs to a configuration with existing 3.2 TB SSDs. The 7.68 TB SSDs are partitioned down to match the 3.2 TB SSD capacity. The 3.2 TB SSDs and the expansion shelf are no longer available. However, if you replace all your existing 3.2 TB SSDs with 7.68 TB SSDs, then the entire 7.68 TB capacity of the SSDs is utilized for storage.

\section*{High Performance}

A high performance configuration uses solid state drives (SSDs) for DATA and REDO storage. The base configuration has 16 TB SSD raw storage for DATA and 3.2 TB SSD raw storage for REDO.

You can add up to fifteen 7.68 TB SSDs (available in five-packs). Note that 3.2 TB SSDs are no longer available. To support 7.68 TB SSDs in the system, ensure that your deployment is on Oracle Database Appliance release 18.7 or later.

Note:
With Oracle Database Appliance release 18.8, you can add 7.68 TB SSDs to a configuration with existing 3.2 TB SSDs. The 7.68 TB SSDs are partitioned down to match the 3.2 TB SSD capacity. The 3.2 TB SSDs and the expansion shelf are no longer available. However, if you replace all your existing 3.2 TB SSDs with 7.68 TB SSDs, then the entire 7.68 TB capacity of the SSDs is utilized for storage.

\section*{ASM Cluster File System (ACFS)}

\section*{ASM Disk Groups +DATA, +RECO, +REDO}

\section*{SSDs}

Log
SSDs

\section*{High Capacity}

A high capacity configuration uses a combination of SSD and HDD drives.
The base configuration has 16 TB SSD raw storage for FLASH disk group and 3.2 TB SSD raw storage for REDO.

With Oracle Database Appliance release 18.8, the following expansion options are available:
- Base shelf: Additional fifteen 14 TB HDDs (available in a fifteen-pack). Note that 10 TB HDDs are no longer available. To support 14 TB HDDs in the system, ensure that your deployment is on Oracle Database Appliance release 18.7 or later.
- Storage Expansion shelf: The expansion shelf is no longer available.

\section*{Note:}

When you expand storage to include HDD on the base storage shelf, you must reposition the drives to the correct slots and redeploy the appliance after adding the HDD drives.

Note:
10TB HDDs are no longer available. To expand storage, you can use 15 packs of 14TB HDD drive.

\section*{ASM Cluster File System (ACFS)}

\section*{HDDs}

\section*{Cache SSDs \\ Log SSDs}

Table 11-2 Storage Options for Oracle Database Appliance X7-2-HA
\begin{tabular}{|c|c|c|}
\hline Configuration & Oracle Database Appliance X7-2-HA SSD Only Configuration for High Performance & Oracle Database Appliance X7-2-HA SSD and HDD Configuration for High Capacity \\
\hline Base & JBOD: & JBOD: \\
\hline Configuration & \begin{tabular}{l}
- Four (4) 800 GB SSD \\
- Five (5) 3.2 TB SSD
\end{tabular} & \begin{tabular}{l}
- Four (4) 800 GB SSD \\
- Five (5) 3.2 TB SSD \\
- Fifteen (15) 10 TB HDD
\end{tabular} \\
\hline \multirow[t]{4}{*}{Base Shelf Expansion Options} & With Oracle Database Appliance release 18.8, you can add 7.68 TB SSDs to a configuration with existing 3.2 TB SSDs. The 7.68 TB SSDs are partitioned down to match the 3.2 TB SSD capacity. The 3.2 TB SSDs are no longer available. & \begin{tabular}{l}
You can use 15 packs of 14 TB HDD drive. The 10 TB HDDs are no longer available. \\
With Oracle Database Appliance release 18.8, you can also replace all five 3.2 TB SSDs in the base configuration with 7.68
\end{tabular} \\
\hline & With Oracle Database Appliance release 18.8, you can also reimage and redeploy the appliance to completely replace 3.2 TB SSDs with 7.68 TB SSDs. The entire 7.68 TB capacity of the SSDs is utilized for storage. & \begin{tabular}{l}
TB SSDs. \\
If you replace all HDDs or SSDs in the base configuration with higher capacity disks, then you must reimage and redeploy the appliance with Oracle Database Appliance release 18.8.
\end{tabular} \\
\hline & Order 7600790: Five pack of 7.68 TB SSD drive & Order Qty 1: 7600792: Fifteen pack of 14TB HDD drive \\
\hline & & Order 7600790: Five pack of 7.68 TB SSD drive \\
\hline \begin{tabular}{l}
Storage \\
Expansion Shelf
\end{tabular} & The expansion shelf is no longer available. & The expansion shelf is no longer available. \\
\hline
\end{tabular}

\section*{Preparing for a Storage Upgrade}

Review and perform these best practices before adding storage to the base shelf or adding the expansion shelf.
1. Update Oracle Database Appliance to the latest Patch Bundle before expanding storage.
2. Confirm both nodes are at the same version and patch bundle level for software and firmware.
\# odacli describe-component
3. Check the disk health of the existing storage disks.

Run the check on both nodes and use the default checks option to check the NetworkComponents, OSDiskStorage, SharedStorage, and SystemComponents.
\# odaadmcli validate -d
4. Run the odaadmcli show diskgroup command on each node to display and review Oracle Automatic Storage Management (Oracle ASM) disk group information.
```


# odaadmcli show diskgroup DATA

# odaadmcli show diskgroup RECO

    # odaadmcli show diskgroup REDO
    ```
5. Confirm Oracle ASM and CRS health on both nodes.

Run orachk on each node. If there is a problem connecting to either node, then check the /etc/bashrc file and remove (or remark out) any values in the profile for root ; oracle; grid users
6. Confirm communications between the nodes and that SSH is working using the same password for oracle, root and grid.

From each node:
a. ssh to both nodes.
b. Ping both nodes.
7. Confirm there is at least 10 GB of space available on each node.
[root@oda]\# df -h
[root@odb] \# df -h

\section*{Adding Solid-State Drives (SSDs) for Data Storage}

Add a pack of solid-state drives (SSDs) for data storage into the existing Oracle Database Appliance base configuration to fully populate the base storage shelf.

If you need to add storage to the base configuration, you can order one, two, or three 5-pack of SSDs to complete the base configuration on Oracle Database Appliance X7-2-HA.

\section*{- Note:}

You can only add SSDs to the base storage shelf, for a high-performance configuration. For high-capacity configuration, you can expand storage to use HDDs.

Before adding the disks to the system, ensure that Oracle Database Appliance is on the latest update version.

The 3.2 TB SSDs are no longer available. You can use the 5-pack of 7.68 TB SSDs for storage expansion.
1. Insert disks one at a time in the slots.

To add one 5-pack of SSDs, insert the disks in slots 5 to 9. To add two 5-pack of SSDs, insert the disks in slots 5 to 14. To add three 5-pack of SSDs, insert the disks in slots 5 to 19.

\section*{Note:}

Allow at least one minute between inserting each disk.

After all disks are added, go to Step 2.
2. Run the odaadmcli show ismaster command to determine which node is the master.
\# odaadmcli show ismaster
3. Run the odaadmcli expand storage command on the master node.
```

\#odaadmcli expand storage -ndisk number of disks to be added
-enclosure enclosure number of the disks to be added, either 0 or 1

```

For example:
```

\#odaadmcli expand storage -ndisk 5 -enclosure 0
Running precheck, it may take a few minutes.
Precheck passed.
Check the progress of expansion of storage by running 'odaadmcli show disk'
Waiting for expansion to finish. It may take several minutes to complete
depending upon the number of disks being expanded.
odaadmcli expand storage command completed.
Check status of newly expanded disk in OAK by running 'odaadmcli show disk'
All of them must be ONLINE status. Check status of newly expanded disk in
ASM
by running 'asmcmd lsdsk -p', mount status must be CACHED and header status
should be MEMBER for all the newly added disks. If the status of newly
added
disks in OAK and ASM are different then expand storage command failed.

```

It takes 10 to 12 minutes to add all of the disks to the configuration.
4. Run the odaadmcli show disk command to ensure that all disks are listed, are online, and are in a good state.
\# odaadmcli show disk
5. Verify that the disks in slots 5 to 9 are added to Oracle Automatic Storage Management (Oracle ASM).
a. Run the asm_script to verify that the disks in slots 5 to 9 are added to Oracle Automatic Storage Management (Oracle ASM). If the 5 disks are successfully added (CACHED and MEMBER), then go to Step 7.
su grid user /opt/oracle/oak/bin/stordiag/asm_script.sh 16

\section*{For example:}
\#/opt/oracle/oak/bin/stordiag/asm_script.sh 16 | grep CACHED
/dev/mapper/SSD_EO_S05_1399652120p1 SSD_E0_S05_1399652120P1 1 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_E0_S05_1399652120p2 SSD_E0_S05_1399652120P2 3 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_EO_S06_1399645200p1 SSD_E0_S06_1399645200P1 1 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_EO_S06_1399645200p2 SSD_EO_S06_1399645200P2 3 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_E0_S07_1399646692p1 SSD_E0_S07_1399646692P1 1 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_E0_S07_1399646692p2 SSD_E0_S07_1399646692P2 3 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_E0_S08_1399649840p1 SSD_E0_S08_1399649840P1 1 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_EO_S08_1399649840p2 SSD_E0_S08_1399649840P2 3 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_EO_S09_1399649424p1 SSD_EO_S09_1399649424P1 1 NORMAL ONLINE CACHED MEMBER
/dev/mapper/SSD_EO_S09_1399649424p2 SSD_EO_S09_1399649424P2 3 NORMAL ONLINE CACHED MEMBER
b. If the disks are not added to Oracle ASM, then add them manually. As grid user, execute the sqlplus '/as sysasm' command on the master node to add the disks to Oracle ASM.

For a system without Oracle Automatic Storage Management Filter Driver (Oracle ASM Filter Driver) configured, add the Oracle ASM disks as follows:
```

SQL> alter diskgroup /*+ OAK_AsmCookie */ data add disk
'/dev/mapper/SSD_E0_S05_13}997\overline{6}4284p1' name SSD_E0_S05_1399764284p1
'/dev/mapper/SSD_E0_S06_1399765076p1' name SSD_E0_S06_1399765076p1,
'/dev/mapper/SSD_E0_S07_1399765116p1' name SSD_E0_S07_1399765116p1,
'/dev/mapper/SSD_E0_S08_1399765484p1' name SSD_E0_S08_1399765484p1,
'/dev/mapper/SSD_E0_S09_1399765504p1' name SSD_E0_S09_1399765504p1;
SQL> alter diskgroup /*+ _OAK_AsmCookie */ reco add disk
'/dev/mapper/SSD_E0_S05_1399764284p2' name SSD_E0_S05_1399764284p2,
'/dev/mapper/SSD_E0_S06_1399765076p2' name SSD_E0_S06_1399765076p2,
'/dev/mapper/SSD_E0_S07_1399765116p2' name SSD_E0_S07_1399765116p2,
'/dev/mapper/SSD_E0_S08_1399765484p2' name SSD_E0_S08_1399765484p2,
'/dev/mapper/SSD_E0_S09_1399765504p2' name SSD_E0_S09_1399765504p2;

```

For a system with Oracle Automatic Storage Management Filter Driver (Oracle ASM Filter Driver) configured, add the Oracle ASM disks as follows:

SQL> alter diskgroup /*+ OAK AsmCookie */ data add disk
'AFD:SSD_E0_S05_1399764284P1' name SSD_E0_S05_1399764284p1, 'AFD:SSD_E0_S06_1399765076P1' name SSD_E0_S06_1399765076p1, 'AFD:SSD_E0_S07_1399765116P1' name SSD_E0_S07_1399765116p1,
```

'AFD:SSD_EO_S08_1399765484P1' name SSD_E0_S08_1399765484p1,
'AFD:SSD_E0_S09_1399765504P1' name SSD_E0_S09_1399765504p1;
SQL> alter diskgroup /*+ _OAK_AsmCookie */ reco add disk
'AFD:SSD_E0_S05_1399764284P2' name SSD_E0_S05_1399764284p2,
'AFD:SSD_E0_S06_1399765076P2' name SSD_E0_S06_1399765076p2,
'AFD:SSD_E0_S07_1399765116P2' name SSD_E0_S07_1399765116p2,
'AFD:SSD_E0_S08_1399765484P2' name SSD_E0_S08_1399765484p2,
'AFD:SSD_E0_S09_1399765504P2' name SSD_E0_S09_1399765504p2;

```
6. Use the odaadmcli show validation storage errors command to show hard storage errors.
Hard errors include having the wrong type of disk inserted into a particular slot, an invalid disk model, or an incorrect disk size.
\# odaadmcli show validation storage errors
7. Use the odaadmcli show validation storage failures command to show soft validation errors.

A typical soft disk error would be an invalid version of the disk firmware.
\# odaadmcli show validation storage failures
8. Confirm that the oak_storage_conf.xml file shows the number of disks added on both nodes, after the addition. For example, if you added 10 disks to the base configuration, then the numberOfDisks option must show 19.
```

\#cat /opt/oracle/oak/conf/oak_storage_conf.xml

<!--
This file is created by the ODA software as part of system provisioning
based on system provisioning requests. Values of element nodes can be
changed by OAK in response to storage configuration change operation.
DO NOT EDIT THIS FILE.
-->
<CometConfiguration>
    <OakStorageConfigInfo type="string" dimension="vector" readonly="true"
required="true" default="">
        <!-- Number of disks part of OAK -->
        <numberOfDisks>12</numberOfDisks>
        <!-- Number of partitions per disk part of DATA diskgroup in single
partition scheme -->
        <!-- All ASM diskgroups in single partition scheme will have same
number of partition -->
        <numOfDataDiskPartitionInAsm>1</numOfDataDiskPartitionInAsm>
    </OakStorageConfigInfo>
</CometConfiguration>
```

\section*{Adding the Storage Expansion Shelf}

Use the following procedure only if you want to repurpose an existing storage expansion shelf from one Oracle Database Appliance system to another.

\section*{- Note:}

The storage expansion shelf is no longer available for Oracle Database Appliance X7-2-HA and other older models. Use the following procedure only if you want to repurpose an existing storage expansion shelf from one Oracle Database Appliance system to another. If an existing storage shelf is repurposed, that is, moved from a system where oakd and Oracle ASM were configured, then you must clean up the disks on the second JBOD before adding them to the new deployment. See the topic Performing Secure Erase of Data on Storage Disks in this guide.

You must fully populate the base configuration before you can add an expansion shelf. If you add an expansion shelf, the shelf must have the same disk storage configuration as the base storage shelf.

\section*{- Note:}

You can follow the same procedure to add storage to tbe base configuration on Virtualized Platform by using oakcli command equivalent of the odacli or odaadmcli commands in the procedure.
, Note:
Oracle recommends that you add a storage expansion shelf when you have relatively little activity on your databases. When the system discovers the new storage, Oracle Automatic Storage Management (Oracle ASM) automatically rebalances the disk groups. The rebalance operation may degrade database performance until the operation completes.
1. Install and cable the storage expansion shelf, but do not power on the expansion shelf.

\section*{Caution:}

Review cabling instructions carefully to ensure that you have carried out cabling correctly. Incorrect connections can cause data loss when adding a storage expansion shelf to Oracle Database Appliance with existing databases.
2. Verify that both nodes plus the base storage shelf are up and running. Log into each server node and run the odacli validate-storagetopology command to confirm that the base configuration cabling is correct.
\# odacli validate-storagetopology
```

            INFO : Check if JBOD powered on
    SUCCESS : JBOD : Powered-on
            INFO : Check for correct number of EBODS(2 or 4)
    SUCCESS : EBOD found :
    2

```
```

            INFO : Check for overall status of cable validation
    ```
 INFO : Check for overall status of cable validation
on NodeO
on NodeO
 SUCCESS : Overall Cable Validation on NodeO
 SUCCESS : Overall Cable Validation on NodeO
 SUCCESS : JBOD Nickname set correctly : Oracle Database Appliance - E0
```

    SUCCESS : JBOD Nickname set correctly : Oracle Database Appliance - E0
    ```

Run the command to confirm that the two server nodes are properly cabled to the base storage shelf and all disks are online, with a good status, and added to the existing disk groups on both nodes. If there any failures, then fix the cabling before proceeding to the next step.

\section*{Note:}

If the output shows that EBOD found is 2, then you only have the base storage shelf. If \(E B O D\) found is 4 , then you have a base storage shelf and an expansion shelf.

\section*{Note:}

If the JBOD was configured earlier, then the EBOD found message is displayed. If an unconfigured JBOD is added, then a warning message is displayed.
```

odacli validate-storagetopology
WARNING : JBOD Nickname is incorrectly set to :

```
3. Power on the storage expansion shelf.
4. Log in to each server node and run the odacli validate-storagetopology command to validate the storage cabling and confirm that the new storage shelf is recognized.
```


# odacli validate-storagetopology

    INFO : Check if JBOD powered on
    SUCCESS : 2JBOD : Powered-
    on
INFO : Check for correct number of EBODS(2 or 4)
SUCCESS : EBOD found :
4
INFO : Check for overall status of cable validation on NodeO
SUCCESS : Overall Cable Validation on NodeO

```
```

    SUCCESS : JBODO Nickname set correctly : Oracle Database Appliance - E0
    SUCCESS : JBOD1 Nickname set correctly : Oracle Database Appliance -
    E1

```

Look for the following indicators that both storage shelves are recognized:
- When there are two shelves, the JBOD (just a bunch of disks) is numbered. For example:

SUCCESS : 2JBOD : Powered-on
- When both shelves are recognized, the EBOD found value is 4.
```

SUCCESS : EBOD found : 4

```
- When the expansion shelf is cabled properly, the nickname is E1. For example:
```

    SUCCESS : JBODO Nickname set correctly : Oracle Database
    Appliance - EO
SUCCESS : JBOD1 Nickname set correctly : Oracle Database
Appliance - E1

```

Fix any errors before proceeding.
5. Run the odaadmcli show disk command to ensure that all disks in the expansion shelf are listed, are online, and are in a good state.
\# odaadmcli show disk

When all disks are online and in a good state, proceed to the next step.
6. Run the odaadmcli show enclosure command to check the health of components in expansion shelf.
\# odaadmcli show enclosure
7. Run the odaadmcli show ismaster command on Node 0 to confirm that Node 0 is the master.
\# odaadmcli show ismaster
8. Run the odaadmcli expand storage command on the master node.
```


# odaadmcli expand storage -ndisk 24 -enclosure 1

Running precheck, it may take a few minutes.
Precheck passed.
Check the progress of expansion of storage by running 'odaadmcli show disk'
Waiting for expansion to finish. It may take several minutes to complete
depending upon the number of disks being expanded
odaadmcli expand storage command completed.
Check status of newly expanded disk in OAK by running 'odaadmcli show disk'
All of them must be ONLINE status. Check status of newly expanded disk in
ASM

```
by running 'asmcmd lsdsk -p', mount status must be CACHED and header status should be MEMBER for all the newly added disks. If the status of newly added
disks in OAK and ASM are different then expand storage command failed.

It takes approximately 30 to 40 minutes to add all of the disks to the configuration.
9. Use the odaadmcli show validation storage errors command to show hard storage errors.

Hard errors include having the wrong type of disk inserted into a particular slot, an invalid disk model, or an incorrect disk size.
\# odaadmcli show validation storage errors
10. Use the odaadmcli show validation storage failures command to show soft validation errors.

A typical soft disk error would be an invalid version of the disk firmware.
\# odaadmcli show validation storage failures
11. Run the odacli describe-component command to verify that all firmware components in the storage expansion are current.
\# odaadmcli describe-component
12. If needed, update the storage shelf and then run the odacli describe-component command to confirm that the firmware is current.
\# odaadmcli update
\# odaadmcli describe-component

Managing Networks

View the public and private networks that are configured on your Oracle Database Appliance.
- About Network Infrastructure and VLANs on Oracle Database Appliance

Learn about networks and virtual local area networks (VLANs) on the appliance.
- Viewing Configured Networks and Network Interfaces

Use the Browser User Interface to display a list of configured networks, network details and interfaces.
- Creating a Network

Create a new network for the appliance.
- Creating a Non-Bonded Physical Network

For a non-bonded network configuration, you can create a physical network on the unused physical interface.
- Updating a Network

Update a network to revise the IP address, subnet mask, gateway, or type of network.
- Deleting a Network

Delete a configured network.

\section*{About Network Infrastructure and VLANs on Oracle Database Appliance}

Learn about networks and virtual local area networks (VLANs) on the appliance.
Oracle Database Appliance has two dual-port public network interfaces (either copper or fiber), which are bonded. The network interface is btbond0 in single- and multi-node platforms.

You can only enable one of the interfaces in a bonded network. You can use the bonded network to manage VLANs, or you can break the bond and create two separate physical network interfaces (non-bonded network configuration) in your data center.

\section*{Note:}

To create a second network, you must configure, or plumb, the initial network as a non-bonded network before deploying the appliance. You cannot use VLANs on a non-bonded network.

Use the Browser User Interface to display all physical and virtual networks. For multi-node systems, the IP addresses for Node 0 and Node 1 cannot be the same.

\section*{Virtual Local Area Networks (VLANs)}

Oracle Database Appliance supports multiple virtual local area networks (VLANs) on the same network port or bond. VLANs are multiple logical networks that are created from a single physical network switch port, providing network security isolation for multiple workloads that
share a common network. For example, application, backup, and management networks. Each VLAN acts as an independent logical network operating with other VLANs over the same physical connection. The VLAN tag associated with the data packet and network define the network. You can create a collection of isolated networks to enhance network security and bandwidth and keep data packets separated.

The network interfaces differ, depending on your Oracle Database Appliance hardware. The VLAN is created on btbond0 in single- and multi-node platforms. In all cases, connections to user domains are through the selected interfaces. A switch that supports tagged VLANs uses VLAN IDs to identify the packet, including to which network the packet belongs.

\section*{Note:}

To use VLANs with Oracle Database Appliance, you must configure the VLANs before you deploy the appliance.

The Browser User Interface enables you to create, list, and delete VLANs on the appliance. For multi-node systems, you can use the Browser User Interface to create a VLAN on both nodes of the appliance. To create a VLAN on a specific node, use the command-line interface.

For a bare metal deployment, use the Browser User Interface or odaadmcli commands to manage the following types of VLANs:
- Public: For public access. This is the default public interface.
- Backup: For backup operations.
- Management: For management traffic.
- Custom: For usage defined by the customer. For example, for applications.

The public VLAN is setup when you configure the first network using the command configure-firstnet. You can set up only one public VLAN. Use the command-line interface to create other VLANs. For multi-node systems, the IP addresses for Node 0 and Node 1 cannot be the same. Oracle Database Appliance does not support Dynamic Host Configuration Protocol (DHCP) to provide IP addresses, subnet mask and default gateway.

\section*{Non-Bonded Network Configuration}

When you plumb the network for deployment, you can choose to use a bonded network, or you can choose to break the bond to create a non-bonded network configuration. The non-bonded network enables you to create a physical network on the unused physical interface.

When you use the command configure first-net to plumb the network as a non-bonded interface, there are two physical network interfaces, em2 and em3. One of the interfaces is for the public network, the second interface is available for you to create a network.

To create a second network, you must configure, or plumb, the initial network as a non-bonded network before deploying the appliance.

\section*{Viewing Configured Networks and Network Interfaces}

Use the Browser User Interface to display a list of configured networks, network details and interfaces.
1. Click the Appliance tab in the Browser User Interface.
2. Click the Network tab in the left navigation to display a list of configured networks.

When the appliance is a multi-node system, tabs named Node0 and Node1 appear in the right corner, below the Refresh button. Click a tab to display network details for each node.
3. Click Show Interfaces in the upper left corner of the Network page to display a list of network interfaces.

When the appliance is a multi-node system, tabs named Node0 and Node1 appear in the right corner, below the Refresh button. Click a tab to display the interfaces for each node.
4. Click Show Networks to go back to the network view.

\section*{Creating a Network}

Create a new network for the appliance.
When naming a network, you can use alphanumeric characters, dashes (-) and underscores
() . The network name cannot exceed 40 characters and must begin with an alpha character.
1. Click the Appliance tab in the Browser User Interface.
2. Click the Network tab in the left navigation to display a list of configured networks.
3. If the appliance is a multi-node system, the Browser User Interface helps you create the network for both nodes at the same time.
4. Click Create Network in the upper right corner.
5. Enter the network information in the required fields. The Interface field has a drop-down menu with available choices. The Subnet Mask field has a drop-down menu with available choices and a search box. Optionally, enter a Gateway IP address and select an option from the Network Type list. Enter the SCAn and Virtual IP address. The network type helps to identify if the network is for backup, database, dataguard, management, private, or other. Click Create.

\section*{Creating a Non-Bonded Physical Network}

For a non-bonded network configuration, you can create a physical network on the unused physical interface.

If you plumbed the network as a non-bonded interface, you create two physical network interfaces, em2 and em3. One interface is the public network, the second interface is available for you to create a network.

\section*{- Note:}

To create a second network, you must configure, or plumb, the initial network as a non-bonded network before deploying the appliance. You cannot use VLANs on a non-bonded network.
1. Click the Appliance tab in the Browser User Interface.
2. Click the Network tab in the left navigation to display a list of configured networks.
3. If the appliance is a single-node system, click Create Network in the upper right corner. If the appliance is a multi-node system, go to Step 4.
a. Enter the network information in the required fields. The Interface field has a dropdown menu with available choices. The Subnet Mask field has a drop-down menu with available choices and a search box. Optionally, enter a Gateway IP address and select an option from the Network Type list. The network type helps to identify if the network is for backup, database, dataguard, management, private, or other.
b. Click Create.
4. If the appliance is a multi-node system, then the Browser User Interface helps you create the network for both nodes at the same time. Click Create Network in the upper right corner.
a. Enter the network information in the required fields. The Interface field has a dropdown menu with available choices. The Subnet Mask field has a drop-down menu with available choices and a search box. Optionally, enter a Gateway IP address and select an option from the Network Type list. Enter the SCAN and Virtual IP address. The network type helps to identify if the network is for backup, database, dataguard, management, private, or other.
b. Click Create.

\section*{Updating a Network}

Update a network to revise the IP address, subnet mask, gateway, or type of network.
1. Click the Appliance tab in the Browser User Interface.
2. Click the Network tab in the left navigation to display a list of configured networks.

When the appliance is a multi-node system, tabs named Node0 and Node1 appear in the right corner, below the Refresh button. Click a tab to display network details for each node.
3. If the appliance is a multi-node system, click Node0 or Node1 to display the node where the network that you want to edit resides.
4. Expand the Actions menu, then click Update for the network that you want to edit.
5. Update the information in the IP Address, Subnet Mask, Gateway, SCAN, Virtual IP fields and select a network type from the list, as needed, then click Update.

\section*{Deleting a Network}

Delete a configured network.
1. Click the Appliance tab in the Browser User Interface.
2. Click the Network tab in the left navigation to display a list of configured networks.

When the appliance is a multi-node system, tabs named Node0 and Node1 appear in the right corner, below the Refresh button. Click a tab to display network details for each node.
3. If the appliance is a multi-node system, click Node0 or Node1 to display the node where the network that you want to delete resides.
4. Expand the Actions menu, then click Delete for the network that you want to delete.
5. Confirm the action when prompted.

Backup, Restore and Recover Databases

Review backup, restore, and recovery operations for your databases.
- About Database Backup and Recovery Options

Backup your databases in Oracle Database Appliance and use the restore and recover features to restore a database to the same or another system or to recover database files.
- Configuring NFS Backup and Restore on Oracle Database Appliance To backup databases to Network File System (NFS) location or to restore the database from NFS location, you must configure the NFS backup location to ensure that Oracle Database Appliance can perform read and write operations.
- Configuring Agent Proxy Settings for Object Store Access If the Object Store IP address is accessible only through proxy setup by the Oracle Database Appliance server, then define the proxy setting for the agent, so that the agent can access the Object Store.
- Creating a Database Backup Policy Understand how to create a policy to backup a database to an internal or external Oracle Fast Recovery Area (FRA) location or to the Object Store using the Browser User Interface.
- Updating a Database with a Backup Policy Attach a backup policy to a database to define the database backup attributes and destination.
- Updating a Backup Policy Use the Browser User Interface to update the recovery window, change the ObjectStore Credential, or change the crosscheck option for a backup policy.
- Backing Up a Database Using the Browser User Interface Apply a backup policy to a database, create a manual backup, update a database backup schedule, or update an archive log backup scheduler.
- Viewing Backup Reports Understand how you can use the Browser User Interface to view backup reports.
- Recovering a Database Using the Browser User Interface Understand the recovery options available for recovering a database.
- Deleting a Backup Using the Browser User Interface Use the Browser User Interface to delete database backups.
- Deleting a Backup Policy Use the Browser User Interface to delete a database backup policy.
- Using the CLI to Backup, Restore, and Recover Use the command-line interface to backup, restore, and recover databases.

\section*{About Database Backup and Recovery Options}

Backup your databases in Oracle Database Appliance and use the restore and recover features to restore a database to the same or another system or to recover database files.

It is important to create a backup recovery strategy to protect the databases in Oracle Database Appliance from data loss. A user error or a physical problem with a disk can cause a failure of a read or write operation on a disk file required to run the database. You can create a backup policy in the Browser User Interface or from the command-line interface.

The following backup options are available:
- Backup to an Oracle Fast Recovery Area (FRA) disk (Internal FRA)
- Backup to Oracle Cloud Infrastructure Object Storage (Oracle Object Storage)
- Backup to a Network File System (NFS) location (External FRA)

You can use the backup, restore, and recovery features with databases that have backup policy attached to them in the system. You can choose to manage your backups, and set up your backup, restore, and recovery options.

The backup feature enables you to create a backup policy with your backup parameters, such as backup location, recovery window, enable and disable crosscheck, and ObjectStoreSwift Object details. For new and existing databases, you can create and attach a backup policy to a database to perform backup. After a backup policy is attached to a database, the DCS agent automatically schedules the database backup and archive logs backup, for the database. By default, the frequency of the database backup schedule is once a day and the frequency of archivelog backup schedule is 30 minutes. The database backup scheduler performs level 0 backup every Sunday and a level 1 backup Monday through Saturday. However the level 0 backup day can be changed from the default Sunday to any day of the week. The database backup scheduler and archive logs backup schedulers can be disabled or have their frequencies changed.

The DCS agent generates and saves a backup report for each backup. The backup report contains the metadata required to recover or restore a database.

Oracle Database Appliance uses the Oracle Recovery Manager (RMAN) to recover the database. You can recover from a backup report, a point-in-time (PITR), a System Change Number (SCN), or from the latest backup. When a backup report is used for recovery, it performs an SCN recovery, by reading the SCN value from the backup report. For recovery of data block, tablespaces, data files, PDBs, see the Oracle Database Backup and Recovery Reference Guide.

\section*{Backup Policy}

The backup policy defines the backup details. When you create a backup policy, you define the destination for the database backups, either Internal FRA (Disk) or External FRA (NFS location), or Oracle Object Storage, and you define the recovery window.

If you use the Oracle Object Storage for backup and recovery, you must have an ObjectStore Resource ID or Name.

You can assign the backup policy to the database when you create the database. You can also attach a backup policy to an existing database or update a backup policy.

You can specify compression algorithm while creating the backup policy. The supported compression algorithms are BASIC, LOW, MEDIUM, and HIGH. For Objectstore backup policy, you can specify any compression algorithm. By default, if you do not specify the compression algorithm while creating the Objectstore backup policy, then MEDIUM compression algorithm is used. By default, if you do not specify the compression algorithm while creating the Disk or NFS backup policy, then BASIC compression algorithm is used. Refer to the Oracle Database Licensing Information User Manual for license considerations when you use LOW, MEDIUM, or HIGH compression algorithms for Disk or NFS backup policy.

\section*{Backup Levels}

Specify the backup level when you take a backup. The supported back levels are:
- Level 0: This backup captures all blocks in the datafile. By default, level 0 backups occur every Sunday. You can customize your backup settings through the Browser User Interface or the command-line. A level 0 backup is a full backup and is used as the parent for a level 1 backup.
- Level 1: This backup is an incremental backup that captures only those blocks that change between backups in each datafile. By default, a level 1 backup occurs daily, Monday through Saturday, and captures images of each block in a datafile that changed. Level 1 backups are differential backups. The Level 1 backup includes blocks that were changed from the most recent level 1 or level 0 backup.
- LongTerm: This backup is a long-term, or archival backup. Use LongTerm to create a backup that is all-inclusive and exempt from the backup retention policy. The backup is allinclusive because every file needed to restore and recover the database is backed up to a single location. The backup is exempt from the retention policy that is defined in the recovery window. For long term backups, you must use External FRA (NFS location) or Objectstore backup policy.
- Archivelog: This is a backup of all archive logs not yet backed up to the backup destination, such as Internal FRA, External FRA (NFS location), or Object Store.
When a database is modified with a backup configuration, database backup schedule and archive logs backup schedules are created automatically. Automatic database backup schedule creates a level 0 backup on Level 0 Backup Day, by default, on Sunday, and level 1 on the remaining days of the week. Also, automatic archive logs backup schedules creates archive logs backup for the database with a default frequency of 30 minutes. These backup schedules can be edited to enable or disable or change the frequency using cron expression.

\section*{Backup to Disk}

When you backup to disk, you are using the Oracle Fast Recovery Area (FRA) of the disk. FRA is a storage directory that allows backup and recovery operations on Oracle databases. The directory contains archived redo logs, backup pieces and copies, and the control file.

Advantages to backing up to disk are as follows:
- Quick recovery from backups stored on disk
- Automate management of recovery related files (like archived logs)

Note:
- When you backup to disk, the data for non-TDE database is not encrypted and RMAN backup encryption are not allowed. In addition, backup to disk requires a lot of disk space (up to two to three times the size of the database).
- If the database is TDE-enabled, then the RMAN backup encryption password is not required, irrespective of the backup destination.

The following is a high-level overview of the workflow for backup and recovery when using a disk:
1. Create a backup policy to define the backup destination (disk) and recovery window for the disk destination.
2. Create a database and attach the backup policy to the database. When the backup policy is associated with a database, archive logs backups and database backups are automatically created.
3. Manage obsolete backups.
4. Recover the database from a backup on the disk.

\section*{Backup to External FRA (Network File System)}

Specifying a Network File System (NFS) location for backups, enables you to safely and securely store or retrieve a database backup at any time.

The advantages of using NFS backup location are:
- With NFS, you can access remote files, locally, by mounting local file systems on a network.
- Provides a centralized backup location, without requiring manual refresh.
- Supports enhanced security options using firewalls and Kerberos.
- Support for encrypted backups using passwords. You optionally, set the backup password, and provide the same during restore operation.
- The RMAN Backup Encryption password is applicable for databases that do not have TDE enabled. If the database has TDE enabled, then the RMAN backup password is not required, irrespective of the backup destination.
The following is a high-level overview of the workflow for backup and recovery when using an NFS location:
1. Create a mount point for the NFS location.

The mount point must be accessible from both nodes. The oracle user must have read/ write permissions to the NFS location. If the request is being made to a remote server, ensure that it is running. See Creating a Mount Point for NFS Backup Location for the procedure to create a mount point.
2. Create a backup policy specifying the NFS location, and the recovery window for NFS destination.
3. Associate the database with this backup policy, either during database creation, or by updating the backup policy for the database.
4. Backups are automatically scheduled, and you can also run manual backups. You can specify manual backup options in the Browser User Interface or using ODACLI commands.
5. Manage obsolete backups.
6. Restore from backup. When you save your backups to NFS, you can restore the database to the same system or to a different system.
7. Recover the database from a backup on NFS.

\section*{Backup to Oracle Object Storage}

Oracle Object Storage is a highly secure, scalable storage platform that enables you to safely and securely store or retrieve a database backup at any time. Data and the associated metadata are stored as an object in a logical container (bucket). Oracle Database Appliance creates a Backup Report and a unique ID to identify each backup.

Oracle Object Storage is tightly integrated with Oracle Cloud Infrastructure Identity and Access Management. The data, user-defined metadata associated with the data, and encryption keys are automatically encrypted using 256-bit Advanced Encryption Standard (AES- 256). The encryption keys are rotated frequently and cannot be disabled. By default, only authenticated users that have explicitly been granted access to specific resources can access data stored in Oracle Object Storage. Data is uploaded and downloaded over SSL endpoints using the HTTPS protocol.

When you backup to Oracle Object Storage, you are using your backup policy and your Oracle ObjectStoreSwift credentials. The credentials are stored in an encrypted Oracle wallet. You can attach the credentials to one or more backup policies.

Note:
Credentials are validated when you create the backup policy that uses Oracle Object Storage. The credentials are not validated against the URL and tenancy.

Advantages to using Oracle Object Storage are as follows:
- Backups are encrypted using the password for non-TDE databases. For TDE-enabled databases, backups are encrypted by default and do not require the RMAN backup encryption password to be specified separately.

\section*{Caution:}

Save the password that you use during backups in a safe location, you must provide the password during recovery operations.
- Quick recovery from backups. With the Oracle Object Storage, you can safely and securely use the Browser User Interface to store or retrieve data directly from within the cloud platform, at any time.
- Automate management of recovery related files (like archived logs)
- Oracle Object Storage is not directly accessed by the operating system, instead it uses APIs to access the storage at the application level.
The following is a high-level overview of the workflow for backup and recovery when using Oracle Object Storage:
1. Create an Object Store object with your credentials.
2. Create a backup policy to define the backup location (Object Store), Object Store Credentials Name, the container (bucket) name where you want to store backups, and the recovery window.
3. Create a database and attach the backup policy either as a part of creating the database, or update the database with backup policy after creating the database. When the backup policy is associated with a database, backups are automatically created.
4. Manage obsolete backups.
5. Restore from backup. When you save your backups to Oracle Object Storage, you can restore the database to the same system or to a different system.
6. Recover the database from a backup on Oracle Object Storage.

\section*{- Note:}

Before you can use this backup option, you must create an Oracle Cloud Infrastructure Object Storage account. When you create the account, you define the account credentials, end point URL, and bucket. Go to the Oracle Store and sign up for Oracle Cloud Infrastructure Object Storage.

\section*{Backup Reports}

A backup report is generated for each backup and is similar to, but does not replace, a recovery catalog. The report contains the Oracle Database Appliance information and metadata needed to restore or recover a database. The Backup Report is designed to keep track of all of the information required to restore or recover a database.

The following is an example of a level 1 backup report:
```

"id" : "2d82460c-d648-4e75-8c7d-72cc90bc442a",
"dbResId" : "b5fc646e-01a6-4c8b-8286-7633346c4329",
"tag" : null,
"dbId" : "2717054291",
dbName" : "HRDbO"
"dbUniqueName" : "HRDbOu",
"backupType" : "REGULAR-L1",
"keepDays" : null,
"backupLocation" : "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/dbaasimage/backupbucket",
"cfBackupHandle" : "c-2717054291-20171108-04",
"spfBackupHandle" : "c-2717054291-20171108-04",
"pitrTimeStamp" : "November 08, 2017 12:43:14 PM UTC",
"pitrSCN" : "1175058",
"resetLogsTimeStamp" : "November 08, 2017 09:55:34 AM UTC"
"resetLogsSCN" : "1112268",
"oraHomeVersion" : "12.2.0.1.170814 (26723265, 26609817)",
"sqlPatches" : "25811364,26609817",
"backupLogLoc" : "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/dbaasimage/backupbucket/scaoda702c1n1/rmanlog/
HRDbOu/2717054291/2017-11-08/rman_backup_2017-11-08_12-42-41.0545.log",
"tdeWalletLoc" : null,
"dbConfigLoc" : "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/dbaasimage/backupbucket/scaoda702c1n1/dbconfig/
HRDbOu/2717054291/2017-11-08/DBCONFIG_TAG20171108T124407_2017-11-08_12-44-07.0533.tar.gz",
"name" : "Backup_Report_HRDbO"
"createTime" : "November 08, 2017 12:42:08 PM UTC",
"state" : {
"status" : "CONFIGURED"
},
"updatedTime" : "November 08, 2017 12:44:12 PM UTC",
"backupReportLogDetail" : "https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/dbaasimage/backupbucket/scaoda702cln1/
rmandetaillogreport/HRDbOu/2717054291/2017-11-08/rman_list_backup_detail_2017-11-08_12-44-04.0362.log",
"dbInfo" : {
"dbClass" : "OLTP"
"dbType" : "RAC"
"dbShape" : "odb1",
"dbEdition" : "EE",
"dbStorage" : "ASM"
},
"dbDataSize" : "1542M",

```

\section*{About Backup of TDE Wallet}

When the database backup is performed, the TDE wallet backup is also taken. The database backup can be of any type like regular-L0, regular-L1, longterm and archivelog. Use the odacli list-tdebackupreports command to view the latest TDE wallet backup in a backup destination. For example, if a TDE-enabled database named tdedb1 was attached with Disk, and then NFS, and later Oracle Object Storage backup configuration, and the database was backed up to each of these backup destination eventually, then the odacli listtdebackupreports command lists three entries of TDE wallet backup corresponding to Disk, NFS and Oracle Object Storage backup destination, respectively, for the database tdedb1. The reason for selecting the latest copy is that the TDE wallet is a cumulative wallet, that is, all previous changes, such as re-key operation is available in the latest TDE wallet itself.

\section*{About Recovery Options}

The recovery in Oracle Database Appliance always performs a full database restore or recover. The recovery options are LATEST, PITR, SCN, and BackupReport.

The following types of recovery are available:
- LATEST: Performs a complete recovery (valid backups and all required archived logs and online redo logs must be available)
- PITR: Point-in-Time Recovery that performs a recovery to a specified timestamp within the current incarnation of database
- SCN: SCN-based recovery that performs a recovery is an incomplete recovery to a specified SCN within the current incarnation of database.
- BackupReport: Performs a recovery based on the Backup Report SCN. The BackupReport option is similar to SCN, except that the recovery uses the Backup Report SCN instead of a specified SCN.

\section*{Point-in-Time Database Recovery}

Point-in-Time Recovery (PITR) recovers the database to a specific point-in-time. You must specify the timestamp for this type of recovery.

A point-in-time recovery is often used for the following situations:
- You want to recover the database to an SCN before a user or administrative error.
- Complete database recovery failed because all necessary archived redo logs were not available.
- A database upgrade fails.
- You are creating a test database or a reporting database from production database backups.

\section*{System Change Number Recovery}

A system change number (SCN) is a stamp that defines a committed version of a database at a point in time. Oracle assigns every committed transaction a unique SCN. You can recover a database to the latest time or to an SCN.

The database is restored from backups created before the target time, and then applies incremental backups and logs to re-create all changes between the time of the data file backups and the end point of recovery. When the end point is specified as an SCN, the
database applies the redo logs and stops after each redo thread or the specified SCN, whichever occurs first. When the end point is specified as a time, the database internally determines a suitable SCN for the specified time and then recovers to this SCN.

SCN is a primary mechanism to maintain data consistency in Oracle database. With each execution, there is an increase in the count of the SCN. The following are some examples of areas that use SCN:
1. Redo records. Every redo record has an SCN version of the redo record in the redo header (redo records can have non-unique SCN). Given redo records from two threads (as in the case of RAC), recovery will order them in SCN order, essentially maintaining a strict sequential order.
2. Data block. Every data block has block SCN (block version). In addition to that, a change vector in a redo record also has expected block SCN. This means that a change vector can be applied to one and only version of the block. Code checks if the target SCN in a change vector is matching with the block SCN before applying the redo record. If there is a mismatch, corruption errors are thrown.
3. Read consistency. Every query has query environment which includes an SCN at the start of the query. A session can see the transactional changes only if that transaction commit SCN is lower then the query environment SCN.
4. Commit. Every commit generates an SCN (commit SCN) that marks a transaction boundary. Group commits are possible too.

\section*{Restoring Archive Logs}

The database auto backup policies - Regular-L0, and Regular-L1 delete archivelog, which could be essential in later process, such as in configuration or reinstate operations for Oracle Data Guard. Oracle Database Appliance supports restore of archive logs for a database. You can choose to restore archive logs from one SCN to another SCN, or from one timestamp to another timestamp.

Run the command odacli restore-archivelog specifying the SCN or timestamp period.

\section*{Obsolete Database Backups}

It is important to remove older backups once they become obsolete. The type of backup and the recovery window that you define in the database backup policy determines when database backups become obsolete.

For level 0, level 1, and archivelog backups, run the command odacli delete-backup for a given Database Resource Identifier to delete obsolete backups and backup reports based on the defined recovery window.

For Longterm backups, provide the corresponding backup report as an input and use the command odacli delete-backup to delete the backups from Oracle Object Storage or NFS backup location and the back report you specify in the command.

Typically, older level 0 and level 1 database backups are considered obsolete based on the defined recovery window and those obsolete backups are deleted when you run the odacli delete-backup command. The defined recovery window is as follows:
- Disk: 1-14 days
- Object Storage: 1-30 days

Starting with Oracle Database Appliance release 19.15, on attaching a backup policy to a database, the DCS agent creates a scheduler for deleting the database backup. It deletes the obsolete backups and backup reports for the database. By default, the frequency of this delete
backup scheduler is once a week. It runs on every Monday to delete obsolete backups and backup reports of the database. The delete backup scheduler can be edited to disable it or to change its frequency.

\section*{Related Topics}
- Configuring an NFS Backup Location

Configure Network File System (NFS) backup location, to set up the NFS backup and mount the NFS client location on Oracle Database Appliance.

\section*{Configuring NFS Backup and Restore on Oracle Database Appliance}

To backup databases to Network File System (NFS) location or to restore the database from NFS location, you must configure the NFS backup location to ensure that Oracle Database Appliance can perform read and write operations.

Following are the steps to configure the NFS location, backup database to NFS location, and restore database as a standby database from the NFS backup location.
- Configuring an NFS Backup Location

Configure Network File System (NFS) backup location, to set up the NFS backup and mount the NFS client location on Oracle Database Appliance.
- Backing Up the Database to NFS Location

To backup a database to NFS location on Oracle Database Appliance, you must create an NFS backup configuration object and then attach the same to the database.
- Restoring the Database from NFS Backup Understand the steps to restore a database from NFS location.

\section*{Configuring an NFS Backup Location}

Configure Network File System (NFS) backup location, to set up the NFS backup and mount the NFS client location on Oracle Database Appliance.

An NFS setup involves an NFS server location and an NFS client location. While performing database backup operation, it is recommended that you configure the NFS server location on a different system, than the system where the source database, that is, the database to be backed up, is running. This ensures the database backups are not lost, even if the system where the source database is running, is corrupted or lost. However, the NFS client location must be configured on the same machine where the database is running, to perform database backup operation. Also, while performing database restore operation, the NFS client location must be configured on the same system where the database must be restored.

\section*{Note:}
- An NFS backup configuration object must be created and attached to the database. This NFS backup location is a mandatory parameter to create a NFS backup configuration object.
- For TDE-enabled database, Oracle Database Appliance requires the backup path to be different for database and TDE wallet, as per security guidelines. If the source database is TDE-enabled, then configure another NFS client location following the steps in this topic.

Run the following steps on the NFS server:
1. Create an Oracle ADVM volume and format the volume as Oracle ACFS, on any node, for example, node0, of a different Oracle Database Appliance system, as the grid operating system user.
```

[root@***** ~]\# su - grid
[grid@***** ~]\# asmcmd
ASMCMD> volcreate -G data -s 100G backup
ASMCMD> volinfo -G data backup
Diskgroup Name: DATA
Volume Name: BACKUP
Volume Device: /dev/asm/backup-322
State: ENABLED
Size (MB): 102400
Resize Unit (MB): 64
Redundancy: HIGH
Stripe Columns: 8
Stripe Width (K): 4096
Usage:
Mountpath:
ASMCMD> exit
[grid@***** ~]\$ mkfs -t acfs /dev/asm/backup-322
mkfs.acfs: version = 19.0.0.0.0
mkfs.acfs: on-disk version = 46.0
mkfs.acfs: volume = /dev/asm/backup-322
mkfs.acfs: volume size = 107374182400 ( 100.00 GB )
mkfs.acfs: Format complete.
[grid@***** ~]\$ exit

```
2. Create an operating system directory as the root user to export Oracle ACFS volume created in the previous step.
[root@***** ~] \# mkdir /nfs_backup_server
3. Register the file system with Oracle Clusterware and start the file system as the root user.
```

[root@***** ~]\# /u01/app/19.13.0.0/grid/bin/srvctl add filesystem -
d /dev/asm/backup-322 -path /nfs_backup_server -mountowner oracle -
mountgroup asmadmin
[root@***** ~]\#/u01/app/19.13.0.0/grid/bin/srvctl start filesystem -
d /dev/asm/backup-322

```
4. Identify the owner and group of the \(D B H O M E /\) bin/oracle binary of the source database and set the directory ownership to the same owner and group. In the following example, the
 Hence, the ownership of NFS server location is set to the same. The permissions of the directory must be set to 750 .
```

[root@***** ~]\# ls -ltr /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1/bin/oracle
-rwsr-s--x 1 oracle asmadmin 449234896 Sep 21 11:39 /u01/app/

```
```

odaorahome/oracle/product/19.0.0.0/dbhome_1/bin/oracle
[root@***** ~]\# chown oracle:asmadmin /nfs_backup_server
[root@***** ~ ] \# chmod 750 /nfs_backup_server
[root@***** ~]\# ls -ld /nfs_backup_server
drwxr-x--- 2 oracle asmadmin 4096 Sep 21 12:25 /nfs_backup_server

```
5. When NFS server location and NFS client location are on different systems, then there may be cases where the IDs of the oracle user and the asmadmin group may be different. If the IDs of the oracle user and the asmadmin group are the same, then do not run step 6. In the following example, the ID of oracle user is 1001 on the NFS server system and 1000 on the NFS client system.

Output of the system where the NFS server location is configured:
[root@***** ~] \# id oracle
uid=1001(oracle) gid=1001(oinstall)
groups=1001 (oinstall), 1006 (asmdba), 1003 (dba), 1002 (dbaoper)

Output of the system where the NFS client location is configured:
[root@***** ~]\# id oracle
uid=1000(oracle) gid=1001(oinstall)
groups=1001(oinstall), 1006 (asmdba), 1003(dba), 1002 (dbaoper)

In such a case, the ownership of the NFS server location must be set to the same ID as the oracle useron the system where the NFS client location is configured. The ownership of the /nfs_backup_server location must be set to 1000 as follows:
```

[root@***** ~]\# chown 1000:asmadmin /nfs_backup_server/

```
6. Export the NFS server location to the systems where the NFS client location is created.
```

[root@***** ~]\# cat /etc/exports
/nfs_backup_server Node0_NFS_Client_Location_IP(rw,sync,no_root_squash)
/nfs_backup_server Node1_NFS_Client_Location_IP(rw,sync, no_root_squash)

```

Note that the NFS mount option must be (rw,sync, no_root_squash). Starting with Oracle Database Appliance release 19.17, there is no dependency on NFS mount option no_root_squash, It can then be (rw, sync).
7. Restart the NFS server.
```

Command on Oracle Linux 7 systems:
[root@***** ~]\# /bin/systemctl restart nfs.service
Command on Oracle Linux 8 systems:
[root@***** ~]\# /bin/systemctl restart nfs-server

```
8. Verify the mount point using the showmount -e command.
```

[root@***** ~]\# showmount -e
Export list for ******

```
```

    /nfs_backup_server
    NodeO_NFS_Client_Location_IP,Node1_NFS_Client_Location_IP

```

Follow these steps to mount the NFS location on Oracle Database Appliance. If the source database is on an Oracle Database Appliance high-availability system, then run the following steps on both nodes.
1. Create a NFS client location as the root user.
[root@***** ~]\# mkdir /nfs_backup_client
2. Mount the NFS client location on to the NFS server location, using the IP address of the system where the NFS server location is configured.
[root@***** ~]\# mount -t nfs NFS_Server_Location_IP:/nfs_backup_server / nfs_backup_client

\section*{Related Topics}
- About Database Backup and Recovery Options

Backup your databases in Oracle Database Appliance and use the restore and recover features to restore a database to the same or another system or to recover database files.

\section*{Related Topics}
- Preparing for Database Backup to NFS Location

Use the command-line interface to create a policy to backup a database to an External FRA (NFS Location).

\section*{Backing Up the Database to NFS Location}

To backup a database to NFS location on Oracle Database Appliance, you must create an NFS backup configuration object and then attach the same to the database.

The relationship between NFS backup configuration object and database is one-to-many, that is, you can attach one NFS backup configuration object to multiple databases. Use the NFS backup location that you configured in the Configuring an NFS Backup Location topic to create an NFS backup configuration object.

Follow these steps to backup a database to an NFS location:
1. Create the NFS backup configuration with the NFS backup location using the odacli create-backupconfig command. In the following sample output, the NFS backup location, specified using the -c option, is /nfs_backup_client/, the name of the NFS backup configuration object, specified using the -n option is nfsbcfg , the destination, specified using the -d option is nfs and the retention period, specified using the -w option is 1 day.

If the source database is TDE-enabled, then along with database backup location, specified using the -c option, the TDE wallet location must also be specified using the \(-f\) option. The TDE backup path must be different from the database backup path and can be configured in the same way as the database backup path.
```


# odacli create-backupconfig -n nfsbcfg -d nfs -c /nfs_backup_client/ -w 1

    {
    "jobId" : "0a86bd50-7ac7-4d6d-af4b-1ee2c4d451d5",
    "status" : "Created",
    "message" : "backup config creation",
    "reports" : [ ],
    ```
```

        "createTimestamp" : "September 21, 2022 17:02:21 PM UTC",
        "resourceList" : [ {
        "resourceId" : "023eb9ac-a4d0-4071-a358-c904791d15d7",
        "resourceType" : null,
        "resourceNewType" : "BackupConfig",
        "jobId" : "0a86bd50-7ac7-4d6d-af4b-1ee2c4d451d5",
        "updatedTime" : null
        } ],
        "description" : "create backup config:nfsbcfg",
        "updatedTime" : "September 21, 2022 17:02:21 PM UTC"
    }
    
# odacli describe-job -i 0a86bd50-7ac7-4d6d-af4b-1ee2c4d451d5

    Job details
    ------------------------------------------------------------------------
        ID: 0a86bd50-7ac7-4d6d-af4b-1ee2c4d451d5
        Description: create backup config:nfsbcfg
                        Status: Success
            Created: September 21, 2022 5:02:21 PM UTC
            Message: backup config creation
    ```

Task Name
Time
```

Start End Time Status

```
\(\qquad\)
```

----------
Backup config metadata persist September 21, 2022 5:02:21 PM
UTC September 21, 2022 5:02:21 PM UTC Success

```
2. Attach the NFS backup configuration object to the database using the odacli modifydatabase command.
```


# odacli modify-database -in mydb -bin nfsbcfg

    {
        "jobId" : "4cd995f1-feb4-413e-a863-71e87cc97cff",
        "status" : "Created",
        "message" : "Modify database",
        "reports" : [ ],
        "createTimestamp" : "September 21, 2022 17:37:13 PM UTC",
        "resourceList" : [ {
            "resourceId" : "09b476c2-8f09-4636-9233-d8789c320b25",
            "resourceType" : "DB",
            "resourceNewType" : null,
            "jobId" : "4cd995f1-feb4-413e-a863-71e87cc97cff",
            "updatedTime" : "September 21, 2022 17:37:13 PM UTC"
        } ],
        "description" : "Modify database : mydb",
        "updatedTime" : "September 21, 2022 17:37:13 PM UTC"
    }
    # odacli describe-job -i 4cd995f1-feb4-413e-a863-71e87cc97cff
    Job details
    ```
 ID: 4cd995f1-feb4-413e-a863-71e87cc97cff

3. Backup the database using the odacli create-backup command. For example, you can take a backup type called Regular-L0 with archivelog using the -ka option.

Note that you must take the backup with the - ka option, if you want to restore the backup as a standby database only for Oracle Database Appliance releases earlier than 19.12. From Oracle Database Appliance release 19.12 and later, the - ka option is not mandatory for restoring the database as standby.
```


# odacli create-backup -in mydb -bt regular-10 -ka

    {
        "jobId" : "6dc7ae65-93e3-4dc2-b4a7-563c8f98b01a",
        "status" : "Created",
        "message" : null,
        "reports" : [ ],
        "createTimestamp" : "September 21, 2022 17:39:03 PM UTC",
        "resourceList" : [ ],
        "description" : "Create regular-10 Backup[TAG:auto][Db:mydb][NFS:/
    nfs_backup_client/orabackups/scaoda823-c/database/3031000803/mydb]",
"updatedTime" : "September 21, 2022 17:39:03 PM UTC"
}

# odacli describe-job -i 6dc7ae65-93e3-4dc2-b4a7-563c8f98b01a

    Job details
    -----------------------------------------------------------------------
                    ID: 6dc7ae65-93e3-4dc2-b4a7-563c8f98b01a
                            Description: Create regular-l0 Backup[TAG:auto][Db:mydb]
    [NFS:/nfs_backup_client/orabackups/scaoda823-c/database/3031000803/mydb]
Status: Success
Created: September 21, 2022 5:39:03 PM UTC
Message:

```

4. Oracle Database Appliance creates a backup report corresponding to each backup. Identify the backup report of the above database backup job using the odacli listbackupreports command. Describe the backup using the odacli describe-backupreport - backupreport_id command and save its output to a JSON file, as shown in the following example. After the JSON file for the backup report is ready, copy the file to the target system where you want to restore the database backup.
```


# odacli list-backupreports | grep -i mydb

    496d6e76-d061-4bc2-ae0a-b3325eaa15fa 09b476c2-8f09-4636-9233-
    d8789c320b25 3031000803 mydb mydb regular-10
auto September 21, 2022 5:39:16 PM UTC September 21, 2022
5:39:16 PM UTC Configured

# odacli describe-backupreport -i 496d6e76-d061-4bc2-ae0a-b3325eaa15fa >

mydb.json

```

\section*{Restoring the Database from NFS Backup}

Understand the steps to restore a database from NFS location.
Follow these steps to restore a database from an NFS location:
1. The NFS client location must be created on both the nodes of the Oracle Database Appliance system as the root user.
```

[root@***** ~]\# mkdir /nfs_backup_client

```
2. At the server system, export the NFS server location to the Oracle Database Appliance system using the IP address of the Oracle Database Appliance system.
```

[root@***** ~]\# cat /etc/exports
/nfs_backup_server <Node0_target_machine_IP>(rw,sync,no_root_squash)
/nfs_backup_server <Node1_target_machine_IP>(rw,sync,no_root_squash)

```

For Oracle Database Appliance release 19.16 and earlier, you must specify the no_root_squash parameter. Starting with Oracle Database Appliance release 19.17, you need not specify the no_root_squash parameter.

\section*{3. Restart the NFS server on the system with the NFS server location.}
```

Command on Oracle Linux 7 systems:
[root@***** ~]\# /bin/systemctl restart nfs.service
Command on Oracle Linux 8 systems:
[root@***** ~]\# /bin/systemctl restart nfs-server

```
4. Restore the database.
```


# odacli irestore-database -r mydb.json

    Enter SYS user password:
    Retype SYS user password:
    {
            "jobId" : "85a8792a-ca9b-4a50-8202-11d63949d3f2",
            "status" : "Created",
            "message" : null,
            "reports" : [ ],
            "createTimestamp" : "September 21, 2022 17:43:06",
            "resourceList" : [ ],
            "description" : "Database service recovery with db name: mydb",
            "updatedTime" : "September 21, 2022 17:43:06"
    }
    # odacli describe-job -i 85a8792a-ca9b-4a50-8202-11d63949d3f2
        Job details
        --------------------------------------------------------------------
                            ID: 85a8792a-ca9b-4a50-8202-11d63949d3f2
                    Description: Database service recovery with db name: mydb
                        Status: Success
                                Created: September 21, 2022 5:43:06 PM UTC
                        Message:
    ```
 Task Name Start
Time End Time Status

-_-_-_-_-_
 Check if cluster ware is running September 21, 2022 5:43:30 PM
UTC September 21, 2022 5:43:30 PM UTC
 Success
 Check if cluster ware is running September 21, 2022 5:43:30 PM
UTC September 21, 2022 5:43:30 PM UTC
 Success
 Creating DbStorage for DbRestore
UTC September 21, 2022 5:48:36 PM UTC
 Validating dbHome available space
 success
 September 21, 2022 5:43:30 PM
UTC September 21, 2022 5:43:30 PM UTC
 Success
 Validating dbHome available space
UTC September 21, 2022 5:43:30 PM UTC
 Success
 September 21, 2022 5:43:30 PM
UTC September 21, 2022 5:43:31 PM UTC
 Success
 Generating SSH key
UTC September 21, 2022 5:43:31 PM UTC Success
 September 21, 2022 5:43:31 PM
```

    Reset Associated Networks September 21, 2022 6:30:03 AM
    UTC September 21, 2022 6:30:04 AM UTC
Set log_archive_dest for Database
UTC September 21, 2022 6:30:11 AM UTC
Success
September 21, 2022 6:30:04 AM
Success

```

\section*{Configuring Agent Proxy Settings for Object Store Access}

If the Object Store IP address is accessible only through proxy setup by the Oracle Database Appliance server, then define the proxy setting for the agent, so that the agent can access the Object Store.

To create a backup policy that uses Object Store location, the agent must be able to access the Object Store URL.
1. Define the HttpProxyHost and HttpProxyPort settings in the modify-agentconfigparameters command.
```

    # odacli modify-agentconfig-parameters -n HttpProxyHost -v www-
    proxy.test.com -n HttpProxyPort -v 80 -u
Job details
--------------------------------------------------------------------
ID: Ob0cbf9b-b0ab-4523-a096-5da4e48fc825
Description: Update agent configuration parameter values [HttpProxyHost,
HttpProxyPort]
Status: Created
Created: October 23, 2023 4:56:53 PM IST
Message:
Task Name Start Time End Time Status

```

For more information about the modify-agentconfig-parameters command usage, see the Oracle Database Appliance Command-Line Interface.
2. Verify that the update succeeded:
```


# odacli describe-job -i 0b0cbf9b-b0ab-4523-a096-5da4e48fc825

Job details
------------------------------------------------------------------
ID: 0b0cbf9b-b0ab-4523-a096-5da4e48fc825
Description: Update agent configuration parameter values [HttpProxyHost,
HttpProxyPort]
Status: Success
Created: October 23, 2023 4:56:53 PM IST
Message:
Task Name Start Time End Time Status

```
3. Run the list-agentconfigParameters command to view the changes in the proxy settings:
\# odacli list-agentConfigParameters
```

Name Value Description Updated
HttpProxyHost www-proxy.test.com October 23, 2023 4:56:53 PM IST
HttpProxyPort 80 October 23, 2018 4:56:53 PM IST
HttpsProxyHost Https proxy server host October 23, 2023 12:23:21 AM IST
HttpsProxyPort Https proxy server port October 23, 2023 12:23:21 AM IST
OSPatchRepos Repo list for OS patching October 23, 2023 12:23:21 AM IST

```

You can now use the Browser User Interface or the command-line interface to create a backup policy to use the ObjectStore location for backup.

\section*{Related Topics}
- odacli list-agentconfig-parameters

Use the odacli list-agentconfig-parameters command to list configuration variables used by the appliance.

\section*{Creating a Database Backup Policy}

Understand how to create a policy to backup a database to an internal or external Oracle Fast Recovery Area (FRA) location or to the Object Store using the Browser User Interface.

The backup policy defines the backup, including the location where you want to store the backups and the recovery window. Backup to disk requires a lot of disk space (up to two to three times the size of the database).
Follow these steps to create a backup policy from the Browser User Interface:
1. Click the Database tab in the Browser User Interface.
2. Click Backup Policy in the left navigation to display a list of backup policies.
3. Click Create Backup Policy.
4. Enter a name for the backup policy and select the number of days for the recovery window. Select Enable Crosscheck to determine if the files on the disk or in the media management catalog correspond to data in the RMAN repository. The Enable Compression checkbox is selected by default. Selecting this option ensures backups are compressed. Select one of the following as the backup destination:
- To backup to disk, select Internal FRA as the backup destination.
- To backup to the cloud, select ObjectStore as the backup destination. If you have more than one Object Store, then select the Object Store Credential Name from the list. Enter a name in the Container Name field.
- To backup to an NFS location, select External FRA as the backup destination, and specify the NFS mount point location.
- To not define a destination, select None.

The Backup Policy name must begin with an alpha character and contain only alphanumeric characters.
5. You must specify the TDE Wallet Backup Location to associate the backup configuration to a TDE-enabled database.
6. Click Create. Click Yes to confirm that you want to create the backup policy.

A link to the job appears. When the job completes successfully, the backup configuration is ready.
Update an existing database to attach the backup configuration to the database using the ID or Name. When you attach the backup configuration to a database, the DCS agent schedules
daily automatic backups for the database and automatic backups for archivelog of the database.

\section*{Updating a Database with a Backup Policy}

Attach a backup policy to a database to define the database backup attributes and destination.
1. In the Browser User Interface, click the Database tab.
2. For the database that you want to modify, select Modify in the Actions drop down list.
3. In the Modify Database page, select a backup policy from the Select Backup Policy drop down list.
4. Specify and confirm the Backup Encryption Password.
5. Click Modify to submit the job.
6. Click the Activity tab to check the job status.

When the job completes successfully, the backup policy is associated with the database.

\section*{Updating a Backup Policy}

Use the Browser User Interface to update the recovery window, change the ObjectStore Credential, or change the crosscheck option for a backup policy.

Crosscheck determines if the files on the disk on in the media management catalog correspond to data in the RMAN repository.
1. Click the Database tab in the Browser User Interface.
2. Click Backup Policy in the left navigation to display a list of backup policies.
3. Expand the Actions menu for a backup policy, then click Update.
4. To change the recovery window, use the up or down arrow to change the number of days.
5. To enable or disable the crosscheck, select or deselect Enable Crosscheck.
6. Click Update. Click Yes to confirm that you want to update the backup policy.

A link to the job appears. When the job completes successfully, the backup configuration is ready.

\section*{Backing Up a Database Using the Browser User Interface}

Apply a backup policy to a database, create a manual backup, update a database backup schedule, or update an archive log backup scheduler.

You can use the Browser User Interface or the command-line interface to create a database backup. In the command-line interface, use the command odacli create-backup for a specified Database.

Before creating a database backup, you must have a backup policy. The backup policy defines the recovery window and the backup destination. You must associate a backup policy with the database, otherwise you cannot create backups.
Follow these steps to backup a database from the Browser User Interface:
1. In the Browser User Interface, click the Database tab.
2. Click a database name to select a database from the list.
3. Review the database information, including the backup policy name and destination details. To select a backup policy for the database, click Apply Backup Policy. Select a policy and specify the Backup Encryption Password. For TDE-enabled databases, backups are encrypted by default and do not require the RMAN backup encryption password to be specified separately. For databases that do not have TDE enabled, the Backup Encryption Password is mandatory for Objectstore backup destination, optional for NFS backup destination and not required for Disk backup destination.
4. Click Manual Backup, Update Database Backup Schedule or Update Archive Log Backup Schedule.
If the action is disabled, then apply a backup policy.
5. Click Yes to confirm the job.

A link to the job appears. When the job completes successfully, the backup is ready. A list of backups appears at the bottom of the page.

\section*{Viewing Backup Reports}

Understand how you can use the Browser User Interface to view backup reports.
A report is generated when a database backup is performed. The backup report lists the type, location, and date and timestamp of the backup.
1. In the Browser User Interface, click the Database tab, then click the database name in the list of databases.

Information about the database appears on the Database Information page.
2. Scroll to the bottom of the page to view a list of Backups.
3. Click the Job ID for a backup to view the Backup Report and more details about the backup.

\section*{Recovering a Database Using the Browser User Interface}

Understand the recovery options available for recovering a database.
1. In the Browser User Interface, click the Database tab, then select a database from the list.
2. On the Database Information page, click Recover.
3. On the Recover Database page, select any of the following recovery options:

Recover Full Database to the specified Backup: Select the existing backup from which you want to recover the database
Recover Full Database to the Latest: Select this option to recover the database from the last known good state, with the least possible data loss.

Recover Full Database to the specified Timestamp: Specify the timestamp to recover the database.

Recover Full Database to the System Change Number (SCN): Specify the SCN of the backup from which you want to recover the database.
4. Specify and confirm the Backup Encryption Password for databases without Transparent Database Encryption (TDE) enabled.
5. If the database has TDE enabled, then the TDE Wallet Backup Location and TDE Password fields are displayed.
6. Click the Activity tab to check the job status.

When the job completes successfully, the database is recovered as per the specified recovery options.

\section*{Deleting a Backup Using the Browser User Interface}

Use the Browser User Interface to delete database backups.
You can delete Level-0, Level-1, and Archive Log backups anytime. To delete long term backups, you must check the Backup Report for the database to determine when the backup is obsolete.
1. Click the Database tab in the Browser User Interface.
2. Click the database name, in blue font, to display more details about the database for which you want to delete the backup.
3. Click Delete Backups .
4. Select the Backup type you want to delete, whether Level-0, Level-1, and Archive Log backup or long Term backup, then click Start. Click Yes to confirm that you want to delete the backup.
A link to the job appears. When the job completes successfully, the backup is deleted.

\section*{Deleting a Backup Policy}

Use the Browser User Interface to delete a database backup policy.
1. Click the Database tab in the Browser User Interface.
2. Click Backup Policy in the left navigation to display a list of backup policies.
3. Expand the Actions menu for a backup policy, then click Delete. Click Yes to confirm that you want to delete the backup policy.
A link to the job appears. When the job completes successfully, the backup policy is deleted.

\section*{Using the CLI to Backup, Restore, and Recover}

Use the command-line interface to backup, restore, and recover databases.
- Preparing for Database Backup to Disk Use the command-line interface to create a policy to backup a database to the Oracle Fast Recovery Area (FRA) of a disk.
- Preparing for Database Backup to NFS Location Use the command-line interface to create a policy to backup a database to an External FRA (NFS Location).
- Preparing for Database Backup to Oracle Cloud Create a backup configuration to backup a database to Oracle Cloud Infrastructure Object Storage.
- Backing Up a Database with the CLI

Create a level 0 , level 1, LongTerm database backup, or archivelog backup with the command-line interface.
- Recovering a Database with the CLI

Recover the database to the system using a Backup Report, point-in-time recovery (PITR), a system change number (SCN), or from the latest backup time.
- Restoring a Database with the CLI

You can restore a database to a system from Oracle Object Storage or NFS backup location using a backup report and the command-line interface.
- Restoring Archivelog with the CLI You can restore archivelog from one SCN to another SCN, or from one timestamp to another timestamp using the command-line interface.
- Deleting Backups with the CLI

Delete older, obsolete level 0, level 1, archive log, and long term backups along with obsolete backup reports.

\section*{Preparing for Database Backup to Disk}

Use the command-line interface to create a policy to backup a database to the Oracle Fast Recovery Area (FRA) of a disk.

You can create a backup policy using the Browser User Interface or the command-line interface. Most of the backup and recovery commands enable you to provide either a resource name or resource ID to identify the database.

Backup to disk or the Backup to Internal FRA option in the Browser User Interface, requires a lot of disk space (up to two to three times the size of the database).

Follow these steps to create a backup policy through the command-line interface:
1. Create a BackupConfig object (backup configuration) using the command odacli
create-backupconfig.
The backup configuration defines the backup, including the location where you want to store the backups and the recovery window.

The following example creates a backup configuration named mkg1dailydisk with a backup to disk and a 1 day recovery window.
\# odacli create-backupconfig -d Disk -n mkg1dailydisk -w 1
2. Check the job status.
\# odacli describe-job -i job_id_from_step1

When the job completes successfully, the backup configuration is ready.
3. Update an existing database to attach the backup configuration to the database using the ID or Name.

When you attach the backup configuration to a database, the DCS agent schedules daily automatic backups for the database and automatic backups for the archivelog.
The following example uses the Database Resource ID and Backup Configuration ID:
```


# odacli modify-database -i d3c4d8f6-5eb7-4f9e-ab27-7bdd5013ac90 -bi

9d942e0a-ba00-4cbc-9bfb-0de83ed279e5 -bp

```

The following example uses the Database Resource Name, mydb and the Backup Configuration Name, mydb:
\# odacli modify-database -in mydb -bin mybcfg

\section*{Preparing for Database Backup to NFS Location}

Use the command-line interface to create a policy to backup a database to an External FRA (NFS Location).

You can create a backup policy using the Browser User Interface or the command-line interface. Most of the backup and recovery commands enable you to provide either a resource name or resource ID to identify the database.

Backup to NFS location or the Backup to External FRA option in the Browser User Interface, requires creation of an NFS mount point.

Follow these steps to create a backup policy through the command-line interface:
1. Create a BackupConfig object (backup configuration) using the command odacli create-backupconfig.

The backup configuration defines the backup, including the location where you want to store the backups and the recovery window.

The following example creates a backup configuration named mkg1dailynfs with a backup to disk and a 1 day recovery window.
\# odacli create-backupconfig -d NFS -n mkg1dailynfs -c absolute-path-to-parent-directory-for-NFS-destination -w 1
2. Check the job status.
\# odacli describe-job -i job_id_from_step1

When the job completes successfully, the backup configuration is ready.
3. (Optional) Update an existing database to attach the backup configuration to the database using the ID or Name.

When you attach the backup configuration to a database, the DCS agent schedules daily automatic backups for the database and automatic backups for the archivelog.

The following example uses the Database Resource ID and Backup Configuration ID:
```


# odacli modify-database -i d3c4d8f6-5eb7-4f9e-ab27-7bdd5013ac90 -bi

9d942e0a-ba00-4cbc-9bfb-0de83ed279e5 -bp

```

The following example uses the Database Resource Name, mydb and the Backup Configuration Name, mydb:
\# odacli modify-database -in mydb -bin mybcfg -bp

The -bp option to specify the backup password is optional and is not applicable for TDEenabled databases.

\section*{Related Topics}
- Configuring an NFS Backup Location Configure Network File System (NFS) backup location, to set up the NFS backup and mount the NFS client location on Oracle Database Appliance.

\section*{Preparing for Database Backup to Oracle Cloud}

Create a backup configuration to backup a database to Oracle Cloud Infrastructure Object Storage.

Before you can backup to Oracle Object Storage, you must sign up for an Oracle Cloud Infrastructure Object Storage account and know your Oracle Object Storage credentials. When you create an Oracle ObjectStoreSwift object, the command creates and stores the credential details in the system and stores the password in an encrypted Oracle wallet. The Oracle wallet contains the Oracle Object Storage password.

Go to the Oracle Store to sign up for Oracle Cloud Infrastructure Object Storage.
1. Create an Oracle ObjectStoreSwift object using the command create-
```

objectstoreswift.

```
```


# odacli create-objectstoreswift -e swift end point URL -n Object Store

```
Swift name -t Object Store tenant name -u Object Store user name

For example:
```


# odacli create-objectstoreswift -e https://

swiftobjectstorage.r1.oracleiaas.com/v1 -n ossn1 -t mytenant -u
user.name@example.com

```

The output includes an objectstoreswift Resource ID to identify an ObjectStoreSwift credential.
2. Create a BackupConfig object (backup configuration) using the command odacli create-backupconfig.
The backup configuration defines the backup, including the location (container) where you want to store the backups, the recovery window, and the credentials that are defined in your encrypted Oracle wallet.

The following example creates a backup configuration named hr_7d_cloud with a backup to the objectStore. The following backup parameters are defined: the container is hr_bucket, crosscheck is not enabled, the recovery window is 7 days, and the ObjectStoreSwift Resource ID is provided, which attaches the ObjectStoreSwiftObject to the backup configuration.
```


# odacli create-backupconfig -n hr_7d_cloud -d ObjectStore -w 7 -o

b974f006-5503-4949-ab6c-6f1a56e4ac37 -c hr_bucket -no-cr

```

\section*{Note:}

If the ObjectstoreSwift Object was not created with valid credentials, then creating the backup configuration will fail.
3. Check the job status.
```

odacli describe-job -i job_id_from_step2

```

When the job completes successfully, the backup configuration is ready.
4. Update an existing database to attach the backup configuration to the database.

When you attach the backup configuration to a database, the DCS agent schedules daily automatic backups for the database, automatic backups for the archivelog, and weekly deletion of obsolete backups and backup reports for the database.
```


# odacli modify-database -i e3c4d8f6-5eb7-4f9e-ab27-7bdd5013ac10 -bi

7d942e0a-ba00-4cbc-9bfb-0de83ed279e5 -bp

```

\section*{- Note:}

When you create a new database, you have the option to associate the database with any type of backup configuration.

\section*{Backing Up a Database with the CLI}

Create a level 0 , level 1, LongTerm database backup, or archivelog backup with the commandline interface.

You can create a database backup in the Browser User Interface or with the command-line interface. When you attach a backup configuration object to a database, the DCS agent automatically schedules daily backups for the database. The day and time are based on the Oracle Database Appliance time zone. The AutoSchedule triggers a level 0 Backup every Sunday, a level 1 the other 6 days of the week, and an archivelog backup every 30 minutes. Use the command odacli modify-schedule to disable or change the scheduled backup time.

To create a Long Term database backup, or a level 0 or level 1 backup outside of the automatic backups, use the command odacli create-backup.

\section*{- Note:}

To recover a database, there must be a level 0 backup taken, so that the backup report contains information about the base backup. Restoring a database to the same system with a different DB Name and DB Unique Name or to another system does not always require a long term database backup report. You can use archivelog, or level 0 , or level 1 backup reports as well. If you use the archivelog backup report, a prior database backup must exist. To restore a database to another system, you must have a long term database backup in Oracle Object Storage.
1. Verify that a backup configuration object is associated with the database.
2. Create a single backup, outside of the automatic backups, using the command odacli create-backup.

Use the Database Resource ID or Database Name to identify the database to backup, specify the type of backup, and use a tag to create a name for the backup. You can use up to 30 alphanumeric characters for the backup name tag. For example, create a level 0 backup named 2018Jan02_HRLevel0 for resource ID 20576eb1-bc32-4e34-bf97fda0b60ca15b
```


# odacli create-backup -i 20576eb1-bc32-4e34-bf97-fda0b60ca15b -bt Regular-

```
L0 -t 2018Jan02_HRLevel0

When the job finishes, a backup report is generated for the backup. The report contains all of the metadata required to recover a database.
3. (Optional) Display a list of backup reports.
\# odacli list-backupreports

\section*{Recovering a Database with the CLI}

Recover the database to the system using a Backup Report, point-in-time recovery (PITR), a system change number (SCN), or from the latest backup time.

Recovering a database in Oracle Database Appliance is a full RMAN database recovery.
Recovering from a backup report requires JSON input for the backup report.
When recovering a TDE-enabled database, you need not specify the backup password.
1. Display a list of backup reports and locate the latest Backup Report for the database and save the Backup Report ID.
\# odacli list-backupreports
2. Use the Backup Report ID to display the details of the Backup Report. Determine how you want to recover the database: PITR, SCN, or Latest and locate the needed information in the Backup Report.
```


# odacli describe-backupreport -i 7fbb06bf-e3a3-4aed-b617-4d1cd3d33387

{
"id" : "7fbb06bf-e3a3-4aed-b617-4d1cd3d33387",
"dbResId" : "4903d18a-6c20-4860-9ed0-d2ea7bd3d7b9",
"tag" : "auto",
"dbId" : "3022438697",
"dbName" : "tdbasm1",
"dbUniqueName" : "tdbasm1",
"backupType" : "regular-10",
"keepDays" : null,
"backupLocation" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups",
"cfBackupHandle" : "c-3022438697-20201022-03",
"spfBackupHandle" : "c-3022438697-20201022-03",
"pitrTimeStamp" : "October 22, 2020 07:51:59 AM UTC",
"pitrSCN" : "2549429",
"resetLogsTimeStamp" : "October 22, 2020 05:23:56 AM UTC",
"resetLogsSCN" : "2510142",
"oraHomeVersion" : "19.8.0.0.200714",
"sqlPatches" : "31281355",

```
"backupLogLoc" : "https://swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/ database/3022438697/tdbasm1/rmanlog/2020-10-22/
rman_backup_auto_2020-10-22_07-51-06.0546.log",
"t̄̄eWalletLoc" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/TestLtBackupFailur/scaoda8s002-
c/database/3022438697/tdbasm1/tdewallet/
ewallet_2020102207525186_tdbasm1.p12",
"dbConfigLoc" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha Backups/scaoda8s002-c/
database/3022438697/tdbasm1/dbconfig/2020-10-22/
DBCONFIG_auto_2020-10-22_07-52-43.0230.tar.gz",
"name" : "Backup_Report_tdbasm1",
"createTime" : "October 22, 2020 07:51:03 AM UTC",
"state" : \{
"status" : "CONFIGURED"
\},
"updatedTime" : "October 22, 2020 07:52:55 AM UTC",
"backupReportLogDetail" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/
database/3022438697/tdbasm1/rmandetaillogreport/2020-10-22/
rman_list_backup_detail_auto_2020-10-22_07-52-33.0919.log",
"db̄Info" : \{
"dbClass" : "OLTP",
"dbType" : "SI",
"dbShape" : "odb1",
"dbEdition" : "EE",
"dbStorage" : "ASM",
"dbRedundancy" : null,
"pdbName" : null,
"isCdb" : false
\},
"dbDataSize" : "1662M",
"dbRedoSize" : "12298M",
"rmanBackupPieces" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/
database/3022438697/tdbasm1/backuppieces/2020-10-22/
backupPieces_auto_4903d18a-6c20-4860-9ed0-
d2ea7bd3d7b9_20201022075238.json",
"compressionAlgo" : "MEDIUM",
"cpuPool" : null,
"numberOfCores" : null
\}
3. To recover from a backup report, based on SCN, identify the database ID and the backup report for recovery.
In the following example, the JSON input file for the backup report is backupreport.json.
\# odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -br
backupreport.json
4. To recover based on PITR, identify the database ID and the date and time stamp for recovery.
\# odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -t PITR -r 01/08/2018 12:57:33
5. To recover based on SCN, identify the database ID and the SCN number.
```


# odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -t SCN -s

392375947

```
6. To recover based on the latest backup, identify the database ID and use the Latest option.
```


# odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -t Latest

```
7. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.
```


# odacli describe-job -i jobId

```

When the job completes successfully, the recovery is complete.

\section*{Note:}

Use the -p option only if the database backup is encrypted using the RMAN backup password. The -p option is not applicable for TDE-enabled databases.

\section*{Restoring a Database with the CLI}

You can restore a database to a system from Oracle Object Storage or NFS backup location using a backup report and the command-line interface.

When you restore a database, environment and validation checks and setup tasks are performed. Restoring a database requires a number of tasks and configuration details, such as creating database storage, Oracle Home, recreating the control file, registering the database, and establishing RMAN restore and recovery. An Oracle Database Appliance backup report is generated for each backup and contains the metadata required to restore a database. The report is designed to help you to quickly and efficiently restore a database.

You can restore a database from one appliance to another appliance, or to the same appliance when the source database is deleted:
- To restore to a different system, copy the backup report generated by the command odacli create-backup to any folder on the other machine and use the command odacli irestore-database with the backup report. You must provide the complete location of the backup report when you run the command odacli irestore-database.
- To restore to the same system, delete the source database and use the backup report generated by the command odacli create-backup.

To restore a database from Object Store backup, the backup report corresponding to that backup must be present in the target system. Also an ObjectStoreSwift object with the credential that can access the Object Store backup must be created and specified while restoring the database.

\section*{Note:}

For Standard Edition Oracle Database 19c or later, you cannot restore Oracle RAC or Oracle RAC One Node Database.

Follow these steps to restore a database using the command-line (CLI):
1. Display a list of backup reports and locate the latest Backup Report in Oracle Object Storage or NFS for the database and save the Backup Report ID.
\# odacli list-backupreports
2. Use the Backup Report ID to display the details of the latest Backup Report.
```


# odacli describe-backupreport -i 7fbb06bf-e3a3-4aed-b617-4d1cd3d33387

{
"id" : "7fbb06bf-e3a3-4aed-b617-4d1cd3d33387",
"dbResId" : "4903d18a-6c20-4860-9ed0-d2ea7bd3d7b9",
"tag" : "auto",
"dbId" : "3022438697",
"dbName" : "tdbasm1",
"dbUniqueName" : "tdbasm1",
"backupType" : "regular-10",
"keepDays" : null,
"backupLocation" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups",
"cfBackupHandle" : "c-3022438697-20201022-03",
"spfBackupHandle" : "c-3022438697-20201022-03",
"pitrTimeStamp" : "October 22, 2020 07:51:59 AM UTC",
"pitrSCN" : "2549429",
"resetLogsTimeStamp" : "October 22, 2020 05:23:56 AM UTC",
"resetLogsSCN" : "2510142",
"oraHomeVersion" : "19.8.0.0.200714",
"sqlPatches" : "31281355",
"backupLogLoc" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/
database/3022438697/tdbasm1/rmanlog/2020-10-22/
rman_backup_auto_2020-10-22_07-51-06.0546.log",
"t\overline{deWalletLoc" : "https:// swiftobjectstorage.us-}
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/TestLtBackupFailur/scaoda8s002-
c/database/3022438697/tdbasm1/tdewallet/
ewallet_2020102207525186_tdbasm1.p12",
"dbConfigLoc" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/
database/3022438697/tdbasm1/dbconfig/2020-10-22/
DBCONFIG_auto_2020-10-22_07-52-43.0230.tar.gz",
"name" : "Backup_Report_tdbasm1",
"createTime" : "October 22, 2020 07:51:03 AM UTC",
"state" : {
"status" : "CONFIGURED"
},
"updatedTime" : "October 22, 2020 07:52:55 AM UTC",
"backupReportLogDetail" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/

```
```

database/3022438697/tdbasm1/rmandetaillogreport/2020-10-22/
rman_list_backup_detail_auto_2020-10-22_07-52-33.0919.log",
"dbInfo" : {
"dbClass" : "OLTP",
"dbType" : "SI"
"dbShape" : "odb1",
"dbEdition" : "EE",
"dbStorage" : "ASM",
"dbRedundancy" : null,
"pdbName" : null,
"isCdb" : false
},
"dbDataSize" : "1662M",
"dbRedoSize" : "12298M",
"rmanBackupPieces" : "https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1/paasdevdbcssi/Bha_Backups/scaoda8s002-c/
database/3022438697/tdbasm1/backuppieces/2020-10-22/
backupPieces_auto_4903d18a-6c20-4860-9ed0-
d2ea7bd3d7b9_20201022075238.json",
"compressionAlgo" : "MEDIUM",
"cpuPool" : null,
"numberOfCores" : null
}

```
3. (Optional) If you need to generate a new backup report, use the command odacli create-backup.
\# odacli create-backup
4. Locate the Swift Object Store credential ID for the database backup.
\# odacli list-objectstoreswifts
5. Save the backup report from Step 2, as a JSON file in any directory on the appliance. For example, backupreport.json.
6. Restore the database to the system using the JSON file in the command odacli irestore-database. You must specify the abolute path to the JSON file.

Run the command, then enter the SYS user password when prompted.
\# odacli irestore-database -r backupreport.json -oid Object Store ID

To restore a TDE-enabled database, the TDE wallet password must be provided. You must specify the -t option in the command odacli irestore-database. If source database is TDE enabled, then the target database which was restored will also have TDE enabled.
7. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.
\# odacli describe-job -i jobId

\section*{Restoring Archivelog with the CLI}

You can restore archivelog from one SCN to another SCN, or from one timestamp to another timestamp using the command-line interface.

Follow these steps to restore archivelog using the command-line (CLI):
- Restore archivelog from one SCN to another SCN, or from one timestamp to another timestamp:
```


# odacli restore-archivelog -fs from_scn -ts to_scn

# odacli restore-archivelog -ft from_timestamp -tt to_timestamp

```

\section*{Deleting Backups with the CLI}

Delete older, obsolete level 0 , level 1, archive log, and long term backups along with obsolete backup reports.

For level 0 , level 1, and archive log backups, the recovery window defined in the Backup Configuration determines when the backup is obsolete. The ranges are as follows:
- Backup to disk: between 1 and 14 days
- Backup to the Oracle Object Storage: between 1 and 31 days

For Long Term backups to the Oracle Object Storage or NFS, view the keepDays attribute of the Backup Report for a database to determine when the backup is obsolete. To delete Long Term Backup, the Database Resource ID or Database name and the Backup Report are required.

Follow these steps to delete database backups using odacli commands:
1. Display a list of all backup reports.
\# odacli list-backupreports
2. Obtain the Database ID and type of backup.
\# odacli describe-backupreport -i Backup Report ID
3. To delete obsolete level 0 , level 1, and archivelog backups along with obsolete backup reports, use the Database ID or Database Name to delete the backup.
\# odacli delete-backup -i 20576eb1-bc32-4e34-bf97-fda0b60ca15b
4. To delete Long Term backups, use the Backup Report from the JSON file to delete the backup.
In the following example, the JSON input file for the backup report is backupreport.json.
```


# odacli delete-backup -i 20576eb1-bc32-4e34-bf97-fda0b60ca15b -br

backupreport.json

```

\section*{Using Oracle Data Guard for Disaster Management and Recovery on Oracle Database Appliance}

Understand how you can use Oracle Data Guard for disaster management and recovery on Oracle Database Appliance.
- About Oracle Data Guard on Oracle Database Appliance Oracle Database Appliance provides client interface through ODACLI commands for easy configuration and management of Oracle Data Guard for high availability, data protection, and disaster recovery.
- Configuring Oracle Data Guard on Oracle Database Appliance Oracle Database Appliance enables you to set up Oracle Data Guard using ODACLI commands.
- Viewing Oracle Data Guard Status on Oracle Database Appliance View Oracle Data Guard status using ODACLI commands.
- Performing Oracle Data Guard Operations Perform failover, switchover, and reinstate operations on Oracle Data Guard using ODACLI commands.
- Creating an Oracle Data Guard Network Create an Oracle Data Guard network and associate it with a database using ODACLI commands.
- Migrating an Oracle Database from One System to Another Using Integrated Oracle Data Guard
Understand how you can use Integrated Oracle Data Guard to migrate an Oracle Database from one system to another.
- Patching Oracle Data Guard Databases on Oracle Database Appliance Understand how you can patch primary and standby databases on Oracle Data Guard using ODACLI commands.
- Upgrading Oracle Data Guard Databases on Oracle Database Appliance Understand how you can upgrade primary and standby databases on Oracle Data Guard using ODACLI commands.
- Enabling Oracle Active Data Guard on Existing Configurations Understand how you can enable Oracle Active Data Guard on existing configurations.
- Registering Oracle Data Guard on Oracle Database Appliance Oracle Database Appliance enables you to migrate Oracle Data Guard configuration that were manually configured, and register the configuration metadata with Oracle Database Appliance using ODACLI commands.
- Deconfiguring Oracle Data Guard on Oracle Database Appliance Deconfigure Oracle Data Guard status using ODACLI commands.

\section*{About Oracle Data Guard on Oracle Database Appliance}

Oracle Database Appliance provides client interface through ODACLI commands for easy configuration and management of Oracle Data Guard for high availability, data protection, and disaster recovery.

Oracle Data Guard provides a comprehensive set of services that create, maintain, manage, and monitor one or more standby databases to enable production Oracle databases to survive disasters and data corruptions. Oracle Data Guard maintains these standby databases as copies of the production database. Then, if the production database becomes unavailable because of a planned or an unplanned outage, Oracle Data Guard can switch any standby database to the production role, minimizing the downtime associated with the outage. Oracle Data Guard can be used with traditional backup, restoration, and cluster techniques to provide a high level of data protection and data availability. Oracle Data Guard transport services are also used by other Oracle features such as Oracle Streams and Oracle GoldenGate for efficient and reliable transmission of redo from a source database to one or more remote destinations.

With Oracle Data Guard, administrators can optionally improve production database performance by offloading resource-intensive backup and reporting operations to standby systems.

The ability to create clone databases on a standby system enables you to set up test or development environments based on your standby databases. Since standby systems are not production systems, they are a better choice for seeding test or development environments.
- Note:

Oracle Database Enterprise Edition includes Oracle Data Guard.

\section*{Configuring Oracle Data Guard on Oracle Database Appliance}

Oracle Database Appliance enables you to set up Oracle Data Guard using ODACLI commands.

\section*{Prerequisites for Oracle Database Guard Configuration}

Before you begin:
- Oracle recommends running the primary and the standby databases on separate Oracle Database Appliance hardware, so ensure that you have at least two separate Oracle Database Appliance machines.
- Oracle recommends that the primary and standby systems have the same Oracle Database Appliance configuration. The database must have identical configuration for database version and storage (both must have either Oracle ASM or Oracle ACFS storage) to avoid any unpredictability with the database switch roles.
- The primary and standby systems must be the same Oracle Database Appliance release, and must be on Oracle Database Appliance release 19.8 or later.
- If you have customized the operating system, then ensure that environments on both machines are identical.
- Ensure that your deployment follows Oracle Maximum Availability Architecture (MAA) best practices. See the Oracle Maximum Availability Architecture (MAA) page on Oracle Technology Network.
- If you decide to use Oracle ObjectStore for backup and recovery, then you must configure access for both the primary and standby systems.

\section*{Setting up Backup and Recovery for Oracle Database Guard Configuration}

You can use either Object Store or External FRA (NFS) to set up the backup for primary and standby databases when configuring Oracle Data Guard on Oracle Database Appliance. A backup is necessary to instantiate a standby database.

To set up Object Store backup (recommended):
1. Configure the agent proxy settings:
\# odacli modify-agentconfig-parameters -n HttpProxyHost -v www-
proxy.test.com -n HttpProxyPort -v \(80-u\)

For more information, see the topic Configuring Agent Proxy Settings for Object Store Access in this guide.
2. Create the Object Store credentials on both primary and standby systems:
\# odacli create-objectstoreswift -e swift_end_point_URL -n Object Store_Swift_name -t Object_Store_tenant_name -u Object_Store_user_name

For example:
\# odacli create-objectstoreswift -e https://swiftobjectstorage.us-
ashburn-1.oraclecloud.com/v1 -n aaa -t test_user -u testuser
3. View the Object Store Swift name:
\# odacli list-objectstoreswifts
4. Create the backup configuration:
```


# odacli create-backupconfig -d objectstore -c testuser -on aaa -w 7 -cr -

n backupConfig7days

```
5. Associate the backup configuration with the database:
\# odacli modify-database -in test_db -bin backupConfig7days -bp

\section*{To set up NFS backup:}
1. Create the backup configuration. For High-Availability deployments, run the command on one node only.
\# odacli create-backupconfig -n nfsbkup -w 10 -d NFS -c /u01/nfs_backup
2. Associate the backup configuration with the database:
\# odacli modify-database -in test_db -bin nfsbkup

\section*{Configuring Oracle Data Guard using ODACLI commands}

Follow these steps:
1. Take a backup of your primary database to Object Store or External FRA (NFS).
\# odacli create-backup --backupType Regular-L0 -in primary_DB

For example:
\# odacli create-backup --backupType Regular-L0 -in test_db
2. Save the backup report:
```


# odacli describe-backupreport -i eba406c7-ae46-4d1d-a1e5-3e985397b171 >

backup_report_test_db_0620.json

```

The backup report ID is the ID of the backup created in step 1 and can be obtained by running the odacli list-backupreports command.
3. Copy the backup report to the standby system and restore the backup to a standby database.
\# odacli irestore-database -ro STANDBY

If you want to use Object Store, then specify the Object Store location:
```


# odacli irestore-database -r backup_report.json -u dbUniqueName -on

objectStoreName -bp -ro STANDBY
Rman Backup Encryption Password(s). Multiple passwords needs to be comma
separated.:
Password for SYS user:

```

In the above command, specify the dbUniqueName of the standby system.
If your backup option is NFS, then specify the NFS location:
```

odacli irestore-database -r backup_report.json -u dbUniqueName -ro STANDBY
Password for SYS user:

```
4. Configure Oracle Data Guard, by running the odacli configure-dataguard command on the primary system. Provide the values for your configuration through the interactive command line interface.
In the interactive CLI configuration steps, the parameters are as follows:
- Standby site address is IP address or host name of the standby host. Provide the fully qualified domain name and hostname if the primary and the standby systems are in the same domain and DNS is configured.
- Select Oracle Data Guard protection modes to meet availability, performance and data protection requirements. Oracle Data Guard Protection Modes are Maximum Availability, Maximum Performance, and Maximum Protection. The log transport modes are ASYNC, SYNC, and FASTSYNC. You can select the following combinations of protection modes and transport types:

Table 14-1 Oracle Data Guard protection modes and transport modes
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Protection Mode I \\
Transport Type
\end{tabular} & ASYNC & FASTSYNC** & SYNC \\
\hline MAXPERFORMANCE & \(\mathrm{Y}^{*}\) & Y & Y \\
\hline MAXAVAILABILITY & N & Y & \(\mathrm{Y}^{\star}\) \\
\hline MAXPROTECTION & N & N & \(\mathrm{Y}^{\star}\) \\
\hline
\end{tabular}
* in the table indicates the default supported pair and ** FASTSYNC mode is available only in Oracle Database 12.1 or later.
```


# odacli configure-dataguard

Standby site address: test_domain
root@test_domain's password
BUI username for Standby site. If Multi-user Access is disabled on Standby
site, enter 'oda-admin';
otherwise, enter the name of the user who has irestored the Standby
database (default: oda-admin):
BUI password for Standby site:
Database name for Data Guard configuration: test_db
Primary database SYS password:
********************************************************************************
****************
Data Guard default settings
Primary site network for Data Guard configuration: Public-network
Standby site network for Data Guard configuration: Public-network
Primary database listener port: 1521
Standby database listener port: 1521
Transport type: ASYNC
Protection mode: MAX_PERFORMANCE
Data Guard configuration name: test_dg
Active Data Guard: disabled
Do you want to edit this Data Guard configuration? (Y/N, default:N):
As a requirement, Standby database's SYS password will be set to Primary
database's after Data Guard configuration. Are you sure you want to
proceed with Data Guard configuration? (Y/N): y
*********************************************************************************
****************
Configure Data Guard test_dg started
***********************************************************************************
*****************
Step 1: Validate Data Guard configuration request (Primary site)
Description: Validate DG Config Creation for db test_db
Job ID: 523a38ac-e641-46e2-bf38-ecfb641e5dc9
Started December 08, 2020 21:08:59 PM UTC
Validate create Data Guard configuration request
Finished December 08, 2020 21:09:02 PM UTC
********************************************************************************
*****************
Step 2: Validate Data Guard configuration request (Standby site)
Description: Validate DG Config Creation for db test_db
Job ID: 712843f9-65ca-4aea-95eb-4e5c461f3672
Started December 08, 2020 21:09:03 PM UTC
Validate create Data Guard configuration request
Finished December 08, 2020 21:09:05 PM UTC

```
```

********************************************************************************
****************
Step 3: Download password file from Primary database (Primary site)
Description: Download orapwd file from Primary database
Started December 08, 2020 21:09:05 PM UTC
Prepare orapwd file for Primary database test_db
Finished December 08, 2020 21:09:10 PM UTC
***************************************************************************
****************
Step 4: Upload password file to Standby database (Standby site)
Description: Upload orapwd file to Standby database
Started December 08, 2020 21:09:10 PM UTC
Write orapwd file to Standby database test_db
Finished December 08, 2020 21:09:19 PM UTC
***************************************************************************
****************
Step 5: Configure Primary database (Primary site)
Description: DG Config service for db test_db - ConfigurePrimary
Job ID: ad8486a2-bea6-47ff-a8ab-330be98987ab
Started December 08, 2020 21:09:19 PM UTC
Configure host DNS on primary env
Configure Data Guard Tns on primary env
Enable Data Guard related Db parameters for primary env
Enable force logging and archivelog mode in primary env
Enable FlashBack
Configure network parameters for local listener on primary env
Restart listener on primary env
Create services for primary db
Finished December 08, 2020 21:09:35 PM UTC
***************************************************************************
****************
Step 6: Configure Standby database (Standby site)
Description: DG Config service for db test_db - ConfigureStandby
Job ID: 47876bb8-8fef-41a6-a0b6-92b184c74900
Started December 08, 2020 21:09:37 PM UTC
Configure Data Guard Tns on standby env
Configure host DNS on standby env
Clear Data Guard related Db parameters for standby env
Enable Data Guard related Db parameters for standby env
Enable force logging and archivelog mode in standby env
Populate standby database metadata
Configure network parameters for local listener on standby env
Reset Db sizing and hidden parameters for ODA best practice
Restart Listener on standby env
Create services for standby db
Finished December 08, 2020 21:11:02 PM UTC
****************************************************************************
****************
Step 7: Configure and enable Data Guard (Primary site)
Description: DG Config service for db test_db - ConfigureDg
Job ID: 64674e50-3eea-48d0-a25e-bc61401a3d71
Started December 08, 2020 21:11:02 PM UTC
Config and enable Data Guard
Post check Data Guard configuration
Finished December 08, 2020 21:12:21 PM UTC
***************************************************************************

```
```

Step 8: Enable Flashback (Standby site)
Description: DG Config service for db test_db - EnableFlashback
Job ID: 6f461b2f-88e1-41bf-9ca8-d91bc7d4bf97
Started December 08, 2020 21:12:22 PM UTC
Enable FlashBack
Finished December 08, 2020 21:12:33 PM UTC
*******************************************************************************
****************
Step 9: Re-enable Data Guard (Primary site)
Description: DG Config service for db test_db - ReenableDg
Job ID: 3a4a404d-e1b5-4c4e-9db1-545676eebc77
Started December 08, 2020 21:12:34 PM UTC
Re-enable Data Guard if inconsistent properties found
Post check Data Guard configuration
Finished December 08, 2020 21:12:36 PM UTC
********************************************************************************
****************
Step 10: Create Data Guard status (Primary site)
Description: DG Status service for db test_db - NewDgconfig
Job ID: 572dea8d-5682-4193-a984-0aebb072be4
Started December 08, 2020 21:12:36 PM UTC
Create Data Guard status
Finished December 08, 2020 21:12:39 PM UTC
************************************************************************************
*****************
Step 11: Create Data Guard status (Standby site)
Description: DG Status service for db test_db - NewDgconfig
Job ID: 75e55d7f-49c3-4e2d-8907-a7130cc05034
Started December 08, 2020 21:12:40 PM UTC
Create Data Guard status
Finished December 08, 2020 21:12:41 PM UTC
****************************************************************************
****************
Configure Data Guard test dg completed
*****************************************************************************
****************

```

\section*{Example with Oracle Data Guard custom configuration:}
```


# odacli configure-dataguard

Standby site address: test_domain
root@test_db's password:
BUI username for Standby site. If Multi-user Access is disabled on Standby
site, enter 'oda-admin';
otherwise, enter the name of the user who has irestored the Standby
database (default: oda-admin):
BUI password for Standby site:
Database name for Data Guard configuration: test_db
Primary database SYS password:
********************************************************************************
*****************
Data Guard default settings
Primary site network for Data Guard configuration: Public-network
Standby site network for Data Guard configuration: Public-network

```
```

Primary database listener port: 1521
Standby database listener port: 1521
Transport type: ASYNC
Protection mode: MAX_PERFORMANCE
Data Guard configuration name: test_dg
Active Data Guard: disabled
Do you want to edit this Data Guard configuration? (Y/N, default:N): y
****************************************************************************
****************
Primary site network for Data Guard configuration [Public-network]
(default: Public-network):
Standby site network for Data Guard configuration [Public-network]
(default: Public-network):
Primary database listener port (default: 1521):
Standby database listener port (default: 1521):
Transport type [ASYNC, FASTSYNC, SYNC] (default: ASYNC): SYNC
Protection mode [MAX_PROTECTION, MAX_PERFORMANCE, MAX_AVAILABILITY]
(default: MAX_PERFORMANCE): MAX_PROTECTION
Data Guard configuration name (default: pcpub_scpub): custom_test_dg
Enable Active Data Guard? (Y/N, default:N): y
The TrustStore of the Standby site should be removed unless it is
necessary for some other purpose. Do you
As a requirement, Standby database's SYS password will be set to Primary
database's after Data Guard configuration. Are you sure you want to
proceed with Data Guard configuration? (Y/N): y
***************************************************************************
****************
Configure Data Guard custom_test_dg started
*******************************************************************************
****************
Step 1: Validate Data Guard configuration request (Primary site)
Description: Validate DG Config Creation for db test_db
Job ID: 523a38ac-e641-46e2-bf38-ecfb641e5dc9
Started December 08, 2020 21:08:59 PM UTC
Validate create Data Guard configuration request
Finished December 08, 2020 21:09:02 PM UTC
*********************************************************************************
*****************
Step 2: Validate Data Guard configuration request (Standby site)
Description: Validate DG Config Creation for db test_db
Job ID: 712843f9-65ca-4aea-95eb-4e5c461f3672
Started December 08, 2020 21:09:03 PM UTC
Validate create Data Guard configuration request
Finished December 08, 2020 21:09:05 PM UTC
*******************************************************************************
****************
Step 3: Download password file from Primary database (Primary site)
Description: Download orapwd file from Primary database
Started December 08, 2020 21:09:05 PM UTC
Prepare orapwd file for Primary database test_db
Finished December 08, 2020 21:09:10 PM UTC
***************************************************************************
****************
Step 4: Upload password file to Standby database (Standby site)
Description: Upload orapwd file to Standby database
Started December 08, 2020 21:09:10 PM UTC

```
```

Write orapwd file to Standby database test_db
Finished December 08, 2020 21:09:19 PM UTC
********************************************************************************
*****************
Step 5: Configure Primary database (Primary site)
Description: DG Config service creation for db test_db - ConfigurePrimary
Job ID: ad8486a2-bea6-47ff-a8ab-330be98987ab
Started December 08, 2020 21:09:19 PM UTC
Configure host DNS on primary env
Configure Data Guard Tns on primary env
Enable Data Guard related Db parameters for primary env
Enable force logging and archivelog mode in primary env
Enable FlashBack
Configure network parameters for local listener on primary env
Restart listener on primary env
Create services for primary db
Finished December 08, 2020 21:09:35 PM UTC
*********************************************************************************
****************
Step 6: Configure Standby database (Standby site)
Description: DG Config service creation for db test_db - ConfigureStandby
Job ID: 47876bb8-8fef-41a6-a0b6-92b184c74900
Started December 08, 2020 21:09:37 PM UTC
Configure Data Guard Tns on standby env
Configure host DNS on standby env
Clear Data Guard related Db parameters for standby env
Enable Data Guard related Db parameters for standby env
Enable force logging and archivelog mode in standby env
Populate standby database metadata
Configure network parameters for local listener on standby env
Reset Db sizing and hidden parameters for ODA best practice
Restart Listener on standby env
Create services for standby db
Finished December 08, 2020 21:11:02 PM UTC
********************************************************************************
*****************
Step 7: Configure and enable Data Guard (Primary site)
Description: DG Config service creation for db test_db - ConfigureDg
Job ID: 64674e50-3eea-48d0-a25e-bc61401a3d71
Started December 08, 2020 21:11:02 PM UTC
Config and enable Data Guard
Post check Data Guard configuration
Finished December 08, 2020 21:12:21 PM UTC
*********************************************************************************
*****************
Step 8: Enable Flashback (Standby site)
Description: DG Config service creation for db test_db - EnableFlashback
Job ID: 6f461b2f-88e1-41bf-9ca8-d91bc7d4bf97
Started December 08, 2020 21:12:22 PM UTC
Enable FlashBack
Finished December 08, 2020 21:12:33 PM UTC
**********************************************************************************
*****************
Step 9: Re-enable Data Guard (Primary site)
Description: DG Config service creation for db test_db - ReenableDg
Job ID: 3a4a404d-e1b5-4c4e-9db1-545676eebc77

```
```

Started December 08, 2020 21:12:34 PM UTC
Re-enable Data Guard if inconsistent properties found
Post check Data Guard configuration
Finished December 08, 2020 21:12:36 PM UTC
***************************************************************************
****************
Step 10: Enable Active Data Guard (Standby site)
Description: DG Config service creation for db test_db - EnableActivedg
Job ID: 3117c046-2d71-453d-9950-c85bed19f5f2
Started December 08, 2020 21:12:38 PM UTC
Started
Open standby db
Restart standby db
Finished December 08, 2020 21:12:45 PM UTC
***************************************************************************
****************
Step 11: Create Data Guard status (Primary site)
Description: DG Status service creation for db test_db - NewDgconfig
Job ID: 572dea8d-5682-4193-a984-0aebb072be45
Started December 08, 2020 21:12:46 PM UTC
Create Data Guard status
Finished December 08, 2020 21:12:49 PM UTC
***************************************************************************
****************
Step 12: Create Data Guard status (Standby site)
Description: DG Status service creation for db test_db - NewDgconfig
Job ID: 75e55d7f-49c3-4e2d-8907-a7130cc05034
Started December 08, 2020 21:12:52 PM UTC
Create Data Guard status
Finished December 08, 2020 21:12:55 PM UTC
***************************************************************************
****************
Configure Data Guard custom_test_dg completed
*********************************\overline{*}********************************************
****************

```

You can also specify a JSON file to configure Oracle Data Guard. An example JSON file is described in this topic.
```


# odacli configure-dataguard -r configdg_ODA_HA.json

Standby machine address: test_domain
BUI username for Standby site. If Multi-user Access is disabled on Standby
site, enter 'oda-admin';
otherwise, enter the name of the user who has irestored the Standby
database (default: oda-admin):
BUI password for Standby machine:
Primary database SYS password:
As a requirement, Standby database's SYS password will be set to Primary
database's after Data Guard configuration. Are you sure you want to
proceed? (Y/N): y
Data Guard configuration for database 'test' started
*******************************************************************************
*****************
Step 1: Validate Data Guard configuration request (Primary machine)
.....

```

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

Example JSON for configuring Oracle Data Guard on Oracle Database Appliance
```

{
"name": "test1_test7",
"protectionMode": "MAX_PERFORMANCE",
"enableFlashback": true,
"enableActiveDg": false,
"replicationGroups": [
{
"sourceEndPoints": [
{
"endpointType": "PRIMARY",
"hostName": test_domain1",
"listenerPort": 1521,
"databaseUniqueName": "test1",
"ipAddress": "test_IPaddress"
},
{
"endpointType": "PRIMARY",
"hostName": "test_domain1",
"listenerPort": 1521,
"databaseUniqueName": "test1",
"ipAddress": "test_IPaddress2"
}
],
"targetEndPoints": [
{
"endpointType": "STANDBY",
"hostName": "test_domain2",
"listenerPort": 1521,
"databaseUniqueName": "test7",
"ipAddress": "test_IPaddress3"
},
{
"endpointType": "STANDBY",
"hostName": "test domain2",
"listenerPort": 1521,
"databaseUniqueName": "test7",
"ipAddress": "test_IPaddress4"
}
],
"transportType": "ASYNC"
}
]
}

```

\section*{Related Topics}
- Configuring Agent Proxy Settings for Object Store Access If the Object Store IP address is accessible only through proxy setup by the Oracle Database Appliance server, then define the proxy setting for the agent, so that the agent can access the Object Store.
- https://www.oracle.com/in/database/technologies/high-availability/maa.html

\section*{Viewing Oracle Data Guard Status on Oracle Database Appliance}

View Oracle Data Guard status using ODACLI commands.

\section*{Viewing Oracle Data Guard Status using ODACLI commands}

Follow these steps:
- To view the status of primary and standby databases in your Oracle Data Guard configuration, use the following command:
\# odacli list-dataguardstatus
- To view the status of your specific Oracle Data Guard configuration, use the following command:
\# odacli describe-dataguardstatus -i 5f0ed48a-366d-454c-a389-fe367772dbb7

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Related Topics}
- odacli Oracle Data Guard Commands Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.

\section*{Performing Oracle Data Guard Operations}

Perform failover, switchover, and reinstate operations on Oracle Data Guard using ODACLI commands.

\section*{Performing Oracle Data Guard operations using ODACLI commands}

Follow these steps:
- To switch roles between the primary database and standby database in your Oracle Data Guard configuration, run the following command on the primary system:
```


# odacli switchover-dataguard -i dg_ID -u

standby_db_unique_name_to_switchover

```

For example:
```


# odacli switchover-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u

test_db2

```

Confirm that the switchover of roles completed successfully:
\# odacli describe-dataguardstatus -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19
- A failover provides for transitioning a standby database in your configuration to take over the primary database role, if all instances of an Oracle RAC primary database fail, or are unreachable.
To failover a standby database to the primary database in your Oracle Data Guard configuration, run the following command on your current standby system:
```


# odacli failover-dataguard -i dg_ID -u

standby_db_unique_name_to_failover_to

```

For example:
```


# odacli failover-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u

test_d.b2

```

Confirm that the requested database failover to the new primary database has completed successfully:
```


# odacli describe-dataguardstatus -i 75£23ce0-006a-4aeb-ba6d-b4b60275c19

```
- To reinstate a failed primary database after a failover and convert it to a new standby database in your Oracle Data Guard configuration, run the following command on your new primary system:
```


# odacli reinstate-dataguard -i dg_ID -u db_unique_name_to_reinstate

```

For example:
```


# odacli reinstate-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u

test_db2

```

Confirm that the requested database is reinstated as a new standby database:
\# odacli describe-dataguardstatus -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Related Topics}
- odacli Oracle Data Guard Commands

Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.

\section*{Creating an Oracle Data Guard Network}

Create an Oracle Data Guard network and associate it with a database using ODACLI commands.

\section*{Configuring an Oracle Data Guard Network using ODACLI commands}

You can configure Oracle Data Guard using a network of type Public, Database, or Dataguard.
Follow these steps:
1. Create the network:
```


# odacli create-network -n btbond1 -t VLAN -p 192.209.10.227 -w Dataguard -

no-d -s 255.255.255.240 -v 369 -g 192.209.10.225

```
2. View the new network:
```


# odacli list-networks

```

```

Networks
-------------------------------------- ------------------------------------
--------------- ------------------ -------------------------------
-----------------------
836cfa4b-5d2c-45e3-a62d-099fc7c57984 Private-network priv0
INTERNAL 255.255.255.240 [ IP Address on node0: 192.168.16.24 ]
1a312239-761d-4321-84d2-8da406f21e5c Public-network btbond1.359
VLAN 255.255.255.240 10.209.10.65 359 [ IP Address on
node0: 192.209.10.69 ]
f279ac96-5a4a-4b73-86af-1afbdb6ae5d4 vlan369 btbond1.369
VLAN 255.255.255.240 10.209.10.225 369 [ IP Address on
node0: 192.209.10.227]

```
3. To attach a network of type Dataguard to a database:
```


# odacli modify-database -in test_db -an vlan369

```

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Related Topics}
- odacli Oracle Data Guard Commands Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.

\section*{Migrating an Oracle Database from One System to Another Using Integrated Oracle Data Guard}

Understand how you can use Integrated Oracle Data Guard to migrate an Oracle Database from one system to another.

\section*{Migrating Oracle Data Guard Database using ODACLI commands}

If your database is on an old Oracle Database Appliance hardware model, and you want to move your deployment to a new Oracle Database Appliance hardware, then you can use your Oracle Data Guard configuration on Oracle Database Appliance to migrate from one system to another. The same steps can also be applied to migrate an Oracle Database from an Oracle Database Appliance bare Metal system to a DB system in a KVM deployment, or from one DB system in a KVM deployment to another DB system.

Before you begin:
- Oracle recommends running the primary and the standby databases on separate Oracle Database Appliance hardware, so ensure that you have at least two separate Oracle Database Appliance machines.
- The primary and standby systems must be the same Oracle Database Appliance release, and must be on Oracle Database Appliance release 19.8 or later. The instances on the primary and standby databases must have similar configuration for database parameter settings including database version, memory, CPU, networking, and storage (Oracle ASM or Oracle ACFS), thus avoiding any unpredictability when the databases switch roles.
- If you have customized the operating system, then ensure that environments on both machines are identical.
- Ensure that your deployment follows Oracle Maximum Availability Architecture (MAA) best practices.

Follow these steps:
1. Take a backup of your primary database to Object Store or External FRA (NFS).
\# odacli create-backup primary_DB

For example:
\# odacli create-backup --backupType Regular-L0 -in test_db
2. Save the backup report:
```


# odacli describe-backupreport -i eba406c7-ae46-4d1d-a1e5-3e985397b171 >

backup_report_test_db_0620.json

```

The backup report ID is the ID of the backup created in step 1 and can be obtained by running the odacli list-backupreports command.
3. Copy the backup report to the standby system and restore the backup to a standby database.
\# odacli irestore-database -ro STANDBY

If your backup option is Object Store, then specify the Object Store location:
```


# odacli irestore-database -r backup_report.json -u dbUniqueName -on

objectStoreName -bp -ro STANDBY -dh
Password for SYS user:
Rman Backup Encryption Password(s). Multiple passwords needs to be comma
separated.:

```

If your backup option is NFS, then specify the NFS location:
```

odacli irestore-database -r backup_report.json -u dbUniqueName -ro STANDBY
Password for SYS user:

```

\section*{4. Configure Oracle Data Guard, by running the following command on the primary system:}
```


# odacli configure-dataguard

Standby site address: test_domain
root@test_domain's password:
BUI username for Standby site. If Multi-user Access is disabled on Standby
site, enter 'oda-admin';
otherwise, enter the name of the user who has irestored the Standby
database (default: oda-admin):
BUI password for Standby site:
Database name for Data Guard configuration: test_db
Primary database syspassword:
********************************************************************************
*****************
Data Guard default settings
Primary site network for Data Guard configuration: Public-network
Standby site network for Data Guard configuration: Public-network
Primary database listener port: 1521
Standby database listener port: 1521
Transport type: ASYNC
Protection mode: MAX_PERFORMANCE
Data Guard configuration name: test_dg
Active Data Guard: disabled
Do you want to edit this Data Guard configuration? (Y/N, default:N):
As a requirement, Standby database's SYS password will be set to Primary
database's after Data Guard configuration. Are you sure you want to
proceed with Data Guard configuration? (Y/N): y
***************************************************************************
****************
Configure Data Guard test_dg started
**********************************************************************************
*****************
Step 1: Validate Data Guard configuration request (Primary site)
Description: Validate DG Config Creation for db test_db
Job ID: 523a38ac-e641-46e2-bf38-ecfb641e5dc9
Started December 08, 2020 21:08:59 PM UTC
Validate create Data Guard configuration request
Finished December 08, 2020 21:09:02 PM UTC
********************************************************************************
*****************
Step 2: Validate Data Guard configuration request (Standby site)
Description: Validate DG Config Creation for db test_db
Job ID: 712843f9-65ca-4aea-95eb-4e5c461f3672
Started December 08, 2020 21:09:03 PM UTC
Validate create Data Guard configuration request
Finished December 08, 2020 21:09:05 PM UTC
*********************************************************************************
*****************
Step 3: Download password file from Primary database (Primary site)
Description: Download orapwd file from Primary database
Started December 08, 2020 21:09:05 PM UTC
Prepare orapwd file for Primary database test_db
Finished December 08, 2020 21:09:10 PM UTC
********************************************************************************
*****************
Step 4: Upload password file to Standby database (Standby site)

```
```

Description: Upload orapwd file to Standby database
Started December 08, 2020 21:09:10 PM UTC
Write orapwd file to Standby database test_db
Finished December 08, 2020 21:09:19 PM UTC
*********************************************************************************
****************
Step 5: Configure Primary database (Primary site)
Description: DG Config service creation for db test_db - ConfigurePrimary
Job ID: ad8486a2-bea6-47ff-a8ab-330be98987ab
Started December 08, 2020 21:09:19 PM UTC
Configure host DNS on primary env
Configure Data Guard Tns on primary env
Enable Data Guard related Db parameters for primary env
Enable force logging and archivelog mode in primary env
Enable FlashBack
Configure network parameters for local listener on primary env
Restart listener on primary env
Create services for primary db
Finished December 08, 2020 21:09:35 PM UTC
*********************************************************************************
*****************
Step 6: Configure Standby database (Standby site)
Description: DG Config service creation for db test_db - ConfigureStandby
Job ID: 47876bb8-8fef-41a6-a0.b6-92b184c74900
Started December 08, 2020 21:09:37 PM UTC
Configure Data Guard Tns on standby env
Configure host DNS on standby env
Clear Data Guard related Db parameters for standby env
Enable Data Guard related Db parameters for standby env
Enable force logging and archivelog mode in standby env
Populate standby database metadata
Configure network parameters for local listener on standby env
Reset Db sizing and hidden parameters for ODA best practice
Restart Listener on standby env
Create services for standby db
Finished December 08, 2020 21:11:02 PM UTC
*********************************************************************************
*****************
Step 7: Configure and enable Data Guard (Primary site)
Description: DG Config service creation for db test_db - ConfigureDg
Job ID: 64674e50-3eea-48d0-a25e-bc61401a3d71
Started December 08, 2020 21:11:02 PM UTC
Config and enable Data Guard
Post check Data Guard configuration
Finished December 08, 2020 21:12:21 PM UTC
************************************************************************************
*****************
Step 8: Enable Flashback (Standby site)
Description: DG Config service creation for db test_db - EnableFlashback
Job ID: 6f461b2f-88e1-41bf-9ca8-d91bc7d4bf97
Started December 08, 2020 21:12:22 PM UTC
Enable FlashBack
Finished December 08, 2020 21:12:33 PM UTC
********************************************************************************
*****************
Step 9: Re-enable Data Guard (Primary site)

```
```

Description: DG Config service creation for db test_db - ReenableDg
Job ID: 3a4a404d-e1b5-4c4e-9db1-545676eebc77
Started December 08, 2020 21:12:34 PM UTC
Re-enable Data Guard if inconsistent properties found
Post check Data Guard configuration
Finished December 08, 2020 21:12:36 PM UTC
********************************************************************************
*****************
Step 10: Create Data Guard status (Primary site)
Description: DG Status service creation for db test_db - NewDgconfig
Job ID: 572dea8d-5682-4193-a984-0aebb072be45
Started December 08, 2020 21:12:36 PM UTC
Create Data Guard status
Finished December 08, 2020 21:12:39 PM UTC
**********************************************************************************
*****************
Step 11: Create Data Guard status (Standby site)
Description: DG Status service creation for db test_db - NewDgconfig
Job ID: 75e55d7f-49c3-4e2d-8907-a7130cc05034
Started December 08, 2020 21:12:40 PM UTC
Create Data Guard status
Finished December 08, 2020 21:12:41 PM UTC
********************************************************************************
*****************
Configure Data Guard test dg completed
***************************************************************************
****************

```
5. Check the status of Oracle Data Guard and ensure it is working:
\# odacli describe-dataguardstatus
6. Switch over to the standby database:
\# odacli switchover-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u houdg02
7. Deconfigure Oracle Data Guard. The process also deletes the standby database on the old Oracle Database Appliance hardware machine.
```


# odacli deconfigure-dataguard -i 8396aac4-f7e7-42e4-a2e8-0cbbc89ce31b

Standby site address: test_domain
root@test_domain's password:
BUI username for Standby site. If Multi-user Access is disabled on Standby
site, enter 'oda-admin';
otherwise, enter the name of the user who has irestored the Standby
database (default: oda-admin):
BUI password for Standby site:
Standby database will be deleted after Data Guard configuration is
removed. Are you sure you want to proceed? (Y/N): y
Deconfigure Dataguard Started
**********************************************************************************
*****************
Step 1: Deconfigure Data Guard (Primary site)
Description: Deconfigure DG service
Job ID: d181fa4b-5bc9-431f-8f83-75ff44c934ff

```
```

Started December 09, 2020 18:59:17 PM UTC
Deconfigure Data Guard service
Cleanup broker resources
Finished December 09, 2020 19:00:14 PM UTC
********************************************************************************
****************
Step 2: Delete Data Guard status (Primary site)
Description: DG Status service creation - UpdateDgconfig
Job ID: 2873f1f2-9355-4cd2-8245-893957ba5d48
Started December 09, 2020 19:00:14 PM UTC
Update Data Guard status
Finished December 09, 2020 19:00:14 PM UTC
*********************************************************************************
*****************
Step 3: Delete Data Guard status (Standby site)
Description: DG Status service creation - UpdateDgconfig
Job ID: c4bdf567-6525-49f1-b59c-75866e3ce207
Started December 09, 2020 19:00:15 PM UTC
Update Data Guard status
Finished December 09, 2020 19:00:16 PM UTC
*********************************************************************************
****************
Step 4: Delete Standby database (Standby site)
Description: Database service deletion with db name: test_db with id :
d8006215-bbd3-41d0-a37e-a4181adef042
Job ID: e207cac9-4f96-46fa-b120-462ae877bdc1
Started December 09, 2020 19:00:19 PM UTC
Validate db d8006215-bbd3-41d0-a37e-a4181adef042 for deletion
Database Deletion By RHP
Unregister Db From Cluster
Kill Pmon Process
Database Files Deletion
Delete File Groups of Database test_db
Finished December 09, 2020 19:01:07 PM UTC
********************************************************************************
*****************
Data Guard configuration is removed

```

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Related Topics}
- odacli Oracle Data Guard Commands Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.

\section*{Patching Oracle Data Guard Databases on Oracle Database Appliance}

Understand how you can patch primary and standby databases on Oracle Data Guard using ODACLI commands.

\section*{Prerequisites for patching Oracle Data Guard primary and standby databases using ODACLI commands}

Before patching the database homes, upload the Oracle Database clone files for the database version, to the repository. See Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI for the procedure to update the repository with the latest Oracle Database clone files. Also ensure that the primary Oracle Database Appliance system and the standby Oracle Database Appliance system are on the same Oracle Database Appliance release. It is recommended that the two systems be on the latest Oracle Database Appliance release. See Patching Oracle Database Appliance Bare Metal Systems Using the CommandLine for the procedure to patch your Oracle Database Appliance deployment.

\section*{(1) Important:}

Patch the standby database on Oracle Database Appliance first, before patching the primary database to ensure that all functions are updated correctly.
Patching the standby first may affect Oracle Active Data Guard OJVM functionality. Hence, ensure that you patch the standby system first, and then patch the primary system immediately after that.

Patching Oracle Data Guard primary and standby databases using odacli updatedatabase command

You can use the odacli update-database command to update the databases in your Oracle Data Guard configuration. Follow these steps for patching databases in your Oracle Data Guard configuration:

\section*{Patching workflow with primary database \(A\) and standby database \(B\) :}
1. Create prepatch report for database B:
\# odacli create-prepatchreport -db -dbid databaseId -to dbhomeid
2. Update standby database B :
\# odacli update-database -i databaseId -to dbhomeId
3. Switch roles between the primary database and standby database in your Oracle Data Guard configuration, by running the following command on the primary system:
\# odacli switchover-dataguard -i dgid -u db_A
4. Create prepatch report for database \(A\) :
\# odacli create-prepatchreport -db -dbid databaseId -to dbhomeid
5. Update database \(A\) :
\# odacli update-database -i databaseId -to dbhomeid
6. Switch roles again between the primary database and standby database in your Oracle Data Guard configuration, by running the following command on the primary system:
\# odacli switchover-dataguard -i dgid -u db_A
7. Create a prepatch report for the datapatch for database \(A\) :
\# odacli create-prepatchreport -dp -dbid databaseId
8. Apply datapatch on database \(A\) :
\# odacli update-database -i databaseId -dp

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

Patching Oracle Data Guard primary and standby databases using odacli updatedbhome command

Follow these steps to patch the databases in your Oracle Data Guard configuration on Oracle Database Appliance:
1. Run the following command on the standby database:
\# odacli update-dbhome
2. After patching job on the standby database is successful, run the following command on the primary database:
\# odacli update-dbhome
3. Confirm that the patching jobs are successful:
\# /opt/oracle/dcs/bin/odacli list-jobs
4. Confirm the existing Data Guard configuration is working properly by running the following command on both primary and standby systems:
odacli describe-dataguardstatus -i dgid

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Upgrading Oracle Data Guard Databases on Oracle Database Appliance}

Understand how you can upgrade primary and standby databases on Oracle Data Guard using ODACLI commands.

\section*{Upgrading Oracle Data Guard primary and standby databases using ODACLI commands}

Before upgrading the database homes, upload the RDBMS Clone Files for the database version, to the repository. See Updating Oracle Database Appliance Repository with Database Clone Files Using the CLI for the procedure to update the repository with the latest RDBMS Clone Files. Ensure that the primary Oracle Database Appliance system and the standby Oracle Database Appliance system are on the same Oracle Database Appliance release, and on Oracle Database Appliance release 19.8 or later. It is recommended that the two systems be on the latest Oracle Database Appliance release. See Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line for the procedure to patch your Oracle Database Appliance deployment.

Follow these steps to upgrade the databases in your Oracle Data Guard configuration on Oracle Database Appliance:
1. Run the following command to disable log transport and apply:
```

EDIT DATABASE primary_database SET STATE='TRANSPORT-OFF';
EDIT DATABASE standby_database SET STATE=`APPLY-OFF';

```
2. Upgrade the standby database:
\# odacli upgrade-database -i standby_databaseId -to destination_DbHomeId
3. Upgrade the primary database:
\# odacli upgrade-database -i primary_databaseId -to destination_DbHomeId
4. Run the following command to enable log transport and apply:
```

EDIT DATABASE primary_database SET STATE='TRANSPORT-ON';

```
EDIT DATABASE standby_database SET STATE='APPLY-ON';
5. Confirm the existing Data Guard configuration is working properly by running the following command on both primary and standby systems several times:
odacli describe-dataguardstatus -i dgid

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Related Topics}
- odacli Oracle Data Guard Commands

Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.

\section*{Enabling Oracle Active Data Guard on Existing Configurations}

Understand how you can enable Oracle Active Data Guard on existing configurations.
Oracle Active Data Guard is licensed option to the Oracle Database Enterprise Edition and enables advanced capabilities that extend the basic Oracle Data Guard functionality.

Oracle Active Data Guard function requires database to be open as read-only while enabling the redo log apply option. Follow these steps to enable Oracle Active Data Guard on existing configurations:
1. Modify database to have read-only start option:
```

srvctl modify database -d standby_db_unique_name -startoption "read only"
srvctl stop database -d standby_db_unique_name
srvctl start database -d standby_d\overline{b}_unique__name

```

To check if Oracle Data Guard has read-only start option set, run the following command:
```

srvctl config database -d standby_db_unique_name | grep "Start options"

```
2. Enable redo log apply by running the following PL/SQL commands:
```

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

```

\section*{Registering Oracle Data Guard on Oracle Database Appliance}

Oracle Database Appliance enables you to migrate Oracle Data Guard configuration that were manually configured, and register the configuration metadata with Oracle Database Appliance using ODACLI commands.

\section*{Prerequisites for Oracle Database Guard Registration}

\section*{Before you begin:}
- Oracle recommends running the primary and the standby databases on separate Oracle Database Appliance hardware, so ensure that you have at least two separate Oracle Database Appliance machines.
- Oracle recommends that the primary and standby systems have the same Oracle Database Appliance configuration. The database must have identical configuration for database version and storage (both must have either Oracle ASM or Oracle ACFS storage) to avoid any unpredictability with the database switch roles.
- The primary and standby systems must be the same Oracle Database Appliance release, and must be on Oracle Database Appliance release 19.15 or later.
- If you have customized the operating system, then ensure that environments on both machines are identical.
- Ensure that your deployment follows Oracle Maximum Availability Architecture (MAA) best practices. See the Oracle Maximum Availability Architecture (MAA) page on Oracle Technology Network.

\section*{Registering Oracle Data Guard using ODACLI commands}

\section*{Follow these steps:}
1. Register Oracle Data Guard with Oracle Database Appliance, in one of the following ways: Register Oracle Data Guard using interactive mode:
```

[root@node1 ~]\# odacli register-dataguard
Standby site address: test_domain
BUI username for Standby site (default: oda-admin):
BUI password for Standby site:
root@node1's password:
Database name for Data Guard configuration: provdb1
Primary database SYS password:
********************************************************************************
****************
Data Guard default settings
Primary site network for Data Guard configuration: Public-network
Standby site network for Data Guard configuration: Public-network
Primary database listener port (TCP): 1521
Standby database listener port (TCP): 1521
Transport type: ASYNC
Protection mode: MAX_PERFORMANCE
Data Guard configuration name: provdb1_sprovdb
Does the above Data Guard configuration match your actual configuration?
(Y/N, default:N): y
********************************************************************************
*****************
Register Data Guard provdb1_sprovdb started
********************************************************************************
*****************
Step 1: Validate register Data Guard configuration request (Primary site)
Description: Validate DG Config Creation for db provdb1
Job ID: 41459fe0-10cd-4575-9a9f-ca29c552e198
Started February 22, 2022 14:15:02 PM PST
Validate if database ID exists
Validate if dg config name exists
Validate database role
Validate if database is configured with Data Guard already
Validate tnsnames.ora
Validate database connection
Validate if data guard in good status
Precheck switchover DataGuard
Validate if input matches DGMGRL output
Validate if flashback enabled
Finished February 22, 2022 14:15:23 PM PST
********************************************************************************
*****************
Step 2: Validate register Data Guard configuration request (Standby site)
Description: Validate DG Config Creation for db provdb1
Job ID: a915d750-897c-4af7-9149-6699dd1a1016
Started February 22, 2022 14:15:26 PM PST
Validate if database ID exists
Validate if dg config name exists
Validate database role
Validate if database is configured with Data Guard already

```
```

Validate tnsnames.ora
Validate database connection
Validate if data guard in good status
Validate if input matches DGMGRL output
Validate if flashback enabled
Finished February 22, 2022 14:15:34 PM PST
*******************************************************************************
*****************
Step 3: Create Data Guard status (Primary site)
Description: DG Status operation for db provdb1 - RegisterDg
Job ID: dee12ea8-8979-44cc-93ce-40a3a35b228a
Started February 22, 2022 14:15:35 PM PST
Create Data Guard status
Finished February 22, 2022 14:15:37 PM PST
*********************************************************************************
*****************
Step 4: Create Data Guard status (Standby site)
Description: DG Status operation for db provdb1 - RegisterDg
Job ID: 8e8b794f-26d5-44f4-bea6-98e443050e05
Started February 22, 2022 14:15:38 PM PST
Create Data Guard status
Finished February 22, 2022 14:15:40 PM PST
********************************************************************************
*****************
Register Data Guard provdb1_sprovdb completed
***************************************************************************
****************

```

\section*{Register Oracle Data Guard with dialogue and user input:}
```

[root@node1 ~]\# odacli register-dataguard
Standby site address: test_domain
BUI username for Standby site (default: oda-admin):
BUI password for Standby site:
root@node1's password:
Database name for Data Guard configuration: provdb1
Primary database SYS password:
********************************************************************************
*****************
Data Guard default settings
Primary site network for Data Guard configuration: Public-network
Standby site network for Data Guard configuration: Public-network
Primary database listener port (TCP): 1521
Standby database listener port (TCP): 1521
Transport type: ASYNC
Protection mode: MAX_PERFORMANCE
Data Guard configuration name: provdb1_sprovdb
Does the above Data Guard configuration match your actual configuration?
(Y/N, default:N): n
*********************************************************************************
****************
Primary site network for Data Guard configuration [Public-network]
(default: Public-network):
Standby site network for Data Guard configuration [Public-network]
(default: Public-network):

```
```

Primary database listener port (TCP) (default: 1521):
Standby database listener port (TCP) (default: 1521):
Transport type [ASYNC, FASTSYNC, SYNC] (default: ASYNC): SYNC
Protection mode [MAX_PROTECTION, MAX_PERFORMANCE, MAX_AVAILABILITY]
(default: MAX_PERFORMANCE):
Data Guard configuration name (default: provdb1_sprovdb): test
*******************************************************************************
*)
Register Data Guard test started
******************************************************************************
*****************
Step 1: Validate register Data Guard configuration request (Primary site)
Description: Validate DG Config Creation for db provdb1
Job ID: 83a90a68-746d-47cd-a75b-d6d758061c9b
Started February 18, 2022 16:34:53 PM PST
Validate if database ID exists
Validate if dg config name exists
Validate database role
Validate tnsnames.ora
Validate database connection
Validate database connection
Validate if data guard in good status
Validate if data guard in good status
Finished February 18, 2022 16:34:58 PM PST
Step 1 failed, the job ID of the failed job on Primary site is
83a90a68-746d-47cd-a75b-d6d758061c9b
[root@scaoda8m014c1 ~]\# odacli describe-job -i 83a90a68-746d-47cd-a75b-
d6d758061c9b
Job details
ID: 83a90a68-746d-47cd-a75b-d6d758061c9b

```

```

PST February 18, 2022 4:34:56 PM PST Success
Validate if data guard in good status February 18, 2022 4:34:56 PM
PST February 18, 2022 4:34:56 PM PST Failure

```

\section*{Register Oracle Data Guard using JSON file:}
```

[root@node1 ~]\# odacli register-dataguard -r dg.json
Standby site address: test-domain
BUI username for Standby site (default: oda-admin):
BUI password for Standby site:
root@node1's password:
Primary database SYS password:
********************************************************************************
*****************
Register Data Guard provdb1_sprovdb started
*********************************************************************************
*****************
Step 1: Validate register Data Guard configuration request (Primary site)
Description: Validate register dataguard status request for db provdb1
Job ID: 400f0616-41dc-488f-acaa-8ba04ed23757
Started February 11, 2022 13:25:10 PM PST
Validate if database ID exists
Validate if dg config name exists
Validate database role
Validate tnsnames.ora
Validate database connection
Validate if data guard in good status
Validate if flashback enabled
Finished February 11, 2022 13:25:16 PM PST
**********************************************************************************
*****************
Step 2: Validate register Data Guard configuration request (Standby site)
Description: Validate register dataguard status request for db provdb1
Job ID: 29966afc-49a9-4efc-855e-5c4832d3ae47
Started February 11, 2022 13:25:17 PM PST
Validate if database ID exists
Validate if dg config name exists
Validate database role
Validate tnsnames.ora
Validate database connection
Validate if data guard in good status
Validate if flashback enabled
Finished February 11, 2022 13:25:22 PM PST
**********************************************************************************
*****************
Step 3: Create Data Guard status (Primary site)
Description: DG Status operation for db provdb1 - NewDgconfig
Job ID: a2457631-77e1-4322-9c3a-798943302e13
Started February 11, 2022 13:25:23 PM PST
Create Data Guard status
Finished February 11, 2022 13:25:25 PM PST
*********************************************************************************
*****************
Step 4: Create Data Guard status (Standby site)
Description: DG Status operation for db provdb1 - NewDgconfig

```
```

Job ID: 3534febb-b362-4f60-bc50-f2a8b8d42f46
Started February 11, 2022 13:25:27 PM PST
Create Data Guard status
Finished February 11, 2022 13:25:28 PM PST
***************************************************************************
****************
Register Data Guard provdb1 sprovdb completed
***************************************************************************
****************

```

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Example JSON for registering Oracle Data Guard on Oracle Database Appliance}
```

[root@node1 ~]\# cat dg.json
{
"name" : "provdb1_sprovdb",
"protectionMode" : "MAX_PERFORMANCE",
"replicationGroups" : [ {
"sourceEndPoints" : [ {
"endpointType" : "PRIMARY",
"databaseUniqueName" : "provdb1",
"ipAddress" : "10.32.65.225",
"hostName" : "host1.domain.com",
"listenerPort" : 1521,
"serviceName" : "provdb.domain.com",
"sysPassword" : null
} ],
"targetEndPoints" : [ {
"endpointType" : "STANDBY",
"databaseUniqueName" : "sprovdb",
"ipAddress" : "10.32.65.230",
"hostName" : "host2.domain.com",
"listenerPort" : 1521,
"serviceName" : "sprovdb.domain.com",
"sysPassword" : null
} ],
"transportType" : "ASYNC"
} ]
}

```

\section*{Related Topics}
- https://www.oracle.com/in/database/technologies/high-availability/maa.html

\section*{Deconfiguring Oracle Data Guard on Oracle Database Appliance}

Deconfigure Oracle Data Guard status using ODACLI commands.

Deconfiguring Oracle Data Guard Status using ODACLI commands
Follow these steps:
- To deconfigure Oracle Data Guard and delete the standby database, run the following command on the primary system:
```


# odacli deconfigure-dataguard -i 8396aac4-f7e7-42e4-a2e8-0cbbc89ce31b

Standby site address: test_domain
root@test_domain's password
BUI username for Standby site. If Multi-user Access is disabled on Standby
site, enter 'oda-admin';
otherwise, enter the name of the user who has irestored the Standby
database (default: oda-admin):
BUI password for Standby site:
Standby database will be deleted after Data Guard configuration is
removed. Are you sure you want to proceed? (Y/N): y
Deconfigure Dataguard Started

```

Step 1: Deconfigure Data Guard (Primary site)
Description: Deconfigure DG service
Job ID: d181fa4b-5bc9-431f-8f83-75ff44c934ff
Started December 09, 2020 18:59:17 PM UTC
Deconfigure Data Guard service
Cleanup broker resources
Finished December 09, 2020 19:00:14 PM UTC

Step 2: Delete Data Guard status (Primary site)
Description: DG Status service creation - UpdateDgconfig
Job ID: 2873f1f2-9355-4cd2-8245-893957ba5d48
Started December 09, 2020 19:00:14 PM UTC
Update Data Guard status
Finished December 09, 2020 19:00:14 PM UTC

Step 3: Delete Data Guard status (Standby site)
Description: DG Status service creation - UpdateDgconfig
Job ID: c4bdf567-6525-49f1-b59c-75866e3ce207
Started December 09, 2020 19:00:15 PM UTC
Update Data Guard status
Finished December 09, 2020 19:00:16 PM UTC
**)

Step 4: Delete Standby database (Standby site)
Description: Database service deletion with db name: test_db with id :
d8006215-bbd3-41d0-a37e-a4181adef042
Job ID: e207cac9-4f96-46fa-b120-462ae877bdc1
Started December 09, 2020 19:00:19 PM UTC
Validate db d8006215-bbd3-41d0-a37e-a4181adef042 for deletion
Database Deletion By RHP
Unregister Db From Cluster
Kill Pmon Process
Database Files Deletion
Delete File Groups of Database test db
Finished December 09, 2020 19:01:07 PM UTC

Data Guard configuration is removed

For deconfiguring Oracle Data Guard, you must specify the Oracle Data Guard Configuration ID. Run the odacli list-dataguardstatus command to find the Oracle Data Guard Configuration ID.

For more information about these command options, see the Oracle Database Appliance Command Line Reference chapter in this guide.

\section*{Related Topics}
- odacli Oracle Data Guard Commands

Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.

\section*{Managing CPU Pools on Oracle Database Appliance Bare Metal and KVM Deployments}

Use CPU pools to manage CPU resources on Oracle Database Appliance bare metal and KVM deployments.
- About CPU Pools

CPU pools enable management of CPU resources on Oracle Database Appliance on both bare metal and KVM deployments. There are three types of CPU pools, that is, BM, VM, and DB system.
- Creating a CPU Pool in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to create a CPU pool in a bare metal or KVM deployment.
- Remapping CPU Pools in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to remap CPU pools in a bare metal or KVM deployment.
- Viewing CPU Pools in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to view all CPU pools or details about a CPU pool in a bare metal or KVM deployment.
- Modifying a CPU Pool in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to modify a CPU pool in a bare metal or KVM deployment.
- Deleting a CPU Pool in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to delete a CPU pool in a bare metal or KVM deployment.
- Viewing CPU Pool Audit Records in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to delete a CPU pool in a bare metal or KVM deployment.
- About Over-Subscribed CPU Pools

Configure virtual machines so that they do not subscribe to more CPU resources than the resources available in CPU pools.

\section*{About CPU Pools}

CPU pools enable management of CPU resources on Oracle Database Appliance on both bare metal and KVM deployments. There are three types of CPU pools, that is, BM, VM, and DB system.

Use the BM CPU pool to ensure that the database on a bare metal host runs exclusively on the CPU lists specified in the CPU pool. All Oracle processes are bound to the CPUs in this CPU pool and run only on these CPUs. The bare metal CPU pool is assigned to database by updating the init.ora parameter processor_group_name.

Use the VM CPU pools to cage and manage CPU resource allocations to workloads for virtual machines. Workloads are isolated by creating CPU pools and assigning or pinning virtual
machines to a specific CPU pool. When you pin a virtual machine to a CPU pool, you ensure that the virtual machine uses CPUs in only that CPU pool.

The DB system CPU pool is similar to the VM CPU pool, but it only applies to a DB system.
Resources in CPU pools cannot overlap, that is, CPU pools cannot share CPUs. But one CPU pool can be assigned to multiple databases (BM CPU pool), or VMs (VM CPU pools), or DB systems (shared DB system CPU pools).

Oracle Database Appliance provides ODACLI commands to create, update, modify, and delete CPU pools.

By default, the first core of the socket is reserved and cannot be used by the VM and DB system CPU pools for optimal performance. This behavior is available from release 19.12 and later when NUMA is enabled. If you want to use the first core of the socket in your CPU pool, then use the --use-reserved-cores option to enable use of the first core of socket for VM and DB system CPU pools.

\section*{About Bare Metal CPU Pools}

For new databases, you can attach the new CPU pool using the create-database command. For existing databases, use the modify-database command to attach the CPU pool to the database. Restart the database manually for changes to take effect. Clone, irestore and recover database operations will also try to use the same CPU pool if the CPU pool is used by the source database. Specify the --cpupool option to use the new CPU pool. The standby database uses the CPU pool configured for the primary database. Specify the --cpupool option in the irestore-database command when restoring the backup to the standby site if you want to use a separate CPU pool on the standby site. For more details about the command syntax, see the Oracle Database Appliance Command Line Interface chapter in this guide.

\section*{About VM CPU Pools}

For new VMs, you can attach the new CPU pool using the create-vm command. For existing VMs, use the modify-vm command to attach or update the CPU pool. Use the --live option to apply the changes to a running VM, and use the --config parameter to persist the change. For more details about the command syntax, see the Oracle Database Appliance Command Line Interface chapter in this guide.

\section*{About DB System CPU Pools}

Creating a DB system automatically creates an internal DB system CPU pool associated with this DB system. The internal DB system CPU pool is created and managed internally. It cannot be created, modified, or deleted manually. Starting with Oracle Database Appliance release 19.11, you can create a new type of shared DB system CPU pool which can be shared among DB systems. For more details, see the topic Managing Shared CPU Pool with Database System in a KVM Deployment in this guide.

\section*{About Audit Records for CPU Pools}

CPU pool operations history are recorded in audit records metadata and system log for audit purposes. The CPU pool changes include create, modify, delete operations, and attach and detach operations from VMs and databases. The CPU pool audit records can be queried using odacli list-auditrecords and odacli describe-auditrecord commands but they can not be changed or deleted. For more details about the command syntax, see the Oracle Database Appliance Command Line Interface chapter in this guide.

\section*{Understanding the Effect of Changing the CPU Cores on CPU Pool Allocation}

You may have changed the CPU core count on Oracle Database Appliance using the odacli modify-cpucore command. You must assign cores in multiples of two, with a minimum of two cores. If you change the CPU core count, then you can subsequently only increase the CPU core count.

If you change the CPU core count in an Oracle Database Appliance environment which has CPU pools, then the following behavior is seen:
- odacli create-cpupool and odacli modify-cpupool will always select the online CPUs. Therefore, on both bare metal and KVM deployments, any CPU pool created after running the odacli modify-cpucore command, will select from the available online CPUs.
- For existing CPU pools on bare metal and KVM deployments, some CPUs can become offline when you run the odacli modify-cpucore command. Check the CPU pools for any offline CPUs using the odacli describe-cpupool command. You can then update the CPU pool to use available ONLINE CPUs by using the odacli modify-cpupool command.
- If the databases use a CPU pool and some CPUs become offline, then use the odacli modify-cpupool command to update the CPU pool. Restart the databases to use the updated CPU pool.

\section*{Related Topics}
- Managing Shared CPU Pool with DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to manage shared CPU pool with DB system in a KVM deployment.
- Oracle Database Appliance Command-Line Interface The command-line interface has different classes of tools to manage Oracle Database Appliance.

\section*{Creating a CPU Pool in a Bare Metal or KVM Deployment}

Use ODACLI commands or the Browser User Interface to create a CPU pool in a bare metal or KVM deployment.

\section*{Using ODACLI to Create a CPU Pool}

Use the command odacli create-cpupool to create a CPU pool.
Create a VM CPU pool named cpupooll with 6 cores associated to it.
```


# odacli create-cpupool -n cpupool1 -c 6 -vm

```

\section*{Using Browser User Interface to Create a CPU Pool}

\section*{Follow these steps:}
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click CPU Pool to display the CPU Pool page.

\section*{4. Click Create CPU Pool.}
5. In the Create CPU Pool page, specify the following:
- CPU Pool Name: Name of the CPU pool
- CPU Pool Type: Specify if the CPU pool is for bare metal or virtual system.
- Number of CPU Cores: Number of CPU cores allocated to the pool
- Socket to Use: Specify the sockets to use for the CPU pool.
- Configure on: For high-availability deployments, select the nodes where you want to configure the CPU pool.
- Use Reserved CPU Cores: Select this option to use reserved CPU cores.
6. Click Create.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Related Topics}
- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- Remapping CPU Pools in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to remap CPU pools in a bare metal or KVM deployment.

\section*{Remapping CPU Pools in a Bare Metal or KVM Deployment}

Use ODACLI commands or the Browser User Interface to remap CPU pools in a bare metal or KVM deployment.

\section*{Using ODACLI to Remap CPU Pools}

When you patch the bare metal system to Oracle Database Appliance release 19.12 and later, NUMA is enabled after patching. Then, use the command odacli remap-cpupools to remap CPU pools.

See the topic About Enabling NUMA on Oracle Database Appliance for more information.

\section*{Using Browser User Interface to Remap CPU Pools}

\section*{Follow these steps:}
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click CPU Pool to display the CPU Pools page.
4. Click Remap CPU Pool on the page. This will remap all CPU pools for NUMA allocation.
5. In the confirmation dialog, select Force Run if you want to force the remap operation. Select Use Reserved CPU Cores to use reserved CPU cores.
6. Click Yes to confirm the action.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Related Topics}
- odacli modify-dbsystem Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli modify-vm Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli create-cpupool Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Viewing CPU Pools in a Bare Metal or KVM Deployment}

Use ODACLI commands or the Browser User Interface to view all CPU pools or details about a CPU pool in a bare metal or KVM deployment.

\section*{Using ODACLI to View CPU Pools}

The command odacli describe-cpupool displays details about a CPU pool. Use the command odacli list-cpupools to view all CPU pools in the deployment.
\# odacli list-cpupools
\# odacli describe-cpupool -n cpupool1

\section*{Using Browser User Interface to View CPU Pools}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click CPU Pool to display the CPU Pool page.
4. You can view the list of all configured CPU pools.
5. To view the details of a CPU pool, click on the CPU pool or click on the Actions drop down and select View Details.

\section*{Modifying a CPU Pool in a Bare Metal or KVM Deployment}

Use ODACLI commands or the Browser User Interface to modify a CPU pool in a bare metal or KVM deployment.

\section*{Using ODACLI to Modify CPU Pool}

Use the command odacli modify-cpupool to modify a CPU pool.
\# odacli modify-cpupool -n cpupool1 -c 10

Restart the associated databases to use the updated CPU pool.

\section*{Using Browser User Interface to Modify CPU Pool}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click CPU Pool to display the CPU Pools page.
4. From the Actions drop down list for the CPU pool you want to modify, select Modify.
5. In the Modify CPU Pool page, specify any changes in the Number of CPU Cores, and select if you want to apply the changes to running VMs or if you want to force the modify operation. Then click Modify.
6. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
7. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Deleting a CPU Pool in a Bare Metal or KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a CPU pool in a bare metal or KVM deployment.

\section*{Using ODACLI to Delete CPU Pool}

Use the command odacli delete-cpupool to delete a CPU Pool.
Delete a CPU pool named cpupool1.
\# odacli delete-cpupool -n cpupool1

\section*{Using Browser User Interface to Delete CPU Pool}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click CPU Pool to display the CPU Pool page.
4. From the Actions drop down list for the CPU pool you want to delete, select Delete.
5. Click Yes to confirm your choice.
6. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
7. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Viewing CPU Pool Audit Records in a Bare Metal or KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a CPU pool in a bare metal or KVM deployment.

\section*{Using ODACLI to View Audit Record Details for CPU Pools}

Use the odacli list-auditrecords command to list the audit records for a CPU Pool:
```


# odacli list-auditrecords

```

Use the odacli describe-auditrecord command to describe the audit record for a CPU Pool.
```


# odacli describe-auditrecord

```

\section*{Using Browser User Interface to View Audit Record Details for CPU Pools}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Security tab.
3. Select Show Advanced Search and specify the filters for the CPU audit records details such as the From and To dates, Resource type, Resource name, DCS user name, Operation type, and the number of records to display the CPU Pool details.
4. From the list of audit records displayed, click on the audit record ID for which you to drill down for more details.

\section*{About Over-Subscribed CPU Pools}

Configure virtual machines so that they do not subscribe to more CPU resources than the resources available in CPU pools.

A CPU resource can belong to one, and only one, CPU pool. You can assign multiple virtual machines to a CPU pool. A CPU pool becomes oversubscribed when the virtual machines that are active in the pool require more CPUs than you configured for the pool. For example, if a CPU pool has four CPUs, then you can start two virtual machines that are defined to use four CPUs each. In this case, the CPU pool is oversubscribed, because each of the four CPUs is supporting two virtual machines.

If you stop one of those virtual machines, but start another one that requires two CPUs, then the CPU pool is still oversubscribed. This is because two of the CPUs are supporting both virtual machines. When oversubscribing a CPU pool, assess the performance of the virtual machines in that pool. Reassign one or more virtual machines to a different CPU pool if sharing an oversubscribed pool degrades performance to unacceptable levels.

Managing an Oracle Database Appliance KVM Deployment

KVM virtualization uses a kernel-based virtual machine (KVM) to create a virtualized environment for your Linux applications.

Understand the Oracle Database Appliance KVM architecture, and procedures to deploy a guest virtual machine, manage high availability, manage CPU pools, and configure network settings for Oracle Database Appliance KVM deployment.
- About Oracle Database Appliance KVM Deployment You can use Oracle KVM to optimize your system resource use for databases and applications.
- About Oracle Database Appliance KVM Virtualization Architecture Review this topic to understand how Oracle Database Appliance KVM deployment works with Oracle Database Appliance hardware.
- About Virtual Machines and Oracle Database Appliance KVM Deployments Oracle Database Appliance KVM deployment is designed to run and deploy virtual machines to manage system resources.
- About KVM DB Systems on Oracle Database Appliance Understand how you can deploy KVM-based DB systems on Oracle Database Appliance to run your Oracle Database environments.
- Deploying Multiple Databases on DB Systems on Oracle Database Appliance Understand the guidelines and procedure to deploy multiple databases on a DB system on Oracle Database Appliance.
- Managing DB Systems in KVM Deployment

Use ODACLI to create, list, describe, start, stop, and delete DB systems in an Oracle Database Appliance KVM deployment.
- Setting Up and Configuring a KVM Deployment for Applications Understand the steps to set up and configure KVM deployment for applications.
- Managing VM Storage in KVM Deployment Use ODACLI to create, view, modify, and delete VM storage in an Oracle Database Appliance KVM deployment.
- Managing Virtual Networks in KVM Deployment Use ODACLI to create, view, start, stop, and delete virtual networks in an Oracle Database Appliance KVM deployment.
- Managing Virtual Disks in KVM Deployment

Use ODACLI to create, view, clone, modify, and delete virtual disks on Oracle Database Appliance KVM deployment.
- Managing Virtual Machines in KVM Deployment

Use ODACLI to create, view, clone, modify, start, stop, and delete virtual machines in an Oracle Database Appliance KVM deployment.
- About Overcommitting Memory or CPUs in an Oracle Database Appliance KVM System Understand performance and other considerations before overcommiting CPU and memory for application KVM.
- Example JSON File to Create a Single-Node DB System

Follow the JSON file example to create a JSON file to deploy a single-node DB System, with role separation, with the command odacli create-dbsystem.
- Example JSON File to Create a High-Availability DB System Follow the JSON file example to create a JSON file to deploy a two-node DB System, with role separation, with the command odacli create-dbsystem.

\section*{About Oracle Database Appliance KVM Deployment}

You can use Oracle KVM to optimize your system resource use for databases and applications.

You can deploy a Kernel-based Virtual Machine (KVM) virtual platform on Oracle Database Appliance. With Oracle Database Appliance KVM deployments, you can use the capabilities of Oracle KVM to effectively allocate resources to databases and applications running on the same physical Oracle Database Appliance. Rather than simply disabling unnecessary server cores, you can use the excess capacity to host other workloads. This enables consolidation of both databases and applications, while retaining the ease of deployment and management associated with Oracle Database Appliance.

\section*{See Also:}

For more information about supported operating systems, see the Oracle Linux KVM User's Guide: https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/ index.html

The KVM feature provides a set of modules that enable you to use the Oracle Linux kernel as a hypervisor. KVM supports x86_64 processor architecture. By default, KVM is built into the Unbreakable Enterprise Kernel (UEK) release. KVM features are actively developed and may vary depending on platform and kernel release. If you are using Unbreakable Enterprise Kernel, you should refer to the release notes for the kernel release of your Oracle Database Appliance to obtain information about features and any known issues or limitations that may apply. KVM is supported on Oracle Linux 7.

\section*{What are the differences between KVM and Oracle VM Virtualization?}

Oracle KVM makes it easy to setup and manage the virtualized environment with little virtualization expertise. With the KVM deployment, you can consolidate entire multi-tier environments within a single Oracle Database Appliance system.

The following are some of the advantages of deploying Oracle Database Appliance with the KVM option:
- Deploy database and applications in a single hardware environment.
- Use your CPU cores (and memory) efficiently.
- Use virtual local area networks (VLANs) to provide separate networks to different virtual machines.
- Use VM storage to grow storage for the virtual machine repository.
- Enables easy resource management per VM and maintainence of quality of service (QoS)
- Provides solution-in-a-box with application, middleware, and databases.
- Improves data center efficiency by increasing space utilization and reducing energy consumption and cooling costs.
- Oracle KVM virtualization is available on bare metal deployments of Oracle Database Appliance, whereas Oracle VM virtualization on Oracle Database Appliance requires Virtualized Platform setup.
- Oracle Database Appliance supports KVM on all hardware models, whereas Virtualized Platform deployments using Oracle VM are supported on only Oracle Database Appliance High-Availability models.
- Oracle Database Appliance KVM deployments use Type 2 host operating system-based hypervisor, whereas Oracle Database Appliance Virtualized Platform deployments use Type 1 bare metal hypervisor.
- KVM is the virtualization technology used in Oracle Cloud Infrastructure (OCI), where as Oracle Database Appliance Virtualized Platform is based on Xen technology.

\section*{About Oracle Database Appliance KVM Virtualization Architecture}

Review this topic to understand how Oracle Database Appliance KVM deployment works with Oracle Database Appliance hardware.

Oracle Database Appliance KVM deployment provides virtualization technology that enables multiple applications to share the same physical server. The Oracle Database Appliance KVM architecture is engineered specifically to leverage the Oracle Database Appliance hardware capabilities. Oracle Database Appliance KVM stack is integrated with Oracle Clusterware. The KVM resources such as VM storages and Virtual Machines are registered as CRS resources and are automatically managed by CRS for high availability.

The Oracle Database Appliance KVM virtualization architecture uses the virtual machine components shown in the following illustration:

\section*{About Virtual Machines and Oracle Database Appliance KVM Deployments}

Oracle Database Appliance KVM deployment is designed to run and deploy virtual machines to manage system resources.

Configure virtual machines on Oracle Database Appliance KVM deployment to manage the use of resources, such as the CPU pool, memory, and other shared resources by your application.

Understand the terminology of the various components you need to set up for an Oracle Database Appliance KVM deployment. The ODACLI tooling handles all the required configuration for your Oracle Database Appliance KVM deployment.

\section*{VM Storage}

A VM storage is a central location for storing resources that are essential to creating and managing virtual machines. These resources include ISO files (virtual DVD images), virtual machine configuration files, and virtual disks. The VM storage is configured on an Oracle Automatic Storage Management Cluster File System (Oracle ACFS). Oracle Database Appliance KVM uses VM storage to optimize available disk space usage in the environment, and for easy reallocation of virtual machines if a physical server fails. The virtual machine files can be stored on shared disks, providing shared storage for the virtual machines. You can:
- Create one or more virtual machines on the VM storage.
- Use ODACLI commands to create and manage VM storage, virtual disks, and their virtual machines, and the underlying architecture shown in the illustration.

\section*{Virtual Networks}

Oracle Database Appliance KVM virtual network supports two type of networks, bridged and bridged-vlan. The above figure is an example of the KVM virtual network on Oracle Database Appliance X8-2 hardware models.

In a bridged network, a Linux bridge is created and the network interface or bond interface, is attached to the bridge. A default bridge network named pubnet is created on the public network selected during the appliance deployment. Any VM that wants to access this public network can be attached to this pubnet vnetwork. This pubnet vnetwork cannot be modified or deleted. In the above diagram, btbond1 is used for the public network, and default vnetwork pubnet is created with btbond1. eth0 of VMs are attached to this pubnet vnetwork. Except for the default pubnet bridge, no other bridged network is allowed to be created on this public network interface. Additional bridged vnetwork can be created on other interfaces that are not used for the public network. In the above diagram, the mgmtNet bridged network is created with btbond2. eth1 of VM3 is attached to this mgmtNet vnetwork.

For example:
```

odacli create-vnetwork --name mgmtNet --bridge mgmtNet --type bridged --
interface btbond2 --ip ip_address --gateway gateway --netmask netmask

```

In a bridged-vlan network, VLAN can be created on all available public interfaces, including the interface where public network is already configured. For example, you can create a VLAN on both btbond1 and btbond2. Follow proper procedures to configure the VLAN on the switch before creating the bridged-vlan network. In the figure above, backupVLan and AppsVlan1 are created from btbond1 and attached to eth1 and eth2 of VM1 and VM2 respectively.

For example:
```

odacli create-vnetwork --name backupvlan --bridge backupvlan --type bridged-
vlan --vlan-id 12 --interface btbond1 --ip ip_address --gateway gateway --
netmask netmask

```
vnetwork is not supported on private interfaces and secondary interfaces of the bond interface.

\section*{Virtual Disks}

In addition to virtual machines, you can create virtual disks in VM storage. Virtual disks provide additional storage options for virtual machines by enabling you to attach additional block storage to your virtual machines. Similarly, you can detach the disk if you no longer need the additional space. You can use virtual disks to expand existing file system storage inside the virtual machine by adding the new virtual disk to an existing logical volume, or by creating a new file system on a virtual disk. Virtual disks can optionally be attached to multiple virtual machines.

\section*{Virtual Machines}

A virtual machine is granted virtual resources, and can be started, stopped, cloned, and restarted independently. By default, virtual machines are created with autostart and failover enabled for high-availability models. During failover, the VM is automatically started, and there will be attempt to restart once before failing over to a different node on high-availability models. You can enable or disable autostart and failover using the odacli modify-vm command options. The option to autostart is also available on single-node Oracle Database Appliance models.

\section*{About KVM DB Systems on Oracle Database Appliance}

Understand how you can deploy KVM-based DB systems on Oracle Database Appliance to run your Oracle Database environments.

\section*{About KVM DB Systems}

KVM DB systems enable hard partitioning for Oracle Database licensing, where each KVM DB system has its own CPU pool that is automatically assigned during KVM DB system creation. Oracle Database Appliance simplifies the management of KVM DB systems with the built-in Browser User Interface (BUI) or ODACLI Command Line Interface (ODACLI).

\section*{About KVM DB System Architecture}

You can provision and configure a DB system on an Oracle KVM. The database can be a single-instance Oracle Database or an Oracle RAC Database with two instances. You can create multiple databases in each DB system.

Node 1

\section*{About KVM DB System Networks}

Each Oracle Database Appliance DB system on KVM has the following networks created by default:
- Public network: The default vnetwork pubnet is created on the bare metal system, based on the public interface you select for Oracle Grid Infrastructure provisioning. When you create a DB system, the public network of the DB system is attached to the pubnet vnetwork created on the bare metal system. The pubnet network is selected by default as the public network of the DB system. You can also create a different vnetwork and use it as public network for the dbsystem.
- Oracle ASM network: Oracle Database Appliance DB system uses Oracle ASM to manage the database storage. The Oracle ASM instance runs on bare metal systems, but not on the DB system. The database on the DB System uses the Oracle ASM listener running on the bare metal system to communicate with Oracle ASM. The Oracle ASM network for example, privasm in the network diagram below, is created to facilitate this communication between the database on the DB system and the Oracle ASM listener on the bare metal system. This network is also used for communications between the DCS agent on the DB system and DCS agent on the bare metal system, and for enabling sharing of the central repository on bare metal system with the DB systems.
- DB system cluster interconnect network: When DB system is created as a two-node cluster on high-availability model, a cluster interconnect network is created automatically and it is deleted when the DB system is deleted. Each cluster owns its cluster interconnect. Different DB system cannots communicate with each other using cluster interconnect network. 192.168.16.0/24 and 192.168.17.0/24 are reserved for the use of these two internal networks. So, ensure that the IP CIDR 192.168.16.0/24 and 192.168.17.0/24 are available for use by Oracle Database Appliance DB system on KVM.
- Starting with Oracle Database Appliance release 19.12, you can create a vnetwork, either a bridged or bridged-vlan vnetwork, such as vnet2 in the image below, and then use the odacli modify-dbsystem command to attach the vnetwork to the dbsystem.

\section*{Restrictions When Deploying KVM DB System}

The following restrictions apply when you deploy KVM DB system on Oracle Database Appliance:
- You cannot use Oracle ACFS for storage within the DB system. The database running inside the dbsystem uses Oracle ASM storage. The VM is created on Oracle ACFS based storage.
- On Oracle Database Appliance DB systems, the Oracle Grid Infrastructure software installed is of the same version as the Oracle Database version you install. The version is specified in the DB system JSON payload, with the attribute version for database.
- You cannot configure CPU pools or run VM commands within the DB system.

\section*{Deploying Multiple Databases on DB Systems on Oracle Database Appliance}

Understand the guidelines and procedure to deploy multiple databases on a DB system on Oracle Database Appliance.

\section*{Supported DB System Shapes}

In earlier releases of Oracle Database Appliance, where the DB system supported creation of only one database, the DB system shape was the same as the database shape. Starting with Oracle Database Appliance release 19.23, you can create multiple databases on the DB system, with a separate DB system shape dbsX, where X is the number of CPU cores on the DB system VM. X is an even number that ranges from 2 to \(\mathrm{N}-2\) where N is the maximum number of CPU cores on the bare metal system. You can view the value of \(N\) with the odacli list-cpucores command on the bare metal system. The default memory of the DB system is eight times that of the CPU cores of the DB system. You can create the DB system with custom memory size that is larger than the default memory size by specifying the memory size in the JSON file or BUI when you create the DB system.

\section*{Restrictions and Guidelines for Deploying Multiple Databases on DB Systems}

You can provision and configure a DB system on an Oracle KVM. The database can be a single-instance Oracle Database or an Oracle RAC Database with two instances. Starting with Oracle Database Appliance release 19.23, you can create multiple databases in each DB system. For an existing appliance, after you patch the bare metal system to Oracle Database Appliance release 19.23, you can create new DB systems that support multiple databases. For existing DB systems to support multiple databases, you must patch them to Oracle Database Appliance release 19.23 first. To check whether a DB system supports multiple databases, run the odacli list-dbsystems command and verify that the shape of the DB system is dbsx.
- You can create multiple databases on DB systems with Oracle Database release 19c version, but cannot create different major version databases within a DB system. To create a DB system that supports 19c database, specify a 19c starter database during the DB system creation. If no starter database is specified in the DB system creation payload, a DB system that supports 19c database is created.
- You can use the odacli create-database command to create the first database if you did not choose to create a starter database, or additional databases in the DB system. The Oracle Grid Infrastructure home and database home are configured on the local file system /u01 of the DB system.
- When you create a database in DB system with the odacli create-database command, the default database shape is odb1.
- DB system must be sized properly based on the sizing requirement of databases running in the DB system. Taken together, the shapes of databases running in a DB system must be no greater than the shape of the DB system, for example, databases odbA, odbB, ..., odbN running in the DB system shape dbsX, then \(A+B+\ldots N\) must be less than or equal to \(X\). You can change the DB system shapes to meet the sizing requirement of the databases in the DB system.
- When you create a DB system, if you specify the starter database, then Oracle Grid Infrastructure of the same release as the database is installed. If you do not specify a starter database when you create a DB system, then Oracle Grid Infrastructure of the same release as the Oracle Database Appliance is installed.
- When you delete a DB system, and you use the --force option with the odacli deletedbsystem command, all database data files in the DB system are deleted.
- You can move databases in the DB system across different database homes using the odacli move-database command.
- You can restore databases with the odacli irestore-database command to a DB system with support for multiple databases. This may result in multiple database running in the DB system. Make sure the DB system shape supports the additional databases restored. If not, change the DB system shape to accommodate additional databases.
- Starting with Oracle Database Appliance release 19.23, the odacli modify-dbsystem -shape command only changes the shape of the DB system; it does not change the shapes of the database inside the DB system any more. You must modify database shapes accordingly based on the new shape of the DB system. Ensure that you scale up database shapes after the DB system shape is scaled up. Similarly, scale down database shapes before DB system shape is scaled down, otherwise databases could fail to start because of reduced DB system memory.

\section*{Creating Multiple Databases on DB Systems}

You can create databases on the DB system in one of the following ways:
- When you create the DB system using the odacli create-dbsystem command, you can optionally choose to create the starter database. The Oracle Grid Infrastructure software is installed and the started database is created. You specify the starter database details in the JSON file.
- If you do not specify the starter database details in the JSON file when you create the DB system, then only Oracle Grid Infrastructure is installed, but a database is not created. After the odacli create-dbsystem command completes successfully, you can then create multiple databases using the odacli create-database command.

\section*{Example JSON files to create databases on DB systems}

Example JSON file to create DB system with starter database:
\{
```

"system": {
"name": "dbsystem1",
"diskGroup": "DATA",
"systemPassword": "password",
"timeZone": "Pacific/Majuro",
"enableRoleSeparation": false,
"shape": "dbs4",

```
```

    "customRoleSeparation": {
        "users": [
            {
                            "name": "oracle",
                    "id": 1618,
                    "role": "oracleUser"
                }
            ],
            "groups": [
                    {
                    "name": "oinstall",
                    "id": 1018,
                    "role": "oinstall"
            },
            {
                        "name": "dbaoper",
                    "id": 1019,
                    "role": "dbaoper"
            },
            {
                "name": "dba",
                    "id": 1020,
                    "role": "dba"
            },
            {
                "name": "asmadmin",
                    "id": 1021,
                "role": "asmadmin"
            },
            {
                "name": "asmoper",
                    "id": 1022,
                    "role": "asmoper"
            },
            {
                    "name": "asmdba",
                    "id": 1023,
                "role": "asmdba"
            }
        ]
    }
    },
"network": {
"domainName": "us.oracle.com",
"ntpServers": [
"xx.xx.xxx.xx"
],
"dnsServers": [
"xxx.xxx.xx.x",
"xxx.xx.xxx.xx"
],
"scanName": "dbsystem1-scan",
"scanIps": [
"xx.xx.xxx.xxx",
"xx.xx.xxx.xxx"
],

```
```

        "nodes": [
            {
                "name": "node1",
                "ipAddress": "xx.xx.xx.xxx",
                "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 0,
                "vipName": "node1-vip",
                "vipAddress": "xx.xx.xxx.xxx"
            },
            {
                "name": "node2",
                "ipAddress": "xx.xx.xxx.xxx",
                "netmask": "xxx.xxx.xxx.0",
                "gateway": "xx.xx.xxx.x",
                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xx.xx.xxx.xxx"
            }
        ]
    },
"grid": {
"language": "en",
"enableAFD": false
},
"database": {
"name": "rZWuZTw4",
"uniqueName": "rZWuZTw4U",
"domainName": "test_domain",
"adminPassword": "password",
"version": "19.23.0.0.240416",
"edition": "EE",
"type": "RAC",
"dbClass": "IMDB",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": null,
"enableDbConsole": false,
"enableUnifiedAuditing": true,
"redundancy": null,
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"rmanBackupPassword": null,
"levelOBackupDay": null,
"enableTDE": false,
"tdePassword": null,
"isCdb": true,
"pdbName": "test_pdb",
"pdbAdminUser": "test_pdb_admin"
}
}

```

Example JSON file to create DB system without starter database:
```

{
"system": {
"name": "dbsystem1",
"diskGroup": "DATA",
"systemPassword": "password",
"timeZone": "Pacific/Majuro",
"enableRoleSeparation": false,
"shape": "dbs4",
"customRoleSeparation": {
"users": [
{
"name": "oracle",
"id": 1618,
"role": "oracleUser"
}
],
"groups": [
{
"name": "oinstall",
"id": 1018,
"role": "oinstall"
},
{
"name": "dbaoper",
"id": 1019,
"role": "dbaoper"
},
{
"name": "dba",
"id": 1020,
"role": "dba"
},
{
"name": "asmadmin",
"id": 1021,
"role": "asmadmin"
},
{
"name": "asmoper",
"id": 1022,
"role": "asmoper"
},
{
"name": "asmdba",
"id": 1023,
"role": "asmdba"
}
]
}
},
"network": {
"domainName": "testdomain",
"ntpServers": [
"xx.xx.xxx.xx"

```
```

            ],
            "dnsServers": [
            "xxx.xxx. xx.x",
            "XX.XX.XXX.XX"
        ],
        "scanName": "dbsystem1-scan",
        "scanIps": [
            "xX. Xx. xxx. XxX",
            "xX. XX.XXX. XXX"
        ],
        "nodes": [
            {
                "name": "node1",
                "ipAddress": "xx.xx.xx.xx",
                    "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 0,
                "vipName": "node1-vip",
                "vipAddress": "xx.xx.xxx.xxx"
            },
            {
                "name": "node2",
                "ipAddress": "xx.xx.xx.xx",
                "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xx.xx.xxx.xxx"
            }
        ]
    },
    "grid": {
    "language": "en",
    "enableAFD": false
    },
    "database": null
    }

```

\section*{Managing DB Systems in KVM Deployment}

Use ODACLI to create, list, describe, start, stop, and delete DB systems in an Oracle Database Appliance KVM deployment.
- Creating a DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a DB system in a KVM deployment.
- Listing DB Systems in a KVM Deployment Use ODACLI commands or the Browser User Interface to list DB systems in a KVM deployment.
- Describing a DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to describe a DB system in a KVM deployment.
- Modifying a DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to modify a DB system in a KVM deployment.
- Attaching and Detaching a Network for a DB System in a KVM Deployment Use ODACLI commands to attach or detach networks for DB system in a KVM deployment.
- Starting a DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to start a DB system in a KVM deployment.
- Stopping a DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to stop a DB system in a KVM deployment.
- Deleting a DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to delete a DB system in a KVM deployment.
- Managing Backup, Restore, and Recovery on a DB System in a KVM Deployment Understand the backup, restore, and recovery operations supported on a DB system in a KVM deployment.
- Managing Shared CPU Pool with DB System in a KVM Deployment Use ODACLI commands or the Browser User Interface to manage shared CPU pool with DB system in a KVM deployment.
- Managing Oracle Data Guard on a DB System in a KVM Deployment Understand the Oracle Data Guard operations supported on a DB system in a KVM deployment.

\section*{Creating a DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to create a DB system in a KVM deployment.

\section*{(1) Important:}

Oracle Grid Infrastructure of the same version as the database version is installed in the DB system. Use the command odacli describe-dbsystem-image to check the supported database versions for the DB system.

\section*{NOT_SUPPORTED:}

To create the DB system, access control must be enabled in Oracle ASM running on bare metal system. When the bare metal system is newly provisioned or patched to Oracle Database Appliance release 19.23, access control is already enabled, which is a prerequisite for setting appropriate file ownerships for all the files created in DB systems and on the bare metal system. Before you create the DB system, the files on Oracle ASM disk groups that do not have file ownership must be set up with ownership. If ownership is not set, then creation of DB system fails. Use the odacli modify-dbfileattributes command to set up the file ownerships.

\section*{Using ODACLI to Create a KVM DB System}

Use the command odacli create-dbsystem to create a KVM DB system.

\section*{Follow these steps:}
1. Download the Oracle Database Appliance KVM DB System Image from My Oracle Support to a temporary location on an external client. Refer to the release notes for details about the software for the latest release.
patch_number_1923000_Linux-x86-64.zip
2. Unzip the software - it contains README.html and one or more zip files for the patch.
unzip patch_number_1923000_Linux-x86-64.zip
odacli-dcs-19.23.0.0.0-date-0DAVM-19.23.0.0.zip
3. Update the repository with the image.
\# /opt/oracle/dcs/bin/odacli update-repository -f /tmp/odacli-
dcs-19.23.0.0.0-date-ODAVM-19.23.0.0.zip
4. Run the odacli describe-dbsystem-image command to query the supported Oracle Grid Infrastructure and Oracle Database versions for this DB system KVM image. The Oracle Grid Infrastructure version that supports the Oracle Database version is installed.
```


# odacli describe-dbsystem-image

DB System Image details

```

Component Name Supported Versions Available Versions

DBVM 19.19.0.0.0 19.19.0.0.0

GI 19.19.0.0.230418 19.19.0.0.230418
19.18.0.0.230117 not-available
19.17.0.0.221018 19.17.0.0.221018
19.16.0.0.220719 not-available
19.15.0.0.220419 not-available
19.14.0.0.220118 not-available
19.13.0.0.211019 not-available
19.12.0.0.210720 not-available
19.11.0.0.210420 not-available
21.8.0.0.221018 21.8.0.0.221018
21.7.0.0.220719 not-available
21.6.0.0.220419 not-available
21.5.0.0.220118 not-available
21.4.0.0.211019 not-available
21.3.0.0.210720 not-available

DB 19.19.0.0.230418 not-available
19.18.0.0.230117 not-available
19.17.0.0.221018 19.17.0.0.221018
19.16.0.0.220719 not-available
19.15.0.0.220419 not-available
```

19.14.0.0.220118 not-available
19.13.0.0.211019 not-available
19.12.0.0.210720 not-available
19.11.0.0.210420 not-available
21.8.0.0.221018 21.8.0.0.221018
21.7.0.0.220719 not-available
21.6.0.0.220419 not-available
21.5.0.0.220118 not-available
21.4.0.0.211019 not-available
21.3.0.0.210720 not-available

```
5. If the odacli describe-dbsystem-image command output shows any component as notavailable on the system, then download the component with supported versions and run the odacli update-repository to import the component to the repository.
To deploy Oracle Database release 19.23, deploy Oracle Grid Infrastructure release 19.23. To deploy Oracle Database release 21.8, deploy Oracle Grid Infrastructure release 21.8.
6. Create the prov.json file as per examples provided in this chapter.

Oracle Database 21c and later supports only Container Databases (CDB). Ensure that you set the parameter "isCdb": true, and provide both the pdbName and pdbAdminUser in the JSON file if provisioning an Oracle Database 21c or later DB system.
7. Run the odacli create-dbsystem command with the prov.json file on the host.
\# odacli create-dbsystem -p prov.json
8. If the odacli create-dbsystem command prompts ASM ACL setup is not completed, please run 'odacli modify-dbfileattributes' command, then run the odacli modify-dbfileattributes command, and make sure the job finishes successfully before running the odacli create-dbsystem command.
9. If the odacli create-dbsystem command prompts css_critical configuration should be different on both nodes on a high-availability environment, then follow the instructions below to set css_critical and ensure that the DB system functions properly when interconnect fails.
a. Run crsctl set server css_critical yes on the first bare metal host. You must restart the Oracle Clusterware stack on the node for the values to take effect.
b. Run crsctl set server css_critical no on the second bare metal host. You must restart the Oracle Clusterware stack on the node for the values to take effect.
c. Run crsctl get server css_critical to verify the value.

Refer to Oracle Clusterware Administration and Deployment Guide for more details about setting css_critical.

\section*{Using Browser User Interface to Create a KVM DB System}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click Create DB System.
5. In the Create DB System page, provide the DB system values.
6. If you want to use an existing configuration file, click Browse and select the configuration file. The system information from the file is populated in the relevant fields.
7. In the System Information tab, specify the values as follows.
- DB System Name: Enter the DB System name. The name cannot end with a dash (-). Do not exceed 15 characters.
- Domain Name: Enter the domain name.
- Region: Select the region of the world where the Oracle Database Appliance is located.
- Time Zone: Select the time zone where the Oracle Database Appliance is located.
- Select Specify Multi-User Access Option to enable multi-user access on the DB system. You can choose either the Enable Multi-User Access or Enable
Passwordless Multi-User Access option. For more information about these features, see the chapter Implementing Multi-User Access on Oracle Database Appliance in this guide.
- If you choose to enable multi-user access, then specify and confirm the ODA Administrator User Password, Oracle User Password, and Grid User Password. Click Configure Multi-User Access Settings and set the User Password Expiry Duration, Session Expiration for CLI, and Maximum Failed Login Attempts.
- If you choose to enable passwordless multi-user access, then you do not need to specify any of the above passwords.
- System Password and Confirm Password: Enter the system password in both fields. The system password is the password set for UNIX and root users. The password must contain at least two characters each from: uppercase letters, lowercase letters, numbers (0-9), and allowed special characters \#, - or _. The password must have a minimum of 9 characters and a maximum of 30 characters. Select the Assign same password for admin, oracle, and grid users option if you want to keep the same password for all users.
- Disk Group for VM Storage: Select the disk group that is used for hosting the KVM storage. Note that this is different from the database file storage for the database that runs in the KVM, which is displayed automatically from the correct Oracle ASM disk group based on the database file type.
- CPU Pool Name: Select the CPU pool to be associated with the DB system.
- Select Force Run if you want to allow the DB system to use this CPU pool even if selecting the CPU pool leads to oversubscription of the CPU pool. Select Use Reserved CPU Cores to use reserved CPU cores.
- Memory Size: Specify the memory to be allocated to the DB system. The memory size can be in \(K B, M B, G B\), or TB. The default is \(G B\).
- VM Storage Redundancy: Specify the redundancy for the VM storage, either Mirror or High.
- (Optional) DNS Servers: Enter addresses for one or more DNS servers.
- (Optional) NTP Servers: Enter addresses for one or more NTP servers.
- Public Network: Select from the existing virtual networks.
8. In the Network Information tab, specify the client access network details.
- Node Name: For Node0, enter the host name for the primary client access network.
- IP Address: Enter the virtual IP address that is shared between the nodes.
- Subnet Mask: Enter the subnet mask address for the primary client access network.
- Gateway: Enter the gateway address for the primary client access network.

For two-node deployments, provide the above values for both nodes. In addition, you must also specify the following:
- VIP Name and VIP Address: Specify the Virtual IP name and address.
- SCAN Name and SCAN IP Address: Specify the Single Client Access Name (SCAN) and SCAN IP address.
9. In the User and Group Selection tab, configure your users and groups and specify whether or not you want to allow operating system role separation:
- Two users with six groups: Customize Users and Groups, select No. Allow OS Role Separation, select Yes. This is the default configuration.
- Two customized users with six customized groups: Customize Users and Groups, select Yes. Allow OS Role Separation, select Yes.
- \(\quad\) Single user with two groups: Customize Users and Groups, select No. Allow OS Role Separation, select No.
- Single user with six groups: Customize Users and Groups, select Yes. Allow OS Role Separation, select No.
- Specify the GI User, DB User, Install Group, DBA Oper Group, DBA Group, ASM Admin Group, ASM Oper Group, ASM DBA Group, and the User and Group IDs.
10. In the Database Information tab, specify the following information to configure the database:
- DB Name: Enter a name for the database. The name must contain alphanumeric characters and cannot exceed 8 characters.
- DB Version: Specify the database version.
- (Optional) DB Unique Name: Enter a globally unique name for the database. Databases with the same DB Name within the same domain (for example, copies of a database created for reporting or a physical standby) must have a different DB Unique Name that is unique within the enterprise. The name must begin with a lowercase or uppercase letter, and contain only alphanumeric characters and underscores(_). The name must not contain dollar (\$), and pound (\#) characters. The name cannot exceed 30 characters.
- CDB: Select Yes or No to specify whether or not you want a Container Database (CDB).
- PDB Name: Enter a name for the pluggable database (PDB).
- PDB Admin User: Enter an Admin user name for the pluggable database (PDB). The name must begin with an alphanumeric character. You can specify alphanumeric characters and underscore (\(_\)) in the name.
- Database Edition: Select the Oracle Database edition, either Standard Edition and Enterprise Edition. Your license determines which database edition you are eligible to create in the DB System.
- Deployment: Select the type of Deployment, whether RAC, RAC One, or SI. For Standard Edition Oracle Database 19c or later, you can only create single-instance Oracle Database. For Standard Edition Oracle Database 19.6 or later, you can choose to enable high availability for single-instance database.

For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, you can choose to enable high availability for single-instance databases. For Enterprise Edition Oracle Database 19.15 or later or Oracle Database 21.6 or later, if you choose to create a single-instance database, then the high availability feature is disabled by default. To enable high-availability, set the value in the Enable High Availability field to Yes.
- Sys and PDB Admin User Password and Confirm Password: Provide a password for the database.
- Shape: Select a database shape from the list.
- Database Redundancy: If disk group redundancy is FLEX, then select HIGH or MIRROR from the drop down list for database redundancy. If the disk group redundancy is not FLEX, then the database redundancy field is not available and is set to the same as the disk group redundancy internally.
- In the Database Class field, select a database class from the drop-down list. If an option is not available in the list, it is not supported for the database edition on the Oracle Database Appliance or the version that you selected. The default is OLTP.
- Configure EM Express: Select Yes or No. Select Yes to configure the Oracle Enterprise Manager Database Express (EM Express) console.
- Character set: Select a character set.
- National Characterset: Select a national characterset.
- Language: Select the database language.
- Territory: Select a territory or location from the list.
- For Oracle Database Enterprise Edition 19c or later, you can choose to enable Transparent Database Encryption (TDE). Select Yes or No in the Enable TDE option. Specify and confirm the TDE Password. By default, the TDE option is disabled.
- Data Files on Flash Storage: Select Yes or No. This option is only available if the high-availability system has HDD storage drives.

\section*{11. Click Create.}
12. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
13. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Related Topics}
- Implementing Multi-User Access on Oracle Database Appliance Understand how multi-user access can be implemented on Oracle Database Appliance, its advantages and restrictions and the associated life cycle management changes for your appliance.
- Example JSON File to Create a High-Availability DB System Follow the JSON file example to create a JSON file to deploy a two-node DB System, with role separation, with the command odacli create-dbsystem.
- Example JSON File to Create a Single-Node DB System

Follow the JSON file example to create a JSON file to deploy a single-node DB System, with role separation, with the command odacli create-dbsystem.
- odacli describe-dbsystem-image

Use the odacli describe-dbsystem-image command to view the supported Oracle Grid Infrastructure and Oracle Database versions and the availability of the clone files and Database System KVM image in the Oracle Database Appliance system.
- odacli modify-dbfileattributes

Use the odacli modify-dbfileattributes command to properly set the file attributes (permissions and ownership) of files on Oracle ASM disk group on a bare metal host to support a dbsystem. Only run this command if prompted by the odacli create-dbsystem command.

\section*{Listing DB Systems in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to list DB systems in a KVM deployment.

\section*{Using ODACLI to List DB Systems}

Use the command odacli list-dbsystems to list DB systems.
\# odacli list-dbsystems

\section*{Using Browser User Interface to List DB Systems}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click on the DB system for which you want to view details.

\section*{Related Topics}
- odacli list-dbsystems

Use the odacli list-dbsystems command to view the database systems on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

\section*{Describing a DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to describe a DB system in a KVM deployment.

\section*{Using ODACLI to Describe a DB System}

Use the command odacli describe-dbsystem to describe a DB system.
\# odacli describe-dbsystem -n dbsystem_name

\section*{Using Browser User Interface to Describe a DB System}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click on the DB System for which you want to view details or click on the Actions drop down and select View Details to view the DB System details.
5. Click on the System Information tab for the DB System details, associated CPU Pool, Storage details, and associated VMs.
6. Click on the Database Information tab to view the associated database details.
7. Click on the Network Information tab to view the network details for single node or highavailability deployments.

\section*{Related Topics}
- odacli describe-dbsystem

Use the odacli describe-dbsystem command to describe a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

\section*{Modifying a DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to modify a DB system in a KVM deployment.

\section*{Using ODACLI to Modify a DB System}

Use the command odacli modify-dbsystem --shape to change shape of the DB system. Starting with Oracle Database Appliance release 19.23, the odacli modify-dbsystem --shape command only changes the shape of the DB system; it does not change the shapes of the database inside the DB system any more. You must modify database shapes accordingly based on the new shape of the DB system. Ensure that you scale up database shapes after the DB system shape is scaled up. Similarly, scale down database shapes before DB system shape is scaled down; otherwise databases could fail to start because of reduced DB system memory.
```


# odacli modify-dbsystem -n dbsystem_name -s dbs4 [-dvn v_networks_to_detach]

[-en] [-gw gateway] [-ip ip_address] [-nm netmask] [-sip scan_ip_address] [-
sn scan_name] [-s shape] [-vips vip_address] [-vt v_network_type] [-m
custom_memory_size]

```

You can attach a CPU pool to the DB system, or remove the CPU pool from the DB system.
Use the command odacli modify-dbsystem -m to increase the DB system memory. This does not change the database memory configuration. You must manually update the database memory configuration such as SGA, PGA, and others to utilize the increased memory. The command does not support reducing DB system memory. Changing the shape of the DB system after you change the DB system memory resets the memory of the DB system.

You can increase the DB system memory with the odacli modify-dbsystem command using the -m option.
```


# odacli modify-dbsystem -n dbsystem_name -m 24G

```

To reduce the DB system memory, use the --shape option with the command odacli modifydbsystem. The DB system is automatically restarted for the new shape to take effect.
\# odacli modify-dbsystem --name dbsystem1 --shape dbs2

Use the command odacli modify-dbsystem to attach or detach a new network to the DB system. This new network can be used for database backup, Oracle Data Guard setup or other purposes in the DB system.

You can use odacli modify-dbsystem to attach or detach the shared DB system CPU pool. Attaching a shared DB system CPU pool removes the internal CPU pool that was created at DB system creation time. When detaching shared CPU pool from the DB system, an internal CPU pool is automatically created and attached to the DB system. One shared DB system CPU pool can be attached to multiple DB systems. Oversubscribing to shared DB system CPU pool is allowed, but there could be potential performance impact if shared CPU pool is oversubscribed.

\section*{Note:}

The odacli modify-dbsystem -s shape command only works on Oracle Database Appliance release 19.13 and later DB systems. The CPU pool commands are available on Oracle Database Appliance release 19.11 and later DB systems. In Oracle Database Appliance release 19.23 and later, the odacli modify-dbsystem -s shape command changes the DB system shape only; it does not modify the database shape. Run the odacli modify-database command in the DB system to change the database shape in the DB system.

\section*{Using Browser User Interface to Modify a KVM DB System}

\section*{Follow these steps:}
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click on the DB System for which you want to view details or click on the Actions drop down and select Modify to change the following:
- DB System shape
- Attach or detach CPU pool for the DB system
- Attach or detach networks
- Enable or disable NUMA for the DB system
- Memory size allocated to the DB system
- VM storage redundancy (either Mirror or High)
5. Select the new shape and CPU pool and click Modify.
6. Click Enable NUMA to set NUMA capabilities, and click Modify.
7. Click the Detach Networks field to view the networks, select the network you want to detach, and click Modify.
8. To attach a network, specify the Name, IP Address, Subnet Mask, Gateway, Network Type, Default Network, and click Modify.
9. Confirm your action to submit the job to modify the DB System. You can manually run the odacli modify-database command inside the DB system to change the database shape.

\section*{Related Topics}
- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Attaching and Detaching a Network for a DB System in a KVM Deployment}

Use ODACLI commands to attach or detach networks for DB system in a KVM deployment.

\section*{Using ODACLI to Attach or Detach a Network to a DB System}

You can attach a new vnetwork to the DB system and use it for database backup, Oracle Data Guard configuration, and other options. Use the odacli modify-dbsystem to attach or detach network for a DB system in a KVM deployment. The vnetwork must exist before you can attach it to the dbsystem.

Follow these steps to attach a vnetwork to a DB system:
1. Identify the name of vnetwork bridge to attach to the DB system using the odacli listvnetworks and odacli describe-vnetwork -n vnetwork_name commands.
2. Use the odacli modify-dbsystem command to attach vnetwork to DB system:
```


# odacli modify-dbsystem -n dbsystem1 -avn vnet2 -t Dataguard -ip

192.168.10.119,192.168.10.120 -nm 255.255.240.0 -gw 192.168.10.1 -sn scan1
-sip 192.168.10.30,192.168.10.31 -vips
vip1:0:192.168.15.57,vip2:1:192.168.15.58

```

The IP address, netmask (nm) and gateway (gw) values are used to configure the new interface of the DB system. The SCAN name (sn), SCAN IP address (sip) and Virtual IP address (vip) are used when the vnetwork type is database or dataguard.

To detach a vnetwork in the DB system, run the following command:
```


# odacli modify-dbsystem -n name -dvn vnetwork_name

```

\section*{Using Browser User Interface to Modify a DB System}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click on the DB System for which you want to view details or click on the Actions drop down and select Modify to attach or detach vnetworks for the DB system.
5. Click the Detach Networks field to view the vnetworks, select the vnetwork you want to detach, and click Modify.
6. To attach a network, specify the Name, IP Address, Subnet Mask, Gateway, Network Type, Default Network, and click Modify.
7. Confirm your action to submit the job to modify the DB system.

\section*{Starting a DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to start a DB system in a KVM deployment.

\section*{Using ODACLI to start a DB System}

Use the command odacli start-dbsystem to start a DB system.
```


# odacli start-dbsystem -n dbsystem_name

```

\section*{Using Browser User Interface to Start a DB System}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click on the DB System which you want to start.
5. Click on the System Information tab and then click Start.
6. For high-availability deployments, select the node on which you want to start the DB System. Click Yes.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.
9. When the DB System starts, the state displays as ONLINE.

\section*{Related Topics}
- odacli start-dbsystem

Use the odacli start-dbsystem command to start a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

\section*{Stopping a DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to stop a DB system in a KVM deployment.

\section*{Using ODACLI to Stop a DB System}

Use the command odacli stop-dbsystem to stop a DB system.
```


# odacli stop-dbsystem -n dbsystem_name

```

\section*{Using Browser User Interface to Stop a DB System}

\section*{Follow these steps:}
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, click on the DB System which you want to stop.
5. Click on the System Information tab and then click Stop.
6. For high-availability deployments, select the node on which you want to stop the DB System. Click Yes.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.
9. When the DB system stops, the state displays as OFFLINE.

\section*{Related Topics}
- odacli stop-dbsystem Use the odacli stop-dbsystem command to stop a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

\section*{Deleting a DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a DB system in a KVM deployment.

\section*{Using ODACLI to Delete a KVM DB System}

Use the command odacli delete-dbsystem to delete a KVM DB system.
```


# odacli delete-dbsystem -n dbsystem_name -f

```

If you do not specify the \(-f\) option, then the operation deletes the DB system and Oracle Clusterware files, and retains the database files. With the \(-f\) option, the operation deletes the DB system, Oracle Clusterware files, and the database files.

\section*{Using Browser User Interface to Delete a KVM DB System}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click DB Systems to display the DB Systems page.
4. In the page, for DB System which you want to delete, click on the Actions drop down list and select Delete.
5. Confirm that you want to delete the DB System. Select Force Delete if you want to delete the DB system, Oracle Clusterware files, and the database files during the delete operation. Click Yes.
6. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
7. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Related Topics}
- odacli delete-dbsystem

Use the odacli delete-dbsystem command to delete a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

\section*{Managing Backup, Restore, and Recovery on a DB System in a KVM Deployment}

Understand the backup, restore, and recovery operations supported on a DB system in a KVM deployment.

\section*{About Backup, Restore, and Recovery on a DB System}

Similar to the bare metal systems, you can use ODACLI commands to configure and perform backup, restore, and recovery operations on DB systems. For information about backup, restore, and recovery on Oracle Database Appliance, see the chapter Backup, Recover and Restore in this guide.

\section*{Related Topics}
- Backup, Restore and Recover Databases Review backup, restore, and recovery operations for your databases.

\section*{Managing Shared CPU Pool with DB System in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to manage shared CPU pool with DB system in a KVM deployment.

\section*{Using ODACLI to Manage Shared CPU Pool with DB system}

Creating a DB system automatically creates an internal DB system CPU pool associated with this DB system. This DB system pool is managed internally and cannot be created, modified, or deleted manually. You can create a new type of shared CPU pool using the odacli createcpupool --dbsystem/-dbs -n cores command. Similarly to VM and BM types, this CPU pool must not overlap with other CPU pools. In high-availability environments, the DB system CPU pool cannot be local, it must exist on both nodes always.

\section*{Associating Shared DB System CPU Pool}

A shared DB system CPU pool can be associated to a new DB system or existing DB system. To create a new DB system with shared DB system CPU pool, add the "cpuPoolName" parameter in the create-dbsystem json file. The associated internal CPU pool is automatically deleted after a shared CPU pool is attached to a DB system. Use the odacli modifydbsystem command to associate the CPU pool to an existing DB system.
```


# odacli modify-dbsystem -n dbsystem_name -cp dbspool1

```

The cores of the DB System (based on its shape) must fit into the shared DB System CPU pool. Associating a shared DB system CPU pool to an existing DB system removes the internal CPU pool associated to the DB system. A single shared DB System CPU pool can be shared by multiple DB Systems. Oversubscription to the DB system CPU pool is allowed, but performance may be impacted if the CPU pool is oversubscribed. The list of associated DB systems can be queried using odacli list-cpupool or odacli describe-cpupool commands.

Use odacli describe-dbsystem to check the details of the CPU pool associated to the DB system:
```


# odacli describe-dbsystem -n dbs4e912c

    CPU Pool
    -------------------------
Name: ce3f42bb28
Number of cores: 2
Host: n1
Effective CPU set: 9-10,29-30
Online CPUs: 9, 10, 29, 30
Offline CPUs: NONE
Host: n2
Effective CPU set: 9-10,29-30
Online CPUs: 9, 10, 29, 30
Offline CPUs: NONE

```

Use odacli list-cpupools to view the DB system CPU pool type and associated DB systems. The internal DB system CPU pool has type "DB_SYSTEM" and shared DB system CPU pool has type "DB_SYSTEM_SHARED".
```


# odacli list-cpupools

Name Type Configured on Cores
Associated resources Created
Updated
------------------- ------------------ ---------------------------------
-------------------------------
-----------------------

| bmpooll BM | n1, | 2 |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| NONE |  | $2021-03-30$ | $17: 54: 59$ UTC | $2021-03-30$ | $17: 55: 00$ |

UTC

```
n2

UTC
n2
\(\begin{array}{lrccc}\text { dbspool1 } & \text { DB_SYSTEM_SHARED n1, } & 4 \\ \text { NONE } & 2021-03-30 & 17: 55: 11 & \text { UTC } & 2021-03-30 \\ \text { 17:55:11 }\end{array}\)
UTC
n2
\(\begin{array}{llcccc}\text { ce3f42bb28 } & \text { DB_SYSTEM } & \text { n1, } & \\ \text { dbs4e912c } & & 2021-03-30 ~ 17: 57: 43 ~ U T C ~ & 2021-03-3018: 01: 27\end{array}\)
UTC
n2

Use odacli describe-cpupool to find out more details about DB system CPU pool:
```


# odacli describe-cpupool -n ce3£42bb28

CPU Pool
details
-----------------------------------------------------------------------------------------
--
ID: 8e62933b-b394-4bcf-9c32-6a4cea2e0360
Name: ce3f42bb28
Created: 2021-03-30 17:57:43 UTC
Updated: 2021-03-30 18:01:27 UTC
Type: DB SYSTEM
Number of cores: 2
Associated resources: dbs4e912c
CPU Allocations
O
Node: n1
Effective CPU set: 9-10,29-30
Online CPUs: 9, 10, 29, 30
Offline CPUs: NONE

```
```

            Node: n2
    Effective CPU set: 9-10,29-30
Online CPUs: 9, 10, 29, 30
Offline CPUs: NONE

```

\section*{Dissociating Shared DB System CPU Pool}

A DB System with a shared DB System CPU pool could have the shared CPU pool detached from it and an internal DB System CPU Pool is created. If the internal DB system CPU pool cannot be created, then the odacli modify-dbsystem command fails.

Dissociating shared DB System CPU Pool:
\# odacli modify-dbsystem -n dbs4e912c -no-cp

\section*{Modifying Shared DB System CPU Pool}

A shared DB system CPU pool could be resized if all the associated DB systems shapes still fit into the cores of the pool (CPU pool size >= individual DB system size) The change is effective immediately on running DB system VMs.

\section*{Modifying a DB System Associated with a Shared DB System CPU Pool}

If a DB System is associated with a shared DB System CPU Pool and its shape is modified with the odacli modify-dbsystem command, then the new shape of the DB system must fit into the cores of the pool.

\section*{Deleting Shared DB System CPU Pool}

A shared DB system CPU Pool can be deleted using the odacli delete-cpupool command only if it has no associated DB systems.

\section*{Related Topics}
- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- Remapping CPU Pools in a Bare Metal or KVM Deployment Use ODACLI commands or the Browser User Interface to remap CPU pools in a bare metal or KVM deployment.
- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Managing Oracle Data Guard on a DB System in a KVM Deployment}

Understand the Oracle Data Guard operations supported on a DB system in a KVM deployment.

\section*{About Using Oracle Data Guard on a DB System}

Similar to the bare metal systems, you can configure and use Oracle Data Guard on DB systems using ODACLI commands. You can set up Oracle Data Guard between the bare metal system and DB system, or between two DB systems. Integrated Oracle Data Guard can also be used for migrating from bare metal system to DB system, or between two DB systems. For information about Oracle Data Guard on Oracle Database Appliance, see the chapter Using Oracle Data Guard for Disaster Management and Recovery on Oracle Database Appliance in this guide.

\section*{Related Topics}
- Using Oracle Data Guard for Disaster Management and Recovery on Oracle Database Appliance Understand how you can use Oracle Data Guard for disaster management and recovery on Oracle Database Appliance.

\section*{Setting Up and Configuring a KVM Deployment for Applications}

Understand the steps to set up and configure KVM deployment for applications.
Follow these steps to set up a KVM deployment on Oracle Database Appliance
1. Create a VM storage.
2. Create a virtual network.
3. Create virtual disks.
4. Create virtual machines.

The following links provide information about performing these steps:

\section*{Related Topics}
- Creating a VM Storage in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a VM storage in a KVM deployment.
- Creating a Virtual Network in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a virtual network in a KVM deployment.
- Creating a Virtual Disk in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a virtual disk in a KVM deployment.
- Creating a Virtual Machine in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a virtual machine in a KVM deployment.

\section*{Managing VM Storage in KVM Deployment}

Use ODACLI to create, view, modify, and delete VM storage in an Oracle Database Appliance KVM deployment.
- Creating a VM Storage in a KVM Deployment

Use ODACLI commands or the Browser User Interface to create a VM storage in a KVM deployment.
- Viewing VM Storage in a KVM Deployment Use ODACLI commands or the Browser User Interface to view all VM storage or details about a VM storage in a KVM deployment.
- Modifying VM Storage in a KVM Deployment Use ODACLI commands or the Browser User Interface to modify VM storage in a KVM deployment.
- Deleting a VM Storage in a KVM Deployment Use ODACLI commands or the Browser User Interface to delete a VM storage in a KVM deployment.

\section*{Creating a VM Storage in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to create a VM storage in a KVM deployment.

\section*{Using ODACLI to Create VM Storage}

Use the command odacli create-vmstorage to create a VM Storage.
Create a VM storage named share 1 of 8 GB .
\# odacli create-vmstorage -n share1 -s 8G

\section*{Using Browser User Interface to Create VM Storage}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click Show VM Instances to display the VM Instances page.
4. In the page, select the Create VM Storage option and click Next.
5. In the Create VM Storage page, specify the following:
- Storage Name: Name of the VM storage
- Storage Size: Size of the storage to be allocated
- ASM Disk group: Select the Oracle ASM disk group
- Redundancy: Select the VM storage redundancy, either Mirror or High
6. Click Create.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Viewing VM Storage in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to view all VM storage or details about a VM storage in a KVM deployment.

\section*{Using ODACLI to View VM Storage}

The command odacli describe-vmstorage displays details about VM storage. Use the command odacli list-vmstorages to view all VM storages in the deployment.
```


# odacli list-vmstorages

```
\# odacli describe-vmstorage

\section*{Using Browser User Interface to View VM Storage}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Storage tab to view the list of all configured VM storages.
5. Click on a VM Storage to view the details of the VM storage.

\section*{Modifying VM Storage in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to modify VM storage in a KVM deployment.

\section*{Using ODACLI to Modify VM Storages}

Use the command odacli modify-vmstorage to modify VM storage.
Increase the size of a VM storage named share1 by 10 gigabytes.
```


# odacli modify-vmstorage -n share1 -i 10G

```

Decrease the size of a VM storage named share1 by 5 gigabytes.
```


# odacli modify-vmstorage -n share1 -s 5G

```

\section*{Using Browser User Interface to Modify VM Storage}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Storage tab.
5. In the page, select a VM Storage, select the Modify option and click Next.
6. In the Modify VM Storage page, specify Increment in size, the VM storage Redundancy as either Mirror or High, and click Modify.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Deleting a VM Storage in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a VM storage in a KVM deployment.

\section*{Using ODACLI to Delete VM Storage}

Use the command odacli delete-vmstorage to delete a VM storage.
Delete a VM storage named vs1.
\# odacli delete-vmstorage -n vs1

\section*{Using Browser User Interface to Modify VM Storage}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Storage tab.
5. In the page, select a VM Storage, select the Delete option.
6. Click Yes to confirm your choice.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Managing Virtual Networks in KVM Deployment}

Use ODACLI to create, view, start, stop, and delete virtual networks in an Oracle Database Appliance KVM deployment.
- Creating a Virtual Network in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a virtual network in a KVM deployment.
- Viewing Virtual Networks in a KVM Deployment Use ODACLI commands or the Browser User Interface to view all virtual networks or details about a virtual network in a KVM deployment.
- Starting and Stopping Virtual Networks in a KVM Deployment Use ODACLI commands or the Browser User Interface to start or stop virtual networks in a KVM deployment.
- Modifying a Virtual Network in a KVM Deployment Use ODACLI commands or the Browser User Interface to modify a virtual network in a KVM deployment.
- Deleting a Virtual Network in a KVM Deployment Use ODACLI commands or the Browser User Interface to delete a virtual network in a KVM deployment.

\section*{Creating a Virtual Network in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to create a virtual network in a KVM deployment.

\section*{Using ODACLI to Create Virtual Network}

Use the command odacli create-vnetwork to create a virtual network.
Create a VM network of type bridged using the interface btbond2.
```


# odacli create-vnetwork --name mgmtNet --bridge mgmtNet --type bridged --

interface btbond2 --ip 192.168.120.26 --gateway 192.168.120.1 --netmask
255.255.255.0

```

Create a VM network of type bridged-vlan using the interface btbond1.
```


# odacli create-vnetwork --name backupvlan --bridge backupvlan --type bridged-

vlan --vlan-id 12 --interface btbond1 --ip 192.168.100.10 --gateway
192.168.100.1 --netmask 255.255.255.0

```

\section*{Using Browser User Interface to Create Virtual Network}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click Show VM Instances to display the VM Instances page.
4. In the page, select the Create Virtual Network option and click Next.
5. In the Create Virtual Network page, specify the following:
- Name: Name of the virtual network
- IP Address: Virtual network IP address
- Subnet Mask and Gateway: Virtual network subnet mask and gateway
- Network Type: Virtual network type
- Interface: Virtual network interface
- Bridge Name: Name of the network bridge
- VLAN ID: ID of the VLAN network
6. Click Create.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Viewing Virtual Networks in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to view all virtual networks or details about a virtual network in a KVM deployment.

\section*{Using ODACLI to View Virtual Networks}

The command odacli describe-vnetwork displays details about a virtual network. Use the command odacli list-vnetworks to view all virtual networks in the deployment.
\# odacli list-vnetworks
\# odacli describe-vnetwork -n vnet1

\section*{Using Browser User Interface to Create Virtual Networks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Networks tab to view the list of all configured virtual networks.
5. Click on a Virtual Network to view the details of the virtual network.

\section*{Starting and Stopping Virtual Networks in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to start or stop virtual networks in a KVM deployment.

\section*{Using ODACLI to Start and Stop Virtual Networks}

The command odacli start-vnetwork starts a virtual network. Use the command odacli stop-vnetwork to stop a virtual network in the deployment.
```


# odacli start-vnetwork -n vnet1

```
\# odacli stop-vnetwork -n vnet1

\section*{Using Browser User Interface to Start and Stop Virtual Networks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Networks tab to view the list of all configured virtual networks.
5. To start a virtual network, click on a Virtual Network, and then click Start.
6. To stop a virtual network, click on a virtual network, and then click Stop.

\section*{Modifying a Virtual Network in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to modify a virtual network in a KVM deployment.

\section*{Using ODACLI to Modify Virtual Network}

Use the command odacli modify-vnetwork to modify a virtual network.
```


# odacli modify-vnetwork -n vnet1 -g 10.11.44.41

```

\section*{Using Browser User Interface to Modify Virtual Network}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Networks tab.
5. In the page, select a Virtual Network, select the Modify option and click Next.
6. In the Modify Virtual Network page, specify any changes in the Subnet Mask, Gateway, or IP Address, and click Modify.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Deleting a Virtual Network in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a virtual network in a KVM deployment.

\section*{Using ODACLI to Delete Virtual Networks}

Use the command odacli delete-vnetwork to delete a virtual network.
Delete a virtual network named vnet1.
\# odacli delete-vnetwork -n vnet1

\section*{Using Browser User Interface to Modify Virtual Networks}

\section*{Follow these steps:}
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Networks tab.
5. In the page, select a virtual network, select the Delete option.
6. Click Yes to confirm your choice.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Managing Virtual Disks in KVM Deployment}

Use ODACLI to create, view, clone, modify, and delete virtual disks on Oracle Database Appliance KVM deployment.
- Creating a Virtual Disk in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a virtual disk in a KVM deployment.
- Viewing Virtual Disks in a KVM Deployment

Use ODACLI commands or the Browser User Interface to view all virtual disks or details about a virtual disk in a KVM deployment.
- Cloning a Virtual Disk in a KVM Deployment Use ODACLI commands or the Browser User Interface to clone a virtual disk in a KVM deployment.
- Modifying a Virtual Disk in a KVM Deployment Use ODACLI commands or the Browser User Interface to modify a virtual disk in a KVM deployment.
- Deleting a Virtual Disk in a KVM Deployment Use ODACLI commands or the Browser User Interface to delete a virtual disk in a KVM deployment.

\section*{Creating a Virtual Disk in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to create a virtual disk in a KVM deployment.

Ensure that a VM storage exists before you create a virtual disk.

\section*{Using ODACLI to Create Virtual Disks}

Use the command odacli create-vdisk to create a virtual disk.
Specify the name of the virtual disk in the command odacli create-vdisk -n name. Identify the storage in which you create the virtual disk by using the -st storage option. Use the option -s size to specify the virtual disk size. If you want to configure the virtual disk as a shared disk, then use the option -sh.

The vdisk name must start with a letter followed by underscores, hyphens, or alphanumeric characters and can have a maximum length of 30 characters.

Create a 2 GB non-sparse and shareable virtual disk named vdisk1 inside the VM storage vms1.
```

odacli create-vdisk -n vdisk1 -st vms1 -s 2G -sh

```

\section*{Using Browser User Interface to Create Virtual Disks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the Virtual Disk page.
4. Click Create Virtual Disk.
5. In the page, select the Create Virtual Disk option and click Next.
6. In the Create Virtual Disk page, specify the following:
- Virtual Disk Name: Name assigned to the virtual disk that is unique within the name repository
- VM Storage Name: Name of the VM storage where the virtual disk will be created
- Disk Size: Size of the virtual disk
- Shared: Specify if you want to share the virtual disk
- Sparse or Non-Sparse: Specify if the virtual disk is sparse

\section*{7. Click Create.}
8. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
9. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Viewing Virtual Disks in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to view all virtual disks or details about a virtual disk in a KVM deployment.

\section*{Using ODACLI to View Virtual Disks}

The command odacli describe-vdisk displays details about a virtual disk. Use the command odacli list-vdisks to view all virtual disks in the deployment.
\# odacli list-vdisks
\# odacli describe-vdisk -n vdisk_name

\section*{Using Browser User Interface to Create Virtual Disks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Disks tab to view the list of all configured virtual disks.
5. Click on a virtual disk to view the details of the virtual disk.

\section*{Cloning a Virtual Disk in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to clone a virtual disk in a KVM deployment.

\section*{Using ODACLI to Clone Virtual Disks}

Use the command odacli clone-vdisk to clone an existing virtual disk.
Specify the source vdisk from which you want to clone with the -n option, and specify the name of the cloned virtual disk with the -cn option.

Create a clone of a virtual disk named vdisk1, with the name vdisk1_clone. The cloned disk is created on the same storage as vdisk1.
\# odacli clone-vdisk -n vdisk1 -cn vdisk1_clone

\section*{Using Browser User Interface to Create Virtual Disks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the Virtual Disk page.
4. Click Create Virtual Disk.
5. In the page, select the Clone Virtual Disk option and click Next.
6. In the Clone Virtual Disk page, specify the following:
- Select the source virtual disk you want to clone
- Specify the name of the cloned virtual disk
7. Click Create.
8. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
9. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Modifying a Virtual Disk in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to modify a virtual disk in a KVM deployment.

\section*{Using ODACLI to Modify Virtual Disks}

Use the command odacli modify-vdisk to increase the size of a virtual disk.
Increase the size of a virtual disk named vdisk1 by 4 gigabytes.
\# odacli modify-vdisk -n vdisk1 -i 4G

\section*{Using Browser User Interface to Modify Virtual Disks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Disks tab.
5. In the page, select a Virtual Disk, select the Modify Virtual Disk option and click Next.
6. In the Modify Virtual Disk page, specify Increment in size and if you want to share the virtual disk.
7. Click Modify.
8. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
9. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Deleting a Virtual Disk in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a virtual disk in a KVM deployment.

\section*{Using ODACLI to Delete Virtual Disks}

Use the command odacli delete-vdisk to delete a virtual disk.
Delete a virtual disk named vdisk1.
\# odacli delete-vdisk -n vdisk1

\section*{Using Browser User Interface to Modify Virtual Disks}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show Virtual Disks tab.
5. In the page, select a Virtual Disk, select the Delete option.
6. Click Yes to confirm your choice.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Managing Virtual Machines in KVM Deployment}

Use ODACLI to create, view, clone, modify, start, stop, and delete virtual machines in an Oracle Database Appliance KVM deployment.
- Creating a Virtual Machine in a KVM Deployment Use ODACLI commands or the Browser User Interface to create a virtual machine in a KVM deployment.
- Cloning a Virtual Machine in a KVM Deployment Use ODACLI commands or the Browser User Interface to clone a virtual machine instance in a KVM deployment.
- Modifying a Virtual Machine in a KVM Deployment Use ODACLI commands or the Browser User Interface to modify a virtual machine in a KVM deployment.
- Viewing Virtual Machines in a KVM Deployment Use ODACLI commands or the Browser User Interface to view all virtual machines or details about a virtual machine in a KVM deployment.
- Starting and Stopping Virtual Machines in a KVM Deployment Use ODACLI commands or the Browser User Interface to start or stop virtual machines in a KVM deployment.
- Deleting a Virtual Machine in a KVM Deployment Use ODACLI commands or the Browser User Interface to delete a virtual machine in a KVM deployment.

\section*{Creating a Virtual Machine in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to create a virtual machine in a KVM deployment.

Ensure that a VM storage exists before you create a VM instance.

\section*{Using ODACLI to Create Virtual Machine Instance}

Use the command odacli create-vm to create a VM instance. Specify the preferred node on which to start the virtual machine after creation (-pn option).

Following is an example command to create a VM named vm1 with 8 vcpus and 8 GB memory. A VM disk of size 10 GB is created automatically as / dev/vda inside the VM for the operating system installation. The VM disk is stored in the VM storage vms1. The source used for the installation is located on /u01/OL7. iso. If you want to attach an additional virtual disk to the VM, you can specify --vdisks vdisk_name, where vdisk_name is an existing virtual disk. This virtual disk when attached, is shown as / dev/vdb inside the VM.
```


# odacli create-vm -n vm1 -vc 8 -m 8G -vms vms1 -src /u01/OL7.iso -size 10G

```

To use a kickstart configuration file to create the VM instance, include the file in the --extraargs parameter. Create a kickstart configuration file, including the network configuration for the guest VM. Ensure that you specify the network details in the --extra-args parameter so that the VM bootstrap can use it to access the kickstart configuration file in this format "dns=dns ip ip=ip::gateway: netmask: hostname:interface:none". The IP must belong to the vnetwork to be attached to the VM, and the kickstart configuration must be available over this vnetwork.

For example:
```

odacli create-vm --name odaksvm --vnetwork pubnet --memory 4G --
source /u01/kvm/images/OL77 x86 64.iso --vmstorage myvms --size 10G --vcpus 2
--extra-args "dns=dns_IP ip=vm_IP::gateway_IP:netmask:vm_hostname:eth0:none
console=tty0 console=ttyS0,115200 ks=http://Webserver_IP:portnumber/ks.txt"

```

If you do not use a kickstart configuration file to create the VM instance, then complete the VM instance creation as follows:
1. Run the odacli create-vm command and check that it completes successfully.
2. Use the odacli describe-vm command to check the VNC port.
3. Log in to the VM instance using the VNC port: host: vncport. See the section Connecting to the VM instance Using VNC for the steps to connect to the VM instance using VNC.
4. Complete the installation process by providing your values for the installation screens.
5. Log in again to the VM instance using the VNC port: host: vncport. See the section Connecting to the VM instance Using VNC for the steps to connect to the VM instance using VNC.
6. If you specified --vnetwork in the odacli create-vm command, then you can run ifconfig -a to view the network interface in the VM. Configure the network as you would on a Linux system.
7. After the network is configured, log into the VM using the network and customize the VM instance.
8. If you did not specify --vnetwork in the odacli create-vm command, then the VM network is created using the default Network Address Translation (NAT) based KVM bridge virbr0. eth0 is configured as DHCP inside the VM.

\section*{Connecting to the VM instance Using VNC: Method 1}
1. Find out the VNC display port of the VM from the command odacli describe-vm -n vm_name: 127.0.0.1:1
\# odacli describe-vm -n vm1 VM details

ID: c280af13-997c-49b1-97ce-0617610535f1
Name: vm1

Graphics settings: vnc,listen=127.0.0.1
Display Port: 127.0.0.1:1 <<<<
2. Run vncserver on the Oracle Database Appliance host. Note down the vncserver address odahost:11.
\# vncserver
New 'odahost:11 (root)' desktop is odahost:11
3. Launch vncviewer from your desktop, login to the Oracle Database Appliance host using the vncserver address created in step 2: odahost:11. This launches a vncviewer that logs into the Oracle Database Appliance host.
4. From vncviewer launched in step 3, run the vncviewer command with the display port from the odacli describe-vm output. For example, in the previous step, the odacli describevm command shows the display port is 127.0.0.1:1, so type vncviewer 127.0.0.1:1.

\section*{Connecting to the VM instance Using VNC: Method 2}
1. Find out the VNC display port of the VM from the command odacli describe-vm. For example, the Display Port is Display Port: 127.0.0.1:1, and the current node myodahost1.
```


# odacli describe-vm -n vm1

VM details
_-_-_
ID: c280af13-997c-49b1-97ce-0617610535f1
Name: vm1

```
```

Graphics settings: vnc,listen=127.0.0.1
Display Port: 127.0.0.1:1 <<<<
Status
-------------------------
Current node: myodahost1 <<<
Current state: ONLINE
Target state: ONLINE

```
2. On Linux or macOS operating systems where you want to launch the vncviewer, use the following command to create the SSH tunnel:
ssh -L localport:127.0.0.1:vncport root@odahost
where localport is an available port number greater than 1024 on your local machine (for example, 12345) where vnc viewer is launched. vncport is the VNC port displayed in the odacli describe-vm command plus 5900. For example, if odacli describe-vm returns the display port as 127.0.0.1:1, then use 5901 as the VNC port. odahost1 is the host name of the Oracle Database Appliance host where the VM is running. 127.0.0.1 is the address where vnc server is listening at. Do not change the 127.0.0.1 address. For example:
```

ssh -L 12345:127.0.0.1:5901 root@odahost1

```

On Windows, use PuTTY to create the SSH tunnel.
3. Launch vncviewer from your desktop, enter VNC server address as localhost:localport, where localport is one used in the SSH tunnel in step 2 (such as 12345). For example:
vncserver: localhost:12345

\section*{How to find VM network interface attached to the vnetwork}

If you specified --vnetwork in the odacli create-vm command, then you can run ifconfig -a to view the network interface in the VM. Find out the VM network interface name that is attached to the vnetwork by matching the interface MAC address to the MAC address displayed in the odacli describe-vm command.

For example:
```


# odacli describe-vm -n vm1

VM details
--------------------------------------------------------------------------------------
--
ID: c280af13-997c-49b1-97ce-0617610535f1
Name: vm1
Parameters
-----------------------------
Config Live
-------------------------
Memory: 2.00 GB 2.00 GB
Max Memory: 2.00 GB 2.00 GB

```
<<<<

Run "ip link show"inside the VM, find the interface name whose MAC address (the link/ether field in the ip command output: link/ether 52:54:00:15:b5:c4) that matches the vnetwork MAC address in the describe-vm output "pubnet:52:54:00:15:b5:c4", in this case it is eth0. So eth0 is the interface attached to the vnetwork "pubnet".
```


# ip link show

3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
mode DEFAULT group default qlen 1000
link/ether 52:54:00:15:b5:c4 brd ff:ff:ff:ff:ff:ff

```

Configure the network interface eth0 as you would on a Linux system.

\section*{Using Browser User Interface to Create Virtual Machine Instance}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click Show VM Instances to display the VM Instances page.
4. In the page, select the Create VM Instance option and click Next.
5. In the Create Virtual VM page, specify the following:
- VM Name: Name assigned to the VM instance that is unique within the name repository
- VM Storage Name: Name of the VM storage where the VM instance will be created
- Source Installation: The source from which you want to create the VM
- Preferred Node: Node where you want to run the VM instance
- Memory Size: Size of the memory to be allocated
- CPU Pool Name: Select the CPU Pool
- Number of vCPUs to Use: Number of virtual CPUs to be allocated
6. Click Create.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Cloning a Virtual Machine in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to clone a virtual machine instance in a KVM deployment.

\section*{Using ODACLI to Clone Virtual Machine Instance}

Use the command odacli clone-vm to clone an existing virtual machine
The name of the VM you create is defined by the command odacli clone-vm -cn name. Specify the source VM from which you want to clone.

Create a clone of a virtual machine named vm1, with the name vm1_clone. The cloned VM is created on the same storage as vm1.
```


# odacli clone-vm -n vm1 -cn vm1_clone

```

\section*{Using Browser User Interface to Clone Virtual Machine Instance}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Instance page.
4. Click Create VM Instance.
5. In the page, select the Clone VM Instance option and click Next.
6. In the Clone VM Instance page, specify the following:
- Select the Source VM you want to clone
- Specify the name and description of the cloned VM instance
7. Click Create.
8. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
9. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Modifying a Virtual Machine in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to modify a virtual machine in a KVM deployment.

\section*{Using ODACLI to Modify Virtual Machines}

Use the command odacli modify-vm to modify a virtual machine.

Update the configuration of a VM named vm1, setting the CPU count to 6 and the maximum memory to 6 gigabytes on both the running VM and subsequent boots.
```


# odacli modify-vm -n vm1 -c 6 -mm 6G --live --config

```

Modify a VM to attach a vnetwork:
\# odacli modify-vm -n vm_name -avn vnetwork_name
- When an application VM is created, a default network interface is created by default in the VM. This interface is attached to the default kvm bridge (virbr0) at the host. This interface is intended for convenient communication between the host and VM . This interface does not attach to any physical network interface at the host. Do not configure this interface to use for any external communication.
- You must create a vnetwork using the command odacli create-vnetwork and attach the vnetwork (odacli modify-vm -avn) to the VM. This creates a second interface in the VM. Configure this network interface for your network requirement.
- The network interface name in the VM depends on the operating system.

\section*{Using Browser User Interface to Modify Virtual Machines}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Instances tab.
5. In the page, select a Virtual Machine, select the Modify option and click Next.
6. In the Modify VM page, specify Increment in size, and if you want to Auto Start, Set Failover, or Enable NUMA.
7. You can also modify the CPU Pool, Number of vCPUs to use, Memory Size, and attach and detach virtual disks and virtual networks.
8. Select if you want to save the configuration or apply the configuration to the running VM .
9. Click Modify.
10. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
11. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{Viewing Virtual Machines in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to view all virtual machines or details about a virtual machine in a KVM deployment.

\section*{Using ODACLI to View Virtual Machines}

The command odacli describe-vm displays details about a virtual machine. Use the command odacli list-vms to view all virtual machines in the deployment.
\# odacli list-vms
\# odacli describe-vm -n vm_name

\section*{Using Browser User Interface to Create Virtual Machines}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Instances tab to view the list of all configured virtual machines.
5. Click on a VM Instance to view the details of the virtual machine.

\section*{Starting and Stopping Virtual Machines in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to start or stop virtual machines in a KVM deployment.

\section*{Using ODACLI to Start and Stop Virtual Machines}

The command odacli start-vm starts a virtual machine. Use the command odacli stop-vm to stop a virtual machine in the deployment.

If pref-node is defined for the \(V M\), then the \(V M\) starts on the pref-node. If pref-node is not defined for the VM, then the VM can start on any node, in a high-availability deployment. However, if you specify the node name -n, then the VM starts on the specified node, even if the preferred node is defined.
```


# odacli start-vm -n vm1

# odacli stop-vm -n vm1

```

\section*{Using Browser User Interface to Start and Stop Virtual Machines}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Instances tab to view the list of all configured virtual machines.
5. To start a virtual machine, click on a VM Instance, and then click Start and select the node to start the virtual machine.
6. To stop a virtual machine, click on a VM Instance, and then click Stop to stop the virtual machine. Click Force Stop to close all running processes and stop the virtual machine.

\section*{Deleting a Virtual Machine in a KVM Deployment}

Use ODACLI commands or the Browser User Interface to delete a virtual machine in a KVM deployment.

\section*{Using ODACLI to Delete Virtual Machines}

Use the command odacli delete-vm to delete a virtual machine.
Delete a virtual machine named vm1.
\# odacli delete-vm -n vm1

\section*{Using Browser User Interface to Modify Virtual Machines}

Follow these steps:
1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Appliance tab.
3. Click VM Instances to display the VM Details page.
4. Click the Show VM Instances tab.
5. In the page, select a VM Instance, select the Delete option.
6. Click Yes to confirm your choice.
7. When you submit the job, the job ID and a link to the job appears. Click the link to display the job status and details.
8. Validate that the job completed. You can track the job in the Activity tab in the Browser User Interface, or run the command odacli describe-job with the job ID.

\section*{About Overcommitting Memory or CPUs in an Oracle Database Appliance KVM System}

Understand performance and other considerations before overcommiting CPU and memory for application KVM.

Oracle Database Appliance does not restrict overcommiting of CPU and memory for application KVM. However, it is not recommended to overcommit CPU or memory. Overcommitting CPU can lead to slow performance of the VMs and the host. Overcommitting memory can cause the system to run out of memory (OOM), which may lead to the Linux kernel shutting down important system processes. Before you decide to overcommit CPU or memory, ensure that you test your systems. When sizing the application VMs, it is recommended to reserve at least 24 GB memory and 2 CPU cores for bare metal system KVM host when there is no database running on the bare metal system host.

Oracle Database Appliance validates oversubscription of shared CPU pools for DB systems as well as memory associated with DB systems. Starting with Oracle Database Appliance release 19.15, the commands odacli start-dbsystem, odacli modify-dbsystem, odacli createdbsystem, and odacli modify-cpupool display errors if the operations result in overcommiting of the CPU pool or memory for the DB system. You can use the --force/-f option to allow overcommit of resources for DB systems. This check applies to DB systems only, not for application VMs.

\section*{Example JSON File to Create a Single-Node DB System}

Follow the JSON file example to create a JSON file to deploy a single-node DB System, with role separation, with the command odacli create-dbsystem.

Use the example JSON file to create a file for your environment.

\section*{Note:}

It is important to review the readme and the examples carefully before creating your JSON file.

\section*{Example 16-1 JSON File to Create a Single-Node Oracle KVM Database System with Role Separation}

The following is an example of a JSON file that creates a single-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. The example uses role separation. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
\{
```

"system": {
"name": "test_example",
"shape": "odb2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"enableRoleSeparation": true,
"customRoleSeparation": {
"groups": [
{
"name": "oinstall",
"id": 1001,
"role": "oinstall"
},
{

```
```

                "name": "dbaoper",
                "id": 1002,
                "role": "dbaoper"
            },
            {
            "name": "dba",
            "id": 1003,
            "role": "dba"
            },
            {
            "name": "asmadmin",
            "id": 1004,
            "role": "asmadmin"
            },
            {
            "name": "asmoper",
            "id": 1005,
            "role": "asmoper"
            },
            {
            "name": "asmdba",
            "id": 1006,
            "role": "asmdba"
            }
        ],
        "users": [
            {
            "name": "grid",
            "id": 1000,
                "role": "gridUser"
            },
            {
                "name": "oracle",
                "id": 1001,
                "role": "oracleUser"
            }
        ]
    }
    },
"database": {
"name": "db19",
"uniqueName": "db19",
"domainName": "example.com",
"version": "19.23.0.0.240416",
"edition": "EE",
"type": "SI",
"dbClass": "OLTP",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": null,
"enableDbConsole": false,
"enableFlashStorage": false,
"enableFlashCache": false,
"enableUnifiedAuditing": true,
"enableEEHA": true,
"enableSEHA": false,

```
```

    "redundancy": null,<<< if diskgroup redundancy is FLEX, then database
    redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can be null
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "ENGLISH"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "test_domain",
"ntpServers": [
"xx.xxx.xx.xxx"
],
"dnsServers": [
"xx.xxx.xx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xx.xx.xx.xxx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xx.x",
"number": 0
}
],
"publicVNetwork": "vnet1"
},
"grid": {
"language": "en",
"enableAFD": true
}
}

```

\section*{Example 16-2 JSON File to Create a Single-Node Oracle KVM Database System without Role Separation}

The following is an example of a JSON file that creates a single-node Oracle KVM Database System on Oracle Database Appliance bare metal platform, without role separation. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system": {
"name": "test_example",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"database": {
"name": "db19",

```
```

            "uniqueName": "db19",
            "domainName": "example.com",
            "version": "19.23.0.0.240416",
            "edition": "EE",
            "type": "SI",
            "dbClass": "OLTP",
            "shape": "odb4",
            "role": "PRIMARY",
            "targetNodeNumber": null,
            "enableDbConsole": false,
            "enableUnifiedAuditing": true,
            "redundancy": "HIGH",<<< if diskgroup redundancy is FLEX, then
    database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "ENGLISH"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "test_domain",
"ntpServers": [],
"dnsServers": [
"xx.xxx.xx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xx.xx.xx.xxx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xx.x",
"number": 0
}
],
"publicVNetwork": "vnet1"
},
"grid": {
"language": "en",
"enableAFD": true
}
}

```

Example 16-3 JSON File to Create a Single-Node Oracle KVM Database System with the --template/-t option

The following is an example of a JSON file template sample that creates a single-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. This template sample is generated when you run the odacli create-dbsystem command with the --
template/-t option. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system": {
"name": "test_dbsystem",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"enableRoleSeparation": true,
"customRoleSeparation": {
"groups": [
{
"name": "oinstall",
"id": 1001,
"role": "oinstall"
}
],
"users": [
{
"name": "grid",
"id": 1000,
"role": "gridUser"
},
{
"name": "oracle",
"id": 1001,
"role": "oracleUser"
}
]
}
},
"database": {
"name": "dbtest",
"uniqueName": "dbtest",
"domainName": "example.com",
"version": "19.16.0.0.220719",
"edition": "EE",
"type": "SI",
"dbClass": "OLTP",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": "0",
"enableDbConsole": false,
"enableFlashStorage": false,
"enableFlashCache": false,
"enableUnifiedAuditing": true,
"enableEEHA": true,
"enableSEHA": false,
"redundancy": "MIRROR",
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",

```
```

            "dbLanguage": "ENGLISH"
    },
    "enableTDE": false,
    "isCdb": true,
    "pdbName": "pdb1",
    "pdbAdminUser": "pdbadmin"
    },
    "network": {
    "domainName": "example.com",
    "ntpServers": [
            "xxx.xxx.xxx.xxx"
    ],
    "dnsServers": [
            "xxx.xxx.xxx.xxx"
    ],
    "nodes": [
            {
                    "name": "node1",
                    "ipAddress": "xxx.xxx.xxx.xxx",
                    "netmask": "xxx.xxx.xxx.xxx",
                    "gateway": "xxx.xxx.xxx.xxx",
                    "number": 0
            }
    ],
    "publicVNetwork": "vnet1"
    },
    "grid": {
        "language": "en",
    "enableAFD": true
    }
    }

```

Example 16-4 JSON File to Create a Single-Node Oracle KVM Database System with the --template-annotated/-ta option

The following is an example of a JSON file that creates a single-node Oracle KVM Database System on Oracle Database Appliance bare metal platform with the --template-annotated/ta option. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system" : {
"name" : "test_dbsystem", ---> The name for the
DB System
"shape" : "dbs2", ---> The shape for the
DB System
"customMemorySize" : "24G", ---> The memory size
for the DB System
"timeZone" : "America/Los_Angeles", ---> The timezone for
the DB System
"diskGroup" : "DATA",
group to be used for the DB System volumes. Allowed options: <DATA>, <RECO>,
<REDO>
"cpuPoolName" : "shared_dbsystem_cpupool", ---> The CPU Pool for
the DB System
"enableRoleSeparation" : true, ---> Whether or not to

```
enable Role Separation. If true, need to specify 6 groups and two users. 'groupName' and 'userName' can be customized. If false, need to specify 2 groups and one user. 'groupName' and 'userName' can be customized. Allowed options: <true>, <false>
"customRoleSeparation" : \{
"groups" : [
\{
"name" : "oinstall", ---> Name of the group
to create, must be unique
"id" : 1001, ---> ID of the group
to create, must be unique
"role" : "oinstall", ---> Role of the
group
\}
],
"users" : [
\{
"name" : "grid", ---> Name of the user
to create, must be unique
"id" : 1000, ---> ID of the user to
create, must be unique
"role" : "gridUser", ---> Role of the
user
\},
\{
"name" : "oracle", ---> Name of the user
to create, must be unique
"id" : 1001, ---> ID of the user to
create, must be unique
"role" : "oracleUser", ---> Role of the
user
\}
]
\}
\},
"database" : \{
"name" : "dbtest", ---> Name for the DB
System database
"uniqueName" : "dbtest", ---> The unique name
for the DB System database
"domainName" : "example.com", ---> The domain name
that the DB System database will have
"version" : "19.23.0.0.240416", ---> The version for the DB System database. Execute 'odacli describe-dbsystem-image' to get the supported version
"edition" : "EE", ---> Enter 'EE' for
Enterprise Edition, or 'SE' for Standard Edition
"type" : "SI", ---> Enter a database
deployment type. Allowed options: <RAC>, <RACOne>, <SI> (single instance database)
"dbClass" : "OLTP", ---> The class for the
DB System database. Standard Edition only supports OLTP. Allowed options: <OLT>, <DSS>, <IMDB>
"shape" : "odb2", ---> The DB System
database shape, it must be same as the DB System shape
"role" : "PRIMARY", ---> The role for the

DB System database. Allowed options: <PRIMARY>, <STANDBY>
"targetNodeNumber" : "0", ---> Use '0' for Node0 and '1' for Node1. For RAC or RACOne use null. The default is '0' for Node0
"enableDbConsole" : false, ---> Whether or not to create dbconsole or EM express. By default, dbconsole is disabled. Allowed options: <true>, <false>
"enableFlashStorage" : false, ---> Whether or not to enable the flash storage for the DB System database. Allowed options: <true>, <false>
"enableFlashCache" : false, ---> Whether or not to enable the flash cache for the DB System database. Allowed options: <true>, <false>
"enableUnifiedAuditing" : true, ---> Whether or not to enable unified auditing for the DB System database. Allowed options: <true>, <false>
"enableEEHA" : true, ---> Whether or not to enable HA for EE SI database. enableEEHA is only valid when the edition is EE. Allowed options: <true>, <false>
"enableSEHA" : false, ---> Whether or not to enable HA for SE SI database. enableSEHA is only valid when the edition is SE. Allowed options: <true>, <false>
"redundancy" : "MIRROR", ---> If diskgroup redundancy is FLEX, then database redundancy must be set to one of 'HIGH' or 'MIRROR', otherwise, can be null
"characterSet" : \{
"characterSet" : "AL32UTF8", ---> The character set
for the DB System database
"nlsCharacterset" : "AL16UTF16", ---> The NLS character
set for the DB System database
"dbTerritory" : "AMERICA", ---> The territory for
the DB System database
"dbLanguage" : "ENGLISH", ---> The language for
the DB System database
\},
"enableTDE" : false, ---> Whether or not to
enable TDE. Allowed options: <true>, <false>
"isCdb" : true, ---> Enter 'true' if this database is container DB. For 21 c and \(a b o v e, ~ c d b\) must be true. Enter 'false' if this is non-cdb. Allowed options: <true>, <false>
"pdbName" : "pdb1", ---> Enter pdbName if
isCdb parameter is 'true', use 'null' if isCdb is 'false'
"pdbAdminUser" : "pdbadmin", ---> Enter PDB admin
user name, use 'null' if isCdb parameter is 'false'
\},
"network" : \{
"domainName" : "example.com", ---> The domain name for the DB System network
"ntpServers" : [
"xxx.xxx.xxx.xxx"
],
"dnsServers" : [
"xxx.xxx.xxx.xxx"
],
"nodes" : [
\{
```

            "name" : "node1", ---> The name used to
    configure the hostname
"ipAddress" : "xxx.xxx.xxx.xxx", ---> The IP address
for this node
"netmask" : "xxx.xxx.xxx.xxx", ---> The mask of the
network for this node
"gateway" : "xxx.xxx.xxx.xxx", ---> The gateway
address for this node
"number" : 0, ---> 0 (Use 0 for the
first node of the DB System instance)
}
],
"publicVNetwork" : "vnet1", ---> The name of the
public virtual network. The ipAddress, vipAddress and scanIps must be on this
publicVNetwork
},
"grid" : {
"language" : "en", ---> The language used
for GI (Grid Infrastructure) installation
"enableAFD" : true, ---> Whether or not to
enable ASM Filter Driver, enabled by default. Allowed options: <true>,
<false>
}
}

```

\section*{Example JSON File to Create a High-Availability DB System}

Follow the JSON file example to create a JSON file to deploy a two-node DB System, with role separation, with the command odacli create-dbsystem.

Use the example JSON file to create a file for your environment.

\section*{Example 16-5 JSON File to Create Two-Node Oracle KVM Database System without Role Separation}

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform, without role separation. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system": {
"name": "test_system",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared dbsystem cpupool",
},
"database": {
"name": "dbtest",
"uniqueName": "dbtest",
"domainName": "test_domain",
"version": "19.23.0.0.240416",
"edition": "EE",
"type": "SI",

```
```

    "dbClass": "OLTP",
    "shape": "odb2",
    "role": "PRIMARY",
    "targetNodeNumber": "0",
    "enableDbConsole": false,version
    "enableUnifiedAuditing": true,
    "enableEEHA": true,
    "redundancy": "MIRROR", <<< if diskgroup redundancy is FLEX, then
    database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "test_domain",
"ntpServers": [],
"dnsServers": [
"xx.xxx.xx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xx.xx.xxx.xx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xxx.x",
"number": 0,
"vipName": "node1-vip",
"vipAddress": "xx.xx.xxx.xx"
},
{
"name": "node2",
"ipAddress": "xx.xx.xxx.xx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xxx.x",
"number": 1,
"vipName": "node2-vip",
"vipAddress": "xx.xx.xxx.xx"
}
],
"publicVNetwork": "vnet1",
"scanName": "test-scan",
"scanIps": [
"xx.xx.xxx.xx",
"xx.xx.xxx.xx"
]
},
"grid": {
"language": "en",

```
```

        "enableAFD": true
    }
    }

```

\section*{Example 16-6 JSON File to Create Two-Node Oracle KVM Database System with Role Separation}

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. The example uses role separation. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

"system": {
"name": "test_system",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"enableRoleSeparation": true,
"customRoleSeparation": {
"groups": [
{
"name": "oinstall",
"id": 1001,
"role": "oinstall"
},
{
"name": "dbaoper",
"id": 1002,
"role": "dbaoper"
},
{
"name": "dba",
"id": 1003,
"role": "dba"
},
{
"name": "asmadmin",
"id": 1004,
"role": "asmadmin"
},
{
"name": "asmoper",
"id": 1005,
"role": "asmoper"
},
{
"name": "asmdba",
"id": 1006,
"role": "asmdba"
}
],
"users": [
{

```
```

                "name": "grid",
                "id": 1000,
                "role": "gridUser"
                },
                {
            "name": "oracle",
            "id": 1001,
            "role": "oracleUser"
                }
            ]
        }
    },
    "database": {
        "name": "dbtest",
        "uniqueName": "dbtest",
        "domainName": "test_domain",
        "version": "19.23.0.0.240416",
        "edition": "EE",
        "type": "SI",
        "dbclass": "OLTP",
        "shape": "odb2",
        "role": "PRIMARY",
        "targetNodeNumber": "0",
        "enableDbConsole": false,
        "enableUnifiedAuditing": true,
        "enableEEHA": true,
        "redundancy": null, <<< if diskgroup redundancy is FLEX, then
    database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "test_domain",
"ntpServers": [],
"dnsServers": [
"xx.xxx.xx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xx.xx.xxx.xx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xxx.x",
"number": 0,
"vipName": "node1-vip",
"vipAddress": "xx.xx.xxx.xx"
},

```
```

            {
            "name": "node2",
            "ipAddress": "xx.xx.xxx.xx",
            "netmask": "xxx.xxx.xxx.x",
            "gateway": "xx.xx.xxx.x",
            "number": 1,
            "vipName": "node2-vip",
            "vipAddress": "xx.xx.xxx.xx"
            }
        ],
        "publicVNetwork": "vnet1",
        "scanName": "test-scan",
        "scanIps": [
            "xx.xx.xxx.xx",
            "XX.XX.XXX.XX"
        ]
    },
    "grid": {
        "language": "en",
        "enableAFD": true
    }
    }

```

\section*{Example 16-7 JSON File to Create Two-Node Oracle KVM Database System with Standard Edition High-Availability Enabled}

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system": {
"name": "test_system",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
},
"database": {
"name": "dbtest",
"uniqueName": "dbtest",
"domainName": "test_domain",
"version": "19.23.0.0.240416",
"edition": "SE",
"type": "SI",
"dbClass": "OLTP",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": "0",
"enableDbConsole": false,
"enableUnifiedAuditing": true,
"enableSEHA": true,
"redundancy": "MIRROR", <<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can

```
```

be null
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "test_domain",
"ntpServers": [],
"dnsServers": [
"xx.xxx.xx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xx.xx.xxx.xx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xxx.x",
"number": 0,
"vipName": "node1-vip",
"vipAddress": "xx.xx.xxx.xx"
},
{
"name": "node2",
"ipAddress": "xx.xx.xxx.xx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xxx.x",
"number": 1,
"vipName": "node2-vip",
"vipAddress": "xx.xx.xxx.xx"
}
],
"publicVNetwork": "vnet1",
"scanName": "test-scan",
"scanIps": [
"xx.xx.xxx.xx",
"xX.XX.XXX.XX"
]
},
"grid": {
"language": "en"
"enableAFD": true
}
}

```

\section*{Example 16-8 JSON File to Create Two-Node Oracle KVM Database System with Oracle RAC Database}

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. When using the example to create
your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system": {
"name": "test_system",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
},
"database": {
"name": "dbtest",
"uniqueName": "dbtest",
"domainName": "test_domain",
"version": "19.23.0.0.240416",
"edition": "EE",
"type": "RAC",
"dbClass": "OLTP",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": "0",
"enableDbConsole": false,
"enableUnifiedAuditing": true,
"redundancy": "MIRROR", <<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "test_domain",
"ntpServers": [],
"dnsServers": [
"xx.xxx.xx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xx.xx.xxx.xx",
"netmask": "xxx.xxx.xxx.x",
"gateway": "xx.xx.xxx.x",
"number": 0,
"vipName": "node1-vip",
"vipAddress": "xx.xx.xxx.xx"
},
{

```
```

                "name": "node2",
                "ipAddress": "xx.xx.xxx.xx",
                "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xx.xx.xxx.xx"
            }
        ],
        "publicVNetwork": "vnet1",
        "scanName": "test-scan",
        "scanIps": [
        "xx.xx.xxx.xx",
        "xX.xx.xxx.xx"
    ]
    },
    "grid": {
        "language": "en"
        "enableAFD": true
    }
    }

```

Example 16-9 JSON File to Create A High-Availability Oracle KVM Database System with the --template/-t option

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. This template sample is generated when you run the odacli create-dbsystem command with the --template/-t option. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
\{
```

"system": {
"name": "test_dbsystem",
"shape": "dbs2̄",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"enableRoleSeparation": true,
"customRoleSeparation": {
"groups": [
{
"name": "oinstall",
"id": 1001,
"role": "oinstall"
}
],
"users": [
{
"name": "grid",
"id": 1000,
"role": "gridUser"
},
{
"name": "oracle",

```
```

                "id": 1001,
                "role": "oracleUser"
            }
        ]
    }
    },
"database": {
"name": "dbtest",
"uniqueName": "dbtest",
"domainName": "example.com",
"version": "19.23.0.0.240416",
"edition": "EE",
"type": "SI",
"dbClass": "OLTP",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": "0",
"enableDbConsole": false,
"enableFlashStorage": false,
"enableFlashCache": false,
"enableUnifiedAuditing": true,
"enableEEHA": true,
"enableSEHA": false,
"redundancy": "MIRROR",
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "example.com",
"ntpServers": [
"xxx.xxx.xxx.xxx"
],
"dnsServers": [
"xxx.xxx.xxx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xxx.xxx.xxx.xxx",
"netmask": "xxx.xxx.xxx.xxx",
"gateway": "xxx.xxx.xxx.xxx",
"number": 0,
"vipName": "node1-vip",
"vipAddress": "xxx.xxx.xxx.xxx"
},
{
"name": "node2",
"ipAddress": "xxx.xxx.xxx.xxx",

```
```

                "netmask": "xxx.xxx.xxx.xxx",
                "gateway": "xxx.xxx.xxx.xxx",
                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xxx.xxx.xxx.xxx"
            }
        ],
        "publicVNetwork": "vnet1",
        "scanName": "dbtest-scan",
        "scanIps": [
            "xXX. XXX.XXX. XXX",
            "xXX.XXX.XXX. XXX"
        ]
    },
    "grid": {
        "language": "en",
        "enableAFD": true
    }
    }

```

\section*{Example 16-10 JSON File to Create A High-Availability Oracle KVM Database System with the --template/-t option}

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. This template sample is generated when you run the odacli create-dbsystem command with the --template/t option. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

"system": {
"name": "test dbsystem",
"shape": "dbs2",
"customMemorySize": "24G",
"timeZone": "America/Los_Angeles",
"diskGroup": "DATA",
"cpuPoolName": "shared_dbsystem_cpupool",
"enableRoleSeparation": true,
"customRoleSeparation": {
"groups": [
{
"name": "oinstall",
"id": 1001,
"role": "oinstall"
}
],
"users": [
{
"name": "grid",
"id": 1000,
"role": "gridUser"
},
{
"name": "oracle",
"id": 1001,
"role": "oracleUser"

```
```

                }
        ]
    }
    },
"database": {
"name": "dbtest",
"uniqueName": "dbtest",
"domainName": "example.com",
"version": "19.23.0.0.240416",
"edition": "EE",
"type": "SI",
"dbClass": "OLTP",
"shape": "odb2",
"role": "PRIMARY",
"targetNodeNumber": "0",
"enableDbConsole": false,
"enableFlashStorage": false,
"enableFlashCache": false,
"enableUnifiedAuditing": true,
"enableEEHA": true,
"enableSEHA": false,
"redundancy": "MIRROR",
"characterSet": {
"characterSet": "AL32UTF8",
"nlsCharacterset": "AL16UTF16",
"dbTerritory": "AMERICA",
"dbLanguage": "AMERICAN"
},
"enableTDE": false,
"isCdb": true,
"pdbName": "pdb1",
"pdbAdminUser": "pdbadmin"
},
"network": {
"domainName": "example.com",
"ntpServers": [
"xxx.xxx.xxx.xxx"
],
"dnsServers": [
"xxx.xxx.xxx.xxx"
],
"nodes": [
{
"name": "node1",
"ipAddress": "xxx.xxx.xxx.xxx",
"netmask": "xxx.xxx.xxx.xxx",
"gateway": "xxx.xxx.xxx.xxx",
"number": 0,
"vipName": "node1-vip",
"vipAddress": "xxx.xxx.xxx.xxx"
},
{
"name": "node2",
"ipAddress": "xxx.xxx.xxx.xxx",
"netmask": "xxx.xxx.xxx.xxx",
"gateway": "xxx.xxx.xxx.xxx",

```
```

                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xxx.xxx.xxx.xxx"
        }
    ],
    "publicVNetwork": "vnet1",
    "scanName": "dbtest-scan",
    "scanIps": [
        "xxx.xxx.xxx.xxx",
        "xxx.xxx.xxx.xxx"
        ]
    },
    "grid": {
        "language": "en",
        "enableAFD": true
    }
    }

```

\section*{Example 16-11 JSON File to Create A High-Availability Oracle KVM Database System with the --template-annotated/-ta option}

The following is an example of a JSON file that creates two-node Oracle KVM Database System on Oracle Database Appliance bare metal platform. This template sample is generated when you run the odacli create-dbsystem command with the --template-annotated/-ta option. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.
```

{
"system" : {
"name" : "test_dbsystem", ---> The name for the
DB System
"shape" : "dbs2", ---> The shape for the
DB System
"customMemorySize" : "24G", ---> The memory size
for the DB System
"timeZone" : "America/Los_Angeles", ---> The timezone for
the DB System
"diskGroup" : "DATA",
---> The ASM disk
group to be used for the DB System volumes. Allowed options: <DATA>, <RECO>,
<REDO>
"cpuPoolName" : "shared_dbsystem_cpupool", ---> The CPU Pool for
the DB System
"useReservedCores" : false, ---> Whether or not to
use reserved CPU cores. Allowed options: <true>, <false>
"enableRoleSeparation" : true, ---> Whether or not to
enable Role Separation. If true, need to specify 6 groups and two users.
'groupName' and 'userName' can be customized. If false, need to specify 2
groups and one user. 'groupName' and 'userName' can be customized. Allowed
options: <true>, <false>
"customRoleSeparation" : {
"groups" : [
{
"name" : "oinstall", ---> Name of the group
to create, must be unique
"id" : 1001, ---> ID of the group
to create, must be unique

```
group
"role" : "oinstall", ---> Role of the
\}
],
"users" : [
\{
"name" : "grid", ---> Name of the user
to create, must be unique
"id" : 1000, ---> ID of the user to
create, must be unique
"role" : "gridUser", ---> Role of the
user
\},
\{
"name" : "oracle", ---> Name of the user
to create, must be unique
"id" : 1001, ---> ID of the user to
create, must be unique
"role" : "oracleUser", ---> Role of the
user
\}
]
\}
\},
"database" : \{
"name" : "dbtest", ---> Name for the DB
System database
"uniqueName" : "dbtest", ---> The unique name
for the DB System database
"domainName" : "example.com", ---> The domain name
that the DB System database will have
"version" : "19.23.0.0.240416",
---> The version for the DB System database. Execute 'odacli describe-dbsystem-image' to get the supported version
"edition" : "EE", ---> Enter 'EE' for
Enterprise Edition, or 'SE' for Standard Edition
"type" : "SI", ---> Enter a database
deployment type. Allowed options: <RAC>, <RACOne>, <SI> (single instance database)
"dbClass" : "OLTP", ---> The class for the
DB System database. Standard Edition only supports OLTP. Allowed options: <OLT>, <DSS>, <IMDB>
"shape" : "odb2", ---> The DB System
database shape, it must be same as the DB System shape
"role" : "PRIMARY", ---> The role for the DB System database. Allowed options: <PRIMARY>, <STANDBY>
"dbStorage" : "ASM", ---> Storage type of the DB System database. The default value is ASM. Allowed options: <ASM>, <PMEM>
"level0BackupDay" : "wednesday", ---> Backup day of the
DB System database. Allowed options: <monday>, <tuesday>, <wednesday>, <thursday>, <friday>, <saturday>, <sunday>
"targetNodeNumber" : "0", ---> Use '0' for Node0
and '1' for Node1. For RAC or RACOne use null. The default is '0' for Node0
"enableDbConsole" : false, ---> Whether or not to
create dbconsole or EM express. By default, dbconsole is disabled. Allowed options: <true>, <false>
"enableFlashStorage" : false, ---> Whether or not to
enable the flash storage for the DB System database. Allowed options: <true>, <false>
"enableFlashCache" : false, ---> Whether or not to enable the flash cache for the DB System database. Allowed options: <true>, <false>
"enableUnifiedAuditing" : true, ---> Whether or not to enable unified auditing for the DB System database. Allowed options: <true>, <false>
"enableEEHA" : true, ---> Whether or not to enable HA for EE SI database. enableEEHA is only valid when the edition is EE. Allowed options: <true>, <false>
"enableSEHA" : false, ---> Whether or not to enable HA for SE SI database. enableSEHA is only valid when the edition is SE. Allowed options: <true>, <false>
"redundancy" : "MIRROR", ---> If diskgroup redundancy is FLEX, then database redundancy must be set to one of 'HIGH' or 'MIRROR', otherwise, can be null
"characterSet" : \{
"characterSet" : "AL32UTF8", ---> The character set
for the DB System database
"nlsCharacterset" : "AL16UTF16", ---> The NLS character
set for the DB System database
"dbTerritory" : "AMERICA", ---> The territory for
the DB System database
"dbLanguage" : "AMERICAN", ---> The language for
the DB System database
\},
"enableTDE" : false, ---> Whether or not to
enable TDE. Allowed options: <true>, <false>
"iscdb" : true, ---> Enter 'true' if
this database is container DB. For 21c and above, cdb must be true. Enter 'false' if this is non-cdb. Allowed options: <true>, <false>
"pdbName" : "pdb1", ---> Enter pdbName if
iscdb parameter is 'true', use 'null' if isCdb is 'false'
"pdbAdminUser" : "pdbadmin", ---> Enter PDB admin
user name, use 'null' if isCdb parameter is 'false'
\},
"network" : \{
"domainName" : "example.com", ---> The domain name
for the DB System network
"ntpServers" : [
"xxx.xxx.xxx.xxx"
],
"dnsServers" : [
"xxx.xxx.xxx.xxx"
],
"nodes" : [
\{
"name" : "node1", ---> The name used to
configure the hostname
"ipAddress" : "xxx.xxx.xxx.xxx", ---> The IP address
for this node
"netmask" : "xxx.xxx.xxx.xxx", ---> The mask of the
```

network for this node
"gateway" : "xxx.xxx.xxx.xxx", ---> The gateway
address for this node
"number" : 0, ---> 0 (Use 0 for the
first node of the DB System instance)
"vipName" : "node1-vip", ---> The VIP name for
this first node, only for HA case
"vipAddress" : "xxx.xxx.xxx.xxx", ---> The VIP address
for this first node, only for HA case
},
{
"name" : "node2", ---> The name used to
configure the hostname
"ipAddress" : "xxx.xxx.xxx.xxx", ---> The IP address
for this node
"netmask" : "xxx.xxx.xxx.xxx", ---> The mask of the
network for this node
"gateway" : "xxx.xxx.xxx.xxx", ---> The gateway
address for this node
"number" : 1, ---> 1 (Use 1 for the
second node of the DB System instance)
"vipName" : "node2-vip",
this second node, only for HA case
"vipAddress" : "xxx.xxx.xxx.xxx", ---> The VIP address
for this second node, only for HA case
}
],
"publicVNetwork" : "vnet1", ---> The name of the
public virtual network. The ipAddress, vipAddress and scanIps must be on this
publicVNetwork
"scanName" : "dbtest-scan", ---> The scan name of
the DB System. It should resolve to the IPs defined in the scanIps. Only for
HA case
"scanIps" : [
"xxx.xxx.xxx.xxx",
"xxx.xxx.xxx.xxx"
]
},
"grid" : {
"language" : "en", ---> The language used
for GI (Grid Infrastructure) installation
"enableAFD" : true, ---> Whether or not to
enable ASM Filter Driver, enabled by default. Allowed options: <true>,
<false>
}
}

```

\section*{Oracle Database Appliance Command-Line Interface}

The command-line interface has different classes of tools to manage Oracle Database Appliance.
- About Oracle Database Appliance Command-Line Interface Three classes of tools are available to perform deployment, lifecycle management, and system administration on Oracle Database Appliance.
- Managing ODACLI Privileges and Security with SUDO Oracle Appliance Manager command-line utility requires root system privileges for most administration actions. You may want to use SUDO as part of your system auditing and security policy.
- ODACLI Command Changes with Multi-User Access on Oracle Database Appliance Understand the ODACLI command changes when you enable multi-user access.
- odacli Network Commands

Use the odacli network commands to list and describe network interfaces.
- odacli Multi-User Access Commands

Use odacli commands to enable multi-user access for the appliance.
- odacli Apply Patch and Update Commands

Use the commands odacli update and apply patch to apply patches and update the appliance.
- Data Preserving Reprovisioning Commands Understand commands to upgrade the appliance using the Data Preserving Reprovisioning feature.
- odacli Appliance Commands

Use the odacli appliance commands to perform lifecycle activities for the appliance.
- odacli Backup and Recovery Commands

Use the odacli backup and recover commands to backup to and restore from Oracle Cloud Infrastructure Object Storage or disk or NFS.
- odacli Oracle Data Guard Commands

Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.
- odacli CPU Core Commands

Use the CPU Core commands to enable CPU cores and display current and historical CPU core configurations.
- odacli CPU Pool Commands for Bare Metal and KVM

Use odacli commands to manage resource allocations on Oracle Database Appliance for bare metal and KVM deployments.
- odacli Database Commands

Use the odacli database commands to perform database lifecycle operations.
- odacli DBHome Commands

Use the odacli DBHome commands to manage database Home operations.
- odacli Database Storage Commands

Use the Database Storage commands to list, describe, create, and delete Oracle database storage.
- odacli Diagnostics Collection Commands

Use the diagnostics collection commands to display diagnostics details.
- odacli Job Commands

Use the odacli list-jobs and odacli describe-job commands to display job details.
- Log Commands

Use the odacli log commands to specify the options to collect and delete logs.
- odacli Oracle Auto Service Request Commands Use the Oracle Auto Service Request (Oracle ASR) commands to configure, update, test, and delete Oracle ASR on the system.
- Adaptive Classification and Redaction (ACR) Commands

Understand Adaptive Classification and Redaction (ACR) commands.
- odacli OS Commands

Use the odacli OS commands to list and update operating system (OS) parameters.
- odaadmcli Hardware Monitoring Commands

Use the hardware monitoring commands to display hardware configurations.
- Storage Commands

Understand the commands to perform storage operations and diagnostics.

\section*{About Oracle Database Appliance Command-Line Interface}

Three classes of tools are available to perform deployment, lifecycle management, and system administration on Oracle Database Appliance.

The command-line interface (CLI) is an alternative to Oracle Database Appliance Browser User Interface for some appliance configuration and patching tasks, database management, and job activity.

Oracle Database Appliance uses a role-based command-line interface. Use the odacli commands to perform lifecycle management tasks and the odaadmcli commands to perform storage and hardware monitoring maintenance. Many tasks related to managing Oracle Databases are also required with databases on Oracle Database Appliance. Tasks common to Oracle Database generally are described in the Oracle Database documentation library. However, to simplify tasks, use the Oracle Database Appliance command-line interface. The odacli and odaadmcliutilities combine the capabilities of the SYS database administrator role and the operating system Superuser (root user). Always perform administrative tasks using the Oracle Database Appliance Browser User Interface or CLI utilities.

The following classes of commands are available:
- Deployment and Configuration: Use the deployment and configuration commands as part of the initial deployment of the appliance and to configure CPU cores.
- Lifecycle management: Use odacli commands to perform database and system administration tasks for the appliance. The odacli commands are the primary interface to perform life cycle activities for the appliance.
- Administration: Use odaadmcli commands to perform hardware administration tasks for the appliance. The odaadmcli commands are the interface for infrequent administration activities needed to manage appliance hardware components, storage, and VLAN.

You can perform the following deployment and configuration tasks:
- Configure the first network in the appliance
- Unzip and copy the Oracle Database Appliance software to the correct locations
- Set the number of CPU Cores for the system

You can perform the following appliance lifecycle tasks with odacli commands:
- Create and describe the appliance
- Create, list, describe, and delete databases
- Create, list, describe, and delete Oracle Database Homes
- Create, list, and describe the networks
- List and describe the jobs

You can perform the following appliance administration tasks with odaadmcli commands:
- Show storage, disks, disk groups, and controllers
- Display storage diagnostics for disks and NVM Express (NVMes)
- Show server, memory, processor, power, cooling, and network details

Depending on your version of Oracle Appliance Manager and your hardware, some of the odacli commands may not be available to you. To see which commands are supported on your version of Oracle Appliance Manager and your hardware, run the odacli help command: odacli -h.

\section*{Command-Line Interface Syntax}

The command-line interface commands and parameters are case-sensitive.
An odacli or odaadmclicommand uses the following command syntax:
odacli command [options]
- command is an action you want to perform on the appliance. For example: odacli
list-networks or odacli describe-jobs.
- options are optional parts of the odacli command. Options can consist of one or more options that extend the use of the odacli command carried out on an object. Options include additional information about the action that you want to perform on the object. Option names are preceded with a dash. Some options require the name of an object for the command to perform the action that you want to carry out. If an option is preceded with an * (asterisk), this information is required to submit the command. When appending \(-j\) to the odacli command, the output is returned in JSON format. The help option \((-h)\) is an option that is available with almost all commands. When you include the -h option, you can obtain additional information about the command that you want to perform.

\section*{Oracle Database Appliance Manager Command-Line Interface Help}

Run the -h command to see the usage information for all commands available for your Oracle Database Appliance. For example:
```

odacli -h

```

Run odacli command -h to see detailed help about a specific command. For example, to see detailed help for the odacli describe-dbhome command, use the following:
```

odacli describe-dbhome -h

```

\section*{Managing ODACLI Privileges and Security with SUDO}

Oracle Appliance Manager command-line utility requires root system privileges for most administration actions. You may want to use SUDO as part of your system auditing and security policy.

For most tasks, Oracle recommends that you log in as root to use the Oracle Appliance Manager command-line interface on Oracle Database Appliance. If you are not logged in as root, then you cannot carry out most actions on the appliance. For example, if you are not logged in as root, then you can view storage information, but you cannot modify the storage.

\section*{Allowing Root User Access Using SUDO}

In environments where system administration is handled by a different group than database administration, or where security is a significant concern, you may want to limit access to the root user account and password. SUDO enables system administrators to grant certain users (or groups of users) the ability to run commands as root, while logging all commands and arguments as part of your security and compliance protocol.

A SUDO security policy is configured by using the file /etc/sudoers. Within the sudoers file, you can configure groups of users and sets of commands to simplify and audit server administration with SUDO commands.

\section*{Caution:}

Configuring SUDO to allow a user to perform any operation is equivalent to giving that user root privileges. Consider carefully if this is appropriate for your security needs.

\section*{Example 17-1 SUDO Example 1: Allow a User to Perform Any ODACLI Operation}

This example shows how to configure SUDO to enable a user to perform any ODACLI operation. You do this by adding lines to the commands section in the /etc/sudoers file:
```


## The commands section may have other options added to it.

## 

Cmnd_Alias ODACLI_CMDS=/opt/oracle/dcs/bin/odacli *
jdoe ALL = ODACLI_CMDS

```

In this example, the user name is jdoe. The file parameter setting ALL= ODACLI_CMDS grants the user jdoe permission to run all odacli commands that are defined by the command alias ODACLI_CMDS. After configuration, you can copy one sudoers file to multiple hosts. You can also create different rules on each host.

\section*{Note:}

Before database creation, you must set up user equivalency with SSH for the root user on each server. If you do not set up user equivalency and configure SSH on each server, then you are prompted to provide the root password for each server during database creation.

After you configure the sudoer file with the user, the user jdoe can run the set of odacli commands configured with the command alias ODACLI_CMDS. For example:
```

odacli create-database --dbname newdb
Enter new 'SYS, SYSTEM and PDB Admin user' password:
Confirm 'SYS, SYSTEM and PDB Admin user' password:
Job details

```

 ID: 1bc31577-f910-4d3f-b6ff-8e3fccd30141
 Description: Database service creation with db name: newdb
 Status: Created
 Created: November 30, 2018 9:23:57 AM PST
 Message:
Task Name Start Time End Time Status

\section*{Example 17-2 SUDO Example 2: Allow a User to Perform Only Selected ODACLI Operations}

To configure SUDO to allow a user to perform only selected ODACLI operations, add lines to the commands section in the /etc/sudoers file as follows:
```


## DCS commands for oracle user

Cmnd_Alias DCSCMDS = /opt/oracle/dcs/bin/odacli describe-appliance
oracle ALL= DCSCMDS
\$ sudo /opt/oracle/dcs/bin/odacli describe-appliance
Appliance Information
-------------------------------------------------------------------------
ID: a977bb04-6cf0-4c07-8e0c-91a8c7e7ebb8
Platform: OdaliteL
Data Disk Count: 6
CPU Core Count: 20
Created: October 24, 2017 6:51:52 AM HDT
System Information
Name: systeml001
Domain Name: example.com
Time Zone: America/Adak
DB Edition: EE
DNS Servers: 10.200.76.198 10.200.76.199 192.0.2.254

```
```

        NTP Servers: 10.200.0.1 10.200.0.2
    Disk Group Information

| DG Name | Redundancy | Percentage |
| :---: | :---: | :---: |
| Data | Normal | 90 |
| Reco | Normal | 10 |

```

In this example, the user jdoe2 tries to run the sudo odacli list-databases command, which is not part of the set of commands that is configured for that user. SUDO prevents jdoe2 from running the command.
[jdoe2@servernode1 ~]\$ sudo /opt/oracle/dcs/bin/odacli list-databases
```

Sorry, user jdoe2 is not allowed to execute '/opt/oracle/dcs/bin/odacli list-

```
databases' as root on servernode1.

\section*{ODACLI Command Changes with Multi-User Access on Oracle Database Appliance}

Understand the ODACLI command changes when you enable multi-user access.

\section*{About the odacli-view command}

In a multi-user access-enabled environment, to run automated scripts, that is, to generate a system report based on the output of odacli commands, you may need to provide the user credentials when prompted by the system. In such cases, the automation of scripts may fail. In such cases, use the odacli-view command instead of the odacli command. The odacli-view command allows you to run read-only odacli commands as root user without providing user credentials. Read-only odacli commands include commands to list, describe, get, read, or ping.

However, the security of the system is not compromised because the user credentials of a securely-generated internal user are used for this purpose. The odacli-view command can be used in Oracle Database Appliance deployments with or without multi-user access. In an Oracle Database Appliance environment where multi-user access is not enabled, odacli-view has the same functionality as odacli. In a multi-user access-enabled environment, odacliview provides the information about all the resources in a system. For example, odacli-view list-databases command lists all the databases in the system.

\section*{Usage:}
/opt/oracle/dcs/bin/odacli-view command_name

For example:
```

/opt/oracle/dcs/bin/odacli-view list-dbhomes
/opt/oracle/dcs/bin/odacli-view list-databases
/opt/oracle/dcs/bin/odacli-view list-users

```

\section*{ODACLI Command Usage and Entitlement Requirements When Multi-User Access is Enabled}

\section*{Note:}

If you have enabled multi-user access, then you can run all supported ODACLI commands on KVM and DB systems, after logging in as odaadmin.

\section*{- Note:}

The authentication token support for ODACLI session management is linked to a multi-user access user account. Since root is an operating system administrative user and not a multi-user access user, auth token based session management system is not supported when a user logs in as root. Therefore, you must provide an Oracle Database Appliance account user name and password to run any ODACLI command.

The following table describes the ODACLI commands that have changes for multi-user access and the entitlements required to run the commands.
\begin{tabular}{|l|l|l|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odacli configure-firstnet & ODA-ADMINISTRATOR & No change \\
\hline odacli create-network & ODA-ADMINISTRATOR & No change \\
\hline odacli delete-network & ODA-ADMINISTRATOR & No change \\
\hline odacli delete-networkinterface & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-network & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli describe-networkinterface & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli list-networks & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli list-networkinterfaces & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli modify-network & ODA-ADMINISTRATOR & No change \\
\hline odacli cleanup-patchrepo & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli create-prepatchreport & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli describe-prepatchreport & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli list-prepatchreports & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli delete-prepatchreport & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli list-availablepatches & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli describe-component & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli describe-latestpatch & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline \begin{tabular}{l}
odacli list-agentconfig- \\
parameters
\end{tabular} & ODA-ADMINISTRATOR & No change \\
\hline \begin{tabular}{l}
odacli modify-agentconfig- \\
parameters
\end{tabular} & ODA-ADMINISTRATOR & No change \\
\hline \begin{tabular}{l}
odacli delete-agentconfig- \\
parameters
\end{tabular} & ODA-ADMINISTRATOR & No change \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odacli update-dbhome & ODA-ADMINISTRATOR, ODA-DB & User odaadmin with the role of ODA-ADMINISTRATOR can update any database home. A custom user with the role of ODADB can only update a database home that they have primary access (as the creator) or shared access (as a user who is granted access by odaadmin). \\
\hline odacli update-dcsadmin & ODA-ADMINISTRATOR & No change \\
\hline odacli update-dcsagent & ODA-ADMINISTRATOR & No change \\
\hline odacli update-dcscomponents & ODA-ADMINISTRATOR & No change \\
\hline odacli update-registry & User with any role & No change \\
\hline odacli update-repository & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli update-server & ODA-ADMINISTRATOR & No change \\
\hline odacli update-storage & ODA-ADMINISTRATOR & No change \\
\hline odaadmcli orachk & ODA-ADMINISTRATOR & No change \\
\hline odacli set-credential & ODA-ADMINISTRATOR, ODA-DB & Not supported when multi-user access is enabled. When multiuser access is enabled, log in as a custom user and use odacli change-password instead. \\
\hline odacli create-appliance & ODA-ADMINISTRATOR & Add an attribute called "isMultiUserAccessEnabled" :true in the provision.json file. When you run the command, you are prompted to enter and confirm passwords for odaadmin, oracle and grid users and the provisioning job is submitted. \\
\hline odacli describe-system & User with any role & No change \\
\hline odacli list-featuretracking & ODA-ADMINISTRATOR & No change \\
\hline odacli create-backup & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli create-backupconfig & ODA-ADMINISTRATOR, ODA-DB & If creating backupconfig based on ObjectStoreSwift, user must be the creator of the ObjectStoreSwift. \\
\hline odacli create-objectstoreswift & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli delete-backup & ODA-ADMINISTRATOR, ODA-DB & User must have primary (creator of that database) or shared access (granted by odaadmin) on the database whose backup is being deleted. \\
\hline odacli delete-backupconfig & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli describe-backupreport & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli delete-objectstoreswift & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odacli describe-schedule & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli irestore-database & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli list-backupconfigs & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli list-backupreports & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli list-objectstoreswifts & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli list-schedules & ODA-ADMINISTRATOR, ODA-DB & No changes \\
\hline odacli list-tdebackupreports & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli recover-database & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli restore-archivelog & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli restore-tdewallet & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli modify-backupconfig & ODA-ADMINISTRATOR, ODA-DB & Must have primary or shared access \\
\hline odacli modify-schedule & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli configure-dataguard & ODA-ADMINISTRATOR, ODA-DB & The creator of the primary database and the standby database could be the same or different users. The default is oda-admin. \\
\hline odacli deconfigure-dataguard & ODA-ADMINISTRATOR, ODA-DB & The creator of the primary database and the standby database could be the same or different users. The default is oda-admin. \\
\hline odacli describe-dataguardstatus & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli failover-dataguard & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli list-dataguardstatus & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli reinstate-dataguard & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli switchover-dataguard & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli list-cpucores & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-cpucore & ODA-ADMINISTRATOR & No change \\
\hline odacli modify-cpucore & ODA-ADMINISTRATOR & No change \\
\hline odacli create-cpupool & ODA-ADMINISTRATOR & Only odaadmin can create it but a non-admin user with role of ODA-DB can use them. \\
\hline odacli remap-cpupools & ODA-ADMINISTRATOR & No change \\
\hline odacli list-cpupools & ODA-ADMINISTRATOR, ODA-DB & A non-admin user with the role of ODA-DB can run the odacli list-cpupools command to view all available CPU pools. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odacli describe-cpupool & ODA-ADMINISTRATOR, ODA-DB & A non-admin user with the role of ODA-DB can run the odacli describe-cpupool command to view details of the CPU pool. \\
\hline odacli modify-cpupool & ODA-ADMINISTRATOR & No change \\
\hline odacli delete-cpupool & ODA-ADMINISTRATOR & No change \\
\hline odacli list-auditrecords & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-auditrecord & ODA-ADMINISTRATOR & No change \\
\hline odacli clone-database & ODA-ADMINISTRATOR, ODA-DB & User must have primary or shared access to the database home and the source database being cloned. A user with shared access to source database gets only shared access to the cloned database. Hence, the primary owner of the source database remains the primary owner of the cloned database in this case. \\
\hline odacli create-database & ODA-ADMINISTRATOR, ODA-DB & For database creation in an existing database home, the user must have primary or shared access to the database home. A user with shared access to the database home gets only shared access to the new database, whose primary owner remains the primary owner of the database home. When using existing database storage for the new database, the user must have primary or shared access to that database storage. \\
\hline odacli delete-database & ODA-ADMINISTRATOR, ODA-DB & Can access only those databases where the user has primary or shared access \\
\hline odacli describe-database & ODA-ADMINISTRATOR, ODA-DB & Can access only those databases where the user has primary or shared access \\
\hline odacli list-databases & ODA-ADMINISTRATOR, ODA-DB & User can only view listing of the databases for which they have primary or shared access. Use the -all option to view all databases and request access. \\
\hline odacli modify-database & ODA-ADMINISTRATOR, ODA-DB & User should have primary or shared access to the database and the backupconfig being attached. Additionally, the primary owner (creator) of the database and backupconfig should be the same. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odacli move-database & ODA-ADMINISTRATOR, ODA-DB & User must have primary or shared access to the source database that is being moved and the target database home. Additionally, the primary owner of the source and target database home must be the same. \\
\hline odacli register-database & ODA-ADMINISTRATOR, ODA-DB & User must be the primary owner (creator) of the database home on which this database is to be registered. \\
\hline odacli upgrade-database & ODA-ADMINISTRATOR, ODA-DB & User must have primary or shared access to the source database (the database being upgraded) and the target database home. Additionally, the owner of the source and target database home must be the same. \\
\hline odacli update-database & ODA-ADMINISTRATOR, ODA-DB & User must have primary or shared access to the source database (the database being updated) and the target database home. Additionally, the owner of the source and target database home must be the same. \\
\hline odacli configure-dbhome-storage & ODA-ADMINISTRATOR & No change \\
\hline odacli list-dbhome-storages & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-dbhome-storage & ODA-ADMINISTRATOR & No change \\
\hline odacli modify-dbhome-storage & ODA-ADMINISTRATOR & No change \\
\hline odacli create-dbhome & ODA-ADMINISTRATOR, ODA-DB & Can access only those database homes where the user has primary or shared access. \\
\hline odacli delete-dbhome & ODA-ADMINISTRATOR, ODA-DB & Can access only those database homes where the user has primary or shared access. \\
\hline odacli describe-dbhome & ODA-ADMINISTRATOR, ODA-DB & Can access only those database homes where the user has primary or shared access. \\
\hline odacli list-dbhomes & ODA-ADMINISTRATOR, ODA-DB & Can access only those database homes where the user has primary or shared access. Use the -all option to view all database homes and request access. \\
\hline odacli create-dbstorage & ODA-ADMINISTRATOR & Can access only those dbstorages where the user has primary or shared access. \\
\hline odacli delete-dbstorage & ODA-ADMINISTRATOR & Can access only those dbstorages where the user has primary or shared access. \\
\hline odacli describe-dbstorage & ODA-ADMINISTRATOR & Can access only those dbstorages where the user has primary or shared access. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odacli list-dbstorages & ODA-ADMINISTRATOR & Can access only those dbstorages where the user has primary or shared access. \\
\hline odacli modify-dbstorage & ODA-ADMINISTRATOR & Can access only those dbstorages where the user has primary or shared access. \\
\hline odacli modify-dgstorage & ODA-ADMINISTRATOR & No change \\
\hline odacli create-jobdata-retentionpolicy & ODA-ADMINISTRATOR & No change \\
\hline odacli create-purge-jobdata-job & ODA-ADMINISTRATOR & No change \\
\hline odacli delete-jobdata-retentionpolicy & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-job & User with any role & No change \\
\hline odacli list-jobs & User with any role & No change \\
\hline odacli list-jobdata-retention-policy & ODA-ADMINISTRATOR & No change \\
\hline odacli list-purge-jobdata-job & ODA-ADMINISTRATOR & No change \\
\hline odacli list-scheduled-executions & ODA-ADMINISTRATOR & No change \\
\hline odaadmcli manage diagcollect & ODA-ADMINISTRATOR & No change \\
\hline odacli create-auto-logclean-policy & ODA-ADMINISTRATOR & No change \\
\hline odacli create-logcleanjob & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-logcleanjob & ODA-ADMINISTRATOR & No change \\
\hline odacli list-auto-logclean-policy & ODA-ADMINISTRATOR & No change \\
\hline odacli list-logcleanjobs & ODA-ADMINISTRATOR & No change \\
\hline odacli list-logspaceusage & ODA-ADMINISTRATOR & No change \\
\hline odacli configure-asr & ODA-ADMINISTRATOR & No change \\
\hline odacli delete-asr & ODA-ADMINISTRATOR & No change \\
\hline odacli describe-asr & ODA-ADMINISTRATOR & No change \\
\hline odacli test-asr & ODA-ADMINISTRATOR & No change \\
\hline odacli modify-asr & ODA-ADMINISTRATOR & No change \\
\hline odacli list-osconfigurations & ODA-ADMINISTRATOR & No change \\
\hline odacli modify-osconfigurations & ODA-ADMINISTRATOR & No change \\
\hline odaadmcli show cooling & root & No change \\
\hline odaadmcli show env_hw & root & No change \\
\hline odaadmcli show fs & root & No change \\
\hline odaadmcli show memory & root & No change \\
\hline odaadmcli show network & root & No change \\
\hline odaadmcli show power & root & No change \\
\hline odaadmcli show processor & root & No change \\
\hline odaadmcli show server & root & No change \\
\hline odaadmcli asmops diskgroup & root & No change \\
\hline odaadmcli expand storage & root & No change \\
\hline odacli list-dgdisks & ODA-ADMINISTRATOR, ODA-DB & No change \\
\hline odacli validate-storagetopology & ODA-ADMINISTRATOR & No change \\
\hline odaadmcli power disk & root & No change \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ODACLI Command & Roles Required & Changes in command option \\
\hline odaadmcli show controller & root & No change \\
\hline odaadmcli show disk & root & No change \\
\hline odaadmcli show diskgroup & root & No change \\
\hline odaadmcli show raidsyncstatus & root & No change \\
\hline odaadmcli show storage & root & No change \\
\hline odaadmcli stordiag & root & No change \\
\hline
\end{tabular}

\section*{odacli Network Commands}

Use the odacli network commands to list and describe network interfaces.
- odacli configure-firstnet

Use the command odacli configure-firstnet to configure the first network in the appliance after racking and connecting the power and network cables.
- odacli create-network

Use the odacli create-network command to create a network.
- odacli delete-network

Use the command odacli delete-network to delete a network.
- odacli delete-networkinterface

Use the command odacli delete-networkinterface to delete a network interface on Oracle Database Appliance X8-2 hardware models.
- odacli describe-network

Use the odacli describe-network command to display the details of a specific network.
- odacli describe-networkinterface

Use the odacli describe-networkinterface command to display the details of any network interface.
- odacli list-networks

Use the odacli list-networks command to display networks.
- odacli list-networkinterfaces

Use the odacli list-networkinterfaces command to display network interfaces.
- odacli modify-network

Use the odacli modify-network command to update an existing network configuration.

\section*{odacli configure-firstnet}

Use the command odacli configure-firstnet to configure the first network in the appliance after racking and connecting the power and network cables.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# /opt/oracle/dcs/bin/odacli configure-firstnet

\section*{Usage Notes}

This command ensures that the system is available in the network, enabling you to manage the deployment through the Oracle Appliance Manager Browser User Interface.
- Bonded network configuration: Bonded dual-ported interface. With the bonded configuration, you can only enable one of the interfaces. The bonded configuration supports VLANs. The bonded network configuration uses btbond1 on Oracle Database Appliance hardware models other than X8-2. On Oracle Database Appliance X8-2, the bonded network configuration uses btbond1 to btbond6. This is the default setting.
- Non-bonded network configuration (on Oracle Database Appliance hardware models other than X8-2): Two separate physical network interfaces, this configuration does not support VLANs. The non-bonded network configuration uses em2 and em3 as public interfaces. Note that Oracle Database Appliance X8-2 does not support non-bonded network configuration.
- To change a non-bonded network configuration to a bonded configuration, run the Oracle Database Appliance Cleanup Script and redeploy the appliance.
- You can choose to enable Link Aggregation Control Protocol (LACP) on the bonding interface when you run odacli configure-firstnet.
- You can use the -o option with the odacli configure-firstnet command to configure the network speed for Oracle Dual Port 25 Gb Ethernet Adapter.
- You can also use the -o option with the odacli configure-firstnet command to enable or disable LACP on a bonding interface after deployment.

Enabling LACP on a bonding interface after deployment:
```


# odacli configure-firstnet -o

INFO: Configure network option
Select the Interface to configure the network on (btbond1 btbond3 btbond5)
[btbond1]:btbond3
Use LACP bonding on btbond3 (yes/no) [no]: yes
INFO: network interface [btbond3] setup in LACP mode

```

Disabling LACP on a bonding interface after deployment:
```


# odacli configure-firstnet -o

INFO: Configure network option
Select the Interface to configure the network on (btbond1 btbond3 btbond5)
[btbond1]:bt.bond3
Use LACP bonding on btbond3 (yes/no) [yes]: no
INFO: network interface [btbond3] setup in active-backup mode

```

\section*{Example 17-3 Configuring the First Network as a Bonded Network}

Configure the first network to use a btbond1 interface without configuring DHCP. Complete the IP address, netmask address, and gateway address.

Values that you need to provide are shown in italic font, with the exception of the net1 gateway address; the program obtains the gateway IP address. The program derives this gateway address using the network information you provided for the other IP addresses. Accept this value, unless your network administrator provides an alternative gateway address that is different from the default that the appliance command-line interface detects.

The following is an example of the command on a single node platform:
\# /opt/oracle/dcs/bin/odacli configure-firstnet
Select the Interface to configure the network on (btbond1): btbond1
Configure DHCP on btbond1 (yes/no): no
INFO: You have chosen Static configuration
Enter the IP address to configure: 10.1.10.2
Enter the Netmask address to configure: 255.255.255.0
Enter the Gateway address to configure: 10.1.10.1
INFO: Plumbing the IPs now
INFO: Restarting the network
Shutting down interface btbond1: bonding: btbond1: Removing slave em2.
bonding: btbond1: releasing active interface em2
bonding: btbond1: making interface em3 the new active one.
bonding: btbond1: Removing slave em3.
bonding: btbond1: releasing active interface em3
:::::::::

\section*{Example 17-4 Configuring the First Network as a Non-Bonded Network}

The following is an example of a non-bonded configuration. For a non-bonded configuration, answer no to using a bonding public interface. Note that Oracle Database Appliance X8-2 does not support non-bonded network configuration.
```


# /opt/oracle/dcs/bin/odacli configure-firstnet

Using bonding public interface (yes/no) [yes]: no
INFO: Breaking the bonding on btbond1
INFO: remove bonding module: rmmod bonding
INFO: remove slave setup in /etc/sysconfig/network-scripts/ifcfg-em2
INFO: remove slave setup in /etc/sysconfig/network-scripts/ifcfg-em3
INFO: Restarting the network
Shutting down interface em1: [ OK ]
Shutting down loopback interface: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface em1: [ OK ]
Bringing up interface em2: [ OK ]
Bringing up interface em3: [ OK ]
INFO: Restarting the DCS agent
initdcsagent stop/waiting
initdcsagent start/running, process 57629
Select the Interface to configure the network on (em2 em3) [em2]:
Configure DHCP on em2 (yes/no) [no]:
INFO: You have chosen Static configuration
Enter the IP address to configure : 10.31.102.101
Enter the Netmask address to configure : 255.255.240.0
Enter the Gateway address to configure[10.31.96.1] :
INFO: Plumbing the IPs now
INFO: Restarting the network
Shutting down interface em1: [ OK ]

```
```

Shutting down interface em2: [ OK ]
Shutting down interface em3: [ OK ]
Shutting down loopback interface: [ OK ]
Bringing up loopback interface: [ OK ]
Bringing up interface em1: [ OK ]
Bringing up interface em2: Determining if ip address 10.31.102.101 is already
in use for device em2...
[ OK ]
Bringing up interface em3: [ OK ]

```

\section*{Example 17-5 Configuring the Speed of the Network Interface}

The following is an example of setting the speed of the network card manually.
```


# odacli configure-firstnet -o

INFO: Configure network option
Select the Interface to configure the network on (btbond1 btbond2 btbond3)
[btbond1]:btbond3
Use LACP bonding on btbond3 (yes/no) [no]:
Set the network speed on btbond3 to 1) AUTO, 2) 1G, 3) 10G, 4) 25G [AUTO]: 3
INFO: The speed of the network port is set to '10G'
INFO: Please set the speed for the connected ports in the switch
INFO: stop the network 'btbond3'
INFO: start the network 'btbond3'
INFO: Network interface btbond3 (p2p1, p2p2) has been set to using speed '10G'

```

\section*{odacli create-network}

Use the odacli create-network command to create a network.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli create-network [-d|-no-d] -n name -f interface -p ipaddress -w
{Public|Dataguard|Database|Management|Backup|Other} -s subnetmask -g gateway[-
h] [-sip] [-sn] [-vs] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- defaultnetwork, -d & Identifies the default network. \\
-- gateway,\(-g\) & \begin{tabular}{l}
Defines the network gateway. The gateway is required for the \\
default network.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- interface, -f & Defines the name of the network interface. \\
\hline-- interfacetype, -t & Defines the network interface type \(\{\) BOND|PHYSICAL|VLAN \(\mid\) \\
& INTERNAL\} (non case-sensitive).
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --ipaddress, -p & Defines the network IP address. This can be specified in the format IPAddress or nodeNumber0:IPAddress0,nodeNumber1:IPAddress1,... \\
\hline --json, -j & (Optional) Displays JSON output. \\
\hline --networktype, -w & Defines the type of network. Options are: \{Public|Dataguard| Database|Management|Backup|Other\}. The default is Other. \\
\hline --name, -n & Name of the network. \\
\hline --no-defaultnetwork, no-d & Identifies a network as not the default network. Use -defaultnetwork -d to identify a default network. \\
\hline --subnetmask, -s & Defines the Network Subnet Mask. \\
\hline --scanips, -sip & Defines the SCAN IP addresses (in the format scanip0,scanip1,...) \\
\hline --scanname, -sn & Defines the SCAN name. \\
\hline --nodeNumber, -u & \begin{tabular}{l}
Defines the node number for High-Availability deployments. \\
Note: This option is deprecated and will be desupported in a future release.
\end{tabular} \\
\hline --vips, -vs & List of virtual IP addresses. They can be specified in the format vipname0:nodeNumber0:vip0,vipname1:nodenumber1:vip1,. \\
\hline --vlanid, -v & Add VLAN as a new network. This option is available for for High-Availability deployments. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Network of public type can only be defined when deploying the appliance or when running odacli configure-firstnet during initial provisioning.
- Use this command to create an additional network not done in create-appliance.
- You are only allowed to create a network on the bond interface.
- On Oracle Database Appliance non-High Availability systems, you cannot specify Virtual IP addresses. The Virtual IP address is set to the same value as the IP address.
- Single Client Access Name (SCAN) cannot be set up on Oracle Database Appliance nonHigh Availability systems.

\section*{Example 17-6 Creating a Network}

The following example creates a new network, sfpbond1, with IP address 192.0.2.15. The network is an additional network that uses subnet mask 255.255.255.0 and is not a default network.
```


# odacli create-network -n network1 -f sfpbond1 -p 192.0.2.15 -w Backup -s

255.255.255.0 -no-d

```

\section*{Example 17-7 Creating a VLAN Network}
```

odacli create-network -g 10.31.131.129 -f btbond1 -t VLAN -p
0:10.31.131.132,1:10.31.131.133 -n vlan150 -w Database -no-d -sip

```
```

10.31.131.134,10.31.131.135 -sn scaoda702c1-vlan150-scan -s 255.255.255.128 -
vs n1-vlan150-vip:0:10.31.131.136,n2-vlan150-vip:1:10.31.131.137 -v 150

```

\section*{odacli delete-network}

Use the command odacli delete-network to delete a network.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To delete a network
```

odacli delete-network -i id [-n] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Defines the network identity. \\
-- name, \(-n\) & Specifies the network name. \\
\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

You cannot delete the Public-network or Private-network after the system is deployed.
On High-Availability systems, if the node number is not specified in the odacli deletenetwork command, then the network on both nodes is deleted.

\section*{Example 17-8 Deleting a Network}

The following example deletes a backup network with a network ID of 55db39db-d95c-42c5-abbd-b88eb99b83ec.
```


# odacli delete-network -i 55db39db-d95c-42c5-abbd-b88eb99b83ec

```
```

"jobId" : "c26d217e-419b-4a91-8680-7b06bcfe9828",
"status" : "Running",
"message" : null,
"reports" : [ {
"taskId" : "TaskSequential_137",
"taskName" : "deleting network",
"taskResult" : "Running",
"startTime" : "April 8, 2024 23:14:32 PM EDT",
"endTime" : "April 8, 2024 23:14:32 PM EDT",
"status" : "Running",
"taskDescription" : null,
"parentTaskId" : "TaskSequential_135",
"jobId" : "c26d217e-419b-4a91-8680-7b06bcfe9828",

```
```

            "tags" : [ ],
            "reportLevel" : "Info",
            "updatedTime" : "April 8, 2024 23:14:32 PM EDT"
    },{
"taskId" : "TaskZJsonRpcExt_142",
"taskName" : "Setting up Network",
"taskResult" : "Network setup success",
"startTime" : "April 8, 2024 23:14:32 PM EDT",
"endTime" : "April 8, 2024 23:14:32 PM EDT",
"status" : "Success",
"taskDescription" : null,
"parentTaskId" : "TaskParallel_141",
"jobId" : "c26d217e-419b-4a91-8680-7b06bcfe9828",
"tags" : [ ],
"reportLevel" : "Info",
"updatedTime" : "April 8, 2024 23:14:32 PM EDT" } ],
"createTimestamp" : "April 8, 2024 23:14:32 PM EDT",
"description" : "Network service delete",
"updatedTime" : "April 8, 2024 23:14:32 PM EDT"
}

```

\section*{odacli delete-networkinterface}

Use the command odacli delete-networkinterface to delete a network interface on Oracle Database Appliance X8-2 hardware models.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To delete a network interface:
```

odacli delete-networkinterface [-i id] [-n name] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Defines the network interface ID. \\
-- name, -n & Defines the network interface name. \\
-- help, -h & (Optional) Displays help for using the command. \\
\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}

You cannot delete the network interface card in slot 7 .

\section*{Example 17-9 Deleting a Network Interface}
```

[root@oak ~]/opt/oracle/dcs/bin/odacli delete-networkinterface -n btbond4
{
"jobId" : "a81066e2-417e-4df6-b810-08df24c646c1",

```
```

"status" : "Running",
"message" : null,
"reports" : ,
"createTimestamp" : "April 8, 2024 00:01:09 AM UTC",
"resourceList" : ,
"description" : "Network Interface Deletion with name btbond4",
"updatedTime" : "April 8, 2024 00:01:09 AM UTC"
}

```

\section*{Example 17-10 Deleting btbond1 Network Interface is Not Allowed}
```

[root@oak ~]\# /opt/oracle/dcs/bin/odacli delete-networkinterface -n btbond1
DCS-10001:Internal error encountered: Delete operation is not allowed on
network interface : btbond1.

```

\section*{Example 17-11 Deleting Network Interface When Network Exists is Not Allowed}
```

[root@oak ~]\# opt/oracle/dcs/bin/odacli delete-networkinterface -n btbond3
DCS-10001:Internal error encountered: Delete operation is not allowed -
networks {[Public-network]} found on interface btbond3. Pleae delete the
network first.

```

\section*{odacli describe-network}

Use the odacli describe-network command to display the details of a specific network.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To display the details of a specific network:
```

odacli describe-network [-i id] [-n name] [-j][-u][-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
Identifies the network ID. Use the odacli list-networks \\
command to obtain the id.
\end{tabular} \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- name, -n & Specifies the network name. \\
\hline-- node-number, -u & \begin{tabular}{l}
(Optional) Displays the network interface information for the specified \\
node. Note: This option is deprecated and will be desupported in a \\
future release.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-12 Displaying Network Details}

Enter the following command to display the details of the public network:
```


# odacli describe-network -n Public-network

Network details

```
--
 ID: a11573f1-cad4-41fc-9dd0-3ba958b605f8
 Name: Public-network
 NIC: btbond1
 Interface Type: BOND
 Subnet Mask: 255.255.255.0
 Gateway: 10.31.116.1
 VLAN ID:
 Type: Public
 Default: true
 Created: March 30, 2020 8:37:00 AM PDT
 Updated: March 30, 2020 10:25:27 AM PDT
 Status: Configured
 Node Networks: [IP Address on node0: 10.31.117.60, IP Address on
node1: 10.31.117.62]
 Scan Name: oda1-scan
 Scan Ips: 10.31.117.64 10.31.117.65
 Vips: [oda1-vip on node0: 10.31.116.61, oda2-vip on
node1: 10.31.116.63]
 Associated Databases: odacn db122a db122b db122c db122d

\section*{Example 17-13 Displaying Network Details}

Enter the following command to display the details of network ID 93c07043-3002-494a-8fa0f3ae932fb4c5:
```


# odacli describe-network -i 93c07043-3002-494a-8fa0-f3ae932fb4c5 -u 1

Network details
---------------------------------------------------------------------
ID: 93c07043-3002-494a-8fa0-f3ae932fb4c5
Name: Private-network
NIC: ibbond0
InterfaceType: BOND
IP Address: 192.168.16.25
Subnet Mask: 255.255.255.0
Gateway:
VlanId:
Type: Private
Default: false
Created: November 18, 2018 10:54:16 PM PST

```

\section*{odacli describe-networkinterface}

Use the odacli describe-networkinterface command to display the details of any network interface.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To display the details of a specific network interface:
```

odacli describe-networkinterface -i id -n name [-j][-h][-u]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
Identifies the network interface ID. Use the odacli list- \\
networks command to obtain the id.
\end{tabular} \\
\hline-- name, -n & Specifies the network interface name. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- nodeNumber, -u & \begin{tabular}{l}
(Optional) Displays the network interface information for the specified \\
node. Note: This option is deprecated and will be desupported in a \\
future release.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

By default, this command always displays the network interface description of the local node. To display the description of another node, specify the node number option (-u).

\section*{Example 17-14 Displaying Network Details}

Enter the following command to display the details of network interface with ID fe1bf0a7-f56e-44cd-9a84-f374c0aa4b61:
```


# /opt/oracle/dcs/bin/odacli describe-networkinterface

-i fe1bf0a7-f56e-44cd-9a84-f374c0aa4b61 -u 1
Network Interface details

```

 ID: fe1bf0a7-f56e-44cd-9a84-f374c0aa4b61
 Name: eth2
 NIC: eth2
 Type: PHYSICAL
 Members: eth2
 Slave Interface: true
 Created: October 16, 2018 1:16:59 PM PDT

\section*{odacli list-networks}

Use the odacli list-networks command to display networks.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-networks [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- nodeNumber, -u & \begin{tabular}{l}
(Optional) Displays the network interface information for the specified \\
node. Note: This option is deprecated and will be desupported in a \\
future release.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-15 Displaying a List of Networks}

Use the odacli list-networks command to display a list of networks:
```


# odacli list-networks

ID Name NIC Interface Type Subnet Mask Gateway VLAN ID Node Networks
--------------- ------------------ --------------------------------
-----------------------
30012eeb-1205-4cb6-9fc0-488972b2e420 Private-network priv0 INTERNAL
255.255.255.240 [IP Address on node0: 192.168.16.24]
75d01d4f-e940-4d0f-a4fe-ee04f5a90c73 Public-network btbond1.370 VLAN
255.255.255.0 10.209.10.241 370 [IP Address on node0: 10.209.10.244]

```

\section*{odacli list-networkinterfaces}

Use the odacli list-networkinterfaces command to display network interfaces.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-networkinterfaces [-j] [-h] [-u]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- nodeNumber, -u & \begin{tabular}{l}
(Optional) Displays the network interface information for the specified \\
node. Note: This option is deprecated and will be desupported in a \\
future release.
\end{tabular}
\end{tabular}

\section*{Example 17-16 Displaying a List of Network Interfaces}

Use the odacli list-networkinterfaces command to display a list of network interfaces:
```


# odacli list-networkinterfaces -u 1

ID Name NIC
Type
---------------------------------------
d5907a23-1c5d-48c7-8d47-2c188ed43ddd bond0 bond0
BOND
4f7ea558-9a43-42a9-8e08-6bfdf3a33229 bond1 bond1
BOND
743ced8d-bbe5-4987-b316-5fdf95d5e60b eth0 eth0
PHYSICAL
a4121f9e-e694-4852-a521-44efc6ef3fde eth1 eth1
PHYSICAL
c62c5f04-aa93-4783-a3a7-275bf9fab2d9 eth2 eth2
PHYSICAL
bda21dad-5c1c-4073-89e5-798b8fce8533 eth3 eth3
PHYSICAL
0141f1ac-5c34-4393-8b99-76094b6f795c ib0 ib0
PHYSICAL
e8cb138a-087f-4739-bb8d-90b1d903aeb6 ib1 ib1
PHYSICAL
a31cfd63-fb90-4cbb-a2fb-382c5e33983b ibbond0 ibbond0
BOND

```

\section*{odacli modify-network}

Use the odacli modify-network command to update an existing network configuration.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To update a network:
```

odacli modify-network -i id -n name [-p IP address] [-w {Public|Dataguard|
Database|Management|Backup|Other} ] [-s network subnet mask] [-g network
gateway] [-sip] [-sn] [-vs] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --id, -i & Defines the network identity. \\
\hline --name, -n & Defines the network name. \\
\hline --gateway, -g & (Optional) Defines the network gateway. \\
\hline --ipaddress, -p & (Optional) Defines the network IP address. This can be specified in the format IPAddress or nodeNumber0:IPAddress0,nodeNumber1:IPAddress1,... \\
\hline --networktype, -w & (Optional) Defines the type of network. \{Public|Dataguard| Database|Management|Backup|Other\} \\
\hline --scanips, -sip & Defines the SCAN IP addresses (in the format scanip0,scanip1,...) \\
\hline --scanname, -sn & Defines the SCAN name. \\
\hline --subnetmask, -s & (Optional) Defines the Network Subnet Mask. \\
\hline --vips, -vs & List of virtual IP addresses. They can be specified in the format vipname0:nodeNumber0:vip0,vipname1:nodenumber1:vip1,... \\
\hline --help,-h & (Optional) Displays help for using the command. \\
\hline --json, -j & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- You cannot modify the Public and Private-interfaces after the system is deployed.
- On Oracle Database Appliance non-High Availability systems, you cannot update Virtual IP addresses. The Virtual IP address is set to the same value as the IP address.
- Single Client Access Name (SCAN) cannot be set up on Oracle Database Appliance nonHigh Availability systems.
- On Oracle Database Appliance High Availability systems, you cannot update network of type Database to other types of network (such as backup, management and so on). You can, however, update IP address, Virtual IP address, Gateway, and Subnet mask for all network types.
- The system has both SFP+ and 10GBaseT bonded pairs, which means that one of them is used for the public, and you can configure the other after deployment if you want additional connectivity. For example, if you want a backup network.

\section*{Example 17-17 Modifying a Network}

The following example updates the network ID 192.0.0.2 and designates the network as a backup network:
```


# odacli modify-network -i 192.0.0.2 -w Backup

```

\section*{odacli Multi-User Access Commands}

Use odacli commands to enable multi-user access for the appliance.

\section*{Note:}

The multi-user access feature is available for standalone Oracle Database Appliance systems. During provisioning, a single domain and tenancy is created by default and all users are created within the default domain and tenancy.
- odacli list-domains

Use the odacli list-domains command to list all multi-user access domains.
- odacli describe-domain

Use the odacli describe-domain command to describes a multi-user access domain.
- odacli list-tenants

Use the odacli list-tenants command to list all tenants in a multi-user access domain.
- odacli describe-tenant

Use the odacli describe-tenant command to describe a tenant in a multi-user access domain.
- odacli create-user

Use the odacli create-user command to create a user in a multi-user access system.
- odacli activate-user

Use the odacli activate-user command to activate a user in a multi-user access system.
- odacli list-users

Use the odacli list-users command to list all users in a multi-user access system.
- odacli describe-user

Use the odacli describe-user command to describe a user in a multi-user access system.
- odacli authorize-user

Use the odacli authorize-user command in a multi-user access system to unlock a user account that is locked due to multiple failed login attempts or where the password has expired, and authorize the user to reset their password to reactivate their account.
- odacli delete-user

Use the odacli delete-user command in a multi-user access system to delete a user account.
- odacli list-user-roles

Use the odacli list-user-roles command to list user roles in a multi-user access system.
- odacli describe-user-role

Use the odacli describe-user-role command to describe a user role in a multi-user access system.
- odacli list-user-entitlements

Use the odacli list-user-entitlements command to list all entitlements in a multiuser access system.
- odacli describe-user-entitlement

Use the odacli describe-user-entitlement command to describe an entitlement in a multi-user access system.
- odacli list-user-operations

Use the odacli list-user-operations command to list all operations in a multi-user access system.
- odacli describe-user-operation

Use the odacli describe-user-operation command to describe an operation in a multi-user access system.
- odacli list-resources-access

Use the odacli list-resources-access command to list access to DCS resources in a multi-user access system.
- odacli describe-resource-access

Use the odacli describe-resource-access command to describe access to a DCS resource in a multi-user access system.
- odacli grant-resource-access

Use the odacli grant-resource-access command to grant shared access to a DCS resource in a multi-user access system.
- odacli revoke-resource-access

Use the odacli revoke-resource-access command to revoke access to a DCS resource in a multi-user access system.
- odacli reset-password

Use the odacli reset-password command to reset the password for a user, after it is unlocked, in a multi-user access system.
- odacli change-password

Use the odacli change-password command to change the password for a user in a multi-user access system.

\section*{odacli list-domains}

Use the odacli list-domains command to list all multi-user access domains.
File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli list-domains [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The odaadmin user can run this command to view all the multi-user access domains.

\section*{Example 17-18}
[odaadmin@oda1 bin]\$ odacli list-domains
ID Name Description Is Active
811f176a-26c9-4480-afb3-2c735d565d91 odalocal.com Default domain true

\section*{odacli describe-domain}

Use the odacli describe-domain command to describes a multi-user access domain.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli
Syntax

```
odacli describe-domain -dn domain_name [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- domain-name, -dn & (Required) Specifies the multi-user access domain. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The odaadmin user can run this command to view details of the multi-user access domain.

\section*{Example 17-19}
```


# odacli describe-domain -dn odalocal.com

Domain details

```


ID: 811f176a-26c9-4480-afb3-2c735d565d91
Name: odalocal.com Description: Default domain

Is Active: true
Created: November 22, 2021 7:39:50 PM UTC
Last Updated: November 22, 2021 7:39:50 PM UTC

\section*{odacli list-tenants}

Use the odacli list-tenants command to list all tenants in a multi-user access domain.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-tenants -dn domain_name [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- domain-name, -dn & (Optional) Specifies the multi-user access domain name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The odaadmin user can run this command to view the tenants in a multi-user access domain.

Example 17-20
```

[odaadmin@oda1 bin]\$ odacli list-tenants
ID Domain Name Tenant Name Tenant Description Is
Active
--------------------------------------------------------------------------------------
---------------------- ---------------------------------------------------------
1656723b-f614-4539-9634-d9013e611015 odalocal.com odalocal Default tenant true

```

\section*{odacli describe-tenant}

Use the odacli describe-tenant command to describe a tenant in a multi-user access domain.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-tenant -tn tenant_name -dn domain_name [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- tenant-name, -tn & (Required) Specifies the multi-user access tenant name. \\
\hline-- domain-name, - dn & (Optional) Specifies the multi-user access domain name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The odaadmin user can run this command to view the tenant details in a multi-user access domain.

\section*{Example 17-21}
```

[odaadmin@oda1 bin]\$ odacli describe-tenant -tn odalocal
Tenant details
----------------------_------------------------------------------------
ID: 1656723b-f614-4539-9634-d9013e611015
Domain Name: odalocal.com
Tenant Name: odalocal
Tenant Description: Default tenant
Is Active: true
Created: November 22, 2021 7:39:50 PM UTC
Last Updated: November 22, 2021 7:39:50 PM UTC

```

\section*{odacli create-user}

Use the odacli create-user command to create a user in a multi-user access system.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli create-user -u user_id -r roles [-gc] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- user-id, -u & (Required) Specifies the user whose details are being created. \\
\hline-- user-roles, - r & \begin{tabular}{l}
(Required) Specifies the role to be assigned to the user. Use \\
commas to specify multiple roles.
\end{tabular} \\
\hline-- generate-cert, -gc & \begin{tabular}{l}
(Optional) This option generates and registers a pair of \\
certificates, one for the client and the other for the server (DCS \\
agent). After these certificates are mutually exchanged and \\
authenticated, the client and server can communicate with each \\
other using mTLS (mutual Transport Layer Security). This \\
attribute is optional and must be enabled only when you need to \\
connect to the DCS agent with mTLS in addition to Basic \\
Authentication.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to create a user in a multi-user access system. After odaadmin creates a user and generates temporary login credentials, the new user must activate their account by connecting to the appliance with the temporary password. Run the odacli activate-
user command and provide the temporary password and then specify the new password. You can also activate the user from the Browser User Interface.

\section*{Example 17-22}
```

[odaadmin@oda1 bin]\$ odacli create-user -u dcsdb2 -r ODA-DB
Enter ODA account password for user 'dcsdb2':
Retype ODA account password for user 'dcsdb2':
Job details
-------------------------------------------------------------------
ID: 856b3d79-8ae1-427c-a77a-8893254a451f
Description: User creation(dcsdb2)
Status: Running
Created: November 29, 2021 7:01:54 AM UTC
Message:
Task Name Start Time End Time Status
---------------------------------------- ------------------------------------------
------------------------------------ -------------
[odaadmin@oda1 bin]\$ odacli describe-job -i 856b3d79-8ae1-427c-
a77a-8893254a451f
Job details
--------------------------------------------------------------------
ID: 856b3d79-8ae1-427c-a77a-8893254a451f
Description: User creation(dcsdb2)
Status: Success
Created: November 29, 2021 7:01:54 AM UTC
Message:
Task Name Start Time End Time Status
----------------------------------------- --------------------------------------------

```

\section*{odacli activate-user}

Use the odacli activate-user command to activate a user in a multi-user access system.
File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli activate-user [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline- -tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to activate a user in a multi-user access system. To activate a user, the user to be activated must connect to the Oracle Database Appliance system through SSH and then run the command.

\section*{Example 17-23}
```

[dcsdb2@oda1 bin]\$ odacli activate-user
Enter your ODA account password:
Enter new password for your ODA account:
Retype new password for your ODA account:
User 'dcsdb2' activated successfully.

```

\section*{odacli list-users}

Use the odacli list-users command to list all users in a multi-user access system.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-users [-d domain_name] [-t tenant name] [-u user id] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline-- tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline-- user-id, -u & \begin{tabular}{l}
(Optional) Specifies the user for whom the list is being \\
generated.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The odaadmin user can run this command to view all the users in a multi-user access system.

\section*{Example 17-24}
```

[odaadmin@oda1 bin]\$ odacli list-users

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Account Status User Type} \\
\hline 13b64a36-23f8-4ba2-9af3-e0a17a16b376 dcsdb2 & dcsdb2 & ODA- \\
\hline DB Active Custom & & \\
\hline 5006da5b-0fc0-4d6f-9115-17d89ad235e4 oakdroot & oakdroot & ODA- \\
\hline OAKDROOT Active System & & \\
\hline 7af066af-55bd-48a9-8db5-c0d3049a1541 ugrid & ugrid & ODA- \\
\hline GRID Active System & & \\
\hline 8361ca4b-8747-4687-9459-799c6a17d1b1 uoracle & uoracle & ODA- \\
\hline DB Active System & & \\
\hline a205ce98-2675-49a2-81e2-4e1c7540f023 odaadmin & odaadmin & ODA- \\
\hline ADMINISTRATOR Active System & & \\
\hline
\end{tabular}

\section*{odacli describe-user}

Use the odacli describe-user command to describe a user in a multi-user access system.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-user [-u user_id] [-d domain_name] [-rd] [-t tenant_name] [-
j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- user-id, -u & (Required) Specifies the user whose details are being viewed. \\
\hline-- domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline-- role-details, -rd & \begin{tabular}{l}
(Optional) Specifies the entitlements and operations associated \\
with the user role.
\end{tabular} \\
\hline-- tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view details about a user in a multi-user access system.

\section*{Example 17-25}
```

[odaadmin@oda1 bin]\$ odacli describe-user -u dcsdb1
User details

```
```

        DCS User ID: dcsdb1
        OS User ID: dcsdb1
    Primary OS Group: uoinstall
    Secondary OS Groups: uasmdba,dcsdb1_dba,dcsdb1_dbaoper,dcsdb1,dcsagent
Role(s): ODA-DB
Account Status: Active
Account Status: Custom
Created: November 25, 2021 12:21:16 PM UTC
Last Updated: November 25, 2021 12:27:31 PM UTC

```

\section*{odacli authorize-user}

Use the odacli authorize-user command in a multi-user access system to unlock a user account that is locked due to multiple failed login attempts or where the password has expired, and authorize the user to reset their password to reactivate their account.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
odacli authorize-user -u user_id [-d domain_name] [-t tenant_name] [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- user-id, -u & (Required) Specifies the user whose account is locked. \\
\hline- -domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline-- tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline- -help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, -j & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to authorize a user in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-26}
```

[odaadmin@oda1 bin]\$ odacli authorize-user -u dcsdb2
Enter your ODA account password:
Enter new password for user 'dcsdb2':
Retype new password for user 'dcsdb2':
User 'dcsdb2' authorized successfully.
User can now login with the temporary password assigned to them by the system
administrator
and reset their password by executing 'odacli reset-password' command or via
BUI.

```

\section*{odacli delete-user}

Use the odacli delete-user command in a multi-user access system to delete a user account.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli delete-user -u user_id [-d domain_name] [-t tenant_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- user-id, -u & (Required) Specifies the user account to be deleted. \\
\hline-- domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline-- tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to delete a user in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.
- The user can be deleted only if there are no resources currently being held in their name.

\section*{Example 17-27}
```

[odaadmin@oda1 bin]\$ odacli delete-user -u dcsdb2
Job details
------------------------------------------------------------------------
ID: a8724a04-3225-43b3-9484-a949bce1c5c0
Description: User deletion(dcsdb2)
Status: Success
Created: November 19, 2021 11:44:35 AM UTC
Message:
Task Name Start Time End Time Status dcs
---------------------------------------- ------------------------------------------
------------------------------------- -------------
[odaadmin@oda1 bin]\$ odacli describe-job -i a8724a04-3225-43b3-9484-
a949bce1c5c0
Job details
------------------------------------------------------------------------
ID: a8724a04-3225-43b3-9484-a949bce1c5c0
Description: User deletion(dcsdb2)

```

Status: Success
Created: November 19, 2021 11:44:35 AM UTC
Message:

Task Name Start Time End Time Status
\(\qquad\)
\(\qquad\)

\section*{odacli list-user-roles}

Use the odacli list-user-roles command to list user roles in a multi-user access system.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-user-roles [-n role_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--r o l e-n a m e,-n\) & (Optional) Displays the list for the specified role. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view all the roles in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-28}
```

[odaadmin@oda1 bin]\$ odacli list-user-roles
Role Name Role Description Is Admin
Role Is Internal Is Active
---------------------------------------------------------------------------------------------------------
------------ --------------- --------------- -------------
ODA-DB Role with DB provisioning related entitlements
false false true
ODA-GRID Role with GRID provisioning related entitlements
false true true
ODA-DBVMINFRA Role with DBVM user related entitlements false
true true
ODA-ADMINISTRATOR System Administrator role with all entitlements
true true true
ODA-OAKDROOT Role with OAKD related entitlements
false true true

```

\section*{odacli describe-user-role}

Use the odacli describe-user-role command to describe a user role in a multi-user access system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli describe-user-role [-n role_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--r o l e-\) name, -n & \begin{tabular}{l}
(Required) Specifies the user role for which you want to list the \\
details.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to describe a user role in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-29}
```

[odaadmin@oda1 bin]\$ odacli describe-user-role -n ODA-DB
Role details
--------------------------------------------------------------------
Name: ODA-DB
Description: Role with DB provisioning related entitlements
Is Admin Role: false
Is Internal: false
Is Active: true
Mapped Entitlement(s): PROVISIONDB-MGMT,BACKUPDB-MGMT,PATCHDB-
MGMT, DATAGUARD-MGMT, DBSTORAGE-MGMT, OBJSTORESWIFT-MGMT, RMANREPORT-
MGMT, SCHEDULE-MGMT, ORACHK-MGMT, ASM-RDBMS-INSTANCE-MGMT, CPUPOOLVIEW-
MGMT, COMMON-ALL

```

\section*{odacli list-user-entitlements}

Use the odacli list-user-entitlements command to list all entitlements in a multi-user access system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-user-entitlements [-ao] [-n entitlement_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- active-only, -ao & (Optional) Lists the active entitlements. \\
\hline-- entitlement-name, -n & (Optional) Displays the list for the specified entitlement. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view all entitlements in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-30}
```

[odaadmin@oda1 bin]\$ odacli list-user-entitlements
Entitlement Name Entitlement
Description Is Active
-----------------------------------
------------------------------------------------------------------------------
TOKEN-MGMT Entitlement for performing user token management
operations true
OSCONFIGS-MGMT Entitlement for performing os configurations related
operations true
FEATURETOGGLE-MGMT Entitlement for performing feature enable/diable
management operations true
SERVER-MGMT Entitlement for performing server related
operations true
HAT-MGMT Entitlement for performing HAT Administrative
operations true
ASM-RDBMS-INSTANCE-MGMT Entitlement for performing ASM/RDBMS instance related
operations true
RMANREPORT-MGMT Entitlement for performing RMAN report(s) related
operations true
DBHOME-MGMT Entitlement for performing DBHomes (on ACFS) related
operations true
DCSCOMPS-MGMT Entitlement for performing DCS component related
operations true
KVM-MGMT-INTERNAL Entitlement for performing blackbox KVM related
internal operations true

```

\section*{odacli describe-user-entitlement}

Use the odacli describe-user-entitlement command to describe an entitlement in a multi-user access system.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
```

odacli describe-user-entitlement -n entitlement_name [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--e n t i t l e m e n t-n a m e, ~-n ~\) & (Required) Displays the details for the specified entitlement. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view an entitlement in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-31}
```

[odaadmin@odal bin]\$ odacli describe-user-entitlement -n PROVISIONDB-MGMT
Entitlement details
-------------------------------------------------------------------------
Name: PROVISIONDB-MGMT
Description: Entitlement for performing DB provision related
operations
Is Active: true
Mapped Operation(s): clone-database,create-database,delete-
database,describe-database,list-databases,modify-database,move-
database,register-database,update-database,upgrade-database,create-
dbhome, delete-dbhome,describe-dbhome,list-dbhomes, describe-netsecurity,update-
netsecurity,list-supported-dbversions,get-db-shapes,restore-
archivelog,restore-tdewallet,modify-dbfileattributes

```

\section*{odacli list-user-operations}

Use the odacli list-user-operations command to list all operations in a multi-user access system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-user-operations [-ao] [-n operations_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline- -active-only, -ao & (Optional) Lists the active multi-user access operations. \\
\hline- -operation-name, -n & (Optional) Displays the list for the specified operation. \\
\hline- -help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view operations in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-32}
```

[odaadmin@oda1 bin]\$ odacli list-user-operations
Operation Name Operation Description Is Active
-_-_-_----------- ------------
list-orachkreports List orachkreports true
list-osconfigurations List os configurations true
describe-database Describe database true
retrieveall-resources Retrieve all resources true
modify-dbsystem-vm Modify DB System VMs true
list-backupconfigs List backup configurations true

```

\section*{odacli describe-user-operation}

Use the odacli describe-user-operation command to describe an operation in a multiuser access system.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-user-operation [-n operation_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- operation-name, -n & (Optional) Displays the details for the specified operation. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view an operation in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-33}
```

[odaadmin@oda1 bin]\$ odacli describe-user-operation -n create-database
Operation details

```
```

--------------------------------------------------------------------------

```
 Name: create-database
Description: Create database
 Is Active: true

\section*{odacli list-resources-access}

Use the odacli list-resources-access command to list access to DCS resources in a multi-user access system.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-resources-access [-ao] [-rn resource_name] [-rt resource_type] [-
j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--a c t i v e-o n l y,-a o\) & (Optional) Lists the active resources. \\
\hline\(--r e s o u r c e-n a m e,-r n\) & (Optional) Displays the list by resource name. \\
\hline\(--r e s o u r c e-t y p e,-r t\) & \begin{tabular}{l}
(Optional) Displays the list for the specified resource type, for \\
example, oda_dbhome, oda_db, oda_dbstorage, \\
oda_objstoreswift, and oda_backupconfig.
\end{tabular} \\
\hline\(--h e l p,-h\) & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view access to resources in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-34}
[odaadmin@odal bin]\$ odacli list-resources-access

\section*{odacli describe-resource-access}

Use the odacli describe-resource-access command to describe access to a DCS resource in a multi-user access system.

File Path
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
odacli describe-resource-access [-ri resource_ID] [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- resource-ID, -ri & (Required) Specifies the resource ID. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to view access to a resource in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-35}
```

[odaadmin@oda1 bin]\$ odacli describe-resource-access -ri cfc65e00-5d9e-4c00-
a7a0-f7ea37884e06
Resource Access details

```

```

        Resource ID: cfc65e00-5d9e-4c00-a7a0-f7ea37884e06
        Resource Name: asmtde1
        Resource Location: 53f434fe-598e-46a0-bbdc-a456404da0c9
        Resource Type: ODA_DB
        Primary Owner: odadb1
        Shared Access: odaadmin
            Is Active: true
            Created: November 17, 2021 1:31:55 PM UTC
        Last Updated: November 17, 2021 1:31:55 PM UTC
    ```

\section*{odacli grant-resource-access}

Use the odacli grant-resource-access command to grant shared access to a DCS resource in a multi-user access system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli grant-resource-access [-ri resource_ID] [-u user_ID] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--r e s o u r c e-I D,-r i\) & (Required) Specifies the resource ID. \\
\hline-- user-ID, -u & \begin{tabular}{l}
(Required) Specifies the user name to be granted shared \\
access.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to grant access to a resource in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-36}
```

[odaadmin@oda1 bin]\$ odacli grant-resource-access -ri cfc65e00-5d9e-4c00-a7a0-
f7ea37884e06 -u odadb2
Shared access of resource granted to user successfully...
[odaadmin@odal bin]\$ odacli describe-resource-access -ri cfc65e00-5d9e-4c00-
a7a0-f7ea37884e06
Resource Access details

```
```

            Resource ID: cfc65e00-5d9e-4c00-a7a0-f7ea37884e06
        Resource Name: asmtde1
    Resource Location: 53f434fe-598e-46a0-bbdc-a456404da0c9
Resource Type: ODA_DB
Primary Owner: odadb1
Shared Access: odaadmin,odadb2
Is Active: true
Created: November 17, 2021 1:31:55 PM UTC
Last Updated: November 19, 2021 12:46:55 PM UTC

```

\section*{odacli revoke-resource-access}

Use the odacli revoke-resource-access command to revoke access to a DCS resource in a multi-user access system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
odacli revoke-resource-access [-ri resource_ID] [-u user_ID] [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
Parameter & Description \\
\hline-- resource-ID, -ri & (Required) Specifies the resource ID. \\
\hline- -user-ID, -u & \begin{tabular}{l}
(Required) Specifies the user name whose shared access is to \\
be revoked.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to revoke access to a resource in a multi-user access system. Only the system administrator odaadmin has the necessary privileges to run this command.

\section*{Example 17-37}
```

[odaadmin@oda1 bin]\$ odacli revoke-resource-access -ri cfc65e00-5d9e-4c00-
a7a0-f7ea37884e06 -u dcsdb2
Shared access of resource to the user revoked successfully...
[odaadmin@oda1 bin]\$ odacli describe-resource-access -ri cfc65e00-5d9e-4c00-
a7a0-f7ea37884e06
Resource Access details
----------------------------------------------------------------------
Resource ID: cfc65e00-5d9e-4c00-a7a0-f7ea37884e06
Resource Name: asmtde1
Resource Location: 53f434fe-598e-46a0-bbdc-a456404da0c9
Resource Type: ODA_DB
Primary Owner: odadb1
Shared Access: odaadmin
Is Active: true

```
```

Created: November 17, 2021 1:31:55 PM UTC
Last Updated: November 19, 2021 12:53:43 PM UTC

```

\section*{odacli reset-password}

Use the odacli reset-password command to reset the password for a user, after it is unlocked, in a multi-user access system.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
```

odacli reset-password [-d domain_name] [-t tenant_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline-- tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to reset the password for a user in a multi-user access system. The password of a user must be reset either when the user account is locked due to multiple failed login attempts or if the password has expired. The odaadmin must first unlock the user account by running the odacli authorize-user command. The user can then log in with the temporary password assigned by odaadmin, run the odacli reset-password command, provide the temporary password, and then specify the new password. You can also reset the password from the Browser User Interface.

\section*{Example 17-38}
```

[dcsdb2@oda1 bin]\$ odacli reset-password
Enter your ODA account password:
Enter new password for your ODA account:
Retype new password for your ODA account:
Password reset for user 'dcsdb2' successful...

```

\section*{odacli change-password}

Use the odacli change-password command to change the password for a user in a multiuser access system.

File Path
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
```

odacli change-password [-d domain_name] [-t tenant_name] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- domain-name, -d & \begin{tabular}{l}
(Optional) Specifies the name of the domain in which the user \\
exists.
\end{tabular} \\
\hline-- tenant-name, -t & (Optional) Specifies the tenancy in which the user exists. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- This command must be run by the active user who wants to change the password. To reset the password of a locked or expired account, use the odacli reset-password command.

\section*{Example 17-39}
```

[dcsdb2@oda1 bin]\$ odacli reset-password
Enter your ODA account password:
Enter new password for your ODA account:
Retype new password for your ODA account:
Password reset for user 'dcsdb2' successful...

```

\section*{odacli Apply Patch and Update Commands}

Use the commands odacli update and apply patch to apply patches and update the appliance.
- odacli cleanup-patchrepo

Use the odacli cleanup-patchrepo command to delete obsolete or old patches from the repository.
- odacli create-prepatchreport

Use the odacli create-prepatchreport command to run pre-checks for patching.
- odacli describe-prepatchreport

Use the odacli describe-prepatchreport command to display the pre-check report, with a list of pre-checks run with status and comments.
- odacli list-prepatchreports

Use the odacli list-prepatchreports command to display all pre-check reports, with a list of pre-checks run with status and comments.
- odacli delete-prepatchreport

Use the odacli delete-prepatchreport command to delete any pre-check report.
- odacli list-availablepatches

Use the odacli list-availablepatches command to display all available patches for Oracle Database Appliance.
- odacli describe-component

Use the odacli describe-component command to display the installed version and the latest available version for each component.
- odacli describe-latestpatch

Use the odacli describe-latestpatch command to display a list of the latest supported patch versions for each component.
- odacli list-agentconfig-parameters

Use the odacli list-agentconfig-parameters command to list configuration variables used by the appliance.
- odacli modify-agentconfig-parameters

Use the odacli modify-agentconfig-parameters command to modify
configuration variables used by the appliance.
- odacli delete-agentconfig-parameters

Use the odacli delete-agentconfig-parameters command to delete configuration variables used by the appliance.
- odacli update-database

Use the odacli update-database command to update a database to a specific database home with later version, and within the same major release.
- odacli update-dbhome

Use the odacli update-dbhome command to update a specific database home to the latest patch bundle version.
- odacli update-dcsadmin

Use the odacli update-dcsadmin command to update the DCS admin for DCS components upgrade.
- odacli update-dcsagent

Use the odacli update-dcsagent command to update the agent.
- odacli update-dcscomponents

Use the odacli update-dcscomponents command to update the DCS components such as the DCS agent, CLI, and controller.
- odacli update-registry

Use the odacli update-registry command to update the metadata for the
components that are already present in the registry. For database home and grid home, this command updates the patch information, when you apply patches manually.
- odacli update-repository

Use the odacli update-repository command to update the repository with the new Oracle Database Appliance software.
- odacli update-server

Use the odacli update-server command to update the operating system, firmware, Oracle Appliance Kit, Oracle Clusterware, and all other infrastructure components.
- odacli update-storage

Use the odacli update-storage command to update the storage.
- odacli update-server-postcheck

Use the odacli update-server-postcheck command to perform deployment health checks after upgrading the oeprating system from Oracle Linux 6 to Oracle Linux 7.
- odaadmcli orachk

Use the odaadmcli orachk command to check configuration settings for Oracle Database Appliance components.

\section*{odacli cleanup-patchrepo}

Use the odacli cleanup-patchrepo command to delete obsolete or old patches from the repository.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli cleanup-patchrepo [-cl clones] | [-v version [-comp component]]| [-l
local|-n NodeID]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- clones, -cl & \begin{tabular}{l}
Specifies the option to clean up clone files (DB and GI) from the \\
repository /opt/oracle/oak/pkgrepos/orapkgs/clones/.
\end{tabular} \\
\hline-- version, -v & \begin{tabular}{l}
Defines the Oracle Database Appliance release you want to \\
delete. You cannot delete the initial or current release files. \\
For example, 12.2.1.4.0.
\end{tabular} \\
\hline-- component, -comp & \begin{tabular}{l}
A comma-separated list of components as \(\{\mathrm{DB}, \mathrm{GI}\}\) to cleanup \\
for a specific Oracle Database Appliance patch version. The \\
default is both \(\{\mathrm{DB}, \mathrm{GI}\}\).
\end{tabular} \\
\hline\(--l o c a l,-1\) & (Optional) Cleans up the repository on the local node. \\
\hline-- node, -n & (Optional) Cleans up the repository on the specified nodes. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command to free up space in the patch repository.
- This command does not delete the current patches or latest installed patch repository.

\section*{Example 17-40 Deleting RDBMS and GI components for a specific release}
```


# odacli cleanup-patchrepo -cl -comp db,gi -v 12.2.1.4.0

{
"jobId" : "d915ffc0-c7f6-49cf-8ddd-ab5d2ad9072f",
"status" : "Created",
"message" : null,
"reports" : ,
"createTimestamp" : "April 17, 2019 06:44:28 AM UTC",
"resourceList" : ,
"description" : "Cleanup patchrepos",
"updatedTime" : "April 17, 2019 06:44:28 AM UTC"

```

\section*{Example 17-41 Deleting Clone Files}
```


# odacli cleanup-patchrepo -cl

{
"jobId" : "5d8549a2-1a5e-4b4f-9867-c1f671c659c4",
"status" : "Created",
"message" : null,
"reports" : ,
"createTimestamp" : "April 17, 2019 06:43:45 AM UTC",
"resourceList" : ,
"description" : "Cleanup patchrepos",
"updatedTime" : "April 17, 2019 06:43:45 AM UTC"
}

```

\section*{odacli create-prepatchreport}

Use the odacli create-prepatchreport command to run pre-checks for patching.
Patching pre-checks help identify and remedy any problems before patching is attempted, and ensure all components are ready for updates.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli create-prepatchreport [-db] [-dbid database_id] [-dp] [-d][-i
dbhome_id] [-f files] [-l] [-u node_number] [-os] [-r] [-s] [-sko] [-st] [-to
dest_db_home_id] [-v version] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --database, -db & (Optional) Specifies the database component for running the prechecks. This option cannot be used with the -dp and -d options. \\
\hline --databaseid, -dbid & (Optional) Specifies the ID of the database to be updated and for which you want to run the pre-checks. \\
\hline --datapatch, -dp & (Optional) Specifies the datapatch component for running the prechecks. This option cannot be used with the -db and -d options. \\
\hline --dbhome, -d & (Optional) Specifies the database home component for running the pre-checks. This option cannot be used with the -dp and -db options. \\
\hline --dbhomeid, -i & (Optional) Specifies the IDs of the database homes to be updated and for which you want to run the pre-checks. \\
\hline --files, -f & (Optional) Specifies files required to update repository, commaseparated if multiple files are required. \\
\hline --operating-system, -os & (Optional) Specifies the operating system components. Use this option to run operating system upgrade. If you specify \(-c\), then the only option is os. If you specify -c os, then you can also specify local (optional). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --node-number, -u & (Optional) Runs patch pre-checks on specified nodes. The value can be 0 or 1 . \\
\hline --local, -1 & (Optional) Runs patch pre-checks on local node only. \\
\hline --operating-system, -os & (Optional) Specify this option to run the patch pre-checks for the operating system components. \\
\hline --repo, -r & (Optional) Specify this option to run the patch pre-checks for the repository components. \\
\hline --server, -s & (Optional) Specify this option to run the patch pre-checks for the server components. \\
\hline --storage, -st & (Optional) Specify this option to run the patch pre-checks for the storage components. \\
\hline --version, -v & (Optional) Specifies the version for running the pre-checks. \\
\hline --to-home, -to & (Optional) Specifies the destination Oracle Database Home on the target database for the update. Note that you must use this option with the -db option. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --json, -j & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli create-prepatchreport command to generate a pre-check report. Use the --node or --local option to run the patch pre-checks on specific nodes or the local node.

\section*{Example 17-42 Creating Pre-Check Report}
```


# odacli create-prepatchreport -v 19.23.0.0.0 -s

Job details

```

 ID: e07993d5-0a06-44e7-819a-36d708c52bb6
 Description: Patch pre-checks for [OS, ILOM, GI, ORACHKSERVER]
 Status: Created
 Created: September 20, 2022 1:01:59 AM PDT
 Message: Use 'odacli describe-prepatchreport -i
e07993d5-0a06-44e7-819a-36d708c52bb6' to check details of results
Task Name Start Time End Time Status

\section*{Example 17-43 Creating Pre-Check Report for Updating Database and Applying Datapatch}
```


# odacli describe-prepatchreport -i efa93519-a365-4e9a-9f25-ad3c653cccef

```
Patch pre-check report
 Job ID: efa93519-a365-4e9a-9f25-ad3c653cccef
 Description: Patch pre-checks for [SINGLEDB, ORACHKSINGLEDB]:
Target DB is db10181, Destination DbHome is OraDB19000_home8

Status: SUCCESS
Created: October 18, 2022 11:19:03 AM PDT
Result: All pre-checks succeeded

Node Name

node1

Pre-Check Status Comments
 SINGLEDB
Is system provisioned Success Verified system is provisioned
Validate dbHomesOnACFS Success User has configured disk group for
configured Database homes on ACFS
Validate Oracle base Success Successfully validated Oracle Base
Evaluate DB clone availability Success Successfully validated clone file
 exists
Evaluate DB patching with RHP Success Successfully validated patching DB
 with RHP.
Validate command execution Success Validated command execution
 ORACHK
Running orachk Success Successfully ran Orachk
Validate command execution Success Validated command execution
wandli: Node Name

node2
Pre-Check Status Comments

 SINGLEDB
\(\overline{\text { Is }}\) system \(\overline{p r o v i s i o n e d ~ S u c c e s s ~ V e r i f i e d ~ s y s t e m ~ i s ~ p r o v i s i o n e d ~}\)
Validate dbHomesOnACFS Success User has configured disk group for
configured Database homes on ACFS
Validate Oracle base Success Successfully validated Oracle Base
Evaluate DB clone availability Success Successfully validated clone file
 exists
Evaluate DB patching with RHP Success Successfully validated patching DB
 with RHP.
Validate command execution Success Validated command execution
 ORACHK
Running orachk Success Successfully ran Orachk
Validate command execution Success Validated command execution
wandli: example for applying datapatch,
[root@oda1 ~]\# odacli describe-prepatchreport -i 2cdb0b6e-
ce24-4857-86ab-91480a2ac4e8

Patch pre-check report
Job ID: 2cdb0b6e-ce24-4857-86ab-91480a2ac4e8
Description: Patch pre-checks for [SINGLEDB, ORACHKSINGLEDB]:
Target DB is season, Destination DbHome is OraDB19000_home6
Status: SUCCESS
Created: September 16, 2022 10:38:58 PM UTC

Result: All pre-checks succeeded
Node Name

oda1

Pre-Check Status Comments
------------------------------- -------- --
SINGLEDB
Is system \(\bar{p} r\) rovisioned Success Verified system is provisioned
Validate dbHomesOnACFS Success User has configured disk group for
configured Database homes on ACFS
Validate Oracle base Success Successfully validated Oracle Base
Evaluate DB clone availability Success Successfully validated clone file exists
Evaluate DB patching with RHP Success Successfully validated patching DB
with RHP.
Validate command execution Success Validated command execution

ORACHK
Running orachk Success Successfully ran Orachk
Validate command execution Success Validated command execution

\section*{odacli describe-prepatchreport}

Use the odacli describe-prepatchreport command to display the pre-check report, with a list of pre-checks run with status and comments.

Patching pre-checks help identify and remedy any problems before attempting to patch, and ensure all components are ready for updates.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-prepatchreport -i ID [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Specifies the Job ID for the pre-check report. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli describe-prepatchreport command to display the pre-check report.
The pre-checks report indicates whether the server patching can be rolling or not.

\section*{Example 17-44 Patch pre-checks report with rolling mode patching supported when Expander or Controller upgrade is not required}
```

[root@node1 bin]\# odacli describe-prepatchreport -i 83e41cc6-bd0e-4c53-a9fe-
c3f6b7ecd47b
Patch pre-check report
------------------------------------------------------------------------------
Job ID: 83e41cc6-bd0e-4c53-a9fe-c3f6b7ecd47b
Description: Patch pre-checks for [STORAGE]
Status: SUCCESS
Created: September 3, 2021 2:51:29 PM UTC
Result: All pre-checks succeeded
Node Name
----------------
node1
Pre-Check Status Comments
---------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:
19.12.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag
Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Success Rolling mode patching allowed
as
there is no expander and
controller
upgrade.
Validate command execution Success Validated command
execution
Node Name
---------------
node2
Pre-Check Status Comments
----------------------------- --------
------------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:
19.12.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag

```
```

Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Success Rolling mode patching allowed
as
there is no expander and
controller
upgrade.
Validate command execution Success Validated command execution

```

Example 17-45 Patch pre-checks report with rolling mode patching not supported when Expander or Controller upgrade is required
```

[root@node1 bin]\# odacli describe-prepatchreport -i 4a3bef2b-687e-41f2-b3d7-
cbda79e63877
Patch pre-check report
-----------------------------------------------------------------------------
Job ID: 4a3bef2b-687e-41f2-b3d7-cbda79e63877
Description: Patch pre-checks for [STORAGE]
Status: SUCCESS
Created: September 7, 2021 12:30:57 PM UTC
Result: All pre-checks succeeded

```
Node Name

node1

 STORAGE
Validate patching tag Success Validated patching tag:
19.12.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag
Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Alert Rolling mode patching not allowed
as
 there is expander and controller
upgrade.
Validate command execution Success Validated command
execution
Node Name
```

node2
Pre-Check Status Comments
------------------------------------------
STORAGE
Validate patching tag Success Validated patching tag:
19.12.0.0.0.
Patch location validation Success Verified patch
location
Patch tag validation Success Verified patch
tag
Storage patch tag validation Success Verified storage patch
location
Verify ASM disks status Success ASM disks are
online
Validate rolling patch Alert Rolling mode patching not allowed
as
there is expander and controller
upgrade.
Validate command execution Success Validated command
execution

```

\section*{Example 17-46 Displaying the Patch Pre-Checks Report for Operating System, Oracle Grid Infrastructure, and ORAchk}
```

[root@oda1 opt]\# odacli describe-prepatchreport -i 20d59005-f7f1-421d-bbb1-
bfc4b5a26293
Patch pre-check report
---------------------------------------------------------------------------------
Job ID: 20d59005-f7f1-421d-b.bb1-bfc4b5a26293
Description: Patch pre-checks for [OS, ILOM, GI, ORACHKSERVER,
SERVER]
Status: SUCCESS
Created: May 13, 2022 7:31:24 AM HKT
Result: All pre-checks succeeded
Node Name
node1

Pre-Check	Status	Comments
OS		
Validate supported versions versions.	Success	Validated minimum supported
Validate patching tag 19.15.0.0.0.	Success	Validated patching tag:
Is patch location available available.	Success	Patch location is
Verify OS patch patch	Success	Verified OS
Validate command execution	Success	Validated command

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{_ILOM} \\
\hline Validate ILOM server reachable & Success & Successfully connected with \\
\hline \multicolumn{3}{|l|}{ILOM} \\
\hline & & server using public IP and \\
\hline \multicolumn{3}{|l|}{USB} \\
\hline \multicolumn{3}{|l|}{interconnect} \\
\hline Validate supported versions versions. & Success & Validated minimum supported \\
\hline Validate patching tag 19.15.0.0.0. & Success & Validated patching tag: \\
\hline Is patch location available available. & Success & Patch location is \\
\hline Checking Ilom patch Version versions & Success & Successfully verified the \\
\hline Patch location validation location & Success & Successfully validated \\
\hline Validate command execution execution & Success & Validated command \\
\hline GI & & \\
\hline Validate GI metadata metadata & Success & Successfully validated GI \\
\hline Validate supported GI versions versions. & Success & Validated minimum supported \\
\hline Validate available space under /u01 & Success & Validated free space \\
\hline Is clusterware running running & Success & Clusterware is \\
\hline Validate patching tag 19.15.0.0.0. & Success & Validated patching tag: \\
\hline Is system provisioned provisioned & Success & Verified system is \\
\hline Validate ASM in online online & Success & ASM is \\
\hline Validate kernel log level log & Success & Successfully validated the OS \\
\hline \multicolumn{3}{|l|}{level} \\
\hline Validate minimum agent version current & Success & GI patching enabled in \\
\hline & & DCSAGENT \\
\hline \multicolumn{3}{|l|}{version} \\
\hline Validate Central Inventory passed & Success & oraInventory validation \\
\hline Validate patching locks locks & Success & Validated patching \\
\hline Validate clones location exist location & Success & Validated clones \\
\hline Validate DB start dependencies passed & Success & DBs START dependency check \\
\hline Validate DB stop dependencies passed & Success & DBs STOP dependency check \\
\hline Evaluate GI patching & Success & Successfully validated GI \\
\hline
\end{tabular}
```

patching
Validate command execution Success Validated command
execution
ORACHK_
Running orachk Success Successfully ran
Orachk
Validate command execution Success Validated command
execution
SERVER
Validate local patching Alert Rolling patching is not possible:
in
environments
Validate command execution Success Validated command
execution
Node Name
---------------
node2
Pre-Check Status Comments
--------
------------------------------------------
__OS
Validate supported versions Success Validated minimum supported
versions.
Validate patching tag Success Validated patching tag:
19.15.0.0.0.
Is patch location available Success Patch location is
available.
Verify OS patch Success Verified OS
patch
Validate command execution Success Validated command
execution
ILOM
Validate ILOM server reachable Success
ILOM
USB
interconnect
Validate supported versions Success Validated minimum supported
versions.
Validate patching tag Success Validated patching tag:
19.15.0.0.0.
Is patch location available Success Patch location is
available.
Checking Ilom patch Version Success Successfully verified the
versions
Patch location validation Success Successfully validated
location
Validate command execution Success Validated command

```
```

    GI
    Validate GI metadata Success Successfully validated GI
metadata
Validate supported GI versions Success Validated minimum supported
versions
Validate available space
under /u01
Is clusterware running
running
Validate patching tag Success Validated patching tag:
19.15.0.0.0.
Is system provisioned Succes
provisioned
Validate ASM in online Succes
online
Validate kernel log level Success Successfully validated the OS
log
level
Validate minimum agent version Success GI patching enabled in
current
version
Validate Central Inventory Success oraInventory validation
passed
Validate patching locks Success
locks
Validate clones location exist
location
Validate DB start dependencies Success DBs START dependency check
passed
Validate DB stop dependencies Success DBs STOP dependency check
passed
Evaluate GI patching Succes
patching
Validate command execution Succe
execution
ORACHK
Running orachk
Orachk
Validate command execution Success Validated command
execution
SERVER
Validate local patching Alert Rolling patching is not possible:
in
environments
Validate command execution Success Validated command execution

```

\section*{Example 17-47 Pre-checks report for storage}
```


# odacli describe-prepatchreport -i 95887f92-7be7-4865-a311-54318ab385f2

```
Patch pre-check report

```

online
Validate rolling patch Success Rolling mode patching allowed
as
controller
upgrade.
Validate command execution Success Validated command execution

```

\section*{Example 17-48 Pre-checks report for updating database home}
```


# odacli describe-prepatchreport -i 6f040374-d271-4711-a7db-e6c04597ad69

Patch pre-check report
-----------------------------------------------------------------------------
Job ID: 6f040374-d271-4711-a7db-e6c04597ad69
Description: Patch pre-checks for [DB, ORACHKDB]: DbHome is
OraDB19000_home1
Status: SUCCESS
Created: May 13, 2022 8:59:48 AM HKT
Result: All pre-checks succeeded

```
Node Name

node1
\begin{tabular}{|c|c|c|}
\hline Pre-Check & Status & Comments \\
\hline \multicolumn{3}{|l|}{\(\ldots\) [B} \\
\hline Validate DB Home ID & Success & Validated DB Home \\
\hline ID: & & \\
\hline \multicolumn{3}{|l|}{d03d5187-1c20-470a-9d51-49a0d6f60772} \\
\hline Validate patching tag
19.15.0.0.0. & Success & Validated patching tag: \\
\hline Is system provisioned provisioned & Success & Verified system is \\
\hline Validate minimum agent version version & Success & Validated minimum agent \\
\hline Is GI upgraded upgraded & Success & Validated GI is \\
\hline Validate available space for under & Success & Validated free space required \\
\hline db & & /u01/app/ \\
\hline Validate dbHomesOnACFS & Success & User has configured diskgroup \\
\hline \multicolumn{3}{|l|}{for} \\
\hline configured & & Database homes on \\
\hline \multicolumn{3}{|l|}{ACFS} \\
\hline Validate Oracle base & Success & Successfully validated Oracle \\
\hline \multicolumn{3}{|l|}{Base} \\
\hline Is DB clone available & Success & Successfully validated clone \\
\hline file & & \\
\hline
\end{tabular}
```

exists
Evaluate DBHome patching with Success Successfully validated
updating
RHP dbhome with RHP. and local
patching
possible
Validate command execution Success Validated command
execution
ORACHK
Running orachk Success Successfully ran
Orachk
Validate command execution Success Validated command
execution
Node Name
---------------
node2
Pre-Check Status Comments
--------------------------------
------------------------------------------
DB
Vali\overline{date DB Home ID Success Validated DB Home}
ID:
d03d5187-1c20-470a-9d51-49a0d6f60772
Validate patching tag Success Validated patching tag:
19.15.0.0.0.
Is system provisioned Success Verified system is
provisioned
Validate minimum agent version Success Validated minimum agent
version
Is GI upgraded Success Validated GI is
upgraded
Validate available space for Success Validated free space required
under
db
odaorahome
Validate dbHomesOnACFS Success User has configured diskgroup
for
configured Database homes on
ACFS
Validate Oracle base Success Successfully validated Oracle
Base
Is DB clone available Success Successfully validated clone
file
exists
Evaluate DBHome patching with Success Successfully validated
updating
RHP dbhome with
RHP.
Validate command execution Success Validated command
execution

```
```

ORACHK
Running orachk Success Successfully ran
Orachk
Validate command execution Success Validated command
execution

```

\section*{odacli list-prepatchreports}

Use the odacli list-prepatchreports command to display all pre-check reports, with a list of pre-checks run with status and comments.

Patching pre-checks help identify and remedy any problems before attempting to patch, and ensure all components are ready for updates.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-prepatchreports [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli list-prepatchreports command to display all pre-check reports.

\section*{Example 17-49 Displaying All Patch Pre-Checks Reports}
```


# odacli list-prepatchreports

ID Description Created Status
-------------- ------------------------------------ --------------
8a8a14b5-1b5e-4eeb-8ba9-c8136fb4eea1 Patch pre-checks for [DB]: DbHome is
OraDB12102_home1
May 16, 2018 7:00:56 PM PDT Running
2c9a747d-a452-4e48-bcab-9c7cd9f5f35b Patch pre-checks for [STORAGE]
May 16, 2018 6:53:23 PM PDT Success
f3b9c7c1-3061-4577-848d-645669d71f72 Patch pre-checks for [OS, ILOM, GI]
May 16, 2018 7:00:56 PM PDT Running

```

\section*{odacli delete-prepatchreport}

Use the odacli delete-prepatchreport command to delete any pre-check report.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
odacli delete-prepatchreport -i Report_ID

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Describes the ID of the report to be deleted. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli delete-prepatchreport command to delete pre-check reports.

\section*{Example 17-50 Deleting A Patch Pre-Checks Report}
```


# odacli delete-prepatchreport -i 741f635b-7c75-4832-8813-782367f1e6fd

```

\section*{odacli list-availablepatches}

Use the odacli list-availablepatches command to display all available patches for Oracle Database Appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-availablepatches [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli list-availablepatches command to display all available patches for Oracle Database Appliance.

\section*{Example 17-51 Displaying All Available Patches on Bare Metal System}

Example 17-52 Displaying All Available Patches on DB System
\begin{tabular}{|c|c|c|c|}
\hline ODA Release Version Supported Platforms & Supported DB Versions & Available DB Versions & \\
\hline 19.14.0.0.0 & 21.5.0.0.220118 & 21.5.0.0.220118 & DB \\
\hline System & 19.14.0.0.220118 & 19.14.0.0.220118 & Bare \\
\hline Metal, DB System & 12.2.0.1.220118 & 12.2.0.1.220118 & Bare \\
\hline Metal & 12.1.0.2.220118 & 12.1.0.2.220118 & Bare \\
\hline Metal & & & \\
\hline 19.11.0.0.0 & 19.11.0.0.210420 & 19.11.0.0.210420 & Bare \\
\hline Metal, DB System & 18.14.0.0.210420 & 18.14.0.0.210420 & Bare \\
\hline Metal & 12.2.0.1.210420 & 12.2.0.1.210420 & Bare \\
\hline Metal & 12.1.0.2.210420 & 12.1.0.2.210420 & Bare \\
\hline Metal & & & \\
\hline
\end{tabular}

\section*{odacli describe-component}

Use the odacli describe-component command to display the installed version and the latest available version for each component.

If there are multiple DB Homes installed in Oracle Database Appliance, then the output displays the version details for each of the installed homes and the databases in each database home. You can use this command to check the component version after applying a patch.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
odacli describe-component [-d][-j][-h][-s][-v][-l][-n]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- dbhomes, -d & (Optional) Lists the database home versions and available versions. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline\(--l o c a l,-1\) & \begin{tabular}{l}
(Optional) Describes the components for the local node. Use to \\
display details on the local node of multi-node high availability (HA) \\
systems. This option is not needed to display component details on \\
single-node systems.
\end{tabular} \\
\hline-- node, -n & \begin{tabular}{l}
(Optional) Describes the components for a specific node on high \\
availability (HA) systems. This option is not needed to display \\
component details on single node systems. \{0|1\}
\end{tabular} \\
\hline\(--s e r v e r,-s\) & \begin{tabular}{l}
(Optional) Lists the server components and versions and the \\
available versions to which you can patch them.
\end{tabular} \\
\hline\(--s y s t e m v e r s i o n,-\mathrm{v}\) & \begin{tabular}{l}
(Optional) Displays only the system version. This option is available \\
only on high-availability systems.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli describe-component command to get component details. On a multinode environment, the command provides details across all nodes. Use the --node or -local option to get component details for a specific node.

The odacli describe-component command displays the local and shared storage components and the updates required for them separately.

\section*{Example 17-53 Displaying patch details for components for High-Availability Oracle Database Appliance Systems for a release}
```


# odacli describe-component

System Version
---------------
19.15.0.0.0

```
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{System node Name} \\
\hline n1 & & \\
\hline \multicolumn{3}{|l|}{Local System Version} \\
\hline \multicolumn{3}{|l|}{19.15.0.0.0} \\
\hline \multicolumn{3}{|l|}{Version} \\
\hline \multicolumn{3}{|l|}{OAK} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{GI} \\
\hline & 19.15.0.0.220419 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { DB \{ } \\
& \text { [OraDB19000_home1 [myTestDb]] }
\end{aligned}
\]} \\
\hline & 19.14.0.0.220118 & \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 19.15.0.0.220419 } \\
& \text { [OraDB19000_home2 [pbAu]] }
\end{aligned}
\]} \\
\hline & 19.14.0.0.220118 & \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 19.15.0.0.220419 } \\
& \text { [OraDB19000_home3 [RYXz50a,av2,av3, }
\end{aligned}
\]} \\
\hline av412345]] & 19.14.0.0.220118 & \\
\hline [OraDB12201_home1 [L1]] & \multicolumn{2}{|c|}{19.15.0.0.220419} \\
\hline & 12.2.0.1.220118 & not- \\
\hline \multicolumn{3}{|l|}{available} \\
\hline & 12.1.0.2.220118 & \\
\hline \multicolumn{3}{|l|}{12.1.0.2.220419} \\
\hline \multicolumn{3}{|l|}{\}} \\
\hline \multicolumn{3}{|l|}{DCSCONTROLLER} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DCSCLI} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DCSAGENT} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DCSADMIN} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{OS} \\
\hline & 7.9 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{ILOM} \\
\hline & 5.0.2.24.r141466 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{BIOS} \\
\hline & 52050300 & up-to- \\
\hline date & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SHARED CONTROLLER FIRMWARE} \\
\hline & 16.00 .08 .00 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{FIRMWAREEXPANDER} \\
\hline & 0310 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{LOCAL DISK FIRMWARE} \\
\hline & 0121 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{```
SHARED DISK FIRMWARE {
[c0d0,c0d1,c0d2,c0d3,c0d4,c0d5,c1d0,
```} \\
\hline \begin{tabular}{l}
c1d1,c1d2,c1d3,c1d4,c1d5] \\
date
\end{tabular} & A959 & up-to- \\
\hline \multicolumn{3}{|l|}{[c0d6, c0d7, c0d8, c0d9, c0d10, c0d11, c0d12,} \\
\hline \multicolumn{3}{|l|}{c0d13, c0d14, c0d15, c0d16, c0d17, c0d18,} \\
\hline \multicolumn{3}{|l|}{c0d19, c0d20, c0d21, c0d22, c0d23, c1d6, c1d7,} \\
\hline \multicolumn{3}{|l|}{c1d8, c1d9, c1d10, c1d11, c1d12, c1d13, c1d14,} \\
\hline \multicolumn{3}{|l|}{c1d15, c1d16, c1d17, c1d18, c1d19, c1d20,} \\
\hline c1d21, c1d22,c1d23] & A144 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{[c2d0, c2d1]} \\
\hline & 0121 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{\}} \\
\hline \multicolumn{3}{|l|}{HMP} \\
\hline & 2.4.8.0.600 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{System node Name} \\
\hline \multicolumn{3}{|l|}{n2} \\
\hline \multicolumn{3}{|l|}{Local System Version} \\
\hline \multicolumn{3}{|l|}{19.15.0.0.0} \\
\hline Component & Installed Version & Available \\
\hline \multicolumn{3}{|l|}{Version} \\
\hline -------------------- & & \\
\hline \multicolumn{3}{|l|}{OAK} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{GI} \\
\hline & 19.15.0.0.220419 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DB \{} \\
\hline \multicolumn{3}{|l|}{[OraDB19000_home1 [myTestDb]]} \\
\hline & 19.14.0.0.220118 & \\
\hline \multicolumn{3}{|l|}{19.15.0.0.220419} \\
\hline \multicolumn{3}{|l|}{[OraDB19000_home2 [pbAu]]} \\
\hline & 19.14.0.0.220118 & \\
\hline \multicolumn{3}{|l|}{19.15.0.0.220419} \\
\hline \multicolumn{3}{|l|}{[OraDB19000_home3 [RYXz50a,av2,av3,} \\
\hline av412345]] & 19.14.0.0.220118 & \\
\hline \[
\begin{aligned}
& \text { 19.15.0.0.220419 } \\
& \text { [OraDB12201 home1 [L1]] }
\end{aligned}
\] & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 12.2.0.1.220118 & not- \\
\hline \multicolumn{3}{|l|}{available} \\
\hline \multicolumn{3}{|l|}{[OraDB12102_home1 [Bp]]} \\
\hline & 12.1.0.2.220118 & \\
\hline \multicolumn{3}{|l|}{12.1.0.2.220419} \\
\hline \multicolumn{3}{|l|}{\}} \\
\hline \multicolumn{3}{|l|}{DCSCONTROLLER} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DCSCLI} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DCSAGENT} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{DCSADMIN} \\
\hline & 19.15.0.0.0 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{OS} \\
\hline & 7.9 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{ILOM} \\
\hline & 5.0.2.24.r141466 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{BIOS} \\
\hline & 52050300 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{SHARED CONTROLLER FIRMWARE} \\
\hline & 16.00 .08 .00 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{FIRMWAREEXPANDER} \\
\hline & 0310 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{LOCAL DISK FIRMWARE} \\
\hline & 0121 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{SHARED DISK FIRMWARE \{ [c0d0,c0d1,c0d2,c0d3,c0d4,c0d5,c1d0,} \\
\hline c1d1, c1d2, c1d3, c1d4, c1d5] & A959 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{[c0d6, c0d7, c0d8, c0d9, c0d10, c0d11, c0d12,} \\
\hline \multicolumn{3}{|l|}{c0d13, c0d14, c0d15, c0d16, c0d17, c0d18,} \\
\hline \multicolumn{3}{|l|}{c0d19, c0d20, c0d21, c0d22, c0d23, c1d6, c1d7,} \\
\hline \multicolumn{3}{|l|}{c1d8, c1d9,c1d10, c1d11, c1d12, c1d13, c1d14,} \\
\hline \multicolumn{3}{|l|}{c1d15, c1d16, c1d17, c1d18, c1d19, c1d20,} \\
\hline \begin{tabular}{l}
c1d21, c1d22,c1d23] \\
date
\end{tabular} & A144 & up-to- \\
\hline \multicolumn{3}{|l|}{[c2d0, c2d1]} \\
\hline & 0121 & up-to- \\
\hline \multicolumn{3}{|l|}{date} \\
\hline \multicolumn{3}{|l|}{\}} \\
\hline \multicolumn{3}{|l|}{HMP} \\
\hline & 2.4.8.0.600 & up-to- \\
\hline date & & \\
\hline
\end{tabular}

\section*{Example 17-54 List DB Home Details}
```


odacli describe-component -d

System Version

18.7.0.0.0
System node Name

node1
Local System Version

18.7.0.0.0
Component Installed Version Available
Version
--

DB
System node Name

node2
Local System Version

18.7.0.0.0
Component Installed Version Available
Version

DB
12.2.0.1.190716
up-to-date

```

\section*{Example 17-55 List the Server Components and Versions}
```


odacli describe-component -s

System Version

18.7.0.0.0
System node Name

node1
Local System Version

18.7.0.0.0
Component Installed Version Available
Version
-- ------------------------

```
\begin{tabular}{|c|c|c|}
\hline OAK & 18.7.0.0.0 & up-to-date \\
\hline GI & 18.7.0.0.190716 & up-to-date \\
\hline ILOM & 4.0.4.38.r130206 & up-to-date \\
\hline BIOS & 52010400 & up-to-date \\
\hline OS & 6.10 & up-to-date \\
\hline \multicolumn{3}{|l|}{System node Name} \\
\hline node2 & & \\
\hline \multicolumn{3}{|l|}{Local System Version} \\
\hline \multicolumn{3}{|l|}{18.7.0.0.0} \\
\hline Component Version & Installed Version & Available \\
\hline OAK & 18.7.0.0.0 & up-to-date \\
\hline GI & 18.7.0.0.190716 & up-to-date \\
\hline ILOM & 4.0.4.38.r130206 & up-to-date \\
\hline BIOS & 52010400 & up-to-date \\
\hline OS & 6.10 & up-to-date \\
\hline
\end{tabular}

\section*{odacli describe-latestpatch}

Use the odacli describe-latestpatch command to display a list of the latest supported patch versions for each component.

\section*{File Path}
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
odacli describe-latestpatch [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Example 17-56 Listing the Latest Supported Versions}

\begin{tabular}{ll} 
firmwaredisk & \(0 b 25\) \\
firmwaredisk & sf04 \\
firmwaredisk & c38k \\
firmwaredisk & a3a0 \\
firmwaredisk & pd51 \\
firmwaredisk & m554 \\
firmwaredisk & 0121 \\
firmwaredisk & xc311102
\end{tabular}

\section*{odacli list-agentconfig-parameters}

Use the odacli list-agentconfig-parameters command to list configuration variables used by the appliance.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-agentconfig-parameters [-h] [-j] [-n] [-t]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline-- name, -n & Specifies the name of the parameter. \\
\hline-- type, -t & \begin{tabular}{l} 
(Optional) Specifies the configuration value for \\
the given type. The default value is PUBLIC.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli list-agentconfig-parameters command to list configuration variables used by the appliance.

\section*{Example 17-57 Displaying the HttpProxyPort}
```

./odacli list-agentconfig-parameters -n HttpProxyPort
Name Value Description Updated
--
HttpProxyPort Http proxy server port April 8, 2024 4:14:10 AM UTC

```

\section*{Example 17-58 Displaying the agent configuration}
```


odacli list-agentconfig-parameters

Name Value Description Updated

```
```

--
HttpProxyHost Http proxy server host April 8, 2024 4:14:10 AM UTC
HttpProxyPort Http proxy server port April 8, 2024 4:14:10 AM UTC
HttpsProxyHost Https proxy server host April 8, 2024 4:14:10 AM UTC
HttpsProxyPort Https proxy server port April 8, 2024 4:14:10 AM UTC

```

\section*{Example 17-59 Displaying Oracle ASM configuration}
```


odacli list-agentconfig-parameters -t ASM

Name Value Description Updated
--
--

asm_power_limit 4 June 22, 2021 12:13:10 AM UTC

```

\section*{Related Topics}
- Configuring Agent Proxy Settings for Object Store Access If the Object Store IP address is accessible only through proxy setup by the Oracle Database Appliance server, then define the proxy setting for the agent, so that the agent can access the Object Store.

\section*{odacli modify-agentconfig-parameters}

Use the odacli modify-agentconfig-parameters command to modify configuration variables used by the appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli modify-agentconfig-parameters -n name param [-adbs] [-a] [-bm] [-c
comment_param] [-dbs dbsys_param] [-d description_param] [-r] [-t type_param]
[-u] [-v value_param] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--a p p e n d,-\mathrm{a}\) & \begin{tabular}{l} 
(Optional) Appends the parameter values. For \\
example, \(-\mathrm{n} \mathrm{p1}-\mathrm{v} \mathrm{v} 1-\mathrm{n} \mathrm{p} 2-\mathrm{v} \mathrm{v} 2-\mathrm{a}\).
\end{tabular} \\
\hline\(--\mathrm{all-dbsystems,-adbs}\) & \begin{tabular}{l} 
(Optional) Dynamic parameter update for all DB \\
systems.
\end{tabular} \\
\hline\(--\mathrm{bm}-\mathrm{only},-\mathrm{bm}\) & \begin{tabular}{l} 
(Optional) Dynamic parameter update for bare \\
metal systems only.
\end{tabular} \\
\hline-- comment, -c & \begin{tabular}{l} 
(Optional) Specifies the comment for the \\
parameter.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --dbsystem, -dbs & (Optional) DB system name for dynamic parameter update. \\
\hline --description, -d & (Optional) Specifies the description of the parameter. \\
\hline --name, -n & Specifies the name of the parameter. Provide multiple parameter values in the format -n p1 v v1 -n p2 -v v2. \\
\hline --reset, -r & Resets the parameter to the default value. For example: -n p1 -n p2 -r. \\
\hline --update, -u & Replaces the parameter with the specified value. For example: -n p1 -v v1 -n p2 -v v2 -u. \\
\hline --value, -v & Specifies the value of the parameter. Provide multiple parameter values in the format -n p1 v v1 -n p2 -v v2. \\
\hline --type, -t & (Optional) Specifies the type of the parameter. \\
\hline --json, -j & (Optional) Displays JSON output. The default is false. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli modify-agentconfig-parameters command to modify configuration variables used by the appliance. The supported configuration parameters are HttpsProxyHost and HttpsProxyPort.

Multiple values can be specified. For High-Availability models, the command sets the parameter values on both nodes in the cluster.

For a DB system, dynamic parameter value specified using the - dbs flag has more priority than the parameter value specified using the -adbs flag, which in turn has a higher priority than the case where the parameter was updated without using any flag from the bare metal system.

\section*{Example 17-60 Setting Multiple Parameters}
```


odacli modify-agentconfig-parameters -n HttpsProxyPort -v 80 -d "Http proxy

port"
-n HttpsProxyPort -v 80 -d "Https proxy port" -u
modify-agentconfig-parameters -n HttpsProxyPort -n HttpProxyPort -r
modify-agentconfig-parameters -n HttpsProxyHost -v 90 -a
modify-agentconfig-parameters -n OSPatchRepos -v

```

\section*{Example 17-61 Setting Oracle RDBMS Parameters}
```


odacli modify-agentconfig-parameters -t RDBMS -n processes -v 300 -u

The value of processes will be set to 300 in BM and all the DBVMs.

odacli list-agentconfig-parameters -t RDBMS -n processes

```
```

Name Value Description
Updated

-
processes 300 April 8, 2024 5:24:45 PM UTC

```

\section*{Example 17-62 Updating the RDBMS Parameter for all DB systems in the Bare Metal System}
```


odacli modify-agentconfig-parameters -t RDBMS -n processes -v 400 -u -adbs

```

In the bare metal system, the value of the processes parameter is not changed:
```


odacli list-agentconfig-parameters -t RDBMS -n processes

Name Value Description
Updated

processes 300 April 8, 2024 12:08:15 AM
UTC

```

In all DB systems, the value of processes is changed:
```


odacli list-agentconfig-parameters -t RDBMS -n processes

Name Value Description
Updated
--
processes 400 April 8, 2024 12:08:15 AM UTC

```

You can set the value for a specific DB system:
```


odacli modify-agentconfig-parameters -t RDBMS -n processes -v 700 -u -dbs

DBSYSTEM1

```

Value is changed on DBSYSTEM1:
```


odacli list-agentconfig-parameters -t RDBMS -n processes

Name Value Description
Updated
--
processes 700 April 8, 2024 12:08:15 AM UTC

```

\section*{odacli delete-agentconfig-parameters}

Use the odacli delete-agentconfig-parameters command to delete configuration variables used by the appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli delete-agentconfig-parameters -n name_param [-adbs] [-bm] [-dbs
dbs_param] [-t type_param] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline-- name, -n & \begin{tabular}{l} 
(Mandatory) Specifies the name of the \\
parameter.
\end{tabular} \\
\hline-- type, -t & \begin{tabular}{l} 
(Optional) Deletes the configuration value for the \\
given type.
\end{tabular} \\
\hline\(--a l l-d b s y s t e m s,-a d b s\) & \begin{tabular}{l} 
(Optional) Deletes the dynamic parameter \\
updated for DB systems, using the -ad option in \\
the odacli modify-agentconfig- \\
parameters command.
\end{tabular} \\
\hline\(--b m-o n l y,-b m\) & \begin{tabular}{l} 
(Optional) Deletes the dynamic parameter only \\
from the bare metal systems.
\end{tabular} \\
\hline\(--d b s y s t e m,-d b s\) & \begin{tabular}{l} 
(Optional) Deletes the dynamic parameter for a \\
specific DB system.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

Use the odacli delete-agentconfig-parameters command to delete configuration values. For High-Availability models, the command deletes the parameter values on both nodes in the cluster.

\section*{Example 17-63 Deleting configuration parameters}
```


odacli delete-agentconfig-parameters -n HttpProxyHost

Job details

ID: c6e123c6-1b76-48f8-973d-63c8dab65545
Description: delete configuration parameter HttpProxyHost
Status: Running
Created: April 8, 2024 9:45:39 AM PDT
Message:
Task Name Start Time
End Time Status
------------------------------------ -------------

```

\section*{Example 17-64 Deleting processes configuration parameter}
```


odacli delete-agentconfig-parameters -t rdbms -n processes

odacli list-agentconfig-parameters -t RDBMS -n processes
No result found
Note: Parameters updated using -adbs, -dbs flags should be deleted using the
same corresponding flags.

odacli delete-agentconfig-parameters -t rdbms -n processes -dbs DBSYSTEM1

odacli delete-agentconfig-parameters -t rdbms -n processes -adbs

```

\section*{odacli update-database}

Use the odacli update-database command to update a database to a specific database home with later version, and within the same major release.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli update-database [-a] [-dp] [-f] [-i db_id] [-imp] [-l] [-n db_name] [-
ni node] [-r] [-to db_home_id] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline \multirow[t]{2}{*}{--to-home, -to} & (Optional) Specifies the destination Oracle Database Home ID. \\
\hline & The -to option is not a mandatory option if you want to apply datapatch using the odacli update-database command. The -to option is only required when you want to use the odacli update-database command to patch a specific database to a specific database home. \\
\hline --abort, -a & (Optional) Aborts the unfinished or failed patching operation. \\
\hline --name, -n & (Optional) Specifies the database name the patch. \\
\hline --ignore-missing-patch, -imp & (Optional) Ignores all missing patches and forces the operation. \\
\hline --force, -f & (Optional) Ignores precheck error and forces the operation. \\
\hline --local, -1 & (Optional) Updates the database locally. \\
\hline --node-id, -ni & (Optional) Specifies the node number to be updated. The valid values are 0 or 1 . \\
\hline --id, -i & (Optional) Specifies the database ID to be patched. \\
\hline --datapatch, -dp & (Optional) Applies only the datapatch. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--r e v e r t,-r\) & \begin{tabular}{l} 
(Optional) Reverts the unfinished or failed patching \\
operation.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}
- You must run the patching pre-checks at least once before running the odacli updatedatabase command. Analyze any failed pre-checks, fix them, and rerun pre-checks. If any of the failed pre-checks can be ignored, only then run the odacli update-database command with the \(-f\) option.
- The update-database command patches a database to a specific database home with later version, and within the same major release.
- To patch a database to a specific database home, the database must be running.
- To patch a database, it must have the status Configured. Use the odacli listdatabase command to see a list of configured databases. Patch requests for target databases in any other status are rejected during patching.
- You can patch only the database homes in the Configured status. Use the odacli list-dbhomes command to see a list of configured database homes. Patch requests for target database homes in any other status are rejected during patching.
- The --datapatch option applies the datapatch to the specific database. This option is helpful for databases that have moved to a destination database home without the datapatch. Examples of using the --datapatch option are as follows:
- When you patch the database as a standby database and then switch the database as the primary database.
- When you must apply additional or one-off data patches after patching your Oracle Database Appliance deployment.

\section*{Example 17-65 Updating an Oracle Database}

To patch a specific database to a specific database home:
```


odacli update-database -i e5b60db5-2ee9-4cfc-93ee-179302ee6ebc -to

dc98eaa9-289c-4710-a898-ca6287a07a9c

```

When the database home version is earlier than the target database version, an error is encountered:
```


odacli update-database -i c05458c7-0f1d-4260-8e62-003b3ec26d74 -to

7ef2449d-3583-47fd-a57a-6ba3fd224119
DCS-10045:Validation error encountered: Target database's version is higher
than destination dbhome, no need to patch.

```

\section*{odacli update-dbhome}

Use the odacli update-dbhome command to update a specific database home to the latest patch bundle version.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
```

odacli update-dbhome -i dbhome_id -v version [-f] [-imp] [-p] [-l] [-u
node_number] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Defines the Oracle Database Home to update. \\
\hline-- help-h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- precheck, -p & (Optional) Analyzes the patch. \\
\hline-- force, -f & \begin{tabular}{l} 
(Optional) Ignores precheck error and forces the \\
operation.
\end{tabular} \\
\hline\(--l o c a l,-1\) & (Optional) Updates the Database Home locally. \\
\hline-- node-number, -u & \begin{tabular}{l} 
(Optional) Specifies the node number to be \\
updated. The valid values are 0 or 1.
\end{tabular} \\
\hline-- version, -v & \begin{tabular}{l} 
Defines the Oracle Database Appliance version to \\
update. For example, 19.17.0.0.0.
\end{tabular} \\
\hline-- ignore-missing-patch, -imp & \begin{tabular}{l} 
(Optional) Ignores missing patch error and forces \\
the operation.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}
- You must run the patching pre-checks at least once before running the odacli updatedbhome command. Analyze any failed pre-checks, fix them, and rerun pre-checks. If any of the pre-checks fail, then run the odacli update-dbhome command with the \(-f\) option.
- The update-dbhome command applies the latest release update (RU) for Oracle Database home.
- To be updated with the latest patches, the database must be running.
- Only databases in the Configured status are updated. Use the odacli list-database command to see a list of configured databases. Databases in any other status are skipped during the update.
- When you use the --local option, you can patch in the following way. Note that you can patch the nodes in any order, for example, you can patch the instance on node1 first, and then the instance on node 0 .
- Run --local/--node 0 on node0, then --node 1 on node0.
- Or, run --local/--node 0 on node0, then-local/--node 1 on node1.
- Or, run --local/--node on either of the nodes, and then update the database home without using the --local/--node on either of the nodes.

\section*{Example 17-66 Updating an Oracle Database Home}

To apply the latest patch bundle to update an Oracle Database:
```


odacli update-dbhome -i ad6c7326-e460-411e-94df-230dedbef743 -v 19.23.0.0.0

```

\section*{odacli update-dcsadmin}

Use the odacli update-dcsadmin command to update the DCS admin for DCS components upgrade.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli update-dcsadmin -v version [-j] [-h]
    ```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline-- version, -v & Defines the Oracle Database Appliance version after update. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}

The update-dcsadmin command sets up the dcsadmin and other components. Run the update-dcsadmin command only after you update the DCS agent.

\section*{Example 17-67 Updating DCS Admin}
```


odacli update-dcsadmin -v 19.23.0.0.0

{
"jobId" : "4c238b93-e641-4f9d-9f86-93d0574dd234",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "April 8, 2024 03:11:53 AM UTC",
"resourceList" : [],
"description" : "DcsAdmin patching",
"updatedTime" : "April 8, 2024 03:11:53 AM UTC"
}

```

\section*{odacli update-dcsagent}

Use the odacli update-dcsagent command to update the agent.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli update-dcsagent -v version [-j] [-h]
    ```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--v e r s i o n,-v\) & Defines the Oracle Database Appliance version after update. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}

The update dcsagent command updates the dcs-agent to the RPM package that is located in the location and restarts the dcs-agent. After the update is applied, the agent automatically restarts. It will take a few minutes to reconnect to the dcs-agent. Wait until the agent shuts down and completes restarting before performing any tasks.

\section*{Note:}

Before updating the agent, ensure that you do not have any jobs running or pending during the update window.

\section*{Example 17-68 Updating the Agent}

To update the dcs-agent to version 19.23:
```


odacli update-dcsagent -v 19.23

{
"jobId" : "77e454d3-eb68-4130-a247-7633f8d6192b",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "April 8, 2024 14:09:24 PM CST",
"description" : "DcsAgent patching",
"updatedTime" : "April 8, 2024 14:09:24 PM CST"
}

```

\section*{odacli update-dcscomponents}

Use the odacli update-dcscomponents command to update the DCS components such as the DCS agent, CLI, and controller.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

 odacli update-dcscomponents -v version [-j] [-h]
    ```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--v e r s i o n,-v\) & Defines the Oracle Database Appliance version after update. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}

The update-dcscomponents command sets up the dcscomponents such as the DCS agent, CLI, and controller.

\section*{Example 17-69 Updating DCS Components}
```


odacli update-dcscomponents -v 19.23.0.0.0

{
"jobId" : "4c238b93-e641-4f9d-9f86-93d0574dd234",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "April 8, 2024 03:11:53 AM UTC",
"resourceList" : [],
"description" : "DcsComponents patching",
"updatedTime" : "April 8, 2024 03:11:53 AM UTC"
}

```

\section*{odacli update-registry}

Use the odacli update-registry command to update the metadata for the components that are already present in the registry. For database home and grid home, this command updates the patch information, when you apply patches manually.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli update-registry -n component [-u db_unique_name] [-f] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- component, -n & \begin{tabular}{l} 
Defines the Oracle Database Appliance component for the \\
registry update. \\
When you specify system, then the components discovered \\
include gihome, dbnode, sysinstance. When you specify \\
all, then the components discovered include dbhome, db, \\
dbstorage, asr. You can also specify the individual \\
component to be refreshed. The individual options include \\
gihome, dbnode, sysinstance, dbhome, DB, \\
dbstorage, ASR.
\end{tabular} \\
\hline\(--d b-u n i q u e-n a m e,-u\) & \begin{tabular}{l} 
(Optional) Specifies the global unique name for the database. \\
This option is only applicable for components DB or dbstorage.
\end{tabular} \\
\hline\(--f o r c e,-f\) & This option is deprecated. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Starting with Oracle Database Appliance release 19.18, the odacli update-registry command does not require the -force option for metadata refresh of a component that already exists in the registry metadata. If the metadata for the component to be updated already exists in the appliance registry metadata, then the command rediscovers the attributes from the environment and updates the system registry.
- The following attribute cannot be discovered with the odacli update-registry command:
- DB component: rmanBkupPassword, enableEEHA, isBcfgInSync, dbConsoleEnable, cpupool, dbClass, backupConfigId, cloudStorageContainer, isAutoBackupDisabled, registerOnly, entitySource, instanceOnly, dbShape, enableSEHA.
- Use the --db-unique-name, -u option to update the appliance registry metadata for a specific database or dbstorage. The odacli update-registry command then modifies only the registry metadata for the database or dbstorage associated with the database unique name. For example:
odacli update-registry -n db -u db_unique_name
odacli update-registry -n dbstorage -u db_unique_name
- The odacli update-registry command discovers and updates the metadata in the registry only for databases created using ODACLI commands or the Browser User Interace (BUI). An error is displayed when you run the odacli update-registry command to update the metadata for databases that were not created using ODACLI commands or

BUI. Hence, for database migration cases, do not use the odacli update-registry command. Instead, use the odacli register-database command. For example:
```


odacli update-registry -n db -u provdb

DCS-10131: Database 'provdb' cannot discover because metadata does not
exist

dcserr 10131

10131, Discover_New_Database_Not_Supported, "Database ''{0}'' cannot
discover because metadata does not exist."
// *Cause: The database did not support discovery of new entities.
// *Action: Use the 'odacli register-database' command.

```
- Similarly, if you run the odacli update-registry -n dbstorage command to update the metadata for databases or dbstorage that were not created using ODACLI commands or BUI, then an error is displayed. While migrating a database, if the database runs on the appliance and dbstorage also exists, but the corresponding appliance registry metadata does not exist, then you cannot run the odacli update-registry -n dbstorage command to discover the registry metadata. Instead, use the odacli create-dbstorage command.
```


odacli update-registry -n dbstorage -u newstorage

DCS-10132: Dbstorage 'newstorage' cannot discover because metadata does
not exist

dcserr 10132

10132, Discover_New_Dbstorage_Not_Supported, "Dbstorage ''{0}'' cannot
discover because metadata does not exist."
// *Cause: The database storage did not support discovery of new entities.
// *Action: Use the 'odacli create-dbstorage' command.

```
- The odacli update-registry command rediscovers only the following DCS components:
- System resources : Oracle Grid Infrastructure (gihome), Oracle Database node (dbnode), System instance (sysinstance)
- Database Home (dbhome)
- Database (db)
- Database storage (dbstorage)
- Oracle ASR (asr)

The odacli update-registry command does not rediscover any other components not mentioned in the above list.
- If a TDE database is created without using Oracle Database Appliance tooling and the registry is updated for database components, then this database is added to the DCS metadata. If the TDE Wallet Management of the database is ODA, then the TDE password of the database must be updated in the DCS metadata by modifying the database with the same option you use to change the TDE password. You can specify the same password for both the current and new TDE password to ensure that the TDE password is updated in the DCS metadata.
- A report is generated after the odacli update-registry command completes running. This report displays the values present before the command was run and the updated values. The report is saved in the location/opt/oracle/dcs/logs/discoveryReport.txt.

If the command is run again, then the new report is appended to the same file along with the timestamp of the latest run of the command.

\section*{Example 17-70 Update Registry Report}
```


odacli update-registry -n system

-----------Begin Discovery at 2023-01-24_12-06-28.0666---------------

Database Storage Discovery

DbStorage Details : Vredf

================
===
===
Parameter Name Old
Value New
Value
================
==
==
Database Unique Name
Vredf
Vredf
Name
Vredf
Vredf
State
CONFIGURED
CONFIGURED
Entity Source
null
null
Volume Name1
datvredf
datvredf
Volume Type1
Data
Data
Volume Disk Group1
data
data
Volume File System1 /u02/app/oracle/oradata/
Volume File System1 /u02/app/oracle/oradata/
Vredf
Volume Initial Size1
102400
102400
Volume Name2
orahome_sh
orahome_sh
Volume Type2
Redo
Redo
Volume Disk Group2

```
```

data
data
Volume File System2 /u01/app/
odaorahome /u01/app/
odaorahome
Volume Initial Size2
204800
204800
Volume Name3
reco
reco
Volume Type3
Reco
Reco
Volume Disk Group3
reco
reco
Volume File System3 /u03/app/
oracle/ /u03/app/
oracle/
Volume Initial Size3
3050496
3050496

```

```

DbStorage Location : Vredf

================
=====================================
====================================
DATA Destination /u02/app/oracle/oradata/
Vredf
Vredf
Database Unique Name
Vredf
Vredf
Database Id
6909f458-9bc4-5d7d-7606-
c765cd20b823 6909f458-9bc4-5d7d-7606-
c765cd20b823
Database Storage Type
Acfs
Acfs
Flash Cache Destination
null
null
Reco Destination /u03/app/oracle/
fast_recovery_area/

```

Parameter Name old

Value Value
\(=-==========\)

\(======================================1\)
/u03/app/oracle/ /u03/app/oracle/
```

fast_recovery_area/
Redo Destination /u04/app/oracle/
/u04/app/oracle/
redo/
Name
Vredf
Vredf
State
CONFIGURED
CONFIGURED

```




```

------------Begin Discovery at 2023-01-24_12-43-48.0876-----------------

Database Home : OraDB19000_home1

================

```


```

 Parameter Name Old
 Value New Value
================

```

```

==
Database Edition
EE
Database Home Location /u01/app/odaorahome/oracle/product/
19.0.0.0/dbhome_1 /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_1
Database Version
19.18.0.0.230118 19.18.0.0.230118
Entity Source
null null
Id
976643xf-6fa9-7466-
x7ws-391b6agb4d4c
5bb324e4-361e-4f76-
a40d-080f24d68faf
Name
OraDB19000_home1 OraDB19000_home1
State
CONFIGURED
CONFIGURED
Updated Time
2023-01-24
03:33:31.65
Tue Jan 24 12:43:41 UTC
2023
Unified Auditing
TRUE
TRUE

```


```

```
```

Database Home : OraDB19000_home2

================
==
===
Parameter Name Old
Value New Value
================

```


```

 Database Edition
 EE EE
Database Home Location /u01/app/odaorahome/oracle/product/
19.0.0.0/dbhome_2 /u01/app/odaorahome/oracle/product/19.0.0.0/
dbhome_2
Database Version
19.18.0.0.230118 19.18.0.0.230118
Entity Source
null null
Id
5f3595fa-3509-49a1-8507-36441e12ba46
b790a5f9-9792-421b-931a-fea341384f58
Name
OraDB19000_home2 OraDB19000_home2
State
CONFIGURED CONFIGURED
Updated Time 2023-01-24
08:21:30.65 Tue Jan 24 12:44:10 UTC
2023
Unified Auditing
TRUE TRUE

```


```

Database : oneDb

================
===
==
Parameter Name Old
Value New Value
================

```

```

=======================================
bd09-0e49f57560c6
e3c522ae-7d89-49cc-
bd3c-291cef8fb606
dbName
oneDb oneDb
State
CONFIGURED
CONFIGURED
BackupConfigId
null
null
CloudStorageContainer

```
```

null null
CpuPool
null
dbUniqueName
oneDb0
Db Character Set
AL32UTF8
DbLanguage
AMERICAN AMERICAN
DbTerritory
AMERICA AMERICA
NlsCharacterSet
AL16UTF16
AL16UTF16
DbClass
Oltp
DbConsoleEnable
false
DbDomainName
null
DbEdition
EE
DbHomeId
x7ws-391b6agb4d4c
x7ws-391b6agb4d4c
DBId
3409102472
isCdb
true
DbOnFlashStorage
null
D.bRedundancy
null
DbRole
PRIMARY
DbShape
Odb1
DbStorage
ACFS
DbTargetNodeName()
null ()
DbTargetNodeNumber()
0
pdbName
PDB1
pdbUserName
null (1)
Database Type
Si
DbVersion
19.18.0.0.230118
enableEEHA
false
enableSEHA
false
enableTDE
false

```
\begin{tabular}{llc} 
& InstanceOnly & false \\
false & isAutoBackupDisabled & true \\
true & IsBcfgInSync & null \\
null & IsFileConversionComplete & null \\
null & Level0BackupDay & null \\
null & RegisterOnly & null \\
null & RmanBkupPassword & null \\
null & TdePassword & null \\
null & TdeWalletManagement & null
\end{tabular}
=================================================================================12


\section*{odacli update-repository}

Use the odacli update-repository command to update the repository with the new Oracle Database Appliance software.

\section*{Prerequisites}

Before updating the repository, you must upload the Oracle Database Appliance software to the appliance. If the patch contains more than one zip file, then extract and concatenate the zip files before updating the repository.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To unpack and copy the patch bundle to the correct locations in the file system:
```

odacli update-repository -f filename [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--f i l e n a m e,-f\) & Defines the zip filename of patch bundle or \\
& \begin{tabular}{l} 
RDBMS clones downloaded from My Oracle \\
Support. Provide a comma-separated list of \\
absolute file paths of the end user and patch \\
bundles.
\end{tabular} \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline-- help,-h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Before updating the repository, ensure that you do not have any jobs running or pending during the update window.
- Upload the patches to dom0 on Node0. On multi-node systems, the DCS-Agent copies the patch to Node1 and updates the patch repository on both nodes.
- Starting with Oracle Database Appliance release 19.12, a new Oracle ACFS file system is created to store the Oracle Database and Oracle Grid Infrastructure clone files. The DATA disk group provides a space of 150 GB for the file system. When provisioning a system with Oracle Database Appliance release 19.12, the file system is created after Oracle Grid Infrastructure software is configured. When patching a system with Oracle Database Appliance release 19.12, the file system is created when you run the odacli updateserver command. If you run the command odacli update-repository after this file system is configured during provisioning or patching, then the odacli update-repository command fails if Oracle Clusterware is not running. The following error is displayed:
```

DCS-10626:Cannot update the repository as the Clusterware is down. Some
files need to be stored on an ACFS file system.

```

\section*{Example 17-71 Updating the Repository}

The server patch zip file is located in the /u01/tmpdir directory. The following example updates the repository with the latest server patch and then lists the job to verify that the update is successful:
```


/opt/oracle/dcs/bin/odacli update-repository -f /tmp/oda-sm-19.23.0.0.0-

date-server.zip,/tmp/oda-sm-19.23.0.0.0-date-server.zip
{
"jobId" : "d3510276-da05-447b-990e-6d30964f8f79",
"status" : "Created",
"message" : "/u01/tmpdir/oda-sm-12.2.1.1.0-171031-server.zip",
"reports" : [],
"createTimestamp" : "April 8, 2024 14:13:45 AM CST",
"description" : "Repository Update",
"updatedTime" : "April 8, 2024 14:13:45 AM CST"
}
[root@oak1 tmpdir]\# ./odacli list-jobs

odacli list-jobs

ID Description
Created Status
---------------------------- ------------------

6f27a29a-959f-44e1-b984-7473e3c918ad Server Patching April 8, 2024
14:19:05 AM CST Success

```

\section*{odacli update-server}

Use the odacli update-server command to update the operating system, firmware, Oracle Appliance Kit, Oracle Clusterware, and all other infrastructure components.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```
```

Syntax
odacli update-server [-c] -v version [-f][-ng] [-l] [-n node_number] [-j] [-
h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- version, -v & (Mandatory) Defines the version to update. \\
\hline-- component,-c & \begin{tabular}{l} 
(Optional) Component that is to be upgraded. Supported \\
value is OS.
\end{tabular} \\
\hline-- force, -f & \begin{tabular}{l} 
(Optional) Ignores precheck error and forces the patching \\
operation.
\end{tabular} \\
\hline-- local, -1 & (Optional) Updates the server on the local node. \\
\hline-- node, -n & \begin{tabular}{l} 
(Optional) Specifies the node number to be updated. The \\
valid values are 0 or 1.
\end{tabular} \\
\hline\(--j\) jon, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The update-server command applies the patches to various infrastructure components and Oracle Clusterware.

After the update is applied, the agent automatically restarts. It will take a few minutes to reconnect to the server. Wait until the agent shuts down and completes restarting before performing any tasks. Allow at least two (2) minutes before running the next command.
- You must run the patching pre-checks at least once before running the odacli updateserver command. Analyze any failed pre-checks, fix them, and rerun pre-checks. If any of the pre-checks fail, then run the odacli update-server command with the -f option.
- When you use the --local option, you can patch in the following way. Note that you can patch the nodes in any order, for example, you can patch the instance on node1 first, and then the instance on node0.
- Run --local/--node 0 on node0, then --node 1 on node0.
- Or, run --local/--node 0 on node0, then -local/--node 1 on node1.
- Or, run --local/--node on either of the nodes, and then update the server without using the --local/--node on either of the nodes.

\section*{Note:}

Before updating the server, ensure that you do not have any jobs running or pending during the update window. You must run the odacli create-prepatchreport command before you patch your server; otherwise, the odacli update-server command fails with an error message prompting you to run the patching pre-checks. You can use the -f option to override precheck failures and complete the server patching.

\section*{Example 17-72 Updating the Server}

Run the odacli update-server command to update the server to 19.23.0.0.0. On a highavailability system, run the command on one node. The patches are applied automatically to both nodes.
```


odacli update-server -v 19.23.0.0.0

{
"jobId" : "6f27a29a-959f-44e1-b984-7473e3c918ad",
"status" : "Created",
"message" : "Success of Server Update may trigger reboot of node after 4-5
minutes.
Please wait till node restart",
"reports" : [],
"createTimestamp" : "April 8, 2024 14:13:45 PM CST",
"resourceList" : [],
"description" : "Server Patching",
"updatedTime" : "April 8, 2024 14:13:45 PM CST"
}

```

\section*{odacli update-storage}

Use the odacli update-storage command to update the storage.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli update-storage -v version [-h] [-j] [-r]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- version, -v & Defines the version to update. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--r o l l i n g,-r\) & \begin{tabular}{l} 
(Optional) Enables to patch shared disks in rolling \\
fashion without stopping Oracle Clusterware. The \\
shared disks must be online.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}
- If the FIRMWAREEXPANDER Installed Version is lower than or equal to the Available Version, then you cannot use rolling mode to update the storage.
- If the FIRMWARECONTROLLER Installed Version is lower than or equal to the Available Version, then you cannot use rolling mode to update the storage.

\section*{Example 17-73 Updating the Storage}
\# odacli update-storage -v 19.23.0.0.0

\section*{odacli update-server-postcheck}

Use the odacli update-server-postcheck command to perform deployment health checks after upgrading the oeprating system from Oracle Linux 6 to Oracle Linux 7.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

 odacli update-server-postcheck -v version [-j] [-h]
    ```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- version, -v & (Required) Specifies the version to update. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline &
\end{tabular}

Use the odaadmcli orachk command to check configuration settings for Oracle Database Appliance components.

File Path
/opt/oracle/oak/bin/odaadmcli

\section*{Syntax}

To perform diagnostic checks of components:
```

odaadmcli orachk [-h]

```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline- -help, -h & (Optional) Displays help for using the command. \\
\hline \begin{tabular}{ll} 
Components such as -a, -acchk, - & (Optional) Specifies the comma-separated list of \\
applypatch, -autostop & components for which you want to collect data. Specify \\
the component to be checked in the command. For \\
example: \\
& \(\#\) odaadmcli orachk -a \\
\hline --verbose & Displays detailed message. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

The odaadmcli orachk command invokes orachk from the directory opt/ oracle. SupportTools/orachk.

\section*{Example 17-74 Running odaadmcli orachk}
```

[root@oak bin] \# ./odaadmcli orachk
INFO: 2019-09-04 16:41:26: Running orachk under /opt/oracle.SupportTools/
orachk

```

\section*{Example 17-75 Running odaadmcli orachk for a component}
```

[root@oak bin] \# ./odaadmcli orachk -a
INFO: 2019-09-19 10:45:16: Running orachk under /usr/bin/orachk
Checking ssh user equivalency settings on all nodes in cluster for root

```

\section*{Data Preserving Reprovisioning Commands}

Understand commands to upgrade the appliance using the Data Preserving Reprovisioning feature.
- odacli create-preupgradereport

Run the odacli create-preupgradereport command to create a pre-upgrade report before you upgrade the bare metal system or DB system using the Data Preserving Reprovisioning feature.
- odacli describe-preupgradereport

Run the odacli describe-preupgradereport command to view the pre-upgrade report you created when using the odacli create-preupgradereport command when you upgrade the bare metal system or DB system using the Data Preserving Reprovisioning feature.
- odacli delete-preupgradereport

Run the odacli delete-preupgradereport command to delete a pre-upgrade report you created when you upgrade the bare metal system or DB system using the Data Preserving Reprovisioning feature.
- odacli detach-node

Use the odacli detach-node command to stop Oracle Database Appliance resources, uninstall software to prepare the system for upgrade, and to keep the data on storage intact when you upgrade your Oracle Database Appliance deployment.
- odacli restore-node

Use the odacli restore-node command to reprovision nodes and resources such as Oracle Grid Infrastructure, Oracle databases, DB systems, and so on when you upgrade your Oracle Database Appliance deployment.
- odacli upgrade-dbsystem

Use the odacli upgrade-dbsystem command to upgrade the operating system on a DB system to Oracle Linux 8. Run the command on the bare metal system and not inside the DB system.

\section*{odacli create-preupgradereport}

Run the odacli create-preupgradereport command to create a pre-upgrade report before you upgrade the bare metal system or DB system using the Data Preserving Reprovisioning feature.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli create-preupgradereport [[-bm | -dbs db_system_name] [-j] | [-h]]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--\mathrm{bm},-\mathrm{bm}\) & \begin{tabular}{l} 
(Optional) Specify this option to create a pre-upgrade report for \\
the bare metal system.
\end{tabular} \\
\hline\(--\mathrm{dbsystem,-dbs}\) & \begin{tabular}{l} 
(Optional) Specify this option to create a pre-upgrade report for \\
the DB system.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Tips}

Use the odacli create-preupgradereport command to create the pre-upgrade report.

\section*{Example 17-76}
```

[root@node1 opt]\# odacli create-preupgradereport

```

\section*{odacli describe-preupgradereport}

Run the odacli describe-preupgradereport command to view the pre-upgrade report you created when using the odacli create-preupgradereport command when you upgrade the bare metal system or DB system using the Data Preserving Reprovisioning feature.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-preupgradereport [-i job_ID [-j] | [-h]]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & (Optional) Specify the pre-upgrade report ID. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Tips}

Use the odacli describe-preupgradereport command to display the pre-upgrade report.

\section*{Example 17-77}
```

[root@node1 opt]\# odacli describe-preupgradereport -i ID

```

\section*{odacli delete-preupgradereport}

Run the odacli delete-preupgradereport command to delete a pre-upgrade report you created when you upgrade the bare metal system or DB system using the Data Preserving Reprovisioning feature.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli delete-preupgradereport -i ID [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & (Optional) Specify the preupgrade report ID. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Tips}

Use the odacli delete-preupgradereport command to delete the pre-upgrade report.

\section*{Example 17-78}
[root@node1 opt]\# odacli delete-preupgradereport -i ID

\section*{odacli detach-node}

Use the odacli detach-node command to stop Oracle Database Appliance resources, uninstall software to prepare the system for upgrade, and to keep the data on storage intact when you upgrade your Oracle Database Appliance deployment.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli detach-node [-all [-f] [-j] | -h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--a l l-\) nodes, -all & (Mandatory) Detaches all nodes for the upgrade. \\
\hline-- force, -f & (Optional) Specify this option to force the operation. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-79}
[root@node1 opt]\# odacli detach-node -all

\section*{odacli restore-node}

Use the odacli restore-node command to reprovision nodes and resources such as Oracle Grid Infrastructure, Oracle databases, DB systems, and so on when you upgrade your Oracle Database Appliance deployment.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli restore-node [[-g |-d | -dbs | -kvm] [-j] | [-h]]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--g r i d,-g\) & \begin{tabular}{l} 
(Optional) Reprovisions the system with Oracle Grid \\
Infrastructure software.
\end{tabular} \\
\hline\(--d a t a b a s e,-d\) & \begin{tabular}{l} 
(Optional) Reprovisions the system with Oracle Database \\
software.
\end{tabular} \\
\hline\(--d b s y s t e m,-d b s\) & \begin{tabular}{l} 
(Optional) Reprovisions the system with Oracle DB system \\
software.
\end{tabular} \\
\hline\(--k v m,-k v m\) & (Optional) Reprovisions the system with Oracle KVM software. \\
\hline\(--s k i p-a s r,-s a\) & (Optional) Skips restore of Oracle ASR configuration. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-80}
```

[root@oak clones]\# odacli restore-node -g

```

\section*{odacli upgrade-dbsystem}

Use the odacli upgrade-dbsystem command to upgrade the operating system on a DB system to Oracle Linux 8. Run the command on the bare metal system and not inside the DB system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli upgrade-dbsystem [-n name [-j] | [-h]]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, -n & (Mandatory) Specifies the DB system name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-81}
[root@node1 opt]\# odacli upgrade-dbsystem -n name

\section*{odacli Appliance Commands}

Use the odacli appliance commands to perform lifecycle activities for the appliance.
- odacli set-credential

Use the odacli set-credential command to change the oda-admin or oda-cliadmin user credentials on a deployment where multi user access is not enabled.
- odacli create-appliance

Use the odacli create-appliance command in a JSON file format to provision Oracle Database Appliance.
- odacli describe-system

Use the odacli describe-system command to display details about components installed on the system.
- odacli ping-agent

Use the odacli ping-agent command to ping the DCS agent resource.
- odacli list-nodes

Use the odacli list-nodes command to list all nodes in the deployment.
- odacli list-featuretracking

Use the odacli list-featuretracking command to display the latest feature tracking report.

\section*{odacli set-credential}

Use the odacli set-credential command to change the oda-admin or oda-cliadmin user credentials on a deployment where multi user access is not enabled.

\section*{Syntax}

To reset the oda-admin or oda-cliadmin user credentials in interactive mode:
```

odacli set-credential --username username [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- username, -u & \begin{tabular}{l} 
User name credentials that you want to reset. The user name can be \\
oda-admin or oda-cliadmin. The oda-admin user credentials allow \\
access to the BUI and the oda-cliadmin user credentials allow \\
ODACLI to communicate with the DCS agent internally.
\end{tabular} \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

Only the root user can reset the oda-admin or oda-cliadmin user credentials.

\section*{Example 17-82 Resetting the oda-admin Password in Interactive Mode}

To reset the oda-admin user password to a new password in interactive mode:
```


odacli set-credential --username oda-admin

Enter 'user' password:
Retype 'user' password:

```

\section*{odacli create-appliance}

Use the odacli create-appliance command in a JSON file format to provision Oracle Database Appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To view help for the odacli create-appliance command:
```

odacli create-appliance -r requestjson [-j] [-h]

```

\section*{Note:}

The odacli create-appliance command only supports a JavaScript Object Notation (JSON) file format. An example JSON files and a readme are available in an appendix in this document and in the /opt/oracle/dcs/sample directory.

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- requestjson, - r & JSON input for appliance creation. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

For example JSON files, see the chapter Creating an Appliance Using a JSON File in this publication.

\section*{odacli describe-system}

Use the odacli describe-system command to display details about components installed on the system.

\section*{File Path}

SORACLE_HOME/opt/oracle/dcs/bin/odacli

\section*{Syntax}

To list jobs and view job details and status:
```

odacli describe-system [-h] [-b] [-d] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- bom, -b & \begin{tabular}{l} 
(Optional) Displays the bill of materials for the \\
installed components on the appliance.
\end{tabular} \\
\hline-- details, -d & \begin{tabular}{l} 
(Optional) Display on the command-line, the \\
details of all installed components on the \\
appliance.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

Do not provide both options -b and -d at the same time, in the command.

\section*{Example 17-83 Example Command to View the Bill of Materials from the Command Line for Bare Metal Deployments}

checkpolicy-2.0.22-1.el6.x86_64,
```

chkconfig-1.3.49.5-1.el6.x86_64,
ppl-0.15.7-1.2.el6.x86_64,
+-33-3.2.3-69.el6.x86_64,
readline5-5.2-17.1.el6.x86_64,
+-4.8.2-16.el6.x86_64,
libs-0.4.1-6.el6.x86_64,
x11-0.4.1-6.el6.x86_64,
coreutils-8.4-46.0.1.el6.x86_64,
libs-8.4-46.0.1.el6.x86_64,
cloog-
compat-libcap1-1.10-1.x86_64,
compat-libstdc+
compat-
compat-sap-c+
ConsoleKit-0.4.1-6.el6.x86_64,
ConsoleKit-
ConsoleKit-
coreutils-
cpio-2.10-13.el6.x86_64,
cpp-4.4.7-18.el6.x86_64,
cpupowerutils-1.3-2.el6.x86_64,
cpuspeed-1.5-22.0.1.el6.x86_64,
cracklib-2.8.16-4.el6.x86_64,
cracklib-
crash-7.1.4-1.0.1.el6_7.x86_64,
cronie-1.4.4-16.el6_8.2.x86_64,
cronie-
crontabs-1.10-33.el6.noarch,
cryptsetup-
cryptsetup-luks-
cups-
libs-1.4.2-78.el6_9.x86_64,

```

\section*{odacli ping-agent}

Use the odacli ping-agent command to ping the DCS agent resource.

File Path
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
odacli ping-agent [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-84}
```


odacli ping-agent

```

\section*{odacli list-nodes}

Use the odacli list-nodes command to list all nodes in the deployment.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli list-nodes [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-85}
```


odacli list-nodes

```

\section*{odacli list-featuretracking}

Use the odacli list-featuretracking command to display the latest feature tracking report.

\section*{File Path}
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

Use the odacli list-featuretracking command to display the latest feature tracking report.
```

odacli list-featuretracking [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

Example 17-86 Example Command to View the Features Report from the Command Line
```


odacli list-featuretracking

 DCS Feature Tracking Report
 Last collection date: 10/26/18 15:35
Report version: 1.0

```


```

Maximum number of Databases
1 Database
Maximum number of EE Databases
1 Database
Maximum number of SE Databases
0 Database
Maximum number of CDBs
1 Database
Maximum number of non-CDBs
0 Database
Maximum number of RAC Databases
1 Database
Maximum number of RAC One Databases
0 Database
Maximum number of Single Instance Databases
0 Database
Maximum number of PDBs
0 Database
Maximum number of Datafiles
7 Database
Maximum number of Database Homes
1 Database
Maximum number of Flashback Databases
0 Database
Maximum size of a Database 6.40
GB Database
Minimum Database version
18.0.0.0.0 Database
Maximum Database version
18.0.0.0.0 Database
Maximum number of Backups
1 2 ~ D a t a b a s e
Maximum number of NFS Backups
0 Database
Maximum number of Object Store Backups
12 Database
Maximum number of Disk Backups
0 Database
Maximum number of Regular-L0 Backups
0 Database
Maximum number of Regular-L1 Backups
1 Database
Maximum number of ArchiveLog Backups
9 Database
Maximum number of Longterm Backups
2 Database
Maximum interval between Database Backups 0 Day(s),
01:01:06 Database
Maximum number of Object Store tenants
1 Object Store
Maximum number of enabled CPU cores
12
Server
Maximum number of disks
2 4 ~ S t o r a g e
Maximum number of ASM Disks Groups
3 Storage

```
```

Maximum size of ASM Disk Groups 11.46
TB Storage
Maximum usage of ASM Disk Groups 1.70
% Storage
Maximum number of ASM Disks Groups with redundancy 'NORMAL'
0 Storage
Maximum number of ASM Disks Groups with redundancy 'HIGH'
3 Storage
Maximum number of ASM Disks Groups with redundancy 'EXTERN'
0 Storage
Maximum number of ASM Disks Groups with redundancy 'FLEX'
0 Storage
Maximum ASM Disk Groups compatibility
18.0.0.0.0 Storage
Minimum ASM Disk Groups compatibility
18.0.0.0.0 Storage
Maximum number of non-ACFS file systems
4 ~ S t o r a g e
Maximum size of non-ACFS file systems 98.31
GB Storage
Maximum usage of non-ACFS file systems 82.71
% Storage
Maximum number of ACFS file systems
1 Storage
Maximum size of ACFS file systems 5.00
GB Storage
Maximum usage of ACFS file systems 12.19
% Storage

```

\section*{odacli Backup and Recovery Commands}

Use the odacli backup and recover commands to backup to and restore from Oracle Cloud Infrastructure Object Storage or disk or NFS.
- odacli create-backup

Use the command odacli create-backup to create a Level 0 , Level 1 , archivelog, or Longterm backup.
- odacli create-backupconfig Use the command odacli create-backupconfig to create a backup configuration.
- odacli create-objectstoreswift

Use the command odacli create-objectstoreswift to create and store the Oracle credential details required to backup to Oracle Object Store.
- odacli describe-backupconfig

Use the command odacli describe-backupconfig to describe a backup configuration.
- odacli delete-backup

Use the command odacli delete-backup to delete obsolete backups and backup reports.
- odacli delete-backupconfig

Use the command odacli delete-backupconfig to delete a backup configuration.
- odacli describe-backupreport

Use the command odacli describe-backupreport to display details of a specific backup report.
- odacli describe-objectstoreswift

Use the command describe-objectstoreswift to describe a Swift ObjectStore.
- odacli delete-objectstoreswift

Use the command odacli delete-objectstoreswift to delete the credentials for the ObjectStore account.
- odacli describe-schedule

Use the command odacli describe-schedule to display details for a specific schedule.
- odacli irestore-database

Use the command odacli irestore-database to restore a database from one system to other system from an external FRA (NFS) or Object Store location based on a BackupReport.
- odacli list-backupconfigs

Use the command odacli list-backupconfigs to list all backup configurations.
- odacli list-backupreports

Use the command odacli list-backupreports to display a list of all backup reports.
- odacli list-objectstoreswifts

Use the command odacli list-objectstoreswifts to display a list of credentials for the ObjectStore account.
- odacli list-schedules

Use the command odacli list-schedules to display all of the schedules in the system, including database backup schedules and some internal maintenance schedules.
- odacli list-tdebackupreports

Use the odacli list-tdebackupreports command to view TDE Wallet backup
reports.
- odacli recover-database

Use the odacli recover-database command to recover or restore a database from backup.
- odacli restore-archivelog

Use the odacli restore-archivelog command to restore archivelog from one SCN to another SCN, or from one timestamp to another timestamp.
- odacli restore-tdewallet

Use the odacli restore-tdewallet command to restore TDE wallet from the backup location.
- odacli modify-backupconfig

Use the command odacli modify-backupconfig to update a backup configuration.
- odacli modify-objectstoreswift

Use the command odacli modify-objectstoreswift to change the credentials for the ObjectStore account.
- odacli modify-schedule

Use the command odacli modify-schedule to update the schedule for a database, or to disable the database backup schedule.

\section*{odacli create-backup}

Use the command odacli create-backup to create a Level 0, Level 1, archivelog, or Longterm backup.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
odacli create-backup [-i Database Resource ID | -n Database Resource Name] [-h] [-j]

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --backupType, -bt \{Regular-L0|Regular-L1| Longterm|archivelog\} & Defines the type of backup. The options are not case sensitive. \\
\hline --component, -c \{Database|TDEWallet \} & (Optional) Defines the component. The supported options are Database and TDE Wallet. The options are not case-sensitive. The default value is Database. If you specify the value as Database, then a backup of both the database and TDE Wallet is taken. \\
\hline --name, -n & Defines the database name. \\
\hline --id, -i & Defines the Database Resource ID. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --json, -j & (Optional) Displays JSON output. \\
\hline --keep-archivelog, -ka & Keeps archive logs. \\
\hline --keepDays, -k & Defines the Keep Days. For Longterm Backup Type only. \\
\hline --tag, -t & Defines the name of the backup. A tag is alphanumeric, up to 30 characters. Required for Longterm Backup Type. The tag must be wrapped in single quotes when special characters are used. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the command odacli create-backup for a specified Database Resource ID and provide a tag for the backup name. Use up to 30 alphanumeric characters for the backup name tag. Three types of backups are available:
- Level 0: An RMAN incremental backup that backs up all data blocks in the data files being backed up. An incremental backup at level 0 is identical in content to a full backup, but unlike a full backup, the level 0 backup is part of an incremental backup strategy.
- Level 1: An RMAN incremental backup that includes only those blocks that have been changed since the "parent" backup was taken. A parent backup can be either a level 0 or a level 1 backup.
- Longterm: Longterm backups are available when backing up to NFS (External FRA) or Oracle Cloud Infrastructure Object Storage (Oracle Object Storage).
- Archivelog: This option is used to perform backup of all archivelogs not yet backed up to the backup destination, such as Internal FRA, External FRA (NFS location), or Object Store.
- The Backup Type must be specified in most cases, when you run the odacli createbackup command. If the Backup Component is TDE Wallet, then you need not specify the Backup Type.
- This command creates a Backup Report with a Resource ID. To get the ID, use the command odacli describe-job -i job_id -j and look for the resourceId attribute in resourceList.

\section*{Example 17-87 Create a Manual Database Backup}

Create a long term backup that is kept for 90 days and named q12018HR.
```

 # odacli create-backup -i Database Resource ID -bt Longterm -c database -k
 90 -t q12018HR

```

\section*{Example 17-88 Create a Level 0 Database Backup}

Create a Level 0 backup named 2017Dec22ProductionLevel0 for resource ID 20576eb1-bc32-4e34-bf97-fda0b60ca15b
```


odacli create-backup -i 20576eb1-bc32-4e34-bf97-fda0b60ca15b -bt Regular-L0

```
-t 2017Dec22ProductionLevel0

\section*{Example 17-89 Create a Backup of only the TDE Wallet}
```


odacli create-backup -n testdb -c TDEWallet

```

\section*{Example 17-90 Create a Backup of the database and TDE Wallet}
```


odacli create-backup -n testdb -bt regular-10

```

\section*{odacli create-backupconfig}

Use the command odacli create-backupconfig to create a backup configuration.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

 odacli create-backupconfig -n backup configuration name -d backup
 destination{Disk|ObjectStore|NFS|None} [-c] [-cr] [-h] [-j] [-no-cr] [-o] [-
w] [-f] [-ca] [-dc] [-ec] [-on]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --backupdestination, -d \{Disk| ObjectStore|NFS|None\} & Defines the backup destination. The options are not case sensitive. \\
\hline --container, -c & (Optional) Defines the object store container. \\
\hline --crosscheck, -cr & (Optional) Enable crosscheck. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --json, -j & (Optional) Displays JSON output. The default is false. \\
\hline --name, -n & Defines the backup configuration name. \\
\hline --no-crosscheck, -no-cr & (Optional) Disable crosscheck. \\
\hline --objectstoreswiftId, -o & (Optional) Defines the swift object store credential ID. \\
\hline --tde-container, -f & (Optional) Defines the container or backup location to backup the TDE Wallet. Must be the absolute path to the parent directory when the backup target is NFS, and must be the container name when the backup target is Objectstore. \\
\hline --recoverywindow, -wDisk: \{1-14\} | ObjectStore: \{1-31\} & (Optional) Defines the Recovery Window in days. \{1-14\} days for Disk and \{1-31\} days for Object Storage in the cloud. \\
\hline --compression-algo, -ca & (Optional) Defines the compression algorithm \{basic|low|medium|high\} that RMAN must use. (default: basic (disk/NFS), medium(ObjectStore)) \\
\hline --disable-compression, -dc & (Optional) Disables compression for the backups. Compression is enabled by default. \\
\hline --enable-compression, -ec & (Optional) Enables compression for the backups. Compression is enabled by default. \\
\hline --objectstoreswiftName, -on & (Optional) Defines the Objectstore Swift resource name. Specify the Objectstore Swift resource name or Objectstore Swift ID. \\
\hline
\end{tabular}

\section*{Usage Notes}
- To backup a TDE-enabled database, backup configuration with separate TDE Wallet backup location and Database backup location is mandatory.
- To backup a non-TDE database, backup configuration with either single database backup location or backup configuration with both database backup location and TDE Wallet backup location can be used
- For Disk backup configuration, TDE Wallet backup location is by default, Fast Recovery Area (FRA), but in a separate path from the Database backup path within FRA. Hence, TDE Wallet backup location need not be specified when creating the Disk backup configuration.
- The recovery window that is defined in the backup configuration determines when backups are considered obsolete. The following are guidelines:
- Disk: 1-14 days
- Object Storage: 1-31 days

\section*{Example 17-91 Create a Backup Configuration for disk}

Create a backup configuration named production that backs up to disk with a 14 day recovery window.
\# odacli create-backupconfig -d Disk -n production -w 14

\section*{Example 17-92 Create a Backup Configuration for NFS location}

Create a backup configuration that backs up to NFS with a 2 day recovery window.
```


odacli create-backupconfig -d NFS -n NfsPolicy1 -c /tmp/Nfsbackps -w 2

```

Example 17-93 Create a Backup Configuration with separate backup locations for database backup and TDE Wallet backup
```


odacli create-backupconfig -n bcfg1 -d Objectstore -w 1 -c location1-on

oss1 -f location2

```

Example 17-94 Create a Backup Configuration with single backup location for database backup
\# odacli create-backupconfig -n bcfg2 -d Objectstore -w 1 -c testb2 -on oss2

\section*{odacli create-objectstoreswift}

Use the command odacli create-objectstoreswift to create and store the Oracle credential details required to backup to Oracle Object Store.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```


odacli create-objectstoreswift -e swift end point URL [-h] [-j] -n Object

```
Store Swift name -t Object Store tenant name -u Object Store user name

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- endpointurl, -e & Defines the swift end point URL. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline-- name, -n & Defines the Object Store Swift name. \\
\hline-- tenantname, -t & Defines the Object Store Swift tenant name. \\
\hline-- username, -u & Defines the Object Store Swift user name. \\
\hline
\end{tabular}

\section*{Usage Notes}

The command creates and stores the Oracle Cloud Infrastructure Object Storage credential details in the system and stores the password in an encrypted Oracle wallet. You can attach the credentials to one or more backup configurations.

The credentials are validated during Object Store backup configuration creation against the endpoint URL and tenancy.

\section*{odacli describe-backupconfig}

Use the command odacli describe-backupconfig to describe a backup configuration.
File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

 odacli describe-backupconfig [-i backup_configuration_id] [-n name] [-h]
 [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Specifies the backup configuration identifier (ID). \\
\hline-- name, \(-n\) & Specifies the backup configuration name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-95 Describing a Backup Configuration}

Describe a backup configuration named production
\# odacli describe-backupconfig -n production

\section*{odacli delete-backup}

Use the command odacli delete-backup to delete obsolete backups and backup reports.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli delete-backup -i Database Resource ID -n name [-br] [-h] [-j]
    ```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline-- backupreport, -br & \begin{tabular}{l} 
(Optional) Defines the backup report. To delete a \\
Long Term backup, use a JSON input file for the \\
backupreport.
\end{tabular} \\
\hline\(--i d,-i\) & \begin{tabular}{l} 
Defines the Database Resource Identifier (ID). To \\
delete obsolete level 0, level 1 and archivelog \\
backups and backup reports, use the database \\
resource ID.
\end{tabular} \\
\hline-- name, -n & Defines the Database resource name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}
- Delete older, obsolete level 0 and level 1, archive log backups and backup reports with the Database Resource ID. The recovery window that is defined in the backup configuration determines when backups are considered obsolete.
- Delete long term backups and backup report from Oracle Object Storage or NFS backup location using a JSON file with the --backupreport option.
- To locate the database ID, view the databases in the Browser User Interface or use the command odacli list-databases.

\section*{Example 17-96 Delete a Level 0 or Level 1 Backup}
```


odacli delete-backup -i 20576eb1-bc32-4e34-bf97-fda0b60ca15b

```

\section*{Example 17-97 Delete a Long Term Backup Report}

Delete a Long Term backup using a JSON input file for the Backup Report. In this example, backupreport.json is the JSON input for the backupreport.
```


odacli delete-backup -i 20576eb1-bc32-4e34-bf97-fda0b60ca15b -br

backupreport.json

```

\section*{odacli delete-backupconfig}

Use the command odacli delete-backupconfig to delete a backup configuration.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli delete-backupconfig -n name -i backup configuration id [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--i d,-i\) & Defines the Backup Config identifier (ID). \\
\hline-- name, -n & Defines the Backup Config name. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

You cannot delete a backup configuration if it is attached to a database.

\section*{Example 17-98 Deleting a Backup Configuration}

Delete a backup configuration named production
\# odacli delete-backupconfig -n production

\section*{odacli describe-backupreport}

Use the command odacli describe-backupreport to display details of a specific backup report.

File Path
\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

\section*{Syntax}
odacli describe-backupreport [-h] [-j] [-i]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline\(--i d,-i\) & Defines the backup report ID. \\
\hline
\end{tabular}

\section*{Example 17-99 Display Details of a Specific Backup Report}
```


odacli describe-backupreport -i 2d82460c-d648-4e75-8c7d-72cc90bc442a

{
"id" : "2d82460c-d648-4e75-8c7d-72cc90bc442a",
"dbResId" : "b5fc646e-01a6-4c8b-8286-7633346c4329",
"tag" : null,
"dbId" : "2717054291",
"dbName" : "ExampleDB",
"dbUniqueName" : "ExampleDBu",
"backupType" : "REGULAR-L1",

```
```

 "keepDays" : null,
 "backupLocation" : "https://swiftobjectstorage.example.com/v1/dbaasimage/
 backupbucket",
"cfBackupHandle" : "c-2717054291-20180108-04",
"spfBackupHandle" : "c-2717054291-20180108-04",
"pitrTimeStamp" : "January 08, 2018 12:43:14 PM UTC",
"pitrSCN" : "1175058",
"resetLogsTimeStamp" : "January 08, 2018 09:55:34 AM UTC",
"resetLogsSCN" : "1112268",
"oraHomeVersion" : "12.2.0.1.170814 (26723265, 26609817)",
"sqlPatches" : "25811364,26609817",
"backupLogLoc" : "https://swiftobjectstorage.example.com/v1/dbaasimage/
backupbucket/scaoda702c1n1/rmanlog/ExampleDBu/2717054291/2018-01-08/
rman_backup_2018-01-08_12-42-41.0545.log",
"tdeWalletLoc" : null,
"dbConfigLoc" : "https://swiftobjectstorage.example.com/v1/dbaasimage/
backupbucket/scaoda702c1n1/dbconfig/ExampleDBu/2717054291/2018-01-08/
DBCONFIG_TAG20180108T124407_2018-01-08_12-44-07.0533.tar.gz",
"name" : "Backup_Report_ExampleDB",
"createTime" : "January 08, 2018 12:42:08 PM UTC",
"state" : {
"status" : "CONFIGURED"
},
"updatedTime" : "January 08, 2018 12:44:12 PM UTC",
"backupReportLogDetail" : "https://swiftobjectstorage.example.com/v1/
dbaasimage/backupbucket/scaoda702c1n1/rmandetaillogreport/ExampleDBu/
2717054291/2018-01-08/rman_list_backup_detail_2018-01-08_12-44-04.0362.log",
"dbInfo" : {
"dbClass" : "OLTP",
"dbType" : "RAC",
"dbShape" : "odb1",
"dbEdition" : "EE",
"dbStorage" : "ASM"
},
"dbDataSize" : "1542M",
"dbRedoSize" : "16403M"
}

```

\section*{odacli describe-objectstoreswift}

Use the command describe-objectstoreswift to describe a Swift ObjectStore.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli describe-objectstoreswift -i Object Store_Swift_id -n Object Store_Swift_name [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Specifies the Object Store Swift identifier (ID). \\
\hline-- name, -n & Specifies the Object Store Swift name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-100 Describing the Swift Object Store}
```


odacli describe-objectstoreswift -i Object Store Swift id

```

\section*{odacli delete-objectstoreswift}

Use the command odacli delete-objectstoreswift to delete the credentials for the ObjectStore account.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli delete-objectstoreswift -i Object Store Swift id -n Object Store Swift name [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline\(--i d,-i\) & Defines the Object Store Swift identifier (ID). \\
\hline-- name, -n & Defines the Object Store Swift name. \\
\hline
\end{tabular}

\section*{Usage Notes}

You cannot delete the Object Store credentials if they are attached to a backup configuration.

\section*{Example 17-101 Deleting the Oracle Object Store Credentials}
```


odacli delete-objectstoreswift -i Object Store Swift id

```

\section*{odacli describe-schedule}

Use the command odacli describe-schedule to display details for a specific schedule.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli describe-schedule [-h] [-j] [-i]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline\(--i d,-i\) & Defines the schedule with an identifier (ID). \\
\hline
\end{tabular}

\section*{Example 17-102 Display Schedule Details}
```


odacli describe-schedule -i scheduleid

```

\section*{odacli irestore-database}

Use the command odacli irestore-database to restore a database from one system to other system from an external FRA (NFS) or Object Store location based on a BackupReport.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli irestore-database -r [-g] [-th] [-n] [-bp] [-cl] [-nn] [-co] [-s] [-
 ro] [-dr] [-y] [-c] [-oid] [-tf] [-bl] [-t] [-tl] [-cp] [-dh] [-dn] [-de] [-
f] [-rd] [-on] [-ha|-no-ha] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--b a c k u p P a s s w o r d(s),-\) bp & \begin{tabular}{l} 
(Optional) Defines the RMAN password for recovery. You can \\
provide more than one password, but the passwords must be \\
separated by a comma(,).
\end{tabular} \\
\(--b a c k u p R e p o r t,-r\) & JSON input for a backup report. \\
\(--d b C l a s s,-c l ~\{E E: O L T P / D S S / I M D B, ~ S E: ~ O L T P\}\) & (Optional) Defines the Database class. \\
\(--d b C o n s o l e E n a b l e,-c o\) & (Optional) Enables the Database Console. \\
\(--d b S h a p e,-s\{o d b 1, o d b 2\), and so on \(\}\) & (Optional) Defines the database shape.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --dbStorage, -dr \{ACFS|ASM & (Optional) Defines the database storage. Database Storage \{ACFS|ASM\} (non case-sensitive). The default is ASM. \\
\hline --dbType, -y & (Optional) Defines the type of database. For high-availability deployments, the values can be RAC|RACOne|SI, with the default as RAC. For single-node deployments, the value is SI . \\
\hline --dbEdition, -de & (Optional) Defines the Database Edition (SE or EE). \\
\hline --databaseHome, -dh & (Optional) Defines the database home. \\
\hline --dbName, -n & (Optional) Defines the database name. \\
\hline --dbUniqueName, -u & (Optional) Defines the database unique name. \\
\hline --dbDomainName, -dn & Defines the database domain name. \\
\hline --dbrole, -ro & Defines the database role for Oracle Data Guard operations. The options are PRIMARY|STANDBY. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --json, -j & (Optional) Displays JSON output. The default is false. \\
\hline --targethost, -th & (Optional) Specifies the target host name (applicable only for Oracle RAC One Node Database and single-instance Oracle Database, where supported). This option is available for Oracle Database Appliance high-availability deployments. \\
\hline --targetnode, -g & (Optional) Specifies the target node number (applicable only for Oracle RAC One Node Database and single-instance Oracle Database, where supported). The values are 0 or 1. This option is available for Oracle Database Appliance highavailability deployments. \\
\hline --enable-tde, -t & (Optional) Specifies whether you want to enable TDE on the target database. \\
\hline --tde-backup-location, -tl & (Optional) Specifies the backup location for TDE wallet. \\
\hline --no0fRmanChannels, -c & (Optional) Defines the number of RMAN channels (parallelism) Default: SE Edition: 1, Other Enterprise Editions: 5 \\
\hline --objectStoreId, -oid & Defines the Swift Object Store credential ID. \\
\hline --objectStoreName, -on & Defines the Swift Object Store resource name. \\
\hline --backuplocation, -bl & (Optional) Specifies the NFS or local directory path where backups are available. \\
\hline --dbRedundancy, -rd & \begin{tabular}{l}
Specifies the database redundancy value, that is, \(\{\mathrm{HIGH} \mid\) MIRROR \}. To specify the dbRedundancy option for an Oracle ASM or ACFS storage-based database, at least one disk group of FLEX redundancy must exist. To specify the dbRedundancy option for an Oracle ASM storage database, the dbVersion or dbHomeVersion must be 12.2 or later. \\
The precedence logic for setting the dbRedundancy is: \\
1. dbRedundancy that is specified in the irestoredatabase command. \\
2. dbRedundancy in the backup report. \\
3. If the disk group redundancy is FLEX, then the default dbRedundancy value is MIRROR.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- associated-networks, -nn & \begin{tabular}{l} 
Specifies the associated network names (in the format \\
networkName1, networkName2,...).
\end{tabular} \\
\hline\(--d b O n F l a s h S t o r a g e,-f\) & (Optional) Specifies whether to enable data on Flash storage. \\
\hline-- no-dbOnFlashStorage, -no-f & \begin{tabular}{l} 
(Optional) Specifies whether to disable data on Flash \\
storage.
\end{tabular} \\
\hline-- disable-ha, -no-ha & \begin{tabular}{l} 
(Optional) Disables High Availability for single-instance \\
Oracle Database 19c and later.
\end{tabular} \\
\hline-- enable-ha, -ha & \begin{tabular}{l} 
(Optional) Enables High Availability for single-instance Oracle \\
Database 19c and later.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

\section*{Caution:}

When you create a database with Transparent Data Encryption (TDE) enabled, you are prompted to set a password for the TDE wallet. Provide a strong password for security compliance. Set the password carefully, and ensure that this password is available to you at all times for database management operations. Failure to provide the TDE wallet password when prompted, will cause an error in accessing encrypted data.
- The command odacli irestore-database restores a database to a system using the Backup Report that is in the Oracle Object Store or External FRA (NFS) location. You can restore a database from one appliance to another appliance, or to the same appliance after the source database is deleted.
- An Oracle wallet (ObjectStoreSwift credentials) must be created to access the backups in Oracle Object Store. This command performs the environment checks, validation checks, and tasks needed to restore a database to an Oracle Database Appliance system.
- If -cp parameter is provided as part of the command, the database is associated with the particular CPU pool.
- If -cp parameter is not provided as part of the command, and if the backup report has information about the associated CPU pool, then the command validates the CPU pool specified in the backup report. If the validation fails, then an error message is displayed.
- If the backup report does not have information about any associated CPU pool, then the database is created without being associated with any CPU pool.
- To restore a TDE-enabled database, the TDE wallet password must be provided.
- If source database is TDE enabled, then the target database which was restored will also have TDE enabled.
- Specify the TDE wallet location if the backup report does not have TDE wallet location or if the backup report is inaccessible or unavailable.

\section*{Example 17-103 Restoring a Database to the Same System}

Run the command odacli irestore-database with the backup report. Enter the SYS user password when prompted.
```


odacli irestore-database -r backupreport.json -oid Object Store ID

```

\section*{Example 17-104 Restoring a Database to a Different System}

To restore to a different system, copy the backup report to the other machine's \(\backslash\) bin folder (or provide the complete path to the backup report), then run the command odacli irestoredatabase with the backup report. Enter the SYS user password when prompted.
```


odacli irestore-database -r backupreport.json -oid Object Store ID

```

\section*{Example 17-105 Restoring a Database with TDE Wallet backup from a backup report}
```


odacli irestore-database -r backupreport.json -on oss1 -t

Enter SYS user password:
Retype SYS user password:
Enter TDE wallet password:

```

\section*{Example 17-106 Restoring a Database with TDE Wallet backup specified on the CLI}
```


odacli irestore-database -r backupreport.json -tl https://

swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1/paas_test/tde_Backups/
test2-c/database/91276171/tdbacf2/tdewallet/ewallet_2020021714442745.p12 -on
oss2 -p -m
Enter SYS user password:
Retype SYS user password:
Enter TDE wallet password:

```

\section*{Example 17-107 Restoring to a standby database when Oracle Data Guard is configured}
```


odacli irestore-database -r backup_report.json -u dbUniqueName -ro STANDBY

```

\section*{Example 17-108 Recovering a Database that was associated with a CPU Pool}
```


odacli irestore-database -n irmendb3 -r dbcpupllong.json -on ostore -bp -dh

45156cc5-e768-4817-8b52-2a0a482be18f
Enter SYS user password:
Retype SYS user password:
Enter RMAN backup encryption password:
Do you want to provide another RMAN backup encryption password? [y/n]
(default 'n'): n
{
"jobId" : "31af6cc8-5e04-459b-8017-271c55b8c99b",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "August 10, 2020 11:20:08 AM UTC",
"resourceList" : [],

```
```

 "description" : "Database service recovery with db name: irmendb3",
 "updatedTime" : "August 10, 2020 11:20:08 AM UTC"
 }

```

\section*{odacli list-backupconfigs}

Use the command odacli list-backupconfigs to list all backup configurations.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli list-backupconfigs [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-109 Displaying a List of Backup Configuration}

Display a list of backup configurations.
```


odacli list-backupconfigs

```

\section*{odacli list-backupreports}

Use the command odacli list-backupreports to display a list of all backup reports.
File Path
\$ORACLE_HOME/opt/oracle/dcs/bin/odacli
Syntax
\# odacli list-backupreports [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

Displays a list of all database backup reports generated from the command odacli createbackup.

\section*{Example 17-110 Display a List of all Backup Reports}
```


odacli list-backupreports

```

\section*{odacli list-objectstoreswifts}

Use the command odacli list-objectstoreswifts to display a list of credentials for the ObjectStore account.

File Path
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli list-objectstoreswifts [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-111 Displaying a List of ObjectStore Swift Credentials}
\# odacli list-objectstoreswifts

\section*{odacli list-schedules}

Use the command odacli list-schedules to display all of the schedules in the system, including database backup schedules and some internal maintenance schedules.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
\# odacli list-schedules [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is \\
& false. \\
\hline
\end{tabular}

\section*{Usage Notes}

The command lists all of the schedules in the system, including database backup schedules and some internal maintenance schedules.

Starting with Oracle Database Appliance release 19.16, DCS software provides a cron job for cleaning up SSH equivalence that was set up by DCS. The SSH cleaner job runs every 30 minutes. If the SSH cleaner job finds that there are currently no DCS jobs which use SSH, then it cleans up SSH keys, and removes passwordless SSH equivalence across the Oracle Database Appliance nodes on high-availability systems. It also deletes any SSH keys (id_rsa and id_rsa.pub) present in the /root/.ssh and /home/operating_system_user/.ssh directories. The SSH cleaner job ensures that DCS jobs are thread safe because jobs (threads) do not interleave while operating on shared resources, such as SSH. To retain the SSH equivalence, or the SSH keys, you can disable the SSH cleaner job job using the odacli modify-schedule command.

\section*{Example 17-112 Display a List of Scheduled Database Backups}

Display a list of all scheduled database backups and details.
```


odacli list-schedules

```


\section*{odacli list-tdebackupreports}

Use the odacli list-tdebackupreports command to view TDE Wallet backup reports.

\section*{File Path}

\section*{Syntax}
```

odacli list-tdebackupreports [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

The TDE backup report saves the latest TDE Wallet backup location of a TDE-enabled database, when a database backup or a TDE Wallet backup is taken for that database.
Example 17-113 Viewing the TDE backup report
```


odacli list-tdebackupreports

DbResID OraDbId
BackupLocation
-- -------------------------
--
49772c1b-e4e4-401b-a5f0-16c7992d6766 1080131389 https://
swiftobjectstorage.us-ashburn-1.oraclecloud.com/v1/paastest/
TestLtBackupFailur/test2-c/database/1080131389/tddb3/tdewallet/
ewallet_2020053120350968.p12
f1043fa4-b1ee-461b-84d6-8541e4f6f053 1052183392 /u01/NFS_TDE/
orabackups/test2-c/database/1052183392/tddb4/tdewallet/
ewallet_2020060102471941.p12
944a5613-2a1f-41fb-b7b1-91d35e3e8530 1002460890 /u03/app/oracle/
fast_recovery_area/TDDB5/tdewallet/ewallet_2020060103125231.

```

\section*{odacli recover-database}

Use the odacli recover-database command to recover or restore a database from backup.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli recover-database [-i] [-br] [-h] [-j] [-r] [-t] [-p] [-s] [-n] [-
 tp] [-tl] [-tz] [-cp]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- backupReport, -br\{Regular-L0|Regular-L1|Longterm\} & (Optional) JSON input for a backup report. \\
\hline-- name, -n & Defines the database name. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- id, - i & Defines the Database Resource ID. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- json, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline-- tde-backup-location, -tl & \begin{tabular}{l} 
(Optional) Specifies the backup location for TDE wallet. If not \\
specified, the latest known TDE backup location is used.
\end{tabular} \\
\hline-- recoveryTimeStamp, \(-r\) & \begin{tabular}{l} 
(Optional) Defines the date and time of the backup. The \\
Recovery Timestamp (in format mm/dd/yyyy hh:mm:ss) is \\
required when the recovery is a point in time recovery
\end{tabular} \\
& (PITR). \\
\hline\(--r e c o v e r y t y p e, ~-t ~\{\) Latest|PITR|SCN\} & \begin{tabular}{l} 
(Optional) Defines the recovery type. Do not provide the \\
recovery type if you define the Backup Report.
\end{tabular} \\
\hline-- rmanrecoverypassword (s), -p & \begin{tabular}{l} 
(Optional) Defines the password for recovery. You can \\
provide more than one password, but the passwords must be \\
within single quote separated by comma(,).
\end{tabular} \\
\hline (Optional) Defines the SCN recovery type. Required when \\
the RecoveryType is SCN.
\end{tabular}

\section*{Usage Notes}

Recovers a database to the latest, a point in time recovery (PITR), or System Change Number (SCN) as input. You can also recover a database from a Backup Report provided as JSON input file.

This command performs various environment and validation checks in order to attempt to ensure that recovery of database is successful. If non-TDE database backups are in ObjectStore, the RMAN recovery passwords are needed to recover the database. This includes RMAN restore and recovery.

This command always performs a full RMAN database restore and recovery. This command is most useful when there is a complete database loss or when the majority of the database files are lost. If you do not require a full RMAN restore, you can perform a manual recovery. For example, a single data file loss or control file loss.
- If -cp parameter is provided as part of the command, recovered database is associated with the particular CPU pool.
- If -cp parameter is not provided as part of the command, and if the backup report has information about the associated CPU pool, then the recovered database is also associated with the same CPU pool.
- If the original database does not have any associated CPU pool, then the recovered database is also not associated with any CPU pool.

\section*{Example 17-114 Recovering a Database to a Point-in-Time}
```


odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -t PITR -r

11/08/2017 12:57:33 -p

```

\section*{Example 17-115 Recovering a Database to the latest}
```


odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -t Latest -p

```

\section*{Example 17-116 Recovering a Database to an SCN}
```


odacli recover-database -i b5fc646e-01a6-4c8b-8286-7633346c4 -t SCN -s

392375947

```

\section*{Example 17-117 Restoring the TDE Wallet while performing database recovery, if TDE wallets are lost}
```


odacli recover-database -n db1 -t latest -tp -tl /u01/NFS_TDE/testbackups/

test2-c/database/91276171/tdbacf2/tdewallet/ewallet_2020021714442745.p12
Enter TDE wallet password:

```

Example 17-118 Recovering a Database that was associated with a CPU Pool
```


odacli recover-database -t latest -n irmendb4 -cp testcpupool3

{
"jobId" : "b09f2d3f-2b01-4dbb-9797-122ba786e0e4",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "May 10, 2023 14:56:57 PM UTC",
"resourceList" : [],
"description" : "Create recovery-latest for db : irmendb4",
"updatedTime" : "May 10, 2023 14:56:57 PM UTC"
}

```

\section*{odacli restore-archivelog}

Use the odacli restore-archivelog command to restore archivelog from one SCN to another SCN, or from one timestamp to another timestamp.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
odacli restore-archivelog -n database_name -i DB_ID -fs from_scn -ts to_scn -ft from_timestamp -tt to_timestamp [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, -n & Specifies the Database Name. \\
\hline\(--i d,-i\) & (Optional) Specifies the Database resource ID. \\
\hline\(--\mathrm{from-scn},-\mathrm{fs}\) & (Optional) Specifies the start SCN of archivelog restore.
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- from-timestamp, -ft & \begin{tabular}{l} 
(Optional) Specifies the start time of archivelog restore (in \\
the format \(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy}\) hh:mi:ss).
\end{tabular} \\
\hline-- to-scn, -ts & (Optional) Specifies the end SCN of archivelog restore. \\
\hline-- to-timestamp, -tt & \begin{tabular}{l} 
(Optional) Specifies the end time of archivelog restore (in the \\
format mm/dd/yyyy hh:mi:ss).
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

You can restore archivelog for all supported database versions and database types for an Oracle Database Appliance release.

\section*{Example 17-119 Restoring archivelog}
\# odacli restore-archivelog -fs from_scn -ts to_scn
\# odacli restore-archivelog -ft from_timestamp -tt to_timestamp

\section*{odacli restore-tdewallet}

Use the odacli restore-tdewallet command to restore TDE wallet from the backup location.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli restore-tdewallet [-i] [-n] [-tl] [-h] [-j]
    ```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, -n & Specifies the Database Name. \\
\hline\(--\mathrm{id},-\mathrm{i}\) & Specifies the Database ID. \\
\hline-- tde-backup-location, -tl & (Optional) Specifies the backup location for TDE wallet. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline
\end{tabular}

\section*{Usage Notes}

\section*{Caution:}

When you create a database with Transparent Data Encryption (TDE) enabled, you are prompted to set a password for the TDE wallet. Provide a strong password for security compliance. Set the password carefully, and ensure that this password is available to you at all times for database management operations. Failure to provide the TDE wallet password when prompted, will cause an error in accessing encrypted data.
- This command prompts for TDE wallet password. When prompted, enter the password of the TDE wallet. This password is the one you created or last updated using the modifydatabase command.
- TDE Wallet backup location is optional. If no TDE Wallet backup location is provided, then the latest TDE Wallet backup of the database known to the system is used for restoring the TDE Wallet.

Example 17-120 Restoring TDE wallet for a database from a backup location
```


odacli restore-tdewallet -n testdb -tl /u01/NFS_TDE/testbackups/test2-c/

database/91276171/tdbacf2/tdewallet/ewallet_20200211714442745.p12
Enter TDE wallet password:

```

\section*{odacli modify-backupconfig}

Use the command odacli modify-backupconfig to update a backup configuration.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

 odacli modify-backupconfig [-i] [-n] [-ca] -d backup destination{Disk|
 ObjectStore|None} [-c] [-cr][-no-cr] [-dc] [-ec] [-o][-w] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Defines the Backup Config ID. \\
-- name, -n & Defines the Backup Config name. \\
-- backupdestination, -d\{Disk|ObjectStore \(\mid\) & \begin{tabular}{l} 
Defines the backup destination. The options are \\
not case sensitive. Applicable to System type \\
bone \(\}\)
\end{tabular} \\
\hline backup config.
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- container, -c & \begin{tabular}{l} 
(Optional) Defines the object store container or \\
absolute path to the parent directory of NFS \\
destination for backups.
\end{tabular} \\
\hline-- crosscheck, -cr & \begin{tabular}{l} 
(Optional) Enable Crosscheck. Applicable to \\
Database type backup config.
\end{tabular} \\
\hline-- name, -n & Defines the backup configuration name. \\
\hline-- no-crosscheck, -no-cr & (Optional) Disable crosscheck. \\
\hline-- objectstoreswiftid, -o & (Optional) Defines the swift object store credential \\
& ID. \\
\hline-- recoverywindow, -w & (Optional) Defines the Recovery Window in days. \\
Disk: \{1-14\} & \{1-14\} days for Disk and \{1-30\} days for Object \\
ObjectStore: \(\{1-30\}\) & store. Applicable to Database type backup config. \\
\hline-- disable-compression, -dc & (Optional) Disables compression for the backups. \\
\hline\(--e n a b l e-c o m p r e s s i o n, ~-e c ~\) & (Optional) Enables compression for the backups. \\
\hline-- objectstoreswiftname, -on & \begin{tabular}{l} 
(Optional) Describes the Swift Object Store \\
credential name.
\end{tabular} \\
\hline- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, -j & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}
- The recovery window that is defined in the backup configuration determines when backups are considered obsolete. The following are guidelines:
- Disk: 1-14 days
- ObjectStore in Casper: 1-30 days

\section*{Example 17-121 Revise a Backup Configuration for Disk}

Create a backup configuration named production that backs up to disk with a 14 day recovery window.
```


odacli modify-backupconfig -d Disk -n production -w 14

```

\section*{odacli modify-objectstoreswift}

Use the command odacli modify-objectstoreswift to change the credentials for the ObjectStore account.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli modify-objectstoreswift [-n name] [-i id] [-p swiftpassword] [-u
Object Store user name] [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Defines the Object Store Swift identifier (ID). \\
-- name, -n & Defines the Object Store Swift name. \\
-- swiftpassword, -p & (Optional) Defines the Object Store Swift password. \\
\hline-- username, -u & (Optional) Defines the Object Store Swift user \\
& name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is \\
& false. \\
\hline
\end{tabular}

\section*{Usage Notes}

Use this command to update the password when it is changed for an ObjectStore account. The command updates the Oracle ObjectStore credential details in the system and stores the password in an encrypted Oracle wallet.

The credentials are validated during the command odacli modify-backupconfig with objectstore as the destination. The credentials are not validated against endpoint URL and tenancy.

\section*{Example 17-122 Changing the Oracle Casper ObjectStore Password}
\# odacli modify-objectstoreswift -i Object Store Swift id -p

\section*{Example 17-123 Changing the Oracle ObjectStore User Name}
```


odacli modify-objectstoreswift -i Object Store Swift id -u Object Store

user name

```

\section*{odacli modify-schedule}

Use the command odacli modify-schedule to update the schedule for a database, or to disable the database backup schedule.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli modify-schedule [-i] [-x cronExpression] [-t description] [-d] [-
e] [-h] [-j]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--s c h e d u l e i d,-i\) & Defines the schedule with an identifier (ID).
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- cronExpression, -x & \begin{tabular}{l} 
(Optional) Specifies the cron expression. Use 5 \\
fields or 6 fields cron expression only.
\end{tabular} \\
-- description, -t & \begin{tabular}{l} 
(Optional) Provides a description for the update \\
schedule.
\end{tabular} \\
-- disable, -d & (Optional) Disables the schedule. \\
-- enable, -e & (Optional) Enables a disabled schedule. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is \\
false.
\end{tabular}

\section*{Usage Notes}

Backups incur overhead on the system. When possible, do not schedule backups to run when users are trying to access data.

Starting with Oracle Database Appliance release 19.20, the DCS agent supports only 5 fields cron expressions or 6 fields cron expressions by default, in job schedules. When you patch your deployment from Oracle Database Appliance release 19.19 or earlier, the DCS agent automatically converts all 7 fields cron expression from existing job schedules into an equivalent 6 fields cron expression.

\section*{Example 17-124 Modify the Time the Backup Occurs}

Edit the cron expression to change the time of scheduled backups for a given schedule ID.
```


odacli modify-schedule -i scheduleid -x "0 0 13 1/1 * *" -e

```

\section*{Example 17-125 Disable Scheduled Database Backups}
```


odacli modify-schedule -i scheduleid -d

```

\section*{odacli Oracle Data Guard Commands}

Use ODACLI commands to configure and manage Oracle Data Guard in your Oracle Database Appliance deployment.
- odacli configure-dataguard

Use the command odacli configure-dataguard to configure Oracle Data Guard on Oracle Database Appliance.
- odacli deconfigure-dataguard

Use the command odacli deconfigure-dataguard to deconfigure Oracle Data Guard on Oracle Database Appliance.
- odacli describe-dataguardstatus

Use the command odacli describe-dataguardstatus to view Oracle Data Guard status on Oracle Database Appliance.
- odacli failover-dataguard

Use the command odacli failover-dataguard on the standby system to failover the Oracle Data Guard primary database to the standby database.
- odacli list-dataguardstatus

Use the command odacli list-dataguardstatus to verify Oracle Data Guard status on both primary and standby databases.
- odacli reinstate-dataguard

Use the command odacli reinstate-dataguard on the new primary system to reinstate a failed primary database after a failover and convert it to a new standby database.
- odacli register-dataguard

Use the command odacli register-dataguard to register Oracle Data Guard with Oracle Database Appliance.
- odacli switchover-dataguard

Use the command odacli switchover-dataguard on the primary system to reverse the Oracle Data Guard primary and standby database roles on Oracle Database Appliance.

\section*{odacli configure-dataguard}

Use the command odacli configure-dataguard to configure Oracle Data Guard on Oracle Database Appliance.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
\# odacli configure-dataguard [-h] [-j] [-i] [-r] [-s]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--h e l p,-h\) & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline\(--r e q u e s t j\) son, \(-r\) & \begin{tabular}{l} 
(Optional) Specifies the JSON file for creating the \\
appliance.
\end{tabular} \\
\hline-- skip-password-copy, \(-s\) & \begin{tabular}{l} 
(Optional) Specifies that step to copy the password \\
from primary database to standby database can be \\
skipped.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

If the database orapwd file is not in the typical location, then an error may occur in the configuration process. In such a case, manually copy the orapwd file from the primary database to the standby database in advance, and configure Oracle Data Guard with the --skip-password-copy option.

\section*{Example 17-126 Configuring Oracle Data Guard interactively on the command line}
```


odacli configure-dataguard

Standby site address: test_domain
BUI username for Standby site (default: oda-admin):

```
```

BUI password for Standby site:
TrustStore path for Standby DCS server: /cacerts.a
TrustStore password for Standby DCS server: <TrustStore_Password>
Database name for Data Guard configuration: cpub
Primary database syspassword:
**

Data Guard default settings
Primary site network for Data Guard configuration: Public-network
Standby site network for Data Guard configuration: Public-network
Primary database listener port: 1521
Standby database listener port: }152
Transport type: ASYNC
Protection mode: MAX_PERFORMANCE
Data Guard configuration name: pcpub_scpub
Active Data Guard: disabled
Do you want to edit this Data Guard configuration? (Y/N, default:N):
The TrustStore of the Standby site should be removed unless it is necessary
for some other purpose. Do you want to delete it? (Y/N, default:Y): n
As a requirement, Standby database's SYS password will be set to Primary
database's after Data Guard configuration. Are you sure you want to proceed
with Data Guard configuration? (Y/N): y

Configure Data Guard pcpub_scpub started
**

Step 1: Validate Data Guard configuration request (Primary site)
Description: Validate DG Config Creation
Job ID: bafb8ef4-d3c9-4421-84a1-4c75d73e71a0
Started August 25, 2020 05:51:20 UTC
Validate create Data Guard configuration request
Finished August 25, 2020 05:51:27 UTC
**

Step 2: Validate Data Guard configuration request (Standby site)
Description: Validate DG Config Creation
Job ID: a7b80880-40ab-4dbf-b8be-22717ae87711
Started August 25, 2020 05:51:27 UTC
Validate create Data Guard configuration request
Finished August 25, 2020 05:51:33 UTC

Step 3: Download password file from Primary database (Primary site)
Description: Download orapwd file from Primary database
Started August 25, 2020 05:51:33 UTC
Prepare orapwd file for Primary database cpub
Finished August 25, 2020 05:51:38 UTC
**

Step 4: Upload password file to Standby database (Standby site)
Description: Upload orapwd file to Standby database
Started August 25, 2020 05:51:38 UTC
Write orapwd file to Standby database cpub
Finished August 25, 2020 05:51:47 UTC

```
```

Step 5: Configure Primary database (Primary site)
Description: DG Config service creation - ConfigurePrimary
Job ID: b6726f76-0a3a-4bb1-8fec-a3eb311531cf
Started August 25, 2020 05:51:47 UTC
Configure host DNS on primary env
Configure Data Guard Tns on primary env
Enable Data Guard related Db parameters for primary env
Enable force logging and archivelog mode in primary env
Enable FlashBac
Configure network parameters for local listener on primary env
Restart listener on primary env
Create services for primary db
Finished August 25, 2020 05:52:10 UTC

Step 6: Configure Standby database (Standby site)
Description: DG Config service creation - ConfigureStandby
Job ID: e6b552be-fef0-4cd6-a61d-81292f957a6e
Started August 25, 2020 05:52:10 UTC
Configure Data Guard Tns on standby env
Configure host DNS on standby env
Clear Data Guard related Db parameters for standby env
Enable Data Guard related Db parameters for standby env
Enable force logging and archivelog mode in standby env
Populate standby database metadata
Configure network parameters for local listener on standby env
Reset Db sizing and hidden parameters for ODA best practice
Restart Listener on standby env
Create services for standby db
Finished August 25, 2020 05:53:40 UTC
**

Step 7: Configure and enable Data Guard (Primary site)
Description: DG Config service creation - ConfigureDg
Job ID: 0b79511f-794a-4bc2-936d-5c651110467f
Started August 25, 2020 05:53:40 UTC
Config and enable Data Guard
Post check Data Guard configuration
Finished August 25, 2020 05:55:06 UTC
**

Step 8: Enable Flashback (Standby site)
Description: DG Config service creation - EnableFlashback
Job ID: b526445e-67df-4c35-a7ca-8420298.b8bd2
Started August 25, 2020 05:55:06 UTC
Enable FlashBack
Finished August 25, 2020 05:55:17 UTC

Step 9: Re-enable Data Guard (Primary site)
Description: DG Config service creation - ReenableDg
Job ID: 4833133f-da65-44a9-beb7-2c4d347c9120
Started August 25, 2020 05:55:23 UTC
Re-enable Data Guard if inconsistent properties found
Post check Data Guard configuration

```
```

Finished August 25, 2020 05:55:29 UTC

Step 10: Create Data Guard status (Primary site)
Description: DG Status service creation - NewDgconfig
Job ID: 430d0613-bcd3-4e34-9418-c5f4dfddc052
Started August 25, 2020 05:55:33 UTC
Create Data Guard status
Finished August 25, 2020 05:55:37 UTC

Step 11: Create Data Guard status (Standby site)
Description: DG Status service creation - NewDgconfig
Job ID: 93bcdd39-657f-4d7c-b893-c50dc5e708c4
Started August 25, 2020 05:55:40 UTC
Create Data Guard status
Finished August 25, 2020 05:55:43 UTC

Configure Data Guard pcpub scpub completed
**

```

\section*{Example 17-127 Configuring Oracle Data Guard using JSON file}
```


odacli configure-dataguard -r configdg_ODA_HA.json

Standby machine address: 192.214.108.19
BUI username for Standby machine (default: oda-admin):
BUI password for Standby machine:
TrustStore path for Standby DCS server (copy from /opt/oracle/dcs/dcscli/
cacerts on Standby machine to this machine and set file permissions to 400): /
cacerts.a
TrustStore password for Standby DCS server: (can be found in /opt/oracle/dcs/
dcscli/dcscli.conf)
Primary database syspassword:
Standby database syspassword (default: same as primary):
The TrustStore of the Standby machine should be removed unless it is
necessary for some other purpose. Do you want to delete it? (Y/N, default:Y):
n
As a requirement, Standby database's SYS password will be set to Primary
database's after Data Guard configuration. Are you sure you want to proceed?
(Y/N): y
Data Guard configuration for database 'test' started

Step 1: Validate Data Guard configuration request (Primary machine)

```
.....

\section*{Example 17-128 Sample JSON for configuring Oracle Data Guard on Oracle Database Appliance High-Availability Deployments}
\{
    "name": "pink1_pink7",
    "protectionMode": "MAX_PERFORMANCE",
    "enableFlashback": truē,
```

 "enableActiveDg": false,
 "replicationGroups": [
 {
 "sourceEndPoints": [
 {
 "endpointType": "PRIMARY",
 "hostName": "test domain1",
 "listenerPort": 1\overline{5}21,
 "databaseUniqueName": "pink1",
 "ipAddress": "192.214.96.214"
 },
 {
 "endpointType": "PRIMARY",
 "hostName": "test domain2",
 "listenerPort": 1521,
 "databaseUniqueName": "pink1",
 "ipAddress": "192.214.96.215"
 }
],
 "targetEndPoints": [
 {
 "endpointType": "STANDBY",
 "hostName": "test domain1",
 "listenerPort": 1521,
 "databaseUniqueName": "pink7",
 "ipAddress": "192.214.108.19"
 },
 {
 "endpointType": "STANDBY",
 "hostName": "test_domain2",
 "listenerPort": 1521,
 "databaseUniqueName": "pink7",
 "ipAddress": "192.214.108.20"
 }
],
 "transportType": "ASYNC"
 }
]
 }

```

\section*{odacli deconfigure-dataguard}

Use the command odacli deconfigure-dataguard to deconfigure Oracle Data Guard on Oracle Database Appliance.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```


odacli deconfigure-dataguard [-h] [-j] -i [-f]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--h e l p,-h\) & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline\(--i d,-i\) & Specifies the Oracle Data Guard Configuration ID. \\
\hline-- force, -f & Forces the deconfiguration of Oracle Data Guard. \\
\hline
\end{tabular}

\section*{Usage Notes}

For deconfiguring Oracle Data Guard, you must specify the Oracle Data Guard Configuration ID. Run the odacli list-dataguardstatus command to find the Oracle Data Guard Configuration ID.

Example 17-129 Deconfiguring Oracle Data Guard on the Primary Machine
```


odacli deconfigure-dataguard -i 8396aac4-f7e7-42e4-a2e8-0cbbc89ce31b

Standby site address: test_domain
BUI username for Standby site (default: oda-admin):
BUI password for Standby site:
TrustStore path for Standby DCS server : /cacerts.a
TrustStore password for Standby DCS server: TrustStore_Password
The TrustStore of the Standby site should be removed unless it is necessary
for some other purpose. Do you want to delete it? (Y/N, default:Y): n
Standby database will be deleted after Data Guard configuration is removed.
Are you sure you want to proceed? (Y/N): y
Deconfigure Dataguard Started
**

Step 1: Deconfigure Data Guard (Primary site)
Description: Deconfigure DG service
Job ID: 8deb3e4c-09cd-4593-8184-f7706dd2ec8a
Started
Deconfigure Data Guard service
Cleanup broker resources
Finished

Step 2: Delete Data Guard status (Primary site)
Description: DG Status service creation - UpdateDgconfig
Job ID: 59c61629-6c7d-474c-8c29-c0a9565d91a3
Started
Update Data Guard status
Finished

Step 3: Delete Data Guard status (Standby site)
Description: DG Status service creation - UpdateDgconfig
Job ID: 93dcf4cd-1019-4bcd-984a-d3efeb3fae6e
Started
Update Data Guard status
Finished

```
```


Step 4: Delete Standby database (Standby site)
Description: Database service deletion with db name: panda with id : 30dd49da-
a54f-4a9a-abbf-d3a4e39abee5
Job ID: 0b1cb921-fd41-4e01-86df-beff3adb6de0
Started
Validate db 30dd49da-a54f-4a9a-abbf-d3a4e39abee5 for deletion
Database Deletion
Unregister Db From Cluster
Kill Pmon Process
Database Files Deletion
Deleting Volume
Delete File Groups of Database panda
Finished

Data Guard configuration is removed

```

\section*{odacli describe-dataguardstatus}

Use the command odacli describe-dataguardstatus to view Oracle Data Guard status on Oracle Database Appliance.

\section*{File Path}
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
\# odacli describe-dataguardstatus -i [-h] [-j] [-s]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l} 
(Mandatory) Specifies the Oracle Data Guard \\
Status ID. \\
-- synchronous, - s \\
- (Optional) Obtains the latest Oracle Data Guard \\
status synchronously. \\
(Optional) Displays help for using the command. \\
\hline-- - son, \(-j\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

\section*{Example 17-130 Viewing Oracle Data Guard configuration status}
```


odacli describe-dataguardstatus -i 5f0ed48a-366d-454c-a389-fe367772dbb7

```

\section*{odacli failover-dataguard}

Use the command odacli failover-dataguard on the standby system to failover the Oracle Data Guard primary database to the standby database.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
\# odacli failover-dataguard [-h] [-j] [-i] [-u]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline\(--i d,-i\) & Specifies the Oracle Data Guard Status ID. \\
\hline-- databaseUniqueName, -u & \begin{tabular}{l} 
Specifies the unique name of the database to \\
failover to.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

After performing the failover, view the status with the odacli list-dataguardstatus command.

\section*{Example 17-131 Performing Failover Oracle Data Guard}
```


odacli failover-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u houdg02

```

\section*{odacli list-dataguardstatus}

Use the command odacli list-dataguardstatus to verify Oracle Data Guard status on both primary and standby databases.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```


odacli list-dataguardstatus [-s] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline-- synchronous, - s & \begin{tabular}{l} 
(Optional) Obtains the latest Oracle Data Guard \\
status synchronously.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

\section*{Example 17-132 Viewing Oracle Data Guard status on primary and standby databases}
```


odacli list-dataguardstatus

```

\section*{odacli reinstate-dataguard}

Use the command odacli reinstate-dataguard on the new primary system to reinstate a failed primary database after a failover and convert it to a new standby database.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```


odacli reinstate-dataguard [-h] [-j] [-i] [-u]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline\(--i d,-i\) & Specifies the Oracle Data Guard Status ID. \\
\hline-- databaseUniqueName, \(-u\) & \begin{tabular}{l} 
(Optional) Specifies the unique name of the \\
database to reinstate.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

After completing the reinstate operation, view the status with the odacli listdataguardstatus command.

\section*{Example 17-133 Performing reinstate operation on Oracle Data Guard}
```


odacli reinstate-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u houdg02

```

\section*{odacli register-dataguard}

Use the command odacli register-dataguard to register Oracle Data Guard with Oracle Database Appliance.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
\# odacli register-dataguard [-h] [-j] [-r json_input_file]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--r e q u e s t j\) son, -r & Specifies the JSON input for creation of Oracle \\
& Data Guard configuration in the advanced option. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is \\
& false. \\
\hline
\end{tabular}

\section*{odacli switchover-dataguard}

Use the command odacli switchover-dataguard on the primary system to reverse the Oracle Data Guard primary and standby database roles on Oracle Database Appliance.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
\# odacli switchover-dataguard [-h] [-j] [-i] [-u]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline\(--i d,-i\) & Specifies the Oracle Data Guard Status ID. \\
\hline-- databaseUniqueName, \(-u\) & \begin{tabular}{l} 
(Optional) Specifies the unique name of the \\
database to switchover to.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

After performing the switchover, view the status with the odacli list-dataguardstatus command.

\section*{Example 17-134 Switching over Oracle Data Guard}
\# odacli switchover-dataguard -i 75f23ce0-006a-4aeb-ba6d-b4b60275c19 -u houdg02

\section*{odacli CPU Core Commands}

Use the CPU Core commands to enable CPU cores and display current and historical CPU core configurations.
- odacli list-cpucores

Use the odacli list-cpucores command lists the history of core configuration changes in the system.
- odacli describe-cpucore

Use the odacli describe-cpucore command to display the current core configuration and the modification date and time.
- odacli modify-cpucore

Use the odacli modify-cpucore command to enable the number of CPU cores in the system.

\section*{odacli list-cpucores}

Use the odacli list-cpucores command lists the history of core configuration changes in the system.

File Path
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli list-cpucores [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-135 Displaying a List of Cores}
\# odacli list-cpucores
\begin{tabular}{|c|c|c|c|}
\hline Node & Cores & Modified & Job Status \\
\hline 0 & 10 & July 22, 2016 12:06:08 PM SGT & Configured \\
\hline 0 & 8 & July 25, 2016 9:39:59 AM SGT & Configured \\
\hline
\end{tabular}

\section*{odacli describe-cpucore}

Use the odacli describe-cpucore command to display the current core configuration and the modification date and time.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli describe-cpucore [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-136 Displaying the Current Core Configuration}
\# odacli describe-cpucore


\section*{odacli modify-cpucore}

Use the odacli modify-cpucore command to enable the number of CPU cores in the system.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli modify-cpucore -c cores [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- cores, -c & Defines the number of cores to be enabled in the \\
& system. \\
-- help, -h & (Optional) Displays help for using the command. \\
\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The number of cores you enable must be a multiple of 2 .
- After the initial configuration, you cannot reduce the number of cores. You can only increase the number of cores.
- When you run the command, you are prompted to confirm the operation with the following message:

Modifying the enabled number of CPU requires a reboot of all nodes in the ODA system. Are you sure you want to proceed with this operation? (Y/N):
- Nodes are restarted after modifying the cores in the BIOS. Note this results in database outage as all the nodes in the cluster are restarted at the same time. Once the system is restarted, the system is updated with the correct number of cores.

\section*{Example 17-137 Enabling CPU Cores}

The following command enables 8 CPU cores.
```


odacli modify-cpucore -c 32

Modifying the enabled number of CPU requires a reboot of all nodes in the ODA
system. Are you sure you want to proceed with this operation? (Y/N): y
{
"jobId" : "1a59d182-79f0-4847-81e6-ab3ebf779096",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "April 8, 2024 10:29:37 AM UTC",
"resourceList" : [],
"description" : "CPU cores service update",
"updatedTime" : "April 8, 2024 10:29:37 AM UTC"
}
WARNING: Reducing the number of enabled cores may set offline any of the CPUs
used by a CPU Pool. Thus, please review the status of all the CPU Pools after
this operation using the 'describe-cpupool' command. In case of any CPU from
a CPU Pool was offline please run 'modify-cpupool' to update the list of CPUs
and use only online CPUs.
WARNING: All the nodes in this ODA system will reboot after this operation

```

\section*{odacli CPU Pool Commands for Bare Metal and KVM}

Use odacli commands to manage resource allocations on Oracle Database Appliance for bare metal and KVM deployments.

CPU pools enable management of CPU resources in both bare metal and KVM environments. There are two types of CPU pools, that is, BM and VM.

Use the BM CPU pool to ensure that the database on a bare metal host runs exclusively on the CPUs specified in the CPU pool.

Use the VM CPU pools to cage and manage CPU resource allocations to workloads for virtual machines. Workloads are isolated by creating CPU pools and assigning or pinning virtual machines to a specific CPU pool. When you pin a virtual machine to a CPU pool, you ensure that the virtual machine uses CPUs in only that CPU pool.

Resources in CPU pools cannot overlap, that is, CPU pools cannot share CPUs.
- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli list-cpupools

Use the odacli list-cpupools command to list all CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli describe-cpupool

Use the odacli describe-cpupool command to describe CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli modify-cpupool

Use the odacli modify-cpupool command to modify a CPU Pool configuration on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli delete-cpupool

Use the odacli delete-cpupool command to delete a CPU Pool configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli list-auditrecords

Use the odacli list-auditrecords command to list the audit records for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli describe-auditrecord

Use the odacli describe-auditrecord command to describe the audit record for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{odacli create-cpupool}

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Syntax}
```

odacli create-cpupool -n name -c number_of_cores {-bm|-vm} [-nn node_name] [-s socket]
[-dbs] [-urc] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, -n & Specifies the CPU Pool name. \\
-- cores, -c & Specifies the CPU Pool cores. \\
\(--\mathrm{bm},-\mathrm{bm}\) & (Optional) Specifies the CPU Pool as Bare Metal. \\
\(--\mathrm{vm},-\mathrm{vm}\) & (Optional) Specifies the CPU Pool as Virtual Machine. \\
\(--\mathrm{dbsystem},-\mathrm{dbs}\) & (Optional) Specifies the CPU Pool type as DB System. \\
-- socket, -s & \begin{tabular}{l} 
(Optional) Specifies the socket to use. If not specified, then use all \\
\end{tabular} \\
& available sockets.
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline \begin{tabular}{l}
-- use-reserved-cores, - \\
urc
\end{tabular} & (Optional) Specifies to use reserved CPU cores. \\
-- node-name, - nn & \\
& \begin{tabular}{l} 
(Optional) Specifies the node where the CPU Pool will be created. On \\
\\
\\
\\
High-Availability deployment, if this option is not specified, then the \\
CPU pool is created on both nodes. \\
-- help, -j
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}
- Attach the BM CPU pool to databases. Bare metal CPU pools can be assigned to multiple databases.
- Attach VM CPU pool VM to guest machines. VM CPU pools can be assigned to multiple VMs.
- Attach dbsystem CPU pool to DB systems. dbsystem CPU pool can be assigned to multiple DB systems. After you create a dbsystem CPU pool, you can create a new DB system with this CPU pool by adding the new CPU pool parameter in the create-dbsystem json file, or modify-dbsystem to attach CPU pool to an existing DB system.
- Resources in CPU pools cannot overlap, that is, CPU pools cannot share CPUs.
- After you create a BM CPU pool, you can associate this CPU pool to a database using the create-database or modify-database command.
- After you create a VM CPU pool, you can associate this CPU pool to a VM using the create-vm or modify-vm command.
- Number of cores must be an even number between 2 and the total number of available cores on the system.
- By default, a CPU in the CPU pool is allocated across two sockets in release 19.12 and later. Optionally, you can choose to allocate the CPU based on the socket number ( 0 or 1 ). This is especially useful to support Standard Edition licensing. It is recommended that you use the default allocation and do not mix two types of allocation.
- By default, the first core of the socket is reserved and cannot be used by the VM and DB system CPU pools for optimal performance. Use the--use-reserved-cores option to enable use of the first core of socket for VM and DB system CPU pools.

\section*{Example}

Create a BM CPU pool named cpupool1 with 6 cores associated to it.
```


odacli create-cpupool -n cpupool1 -c 6 -bm

```

Create a VM CPU pool named cpupool2 with 6 cores associated to it.
\# odacli create-cpupool -n cpupool2 -c 6 -vm

Create a DB System CPU pool named cpupool3 with 6 cores associated to it.
\# odacli create-cpupool -n cpupool3 -c 6 -dbs

Create a DB System CPU pool named cpupool4 with 4 cores of CPUs allocated from socket 0.
```


odacli create-cpupool -n cpupool4 -dbs -s 0 -c 4

```

\section*{odacli remap-cpupools}

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Syntax}
```

odacli remap-cpupools -f -urc [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--f o r c e,-f\) & (Optional) Specifies to force the operation. \\
-- use-reserved-cores, \(-j\) & (Optional) Specifies to use reserved CPU cores. \\
\(--j\) son, \(-j\) & (Optional) Displays output in JSON format. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

If the odacli remap-cpupools command fails with the error DCS-10001:Internal error encountered: Not enough physical CPUs available for CPU Pool 'cpupool_name' on node 'node_name', run the odacli remap-cpupools command again with the --use_reservedcores option.

Use the --force option to remap CPU pools even if the CPU pool is marked as NUMAenabled. You must use odacli remap-cpupools command, after updating the bare metal CPU cores with the command odacli modify-cpucores for CPU core number changes.

By default, the first core of the socket is reserved and cannot be used by the VM and DB system CPU pools for optimal performance. Use the --use-reserved-cores option to enable use of the first core of socket for VM and DB system CPU pools.

\section*{Example}
\# odacli remap-cpupools

\section*{Related Topics}
- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.
- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{odacli list-cpupools}

Use the odacli list-cpupools command to list all CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

Syntax
```

odacli list-cpupools [-j] [-h]

```

Parameters
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays output in JSON format. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example}
\# odacli list-cpupools

\section*{odacli describe-cpupool}

Use the odacli describe-cpupool command to describe CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Syntax}
```

odacli describe-cpupool -n name [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, - n & Specifies the name of the CPU Pool. \\
\(--j\) jon, \(-j\) & (Optional) Displays output in JSON format. \\
-- help, - h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

Example: Describing a CPU pool named cpupooll
\# odacli describe-cpupool -n cpupooll

\section*{odacli modify-cpupool}

Use the odacli modify-cpupool command to modify a CPU Pool configuration on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Syntax}
```

odacli modify-cpupool -n name -c cores -f -l [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, -n & Specifies the CPU Pool name \\
-- cores, -c & Specifies the new number of CPU cores \\
-- force, -f & (Optional) Forces the operation \\
\(--l i v e,-1\) & (Optional) Applies the changes to running VMs \\
\(--j\) son, \(-j\) & (Optional) Displays output in JSON format. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

For VM CPU pool, if --live is not specified, then the changes are applied to the VM configuration file and will be activated next time the VM is started. If --live is specified, then the changes will be applied to both VM configuration file and to the running VM.

\section*{Example}

Set the size of a CPU Pool cpupool1 to 10. If --live is not specified, the change is applied to the VM configuration file and will be activated next time the VM is started.
```


odacli modify-cpupool -n cpupool1 -c 10

```

\section*{odacli delete-cpupool}

Use the odacli delete-cpupool command to delete a CPU Pool configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

\section*{Syntax}
```

odacli delete-cpupool -n name -f [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- name, -n & Specifies the CPU Pool name to be deleted \\
-- force, -f & (Optional) Forces deletion. \\
\(--j\) son, \(-j\) & (Optional) Displays output in JSON format. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example}

Delete a CPU pool named cpupool1.
```


odacli delete-cpupool -n cpupool1

```

\section*{odacli list-auditrecords}

Use the odacli list-auditrecords command to list the audit records for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Syntax}
```

odacli list-auditrecords -du dcs-username -f from date-range -l latest -n node ID -ot
operation_type -ou OS_username -rn resource_name -rt resource_type -t to_date-range [-j]
[-h]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --dcs-user, -du & (Optional) Specifies the DCS user name. \\
\hline --from, -f & (Optional) Specfies the from date in the date range for the CPU pool audit records. \\
\hline --latest, -l & (Optional) Specifies the latest number of CPU pool audit records. \\
\hline --node-id, -n & (Optional) Specifies the node ID. \\
\hline --op-type, -ot & (Optional) Specifies the type of operation. \\
\hline --os-user, -ou & (Optional) Specifies the operating system user. \\
\hline --rsc-name, -rn & (Optional) Specifies the resource name. \\
\hline --rsc-type, -rt & (Optional) Specifies the resource type. \\
\hline --to, -t & (Optional) Specfies the to date in the date range for the CPU pool audit records. \\
\hline --json, -j & (Optional) Displays output in JSON format. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example}


\section*{odacli describe-auditrecord}

Use the odacli describe-auditrecord command to describe the audit record for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

\section*{Syntax}
odacli describe-auditrecord -i [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Describes the ID of the audit record. \\
\(--j\) son, \(-j\) & (Optional) Displays output in JSON format. \\
-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

Example
\# odacli describe-auditrecord -i 41295d99-f263-4284-b6d9-2aff1ae0f850
Audit Record details
```

--

```
    Event details


Record ID: 41295d99-f263-4284-b6d9-2aff1ae0f850
Record timestamp: 2020-10-08 13:27:05 UTC
DCS username: oda-admin
OS username: root
Cluster ID: test cluster-c
Node ID: test_cluster

Resource/Operation
----------------------------

Operation description: Created with '2' cores and allocation
'test_cluster:1-2,17-18'

\section*{odacli Database Commands}

Use the odacli database commands to perform database lifecycle operations.
- odacli clone-database

Use the odacli clone-database command to clone a new database from a source database.
- odacli create-database

Use the odacli create-database command to create a new database.
- odacli delete-database

Use the odacli delete-database command to delete a database.
- odacli describe-database

Use the odacli describe-database command to display database details.
- odacli list-databases

Use the odacli list-databases command to list all databases on the appliance.
- odacli modify-database

Use the odacli modify-database command to modify the configuration of a database, such as backup configuration, database class, and database type, and to change TDE wallet management from EXTERNAL to ODA.
- odacli move-database

Use the command odacli move-database to move a database from one Oracle home to another home of the same database version.
- odacli register-database

Use the odacli register-database command to register a migrated database with the appliance.
- odacli upgrade-database

You can use the odacli upgrade-database command to upgrade a database from a supported release.

\section*{odacli clone-database}

Use the odacli clone-database command to clone a new database from a source database.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli clone-database [-u] [-n] [-dh] [-nh] [-ro] [-s] [-t] [-j] [-f] [-nn] [-
p] [-h] [-sh|-no-sh] [-ha|-no-ha] [-cp]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --databaseUniqueName, -u & Defines a unique name for the database. \\
\hline --dbname, -n & Defines the name given to the new database (dibname.) \\
\hline --dbhomeid, -dh & Specifies the database home ID of the new database. \\
\hline --newhome, -nh & Specifies that a new database home must be created. \\
\hline --readonly, -ro & (Optional) Specifies to open the database in read-only mode. \\
\hline --dbshape, -s & (Optional) Identifies the database shape (template) and determines the total memory allocated to the database. For example, odb1 and odb2. The default is odb1. \\
\hline --dbtype, -t [RAC|RACOne|SI] & (Optional) Defines the database type. The default database type is the source database type, if the option is not specified. For high-availability deployments, the values can be RAC|RACOne|SI, with the default as RAC. For single-node deployments, the value is SI . \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --json, -j & (Optional) Displays JSON output. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --sourcedbname, -f & Specifies the name of the source database \\
\hline --associated-networks, -nn & (Optional) Specifies the associated network names (in the format networkName1,networkName2,...). \\
\hline \multirow[t]{2}{*}{--disable-seha, -no-sh} & (Optional) Specifies whether you want to disable Standard Edition High-Availability for Oracle Database Standard Edition 19c and later single-instance databases. \\
\hline & Note: This option is deprecated and will be desupported in a future release. \\
\hline \multirow[t]{2}{*}{--enable-seha, -sh} & (Optional) Specifies whether you want to enable Standard Edition High-Availability for Oracle Database Standard Edition 19c and later single-instance databases. \\
\hline & Note: This option is deprecated and will be desupported in a future release. \\
\hline --disable-ha, -no-ha & (Optional) Disables High Availability for single-instance Oracle Database 19c and later. \\
\hline --enable-ha, -ha & (Optional) Enables High Availability for single-instance Oracle Database 19c and later. \\
\hline --cpupool, -cp & (Optional) Specifies the CPU pool name. \\
\hline --tdepassword, -p & (Optional) Specifies the TDE password of the source database. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The source database must be up and running.
- The source database must be opened in either read-write mode, or read-only mode if it is a primary database. A standby database can be in mounted or read-only open mode.
- The source database must use Oracle ACFS storage.
- The source database must not be a multitenant container database (CDB)
- If -cp parameter is provided as part of the command, cloned database is associated with the particular CPU pool.
- If - cp parameter is not provided as part of the command, and if the parent database has an associated CPU pool, then the cloned database is also associated with the same CPU pool as that of parent database.
- If -cp parameter is not provided as part of the command, and if the parent database does not have any associated CPU pool, then the cloned database is also not associated with any CPU pool.
- All data files of the source database must be in the same Oracle ACFS directory.

\section*{Example 17-138 Cloning a Database in a new database home}
```


odacli list-databases

ID DB Name DB Type DB
Version CDB Class Shape Storage Status
DbHomeID

```


Task Name
End Time

Start Time
Status

Validate HugeSpaces
August 4, 2022 12:24:00 PM UTC Validate source database August 4, 2022 12:24:11 PM UTC Setting up ssh equivalance August 4, 2022 12:24:12 PM UTC Creating volume rdochome4 August 4, 2022 12:24:28 PM UTC Creating ACFS filesystem for RECO August 4, 2022 12:24:46 PM UTC Database home creation August 4, 2022 12:28:06 PM UTC Creating ACFS database home August 4, 2022 12:24:46 PM UTC Validating dbHome available space August 4, 2022 12:24:46 PM UTC Creating DbHome Directory
August 4, 2022 12:24:46 PM UTC Create required directories August 4, 2022 12:24:46 PM UTC Extract DB clone
August 4, 2022 12:26:14 PM UTC ProvDbHome by using RHP
August 4, 2022 12:27:43 PM UTC Enable DB options
August 4, 2022 12:28:02 PM UTC Creating wallet for DB Client August 4, 2022 12:28:06 PM UTC Audit directory creation August 4, 2022 12:28:06 PM UTC Creation of snapshot database August 4, 2022 12:32:46 PM UTC Removing Disabled Redo Threads August 4, 2022 12:32:47 PM UTC Creation of SPFile for Shared location August 4, 2022 12:32:50 PM UTC August 4, 2022 12:32:56 PM UTC Success Delete SPFile from local location August 4, 2022 12:32:56 PM UTC Register DB with clusterware August 4, 2022 12:34:23 PM UTC Set SysPassword and Create PwFile August 4, 2022 12:34:27 PM UTC Creating pfile
August 4, 2022 12:34:28 PM UTC Disabling external references August 4, 2022 12:34:29 PM UTC Set CPU pool
August 4, 2022 12:34:29 PM UTC Enabling supplemental log data August 4, 2022 12:35:46 PM UTC Enabling blockchange tracking

August 4, 2022 12:24:00 PM UTC Success

August 4, 2022 12:24:00 PM UTC Success

August 4, 2022 12:24:11 PM UTC Success

August 4, 2022 12:24:12 PM UTC Success

August 4, 2022 12:24:28 PM UTC Success

August 4, 2022 12:24:46 PM UTC Success <========== New task

August 4, 2022 12:24:46 PM UTC Success <========== New task

August 4, 2022 12:24:46 PM UTC Success <========== New task

August 4, 2022 12:24:46 PM UTC Success <========== New task

August 4, 2022 12:24:46 PM UTC Success <========== New task

August 4, 2022 12:24:46 PM UTC Success <========== New task

August 4, 2022 12:26:14 PM UTC Success <========== New task

August 4, 2022 12:27:43 PM UTC Success <========== New task

August 4, 2022 12:28:06 PM UTC Success <========== New task

August 4, 2022 12:28:06 PM UTC Success <========== New task

August 4, 2022 12:28:06 PM UTC Success

August 4, 2022 12:32:46 PM UTC Success

August 4, 2022 12:32:56 PM UTC Success

August 4, 2022 12:32:56 PM UTC Success

August 4, 2022 12:34:23 PM UTC Success

August 4, 2022 12:34:27 PM UTC Success

August 4, 2022 12:34:28 PM UTC Success

August 4, 2022 12:34:29 PM UTC Success

August 4, 2022 12:35:45 PM UTC Success

August 4, 2022 12:35:46 PM UTC

August 4, 2022 12:35:47 PM UTC Enabling flashback
August 4, 2022 12:35:48 PM UTC
Copy Pwfile to Shared Storage
August 4, 2022 12:35:51 PM UTC Create tns entry
August 4, 2022 12:35:52 PM UTC Reset Associated Networks August 4, 2022 12:35:55 PM UTC Set log_archive dest for Database August \(\overline{4}, 2022\) 12:35:58 PM UTC

Success
August 4, 2022 12:35:47 PM UTC Success

August 4, 2022 12:35:48 PM UTC Success

August 4, 2022 12:35:51 PM UTC Success

August 4, 2022 12:35:52 PM UTC Success

August 4, 2022 12:35:55 PM UTC Success
\# odacli list-databases


```

Database details

```
```

Dabe--
ID: 6bf06951-d89f-4acb-bb93-39ebdfcec4d7
Description: chome4
DB Name: chome4
DB Version: 19.16.0.0.220719
DB Type: SI
DB Role: PRIMARY
DB Target Node Name: scaoda8m002
DB Edition: EE
DBID: 2169245064
Instance Only Database: false
CDB: false
PDB Name:
PDB Admin User Name:
High Availability: false
Class: OLTP
Shape: odb1
Storage: ACFS
DB Redundancy:
CharacterSet: AL32UTF8
National CharacterSet: AL16UTF16
Language: AMERICAN
Territory: AMERICA
Home ID: 31693275-85f5-4932-8ad6-8abe8c93ce46
<======================= OraDB19000_home4
Console Enabled: false
TDE Wallet Management:
TDE Enabled: false
Level O Backup Day:
AutoBackup Enabled: false
Created: August 4, 2022 12:23:41 PM UTC
DB Domain Name: example.com
Associated Networks: Public-network
CPU Pool Name:

```

\section*{Example 17-139 Cloning a Database in an existing database home}
```


odacli list-dbhomes

```
```

ID Name DB
Version Home
Location Status
-- --------------------------
--
--
542032e5-a76c-4d66-92e1-bb297ec6192d OraDB19000_home1
19.16.0.0.220719 /u01/app/odaorahome/oracle/product/
19.0.0.0/dbhome_1 CONFIGURED

odacli create-dbhome -v 19.16.0.0.220719

odacli describe-job -i e2e73a4a-cb54-4bef-90ba-e6d6aeff594a

Job details

```

```

Description:
Status:
Snap Database service creation with db name: chome1
Success
August 4, 2022 12:02:54 PM UTC
Created:
Message:

```

Task Name
End Time

Start Time
Status

Validate HugeSpaces
August 4, 2022 12:03:00 PM UTC
Validate source database
August 4, 2022 12:03:11 PM UTC
Setting up ssh equivalance
August 4, 2022 12:03:11 PM UTC Creating volume rdochome1 August 4, 2022 12:03:27 PM UTC Creating ACFS filesystem for RECO August 4, 2022 12:03:45 PM UTC Audit directory creation August 4, 2022 12:03:45 PM UTC Creation of snapshot database August 4, 2022 12:08:25 PM UTC Removing Disabled Redo Threads August 4, 2022 12:08:26 PM UTC Creation of SPFile for Shared location August 4, 2022 12:08:28 PM UTC August 4, 2022 12:08:35 PM UTC Success Delete SPFile from local location August 4, 2022 12:08:35 PM UTC Register DB with clusterware August 4, 2022 12:10:00 PM UTC Set SysPassword and Create PwFile August 4, 2022 12:10:03 PM UTC Creating pfile
August 4, 2022 12:10:04 PM UTC Disabling external references August 4, 2022 12:10:06 PM UTC Set CPU pool
August 4, 2022 12:10:06 PM UTC Enabling supplemental log data August 4, 2022 12:11:20 PM UTC Enabling blockchange tracking August 4, 2022 12:11:21 PM UTC Enabling flashback August 4, 2022 12:11:22 PM UTC Copy Pwfile to Shared Storage August 4, 2022 12:11:25 PM UTC Create tns entry August 4, 2022 12:11:26 PM UTC Reset Associated Networks August 4, 2022 12:11:29 PM UTC Set log_archive_dest for Database August 4,2022 12:11:32 PM UTC

August 4, 2022 12:02:59 PM UTC Success

August 4, 2022 12:03:00 PM UTC Success

August 4, 2022 12:03:11 PM UTC Success

August 4, 2022 12:03:11 PM UTC Success

August 4, 2022 12:03:27 PM UTC Success

August 4, 2022 12:03:45 PM UTC Success

August 4, 2022 12:03:45 PM UTC Success

August 4, 2022 12:08:25 PM UTC Success

August 4, 2022 12:08:35 PM UTC Success

August 4, 2022 12:08:35 PM UTC Success

August 4, 2022 12:10:00 PM UTC Success

August 4, 2022 12:10:03 PM UTC Success

August 4, 2022 12:10:04 PM UTC Success

August 4, 2022 12:10:06 PM UTC Success

August 4, 2022 12:11:18 PM UTC Success

August 4, 2022 12:11:20 PM UTC Success

August 4, 2022 12:11:21 PM UTC Success

August 4, 2022 12:11:22 PM UTC Success

August 4, 2022 12:11:25 PM UTC Success

August 4, 2022 12:11:26 PM UTC
Success
August 4, 2022 12:11:29 PM UTC Success
\# odacli list-databases


\section*{Example 17-140 Cloning a Database and associating it with the same CPU Pool as the parent database}
```


odacli clone-database -f dbcpupin -n dbclone -u dbcloneUnique

Enter SYS user password:
Retype SYS user password:
Job details

ID: 74a80586-3523-4367-93a0-38401647c5a0
Description: Snap Database service creation with db name: dbclone
Status: Created
Created: August 09, 2022 10:25:40 AM UTC
Message:
Task Name Start Time
End Time Status

```

\section*{Example 17-141 Cloning a Database and associating it with a different CPU pool}
```


odacli clone-database -f dbcpupin -n db1clone -u db1cloneUnique -cp

testdbcpupool2
Enter SYS user password:
Retype SYS user password:
Job details
--
ID: 2fe285b5-2e3b-4e80-9121-e7c8380952b3
Description: Snap Database service creation with db name:
db1clone
Status: Created
Created: August 09, 2022 10:36:55 AM UTC
Message:

Task Name	Start Time
End Time	Status

```

\section*{Example 17-142 Cloning a TDE-enabled database}
```


odacli clone-database --sourcedbname tdbacf2 --dbname tdbacf2c --

databaseUniqueName tdacf2cu -p
Enter SYS user password:
Retype SYS user password:
Enter TDE wallet password of source database:

```

\section*{Example 17-143 Cloning a database and opening the clone in read only mode}
```


odacli clone-database -n clonedb -u clonedb -f sourcedb -ro

Enter SYS user password:
Retype SYS user password:

```

The task Open Clone DB in READ ONLY mode is displayed as the last task in the description of the above job.

\section*{Related Topics}
- Cloning an Oracle ACFS Database

Create a database from an existing Oracle ACFS database using ODACLI commands or BUI.

\section*{odacli create-database}

Use the odacli create-database command to create a new database.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli create-database -n database name -cs characterset -cl {OLTP|DSS|IMDB}
-l dblanguage -s dbshape -r {ACFS|ASM} -dt dbterritory
-y dbtype -ns nationalscharacterset -d pdbadmin -p pdbname -v version
[-u databaseUniqueName] [-dh Database Home ID] [-c|-no-c] [-co|-no-co]
[-bi backupconfigid] [-io] [-dn] [-j] [-nn] [-h] [-rd] [-sh|-no-sh][-ha|-no-
ha] [-t] [-cp]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --backupconfigid, -bi & (Optional) Defines the backup configuration identifier for future use. \\
\hline --cdb, -c & (Optional) Creates the database as a container database. Use the -c flag to create a container database and use the -no-c flag to create a non-CDB database. The default is -no-c. \\
\hline --characterset, -cs & Defines the character set. The default is AL32UTF8. \\
\hline --databaseUniqueName, -u & (Optional) Defines a unique name for the database. \\
\hline --dbdomainname, -dn & Defines the database domain name. \\
\hline --cpupool, -cp & Defines the CPU pool name. The CPU pool must be of type bare metal (BM). \\
\hline --dbEdition, -de & Defines the Database Edition. \\
\hline --dbclass, -cl \{OLTP|DSS|IMDB\} & \begin{tabular}{l}
Defines the database class. The default is OLTP. The options are as follows: \\
- Enterprise Edition: OLTP, DSS, or IMDB. \\
- Standard Edition: OLTP
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--d b c o n s o l e,-c o\) & (Optional) Enables the Database Console. Use the -no-co flag \\
to disable the Database Console. If not selected, the default is \\
no database console.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline \multirow[t]{2}{*}{--disable-seha, -no-sh} & Specifies whether you want to disable Standard Edition HighAvailability for Oracle Database Standard Edition 19c and later single-instance databases. \\
\hline & Note: This option is deprecated and will be desupported in a future release. \\
\hline \multirow[t]{2}{*}{--enable-seha, -sh} & Specifies whether you want to enable Standard Edition HighAvailability for Oracle Database Standard Edition 19c and later single-instance databases. \\
\hline & Note: This option is deprecated and will be desupported in a future release. \\
\hline --targethost, -th & (Optional) Specifies the target host name (applicable only for Oracle RAC One Node Database and single-instance Oracle Database, where supported). \\
\hline --targetnode, -g & (Optional) Specifies the target node number (applicable only for Oracle RAC One Node Database and single-instance Oracle Database, where supported). The values are 0 or 1. \\
\hline --levelzerobackupday, -lb & (Optional) Specifies the level zero backup day. The values can be Monday|Tuesday|Wednesday...|Sunday. The default is Sunday. \\
\hline --backupconfigname, -bn & (Optional) Specifies the name of the backup configuration. \\
\hline --bkuppassword, -bp & (Optional) Specifies the RMAN backup encryption password. \\
\hline --enableFlashCache, -fc & (Optional) Specifies whether to enable Flash Cache. \\
\hline --no-enableFlashCache, -no-fc & (Optional) Specifies whether to disable Flash Cache. \\
\hline --dbOnFlashStorage, -f & (Optional) Specifies whether to enable data on Flash storage. \\
\hline --no-dbOnFlashStorage, -no-f & (Optional) Specifies whether to disable data on Flash storage. \\
\hline --disable-ha, -no-ha & (Optional) Disables High Availability for single-instance Oracle Database 19c and later. \\
\hline --enable-ha, -ha & (Optional) Enables High Availability for single-instance Oracle Database 19c and later. \\
\hline
\end{tabular}

\section*{Usage Notes}
- If the disk group redundancy is FLEX, then the default dbRedundancy value is MIRROR.
- Flash cache is disabled by default.
- You cannot mix Oracle Database Standard Edition and Enterprise Edition databases on the same appliance.
- For Standard Edition Oracle Database 19c or later, you cannot create Oracle RAC Or Oracle RAC One Node Database. For Standard Edition, you can only deploy singleinstance Oracle Database with or without high-availability enabled.
- Transparent Data Encryption (TDE) is an Advanced Security Option (ASO) available with Oracle Database Enterprise Edition.
- TDE is not configured by default during database creation.
- The dbname and databaseUniqueName can contain underscores (-), lowercase and uppercase alphabet (a-zA-Z, and numeric characters ( \(0-9\) ), must start with an alphabet, and must not exceed 8 characters in length. Underscores are not permitted only if the --
dbname is set to RACOne, as it is used as a delimiter to identify the database instance. The dbname and databaseUniqueName must not also be an Oracle reserved key word.
- Use the \(--c d b\) or \(--n o-c d b\) flag to indicate whether or not the database is a container database. When neither flag is specified, the default database created is a non-CDB database.
- When --dbhomeid is not provided, the create-database command creates a new Oracle Database Home.
- When --dbhomeid is provided, the create-database command creates the database using the existing Oracle Home. Use the odacli list-dbhomes command to obtain the dbhomeid.
- When you use the command to create an instance-only database, then you cannot specify the database shape (template).
- When you specify both the --version and the--dbhomeid, the version is ignored and the database is created against the existing database home.
- Oracle Database 12.1 or later is supported on both Oracle Automatic Storage Management (Oracle ASM) and Oracle ASM Cluster file system (ACFS). The default is Oracle ASM.
- When databases are created in Oracle ACFS, each database is configured with its own Oracle ACFS file system for the datafiles and uses the following naming convention: /u02/app/db user/oradata/db unique name. The default size of this mount point is 100 GB .

\section*{Note:}

Oracle recommends not sharing the mount point across different databases.
- Online logs are stored in the /u03/app/db user/redo/ directory.
- Oracle Fast Recovery Area (FRA) is located in the /u03/app/db user/ fast_recovery_area directory.
- For the version, you can specify the database version, for example, 19.11.0.0, 18.8.0.0, 12.2.0.1, or12.1.0.2, or you can use a 5 digit format to specify a specific patch bundle version. If you use the database version without specifying the bundle patch number, the latest bundle patch is used.

\section*{Caution:}

When you create a database with Transparent Data Encryption (TDE) enabled, you are prompted to set a password for the TDE wallet. Provide a strong password for security compliance. Set the password carefully, and ensure that this password is available to you at all times for database management operations. Failure to provide the TDE wallet password when prompted, will cause an error in accessing encrypted data.

\section*{Example 17-144 Creating a TDE-enabled database}
```


odacli create-database -n test -t

Enter new 'SYS, SYSTEM and PDB Admin user' password:

```
```

Confirm 'SYS, SYSTEM and PDB Admin user' password:
Enter new 'TDE wallet' password:
Confirm 'TDE wallet' password:

```

\section*{Example 17-145 Creating a Database in Interactive Mode}

This example creates a 19.23.0.0.0 OLTP container database named hrdb with shape odb2 and enables you to provide the password interactively.
```


odacli create-database -n hrdb -c -cl OLTP -s odb2 -p pdb1

Enter new 'SYS, SYSTEM and PDB Admin user' password:
Confirm 'SYS, SYSTEM and PDB Admin user' password:
{
"jobId" : "f12485f2-dcbe-4ddf-aee1-de24d37037b6",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "April 8, 2024 03:54:03 AM EDT",
"description" : "Database service creation with db name: hrdb",
"updatedTime" : "April 8, 2024 03:54:03 AM EDT"
}

```

\section*{Example 17-146 Creating a Database Against a Different Version}

Either of the following statements creates a database against a home with Oracle Database Bundle applied:
```


odacli create-database -n hrmsdb1 -v 19.23.0.0.0

odacli create-database -n hrmsdb2 -v 19.23.0.0.240416

```

The following statement creates a new database against a home with a specific Oracle Database Bundle:
```


odacli create-database -n hrmsdb3 -v 19.23.0.0.240416

```

\section*{Example 17-147 Creating a Database associated with a CPU Pool}

The following command creates a new database associated with a CPU pool:
```


odacli create-database -j -n dbcpupl -r ACFS -cp testdbcpupool

```

\section*{odacli delete-database}

Use the odacli delete-database command to delete a database.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To delete a database:
odacli delete-database -i dbid -n name [-ea] [-h] [-j] [-fd]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Identifies the database home identifier (ID) to display. \\
& Use the odacli list-databases command to obtain the --id. \\
\hline\(--n a m e,-n\) & Defines the database name. \\
\hline-- force, - fd & (Optional) Forces the delete operation. \\
\hline\(--e r a s e A l l,-\) ea & (Optional) Removes all files. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage}

\section*{Note:}

The odacli delete-database command deletes the database, the file system, and the underlying advm volumes assigned to the database. For example, deleting a database named hrdb also deletes the file system /u02/app/oracle/oradata/hrdb. Do not keep any other files on this database file location. If you have manually added static entries for the database you want to delete in your listener. ora file, then remove these entries before running the odacli delete-database command.

\section*{Example 17-148 Deleting a Database Named hrmsdb}

In this example we want to delete a database named hrmsdb. Before we can delete the database, we need to know the database home identifier (dbid). This example shows how to run the odacli list-databases command to list the databases and their associated dbid, then how to delete database hrmsdb.
```


odacli list-databases

```
\begin{tabular}{|c|c|c|c|c|}
\hline ID & DB Name & DB Vers & CDB & Class \\
\hline a3f4a6c0-a0c9-4c79-bad7-898afcf9de46 & hrmsdb & 12.1.0.2 & true & OLTP \\
\hline 7e28bf52-1a09-49fd-9391-841838d2c42f & crmdb & 12.1.0.2 & false & OL \\
\hline
\end{tabular}
(continued)
Shape Storage Status
------ ------ ----------
odb1 ACFS Configured
odb1 ACFS Configured
```


odacli delete-database -i a3f4a6c0-a0c9-4c79-bad7-898afcf9de46

```

\section*{odacli describe-database}

Use the odacli describe-database command to display database details.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To display database details:
```

odacli describe-database -i dbid -n name [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Identifies the database home identifier (ID) to display. \\
& Use the odacli list-databases command to obtain the --id. \\
\hline-- name, \(-n\) & Defines the database name. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-149}

Display information for a database.
```


odacli describe-database -n odacn

Database details

ID: 896238139
Description: odacn
DB Name: odacn
DB Version: 19.6.0.0.200114
DB Type: Si
DB Role: PRIMARY
DB Target Node Name: node1
DB Edition: EE
DBID: 896238139
Instance Only Database: false
CDB: false
PDB Name:
PDB Admin User Name:
High Availability Enabled: false
Class: Oltp
Shape: Odb1
Storage: Asm
DB Redundancy: MIRROR
CharacterSet: AL32UTF8

```
```

National CharacterSet: AL16UTF16
Language: AMERICAN
Territory: AMERICA
Home ID: bcc3991a-0ffc-4d29-86ae-40f2b8721dc4
Console Enabled: false
Level O Backup Day: Sunday
AutoBackup Enabled: true
Created: March 30, 2020 9:33:09 AM PDT
DB Domain Name: domain.com
Associated Networks: Public-network

```

\section*{Example 17-150 Displaying Database Details}

Display information for database named ac48e0d2-a7b0-4ffd-a27e-f8e42b028c5f:
```


odacli describe-database -i ac48e0d2-a7b0-4ffd-a27e-f8e42b028c5f

Database details
ID: ac48e0d2-a7b0-4ffd-a27e-f8e42b028c5f
Description: rdb1
DB Name: rdb1
DB Version: 19.23.0.0.0
DBID: 1339792271
CDB: true
PDB Name: r1pdb1
PDB Admin User Name: pdbadmin
Class: OLTP
Shape: odb2
Storage: ASM
CharacterSet: DbCharacterSet(characterSet=AL32UTF8,
nlsCharacterset=AL16UTF16, dbTerritory=AMERICA, dbLanguage=AMERICAN)
Home ID: fe87f30c-b810-45d1-8b96-13996ad7a255
Console Enabled: true
Created: April 8, 2024, 2016 6:21:14 PM

```

\section*{odacli list-databases}

Use the odacli list-databases command to list all databases on the appliance.

\section*{File Path}
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To display a list of all databases:
```

odacli list-databases [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline- all & \begin{tabular}{l} 
(Optional) This option is available only when multi-user access is \\
enabled. Provides a read-only view of all the databases in the system.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-151 Displaying a List of Databases}

Display a list of databases:
\# odacli list-databases
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ID} & DB Name & DB Version & CDB \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
ad6c7326-e460-411e-94df-230dedbef743 \\
fb4d02f3-2413-47ca-8584-a768e23ec2e7
\end{tabular}}} & rdb121a & 19.23.0.0.0 & true \\
\hline & & & & ee12db & 19.23.0.0.0 & false \\
\hline \multicolumn{7}{|l|}{(Continued)} \\
\hline Class & Shape & Storage & Status & & & \\
\hline OLTP & odb1 & ACFS & Configured & & & \\
\hline IMDB & odb1 & ASM & Configured & & & \\
\hline
\end{tabular}

\section*{odacli modify-database}

Use the odacli modify-database command to modify the configuration of a database, such as backup configuration, database class, and database type, and to change TDE wallet management from EXTERNAL to ODA.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli modify-database [-i] [-dn] [-no-sh] [-sh] [-no-ha] [ha] [-lb] [-no-
bkp] [-th] [-g] [-cl] [-rd] [-s] [-an] [-ctm] [-bi] [-bin] [-bp] [-id] [-n] [-
y] [-cp] [-no-cpupool] [-rkt] [-ctp] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline-- name, -n & Defines the database name to be updated. Specify either \\
& -- name or --id. \\
\(--i d,-i\) & \begin{tabular}{l} 
Defines the database ID to be updated. Specify either -- \\
\\
name or --id.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--d b R e d u n d a n c y,-r d\) & (Optional) Specifies the database redundancy value, that \\
& is, \{HIGH|MIRROR\}. To specify the dbRedundancy \\
option for an Oracle ASM or ACFS storage-based \\
database, at least one disk group of FLEX redundancy \\
must exist. To specify the dbRedundancy option for an \\
& Oracle ASM storage database, the dbVersion or \\
dbHomeVersion must be 12.2 or later.
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- targethost, -th & \begin{tabular}{l} 
(Optional) Specifies the target host name (applicable \\
only for Oracle RAC One Node Database and single- \\
instance Oracle Database, where supported).
\end{tabular} \\
\hline-- targetnode, -g & \begin{tabular}{l} 
(Optional) Specifies the target node number (applicable \\
only for Oracle RAC One Node Database and single- \\
instance Oracle Database, where supported). The \\
values are 0 or 1.
\end{tabular} \\
\hline- cpupool, -cp & \begin{tabular}{l} 
(Optional) Specifies the CPU pool name. Use this option \\
to associate a CPU pool to a database that does not use \\
any CPU pool or to change the existing association of a \\
CPU pool to a new CPU pool for a database.
\end{tabular} \\
\hline-- no-cpupool & \begin{tabular}{l} 
(Optional) Removes the attached CPU pool.
\end{tabular} \\
\hline-- change-tde-password,--ctp & \begin{tabular}{l} 
(Optional) When specified, you are prompted for the \\
current and new TDE Wallet password.
\end{tabular} \\
\hline-- change-tdewallet-mgmt,-ctm & \begin{tabular}{l} 
(Optional) When specified, the TDE wallet is changed \\
from external to ODA.
\end{tabular} \\
\hline\(--r e k e y-\) tde,-rkt & \begin{tabular}{l} 
(Optional) When specified, current TDE Wallet password \\
is prompted to rekey the TDE master encryption key.
\end{tabular} \\
\hline (Optional) Displays help for using the command. \\
\hline- help, -h & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}

\section*{Caution:}

When you change the TDE wallet password for a database with Transparent Data Encryption (TDE) enabled, you are prompted to set a password for the TDE wallet. Provide a strong password for security compliance. Set the password carefully, and ensure that this password is available to you at all times for database management operations. Failure to provide the TDE wallet password when prompted, will cause an error in accessing encrypted data.

\section*{Example 17-152 Modifying the Database Shape (Template) and Database Class}
```


odacli modify-database -s database_shape -cl database_class -i dbid

odacli modify-database -i 1941d594-c777-4eca-9fce-18b778d5c153 -s odb2 -cl DSS
{
"jobId" : "833d43a7-bcc6-48a7-9f98-b42ffdab3fe1",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "May 16, 2023 06:48:58 AM UTC",
"resourceList" : [],
"description" : "modify-database service with db ids: 1941d594-
c777-4eca-9fce-18b778d5c153",
"updatedTime" : "May 16, 2023 06:48:58 AM UTC"
}

```

\section*{Example 17-153 Converting Oracle RAC or Oracle RAC One Node Database to Singleinstance Oracle Database}
```


odacli modify-database -n db18 -y SI

For moving a database between homes please use the command 'move-database'.
{
"jobId" : "4b548365-dac5-4557-a6a8-2f65c2b725e7",
"status" : "Created",
"message" : "Modify database",
"reports" : [],
"createTimestamp" : "May 21, 2023 00:32:55 AM UTC",
"resourceList" : [{
"resourceId" : "de2a7959-e31b-4dee-b600-6b16dfb78c34",
"resourceType" : "DB",
"resourceNewType" : null,
"jobId" : "4b548365-dac5-4557-a6a8-2f65c2b725e7",
"updatedTime" : "May 21, 2023 00:32:55 AM UTC"
}],
"description" : "Modify database : db18",
"updatedTime" : "May 21, 2023 00:32:55 AM UTC"
}

```

\section*{Example 17-154 Specifying the target node when converting database}
```


odacli modify-database -n db18 -y SI -g node_number

odacli modify-database -n db18 -y SI -th node_name

```

\section*{Example 17-155 Changing the TDE Wallet Password}
```


odacli modify-database -n testdb -ctp

Enter current 'TDE wallet' password:
Enter new 'TDE wallet' password:
Confirm 'TDE wallet' password:

```

\section*{Example 17-156 Re-keying the TDE Master Encryption Password}
```


odacli modify-database -n testdb -rkt

Enter current 'TDE wallet' password:

```

\section*{Example 17-157 Removing a CPU pool}
```


odacli modify-database -n dbcpupin -cp testdbcpupool2

DB will be restarted as part of CPU Pool operation. Do you want to continue
[y/n]:y
For moving a database between homes please use the command 'move-database'.
{
"jobId" : "c1d05fb3-828a-4644-af9a-9d82b4ef5a89",
"status" : "Created",
"message" : "Modify database",
"reports" : [],
"createTimestamp" : "May 09, 2023 16:18:54 PM UTC",
"resourceList" : [{
"resourceId" : "ff9c138b-a003-40cf-b1fc-0b33cd955ebf",

```
```

 "resourceType" : "DB",
 "resourceNewType" : null,
 "jobId" : "c1d05fb3-828a-4644-af9a-9d82b4ef5a89",
 "updatedTime" : "May 09, 2023 16:18:54 PM UTC"
 }],
 "description" : "Modify database : dbcpupin",
 "updatedTime" : "May 09, 2023 16:18:54 PM UTC"
 }

```

\section*{odacli move-database}

Use the command odacli move-database to move a database from one Oracle home to another home of the same database version.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
odacli move-database [-i dbid] [-imp] [-nr] [-n dbname] [-dh dest-dbhome-id] [-dhn dest-dbhome-name] [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & (Optional) Defines the database ID. \\
\hline-- name, -n & (Optional) Defines the database name. \\
\hline-- non-rolling, -nr & \begin{tabular}{l} 
(Optional) Specifies whether you want to move the \\
target database in non-rolling manner. By default, \\
the value is false and the database is moved in a \\
rolling manner.
\end{tabular} \\
\hline-- ignore-missing-patch, -imp & \begin{tabular}{l} 
(Optional) Ignores all missing patches and forces \\
the operation.
\end{tabular} \\
\hline-- dest-db-home-id, -dh & \begin{tabular}{l} 
(Optional) Defines the destination database home \\
ID.
\end{tabular} \\
\hline-- dest-dbhome-name, -dhn & \begin{tabular}{l} 
(Optional) Defines the destination database home \\
name.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Usage Notes}

Starting with Oracle Database Appliance release 19.19, when you run the odacli movedatabase, the database is moved in a rolling manner, unless you specify the --non-rolling,nr option.

\section*{Example 17-158 Moving a Database from one Oracle home to another}
```


./odacli move-database -i database_ID -dh destination_database_home_ID

```

\section*{odacli register-database}

Use the odacli register-database command to register a migrated database with the appliance.

\section*{File Path}
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
```

odacli register-database -c {OLTP|DSS|IMDB} -s dbshape -t dbtype SI|RACOne|
RAC -o hostname -sn servicename [-bi backupconfigid] [-co|-no-co] [-nn] [-tp]
[-ha|-no-ha] [-h] [-j] [-sh|-no-sh]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --backupconfigid, -bi & (Optional) Defines the backup configuration identifier for future use. \\
\hline --dbclass, -c \{OLTP|DSS|IMDB\} & \begin{tabular}{l}
Defines the database class. The database class setting determines the database SGA memory and instance PGA memory configuration. The options are as follows: \\
- Enterprise Edition: OLTP, DSS, or IMDB. \\
- Standard Edition: OLTP
\end{tabular} \\
\hline --dbconsole, -co & (Optional) Enables the Database Console. Use the -no-coflag to disable the Database Console. If not selected, the default is no Database Console. \\
\hline --dbshape, -s & Identifies the database shape (template) and determines the total memory allocated to the database. For example, odb1 and odb2. The default is odb1. \\
\hline --dbtype, -t [SI|RACOne|RAC] & Defines the type of database. For high-availability deployments, the values can be RAC|RACOne|SI, with the default as RAC. For single-node deployments, the value is SI . \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --hostname, -o & Defines the host name. Default: local host name \\
\hline --json, -j & (Optional) Displays JSON output. \\
\hline --no-dbconsole, -no-co & (Optional) Disables Database Console. Use the coflag to enable Database Console. \\
\hline --servicename, -sn & Defines the Database Service Name. Using this service name, the EZCONNECT String is derived for connecting to the database. For example, hostname:port/servicename. \\
\hline & The Port number is the port configured for the listener, as part of the deployment. \\
\hline --associated-networks, -nn & Specifies the associated network names (in the format networkName1, networkName2,...). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline \multirow[t]{2}{*}{--disable-seha, -no-sh} & Specifies whether you want to disable Standard Edition High-Availability for Oracle Database Standard Edition 19c and later single-instance databases. \\
\hline & Note: This option is deprecated and will be desupported in a future release. \\
\hline \multirow[t]{2}{*}{--enable-seha, -sh} & Specifies whether you want to enable Standard Edition High-Availability for Oracle Database Standard Edition 19c and later single-instance databases. \\
\hline & Note: This option is deprecated and will be desupported in a future release. \\
\hline --disable-ha, -no-ha & (Optional) Disables High Availability for singleinstance Oracle Database 19c and later. \\
\hline --enable-ha, -ha & (Optional) Enables High Availability for singleinstance Oracle Database 19c and later. \\
\hline --tde-wallet-passwd, -tp & Specifies the password for the TDE wallet. \\
\hline
\end{tabular}

\section*{Usage Notes}

\section*{Note:}

It is a good practice to use Easy Connect (EZCONNECT) to test the database connectivity before registering the database.
Log in as the sys user and enter the following command:
sqlplus sys/password@//hostname:1521/service name
- The odacli register-database command is supported on the primary and the standby database. For the standby database, only the database is registered with Oracle Database Appliance. Oracle Data Guard is not registered with Oracle Database Appliance.
- The migrated database is registered with the listener configured during the provisioning of the appliance. The migrated database must be in read-write or read-only mode for the registration to succeed.
- The register-database command validates the datafile and log file locations and moves the controlfile and spfile to the correct locations.
- Some init.ora parameters are set, or reset, as part of the registration. Review the parameter changes before and after registration.

The following are examples of changes implemented as part of registration:
- The memory_target is reset.
- The sga_target/pga_aggregate_target/log_buffer/inmemory_size is configured based on the database class and database shape settings used during registration.
- The registration process sets or resets the recommended appliance-specific parameters. The database is restarted as part of the register database operation.
- The database being registered must use Oracle Managed Files and the file location must match the DATA Location, REDO Location and RECO Location of the odacli describe-dbstorage command.
- As part of the registration process, the database is registered with Oracle Clusterware. Only the primary database is registered with Oracle Clusterware.
- TDE-enabled database can also be registered. If TDE is configured using software keystore and the database version is 18c and higher, then TDE wallet management is also supported similar to a TDE database created using the Oracle Database Appliance framework.

\section*{Example 17-159 Registering a Migrated Database}

The following is the syntax to register a single instance OLTP database that is using shape odb1.
```

odacli register-database -c OLTP -s odb1 -sn crmdb.example.com
Enter new 'SYS user' password:
Confirm 'SYS user' password:
{
"jobId" : "317b430f-ad5f-42ae-bb07-13f053d266e2",
"status" : "Created",
"message" : null,
"reports" : [],
"createTimestamp" : "April 8, 2024 05:55:49 AM EDT",
"description" : "Database service registration with db service name:
crmdb.example.com",
"updatedTime" : "April 8, 2024 05:55:49 AM EDT"
}
rpandrap:]\# odacli describe-job -i "317b430f-ad5f-42ae-bb07-13f053d266e2"
Job details
--
ID: 317b430f-ad5f-42ae-bb07-13f053d266e2
Description: Database service registration with db service name:
crmdb.example.com
Status: Success
Created: April 8, 2024 5:55:49 AM EDT
Message:

```
\begin{tabular}{|c|c|}
\hline Task Name & Start Time \\
\hline restore control file & April 8, 2024 5:55:49 AM EDT \\
\hline move spfile to right location & April 8, 2024 5:56:08 AM EDT \\
\hline register DB with clusterware & April 8, 2024 5:56:13 AM EDT \\
\hline reset db parameters & April 8, 2024 5:57:05 AM EDT \\
\hline Running DataPatch & April 8, 2024 5:57:36 AM EDT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{(Continued)} \\
\hline End Time & & Status \\
\hline April 8, 2024 & 5:56:08 AM EDT & Success \\
\hline April 8, 2024 & 5:56:13 AM EDT & Success \\
\hline April 8, 2024 & 5:57:05 AM EDT & Success \\
\hline April 8, 2024 & 5:57:36 AM EDT & Success \\
\hline April 8, 2024 & 5:57:49 AM EDT & Success \\
\hline
\end{tabular}

\section*{odacli upgrade-database}

You can use the odacli upgrade-database command to upgrade a database from a supported release.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To upgrade an Oracle Database:
```

odacli upgrade-database -i Comma separated list of database ids -n Comma
separated list of database names -from source dbhome id -to destination
dbhome id | -fn source dbhome name -tn destination dbhome name [-ctm] [-j] [-
h] [-sh|-no-sh] [-ha|-no-ha]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --ids, -i & (Optional) Defines the Database IDs to upgrade. You can use a comma separated list of database IDs. \\
\hline --names, -n & (Optional) Defines the names of the databases to upgrade. \\
\hline --dest-dbhome-id, -to & The DB HOME ID of the destination database home. \\
\hline --dest-dbhome-name, -tn & The DB HOME name of the destination database home. \\
\hline --source-dbhome-id, -from & The DB HOME ID of the source database home. \\
\hline --source-dbhome-name, -fn & The DB HOME name of the source database home. \\
\hline ```
--change-tdewallet-mgmt,
-ctm
``` & (Optional) When specified, the TDE wallet management attribute is changed from External to ODA. \\
\hline --json, -j & (Optional) Displays JSON output. The default is false. \\
\hline --disable-seha, -no-sh & \begin{tabular}{l}
(Optional) Specifies whether you want to disable Standard Edition High-Availability for Oracle Database Standard Edition 19c and later single-instance databases. \\
Note: This option is deprecated and will be desupported in a future release.
\end{tabular} \\
\hline --enable-seha, -sh & \begin{tabular}{l}
(Optional) Specifies whether you want to enable Standard Edition HighAvailability for Oracle Database Standard Edition 19c and later singleinstance databases. \\
Note: This option is deprecated and will be desupported in a future release.
\end{tabular} \\
\hline --disable-ha, -no-ha & (Optional) Disables High Availability for single-instance Oracle Database 19c and later. \\
\hline --enable-ha, -ha & (Optional) Enables High Availability for single-instance Oracle Database 19c and later. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

You cannot upgrade Oracle RAC or Oracle RAC One Node Database to a destination database home of Standard Edition 19c or later. You must first convert Oracle RAC or Oracle RAC One Node Database to single-instance Oracle Database using the odacli modifydatabase command and then upgrade the single-instance Oracle Database to a destination database home of Standard Edition 19c or later.

You have the following options for defining the databases to upgrade:
- When you define a single database ID, only the database of the source database home is upgraded.
- When you define more than one database ID, only those database of the source database home are upgraded.
- When you do not define a database ID, all of the databases under the source database home are upgraded.

You can upgrade databases of the following releases:
- Oracle Database 12.2 to 19c
- Oracle Database 12.1 to 19c
- Oracle Database 12.1 to 12.2

\section*{Example 17-160 Upgrading an Oracle Database}

In this example, a single database is upgraded. Use the command odacli listdatabases to display the database ID, then use the command odacli upgradedatabases to upgrade the database. After the upgrade is complete, you can run the command odacli list-databases again to verify the upgrade.
```


# odacli list-databases

ID	DB Name	DB Version	CDB
fb4d02f3-2413-47ca-8584-a768e23ec2e7	ee12db	12.1.0.2	false


(Continued)			
Class	Shape	Storage	Status
OLTP	odb1	ACFS	Conf
IMDB	odb1	ASM	Conf

```
```


# odacli upgrade-database -i ad6c7326-e460-411e-94df-230dedbef743 -from fa4321f5-0543-477d-bb54-

a429dcc8ee8d -to d752df28-ecdd-4af4-9454-38085ea17f8b
{
"jobId" : "1bbe8boe-acb0-4296--9c8b-473b69da0c18",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "October 24, 2017 03:54:03 AM EDT",
"description" : "Database service upgrade with db ids: [ad6c7326-e460-411e-94df-230dedbef743]",
"updatedTime" : "October 24, 2017 03:54:03 AM EDT"
}

# odacli list-databases

ID	DB Name	DB Version	CDB
ad6c7326-e460-411e-94df-230dedbef743	rdb121a	12.1.0.2	true
fb4d02f3-2413-47ca-8584-a768e23ec2e7	ee12db	12.1.0.2	fals

```
\begin{tabular}{lrcr}
\(l\) & \\
(Continued) \\
Class & Shape & Storage & \multicolumn{1}{l}{ Status } \\
------ & ------ & -------- & --------- \\
OLTP & odb1 & ACFS & Configured \\
IMDB & odb1 & ASM & Configured
\end{tabular}

\section*{odacli DBHome Commands}

Use the odacli DBHome commands to manage database Home operations.
- odacli configure-dbhome-storage

Use the odacli configure-dbhome-storage command to configure the database home storage.
- odacli list-dbhome-storages

Use the odacli list-dbhome-storages command to view the database home storage resources after the volumes for ORACLE_HOME and ORACLE_BASE are created.
- odacli describe-dbhome-storage Use the odacli describe-dbhome-storage command to view information such as how much space is available (at a volume or diskgroup level).
- odacli modify-dbhome-storage

Use the odacli modify-dbhome-storage command to modify database home storage and add additional disk space.
- odacli create-dbhome

Use the odacli create-dbhome command to create an Oracle Database Home.
- odacli delete-dbhome

Use the odacli delete-dbhome command to delete database home that is not associated with a database.
- odacli describe-dbhome

Use the odacli describe-dbhome command to display Oracle Database Home details.
- odacli list-dbhomes

Use the odacli list-dbhomes command to display a list of Oracle Home directories.

\section*{odacli configure-dbhome-storage}

Use the odacli configure-dbhome-storage command to configure the database home storage.

File Path
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
```

odacli configure-d.bhome-storage -dg disk_group [-s volume_size] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- diskgroup, -dg & (Mandatory) Defines the name of the disk group. \\
\hline-- size, -s & (Optional) Defines the size, in gigabytes (GB), of \\
& the ORACLE_HOME volume. The default is: 80 \\
& GB. The minimum value that can be specified is \\
& 25GB and the maximum value is 1024GB. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays the output in JSON format. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Valid values for the --diskgroup option vary depending on the hardware. For the X5-2, X6-2 and X7-2 HA platforms, you can select between the DATA or RECO diskgroup. For all other platforms such as \(\mathrm{X} 8-2\), you must select only the DATA diskgroup. With later hardware, you must still run the odacli configure-dbhome-storage command.
- When you run the command to create a new database home, it also creates the volumes to hold the database homes. Till the volumes are created, you can run the odacli configure-dbhome-storage command to change the diskgroup or the inital size of the volume. Once the volumes for this feature are created, running this command results in an error:
\# odacli configure-dbhome-storage -dg RECO
DCS-10606:Database homes storage has already been created, no changes are allowed.

\section*{Example 17-161 Creating Database Home Storage}
```


# odacli configure-dbhome-storage -dg DATA

{
"jobId" : "553bfeb9-0092-4d73-bbd4-43fcb590886f",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "May 11, 2021 06:48:12 AM GMT",
"resourceList" : [ ],
"description" : "Configure database home storage",
"updatedTime" : "May 11, 2021 06:48:12 AM GMT"
}

```

\section*{odacli list-dbhome-storages}

Use the odacli list-dbhome-storages command to view the database home storage resources after the volumes for ORACLE_HOME and ORACLE_BASE are created.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
odacli list-dbhome-storages [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays the output in JSON format. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Starting with Oracle Database Appliance release 19.23, Oracle Database homes are no longer created on the local disk. New Oracle Database homes are created on an Oracle ACFS-managed file system. To create an Oracle ACFS file system, ADVM volumes are created.
- The command lists the resource ID, the node on which the volume is created, and the diskgroup on which the volume is created.

\section*{Example 17-162 Listing Database Home Storage on a Single-Node System}
```


# odacli list-dbhome-storages

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{ID} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Node Description}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Disk Group}} \\
\hline Volume & Size (GB) & Status & & & & \\
\hline \multicolumn{3}{|l|}{6801cabb-4e45-41d7-9f20-c75dc7cf30c2} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{ORACLE_HOME} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DATA}} \\
\hline orahome & 80 & CONFIGURED & & & & \\
\hline \multicolumn{3}{|l|}{f5ad1258-a4a1-4cc1-980c-e2eeca738d99} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{ORACLE_BASE} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{DATA}} \\
\hline odabase & 80 & CONFIGURED & & & & \\
\hline
\end{tabular}

\section*{Example 17-163 Listing Database Home Storage on a High-Availability System}
```


# odacli list-dbhome-storages

```


\section*{odacli describe-dbhome-storage}

Use the odacli describe-dbhome-storage command to view information such as how much space is available (at a volume or diskgroup level).

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli describe-dbhome-storage -i db_home_id [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
(Mandatory) Specifies the Oracle home storage ID. \\
\\
This is the ID listed in the odacli list-dbhome- \\
storages command output.
\end{tabular} \\
\hline\(--j\) son, \(-j\) & (Optional) Displays the output in JSON format. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-164 Describing Database Home Storage}
```

odacli describe-dbhome-storage -i 67622ce6-0a00-4fec-b948-7a0ba7922311
ORACLE_HOME storage details:

```

```

            ID: 67622ce6-0a00-4fec-b948-7a0ba7922311
            State: CONFIGURED
        Created: February 11, 2021 5:30:10 AM UTC
        Updated: February 18, 2021 4:33:30 PM UTC
    Volume Details
---------------
Name: ORAHOME_SH
Disk Group: DATA
Description: SHARED ORACLE_HOME
Node Number: 0,1
Allocated Space: 200.0 GB
Used Space: 12.10 GB
Free Space: 187.89 GB
Location: /u01/app/odaorahome
DiskGroup Details
-----------------
Name: DATA
Allocated Space: 15.52 TB
Used Space: 2.69 TB

```

\section*{odacli modify-dbhome-storage}

Use the odacli modify-dbhome-storage command to modify database home storage and add additional disk space.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli modify-dbhome-storage -i db_home_id -s size[-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- ohomeid, -i & \begin{tabular}{l}
(Mandatory) Specifies the Oracle home storage ID. \\
\\
This is the ID listed in the odacli list-dbhome- \\
storages command output.
\end{tabular} \\
\hline-- size, -s & \begin{tabular}{l}
(Mandatory) Specifies the new size in GB. The \\
minimum value that can be specified is 25GB and \\
the maximum value is 1024GB.
\end{tabular} \\
\hline\(--j\) son, \(-j\) & (Optional) Displays the output in JSON format. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-165 Modifying Database Home Storage}
```

odacli modify-dbhome-storage -i 9b9c9e0f-db04-4985-be48-3f1e263cd73a -s 30
{
"jobId" : "badfad81-cfc1-4c82-a181-69ebdfb11c22",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "May 11, 2021 14:04:09 PM CST",
"resourceList" : [ ],
"description" : "Modify database home storage",
"updatedTime" : "May 11, 2021 14:04:09 PM CST"
}

```

\section*{odacli create-dbhome}

Use the odacli create-dbhome command to create an Oracle Database Home.

\section*{File Path}
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To create an Oracle Database Home:
```

odacli create-dbhome -v version [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(-v\) version number & Defines the database bundle patch number. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

For the version number, you can specify the database version, such as 18.7.0.0, 18.5.0.0, 12.2.0.1, or 12.1.0.2, or you can use a 5 digit format to specify a specific patch bundle version. For example, 19.23.0.0.240416. If you use the database version without specifying the bundle patch number, then the latest bundle patch is used.

\section*{Example 17-166 Creating an Oracle Database Home}

The following example creates an Oracle Database Home version 19.23.0.0.240416.
```


# odacli create-dbhome -v 19.23.0.0.240416

```

\section*{odacli delete-dbhome}

Use the odacli delete-dbhome command to delete database home that is not associated with a database.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli delete-dbhome -i db_home_ID | -n db_home_name [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
Identifies the database home using a database \\
identifier (ID).
\end{tabular} \\
\hline-- name, -n & \begin{tabular}{l}
Identifies the database home using a database \\
name.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the odacli list-dbhomes command to locate the identifier.
- To delete, or uninstall, a database home (dbhome), there must not be any associated databases in the dbhome.
- Use the odacli delete-database command to delete an existing database.

Example 17-167 Deleting an Empty Database Home
```


# odacli delete-dbhome -i 0ce547ca-3df2-4178-a7e6-eefa613aeab4

```

\section*{odacli describe-dbhome}

Use the odacli describe-dbhome command to display Oracle Database Home details.
File Path
/opt/oracle/dcs/bin/odacli
Syntax
To display details about Oracle Database Home:
```

odacli describe-dbhome -i dbhomeid -n name [-h] [-j] [-v]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
Identifies the database home ID. Use the odacli list-dbhomes \\
command to get the id.
\end{tabular} \\
\hline-- name, -n & \begin{tabular}{l}
Identifies the database home name. Use the odacli list-dbhomes \\
command to get the database name.
\end{tabular} \\
\hline\(--h e l p,-\mathrm{h}\) & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. The default is false. \\
\hline\(--d b v e r s i o n,-v\) & \begin{tabular}{l}
(Optional) Identifies the Database Home Version. Use the odacli \\
list-dbhomes -v command to get the dbversion.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-168 Displaying Oracle Database Home Details}

The following output is an example of using the display Oracle Database Home details command:
```


# odacli describe-dbhome -i b727bf80-c99e-4846-ac1f-28a81a725df6

DB Home details
--------------------------------------------------------------------
ID: b727bf80-c99e-4846-ac1f-28a81a725df6
Name: OraDB19_home1
Version: 19.19.0.0.0
Home Location: /u01/app/orauser/product/19/dbhome_1
Created: Jun 2, 2023 10:19:23 AM

```

\section*{odacli list-dbhomes}

Use the odacli list-dbhomes command to display a list of Oracle Home directories.
File Path
\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

\section*{Syntax}

To display a list of Oracle Home directories:
```

odacli list-dbhomes [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
Parameter & Description \\
\hline-- help,-h & (Optional) Displays help for using the command. \\
\hline\(--j\) son,-j & (Optional) Displays JSON output. \\
\hline- all & \begin{tabular}{l}
(Optional) This option is available only when multi-user access is \\
enabled. Provides a read-only view of all the database homes in the \\
system.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-169 Displaying a List of Oracle Home Directories}

Run the following command to display a list of Oracle Home directories:
\# odacli list-dbhomes
\begin{tabular}{|c|c|c|}
\hline ID & Name & DB Version \\
\hline b727bf80-c99e-4846-ac1f-28a81a725df6 & OraDB12102 home1 & 12.1.0.2 \\
\hline (continued) & & \\
\hline Home Location & & \\
\hline /u01/app/orauser/product/12.1.0.2/dbh & ome_1 & \\
\hline
\end{tabular}

\section*{odacli Database Storage Commands}

Use the Database Storage commands to list, describe, create, and delete Oracle database storage.
- odacli create-dbstorage

Use the odacli create-dbstorage command to create the file system for database migrations.
- odacli delete-dbstorage

Use the odacli delete-dbstorage command to delete database storage that is not associated with a database.
- odacli describe-dbstorage

Use the odacli describe-dbstorage command to display storage configuration details.
- odacli describe-dgstorage

Use the odacli describe-dgstorages command to display the disk group information.
- odacli list-dbstorages

Use the odacli list-dbstorages command to display a list of all of the database storage configured in the appliance.
- odacli list-dgstorages

Use the odacli list-dgstorages command to display the disk group information.
- odacli modify-dbstorage

Use the odacli modify-dbstorage command to resize the database storage.
- odacli modify-dgstorage

Use the odacli modify-dgstorage command to release disks.

\section*{odacli create-dbstorage}

Use the odacli create-dbstorage command to create the file system for database migrations.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli create-dbstorage -n dbname -s dataSize -u databaseUniqueName -r [ASM|
ACFS] -rd [high|mirror] [-h]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --dbname, -n & Defines the name of the database. \\
\hline --dataSize, -s & (Optional) Defines the size, in gigabytes (GB), of the filesystem for storing database files and temp files. The default is: 100 GB The minimum size is 10 GB. When entering the size, do not include GB. For example, for 50 GB, use 50 . \\
\hline --databaseUniqueName, -u & (Optional) Defines a unique name for the database. Specify only if the database unique name is different than the database name. The command creates the following mount point: /u02/app/ oracle/oradata/db unique name \\
\hline --dbstorage, -r [ASM|ACFS] & (Optional) Defines the type of database storage, either ASM or ACFS. When you select ASM, the command only creates the supporting directory structure for storing non-database files. The default is ASM. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--d b-r e d u n d a n c y,-r d\) & (Optional) Defines the database redundancy. The \\
& values can be high or mirror. \\
& The database redundancy is not applicable to \\
& database storages of Oracle ASM type, or \\
database storages on normal or high redundancy \\
& disk groups. For database storages of Oracle \\
ACFS type, specifying this option creates volumes \\
of the specified redundancy on Oracle ASM disk \\
groups of flex redundancy.
\end{tabular}
--help, -h
(Optional) Displays help for using the command.

\section*{Usage Notes}
- The odacli create-dbstorage command registers the storage metadata with the Appliance Manager.
- Oracle Database is supported on both Oracle Automatic Storage Management (Oracle ASM) and Oracle ASM Cluster file system (ACFS). The default is Oracle ASM.
- When you create ACFS database storage, the command creates a separate ACFS file system and creates the directory structure for other database files, such as archives and online logs.
- When you create ASM database storage, the command only creates the corresponding directories for non-database files.

\section*{Example 17-170 Creating Database Storage}

The following statement creates 50 GB ACFS database storage for the APPSDB database.
```


# odacli create-dbstorage -n APPSDB -s 50 -r ACFS

{
"jobId" : "fc6bf8fd-60c2-44f3-b8b7-efd0e9a2149f",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "August 09, 2016 06:19:35 AM WSST",
"description" : "Database storage service creation with db name: APPSDB",
"updatedTime" : "August 09, 2016 06:19:35 AM WSST"
}

```

\section*{odacli delete-dbstorage}

Use the odacli delete-dbstorage command to delete database storage that is not associated with a database.

\section*{File Path}
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
```

odacli delete-dbstorage -i ID -n name [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
Identifies the database storage using a database \\
identifier (ID).
\end{tabular} \\
\hline-- name, -n & Specifies the database storage name. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- You can only use the delete-dbstorage when the storage is not associated with any databases.
- Use the delete-database command to delete an existing database.
- Use the list-dbstorages command to locate the identifier.

\section*{Example 17-171 Deleting Empty Database Storage}
```


# odacli delete-dbstorage -i 9fe39332-cc1a-4b4b-8393-165524a6ef6b

```

\section*{odacli describe-dbstorage}

Use the odacli describe-dbstorage command to display storage configuration details.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-dbstorage -i ID -n name [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & Specifies the database storage ID. \\
\hline-- name, -n & Specifies the database storage name. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l}
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Use the odacli list-dbstorages command to get the database storage identifier (ID).
- The DATA Location corresponds to the init. ora parameter db_create_file_dest.
- RECO Location corresponds to the init.ora parameter db_recovery_file_dest
- REDO Location corresponds to the init.ora parameter db_create_online_log_dest_1

\section*{Example 17-172 Displaying Database Oracle ACFS Storage Details}

The following example displays Oracle ASM Cluster file system (ACFS) storage details:
```


# odacli describe-dbstorage -i 9fe39332-cc1a-4b4b-8393-165524a6ef6b

DBStorage details
ID: 9fe39332-cc1a-4b4b-8393-165524a6ef6b
DB Name: rdb121a
DBUnique Name: rdb121a
DB Resource ID: ad6c7326-e460-411e-94df-230dedbef743
Storage Type: Acfs
DATA Location: /u02/app/oracle/oradata/rdb121a
RECO Location: /u03/app/oracle/fast_recovery_area/
REDO Location: /u03/app/oracle/redo/
State: ResourceState(status=Configured)
Created: July 22, 2016 12:07:12 PM SGT
UpdatedTime: July 22, 2016 12:26:39 PM SGT

```

\section*{Example 17-173 Displaying Database Oracle ASM Storage Details}

The following example displays Oracle Automatic Storage Management (Oracle ASM) storage details:
```


# odacli describe-dbstorage -i 4f2a1b59-ca66-4d80-951c-425ab7b0acae

```
DBStorage details
ID: 4f2a1b59-ca66-4d80-951c-425ab7b0acae
DB Name: ee12db
DBUnique Name: ee12db
DB Resource ID: fb4d02f3-2413-47ca-8584-a768e23ec2e7
Storage Type: Asm
DATA Location: DATA
RECO Location: RECO
REDO Location: RECO
State: ResourceState(status=Configured)
Created: July 22, 2016 1:13:51 PM SGT
UpdatedTime: July 22, 2016 1:13:52 PM SGT

\section*{odacli describe-dgstorage}

Use the odacli describe-dgstorages command to display the disk group information.

\section*{File Path}
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli describe-dgstorage -d diskgroup -h

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- diskgroup, -d & \begin{tabular}{l}
Specifies the disk group for which information is \\
displayed.
\end{tabular} \\
\hline- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

This command displays the storage information for all the databases backed by a disk group, for each disk group present in the system.

\section*{Example 17-174 Displaying Disk Group Storage}

\section*{\# odacli list-dgstorages -r redundancy}

Diskgroup storage details

Diskgroup: DATA

Redundancy: extern|normal|high|flex
Physical Free Space: wGB

Physical Total Space: xGB

Database Unique Name: rdbx

Location: /u02/app/test/test1/rdbx
Used Space: dGB (acfsutil.total acfsutil.freespace)

Free Space: dGB (acfsutil.freespace)
Database Unique Name: rdby
Location: +DATA/rdby
Used Space: zGB (v\$asm_file.bytes)
Free Space: xGB (PhyFree/redundancy)

Physical Space:
vGB(v\$asm_diskgroup.total_mb)
Physical Used : wGB (v\$asm_file.space)

Physical Free :
```

uGB(v\$asm_diskgroup.free_mb)

```
 Physical Reserved : uGB (Lookup Table)
Diskgroup: RECO
Redundancy: normal|high|flex
Physical Free Space: wGB
Physical Total Space: xGB
Database Unique Name: rdbx
 Location: /u02/app/test/fast_recovery_area
 Used Space: dGB (acfsutil.total -
acfsutil.freespace)
 Free Space: dGB (acfsutil.freespace)
 Database Unique Name: rdby
 Location: +DATA/rdby
 Used Space: zGB (v\$asm_file.bytes)
 Free Space: xGB (PhyFree/redundancy)
 Physical Space:
vGB(v\$asm_diskgroup.total_mb)
 Physical Used : wGB (v\$asm_file.space)
 Physical Free :
uGB (v\$asm_diskgroup.free_mb)
 Physical Reserved : uGB(Lookup Table)

\section*{odacli list-dbstorages}

Use the odacli list-dbstorages command to display a list of all of the database storage configured in the appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```


# odacli list-dbstorages [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--h e l p,-h\) & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

This command displays a list of all of the filesystems that are configured with the createdatabase command and the create-dbstorage command.

Example 17-175 Displaying a List of all Database Storage
```


# odacli list-dbstorages

```
\begin{tabular}{|c|c|c|c|}
\hline ID Type & DBUnique & Name & Status \\
\hline 9fe39332-cc1a-4b4b-8393-165524a6ef6b & Acfs & rdb121a & Configured \\
\hline 4f2a1b59-ca66-4d80-951c-425ab7b0acae & Asm & ee12db & Configured \\
\hline 0266edac-c729-4539-861f-3f3d543be9e4 & Acfs & db12SE & Configured \\
\hline
\end{tabular}

\section*{odacli list-dgstorages}

Use the odacli list-dgstorages command to display the disk group information.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
odacli list-dgstorages -r redundancy -h

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- redundancy, -r & \begin{tabular}{l}
Specifies the disk group redundancy for FLEX disk \\
group.
\end{tabular} \\
\hline- -help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The command displays the storage-related information for all the disk groups present in the system.
- The redundancy option is valid only for FLEX disk groups. For all disk groups that are not FLEX, logical free space is calculated using the redundancy obtained from v\$asm_diskgroup rather than the CLI option.
- Redundancy option can take the values MIRROR | HIGH. Use one of these options to specify the database redundancy for FLEX disk groups.
- In the example below, Physical Total Space is the total space in the disk group.
(V\$ASM_DISKGROUP.total_mb) Physical Reserved Space is the reserved space required
to handle disk failures. Physical Free Space is the free space in the disk group. (V\$ASM_DISKGROUP.free_mb) Logical Free Space is the logical free space in the diskgroup. (V\$ASM_DISKGROUP.free_mb / redundancy)

This command displays the storage information for all the databases backed by a disk group, for each disk group present in the system.

\section*{Example 17-176 Displaying Disk Group Storage}
```


# odacli list-dgstorages -r redundancy

Diskgroup Redundancy Physical Total Space Physical Reserved Space
Physical Free Space Logical Free
space
-------------- -------------------------------------------------------
------------------------------------
DATA FLEX xGB
yGB
zGB uGB
REDO HIGH xGB
yGB
zGB uGB
RECO NORMAL xGB
yGB
zGB uGB

```

\section*{odacli modify-dbstorage}

Use the odacli modify-dbstorage command to resize the database storage.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli modify-dbstorage [-ds] [-in] [-fs] [-rcs] [-rds] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--d a t a s i z e,-d s\) & (Optional) Specifies the extendable size in GB for the \\
& DATA volume. Specify at least one size from FLASH, \\
& RECO, REDO, or DATA volumes. \\
\hline\(--d b n a m e, ~-i n\) & Defines the database name on which you want to extend \\
& the volumes. \\
\hline\(--f l a s h s i z e,-f s\) & (Optional) Specifies the extendable size in GB for the \\
& FLASH volume. \\
\hline\(--r e c o s i z e,-r c s\) & (Optional) Specifies the extendable size in GB for the \\
& RECO volume.
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--r e d o s i z e, ~-r d s\) & (Optional) Specifies the extendable size in GB for the \\
& REDO volume. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- The command can resize DATA, RECO, REDO, and FLASH volumes.
- Database name is a mandatory parameter. All other parameters are optional, however, one of the volume sizes must be specified. If you only provide the DATA size, then the DCS agent calculates the recommended RECO size for the given DATA size is internally calculated. The storage is then extended with the recommended values.
- The mounted Oracle ACFS and its underlying Oracle ADVM storage is resized to match the new size specified.
- To check the result of the resize operation, use the odacli list-dbstorages command.
- After database resize operation is completed, use the odacli describe-dbstorage command to display storage configuration details.

\section*{Example 17-177 Modifying the Database Storage}
```


# odacli modify-dbstorage -ds 10 -rcs 15 -n amdb1

{
"jobId" : "e6d54155-ed4c-4fd6-a3f6-454120fa5c18",
"status" : "Created",
"message" : null,
"reports" : [ ],
"createTimestamp" : "June 03, 2019 06:06:42 AM UTC",
"resourceList" : [ ],
"description" : "Database storage modify operation",
"updatedTime" : "June 03, 2019 06:06:42 AM UTC"
}

```

\section*{odacli modify-dgstorage}

Use the odacli modify-dgstorage command to release disks.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To release disks:
```

odacli modify-dgstorage [-f] [-rd list] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- force, -f & \begin{tabular}{l}
(Optional) Forces release of specified disks. \\
When this option is specified, the check to verify \\
that all disk groups are mounted on the current \\
node is skipped.
\end{tabular} \\
\hline-- release-disk, -rd & \begin{tabular}{l}
Specifies the disks to release. Generally, this \\
specifies a single storage device with partitions \\
on different disk groups. You can also specify a \\
comma-separated list of disks to release.
\end{tabular} \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Run the odacli list-dgdisks to view details of the disk, before running the odacli modify-dgstorage command.
- The odacli modify-dgstorage command runs a precheck to ensure all disk groups are mounted on the node. You can use the -f option to override the precheck.

\section*{Example 17-178 Releasing a physical disk HDD_E0_S10_577135552 which has two logical partitions on two different disk groups}
```


# odacli modify-dgstorage -rd HDD_E0_S10_577135552

Job details
------------------------------------------------------------------
ID: 46bc736c-417b-4ac2-826e-aa857db50e29
Description: Release disks: [HDD_EO_S10_577135552]
Status: Running
Created: April 8, 2024 6:24:27 PM PDT
Message: Release ASM disks
Verifying the result of the Release Disks operation:

# odacli describe-job -i 46bc736c-417b-4ac2-826e-aa857db50e29

Job details
------------------------------------------------------------------------
ID: 46bc736c-417b-4ac2-826e-aa857db50e29
Description: Release disks: [HDD_E0_S10_577135552]
Status: Success
Created: April 8, 2024 6:24:27 PM PDT
Message: Release ASM disks

```

\section*{odacli Diagnostics Collection Commands}

Use the diagnostics collection commands to display diagnostics details.
- odacli create-diagcollection

Use the odacli create-diagcollection command to create diagnostics collection data from the appliance.
- odacli describe-diagcollection

Use the odacli describe-diagcollection command to describe diagnostics collection data from the appliance.
- odacli list-diagcollections Use the odacli list-diagcollections command to list the diagnostics collections.
- odacli delete-diagcollection

Use the odacli delete-diagcollection command to delete diagnostics collection data from the appliance.

\section*{odacli create-diagcollection}

Use the odacli create-diagcollection command to create diagnostics collection data from the appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To create diagnostics collection:
```

odacli create-diagcollection -i id [-d] [-t] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
(Mandatory) Specifies the DCS job ID for the \\
collection.
\end{tabular} \\
\hline-- description, -d & (Optional) Description of the diagnostic collection. \\
\hline-- tag, -t & \begin{tabular}{l}
(Optional) Specifies tag name to identify the \\
collection.
\end{tabular} \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-179 Creating a diagnostics collection}
```


# odacli create-diagcollection -i ID

Job details
----------------------------------------------------------------------
ID: f840feb8-7712-49a1-a525-1ee911176c50
Description: Diagnostic collection creation
Status: Created
Created: April 11, 2023 7:15:30 PM UTC
Message:

```

\section*{odacli describe-diagcollection}

Use the odacli describe-diagcollection command to describe diagnostics collection data from the appliance.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To describe diagnostics collection:
```

odacli describe-diagcollection -i id [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & (Mandatory) Specifies the diagnostics collection \\
& ID. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-180 Describing a diagnostics collection}
```


# odacli describe-diagcollection -i ID

Diagnostic collection
details
------------------------------------------------------------------------------------------
--
ID: f5c07af8-2635-466d-b487-0f04d15fba79
Requested job ID: 016e74cb-01e0-4812-96ef-94602b5ea2c5
Description: Diagnostic collection for job 'Agent State Update
Job'
Collection file path: /opt/oracle/dcs/commonstore/diag/2023/04/
f5c07af8-2635-466d-b487-0f04d15fba79.tar.gz
Collection size: 91.88 KB
Start time: February 27, 2023 7:58:41 PM UTC
End time: February 27, 2023 7:59:39 PM UTC

```

\section*{odacli list-diagcollections}

Use the odacli list-diagcollections command to list the diagnostics collections.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list all diagnostics collections:
```

odacli list-diagcollections [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-181 Listing all diagnostics collections}

\section*{ID}
```

Description Collection
size Start time End time
-------------------------------------------
-----------------------------------------------------------------------
--------------- ------------------------------ -----------------------------------
3c65bcd3-cd30-4332-88b7-fc25b256db75 Diagnostic collection for job
'DcsAdmin patching' 8.37 MB 2023-03-08 15:37:02
UTC 2023-03-08 15:38:01 UTC
7dd1d951-056c-47b2-ad78-8614d0b3bbd0 Diagnostic collection for job 'VM
winvm1 start' 6.59 MB 2023-03-08 15:37:02
UTC 2023-03-08 15:38:01 UTC

```

\section*{odacli delete-diagcollection}

Use the odacli delete-diagcollection command to delete diagnostics collection data from the appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To delete diagnostics collection:
```

odacli delete-diagcollection -i id [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & (Mandatory) Specifies the diagnostics collection \\
\hline\(--j\) son, \(-j\) & ID to be deleted. \\
\hline-- help, -h & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-182 Deleting a diagnostics collection}
```


# odacli delete-diagcollection -i ID

```

\section*{odacli Job Commands}

Use the odacli list-jobs and odacli describe-job commands to display job details.
- odacli create-jobdata-retention-policy Use the odacli create-jobdata-retention-policy command to create job data retention policy for default DCS jobs and specific auto scheduled jobs.
- odacli create-purge-jobdata-job

Use the odacli create-purge-jobdata-job command to create a job to delete data for default DCS jobs and specific auto scheduled jobs.
- odacli delete-jobdata-retention-policy Use the odacli delete-jobdata-retention-policy command to delete job data retention for default DCS jobs and specific auto scheduled jobs.
- odacli describe-job Use the odacli describe-job command to display details about a specific job, including the job ID, status, tasks, and the job created date and time stamp.
- odacli list-jobs Use the odacli list-jobs command to display a list of jobs, including the job IDs, status, and the job created date and time stamp. The default number of jobs listed is 50 from the earliest to the latest.
- odacli list-pendingjobs

Use the odacli list-pendingjobs command to list all pending jobs.
- odacli list-jobdata-retention-policy

Use the odacli list-jobdata-retention-policy command to list job data retention policy for default DCS jobs and specific auto scheduled jobs.
- odacli list-purge-jobdata-jobs

Use the odacli list-purge-jobdata-jobs command to list purge job data for default DCS jobs and specific auto scheduled jobs.
- odacli list-scheduled-executions

\section*{odacli create-jobdata-retention-policy}

Use the odacli create-jobdata-retention-policy command to create job data retention policy for default DCS jobs and specific auto scheduled jobs.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To create job data retention policy:
```

odacli create-jobdata-retention-policy [-j] [-h] [-w] [-s]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--r e t e n t i o n W i n d o w, ~-w\) & (Optional) Describes the time interval to retain the \\
& job data. Default is 30 days if not specified.
\end{tabular}

\section*{Usage Notes}
- Once a policy is created, an auto scheduled job is created to start purging DCS job records regularly, for example, every day at 4 AM , based on the retention policies you define.

\section*{Example 17-183 Creating a default policy to purge all the jobs and scheduled executions older than 30 days}
```


# odacli create-jobdata-retention-policy

Job details
ID: 36d00489-39b1-425f-81bf-6d6e3bfede8b
Description: set job data retention policy
Status: Created
Created: April 23, 2020 3:32:09 PM PDT
Message:
Task Name Start Time End Time Status
--------------------------------------- ---------------------------------------
---------------------------------- -----------
[root@oda1]\# ./odacli describe-job -i c40c17f0-4185-40fe-a126-30fe1f0e5cdd
Job details
---------------------------------------------------------------------
ID: c40c17f0-4185-40fe-a126-30fe1f0e5cdd
Description: set job data retention policy
Status: Success
Created: April 23, 2020 5:42:28 PM PDT
Message:
Task Name Start Time End Time Status
--------------------------------------- ----------------------------------------
------------------------------------------------
set job data retention policy April 23, 2020 5:42:28 PM PDT April 23,
2020 5:42:28 PM PDT Success

```
```

create auto job data schedule April 23, 2020 5:42:28 PM PDT April 23,
2020 5:42:28 PM PDT Success

```

\section*{Example 17-184 Set up a retention policy of 10 days for the schedule 'archive_log_backup'}
```


# odacli create-jobdata-retention-policy -s 284a22b5-41e6-4be1-

a916-048eac74e076 -w 10 -u Day
Job details
ID: ea68a90e-a8e2-4fc4-a4f1-75461e12c387
Description: set job data retention policy
Status: Created
Created: April 23, 2020 6:22:14 PM PDT
Message:
Task Name Start Time End Time Status
----------------------------------------- ----------------------------------------
------------------------------------ ------------
[root@oda1]\# ./odacli list-jobdata-retention-policy
Schedule Id Retention Window Unit Modified
-------------------- -------------------- ------------------------
------------------------
Default Day April 23, 2020 6:16:59 PM PDT
284a22b5-41e6-4be1-a916-048eac74e076 10 Day April 23, 2020 6:22:14 PM
PDT

```

\section*{odacli create-purge-jobdata-job}

Use the odacli create-purge-jobdata-job command to create a job to delete data for default DCS jobs and specific auto scheduled jobs.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To create job data purge:
```

odacli create-purge-jobdata-job [-j] [-h] [-i] [-o] [-u] [-s]

```

\section*{Parameters}
\begin{tabular}{ll}
Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j o b I d s,-i\) & \begin{tabular}{l}
(Optional) Purges data for given DCS job IDs, \\
delimited by commas.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- olderThan, -o & \begin{tabular}{l}
(Optional) Purges job data older than the \\
specified time. If not specified, use the existing \\
retentionWindow value.
\end{tabular} \\
\hline-- olderThanUnit, -u & \begin{tabular}{l}
(Optional) Describes the unit for the OlderThan \\
option. Possible values are Day | Hour |Minute. If \\
not specified, use the existing retentionWindow \\
value.
\end{tabular} \\
\hline (Optional) Specifies the IDs, delimited by \\
commas, of the scheduled jobs similar to the \\
odacli list-schedules result.
\end{tabular}

\section*{Example 17-185 Creating a job to purge job data}
```


# odacli create-purge-jobdata-job

Job details
------------------------------------------------------------------
ID: e43dbd56-dc7c-4812-b653-0fc3208e0929
Description: purge job data
Status: Created
Created: April 23, 2020 6:27:40 PM PDT
Message:
Task Name Start Time End Time Status
------------------------------------------ ---------------------------------------------
------------------------------------ ------------
[root@oda1]\# odacli describe-job -i e43dbd56-dc7c-4812-b653-0fc3208e0929
Job details
---------------------------------------------------------------------
ID: e43dbd56-dc7c-4812-b653-0fc3208e0929
Description: purge job data
Status: Success
Created: April 23, 2020 6:27:40 PM PDT
Message: Purged 21 metadata records and 10 files. Purge policies are:
Purge all jobs and scheduled executions older than 30 Days
Purge scheduled executions for ID:284a22b5-41e6-4be1-a916-048eac74e076 older
than 10 Day
Task Name Start Time End Time Status
------------------------------------------ -------------------------------------------
------------------------------------ ------------
purge job data April 23, 2020 6:27:40 PM PDT April 23, 2020 6:27:40 PM
PDT Success

```

Example 17-186 Purging job data older than 5 hours, including all jobs and scheduled executions related records
```


# odacli create-purge-jobdata-job -o 5 -u Hour

Job details
-------------------------------------------------------------------
ID: 4d065c96-a8eb-4974-a446-573b5ad3cb95

```
```

Description: purge job data
Status: Created
Created: April 23, 2020 1:55:59 PM PDT
Message:
Task Name Start Time End Time Status
------------------------------------ ------------
[root@oda1]\# odacli describe-job -i 4d065c96-a8eb-4974-a446-573b5ad3cb95
Job details
--------_
ID: 4d065c96-a8eb-4974-a446-573b5ad3cb95
Description: purge job data
Status: Success
Created: April 23, 2020 1:55:59 PM PDT
Message: Purged 242 metadata records and O files. Purge policies are:
Purge all jobs and scheduled executions older than 5 Hour
Task Name Start Time End Time Status

```
```

------------------------------------ ------------

```
------------------------------------ ------------
purge job data April 23, 2020 1:55:59 PM PDT April 23, 2020
purge job data April 23, 2020 1:55:59 PM PDT April 23, 2020
1:55:59 PM PDT Success
```

1:55:59 PM PDT Success

```

\section*{Example 17-187 Purging job data for multiple jobs}
```


# odacli create-purge-jobdata-job -i 87a926cd-a243-49e0-

ba02-9d8968e1de1e,0e2a38c0-041a-41d8-91ad-7f9f7c646f12
Job details
--------------------------------------------------------------------
ID: 217cbdbf-15a5-47d3-9582-3f26d6b5eebf
Description: purge job data
Status: Created
Created: April 23, 2020 2:01:25 PM PDT
Message: Task Name Start Time End Time Status
---------------------------------- ------------
[root@oda1]\# odacli describe-job -i 217cbdbf-15a5-47d3-9582-3f26d6b5eebf
Job details
---------------------------------------------------------------------------
ID: 217cbdbf-15a5-47d3-9582-3f26d6b5eebf
Description: purge job data
Status: Success
Created: April 23, 2020 2:01:25 PM PDT
Message: Purged 11 metadata records and 0 files. Purge policies are:
Purge job with ID:87a926cd-a243-49e0-ba02-9d8968e1de1e
Purge job with ID:0e2a38c0-041a-41d8-91ad-7f9f7c646f12
Task Name Start Time End Time Status
------------------------------------------------

```
```

purge job data April 23, 2020 2:01:25 PM PDT April 23, 2020
2:01:25 PM PDT
Success

```

\section*{Example 17-188 Purging job data for specific job data schedules older than 5 days}
```


# odacli create-purge-jobdata-job -s 39cc86d6-30c2-4744-bfbc-

e62535e2aa67,31b3a83b-76ca-44d3-9268-b4dac948e217 -o 5 -u Day
Job details
ID: be839a81-a79b-43ce-bf70-c8aba1a9cc91
Description: purge job data
Status: Created
Created: April 23, 2020 2:44:54 PM PDT
Message:
Task Name Start Time End Time Status
----------------------------------------- ---------------------------------------------
------------------------------------ ------------
[root@oda1]\# ./odacli describe-job -i be839a81-a79b-43ce-bf70-c8aba1a9cc91
Job details
ID: be839a81-a79b-43ce-bf70-c8abala9cc91
Description: purge job data
Status: Success
Created: April 23, 2020 2:44:54 PM PDT
Message: Purged 0 metadata records and 0 files. Purge policies are:
Purge scheduled executions for ID:39cc86d6-30c2-4744-bfbc-e62535e2aa67 older
than 5 Day
Purge scheduled executions for ID:31b3a83b-76ca-44d3-9268-b4dac948e217 older
than 5 Day
Task Name Start Time End Time Status
---------------------------------------- ----------------------------------------
---------------------------------- ------------
purge job data April 23, 2020 2:44:54 PM PDT April 23, 2020 2:44:54 PM PDT
Success

```

\section*{odacli delete-jobdata-retention-policy}

Use the odacli delete-jobdata-retention-policy command to delete job data retention for default DCS jobs and specific auto scheduled jobs.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To delete job data retention:
```

odacli delete-jobdata-retention-policy [-j] [-h][-s]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline\(--h e l p,-h\) & (Optional) Displays help for using the command. \\
\hline\(--s c h e d u l e I d s,-s\) & \begin{tabular}{l}
(Optional) Specifies the IDs applied by the job \\
data retention policy. If not supplied, delete all the \\
existing policies.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-189 Deleting the job data retention policies}
```


# odacli delete-jobdata-retention-policy

Job details
ID: ab819d57-9e35-4f55-bd5e-d26fc6372448
Description: delete job data retention policy
Status: Running
Created: April 23, 2020 7:34:05 PM PDT
Message:
Task Name Start Time End Time Status
---------------------------------------- ---------------------------------------
---------------------------------- ----------
remove job data retention policy entries April 23, 2020 7:34:05 PM
PDT April 23, 2020 7:34:05 PM PDT Running
[root@oda1]\# odacli describe-job -i ab819d57-9e35-4f55-bd5e-d26fc6372448
Job details
-------------------------------------------------------------------
ID: ab819d57-9e35-4f55-bd5e-d26fc6372448
Description: delete job data retention policy
Status: Success
Created: April 23, 2020 7:34:05 PM PDT
Message:
Task Name Start Time End Time Status

remove job data retention policy entries	April 23, 2020 7:34:05 PM
PDT April 23, 2020 7:34:05 PM PDT	Success
remove auto job data schedule	April 23, 2020 7:34:05 PM
PDT April 23, 2020 7:34:05 PM PDT	Success

[root@oda1]\# odacli list-jobdata-retention-policy
DCS-10032:Resource JobDataRetentionPolicy is not found.

```

\section*{odacli describe-job}

Use the odacli describe-job command to display details about a specific job, including the job ID, status, tasks, and the job created date and time stamp.

File Path
/opt/oracle/dcs/bin/odacli

\section*{Syntax}

To view a specific job, status, and tasks:
```

    odacli describe-job -i id [-e] [-n parent_task] [-sd sorted_by_duration] [-
    s status] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--i d,-i\) & \begin{tabular}{l}
(Mandatory) Identifies the job. To get the job identifier (jobid), run the \\
list-jobs command.
\end{tabular} \\
\hline-- ecr, -e & (Optional) Specifies to display the error correlation report. \\
\hline-- number, -n & (Optional) Specifies the number of parent tasks. \\
\hline-- sort-duration, -sd & \begin{tabular}{l}
(Optional) Sorts tasks by duration, either ascending (asc) or \\
descending (desc).
\end{tabular} \\
\hline\(--s t a t u s,-s\) & \begin{tabular}{l}
(Optional) Specifies the status of the task, such as running, failure, \\
success.
\end{tabular} \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-190 Displaying Details for a Job}

To display details of a specific job with job ID 02df22c8-c21f-4162-8265-97f7826c243a:
```


# odacli describe-job -i 02df22c8-c21f-4162-8265-97f7826c243a

```

\section*{Example 17-191 Viewing Error Correlation Report}

To view error correlation report using ODACLI command:
```


# odacli describe-job -i cb6faa85-d2b4-441a-864a-17a8532cf78d --ecr

ODA Assistant - Error Correlation report
----------------------------------------
Failed job ID: cb6faa85-d2b4-441a-864a-17a8532cf78d
Description: Database service deletion with DB name: zdjGIEn with
id : 4ab1da3e-3918-4acf-bb7f-5529e750849f
Start Time: 2023-04-14 07:24:37
End Time: 2023-04-14 07:26:59
EC report path:
/opt/oracle/dcs/da/da_repo/0ae47ffd-5641-47ed-b66f-f674a6c1fb1d.json

```

Failed Task Messages

[Database service deletion with DB name: zdjGIEn with id : 4ab1da3e-3918-4acf-bb7f-5529e750849f] - DCS-10001:Internal error encountered: Failed to delete: RECO/ZDJGIENU for the database: zdjGIEn.
oda1 Log Messages

DCS Agent
~~~~~~~~
Error Logs
==========
[Kill Pmon Process] - No process running for database : zdjGIEnU
[Database Files Deletion] - Failed to delete directory RECO/ZDJGIENU due
to error: ORA-29261: bad argument
[Database Files Deletion] - ORA-15178: directory 'ZDJGIENU' is not empty; cannot drop this directory
[Database Files Deletion] - ORA-15028: ASM file '+RECO.431.1134101713'
not dropped; currently being accessed
[Database Files Deletion] - ORA-06512: at "SYS.X\$DBMS_DISKGROUP", line 666
[Database Files Deletion] - ORA-06512: at line 2 (DBD ERROR: OCIStmtExecute)
[Database Files Deletion] - Failed to delete: RECO/ZDJGIENU for the database: zdjGIEn
[Database Service deletion for 4ab1da3e-3918-4acf-bb7f-5529e750849f] -DCS-10001:Internal error encountered: Failed to delete: RECO/ZDJGIENU for the database: zdjGIEn.

Error code - DCS-10001
Cause: An internal error occurred.
Action: Contact Oracle Support for assistance.
RHP Error Logs
==========
[jobid-cb6faa85-d2b4-441a-864a-17a8532cf78d] -
[BatchMoveOpImpl.getMoveDBStateInfo:9195] attempt to fetch metadata from repos failed with EntityNotExistsException : PRGR-110 : Repository object "dbsa03b123e2;;;/u01/app/oracle/product/19.0.0.0/dbhome_1" of type "MOVE" does not exist. Error code - PRGR-110 Cause: The specified repository object does not exist in the repository database. Action: Specify the correct repository object name.
[jobid-cb6faa85-d2b4-441a-864a-17a8532cf78d] -
[GridHomeFactoryImpl.getTempLocation:1437] Exception node : PRCR-1001 : Resource ora.rhpserver does not exist

Error code - PRCR-1001
Cause: An attempt was made to operate on a resource that does not exist.

Action: Check the resource using the command 'srvctl config <object>' and if the resource does not exist, then create it using the command 'srvctl add <object>'.

Release Notes
-------------
No matching results were found.

Documentation
-------------
1. Deleting a Database

Abstract - Use the Oracle Appliance Manager Browser User Interface to delete an Oracle database.

Link -
https://domainname:7093/docs/cmtxn/managing-databases-oda.html\#GUID-D85D987A-1D9E-4615-B9DB-65B4B393B1D1

\section*{odacli list-jobs}

Use the odacli list-jobs command to display a list of jobs, including the job IDs, status, and the job created date and time stamp. The default number of jobs listed is 50 from the earliest to the latest.

File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list jobs and view job details and status:
```

    odacli list-jobs [-all] [-ec] [-j] [-h] [-o] [-f] [-d] [-t] [-hd] [-tl] [-
    k] [-s] [-l]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --all-jobs, -all & (Optional) Displays jobs created by both DCS and error correlation framework. \\
\hline --ec-jobs, -ec & (Optional) Displays jobs created by the error correlation framework. \\
\hline \multirow[t]{3}{*}{--for, -o} & (Optional) Describes a job created on a specific date. In the format YYYY-MM-DD, such as 2018-01-01. \\
\hline & Example: \\
\hline & \# odacli list-jobs -o 2018-08-09 \\
\hline \multirow[t]{3}{*}{--from, -f} & (Optional) Describes a job created since a specific date. In the format YYYY-MM-DD or YYYY-MM-DD HH:mm:ss, such as 2018-01-01 or 2018-01-01 01:00:00. \\
\hline & Examples: \\
\hline & ```
# odacli list-jobs -f 2018-08-27
# odacli list-jobs -f "2018-08-27
03:00:00"
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --head, -hd & \begin{tabular}{l}
(Optional) Describes the maximum number of older jobs to be displayed, values can be 1 to 200. Example: \\
odacli list-jobs -hd 10
\end{tabular} \\
\hline --to, -t & \begin{tabular}{l}
(Optional) Describes a job created ahead of a specific date. In the format YYYY-MM-DD or YYYY-MM-DD HH:mm:ss, such as 2018-01-01 or 2018-01-01 01:00:00. \\
Example: \\
\# odacli list-jobs -t 2018-08-07
\end{tabular} \\
\hline --last, -1 & (Optional) Describes jobs created from last ' \(n\) ' time unit - where n can be any integer and time unit can be d for days, h for hours or m for minutes. \\
\hline --tail, -tl & \begin{tabular}{l}
(Optional) Describes the maximum number of latest jobs to be displayed, values can be 1 to 200. \\
Example: \\
\# odacli list-jobs -tl 10
\end{tabular} \\
\hline --keyword, -k & \begin{tabular}{l}
(Optional) Specifies the keyword that the job description contains. You can specify multiple keywords, for example, \(\mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b}\). \\
Example: \\
\# odacli list-jobs -k OraDB
\end{tabular} \\
\hline --status, -s & \begin{tabular}{l}
(Optional) Specifies the status of the job, such as created, scheduled, running, failure, success, internalerror. \\
Example: \\
\# odacli list-jobs -s success
\end{tabular} \\
\hline --describe-job, -d & (Optional) Specifies the description of the filtered job, if the filter returns a single job. \\
\hline --json, -j & (Optional) Displays JSON output. \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-192 Displaying a List of Jobs}

To display a list of jobs:
\# odacli list-jobs
```

ID Description Created
---------------------------- --------------------------
-----------------------------
a6084067-72a1-4625-bea7-efd Provisioning service creation Jun 2, 2018
10:19:23 AM
(Continued)
Status
-------
Success

```

\section*{Example 17-193 Displaying Specified Number of Older Jobs}

To display a specified number of older jobs:
```


# odacli list-jobs -hd 5

ID Description Created Status
--- --- --
643c6186-a667-43d7-847f-d756a96fa072 Create detailed Backup Report
August 5, 2018 12:36:26 AM UTC Success
f29cb82c-6150-487d-aaff-52d65f6ab972 Create recovery-pitr : time '08/05/2018
07:16:12'
for db : igIyoz August 5, 2018 1:01:39 AM UTC Success
cfe19337-ab2f-4ef3-85b5-24601ba31be2 Create detailed Backup Report
August 5, 2018 1:17:46 AM UTC Success
3749b5e2-240e-4df5-b3c1-32d345243b25 Create detailed Backup Report
August 5, 2018 2:01:07 AM UTC Success
64828852-bb16-4f06-aca9-4bdf9fe7b6f2 Create regular-5 Backup with TAG-
iD5UNjBZ8HN2FYL
for Db:igIyoz August 5, 2018 2:14:19 AM UTC Success

```

\section*{Example 17-194 Displaying Jobs in a Date Range}

To display jobs created within a time frame:
```


# ./odacli list-jobs -f 2018-08-07 -t 2018-08-08

ID Description Created Status
--- --- --
1fc5ef97-a9db-49b2-9664-7c551bd005f4 Authentication key update for test_user
August 7, 2018 12:56:58 AM UTC Success
e24f86cf-bb2e-4ebe-84e0-da5cedb27ad4 Provisioning service creation August 7,
2018 1:00:54 AM UTC Success
7f67efd6-cce5-47b4-8dc4-fdb732491f99 CPU cores service update August 7, 2018
1:41:05 AM UTC Success
0ae9a312-bac8-43be-8a64-5a12c24c2a02 SSH keys update August 7, 2018 1:42:59
AM UTC Success
af41fdc1-87ff-46cd-bc41-26615e115ae7 SSH key delete August 7, 2018 1:44:56 AM
UTC Success
79e4cbb0-b474-48ab-9e04-d3d602bc0ed2 DcsCli patching August 7, 2018 1:50:18
AM UTC Success

```
edd55e7d-f81f-4a10-942d-1121aef0bff3 DcsCli patching August 7, 2018 1:50:32 AM UTC Success acc22c60-3476-4566-8faa-4d36b116eded create backup
config:aaaaaaaaaaaaaaaaaaaaaaaaaaaaa August 7, 2018 2:01:46 AM UTC Success d89efedf-9110-429a-a3b2-ccd6a53f8564 Database Home OraDB12201_home2 creation with version :12.2.0.1 August 7, 2018 2:36:05 AM UTC Success 2a5532ae-41fa-47c2-bc90-010a5f26d6b2 Database service creation with db name: my122 August 7, 2018 3:52:38 AM UTC Success c4e533e9-c596-478f-92db-2f11f1384075 Discover Components : all August 7, 2018 4:07:09 AM UTC Success
149e89b5-27d3-4c7c-9c03-f029ca3dd495 Discover Components : all August 7, 2018 4:08:45 AM UTC Success
21d4c37b-49ad-48dd-a1db-1f25d9288312 Database Home OraDB11204_home1 creation with version :11.2.0.4 August 7, 2018 4:19:32 AM UTC Success
b61dbbca-edc1-4a4a-9db2-82b0bdcb64e6 Database service deletion with db name: myTestDb with id : 6400c81d-5837-480c-b4a1-7c01591ee144 August 7, 2018 4:24:50 AM UTC Success d4a104df-5796-4e37-9173-82f0e263d642 create backup config:bkfgd August 7, 2018 4:28:54 AM UTC Success
a121d40b-f33b-47a4-8fc6-4e3b84173f44 Database service creation with db name: my112 August 7, 2018 6:51:13 PM UTC Success 42dd661f-9ba0-4877-ace9-39d3f212c071 Discover Components : all August 7, 2018 7:12:56 PM UTC Success
2f648f5a-c9c5-42ec-adb0-98cf6497c89e Discover System Components : system August 8, 2018 3:28:12 AM UTC Success
a5755f43-509d-4d4c-b7ef-9f99660c4de7 DB Home Patching: Home Id is
97df26b3-42f2-4189-805b-82d1b38737d0 August 8, 2018 3:52:08 AM UTC Success 79b0e697-065f-4630-a524-8d072a4e139a Database Home OraDB12102_home1 creation with version :12.1.0.2 August 8, 2018 4:34:30 AM UTC Success
112b75bc-3512-4c28-a479-3e0317eb0dc4 Database service creation with db name: mynew121 August 8, 2018 8:02:51 AM UTC Failure
09f56fb0-1e91-4b02-a9b8-5add11a8da32 Database service creation with db name: my121a August 8, 2018 9:13:01 AM UTC Success
5633ded9-07ea-4bf9-9533-31eb65789fe7 Database service deletion with db name: mynew121 with id : 24be4362-16c8-476f-903a-f6f2ef59f5e4 August 8, 2018 9:24:31 AM UTC Success
458d1c45-02dc-456c-ae88-5da613faaa66 Database service creation with db name: mynew121 August 8, 2018 9:27:31 AM UTC Success
f178f378-a9d7-4d5c-b6f5-6f62ea4e05bb Database service deletion with db name: myTestDb with id : ef50387b-0c62-4446-b210-f8d070e2a043 August 8, 2018 9:40:43 AM UTC Success
7fab740f-a711-466a-ba6d-dd5643374c28 Database service deletion with db name: myTestDb with id : 6632a083-558a-4eb4-8c2b-af0710179980 August 8, 2018 9:41:04 AM UTC Success
3121529d-2b9d-4bbe-bf58-996c2cf46996 Database service creation with db name: mydss August 8, 2018 9:42:06 AM UTC Success 3d0a9261-19d7-42bb-8b92-00fcc4f8c41e Discover Components : db August 8, 2018 10:17:22 AM UTC Success

\section*{odacli list-pendingjobs}

Use the odacli list-pendingjobs command to list all pending jobs.
File Path
/opt/oracle/dcs/bin/odacli
Syntax
odacli list-pendingjobs [-j] [-h]

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-195}
\# odacli list-pendingjobs

\section*{odacli list-jobdata-retention-policy}

Use the odacli list-jobdata-retention-policy command to list job data retention policy for default DCS jobs and specific auto scheduled jobs.

File Path
/opt/oracle/dcs/bin/odacli

\section*{Syntax}

To list jobs and view job details and status:
```

odacli list-jobdata-retention-policy [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-196 Listing all job retention policies}
\# odacli list-jobdata-retention-policy
Schedule Id Retention Window Unit Modified
\(\qquad\)
```

Default 30 Days April 23, 2020 6:16:59 PM PDT
284a22b5-41e6-4be1-a916-048eac74e076 10 Days April 23, 2020 6:22:14
PM PDT

```

\section*{odacli list-purge-jobdata-jobs}

Use the odacli list-purge-jobdata-jobs command to list purge job data for default DCS jobs and specific auto scheduled jobs.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list job data purge policy:
```

odacli list-purge-jobdata-jobs [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Usage Notes}

The command describes the files that are purged, the purged count, the purged file size, and the time of purge.

\section*{Example 17-197 Listing history, statistics, and rules for job data purge jobs}
```


# odacli list-purge-jobdata-jobs

Purge By Job Purged Object Count
Size Type Purged Time
---------- --------------- -----------------------
4d065c96-a8eb-4974-a446-573b5ad3cb95 TaskReport
102 Metadata April 23, 2020 1:55:59 PM PDT
4d065c96-a8eb-4974-a446-573b5ad3cb95 ServiceJobReport
24 Metadata April 23, 2020 1:55:59 PM PDT
4d065c96-a8eb-4974-a446-573b5ad3cb95 LogCleanupSummary
2 Metadata April 23, 2020 1:55:59 PM PDT
4d065c96-a8eb-4974-a446-573b5ad3cb95 JobExecutionResource
93 Metadata April 23, 2020 1:55:59 PM PDT
4d065c96-a8eb-4974-a446-573b5ad3cb95 JobDataPurgeResult
21 Metadata April 23, 2020 1:55:59 PM PDT

```

\section*{odacli list-scheduled-executions}

Use the command odacli list-scheduled-executions to display a list of jobs that were executed.

File Path
SORACLE_HOME/opt/oracle/dcs/bin/odacli
Syntax
```

odacli list-scheduled-executions [-e] [-1] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- executionid, -e & (Optional) Displays the execution ID. \\
\hline-- scheduleid, \(-i\) & (Optional) Displays the Schedule ID. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-198 Displaying a List of Scheduled and Executed Jobs}

Display a list of scheduled tasks, the status, and the date and time that the task was executed. In the following example, three (3) scheduled tasks were executed. One task, Schedule ID 04b5750c-0d13-42cf-aba3-85416e8edafb, was executed twice.
\# odacli list-scheduled-executions
```

ID ScheduledId

```
JobId
---------------------------------------------------------------
9890508c-ff6d-4307-972f-7962ec390871 04b5750c-0d13-42cf-
aba3-85416e8edafb
10a33e08-695c-4d13-b970-7dc7215f3cdd
7ee1e2aa-80a8-4297-97f7-365b84bcce4d
4a9e9796-4bed-4df7-af1e-de49362dda97 04b5750c-0d13-42cf-aba3-85416e8edafb

\section*{(Continued)}

Status Executed Time
Executed February 4, 2018 12:00:00 AM UTC
Executed February 4, 2018 12:00:00 AM UTC
Executed February 5, 2018 12:00:00 AM UTC

To learn more about a scheduled backup, run the command odacli list-schedules. The output displays the ID, name, description, and schedule for each task.
```

    # odacli list-schedules
    ID Name
Description
----------------------------------------------------
d136cc72-4a80-4ab8-9f1e-120b995b2794 metastore maintenance

```
```

internal metastore maintenance
04b5750c-0d13-42cf-aba3-85416e8edafb AgentState metastore cleanup
internal agentstateentry metastore maintenance
7ee1e2aa-80a8-4297-97f7-365b84bcce4d backupreport maintenance backup
reports deletion
(Continued)
CronExpression Disabled
----------------------------------------
0 0 0 1/1 * ? * true
0 0 1/1 * ? * false
0 0 1/3 * ? * false

```

\section*{Log Commands}

Use the odacli log commands to specify the options to collect and delete logs.
- odaadmcli manage diagcollect

Use the odaadmcli manage diagcollect command to collect diagnostic logs for Oracle Database Appliance components.
- odacli create-auto-logclean-policy

Use the odacli create-auto-logclean-policy command to create a policy for a job to automatically purge log files for a specified time period when certain criteria are met.
- odacli delete-auto-logclean-policy

Use the odacli delete-auto-logclean-policy command to delete a policy for a job to automatically purge log files for a specified time period when certain criteria are met.
- odacli create-logcleanjob

Use the odacli create-logcleanjob command to create a job to purge log files for a specified time period.
- odacli describe-logcleanjob

Use the odacli describe-logcleanjobcommandto describe a log cleanup job.
- odacli list-auto-logclean-policy

Use the odacli list-auto-logclean-policy command to list the jobs to purge log files.
- odacli list-logcleanjobs

Use the odacli list-logcleanjobs command to list the jobs to purge log files.
- odacli list-logspaceusage

Use the odacli list-logspaceusage command to display the log file usage.

\section*{odaadmcli manage diagcollect}

Use the odaadmcli manage diagcollect command to collect diagnostic logs for Oracle Database Appliance components.

File Path
```

/opt/oracle/oak/bin/odaadmcli

```

\section*{Syntax}

To collect diagnostic logs for components:
```

    odaadmcli manage diagcollect [-h] [--dataMask] [--dataSanitize] [--
    fromTime] [--toTime] [--Components]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --dataMask & (Optional) Masks sensitive data. The default is No. \\
\hline --dataSanitize & (Optional) Sanitizes (redacts) sensitive data. The default is No. \\
\hline --fromTime & (Optional) Specifies the time from when you want to collect data. The timestamp formats can be of the type: mon/dd/yyyy hh:mm:ss, or yyyy-mm-dd hh:mm:ss, or yyyy-mm-ddThh:mm:ss, or yyyy-mm-dd. \\
\hline --toTime & \begin{tabular}{l}
(Optional) Specifies the time till when you want to collect data. The timestamp formats can be of the type: \\
mon/dd/yyyy hh:mm:ss, or yyyy-mm-dd hh:mm:ss, or yyyy-mm-ddThh:mm:ss, or yyyy-mm-dd.
\end{tabular} \\
\hline --Components & \begin{tabular}{l}
(Optional) Specifies the comma-separated list of components for which you want to collect data. The supported values are: \\
all, ips, oda, odalite, dcs, odabackup, odapatching, odadataguard, odaprovisioning, odaconfg, odasystem, odastorage, database, asm, crsclient, dbclient, dbwlm, tns, rhp, procinfo, afd, crs, cha, wls, emagent, oms, ocm, emplugins, em, acfs, install, cfgtools, os, ashhtml, ashtext, awrhtml, awrtext
\end{tabular} \\
\hline --verbose & Displays detailed message. \\
\hline
\end{tabular}

\section*{Usage Notes}

The following types of sensitive information can be redacted using the --dataMask or the -dataSanitize option:
- Host names
- IP addresses
- Database names
- Tablespace names
- Service names
- Ports
- Operating System user names

For example, when the --dataMask option is used, all instances of a sensitive name such as a database name called "payrolldb" are replaced with "*********" in the TFA collection.

For example, when the --dataSanitize option is used, all instances of a sensitive name such as a database name called "payrolldb" are replaced with another string, such as "oCjIN7F8P", in the TFA collection.

Example 17-199 Masking Sensitive Data in Log Collection
```


# /opt/oracle/oak/bin/odaadmcli manage diagcollect --dataMask

DataMask is set as true
TFACTL command is: /opt/oracle/tfa/tfa_home/bin/tfactl
Data mask is set.
Collect data within last }12\mathrm{ hours as default
Please wait for several minutes for the collection to complete.

```

\section*{odacli create-auto-logclean-policy}

Use the odacli create-auto-logclean-policy command to create a policy for a job to automatically purge log files for a specified time period when certain criteria are met.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli create-auto-logclean-policy [-h] [-c] [-o] [-u] [-uMB] [-f] [-uPer]

```

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline --help, -h & (Optional) Displays help for using the command. \\
\hline --components, -c & (Optional) Specifies the list of components, separated by comma. The values are gil database|dcs For example, gildcs. \\
\hline --olderthan, -o & (Optional) Cleans logs older than specified time interval. Default is 30 if it is not specified. \\
\hline --olderThanUnit, -u & (Optional) Unit for the --olderthan parameter. Default is Day if it is not specified. \\
\hline --freeSpaceBelowPercentage, -f & Starts purge when free disk space is below the specified number of percentage of the total partition size. Valid range is 20-50. Default is 20 . \\
\hline --usageOverMB, -uMB & Starts purge when log usage is over the specified number of MB. Valid range is \(10 \%-50 \%\) of partition size. \\
\hline --usageOverPercentage, -uPer & Starts purge when log usage is over the specified number of percentage of total partition space. Valid range is \(10-50\). \\
\hline
\end{tabular}

\section*{Example 17-200 Creating Automatic Jobs to Purge Logs}

To create a policy for automatic jobs to purge logs:
```


# odacli create-auto-logclean-policy -c 'dcs' -o 30 -uPer 30

Component UsageOverPercentage freeSpaceBelowPercentage UsageOverMB
OlderThan OlderThanUnit
--------------------- -------------- ------------------------------------------------
-------------
dcs 30
30
Day

```

\section*{odacli delete-auto-logclean-policy}

Use the odacli delete-auto-logclean-policy command to delete a policy for a job to automatically purge log files for a specified time period when certain criteria are met.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli odacli delete-auto-logclean-policy [-c] [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- components, -c & \begin{tabular}{l} 
(Optional) Specifies the list of components, \\
separated by comma. The values are gi \(\mid\) \\
database | dcs For example, gi \(\mid\) dcs.
\end{tabular} \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & \begin{tabular}{l} 
(Optional) Displays JSON output. The default is \\
false.
\end{tabular} \\
\hline
\end{tabular}

\section*{odacli create-logcleanjob}

Use the odacli create-logcleanjob command to create a job to purge log files for a specified time period.

\section*{File Path}
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list jobs and view job details and status:
```

odacli create-logcleanjob [-h] [-c] [-o] [-u]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- components, -c & \begin{tabular}{l} 
(Optional) Specifies the list of components, \\
separated by comma. The values are gi । \\
database | dcs For example, gi, dcs.
\end{tabular} \\
\hline-- olderthan, -o & \begin{tabular}{l} 
(Optional) Cleans logs older than specified time \\
interval. Default is 30 if it is not specified.
\end{tabular} \\
\hline-- unit, -u & \begin{tabular}{l} 
(Optional) Unit for the --olderthan parameter. \\
\\
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-201 Creating Jobs to Purge Logs}

To create jobs to purge logs:
```


# odacli create-logcleanjob

Job details

```
Task Name Start Time End Time Status
-------------
\# ./odacli describe-job -i e03d90b5-41dd-45e0-8b7a-1480d6d7f86f
Job details
    ID: e03d90b5-41dd-45e0-8b7a-1480d6d7f86f
    Description: log file cleanup
    Status: Success
    Created: July 25, 2018 8:06:56 PM UTC
    Message:
```

Task Name Start Time End Time Status
--------------------------------------- --------------------------------------
Clean TFA logs July 25, 2018 8:06:56 PM UTC July 25, 2018 8:06:59 PM UTC
Success
Clean DCS logs July 25, 2018 8:06:56 PM UTC July 25, 2018 8:06:56 PM
UTC Success

```

\section*{odacli describe-logcleanjob}

Use the odacli describe-logcleanjobcommandto describe a log cleanup job.
File Path
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list jobs and view job details and status:
```

odacli describe-logcleanjob -i [-h] [-j]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline\(--i d,-i\) & \begin{tabular}{l} 
Displays the summary of the log cleanup with the \\
specified job ID.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-202 Displaying Log Cleanup Jobs}

To display log cleanup jobs:
```


# odacli describe-logcleanjob -i e03d90b5-41dd-45e0-8b7a-1480d6d7f86f

JobId Files Deleted Size Freed Component Top Path
TimeStamp
_--_-_---_----------- ------
e03d90b5-41dd-45e0-8b7a-1480d6d7f86f 0 0 bytes dcs /opt/oracle/dcs/log July
25, 2018 8:06:56 PM UTC
e03d90b5-41dd-45e0-8b7a-1480d6d7f86f 0 0 bytes gi /u01/app/12.2.0.1/grid
July 25, 2018 8:06:59 PM UTC

```

\section*{odacli list-auto-logclean-policy}

Use the odacli list-auto-logclean-policy command to list the jobs to purge log files.
File Path
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list jobs and view job details and status:
```

odacli list-auto-logclean-policy [-h] [-c]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline-- components, -c & \begin{tabular}{l} 
(Optional) Specifies the list of components, \\
separated by comma. The values are gi \\
databaseldcs For example, gi, dcs.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example 17-203 Listing Jobs to Purge Logs}

To list jobs to purge logs:
```


# odacli list-auto-logclean-policy

Component UsageOverPercentage freeSpaceBelowPercentage UsageOverMB
OlderThan OlderThanUnit
O
-------------------------------------------------------
gi 40 20
0
6 0
Day
database 40 20
0 60 Day
dcs 30 20
0 30 Day

```

\section*{odacli list-logcleanjobs}

Use the odacli list-logcleanjobs command to list the jobs to purge log files.
File Path
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list jobs and view job details and status:
```

odacli list-logcleanjobs [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-204 Listing Jobs to Purge Logs}

To list jobs to purge logs:
```


# odacli list-logcleanjobs

JobId Files Deleted Size Freed Component Top Path TimeStamp
------------------- -------------------a8ef8315-02e8-4979-ab1f-30251818c6eb
0 0 bytes gi /u01/app/12.2.0.1/grid July 25, 2018 7:45:10 PM UTC
e03d90b5-41dd-45e0-8b7a-1480d6d7f86f 0 0 bytes gi /u01/app/12.2.0.1/grid
July 25, 2018 8:06:59 PM UTC
e03d90b5-41dd-45e0-8b7a-1480d6d7f86f 0 0 bytes dcs /opt/oracle/dcs/log
July 25, 2018 8:06:56 PM UTC

```

\section*{odacli list-logspaceusage}

Use the odacli list-logspaceusage command to display the log file usage.
File Path
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}

To list jobs and view job details and status:
```

odacli list-logspaceusage [-c] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- components, -c & Describes the list of components delimited by \\
& comma. The values can be gi \(\mid\) database \(\mid\) dcs. \\
& For example, gi, dcs. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-205 Displaying a List of Logs}

To display log file space usage for a list of components:
```

root@node1 ~]\# odacli list-logspaceusage
Timestamp: January 13, 2022 8:38:32 AM UTC
Node : node1
PartitionFreePercentage
--------------------------------------------------------------------------------
--------------------

dcs	685.00	/dev/mapper/VolGroupSys-LogVolOpt	0.76	84.00
gi	2293.76	/dev/mapper/VolGroupSys-LogVolU01	1.63	79.00
database	744.14	/dev/asm/odabase n0-159	7.27	83.00

Node : node2
-----------------------------------
Component Size(MB) Partition LogUsagePercentage
PartitionFreePercentage
-----------------------------------------------------------------------------------
----------------------
dcs 174.00 /dev/mapper/VolGroupSys-LogVolOpt 0.19 85.00
gi 1863.68 /dev/mapper/VolGroupSys-LogVolU01 1.32 79.00
database 299.36 /dev/asm/odabase_n1-159 2.92 90.00

```

\section*{odacli Oracle Auto Service Request Commands}

Use the Oracle Auto Service Request (Oracle ASR) commands to configure, update, test, and delete Oracle ASR on the system.
- odacli configure-asr

Use the odacli configure-asr command to configure Oracle Auto Service Request (Oracle ASR) after deploying the appliance.
- odacli describe-asr
- odacli delete-asr
- odacli export-asrconfig
- odacli modify-asr
- odacli test-asr

\section*{odacli configure-asr}

Use the odacli configure-asr command to configure Oracle Auto Service Request (Oracle ASR) after deploying the appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```

odacli configure-asr -u asr_usr [-i asr_mgr_ip] [-e asr_type] [-p] [-t
proxy_port] [-r proxy_server] [-y proxy_usr] [-hp HTTPS_port] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline- -username, -u & \begin{tabular}{l} 
Specifies the Oracle ASR user name. The user \\
name is the My Oracle Support user name under \\
which the server is registered.
\end{tabular} \\
--asrtype, -e \{internal | external\} & \begin{tabular}{l} 
Specifies the Oracle ASR Configuration Type. The \\
default is internal.
\end{tabular} \\
\hline-- https-port, -hp & \begin{tabular}{l} 
(Optional) Specifies the HTTPS port for Oracle \\
ASR Manager. The default port is 16162.
\end{tabular} \\
\hline-- proxyport, -t & \begin{tabular}{l} 
(Optional) Specifies the port on which Oracle ASR \\
must be configured.
\end{tabular} \\
\hline-- proxyserver, -r & \begin{tabular}{l} 
(Optional) Specifies the proxy server address that \\
can enable connect to My Oracle Support.
\end{tabular} \\
\hline-- proxyuser, -y & \begin{tabular}{l} 
(Optional) Specifies the proxy user name needed \\
to authenticate the proxy server.
\end{tabular} \\
\hline- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- All log files for Oracle ASR are located in the /var/opt/asrmanager/log/ directory.
- To configure an external Oracle ASR Manager, you must define the Oracle ASR

Configuration Type as external (-e external). For example, odacli configure-asr -e external.

\section*{Example 17-206 Configuring Oracle ASR with a Proxy Server}

This example configures Oracle ASR for user name user@example.com. An HTTPS port 16165 is defined.
```


# odacli configure-asr -u user@example.com -hp 16165

Enter ASR user's password:
Retype ASR user's password:
Job details

```

    ID: 2e6244e5-41e3-46cf-bd7a-43098dd071d8
    Description: Configure ASR
    Status: Success
    Created: September 5, 2023 2:08:56 PM CST
    Message:
Task Name Start Time
\begin{tabular}{|c|c|c|c|c|c|}
\hline Modify JavaExec Path & September & 2023 & 2:08:57 & PM & CST \\
\hline September 5, 2023 2:08:57 PM CST & Success & & & & \\
\hline Install ASR & September & 2023 & 2:08:57 & PM & CST \\
\hline September 5, 2023 2:10:13 PM CST & Success & & & & \\
\hline Registering ASR Manager & September & , 2023 & 2:10:14 & PM & CST \\
\hline September 5, 2023 2:10:22 PM CST & Success & & & & \\
\hline Creating ASR configuration folders & September & , 2023 & 2:10:22 & PM & CST \\
\hline September 5, 2023 2:10:22 PM CST & Success & & & & \\
\hline Enable HTTPS for ASR & September & 2023 & 2:10:22 & PM & CST \\
\hline September 5, 2023 2:10:46 PM CST & Success & & & & \\
\hline Importing ASR certificate into DCS & September & 2023 & 2:10:46 & PM & CST \\
\hline September 5, 2023 2:10:48 PM CST truststore & Success & & & & \\
\hline Registering Asset: ODA Host & September & , 2023 & 2:10:48 & PM & CST \\
\hline September 5, 2023 2:10:48 PM CST & Success & & & & \\
\hline ASR assets activation & September & , 2023 & 2:10:48 & PM & CST \\
\hline September 5, 2023 2:10:49 PM CST & Success & & & & \\
\hline Remove AsrConfBackup File & September & , 2023 & 2:10:55 & PM & CST \\
\hline September 5, 2023 2:10:55 PM CST & Success & & & & \\
\hline
\end{tabular}

\section*{Example 17-207 Configuring an External Oracle ASR}

This example configures Oracle Database Appliance to use an external Oracle ASR instance.
```


# odacli configure-asr -e External

Enter ASR user's password:
Retype ASR user's password:
Job details

```


\section*{odacli describe-asr}

Use the odacli describe-asr command to display Oracle Auto Service Request (Oracle ASR) configuration details.

File Path
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

describe-asr [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-208 Displaying Oracle ASR Details for ASR Type Internal}
```


# odacli describe-asr

ASR details
--------------------------------------------------------------------
ID: e0e31043-c312-4371-8301-e62642ef8a4a
Name: ASR
ASR Type: Internal
ASR Manager IP : 10.32.202.13
ASR Manager username: username@example.com
HTTPS port number: 16164
State: CONFIGURED
Created: September 3, 2023 4:02:38 AM UTC
Updated: September 3, 2023 4:03:32 AM UTC

```

\section*{odacli delete-asr}

Use the odacli delete-asr command to remove the Oracle Auto Service Request (Oracle ASR) configuration from the system.

File Path
```

\$ORACLE_HOME/opt/oracle/dcs/bin/odacli
Syntax

# odacli delete-asr [-h]

```

\section*{Parameters}
\begin{tabular}{ll} 
Parameter & Description \\
\hline\(--h e l p,-h\) & (Optional) Displays help for using the command. \\
\hline Example 17-209 Deleting Oracle ASR From the System \\
& \\
\# odacli delete-asr \\
\{ \\
"jobId" : "5d70bd17-ec4a-48da-8196-1364105db99d", \\
"status" : "Running", \\
"message" : null, \\
"reports" : [ ], \\
"createTimestamp" : 1469409622451, \\
"description" : "Delete ASR", \\
"updatedTime" : 1469409622458 \\
\}
\end{tabular}

\section*{odacli export-asrconfig}

Use the odacli export-asrconfig command to export the internal Oracle ASR Manager configuration files into a zip. The generated zip file can be used to configure the external Oracle ASR Manager on another Oracle Database Appliance.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

Syntax
```

odacli export-asrconfig [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j\) son, \(-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Example 17-210 Exporting the Internal Oracle ASR Configuration}
```


# odacli export-asrconfig

Job details
--------------------------------------------------------------------
ID: 7adb6cdc-31b8-42a4-83ac-a866307329fc
Description: Export ASR Config
Status: Created
Created: September 4, 2023 6:11:14 PM UTC
Message: Run Update repository with the zip /opt/oracle/asr/
asrConfiguration/ASRConfiguration.zip in the External ASR host once the
current job is successful

```

Task Name Node Name Start Time End Time Status
\(\qquad\)
\(\qquad\)

\section*{odacli modify-asr}

Use the odacli modify-asr command to make changes to Oracle Auto Service Request (Oracle ASR) configuration details after deploying the appliance.

\section*{File Path}
/opt/oracle/dcs/bin/odacli

\section*{Syntax}
```

odacli modify-asr -u username [-r proxyserver] [-t proxyport] [-y proxyuser] -
e [internal|external][-hp HTTPS_port] [-j] [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- username, -u & \begin{tabular}{l} 
Defines the Oracle ASR user name. The user \\
name is the My Oracle Support user name under \\
which the server is registered.
\end{tabular} \\
-- asrtype, -e [internal | external] & \begin{tabular}{l} 
Defines the Oracle ASR configuration type. The \\
default is internal.
\end{tabular} \\
\hline-- https-port, -hp & \begin{tabular}{l} 
(Optional) Specifies the HTTPS port for Oracle \\
ASR Manager. The default port is 16162.
\end{tabular} \\
\hline-- proxyport, -t & (Optional) Defines the proxy server port. \\
\hline-- proxyserver, -r & (Optional) Defines the proxy server address. \\
\hline-- proxyuser, -y & (Optional) Defines the proxy user name needed to \\
& authenticate the proxy server. \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline\(--j s o n,-j\) & (Optional) Displays JSON output. \\
\hline
\end{tabular}

\section*{Usage Notes}
- Enter the ASR user password during Oracle ASR configuration.
- All log files for Oracle ASR are located in the /var/opt/asrmanager/log/directory.
- You cannot use the modify-asr command to change the Oracle ASR type. For example, from internal to external. To change the Oracle ASR type, delete the existing configuration using the odacli delete-asr and then re-configure Oracle ASR using the odacli configure-asr command.
- You cannot modify an external Oracle ASR Manager using the odacli modify-asr command. To modify external ASR, you must delete the existing Oracle ASR configuration and reconfigure Oracle ASR using the odacli configure-asr command. Before running the odacli configure-asr command, you must update the repository with the modified Oracle ASR Manager configuration zip file.

\section*{Example 17-211 Modifying Oracle ASR to use a New Proxy Server}

This example updates Oracle ASR for user name scott.tiger@example.com. The password is not defined in the command-line. You are prompted to enter the password during configuration. The proxy server is updated to www-proxy2.example.com.
```


# odacli modify-asr -u scott.tiger@example.com --proxyserver www-

proxy2.example.com --proxyport 80
Enter ASR user's password:
Retype ASR user's password:
Job details
-----------------------------------------------------------
ID: 79cb2baa-1644-45c5-a004-a303e3111807
Description: Update ASR
Status: Created
Updated: April 8, 2024 9:53:54 AM PST
Message:
Task Name Start Time End Time Status

```

\section*{odacli test-asr}

Use the odacli test-asr command to test the Oracle Auto Service Request (Oracle ASR) configuration. When the command is run, an email alert is sent to each host and Oracle ILOM registered with Oracle ASR Manager.

\section*{File Path}
```

/opt/oracle/dcs/bin/odacli

```

\section*{Syntax}
```


# odacli test-asr [-h]

```

\section*{Parameters}
\begin{tabular}{ll}
\hline Parameter & Description \\
\hline-- help, -h & (Optional) Displays help for using the command. \\
\hline
\end{tabular}

\section*{Example 17-212 Testing the Oracle ASR Configuration}
```


# odacli test-asr

Job details
---------------------------------------------------------------------
ID: 51522c07-1b32-4874-9bc7-bbee5885f1e5
Description: Test ASR
Status: Success
Created: October 20, 2022 1:02:49 PM UTC
Message:

Status
---------- --------------------------------
-------
Test ASR October 20, 2022 1:02:50 PM UTC October 20, 2022 1:02:50 PM UTC Success

## Adaptive Classification and Redaction (ACR) Commands

Understand Adaptive Classification and Redaction (ACR) commands.

- odacli describe-acr

Use the odacli describe-acr command to check the status of ACR.

- odacli enable-acr

Use the odacli enable-acr command to enable ACR across all nodes, causing redaction of files during Oracle Trace File Analyzer diagnostic collections to occur.

- odacli redact-acr Use the odacli redact-acr command to enable ACR across all nodes, causing redaction of files during Oracle Trace File Analyzer diagnostic collections to occur.
- odacli list-acr

Use the odacli list-acr command to print reverse map of sanitized entities.

- odacli disable-acr Use the odacli disable-acr command to disable ACR across all nodes. Redaction of files during Oracle Trace File Analyzer diagnostic collections, then, does not occur.


## odacli describe-acr

Use the odacli describe-acr command to check the status of ACR.
File Path

```
/opt/oracle/dcs/bin/odacli
```


## Syntax

```
odacli describe-acr [-j] [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.
$--j$ son, $-j$	(Optional) Displays JSON output.

## Example 17-213

```
# odacli describe-acr
```


## odacli enable-acr

Use the odacli enable-acr command to enable ACR across all nodes, causing redaction of files during Oracle Trace File Analyzer diagnostic collections to occur.

File Path
/opt/oracle/dcs/bin/odacli
Syntax
odacli enable-acr [-j] [-h]

## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.
$--j$ son, $-j$	(Optional) Displays JSON output.

## Example 17-214

\# odacli enable-acr

## odacli redact-acr

Use the odacli redact-acr command to enable ACR across all nodes, causing redaction of files during Oracle Trace File Analyzer diagnostic collections to occur.

File Path

```
/opt/oracle/dcs/bin/odacli
```

Syntax

```
odacli redact-acr -i path_name -m mode [-j] [-h]
```


## Parameters

Parameter	Description
-- inpath, -i	(Required) Specifies the path of input file to be redacted.
-- mode, -m	(Required) Specifies the redaction mode. The values can be   mask or sanitize.
-- help, -h	(Optional) Displays help for using the command.
$--j$ jon, $-j$	(Optional) Displays JSON output.

## Example 17-215

\# odacli redact-acr -i path_name -m sanitize

## odacli list-acr

Use the odacli list-acr command to print reverse map of sanitized entities.
File Path

```
/opt/oracle/dcs/bin/odacli
```

Syntax

```
odacli list-acr -l list [-j] [-h]
```


## Parameters

Parameter	Description
$--l i s t,-1$	(Required) Specifies the list of sanitized entities.
-- help, -h	(Optional) Displays help for using the command.
$--j$ son, $-j$	(Optional) Displays JSON output.

## Example 17-216

\# odacli list-acr -l list

## odacli disable-acr

Use the odacli disable-acr command to disable ACR across all nodes. Redaction of files during Oracle Trace File Analyzer diagnostic collections, then, does not occur.

File Path

```
/opt/oracle/dcs/bin/odacli
```

Syntax

```
odacli disable-acr [-j] [-h]
```

Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.
$--j$ son, $-j$	(Optional) Displays JSON output.

Example 17-217
\# odacli disable-acr

## odacli OS Commands

Use the odacli OS commands to list and update operating system (OS) parameters.

- odacli list-osconfigurations

Use the command odacli list-osconfigurations to display the current HugePage and memlock values and view suggested values based on the total available space.

- odacli modify-osconfigurations

Use the command odacli modify-osconfigurations to update the HugePage and memlock values.

## odacli list-osconfigurations

Use the command odacli list-osconfigurations to display the current HugePage and memlock values and view suggested values based on the total available space.

File Path
SORACLE_HOME/opt/oracle/dcs/bin/odacli

## Syntax

odacli list-osconfigurations [-h] [-j]

## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.
$--j$ son, $-j$	(Optional) Displays JSON output. The default is   false.

## Usage Notes

The command displays the configured values for HugePage and memlock from the /etc/ sysctl. conf and/etc/security/limits.conffiles. Based on the total available space, suggested values are calculated for the parameters.

## Example 17-218 Displaying a List of Configured and Suggested Memlock and HugePage Configurations

Parameter	User	ConfiguredValue	SuggestedValue
Memlock	grid	295971180 KB	289034355 KB
Memlock	oracle	295971180 KB	289034355 KB
HugeSpace	default	101430MB	101161MB

## odacli modify-osconfigurations

Use the command odacli modify-osconfigurations to update the HugePage and memlock values.

File Path

```
/opt/oracle/dcs/bin/odacli
```


## Syntax

```
odacli modify-osconfigurations [-hs hugepage] [-m memlock] [-nhp
number_of_hugepages] [-j] [-h]
```


## Parameters

Parameter	Description
$--m e m l o c k,-m$	(Optional) Updates only the memlock value.
-- hugespace, -hs	(Optional) Updates only the HugePage value.
-- number-hugepages, -nhp	(Optional) Updates HugePages value.
$--j$ son, $-j$	(Optional) Displays JSON output. The default is      false.
-- help, -h	(Optional) Displays help for using the command.

## Usage Notes

The command updates memlock in the /etc/security/limits.conffile and HugePage in the/etc/sysctl.conf file with the suggested values.

You can modify memlock or hugepage. If no option is provided, then both parameters are updated to the suggested values.

## Example 17-219 Updating the HugePage and Memlock Parameters to the Suggested Values

```
odacli modify-osconfigurations
{
"jobId" : "954cf7a5-9cad-451c-8820-3140a716af26",
"status" : "Created",
"message" : "Successfully submitted a request to configure OS
parameters.",
"reports" : [ ],
"createTimestamp" : "April 8, 2024 00:03:51 AM MST",
"resourceList" : [ ],
"description" : "Configuring OS Parameter",
"updatedTime" : "April 8, 2024 00:03:51 AM MST"
[root@rwsoda6s002 ~]# odacli describe-job -i
"954cf7a5-9cad-451c-8820-3140a716af26"
Job details
-------------------------------------------------------------------
ID: 954cf7a5-9cad-451c-8820-3140a716af26
Description: Configuring OS Parameter
Status: Success
Created: April 8, 2024 12:03:51 AM MST
Message:
Task Name Start Time End Time Status
```


## odaadmcli Hardware Monitoring Commands

Use the hardware monitoring commands to display hardware configurations.

- odaadmcli show localdisk

Use the odaadmcli show localdisk command to show cooling details.

- odaadmcli show cooling Use the odaadmcli show cooling command to show cooling details.
- odaadmcli show env_hw

Use the odaadmcli show env_hw command to display information about the environment and hardware.

- odaadmcli show fs

Use the odaadmcli show fs command to display filesystem details.

- odaadmcli show memory

Use the odaadmcli show memory command to display memory details.

- odaadmcli show network

Use the odaadmcli show network command to show network details.

- odaadmcli show power

Use the odaadmcli show power command to display power supply details.

- odaadmcli show processor

Use the odaadmcli show processor command to display processor details.

- odaadmcli show server

Use the odaadmcli show server command to display server details.

## odaadmcli show localdisk

Use the odaadmcli show localdisk command to show cooling details.
File Path

```
/opt/oracle/oak/bin/odaadmcli
```

Syntax
To show cooling details:

```
odaadmcli show localdisk [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## Example

```
# odaadmcli show localdisk
    NAME PATH TYPE
STATUS STATE_IN_ILOM
    lpd_0 /dev/sda SSD
PredictiveFailure OK
    lpd_1 /dev/sdb SSD
OK
    OK
```


## odaadmcli show cooling

Use the odaadmcli show cooling command to show cooling details.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To show cooling details:

```
odaadmcli show cooling [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## odaadmcli show env_hw

Use the odaadmcli show env_hw command to display information about the environment and hardware.

File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To display environment and hardware details:

```
odaadmcli show env_hw [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## Example 17-220 Displaying Environment and Hardware Details

To display the hardware details, enter the command odaadmcli show env hw. The results show a bare metal Oracle Database Appliance system.
\# odaadmcli show env_hw
BM X7-2 Medium

## odaadmcli show fs

Use the odaadmcli show fs command to display filesystem details.

File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To display filesystem details:

```
odaadmcli show fs [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## Example 17-221 Displaying Filesystem Details

Type	Total Space	Free Space	Total D	Free DG
ext3	30237 M	7763M	-	-
ext3	484M	416M	-	-
ext3	60475M	38149M	-	-
ext3	100793M	22060 M	-	-
acfs	102400M	102158M	4894016M	2418668M
acfs	102400M	100501M	4894016M	2418668M
acfs	102400M	100601M	4894016M	2418668M
(Continued)				
Diskgroup Mount Point				
1				
/boot				
/ opt				
/u01				
DATA	/u02/app/oracle/oradata/ACFSDB1			
DATA	/u02/app/oracle/oradata/ACFSDB2			
DATA	/u02/app/oracle/oradata/EE12NCDB			

## odaadmcli show memory

Use the odaadmcli show memory command to display memory details.
File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To show memory details:

```
odaadmcli show memory [-h]
```


## Parameters

Parameter	Description
-- help, h	(Optional) Displays help for using the command.

## Example 17-222 Display Memory Details

```
# odaadmcli show memory
\begin{tabular}{llllr} 
NAME & HEALTH & HEALTH_DETAILS & PART_NO. & SERIAL_NO. \\
DIMM_0 & OK & - & 3A4K40BB1-CRC & O0CE01154602EADA96 \\
DIMM_11 & OK & - & 3A4K40BB1-CRC & 00CE01154602EADADA \\
DIMM_3 & OK & - & 3A4K40BB1-CRC & 00CE01154602EADBC7 \\
DIMM_8 & OK & - & 3A4K40BB1-CRC & 00CE01154602EADBA0
\end{tabular}
(Continued)
LOCATION MANUFACTURER MEMORY_SIZE CURR_CLK_SPEED ECC_Errors
PO/DO Samsung 32 GB 2400 MHz 0
P0/D1 Samsung 32 GB 2400 MHz 0
P0/D3 Samsung 32 GB 2400 MHz 0
P0/D8 Samsung 32 GB 2400 MHz 0
```


## odaadmcli show network

Use the odaadmcli show network command to show network details.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To show network details:

```
odaadmcli show network [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## Example 17-223 Showing Network Details

```
# odaadmcli show network
NAME HEALTH HEALTH_DETAILS LOCATION PART_NO MANUFACTURER
MAC_ADDRESS LINK_DETECTED DIE_TEMP
Ethernet NIC_O OK NETO i210 INTEL
00:10:E0:DD:9D:14 no (em1) N/A
Ethernet NIC 1 OK - NET1 X710/X557-AT Intel
3C:FD:FE:78:93:92 no (p2p3) N/A
Ethernet_NIC_2 OK - NET2 X710/X557-AT Intel
3C:FD:FE:78:93:91 yes (p2p2) N/A
Ethernet_NIC_3 OK - NET3 X710/X557-AT Intel
3C:FD:FE:78:93:90 yes (p2p1) N/A
Ethernet_NIC_4 OK - NET4 BCM57414 Broadcom
B0:26:28:3F:D8:B8 yes (p7p2) N/A
Ethernet_NIC_5 OK - NET5 X710/X557-AT Intel
3C:FD:FE:78:93:93 no (p2p4) N/A
Ethernet_NIC_6 OK - NET6 BCM57414 Broadcom
B0:26:28:3F:D8:B0 yes (p7p1) N/A
```


## odaadmcli show power

Use the odaadmcli show power command to display power supply details.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

Run this command on the first node, to display power supply details on Oracle Database Appliance High-Availability (HA) models:

```
odaadmcli show power [-h]
```


## Parameters

Parameter Description
--help, -h (Optional) Displays help for using the command.

## Example 17-224 Displaying Power Supply Details

```
# odaadmcli show power
\begin{tabular}{llclc} 
NAME & HEALTH & HEALTH_DETAILS & PART_NO. & SERIAL_NO. \\
Power_Supply_0 & OK & - & 7079395 & \(476856 \mathrm{Z}+1514 \mathrm{CE} 056 \mathrm{G}\)
\end{tabular}
```

```
(Continued)
LOCATION INPUT_POWER OUTPUT_POWER INLET_TEMP EXHAUST_TEMP
PS0 Present 112 watts 28.000 degree C 34.938 degree C
```


## odaadmcli show processor

Use the odaadmcli show processor command to display processor details.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```

Syntax
To show processor details:

```
odaadmcli show processor [-h]
```


## Parameters

Parameter	Description
- help, -h	(Optional) Displays help for using the command.

## Example 17-225 Displaying Processor Details

\# odaadmcli show processor

```
NAME HEALTH HEALTH_DETAILS PART_NO. LOCATION MODEL
CPU_0 OK - 060F P0 (CPU 0) Intel(R) Xeon(R) CPU
E5-2630
(Continued)
MAX_CLK_SPEED TOTAL_CORES ENABLED_CORES
2.200 GHz 10 10
```


## odaadmcli show server

Use the odaadmcli show server command to display server details.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To show server details:

```
odaadmcli show server [-h]
```


## Parameters

Parameter $\quad$ Description
-- (Optional) Displays help for using the command.
Example 17-226 Displaying Server Details
\# odaadmcli show server
Power State : On
Open Problems : 0
Model : ORACLE SERVER X7-2
Type : Rack Mount
Part Number : 7320190
Serial Number : 1605NM10JJ
Primary OS : Not Available
ILOM Address : 10.209.8.215
ILOM MAC Address : 00:10:E0:95:98:F0
Description : Oracle Database Appliance X7-2 Small 1606NM1s02
Locator Light : Off
Actual Power Consumption : 135 watts
Ambient Temperature : 24.250 degree C
Open Problems Report : System is healthy

## Storage Commands

Understand the commands to perform storage operations and diagnostics.

- odaadmcli asmops diskgroup

Use the odaadmcli asmops diskgroup command to manage Oracle ASM disk group.

- odaadmcli expand storage

Use the odaadmcli expand storage command to expand storage.

- odacli list-dgdisks

Use the odacli list-dgdisks command to display details about the available disks.

- odacli validate-storagetopology

Use the odacli validate-storagetopology command to check the cable connections between the system controllers and the storage shelf, as well as the cable connection to the storage expansion shelf (if one is installed).

- odaadmcli power disk

Use the odaadmcli power disk command to power a disk on or off for NVMe drives only.

- odaadmcli show controller

Use the odaadmcli show controller command to display details of the controller.

- odaadmcli show disk

Use the odaadmcli show disk command to display the status of a single disk or all disks on the system.

- odaadmcli show diskgroup

Use the odaadmcli show diskgroup command to list configured diskgroups or display a specific diskgroup configuration.

- odaadmcli show raidsyncstatus

Use the odaadmcli show raidsyncstatus command to display the RAID SYNC status.

- odaadmcli show storage

Use the odaadmcli show storage command to show the storage controllers, expanders, and disks.

- odaadmcli stordiag

Use the odaadmcli stordiag command to collect detailed information for each disk or NVMe.

## odaadmcli asmops diskgroup

Use the odaadmcli asmops diskgroup command to manage Oracle ASM disk group.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

```
    odaadmcli asmops diskgroup -G diskgroup_name -o {add|remove|offline|
online} -p path -D disk_name -f -w -t timeout [-h]
```


## Parameters

Parameter	Description
$-G$	(Mandatory) Specifies the disk group name.
$-o$	(Mandatory) Specifies the operation to be   performed on Oracle ASM disk. Add disk to disk   group, remove from disk group, offline the disk or   online the disk.
-p	(Mandatory for addition of disks) Specify the disk   path during addition of disk to Oracle disk group.
-D	(Mandatory) Specify Oracle ASM disk name or   alias.
-- help, -h	(Optional) Displays help for using the command.   -f
-l	(Optional) Specifies if you want to force the   operation.
(Optional) Specifies if you want to wait for the	
operation to complete. This option is valid for the	
disk online operation.	

## Usage Notes

Run the command on the Oracle Database Appliance system to manage Oracle ASM disk group.

## odaadmcli expand storage

Use the odaadmcli expand storage command to expand storage.
File Path
/opt/oracle/oak/bin/odaadmcli
Syntax
odaadmcli expand storage -ndisk number of disks to be added -enclosure \{0|
1\} [-h]

## Parameters

Parameter	Description
--enclosure $\{0 \mid 1\}$	Defines the JBOD or shelf number. The base   storage shelf is 0. The storage expansion shelf is 1.                  This option is only available for multi-node   Appliance single node platforms.
- help, -h	(Optional) Displays help for using the command.
-ndisk	Defines the number of disks to be added in the   enclosure.

## Usage Notes

On high-availability (HA) Oracle Database Appliance hardware models, run the command only on the first node.

Various storage options are available. On multi-node platforms, the base storage is SSD and you can choose to add either SSD or HDD disks. When adding a storage expansion shelf, all disks must be the same type (you cannot combine SSD and HDD disks).

## Note:

In addition to reviewing the expand storage command, it is important to follow the procedures for adding storage. Cabling validation and disk placement is important. In some cases, you must move disks to different slots to successfully expand storage.

## odacli list-dgdisks

Use the odacli list-dgdisks command to display details about the available disks.
File Path

```
/opt/oracle/dcs/bin/odacli
```


## Syntax

To list available disk details:

```
odacli list-dgdisks [-h] [-dg] [-dp] [-j]
```


## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays JSON output.
-- help, -h	(Optional) Displays help for using the command.
-- diskgroup, -dg	(Optional) Displays all disks in the specified disk
	group. The possible values are: ALL, DATA,
	RECO, REDO, FLASH. If no value is specified,
then ALL disks are displayed.	
-- diskpath, -dp	(Optional) Displays all disks that contains the      specified value in the path. If no value is   specified, then all disks are displayed.

## Usage Notes

## Example 17-227 Listing All Available Disks on the System

\# odacli list-dgdisks -dg ALL


Example 17-228 Listing Disks with the Specified Disk Path on the System


```
HDD E0 S10 577135552P1 DATA CACHED 1 ONLINE NORMAL UNKNOWN
HDD_E0_S10_577135552P1 AFD:HDD_E0_S10_577135552P1 0 0
HDD_E0_S10_577135552P2 RECO CACHED 2 ONLINE NORMAL UNKNOWN
HDD_E0_S10_577135552P2 AFD:HDD_E0_S10_577135552P2 0 0
```


## odacli validate-storagetopology

Use the odacli validate-storagetopology command to check the cable connections between the system controllers and the storage shelf, as well as the cable connection to the storage expansion shelf (if one is installed).

Oracle recommends that you run the odacli validate-storagetopology command before deploying the system to ensure that the cabling is correct. This will avoid and prevent problems during deployment due to incorrect or missing cable connections. If the cabling is not correct, you will see errors in your output.

## File Path

```
$ORACLE_HOME/opt/oracle/dcs/bin/odacli
```


## Syntax

```
odacli validate-storagetopology [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## odaadmcli power disk

Use the odaadmcli power disk command to power a disk on or off for NVMe drives only.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To power an NVMe disk on or off:

```
odaadmcli power disk {on|off|status} disk_name [-h]
```


## Parameters

Parameter	Description
disk_name	Defines the disk resource name. The resource name format is   pd_[0..3].
$\left\{\begin{array}{l}\text { 加 } \mid \text { off } \mid \text { status }\}\end{array}\right.$	Power on a disk, power off a disk, display status.
-- help, -h	(Optional) Displays help for using the command.

## Example 17-229 Powering a Disk Off

This example shows how to power off a disk.

```
# odaadmcli power disk off pd_00
Disk 'pd 00' is already part of ASM
Are you sure you want to power OFF the disk?: 'pd_00'?
[yes/no]:
yes
Powered OFF pd_00
```


## Example 17-230 Checking the Disk Status

This example shows how to get the status of disk pd_00.
\# odaadmcli power disk status pd_00
The disk is powered ON

## odaadmcli show controller

Use the odaadmcli show controller command to display details of the controller.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To display details of the controller:

```
odaadmcli show controller id [-h]
```


## Parameters

Parameter	Description
controller_id, id	Defines the controller.
- -help, -h	(Optional) Displays help for using the command.

## Example 17-231 Showing Controller Details

```
    # odaadmcli show controller 1
Controller [1] information:
    sun-controller-id = nvme:1b:00.00
    sun-id = nvme:1b:00.00
    sun-controller-manufacturer = Samsung
    pci-vendor-id = 0x0000144d
    sun-controller-model = 0xa821
    pci-device-id = 0x0000a821
    sun-controller-type = NVMe
    sun-card-manufacturer = Sun Microsystems
    pci-subvendor-id = 0x0000108e
    sun-card-model = 0xa803
```

```
pci-subdevice-id = 0x0000a803
pci-address = 1b:00.0
sun-version-firmware = KPYA7R3Q
sun-serial-number = S2LHNAAH101008
sun-product-name = MS1PC2DD30RA3.2T
pci-slot-number = 11
nvme-power-control = 1
sun-nac-name = /SYS/DBP/NVME1
```


## odaadmcli show disk

Use the odaadmcli show disk command to display the status of a single disk or of all disks on the system.

File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To display the status of all disks on the system:
odaadmcli show disk [-h]

To display the status of a single disk:

```
odaadmcli show disk disk_name [-h]
```


## Parameters

Parameter	Description
disk_name	(Optional) Define the disk resource name. The resource name format is
	pd_[0..3].
- help, -h	(Optional) Displays help for using the command.

## Example 17-232 Displaying the Status of All Disks

To display the status of all the disks on the system:

\# odaadmcli show disk				
NAME	PATH	TYPE	STATE	STATE_DETAILS
pd_00	$/ \mathrm{dev} /$ nvme0n1 NVD		ONLINE	Good
pd_01	$/ \mathrm{dev} /$ nvme1n1 NVD		ONLINE	Good

## Example 17-233 Displaying the Status of a Single Disk

To display the status of a disk named pd_00:

```
# odaadmcli show disk pd_00
The Resource is : pd_00
ActionTimeout : 1500
ActivePath : /dev/nvme0n1
```

```
    AsmDiskList : |data_00||reco_00|
AutoDiscovery : 1
AutoDiscoveryHi : |data:80:NVD||reco:20:NVD|
CheckInterval : 300
ColNum : 0
CriticalWarning : 0
DependListOpr : add
    Dependency : |0|
DiskId : 360025380144d5332
DiskType : NVD
Enabled : 1
ExpNum : 19
HbaPortNum : 10
IState : 0
Initialized : 0
IsConfigDepende : false
    ModelNum : MS1PC2DD30RA3.2T
    MonitorFlag : 1
MultiPathList : |/dev/nvme0n1|
Name : pd_00
NewPartAdd}r : 0
OSUserType : |userType:Multiuser|
PlatformName : X7_1_LITE_S
PrevState : Invalid
PrevUsrDevName :
SectorSize : 512
SerialNum : S2LHNAAH000001
Size : 3200631791616
SlotNum : 0
SmartDiskWarnin : 0
SmartTemperatur : 37
State : Online
StateChangeTs : 1465263789
StateDetails : Good
TotalSectors : 6251233968
TypeName : 0
UsrDevName : NVD_S00_S2LHNAAH101026
VendorName : Samsung
gid : 0
    mode : 660
uid : 0
```


## odaadmcli show diskgroup

Use the odaadmcli show diskgroup command to list configured diskgroups or display a specific diskgroup configuration.

File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To list configured diskgroups:

```
odaadmcli show diskgroup [-h]
```

To display DATA configurations:

```
odaadmcli show diskgroup [DATA] [-h]
```

To display RECO configurations:

```
odaadmcli show diskgroup [RECO] [-h]
```


## Parameters

Parameter	Description
DATA	(Optional) Displays the DATA diskgroup configurations.
RECO	(Optional) Displays the RECO diskgroup configurations.
- -help, -h	(Optional) Displays help for using the command.

## Example 17-234 Listing All Diskgroups

```
# odaadmcli show diskgroup
```

DiskGroups
----------
DATA
RECO

Example 17-235 Displaying DATA Configurations

```
# odaadmcli show diskgroup DATA
ASM_DISK PATH DISK STATE STATE_DETAILS
data_00 /dev/NVD_S00 S2LHNAAH101026p1 pd_00 ONLINE Good
data-01 /dev/NVD-'S01-S2LHNAAH101008p1 pd-01 ONLINE Good
```


## odaadmcli show raidsyncstatus

Use the odaadmcli show raidsyncstatus command to display the RAID SYNC status.

File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To display the status of RAID SYNC:

```
odaadmcli show raidsyncstatus [-h]
```


## Parameters

Parameter	Description
-- help, -h	(Optional) Displays help for using the command.
Example 17-236	Displaying the RAID SYNC Status

To display the RAID SYNC details and status:
\# odaadmcli show raidsyncstatus

Raid Type Raid Device Raid Status maintainPdFailHistory	Rebuildrate			
H/W Raid	/dev/sda	Optimal	ON	$30 \%$

## odaadmcli show storage

Use the odaadmcli show storage command to show the storage controllers, expanders, and disks.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To display the storage controllers, expanders, and disks:

```
odaadmcli show storage [-h]
```

To show storage errors:

```
odaadmcli show storage -errors [-h]
```


## Parameters

Parameter	Description
--errors	(Optional) Shows storage errors.
--help, -h	(Optional) Displays help for using the command.

## Example 17-237 Displaying Storage Devices

The following example displays details about the storage devices on an appliance.
\# odaadmcli show storage

```
===== BEGIN STORAGE DUMP ========
Host Description: Oracle Corporation:ORACLE SERVER X6-2
Total number of controllers: 2
        Id = 0
        Pci Slot = 10
        Serial Num = S2LHNAAH101026
            Vendor = Samsung
        Model = MS1PC2DD30RA3.2T
        FwVers = KPYA7R3Q
        strId = nvme:19:00.00
            Pci Address = 19:00.0
            Id = 1
            Pci Slot = 11
            Serial Num = S2LHNAAH101008
            Vendor = Samsung
        Model = MS1PC2DD30RA3.2T
        FwVers = KPYA7R3Q
            strId = nvme:1b:00.00
        Pci Address = 1b:00.0
Total number of expanders: 0
Total number of PDs: 2
    /dev/nvme0n1 Samsung NVD 3200gb slot: 0 pci : 19
    /dev/nvme1n1 Samsung NVD 3200gb slot: 1 pci : 1
==== END STORAGE DUMP =========
```


## odaadmcli stordiag

Use the odaadmcli stordiag command to collect detailed information for each disk or NVMe.

## File Path

```
/opt/oracle/oak/bin/odaadmcli
```


## Syntax

To collect storage diagnostics for disks and NVM Express (NVMe):

```
odaadmcli stordiag [-n] [-h]
```


## Parameters

Parameter	Description
-ndisk_name	Defines the disk resource name. The resource name format is
	pd_[0..3].
-- help, -h	(Optional) Displays help for using the command.

## Example 17-238 Displaying NVMe Details

To display detailed information for NVMe pd_00:
\# odaadmcli stordiag pd_00

## Oracle Database Appliance Command-Line Interface for KVM

Use odacli commands to manage Oracle Linux Kernel-based Virtual Machine (KVM) on Oracle Database Appliance.

## Note:

If you have enabled multi-user access, then you can run all supported ODACLI commands on KVM and DB systems, after logging in as odaadmin.

- About Command-Line Interface for Kernel-Based Virtual Machine (KVM)

The odacli commands are the primary method for performing database and system administration on Oracle Database Appliance Kernel-Based Virtual Machine (KVM).

- About ODACLI Commands Supported on Oracle KVM Database System Understand the odacli commands supported on Oracle Database Appliance KernelBased Virtual Machine (KVM) Database System in this release.
- odacli DB System Commands for KVM

Use the odacli DB system commands to manage databases on Oracle Database Appliance for Oracle KVM.

- odacli VM Storage Commands for KVM

Use the odacli virtual machine storage commands to manage storage on Oracle Database Appliance for Oracle KVM.

- odacli Virtual Disk Commands for Oracle KVM

Use the odacli virtual disk commands to manage virtual disks on Oracle Database Appliance for Oracle KVM.

- odacli CPU Pool Commands for Bare Metal and KVM

Use odacli commands to manage resource allocations on Oracle Database Appliance for bare metal and KVM deployments.

- odacli VM Network Commands for KVM

Use the odacli virtual machine network commands to manage network on Oracle Database Appliance for Oracle KVM.

- odacli Virtual Machine Commands for Oracle KVM Use the odacli virtual machine commands to manage virtual machines on Oracle Database Appliance for Oracle KVM.


## About Command-Line Interface for Kernel-Based Virtual Machine (KVM)

The odacli commands are the primary method for performing database and system administration on Oracle Database Appliance Kernel-Based Virtual Machine (KVM).

You can perform the following tasks with ODACLI commands on Kernel-Based Virtual Machine (KVM):

- Manage VM instances
- Manage VM storage
- Manage virtual disks
- Manage virtual network
- Manage CPU pools


## ODACLI Command Location and Path Configuration

The odacli command-line interface is in the following directory:
/opt/oracle/dcs/bin/odacli

Configure the root user account on your Oracle Database Appliance servers to have the PATH variable defined to search for odacli commands in the path /opt/oracle/dcs/bin/ odacli.

## ODACLI Syntax

Oracle Appliance Manager command-line interface commands and parameters are casesensitive.

An odacli command uses the following command syntax:

```
odacli command object [options]
```

- command is an action you want to perform on the appliance. For example: show, locate, apply.
- object is the target or object on which the odacli command performs the operation. For example, you issue a command to create or configure a virtual disk, or a network, or perform other system or software administration. You can also use object abbreviations.
- options are optional parts of the odacli command. Options can consist of one or more options that extend the use of the odacli command carried out on an object. Options include additional information about the action that you want to perform on the object. Option names are preceded with a dash. Many options require the name of an object for the command to perform the action that you want to carry out. The help option $(-h)$ is an option that is available with every command. When you include the -h option, you can obtain additional information about the command that you want to perform.


## Oracle Appliance Manager Command-Line Interface Help

Run the following command to see the usage information for all odacli commands available for your Oracle Database Appliance:

```
odacli -h
```

Run the following command to see detailed help about a specific odacli command:

```
odacli command -h
```

Run the following command to see detailed help about a specific odacli command carried out on an object, and the options that are available for you to use with that object.
odacli command object -h

## About ODACLI Commands Supported on Oracle KVM Database System

Understand the odacli commands supported on Oracle Database Appliance Kernel-Based Virtual Machine (KVM) Database System in this release.

This release of Oracle Database Appliance supports the provisioning of Oracle KVM database system through odacli create-dbsystem or the Browser User Interface. The following ODACLI commands are supported on Oracle KVM Database System on Oracle Database Appliance:

- odacli ping-agent
- odacli delete-agentconfig-parameters
- odacli list-agentconfig-parameters
- odacli modify-agentconfig-parameters
- odacli restore-archivelog
- odacli create-auto-logclean-policy
- odacli delete-auto-logclean-policy
- odacli list-auto-logclean-policy
- odacli list-availablepatches
- odacli create-backup
- odacli delete-backup
- odacli create-backupconfig
- odacli delete-backupconfig
- odacli describe-backupconfig
- odacli list-backupconfigs
- odacli modify-backupconfig
- odacli describe-backupreport
- odacli describe-component
- odacli set-credential
- odacli create-database
- odacli delete-database
- odacli describe-database
- odacli irestore-database
- odacli list-databases
- odacli modify-database
- odacli recover-database
- odacli register-database
- odacli configure-dataguard
- odacli deconfigure-dataguard
- odacli failover-dataguard
- odacli reinstate-dataguard
- odacli switchover-dataguard
- odacli describe-dataguardstatus
- odacli list-dataguardstatus
- odacli create-dbhome
- odacli delete-dbhome
- odacli describe-dbhome
- odacli list-dbhomes
- odacli create-dbstorage
- odacli delete-dbstorage
- odacli describe-dbstorage
- odacli list-dbstorages
- odacli describe-job
- odacli list-jobs
- odacli create-jobdata-retention-policy
- odacli delete-jobdata-retention-policy
- odacli list-jobdata-retention-policy
- odacli describe-latestpatch
- odacli create-logcleanjob
- odacli describe-logcleanjob
- odacli list-logcleanjobs
- odacli list-logspaceusage
- odacli describe-network
- odacli list-networks
- odacli describe-networkinterface
- odacli list-networkinterfaces
- odacli list-nodes
- odacli create-objectstoreswift
- odacli delete-objectstoreswift
- odacli describe-objectstoreswift
- odacli list-objectstoreswifts
- odacli modify-objectstoreswift
- odacli list-osconfigurations
- odacli modify-osconfigurations
- odacli list-pendingjobs
- odacli create-prepatchreport
- odacli delete-prepatchreport
- odacli describe-prepatchreport
- odacli list-prepatchreports
- odacli create-purge-jobdata-job
- odacli list-purge-jobdata-jobs
- odacli describe-schedule
- odacli list-schedules
- odacli modify-schedule
- odacli list-scheduled-executions
- odacli describe-systemcomponent
- odacli list-tdebackupreports
- odacli restore-tdewallet


## , Note:

No other ODACLI commands than the ones above are supported on Oracle Database Appliance KVM Database System, in this release.

## odacli DB System Commands for KVM

Use the odacli DB system commands to manage databases on Oracle Database Appliance for Oracle KVM.

- odacli create-dbsystem

Use the odacli create-dbsystem command to create a new database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli modify-dbfileattributes

Use the odacli modify-dbfileattributes command to properly set the file attributes (permissions and ownership) of files on Oracle ASM disk group on a bare metal host to support a dbsystem. Only run this command if prompted by the odacli create-dbsystem command.

- odacli list-dbsystems

Use the odacli list-dbsystems command to view the database systems on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli describe-dbsystem

Use the odacli describe-dbsystem command to describe a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli describe-dbsystem-image

Use the odacli describe-dbsystem-image command to view the supported Oracle Grid Infrastructure and Oracle Database versions and the availability of the clone files and Database System KVM image in the Oracle Database Appliance system.

- odacli start-dbsystem Use the odacli start-dbsystem command to start a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).
- odacli stop-dbsystem

Use the odacli stop-dbsystem command to stop a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli delete-dbsystem Use the odacli delete-dbsystem command to delete a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).


## odacli create-dbsystem

Use the odacli create-dbsystem command to create a new database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli create-dbsystem [-f] [-p json_payload_path] [-t template] [-ta] [-j] [-h]
```


## Parameters

Parameter	Description
-- params, -p	(Optional) Specifies the input parameters file path for DB system   creation.
-- force, -f	(Optional) Forces the operation with the specified parameters.
-- template, -t	(Optional) Specifies the path where the template with sample values      will be created.
-- template-annotated, -ta	(Optional) Displays the DB system template with field descriptions.
$--j s o n,-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Usage Notes

For example JSON files that you can use to create the DB system, see the Example JSON File to Create a High-Availability DB System and Example JSON File to Create a Single-Node DB System topics in this guide.

## Example

Create a KVM database system using a JSON file for input parameters.

```
# odacli create-dbsystem -p example_system.json
Job details
```



## Related Topics

- Example JSON File to Create a High-Availability DB System Follow the JSON file example to create a JSON file to deploy a two-node DB System, with role separation, with the command odacli create-dbsystem.
- Example JSON File to Create a Single-Node DB System Follow the JSON file example to create a JSON file to deploy a single-node DB System, with role separation, with the command odacli create-dbsystem.
- odacli describe-dbsystem-image

Use the odacli describe-dbsystem-image command to view the supported Oracle Grid Infrastructure and Oracle Database versions and the availability of the clone files and Database System KVM image in the Oracle Database Appliance system.

## odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli modify-dbsystem -n name [-cp cpu_pool_name] [-no-cp] [-r] [-avn v_network] [-dvn
v_networks_to_detach] [-en] [-gw gateway] [-ip ip_address] [-nm netmask] [-sip
scan_ip_address] [-sn scan_name] [-s shape] [-vips vip_address] [-vt v_network_type] [-
m] [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	(Mandatory) Describes the name of the DB system.
$--r e d u n d a n c y,-r$	(Optional) Specifies the VM storage redundancy for a DB system. The
value can be HIGH or MIRROR. This option is not supported for DB	
systems on non-FLEX disk group. The options can be MIRROR or	
HIGH. The default option is MIRROR.	
--attach-vnetwork, -avn	(Optional) Specifies the name of the vnetwork to attach.
-- cpupool, -cp	(Optional) Specifies the shared DB System CPU Pool name.
-- detach-vnetwork, -dvn	(Optional) Specifies the name of the vnetworks to detach.
-- enable-numa, -en	(Optional) Enables NUMA configuration for the DB System.
-- gateway, -gw	(Optional) Specifies the network gateway.
$--i p,-$ ip	(Optional) Specifies the network IP address.


Parameter	Description
--netmask, -nm	(Optional) Specifies the netmask of the network.
--no-cpupool, -no-cp	(Optional) Specifies to dissociate the current DB System CPU Pool name.
--scan-ips, -sip	(Optional) Specifies the SCAN IP of the network.
--scan-name, -sn	(Optional) Specifies the SCAN of the network.
--shape, -s	(Optional) Specifies the new shape. You can specify a higher or lower value than the current shape. This option only changes the shape of the DB system. It does not change the shape of databases in the DB system.
--vips, -vips	(Optional) Specifies the virtual IP of the network in the format vip_name_0:0:vip_ip_0,vip_name_1:1:vip_ip_1.
--vnetwork-type, -vt	(Optional) Specifies the vnetwork type to attach.
--memory, -m	(Optional) Defines the memory size. The format is M\|G.
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Usage Notes

- The odacli modify-dbsystem command supports the following use cases:
- attach or detach the shared DB system cpupools.

Attaching a CPU pool:

```
odacli modify-dbsystem --name dbsystem_name -cp cpupool
```

Detaching a CPU pool:
odacli modify-dbsystem --name dbsystem_name --no-cp

- Change DB system shape, that is, scale up (increase) or scale down (decrease):

```
odacli modify-dbsystem -n dbsystem name -s new_shape
```

- Enable NUMA for the existing DB system. NUMA is enabled on Oracle Database Appliance release 19.12 and later. For existing DB sytems created before release 19.12, use the odacli modify-dbsystem --enable_numa command to enable the NUMA for the DB system. This command includes enabling the NUMA for the VM configuration, operation system, and the database inside the DB system.
odacli modify-dbsystem --name dbsystem name --enable_numa
- Attach or detach new network to the DB system. Before attaching a vnetwork, ensure that the vnetwork exists. You must specify the IP address and netmask to configure the new network interface inside the DB system. If the network type is database or dataguard, specify the VIPs, SCAN name, and SCAN IPs.
odacli modify-dbsystem -n dbsystem1 -avn vnet2 -t Dataguard -ip
192.168.10.119,192.168.10.120 -nm 255.255.240.0 -gw 192.168.10.1 -sn

```
scan1 -sip 192.168.10.30,192.168.10.31 -vips
vip1:0:192.168.15.57,vip2:1:192.168.15.58
```

To detach a network from DB system:

```
odacli modify-dbsystem -n dbsystem1 -dvn vnet2
```

- Starting with Oracle Database Appliance release 19.23, the odacli modify-dbsystem --shape command only changes the shape of the DB system; it does not change the shapes of the database inside the DB system any more. You must modify database shapes accordingly based on the new shape of the DB system. Ensure that you scale up database shapes after the DB system shape is scaled up. Similarly, scale down database shapes before DB system shape is scaled down, otherwise databases could fail to start because of reduced DB system memory.


## Example: Modify a KVM DB system

```
# odacli modify-dbsystem -n example_system1 -cp example_pool -s new_shape
```


## Example: Increase the DB System memory to 24 GB

The command supports increasing the DB system memory. To reduce the DB system memory, use the --shape option with the command odacli modify-dbsystem.
\# odacli modify-dbsystem -n dbsystem_name -m 24G

## Related Topics

- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## odacli modify-dbfileattributes

Use the odacli modify-dbfileattributes command to properly set the file attributes (permissions and ownership) of files on Oracle ASM disk group on a bare metal host to support a dbsystem. Only run this command if prompted by the odacli create-dbsystem command.

## Syntax

```
odacli modify-dbfileattributes [-in db_name] [-j] [-h]
```


## Parameters

Parameter	Description
-- dbname, -in	(Optional) Describes the name of the database for which you want to   modify the file attributes.
-- json, - j	(Optional) Displays output in JSON format.


Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## Usage Notes

- To create the database system, access control must be enabled in Oracle ASM running on bare metal system. When the bare metal system is newly provisioned or patched to Oracle Database Appliance release 19.23, access control is already enabled. This helps you set appropriate file ownerships for all the files created in DB systems and on bare metal.
- Before you create the database system, the files on Oracle ASM disk groups that do not have file ownership must be set up with ownership. The creation of dbsystem fails, and you are prompted to run the odacli modify-dbfileattributes command to set up the file ownership and permission. Since there can be many files on Oracle ASM disk group, the user can run this step at their own convenience. Use the odacli modifydbfileattributes command to set up the file ownerships.
- This command sets the file attributes (permissions and ownership) of all files on Oracle ASM disk group. The files include database files and also Oracle Clusterware files such as OCR (Oracle Clusterware Registry). Before creating the first DB system, set up attributes for files owned by both Oracle Grid Infrastructure and Oracle Database by running the odacli modify-dbfileattributes command with no arguments.
- If the overall operation was successful for many files, but failed for some files, then you can run the command again by specifying the database names.


## Example

Modify the file attributes of the databases.
\# odacli modify-dbfileattributes -in example_db_name

## odacli list-dbsystems

Use the odacli list-dbsystems command to view the database systems on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli list-dbsystems [-j] [-h]
```


## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

List the KVM database systems.

```
# odacli list-dbsystems
Name Shape Cores Memory Status
Created Updated
```

dbsystem1	odb4	4	32.00 GB	CONFIGURED	2020-12-08
17:39:00 CST	2020-12-08 17:39:00	CST			
dbsystem2	odb2	2	16.00 GB	CREATING	2020-12-16
09:28:03 CST	2020-12-16 09:28:03	CST			

## odacli describe-dbsystem

Use the odacli describe-dbsystem command to describe a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli describe-dbsystem -n db_system_name [-p payload] [-j] [-h]
```


## Parameters

Parameter	Description
- name, -n	(Mandatory) Describes the name of the DB system.
-- payload, - p	(Optional) Displays the payload describing the specified DB system.
	The option that can be specified is COPY.
-- json, $-j$	(Optional) Displays output in JSON format.
-- help, - h	(Optional) Displays help for using the command.

## Usage Notes

Image version is the version which the DB System was created from. Current version is the current version of the DB system. For instance, if the DB System was created on 19.22 and it was patched to 19.23 , the output is as follows:

```
    Image version: 19.22.0.0.0
Current version: 19.23.0.0.0
```


## Example

View details of a KVM database system on a single-node system.

```
# odacli describe-dbsystem -n example_system1
DB System details
---------------------------------------------------------------------------------
--
            ID: 04f718f8-ddc9-4b45-8e8e-07d14165eb9c
            Name: example_system2
            Image version: 19.23.0.0.0
Current version: 19.23.0.0.0
            Shape: odb2
        Cluster name: dbsa4b75be52
        Grid version: 19.23.0.0.240416
            Memory: 16.00 GB
        NUMA enabled: YES
            Status: CONFIGURED
```

Created: 2023-04-19 10:00:08 UTC
Updated: 2023-04-19 10:04:02 UTC

```
CPU Pool
-------------------------
    Name: c4bfa26faa
        Number of cores: 2
                        Host: n1
    Effective CPU set: 0-1,20-21
            Online CPUs: 0, 1, 20, 21
        Offline CPUs: NONE
            Host: n2
    Effective CPU set: 0-1,20-21
            Online CPUs: 0, 1, 20, 21
            Offline CPUs: NONE
    VM Storage
-----------------------------
            Disk group: DATA
            Volume name: S4BFA26FAA
        Volume device: /dev/asm/s4bfa26faa-497
            Size: 400.00 GB
            Mount Point: /u05/app/sharedrepo/example_system
    VMs
-----------------------------
                    Host: host1
            VM Name: x4bfa26faa
            VM Host Name: example_domain1
            VM image path: /vm_image_path1
            Target State: ONLINE
            Current State: ONLINE
                    Host: host2
                    VM Name: y4bfa26faa
            VM Host Name: example domain2
            VM image path: /vm_image_path2
                Target State: ONLINE
            Current State: ONLINE
    VNetworks
```

```
-----------------------------
```

-----------------------------
Host: example_domain1
Host: example_domain1
VM Name: x4bfa26faa
VM Name: x4bfa26faa
Public: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens3 /
Public: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens3 /
BRIDGE (pubnet)
BRIDGE (pubnet)
ASM: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens4 /
ASM: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens4 /
BRIDGE (privasm) VLAN(icbond0.100)
BRIDGE (privasm) VLAN(icbond0.100)
Interconnect: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens5 /
Interconnect: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens5 /
Host: example_domain2
Host: example_domain2
VM Name: y4bfa26faa

```
VM Name: y4bfa26faa
```

```
        Public: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens3 /
BRIDGE (pubnet)
        ASM: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens4 /
BRIDGE (privasm) VLAN(icbond0.100)
    Interconnect: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens5 /
Databases
---------------------------
                            Name: flashvm
                Resource ID: 350b72f7-2351-49e7-ada3-4051af9594f0
                Unique name: flashvmU
                Database ID:
                Domain name: domain_name
                        DB Home ID: 617664f6-0a16-4922-8346-9eeb3d7256ee
                        Shape: odb2
                    Version: 19.0.0.0
                        Edition: EE
                            Type: SI
                            Role: PRIMARY
                            Class: OLTP
                    Storage: ASM
                        Redundancy:
        Target node name:
            Character set: AL32UTF8
        NLS character set:
            Language: AMERICAN
            Territory: AMERICA
        Console enabled: false
            SEHA enabled: false
    Associated networks: NONE
        Backup config ID:
        Level O Backup Day: sunday
        Autobackup enabled: true
            TDE enabled: true
                CDB type: false
                    PDB name:
        PDB admin user:
```

View details of a KVM database system on a High Availability system, with InfiniBand.

```
# odacli describe-dbsystem -n example_system3
DB System details
-----------------------------------------------------------------------------------------
--
            ID: 0c5280a1-3ee1-438e-ad11-1cee23de17fd
            Name: example_system3
        Image version: 19.16.0.0.0
        Current version: 19.16.0.0.0
            Shape: odb2
        Cluster name: dbsa4b75be52
        Grid version: 19.23.0.0.240416
            Memory: 16.00 GB
        NUMA enabled: YES
            Status: CONFIGURED
            Created: 2020-12-10 02:11:11 UTC
```

Updated: 2020-12-10 02:11:11 UTC

```
CPU Pool
----------------------------
            Name: ce2ab55255
            Number of cores: 2
                        Host: node1
        Effective CPU set: 4-5,24-25
            Online CPUs: 4, 5, 24, 25
            Offline CPUs: NONE
                    Host: node2
        Effective CPU set: 4-5,24-25
            Online CPUs: 4, 5, 24, 25
            Offline CPUs: NONE
    VM Storage
-------------------------
            Disk group: DATA
            Volume name: SE2AB55255
                Volume device: /dev/asm/se2ab55255-187
                    Size: 400.00 GB
                Mount Point: /u05/app/sharedrepo/example_system
```

    VMs
    ------------------------------
Host: host1
VM Name: xe2ab55255
VM Host Name: host_name1
VM image path: /vm_image_path1
Target State: ONLINE
Current State: ONLINE
Host: host2
VM Name: ye2ab55255
VM Host Name: host_name2
VM image path: /vm_image_path2
Target State: ONLINE
Current State: ONLINE
VNetworks

```
--------------------------
            Host: node1
            VM Name: xe2ab55255
                Public: xxx.xxx.xxx.xxx /xxx.xxx.xxx.xxx / ens3 /
BRIDGE (pubnet)
            ASM: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ibbond0 /
VF(90:03.5)
            Interconnect: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ibbond1 /
VF(90:01.7)
```

Host: node2
VM Name: ye2ab55255
Public: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ens3 /

```
BRIDGE (pubnet)
            ASM: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ibbond0 /
VF(90:01.0)
            Interconnect: xxx.xxx.xxx.xxx / xxx.xxx.xxx.xxx / ibbond1 /
VF (90:01.6)
    Databases
-------------------------
            Name: datavm
            Resource ID: 6aac341a-3c73-46eb-af2a-1eada9b57661
            Unique name: datavmU
            Database ID: 3806144946
            Domain name: domain_name
                    DB Home ID: dcc928f1-5eb3-477b-875d-050640b7f68c
                    Shape: odb2
                    Version: 19.23.0.0.240416
                        Edition: EE
                            Type: RAC
                            Role: PRIMARY
                            Class: OLTP
                    Storage: ASM
                        Redundancy:
        Target node name:
            Character set: AL32UTF8
        NLS character set:
            Language: AMERICAN
            Territory: AMERICA
        Console enabled: false
            SEHA enabled: false
    Associated networks: NONE
        Backup config ID:
        Level O Backup Day: sunday
        Autobackup enabled: true
            TDE enabled: true
                CDB type: false
                PDB name:
            PDB admin user:
```

View details of a DB system in the JSON file format

```
# odacli describe-dbsystem -n scaoda815c2 -p
{
    "forced" : null,
    "system" : {
        "name" : "scaoda815c2",
        "shape" : "odb4",
        "customMemorySize" : "32.00 GB",
        "cpuPoolName" : "c519cd5314",
        "useReservedCores" : false,
        "diskGroup" : "DATA",
        "systemPassword" : null,
        "timeZone" : "UTC",
        "enableRoleSeparation" : true,
        "singleNode" : null,
        "failOver" : false,
```

```
    "customRoleSeparation" : {
        "groups" : [ {
            "id" : 1001,
            "name" : "oinstall",
            "role" : "oinstall"
        }, {
            "id" : 1002,
            "name" : "dbaoper",
            "role" : "dbaoper"
        }, {
            "id" : 1003,
            "name" : "dba",
            "role" : "dba"
        }, {
            "id" : 1004,
            "name" : "asmadmin",
            "role" : "asmadmin"
        }, {
            "id" : 1005,
            "name" : "asmoper",
            "role" : "asmoper"
        }, {
            "id" : 1006,
            "name" : "asmdba",
            "role" : "asmdba"
        } ],
        "users" : [ {
            "id" : 1000,
            "name" : "grid",
            "role" : "gridUser"
        }, {
            "id" : 1001,
            "name" : "oracle",
            "role" : "oracleUser"
        } ]
    },
    "redundancy" : "MIRROR"
},
"network" : {
    "domainName" : "us.oracle.com",
    "ntpServers" : [ ],
    "dnsServers" : [ "10.209.76.198" ],
    "scanName" : "scaoda815c2-scan",
    "scanIps" : [ "10.32.68.17", "10.32.70.94" ],
    "nodes" : [ {
        "number" : 1,
        "name" : "scaoda815c2n2",
        "ipAddress" : "10.32.68.20",
        "netmask" : "255.255.248.0",
        "gateway" : "10.32.64.1",
        "vipName" : "scaoda815c2n2-vip",
        "vipAddress" : "10.32.68.21"
    }, {
        "number" : 0,
        "name" : "n1",
        "ipAddress" : "10.32.68.18",
```

```
            "netmask" : "255.255.248.0",
            "gateway" : "10.32.64.1",
            "vipName" : "n1-vip",
            "vipAddress" : "10.32.68.19"
        } ],
        "publicVNetwork" : null,
        "clusterInterconnect" : null
    },
"grid" : {
            "language" : "en",
            "enableAFD" : false
    },
    "database" : {
        "name" : "mydb2",
            "uniqueName" : "mydb2u",
            "domainName" : "domainname",
            "adminPassword" : null,
            "version" : "19.17.0.0.221018",
            "edition" : "EE",
            "type" : "RAC",
            "dbClass" : "OLTP",
            "shape" : "odb4",
            "role" : "PRIMARY",
            "redundancy" : "MIRROR",
            "characterSet" : {
                "characterSet" : "AL32UTF8",
                "nlsCharacterset" : "AL16UTF16",
                "dbTerritory" : "AMERICA",
                "dbLanguage" : "AMERICAN"
            },
            "enableDbConsole" : false,
            "enableSEHA" : false,
            "enableEEHA" : false,
            "enableFlashStorage" : false,
            "rmanBackupPassword" : null,
            "level0BackupDay" : "sunday",
            "enableTDE" : false,
            "tdePassword" : null,
            "enableUnifiedAuditing" : false,
            "isCdb" : true,
            "pdbName" : "pdb1",
            "pdbAdminUser" : "pdbadmin",
            "targetNodeNumber" : 0,
            "dbStorage" : "ASM"
    }
}
```


## odacli describe-dbsystem-image

Use the odacli describe-dbsystem-image command to view the supported Oracle Grid Infrastructure and Oracle Database versions and the availability of the clone files and Database System KVM image in the Oracle Database Appliance system.

## Syntax

odacli describe-dbsystem-image [-j] [-h]

## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
$--h e l p,-h$	(Optional) Displays help for using the command.

## Example

View details of a KVM database system image

```
# odacli describe-dbsystem-image
DB System Image details
--------------------------------------------------------------------------------
--
Component Name Supported Versions Available Versions
--------------------- --------------------- ------------------------
DBVM 19.10.0.0.0 19.10.0.0.0
GI 19.10.0.0.210119 19.10.0.0.210119
DB 19.10.0.0.210119 19.10.0.0.210119
```

View details of a system where KVM database system image is not available

```
# odacli describe-dbsystem-image
DB System Image details
```


--
Component Name Supported Versions Available Versions


DBVM	19.10.0.0.0	not-available
GI	19.10.0.0.210119	19.10.0.0.210119

The output shows that the KVM Database System image is not yet available on the system. Download the image and run the odacli update-repository to import the image to the repository. The output shows that the Oracle Grid Infrastructure and Oracle Database clones are already available on the system.

## odacli start-dbsystem

Use the odacli start-dbsystem command to start a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

odacli start-dbsystem -n dbsystem_name [-nn node_name] [-j] [-h]

## Parameters

Parameter	Description
-- name, -n	(Mandatory) Describes the name of the DB system.
-- node-name, -nn	(Optional) Specifies the bare metal system node name on which to   start the DB system VM.   $--j$ son, $-j$
-- (Optional) Displays output in JSON format.	

## Example

Start a KVM database system.
\# odacli start-dbsystem -n example_system

Job details

## odacli stop-dbsystem

Use the odacli stop-dbsystem command to stop a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli stop-dbsystem -n dbsystem_name [-nn node_name] [-f] [-j] [-h]
```


## Parameters

Parameter	Description
$--n a m e,-n$	(Mandatory) Describes the name of the DB system.


Parameter	Description
-- force, -f	(Optional) Forces the operation to stop the DB system.
-- node-name, -nn	(Optional) Specifies the bare metal system node name on which to   stop the DB system VM.   $--j$ son, $-j$   - (Optional) Displays output in JSON format.   (Optional) Displays help for using the command.

## Example

Stop a KVM database system.

```
# odacli stop-dbsystem -n example_system
Job details
```



## odacli delete-dbsystem

Use the odacli delete-dbsystem command to delete a database system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli delete-dbsystem -n dbsystem name [-f] [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	(Mandatory) Describes the name of the DB system.
-- force, -f	(Optional) If specified, then the operation deletes the database system,
	Oracle Clusterware files, and the database files.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Usage Notes

- If you do not specify the -f option, then the operation deletes the database system and Oracle Clusterware files, and retains the database files. With the -f option, the operation deletes the database system, Oracle Clusterware files, and the database files.


## Example

Delete a KVM database system.

```
# odacli delete-dbsystem -n example system
WARNING: Use --force option to delete the database and datafiles.
Do you confirm delete DB System 'example_system'? (Options: y/n, default: n):
Job details
```


Task Name $\quad$ Start Time
End Time $\quad$ Status
---------------------------------------- ------------------------------------------
--------------------------------------------------
Remove DB System from Clusterware January 16, 2021 9:19:54 AM UTC
January 16, 2021 9:19:54 AM UTC Success
Deprovision DB System VM(s) January 16, 2021 9:19:54 AM UTC
January 16, 2021 9:19:54 AM UTC
Delete DB System ACFS filesystem
January 16, 2021 9:20:04 AM UTC
Delete DB System ASM volume
January 16, 2021 9:20:11 AM UTC
Delete DB System VNetworks
January 16, 2021 9:20:11 AM UTC
Delete DB System metadata
January 16, 2021 9:20:11 AM UTC
Success
January 16, 2021 9:19:54 AM UTC
Success
January 16, 2021 9:20:04 AM UTC
Success
January 16, 2021 9:20:04 AM UTC
Success
January 16, 2021 9:20:11 AM UTC
Success

## odacli VM Storage Commands for KVM

Use the odacli virtual machine storage commands to manage storage on Oracle Database Appliance for Oracle KVM.

- odacli create-vmstorage

Use the odacli create-vmstorage command to create a new VM storage on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli list-vmstorages

Use the odacli list-vmstorages command to list all VM storages on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli describe-vmstorage

Use the odacli describe-vmstorage command to describe VM storage on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli modify-vmstorage

Use the odacli modify-vmstorage command to modify VM storage configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli delete-vmstorage

Use the odacli delete-vmstorage command to delete a vmstorage configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## odacli create-vmstorage

Use the odacli create-vmstorage command to create a new VM storage on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli create-vmstorage -n name -s size -dg disk_group [-r {MIRROR|HIGH}] [-j] [-h]
```


## Parameters

Parameter	Description
--name, -n	Name assigned to the VM storage.
--size, -s	Specifies the storage size. Format is $\mathrm{K}\|\mathrm{M}\| \mathrm{G} \mid \mathrm{T}$. Minimum Size is 1024 M (1G)
--diskgroup, -dg	(Optional) Defines the ASM disk group of the VM storage (Default: DATA).
--redundancy, -r	(Optional) Specifies the VM storage redundancy for a DB system. The value can be HIGH or MIRROR. This option is not supported for DB systems on non-FLEX disk group. The options can be MIRROR or HIGH. The default option is MIRROR.
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Example

Create a VM storage named share1 of 8 GB .

```
# odacli create-vmstorage -n share1 -s 8G
```


## odacli list-vmstorages

Use the odacli list-vmstorages command to list all VM storages on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

Syntax
odacli list-vmstorages [-j] [-h]
Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

\# odacli list-vmstorages

## odacli describe-vmstorage

Use the odacli describe-vmstorage command to describe VM storage on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

Syntax
odacli describe-vmstorage -n name [-j] [-h]

## Parameters

Parameter	Description
-- name, -n	Specifies the name of the VM storage.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

Example: Describing a VM Storage named share1
\# odacli describe-vmstorage -n share1

## odacli modify-vmstorage

Use the odacli modify-vmstorage command to modify VM storage configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli modify-vmstorage -n name -i increment [-r {MIRROR|HIGH}] [-s decrement] [-j] [-h]
```


## Parameters

Parameter	Description
--name, -n	Specifies the VM storage name
--increment, -i	(Optional) Defines the size to grow the VM storage. Format is $\mathrm{K}\|\mathrm{M}\| \mathrm{G} \mid \mathrm{T}$
--shrink, -s	(Optional) Defines the size to shrink the VM storage. Format is $\mathrm{K}\|\mathrm{M}\| \mathrm{G} \mid \mathrm{T}$
--redundancy, -r	(Optional) Specifies the VM storage redundancy for a DB system. The value can be HIGH or MIRROR. This option is not supported for DB systems on non-FLEX disk group. The options can be MIRROR or HIGH. The default option is MIRROR.
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Example

Increase the size of a VM storage named share1 by 10 gigabytes.
\# odacli modify-vmstorage -n share1 -i 10G

## odacli delete-vmstorage

Use the odacli delete-vmstorage command to delete a vmstorage configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

odacli delete-vmstorage -n name [-f] [-j] [-h]

## Parameters

Parameter	Description
-- name, -n	Specifies the vmstorage name to be deleted
-- force, -f	(Optional) Specifies the force option
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Delete a VM storage named share1.
odacli delete-vmstorage $-n$ share1

## odacli Virtual Disk Commands for Oracle KVM

Use the odacli virtual disk commands to manage virtual disks on Oracle Database Appliance for Oracle KVM.

- odacli create-vdisk

Use the odacli create-vdisk command to create a new virtual disk in a VM storage on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli list-vdisks

Use the odacli list-vdisks command to list all virtual disks on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli describe-vdisk

Use the odacli describe-vdisk command to describe a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli modify-vdisk

Use the odacli modify-vdisk command to modify a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli clone-vdisk

Use the odacli clone-vdisk command to clone a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli delete-vdisk

Use the odacli delete-vdisk command to delete a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## odacli create-vdisk

Use the odacli create-vdisk command to create a new virtual disk in a VM storage on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli create-vdisk -n name -vms vmstorage_name -s size -sh -sp [-j] [-h]
```


## Parameters

Parameter	Description
--name, -n	Name assigned to the virtual disk that is unique within the name repository
--vmstorage, -vms	Name of the VM storage where the virtual disk will be created
--size, -s	Amount of storage to be assigned from the shared repository to the shared disk. The default unit is $G$ (for gigabytes) and the minimum size is 500 M (for megabytes). Format is $\mathrm{K}\|\mathrm{M}\| \mathrm{G} \mid \mathrm{T}$
--shareable, -sh	(Optional) Sets the option of allowing the virtual disk to be shared by more than one virtual machine (shared)
--sparse, -sp	(Optional) Creates a sparse vdisk. Use the default option, non-sparse, to pre-allocate the full vdisk size in the vdisk image. Specify sparse vdisk with the --sparse, -sp option when you do not need to preallocate the vdisk size in the vdisk image. The image size can increase till it reaches the total current vdisk size.
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Example

Create a 2 GB non-sparse and shareable Virtual Disk named vdisk1 inside the VM storage vms1.

```
odacli create-vdisk -n vdisk1 -vms vms1 -s 2G -sh
```


## odacli list-vdisks

Use the odacli list-vdisks command to list all virtual disks on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

Syntax
odacli list-vdisks [-j] [-h]

## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

odacli list-vdisks

## odacli describe-vdisk

Use the odacli describe-vdisk command to describe a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli describe-vdisk -n name [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the name of the virtual disk.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example: Describing a Virtual Disk named vdisk1

odacli describe-vdisk -n vdisk1

## odacli modify-vdisk

Use the odacli modify-vdisk command to modify a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli modify-vdisk -n name -i [-no-s|-s] [-j] [-h]
```


## Parameters

Parameter	Description
$--n a m e,-n$	Specifies the virtual disk name
$--i n c r e m e n t,-i$	Defines the size to increase the virtual disk. Format is value units, units   are $\mathrm{K}\|\mathrm{M}\| \mathrm{G} \mid \mathrm{T}$   (Optional) Set the Virtual Disk as non-shareable   - no-shareable, --no-s   -- shareable, -s   $--j s o n,-j$
(Optional) Set the Virtual Disk as shareable	
(Optional) Displays output in JSON format.	
Example	

Increase the size of a virtual disk named vdisk1 by 4 gigabytes.
\# odacli modify-vdisk -n vdisk1 -i 4G

## odacli clone-vdisk

Use the odacli clone-vdisk command to clone a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli clone-vdisk -n name -cn clone_name [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual disk name to be cloned
-- clone-name, -cn	Specifies the name of the cloned virtual disk
$--j$ jon, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Create a clone of a virtual disk named vdisk1, with the name vdisk1_clone. The cloned disk is created on the same storage as vdisk1.

```
# odacli clone-vdisk -n vdisk1 -cn vdisk1_clone
```


## odacli delete-vdisk

Use the odacli delete-vdisk command to delete a virtual disk on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli delete-vdisk -n name [-f] [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual disk name to be deleted
-- force, -f	(Optional) Specifies the force option
$--j$ son, -j	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Delete a virtual disk named vdisk1.
\# odacli delete-vdisk -n vdisk1

## odacli CPU Pool Commands for Bare Metal and KVM

Use odacli commands to manage resource allocations on Oracle Database Appliance for bare metal and KVM deployments.

CPU pools enable management of CPU resources in both bare metal and KVM environments. There are two types of CPU pools, that is, BM and VM.

Use the BM CPU pool to ensure that the database on a bare metal host runs exclusively on the CPUs specified in the CPU pool.

Use the VM CPU pools to cage and manage CPU resource allocations to workloads for virtual machines. Workloads are isolated by creating CPU pools and assigning or pinning virtual machines to a specific CPU pool. When you pin a virtual machine to a CPU pool, you ensure that the virtual machine uses CPUs in only that CPU pool.

Resources in CPU pools cannot overlap, that is, CPU pools cannot share CPUs.

- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli list-cpupools

Use the odacli list-cpupools command to list all CPU Pools on Oracle Database
Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli describe-cpupool

Use the odacli describe-cpupool command to describe CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli modify-cpupool

Use the odacli modify-cpupool command to modify a CPU Pool configuration on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli delete-cpupool

Use the odacli delete-cpupool command to delete a CPU Pool configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli list-auditrecords

Use the odacli list-auditrecords command to list the audit records for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli describe-auditrecord

Use the odacli describe-auditrecord command to describe the audit record for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

```
odacli create-cpupool -n name -c number_of_cores {-bm|-vm} [-nn node_name] [-s socket]
[-dbs] [-urc] [-j] [-h]
```


## Parameters

Parameter	Description
--name, -n	Specifies the CPU Pool name.
--cores, -c	Specifies the CPU Pool cores.
--bm, -bm	(Optional) Specifies the CPU Pool as Bare Metal.
--vm, -vm	(Optional) Specifies the CPU Pool as Virtual Machine.
--dbsystem, -dbs	(Optional) Specifies the CPU Pool type as DB System.
--socket, -s	(Optional) Specifies the socket to use. If not specified, then use all available sockets.
```--use-reserved-cores, - urc```	(Optional) Specifies to use reserved CPU cores.
--node-name, -nn	(Optional) Specifies the node where the CPU Pool will be created. On High-Availability deployment, if this option is not specified, then the CPU pool is created on both nodes.
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Usage Notes

- Attach the BM CPU pool to databases. Bare metal CPU pools can be assigned to multiple databases.
- Attach VM CPU pool VM to guest machines. VM CPU pools can be assigned to multiple VMs.
- Attach dbsystem CPU pool to DB systems. dbsystem CPU pool can be assigned to multiple DB systems. After you create a dbsystem CPU pool, you can create a new DB system with this CPU pool by adding the new CPU pool parameter in the create-dbsystem json file, or modify-dbsystem to attach CPU pool to an existing DB system.
- Resources in CPU pools cannot overlap, that is, CPU pools cannot share CPUs.
- After you create a BM CPU pool, you can associate this CPU pool to a database using the create-database or modify-database command.
- After you create a VM CPU pool, you can associate this CPU pool to a VM using the create-vm or modify-vm command.
- Number of cores must be an even number between 2 and the total number of available cores on the system.
- By default, a CPU in the CPU pool is allocated across two sockets in release 19.12 and later. Optionally, you can choose to allocate the CPU based on the socket number (0 or 1). This is especially useful to support Standard Edition licensing. It is recommended that you use the default allocation and do not mix two types of allocation.
- By default, the first core of the socket is reserved and cannot be used by the VM and DB system CPU pools for optimal performance. Use the --use-reserved-cores option to enable use of the first core of socket for VM and DB system CPU pools.


## Example

Create a BM CPU pool named cpupool1 with 6 cores associated to it.

```
# odacli create-cpupool -n cpupool1 -c 6 -bm
```

Create a VM CPU pool named cpupool2 with 6 cores associated to it.

```
# odacli create-cpupool -n cpupool2 -c 6 -vm
```

Create a DB System CPU pool named cpupool3 with 6 cores associated to it.

```
# odacli create-cpupool -n cpupool3 -c 6 -dbs
```

Create a DB System CPU pool named cpupool4 with 4 cores of CPUs allocated from socket 0 .

```
# odacli create-cpupool -n cpupool4 -dbs -s 0 -c 4
```


## odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

```
odacli remap-cpupools -f -urc [-j] [-h]
```


## Parameters

Parameter	Description
-- force, $-f$	(Optional) Specifies to force the operation.
-- use-reserved-cores, $-j$	(Optional) Specifies to use reserved CPU cores.
$--j$ son, $-j$	(Optional) Displays output in JSON format.


Parameter	Description
- -help, -h	(Optional) Displays help for using the command.

## Usage Notes

If the odacli remap-cpupools command fails with the error DCS-10001:Internal error encountered: Not enough physical CPUs available for CPU Pool 'cpupool_name' on node 'node_name', run the odacli remap-cpupools command again with the --use_reservedcores option.

Use the --force option to remap CPU pools even if the CPU pool is marked as NUMAenabled. You must use odacli remap-cpupools command, after updating the bare metal CPU cores with the command odacli modify-cpucores for CPU core number changes.

By default, the first core of the socket is reserved and cannot be used by the VM and DB system CPU pools for optimal performance. Use the --use-reserved-cores option to enable use of the first core of socket for VM and DB system CPU pools.

## Example

```
# odacli remap-cpupools
```


## Related Topics

- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## odacli list-cpupools

Use the odacli list-cpupools command to list all CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

```
odacli list-cpupools [-j] [-h]
```


## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

```
# odacli list-cpupools
```


## odacli describe-cpupool

Use the odacli describe-cpupool command to describe CPU Pools on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

```
odacli describe-cpupool -n name [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the name of the CPU Pool.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

Example: Describing a CPU pool named cpupooll
\# odacli describe-cpupool -n cpupooll

## odacli modify-cpupool

Use the odacli modify-cpupool command to modify a CPU Pool configuration on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

```
odacli modify-cpupool -n name -c cores -f -l [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the CPU Pool name
-- cores, -c	Specifies the new number of CPU cores
-- force, -f	(Optional) Forces the operation
$--\mathrm{live},-1$	(Optional) Applies the changes to running VMs
$--j$ son, -j	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Usage Notes

For VM CPU pool, if --live is not specified, then the changes are applied to the VM configuration file and will be activated next time the $V M$ is started. If --live is specified, then the changes will be applied to both VM configuration file and to the running VM.

## Example

Set the size of a CPU Pool cpupool1 to 10. If --live is not specified, the change is applied to the VM configuration file and will be activated next time the VM is started.
\# odacli modify-cpupool -n cpupool1 -c 10

## odacli delete-cpupool

Use the odacli delete-cpupool command to delete a CPU Pool configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

odacli delete-cpupool -n name -f [-j] [-h]

## Parameters

Parameter	Description
-- name, -n	Specifies the CPU Pool name to be deleted
-- force, -f	(Optional) Forces deletion.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Delete a CPU pool named cpupooll.

```
# odacli delete-cpupool -n cpupool1
```


## odacli list-auditrecords

Use the odacli list-auditrecords command to list the audit records for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

```
odacli list-auditrecords -du dcs-username -f from_date-range -l latest -n node_ID -ot
operation_type -ou OS_username -rn resource_name -rt resource_type -t to_date-range [-j]
[-h]
```


## Parameters

Parameter	Description
$--d c s-u s e r,-d u$	
$--f r o m,-f$	(Optional) Specifies the DCS user name.
	(Optional) Specfies the from date in the date range for the CPU pool   audit records.
$--l a t e s t,-1$	(Optional) Specifies the latest number of CPU pool audit records.
-- node-id, -n	(Optional) Specifies the node ID.
-- op-type, -ot	(Optional) Specifies the type of operation.
-- os-user, -ou	(Optional) Specifies the operating system user.


Parameter	Description
$--r s c-n a m e,-r n$	(Optional) Specifies the resource name.
$--r s c-t y p e,-r t$	(Optional) Specifies the resource type.
-- to, -t	(Optional) Specfies the to date in the date range for the CPU pool audit
	records.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example



## odacli describe-auditrecord

Use the odacli describe-auditrecord command to describe the audit record for a CPU Pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## Syntax

odacli describe-auditrecord -i [-j] [-h]

## Parameters

Parameter	Description
$--i d,-i$	Describes the ID of the audit record.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
$--h e l p,-h$	(Optional) Displays help for using the command.

## Example

```
# odacli describe-auditrecord -i 41295d99-f263-4284-b6d9-2aff1ae0f850
Audit Record details
-----------------------------------------------------------------------------------------
    Event details
    Record ID: 41295d99-f263-4284-b6d9-2aff1ae0f850
```

```
        Record timestamp:
        DCS username:
        OS username:
        Cluster ID:
            Node ID:
Resource/Operation
----------------------------
        Resource type:
        Resource ID:
        Resource name:
        Operation type:
    Operation description:
'test cluster:1-2,17-18'
```

```
2020-10-08 13:27:05 UTC
oda-admin
root
test_cluster-c
test_cluster
```

        BM_CPU_POOL
        b1 \(\overline{7} \mathrm{cb} 6 \overline{2} 3-b f 79-491 \mathrm{f}-86 \mathrm{~d} 8-\mathrm{d} 8502987 e 26 \mathrm{c}\)
        testbmpool
        CREATE
        Created with '2' cores and allocation
    
## odacli VM Network Commands for KVM

Use the odacli virtual machine network commands to manage network on Oracle Database Appliance for Oracle KVM.

- odacli create-vnetwork

Use the odacli create-vnetwork command to create a new network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli list-vnetworks

Use the odacli list-vnetworks command to list all virtual networks on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli describe-vnetwork

Use the odacli describe-vnetwork command to describe virtual networks on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli start-vnetwork

Use the odacli start-vnetwork command to start a virtual network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli stop-vnetwork

Use the odacli stop-vnetwork command to stop a virtual network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli modify-vnetwork

Use the odacli modify-vnetwork command to modify a network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli delete-vnetwork

Use the odacli delete-vnetwork command to delete a virtual network configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## odacli create-vnetwork

Use the odacli create-vnetwork command to create a new network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli create-vnetwork -n name -if interface-name -t type -br bridge -g gateway -ip IP-
address -nm netmask -u uniform -vlan VLAN-network ID [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual network name.
--interface-name, -if	Specifies the the network interface on the host. This can be physical   interface or bonded interface.   --type, -t   --bridge, -br
Specifies the virtual network type. Values are bridged or bridged-vlan.	
--gateway, -gw	(Optional) Specifies the name of the bridge.
--ip, -ip	(Optional) Specifies the virtual network gateway
	(Optional) Specifies the virtual network addresses. For more than one   address, use the format "node0_ip, node1_ip, ..."   $--n e t m a s k, ~-n m ~$
(Optional) Specifies the virtual network netmask	

## Usage Notes

If you did not specify the IP address, or netmask, or gateway during vnetwork creation, then you can add them later using the odacli modify-vnetwork command.

## Example

Create a VM network of type bridged using the interface btbond2.

```
# odacli create-vnetwork -n vnet1 -if btbond2 -type bridged
```


## odacli list-vnetworks

Use the odacli list-vnetworks command to list all virtual networks on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli list-vnetworks [-j] [-h]
```


## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
$--h e l p,-h$	(Optional) Displays help for using the command.

## Example

\# odacli list-vnetworks

## odacli describe-vnetwork

Use the odacli describe-vnetwork command to describe virtual networks on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

Syntax
odacli describe-vnetwork -n [-j] [-h]

## Parameters

Parameter	Description
-- name, $-n$	Specifies the name of the virtual network.
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

Example: Describing a VM Network named vnet1
\# odacli describe-vnetwork -n vnet1

## odacli start-vnetwork

Use the odacli start-vnetwork command to start a virtual network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli start-vnetwork -n name [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual machine name to be stopped
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Start a virtual network named vnet1.
\# odacli start-vnetwork -n vnet1

## odacli stop-vnetwork

Use the odacli stop-vnetwork command to stop a virtual network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli stop-vnetwork -n name [-j] [-h]
```


## Parameters

Parameter	Description
-- name, $-n$	Specifies the virtual network to be stopped
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Stop a virtual network named vnet1.
\# odacli stop-vnetwork -n vnet1

## odacli modify-vnetwork

Use the odacli modify-vnetwork command to modify a network on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli modify-vnetwork -n name -if -t -br -gw -ip -nm -u -vlan [-j] [-h]
```


## Parameters

Parameter	Description
--name, -n	Specifies the virtual network name.
--gateway, -gw	(Optional) Specifies the virtual network gateway
--ip, -ip	(Optional) Specifies the virtual network addresses. For more than one address, use the format "node0_ip,node1_ip, ...". Specify the value as none to remove the IP address.
--netmask, -nm	(Optional) Specifies the virtual network netmask
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Example

Modify a VM network to specify the gateway.

```
# odacli modify-vnetwork -n vnet1 -g 10.11.44.41
```


## odacli delete-vnetwork

Use the odacli delete-vnetwork command to delete a virtual network configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

odacli delete-vnetwork -n name [-j] [-h]

## Parameters

Parameter	Description
$--n a m e,-n$	Specifies the vnetwork name to be deleted
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.
Example	
Delete a VM network named vnet1.	
\# odacli delete-vnetwork -n vnet1	

## odacli Virtual Machine Commands for Oracle KVM

Use the odacli virtual machine commands to manage virtual machines on Oracle Database Appliance for Oracle KVM.

- odacli create-vm

Use the odacli create-vm command to create a new virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli list-vms

Use the odacli list-vms command to list all virtual machines on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli describe-vm

Use the odacli describe-vm command to describe a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli start-vm

Use the odacli start-vm command to start a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli stop-vm

Use the odacli stop-vm command to stop a virtual machine on Oracle Database
Appliance Kernel-based Virtual Machine (KVM).

- odacli migrate-vm

Use the odacli migrate-vm command to migrate a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli clone-vm

Use the odacli clone-vm command to clone a virtual machine configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli delete-vm

Use the odacli delete-vm command to delete a virtual machine configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## odacli create-vm

Use the odacli create-vm command to create a new virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli create-vm -n name -m memory -src source -vc vcpus -vms vmstorage -cp cpupool -d
description -g graphics
-mm max-mem-size -mvc max-vcpu-count -ost os-type -osv os_variant -pn preferred_node -s
disk_size -vd vdisks
-vn virtual_networks -esrc extra_srcs [-j] [-h]
```


## Parameters

Parameter	Description
$--n a m e,-n$	Specifies the VM name
$--m e m o r y,-s t$	Specifies the size of the VM memory. The format is "value_unit". Unit is
M\|G.	
Specifies the source installation. If local, it can be an ISO or a bootable	
disk image. If remote, it can be an URI pointing to an install tree hosted	
remotely over HTTP, HTTPS, or FTP.	
Specifies the number of vCPUs to use.	

## Usage Notes

- Use the --extra-args parameter to add kickstart configuration file, kernel parameters for example, serial console. For example: --extra-args "console=tty0 console=ttyS0,115200 ks=http://192.168.122.100:80/ks.txt"


## Example

Create a VM named vm1 with 8 vcpus and 8 GB memory. The VM is stored in the VM Storage vms1. The source used for the installation is located on /u01/0L7.iso.
\# odacli create-vm -n vm1 -vc 8 -m 8G -vms vs1 -src /u01/OL7.iso

## Example

If the installation source is located through network, the network configuration of the VM must be provided by --extra-args so that the network can be setup at the bootstrap of the VM, to reach the installation source over the network. For example, to create a VM from source https://example.com/iso/OracleLinux/OL7/u9/x86_64/OracleLinux-R7-U9-Server-x86_64-dvd/:

```
# odacli create-vm -vn pubnet -m 4G -vc 8 -src https://example.com/iso/
OracleLinux/OL7/u9/x86_64/OracleLinux-R7-U9-Server-x86_64-dvd/ -vd vmstorage_vdisk2 -vms
vmstore -g vnc,listen=0.0.0.0,port=5949 -n vm1 -s 20G --extra-args
"dns=<dns_server_ip_addr>
ip=<vm1_ip_addr>\overline{:}:<\mathrm{ <gateway_ip>:<netmask>:<vm1_hostname>:ens3:none"}
```


## odacli list-vms

Use the odacli list-vms command to list all virtual machines on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli list-vms [-j] [-h]
```


## Parameters

Parameter	Description
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

```
# odacli list-vms
```


## odacli describe-vm

Use the odacli describe-vm command to describe a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli describe-vm -n name [-j] [-h]
```


## Parameters

Parameter	Description
-- name, - n	Specifies the name of the virtual machine.
-- j son, - j	(Optional) Displays output in JSON format.


Parameter	Description
-- help, -h	(Optional) Displays help for using the command.

## Example: Describing a Virtual Machine named vm1

\# odacli describe-vm -n vm1

## odacli modify-vm

Use the odacli modify-vm command to modify a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli modify-vm -n name -as -en -bo boot_option -cfg -avd attach_vdisks -avn
attach_vnetworks -dev device -d description -dn -dvd detach-vdisk -dvn detach-vnetworks -
mm max-memory -mvc max-vcpuc -m memory -no-cp -pn preferred-node -vc vcpu_count -di disk-
increment -en -fo -g graphics -l -no-as [-f] [-g] [-j] [-h]
```


## Parameters

Parameter	Description
--name, -n	Specifies the VM name
--autostart, -as	(Optional) Specifies if the auto-start option must be set for the VM
--no-autostart, -no-as	(Optional) Disables the auto-start option for the VM
--boot-option, -bo	(Optional) Specifies the the boot option to use
--config, -cfg	(Optional) Specifies whether the changes persist.
--live, -l	(Optional) Indicates whether the specified changes take place live (true) or after the next boot (false). Default is false
--enable-numa, -en	(Optional) Enables NUMA configuration for the VM.
--disable-numa, -dn	(Optional) Disables NUMA configuration for the VM.
--cpu-pool, -cp	(Optional) Specifies the CPU pool name
--description, -d	(Optional) Specifies the VM description
--failover, -fo	(Optional) Specifies the configuration for the failover
--no-failover, -no-fo	(Optional) Specifies the configuration for the failover
--vcpus, -vc	(Optional) Specifies the number of vCPUs.
--memory, -m	(Optional) Specifies the memory size of the VM. The format is "value_unit". Unit is M\|G.
--max-memory, -mm	(Optional) Specifies the maximum memory size of the VM. The format is "value_unit". Unit is M\|G.
--max-vcpus, -mvc	(Optional) Specifies the maximum number of vCPUs.
--no-cpupool, -no-cp	(Optional) Dissasociates the associated CPU Pool
--detach-vdisk, -dvd	(Optional) Specifies the names of the virtual disks to detach
--detach-vnetworks, -dvn	(Optional) Specifies the names of the virtual networks to detach
--pref-node, -pn	(Optional) Specifies the preferred node to run the VM


Parameter	Description
--disk-increment, -di	Specifies the change in size of the VM. The format is "value_unit". Unit is $\mathrm{K}\|\mathrm{M}\| \mathrm{G} \mid \mathrm{T}$.
--attach-vdisks, -avd	(Optional) Specifies the names of the vdisks to attach
--attach-vnetworks, -avn	(Optional) Specifies the names of the virtual networks to attach
--device, -dev	(Optional) Modifies the device as specified in the expression:
	Where device_expression = [vdisk=vdisk_name, ] [bus=bus_type,][target=target_device]
	vdisk_name: If specified, must refer to an attached vDisk name. Otherwise it refers to the VM image.
	bus_type: The value can be ide, virtio, scsci, fdc, xen, usb, sata or sd.
	target_device: Must be a device name compatible with the bus_type. For example: vda, hda, sda.
--force, -f	(Optional) Specifies to force the operation.
--graphics, -g	(Optional) Defines the graphics settings for the VM. The supported graphics setting is VNC. For example,   vnc, listen=127.0.0.1, port=5901.
--json, -j	(Optional) Displays output in JSON format.
--help, -h	(Optional) Displays help for using the command.

## Usage Tips

- --live: The change is applied to the running VM instance, but does not persist after the VM stops.
- --enable-numa: Use this option to enable NUMA for an existing VM.
- --config: The change persists in the configuration of VM instance and takes effect on subsequent reboots.
- If neither --live or --config is specified, then the default behavior is --config.
- You can specify both the --live or --config options if you want the modification to take effect immediately and on subsequent boots.
- When an application VM is created, a default network interface is created by default in the VM. This interface is attached to the default kvm bridge (virbr0) at the host. This interface is intended for convenient communication between the host and VM. This interface does not attach to any physical network interface at the host. Do not configure this interface to use for any external communication.
- You must create a vnetwork using the command odacli create-vnetwork and attach the vnetwork (odacli modify-vm -avn) to the VM. This creates a second interface in the VM. Configure this network interface for your network requirement.
- The network interface name in the VM depends on the operating system.


## Modifying CPU Count and Memory for a VM

Update the configuration of a VM named vm1, setting the CPU count to 6 and the maximum memory to 6 gigabytes on both the running VM and subsequent boots.

```
# odacli modify-vm -n vm1 -vc 6 -mm 6G --live --config
```


## Enabling NUMA

Use --enable-numa to enable NUMA for the VM configuration. The command odacli modifydbsystem --enable-numa is only supported on application VMs with even number of CPU cores so that CPU cores can be evenly distributed to NUMA nodes. In Oracle Database Appliance, one CPUcore is equal to 2 vCPU. For more information, see About Enabling NUMA on Oracle Database Appliance.
\# odacli modify-vm --name name --enable-numa

## Modifying a VM to attach a vnetwork

Modify a VM to attach a vnetwork:

```
# odacli modify-vm -n vm_name -avn vnetwork_name
```


## Modifying a VM to change the bus type for the VM image

Modify the bus type for the VM image from virtio to sata. This is useful when the VM image does not support the virtio driver, for example, a Windows VM without virtio driver installed:

```
# odacli modify-vm -dev "bus=sata" -n winvm
```


## Modifying a VM to change the bus type for a specific vdisk attached to the VM

To modify the bus type for a specific vdisk attached to the VM, run the following command:

```
# odacli modify-vm -dev "vdisk=vdisk_name, bus=sata" -n winvm
```

The command changes the winvm bus type of vdisk_name to sata. If you do not specify the vdisk parameter, the command changes the bus type to the vdisk that holds the VM image.

## Related Topics

- odacli remap-cpupools

Use the odacli remap-cpupools command to remap CPU pools to NUMA allocation on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

- odacli modify-dbsystem

Use the odacli modify-dbsystem command to modify a DB system on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

- odacli create-cpupool

Use the odacli create-cpupool command to create a new CPU pool on Oracle Database Appliance Bare Metal or Kernel-based Virtual Machine (KVM) deployment.

## odacli start-vm

Use the odacli start-vm command to start a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli start-vm -n name -nn [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual machine name to be stopped
-- node-name, -nn	(Optional) Specifies the node name where the virtual machine will be   started
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Usage Notes

- If pref-node is defined for the VM , then the VM starts on the pref-node. If pref-node is not defined for the VM, then the VM can start on any node, in a high-availability deployment.
- If you specify the node name -n, then the VM starts on the specified node, even if the preferred node is defined.


## Example

Start a virtual machine named vm1.
\# odacli start-vm -n vm1

## odacli stop-vm

Use the odacli stop-vm command to stop a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli stop-vm -n name [-f] [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual machine name to be stopped
-- force, -f	(Optional) Specifies the force option
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Stop a virtual machine named vm1.

```
# odacli stop-vm -n vm1
```


## odacli migrate-vm

Use the odacli migrate-vm command to migrate a virtual machine on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

Syntax

```
odacli migrate-vm -n name -to node [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual machine name to be migrated
-- target-node, -to	Specifies the destination node
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.
Example	

Migrate a virtual machine named vm1 to node n1.
odacli migrate-vm -n vm1 -to n1

## odacli clone-vm

Use the odacli clone-vm command to clone a virtual machine configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

\# odacli clone-vm -n name_of_vm_to_clone_from -cn clone_name [-j] [-h]

## Parameters

Parameter	Description
-- name, -n	Specifies the virtual machine name to be cloned
-- clone-name, -cn	Specifies the name of the cloned virtual machine
-- description, -d	(Optional) Specifies the description of the virtual machine
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Create a clone of a virtual machine named vm1, with the name vm1_clone. The cloned VM is created on the same storage as vm1.
\# odacli clone-vm -n vm1 -cn vm1_clone

## odacli delete-vm

Use the odacli delete-vm command to delete a virtual machine configuration on Oracle Database Appliance Kernel-based Virtual Machine (KVM).

## Syntax

```
odacli delete-vm -n name [-f] [-j] [-h]
```


## Parameters

Parameter	Description
-- name, -n	Specifies the virtual machine name to be deleted
-- force, -f	(Optional) Specifies the force option
$--j$ son, $-j$	(Optional) Displays output in JSON format.
-- help, -h	(Optional) Displays help for using the command.

## Example

Delete a virtual machine named vm1.

```
odacli delete-vm -n vm1
```


## Configuring and Using Oracle Auto Service Request (Oracle ASR)

Configure and use Oracle ASR to automatically generate a service request for specific hardware faults.

- About Configuring Oracle ASR

Configure Oracle Auto Service Request (Oracle ASR) to automatically generate service requests for specific hardware faults.

- Configuring Internal Oracle ASR

Use ODACLI commands or the Browser User Interface (BUI) to configure Oracle Auto Service Request (Oracle ASR) in Oracle Database Appliance.

- Registering with External Oracle ASR Manager Use ODACLI commands or the Browser User Interface to register Oracle Database Appliance with an external Oracle Auto Service Request (Oracle ASR) Manager.
- Configuring External Oracle ASR When Oracle ASR Manager Does Not Run on an Oracle Database Appliance
Understand how you can configure Oracle Database Appliance with an external Oracle Auto Service Request (Oracle ASR) Manager.
- Testing Oracle ASR

Use the odacli test-asr command to confirm that your Oracle ASR configuration is working.

- Managing an Oracle ASR Configuration Use the command-line to review an existing configuration, make changes to a configuration, or delete a configuration.
- Additional Resources for Oracle ASR

Refer to these sections for more information about Oracle ASR.

## About Configuring Oracle ASR

Configure Oracle Auto Service Request (Oracle ASR) to automatically generate service requests for specific hardware faults.

Oracle ASR is a secure support feature that can improve system availability through expedited diagnostics and priority service request handling. You can configure Oracle ASR on Oracle Database Appliance to use its own Oracle ASR Manager (internal Oracle ASR) or use Oracle ASR Manager configured on another server in the same network as your appliance (external Oracle ASR).

Oracle Database Appliance supports two types of Oracle ASR configurations - Internal and External. You can use the odacli configure-asr command to configure both types of Oracle ASR.

- Internal Oracle ASR: For this type of configuration, Oracle ASR Manager is installed on the Oracle Database Appliance, where assets need to be monitored. For this type of configuration, Oracle ASR Manager is installed on the Oracle Database Appliance, where
assets need to be monitored. The assets Oracle ILOM and the host are registered with Oracle ASR using an XML payload that is sent to the HTTPS endpoint of Oracle ASR Manager. After successful registration, the alerts are also sent from the assets to the Oracle ASR Manager by composing an XML payload. Once the XML file is sent, an SR is generated based on the alert information present in the XML file.
- External Oracle ASR: For this type of configuration, Oracle ASR Manager is not installed on one Oracle Database Appliance. For example, if Oracle ASR manager is not installed on oda1, but Oracle ASR Manager is installed on another Oracle Database Appliance, oda2, then the assets that belong to oda2 assets are registered with Oracle ASR Manager installed on oda1. To register Oracle Database Appliance assets with an external Oracle ASR Manager, you must first update the repository with Oracle ASR Manager configuration files. After that, configure Oracle ASR as external to register the assets with Oracle ASR Manager.


## , Note:

With an internal Oracle ASR Manager, an alert is not sent when the server is not running because the Oracle ASR Manager runs on the same server. However, if a critical event occurs on Oracle Database Appliance with an external Oracle ASR Manager, then an alert can still be generated since the Oracle ASR Manager is not running on the same host.

You can configure Oracle ASR as part of deploying the appliance, or you can use the Browser User Interface (BUI) or command-line interface to configure or edit an Oracle ASR after deployment.

Starting with Oracle Database Appliance release 19.21, when you configure Oracle ASR, you specify HTTPS settings and not the SNMP settings. Following are the requirements to configure Oracle ASR:

- Oracle Database Appliance hardware must be associated with a Support Identifier (SI) in My Oracle Support.
- If a proxy server is required for Internet access to Oracle, then you must also provide the name of the proxy server.
- To configure an internal Oracle ASR Manager, you need a My Oracle Support account user name (e-mail address) and password associated with the My Oracle Support account under which the server is registered.
- To register with an external Oracle ASR Manager, use zip file generated by the odacli export-asrconfig command when it is run on the appliance where Oracle ASR Manager runs.


## Related Topics

- Configuring Internal Oracle ASR Use ODACLI commands or the Browser User Interface (BUI) to configure Oracle Auto Service Request (Oracle ASR) in Oracle Database Appliance.
- Configuring External Oracle ASR

Use ODACLI commands or the Browser User Interface to register Oracle Database Appliance with an external Oracle Auto Service Request (Oracle ASR) Manager.

- odacli configure-asr

Use the odacli configure-asr command to configure Oracle Auto Service Request (Oracle ASR) after deploying the appliance.

## Configuring Internal Oracle ASR

Use ODACLI commands or the Browser User Interface (BUI) to configure Oracle Auto Service Request (Oracle ASR) in Oracle Database Appliance.

You can register with an internal Oracle ASR Manager at any time, or modify an existing registration. Before configuring, verify that the Oracle Database Appliance hardware is associated with a Support Identifier (SI) in My Oracle Support.

You need the following information to configure Oracle ASR:

- The e-mail address associated with the My Oracle Support account under which the server is registered
- The password associated with the My Oracle Support account under which the server is registered
- If a proxy server is required for Internet access to Oracle, then you must also provide the name of the proxy server


## Configuring Internal ASR Using ODACLI Commands

Use the odacli configure-asr command to configure Oracle ASR after deploying the appliance.

```
# odacli configure-asr -u user@example.com -hp 16165
Enter ASR user's password:
Retype ASR user's password:
Job details
```




After configuring Oracle ASR, check the the asset status for both the host and the Oracle ILOM asset as follows:

```
# /opt/asrmanager/bin/asr list asset
IP_ADDRESS HOST_NAME SERIAL_NUMBER PARENT_SERIAL ASR ASR_STATUS PROTOCOL
SOURCE LAST_HEARTBEAT PRODUCT_NAME
------- -------------- -------------
2213XLA00E oda1-ilom 2213XLAO0E Y Active HTTP ILOM_XML 2023-11-30
06:36:11.472 ORACLE SERVER X8-2L
10.133.48.239 oda1 2213XLA00E Y Active HTTP ESSW XML NA ORACLE SERVER X8-2L
Please use My Oracle Support 'http://support.oracle.com' to view the
activation status.
To view the latest available asset status in ASR Manager please execute the
'send_asset_status' command.
```


## Configuirng Internal ASR Using the BUI

1. Open a browser and enter the following URL to access BUI:
```
https://ip-address:7093/mgmt/index.html
```

2. Login as oda-admin.
3. Click the Appliance tab.
4. Click the Oracle ASR menu.
5. If Oracle ASR is already configured, then in the Configure ASR page, provide the Oracle ASR configuration values.
6. Select Internal in the ASR Type field.
7. In the ASR User Name field, enter e-mail address associated with the My Oracle Support account under which the server is registered.
8. In the ASR Password field, enter the password associated with the My Oracle Support account under which the server is registered.
9. (Optional) Specify the HTTPS port for the Oracle ASR Manager. The default HTTPS port is 16162.
10. (Optional) If you are using an HTTP Proxy for upload to Oracle ASR, complete the following:
a. HTTP Proxy used for Upload to ASR: Select Yes.
b. Proxy User Name: If you are using a proxy for upload, enter the proxy user name.
c. Proxy Port: If you are using a proxy for upload, enter the proxy port.
d. (Optional) HTTP Proxy Requires Authentication: If you are using a proxy for upload, select Yes if you require authentication. If you do not require authentication, select No.
e. (Optional) Proxy Password: If you are using a proxy for upload and require authentication, enter the proxy password.

## 11. Click Create.

## Registering with External Oracle ASR Manager

Use ODACLI commands or the Browser User Interface to register Oracle Database Appliance with an external Oracle Auto Service Request (Oracle ASR) Manager.

You can register with an external Oracle ASR Manager at any time.
Before configuring, verify that the Oracle Database Appliance hardware is associated with a Support Identifier (SI) in My Oracle Support.

Before configuring external Oracle ASR on an appliance, ensure that Oracle ASR Manager is configured on another appliance.

## Configuring External ASR Using ODACLI Commands

Run these steps on the appliance where Oracle ASR Manager is configured:

1. Export the internal Oracle ASR Manager configuration files into a zip file:
```
[root@node1 bin]# odacli export-asrconfig
Job details
------------------------------------------------------------------
            ID: 9c9e74d4-d3d8-4f77-9394-42c8eb7bfe1e
        Description: Export ASR Config
            Status: Success
        Created: November 30, 2023 7:02:51 AM UTC
        Message: Run update repository with the zip /opt/
oracle/asr/asrConfiguration/ASRConfiguration.zip in the External ASR host
once the current job is successful
Task Name Start Time
End Time Status
---------------------------------------------
Creating a zip of ASR config files November 30, 2023 7:02:52 AM UTC
November 30, 2023 7:02:52 AM UTC Success
```

2. Copy the zip file from the Oracle ASR Manager appliance to the system where the external Oracle ASR Manager must be configured. The zip file path is displayed in the job description in step 1.
```
$ scp zipFilePath user@system_name/IP:destination_path_for_ the_zip
```

After copying the Oracle ASR Manager configuration zip file to the external Oracle ASR appliance, run the following steps on the external Oracle ASR appliance:

1. Run the odacli update-repository command to extract the zip file on the external Oracle ASR Manager system.
```
[root@node1 bin]# odacli update-repository -f zip_file_path
Job details
------------------------------------------------------------------------
            ID: c659b6ee-9f02-4cb4-aba4-4ed8de883e3a
    Description: Repository Update
            Status: Success
            Created: November 30, 2023 3:44:28 PM CST
            Message: /opt/oracle/dcs/bin/ASRConfiguration.zip
Task Name Start Time End Time Status
-------------------------------------------
-----------------------------------------
--------------------------------------- -------------------
Unzip bundle November 30, 2023 3:44:28 PM CST November 30, 2023 3:44:28 PM
CST Success
```


## 2. Configure Oracle ASR Manager as External.

```
[root@node1 bin]# odacli configure-asr -e External
Enter ASR user's password:
Retype ASR user's password:
[root@node1 bin]# odacli describe-job -i cdd8445f-
aefb-4f43-881a-145eaa1a1181
root@scaoda6f001 ~]# odacli describe-job -i 1099eac8-2879-4341-b391-
d56237696395
Job details
```



November 30, 2023 3:46:58 PM CST Success
Configure ILOM November 30, 2023 3:46:58 PM CST
November 30, 2023 3:47:07 PM CST Success
3. To verify the successful activation of the assets with the external Oracle ASR Manager, run the command to list assets in the Oracle ASR Manager host as follows:

```
[root@nodel bin]# /opt/asrmanager/bin/asr list_asset
IP_ADDRESS HOST_NAME SERIAL_NUMBER PARENT_SERIAL ASR ASR_STATUS
PROTOCOL SOURCE LAST_HEARTBEAT PRODUCT_NAME
\begin{tabular}{|c|c|c|c|c|c|}
\hline IP_address_1 odal & \multicolumn{2}{|r|}{\(1642 \mathrm{NM10D1}\)} & & \multirow[t]{2}{*}{Y} & \multirow[t]{2}{*}{Active} \\
\hline HTTP ESSW_XML & NA & ORACLE & SERVER X7-2 & & \\
\hline IP_address_2 oda2 & & 1921XLAOAN & & Y & Active \\
\hline HTTP ILOM_XML & NA & ORACLE & SERVER X8-2L & & \\
\hline IP_address_3 oda3 & & 1921XLAOAN & & Y & Active \\
\hline HTTP ESSW_XML & NA & ORACLE & SERVER X8-2L & x86 & 64 System \\
\hline IP_address_4 oda4 & & 1921XLAOAW & & Y & Active \\
\hline HTTP ILOM_XML & NA & ORACLE & SERVER X8-2L & & \\
\hline IP_address_5 oda5 & & 1921XLAOAW & & Y & Active \\
\hline HTTP ESSW_XML & NA & ORACLE & SERVER X8-2L & x86/ & 64 System \\
\hline
\end{tabular}
```

Use My Oracle Support to view the activation status. To view the latest available asset status in Oracle ASR Manager, run the send_asset_status command.

## Configuring External Oracle ASR Using the BUI

Ensure that the zip file of Oracle ASR configured externally is imported to the repository using the odacli update-repository command, and then run the following steps:

1. Open a browser and enter the following URL to access BUI:
https://ip-address:7093/mgmt/index.html
2. Login as oda-admin.
3. Click the Appliance tab.
4. Click the Oracle ASR menu.
5. Select External from the ASR Type menu.
6. Click Create.

## Configuring External Oracle ASR When Oracle ASR Manager Does Not Run on an Oracle Database Appliance

Understand how you can configure Oracle Database Appliance with an external Oracle Auto Service Request (Oracle ASR) Manager.

## Prerequisites:

1. Ensure that the ASR manager is installed with version 23.2 .0 or above. Run the / opt/ asrmanager/bin/asr show_version command to view the Oracle ASR version:
/opt/asrmanager/bin/asr show_version
```
ASR Manager version: 23.2.0
Rules definitions version: 23.2.0.0
Auto Update Statistics
==========================
Last Run Time: 2024-02-08 12:19:27.777
Last Run Status: Oracle Automated Service Manager not yet registered.
Next Run Time: 2024-02-09 12:19:27.777
Skipping ASR connectivity tests as ASR Auto Update isn't enabled
Auto Update Status
```



```
Auto Update functionality is disabled.
Please refer to the My Oracle Support Doc Id: 1503107.1 for instructions
on Auto Update of ASR Manager software.
ASR Manager Services
ASR Notification Trap is enabled.
Remote Request feature is enabled.
```

2. Ensure that Oracle ASR is enabled to run with HTTPS by running the following commands:
```
/opt/asrmanager/bin/asr https_config
/opt/asrmanager/bin/asr https_enable
```

Ensure that the required setting is present by running the /opt/asrmanager/bin/asr show_http_receiver command as follows:

```
/opt/asrmanager/bin/asr show_http_receiver
    HTTP Receiver configuration:
    HTTP Receiver Status: Enabled
    Host Name: xx.xxx.x.xxx
    SFB forward: true
    HTTP Port: 16161
    HTTPS/SSL Port: 16162
    HTTPS/SSL: Enabled
    Jetty HTTP Compliance: Medium - RFC2616
    Enable Jetty Older Ciphers: true
```

The output of the command must display HTTPS/SSL as Enabled.
Note that when you run the /opt/asrmanager/bin/asr https_config command, and the "What is your first and last name?" question is prompted for the certificate, you must enter the ASR manager IP address and keep the rest of the answers default.

## Configuring External ASR Using ODACLI Commands

Run these steps on the appliance where Oracle ASR Manager is configured:

1. Create a directory called ass under /tmp.
mkdir /tmp/asr
2. Go to the directory created in step 1.
cd /tmp/asr
3. Generate the public key with the name asrHTTPSCertificate.crt under the directory created in step 1 for Oracle ASR Manager, using its keystore present at /var/opt/ asrmanager/configuration/asrmKeyStore.jks. The following command creates a certificate /tmp/asr/asrHTTPSCertificate.crt for the keystore:
jdkbinpath/keytool -exportcert -alias alias set for the keystore keystore /var/opt/asrmanager/configuration/asrmKeyStore.jks -file /tmp/asr/ asrHTTPSCertificate.crt -rfc Enter keystore password: Enter the certificate password provided in "asr https_config" command
4. Create a new JSON file with the name asrdetails.json with the following details under /tmp/asr and set the values for the following:

- asrManagerIp: The IP address of the host where Oracle ASR Manager runs.
- userName: The email ID with which Oracle ASR Manager is registered.
- httpsPortNumber: The HTTPS port number set for Oracle ASR Manager in the asr https_config command.
- httpsCertAlias: The certificate ALIAS set when prompted by the asr https_config command.

Example of /tmp/asr/asrdetails.json:

```
{
```

    "asrManagerIp" : "xx.xxx.x.xxx",
    "userName" : "test",
    "httpsPortNumber" : 16162,
    "httpsCertAlias" : "oda-asr-client2024-01-31t10:15:52"
    \}
5. Generate a zip file with the files created in step 3 and step 4 asrHTTPSCertificate.crt and asrdetails.json from the asr directory present under /tmp directory.

```
cd / tmp
```

zip ASRConfiguration.zip asr/asrHTTPSCertificate.crt asr/asrdetails.json
6. Copy the zip file created in step 5 to the Oracle Database Appliance machine whose assets must be registered with the external Oracle ASR.

```
$ scp /tmp/ASRConfiguration.zip user@machine name/IP:destination path for
the zip
```

After copying the external Oracle ASR Manager configuration zip file to Oracle Database Appliance, run the following steps on the Oracle Database Appliance:

1. Run the odacli update-repository command to unzip the zip file created on the external Oracle ASR machine and copied to the appliance.
```
$odacli update-repository -f <zip file path>
odacli describe-job -i c659b6ee-9f02-4cb4-aba4-4ed8de883e3a
Job details
\begin{tabular}{|c|c|}
\hline ID: & c659b6ee-9f02-4cb4-aba 4-4ed8de883e3a \\
\hline Description: & Repository Update \\
\hline Status: & Success \\
\hline Created: & November 30, 2023 3:44:28 PM CST \\
\hline Message: & /opt/oracle/dcs/bin/ASRConfiguration \\
\hline
\end{tabular}
```


2. Configure Oracle ASR Manager as External.

```
$odacli configure-asr -e External
Enter ASR user's password: <SSO password>
Retype ASR user's password:
odacli describe-job -i 1099eac8-2879-4341-b391-d56237696395
Job details
```



```
Registering Asset: ODA Host November 30, 2023 3:46:56 PM
CST November 30, 2023 3:46:57 PM CST Success
ASR assets activation November 30, 2023 3:46:57 PM
CST November 30, 2023 3:46:58 PM CST Success
Configure ILOM November 30, 2023 3:46:58 PM
CST November 30, 2023 3:47:07 PM CST Success
```


## Configuring External ASR Using Browser User Interface (BUI)

After copying the external Oracle ASR Manager configuration zip file to Oracle Database Appliance, follow these steps:

1. Open a browser and enter the following URL to access BUI:
https://ip-address:7093/mgmt/index.html
2. Login as oda-admin.
3. Click the Appliance tab.
4. Click the Oracle ASR menu, and then click Export on the ASR Information page. Note: You must run the export operation from the Oracle Database Appliance on which internal Oracle ASR Manager is configured.
5. After the job completes successfully, a zip file is generated in the location /opt/
oracle/asr/asrConfiguration.
6. Manually copy the zip file from the appliance with the internal Oracle ASR Manager to the system where the external Oracle ASR Manager must be configured.
7. In the Configure ASR page, select ASR Type as External.
8. Specify the Zip File Location copied in step 6.
9. Click Update Repository.
10. After the repository is updated with the zip file, click Next.
11. Specify and confirm the ASR Password.
12. Click Configure ASR.
13. After the job completes sccessfully, verify the Oracle ASR configuration on the ASR Information page.

## Testing Oracle ASR

Use the odacli test-asr command to confirm that your Oracle ASR configuration is working.
When you run the command, a test alert is sent to Oracle ASR manager from both Oracle ILOM and the host registered with Oracle ASR. The registered email ID receives an email about the test alert for the registered Oracle ILOM and host.

Attempting to test the configuration outside of the odacli test-asr command might not provide the expected test result.

1. Log in as root user.
2. Run the odacli test-asr command.
```
# odacli test-asr
Job details
-----------------------------------------------------------------------
            ID: 51522c07-1b32-4874-9bc7-bbee5885f1e5
    Description: Test ASR
            Status: Success
    Created: October 20, 2023 1:02:49 PM UTC
    Message:
Task Name Start Time End Time
Status
--------- ------------------------------ ------------------------------------
--------
Test ASR October 20, 2023 1:02:50 PM UTC October 20, 2023 1:02:50 PM UTC
Success
```


## Managing an Oracle ASR Configuration

Use the command-line to review an existing configuration, make changes to a configuration, or delete a configuration.

You can view and edit the configuration details, but you cannot change the Oracle ASR type. For example, from internal to external. To change the Oracle ASR type, delete the existing configuration and then re-configure Oracle ASR.

All log files for Oracle ASR are located in the /var/opt/asrmanager/log/directory.

1. To display Oracle Auto Service Request (Oracle ASR) configuration details, use the odacli describe-asrcommand.
\# odacli describe-asr
ASR details
```
----------------------------------------------------------------
                        ID: e0e31043-c312-4371-8301-e62642ef8a4a
                        Name: ASR
            ASR Type: Internal
        ASR Manager IP : 10.32.202.13
    ASR Manager username: scott.tiger@example.com
        HTTPS port number: 16164
            State: CONFIGURED
            Created: September 3, 2023 4:02:38 AM UTC
            Updated: September 3, 2023 4:03:32 AM UTC
```

2. (Optional) To make changes to Oracle ASR configuration details after deploying the appliance, use the odacli modify-asr command.
3. (Optional) To remove the Oracle ASR configuration from the system, use the odacli delete-asrcommand.
\# odacli delete-asr
\{
```
"jobId" : "5d70bd17-ec4a-48da-8196-1364105db99d",
"status" : "Running",
"message" : null,
"reports" : [ ],
"createTimestamp" : 1469409622451,
"description" : "Delete ASR",
"updatedTime" : 1469409622458
}
```


## Related Topics

- odacli Oracle Auto Service Request Commands Use the Oracle Auto Service Request (Oracle ASR) commands to configure, update, test, and delete Oracle ASR on the system.


## Additional Resources for Oracle ASR

Refer to these sections for more information about Oracle ASR.

- Oracle ASR product page: http://www.oracle.com/asr
- Oracle Database Appliance products qualified for Oracle ASR:
- Oracle ASR Qualified Oracle Database Appliance Products
- IMPORTANT: Oracle ASR Qualifed Product and Fault Rule Coverage Supplement (Doc ID 2142295.1)
- Oracle ASR user documentation:
http://docs.oracle.com/cd/E37710_01/index.htm

Troubleshooting Oracle Database Appliance

Understand tools you can use to validate changes and troubleshoot Oracle Database Appliance problems.

- Troubleshooting Data Preserving Reprovisioning Upgrades Understand the errors you may encounter during Data Preserving Reprovisioning upgrade and their solutions.
- Viewing Oracle Database Appliance Error Correlation Reports Understand how to view Error Correlation Report and how to interpret the report to troubleshoot your appliance.
- About Enabling Linux Kernel Core Extractor for Troubleshooting Understand how to manage Linux Kernel Core Extractor to troubleshoot your appliance.
- Viewing Details About DCS Error Messages Understand how to view details about DCS errors for troubleshooting them.
- Collecting Diagnostics Data Using the BUI Understand how to collect diagnostics data to troubleshoot errors.
- Resolving Errors When Updating DCS Components During Patching Understand how to troubleshoot errors when updating DCS components during patching.
- Viewing Component Information on the Appliance

View details of all the components installed on the appliance, and the RPM drift information.

- Errors When Logging into the Browser User Interface If you have problems logging into the Browser User Interface, then it may be due to your browser or credentials.
- Errors when re-imaging Oracle Database Appliance Understand how to troubleshoot errors that occur when re-imaging Oracle Database Appliance.
- Using Oracle Autonomous Health Framework for Running Diagnostics Oracle Autonomous Health Framework collects and analyzes diagnostic data collected, and proactively identifies issues before they affect the health of your system.
- Running the Disk Diagnostic Tool Use the Disk Diagnostic Tool to help identify the cause of disk problems.
- Running the Oracle Database Appliance Hardware Monitoring Tool The Oracle Database Appliance Hardware Monitoring Tool displays the status of different hardware components in Oracle Database Appliance server.
- Disabling the Browser User Interface You can also disable the Browser User Interface. Disabling the Browser User Interface means you can only manage your appliance through the command-line interface.
- Preparing Log Files for Oracle Support Services If you have a system fault that requires help from Oracle Support Services, then you may need to provide log records to help Oracle support diagnose your issue.


## Troubleshooting Data Preserving Reprovisioning Upgrades

Understand the errors you may encounter during Data Preserving Reprovisioning upgrade and their solutions.

## Checks related to TDE-enabled databases

Scenario: The database precheck Validate TDE wallet presence may fail with the following error, for a TDE-enabled database with TDE Wallet Management attribute set to EXTERNAL value and with software keystore used for TDE configuration.

```
    Pre-Check Status Error
Action
    ------------------------------ ----------
-----------------------------------------------------
    Validate TDE wallet presence Failed Both Password Protected
Wallet Make sure that both, Password
    (ewallet.p12) and Autologin
Wallet Protected Wallet (ewallet.p12) and
                                (cwallet.sso) are not found
at Autologin Wallet (cwallet.sso) are
    '/u01/app/odaorahome/oracle/
product/ present at mentioned location
    19.0.0.0/dbhome_1/admin/
extdb/
    wallets' location for database
'extdb'
```

Cause: The reason for the above failure is that both the TDE wallets (ewallet.p12 and cwallet.sso) of the database is not present at the location dbhome>/admin/db_uniquename/ wallets. Note that db_uniquename must be in lowercase.

Action Required: Create the path dbhome>/admin/db_uniquename/wallets, if it does not exist and then copy both TDE wallets (ewallet.p12 and cwallet.sso) of the database to the same location. Create the preupgrade report again. Once Data Provisioning Reprovisioning completes, that is, after restoring the node with Oracle Grid Infrastructure and database, both TDE wallets at dbhome>/admin/db_uniquename/wallets can be deleted.

## Checks related to Oracle Grid Infrastructure

Scenario: The Oracle Grid Infrastructure precheck Check custom filesystems may fail with the following error:

```
Check custom filesystems Failed File systems /acfsmounts/acfs1
are Remove the file systems determined in
    owned by OS users not provisioned
by the check
    ODA
```

Cause: The file system /acfsmounts/acfs1 is owned by the operating system user and is not created by Oracle Database Appliance.

Action Required: Remove the file system from Oracle Clusterware manually. After completing the Data Preserving Reprovisioning, remount this file system manually.

## Checks related to Oracle ILOM

Scenario: Configuration of Oracle ILOM host name may fail with the following error:

```
Job details
```

```
            ID: da5079f6-875b-435f-918f-7cb2974121e3
            Description: Restore node service - GI
            Status: Failure (To view Error Correlation report, run
"odacli describe-job -i ... --ecr" command)
            Created: January 16, 2024 7:46:23 AM GMT
            Message: DCS-10001:Internal error encountered: Failed to
configure hostname the ilom (none).
```

Cause: Incorrect Oracle ILOM metadata may persist during the detach-node operation.
Action Required: Run cleanup.pl on all the nodes sequentially without the $-f$, -erasedata, or -nodpr options. Create a backup copy of the file /opt/oracle/oak/restore/metadata/ provisionInstance.json and edit the original file. Delete the Oracle ILOM section from the file. For high-availability systems, there are two entries. A sample section is as follows:

```
"ilom" : {
    "ilomName" : "...",
    "ipAddress" : "...",
    "subNetMask" : "...",
    "gateway" : "..."
    },
```

Save the file and retry the operation.

## Checks related to operating system

Scenario: The operating system precheck Check Required OS files may fail with the following error:

```
Check Required OS files Failed Required
file Identify the cause why file is
    '/opt/oracle/dcs/dcscli/
dcscli wallet/ missing, remediate that and then
    cwallet.sso' not
found retry the operation
```

Cause: The operating system file required for the system upgrade is missing.
Action Required: Contact My Oracle Support to create the file.
Scenario: The operating system precheck Check Additional OS RPMs may display the following alert:

```
Check Additional OS RPMs Alert Additional OS RPMs, compared to
the None; the list of these RPMs can be
    base ODA image, are installed on
the found at
```

```
system '/opt/oracle/dcs/log/
    reprovision-custom-rpms.list'. The
    upgraded versions of these rpms will
    have to be reinstalled manually after
    reimage
```

Cause: The system may have extra RPMs installed which are not managed by Oracle Database Appliance.

Action Required: After completing the Data Preserving Reprovisioning flow, manually install the additional RPMs listed in the custom-rpms.list file, located at/opt/oracle/oak/ restore/.

Scenario: The Storage precheck Check Required Storage files may fail with the following error:

```
Check Required Storage files Failed Required file '/etc/
multipath.conf' Identify the cause why file is
    not
found missing, remediate that and then
    retry the operation
```

Cause: The required storage file needed for the operating system upgrade is missing.
Action Required: Contact My Oracle Support to create the file.
Scenario: The database precheck Validate Database Version may fail with the following error:

```
Validate Database Version Failed Version '19.10.0.0.210119'
for Please update the database to the
    database 'odacn' is lower
than minimum supported version or higher
    minimum supported
version
'19.17.0.0.221018'
Validate Database Version Failed Version '12.1.0.2.210119'
for Please update the database to the
    database 'dbj3' is lower than
minimum minimum supported version or higher
    supported version
'12.1.0.2.220719'
Validate Database Version Failed Version '12.2.0.1.210119'
for Please update the database to the
    database 'dbj4' is lower than
minimum minimum supported version or higher
    supported version
```

Cause: Note that for the bare metal systems, only Oracle Database release 19c is supported. No other database is currently supported. The supported Oracle Database releases are as follows:

Oracle Database release	Minimum Version	The last Oracle Database   Appliance release that   provided the Oracle Database   clone file
11.2 .0 .4	1.2 .0 .4 .210119	19.10
12.1	12.1 .0 .2 .220719	19.16
12.2	12.2 .0 .1 .220118	19.14
18 c	18.14 .0 .0 .210420	19.11

Action Required: For Oracle Database release $11 g$ databases, there is no ODACLI support to update the database. You must manually update the database to 11.2.0.4.210119 using OPatch. Then use the odacli update-registry command to update the metadata.

For Oracle Database releases 12.1.x, 12.2.x, and 18c, do the following:

1. Update the database to the last supported Oracle Database Appliance release.
2. Run the odacli update-repository -f serverzip_for_ODA_release command.
3. Run the odacli update-repository -f ODA_DB_CLONE_for_minimum_version command.
4. Generate prepatch report using the version as ODA_RELEASE.
5. Update the database, which creates the new database home.
6. Use the odacli delete-dbhome command to delete the database home. Note that if there are additional databases that run from the database home, you must patch all these databases before you can delete the database home.
7. Use the odacli upgrade-database command to upgrade the database from an earlier release to Oracle Database release 19c.

For a Oracle Database 19c database, update the database to Oracle Database 19.17 or later.

## Failure to restore Oracle ASR when running the odacli restore-node -g command

Scenario: If Oracle ASR configuration fails during the restore-node operation, then the restorenode job displays the status as Success but the Oracle ASR configuration task status displays the status as Failure. To verify if the Oracle ASR configuration was restored successfully, check the describe-job output of the restore-node job. Following is a sample job for the restorenode operation:

```
Registering ASR Manager December 12, 2023 6:51:09 AM
UTC December 12, 2023 6:51:17 AM UTC
Failure
ASR service creation December 12, 2023 6:51:55 AM
UTC December 12, 2023 6:51:56 AM UTC Failure
Registering Asset: ODA Host December 12, 2023 6:51:55 AM
UTC December 12, 2023 6:51:56 AM UTC Failure
ASR service creation December 12, 2023 6:51:56 AM
```

| UTC | December 12, 2023 6:51:56 AM UTC | Failure |
| :--- | :---: | :---: | :---: |
| ASR assets activation |  | December 12, 2023 6:51:56 AM |
| UTC | December 12, 2023 6:51:56 AM UTC | Failure |

Check the /opt/oracle/dcs/log/dcs-agent.log file and the Oracle ASR logs in the /var/opt/asrmanager/log location to determine the cause of the failure for Oracle ASR configuration. Once the cause and the resolution are known, Oracle ASR must be configured manually using the odacli configure-asr command after the restore-node job completes.

Cause: If Oracle ASR restoration fails due to an incorrect SSO password, the following error message may be displayed in the dcs-agent. log file.

```
An Oracle Single Sign On (OSSO) account is required for data submission.
If you do not have an account or have forgotten your username or
password,
    ******** http://support.oracle.com
Username []: asr-qa_ca@oracle.com
Password: ********
Password ******** (to verify):
Contacting transport servers. Please wait...
Checking connection to https://transport.oracle.com/v1/
Connection is ok. Trying to register client.
Error: Invalid Oracle SSO Username and/or Password. ********
```

Registration failed.
2023-12-11 10:11:09,259 DEBUG [Registering ASR Manager :
JobId=cfc269c4-211a-4297-b363-a2ac65aa65b0] [] c.o.d.c.n.MessageUtil: load
locale as en_US
2023-12-11 10:11:09,260 ERROR [Registering ASR Manager :
JobId=cfc269c4-211a-4297-b363-a2ac65aa65b0] [] c.o.d.a.r.s.a.AsrOperations:
Exception:
com.oracle.dcs.commons.exception. DcsException: DCS-10045:Validation error
encountered: Registration failed : Error: Invalid Oracle SSO Username and/or
Password.

Action Required: Use the correct SSO password and retry configuring Oracle ASR using the odacli configure-asr command.

Scenario: If Oracle ASR restoration fails due to connectivity issues with the transport server of the Oracle ASR Manager the following error message may be displayed in the dcs-agent. log file

```
2023-12-06 15:08:46,839 DEBUG [Registering ASR Manager :
JobId=b4e25721-3a4f-4650-9ab9-ceefac678627] [] c.o.d.c.u.CommonsUtils:
Output :
spawn /opt/asrmanager/bin/asr register
1) transport.oracle.com
Select destination transport server or enter full URL for alternate server
[1]:
1
```

```
If a proxy server is required for HTTPS communication to the internet,
enter the information below. If no proxy is needed,
    enter -
Proxy server name []:
An Oracle Single Sign On (OSSO) account is required for data submission.
If you do not have an account or have forgotten your username or
password,
    ******** http://support.oracle.com
Username []: asr-qa_ca@oracle.com
Password: ********
Password ******** (to verify):
Contacting transport servers. Please wait...
Registration failed.
```

Action Required: Retry registration of Oracle ASR registration After the restore-node job completes, configure Oracle ASR manually using the odacli configure-asr command.

## Failure during restore of KVM and DB systems

Scenario: Restore of metadata of VMs may fail due to missing CPU pool. The dcs-agent.log file may display the following error:

```
ERROR [Restore VMs metadata : JobId=bae05eea-27f1-4ccc-b962-6f071d5d90d3]
[] c.o.d.a.k.e.KvmExceptionFactory: Not found by name
com.oracle.dcs.commons.exception.DcsException:
DCS-10032:Resource of type 'CPU Pool' with name 'pool_59c70ac2-' is not found.
```

Action Required: Run the odacli restore-node -kvm command to restore the missing CPU pool.

Scenario: When you run the odacli restore-node -d command, during restoration of databases, there may be an error in restoring the backup configuration.

Cause: Restore of the backup configuration may have failed for because of inaccessibility of NFS location, changed Objectstore password, and others.

Action Required: Create the backup configuration using the odacli create-backupconfig command and also attach it to the database using the odacli modify-database command, if required. If you encounter errors when you run the odacli restore-node -kvm command, then run the command again to restore the missing resources.

Scenario: Restore of metadata of VMs may fail due to missing vnetwork. The dcs-agent.log file may display the followign error:

```
ERROR [Restore VMs metadata : JobId=7776e6ad-b8c5-4e23-a72c-fb2d0b82fda3]
[] c.o.d.a.k.e.KvmExceptionFactory: Not found by name
com.oracle.dcs.commons.exception.DcsException:
    DCS-10032:Resource of type 'Virtual Network' with name 'vnet48777' is not
found.
```

Action Required: Run the odacli restore-node -kvm command again to restore the missing vnetwork.

## Errors related to Oracle Data Guard

Cause of the failure: If Oracle Data Guard is configured on the system and the Oracle Data Guard configuration has errors or warnings, then the precheck displays these error or warnings.

```
Dataguard FAILED
Warning: ORA-16853: apply lag has Make sure that dataguard is in exceeded
specified threshold. Make sure that dataguard is in 'CONFIGURED' state.
```

Resolution: Oracle Data Guard must be in Configured state. You must fix all warnings or errors that are displayed in the precheck to move the Oracle Data Guard configuration to the Configuration state.

## Checks related to Muti User Access enabled environments

Scenario: Token expiration duration is out of range (> 600 mins or $<10 \mathrm{mins}$ )
Cause: You may have manually edited the token expiration duration in the file at /opt/ oracle/dcs/idm/idm.conf.

Action Required: The pre-upgrade report that is generated prior to detach checks for this anomaly and displays an error message and a resolution for the same. Edit the idm.conf file as the root user and correct the value of token expiration so that it is in range. This applies to other configuration settings too.

Scenario: The odacli restore-node -g command may fail with an error message about inconsistent state of the system.

Cause: The state of the system prior to the detach operation has a different multi-user access setting from when you ran the odacli restore-node -g command. This can happen if you accessed the BUI before running the odacli restore-node -g command and chose to enable or disable multi-user access.

Action Required: Perform a Data Preserving Reprovisioning cleanup of the system and then run the odacli restore-node -g command using ODACLI or BUI.

Scenario: The odacli restore-node -g command may display an error about a UID or GID conflict.

Cause: When running the odacli restore-node -g command, all users in the system are restored with their original UID or GID. If there is a conflict with an existing user or group, then the odacli restore-node -g command operation fails.

Action Required: Change the UID or GID of the conflicting user or group.

## Sample Pre-Upgrade Checks Report

Sample output from a system when running the pre-upgrade checks.

```
# odacli create-preupgradereport
```


Job ID: e73f3d0f-8e77-40a1-92cc-2dc825c3fd28
Description: Run pre-upgrade checks for Bare Metal
Status: SUCCESS

```
Created: December 12, 2023 12:43:13 PM GMT
    Result: All pre-checks succeeded
```

Node Name
---------------
scaoda703c1n1

GI_
$\overline{\text { Check }}$ presence of databases Success No additional database
found None
not managed by ODA
CRS
Check custom filesystems Success All file systems are owned and
used None
ODA
Check presence of HAVIP Success No HAVIP resources found
registered None
resources not managed by ODA
CRS
Check presence of export Success No EXPORT resources found
registered None
resources not managed by ODA in
CRS
__OS
Check Required OS files Success All the required files are
present None
Check Additional OS RPMs Success No RPMs outside of base ISO
were None
system
STORAGE
Check Required Storage files Success All the required files are
present None
Validate OAK Disks Success All OAK disks are in valid
state None
Validate ASM Disk Groups Success All ASM disk groups are in valid
state None
Validate ASM Disks Success All ASM disks are in valid
state None
Check Database Home Storage Success The
volume (s) None
volumes
orahome_sh,odabase_n0,odabase_n1
state is
CONFIGURED.
Check space under /opt Success Free space on /opt: 189495.58 MB
is None
more than required space: 1024

Check space in ASM disk	Success	Space required for creating
local None		
group (s)		homes is present in ACFS
database		
		home storage. Required: 0
GB		
		Available: 774
GB		
_SYS_- Hardwa		
Validate Hardware Type supported None	Success	Current hardware is
Validate ILOM interconnect enabled None	Success	ILOM interconnect is not
Validate System Version is None	Success	System version 19.21.0.0.0
supported		
Verify System Timezone zone None	Success	Succesfully verified the time
file		
```Verify Grid User verified None Verify Grid Version running None```	Success	Grid user is
	Success	Oracle Grid Infrastructure is
		on the '19.18.0.0.230117' version
on		
		all
nodes		
Check Audit Files	Success	Local Audit files not
found None		
$\begin{aligned} & \overline{\mathrm{DB}} \overline{\mathrm{Validate}} \text { Database Status } \\ & \text { in None } \end{aligned}$		
	Success	Database 'mydb' is running and is
		'CONFIGURED ${ }^{\prime}$
state		
Validate Database Version for None	Success	Version '19.18.0.0.230117'
		database 'mydb' is
supported		
Validate Database Datapatch applied None	Success	Database 'mydb' is completely
Application Status datapatch		with
Validate TDE wallet presence enabled. None	Success	Database 'mydb' is not TDE
		Skipping TDE wallet presence
check.		
Validate Database Home passed None	Success	Database home location check
location mydbu		for database
Validate Database Status on   None	Success	Database 'uxljY' is running

```
    'scaoda703c1n2'. This check
is
skipped.
Validate Database Version Success Version '19.18.0.0.230117'
for None
supported
Validate Database Datapatch Success The database is RACOne and is
running None
Application Status on scaoda703c1n2. This check
is
skipped.
Validate TDE wallet presence Success Database 'uxljY' is not TDE
enabled. None
check.
Validate Database Home Success Database home location check
passed None
location
uxljY
__CERTIFICATES_
Check using custom Success Using Default key
pair None
certificates
Check the agent of the DB Success All the agents of the DB systems
are None
System accessible
accessible
    DBSYSTEMS
Validate DB System DCS Success scaoda703c4n1:
SUCCESS None
component
versions
```

Node Name
---------------
scaoda703c1n2

GI
Check presence of databases Success No additional database
found None
not managed by ODA
CRS
Check custom filesystems Success All file systems are owned and
used None


Verify System Timezone zone None	Success	Succesfully verified the time
file		
Verify Grid User   verified   None	Success	Grid user is
Verify Grid Version running None	Success	Oracle Grid Infrastructure is
		on the '19.18.0.0.230117' version
on		
		all
nodes		
Check Audit Files	Success	Local Audit files not
found   None		
$\ldots$ [B		
Validate Database Status	Success	Database 'mydb' is running and is
in None		
		'CONFIGURED'
state		
Validate Database Version	Success	Version '19.18.0.0.230117'
for None		
		database 'mydb' is
supported		
Validate Database Datapatch applied None	Success	Database 'mydb' is completely
Application Status datapatch		with
Validate TDE wallet presence enabled. None	Success	Database 'mydb' is not TDE
		Skipping TDE wallet presence
check.		
Validate Database Home passed None	Success	Database home location check
location mydbu		for database
Validate Database Status	Success	Database 'uxljY' is running and is
in None		
		'CONFIGURED'
state		
Validate Database Version	Success	Version '19.18.0.0.230117'
for None		
		database 'uxljY' is
supported		
Validate Database Datapatch completely None	Success	Database 'uxljY' is
Application Status datapatch		applied with
Validate TDE wallet presence enabled. None	Success	Database 'uxljY' is not TDE
		Skipping TDE wallet presence
check.		
Validate Database Home passed None	Success	Database home location check
location uxljy		for database

```
    CERTIFICATES__
Check using custom Success Using Default key
pair None
certificates
Check the agent of the DB
are None
System accessible
accessible
    DBSYSTEMS
Validate DB System DCS Success scaoda703c4n1:
SUCCESS None
component versions
```


## Viewing Oracle Database Appliance Error Correlation Reports

Understand how to view Error Correlation Report and how to interpret the report to troubleshoot your appliance.

## About Error Correlation Reports

If a DCS job fails, an Error Correlation job is created automatically to generate an Error Correlation report. You can access and review the generated Error Correlation report from the BUI to explore possible ways of error resolution.

The Error Correlation Report contains the following:

- Log Messages: Errors, exceptions and warnings from various log files.
- Failed Task Messages: Error message displayed when the DCS job failed.
- Release Notes: Relevant Known Issues from Oracle Database Appliance Release Notes to help resolve the issue.
- Documentation: Relevant topics from the Oracle Database Appliance Documentation Library to help resolve the error.

The Error Correlation Report is generated for every failed DCS job and can be accessed from the BUI. On Oracle Database Appliance high-availability deployments, the Error Correlation report contains the error information derived from log files of both the nodes.

## Viewing Error Correlation Reports using ODACLI Commands

You can view the Error Correlation report of a failed DCS job by running the odacli describejob -i failed_dcs_job_id --ecr command. For an example output, see the topic odacli describe-job in this guide.

## Viewing Error Correlation Reports from the BUI

To view the Error Correlation Report from the Activities page in the BUI:

1. Log into the Browser User Interface:
https://host-ip-address:7093/mgmt/index.html
2. Click the Activity tab.
3. In the Activities page, click the Failure or InternalError link in the failed DCS job for which you want to view the Error Correlation report. Note that only failed DCS jobs have associated Error Correlation Reports.
4. You can also view the Error Correlation Report for the failed DCS job when you click the Actions menu, and select View Error Correlation Report.
5. The Error Correlation Report contains the following tabs:

- Log Messages: Displays the logs for DCS agent, DCS admin, Oracle HAMI, MySQL, and Oracle FPP. You can expand each section to view the details. Only components that have logs are displayed. If no errors are found, then the message No errors or exceptions found in logs is displayed in the Log Messages section.
- Failed Task Messages: Displays the specific error message displayed when the task failed.
- Release Notes: Displays relevant Known Issues from Oracle Database Appliance Release Notes to help resolve the issue. You can click each of these links to view the Release Notes entry. If no relevant Known issues are found, then the message No matching results were found. is displayed.
- Documentation: Displays relevant topics from the Oracle Database Appliance Documentation Library to help resolve the error. You can click each of these links to view the documentation topic from the Oracle Database Appliance documentation.

To view the Error Correlation Report from the Diagnostics page in the BUI:

1. In the BUI, click the Diagnostics tab.
2. In the Diagnostics page, click Collect Diagnostic Data for a failed job.
3. The Collect Diagnostics page displays the Error Correlation Report and Job Details in separate tabs for the failed DCS job. Click the Report File Name link to download the Error Correlation Report to your local system.
4. The Job details tab displays the steps in the job and the Error Correlation Report contains the Log Messages, Failed Task Messages, Release Notes, and Documentation tabs.

## Related Topics

- odacli describe-job Use the odacli describe-job command to display details about a specific job, including the job ID, status, tasks, and the job created date and time stamp.


## About Enabling Linux Kernel Core Extractor for Troubleshooting

Understand how to manage Linux Kernel Core Extractor to troubleshoot your appliance.

## About Linux Kernel Core Extractor

A Linux kernel panic can occur due to various reasons such as faulty hardware, driver crashes, or software bugs. To identify the cause of kernel panic, it is essential to collect and analyze the vmcore of the crashed kernel. The kdump service is used to collect the vmcore after the first kernel crash. This process is slow for systems with high memory and often fails to generate vmcore when the available space is not sufficient. When Linux Kernel Core Extractor is enabled on Oracle Database Appliance bare metal systems, the crash utility in the kdump kernel collects useful information for troubleshooting without generating vmcore.

## Linux Kernel Core Extractor Commands

List generated crash reports:

```
# /usr/sbin/oled lkce list
Followings are the crash*out found in /var/oled/lkce dir:
/var/oled/lkce/crash_20220307-154542.out
```

Purge existing all but last three crash reports:

```
# /usr/sbin/oled lkce clean
lkce deletes all but last three /var/oled/lkce/crash*out files. do you want
to proceed(yes/no)? [no]:
```

Purge all crash reports:

```
# /usr/sbin/oled lkce clean --all
lkce removes all the files in /var/oled/lkce dir. do you want to proceed(yes/
no)? [no]:
```

By default, the crash report contains output for the following crash commands. You can add other crash commands to the /etc/oled/lkce/crash_cmds_file.

```
#
# This is the input file for crash utility. You can edit this manually
# Add your own list of crash commands one per line.
#
bt
bt -a
bt -FF
dev
kmem -s
foreach bt
log
mod
mount
net
ps -m
ps -S
rung
quit
```

By default, vmcore generation is disabled. You can enable vmcore generation as follows:

```
# oled lkce configure --vmcore=yes
Restarting kdump service... done!
lkce: set vmcore to yes
```

For additional Linux Kernel Core Extractor commands, refer to the Linux Kernel Core Extractor help.

```
# oled lkce help
Usage: lkce options
options:
    report report-options -- Generate a report from vmcore
    report-options:
        --vmcore=/path/to/vmcore - path to vmcore
        [--vmlinux=/path/to/vmlinux] - path to vmlinux
        [--crash_cmds=cmd1,cmd2,cmd3,..] - crash commands to include
        [--outfile=/path/to/outfile] - write output to a file
    configure [--default] -- configure lkce with default values
    configure [--show] -- show lkce configuration -- default
    configure [config-options]
    config-options:
        [--vmlinux_path=/path/to/vmlinux] - set vmlinux_path
        [--crash_cmds_file=/path/to/file] - set crash_cmds_file
        [--kdump_report=yes/no] - set crash report in kdump kernel
        [--vmcore=yes/no] - set vmcore generation in kdump kernel
            [--max_out_files=<number>] - set max_out_files
    enable -- enable lkce in kdump kernel
    disable -- disable lkce in kdump kernel
    status -- status of lkce
    clean [--all] -- clear crash report files
    list -- list crash report files
```


## Viewing Details About DCS Error Messages

Understand how to view details about DCS errors for troubleshooting them.

## About Viewing Information About DCS Errors

To view more details about any errors during DCS operations, use the command dcserr error_code.
\# /opt/oracle/dcs/bin/dcserr
dcserr error_code
\# dcserr 10001
10001, Internal_Error, "Internal error encountered: \{0\}."
// *Cause: An internal error occurred.
// *Action: Contact Oracle Support Services for assistance.
/
\# dcserr 1001
Unknown error code

To view more details about DCS errors in the Browser User Interface (BUI), you can provide the DCS error code in the Search box in the BUI. The Search results display the Cause and Action of DCS error codes.

## Collecting Diagnostics Data Using the BUI

Understand how to collect diagnostics data to troubleshoot errors.

## About Collecting Diagnostics Data

Use the Diagnostics tab in the Browser User Interface to view diagnostic information about your deployment and the installed components.

In the Diagnostic Collection page, you can view the available diagnostics collections. Click Collect Diagnostic Data to start diagnostics collection. Once the data is collected, click on the collection file path to download the file.

In the Collect Diagnostics page, specify the Job ID for the diagnostics data collection. Optionally, specify a tag and a description for the collection. The details of the Job ID are displayed. Click Collect to start the diagnostics data collection.

You can also collect diagnostics from the Activity page, by selecting Collect Diagnostics from the Actions drop down for a specific job. Click Collect to start the diagnostics data collection.

To delete a diagnostic collection, from the Diagnostic Collection page, select the specific collection, and click Delete.

This diagnostic collection feature does not replace the odaadmcli manage diagcollect command. You can use the odaadmcli manage diagcollect command also to enable diagnostics collections, independently of this new feature from the BUI. The odaadmcli manage diagcollect command and the diagnostics collection from BUI use the tfactl command internally. The diagnostics collection from BUI is aimed to collect other data from DCS metadata that is not collected through tfactl and provide greater context for root cause analysis of related DCS jobs failures.

## Resolving Errors When Updating DCS Components During Patching

Understand how to troubleshoot errors when updating DCS components during patching.

## About DCS Components

When you run the odacli update-dcscomponents command during patching, pre-checks for MySQL installation are automatically verified before update of Oracle HAMI, MySQL, and DCS components. If any of the pre-checks fail, then the command errors out with a reference to the pre-check report log file location /opt/oracle/dcs/log/jobfiles/jobId/
dcscomponentsPreCheckReport.log. Review the pre-check report and take corrective actions and then rerun the odacli update-dcscomponents command. If there are no pre-check errors, then the patching process proceeds with updating Oracle HAMI, MySQL, and DCS components such as the DCS Agent, DCS CLI, and DCS Controller.

## Note:

Run the odacli update-dcsadmin command prior to running the odacli updatedcscomponents command.

## When the odacli update-dcscomponents command completes successfully:

The command output is as follows:

```
# ./odacli update-dcscomponents -v 19.23.0.0.0
{
    "jobId" : "3ac3667a-fa22-40b6-a832-504a56aa3fdc",
    "status" : "Success",
    "message" : "Update-dcscomponents is successful on all the node(s):DCS-Agent
shutdown is successful. MySQL upgrade is done before. Metadata migration is
successful. Agent rpm upgrade is successful. DCS-CLI rpm upgrade is
successful.
DCS-Controller rpm upgrade is succ",
    "reports" : null,
    "createTimestamp" : "April 8, 2024 02:37:37 AM CST",
    "description" : "Update-dcscomponents job completed and is not part of Agent
job list",
    "updatedTime" : "April 8, 2024 02:39:10 AM CST"
}
```

The pre-check report log file at the location /opt/oracle/dcs/log/jobfiles/jobId/ dcscomponentsPreCheckReport. log contains the following:

```
Pre-check Name: Space check
Status: Success
Comments: Required space 3 GB is available in /opt
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
dcs-admin version:
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.23.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
```

```
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
```


## When the odacli update-dcscomponents command fails:

On Oracle Database Appliance single-node systems, the command output is as follows:

```
# ./odacli update-dcscomponents -v 19.23.0.0.0
DCS-10008:Failed to update DCScomponents: 19.22.0.0.0
Internal error while patching the DCS components :
DCS-10231:Cannot proceed. Pre-checks for update-dcscomponents failed. Refer to
/opt/oracle/dcs/log/jobfiles/jobId/dcscomponentsPreCheckReport.log
on node 0 for details.
```

On Oracle Database Appliance high-availability systems, the command output is as follows:

```
# ./odacli update-dcscomponents -v 19.23.0.0.0
```

```
Internal error while patching the DCS components :
DCS-10231:Cannot proceed. Pre-checks for update-dcscomponents failed. Refer to
/opt/oracle/dcs/log/jobfiles/jobId/dcscomponentsPreCheckReport.log
on node O and /opt/oracle/dcs/log/jobfiles/jobId/
dcscomponentsPreCheckReport.log
on node 1 for details.
```

The command runs all pre-checks one by one, and errors out at the end if any of the prechecks is marked as Failed. When a pre-check fails, the error message is displayed on to the console along with the reference to pre-check report log location. The pre-check report log file is at the location/opt/oracle/dcs/log/jobfiles/jobId/dcscomponentsPreCheckReport.log.

```
Pre-check Name: Space check
Status: Failed
Comments: Available space in /opt is 2 GB but minimum required space in /opt
is 3 GB
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
```

```
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
```

When the odacli update-dcscomponents command fails due to space check error:
The pre-check report log contains the following:

```
Pre-check Name: Space check
Status: Failed
Comments: Available space in /opt is 2 GB but minimum required space in /opt
is 3 GB
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
```

```
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
```


## When the odacli update-dcscomponents command fails due to port check error:

## The pre-check report log contains the following:

```
Pre-check Name: Space check
Status: Success
Comments: Required space 3 GB is available in /opt
Pre-check Name: Port check
Status: Failed
Comments: No port found in the range ( 3306 to 65535 )
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
```

```
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
When the odacli update-dcscomponents command fails due to MySQL RPM installation dry-run check error:
```

The pre-check report log contains the following:

```
Pre-check Name: Space check
Status: Success
Comments: Required space 3 GB is available in /opt
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Failed
Comments: ODA MySQL rpm dry-run failed. Failed due to the following error :
Exception details are displayed below
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
```


## When the odacli update-dcscomponents command fails due to MySQL connector/J library check error:

The pre-check report log contains the following:

```
Pre-check Name: Space check
Status: Success
Comments: Required space 3 GB is available in /opt
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Failed
Comments: MySQL connector/J library does not exist. Ensure update-repository
with latest serverzip bundles ran first without any issues prior to running
update-dcscomponents
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
dcs-admin version:
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
```


## When the odacli update-dcscomponents command fails due to Metadata migration utility check error:

The pre-check report log contains the following:

```
Pre-check Name: Space check
Status: Success
Comments: Required space 3 GB is available in /opt
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Failed
Comments: Metadata migration utility does not exist. Ensure update-repository
with latest serverzip bundles ran first without any issues prior to running
update-dcscomponents.
dcs-admin version:
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Success
Comments: Scheduler cron expressions for existing job schedules are up to date
```

When the odacli update-dcscomponents command displays a warning due to scheduler cron expression:

When patching from Oracle Database Appliance release 19.19 or earlier to the latest release, and you run the odacli update-dcscomponents command, there may be a warning in the
precheck report log file if the default cron expressions from the existing list of job schedules are modified. The pre-check report log contains the following:

```
Pre-check Name: Space check
Status: Success
Comments: Required space 3 GB is available in /opt
Pre-check Name: Port check
Status: Success
Comments: Port 3306 is available for running ODA MySQL
Pre-check Name: ODA MySQL rpm installation dry-run check
Status: Success
Comments: ODA MySQL rpm dry-run passed
Pre-check Name: Check for the existence of MySQL connector/J library
Status: Success
Comments: ODA MySQL connector/J library found
Pre-check Name: Check for the existence of Metadata migration utility
Status: Success
Comments: Metadata migration utility found
dcs-admin version:
Pre-check Name: dcs-admin version validation
Status: Success
Comments: dcs-admin is already updated :19.20.0.0.0
Config File Exist dcscontroller:
Pre-check Name: Check DCS config files exists for dcscontroller
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-controller.yml and /opt/oracle/dcs/
conf/dcs-controller-logback.xml exist
Config File Exist dcsagent:
Pre-check Name: Check DCS config files exists for dcsagent
Status: Success
Comments: Files /opt/oracle/dcs/conf/dcs-agent.yml and /opt/oracle/dcs/conf/
dcs-agent-logback.xml exist
Validate scheduler cron expressions:
Pre-check Name: Validate scheduler cron expressions
Status: Warning
Comments: Following cron expressions in the scheduler were modified from
their default values. Starting 19.20, DCS Agent converts 7 fields cron
expression into 6 fields cron expression. No further action needed.
Schedule ID : 3f671ee7-1a03-43fd-b98b-ce33eb09de08 , Custom cron expression :
10
25 * 1/1 * ? 2023
```

Note that the Status: Warning means the update-dcscomponents pre-check has detected custom cron expressions from the existing list of job schedules. The DCS agent automatically converts from the 7 fields custom cron expression to the equivalent 6 fields cron expression after patching DCS components.

## Related Topics

- Patching Oracle Database Appliance Bare Metal Systems Using the Command-Line Follow these steps to apply patches to your Oracle Database Appliance bare metal deployment and existing Oracle Database homes, using CLI commands.


## Viewing Component Information on the Appliance

View details of all the components installed on the appliance, and the RPM drift information.

## Collecting and Viewing the Bill of Materials in the Browser User Interface

Use the Appliance tab in the Browser User Interface to collect and view information about your deployment and the installed components. The Advanced Information tab displays information about the following components:

- Grid Infrastructure Version, and the home directory
- Database Version, Home location, and Edition
- Location and details about the databases configured
- All patches applied to the appliance
- Firmware Controller and Disks
- ILOM information
- BIOS version
- List of RPMs

In the List of RPMs section, click Show and then click RPM Drift to view the differences between the RPMs installed on the appliance, and the RPMs shipped in the latest Oracle Database Appliance Patch Bundle Update release.

Click Collect Bill of Materials to initiate a collection and submit the job. The job ID is displayed. After the collection is complete, click Refresh to refresh the information.

Click Download to save the components report. You can use this report to help diagnose any deployment issues.

## Viewing the Bill of Materials from the Command Line

The bill of materials is also available through the command line for bare metal and virtualized platforms deployments. The information about the installed components is collected according to a set schedule, and stored in the location/opt/oracle/dcs/Inventory/ for bare metal deployments and in the /opt/oracle/oak/Inventory/directory for virtualized platforms. The file is stored in the format oda_bom_TimeStamp.json. Use the command describe-system to view the bill of materials on the command line. See the Oracle Database Command-Line Interface chapter for command options and usage notes.

## Example 20-1 Example Command to View the Bill of Materials from the Command Line for Bare Metal Deployments

```
# odacli describe-system -b
ODA Components Information
```


Component Name Component
Details


```
authconfig-6.2.8-30.el7.x86_64,
autogen-
avahi-
libs-0.6.31-19.el7.x86_64,
basesystem-10.0-7.0.1.el7.noarch,
completion-2.1-6.el7.noarch,
libs-9.11.4-9.P2.el7.x86_64,
libs-9.11.4-9.P2.el7.x86_64,
lite-9.11.4-9.P2.el7.x86_64,
license-9.11.4-9.P2.el7.noarch,
utils-9.11.4-9.P2.el7.x86_64,
binutils-2.27-41.base.0.7.el7_7.2.x86_64,
biosdevname-0.7.3-2.el7.x86_64,
blktrace-1.0.5-9.el7.x86_64,
bnxtnvm-1.40.10-1.x86_64,
boost-date-
time-1.53.0-27.el7.x86_64,
filesystem-1.53.0-27.el7.x86_64,
iostreams-1.53.0-27.el7.x86_64,
....
....
....
```

Example 20-2 Example Command to View the Bill of Materials from the Command Line for Virtualized Platforms
\# oakcli describe-system -b

## Example 20-3 Example Command to View the Bill of Materials Report from the Stored Location

```
# ls -la /opt/oracle/dcs/Inventory/
total 264
-rw-r--r-- 1 root root 83550 Apr 26 05:41 oda_bom_2018-04-26_05-41-36.json
```


## Errors When Logging into the Browser User Interface

If you have problems logging into the Browser User Interface, then it may be due to your browser or credentials.

## Note:

Oracle Database Appliance uses self-signed certificates. Your browser determines how you log into the Browser User Interface. Depending on the browser and browser version, you may receive a warning or error that the certificate is invalid or not trusted because it is self-signed, or that the connection is not private. Ensure that you accept the self-signed certificate for the agent and Browser User Interface.

Follow these steps to log into the Browser User Interface:

1. Open a browser window.
2. Go to the following URL: https://ODA-host-ip-address: $7093 / \mathrm{mgmt} /$ index.html
3. Get the security certificate (or certificate), confirm the security exception, and add an exception.
4. Log in with your Oracle Database Appliance credentials.

If you have not already set the oda-admin password, then a message is displayed, advising you to change the default password to comply with your system security requirements.
5. If you have not added an exception for the agent security certificate, then a message about accepting agent certificate is displayed.
6. Using a different tab in your browser, go to the following URL: https://ODA-host-ipaddress:7070/login
7. Get the security certificate (or certificate), confirm the security exception, and add an exception.
8. Refresh the Browser User Interface URL: https://ODA-host-ip-address:7093/mgmt/ index.html

## , Note:

If you have any issues logging into the Oracle Database Appliance Browser User Interface on browsers such as macOS Catalina and Google Chrome, then you may need to use any workaround as described on the official site for the product.

## Related Topics

- Creating the Appliance

Create the appliance using the Browser User Interface or ODACLI commands.

- http://www.oracle.com/technetwork/indexes/products/browser-policy-2859268.html


## Errors when re-imaging Oracle Database Appliance

Understand how to troubleshoot errors that occur when re-imaging Oracle Database Appliance.

If re-imaging Oracle Database Appliance fails, with old header issues such as errors in storage discovery, or in running GI root scripts, or disk group RECO creation, then use the force mode with cleanup.pl.
\# cleanup.pl -f

To ensure that re-imaging is successful, remove the old headers from the storage disks by running the secure erase tool. Verify that the OAK/ASM headers are removed.

```
# cleanup.pl -erasedata
# cleanup.pl -checkHeader
```

Retry the re-imaging operation.

## Related Topics

- Re-imaging Oracle Database Appliance

Bare metal operating system re-imaging installs Oracle Database Appliance operating system software on the local (boot) drive.

## Using Oracle Autonomous Health Framework for Running Diagnostics

Oracle Autonomous Health Framework collects and analyzes diagnostic data collected, and proactively identifies issues before they affect the health of your system.

- About Installing Oracle Autonomous Health Framework

Oracle Autonomous Health Framework is installed automatically when you provision or patch to Oracle Database Appliance release 19.23.

- Using the Oracle ORAchk Health Check Tool Run Oracle ORAchk to audit configuration settings and check system health.
- Generating and Viewing Oracle ORAchk Health Check Tool Reports in the Browser User Interface
Generate Oracle ORAchk Health Check Tool reports using the Browser User Interface.
- Generating and Viewing Database Security Assessment Reports in the Browser User Interface
Generate and view Database Security Assessment Reports using the Browser User Interface
- Running Oracle Trace File Analyzer (TFA) Collector Commands Understand the installed location of tfactl and the options for the command.
- Sanitizing Sensitive Information in Diagnostic Collections Oracle Autonomous Health Framework uses Adaptive Classification and Redaction (ACR) to sanitize sensitive data.
- Enabling Adaptive Classification and Redaction (ACR) Oracle Database Appliance supports Adaptive Classification and Redaction (ACR) to sanitize sensitive data.
- Sanitizing Sensitive Information in Oracle Trace File Analyzer Collections You can redact (sanitize or mask) Oracle Trace File Analyzer diagnostic collections.
- Redacting and Sanitizing Entities in the BUI Enable and disable trace file redaction, redact files, and show or hide sanitized entities using the Browser User Interface.
- Sanitizing Sensitive Information in Oracle ORAchk Output You can sanitize Oracle ORAchk output.


## About Installing Oracle Autonomous Health Framework

Oracle Autonomous Health Framework is installed automatically when you provision or patch to Oracle Database Appliance release 19.23.

When you provision or patch your appliance to Oracle Database Appliance release 19.23, Oracle Autonomous Health Framework is installed in the path /opt/oracle/dcs/oracle.ahf.

You can verify that Oracle Autonomous Health Framework is installed by running the following command:

```
[root@oak ~]# rpm -q oracle-ahf
```

oracle-ahf-193000-\#\#\#\#\#\#\#\#.x86_64

## Note:

When you provision or patch to Oracle Database Appliance release 19.23, Oracle Autonomous Health Framework automatically provides Oracle ORAchk Health Check Tool and Oracle Trace File Analyzer Collector.

Oracle ORAchk Health Check Tool performs proactive health checks for the Oracle software stack and scans for known problems. Oracle ORAchk Health Check Tool audits important configuration settings for Oracle RAC deployments in the following categories:

- Operating system kernel parameters and packages
- Oracle Database Database parameters, and other database configuration settings
- Oracle Grid Infrastructure, which includes Oracle Clusterware and Oracle Automatic Storage Management

Oracle ORAchk is aware of the entire system. It checks the configuration to indicate if best practices are being followed.

Oracle Trace File Collector provides the following key benefits and options:

- Encapsulation of diagnostic data collection for all Oracle Grid Infrastructure and Oracle RAC components on all cluster nodes into a single command, which you run from a single node
- Option to "trim" diagnostic files during data collection to reduce data upload size
- Options to isolate diagnostic data collection to a given time period, and to a particular product component, such as Oracle ASM, Oracle Database, or Oracle Clusterware
- Centralization of collected diagnostic output to a single node in Oracle Database Appliance, if desired
- On-Demand Scans of all log and trace files for conditions indicating a problem
- Real-Time Scan Alert Logs for conditions indicating a problem (for example, Database Alert Logs, Oracle ASM Alert Logs, and Oracle Clusterware Alert Logs)


## Using the Oracle ORAchk Health Check Tool

Run Oracle ORAchk to audit configuration settings and check system health.

## Note:

Before running ORAchk, check for the latest version of Oracle Autonomous Health Framework, and download and install it. See My Oracle Support Note 2550798.1 for more information about downloading and installing the latest verion of Oracle Autonomous Health Framework.

## Running ORAchk on Oracle Database Appliance 19.23 Baremetal Systems for New Installation

When you provision or upgrade to Oracle Database Appliance 19.23, ORAchk is installed using Oracle Autonomous Framework in the directory /opt/oracle/dcs/oracle.ahf.

To run orachk, use the following command:
[root@oak bin]\# orachk

When all checks are finished, a detailed report is available. The output displays the location of the report in an HTML format and the location of a zip file if you want to upload the report. For example, you can choose the filter to show failed checks only, show checks with a Fail, Warning, Info, or Pass status, or any combination.

Review the Oracle Database Appliance Assessment Report and system health and troubleshoot any issues that are identified. The report includes a summary and filters that enable you to focus on specific areas.

## Running ORAchk on Oracle Database Appliance 19.23 Virtualized Platform

When you provision or upgrade to Oracle Database Appliance 19.23, ORAchk is installed using Oracle Autonomous Framework in the directory /opt/oracle.ahf.

To run orachk, use the following command:
[root@oak bin]\# oakcli orachk

## Related Topics

- https://support.oracle.com/rs?type=doc\&id=2550798.1


## Generating and Viewing Oracle ORAchk Health Check Tool Reports in the Browser User Interface

## Generate Oracle ORAchk Health Check Tool reports using the Browser User Interface.

1. Log into the Browser User Interface with the oda-admin username and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Click the Monitoring tab.
3. In the Monitoring page, on the left navigation pane, click ORAchk Report.

On the ORAchk Reports page, a list of all the generated ORAchk reports is displayed.
4. In the Actions menu for the ORAchk report you want to view, click View.

The Oracle Database Appliance Assessment Report is displayed. It contains details of the health of your deployment, and lists current risks, recommendations for action, and links for additional information.
5. To create an on-demand ORAchk report: On the ORAchk Reports page, click Create and then click Yes in the confirmation box.
The job to create an ORAchk report is submitted.
6. Click the link to view the status of the job. Once the job completes successfully, you can view the Oracle Database Appliance Assessment Report on the ORAchk Reports page.
7. To delete an ORAchk report: In the Actions menu for the ORAchk report you want to delete, click Delete.

## Generating and Viewing Database Security Assessment Reports in the Browser User Interface

## Generate and view Database Security Assessment Reports using the Browser User Interface.

1. Log into the Browser User Interface with the oda-admin username and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Click the Security tab.
3. In the Security page, on the left navigation pane, click DBSAT Reports.

On the Database Security Assessment Reports page, a list of all the generated DBSAT reports is displayed.
4. In the Actions menu for the ORAchk report you want to view, click View.

The Oracle Database Security Assessment Report is displayed. It contains details of the health of your deployment, and lists current risks, recommendations for action, and links for additional information.
5. To create a DBSAT report: On the DBSAT Reports page, click Create and then click Yes in the confirmation box.

The job to create a DBSAT report is submitted.
6. Click the link to view the status of the job. Once the job completes successfully, you can view the Oracle Database Appliance Assessment Report on the DBSAT Reports page.
7. To delete a DBSAT report: In the Actions menu for the DBSAT report you want to delete, click Delete.

## Running Oracle Trace File Analyzer (TFA) Collector Commands

Understand the installed location of tfactl and the options for the command.

## About Using tfactl to Collect Diagnostic Information

When you provision or upgrade to Oracle Database Appliance 19.23, Oracle Trace File Analyzer (TFA) Collector is installed in the directory/opt/oracle. ahf/bin/tfactl. You can invoke the command line utility for TFA, tfactl from the directory / opt/ oracle. ahf/bin/tfactl, or simply type tfactl.

You can use the following command options to run tfactl:

```
/opt/oracle.ahf/bin/tfactl diagcollect -ips|-oda|-odalite|-dcs|-odabackup|
-odapatching|-odadataguard|-odaprovisioning|-odaconfig|-odasystem|-
odastorage|-database|
-asm|-crsclient|-dbclient|-dbwlm|-tns|-rhp|-procinfo|-afd|-crs|-cha|-wls|
-emagent|-oms|-ocm|-emplugins|-em|-acfs|-install|-cfgtools|-os|-ashhtml|-
ashtext|
-awrhtml|-awrtext -mask -sanitize
```

Table 20-1 Command Options for tfactl Tool

Option	Description
-h	(Optional) Describes all the options for this command.
-ips	(Optional) Use this option to view the diagnostic logs for the specified component.
-oda	(Optional) Use this option to view the logs for the entire Appliance.
-odalite	(Optional) Use this option to view the diagnostic logs for the odalite component.
-dcs	(Optional) Use this option to view the DCS log files.
-odabackup	(Optional) Use this option to view the diagnostic logs for the backup components for the Appliance.
-odapatching	(Optional) Use this option to view the diagnostic logs for patching components of the Appliance.
-odadataguard	(Optional) Use this option to view the diagnostic logs for Oracle Data Guard component of the Appliance.
-odaprovisioning	(Optional) Use this option to view provisioning logs for the Appliance.
-odaconfig	(Optional) Use this option to view configurationrelated diagnostic logs.
-odasystem	(Optional) Use this option to view system information.

Table 20-1 (Cont.) Command Options for tfact Tool

Option	Description
-odastorage	(Optional) Use this option to view the diagnostic logs for the Appliance storage.
-database	(Optional) Use this option to view database-related log files.
-asm	(Optional) Use this option to view the diagnostic logs for the Appliance.
-crsclient	(Optional) Use this option to view the diagnostic logs for the Appliance.
-dbclient	(Optional) Use this option to view the diagnostic logs for the Appliance.
-dbwlm	(Optional) Use this option to view the diagnostic logs for the specified component.
-tns	(Optional) Use this option to view the diagnostic logs for TNS.
-rhp	(Optional) Use this option to view the diagnostic logs for Rapid Home Provisioning.
-afd	(Optional) Use this option to view the diagnostic logs for Oracle ASM Filter Driver.
-crs	(Optional) Use this option to view the diagnostic logs for Oracle Clusterware.
-cha	(Optional) Use this option to view the diagnostic logs for the Cluster Health Monitor.
-wls	(Optional) Use this option to view the diagnostic logs for Oracle WebLogic Server.
-emagent	(Optional) Use this option to view the diagnostic logs for the Oracle Enterprise Manager agent.
-oms	(Optional) Use this option to view the diagnostic logs for the Oracle Enterprise Manager Management Service.
-ocm	(Optional) Use this option to view the diagnostic logs for the specified component.
-emplugins	(Optional) Use this option to view the diagnostic logs for Oracle Enterprise Manager plug-ins.
-em	(Optional) Use this option to view the diagnostic logs for Oracle Enterprise Manager deployment.
-acfs	(Optional) Use this option to view the diagnostic logs for Oracle ACFS storage.
-install	(Optional) Use this option to view the diagnostic logs for installation.
-cfgtools	(Optional) Use this option to view the diagnostic logs for the configuration tools.
-os	(Optional) Use this option to view the diagnostic logs for the operating system.
-ashhtml	(Optional) Use this option to view the diagnostic logs for the specified component.

Table 20-1 (Cont.) Command Options for tfactl Tool

Option	Description
-ashtext	(Optional) Use this option to view the diagnostic
logs for the Appliance.	
-awrhtml	(Optional) Use this option to view the diagnostic
	logs for the Appliance.
-awrtext	(Optional) Use this option to view the diagnostic
	logs for the specified component.
-mask	(Optional) Use this option to choose to mask
	sensitive data in the log collection.
-sanitize	(Optional) Use this option to choose to sanitize
	(redact) sensitive data in the log collection.

## Usage Notes

You can use Trace File Collector (the tfactl command) to collect all log files for the Oracle Database Appliance components.

You can also use the command odaadmcli manage diagcollect, with similar command options, to collect the same diagnostic information.

For more information about using the -mask and -sanitize options, see the next topic.

## Sanitizing Sensitive Information in Diagnostic Collections

Oracle Autonomous Health Framework uses Adaptive Classification and Redaction (ACR) to sanitize sensitive data.

After collecting copies of diagnostic data, Oracle Trace File Analyzer and Oracle ORAchk use Adaptive Classification and Redaction (ACR) to sanitize sensitive data in the collections. ACR uses a Machine Learning based engine to redact a pre-defined set of entity types in a given set of files. ACR also sanitizes or masks entities that occur in files and directory names.
Sanitization replaces a sensitive value with random characters. Masking replaces a sensitive value with a series of asterisks ("*").

ACR currently sanitizes the following entity types:

- Host names
- IP addresses
- MAC addresses
- Oracle Database names
- Tablespace names
- Service names
- Ports
- Operating system user names

ACR also masks user data from the database appearing in block and redo dumps.

## Example 20-4 Block dumps before redaction

```
14A533F40 000000000 00000000 00000000 002C0000 [...............]
14A533F50 35360C02 30352E30 31322E37 380C3938 [..650.507.2189.8]
14A533F60 31203433 37203332 2C303133 360C0200 [34 123 7310,...6]
```


## Example 20-5 Block dumps after redaction

```
14A533F40 ******** ******** ******** ********* [*****************
14A533F50 ********* ******** ******** ******** [*****************
14A533F60 ********* ******** ******** ********* [*****************]
```


## Example 20-6 Redo dumps before redaction

```
col 74: [ 1] 80
col 75: [ 5] c4 0b 19 01 1f
col 76: [ 7] 78 77 06 16 0c 2f 26
```


## Example 20-7 Redo dumps after redaction

```
col 74: [ 1] **
col 75: [ 5] ** ** ** ** **
col 76: [ 7] ** ** ** ** ** ** **
```

Redaction of Literal Values in SQL Statements in AWR, ASH and ADDM Reports
Automatic Workload Repository (AWR), Active Session History (ASH), and Automatic Database Diagnostic Monitor (ADDM) reports are HTML files, which contain sensitive entities such as hostnames, database names, and service names in the form of HTML tables. In addition to these sensitive entities, they also contain SQL statements, that can contain bind variables or literal values from tables. These literal values can be sensitive personal information (PI) stored in databases. ACR processes such reports to identify and redact both usual sensitive entities and literal values present in the SQL statements.

## Sanitizing Sensitive Information Using odaadmcli Command

Use the odaadmcli manage diagcollect command to collect diagnostic logs for Oracle Database Appliance components. During collection, ACR can be used to redact (sanitize or mask) the diagnostic logs.

```
odaadmcli manage diagcollect [--dataMask|--dataSanitize]
```

In the command, the --dataMask option blocks out the sensitive data in all collections, for example, replaces myhost1 with $* * * * * * *$. The default is None. The --dataSanitize option replaces the sensitive data in all collections with random characters, for example, replaces myhost1 with orzhmv1. The default is None.

## Enabling Adaptive Classification and Redaction (ACR)

Oracle Database Appliance supports Adaptive Classification and Redaction (ACR) to sanitize sensitive data.

After collecting copies of diagnostic data, Oracle Database Appliance use Adaptive Classification and Redaction (ACR) to sanitize sensitive data in the collections. You can use the commands odacli enable-acr and odacli disable-acr to enable or disable ACR across both nodes, not just on the local node.
, See Also:
For more information about setting up the staging server for Adaptive Classification and Redaction (ACR), see My Oracle Support note 2882798.1.

## Example 20-8 Describing current status of ACR

```
bash-4.2# odacli describe-acr
Trace File Redaction: Enabled
```


## Example 20-9 Enabling ACR:

```
bash-4.2# odacli enable-acr
Job details
    ID: 12bbf784-610a-40a8-b409-e74c58bc35aa
    Description: Enable ACR job
    Status: Created
    Created: April 8, 2021 3:04:13 AM PDT
```


## Example 20-10 Disabling ACR

```
bash-4.2# odacli disable-acr
Job details
ID: 1d69f8b3-3989-4192-bbb9-6518e425061a
Description: Disable ACR job
    Status: Created
    Created: April 8, 2021 3:04:13 AM PDT
```


## Example 20-11 Enabling ACR during provisioning of the appliance

You can enable ACR during provisioning of the appliance by adding the acr option to the JSON file used for provisioning. Specify true or false for the field acrEnable in the JSON file. If the acr option is not specified, then ACR is disabled.

```
"acr": {
    "acrEnable": true
}
```


## Related Topics

- https://support.oracle.com/rs?type=doc\&id=2882798.1


## Sanitizing Sensitive Information in Oracle Trace File Analyzer Collections

You can redact (sanitize or mask) Oracle Trace File Analyzer diagnostic collections.

## Enabling Automatic Redaction

To enable automatic redaction, use the command:

```
tfactl set redact=[mask|sanitize|none]
```

In the command, the -mask option blocks out the sensitive data in all collections, for example, replaces myhost1 with $* * * * * * *$. The -sanitize option replaces the sensitive data in all collections with random characters, for example, replaces myhost1 with orzhmv1. The none option does not mask or sanitize sensitive data in collections. The default is none.

## Enabling On-Demand Redaction

You can redact collections on-demand, for example, tfactl diagcollect -srdc ORA-00600 mask or tfactl diagcollect -srdc ORA-00600 -sanitize.

1. To mask sensitive data in all collections:
tfactl set redact=mask
2. To sanitize sensitive data in all collections:
tfactl set redact=sanitize

## Example 20-12 Masking or Sanitizing Sensitive Data in a Specific Collection

```
tfactl diagcollect -srdc ORA-00600 -mask
tfactl diagcollect -srdc ORA-00600 -sanitize
```


## Redacting and Sanitizing Entities in the BUI

Enable and disable trace file redaction, redact files, and show or hide sanitized entities using the Browser User Interface.

1. Log into the Browser User Interface with the oda-admin username and password.
https://Node0-host-ip-address:7093/mgmt/index.html
2. Click the Security tab.
3. In the Security page, on the left navigation pane, click Trace File Redaction.
4. Click the Trace File Redaction Status tab.

The current ACR status is displayed.
5. You can enable or disable ACR status based on the current ACR staus. For example, if the ACR status is disabled, then click Enable to enable ACR. The job to change the ACR status is submitted.
6. Click Refresh Status to refresh the ACR status display.
7. Click the Redact Files tab.
8. Specify the Input File Path of the file to be redacted. The file must be in the .tar, or .gz, or . zip file format.
9. Select either Sanitize or Mask for the Redaction Mode.
10. Click Redact. The job to redact files is submitted.
11. Click the Show Sanitized Entities tab.
12. Specify the List of sanitized entities and click Show. The list of sanitized entities are displayed.

## Sanitizing Sensitive Information in Oracle ORAchk Output

You can sanitize Oracle ORAchk output.
To sanitize Oracle ORAchk output, include the -sanitize option, for example, orachk profile asm -sanitize. You can also sanitize post process by passing in an existing log, HTML report, or a zip file, for example, orachk -sanitize file_name.

## Example 20-13 Sanitizing Sensitive Information in Specific Collection IDs

```
orachk -sanitize comma_delimited_list_of_collection_IDS
```


## Example 20-14 Sanitizing a File with Relative Path

```
orachk -sanitize new/orachk_node061919_053119_001343.zip
orachk is sanitizing
/scratch/testuser/may31/new/orachk_node061919_053119_001343.zip. Please
wait...
Sanitized collection is:
/scratch/testuser/may31/orachk_aydv061919_053119_001343.zip
orachk -sanitize ../orachk_node061919_053119_001343.zip
orachk is sanitizing
/scratch/testuser/may31/../orachk_node061919_053119_001343.zip. Please wait...
Sanitized collection is:
/scratch/testuser/may31/orachk_aydv061919_053119_001343.zip
```


## Example 20-15 Sanitizing Oracle Autonomous Health Framework Debug Log

```
orachk -sanitize new/orachk_debug_053119_023653.log
orachk is sanitizing /scratch/testuser/may31/new/
orachk_debug_053119_023653.log.
Please wait...
Sanitized collection is: /scratch/testuser/may31/
orachk_debug_053119_023653.log
```


## Example 20-16 Running Full Sanity Check

```
orachk -localonly -profile asm -sanitize -silentforce
Detailed report (html) -
/scratch/testuser/may31/orachk_node061919_053119_04448/
orachk_node061919_053119_04448.html
orachk is sanitizing /scratch/testuser/may31/orachk_node061919_053119_04448.
Please wait...
Sanitized collection is: /scratch/testuser/may31/
orachk_aydv061919_053119_04448
UPLOAD [if required] - /scratch/testuser/may31/
orachk_node061919_053119_04448.zip
```

To reverse lookup a sanitized value, use the command:

```
orachk -rmap all|comma_delimited_list_of_element_IDs
```

You can also use orachk -rmap to lookup a value sanitized by Oracle Trace File Analyzer.

## Example 20-17 Printing the Reverse Map of Sanitized Elements

```
orachk -rmap MF _NK1,fcb63u2
```



## Running the Disk Diagnostic Tool

Use the Disk Diagnostic Tool to help identify the cause of disk problems.
The tool produces a list of 14 disk checks for each node. To display details, where n represents the disk resource name, enter the following command:
\# odaadmcli stordiag n

For example, to display detailed information for NVMe pd_00:
\# odaadmcli stordiag pd_00

## Running the Oracle Database Appliance Hardware Monitoring Tool

The Oracle Database Appliance Hardware Monitoring Tool displays the status of different hardware components in Oracle Database Appliance server.

The tool is implemented with the Trace File Analyzer collector. Use the tool both on bare-metal and on virtualized systems. The Oracle Database Appliance Hardware Monitoring Tool reports information only for the node on which you run the command. The information it displays in the output depend on the component that you select to review.

## Bare Metal Platform

You can see the list of monitored components by running the command odaadmcli show -h
To see information about specific components, use the command syntax odaadmcli show component, where component is the hardware component that you want to query. For example, the command odaadmcli show power shows information specifically about the Oracle Database Appliance power supply:
\# odaadmcli show power


## Virtualized Platform

You can see the list of monitored components by running the command oakcli show -h
To see information about specific components, use the command syntax oakcli show component, where component is the hardware component that you want to query. For example,
the command oakcli show power shows information specifically about the Oracle Database Appliance power supply:

```
# oakcli show power
```

NAME		H HEALTH_DETAI	ILS PART_NO. S	SERIAL_NO.	
Power Sup	ply_0 OK	-	7047410	476	6F+1242CE0020
Power Sup	oly_1 OK	-	7047410	476	$6 \mathrm{~F}+1242 \mathrm{CE} 004 \mathrm{~J}$
(Continued)					
LOCATION	INPUT_POWER	OUTPUT_POWER	INLET_TEMP		EXHAUST_TEMP
PSO	Present	88 watts	31.250 degree	e C	34.188 degree
PS1	Present	66 watts	31.250 degree	e C	34.188 degree

## Note:

Oracle Database Appliance Server Hardware Monitoring Tool is enabled during initial startup of ODA_BASE on Oracle Database Appliance Virtualized Platform. When it starts, the tool collects base statistics for about 5 minutes. During this time, the tool displays the message "Gathering Statistics..." message.

## Disabling the Browser User Interface

You can also disable the Browser User Interface. Disabling the Browser User Interface means you can only manage your appliance through the command-line interface.

1. Log in to the appliance:
ssh -l root oda-host-name
2. Stop the DCS controller. For High-Availability systems, run the command on both nodes.
systemctl stop initdcscontroller

## Preparing Log Files for Oracle Support Services

If you have a system fault that requires help from Oracle Support Services, then you may need to provide log records to help Oracle support diagnose your issue.

You can collect diagnostic information for your appliance in the following ways:

- Use the Bill Of Materials report saved in the /opt/oracle/dcs/Inventory/directory, to enable Oracle Support to help troubleshoot errors, if necessary.
- You can use Trace File Collector (the tfactl command) to collect all log files for the Oracle Database Appliance components.
- Use the command odaadmcli manage diagcollect to collect diagnostic files to send to Oracle Support Services.
- Use the Error Correlation report available in the /opt/oracle/dcs/da/da_repo directory.

The odaadmcli manage diagcollect command consolidates information from log files stored on Oracle Database Appliance into a single log file for use by Oracle Support Services. The location of the file is specified in the command output.

Example 20-18 Collecting log file information for a time period, masking sensitive data

```
# odaadmcli manage diagcollect --dataMask --fromTime 2019-08-12 --toTime
2019-08-25
DataMask is set as true
FromTime is set as: 2019-08-12
ToTime is set as: 2019-08-25
TFACTL command is: /opt/oracle/tfa/tfa_home/bin/tfactl
Data mask is set.
Collect data from 2019-08-12
Collect data to 2019-08-25
```


## Oracle Database Appliance Software Configuration Defaults

Oracle Database Appliance software configuration defaults.

- Directory Paths for Oracle Database Appliance Understand the storage and mount configuration file paths for Oracle Database Appliance.
- Port Numbers and Protocols of Oracle Database Appliance Components Understand the port numbers and protocols of Oracle Database Appliance components.
- Location of Log Files

Log files are available for actions performed in the command-line interface and Browser User Interface and are useful when you need to track and debug jobs.

- Oracle Groups and User Configurations for Oracle Database Appliance Review the groups and default users created when you deploy the appliance. All passwords are set to the password that you define during deployment.


## Directory Paths for Oracle Database Appliance

Understand the storage and mount configuration file paths for Oracle Database Appliance.
Oracle homes on Oracle Database Appliance follow Optimal Flexible Architecture guidelines.

## Directory Paths for Oracle Database Appliance

Item	Directory Path
Grid home	/u01/app/release-specific_name/gi owner
Grid base	/u01/app/gi owner
Oracle home	```/u01/app/odaorahome/rdbms owner/product/ rdbms_version/ dbhome_home_sequence_number```
Oracle base	/u01/app/odaorabase/rdbms owner
Oracle Inventory	/u01/app/oraInventory
Java Runtime Environment (JRE)	/opt/oracle/dcs/java/   release_specific_JRE_version/
Java SDK	/opt/oracle/dcs/odajavasdk/
Oracle ACFS file system	/opt/oracle/oak/pkgrepos/orapkgs/clones
	Starting with Oracle Database Appliance release 19.12, a new Oracle ACFS file system is created to store the Oracle Database and Oracle Grid Infrastructure clone files. The DATA disk group provides a space of 150 GB for the file system.

## Port Numbers and Protocols of Oracle Database Appliance Components

Understand the port numbers and protocols of Oracle Database Appliance components.

Table A-1 Port Numbers and Protocols of Oracle Database Appliance Components

Component	Description	Default Port   Number	Protocol	Network
BUI	A web-based   application to   administer and   manage the Oracle   Database   Appliance.	7093	TCP	public
dcs-agent	The DCS agent is   a REST application   that performs   various operations   on the appliance.	7070,7071	TCP	public and private
dcs-admin	This application   performs lifecycle   management   operations on the   DCS agent, DCS   controller, ODACLI,   and other   components.	7060	TCP	public and private
MySQL	The metadata store   used by DCS   agent.	3306	TCP	private
Oracle HAMI	Oracle High   Availability   Metadata   Infrastructure   service providing   distributed services   required by DCS   including locking   and synchronizing   configuration   details in the   cluster.	22001	TCP	
Managing the   storage   components of   Oracle Database   Appliance.	Dynamic	private		
oakd				

Table A-1 (Cont.) Port Numbers and Protocols of Oracle Database Appliance Components

Component	Description	Default Port Number	Protocol	Network
Oracle ASR Manager	Oracle Auto Service Request. Refer to Oracle Auto Service Request documentation for other ports used by ASR Manager.	16161	TCP	public
Oracle ILOM/IPMI	Oracle ILOM for Oracle Database Appliance servers.	623	UDP	public
Oracle Database listeners	Database listeners, including local listener and SCAN listener.	1521	TCP	public
Oracle ASM Listener	Oracle ASM listener	1525	TCP	private
EM Express	Oracle Enterprise Manager Database Express (EM Express).	5500 and increment one per database	TCP	public
ssh	SSH connection to the Oracle   Database Appliance servers.	22	SSH over TCP	public and private
VNC Server	The VNC server created by KVM for KVM virtual guest machines	5900+	TCP	$\begin{array}{\|l\|} \hline \text { localhost } \\ (127.0 .0 .1) \end{array}$
NFS	The central repository on bare metal system is shared by the DB Systems using NFS. Refer to the Oracle Linux documentation to identify ports used by NFS.	2049 - nfs	TCP	private

Note: IP addresses of the private network that Oracle Database Appliance uses are 192.168.16.0/24 and 192.168.17.0/24.

## Related Topics

- Port Numbers and Protocols of Oracle Components


## See Also:

Oracle Real Application Clusters Installation Guide for Linux and UNIX for port numbers and protocols used by Oracle Database components

## Location of Log Files

Log files are available for actions performed in the command-line interface and Browser User Interface and are useful when you need to track and debug jobs.

You can also use the Oracle Appliance Manager Browser User Interface to view job activity, including the tasks that make up the job. The status of each task appears in the Browser User Interface and you can drill down to get greater details.
If you log a Service Request, upload all of the logs in the /opt/oracle/dcs/log, /opt/ oracle/dcs/da/da_repo, and /opt/oracle/dcs/dcscli/log directories.

## Patching Log Files

All patching-related information is logged in the dcs-agent log in the directory /opt/ oracle/dcs/log/.

## Error Correlation Reports

If a DCS job fails, an Error Correlation report is generated and is available in the /opt/ oracle/dcs/da/da_repo directory.

## DCS Agent Log Directories

Agent-specific activities are logged in the dcs-agent log.
The DCS Agent, controller, and command-line interface output are stored in the directory /opt/oracle/dcs/log/.

If an error occurs in the command-line interface layer, then the output will show in the /opt/ oracle/dcs/dcscli/log/dcscli.log file first.

## DCS Components Log Directories

The Oracle HAMI logs are stored in the directory /opt/oracle/hami/base, /opt/oracle/ hami/obase, and /opt/oracle/dcs/hami/log. The Oracle HAMI logs are hamiws_pid_n.trc, hamictl_timestamp_pid.log, and hamiwsmkwallets_pid.trc.

The MySQL logs are stored in the log /opt/oracle/dcs/mysql/log/mysqldb.log. The $\log$ contains information about MySQL such as startup, shutdown, connection transaction details, and errors encountered when running MySQL.

## Storage Logs

Storage-related activity is logged in the oakd log file.
/opt/oracle/oak/log/hostname/oak/oakd.log

For example, /opt/oracle/oak/log/myhost/oak/oakd.log

Use the odaadmcli manage diagcollect command to collect diagnostic logs for storage components. The files are saved in the oakdiag directory.
/opt/oracle/oak/log/hostname/oakdiag/file name.tar.gz

For example, /opt/oracle/oak/log/myhost/oakdiag/oakStorage-myhost-20161120_2217.tar.gz

## Upgrade using Data Preserving Reprovisioning Logs

The odaupgradeutil utility logs are stored at opt/oracle/oak/restore/log.

## Database Logs

Online logs are stored in the /u03/app/db_user/redo/ directory.
Oracle Fast Recovery Area (FRA) is located in the /u03/app/db_user/fast_recovery_area directory.

Database alert logs are stored in the location \$ORACLE_BASE/diag/rdbms/
database_unique_name.
Oracle Auto Service Request (Oracle ASR) Log Files
All log files for Oracle ASR are located in the /var/opt/asrmanager/log/ directory.

## Oracle Groups and User Configurations for Oracle Database Appliance

Review the groups and default users created when you deploy the appliance. All passwords are set to the password that you define during deployment.

Default Operating System Groups and User Configurations

Table A-2 Default Operating System Groups and Users Configuration for Oracle Database Appliance

Groups and Users	Default Value
Oracle Grid Infrastructure installation owner	grid, UID 1001
Oracle Database installation owner	oracle, UID 1000
Oracle Database system administrator	sys
Oracle Database generic administrator	system
Oracle Inventory system privileges group	oinstall, GID 1001
Oracle ASM Administrators system privileges	asmadmin, GID 1004
Oracle ASM Users system privileges	asmdba, GID 1006
Oracle ASM Operator system privileges	asmoper, GID 1005
Oracle Database Administrators system privileges	dba, GID 1003
Oracle Database Operator system privileges	dbaoper, GID 1002

## Oracle Groups and User Configurations

You can use the Browser User Interface or the odacli create-appliance command and a JSON file to deploy the appliance. The following configurations are supported:

- 2 Users with 6 groups (operating system role separation)
- Single User with 6 groups (no operating system role separation)
- $\quad$ Single user with 2 groups (no operating system role separation)

You can customize groupname, username, and UID.

Oracle Database Appliance Storage Defaults

Review this section to understand Oracle Database Appliance storage architecture and options and how to determine usable storage.

- About Database File Storage

Use Oracle Automatic Storage Management (Oracle ASM) or Oracle Automatic Storage Management Cluster File System (Oracle ACFS) for database files storage.

- Oracle ACFS Mount Points and Storage Space Review Oracle ASM Cluster file system (ACFS) mount points for Oracle Database Appliance.
- Displaying Mounted Disk Details

Use the Oracle Automatic Storage Management lsdg command to display mounted disk groups and their information for Oracle Database Appliance.

- Usable Space on Oracle Database Appliance X7-2S and X7-2M

Review the table for the approximate amount of usable space for Oracle Database Appliance X7-2S and X7-2M.

- Usable Space on Oracle Database Appliance X7-2-HA

Review the table for the approximate amount of usable space for high performance or high capacity on Oracle Database Appliance X7-2-HA.

- Usable Free Space with Oracle ASM When Oracle ASM calculates usable Free Space, it determines the amount of space to reserve in the case of a disk failure.


## About Database File Storage

Use Oracle Automatic Storage Management (Oracle ASM) or Oracle Automatic Storage Management Cluster File System (Oracle ACFS) for database files storage.
Database file systems are used exclusively for storing database files, and they include separate file systems for data files and archive files or backups. You determine the type of database storage when you create the database.

## About Oracle ASM Database Storage

With Oracle ASM, database datafiles are stored in DATA disk group. On $\mathrm{X8}-2, \mathrm{X} 7-2 \mathrm{~S}, \mathrm{X} 7-2 \mathrm{M}$, and X6-2 S/M/L systems, which do not have REDO disk group, redo and archive files are stored in RECO disk group. X7-2-HA and other older High-Availability systems have dedicated disks for REDO disk group; redo logs are stored in the REDO disk group.

Reserved storage is the amount of Oracle Automatic Storage Management (Oracle ASM) storage required to restore redundancy in the event of a disk failure. If you use the reserve storage capacity, then the system continues to run, and it is protected through Oracle ASM mirroring. However, in the event of a disk failure, the system is then running in a non-protected and degraded mode. In this event, you must replace disks immediately. If there is no reserved space available, then rebalance cannot restore redundancy after a disk failure.

If you specify mirroring for a file, then Oracle ASM automatically stores redundant copies of the file extents in separate failure groups. Failure groups apply to normal, high, and flex
redundancy disk groups. You can define the failure groups for each disk group when you create or alter the disk group.

## See Also:

Oracle Automatic Storage Management Administrator's Guide in the Oracle Database documentation library for information about Oracle ASM Mirroring and Disk Group Redundancy.

## About Oracle ACFS Database Storage

With Oracle ACFS, an Oracle ACFS file system is created from DATA disk group for each database to store datafiles, and an Oracle ACFS file system is created from RECO disk group for redo and fast recovery area for all databases.

Each database created under ACFS has it own mount points, /u02/app/oracle/oradata/ dbid. When you delete a database, you should clean up the files.

## Storage Configuration Options

When Oracle Database Appliance is deployed, you can configure how the storage capacity is shared between DATA disk group and RECO disk group. You can choose anywhere from 10\% to $90 \%$ for DATA and the remainder for RECO. The amount of usable storage is determined by the percentage configured for DATA. You can run the command asmcmd 1 sdg to determine the usable storage on the DATA disk group. You can also run the command odacli listdbstorages command to determine the storage available.

## Oracle ACFS Mount Points and Storage Space

Review Oracle ASM Cluster file system (ACFS) mount points for Oracle Database Appliance.
If you select Oracle Automatic Storage Management (Oracle ASM) for database storage when you create a database, then an Oracle ASM Cluster file system (ACFS) is not created. All files are in an Oracle ASM diskgroup.

If you select Oracle ACFS for database storage, then each database has its own Oracle ACFS mount point:

- DATA diskgroup: /u02/app/oracleuser/oradata/db_name
- RECO diskgroup: /u03/app/oracleuser.

With Oracle ACFS, the following are created:

- A 100G ACFS is created from +DATA diskgroup for each database. This Oracle ACFS automatically extends the space on demand.
- A common Oracle ACFS with $25 \%$ of + RECO diskgroup is created with auto extension on. This file system is used for fast recovery area and redo logs for all databases.

Table B-1 Oracle ACFS Mount Points and Related Oracle ASM Disk Groups and Volume Information

File System	Oracle ASM Disk Group	Oracle ASM Dynamic Volume	Mount Point
DATA	+DATA	/dev/asm/datdbname-nnn   For example: / dev/asm/   datodacn-123	/u02/app/oracleuser/oradata/ dbname   For example: /u02 /app/example/ oradata/odacn
RECO	+RECO	/dev/asm/reco-nn	/u03/app/oracleuser   This mount point is shared by all databases for fast_recovery_area and redo logs.   For fast_recovery_area, the path is: /u03/app/oracleuser/ fast_recovery_area/db_name For redo logs, the path is: /u03/app/ oracleuser/redo/db_name

## Example B-1 Oracle ACFS Storage Space

When the Oracle ACFS file systems are created, they do not initially consume all of the storage in the appliance. Space is preserved for additional repositories, or in some cases, database files stored directly in Oracle ASM. You can check for available storage space in your file systems by running the operating system command $d f-k$ as shown in the following example.

\# df -k					
Filesystem	1K-blocks	Used	Available	Use\%	Mounted
on					
/ dev/mapper/VolGroupSys-LogVolRoot	30963708	14203568	15187276	49\%	1
tmpfs	65952292	647800	65304492		
1\% /dev/shm					
/ dev/sda1	495844	43872	426372	10\%	/boot
/dev/mapper/VolGroupSys-LogVolopt	61927420	18594420	40187272	32\%	/ opt
/dev/mapper/VolGroupSys-LogVolU01	103212320	49621560	48347880	51\%	/u01
/dev/asm/reco-62	76546048	1469676	75076372		
2\% /u03/app/oracle					
/dev/asm/datrdb2-268	104857600	3872368	100985232		
4\% /u02/app/oracle/oradata/rdb2					
/dev/asm/datndb11-268	104857600	247160	104610440		
1\% /u02/app/oracle/oradata/ndb11					
/dev/asm/datndb12-268	104857600	247160	104610440		
1\% /u02/app/oracle/oradata/ndb12					

## Displaying Mounted Disk Details

Use the Oracle Automatic Storage Management lsdg command to display mounted disk groups and their information for Oracle Database Appliance.

To display information about a specific disk group, specify the disk group in the command.

1. Log in as a grid user.
2. Run the Oracle Automatic Storage Management lsdg command.

## Example B-2 Determining Storage on the DATA Disk Group

```
ASMCMD [+] > lsdg data
State Type Rebal Sector Block AU Total_MB Free_MB
Req_mir_free_MB Usable_file_MB
MOUNTED NORMAL N N
1117 3859
(continued)
Offline_disks Voting_files Name
0 N DATA
```


## Usable Space on Oracle Database Appliance X7-2S and X7-2M

Review the table for the approximate amount of usable space for Oracle Database Appliance X7-2S and X7-2M.

Oracle Database Appliance $\mathrm{X} 7-2 \mathrm{~S}$ and $\mathrm{X} 7-2 \mathrm{M}$ use 6.4TB NVMe. The usable data capacity varies because it is derived by converting disk hardware terabytes (based on 1 kilobyte equals 1,000 bytes) into software storage terabytes (based on 1 kilobyte equals 1,024 bytes) and splitting the usable capacity into Oracle Automatic Storage Management (Oracle ASM) disk groups.

The estimated usable space is calculated based on the number of drives, where $90 \%$ is allocated to data.

Table B-2 Usable Disk Capacity on Oracle Database Appliance X7-2S and X7-2M

Number of Drives (90\% allocated to data)	Normal Redundancy	High Redundancy	Flex Redundancy
X7-2S   2 drives (12.8TB raw storage)	- DATA: 5.24 TB   - RECO: 0.58 TB	Not applicable	- DATA: 5.24 TB   - RECO: 0.58 TB
X7-2M   2 drives (12.8TB raw storage)	- DATA: 5.24 TB   - RECO: 0.58 TB	Not applicable	- DATA: 5.24 TB   - RECO: 0.58 TB
X7-2M   5 drives (32TB raw storage)	- DATA: 9.98 TB   - RECO: 1.10 TB   - Reservation: 6.92 TB	- DATA: 5.24 TB   - RECO: 0.58 TB   - Reservation: 11.64 TB	- DATA: 5.24 TB to 9.98 TB   - RECO: 0.58 TB to 1.10 TB   - Reservation: 11.64 TB
X7-2M 8 drives (51.2TB raw storage)	- DATA: 17.26 TB   - RECO: 1.91 TB   - Reservation: 8.2 TB	- DATA: 10.30 TB   - RECO: 1.14 TB   - Reservation: 12.22 TB	- DATA: 10.30 TB to 17.26 TB   - RECO: 1.14 TB to 1.91 TB   - Reservation: 12.22 TB

The Reservation value represents the amount of storage required to maintain full redundancy in case of disk failure.

## Usable Space on Oracle Database Appliance X7-2-HA

Review the table for the approximate amount of usable space for high performance or high capacity on Oracle Database Appliance X7-2-HA.

## Usable Space for High Performance

Oracle Database Appliance X7-2-HA use 3.2 TB solid state drives (SSDs). The usable data capacity varies because it is derived by converting disk hardware terabytes (based on 1 kilobyte equals 1,000 bytes) into software storage terabytes (based on 1 kilobyte equals 1,024 bytes) and splitting the usable capacity into Oracle Automatic Storage Management (Oracle ASM) disk groups.

The estimated usable space is calculated based on the number of drives, where $90 \%$ is allocated to data.

Table B-3 Usable Disk Capacity for High Performance on Oracle Database Appliance X7-2-HA

Number of Drives (90\% allocated to data)	Normal Redundancy	High Redundancy	Flex Redundancy
5 drives (16 TB raw storage)	- DATA: 4.99 TB   - RECO: 0.55 TB   - REDO: Not Applicable   - Reservation: 3.46 TB	- DATA: 2.61 TB   - RECO: 0.29 TB   - REDO: 0.97 TB   - Reservation: 5.82 TB	DATA: 2.61 TB to 4.99 TB   - RECO: 0.29 TB to 0.55 TB   - REDO: 0.97 TB   - Reservation: 5.82 TB
10 drives (32 TB raw storage)	- DATA: 11.43 TB   - RECO: 1.27 TB   - REDO: Not Applicable   - Reservation: 3.7 TB	- DATA: 6.37 TB   - RECO: 0.71 TB   - REDO: 0.97 TB   - Reservation: 7.84 TB	DATA: 6.37 TB to 11.43 TB   - RECO: 0.71 TB to 1.27 TB   - REDO: 0.97 TB   - Reservation: 7.84 TB
15 drives (48 TB raw storage)	- DATA: 18.09 TB   - RECO: 2.01 TB   - REDO: Not Applicable   - Reservation: 3.45 TB	- DATA: 10.36 TB   - RECO: 1.15 TB   - REDO: 0.97 TB   - Reservation: 9.12 TB	DATA: 10.36 TB to 18.09 TB   - RECO: 1.15 TB to 2.01 TB   - REDO: 0.97 TB   - Reservation: 9.12 TB
20 drives (64 TB raw storage)	- DATA: 23.37 TB   - RECO: 2.59 TB   - REDO: Not Applicable   - Reservation: 6.34 TB	- DATA: 13.89 TB   - RECO: 1.54 TB   - REDO: 0.97 TB   - Reservation: 11.89 TB	DATA: 13.89 TB to 23.37 TB   - RECO: 1.54 TB to 2.59 TB   - REDO: 0.97 TB   - Reservation: 11.89 TB
40 drives (128 TB raw storage)	- DATA: 48.88 TB   - RECO: 5.43 TB   - REDO: Not Applicable   - Reservation: 7.76 TB	- DATA: 32.19 TB   - RECO: 3.14 TB   - REDO: 1.94 TB   - Reservation: 22.03 TB	- DATA: 32.19 TB to 48.88 TB   - RECO: 3.14 TB to 5.43 TB   - REDO: 1.94 TB   - Reservation: 22.03 TB

The Reservation value represents the amount of storage required to maintain full redundancy in case of disk failure.

The REDO disk group uses 800 GB raw Solid-State Drives or 0.8 TB total usable space. The REDO disk group uses high redundancy that provides approximately 0.3 TB usable space for database redo logs.

## Note:

For an Oracle Database Appliance virtualized platform:

- Nn-CDB databases, the REDO disk group has $50 \%$ free disk space.
- CDB databases, an Oracle ASM Cluster file system (ACFS) mount point is created per CDB database, based on the template log file size. If this is a Single Instance (SI) database, then multiply by 3. If the database is an Oracle RAC database, then multiply by 4.


## Usable Space for High Capacity

The usable space for high capacity assumes that $90 \%$ is allocated to data and that you use external backup.

Table B-4 Usable Disk Capacity for High Capacity on Oracle Database Appliance X7-2-HA

Number of Drives ( $90 \%$ allocated to data)	Normal Redundancy	High Redundancy	Flex Redundancy
15 drives (150 TB raw storage)	- DATA: 56.47 TB   - RECO: 6.27 TB   - REDO: 0.97 TB   - Flash: 5.52 TB   - Reservation: 10.91 TB	- DATA: 32.37 TB   - RECO: 3.59 TB   - REDO: 0.97 TB   - Flash: 2.61 TB   - Reservation: 28.5 TB	- DATA: 32.37 TB to 56.47   TB   - RECO: 3.59 TB to 6.27   TB   - REDO: 0.97 TB   - Flash: 2.61 TB to 5.52 TB   - Reservation: 28.5 TB
30 drives ( 300 TB raw storage)	- DATA: 113.76 TB   - RECO: 12.64 TB   - REDO: 1.94 TB   - Flash: 12.5 TB   - Reservation: 19.9 TB	- DATA: 64.12 TB   - RECO: 7.12 TB   - REDO: 1.94 TB   - Flash: 7.16 TB   - Reservation: 58.96 TB	- DATA: 64.12 TB to 113.76 TB   - RECO: 7.12 TB to 12.64 TB   - REDO: 1.94 TB   - Flash: 7.16 TB to 12.5 TB   - Reservation: 58.96 TB

## Usable Free Space with Oracle ASM

When Oracle ASM calculates usable Free Space, it determines the amount of space to reserve in the case of a disk failure.

For Oracle Database Appliance with 2 or 4 NVMe drives, this reserved space is not required. When you query Oracle ASM or Oracle Database Appliance commands to view the amount of storage available, the usable_File_MB value may report a negative number.

Table B-5 Oracle ASM Calculations

| Number of <br> Drives | Redundancy | Total_MB | Free_MB | Req_mir_free_ <br> MB | Usable_file_MB | Name |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | NORMAL | 4894016 | 4893372 | 0 | 1220644 | RECO/ |
| 4 | NORMAL | 1231176 | 1230996 | 610468 | 305150 | RECO/ |

## Note:

Note: 1 TB = MB divided by $1024^{2}$

## How Oracle ASM and Oracle Database Appliance Define Capacity

The following table describes how capacity terms are defined by Oracle ASM and Oracle Database Appliance.

Table B-6 Definition of Terminology

Term	Oracle ASM Definition	Oracle Database Appliance Definition
Total_MB	Size of the disk group in MB	Total usable storage. For example, for 2 NVMe drives, total usable storage is 5.8TB.
Free_MB	Free space in the disk group in MB, without regard to redundancy.	Total usable storage after formatting to Oracle ASM disk groups. For example, for 2 NVMe drives, total usable storage is 5.8 TB .
Req_mir_free_MB	Amount of space that must be available in the disk group to restore full redundancy after the worst failure that can be tolerated by the disk group.	Amount of space that must be available in the disk group to restore full redundancy after the most severe failure that can be tolerated by the disk group. This is the REQUIRED_MIRROR_FREE_MB column from the V\$ASM_DISKGROUP view.
Usable_file_MB	Amount of free space, adjusted for mirroring, that is available for new files.	Total usable space taking into consideration the mirroring level. Oracle ASM also calculates the amount of space required.

## Creating an Appliance Using JSON File

Understand the process to create an appliance using the command odacli createappliance and view an example JSON file.

- Loading and Saving Appliance Configurations You can load a saved JSON file and use it to configure your appliance, and save an existing configuration as a JSON file from the Browser User Interface.
- Readme for the Command odacli create-appliance If you want to create the appliance outside of the Browser User Interface, then review the readme file for details on how to create a JSON file to use with the command-line interface.
- Example JSON Files to Create a Single Node Appliance with the CLI Follow these JSON file examples to create a JSON file to deploy a single node appliance with the command odacli create-appliance.
- Example JSON File to Create a Multi-Node Appliance with the CLI Follow the JSON file example to create a JSON file to deploy a multi-node appliance with the command odacli create-appliance.


## Loading and Saving Appliance Configurations

You can load a saved JSON file and use it to configure your appliance, and save an existing configuration as a JSON file from the Browser User Interface.

Using a Saved Configuration to Create a New Appliance in the Browser User Interface You can load a saved configuration from your client machine, and create a new appliance.

1. Log into the Browser User Interface.
2. In the Create Appliance page, click Browse next to Load Configuration.
3. Select the JSON file from the local machine, being used to access the Browser User Interface.
4. The appliance configuration values from the JSON file are populated in the fields on the Create Appliance page.
5. Make any changes required, and submit the request to create the appliance Note that for security requirements, you must enter passwords manually.

## Saving an Appliance Configuration from the Browser User Interface

You can save an appliance configuration and use it to create another appliance.

1. Log into the Browser User Interface.
2. If you have already configured your appliance, then in the Create Appliance page, click Save Configuration.
3. The configuration is saved as a JSON file on the local machine, being used to access the Browser User Interface.

## Readme for the Command odacli create-appliance

If you want to create the appliance outside of the Browser User Interface, then review the readme file for details on how to create a JSON file to use with the command-line interface.

You can use the command odacli create-appliance and a JSON file that includes your appliance configuration settings to deploy the appliance instead of using the Browser User Interface.

## Note:

It is important to review the readme and the examples carefully before creating your JSON file. If you do not enter your network and Oracle ILOM information correctly based on your setup, you will lose network access to both the host and Oracle ILOM.

## Readme

The readme is located in the /opt/oracle/dcs/sample directory. Review the readme carefully along with the provided JSON example files. Create a JSON file with the necessary changes based on your environment and requirements.

## Example JSON Files to Create a Single Node Appliance with the CLI

Follow these JSON file examples to create a JSON file to deploy a single node appliance with the command odacli create-appliance.

Use the example JSON files and the information located in the readme as a template to create a file for your environment. Examples and the readme are located in the /opt/oracle/dcs/ sample directory.

Note:
If you do not enter your network and Oracle ILOM information correctly based on your setup, then network access is lost to both the host and Oracle ILOM.

When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

Note: To configure Oracle ASR during provisioning, always specify the asrType parameter in the JSON file.

## Example C-1 JSON File to Create a Single Node Oracle Database Appliance with Role Separation

The following is an example of a JSON file that creates a single node appliance on Oracle Database Appliance. The example uses role separation.

```
    {
"instance" : {
    "name" : "odambox",
    "instanceBaseName" : "odambox-c",
    "dbEdition" : "EE",
    "timeZone" : "UTC",
    "ntpServers" : ["10.0.3.14"],
    "dnsServers" : ["10.0.4.10","10.0.4.11","10.0.4.12"],
    "domainName" : "example.com",
    "isRoleSeparated" : true,
    "osUserGroup" : {
        "groups" : [ {
            "groupId" : 1001,
            "groupName" : "oinstall",
            "groupRole" : "oinstall"
        }, {
            "groupId" : 1002,
            "groupName" : "dbaoper",
            "groupRole" : "dbaoper"
        }, {
            "groupId" : 1003,
            "groupName" : "dba",
            "groupRole" : "dba"
        }, {
            "groupId" : 1004,
            "groupName" : "asmadmin",
            "groupRole" : "asmadmin"
        }, {
            "groupId" : 1005,
            "groupName" : "asmoper",
            "groupRole" : "asmoper"
        }, {
            "groupId" : 1006,
            "groupName" : "asmdba",
            "groupRole" : "asmdba"
        } ],
        "users" : [ {
            "userId" : 1000,
            "userName" : "oracle",
            "userRole" : "oracleUser"
        }, {
            "userId" : 1001,
            "userName" : "grid",
            "userRole" : "gridUser"
        } ]
    }
},
"sysOraHomeStorage": {
            "volumeSize": "160",
            "diskgroup": "DATA"
```

```
    }
"nodes" : [ {
    "nodeNumber" : "0",
    "nodeName" : "odambox",
    "network" : [ {
            "nicName" : "btbond1",
            "ipAddress" : "10.0.1.11",
            "subNetMask" : "255.255.240.0",
            "gateway" : "10.0.0.1",
            "networkType" : [ "Public" ],
            "isDefaultNetwork" : true
        },
    ],
    "ilom" : {
        "ilomName":"odambox-c",
        "ipAddress":"10.0.2.10",
        "subNetMask":"255.255.240.0",
        "gateway":"10.0.0.1"
        }
} ],
"grid" : {
    "diskGroup" : [ {
            "diskGroupName" : "DATA",
            "redundancy" : "NORMAL",
            "diskPercentage" :80
        }, {
            "diskGroupName" : "RECO",
            "redundancy" : "NORMAL",
            "diskPercentage" :20
    } ],
"scan" : {
            "scanName":"odambox-scan",
            "ipAddresses":[
        "10.0.1.11"
            ]
        },
"vip":[
            {
        "nodeNumber":"0",
            "vipName":"odambox-vip",
            "ipAddress":"10.0.1.11"
            }
            ],
            "language" : "en",
            "enableAFD":"TRUE"
},
"database" : {
            "dbName" : "myTestDb",
            "databaseUniqueName":"myTestDb_sea1kj",
            "dbEdition" : "EE",
            "dbVersion" : "19.21.0.0",
            "dbHomeId":null,
            "instanceOnly" : false,
            "isCdb" : true,
            "pdBName" : "pdb1",
            "pdbAdminuserName" : "pdbuser",
```

```
        "enableTDE":true,
        "adminPassword" : "password",
        "dbType" : "SI",
        "dbTargetNodeNumber" : null,
        "dbClass" : "OLTP",
        "dbShape" : "odb1",
        "dbStorage" : "ACFS",
        "dbCharacterSet" : {
            "characterSet" : "AL32UTF8",
            "nlsCharacterset" : "AL16UTF16",
            "dbTerritory" : "AMERICA",
            "dbLanguage" : "AMERICAN"
        },
        "dbConsoleEnable" : false,
        "backupConfigId":null,
        "rmanBkupPassword": null
    },
    "asr" :{
        "asrType": "INTERNAL",
        "userName":"john.smith@example.com",
        "password":"password",
        "proxyServerName":"www-proxy.example.com",
        "proxyPort":"80",
        "proxyUserName":"proxy-user",
        "proxyPassword":"proxy-password",
        "httpsPortNumber":"16163"
    }
}
```


## Example C-2 JSON File to Create a Single Node Oracle Database Appliance without Role Separation

The following is an example of a JSON file that creates an Oracle Database Appliance without using role separation. This example creates two groups (oinstall and dba) and one user ("oracle").

```
{
    "instance" : {
        "name" : "odambox",
        "instanceBaseName" : "odambox-c",
        "dbEdition" : "EE",
        "timeZone" : "UTC",
        "ntpServers" : ["10.0.3.14"],
        "dnsServers" : ["10.0.4.10","10.0.4.11","10.0.4.12"],
        "domainName" : "example.com",
        "isRoleSeparated" : false,
        "osUserGroup" : {
        "groups" : [ {
            "groupId" : 1001,
            "groupName" : "oinstall",
            "groupRole" : "oinstall"
        }, {
            "groupId" : 1002,
            "groupName" : "dba",
            "groupRole" : "dba"
        } ],
```

```
        "users" : [ {
            "userId" : 1000,
            "userName" : "oracle",
            "userRole" : "oracleUser"
        } ]
    }
},
"nodes" : [ {
    "nodeNumber" : "0",
    "nodeName" : "odambox",
    "network" : [ {
            "nicName" : "btbond1",
            "ipAddress" : "10.0.1.11",
            "subNetMask" : "255.255.240.0",
            "gateway" : "10.0.0.1",
            "networkType" : [ "Public" ],
            "isDefaultNetwork" : true
        },
    ],
    "ilom" : {
        "ilomName":"odambox-c",
        "ipAddress":"10.0.2.10",
        "subNetMask":"255.255.240.0",
        "gateway":"10.0.0.1"
        }
} ],
"grid" : {
    "diskGroup" : [ {
        "diskGroupName" : "DATA",
        "redundancy" : "NORMAL",
        "diskPercentage" :80
    }, {
        "diskGroupName" : "RECO",
        "redundancy" : "NORMAL",
        "diskPercentage" :20
    } ],
"scan" : {
            "scanName":"odambox-scan",
            "ipAddresses":[
    "10.0.1.11"
        ]
    },
"vip":[
        {
    "nodeNumber":"0",
    "vipName":"odambox-vip",
    "ipAddress":"10.0.1.11"
        }
    ],
    "language" : "en",
    "enableAFD":"TRUE"
},
"database" : {
    "dbName" : "myTestDb",
    "databaseUniqueName":"myTestDb_sea1kj",
    "dbEdition" : "EE",
```

```
        "dbVersion" : "19.21.0.0",
        "dbHomeId":null,
        "instanceOnly" : false,
        "isCdb" : true,
        "pdBName" : "pdb1",
        "pdbAdminuserName" : "pdbuser",
        "enableTDE":true,
        "adminPassword" : "password",
        "dbType" : "SI",
        "dbTargetNodeNumber" : null,
        "dbClass" : "OLTP",
        "dbShape" : "odb1",
        "dbStorage" : "ACFS",
        "dbCharacterSet" : {
            "characterSet" : "AL32UTF8",
            "nlsCharacterset" : "AL16UTF16",
            "dbTerritory" : "AMERICA",
            "dbLanguage" : "AMERICAN"
        },
        "dbConsoleEnable" : false,
        "backupConfigId":null,
        "rmanBkupPassword": null
        },
        "asr" :{
            "asrType": "INTERNAL",
            "userName":"john.smith@example.com",
            "password":"password",
            "proxyServerName":"www-proxy.example.com",
            "proxyPort":"80",
            "proxyUserName":"proxy-user",
            "proxyPassword":"proxy-password",
            "httpsPortNumber":"16163"
    }
}
```


## Example JSON File to Create a Multi-Node Appliance with the CLI

Follow the JSON file example to create a JSON file to deploy a multi-node appliance with the command odacli create-appliance.

Use the example JSON files and the information located in the readme as a template to create a file for your environment. Examples and the readme are located in the /opt/oracle/dcs/ sample directory.

## Note:

It is important to review the readme and the examples carefully before creating your JSON file. If you do not enter your network and Oracle ILOM information correctly based on your setup, then network access is lost to both the host and Oracle ILOM.

## Example C-3 JSON File to Create a Multi-Node Oracle Database Appliance with Role Separation

The following is an example of a JSON file that creates a multi-node appliance on Oracle Database Appliance bare metal platform. The example uses role separation. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "instance":{
    "name":"odahabox",
    "instanceBaseName":"odahabox",
    "dbEdition":"EE",
    "timeZone":"UTC",
    "ntpServers" : ["10.0.3.14"],
    "dnsServers" : ["10.0.4.10","10.0.4.11","10.0.4.12"],
    "domainName":"example.com",
    "isRoleSeparated":true,
    "osUserGroup":{
        "groups":[
            {
                            "groupId":1001,
                            "groupName":"oinstall",
                            "groupRole":"oinstall"
            },
            {
            "groupId":1002,
            "groupName":"dbaoper",
            "groupRole":"dbaoper"
            },
            {
            "groupId":1003,
            "groupName":"dba",
            "groupRole":"dba"
            },
            {
            "groupId":1004,
            "groupName":"asmadmin",
            "groupRole":"asmadmin"
            },
            {
            "groupId":1005,
                    "groupName":"asmoper",
                    "groupRole":"asmoper"
            },
            {
                    "groupId":1006,
                    "groupName":"asmdba",
                            "groupRole":"asmdba"
            }
        ],
        "users":[
            {
                    "userId":101,
                    "userName":"grid",
                    "userRole":"gridUser"
```

```
                },
                {
                    "userId":102,
                    "userName":"oracle",
                    "userRole":"oracleUser"
                }
            ]
    },
    "objectStoreCredentials":null
},
"sysOraHomeStorage": {
    "volumeSize": "160",
    "diskgroup": "DATA"
}
"nodes":[
    {
        "nodeNumber":"0",
        "nodeName":"odahaboxc1n2",
        "network":[
            {
                    "nicName":"btbond1",
                    "ipAddress":"10.31.98.133",
                    "subNetMask":"255.255.240.0",
                    "gateway":"10.31.96.1",
                    "networkType":[
                    "Public"
                ],
                "isDefaultNetwork":true
            }
        ],
        "ilom":{
            "ilomName":"odahabox2-c",
            "ipAddress":"10.31.16.140",
            "subNetMask":"255.255.240.0",
            "gateway":"10.31.16.1"
        }
    },
    {
        "nodeNumber":"1",
        "nodeName":"odahaboxc1n1",
        "network":[
            {
                    "nicName":"btbond1",
                    "ipAddress":"10.31.98.132",
                    "subNetMask":"255.255.240.0",
                    "gateway":"10.31.96.1",
                    "networkType":[
                    "Public"
                ],
                    "isDefaultNetwork":true
            }
        ],
        "ilom":{
            "ilomName":"odahabox1-c",
            "ipAddress":"10.31.16.139",
            "subNetMask":"255.255.240.0",
```

```
                    "gateway":"10.31.16.1"
            }
    }
],
"grid":{
    "diskGroup":[
        {
            "diskGroupName":"DATA",
            "redundancy":"HIGH",
            "diskPercentage":80
        },
            {
                    "diskGroupName": "RECO",
                    "redundancy":"HIGH",
            "diskPercentage":20
        },
    ],
    "scan":{
        "scanName":"odahaboxc1-scan",
            "ipAddresses":[
                    "10.31.98.182",
            "10.31.98.183"
        ]
    },
    "vip":[
            {
            "nodeNumber":"0",
            "vipName":"odahaboxc1n2-vip",
            "ipAddress":"10.31.98.159"
        },
        {
            "nodeNumber":"1",
            "vipName":"odahaboxc1n1-vip",
            "ipAddress":"10.31.98.158"
        }
    ],
    "language":"en",
    "enableAFD":"TRUE"
},
"database":{
    "dbName":"myTestDb",
    "databaseUniqueName":"myTestDb_sea1kj",
    "dbVersion":"19.21.0.0",
    "dbHomeId":null,
    "instanceOnly":false,
    "isCdb":true,
    "pdBName":"pdb1",
    "pdbAdminuserName":"pdbuser",
    "enableTDE":true,
    "adminPassword":"password",
    "dbType":"RAC",
    "dbTargetNodeNumber":null,
    "dbClass":"OLTP",
    "dbShape":"odb1",
    "dbStorage":"ACFS",
    "dbCharacterSet":{
```

```
            "characterSet":"AL32UTF8",
            "nlsCharacterset":"AL16UTF16",
            "dbTerritory":"AMERICA",
            "dbLanguage":"AMERICAN"
        },
        "dbConsoleEnable":false,
        "backupConfigId":null
    },
    "asr":null
}
```


## Example C-4 JSON File to Create a Multi-Node Oracle Database Appliance with Enterprise Edition High Availability Enabled

The following is an example of a JSON file that creates a multi-node appliance on Oracle Database Appliance bare metal platform. The example shows enabling of Enterprise Edition High Availability. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "system": {
        "name": "test_system",
        "shape": "odb2",
        "customMemorySize": "24G",
        "timeZone": "America/Los_Angeles",
        "diskGroup": "DATA",
        "cpuPoolName": "shared_dbsystem_cpupool",
        },
    "database": {
        "name": "dbtest",
        "uniqueName": "dbtest",
        "domainName": "test_domain",
        "version": "19.15.0.0.220419",
        "edition": "EE",
        "type": "SI",
        "dbClass": "OLTP",
        "shape": "odb2",
        "role": "PRIMARY",
        "targetNodeNumber": "0",
        "enableDbConsole": false,
        "enableEEHA": true,
        "enableUnifiedAuditing": true,
        "redundancy": "MIRROR", <<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
            "characterSet": {
            "characterSet": "AL32UTF8",
            "nlsCharacterset": "AL16UTF16",
            "dbTerritory": "AMERICA",
            "dbLanguage": "AMERICAN"
        },
        "enableTDE": false,
        "isCdb": true,
            "pdbName": "pdb1",
            "pdbAdminUser": "pdbadmin"
    },
```

```
    "network": {
    "domainName": "test_domain",
    "ntpServers": [],
    "dnsServers": [
            "xx.xxx.xx.xxx"
        ] ,
        "nodes": [
            {
                    "name": "node1",
                    "ipAddress": "xx.xx.xxx.xx",
                "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 0,
                "vipName": "node1-vip",
                "vipAddress": "xx.xx.xxx.xx"
            },
            {
                "name": "node2",
                "ipAddress": "xx.xx.xxx.xx",
                "netmask": "xxx.xxx.xxx.x",
                "gateway": "xx.xx.xxx.x",
                "number": 1,
                "vipName": "node2-vip",
                "vipAddress": "xx.xx.xxx.xx"
            }
    ],
    "publicVNetwork": "vnet1",
    "scanName": "test-scan",
    "scanIps": [
            "xx.xx.xxx.xx",
            "xX.xx.xxx.xx"
    ]
    },
    "grid": {
    "language": "en"
}
}
```


## Example C-5 JSON File to Create a Multi-Node Oracle Database Appliance with Standard Edition High Availability Enabled

The following is an example of a JSON file that creates a multi-node appliance on Oracle Database Appliance bare metal platform. The example shows enabling of Standard Edition High Availability. When using the example to create your JSON file, change the definitions to match your environment. The password must meet password requirements.

```
{
    "system": {
    "name": "test_system",
    "shape": "odb2",
    "customMemorySize": "24G",
    "timeZone": "America/Los_Angeles",
    "diskGroup": "DATA",
    "cpuPoolName": "shared_dbsystem_cpupool",
    },
"database": {
```

```
    "name": "dbtest",
    "uniqueName": "dbtest",
    "domainName": "test_domain",
    "version": "19.15.0.0.220419",
    "edition": "SE",
    "type": "SI",
    "dbClass": "OLTP",
    "shape": "odb2",
    "role": "PRIMARY",
    "targetNodeNumber": "0",
    "enableDbConsole": false,
    "enableSEHA": true,
    "enableUnifiedAuditing": true,
    "redundancy": "MIRROR", <<< if diskgroup redundancy is FLEX, then
database redundancy must be set to one of "HIGH" or "MIRROR", otherwise, can
be null
    "characterSet": {
            "characterSet": "AL32UTF8",
            "nlsCharacterset": "AL16UTF16",
            "dbTerritory": "AMERICA",
            "dbLanguage": "AMERICAN"
        },
        "enableTDE": false,
            "isCdb": true,
            "pdbName": "pdb1",
            "pdbAdminUser": "pdbadmin"
    },
    "network": {
    "domainName": "test_domain",
    "ntpServers": [],
    "dnsServers": [
            "xx.xxx.xx.xxx"
        ],
        "nodes": [
            {
            "name": "node1",
            "ipAddress": "xx.xx.xxx.xx",
            "netmask": "xxx.xxx.xxx.x",
            "gateway": "xx.xx.xxx.x",
            "number": 0,
            "vipName": "node1-vip",
            "vipAddress": "xx.xx.xxx.xx"
            },
            {
            "name": "node2",
            "ipAddress": "xx.xx.xxx.xx",
            "netmask": "xxx.xxx.xxx.x",
            "gateway": "xx.xx.xxx.x",
            "number": 1,
            "vipName": "node2-vip",
            "vipAddress": "xx.xx.xxx.xx"
            }
        ],
        "publicVNetwork": "vnet1",
        "scanName": "test-scan",
        "scanIps": [
```

```
                    "XX.XX. XXX.XX",
                    "XX.XX.XXX.XX"
        ]
    },
    "grid": {
        "language": "en"
    }
}
```


## Database Shapes for Oracle Database Appliance

Use the information in this appendix to select database shapes, or templates, for your planned databases.

- About Database Shapes and Classes

Review this information to help determine the database shape (also known as a database template) and class to use based on the common workload your databases perform.

- Database Shapes for the OLTP Class

Use Oracle Database Appliance OLTP Database Shapes if your database workload is primarily online transaction processing (OLTP).

- Database Shapes for the In-Memory Class Use Oracle Database Appliance In-Memory (IMDB) database shapes if your database workload can fit in memory, and can benefit from in-memory performance capabilities.
- Database Shapes for the DSS Class

Use DSS database shapes if your database workload is primarily decision support services (DSS) or data warehousing.

## About Database Shapes and Classes

Review this information to help determine the database shape (also known as a database template) and class to use based on the common workload your databases perform.

Oracle Database Appliance shapes define databases with parameters selected specifically to optimize performance on Oracle Database Appliance. In addition, these shapes help you to set up appropriate instance caging.

Oracle Database Appliance enables you to consolidate many databases into a single system. Consolidation can minimize idle resources, maximize efficiency, and lower costs. By using instance caging in conjunction with Oracle Database Resource Manager (the Resource Manager), you can provide desired levels of service across multiple instances on a single Oracle Database Appliance.

Oracle Database Appliance shapes are already tuned for the size of each database instance workload. They are designed to run on a specific number of cores. Caging ensures that each database workload is restricted to the set of cores allocated by the shape, enabling multiple databases to run concurrently with no performance degradation, up to the capacity of Oracle Database Appliance. You can select database shape sizes larger than your current needs to provide for planned growth, which you accommodate later by adjusting System Global Area (SGA) and Program Global Area (PGA) sizes as well as the number of cores.

## - Note:

Oracle strongly recommends that you use the Oracle Database Appliance shapes, because they implement best practices and are configured specifically for Oracle Database Appliance.

## (!) Important:

Except for the largest database shape, all other database shapes supported on the Oracle Database Appliance bare metal system are also supported on Oracle Database Appliance DB system.

## Choosing a Database Shape

Database shapes are configured specifically for the type of database workload that you want to carry out on your databases on Oracle Database Appliance. Choose the shape that best matches the common workload your databases perform (OLTP, DSS, In-Memory).

The database sizing tables provide shape names and sizing based on the number of CPUs and memory attributes for each type of database workload.

Identify the shape type that is appropriate to your database workload and hardware:

- Use Oracle Database Appliance OLTP Database Shapes if your database workload is primarily online transaction processing (OLTP).
- Use Oracle Database Appliance DSS database shapes if your database workload is primarily decision support services (DSS) or data warehousing.
- Use Oracle Database Appliance In-Memory (IMDB) database shapes if your database workload can fit in memory, and can benefit from in-memory performance capabilities.

Use the database shape tables to help select the best shapes for your databases. When using these tables remember the following:

- The information in the tables assumes that you are creating local disk backups. Consider the space requirements for your database and the policy for local disk backups versus external backups. Typically, external backups have more space available for the database than local backups.
- The log file size assumes three (3) REDO log groups for each instance with a log switch every 15 minutes when the system is running at full capacity.


## Database Shapes for the OLTP Class

Use Oracle Database Appliance OLTP Database Shapes if your database workload is primarily online transaction processing (OLTP).

The table lists the online transaction processing (OLTP) database shape sizes for Oracle Database Appliance X7-2S, X7-2M, and X7-2-HA.

The information in the table assumes the following:

- You are creating local disk backups. Consider the space requirements for your database and the policy for local disk backups versus external backups. Typically, external backups have more space available for the database than local backups.
- The log file size assumes three (3) REDO log groups for each instance with a log switch every 15 minutes when the system is running at full capacity.

Table D-1 Oracle Database Appliance X7-2S OLTP Database Shapes

Shape	CPU Cores	SGA (GB)	PGA (GB)	Processes	Redo log file   size (GB)	Log buffer   (MB)	DB System   Memory   (GB)   Applicable   only for DB   Systems
odb1s	1	2	1				16
odb1	1	4	2	200	4	32	16
odb2	2	8	4	400	4	32	16
odb4	4	16	8	800	4	64	32
odb6	6	24	12	1200	8	128	48
odb08	8	32	16	1600	8	128	64
odb10	10	40	20	2000	8	128	80

Table D-2 Oracle Database Appliance X7-2M OLTP Database Shapes

Shape	CPU Cores	SGA (GB)	PGA (GB)	Processes	Redo log file   size (GB)	Log buffer   (MB)	DB System   Memory   (GB)   Applicable   only for DB   Systems
odb1s	1	2	1				
odb1	1	4	2	200	4	32	16
odb2	2	8	4	400	4	32	16
odb4	4	16	8	800	4	32	16
odb6	6	24	12	1200	8	164	32
odb08	8	32	16	1600	8	128	48
odb10	10	40	20	2000	8	128	64
odb12	12	48	24	2400	16	128	96
odb16	16	64	32	3200	16	128	128
odb20	20	80	40	4000	16	128	160
odb24	24	96	48	4800	16	128	192
odb28	28	112	56	5600	16	128	224
odb32	32	128	64	6400	16	128	256
odb36	36	144	72	7200	16	128	288

Table D-3 Oracle Database Appliance X7-2-HA OLTP Database Shapes
$\left.\begin{array}{llllllll}\text { Shape } & \text { CPU Cores } & \text { SGA (GB) } & \text { PGA (GB) } & \text { Processes } & \begin{array}{l}\text { Redo log file } \\ \text { size (GB) }\end{array} & \begin{array}{l}\text { Log buffer } \\ \text { (MB) }\end{array} & \begin{array}{l}\text { DB System } \\ \text { Memory } \\ \text { (GB) }\end{array} \\ \text { Applicable } \\ \text { only for DB } \\ \text { Systems }\end{array}\right]$.

## Database Shapes for the In-Memory Class

Use Oracle Database Appliance In-Memory (IMDB) database shapes if your database workload can fit in memory, and can benefit from in-memory performance capabilities.

The table lists the In-Memory database shape sizes for Oracle Database Appliance $\mathrm{X} 7-2 \mathrm{~S}$, X7-2M, and X7-2-HA.

The information in the table assumes the following:

- You are creating local disk backups. Consider the space requirements for your database and the policy for local disk backups versus external backups. Typically, external backups have more space available for the database than local backups.
- The log file size assumes three (3) REDO log groups for each instance with a log switch every 15 minutes when the system is running at full capacity.

Table D-4 Oracle Database Appliance X7-2S In-Memory Database Shapes

Shape	CPU Cores	SGA (GB)	PGA (GB)	In-Memory (GB)	Processes	Redo log file size (GB)	Log buffer (MB)	DB System Memory (GB) Applicable only for DB Systems
odb1s	1	2	1	1	200	4	32	16

Table D-4 (Cont.) Oracle Database Appliance X7-2S In-Memory Database Shapes

Shape	CPU Cores						In-Memory (GB)   (GB)	PGA (GB)

Table D-5 Oracle Database Appliance X7-2M and X7- 2-HA In-Memory Database Shapes
$\left.\begin{array}{lllllllll}\text { Shape } & \text { CPU Cores } & \text { SGA (GB) } & \text { PGA (GB) } & \begin{array}{l}\text { In-Memory } \\ \text { (GB) }\end{array} & \text { Processes } & \begin{array}{l}\text { Redo log } \\ \text { file size } \\ \text { (GB) }\end{array} & \begin{array}{l}\text { Log buffer } \\ \text { (MB) }\end{array} & \begin{array}{l}\text { DB System } \\ \text { Memory } \\ \text { (GB) } \\ \text { Applicable } \\ \text { only for DB }\end{array} \\ \text { Systems }\end{array}\right]$

## Database Shapes for the DSS Class

Use DSS database shapes if your database workload is primarily decision support services (DSS) or data warehousing.

The table lists the DSS database shape sizes for Oracle Database Appliance X7-2S, X7-2M, and X7-2-HA.

The information in the table assumes the following:

- You are creating local disk backups. Consider the space requirements for your database and the policy for local disk backups versus external backups. Typically, external backups have more space available for the database than local backups.
- The log file size assumes three (3) REDO log groups for each instance with a log switch every 15 minutes when the system is running at full capacity.

Table D-6 Oracle Database Appliance X7-2S DSS Database Shapes

Shape	CPU Cores	SGA (GB)	PGA (GB)	Processes	Redo log file   size (GB)	Log buffer   (MB)	DB System   Memory   (GB)   Applicable   only for DB   Systems
odb1s	1	1	2	200	4	32	16
odb1	1	2	4	200	4	32	16
odb2	2	4	8	400	4	32	16
odb4	4	8	16	800	4	64	32
odb6	6	12	24	1200	8	128	48
odb08	8	16	32	1600	8	128	64
odb10	10	20	40	2000	8	128	80

Table D-7 Oracle Database Appliance X7-2M and X7-2-HA DSS Database Shapes
$\left.\begin{array}{llllllll}\text { Shape } & \text { CPU Cores } & \text { SGA (GB) } & \text { PGA (GB) } & \text { Processes } & \begin{array}{l}\text { Redo log file } \\ \text { size (GB) }\end{array} & \begin{array}{l}\text { Log buffer } \\ \text { (MB) }\end{array} & \begin{array}{l}\text { DB System } \\ \text { Memory } \\ \text { (GB) } \\ \text { Applicable } \\ \text { only for DB }\end{array} \\ \text { Systems }\end{array}\right]$.

Glossary

## Index

Numerics
10GBase-T (copper) network ports, 3-1, 3-4
25GbE SFP28 (fiber) network ports, 3-1, 3-4

## A

ACFS, $B-1, B-2$
ACFS mount points, $B-2$
ACR, 20-37, 20-39
administrative account users, 10-2
administrative accounts, 10-2
agent
update, 17-80-17-82
agent proxy setting, 13-17
ASM, B-1
ASM Cluster File System
See Oracle ACFS
ASR
configure, 17-226, 17-230, 19-3, 19-5, 19-7
delete, 17-229
details, 17-229
documentation, 19-13
modify, 17-231
register, 19-3, 19-5, 19-7
test, 17-232
Automatic Storage Management
See Oracle ASM

## B

back up database, 13-19
backup and recovery
CLI commands, 17-107
RMAN, 10-3
backup databases, 13-1
backup location
disk group, 1-1
backup policy, 13-22, 13-23
update, 13-19
backup to external FRA, 13-18
backup to internal FRA, 13-18
backup to NFS location, 13-18
backup to Object Store, 13-18
bare metal patching, 8-9, 8-34, 8-37, 9-4
bill of materials, 20-27
bond
network interface, 12-1
bridge
network interface, 12-1
Browser User Interface, C-1 about, 2-4 actions, 2-4
BUI, 9-45
clone vdisk, 16-41
clone vm, 16-48
create CPU pool, 15-3
create dbsystem, 16-16
create vdisk, 16-40
create vm, 16-44
create vmstorage, 16-33
create vnetwork, 16-36
delete cpupool, 15-6
delete dbsystem, 16-27
delete vdisk, 16-43
delete vm, 16-51
delete vnetwork, 16-39
delete-vmstorage, 16-35
describe CPU pool, 15-5
describe dbsystem, 16-22
describe storage, 16-34
describe vdisk, 16-41
describe vm, 16-50
describe vnetwork, 16-37
list dbsystems, 16-22
modify cpupool, 15-6
modify dbsystem, 16-23, 16-25, 16-29
modify vdisk, 16-42
modify vm, 16-48
modify vmstorage, 16-34
modify vnetwork, 16-38
remap cpupools, 15-4
start dbsystem, 16-26
start vm, 16-50
start vnetwork, 16-38
stop dbsystem, 16-27

C
cabling, 3-1
validate, 17-248
cleanup, 8-41
cleanup utility, 7-1, 7-7
cleanup.pl, 7-1, 7-7, 20-31
CLI commands
configure, 17-13
cloning database, 10-16
Configuration Audit Tool (ORAchk), 20-33
configure CLI commands
configure-firstnet, 17-13
configure-firstnet, 4-3
CPU
commands, 17-143
CPU core
current configuration, 17-144
enable, 17-144
CPU cores
configuration history, 17-143
list, 17-143
cpu pool
creating, 15-3
CPU pool
audit record, 15-7
deleting, 15-6
modifying, 15-6
over-subscribed, 15-7
remapping, 15-4
viewing, 15-5
cpu pools
about, 15-1
cpupool
create, 17-146, 18-29
delete, 17-150, 18-33
describe, 17-149, 18-32
modify, 17-149, 18-32
cpupools
auditrecord, 17-151, 17-152, 18-33, 18-34
list, 17-149, 18-31
remap, 17-148, 18-30
create appliance, 4-9

## D

DATA disk group, $B$-3
database, 1-1, 10-29, $D-2, D-4, D-5$
backup policy, 13-19
block size, 1-1
clone from backup, 10-14
create, 10-9
delete, 10-28, 10-30
details, 10-9
home, 10-29
create multiple, 10-29
multiple, 10-29
language, 1-1
list, 10-9
modify, 10-18
move, 10-19
database (continued)
register, 17-176
template
See shape, database
territory, 1-1
upgrade, 10-20, 10-21
database backup
delete, 13-21
database classes, $D-1$
database home
acfs, 10-12
create, 10-30
details, 10-30
display details, 17-186
list, 10-30
database home storage
configure, 17-181
describe, 17-184
list, 17-182
modify, 17-185
database homes
ACFS, 10-3
Database Security Assessment report, 20-34
database shapes, $D-1, D-2, D-4, D-5$
about, $D-1$
database storage, $B-1$
commands, 17-188
create, 17-189
display details, 17-190, 17-191
list, 17-194
database, register, 10-34, 10-35
db system
modifying, 16-23
DB system
backup, restore and recovery, 16-28
creating, 16-16
delete, 16-27
describing, 16-22
modifying, 16-29
network, 16-25
Oracle Data Guard, 16-32
start, 16-26
stop, 16-27
db system patching, 8-25
DB systems
list, 16-22
DB systems upgrade, 9-38
dbsystem
create, 18-6
delete, 18-20
describe, 18-11, 18-18
modify, 18-7, 18-9
start, 18-19
stop, 18-19
dbsystems
list, 18-10
dcserr, 20-17
default groups and users, $A-5$
deleting backups, 13-31
DHCP (Dynamic Host Configuration Protocol)
connect to Oracle ILOM, 3-6
Oracle ILOM configuration, 3-6
diagnostics, 20-18
directory paths, $A-1$
disk
replace, 11-3, 11-5
disk group redundancy, $B-1$
disk group sizes, A-5
disk group storage
describe, 17-192
list, 17-195
domain
definition, 16-4
downloading software, 4-7
dpr upgrade, 20-2
DSS
database shape, $D-5$
dynamic default parameters
using Browser User Interface, 8-42
Dynamic Host Configuration Protocol
See DHCP
E
electrical power cords
connecting, 3-5
EM Express, 10-41
Enterprise Edition High Availability, 10-6
error correlation report, 20-14
external FRA, 13-1
F
flex diskgroup, 10-9, 10-12, 10-18

## G

Grid user, 10-2
groups and users defaults, A-5
guest virtual machine
definition, 16-4
H
Host Public Addresses
IP address, 1-8

I
IMDB
database shape, $D-4$
install software, 4-8
installed version
display, 17-49, 17-52, 17-62, 17-63, 17-65
instance caging, 10-41
enable, 10-41
Integrated Lights Out Manager
See Oracle ILOM
internal FRA, 13-1

## J

JSON file, 5-22, 5-27, 5-31, 5-35, 16-52, 16-60, C-2, C-7

## K

KVM, 18-1, 18-3
definition, 16-3
deploying, 16-32
overcomit, 16-51
KVM commands
odacli clone-vdisk, 18-27
odacli clone-vm, 18-46
odacli create-cpupool, 17-146, 18-29
odacli create-dbsystem, 18-6
odacli create-vdisk, 18-25
odacli create-vm, 18-40
odacli create-vmstorage, 18-22
odacli create-vnetwork, 18-35
odacli delete-cpupool, 17-150, 18-33
odacli delete-dbsystem, 18-20
odacli delete-vdisk, 18-27
odacli delete-vm, 18-47
odacli delete-vmstorage, 18-24
odacli delete-vnetwork, 18-38
odacli describe-auditrecord, 17-152, 18-34
odacli describe-cpupool, 17-149, 18-32
odacli describe-dbsystem, 18-11
odacli describe-dbsystem-image, 18-18
odacli describe-vdisk, 18-26
odacli describe-vm, 18-41
odacli describe-vmstorage, 18-23
odacli describe-vnetwork, 18-37
odacli list-auditrecords, 17-151, 18-33
odacli list-cpupools, 17-149, 18-31
odacli list-dbsystems, 18-10
odacli list-vdisks, 18-26
odacli list-vms, 18-41
odacli list-vmstorages, 18-23
odacli list-vnetworks, 18-36
odacli migrate-vm, 18-46
odacli modify-cpupool, 17-149, 18-32
odacli modify-dbfileattributes, 18-9
odacli modify-dbsystem, 18-7
odacli modify-vdisk, 18-26
odacli modify-vm, 18-42

KVM commands (continued)
odacli modify-vmstorage, 18-23
odacli modify-vnetwork, 18-38
odacli remap-cpupools, 17-148, 18-30
odacli start-dbsystem, 18-19
odacli start-vm, 18-44
odacli start-vnetwork, 18-37
odacli stop-dbsystem, 18-19
odacli stop-vm, 18-45
odacli stop-vnetwork, 18-37
L
LED
status when blinking, 3-7
status when steady, 3-7
status when steady on, 3-7
LED indicators
NVMe, 11-3, 11-5
Linux
and virtualization, 16-2, 16-7, 16-10
linux kernel core extractor, 20-15
listener.ora, configure, 10-32
load configuration, C-1
log files, $A-4$
sending to Oracle Support Services, 20-44
logs
storage diagnostic, 17-94, 17-218

## M

migration
from an existing database, 10-3
multi-user access
appliance, 5-2, 5-7
create user, 5-10, 5-14
entitlements, 5-17
manage database, 5-19
manage database homes, 5-19
manage password, 5-11, 5-20
odacli commands, 17-6
passwordless, 5-7
provisioning, 5-9, 5-12
reset-password, 5-15, 5-21
resources, 5-16
roles, 5-17
shared resource, 5-6
user roles, 5-4
multiple database instances
instance caging, 10-41
multiple Oracle homes, 10-29
create, 10-29
My Oracle Support, 20-44
send log files for troubleshooting, 20-44

## N

network
configure, 17-13
interfaces, 12-2
list, 12-2
network cabling, 3-4
network infrastructure, 12-1
network interface
default values, 12-1
network ports, 3-1, 3-4
network time protocol service (NTP service), 1-1
NFS backup, 13-9, 13-12, 13-15
NTP service
See network time protocol service
NVMe
disk location, 11-3, 11-5
LED indicators, 11-3, 11-5

## O

oakcli commands
show power
example, 20-43
Object Store, 13-17
credentials, 17-112, 17-116, 17-117, 17-123, 17-130
odaadmcli commands
asmops diskgroup, 17-245
expand storage, 17-246
hardware configuration, 17-238
hardware monitoring, 17-238
manage diagcollect, 17-218, 20-44
orachk, 17-94
power disk, 17-248
show controller, 17-249
show cooling, 17-239
show disk, 17-250
show diskgroup, 17-251
show env_hw, 17-239
show fs, 17-240
show localdisk, 17-238
show memory, 17-241
show network, 17-241
show power, 17-242
show processor, 17-243
show raidsyncstatus, 17-252
show server, 17-243
show storage, 17-253
storage, 17-244
stordiag, 17-254
odacli cleanup-patchrepo, 8-41
odacli commands
acr, 17-233
appliance, 17-99
apply patch, 17-46
odacli commands (continued)
backup, 17-107
cleanup-patchrepo, 17-48
clone-database, 17-153
clone-vdisk, 16-41
clone-vm, 16-48
configure-asr, 17-226
configure-dataguard, 17-133
configure-dbhome-storage, 17-181
CPU core, 17-143
cpu pool, 17-145, 18-28
create database, 10-29
create vdisk, 16-40
create-appliance, 17-100
create-auto-logclean-policy, 17-220
create-backup, 17-109
create-backupconfig, 17-110
create-cpupool, 15-3
create-database, 17-163
create-dbhome, 17-185
create-dbstorage, 17-189
create-dbsystem, 16-16
create-diagcollection, 17-199
create-jobdata-retention-policy, 17-202
create-logcleanjob, 17-221
create-network, 17-16
create-objectstoreswift, 17-112
create-prepatchreport, 17-49
create-purge-jobdata-job, 17-204
create-vm, 16-44
create-vmstorage, 16-33
create-vnetwork, 16-36
data preserving reprovisioning, 17-95
database, 17-152
database storage, 17-188
dataguard, 17-132
DBHome, 17-181
dbsystem, 18-5
deconfigure-dataguard, 17-137
delete-asr, 17-229
delete-backup, 17-113
delete-backupconfig, 17-114
delete-cpupool, 15-6
delete-database, 17-167
delete-dbhome, 17-186
delete-dbstorage, 17-190
delete-dbsystem, 16-27
delete-diagcollection, 17-201
delete-jobdata-retention-policy, 17-207
delete-network, 17-18
delete-networkinterface, 17-19
delete-objectstoreswift, 17-117
delete-prepatchreport, 17-63
delete-preupgradereport, 17-97
delete-vdisk, 16-43
delete-vm, 16-51
odacli commands (continued)
delete-vmstorage, 16-35
delete-vnetwork, 16-39
describe-asr, 17-229
describe-backupconfig, 17-113
describe-backupreport, 17-115
describe-component, 17-65
describe-cpucore, 17-144
describe-cpupool, 15-5
describe-database, 17-169
describe-dataguardstatus, 17-139
describe-dbhome, 17-187
describe-dbhome-storage, 17-184
describe-dbstorage, 17-191
describe-dbsystem, 16-22
describe-dgstorage, 17-192
describe-diagcollection, 17-200
describe-job, 17-209
describe-latestpatch, 17-70
describe-logcleanjob, 17-223
describe-network, 17-20
describe-networkinterface, 17-22
describe-objectstoreswift, 17-116
describe-prepatchreport, 17-52
describe-schedule, 17-118
describe-system, 17-101
describe-vdisk, 16-41
describe-vm, 16-50
describe-vmstorage, 16-34
describe-vnetwork, 16-37
diagnostics, 17-198
export-asrconfig, 17-230
failover-dataguard, 17-140
irestore-database, 17-118
jobs, 17-202
list scheduler jobs, 17-217
list-auto-logclean-policy, 17-224
list-backupconfig, 17-122
list-backupreports, 17-122
list-cpucores, 17-143
list-cpupools, 15-5
list-databases, 17-170
list-dataguardstatus, 17-140
list-dbhome-storage, 17-182
list-dbhomes, 17-188
list-dbstorages, 17-194
list-dbsystems, 16-22
list-dgdisks, 17-246
list-diagcollections, 17-200
list-featuretracking, 17-104
list-jobdata-retention-policy, 17-215
list-jobs, 17-211
list-logcleanjobs, 17-224
list-logspaceusage, 17-225
list-networkinterfaces, 17-23
list-networks, 17-23
odacli commands (continued)
list-osconfigurations, 17-236
list-prepatchreports, 17-62
list-purge-jobdata-jobs, 17-216
list-scheduled-executions, 17-217
list-schedules, 17-123
list-tdebackupreports, 17-124
list-vdisks, 16-41
list-vms, 16-50
list-vmstorages, 16-34
list-vnetworks, 16-37
modify-asr, 17-231
modify-backupconfig, 17-129
modify-cpupool, 15-6, 16-29
modify-database, 17-171
modify-dbhome-storage, 17-185
modify-dbstorage, 17-196
modify-dbsystem, 16-23, 16-25
modify-dgstorage, 17-197
modify-network, 17-24
modify-objectstoreswift, 17-130
modify-osconfigurations, 17-237
modify-schedule, 17-131
modify-vdisk, 16-42
modify-vm, 16-48
modify-vmstorage, 16-34
modify-vnetwork, 16-38
move-database, 17-175
multi-user access, 17-25
network, 17-13
odacli activate-user, 17-31
odacli authorize-user, 17-34
odacli change-password, 17-45
odacli create-appliance, 5-22, 5-27, C-2, C-7
odacli create-dbsystem, 5-31, 5-35, 16-52, 16-60
odacli create-preupgradereport, 17-96
odacli create-user, 17-30
odacli delete-agentconfig-parameters, 17-75
odacli delete-auto-logclean-policy, 17-221
odacli delete-user, 17-35
odacli describe-acr, 17-233
odacli describe-domain, 17-28
odacli describe-preupgradereport, 17-96
odacli describe-resource-access, 17-42
odacli describe-tenant, 17-29
odacli describe-user, 17-33
odacli describe-user-entitlement, 17-39
odacli describe-user-operation, 17-40
odacli describe-user-role, 17-37
odacli commands (continued)
odacli detach-node, 17-97
odacli disable-acr, 17-235
odacli enable-acr, 17-234
odacli grant-resource-access, 17-43
odacli list-acr, 17-235
odacli list-agentconfig-parameters, 17-72
odacli list-availablepatches, 17-63
odacli list-dgstorages, 17-195
odacli list-domains, 17-27
odacli list-nodes, 17-104
odacli list-objectstoreswifts, 17-123
odacli list-pendingjobs, 17-215
odacli list-resources-access, 17-41
odacli list-tenants, 17-28
odacli list-user-entitlements, 17-37
odacli list-user-operations, 17-39
odacli list-user-roles, 17-36
odacli list-users, 17-32
odacli modify-agentconfig-parameters, 17-73
odacli modify-cpucore, 17-144
odacli ping-agent, 17-103
odacli redact-acr, 17-234
odacli reset-password, 17-45
odacli restore-node, 17-98
odacli revoke-resource-access, 17-44
odacli upgrade-dbsystem, 17-99
Oracle ASR, 17-226
OS, 17-236
recover-database, 17-125
recovery, 17-107
register-database, 17-176
register-dataguard, 17-142
reinstate-dataguard, 17-141
remap-cpupools, 15-4
restore-archivelog, 17-127
restore-tdewallet, 17-128
set-credential, 17-100
show -h
with Oracle Database Appliance
Hardware Monitoring Tool, 20-43
start-dbsystem, 16-26
start-vm, 16-50
start-vnetwork, 16-38
stop-dbsystem, 16-27
stop-vm, 16-50
stop-vnetwork, 16-38
storage, 17-244
switchover-dataguard, 17-142
test-asr, 17-232
update, 17-46
update database, 17-77
update database home, 17-79
odacli commands (continued)
update repository, 17-90
update-dcsadmin, 17-80
update-dcsagent, 17-81
update-dcscomponents, 17-82
update-registry, 17-82
update-server, 17-91
update-server-postcheck, 17-94
update-storage, 17-93
upgrade-database, 17-179
validate storage topology, 17-248
validate-storagetopology, 17-248
vdisk, 18-24
vm, 18-39
vmstorage, 18-21
vnetwork, 18-35
odacli create-appliance
example JSON files, 5-22, 5-27, C-2, C-7
readme, C-2
odacli create-dbsystem
example JSON files, 5-31, 5-35, 16-52, 16-60
odaeraser.py, 7-6
OINSTALL group, 10-2
OLTP
database shape, $D-2$
Optimal Flexible Architecture
and Oracle homes, A-1
ORAchk report, 20-34
Oracle ACFS, 16-4
Oracle ACFS (Oracle Automatic Storage
Management Cluster File System)
virtual storage, 16-4
Oracle ASM (Oracle Automatic Storage
Management)
data migration, 10-3
user group, A-5
Oracle ASR
commands, 17-226
configure, 17-226, 17-230, 19-3, 19-5, 19-7
register, 19-3, 19-5, 19-7
Oracle ASR (Oracle Auto Service Request), 1-1
configuring, 19-1
Oracle Data Guard, 14-2
active data guard, 14-23
CLI commands, 17-132
configure, 14-2
deconfigure, 14-28
failover, 14-12
migrating, 14-14
network, 14-13
patching, 14-20
register, 14-23
reinstate, 14-12
status, 14-12
switchover, 14-12
upgrade database, 14-22

Oracle Database
See database
Oracle Database Appliance Hardware Monitoring
Tool, 20-43
Oracle Database Appliance Manager
software inventory, 2-3
Oracle Database Resource Manager instance caging, 10-41
Oracle Enterprise Manager Database Express, 10-41
Oracle home
multiple, 10-29
Oracle ILOM (Oracle Integrated Lights Out
Manager), 1-1
configure, 3-6
Oracle Integrated Lights Out Manager See Oracle ILOM
Oracle Ksplice, 8-38
Oracle KVM, 16-2, 16-7, 16-10
Oracle KVM command-line interface alphabetical list of commands, 18-1
Oracle ORAchk, 20-41
Oracle ORAchk Health Check Tool, 20-33
Oracle Support Services See My Oracle Support
Oracle Trace File Analyzer Collection, 20-40
Oracle user, 10-2
OS configuration
current, 17-236, 17-237
suggested, 17-236, 17-237
OSASM group, 10-2
OSDBA, 10-2
OSDBA for ASM group, 10-2
OSDBA group, 10-2
OSOPER groups, 10-2
over-subscribed CPU pool, 15-7

## $P$

patches
software inventory, 2-3
patching
appliance, 8-2, 8-7
using Browser User Interface, 8-31, 8-32, 8-35, 8-36, 9-51, 9-52
patching Oracle Database Appliance, 8-9, 8-25, 8-34, 8-37, 9-4
performance tuning, 15-7
plumb network, 4-3
port numbers, $A-2$
power cords
connecting, 3-5
processor_group_name, 15-1
protocols, $A$-2
proxy setting, 13-17

## R

readme, C-2
recover database, 13-26
recovering database, 13-20
register
Oracle ASR, 19-3, 19-5, 19-7
reimage appliance, 7-4
resource management
CPU pools, 15-7
Oracle KVM, 16-2, 16-7, 16-10
supported virtual operating systems, 16-2, 16-7, 16-10
restore archivelog, 13-31
restore baremetal system, 7-4
restore database, 13-28
RMAN (Recovery Manager utility)
database management, 10-3
RPM drift, 20-27

## S

sanitize diagnostics, 20-37, 20-39
sanitize entities, 20-40
save configuration, C-1
scheduler
jobs, 17-217
Scheduling Database Backups, 13-25
secure erase tool, 7-6
odaeraser.py, 7-6
sending log files to Oracle Support Services, 20-44
shapes, $D-1$
database
choosing, $D-1$
OLTP, $D-2, D-4, D-5$
SI (Support Identifier)
Oracle ASR requirement, 19-1
space management, $B-2$
SQL*Loader, 10-3
Standard Edition High Availability, 10-5
start up the system, 3-7
static listener, configure, 10-32
storage, 11-1, $B-3$
expand, 11-3, 11-5
storage disks
location, 11-3, 11-5

## T

## TDE, 10-7

TFA command, 20-35
TFA options, 20-35
Trace File Analyzer (TFA) Collector, 20-35
trace file redaction, 20-40
troubleshooting, 20-2, 20-14, 20-15, 20-17, 20-18, 20-31
log files for Oracle Support Services, 20-44 turning on Oracle Database Appliance, 3-7

## U

uninstall, 7-1, 7-7
update
database, 8-8
update-dcscomponents, 20-18
upgrade
database, 8-42
upgrading
appliance, 9-1
upgrading Oracle Database Appliance, 9-38, 9-45
usable storage, $B-3$

## V

viewing backup reports, 13-20
virtual disk
clone, 18-27
cloning, 16-41
create, 18-25
creating, 16-40
delete, 18-27
deleting, 16-43
describe, 18-26
list, 18-26
modify, 18-26
modifying, 16-42
viewing, 16-41
virtual disks, 16-4
virtual local area network, 12-1
virtual machine
about, 16-4
assemblies, 16-4
clone, 18-46
cloning, 16-48
create, 18-40
creating, 16-44
delete, 18-47
deleting, 16-51
describe, 18-41
list, 18-41
migrate, 18-46
modify, 18-42
modifying, 16-48
start, 16-50, 18-44
stop, 16-50, 18-45
templates, 16-4
viewing, 16-50
virtual network
creating, 16-36
deleting, 16-39
virtual network (continued)
modifying, 16-38
start, 16-38
stop, 16-38
viewing, 16-37
virtual storage
about, 16-4
virtualization, 16-2, 16-7, 16-10
VLAN, 12-1
vm storage
creating, 16-33
deleting, 16-35
modifying, 16-34
viewing, 16-34
vmstorage
create, 18-22
delete, 18-24
describe, 18-23
modify, 18-23
vmstorage (continued)
vmstorages
list, 18-23
vnetwork
create, 18-35
delete, 18-38
describe, 18-37
modify, 18-38
start, 18-37
stop, 18-37
vnetworks
list, 18-36
W
web interface
Oracle Enterprise Manager Database
Express, 10-41

