
Oracle Private Cloud Appliance
Container Engine for Kubernetes

F81950-02
April 2024

Oracle Private Cloud Appliance Container Engine for Kubernetes,

F81950-02

Copyright © 2024, Oracle and/or its affiliates.

Contents

 Preface

Audience v

Feedback v

Conventions v

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Overview of Container Engine for Kubernetes

2 OKE Workflow

Administrator Tasks 2-1

Updating the Certificate Authority Bundle 2-3

User Tasks 2-3

3 Creating Network Resources

Workload Cluster Network Ports 3-2

Workload Cluster Network CIDR Ranges 3-3

OKE Cluster Management with Administration Network 3-3

Example Terraform Scripts for Network Resources 3-4

Creating an OKE VCN 3-13

Creating an OKE Worker Subnet 3-17

Creating an OKE Worker Load Balancer Subnet 3-20

Creating an OKE Control Plane Subnet 3-21

Creating an OKE Control Plane Load Balancer Subnet 3-24

4 Creating and Managing OKE Clusters

Creating an OKE Cluster 4-1

Creating a Kubernetes Configuration File 4-6

iii

Updating an OKE Cluster 4-8

Deleting an OKE Cluster 4-9

5 Creating and Managing OKE Worker Node Pools

Creating an OKE Worker Node Pool 5-1

Configuring a Proxy 5-5

Updating an OKE Node Pool 5-6

Deleting an OKE Node Pool Node 5-7

Deleting an OKE Node Pool 5-8

6 Exposing Containerized Applications

7 Adding Storage for Containerized Applications

Creating Persistent Block Volume Storage 7-1

Creating Persistent File System Storage 7-3

Using a Persistent Volume 7-6

Deleting a Persistent Volume 7-7

Deleting a Persistent Volume Claim 7-7

Retaining a Persistent Volume 7-8

iv

Preface

This publication is part of the customer documentation set for Oracle Private Cloud Appliance
Release 3.0. Note that the documentation follows the release numbering scheme of the
appliance software, not the hardware on which it is installed. All Oracle Private Cloud
Appliance product documentation is available at https://docs.oracle.com/en/engineered-
systems/private-cloud-appliance/index.html.

Oracle Private Cloud Appliance Release 3.x is a flexible general purpose Infrastructure as a
Service solution, engineered for optimal performance and compatibility with Oracle Cloud
Infrastructure. It allows customers to consume the core cloud services from the safety of their
own network, behind their own firewall.

Audience
This documentation is intended for owners, administrators and operators of Oracle Private
Cloud Appliance. It provides architectural and technical background information about the
engineered system components and services, as well as instructions for installation,
administration, monitoring and usage.

Oracle Private Cloud Appliance has two strictly separated operating areas, known as
enclaves. The Compute Enclave offers a practically identical experience to Oracle Cloud
Infrastructure: It allows users to build, configure and manage cloud workloads using compute
instances and their associated cloud resources. The Service Enclave is where privileged
administrators configure and manage the appliance infrastructure that provides the
foundation for the cloud environment. The target audiences of these enclaves are distinct
groups of users and administrators. Each enclave also provides its own separate interfaces.

It is assumed that readers have experience with system administration, network and storage
configuration, and are familiar with virtualization technologies. Depending on the types of
workloads deployed on the system, it is advisable to have a general understanding of
container orchestration, and UNIX and Microsoft Windows operating systems.

Feedback
Provide feedback about this documentation at https://www.oracle.com/goto/docfeedback.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

v

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/index.html
https://www.oracle.com/goto/docfeedback

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, code in
examples, text that appears on the screen, or text that you enter.

$ prompt The dollar sign ($) prompt indicates a command run as a non-root
user.

prompt The pound sign (#) prompt indicates a command run as the root user.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Overview of Container Engine for Kubernetes

Oracle Private Cloud Appliance Container Engine for Kubernetes (OKE) is a scalable, highly
available service that can be used to deploy any containerized application to the cloud.

The OKE service uses Cluster API Provider (CAPI) and Cluster API Provider for Oracle
Cloud Infrastructure (CAPOCI) to orchestrate the cluster on the Private Cloud Appliance.

The OKE service uses Kubernetes, the open-source system for automating deployment,
scaling, and management of containerized applications across clusters of hosts. Kubernetes
groups the containers that make up an application into logical units called pods for easy
management.

For more information about Kubernetes in Oracle, see What Is Kubernetes? For more
general information about Kubernetes, see the Kubernetes site.

Using the OKE Service

You can access the OKE service to create OKE clusters by using the Compute Web UI, the
OCI CLI, and API. For general information about using the Private Cloud Appliance Compute
Web UI and OCI CLI, see the Working in the Compute Enclave chapter in the Oracle Private
Cloud Appliance User Guide.

You can access OKE clusters by using the Kubernetes command line (kubectl), the
Kubernetes Dashboard, and the Kubernetes API.

On Private Cloud Appliance, the OKE service manages all OKE cluster nodes, which are
compute instances. An authorized user can perform tasks such as patch the instance.

Supported Versions of Kubernetes

The OKE service uses versions of Kubernetes that are certified as conformant by the Cloud
Native Computing Foundation (CNCF). The OKE service is itself ISO-compliant (ISO-IEC
27001, 27017, 27018).

Supported versions of Kubernetes are 1.28.x, 1.27.x, and 1.26.x.

OKE Service Limits

The following table shows the service limits for the OKE service on Private Cloud Appliance.

Service Limit

Maximum number of clusters per tenancy 10

Maximum number of worker nodes (compute
instances) per cluster. These nodes can be
distributed across multiple node pools.

128

Maximum number of nodes per node pool/
group

128

Maximum number of node pools/groups per
cluster

No limit on number of node pools as long as
total nodes per cluster does not exceed 128.

1-1

https://www.oracle.com/cloud/cloud-native/container-engine-kubernetes/what-is-kubernetes/
https://kubernetes.io/
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-comp-enclave.html

Service Limit

Maximum number of pods per node 110. This is the Kubernetes default.

Chapter 1

1-2

2
OKE Workflow

Most steps to configure and use the OKE service are performed by regular users in the
Compute Enclave. Some steps need to be performed by a Compute Enclave user with more
administrative authorizations, and some steps can only be performed by a Service Enclave
administrator.

• Administrator Tasks

• User Tasks

Administrator Tasks
If you enable the appliance administration network, verify that the administration network and
the data center network are configured to allow traffic to and from the cluster control plane.
See the following resources:

• Editing Administration Network Information in the Oracle Private Cloud Appliance
Administrator Guide

• Administration Network Configuration Notes in the Oracle Private Cloud Appliance
Installation Guide

• Access Configuration With Administration Network in the Oracle Private Cloud Appliance
Security Guide

Create the following resources in the Private Cloud Appliance Compute Enclave:

• Platform images. Platform images include images required by OKE that have Kubernetes
installed on them. Platform images should be imported to all tenancies in the Compute
Enclave during appliance installation, upgrade, or patching. If this was not done, a
Service Enclave administrator must import images as described in Providing Platform
Images in the Oracle Private Cloud Appliance Administrator Guide.

• A users group that has a policy that authorizes members to use OKE. See Creating and
Managing User Groups in the Oracle Private Cloud Appliance User Guide to create a
group or update an existing group. Include the manage cluster-family authorization in
the policy. The following is an example policy for the OKE user group. Depending on your
organization, for example if you have a separate team who manage network resources,
some of the following "manage" authorizations could be "read" or "use" authorizations, or
you might need to add authorizations. You might need to create more than one user
group to authorize OKE work in different compartments.

allow group group-name to read all-resources in tenancy
allow group group-name to manage cluster-family in compartment compartment-name
allow group group-name to manage instance-family in compartment compartment-name
allow group group-name to manage virtual-network-family in compartment compartment-
name
allow group group-name to manage volume-family in compartment compartment-name

• The OraclePCA-OKE/cluster_id defined tag.

This tag is required to create or update an OKE cluster or node pool. This tag also is
used to identify instances that need to be in a dynamic group.

2-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-netenv-info.html#adm-netenv-admin
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix__port_matrix_with_adminnet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-cn-operations.html#adm-platform-images
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-cn-operations.html#adm-platform-images
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-groups.html#usr-manage-groups
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-groups.html#usr-manage-groups

1. Create the OraclePCA-OKE tag namespace.

In the Resource Tag Management chapter of the Oracle Private Cloud
Appliance User Guide, follow the procedure in "Creating a Tag Namespace."

Important:

Create the OraclePCA-OKE tag namespace in the tenancy (root)
compartment, not in a child compartment of the tenancy.

In the Create Namespace Definition dialog:

– Enter "OraclePCA-OKE" for the Name.

– Enter a description for the tag namespace.

– Click the Create Namespace Definition button.

The details page for the OraclePCA-OKE tag namespace is shown.

2. Create the cluster_id tag key definition in the OraclePCA-OKE tag
namespace.

On the details page for the OraclePCA-OKE tag namespace, click the Create
Tag Key Definition button above the list of tag key definitions.

In the Create Tag Key Definition dialog:

– Enter "cluster_id" for the Name.

– Enter a description for the tag key.

– Ensure that Static Value is selected for the Tag Value Type.

– Click the Create Tag Key Definition button.

Important:

The tag namespace name must be exactly OraclePCA-OKE, and the tag
key name must be exactly cluster_id.

When you create a node pool, or update the node pool to add nodes, this tag is
applied to every node to identify instances that need to be members of the
dynamic group.

• A dynamic group to authorize member instances to manage OKE resources. See
Creating and Managing Dynamic Groups in the Oracle Private Cloud Appliance
User Guide.

Enter the following matching rule to define the group:

tag.OraclePCA-OKE.cluster_id.value

All nodes that have this tag are members of the dynamic group.

• A policy for the dynamic group. See Managing Policies in the Oracle Private Cloud
Appliance User Guide.

Specify the following rules for the policy:

Chapter 2
Administrator Tasks

2-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-tagging.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-dynamic-groups.html#usr-manage-dynamic-groups
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-manage-policies.html#usr-manage-policies

allow dynamic-group dynamic-group-name to use instance-family in tenancy
allow dynamic-group dynamic-group-name to use virtual-network-family in tenancy
allow dynamic-group dynamic-group-name to manage load-balancers in tenancy
allow dynamic-group dynamic-group-name to manage volume-family in tenancy
Allow dynamic-group dynamic-group-name to manage file-family in tenancy

After upgrade, patching, or any other outage, or if the automated Certificate Authority bundle
update fails, you might want to update the CA bundle manually on the management node.
See Updating the Certificate Authority Bundle.

Updating the Certificate Authority Bundle
The Certificate Authority (CA) bundle for this Private Cloud Appliance is downloaded and
made available to a cluster when the cluster is created. The CA bundle includes the
certificate, private and public keys, and other authorization information.

The CA bundle is automatically updated on the appliance when regular certificate rotation
occurs or when the appliance is upgraded, for example.

When the CA bundle is updated on the appliance, then it must be updated on the local
system, for example to enable use of cluster-api. This is similar to replacing the CA bundle
in your ~/.oci configuration so that you can run OCI CLI commands.

A process runs every hour to check the validity of the CA bundle and updates the CA bundle
if necessary.

If you need to update the CA bundle between these hourly checks, the process can be run
manually:

1. Log onto the management node of the Private Cloud Appliance as a system administrator
with root privilege.

2. Get the name of an OKE pod.

The following command lists the three OKE pods in the oke namespace:

kubectl get pod -n oke -l app=oke
3. Run the command to update the CA bundle.

Use one of the oke-uniqueID pod names from the preceding step.

kubectl exec -it oke-6c4d85d6f-72fxs -n oke -c oke -- /usr/bin/pca-oke-cluster-
tool

You can check Loki logs in Grafana for any errors that might have occurred when this
process ran either automatically or manually. See "Accessing System Logs" in the Status and
Health Monitoring chapter of the Oracle Private Cloud Appliance Administrator Guide.

User Tasks
Perform the following tasks on your local system:

1. Configure OCI CLI access. See Using the OCI CLI in the Oracle Private Cloud Appliance
User Guide. If you already have OCI CLIinstalled, use oci -v to check the version. The
minimum required version for using OKE is 3.15.1.

2. Install the Kubernetes client command line tool, kubectl. See Install kubectl. If you
already have kubectl installed, ensure the version is within one minor version of the
Kubernetes version that you are using. See Supported Versions of Kubernetes.

Chapter 2
User Tasks

2-3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-healthmonitor.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/admin/admin-adm-healthmonitor.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-ce-cli.html#usr-ce-cli
https://kubernetes.io/docs/tasks/tools/

Perform the following tasks in the Compute Enclave or on your local system:

1. Create network resources: VCN, subnets, internet gateway, NAT gateway, route
tables, and security lists. See Creating Network Resources.

2. Create an OKE cluster. See Creating an OKE Cluster.

3. Create a Kubernetes configuration file for the cluster. See Creating a Kubernetes
Configuration File.

4. Create a Kubernetes Dashboard to manage the cluster and to manage and
troubleshoot applications running in the cluster. On the https://kubernetes.io/ site,
see Deploy and Access the Kubernetes Dashboard.

5. Create a worker node pool. See Creating an OKE Worker Node Pool.

6. Configure any registries or repositories that the worker nodes need.

7. Configure any proxies that are needed on your worker nodes. See Configuring a
Proxy.

8. Create a service to expose containerized applications outside the Private Cloud
Appliance. See Exposing Containerized Applications.

9. Create persistent storage for applications to use. See Adding Storage for
Containerized Applications.

Chapter 2
User Tasks

2-4

https://kubernetes.io/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

3
Creating Network Resources

The resource definitions in the following sections in this chapter create a working example set
of network resources for workload clusters. Use this configuration as a guide when you
create these resources. You can change the values of properties such as CIDR blocks and IP
addresses. You should not change the values of properties such as the network protocol, the
stateful setting, or the private/public setting. See Workload Cluster Network Ports for specific
ports that must be open for specific purposes.

If your network requires proxy settings to enable worker nodes to reach outside registries or
repositories, for example, see Configuring a Proxy.

Note:

If the appliance administration network is enabled, ask your system administrator to
verify that the administration network and the data center network are configured to
allow traffic to and from the cluster control plane. See Administration Network
Configuration Notes in the Oracle Private Cloud Appliance Installation Guide.

Create the following network resources. To use Terraform, see Example Terraform Scripts for
Network Resources.

Note:

Create all of these network resources in the same compartment on the appliance.

• VCN. See Creating an OKE VCN.

• Internet gateway

• NAT gateway

• Route rules

• Security lists

• The following four subnets:

– Worker. See Creating an OKE Worker Subnet.

– Worker load balancer. See Creating an OKE Worker Load Balancer Subnet.

– Control plane. See Creating an OKE Control Plane Subnet.

– Control plane load balancer. See Creating an OKE Control Plane Load Balancer
Subnet.

3-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/install/install-install-network-connectivity-eth.html#install-network-connectivity-adminnet-notes

Workload Cluster Network Ports
The following table lists ports that are used by workload clusters. These ports must be
available to configure workload cluster networking. You might need to open additional
ports for other purposes.

All protocols are TCP. All port states are Stateful. Port 6443 is the port used for
Kubernetes API and is also known as kubernetes_api_port in this guide.

See also the tables in Port Matrix in the Oracle Private Cloud Appliance Security
Guide. The first table is for environments where the administration network is not
enabled. The second table, Access Configuration With Administration Network, is for
environments where the administration network is enabled.

Source IP
Address

Destination IP
Address

Port Description

bastion host:
vcn_cidr

Worker nodes
subnet:
worker_cidr

22 Outbound connections from the bastion
host to the worker CIDR.

bastion host:
vcn_cidr

Control plane
subnet:
kmi_cidr

22 Outbound connections from the bastion
host to the control plane nodes.

Worker nodes
subnet:
worker_cidr

yum repository 80 Outbound connections from the worker
CIDR to external applications.

Worker nodes
subnet:
worker_cidr

Secure yum
repository

443 Secure outbound traffic from the worker
CIDR to external applications.

Worker nodes
subnet:
worker_cidr

Container
registry

5000 Outbound connections from the worker
CIDR to the container registry.

Worker nodes
subnet:
worker_cidr

Control plane
subnet:
kmi_cidr

6443 Outbound connections from the worker
CIDR to the Kubernetes API. This is
necessary to allow nodes to join through
either a public IP address on one of the
nodes or the load balancer public IP
address.

Worker nodes
subnet:
worker_cidr

Control plane
load balancer

6443 Inbound connections from the worker
CIDR to the Kubernetes API.

CIDR for clients:
kube_client_c
idr

Control plane
load balancer

6443 Inbound connections from clients to the
Kubernetes API server.

Worker nodes
subnet:
worker_cidr

Control plane
subnet:
kmi_cidr

6443 Private outbound connections from the
worker CIDR to kubeapi on the control
plane subnet.

kube_client_c
idr

Worker nodes
subnet:
worker_cidr

30000-3
2767

Inbound traffic for applications from
Kubernetes clients.

Chapter 3
Workload Cluster Network Ports

3-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/security/security-security-install-config-post.html#security-features-port-matrix__port_matrix_with_adminnet

Workload Cluster Network CIDR Ranges
Throughout this documentation, variables are used to represent CIDR ranges for instances in
different subnets. The following table lists the CIDR variables and example values. Change
these example values as necessary for your environment. The IP Subnet Calculator on
Calculator.net is one tool for finding all available networks for a given IP address and prefix
length.

Variable Name Description Example Value

vcn_cidr VCN CIDR range 172.31.252.0/23

worker_cidr Worker subnet CIDR 172.31.253.0/24

workerlb_cidr Worker load balancer subnet CIDR 172.31.252.0/25

kmi_cidr OKE control plane subnet CIDR 172.31.252.224/28

kmilb_cidr OKE control plane load balancer subnet CIDR 172.31.252.240/28

kube_client_cidr CIDR for clients that are allowed to contact the
Kubernetes API server

10.0.0.0/8

OKE Cluster Management with Administration Network
When OKE is used on a system configured with a separate administration network, the data
center firewall must be configured to allow traffic between the OKE control plane and the
OKE clusters deployed by Compute Enclave users.

The OKE control plane runs on the management nodes in the administration network, while
the OKE clusters are deployed in the data network. The management interface of an OKE
cluster is port 6443 on its load balancer public IP address. This address is assigned from the
data center IP range you reserved and configured as public IPs during initial appliance setup.

Because of the network segregation, traffic from the OKE control plane must exit the
appliance through the administration network, and reenter through the data network to reach
the OKE cluster. The data center network infrastructure must allow traffic in both directions.
Without the necessary firewall and routing rules, users cannot deploy OKE clusters.

Chapter 3
Workload Cluster Network CIDR Ranges

3-3

https://www.calculator.net/ip-subnet-calculator.html
https://www.calculator.net/ip-subnet-calculator.html

Figure 3-1 Example of System Configured with a Separate Administration
Network

Example Terraform Scripts for Network Resources
The following Terraform scripts create the network resources that are required by
OKE. Subsequent topics in this chapter show other ways to define these same
network resources.

Most of the values shown in these scripts, such as resource display names and
CIDRs, are examples. Some ports must be specified as shown (see Workload Cluster
Network Ports), and the OKE control plane subnet must be named control-plane.
See Workload Cluster Network CIDR Ranges for comments about CIDR values.

• variables.tf

• terraform.tfvars

• provider.tf

• main.tf

• oke_vcn.tf

• oke_worker_seclist.tf

• oke_worker_subnet.tf

• oke_kmi_seclist.tf

• oke_kmi_subnet.tf

variables.tf

This file creates several variables that are used to configure OKE network resources.
Many of these variables are not assigned values in this file. One port and five CIDRs
are assigned values. The kubernetes_api_port, port 6443, is the port used to access
the Kubernetes API. See also Workload Cluster Network Ports. The five CIDRs that
are defined in this file are for the OKE VCN, worker subnet, worker load balancer
subnet, control plane subnet, and control plane load balancer subnet.

Chapter 3
Example Terraform Scripts for Network Resources

3-4

variable "oci_config_file_profile" {
 type = string
 default = "DEFAULT"
}

variable "tenancy_ocid" {
 description = "tenancy OCID"
 type = string
 nullable = false
}

variable "compartment_id" {
 description = "compartment OCID"
 type = string
 nullable = false
}

variable "vcn_name" {
 description = "VCN name"
 nullable = false
}

variable "kube_client_cidr" {
 description = "CIDR of Kubernetes API clients"
 type = string
 nullable = false
}

variable "kubernetes_api_port" {
 description = "port used for kubernetes API"
 type = string
 default = "6443"
}

variable "worker_lb_ingress_rules" {
 description = "traffic allowed to worker load balancer"
 type = list(object({
 source = string
 port_min = string
 port_max = string
 }))
 nullable = false
}

variable "worker_ingress_rules" {
 description = "traffic allowed directly to workers"
 type = list(object({
 source = string
 port_min = string
 port_max = string
 }))
 nullable = true
}

#
IP network addressing
#
variable "vcn_cidr" {
 default = "172.31.252.0/23"
}

Chapter 3
Example Terraform Scripts for Network Resources

3-5

Subnet for KMIs where kube-apiserver and other control
plane applications run
variable "kmi_cidr" {
 description = "K8s control plane subnet CIDR"
 default = "172.31.252.224/28"
}

Subnet for KMI load balancer
variable "kmilb_cidr" {
 description = "K8s control plane LB subnet CIDR"
 default = "172.31.252.240/28"
}

Subnet for worker nodes, max 128 nodes
variable "worker_cidr" {
 description = "K8s worker subnet CIDR"
 default = "172.31.253.0/24"
}

Subnet for worker load balancer (for use by CCM)
variable "workerlb_cidr" {
 description = "K8s worker LB subnet CIDR"
 default = "172.31.252.0/25"
}

terraform.tfvars

This file assigns values to some of the variables that were created in variables.tf. It
also defines security list rules for accessing the worker nodes and the worker load
balancer.

Name of the profile to use from $HOME/.oci/config
oci_config_file_profile = "DEFAULT"

Tenancy OCID from the oci_config_file_profile profile.
tenancy_ocid = "ocid1.tenancy.unique_ID"

Compartment in which to build the OKE cluster.
compartment_id = "ocid1.compartment.unique_ID"

Display name for the OKE VCN.
vcn_name = "oketest"

CIDR of clients that are allowed to contact Kubernetes API server.
kube_client_cidr = "10.0.0.0/8"

Security list rules for who is allowed to contact the worker load balancer.
Adjust these values for your applications.
worker_lb_ingress_rules = [
 {
 source = "10.0.0.0/8"
 port_min = 80
 port_max = 80
 },
 {
 source = "10.0.0.0/8"
 port_min = 443
 port_max = 443
 },
]

Chapter 3
Example Terraform Scripts for Network Resources

3-6

Security list rules for who is allowed to contact worker nodes directly.
This example allows 10.0.0.0/8 to contact the default nodeport range.
worker_ingress_rules = [
 {
 source = "10.0.0.0/8"
 port_min = 30000
 port_max = 32767
 },
]

provider.tf

This file is required in order to use the OCI provider. The file initializes the OCI module using
the OCI profile configuration file.

provider "oci" {
 config_file_profile = var.oci_config_file_profile
 tenancy_ocid = var.tenancy_ocid
}

main.tf

This file specifies the provider to use (oracle/oci), defines several security list rules, and
initializes required local variables.

terraform {
 required_providers {
 oci = {
 source = "oracle/oci"
 version = ">= 4.50.0"
 # If necessary, you can pin a specific version here
 #version = "4.71.0"
 }
 }
 required_version = ">= 1.1"
}

locals {
 kube_internal_cidr = "253.255.0.0/16"
 worker_lb_ingress_rules = var.worker_lb_ingress_rules
 worker_ingress_rules = flatten([var.worker_ingress_rules, [
 {
 source = var.vcn_cidr
 port_min = 22
 port_max = 22
 },
 {
 source = var.workerlb_cidr
 port_min = 30000
 port_max = 32767
 },
 {
 source = var.workerlb_cidr
 port_min = 10256
 port_max = 10256
 },
 {
 source = var.kmi_cidr
 port_min = 22
 port_max = 65535
 },

Chapter 3
Example Terraform Scripts for Network Resources

3-7

]])
 worker_ingress_udp_rules = [
 {
 source = var.worker_cidr
 port_min = 8285
 port_max = 8472
 },
 {
 source = var.kmi_cidr
 port_min = 8285
 port_max = 8472
 },
]

 kmi_lb_ingress_rules = [
 {
 source = local.kube_internal_cidr
 port_min = var.kubernetes_api_port
 port_max = var.kubernetes_api_port
 },
 {
 source = var.kube_client_cidr
 port_min = var.kubernetes_api_port
 port_max = var.kubernetes_api_port
 },
 {
 source = var.vcn_cidr
 port_min = var.kubernetes_api_port
 port_max = var.kubernetes_api_port
 },
]

 kmi_ingress_rules = [
 {
 source = var.kube_client_cidr
 port_min = var.kubernetes_api_port
 port_max = var.kubernetes_api_port
 },
 {
 source = var.kmilb_cidr
 port_min = var.kubernetes_api_port
 port_max = var.kubernetes_api_port
 },
 {
 source = var.worker_cidr
 port_min = 1024
 port_max = 65535
 },
 {
 source = var.kmi_cidr
 port_min = 1024
 port_max = 65535
 },
]
 kmi_ingress_udp_rules = [
 {
 source = var.worker_cidr
 port_min = 8285
 port_max = 8472
 },
 {

Chapter 3
Example Terraform Scripts for Network Resources

3-8

 source = var.kmi_cidr
 port_min = 8285
 port_max = 8472
 },
]
}

oke_vcn.tf

This file defines a VCN, NAT gateway, internet gateway, private route table, and public route
table. The private route table is the default route table for the VCN.

resource "oci_core_vcn" "oke_vcn" {
 cidr_block = var.vcn_cidr
 dns_label = var.vcn_name
 compartment_id = var.compartment_id
 display_name = "${var.vcn_name}-vcn"
}

resource "oci_core_nat_gateway" "vcn_ngs" {
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id
 display_name = "VCN nat g6s"
}

resource "oci_core_internet_gateway" "vcn_igs" {
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id
 display_name = "VCN i6t g6s"
 enabled = true
}

resource "oci_core_default_route_table" "private" {
 manage_default_resource_id = oci_core_vcn.oke_vcn.default_route_table_id
 display_name = "Default - private"

 route_rules {
 destination = "0.0.0.0/0"
 destination_type = "CIDR_BLOCK"
 network_entity_id = oci_core_nat_gateway.vcn_ngs.id
 }
}

resource "oci_core_route_table" "public" {
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id
 display_name = "public"

 route_rules {
 destination = "0.0.0.0/0"
 destination_type = "CIDR_BLOCK"
 network_entity_id = oci_core_internet_gateway.vcn_igs.id
 }
}

oke_worker_seclist.tf

This file defines the security lists for both the worker subnet and the worker load balancer
subnet. The rules for these security lists were defined in other Terraform files in this set.

Chapter 3
Example Terraform Scripts for Network Resources

3-9

resource "oci_core_security_list" "workerlb" {
 display_name = "${var.vcn_name}-workerlb"
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id

 dynamic "ingress_security_rules" {
 iterator = port
 for_each = local.worker_lb_ingress_rules

 content {
 source = port.value.source
 source_type = "CIDR_BLOCK"
 protocol = "6"
 tcp_options {
 min = port.value.port_min
 max = port.value.port_max
 }
 }
 }
}

resource "oci_core_security_list" "worker" {
 display_name = "${var.vcn_name}-worker"
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id

 dynamic "ingress_security_rules" {
 iterator = port
 for_each = local.worker_ingress_rules

 content {
 source = port.value.source
 source_type = "CIDR_BLOCK"
 protocol = "6"
 tcp_options {
 min = port.value.port_min
 max = port.value.port_max
 }
 }
 }

 dynamic "ingress_security_rules" {
 iterator = port
 for_each = local.worker_ingress_udp_rules

 content {
 source = port.value.source
 source_type = "CIDR_BLOCK"
 protocol = "17"
 udp_options {
 min = port.value.port_min
 max = port.value.port_max
 }
 }
 }
}

oke_worker_subnet.tf

This file defines the worker and worker load balancer subnets. The worker load
balancer subnet is named service-lb.

Chapter 3
Example Terraform Scripts for Network Resources

3-10

resource "oci_core_subnet" "worker" {
 cidr_block = var.worker_cidr
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id

 display_name = "worker"
 dns_label = "worker"
 prohibit_public_ip_on_vnic = true

 security_list_ids = [
 oci_core_default_security_list.oke_vcn.id,
 oci_core_security_list.worker.id
]
}

resource "oci_core_subnet" "worker_lb" {
 cidr_block = var.workerlb_cidr
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id

 display_name = "service-lb"
 dns_label = "servicelb"
 prohibit_public_ip_on_vnic = false
 route_table_id = oci_core_route_table.public.id

 security_list_ids = [
 oci_core_default_security_list.oke_vcn.id,
 oci_core_security_list.workerlb.id
]
}

oke_kmi_seclist.tf

This file defines the security lists for the control plane and control plane load balancer
subnets. This file also defines updates to make to the default security list for the VCN.

resource "oci_core_default_security_list" "oke_vcn" {
 manage_default_resource_id = oci_core_vcn.oke_vcn.default_security_list_id

 egress_security_rules {
 destination = "0.0.0.0/0"
 destination_type = "CIDR_BLOCK"
 protocol = "all"
 }

 dynamic "ingress_security_rules" {
 iterator = icmp_type
 for_each = [3, 8, 11]

 content {
 # ping from VCN; unreachable/TTL from anywhere
 source = (icmp_type.value == "8" ? var.vcn_cidr : "0.0.0.0/0")
 source_type = "CIDR_BLOCK"
 protocol = "1"
 icmp_options {
 type = icmp_type.value
 }
 }
 }
}

Chapter 3
Example Terraform Scripts for Network Resources

3-11

resource "oci_core_security_list" "kmilb" {
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id

 display_name = "${var.vcn_name}-kmilb"

 dynamic "ingress_security_rules" {
 iterator = port
 for_each = local.kmi_lb_ingress_rules

 content {
 source = port.value.source
 source_type = "CIDR_BLOCK"
 protocol = "6"
 tcp_options {
 min = port.value.port_min
 max = port.value.port_max
 }
 }
 }
}

resource "oci_core_security_list" "kmi" {
 compartment_id = var.compartment_id
 vcn_id = oci_core_vcn.oke_vcn.id

 display_name = "${var.vcn_name}-kmi"

 dynamic "ingress_security_rules" {
 iterator = port
 for_each = local.kmi_ingress_rules

 content {
 source = port.value.source
 source_type = "CIDR_BLOCK"
 protocol = "6"
 tcp_options {
 min = port.value.port_min
 max = port.value.port_max
 }
 }
 }

 dynamic "ingress_security_rules" {
 iterator = port
 for_each = local.kmi_ingress_udp_rules

 content {
 source = port.value.source
 source_type = "CIDR_BLOCK"
 protocol = "17"
 udp_options {
 min = port.value.port_min
 max = port.value.port_max
 }
 }
 }
}

Chapter 3
Example Terraform Scripts for Network Resources

3-12

oke_kmi_subnet.tf

This file defines the control plane and control plane load balancer subnets.

Important:

The name of the kmi subnet must be exactly control-plane.

resource "oci_core_subnet" "kmi" {
 cidr_block = var.kmi_cidr
 compartment_id = var.compartment_id
 display_name = "control-plane"
 dns_label = "kmi"
 vcn_id = oci_core_vcn.oke_vcn.id
 prohibit_public_ip_on_vnic = true
 security_list_ids = [
 oci_core_default_security_list.oke_vcn.id,
 oci_core_security_list.kmi.id
]
}

resource "oci_core_subnet" "kmi_lb" {
 cidr_block = var.kmilb_cidr
 compartment_id = var.compartment_id
 dns_label = "kmilb"
 vcn_id = oci_core_vcn.oke_vcn.id
 display_name = "control-plane-endpoint"
 prohibit_public_ip_on_vnic = false
 route_table_id = oci_core_route_table.public.id
 security_list_ids = [
 oci_core_default_security_list.oke_vcn.id,
 oci_core_security_list.kmilb.id
]
}

Creating an OKE VCN
Create the following resources in the order listed:

1. VCN

2. Internet gateway

3. Route table with public route rule

4. NAT gateway

5. Route table with private route rule

6. Modify the VCN default security list

Resource names and CIDR blocks are example values.

Chapter 3
Creating an OKE VCN

3-13

VCN

To create the VCN, use the instructions in Creating a VCN in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for
Network Resources.

For this example, use the following input to create the VCN. The VCN covers one
contiguous CIDR block. The CIDR block cannot be changed after the VCN is created.

Compute Web UI property OCI CLI property

• Name: oketest-vcn
• CIDR Block: vcn_cidr
• DNS Label: oketest

This label must be unique across all
VCNs in the tenancy.

• --display-name: oketest-vcn
• --cidr-blocks: '["vcn_cidr"]'
• --dns-label: oketest

This label must be unique across all
VCNs in the tenancy.

Note the OCID of the new VCN. In the examples in this guide, this VCN OCID is
ocid1.vcn.oke_vcn_id.

Next steps: To enable internet access for OKE nodes, add an internet gateway and a
route rule that references that internet gateway. For traffic that needs to go outside the
VCN but not to the internet (for example, to your data center), add a NAT gateway and
edit the default route table to add a route rule that references that NAT gateway.

Private Route Table

Create a NAT gateway, and edit the default route table to reference the NAT gateway.

NAT Gateway

To create the NAT gateway, use the instructions in Enabling Public Connections
through a NAT Gateway in the Oracle Private Cloud Appliance User Guide. For
Terraform input, see Example Terraform Scripts for Network Resources.

Note the name and OCID of the NAT gateway for assignment to the private route rule.

Private Route Rule

Modify the default route table, using the following input to create a private route rule
that references the NAT gateway that was created in the preceding step. See
"Updating Rules in a Route Table" in Working with Route Tables in the Oracle Private
Cloud Appliance User Guide.

Chapter 3
Creating an OKE VCN

3-14

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-vcn-create
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-nat
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-nat
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

Compute Web UI property OCI CLI property

• Display name: Default - private
Route rule
• Target Type: NAT Gateway
• NAT Gateway: Name of the NAT gateway

that was created in the preceding step
• CIDR Block: 0.0.0.0/0
• Description: OKE private route rule

• --rt-id:
ocid1.routetable.default_routetable
_id

• --display-name: Default - private
--route-rules
• networkEntityId: OCID of the NAT

gateway that was created in the preceding
step

• destinationType: CIDR_BLOCK
• destination: 0.0.0.0/0
• description: OKE private route rule

Note the name and OCID of this route table for assignment to private subnets.

Public Route Table

Create an Internet gateway and a route table with a route rule that references the Internet
gateway.

Internet Gateway

To create the internet gateway, use the instructions in Providing Public Access through an
Internet Gateway in the Oracle Private Cloud Appliance User Guide. For Terraform input, see
Example Terraform Scripts for Network Resources.

Note the name and OCID of the internet gateway for assignment to the public route rule.

Public Route Rule

To create a route table, use the instructions in "Creating a Route Table" in Working with Route
Tables in the Oracle Private Cloud Appliance User Guide. For Terraform input, see Example
Terraform Scripts for Network Resources.

For this example, use the following input to create the route table with a public route rule that
references the internet gateway that was created in the preceding step.

Compute Web UI property OCI CLI property

• Name: public
Route rule
• Target Type: Internet Gateway
• Internet Gateway: Name of the internet

gateway that was created in the preceding
step

• CIDR Block: 0.0.0.0/0
• Description: OKE public route rule

• --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: public
--route-rules
• networkEntityId: OCID of the internet

gateway that was created in the preceding
step

• destinationType: CIDR_BLOCK
• destination: 0.0.0.0/0
• description: OKE public route rule

Note the name and OCID of this route table for assignment to public subnets.

Chapter 3
Creating an OKE VCN

3-15

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-internet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-gateways.html#net-vcn-gateway-internet
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-routetables

VCN Default Security List

Modify the default security list, using the input shown in the following table. Delete all
of the default rules and create the rules shown in the following table.

To modify a security list, use the instructions in "Updating a Security List" in Controlling
Traffic with Security Lists in the Oracle Private Cloud Appliance User Guide. For
Terraform input, see Example Terraform Scripts for Network Resources.

Compute Web UI property OCI CLI property

--security-list-id:
ocid1.securitylist.default_securityl
ist_id

One egress security rule:
• Stateless: uncheck the box
• Egress CIDR: 0.0.0.0/0
• IP Protocol: All protocols
• Description: "Allow all outgoing

traffic."

One egress security rule:
--egress-security-rules
• isStateless: false
• destination: 0.0.0.0/0
• destinationType: CIDR_BLOCK
• protocol: all
• description: "Allow all outgoing

traffic."
Three ingress security rules: Three ingress security rules:

--ingress-security-rules
Ingress Rule 1
• Stateless: uncheck the box
• Ingress CIDR: vcn_cidr
• IP Protocol: ICMP

– Parameter Type: 8: Echo
• Description: "Allow ping from VCN."

Ingress Rule 1
• isStateless: false
• source: vcn_cidr
• sourceType: CIDR_BLOCK
• protocol: 1
• icmpOptions

– type: 8
• description: "Allow ping from VCN."

Ingress Rule 2
• Stateless: uncheck the box
• Ingress CIDR: 0.0.0.0/0
• IP Protocol: ICMP

– Parameter Type: 3: Destination
Unreachable

• Description: "Allow unreachables."

Ingress Rule 2
• isStateless: false
• source: 0.0.0.0/0
• sourceType: CIDR_BLOCK
• protocol: 1
• icmpOptions

– type: 3
• description: "Allow unreachables."

Chapter 3
Creating an OKE VCN

3-16

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Compute Web UI property OCI CLI property

Ingress Rule 3
• Stateless: uncheck the box
• Ingress CIDR: 0.0.0.0/0
• IP Protocol: ICMP

– Parameter Type: 11: Time
Exceeded

• Description: "Allow time exceeded."

Ingress Rule 3
• isStateless: false
• source: 0.0.0.0/0
• sourceType: CIDR_BLOCK
• protocol: 1
• icmpOptions

– type: 11
• description: "Allow time exceeded."

Note the name and OCID of this default security list for assignment to subnets.

Creating an OKE Worker Subnet
Create the following resources in the order listed:

1. Worker security list

2. Worker subnet

Create a Worker Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input,
see Example Terraform Scripts for Network Resources.

This security list defines traffic that is allowed to contact worker nodes directly.

For this example, use the following input for the worker subnet security list.

Compute Web UI property OCI CLI property

• Name: worker-seclist • --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: worker-seclist

Seven ingress security rules: Seven ingress security rules:
--ingress-security-rules

Ingress Rule 1
• Stateless: uncheck the box
• Ingress CIDR: vcn_cidr
• IP Protocol: TCP

– Destination Port Range: 22
• Description: "Allow intra-VCN ssh."

Ingress Rule 1
• isStateless: false
• source: vcn_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 22
– min: 22

• description: "Allow intra-VCN ssh."

Chapter 3
Creating an OKE Worker Subnet

3-17

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Compute Web UI property OCI CLI property

Ingress Rule 2
• Stateless: uncheck the box
• Ingress CIDR: kube_client_cidr
• IP Protocol: TCP

– Destination Port Range: 30000-32767
• Description: "Allow clients to contact the

node port range."

Ingress Rule 2
• isStateless: false
• source: kube_client_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 32767
– min: 30000

• description: "Allow clients to contact the
node port range."

Ingress Rule 3
• Stateless: uncheck the box
• Ingress CIDR: workerlb_cidr
• IP Protocol: TCP

– Destination Port Range: 30000-32767
• Description: "Allow the worker load

balancer to contact the worker nodes."

Ingress Rule 3
• isStateless: false
• source: workerlb_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 32767
– min: 30000

• description: "Allow the worker load
balancer to contact the worker nodes."

Ingress Rule 4
• Stateless: uncheck the box
• Ingress CIDR: workerlb_cidr
• IP Protocol: TCP

– Destination Port Range: 10256
• Description: "Allow the worker load

balancer to contact the worker nodes."

Ingress Rule 4
• isStateless: false
• source: workerlb_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 10256
– min: 10256

• description: "Allow the worker load
balancer to contact the worker nodes."

Ingress Rule 5
• Stateless: uncheck the box
• Ingress CIDR: kmi_cidr
• IP Protocol: TCP

– Destination Port Range: 22-65535
• Description: "Allow the control plane to

contact the worker nodes."

Ingress Rule 5
• isStateless: false
• source: kmi_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 65535
– min: 22

• description: "Allow the control plane to
contact the worker nodes."

Chapter 3
Creating an OKE Worker Subnet

3-18

Compute Web UI property OCI CLI property

Ingress Rule 6
• Stateless: uncheck the box
• Ingress CIDR: worker_cidr
• IP Protocol: UDP

– Destination Port Range: 8285-8472
• Description: "Allow flannel traffic."

Ingress Rule 6
• isStateless: false
• source: worker_cidr
• sourceType: CIDR_BLOCK
• protocol: 17
• udpOptions

destinationPortRange
– max: 8472
– min: 8285

• description: "Allow flannel traffic."

Ingress Rule 7
• Stateless: uncheck the box
• Ingress CIDR: kmi_cidr
• IP Protocol: UDP

– Destination Port Range: 8285-8472
• Description: "Allow flannel traffic."

Ingress Rule 7
• isStateless: false
• source: kmi_cidr
• sourceType: CIDR_BLOCK
• protocol: 17
• udpOptions

destinationPortRange
– max: 8472
– min: 8285

• description: "Allow flannel traffic."

Create the Worker Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Network
Resources.

For this example, use the following input to create the worker subnet. Use the OCID of the
VCN that was created in Creating an OKE VCN. Create the worker subnet in the same
compartment where you created the VCN.

Compute Web UI property OCI CLI property

• Name: worker
• CIDR Block: worker_cidr
• Route Table: Select "Default - private" from

the list
• Private Subnet: check the box
• DNS Hostnames:

Use DNS Hostnames in this Subnet: check
the box
– DNS Label: worker

• Security Lists: Select "worker-seclist" and
"Default Security List for oketest-vcn"
from the list

• --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: worker
• --cidr-block: worker_cidr
• --dns-label: worker
• --prohibit-public-ip-on-vnic: true
• --route-table-id: OCID of the "Default -

private" route table
• --security-list-ids: OCIDs of the

"worker-seclist" security list and the
"Default Security List for oketest-vcn"
security list

Chapter 3
Creating an OKE Worker Subnet

3-19

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Creating an OKE Worker Load Balancer Subnet
Create the following resources in the order listed:

1. Worker load balancer security list

2. Worker load balancer subnet

Create a Worker Load Balancer Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling
Traffic with Security Lists in the Oracle Private Cloud Appliance User Guide. For
Terraform input, see Example Terraform Scripts for Network Resources.

This security list defines traffic, such as applications, that is allowed to contact the
worker load balancer.

For this example, use the following input for the worker load balancer subnet security
list. These sources and destinations are examples; adjust these for your applications.

Note:

When you create an external load balancer for your containerized
applications (see Exposing Containerized Applications), remember to add
that load balancer service front-end port to this security list.

Compute Web UI property OCI CLI property

• Name: workerlb-seclist • --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: workerlb-seclist

Two ingress security rules: Two ingress security rules:
--ingress-security-rules

Ingress Rule 1
• Stateless: uncheck the box
• Ingress CIDR: kube_client_cidr
• IP Protocol: TCP

– Destination Port Range: 80
• Description: "Allow inbound traffic for

applications."

Ingress Rule 1
• isStateless: false
• source: kube_client_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 80
– min: 80

• description: "Allow inbound traffic
for applications."

Chapter 3
Creating an OKE Worker Load Balancer Subnet

3-20

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Compute Web UI property OCI CLI property

Ingress Rule 2
• Stateless: uncheck the box
• Ingress CIDR: kube_client_cidr
• IP Protocol: TCP

– Destination Port Range: 443
• Description: "Allow inbound traffic for

applications."

Ingress Rule 2
• isStateless: false
• source: kube_client_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 443
– min: 443

• description: "Allow inbound traffic
for applications."

Create the Worker Load Balancer Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Network
Resources.

For this example, use the following input to create the worker load balancer subnet. Use the
OCID of the VCN that was created in Creating an OKE VCN. Create the worker load balancer
subnet in the same compartment where you created the VCN.

Compute Web UI property OCI CLI property

• Name: service-lb
• CIDR Block: workerlb_cidr
• Route Table: Select "public" from the list
• Public Subnet: check the box
• DNS Hostnames:

Use DNS Hostnames in this Subnet: check
the box
– DNS Label: servicelb

• Security Lists: Select "workerlb-seclist"
and "Default Security List for oketest-vcn"
from the list

• --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: service-lb
• --cidr-block: workerlb_cidr
• --dns-label: servicelb
• --prohibit-public-ip-on-vnic: false
• --route-table-id: OCID of the "public"

route table
• --security-list-ids: OCIDs of the

"workerlb-seclist" security list and the
"Default Security List for oketest-vcn"
security list

Creating an OKE Control Plane Subnet
Create the following resources in the order listed:

1. Control plane security list

2. Control plane subnet

Create a Control Plane Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling Traffic
with Security Lists in the Oracle Private Cloud Appliance User Guide. For Terraform input,
see Example Terraform Scripts for Network Resources.

For this example, use the following input for the control plane subnet security list.

Chapter 3
Creating an OKE Control Plane Subnet

3-21

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Compute Web UI property OCI CLI property

• Name: kmi-seclist • --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: kmi-seclist

Six ingress security rules: Six ingress security rules:
--ingress-security-rules

Ingress Rule 1
• Stateless: uncheck the box
• Ingress CIDR: kube_client_cidr
• IP Protocol: TCP

– Destination Port Range:
kubernetes_api_port

• Description: "Allow inbound
connections to the Kubernetes API
server."

Ingress Rule 1
• isStateless: false
• source: kube_client_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: kubernetes_api_port
– min: kubernetes_api_port

• description: "Allow inbound
connections to the Kubernetes API
server."

Ingress Rule 2
• Stateless: uncheck the box
• Ingress CIDR: kmilb_cidr
• IP Protocol: TCP

– Destination Port Range:
kubernetes_api_port

• Description: "Allow inbound
connections from the control plane
load balancer."

Ingress Rule 2
• isStateless: false
• source: kmilb_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: kubernetes_api_port
– min: kubernetes_api_port

• description: "Allow inbound
connections from the control plane
load balancer."

Ingress Rule 3
• Stateless: uncheck the box
• Ingress CIDR: worker_cidr
• IP Protocol: TCP

– Destination Port Range:
1024-65535

• Description: "Allow inbound
connections from worker nodes to the
control plane."

Ingress Rule 3
• isStateless: false
• source: worker_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 65535
– min: 1024

• description: "Allow inbound
connections from worker nodes to the
control plane."

Chapter 3
Creating an OKE Control Plane Subnet

3-22

Compute Web UI property OCI CLI property

Ingress Rule 4
• Stateless: uncheck the box
• Ingress CIDR: kmi_cidr
• IP Protocol: TCP

– Destination Port Range:
1024-65535

• Description: "Allow inbound
connections within the control plane."

Ingress Rule 4
• isStateless: false
• source: kmi_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: 65535
– min: 1024

• description: "Allow inbound
connections within the control plane."

Ingress Rule 5
• Stateless: uncheck the box
• Ingress CIDR: worker_cidr
• IP Protocol: UDP

– Destination Port Range: 8285-8472
• Description: "Allow flannel traffic."

Ingress Rule 5
• isStateless: false
• source: worker_cidr
• sourceType: CIDR_BLOCK
• protocol: 17
• udpOptions

destinationPortRange
– max: 8472
– min: 8285

• description: "Allow flannel traffic."

Ingress Rule 6
• Stateless: uncheck the box
• Ingress CIDR: kmi_cidr
• IP Protocol: UDP

– Destination Port Range: 8285-8472
• Description: "Allow flannel traffic."

Ingress Rule 6
• isStateless: false
• source: kmi_cidr
• sourceType: CIDR_BLOCK
• protocol: 17
• udpOptions

destinationPortRange
– max: 8472
– min: 8285

• description: "Allow flannel traffic."

Create the Control Plane Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Network
Resources.

Use the following input to create the control plane subnet. Use the OCID of the VCN that was
created in Creating an OKE VCN. Create the control plane subnet in the same compartment
where you created the VCN.

Important:

The name of this subnet must be exactly "control-plane".

Chapter 3
Creating an OKE Control Plane Subnet

3-23

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

Compute Web UI property OCI CLI property

• Name: control-plane
• CIDR Block: kmi_cidr
• Route Table: Select "Default - private"

from the list
• Private Subnet: check the box
• DNS Hostnames:

Use DNS Hostnames in this Subnet:
check the box
– DNS Label: kmi

• Security Lists: Select "kmi-seclist" and
"Default Security List for oketest-vcn"
from the list

• --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: control-plane
• --cidr-block: kmi_cidr
• --dns-label: kmi
• --prohibit-public-ip-on-vnic:

true
• --route-table-id: OCID of the

"Default - private" route table
• --security-list-ids: OCIDs of the

"kmi-seclist" security list and the
"Default Security List for oketest-vcn"
security list

Creating an OKE Control Plane Load Balancer Subnet
Create the following resources in the order listed:

1. Control plane load balancer security list

2. Control plane load balancer subnet

Create a Control Plane Load Balancer Security List

To create a security list, use the instructions in "Creating a Security List" in Controlling
Traffic with Security Lists in the Oracle Private Cloud Appliance User Guide. For
Terraform input, see Example Terraform Scripts for Network Resources.

The control plane load balancer accepts traffic on port 6443, which is also called
kubernetes_api_port in this guide. Adjust this security list to only accept connections
from where you expect the network to run. Port 6443 must accept connections from
the cluster control plane instances and worker instances.

For this example, use the following input for the control plane load balancer subnet
security list.

Compute Web UI property OCI CLI property

• Name: kmilb-seclist • --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: kmilb-seclist

Three ingress security rules: Three ingress security rules:
--ingress-security-rules

Chapter 3
Creating an OKE Control Plane Load Balancer Subnet

3-24

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-rules.html#net-vcn-securitylists

Compute Web UI property OCI CLI property

Ingress Rule 1:
• Stateless: uncheck the box
• Ingress CIDR: 253.255.0.0/16

This value is required. Do not change
this CIDR value.

• IP Protocol: TCP
– Destination Port Range:

kubernetes_api_port
• Description: "Allow inbound

connections to the control plane load
balancer."

Ingress Rule 1:
• isStateless: false
• source: 253.255.0.0/16

This value is required. Do not change
this CIDR value.

• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: kubernetes_api_port
– min: kubernetes_api_port

• description: "Allow inbound
connections to the control plane load
balancer."

Ingress Rule 2:
• Stateless: uncheck the box
• Ingress CIDR: kube_client_cidr
• IP Protocol: TCP

– Destination Port Range:
kubernetes_api_port

• Description: "Allow inbound
connections to the control plane load
balancer."

Ingress Rule 2:
• isStateless: false
• source: kube_client_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: kubernetes_api_port
– min: kubernetes_api_port

• description: "Allow inbound
connections to the control plane load
balancer."

Ingress Rule 3:
• Stateless: uncheck the box
• Ingress CIDR: vcn_cidr
• IP Protocol: TCP

– Destination Port Range:
kubernetes_api_port

• Description: "Allow inbound
connections to the control plane load
balancer."

Ingress Rule 3:
• isStateless: false
• source: vcn_cidr
• sourceType: CIDR_BLOCK
• protocol: 6
• tcpOptions

destinationPortRange
– max: kubernetes_api_port
– min: kubernetes_api_port

• description: "Allow inbound
connections to the control plane load
balancer."

Create the Control Plane Load Balancer Subnet

To create a subnet, use the instructions in Creating a Subnet in the Oracle Private Cloud
Appliance User Guide. For Terraform input, see Example Terraform Scripts for Network
Resources.

Chapter 3
Creating an OKE Control Plane Load Balancer Subnet

3-25

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-net-vcn-subnet.html#net-subnet-create

For this example, use the following input to create the control plane load balancer
subnet. Use the OCID of the VCN that was created in Creating an OKE VCN. Create
the control plane load balancer subnet in the same compartment where you created
the VCN.

Compute Web UI property OCI CLI property

• Name: control-plane-endpoint
• CIDR Block: kmilb_cidr
• Route Table: Select "public" from the

list
• Public Subnet: check the box
• DNS Hostnames:

Use DNS Hostnames in this Subnet:
check the box
– DNS Label: kmilb

• Security Lists: Select "kmilb-seclist"
and "Default Security List for oketest-
vcn" from the list

• --vcn-id: ocid1.vcn.oke_vcn_id
• --display-name: control-plane-

endpoint
• --cidr-block: kmilb_cidr
• --dns-label: kmilb
• --prohibit-public-ip-on-vnic:

false
• --route-table-id: OCID of the

"public" route table
• --security-list-ids: OCIDs of the

"kmilb-seclist" security list and the
"Default Security List for oketest-vcn"
security list

Chapter 3
Creating an OKE Control Plane Load Balancer Subnet

3-26

4
Creating and Managing OKE Clusters

This chapter describes how to create, update, and delete an OKE cluster. Be sure to carefully
read the descriptions of the cluster parameters before you create the cluster.

A cluster includes cluster management nodes. This chapter describes how to recognize those
management nodes in a list of all instances in a tenancy.

This chapter also describes how to create a Kubernetes configuration file. You need a
Kubernetes configuration file for each OKE cluster that you work with. The Kubernetes
configuration file enables you to access OKE clusters using the kubectl command and the
Kubernetes Dashboard.

Creating an OKE Cluster
These procedures describe how to create an OKE cluster.

The Network Load Balancer and public IP address are created and assigned as part of
cluster creation.

Important:

Before you can create a cluster, the following conditions must be met:

• The OraclePCA-OKE/cluster_id defined tag must exist in the tenancy.

• All fault domains must be healthy.

• Each fault domain must have at least one healthy compute instance.

• Sufficient resources must be available to create a cluster.

• Ensure that no appliance upgrade is scheduled during the cluster create.

The OraclePCA-OKE/cluster_id defined tag is required to create or update an OKE cluster or
node pool. This tag also is used to identify instances that need to be in a dynamic group. To
verify the tag exists, in the Compute Web UI select Governance > Tag Namespaces and
make sure the tenancy (root compartment) is selected on the compartment menu above the
list. In the OCI CLI, use the following command:

$ oci iam tag-namespace list --compartment-id $OCI_CLI_TENANCY

If notifications are configured for operations such as system upgrade, ensure you are on the
list to be notified of such planned outages.

After you create a cluster, see the Cluster Next Steps section.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

4-1

2. On the clusters list page, click the Create Cluster button.

3. On the Cluster page in the Create Cluster dialog, provide the following information:

• Name: The name of the new cluster. Avoid entering confidential information.

• Compartment: The compartment in which to create the new cluster.

• Kubernetes Version: The version of Kubernetes to run on the control plane
nodes. Accept the default version or select a different version.

• Tagging: Add defined or free-form tags for the cluster resource.

Note:

Do not specify values for the OraclePCA-OKE defined tag or for the
ClusterResourceIdentifier free-form tag. These tag values are
system-generated and only applied to nodes (instances), not to the
cluster resource.

Use free-form tags to provide the following information for control plane nodes:

– Your public SSH key.

Specify sshkey for the tag key. Paste your public SSH key into the Value
field.

Important:

You cannot add an SSH key after the cluster is created.

– Number of nodes.

By default, the number of nodes in the control plane is 3. You can specify
1, 3, or 5 nodes. To specify the number of control plane nodes, specify
cp_node_count for the tag key, and enter 1, 3, or 5 in the Value field.

– Node shape.

For Private Cloud Appliance X10 systems, the shape of the control plane
nodes is VM.PCAStandard.E5.Flex and you cannot change it. For all other
Private Cloud Appliance systems, the default shape is
VM.PCAStandard1.1, and you can specify a different shape.

To use a different shape, specify cp_node_shape for the tag key, and enter
the name of the shape in the Value field. For a description of each shape,
see Compute Shapes in the Oracle Private Cloud Appliance Concepts
Guide.

– Node shape configuration.

If you specify a shape that is not a flexible shape, do not specify a shape
configuration. The number of OCPUs and amount of memory are set to
the values shown for this shape in "Standard Shapes" in Compute Shapes
in the Oracle Private Cloud Appliance Concepts Guide.

If you specify a flexible shape, you can change the default shape
configuration.

Chapter 4
Creating an OKE Cluster

4-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes

To provide shape configuration information, specify cp_node_shape_config for
the tag key. You must specify the number of OCPUs (ocpus) you want. You can
optionally specify the total amount of memory you want (memoryInGBs). The
default value for gigabytes of memory is 16 times the number you specify for
OCPUs.

The following are examples of node shape configuration values. Enter
everything, including the surrounding single quotation marks, in the Value field for
the tag. In the first example, the default amount of memory will be configured.

'{"ocpus":1}'
'{"ocpus":2, "memoryInGBs":24}'

4. Click Next.

5. On the Network page in the Create Cluster dialog, provide the following information:

• Network Type. Specifies how pods running on nodes in the cluster communicate
with each other, with the cluster's control plane nodes, with pods on other clusters,
with other services (such as storage services), and with the internet.

The Flannel overlay network type encapsulates communication between pods in the
flannel overlay network. The flannel overlay network is a simple private overlay virtual
network that satisfies the requirements of the OKE networking model by attaching IP
addresses to containers. The pods in the private overlay network are only accessible
from other pods in the same cluster.

• VCN. Select the VCN that has the configuration of the "oke_vcn" VCN described in
Creating an OKE VCN.

• Kubernetes Service LB Subnet. The subnet that is configured to host the load
balancer in an OKE cluster. Select the subnet that has configuration like the "service-
lb" subnet described in Creating an OKE Worker Load Balancer Subnet.

• Kubernetes API Endpoint Subnet. The regional subnet in which to place the cluster
endpoint. Select the subnet that has configuration like the "control-plane-endpoint"
subnet described in Creating an OKE Control Plane Load Balancer Subnet.

• Kubernetes Service CIDR Block. (Optional) The default value is 10.96.0.0/16.

• Pods CIDR Block. (Optional) The default value is 10.244.0.0/16.

• Network Security Group. If you check the box to enable network security groups,
click the Add Network Security Group button and select an NSG from the drop-down
list. You might need to change the compartment to find the NSG you want.

6. Click Next.

7. Review your entries and click Submit.

The details page for the cluster is displayed. Scroll to the Resources section and click
Work Requests to see the progress of the cluster creation. When the cluster is in the
Active state, click Node Pools to add a node pool. See the Cluster Next Steps section.

The cluster details page does not list the cluster control plane nodes. To view the control
plane nodes, view the list of instances in the compartment where you created this cluster.
Names of control plane nodes are in the following format:

oke-ID1-control-plane-ID2

• ID1 - The first 32 characters after the pca_name in the cluster OCID.

• ID2 - A unique identifier added when the cluster has more than one control plane
node.

Chapter 4
Creating an OKE Cluster

4-3

Search for the instances in the list whose names contain the ID1 string from this
cluster OCID.

Using the OCI CLI

1. Get the information you need to run the command.

• The OCID of the compartment where you want to create the cluster: oci iam
compartment list

• The name of the cluster. Avoid using confidential information.

• OCID of the virtual cloud network (VCN) in which you want to create the
cluster. Specify the VCN that has the configuration of the "oke_vcn" VCN
described in Creating an OKE VCN.

• OCID of the OKE service LB subnet. Specify the subnet that has configuration
like the "service-lb" subnet described in Creating an OKE Worker Load
Balancer Subnet. Specify only one OKE Service LB subnet.

• OCID of the Kubernetes API endpoint subnet. Specify the subnet that has
configuration like the "control-plane-endpoint" subnet described in Creating an
OKE Control Plane Load Balancer Subnet.

• OKE service CIDR block. (Optional) The default value is 10.96.0.0/16.

• Pods CIDR block. (Optional) The default value is 10.244.0.0/16.

• (Optional) The OCID of the Network Security Group to apply to the cluster
endpoint. Do not specify more than one NSG. If you specify an NSG, use the
following syntax:

--endpoint-nsg-ids '["ocid1.networksecuritygroup.unique_ID"]'
• (Optional) Your public SSH key in RSA format. You cannot add or update an

SSH key after the cluster is created.

• The network type. You do not need to specify the network type because
FLANNEL_OVERLAY is used by default. See the descriptions in the Compute Web
UI procedure. If you specify the network type, you must specify the following:

--cluster-pod-network-options '{"cniType":"FLANNEL_OVERLAY"}'
2. (Optional) Add defined or free-form tags for the cluster resource by using the --

defined-tags and --freeform-tags options.

Note:

Do not specify values for the OraclePCA-OKE defined tag or for the
ClusterResourceIdentifier free-form tag. These tag values are system-
generated and only applied to nodes (instances), not to the cluster
resource.

Define an argument for the --freeform-tags option to provide the following
information for control plane nodes:

• Your public SSH key.

Specify sshkey for the tag key, and paste your public SSH key as the value.

Chapter 4
Creating an OKE Cluster

4-4

Important:

You cannot add an SSH key after the cluster is created.

• Number of nodes.

By default, the number of nodes in the control plane is 3. You can specify 1, 3, or 5
nodes. To specify the number of control plane nodes, specify cp_node_count for the
tag key, and enter 1, 3, or 5 in the Value field.

• Node shape.

For Private Cloud Appliance X10 systems, the shape of the control plane nodes is
VM.PCAStandard.E5.Flex and you cannot change it. For all other Private Cloud
Appliance systems, the default shape is VM.PCAStandard1.1, and you can specify a
different shape.

To use a different shape, specify cp_node_shape for the tag key, and enter the name
of the shape as the value. Use the following command to list the available shapes
and their characteristics. To list only shapes that are compatible with the image that
you plan to use, specify the image OCID. Use the compute image list command to
find the image OCID.

$ oci compute shape list --compartment-id compartment_OCID --image-id
image_OCID

• Node shape configuration.

If you specify a shape that is not a flexible shape, do not specify a shape
configuration. The number of OCPUs and amount of memory are set to the values
shown for this shape in "Standard Shapes" in Compute Shapes in the Oracle Private
Cloud Appliance Concepts Guide.

If you specify a flexible shape, you can change the default shape configuration.
To provide shape configuration information, specify cp_node_shape_config for the
tag key. You must specify the number of OCPUs (ocpus) you want. You can optionally
specify the total amount of memory you want (memoryInGBs). The default value for
gigabytes of memory is 16 times the number you specify for OCPUs.

Specify free-form tags either inline or in a file in JSON format, such as the following
example file:

{
 "sshkey": "ssh-rsa remainder_of_key_text",
 "cp_node_count": 1,
 "cp_node_shape": "VM.PCAStandard1.Flex",
 "cp_node_shape_config": {
 "ocpus": 2,
 "memoryInGBs": 24
 }
}

Use the following syntax to specify a file of tags. Specify the full path to the .json file
unless the file is in the same directory where you are running the command.

--freeform-tags file://cluster_tags.json
3. Run the create cluster command.

Example:

Chapter 4
Creating an OKE Cluster

4-5

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes

The --endpoint-public-ip-enabled true option is required when --endpoint-
subnet-id or --endpoint-nsg-ids is specified.

$ oci ce cluster create \
--compartment-id ocid1.compartment.unique_ID --kubernetes-version version \
--name "Cluster One" --vcn-id ocid1.vcn.unique_ID \
--endpoint-public-ip-enabled true \
--endpoint-subnet-id control-plane-endpoint_subnet_OCID \
--service-lb-subnet-ids '["service-lb_subnet_OCID"]' \
--freeform-tags '{"sshkey":"ssh-rsa remainder_of_key_text"}'

The output from this cluster create command is the same as the output from the
cluster get command.

Use the work-request get command to check the status of the create operation.
The work request OCID is in created-by-work-request-id in the metadata
section of the cluster create output.

$ oci ce work-request get --work-request-id workrequest_OCID

When the cluster is in the ACTIVE state, you can add a node pool. See the Cluster
Next Steps section.

To identify the control plane nodes for this cluster, list instances in the
compartment where you created the cluster. Names of control plane nodes are in
the following format:

oke-ID1-control-plane-ID2

• ID1 - The first 32 characters after the pca_name in the cluster OCID.

• ID2 - A unique identifier added when the cluster has more than one control
plane node.

Search for the instances in the list whose names contain the ID1 string from this
cluster OCID.

Cluster Next Steps

1. Create a Kubernetes configuration file for the cluster. See Creating a Kubernetes
Configuration File.

2. Deploy a Kubernetes Dashboard to manage the cluster and to manage and
troubleshoot applications running in the cluster. On the https://kubernetes.io/ site,
see Deploy and Access the Kubernetes Dashboard.

3. Create a node pool for the cluster. See Creating an OKE Worker Node Pool.

4. Create a backup for the workload cluster. For example, see Backing up an etcd
cluster and Restoring up an etcd cluster in Operating etcd clusters for Kubernetes.
Use the etcd backup to recover OKE clusters under disaster scenarios such as
losing all control plane nodes. An etcd backup contains all OKE states and critical
information. An etcd backup does not back up applications or other content on
cluster nodes.

Creating a Kubernetes Configuration File
Set up a Kubernetes configuration file for each OKE cluster that you work with. Your
Kubernetes configuration file enables you to access OKE clusters using the kubectl
command and the Kubernetes Dashboard.

Chapter 4
Creating a Kubernetes Configuration File

4-6

https://kubernetes.io/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#restoring-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

Kubernetes configuration files organize information about clusters, users, namespaces, and
authentication mechanisms. You can define contexts to easily switch between clusters and
namespaces. The kubectl tool uses Kubernetes configuration files to find the information it
needs to choose a cluster and communicate with the API server of a cluster.

Installing the Kubernetes Command Line Tool

Install and configure the Kubernetes command line tool kubectl. The kubectl tool enables
you to perform operations on OKE clusters such as deploy applications, inspect and manage
cluster resources, and view logs.

To install kubectl, see https://kubernetes.io/docs/tasks/tools/. The kubectl version must be
within one minor version of the OKE cluster Kubernetes version. For example, a v1.29 client
can communicate with v1.28, v1.29, and v1.30 control planes. See Supported Versions of
Kubernetes.

For more information, including a complete list of kubectl operations, see the Command line
tool (kubectl) reference page.

Creating a Kubernetes Configuration File

Use the OCI CLI to create your Kubernetes configuration file.

Tip:

The Quick Start button on a cluster details page in the Compute Web UI shows how
to create a Kubernetes configuration file, and provides the OCID of the cluster.

1. Get the OCID of the cluster: oci ce cluster list
2. Run the command to create the configuration file.

The --cluster-id option is the only required option.

The default value of the --file option is ~/.kube/config. If you already have a file at the
specified location and you want to replace it, use the --overwrite option. To maintain
more than one configuration file, select a different file by using the KUBECONFIG
environment variable or the --kubeconfig option.

The value of the --kube-endpoint option must be PUBLIC_ENDPOINT.

If provided, the value of the --token-version option must be 2.0.0.

Example:

Use the following command to configure a Kubeconfig file for the specified cluster using
the public endpoint:

$ oci ce cluster create-kubeconfig --cluster-id ocid1.cluster.unique_ID \
--file $HOME/.kube/config --kube-endpoint PUBLIC_ENDPOINT
New config written to the Kubeconfig file /home/username/.kube/config

Use the following command to set your KUBECONFIG environment variable to the
Kubeconfig file that you created or updated in the preceding command:

$ export KUBECONFIG=$HOME/.kube/config

The following command shows the content of your new YAML configuration file:

Chapter 4
Creating a Kubernetes Configuration File

4-7

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/

$ kubectl config view

If you run the command again with a different cluster OCID, the new information is
merged with the existing information. The following message is displayed:

Existing Kubeconfig file found at /home/username/.kube/config and new config
merged into it

Verify Your Cluster Access

Run the following command to confirm that you can access your cluster:

$ kubectl cluster-info

Every Kubernetes namespace contains at least one ServiceAccount: the default
ServiceAccount for that namespace, which is named default. If you do not specify a
ServiceAccount when you create a Pod, the OKE service automatically assigns the
ServiceAccount named default in that namespace.

An application running inside a Pod can access the Kubernetes API using
automatically mounted service account credentials.

Updating an OKE Cluster
When you update a cluster, you can change the cluster name, Kubernetes version,
and tags.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

2. Click the name of the cluster that you want to update.

3. At the top of the cluster details page, click the Edit button.

Do not specify values for the OraclePCA-OKE defined tag or for the
ClusterResourceIdentifier free-form tag. These tag values are system-generated
and only applied to nodes (instances), not to the cluster resource.

4. When you are finished making changes, click Save Changes.

5. If a Kubernetes version update is available, a link labeled "Upgrade Available" is
displayed next to the Kubernetes Version number on the cluster details page. Click
that link to display a drop-down menu of versions that you can select.

Using the OCI CLI

1. Get the OCID of the cluster that you want to update: oci ce cluster list
2. Run the update cluster command.

If you specify the --defined-tags or --freeform-tags options, do not specify
values for the OraclePCA-OKE defined tag or for the ClusterResourceIdentifier
free-form tag. These tag values are system-generated and only applied to nodes
(instances), not to the cluster resource.

Example:

$ oci ce cluster update --cluster-id ocid1.cluster.unique_ID \
--kubernetes-version newer_kubernetes_version --name new_cluster_name

Chapter 4
Updating an OKE Cluster

4-8

For the value of the --kubernetes-version option, check Supported Versions of
Kubernetes.

Deleting an OKE Cluster
Deleting a cluster deletes the cluster control plane nodes, worker nodes, and node pools.
Other cluster resources such as VCNs, internet gateways, NAT gateways, route tables,
security lists, load balancers, and block volumes are not deleted when you delete the cluster.
Those resources must be deleted separately.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

2. For the cluster that you want to delete, click the Actions menu, and click Delete.

3. Confirm that you want to delete the cluster.

Enter the cluster name, and click the Delete button.

Using the OCI CLI

1. Get the OCID of the cluster that you want to delete: oci ce cluster list
2. Run the delete cluster command.

Example:

$ oci ce cluster delete --cluster-id ocid1.cluster.unique_ID --force

Chapter 4
Deleting an OKE Cluster

4-9

5
Creating and Managing OKE Worker Node
Pools

This chapter describes how to create, update, and delete node pools for an OKE cluster. Be
sure to carefully read the descriptions of the node pool parameters before you create the
node pool.

This chapter also describes how to recognize node pool nodes in a list of all instances in a
tenancy, and how to delete a single node from a node pool.

If a proxy is required to reach outside registries or repositories, for example, follow the
instructions in Configuring a Proxy for each node in the node pool.

Creating an OKE Worker Node Pool
These procedures describe how to create a pool of worker nodes for an OKE workload
cluster. Nodes are Private Cloud Appliance compute instances.

You cannot customize the OKE cloud-init scripts.

To add defined or free-form tags to all nodes in the node pool, use the OCI CLI.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

If the cluster to which you want to attach a node pool is not listed, select a different
compartment from the compartment menu above the list.

2. Click the name of the cluster to which you want to add a node pool.

3. On the cluster details page, scroll to the Resources section, and click Node Pools.

4. On the Node Pools list, click the Add Node Pool button.

5. In the Add Node Pool dialog, provide the following information:

• Name: The name of the new node pool. Avoid using confidential information.

• Compartment: The compartment in which to create the new node pool.

• Node pool options: In the Node Count field, enter the number of nodes you want in
this node pool. The default is 0. The maximum number is 128 per cluster, which can
be distributed across multiple node pools.

• Network Security Group: If you check the box to enable network security groups,
click the Add Network Security Group button and select an NSG from the drop-down
list. You might need to change the compartment to find the NSG you want.

• Placement configuration

– Subnet: Select a subnet that has configuration like the "worker" subnet
described in Creating an OKE Worker Subnet. Select only one subnet. The
subnet must have rules set to communicate with the control plane endpoint. The

5-1

subnet must use the private route table and must have a security list like
the worker-seclist security list described in Creating an OKE Worker
Subnet.

– Fault domain: Select a fault domain or select "Automatically select the
best fault domain," which is the default option.

• Source Image: Select an image.

a. Select the Platform Image Source Type.

b. Select an image from the list.

The image list has columns Operating System, OS Version, and
Kubernetes Version. You can use the drop-down menu arrow to the right
of the OS Version or Kubernetes Version to select a different version.

Note:

The image that you specify must not have a Kubernetes version
that is newer than the Kubernetes version that you specified
when you created the cluster. The Kubernetes Version for the
cluster is in a column of the cluster list table.

• Shape: Select a shape for the worker nodes. For a description of each shape,
see Compute Shapes in the Oracle Private Cloud Appliance Concepts Guide.
For Private Cloud Appliance X10 systems, the shape is
VM.PCAStandard.E5.Flex and you cannot change it.

If you select a shape that is not a flexible shape, the amount of memory and
number of OCPUs are displayed. These numbers match the numbers shown
for this shape in the table in the Oracle Private Cloud Appliance Concepts
Guide.

If you select a flexible shape, then you must specify the number of OCPUs you
want. You can optionally specify the total amount of memory you want. The
default value for gigabytes of memory is 16 times the number you specify for
OCPUs. Click inside each value field to see the minimum and maximum
allowed values.

• Boot Volume: (Optional) Check the box to specify a custom boot volume size.

Boot volume size (GB): The default boot volume size for the selected image
is shown. To specify a larger size, enter a value from 50 to 16384 in gigabytes
(50 GB to 16 TB) or use the increment and decrement arrows.

If you specify a custom boot volume size, you need to extend the partition to
take advantage of the larger size. Oracle Linux platform images include the
oci-utils package. Use the oci-growfs command from that package to
extend the root partition and then grow the file system. See oci-growfs.

• SSH Key: The public SSH key for the worker nodes. Either upload the public
key file or copy and paste the content of the file.

• Tagging: Add defined or free-form tags for the node pool resource.

Chapter 5
Creating an OKE Worker Node Pool

5-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes
https://docs.oracle.com/en-us/iaas/oracle-linux/oci-utils/index.htm#oci-growfs

Note:

Do not specify values for the OraclePCA-OKE defined tag or for the
ClusterResourceIdentifier free-form tag. These tag values are system-
generated and only applied to nodes (instances), not to the node pool
resource.

6. Click the Add Node Pool button.

The details page for the node pool is displayed. Scroll to the Resources section and click
Work Requests to see the progress of the node pool creation and see nodes being added
to the Nodes list.

To identify these nodes in a list of instances, note that the names of these nodes are in
the format oke-ID, where ID is the first 32 characters after the pca_name in the node pool
OCID. Search for the instances in the list whose names contain the ID string from this
node pool OCID.

Using the OCI CLI

1. Get the information you need to run the command.

• The OCID of the compartment where you want to create the node pool: oci iam
compartment list

• The OCID of the cluster for this node pool: oci ce cluster list
• The name of the node pool. Avoid using confidential information.

• The placement configuration for the nodes, including the subnet and fault domain.
See the "Placement configuration" description in the Compute Web UI procedure.
Use the following command to show the content and format of this option:

$ oci ce node-pool create --generate-param-json-input placement-configs

Use the following command to list fault domains: oci iam fault-domain list. Do
not specify more than one fault domain or more than one subnet in the placement
configuration. To allow the system to select the best fault domains, do not specify any
fault domain.

• The OCID of the image to use for the nodes in this node pool.

Use the following command to get the OCID of the image that you want to use:

$ oci compute image list --compartment-id compartment_OCID

Note:

The image that you specify must not have a Kubernetes version that is
newer than the Kubernetes version that you specified when you created the
cluster.

The Kubernetes version for the cluster is shown in cluster list output. The
Kubernetes version for the image is shown in the display-name property in image
list output. The Kubernetes version of the following image is 1.28.3.

Chapter 5
Creating an OKE Worker Node Pool

5-3

"display-name": "uln-pca-Oracle-Linux8-OKE-1.28.3-20240210.oci"

Do not specify the --kubernetes-version option in the node-pool create
command.

You can specify a custom boot volume size in gigabytes. The default boot
volume size is 50 GB. To specify a custom boot volume size, use the --node-
source-details option to specify both the boot volume size and the image.
You cannot specify both --node-image-id and --node-source-details. Use
the following command to show the content and format of the node source
details option.

$ oci ce node-pool create --generate-param-json-input node-source-details

If you specify a custom boot volume size, you need to extend the partition to
take advantage of the larger size. Oracle Linux platform images include the
oci-utils package. Use the oci-growfs command from that package to
extend the root partition and then grow the file system. See oci-growfs.

• The name of the shape of the worker nodes in this node pool. For Private
Cloud Appliance X10 systems, the shape of the control plane nodes is
VM.PCAStandard.E5.Flex and you cannot change it. For all other Private
Cloud Appliance systems, the default shape is VM.PCAStandard1.1, and you
can specify a different shape.

If you specify a flexible shape, then you must also specify the shape
configuration, as shown in the following example. You must provide a value for
ocpus. The memoryInGBs property is optional; the default value in gigabytes is
16 times the number of ocpus.

--node-shape-config '{"ocpus": 32, "memoryInGBs": 512}'

If you specify a shape that is not a flexible shape, do not specify --node-
shape-config. The number of OCPUs and amount of memory are set to the
values shown for this shape in "Standard Shapes" in Compute Shapes in the
Oracle Private Cloud Appliance Concepts Guide.

• (Optional) The OCID of the Network Security Group to use for the nodes in
this node pool. Do not specify more than one NSG.

• (Optional) Tags. Add defined or free-form tags for the node pool resource by
using the --defined-tags and --freeform-tags options. Do not specify
values for the OraclePCA-OKE defined tag or for the ClusterResourceIdentifier
free-form tag. These tag values are system-generated and only applied to
nodes (instances), not to the node pool resource.

To add defined or free-form tags to all nodes in the node pool, use the --node-
defined-tags and --node-freeform-tags options.

Important:

Do not specify values for the OraclePCA-OKE defined tag or for the
ClusterResourceIdentifier free-form tag. These tag values are
system-generated.

2. Run the create node pool command.

Chapter 5
Creating an OKE Worker Node Pool

5-4

https://docs.oracle.com/en-us/iaas/oracle-linux/oci-utils/index.htm#oci-growfs
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-standard-shapes.html#standard-shapes

Example:

See the preceding Compute Web UI procedure for information about the options shown
in this example and other options such as --node-boot-volume-size-in-gbs and nsg-
ids.

$ oci ce node-pool create \
--cluster-id ocid1.cluster.unique_ID --compartment-id ocid1.compartment.unique_ID \
--name node_pool_name --node-shape shape_name --node-image-id
ocid1.image.unique_ID \
--placement-configs
'[{"availabilityDomain":"AD-1","subnetId":"ocid1.subnet.unique_ID"}]' \
--size 10 --ssh-public-key "public_key_text"

The output from this node-pool create command is the same as the output from the
node-pool get command. The cluster OCID is shown, and a brief summary of each node
is shown. For more information about a node, use the compute instance get command
with the OCID of the node.

Use the work-request get command to check the status of the node pool create
operation. The work request OCID is in created-by-work-request-id in the metadata
section of the cluster get output.

$ oci ce work-request get --work-request-id workrequest_OCID

To identify these nodes in a list of instances, note that the names of these nodes are in
the format oke-ID, where ID is the first 32 characters after the pca_name in the node pool
OCID. Search for the instances in the list whose names contain the ID string from this
node pool OCID.

Node Pool Next Steps

1. Configure any registries or repositories that the worker nodes need. Ensure you have
access to a self-managed public or intranet container registry to use with the OKE service
and your application images.

2. Configure any proxies that are needed. See Configuring a Proxy.

3. Create a service to expose containerized applications outside the Private Cloud
Appliance. See Exposing Containerized Applications.

4. Create persistent storage for applications to use. See Adding Storage for Containerized
Applications.

Configuring a Proxy
If your network requires proxy settings to enable worker nodes to reach outside registries or
repositories, for example, log in to each worker node in the cluster (see Creating an OKE
Worker Node Pool) and perform the following procedure.

1. Create a crio.service.d directory under /etc/systemd/system.

sudo mkdir /etc/systemd/system/crio.service.d
2. Create an http-proxy.conf file in /etc/systemd/system/crio.service.d and add proxy

details.

sudo cat /etc/systemd/system/crio.service.d/http-proxy.conf
[Service]
Environment="HTTP_PROXY=http://your_proxy.your_domain_name:your_port"

Chapter 5
Configuring a Proxy

5-5

Environment="HTTPS_PROXY=http://your_proxy.your_domain_name:your_port"
Environment="no_proxy=localhost,127.0.0.1,your_domain_name,ocir.io,Kubernetes
_cidr,pods_cidr"

In the no_proxy entry, Kubernetes_cidr is the Kubernetes Service CIDR block that
you enter when you create a cluster, and pods_cidr is the pods CIDR block that
you enter when you create a cluster. See Creating an OKE Cluster.

3. Reload the systemd manager configuration and crio.

sudo systemctl daemon-reload
sudo systemctl restart crio

Updating an OKE Node Pool
When you update a node pool, existing nodes are not updated. The updated
configuration only applies to new nodes that are created.

To change the properties of existing nodes, you could instead create a new node pool
with the new settings and move the work to the new nodes.

You can update any configuration that you can set when you create a node pool
except for the compartment where nodes will be created. See Creating an OKE
Worker Node Pool for property descriptions.

The updated configuration only applies to new nodes that are created. New nodes are
created when you increase the node count, change the fault domain, or change the
subnet.

Important:

If you change the fault domain or subnet of a node pool, existing worker
nodes are terminated and new worker nodes are created using the updated
configuration.

If you make changes that add new worker nodes, see Node Pool Next Steps.

To add defined or free-form tags to all nodes in the node pool, use the OCI CLI.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

2. Click the name of the cluster that contains the node pool that you want to update.

3. On the cluster details page, scroll to the Resources section, and click Node Pools.

4. For the node pool that you want to update in the Node Pools list, click the Actions
menu and click Edit.

The Edit Node Pool dialog opens. You can change any configuration except the
compartment where new nodes will be created. See Creating an OKE Worker
Node Pool for property descriptions. The updated configuration only applies to
new nodes that are created, as described at the beginning of this topic.

Chapter 5
Updating an OKE Node Pool

5-6

Note:

Do not specify values for the OraclePCA-OKE defined tag or for the
ClusterResourceIdentifier free-form tag. These tag values are system-
generated and only applied to nodes (instances), not to the node pool resource.

5. When you are finished making changes, click Save Changes.

The details page for the node pool is displayed. In addition to Node Pool Information and
Tags tabs, the node pool details page has a Placement Configuration tab.

Using the OCI CLI

1. Get the OCID of the node pool that you want to update: oci ce node-pool list
2. (Optional) Tags. Add, change, or delete defined or free-form tags for the node pool

resource by using the --defined-tags and --freeform-tags options. Do not specify
values for the OraclePCA-OKE defined tag or for the ClusterResourceIdentifier free-form
tag. These tag values are system-generated and only applied to nodes (instances), not to
the node pool resource.

To add, change, or delete defined or free-form tags for all nodes in the node pool, use the
--node-defined-tags and --node-freeform-tags options.

Important:

The argument you specify for the --node-defined-tags or --node-freeform-
tags option replaces any existing tag definitions. Ensure that you copy and
include the OraclePCA-OKE defined tag information in any --node-defined-
tags argument, and copy and include the ClusterResourceIdentifier free-form
tag information in any --node-freeform-tags argument. These tag values are
system-generated and must not be changed or deleted.

3. Run the update node pool command.

Syntax:

$ oci ce node-pool update -node-pool-id ocid1.nodepool.unique_ID \
new_configuration_settings

The updated configuration only applies to new nodes that are created, as described at
the beginning of this topic.

Deleting an OKE Node Pool Node
These procedures describe how to explicitly delete a worker node. Worker nodes are also
deleted when you update a node pool to scale down the node pool or change the subnet or
fault domains of the node pool. See Updating an OKE Node Pool.

Deleting a worker node permanently deletes the node. You cannot recover a deleted worker
node.

When you delete a node, by default a new node is created to satisfy the node count set for
the pool. To override this behavior, select the option to decrease node pool size.

Chapter 5
Deleting an OKE Node Pool Node

5-7

Do not use the kubectl delete node command to terminate worker nodes in an OKE
cluster. The kubectl delete node command removes the worker node from the
cluster's etcd key-value store, but the command does not terminate the underlying
compute instance.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

2. Click the name of the cluster that contains the node that you want to delete.

3. On the cluster details page, scroll to the Resources section, and click Node Pools.

4. Click the name of the node pool that contains the node that you want to delete.

5. On the node pool details page, scroll to the Resources section, and click Nodes.

6. For the node that you want to delete, click the Actions menu, and click Delete.

7. Confirm the deletion.

a. If you do not want a new node to be automatically created to replace the
deleted node, click Decrease node pool size.

b. Click the Delete button on the dialog.

Using the OCI CLI

1. Get the information you need to run the command.

• OCID of the node pool: oci ce node-pool list
• OCID of the node: oci ce node-pool list

2. Run the delete node pool node command.

If you do not want a new node to be automatically created to replace the deleted
node, specify the --is-decrement-size option.

Example:

$ oci ce node-pool delete-node --node-pool-id ocid1.nodepool.unique_ID \
--node-id ocid1.instance.unique_ID --is-decrement-size true --force

Deleting an OKE Node Pool
Deleting a node pool permanently deletes the node pool. You cannot recover a deleted
node pool.

Using the Compute Web UI

1. On the dashboard, click Containers / View Kubernetes Clusters (OKE).

2. Click the name of the cluster that contains the node pool that you want to delete.

3. On the cluster details page, scroll to the Resources section, and click Node Pools.

4. For the node pool that you want to delete, click the Actions menu, and click Delete.

5. Confirm the deletion.

a. Enter the name of the node pool to confirm that you want to delete the node
pool.

b. Click the Delete button on the dialog.

Chapter 5
Deleting an OKE Node Pool

5-8

Using the OCI CLI

1. Get the OCID of the node pool that you want to delete: oci ce node-pool list
2. Run the delete node pool command.

Example:

$ oci ce node-pool delete --node-pool-id ocid1.nodepool.unique_ID --force

Chapter 5
Deleting an OKE Node Pool

5-9

6
Exposing Containerized Applications

To expose an application deployment so that worker node applications can be reached from
outside the Private Cloud Appliance, create an external load balancer. An external load
balancer is a Service of type LoadBalancer. The service provides load balancing for an
application that has multiple running instances.

Ensure that the load balancer shape parameter has one of the following values: either
400Mbps or flexible. If you specify flexible then you must also provide flex-min and
flex-max annotations. You might need to edit the application deployment file to modify the
load balancer shape value. See Specifying Alternative Load Balancer Shapes and Specifying
Flexible Load Balancer Shapes for more information and examples of how to set these
values.

Use the following command to create the external load balancer:

kubectl create -f expose_lb

The following is the content of the expose_lb file:

apiVersion: v1
kind: Service
metadata:
 name: my-nginx-svc
 labels:
 app: nginx
 annotations:
 oci.oraclecloud.com/load-balancer-type: "lb"
 service.beta.kubernetes.io/oci-load-balancer-shape: "400Mbps"
spec:
 type: LoadBalancer
 ports:
 - port: 80
 selector:
 app: nginx

The following command shows more information about this external load balancer. The
LoadBalancer Ingress IP address is the IP address that is used to reach node applications
from outside the Private Cloud Appliance. In the Compute Web UI, the LoadBalancer Ingress
IP address is shown under the heading "IP Address" at the bottom of the first column on load
balancer details page, followed by the label "(Public)."

kubectl describe svc my-nginx-svc
Name: my-nginx-svc
Namespace: default
Labels: app=nginx
Annotations: oci.oraclecloud.com/load-balancer-type: lb
 service.beta.kubernetes.io/oci-load-balancer-shape: 400Mbps
Selector: app=nginx
Type: LoadBalancer
IP Family Policy: SingleStack
IP Families: IPv4
IP: IP_address
IPs: IP_address

6-1

https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancers-subtopic.htm#Specifyi
https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancers-subtopic.htm#flexible
https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancers-subtopic.htm#flexible

LoadBalancer Ingress: Load_Balancer_IP_address
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 32145/TCP
Endpoints: IP_address:port, IP_address+1:port, IP_address+2:port
Session Affinity: None
External Traffic Policy: Cluster
Events:
 Type Reason Age From Message

 Normal EnsuringLoadBalancer 7m48s service-controller Ensuring load balancer
 Normal EnsuredLoadBalancer 6m40s service-controller Ensured load balancer

Use the following command to list IP addresses and ports for the external load
balancer:

kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP IP_address <none> 443/TCP
6h17m
my-nginx-svc LoadBalancer IP_address Load_Balancer_IP_address 80:32145/TCP
5h5m

Chapter 6

6-2

7
Adding Storage for Containerized Applications

You can add persistent storage for use by applications on an OKE cluster node. Storage
created in a container's root file system will be deleted when you delete the container. For
more durable storage for containerized applications, configure persistent volumes to store
data outside of containers.

A persistent volume (PV) is storage that enables your data to remain intact when the
containers to which the storage is connected are terminated.

A PV is a resource in the cluster. A persistent volume claim (PVC) is a request for a PV
resource. A PVC is a storage request that is met by binding the PVC to a PV. A PVC provides
an abstraction layer to the underlying storage.

You can provision PVCs using either of the following methods:

• Attach volumes from the Private Cloud Appliance Block Volume service. The volumes are
connected to clusters created by OKE using a CSI (Container Storage Interface) volume
plugin deployed on the clusters. See Creating Persistent Block Volume Storage.

• Mount file systems in the Private Cloud Appliance File Storage service. The File Storage
service file systems are mounted inside containers running on clusters created by OKE
using a CSI volume plugin deployed on the clusters. See Creating Persistent File System
Storage.

Creating Persistent Block Volume Storage
The Private Cloud Appliance Block Volume service provides persistent, durable, and high-
performance block storage for your data. See the Block Volume Storage Overview chapter in
the Oracle Private Cloud Appliance Concepts Guide and the Block Volume Storage chapter
in the Oracle Private Cloud Appliance User Guide for information about block volumes on the
Private Cloud Appliance.

You can dynamically provision a block volume using the CSI plugin specified by the oci-bv
storage class definition (provisioner: blockvolume.csi.oraclecloud.com). Then use the
kubectl command to create the persistent volume claim.

1. Create a persistent volume claim, specifying the storage class name oci-bv.

$ kubectl create -f csi-bvs-pvc.yaml

The following is the content of the csi-bvs-pvc.yaml file:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mynginxclaim
spec:
 storageClassName: "oci-bv"
 accessModes:
 - ReadWriteOnce
 resources:

7-1

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/concept/concept-block-storage.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-blockstorage.html

 requests:
 storage: 50Gi

The requested oci-bv storage class is automatically created; you do not need to
create it.

The persistent volume claim name in the metadata section is user-specified. You
can have more than one persistent volume claim on a persistent volume.

For the value of accessModes, specify ReadWriteOnce; do not use ReadWriteMany.

The value of the storage property must be at least 50 gigabytes.

2. Run the following command to verify that the PVC has been created:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
mynginxclaim Pending oci-bv 4m

The PVC has a status of Pending because the oci-bv storage class definition
includes the following:

volumeBindingMode: WaitForFirstConsumer
3. Use the PVC when creating other objects, such as pods.

For example, you could create a new pod from the following pod definition, which
instructs the system to use the mynginxclaim PVC as the nginx volume, which is
mounted by the pod at /data:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - name: http
 containerPort: 80
 volumeMounts:
 - name: data
 mountPath: /usr/share/nginx/html
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: mynginxclaim

Run the following command to verify that the PVC has been bound to a new PV:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES
STORAGECLASS AGE
mynginxclaim Bound csi-unique_ID 50Gi RWO oci-bv

Run the following command to verify that the pod is using the new PVC:

$ kubectl describe pod nginx

Chapter 7
Creating Persistent Block Volume Storage

7-2

Creating Persistent File System Storage
The Private Cloud Appliance File Storage service provides a durable, scalable, distributed,
enterprise-grade network file system. See "Creating a File System, Mount Target, and Export"
in the File System Storage chapter in the Oracle Private Cloud Appliance User Guide to
create a mount target, file system, and file system export on the Private Cloud Appliance.
Then use the kubectl command to create the storage class, persistent volume, and
persistent volume claim.

1. Create a mount target.

Important:

To ensure that the mount target can be reached from worker nodes, create the
mount target on the subnet that has configuration like the "worker" subnet
described in Creating an OKE Worker Subnet. Ensure that TCP port 2049 to
the NFS server is open on that subnet.

If you do not create the mount target on the worker subnet, you might need to set security
rules to ensure that the worker nodes can reach the mount target.

See "Creating a Mount Target" in the File System Storage chapter in the Oracle Private
Cloud Appliance User Guide.

Note the export set OCID and mount target OCID. The export set OCID is required to
create the file system export, and the mount target OCID is required to create the storage
class. See Steps 3 and 4.

You can have only one mount target per VCN.

2. Create a file system.

See "Creating a File System" in the File System Storage chapter in the Oracle Private
Cloud Appliance User Guide.

You can create only one file system per VCN. You can have multiple storage classes,
persistent volumes, and persistent volume claims per cluster, and they all share one
NFS.

3. Create a file system export to associate the mount target with the file system.

See "Creating an Export for a File System" in the File System Storage chapter in the
Oracle Private Cloud Appliance User Guide.

• Specify the export set OCID from the output from creating the mount target.

• Specify the longest CIDR (smallest network) in the CIDR range that you specified
when you created the "worker" subnet as described in Creating an OKE Worker
Subnet.

Note the export path and the mount target IP address.

4. Create a storage class, specifying the mount target OCID from the output of the create
mount target step.

$ kubectl create -f sc.yaml

The following is the content of the sc.yaml file:

Chapter 7
Creating Persistent File System Storage

7-3

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html
https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/3.0-latest/user/user-usr-filesystem.html

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: pca-fss
provisioner: fss.csi.oraclecloud.com
parameters:
 mntTargetId: ocid1.mounttarget.unique_ID

The values of the apiVersion and provisioner properties are standard. The value
of the storage class name in the metadata section is user-specified. You can
create more than one storage class per mount target, and the storage class name
is used in the following steps to create a persistent volume and persistent volume
claim.

Use the get sc subcommand to view information about the new storage class:

$ kubectl get sc
5. Create a persistent volume, specifying the storage class name, the export path,

and the mount target IP address.

The storage class name is in the metadata in the sc.yaml file in the preceding
step. The export path and the mount target IP address are output from the create
file system export step. See Step 3 above.

$ kubectl create -f pv.yaml

The following is the content of the pv.yaml file:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: fss-pv
spec:
 storageClassName: pca-fss
 capacity:
 storage: 200Gi
 accessModes:
 - ReadWriteMany
 mountOptions:
 - nosuid
 nfs:
 server: mount_target_IP_address
 path: "/export/unique_ID"
 readOnly: false

The persistent volume name in the metadata section is user-specified. You can
have more than one persistent volume in a storage class.

In the nfs section, the server value is the mount target IP address, and the path
value is the export path.

Use the get pv subcommand to view information about the new persistent
volume:

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
fss-pv 200Gi RWX Retain Bound default/fss-pvc pca-
fss 20h

Chapter 7
Creating Persistent File System Storage

7-4

6. Create a persistent volume claim, specifying the persistent volume name and the storage
class name.

The persistent volume name and storage class name are in the output of the get pv
command.

Wait for the PVC status to be Bound before using this storage.

kubectl create -f pvc.yaml

The following is the content of the pvc.yaml file:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: fss-pvc
spec:
 storageClassName: pca-fss
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 200Gi
 volumeName: fss-pv

The persistent volume claim name in the metadata section is user-specified. You can
have more than one persistent volume claim on a persistent volume.

The value of the accessModes property must be ReadWriteMany.

The value of the storage property must be at least 50 gigabytes.

Run the following command to view information about the new persistent volume claim:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
fss-pvc Bound fss-pv 200Gi RWX pca-fss 2h

7. Use the PVC when creating other objects, such as pods.

For example, you could create a new pod from the following pod definition, which
instructs the system to use the fss-pvc PVC as the nginx volume, which is mounted by
the pod at /persistent-storage:

apiVersion: v1
kind: Pod
metadata:
 name: fss-dynamic-app
spec:
 containers:
 - name: nginx
 image: nginx:latest
 ports:
 - name: http
 containerPort: 80
 volumeMounts:
 - name: persistent-storage
 mountPath: /usr/share/nginx/html
 volumes:
 - name: persistent-storage
 persistentVolumeClaim:
 claimName: fss-pvc

Chapter 7
Creating Persistent File System Storage

7-5

Run the following command to verify that the pod is using the new PVC:

$ kubectl describe pod nginx

Using a Persistent Volume
To use this persistent storage, create a Kubernetes Deployment and assign a
persistent volume claim.

Using File System Storage

The following example uses file system storage:

$ kubectl create -f nginx-deploy.yaml

The following is the content of the nginx-deploy.yaml file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-fss-deployment
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx-fss
 template:
 metadata:
 labels:
 app: nginx-fss
 spec:
 containers:
 - name: nginx
 image: nginx:latest
 volumeMounts:
 - mountPath: /usr/share/nginx/
 name: data
 ports:
 - containerPort: 80
 name: http
 protocol: TCP
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: fss-pvc

Using Block Volume Storage

The following example uses block volume storage:

$ kubectl create -f nginx-deploy.yaml

The following is the content of the nginx-deploy.yaml file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-bv-deployment
spec:
 replicas: 3
 selector:

Chapter 7
Using a Persistent Volume

7-6

 matchLabels:
 app: nginx-bv
 template:
 metadata:
 labels:
 app: nginx-bv
 spec:
 containers:
 - name: nginx
 image: available_internal_registry/nginx:latest
 volumeMounts:
 - mountPath: /usr/share/nginx/
 name: data
 ports:
 - containerPort: 80
 name: http
 protocol: TCP
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: mynginxclaim

Verify the New Storage Asset

Use the get pod subcommand to show the names of the replicas in the pod:

$ kubectl get pod

Log in to the pod and use the Linux df command to show that the application replicas are
using the persistentVolumeClaim storage. The Filesystem column in the df output shows
the mount target IP address and the file system export path.

Deleting a Persistent Volume
This topic describes how to delete a PV, or retain a PV after all associated PVCs are deleted.
To delete PVCs, see Deleting a Persistent Volume Claim.

For file system storage, the default behavior is to retain the PV when all associated PVCs are
deleted.

For block volume storage, the default behavior is to delete the PV when all associated PVCs
are deleted. You might prefer to retain the PV after all associated PVCs are deleted, for
example if the volume contains critical data. See Retaining a Persistent Volume.

If a PV is retained, you can optionally delete the PV later.

Deleting a Persistent Volume Claim
To delete a PVC, first delete all pods that are using that PVC. If you attempt to delete the
PVC while a pod is still using the PVC, the PVC will be stuck in Terminating state and will not
be deleted. When all the pods that are using that PVC are deleted, the PVC will be deleted.

1. List all pods that are using the PVC.

Ensure that you have JQ command line utilities installed to query JSON objects.

Use the following command to list pods across all the namespaces that are associated
with the PVC that you want to delete.

Chapter 7
Deleting a Persistent Volume

7-7

$ kubectl get pods --all-namespaces -o=json | jq -c '.items[] |
{name: .metadata.name, namespace: .metadata.namespace, claimName: .spec |
select(has("volumes")).volumes[] |
select(has("persistentVolumeClaim")).persistentVolumeClaim.claimName} |
select(.claimName != null)'

{"name":"pod1_name","namespace":"namespace1_name","claimName":"claim1_name"}
{"name":"pod2_name","namespace":"namespace1_name","claimName":"claim1_name"}
{"name":"pod3_name","namespace":"namespace2_name","claimName":"claim2_name"}

To list pods only in the current namespace, use the same command as the
preceding command except omit the --all-namespaces option.

2. Delete all pods that are using the PVC.

Use the pod names reported by the kubectl get pods command that are
associated with the claimName that you want to delete.

$ kubectl delete pod pod1_name pod2_name
3. Delete the PVC.

$ kubectl delete pvc claim1_name
4. (Optional) Delete the PV.

If the Persistent Volume Reclaim Policy is Delete, the PV is automatically deleted
when all PVCs that are associated with this PV are deleted.

To list all PVCs, use the kubectl get pvc command.

If the Persistent Volume Reclaim Policy is Retain, you can use the following
command to delete the PV:

$ kubectl delete pv pv_name

Retaining a Persistent Volume
Rather than delete a PV, you might prefer to retain the PV after all associated PVCs
are deleted, for example if the volume contains critical data. See Changing the
Reclaim Policy of a Persistent Volume for instructions to change the reclaim policy of
the PV so that the PV will be retained after all associated PVCs are deleted.

If the Persistent Volume Reclaim Policy is Delete, the PV is automatically deleted
when all PVCs that are associated with this PV are deleted. To prevent this behavior,
specify the Retain policy. With the Retain policy, the PV is not deleted but is released
of its claim. See Recovering the Data from a Released Persistent Volume for
instructions to recover the data.

If you decide you want to delete the PV even though it was retained, or you want to
delete the PV after you have recovered the data, use the following command:

$ kubectl delete pv pv_name

Changing the Reclaim Policy of a Persistent Volume

1. List the PVs in the cluster.

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
fss-pv 200Gi RWX Delete Bound default/fss-pvc pca-
fss 20h

Chapter 7
Deleting a Persistent Volume

7-8

2. Change the reclaim policy of the PV.

$ kubectl patch pv fss-pv -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'
3. Verify the reclaim policy change.

The RECLAIM POLICY column should now say Retain.

$ kubectl get pv

Recovering the Data from a Released Persistent Volume

The PV is not available for another claim after the PV has been released of its previous claim
because the previous claimant's data is still on the volume. Recover the data and then re-
create the PV using the same storage to make a new claim on that storage.

1. Delete the PV.

$ kubectl delete pv pv_name

The associated block volume or file system still exists after the PV is deleted.

2. Manually recover and clean up the data on the block volume or file system.

3. (Optional) Manually delete the block volume or file system.

To reuse the same block volume or file system, create a new PV with the same storage
asset definition.

Chapter 7
Deleting a Persistent Volume

7-9

	Contents
	Preface
	Audience
	Feedback
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Overview of Container Engine for Kubernetes
	2 OKE Workflow
	Administrator Tasks
	Updating the Certificate Authority Bundle

	User Tasks

	3 Creating Network Resources
	Workload Cluster Network Ports
	Workload Cluster Network CIDR Ranges
	OKE Cluster Management with Administration Network
	Example Terraform Scripts for Network Resources
	Creating an OKE VCN
	Creating an OKE Worker Subnet
	Creating an OKE Worker Load Balancer Subnet
	Creating an OKE Control Plane Subnet
	Creating an OKE Control Plane Load Balancer Subnet

	4 Creating and Managing OKE Clusters
	Creating an OKE Cluster
	Creating a Kubernetes Configuration File
	Updating an OKE Cluster
	Deleting an OKE Cluster

	5 Creating and Managing OKE Worker Node Pools
	Creating an OKE Worker Node Pool
	Configuring a Proxy
	Updating an OKE Node Pool
	Deleting an OKE Node Pool Node
	Deleting an OKE Node Pool

	6 Exposing Containerized Applications
	7 Adding Storage for Containerized Applications
	Creating Persistent Block Volume Storage
	Creating Persistent File System Storage
	Using a Persistent Volume
	Deleting a Persistent Volume
	Deleting a Persistent Volume Claim
	Retaining a Persistent Volume

