
Oracle® Enterprise Manager
Cloud Control Extensibility Programmer's
Reference

13c Release 5
F37134-01
January 2022

Oracle Enterprise Manager Cloud Control Extensibility Programmer's Reference, 13c Release 5

F37134-01

Copyright © 2012, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxv

Documentation Accessibility xxxv

Related Resources xxxv

Conventions xxxv

1 Getting Started with Plug-in Development

About the Plug-in Creation Process 1-1

About the Extensibility Development Kit (EDK) 1-2

Contents of the EDK 1-2

Installing the Extensibility Development Kit (EDK) 1-3

Designing the Plug-in 1-4

Creating a Basic Plug-in 1-4

Creating an Intermediate Plug-in 1-5

Creating an Advanced Plug-in 1-5

2 Defining the Plug-in

Introduction to Defining the Plug-in 2-1

About Plug-in Metadata 2-2

Defining the Plug-in ID 2-2

Defining the Plug-in Version 2-2

Creating Plug-in Definition Files 2-3

Creating the plugin.xml File 2-3

Overview of plugin.xml Elements 2-4

Certifying Plug-ins 2-6

Creating the plugin_registry.xml File 2-7

Overview of plugin_registry.xml Elements 2-8

Validating Plug-in Definition Files 2-9

Adding Log Viewer Support to Your Plug-in 2-9

Defining Plug-ins for Upgrade 2-10

iii

Deprecating a Plug-in 2-10

3 Creating Target Metadata Files

Introduction to Creating Target Metadata Files 3-1

Overview of Target Definition Files 3-2

Creating the Target Type Metadata File 3-3

Creating a Basic Target Type Metadata File 3-3

Naming the Target Type Metadata File 3-4

Defining the Target Type Metadata 3-4

Defining Target Credentials 3-5

Defining Type Properties 3-5

Defining Instance Properties 3-7

Static Instance Properties 3-7

Dynamic Instance Properties 3-8

Defining Metrics to Collect from the Target 3-8

Metric Definition Files 3-9

Defining the Basic Response Metric Group 3-10

Defining Advanced Metrics 3-11

Defining Repository Metrics 3-13

Categorizing Metrics 3-14

Defining Adaptive Thresholds 3-16

Overview of Key Metric Metadata Elements 3-17

Troubleshooting Metric Definitions 3-20

Creating the Default Collection File 3-21

Grouping Similar Metrics For Collection 3-21

Defining Basic Metric Collection 3-23

Defining Advanced Metric Collection 3-23

Defining Target Configuration Data Collections 3-24

Overview of Key Default Collection Metadata Elements 3-24

Troubleshooting the Collection Process 3-27

Guidelines for Creating Target Metadata 3-27

Defining Target Metadata 3-27

Defining Collections 3-31

Alert Message Guidelines 3-31

Metric Evaluation Order 3-32

Collection Frequency 3-32

Controlling Number of Rows 3-32

Localizing Target Metadata 3-32

About Target Metadata Localization 3-33

Define the Resource Bundle Package 3-33

iv

Localize Metric Messages 3-34

Package Resource Bundles 3-34

About Resource Property Bundle Content 3-34

Packaging Resource Bundles 3-35

Checking a New Target Type 3-35

Testing Your Target Type Definitions 3-36

Activate the Metric Browser 3-37

View Your Metrics 3-37

Validating Your Metadata XML 3-37

Troubleshooting the Target Creation Process 3-38

4 Plug-in Builder

Overview 4-1

Prerequisites For Using Plug-in Builder 4-2

Installing Plug-in Builder 4-2

Installing Plug-in Builder and a New JDeveloper Instance 4-3

Installing Plug-in Builder into an Existing JDeveloper Instance 4-3

Creating an Enterprise Manager Plug-in Project 4-4

Creating a Plug-in Project Using Sample Plug-ins 4-7

Discovering Targets 4-9

Updating Discovery Metadata for a Pre-existing Plug-in 4-9

Viewing Basic Discovery Information 4-10

Deploying the Plug-in Archive into Enterprise Manager 4-10

Adding a New Target Type 4-11

Updating Target Type Information 4-12

Adding Instance Properties 4-13

Adding Dynamic Properties 4-13

Adding Credential Type 4-14

Adding Credential Set 4-14

Adding Metric Properties for a Target 4-15

Adding ColumnDescriptor 4-16

Adding QueryProperties 4-16

Adding ExecutionDescriptor Table 4-16

Adding ExecutionDescriptor View 4-16

Configuring Collection Items for a Target 4-17

Adding a Collection Item for the Target 4-17

Inserting or Updating Collection Item Properties 4-17

Deinstalling Plug-in Builder 4-18

Appendix 4-18

Using the Structure View 4-19

v

Using Property Inspector 4-19

Directory Structure for a Plug-in Project 4-19

5 Adding Information Publisher Reports

Introduction to Adding Information Publisher Reports 5-1

Assumptions and Prerequisites 5-2

Overview of SYSTEM Reports 5-2

About the Report Definitions Page 5-2

Understanding the Report Definition File 5-2

Creating a Report Definition File 5-3

About the Report Definition File Development Process 5-3

Defining SQL or PL/SQL Queries 5-3

Creating a Test Report Interactively from the Enterprise Manager Console 5-4

Using EM CLI to Generate the Report Definition File 5-4

About the Report Lifecycle: Updating Report Definitions 5-5

Understanding the XML Report Definition Interface 5-6

About Report Definition Tags 5-6

<ReportDefinition> 5-6

<ReportElement> 5-7

<ReportElementParamters> 5-7

Using Element Parameters 5-8

About Table Element Parameters 5-8

About the Chart Element 5-22

Understanding the Metric Details Element 5-27

Using Text Element Parameters 5-29

About Report-Wide Parameters 5-30

Using the ImportExport.xsd File 5-30

About Enterprise Manager Command Line Interface (EM CLI) Verbs 5-33

About Development Guidelines 5-34

6 Developing BI Publisher Reports

Introduction to Oracle BI Publisher 6-1

Assumptions and Prerequisites 6-1

Training and Resources 6-1

About the Report Data Source 6-2

Developing a Report 6-2

Using the Enterprise Manager EDK for Staging and Deploying BI Publisher Reports 6-3

vi

7 Collecting Target Configuration Data

Introduction to Collecting Target Configuration Data 7-1

Assumptions and Prerequisites 7-2

About the Configuration Definition Files 7-2

Modeling Enterprise Configuration Management Tables 7-2

Defining Configuration Collection Tables 7-4

EM_ECM_OH_HOME_INFO Table 7-4

EM_ECM_OH_DEP_HOMES Table 7-5

EM_ECM_OH_COMPONENT Table 7-5

EM_ECM_OH_COMP_INST_TYPE Table 7-7

Additional Information About the Configuration Metadata 7-7

Overview of Configuration Management Snapshot Metadata Elements 7-8

Packaging Configuration Metadata 7-13

Registering Metadata With the Configuration Management Framework 7-13

Supporting Translation 7-15

Upgrading Configuration Data 7-16

Modifications to Standard Collection Metrics and RAW Metrics 7-18

Testing the Configuration Collection Data 7-20

Troubleshooting 7-20

Customizing the Inventory and Usage Region of the UI 7-23

About the Inventory Choice XML 7-24

About the InventoryChoice Element 7-24

About Supported Parameter Types 7-25

Applicable Target Types (Mandatory) 7-25

MasterData (Mandatory) 7-25

Details data (Mandatory) 7-26

List of Rollup Types/ShowBy Choices (Optional) 7-26

Target Context Query 7-27

UIColumnMapping Tag 7-27

DLF Files 7-27

Sample Inventory Choice XML Metadata File 7-28

8 Adding Job Types

Introduction to Adding Job Types 8-1

About Job Types 8-2

Introducing New Job Types 8-3

Specifying a New Job Type in XML 8-3

Understanding Job Type Categories 8-4

Using Agent-Bound Job Types 8-4

About Job Steps 8-5

vii

Affecting the Status of a Stepset 8-7

Passing Job Parameters 8-8

About Job Step Output and Errors 8-9

Using Commands 8-9

Using the remoteOp Command 8-9

Using Auxiliary Credentials 8-10

Using the fileTransfer Command 8-11

About the putFile Command 8-13

Using the getFile Command 8-14

Using the execAndSuspend Command 8-14

About Command Error Codes 8-15

Executing Long-Running Commands at the Oracle Management Service 8-16

Configuring the Job Dispatcher to Handle Long-Running Commands 8-16

Specifying Parameter Sources 8-17

Understanding SQLParameter Source 8-18

Using a PL/SQL Procedure to Fetch Scalar and Vector Parameters 8-18

About the User Parameter Source 8-20

About the Inline Parameter Source 8-21

Using the checkValue Parameter Source 8-21

About the properties Parameter Source 8-22

Understanding Parameter Sources and Parameter Substitution 8-22

About Parameter Encryption 8-23

Specifying Credential Information 8-23

About Credential Usage 8-23

Overview of Credential Binding 8-24

XSD Elements – Credential Usage and Credential Binding 8-25

Specifying Security Information 8-26

Specifying Lock Information 8-27

Suspending a Job or Step 8-30

Restarting a Job 8-31

Restarting Versus Resubmitting 8-31

Default Restart Behavior 8-31

Using the restartMode Directive 8-32

Adding Job Types to the Job Activity and Job Library Pages 8-35

Adding a Job Type to the Job Activity Page 8-35

Adding the displayInfo Tag 8-36

Adding a Job Type to the Job Library Page 8-37

Making the Job Type Editable 8-37

Examples: Specifying Job Types in XML 8-37

About Performance Issues 8-46

Using Parameter Sources 8-46

viii

Adding a Job Type to Enterprise Manager 8-46

Adding a Job Type to an Oracle Plug-in Archive (OPAR) 8-47

9 Defining a Management User Interface

Introduction to Defining a Management User Interface 9-2

HTML/JavaScript (JS) Implementation 9-3

Assumptions and Prerequisites 9-4

MPCUI Concepts 9-4

MPCUI Metadata File 9-4

Activity 9-5

Page 9-5

Services 9-5

Data Services 9-5

Operation Services 9-5

Asynchronous Service Request Handling 9-5

URL 9-5

Creating a Custom UI for a Plug-in 9-6

HTML/JS Implementation 9-6

HTML 9-6

JavaScript 9-6

JS Library File 9-6

Creating the MPCUI Metadata File 9-6

Overview of MPCUI Metadata Elements 9-7

Defining Metadata 9-8

Defining Integration Metadata 9-8

Defining Navigation 9-14

Defining the MPCUI Application 9-15

Defining the Application Activities 9-15

Defining Pages 9-16

Page 9-16

Page Model 9-16

Page Controller 9-17

Defining Dialogs 9-18

Defining Trains and Train Pages 9-19

Defining URLs 9-20

Packaging the MPCUI Implementation With the Plug-in 9-21

Defining System Home Pages 9-21

Defining systemUiIntegration Metadata 9-23

Defining System Regions 9-25

Defining System Status Region 9-26

ix

Defining System Issues Region 9-26

Defining the System Job Activity Region 9-27

Defining Navigation 9-27

Navigation to Activities 9-28

URL and Links 9-28

Adding Links to External Applications 9-30

Accessing Enterprise Manager Data 9-30

Metric Services 9-30

Using the Metric Values Service Transparently 9-31

Using the MetricValuesDataService Tag 9-31

Calling the Metric Value Service from a Controller 9-32

Metric Data Source Filters 9-33

Custom Data Source 9-34

Creating the Custom Data Source 9-35

Binding the Data Source to a UI Component 9-36

Updating the Custom Data Source 9-37

Computed Data Source 9-37

Packaged SQL and the Query Service 9-39

Guidelines for Writing Packaged SQL 9-41

Packaging SQL in the Plug-In 9-42

Getting Target Type Information 9-42

Working With Target Services 9-42

Target Properties Service 9-42

Associated Targets Service 9-43

Metric Metadata Service 9-43

Availability Service 9-44

Automated Polling of Service Requests 9-44

Batching of Service Requests 9-44

Software Library Search Service 9-46

Performing Task Automation 9-47

Automation Services 9-47

Submitting or Running a Job 9-47

Getting Job Status and Step Details 9-49

Using a Timer to Periodically Check Job Status 9-50

Stopping and Deleting a Job 9-50

Remote Operations 9-51

Working With Credentials 9-53

Retrieving Credential Information 9-53

Passing Credentials to Jobs and Remote Operations 9-55

Reusable Credentials UI Components 9-55

Managing Monitoring Credentials 9-56

x

Storing Session State 9-58

Defining Page Layout Components 9-59

Defining Panels 9-60

Including Packaged Regions 9-61

Availability Region 9-61

Incidents and Problems Region 9-62

Job Summary Region 9-62

Credentials Region 9-63

Defining Charts 9-63

Line Chart 9-63

Providing Line Chart Data Source 9-64

Controlling the Legend 9-65

Area Chart 9-65

Bar (Horizontal) Chart 9-66

Grouping Bars 9-66

Bar (Vertical Bar) Chart 9-68

Pie Chart 9-69

Defining Tables 9-69

Data Service 9-70

Custom Data Provider 9-71

Getting Selected Rows 9-71

Defining Dialogs 9-72

Dialog Registration 9-72

Displaying a Dialog and Waiting for Close Events 9-73

Defining Trains 9-74

Train Definition Example 9-74

Train Controller 9-75

Train State 9-75

Train Events 9-75

Defining Information Item and Information Displays (Label-Value Pairs) 9-76

Using Built-in Renderers 9-77

Defining Links 9-78

Including Enterprise Manager Images 9-78

Displaying a Processing Cursor 9-78

Defining Icons for Target Types 9-79

Displaying the Target Navigator 9-79

Defining a UI for Guided Discovery 9-80

About Guided Discovery 9-80

Supporting Guided Discovery 9-81

Constructing the Guided Discovery User Interface 9-82

Discovery Integration 9-82

xi

Structure of the Discovery UI 9-84

Using Discovery Service 9-84

Using Target Information Services 9-86

Using Target Management Services 9-86

Building the MPCUI Application into a JS Library 9-87

Creating the JS Library 9-87

Adding the JS Library to The Plug-in 9-87

About Logging 9-91

Add Logging to your Code 9-91

Options for Capturing Log Output 9-92

Running MPCUI from NetBeans 9-92

Running MPCUI from the Enterprise Manager Console 9-92

Development Environment Options 9-93

 Developing MPCUI in NetBeans 9-93

Setting up the Demo Sample Project 9-93

Running Demo Sample MPCUI from NetBeans 9-94

Elements of the Demo Sample UI 9-95

Updating the Demo Sample 9-96

Modifying the Deployed Plug-in 9-96

Setting Up a NetBeans Project for MPCUI 9-97

Creating a NetBeans Project 9-97

Home Page Customizations 9-98

Accessibility Guidelines 9-98

Accessibility Options in Enterprise Manager 9-98

Summary of Critical Issues 9-98

Localization Support 9-99

Register Bundles 9-99

Reference Strings from HTML (Page, Dialog Definitions) 9-99

Access Strings from JavaScript (Controller Code) 9-100

Providing Online Help 9-100

Migrating From Flex to HTML/JS/JET 9-100

Application Structure 9-101

Model 9-101

Page (View) 9-101

Page Controller 9-102

Converting ActionScript to JavaScript 9-105

Converting Flex Tags to MPCUI Custom HTML Tags 9-106

Data Services 9-106

Page 9-108

HBox 9-109

VBox 9-109

xii

Region 9-110

InnerRegion 9-110

InfoDisplay 9-110

Link 9-112

Dialog 9-112

Train 9-112

Table 9-113

Chart 9-116

Prepackaged Regions 9-127

10

Customizing Incident Manager

Introduction to Customizing Incident Manager 10-1

Understanding Supported Customizations 10-2

Creating Event-Specific Customization XML 10-3

Overview of Event-Specific Customization Metadata Elements 10-4

About Events 10-5

Common Event Attributes 10-5

Target Availability Event 10-6

Metric Alert Event 10-9

Adding Customized Details About the Event 10-12

Providing Content in the Guided Resolution Region 10-14

Adding Recommendations using XML 10-15

Customizing Sections 10-16

Defining a Search String for My Oracle Support Knowledge 10-17

Defining Conditions for Customization 10-17

Registering Customizations 10-18

Testing Incident Manager After Customization 10-19

11

Using Derived Associations

Introduction to Derived Associations 11-1

Assumptions and Prerequisites 11-2

Understanding Enterprise Manager Association Concepts 11-3

About Out-of-Box Association Types 11-3

Using Association Derivation 11-4

About Automated Discovery and Promotion of Associations 11-4

Understanding Association Creation During Guided Discovery 11-4

Using Associations Derived from a System Stencil 11-5

Associations Derived from Rule 11-5

About Association Derivation Rules Management 11-6

xiii

Using Association Derivation Rules Syntax and Semantics 11-6

Understanding XML Metadata File Syntax and Semantics 11-9

Using Rule Semantics 11-14

Maintaining Performance 11-15

About Regular Query and Trigger Patterns 11-15

Diagnosing Issues 11-16

Useful Examples 11-16

Host on a Virtual Machine 11-17

Target installed_at Oracle Home 11-17

Listener and Database 11-18

Applying the Mechanical Steps of Integration 11-19

Special Triggers: Host Name Change Triggers 11-20

Understanding Activation Expressions 11-21

Troubleshooting and Debugging 11-23

Ensuring Performance 11-26

Using Custom Configuration Specifications for Data Collection 11-27

Using Overlapping Associations 11-27

Overlap Between Associations Derived by Rules 11-27

Creating Associations for Composite and System Target Types 11-28

Composite Membership and the Containment Association 11-28

Other Non-Composite Associations (Composite Topology) 11-28

System Membership Associations 11-29

Associations to External Targets 11-29

Regarding the Timing of Association Creation 11-29

Frequently Asked Questions 11-29

Which tables can I reference in a rule query? 11-30

Are there guidelines for when to use target properties? 11-30

What is the relationship between discovered and derived associations? 11-31

12

Defining Target Discovery

Introduction to Defining Target Discovery 12-1

Creating Discovery XML 12-2

Generic Discovery Integration Example 12-2

Discovery Script Example 12-3

Overview of the Discovery Metadata Elements 12-4

Creating the Discovery Script 12-5

Discovered Targets DTD 12-6

Packaging Discovery XML and Discovery Content 12-6

Location of the Discovery Metadata File 12-6

Package Discovery Content 12-7

xiv

Java Content Required by Discovery Scripts 12-8

Setting Up and Testing Discovery 12-8

Manually Adding Targets 12-9

Manually Adding Host Targets 12-9

Manually Adding Non-Host Targets 12-9

Configuring and Promoting Targets for Monitoring by Enterprise Manager 12-10

Examples for Using Generic Discovery Framework 12-10

Discovery Integration Example Requiring User Input 12-11

Configuring Automatic Discovery For Plug-ins 12-12

13

Adding Compliance Standards

Introduction to Adding Compliance Standards 13-1

Assumptions and Prerequisites 13-2

About the Compliance Standard Rules 13-2

Defining Repository Check-based Rules 13-2

Defining Real-time Monitoring Rules 13-9

What Entity Types Can I Monitor? 13-10

About Real-time Monitoring Facets 13-11

Creating Real-time Monitoring Facets 13-13

Creating Real-time Monitoring Facets for Time Windows 13-15

Creating Real-time Monitoring Rules 13-17

Defining Compliance Standards 13-23

Defining a Compliance Framework 13-26

Defining Compliance Content 13-30

Removing Compliance Content 13-32

Supporting Translation 13-32

Packaging Compliance XML 13-35

Setting Up and Testing Compliance Standards and Rules 13-35

Install Compliance Content 13-35

Test Compliance Standard 13-35

Constraints for Testing 13-37

More Compliance Examples 13-37

Publishing Compliance Content Using Self Update 13-52

14

Validating, Packaging, and Deploying the Plug-in

Introduction to Validating, Packaging, and Deploying the Plug-in 14-1

Staging the Plug-in 14-2

Modifying File Permissions Within the Plug-in Directory 14-5

Validating the Plug-in 14-6

xv

Creating the Plug-in Archive 14-7

Importing and Deploying the Plug-in Archive into Enterprise Manager 14-9

Prerequisites for Importing the Plug-in 14-9

Setting Up the Software Library 14-9

Setting Up the EM CLI Utility 14-9

Importing the Plug-in Archive 14-10

Deploying the Plug-in on Oracle Management Service (OMS) 14-11

Important Details Regarding Plug-in Deployment 14-12

Adding a Target Instance 14-12

Updating Deployed Metadata Files Using the Metadata Registration Service (MRS) 14-13

Target Types and Default Collections 14-15

15

Defining Software Library Metadata

Introduction to Software Library Framework 15-1

Defining Software Library Metadata 15-2

Defining Folders 15-2

Defining Types 15-3

Defining Subtypes 15-3

Entity Properties File 15-5

Defining Entities 15-7

Organizing Software Library Metadata Files 15-7

Adding the Software Library Metadata to Enterprise Manager 15-8

Step 1: Validating Metadata XML 15-8

Step 2: Adding Metadata XML to OPAR 15-9

Using Software Library Entities 15-9

Using Job Types 15-10

Using EMCLI Verbs 15-12

16

Defining Credentials

Introduction to Security Concepts 16-1

Understanding Credential Types 16-2

About Named Credentials 16-2

Authenticating Target Types 16-2

Overview of Credential Sets 16-2

Using the Credential Store 16-3

About the Credential Reference 16-3

Defining Credential Metadata 16-3

Overview of Credential Elements 16-4

xvi

17

Defining a Chargeback Entity Type

Chargeback Extensibility Toolkits 17-1

Steps to Develop and Test New Chargeback Entity Type 17-2

The Chargeback Model 17-2

Sample Chargeback MDS XML File 17-3

Registering the Chargeback MDS 17-7

Testing the Entity Type Plug-in 17-8

18

Monitoring Using Web Services and JMX

Overview 18-1

Monitoring Using Web Services in Enterprise Manager 18-2

Creating Metadata and Default Collection Files 18-2

Web Services CLI Command-line Tool Syntax 18-3

Web Services Command-line Tool Security 18-4

Generating the Files 18-4

Monitoring Using WS-Management in Enterprise Manager 18-11

Creating Metadata and Default Collection Files 18-11

WS-Management CLI Command-line Tool Syntax 18-11

Command-line Tool Security 18-12

Generating Target Metadata and Collection Files 18-12

Monitoring a Standalone JMX-instrumented Java Application or JVM Target 18-17

Generating Metadata and Default Collection Files 18-18

JMX Command-line Tool Syntax 18-19

Generating the Files 18-20

Using the Metadata and Default Collection Files 18-23

Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers 18-23

Creating Metadata and Default Collection Files using jmxcli 18-24

JMX Command-line Tool Syntax 18-24

Generating the Files 18-25

Displaying Target Status Information 18-30

Using the Metadata and Default Collection Files 18-32

Adding a Target to a Management Agent 18-32

Adding a Web Services Target - CalculatorService 18-32

Adding a WS-Management Target - TrafficLight 18-33

Configuring a Standalone Java Application or JVM Target 18-34

Adding a Target Instance for a Custom J2EE Application on WebLogic 18-39

Monitoring Credential Setup 18-40

Viewing Monitored Metrics 18-42

Creating JMX Metric Extensions 18-43

Using the Enterprise Manager Console 18-43

xvii

Using the JMXCLI to create a Metric Extension Archive 18-54

Surfacing Metrics from a Standalone JVM or Oracle Coherence 18-57

Using the Enterprise Manager Console 18-58

Using JMXCLI 18-58

Monitoring Using RESTful Services 18-58

19

Using Receivelets

About Receivelets 19-1

SNMP Receivelet 19-1

20

Using Fetchlets

About Fetchlets 20-1

OS Command Fetchlets 20-1

OS Fetchlet 20-2

OSLines Fetchlet (split into lines) 20-4

OSLineToken Fetchlet (tokenized lines) 20-6

Invoke an OS Fetchlet as a Specific User for Metric Collection 20-9

SQL Fetchlet 20-10

SNMP Fetchlet 20-15

HTTP Data Fetchlets 20-21

URL Fetchlet (raw) 20-21

URL Lines Fetchlet (split into lines) 20-22

URL Line Token Fetchlet (tokenized lines) 20-24

URLXML Fetchlet 20-25

URL Timing Fetchlet 20-27

Dynamic Monitoring Service (DMS) Fetchlet 20-32

Advantages to Using DMS for Oracle Management Agent Integration 20-32

DMS Fetchlet/Oracle Management Agent Integration Instructions 20-35

Integrating DMS Data with the Management Agent 20-35

JDBC Fetchlet 20-37

WBEM Fetchlet 20-39

JMX Fetchlet 20-43

Web Service Fetchlet 20-46

Using Credentials for Authentication 20-50

WS-Management Fetchlet 20-52

Using Credentials 20-55

REST Fetchlet 20-56

Response Processing 20-57

Using HTTPS and Self-Signed Certificates 20-60

xviii

Using REST CLI to Generate Metadata 20-61

21

Enterprise Manager DTD

Terminology 21-1

Target Metadata DTD Elements 21-1

TargetMetadata 21-1

Attributes 21-2

Elements 21-3

Used In 21-3

Examples 21-3

Display 21-5

Attributes 21-6

Elements 21-6

Used In 21-6

Examples 21-7

SSH_ERROR_MSG 21-7

Attributes 21-7

Elements 21-7

Used In 21-8

Examples 21-8

TypeProperties 21-8

Attributes 21-8

Elements 21-8

Used In 21-8

Examples 21-8

TypeProperty 21-8

Attributes 21-9

Elements 21-9

Used In 21-9

Examples 21-9

AssocTarget 21-9

Attributes 21-10

Elements 21-11

Used In 21-11

Examples 21-11

AssocPropDef 21-11

Attributes 21-12

Elements 21-12

Used In 21-12

Examples 21-12

xix

DiscoveryHelper 21-12

Attributes 21-12

Elements 21-12

Used In 21-12

DiscoveryHint 21-13

Attributes 21-13

Elements 21-13

Used In 21-13

MetricClass 21-13

Attributes 21-13

Elements 21-13

Used In 21-13

Examples 21-14

MetricCategory 21-14

Attributes 21-14

Elements 21-14

Used In 21-14

Examples 21-15

Metric 21-15

Attributes 21-16

Elements 21-18

Used In 21-18

Examples 21-18

ValidIf 21-21

Attributes 21-21

Elements 21-21

Used In 21-22

Examples 21-22

CategoryProp 21-22

Attributes 21-23

Elements 21-23

Used In 21-23

Examples 21-23

ValidMidTierVersions 21-24

Attributes 21-24

Elements 21-24

Used In 21-24

Examples 21-25

TableDescriptor 21-25

Attributes 21-26

Elements 21-26

xx

Used In 21-26

Examples 21-26

ColumnDescriptor 21-27

Attributes 21-28

Elements 21-30

Used In 21-30

Examples 21-30

CategoryValue 21-34

Attributes 21-35

Elements 21-35

Used In 21-35

Examples 21-35

CustomTableMapper 21-36

Attributes 21-36

Elements 21-37

Used In 21-37

Examples 21-37

ColumnMapper 21-37

Attributes 21-37

Elements 21-38

Used In 21-38

Examples 21-38

QueryDescriptor 21-38

Attributes 21-38

Elements 21-39

Used In 21-39

Examples 21-39

Property 21-40

Attributes 21-41

Elements 21-41

Used In 21-41

Examples 21-41

Label 21-42

Attributes 21-42

Elements 21-42

Used In 21-42

Examples 21-42

ShortName 21-42

Attributes 21-43

Elements 21-43

Used In 21-43

xxi

Examples 21-43

Icon 21-43

Attributes 21-43

Elements 21-43

Used In 21-43

Examples 21-43

Description 21-43

Attributes 21-44

Elements 21-44

Used In 21-44

Examples 21-44

Unit 21-44

Attributes 21-45

Elements 21-45

Used In 21-45

Examples 21-45

MonitoringMode 21-45

Attributes 21-45

Elements 21-45

Used In 21-46

Examples 21-46

AltSkipCondition 21-46

Attributes 21-46

Elements 21-47

Used In 21-47

Examples 21-47

CredentialInfo 21-48

Attributes 21-48

Elements 21-48

Used In 21-48

Examples 21-48

CredentialType 21-49

Attributes 21-49

Elements 21-49

Used In 21-49

Examples 21-49

CredentialTypeColumn 21-50

Attributes 21-50

Elements 21-50

Used In 21-50

Examples 21-50

xxii

CredentialTypeColumnValue 21-51

Attributes 21-51

Elements 21-51

Used In 21-51

Examples 21-51

CredentialTypeRef 21-51

Attributes 21-52

Elements 21-52

Used In 21-52

Examples 21-52

CredentialTypeRefColumn 21-52

Attributes 21-53

Elements 21-53

Used In 21-53

Examples 21-53

CredentialSet 21-53

Attributes 21-53

Elements 21-54

Used In 21-54

Examples 21-54

CredentialSetColumn 21-55

Attributes 21-55

Elements 21-55

Used In 21-55

Examples 21-55

CredentialSetColumnValue 21-55

Attributes 21-55

Elements 21-55

Used In 21-55

Examples 21-56

InstanceProperties 21-56

Attributes 21-56

Elements 21-56

Used In 21-56

Examples 21-56

InstanceProperty 21-56

Attributes 21-57

Elements 21-57

Used In 21-57

Examples 21-57

DynamicProperties 21-58

xxiii

Attributes 21-58

Elements 21-59

Used In 21-59

Examples 21-59

ExecutionDescriptor 21-59

Attributes 21-59

Elements 21-59

Used In 21-60

Examples 21-60

GetTable 21-61

Attributes 21-61

Elements 21-61

Used In 21-61

Examples 21-61

GetView 21-62

Attributes 21-62

Elements 21-62

Used In 21-62

Examples 21-62

Filter 21-63

Attributes 21-63

Elements 21-63

Used In 21-63

Examples 21-63

Column 21-64

Attributes 21-64

Elements 21-64

Used In 21-64

Examples 21-64

ComputeColumn 21-64

Attributes 21-65

Elements 21-65

Used In 21-65

Examples 21-65

In 21-65

Attributes 21-66

Elements 21-66

Used In 21-66

GroupBy 21-66

Attributes 21-66

Elements 21-66

xxiv

Used In 21-66

Examples 21-66

By 21-67

Attributes 21-67

Elements 21-67

Used In 21-67

Examples 21-67

AggregateColumn 21-67

Attributes 21-67

Elements 21-68

Used In 21-68

Examples 21-68

Union 21-68

Attributes 21-68

Elements 21-68

Used In 21-68

Examples 21-68

Table 21-69

Attributes 21-69

Elements 21-69

Used In 21-69

Examples 21-69

JoinTables 21-69

Attributes 21-70

Elements 21-70

Used In 21-70

Examples 21-70

Where 21-70

Attributes 21-71

Elements 21-71

Used In 21-71

Examples 21-71

PushDescription 21-71

Attributes 21-72

Elements 21-72

Used In 21-72

Examples 21-72

Target Collection DTD Elements 21-72

TargetCollection 21-73

Attributes 21-73

Elements 21-73

xxv

Used In 21-73

Examples 21-73

CollectionLevel 21-74

Attributes 21-75

Elements 21-75

Used In 21-75

Examples 21-75

CollectionItem 21-75

Attributes 21-76

Elements 21-77

Used In 21-77

Examples 21-77

MetricColl 21-78

Attributes 21-78

Elements 21-79

Used In 21-79

Examples 21-79

LimitRows 21-79

Attributes 21-79

Elements 21-80

Used In 21-80

Examples 21-80

ItemProperty 21-80

Attributes 21-80

Elements 21-80

Used In 21-80

Examples 21-80

Filter (for Target Collection) 21-81

Attributes 21-81

Elements 21-81

Used In 21-82

Examples 21-82

Condition 21-82

Attributes 21-82

Elements 21-83

Used In 21-84

Examples 21-84

KeyColumn 21-85

Attributes 21-85

Elements 21-85

Used In 21-85

xxvi

Examples 21-85

FixitJob 21-85

Attributes 21-85

Elements 21-86

Used In 21-86

Examples 21-86

A Out-of-Box Associations

B Plug-in Technical Checklist

Checking your Plug-in B-1

Checking Targets B-2

Checking Customized UIs B-6

Checking Job Types B-7

Checking Reports B-7

Testing your Plug-in B-7

C Metric Unit Standardization

Index

xxvii

List of Figures

4-1 Create EM Plug-in 4-5

7-1 Oracle Home ERD with Tie-ins to the Framework 7-3

8-1 Available Job Types from the Job Activity Page 8-36

9-1 Default System Home Page 9-22

9-2 System Home Page With Some Customization 9-23

9-3 Customized System Home Page 9-23

9-4 System Status Region 9-26

9-5 Issues Overview Region 9-27

9-6 System Job Activity Region 9-27

9-7 Table Displaying Data Loaded into the cpuSqlData Custom Data Source 9-37

9-8 Credentials Region 9-55

9-9 Panels 9-61

9-10 Availability Region 9-62

9-11 Incidents and Problems 9-62

9-12 Job Summary 9-63

9-13 Example of a Line Chart 9-64

9-14 Bar Chart 9-66

9-15 Group By Column 9-67

9-16 Group By Key 9-68

9-17 Bar Chart 9-68

9-18 Pie Chart 9-69

9-19 Data Service 9-71

9-20 Metric History Dialog 9-73

9-21 Train Example 9-75

9-22 Label Value Pairs 9-77

9-23 Link Example 9-78

9-24 Small Icon 9-79

9-25 Large Icon 9-79

9-26 Viewing Log Messages 9-93

10-1 Incident Manager 10-2

11-1 Core Association Type Hierarchy 11-3

13-1 Compliance Standard Result Detail 13-36

20-1 Table Returned by the OS Fetchlet 20-3

20-2 Table Returned by the OS LINES Fetchlet 20-6

20-3 Table Returned by the OS Token Lines Fetchlet 20-8

xxviii

20-4 SNMP Fetchlet 20-19

20-5 SNMP Fetchlet: Columns 3 and 4 Content 20-19

20-6 SNMP Fetchlet:ifDescr, ifInOctets, and ifOutOctets OIDS 20-20

20-7 SNMP Fetchlet: MIB Content with 4 Variable Instances 20-20

20-8 SNMP Fetchlet: Table Containing ifDescr and ipAdEntNetMask 20-20

20-9 SNMP Fetchlet: Alternate OID 20-21

20-10 URL Fetchet Output 20-22

20-11 URL LInes Fetchlet Output 20-23

20-12 URL Token Lines Output 20-25

20-13 URL XML Fetchlet Output 20-26

20-14 Summary Output Format 20-30

20-15 Summary Output Format with Specified Metric Columns 20-31

20-16 Summary Output Format with Specified Metric Columns and Internal Server Error 20-31

20-17 Summary Output Format for Two URLs 20-31

20-18 Detailed Output for Two URLs 20-31

20-19 Repeat Column Output Format 20-32

xxix

List of Tables

2-1 Key Elements Within the plugin.xml File 2-4

2-2 Certification Tags 2-6

2-3 Key Elements Within the plugin_registry.xml File 2-8

3-1 Key Elements of the Target Type Metadata File 3-3

3-2 Type Properties 3-6

3-3 Metric Categories 3-15

3-4 Key Elements Used to Define Metrics 3-17

3-5 Key Elements Within the Default Collection Metadata File 3-24

4-1 Create EM Plug-in 4-5

4-2 Adding A Target Type 4-11

4-3 Adding or Updating a Collection Item 4-17

5-1 Tag Attributes for the Host Configuration Report 5-6

5-2 <ReportElement> Tag 5-7

5-3 <ReportElementParameters> Tag 5-7

5-4 Table Element Parameters Time Period 5-8

5-5 Table Render Sort Column 5-8

5-6 Table Render Sort Order 5-9

5-7 Name Value Pair Display 5-9

5-8 Number of Rows 5-9

5-9 Is PL/SQL Statement 5-9

5-10 SQL or PL/SQL Statement 5-10

5-11 Named SQL Statement 5-11

5-12 Number of Rows 5-11

5-13 Null Data String Substitute 5-11

5-14 Split Table 5-12

5-15 Column Group Header 5-12

5-16 Column Group Start Column 5-12

5-17 Column Group End Column 5-13

5-18 Use Separate Rows for Values Within a Cell 5-13

5-19 Use Separate Rows as Delimiters 5-13

5-20 Severity Icon in Column 5-13

5-21 Availability Status Icon in Column 5-14

5-22 Render Image in Column 5-14

5-23 Target Type Column 5-14

5-24 Define Filter Name 5-15

xxx

5-25 Define Filter Prompt 5-15

5-26 SQL Filter 5-15

5-27 List of Filter Names 5-16

5-28 Translate List of Filter Names 5-16

5-29 Filter Tip Text 5-16

5-30 Default Filter Name 5-16

5-31 Null Default Filter Name 5-17

5-32 Display Empty Table 5-17

5-33 Empty Table Headers 5-17

5-34 Table Header Type 5-18

5-35 Overwrite Table Header Text 5-18

5-36 Overwrite Default Filter Description 5-18

5-37 Overwrite Default Filter Tip Text 5-18

5-38 Overwrite Default Button Text 5-19

5-39 Empty Table Text 5-19

5-40 Link to Report 5-19

5-41 Display Number of Columns 5-20

5-42 Display Target Name 5-20

5-43 Display Target Type 5-20

5-44 Display URL 5-20

5-45 Chart Type 5-22

5-46 Time Period 5-22

5-47 Fill 5-23

5-48 Height 5-23

5-49 Horizontal or Vertical 5-23

5-50 Legend Position 5-24

5-51 Is PL/SQL Statement 5-24

5-52 SQL or PL/SQL Statement 5-24

5-53 Stacked Bar Chart 5-25

5-54 Chart Title 5-25

5-55 Width 5-26

5-56 Y-Axis Label 5-26

5-57 Slices as Percentage 5-26

5-58 Show Values in Legend 5-26

5-59 Target Type 5-27

5-60 Metric Name 5-27

5-61 Metric Column Name 5-27

xxxi

5-62 Time Period 5-28

5-63 Width 5-28

5-64 Height 5-28

5-65 Legend Position 5-29

5-66 Message Text 5-29

5-67 Message Style 5-29

5-68 Link Destination 5-29

7-1 Key Elements of a Configuration Metadata XML File 7-9

7-2 InventoryChoice Element 7-24

8-1 Example of Job Types 8-2

8-2 Command Error Codes 8-15

8-3 Credential Usage (credential) 8-25

8-4 Credential Binding (cred) 8-25

8-5 Job Type Incompatibilities 8-29

9-1 Key Elements Used to Define Discovery Metadata 9-8

10-1 Key Elements in Event-Specific Customization XML 10-5

10-2 Common Event Attributes 10-5

10-3 Event Attributes for Target Availability 10-8

10-4 Event Class Attributes for Metric Alerts 10-12

12-1 Key Elements in a plugin_discovery.xml File 12-4

13-1 Key Tags for Defining Repository Rules 13-7

13-2 Key Tags Used to Define a Real-Time Monitoring Facet 13-13

13-3 Key Tags Used to Define a Time Window Facet 13-16

13-4 Key Tags Used to Define a Real-time Rule 13-18

13-5 Key Tags Used in Defining Compliance Standards 13-24

13-6 Key Tags Used in Defining a Compliance Framework 13-28

13-7 Compliance Content Attributes 13-30

14-1 File Locations in Plug-in Archive Structure 14-3

14-2 Options for Validating the Plug-in 14-6

14-3 Options for Creating an OPAR 14-8

14-4 emctl Command Usage 14-14

16-1 Key elements in a plugin.xml file 16-4

17-1 Key Elements for Defining a New Chargeback Entity Type 17-5

18-1 JVM Instance Properties 18-37

18-2 Properties the Fetchlet Uses 18-38

18-3 Target Properties 18-40

19-1 SNMP Receivelet Input Parameters 19-2

xxxii

20-1 OS Fetchlet Input Parameters 20-2

20-2 OSLines Fetchlet Input Parameters 20-4

20-3 OSLineToken Fetchlet Input Parameters 20-6

20-4 SQL Fetchlet Input Parameters 20-10

20-5 SNMP Fetchlet Input Parameters 20-16

20-6 URL Fetchlet Input Parameters 20-21

20-7 URL Lines Fetchlet Input Parameters 20-22

20-8 URL Line Token Fetchlet Input Parameters 20-24

20-9 URLXML Fetchlet Input Parameters 20-25

20-10 URL Timing Fetchlet Input Parameters 20-27

20-11 URLTIMING Fetchlet: Output Formats 20-29

20-12 URLTIMING Fetchlet: Metric Columns 20-29

20-13 DMS Fetchlet Input Parameters 20-33

20-14 JDBC Fetchlet Input Parameters 20-37

20-15 Metric Columns Collected 20-38

20-16 WBEM Fetchlet Input Parameters 20-39

20-17 JMX Fetchlet Major Input Parameters 20-43

20-18 Web Service Fetchlet Properties 20-46

20-19 WS Management Fetchlet Properties 20-52

20-20 Resonse Processing Mechanism 20-57

20-21 REST Fetchlet Properties 20-58

20-22 Command-line Arguments Supported by REST CLI 20-61

21-1 Metric Prop 21-4

21-2 Metric: perf 21-4

A-1 application_contains A-2

A-2 app_composite_contains A-2

A-3 authenticated_by A-3

A-4 composite_contains (abstract) A-3

A-5 cluster_contains A-4

A-6 connects_through A-4

A-7 contains (abstract) A-5

A-8 depends_on(abstract) A-5

A-9 deployed_on A-5

A-10 exposes A-6

A-11 hosted_by A-6

A-12 installed_at A-7

A-13 internal_contains (for internal OMS use only) A-7

xxxiii

A-14 managed_by A-7

A-15 monitored_by A-8

A-16 provided_by A-8

A-17 runs_on (abstract) A-8

A-18 stores_on A-8

A-19 stores_on_db A-9

A-20 uses (abstract) A-9

B-1 Plug-in Metadata Checklist B-1

B-2 Targets Checklist B-3

B-3 Customized User Interface Checklist B-6

B-4 Job Types Checklist B-7

B-5 Reports Checklist B-7

B-6 Plug-in Self-Test Checklist B-8

xxxiv

Preface

This document covers Oracle Enterprise Manager framework extensibility and related
reference information.

Audience
This document is intended for plug-in developers that want to extend Oracle Enterprise
Manager to support the ability to manage custom target types or extend the manageability of
out-of-box target types.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Resources
For detailed information on Oracle Enterprise Manager, see the documentation available in
Oracle Help Center:

https://docs.oracle.com/en/enterprise-manager/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

xxxv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/en/

1
Getting Started with Plug-in Development

This chapter contains the following sections:

• About the Plug-in Creation Process

• About the Extensibility Development Kit (EDK)

• Installing the Extensibility Development Kit (EDK)

• Designing the Plug-in

• Creating a Basic Plug-in

• Creating an Intermediate Plug-in

• Creating an Advanced Plug-in

About the Plug-in Creation Process
Creating a plug-in involves the following steps, all of which are covered in this book:

1. Designing your plug-in.

2. Developing the plug-in, which includes creating the requisite metadata files that enable
the plug-in functionality.

3. Staging the plug-in.

4. Validating the plug-in.

5. Packaging the plug-in as an archive (.opar) file.

6. Importing the plug-in into Enterprise Manager Cloud Control.

7. Deploying the plug-in to Oracle Management Service.

8. Adding a target from your environment to initiate target monitoring. The plug-in files
required by the Management Agent to monitor the target will be pushed to the Agent at
this time.

9. Testing the plug-in to verify that it is behaving as expected.

As you continue to modify your plug-in metadata, you can upload your new metadata files to
Enterprise Manager without re-deploying the plug-in archive using the Metadata Registration
Service. See Updating Deployed Metadata Files Using the Metadata Registration Service
(MRS) for instructions on using this service.

In addition, to keep track of each updated version of your plug-in, you should incrementally
update the plug-in version as follows in the following plug-in metadata files:

• In the PluginVersion attribute in the plugin.xml file that describes the plug-in to Oracle
Management Service the plug-in is deployed to. See Creating the plugin.xml File.

• In the Version attribute in the plugin_registry.xml file that describes the plug-in to
Management Agents the plug-in is deployed to. See Creating the plugin_registry.xml File.

1-1

About the Extensibility Development Kit (EDK)
A key component of the Enterprise Manager Cloud Control architecture is the
Extensibility framework. To enable Oracle partners to extend the Enterprise Manager
platform, an Extensibility Development Kit (EDK) is provided with the product.

The EDK is a collection of tools, utilities, and documentation, including:

• Enterprise Manager Extensibility documentation: Provide general guidelines for
programming Enterprise Manager plug-ins

• Reference Implementation: Provides a reference code implementation, code
snippets, and so on for various Enterprise Manager features

• Build time tools to verify EDK conformance: A tool that you can use to validate and
report any violations, with respect to Enterprise Manager Extensibility guidelines

• Packaging Tool: A tool to package the plug-in components tool (empdk)

• Verification Tool: A tool to validate plug-in code components and to report
violations (if any).

Enterprise Manager EDK includes a command line utility called empdk. Use this utility
to package or validate a plug-in archive. For information associated with the empdk
commands and their options, see Validating the Plug-in.

After you download the EDK, unzip it on your local system, and change your current
directory to the location where you unpacked the EDK. The EDK contains reference
documentation and guides to help you with plug-in development as well as the API
reference you might need to integrate while developing plug-ins.

For information about downloading the EDK, see Installing the Extensibility
Development Kit (EDK).

Contents of the EDK
The EDK archive contains the following directories:

• /bin

Contains the empdk utility, which you use to:

– Validate the structure of your plug-in

– Package your plug-in

– Convert the metadata for existing (pre-Cloud Control 12) plug-ins to the new
metadata formats

• /doc

Contains the Oracle Enterprise Manager Extensibility Programmer's Guide and
Programmer's Reference, as well as the EDK API Reference documentation,
including documentation on Management Views. Review overview.html for links to
the documentation provided.

You can also access the EDK API Reference documentation directly through its
index page (sdk_api_ref.html).

• /lib

Chapter 1
About the Extensibility Development Kit (EDK)

1-2

Contains internal libraries used by the EDK.

• /oui

Contains internal libraries used by the EDK.

• /samples

Contains a complete reference implementation of a plug-in, packaged as
demo_hostsample.zip. The sample metadata files included should be used as examples
of the files referenced throughout the EDK documentation.

View the README packaged with the archive for instructions on building, deploying, and
using the sample plug-in.

Other utilities referenced in this documentation, including EM CLI and EM CTL, are installed
with Enterprise Manager and are typically deployed to the Oracle Management Service
(OMS) host.

Installing the Extensibility Development Kit (EDK)
Before you begin developing plug-ins, install the Extensibility Development Kit (EDK).

Note:

Before installing the EDK, you must have the following:

• Latest version of the EDK ZIP archive from the Self Update console. (To access
the Self Update console, from the Cloud Control console, select Setup, then
Extensibility, and then Self Update.)

• Java version 1.7.0_51 or later

• Local system running Solaris, Linux, HP-UX, AIX, or Windows with New
Technology File System (NTFS)

To install the EDK:

1. Download the EDK ZIP archive to your local system using one of the following options:

• Enterprise Manager Cloud Control

a. Log in to Enterprise Manager Cloud Control.

b. From the Setup menu, select Extensibility, then select Development Kit.

The Extensibility Development Kit (EDK) page appears.

c. Under Installing the EDK, select Download the Extensibility Development Kit
to your workstation.

d. Save 13.1.0.0.0_edk_partner.zip to your local system.

• Enterprise Manager Command Line Utility (EM CLI)

Note:

For information about setting up EM CLI, see Setting Up the EM CLI Utility.

Chapter 1
Installing the Extensibility Development Kit (EDK)

1-3

Open a command prompt and run the following command:

emcli get_ext_dev_kit

This command downloads the EDK zip archive to the same directory from
where you ran the command and does not require any parameters.

2. Set your JAVA_HOME environment variable and ensure that it is part of your
PATH. For example:

setenv JAVA_HOME /usr/local/packages/j2sdk1.7.0_51

setenv PATH $JAVA_HOME/bin:$PATH
3. Unpackage the downloaded EDK ZIP archive to a directory on your local system.

For example:

Unzip 13.1.0.0.0_edk_partner.zip

This command creates the following directories under the directory
(release_edk_partner) where you unpackaged the EDK ZIP archive:

release_edk_partner
 |
 bin
 doc
 lib
 oui
 samples
 README

For more information about the directory contents, see Contents of the EDK.

Designing the Plug-in
Before creating your plug-in, you must first determine what information needs to be
collected to monitor and manage the target type. This involves:

• Identifying performance and configuration metrics that should be collected.

• Determining how often each metric should be collected. Oracle recommends that
the collection frequency for any metric should not be less than once every five
minutes.

• Based on customer-specific operational practices, specifying default warnings and
critical thresholds on these metrics. Whenever a threshold is crossed, Enterprise
Manager generates an alert, informing administrators of potential problems.

Creating a Basic Plug-in
Ideally, begin by creating a basic monitoring plug-in that includes the basic required
metadata:

• The target type definition file, which defines:

– A required "Response" metric group, which includes a status metric and a
performance metric.

– Credentials needed to authenticate with the target.

For more information, see Creating Target Metadata Files .

Chapter 1
Designing the Plug-in

1-4

• A default collection file defining the frequency at which metrics and configuration data will
be collected. For more information, see Creating the Default Collection File.

• Developing Oracle Business Intelligence Publisher (BI Publisher) reports to display
collected target data.

For more information, see Developing BI Publisher Reports .

Once created, you will validate and package your plug-in. See Validating, Packaging, and
Deploying the Plug-in for instructions.

As the final step, deploy your plug-in to Enterprise Manager Cloud Control and begin testing
to ensure that data for the Response metric is being returned.

Note:

The EDK provides a sample host plug-in. This contains examples of all features
mentioned previously. For more information, see the README bundled with the
sample plug-in.

Creating an Intermediate Plug-in
When you have created a basic plug-in, you might want to enhance the plug-in's capabilities
by adding more complex functionality.

• Add more complex metrics.

For more information, see Defining Advanced Metrics.

• Provide the ability to collect configuration data for the target, which is used to create a
"snapshot" of the target's configuration at a specific point in time.

For more information, see Collecting Target Configuration Data.

• Create a metadata-based metadata custom user interface, which will essentially add a
custom target home page for displaying target metrics to Enterprise Manager.

For more information, see Defining a Management User Interface .

• Defining target associations, which can be used to create topology models of the targets
managed by the plug-in.

For more information, see Using Derived Associations.

• Define a job type that executes specific tasks specific to the target type.

For more information, see Adding Job Types .

Creating an Advanced Plug-in
When you have successfully created and validated your basic or intermediate plug-in, you
might want to enhance it with advanced features. Among the enhancements to consider:

• Adding the ability to automatically discover newly-added instances of the target type
managed by the plug-in.

For more information, see Defining Target Discovery .

Chapter 1
Creating an Intermediate Plug-in

1-5

• Building a Flex-based custom management user interface. This page will be
accessed with other target home pages through the Cloud Control console.

For more information, see Defining a Management User Interface .

• Define compliance standards and monitoring rules specific to the target type.

For more information, see Adding Compliance Standards.

Chapter 1
Creating an Advanced Plug-in

1-6

2
Defining the Plug-in

This chapter describes the plug-in metadata that you must define to create a plug-in
It contains the following sections:

• Introduction to Defining the Plug-in

• About Plug-in Metadata

• Creating Plug-in Definition Files

• Validating Plug-in Definition Files

• Adding Log Viewer Support to Your Plug-in

• Defining Plug-ins for Upgrade

• Deprecating a Plug-in

Introduction to Defining the Plug-in
As a plug-in developer, you are responsible for the following steps within the plug-in definition
process:

1. Define the plug-in identifier (ID).

For more information, see Defining the Plug-in ID.

2. Define the plug-in version.

For more information, see Defining the Plug-in Version.

3. Create the plug-in definition files:

a. Create the plugin.xml file.

The plugin.xml file provides the metadata describing the plug-in.

For more information, see Creating the plugin.xml File.

b. Create the plugin_registry.xml file.

The plugin_registry.xml file provides the metadata required by the Management
Agent to which the plug-in will be deployed.

For more information, see Creating the plugin_registry.xml File.

4. Package the plug-in definition files in the plug-in staging directory (plugin_stage):

• plugin_stage/plugin.xml
• plugin_stage/agent/plugin_registry.xml
For more information, see Validating, Packaging, and Deploying the Plug-in .

5. Validate the plug-in definition files.

For more information, see Validating Plug-in Definition Files

2-1

About Plug-in Metadata
A basic plug-in requires metadata for the plug-in itself, including information such as
the name and version that is used by Oracle Management Service and Management
Agents, definition of a metric indicating whether the monitored target is up, and
definition of the frequency at which metric data should be collected.

Defining the Plug-in ID
Plug-ins are identified by a unique plug-in identifier (ID). The plug-in ID has three
parts:

• Vendor ID (8 chars). For example: test
• Product ID (8 chars). For example: switch
• Plug-in Tag (4 chars). For example: xkey

Note:

– The Vendor ID, Product ID, and Plug-in Tag must not begin with a
number or include any special characters. All these parts must
contain alphanumeric characters only.

– The Plug-in Tag must begin with a lower-case x and cannot exceed 4
characters. All characters must be lower case.

– If you are planning to define more than one plug-in, then make sure
that the Plug-in Tag for each plug-in is distinct and unique.

– If you want to maintain the previous names of existing plug-ins, then
you must use the AgentSideCompatibility element. Otherwise,
plug-in validation will fail. For information about plug-in validation,
see Validating, Packaging, and Deploying the Plug-in . For
information about the AgentSideCompatibility element, see
Table 2-1.

The Plug-in ID created from the previous example would be:

test.switch.xkey

Note:

The plug-in ID must be unique across Enterprise Manager.

Defining the Plug-in Version
Each plug-in must be assigned a version. The plug-in versioning syntax is as follows:

a.b.c.d.e

Chapter 2
About Plug-in Metadata

2-2

• a.b = The version of the Enterprise Manager Extensibility Development Kit (EDK) used
for development (13.1, 13.2, and so on).

• c = The developer-assigned plug-in version. This value must be incremented with each
plug-in release on the same Enterprise Manager Cloud Control release.

• d = Indicates whether the plug-in is a beta version or a production version. 0 indicates
beta and 1 or later indicates production.

• e = For future use. The default value is 0.

Putting it all together, the following example shows the first version of a plug-in created for
Enterprise Manager Cloud Control 13c:

13.1.1.1.0

Note:

Oracle recommends that you update the plug-in version incrementally as you create
and deploy each iteration of your plug-in. For example, 13.1.1.1.0, 13.1.2.1.0,
13.1.3.1.0, and so on.

Creating Plug-in Definition Files
The following two metadata files are required for all plug-ins deployed to Enterprise Manager
Cloud Control 13c.

• plugin.xml

This file is used during plug-in deployment. It contains properties that identify the plug-in,
such as name and version, and declares the set of target types that will be added to
Enterprise Manager Cloud Control.

• plugin-registry.xml

This file declares those components included in the plug-in that are to be deployed to the
Management Agent.

Creating the plugin.xml File
The plugin.xml file provides the metadata describing the plug-in.

The following sections describe the required and some of the optional tags that you can
include in the plugin.xml file.

This example provides a sample plugin.xml for a plug-in.

<?xml version = '1.0' encoding = 'UTF-8'?>
<Plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/plugin_
metadata plugin_metadata.xsd"
 xmlns="http://www.oracle.com/EnterpriseGridControl/plugin_metadata">

 <PluginId vendorId="test" productId="demo" pluginTag="xkey"/>

 <PluginVersion value="13.1.1.1.0"/>

Chapter 2
Creating Plug-in Definition Files

2-3

 <ShortDescription>Test plugin for the Test Demo Plug-in.</ShortDescription>
 <Readme><![CDATA[Brief details about the Test Demo plug-in]]></Readme>
 <!--
 <AgentSideCompatibility>
 <Version>Previous_Version</Version>
 </AgentSideCompatibility>
 -->

 <TargetTypeList>
 <TargetType name="test_demo_xkey" isIncluded="TRUE">
 <VersionSupport>
 <SupportedVersion supportLevel="Basic" minVersion="9.2.0.1"
 maxVersion="9.8.0.0.0"/>
 </VersionSupport>
 </TargetType>
 </TargetTypeList>

 <PluginDependencies>
 <DependentPlugin pluginDependencyType="RunTime">
 <DepPluginId vendorId="test" productId="switch" pluginTag="xyz1"/>
 <BaseVersion version="11.2.0.1.0"/>
 </DependentPlugin>
 <DependentPlugin pluginDependencyType="RunTime">
 <DepPluginId vendorId="test" productId="switch" pluginTag="xyz2"/>
 <BaseVersion version="11.2.0.1.0"></BaseVersion>
 </DependentPlugin> </PluginDependencies>
 <PluginAttributes Type="MP" Category="Databases"/>
</Plugin>

Overview of plugin.xml Elements
Table 2-1 describes the key elements included within the plugin.xml files.

Table 2-1 Key Elements Within the plugin.xml File

Element Required Description

Plugin Y The root element for the file.

PluginID Y The unique identifier assigned to the plug-in.

For more information, see Defining the Plug-in ID.

PluginVersion Y The plug-in version.

For more information, see Defining the Plug-in Version.

PluginOMSOSAruId N The operating system (OS) ID for the Oracle Management Service to
which the plug-in will be deployed. Usually, this element is set to 2000
(generic).

For more information, see Certifying Plug-ins.

Readme Y Provides information about the plug-in that is displayed on the Plug-ins
page of the Cloud Control console.

To access the Plug-ins page, from the Setup menu, select
Extensibility, then Self Update, and then Plug-ins.

Chapter 2
Creating Plug-in Definition Files

2-4

Table 2-1 (Cont.) Key Elements Within the plugin.xml File

Element Required Description

PluginAttributes N Defines plug-in attributes such as plug-in type, display name, category,
and so on.

The default Plug-in Type for metadata plug-ins is “MP". The default
Category is “Others".

Valid Type values:

• MP

Metadata plug-in with default UI
• MPP

Metadata plug-in with custom UI
Valid Category values:

• Applications
• Databases
• Middleware
• Cloud
• Engineered Systems
• Servers, Storage and Network
• Others

Note: Oracle recommends that you use a specific category value
rather than Others.

TargetTypeList N Contains one or more TargetType elements, each specifying the
target type name packaged with the plug-in.

For information about the target type metadata file, see Creating the
Target Type Metadata File.

Each TargetType element can also include a VersionSupport
element identifying supported or non-supported versions of the target
type.

PluginDependencies N Describes any dependencies that exist for the plug-in. Dependencies
can be described as the following:

• RunTimeMandatory: This dependency indicates that the plug-in
that the current plug-in is dependent on, must exist before
deploying the current plug-in. For example, Plug-in A cannot be
deployed if the plug-in on which it depends does not exist. Plug-in
A uses a feature from plug-in B at runtime but this feature will
break if plug-in B is missing.

• RunTime: This dependency indicates that the deployment of the
current plug-in with feature dependencies can go ahead without
the plug-in that it is dependent on. If the plug-in that the current
plug-in is dependent on comes into the environment later, then
dependent features will be enabled. Along with dependencies, you
can also describe the prerequisites. Currently the supported
prerequisite is of type bug.

• CompileTime: This dependency indicates that the dependent
plug-in should exist before deployment of the current plug-in, that
is, if the current plug-in explicitly consumes an API from a
dependent plug-in and has a build-time dependency.

Chapter 2
Creating Plug-in Definition Files

2-5

Table 2-1 (Cont.) Key Elements Within the plugin.xml File

Element Required Description

AgentSideCompatibility N Identifies the previous plug-in versions with which the current plug-in is
compatible.

By specifying this element, you indicate explicitly that the previous plug-
in metadata on the Management Agent side is compatible with the new
version of plug-in metadata on the OMS side. That is, after upgrading
the previous plug-in, you can upload data to the new version on OMS
without breaking any features, such as metrics, thresholds or
configuration collections.

If you have a previous version of a plug-in that is not compatible with
the new version of the plug-in, then you can use this element to list the
compatible versions only. For example, if version 12.1.0.2.0 is not
compatible with 13.1.1.1.0 (new plug-in version), then you can list
12.1.0.3.0 and 12.1.0.4.0 to indicate that only 12.1.0.3.0 and 12.1.0.4.0
plug-ins are compatible with the new 13.1.1.1.0 plug-in.

Certifying Plug-ins

Note:

All metadata plug-ins must be generic on the OMS side and are implicitly
certified on all platforms. However, the plug-in can specify the OS
certification for the Management Agent.

Because Enterprise Manager is released on a number of OS platforms, you must
consider how your plug-in will behave on different OS platforms. The plugin.xml file
contains elements and attributes that support a certification mechanism.

In cases, where the plug-in is applicable to only a subset of OS platforms, you can use
the tags defined in Table 2-2. If you do not specify any information in the
<Certification> section, the plug-in is assumed certified on all platforms.

Table 2-2 Certification Tags

Tag Description

Component type Specifies the plug-in component.

Valid values:

• Agent: Management Agent component
• Discovery: Discovery component

Chapter 2
Creating Plug-in Definition Files

2-6

Table 2-2 (Cont.) Certification Tags

Tag Description

PortARUId value Specifies the ARU ID for the OS or platform.

Valid values:

• 46: Linux x86 (32-bit)
• 212: AIX 5L and 6.1 (64-bit)
• 226: Linux x86-64 (64-bit)
• 23: Solaris Sparc (64-bit)
• 267: Solaris x86-64 (64-bit)
• 233: Microsoft Windows x86-64 (64-bit)

The following example indicates that the plug-in is designed to work on Linux 32 and Linux 64
platforms only. If you do not specify a certified port, then by default your plug-in is certified on
all operating systems and platforms. But if you specify at least one PortARUId element, then
that component is certified on those specified platforms only.

Note:

The Management Agent and Discovery components must have the same value

Example: Certifying Generic Plug-ins

<Certification>
 <Component type="Agent">
 <CertifiedPorts>
 <PortARUId value="46" />
 <PortARUId value="226" />
 </CertifiedPorts>
 </Component>
 <Component type="Discovery">
 <CertifiedPorts>
 <PortARUId value="46" />
 <PortARUId value="226" />
 </CertifiedPorts>
 </Component>
</Certification>

Creating the plugin_registry.xml File
The plugin_registry.xml file provides the metadata required by the Management Agent that
the plug-in will be deployed to. It is packaged in the /agent directory within the plug-in archive
and is deployed to the Management Agent that will monitor a target.

The following example provides a sample plugin_registry.xml file. The TargetTypes element
contains a reference to the target type metadata file location in the plug-in archive. The
location is relative to the plugin_stage directory root, that is, starting from the Management
Agent subdirectory or the same location where the plugin_registry.xml file is located.

Similarly, the TargetCollections element contains a reference to the plug-in's default
collection metadata file, which is also packaged with the plug-in.

Chapter 2
Creating Plug-in Definition Files

2-7

Example: Sample plugin_registry.xml File

<?xml version="1.0"?>
<PlugIn ID="test.demo.xkey" Description="Demo Sample Host Plugin"
Version="13.1.1.1.0" HotPluggable="false"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/plugin
plugin.xsd">
 <TargetTypes>
 <FileLocation>metadata/test_switch_key.xml</FileLocation> </TargetTypes>
 <TargetCollections>
 <FileLocation>default_collection/test_switch_key_collection.xml</
FileLocation>
 </TargetCollections>
 <PlugInLibrary>
 <FileLocation>archives/em-as-fmw-fetchlet.jar</FileLocation>
 <FetchletRegistration>
 <Fetchlet ID="DMS" ExecutionClass="oracle.sysman.as.fetchlets.DMSFetchlet"
Version="" Description="" Adapter=""/>
 </FetchletRegistration>
 <AdditionalClassPath>
 <FileLocation>archives/dms.jar</FileLocation>
 </AdditionalClassPath>
 </PlugInLibrary>
</PlugIn>

Overview of plugin_registry.xml Elements
Table 2-3 describes the key elements included within the file.

Table 2-3 Key Elements Within the plugin_registry.xml File

Element Required Description

Plugin Y The root element for the file. It includes the following attributes:

• ID: Required. The unique identifier assigned to the plug-in.

For more information, see Defining the Plug-in ID.
• Description: Optional. A title describing the plug-in.
• Version: Required. The plug-in version.

For more information, see Defining the Plug-in Version.

TargetTypes N Contains one or more FileLocation elements, each specifying the
path and file name for a target type metadata file packaged with the
plug-in.

For information about target type files, see Creating the Target Type
Metadata File.

TargetCollections N Contains one or more FileLocation elements, each specifying the
default collection for a target type.

For information about this file, see Creating the Default Collection
File.

Chapter 2
Creating Plug-in Definition Files

2-8

Table 2-3 (Cont.) Key Elements Within the plugin_registry.xml File

Element Required Description

PlugInLibrary N Lists the different types of artifacts (fetchlets, receivelets, and so on)
packaged in the plug-in.

The PlugInLibrary element includes the following subelements:

• FileLocation: Mandatory. Defines the location of the JAR
containing the implementations of the following listed fetchlets.

• FetchletRegistration: Optional. Creates an entry that maps
a fetchlet id (DMS in the Sample plugin_registry.xml File
example) to the class that contains the implementation of the
fetchlet interface.

• ReceiveletRegistration: Optional. Creates an entry that
maps a receivelet id to the class that contains the
implementation of the receivelet interface

• AdditionalClassPath: Optional. Specifies additional JAR files
to be loaded by the plug-in for a specific library.

AdditionalClassPath N Specifies additional JAR files to be loaded by the plug-in that are
shared by all the plug-in libraries

Validating Plug-in Definition Files
To verify that your plugin.xml and plugin_registry.xml files are defined correctly, enter the
following command from the /bin directory of the EDK:

empdk validate_plugin -stage_dir plugin_stage

In the preceding command, plugin_stage represents the plug-in staging directory.

For information about the EDK, see About the Extensibility Development Kit (EDK) and for
more information about the empdk command and its usage, see Validating the Plug-in.

Adding Log Viewer Support to Your Plug-in
Beginning with Enterprise Manager Cloud Control Release 12c (12.1.0.3), you can enable log
files for your deployed plug-in to be viewable with Cloud Control's Log Viewer. To access this
component, from the Cloud Control Enterprise menu, select Monitoring, then Logs.

Follow these steps to enable this feature:

1. Create the log viewer registration XML file for your plug-in. The DTD for this XML file is:

oracle/sysman/emSDK/logmgmt/registration/LogMgmtTargetTypeRegistration.xsd

2. Package this file in oms/metadata/logmgmt/ within the plug-in directory structure.

The following example provides an example of a log viewer registration file.

Example: Sample Log Viewer Registration File

<LogMgmtUITargetConfig TARGET_TYPE="%your targe type%">
 <LogViewerImpl CLASS_NAME="oracle.sysman.emas.model.logmgmt.MASLogViewer"/>
 <VersionProperties VALID_VERSIONS="11" MIN_META_VER="11.00000"VERSION_
 CATEGORY_PROP_WILDCARD_CHAR="*"/>
</LogMgmtUITargetConfig>

Chapter 2
Validating Plug-in Definition Files

2-9

Defining Plug-ins for Upgrade
During plug-in development, if you are planning a subsequent version of your plug-in,
you must ensure that the plug-in can be upgraded, that is, you can deploy a new
version without having to remove an older version of the plug-in.

To ensure that your plug-in can be upgraded:

1. In the new plug-in.xml file, include the AgentSideCompatibility tag explicitly
specifying the compatible previous versions of the plug-in.

For more information about the AgentSideCompatibility tag, see Table 2-1.

Note:

• Oracle recommends that you include at least the two previous
versions.

• If the previous plug-in metadata is not compatible with the new
version, then you might see metrics and collection errors after
upgrading. Oracle recommends that you list the compatible versions
of the plug-in under the AgentSideCompatibility element to avoid
issues with upgrading your plug-in.

2. When you specify previous plug-in versions under the AgentSideCompatibility
element, you must bundle the OPARs of these plug-in versions in the plug-in
staging directory.

Under the plug-in staging directory (plugin_stage), create a released_plugins
directory and place the previously released plug-in OPAR archive (for example,
12.1.0.2.0_test.demo.xkey_2000_0.opar) in this directory.

For more information about the plug-in staging directory, see Staging the Plug-in.

3. Perform upgrade testing from all previous versions of the plug-in to ensure that all
features are working correctly such as:

• Verify metric collections

• Verify configuration collections

• Check that there are no metric collection errors due to the upgrade

• Check that updated metric thresholds and templates are picked up as
expected

• Check that updated job metadata is picked up as expected

Deprecating a Plug-in
To mark your plug-in for deprecation, add the following line to your plugin.xml file:

<Deprecated />

For example:

Chapter 2
Defining Plug-ins for Upgrade

2-10

<?xml version = '1.0' encoding = 'UTF-8'?>
<Plugin xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/plugin_
metadata plugin_metadata.xsd"
 xmlns="http://www.oracle.com/EnterpriseGridControl/plugin_metadata">

 <PluginId vendorId="test" productId="demo" pluginTag="xkey"/>

 <PluginVersion value="12.1.0.1.0"/>

 <Deprecated/>

 <ShortDescription>Test plugin for the Test Demo Plug-in.</ShortDescription>
 <Readme><![CDATA[Brief details about the Test Demo plug-in]]></Readme>
 .
 .
 .

Note:

When a plug-in is marked as deprecated, it continues to provide the same level of
support until it is obsolete in the next major release.

Chapter 2
Deprecating a Plug-in

2-11

3
Creating Target Metadata Files

This chapter provides the steps involved in the target metadata file creation process. It
contains the following sections:

• Introduction to Creating Target Metadata Files

• Overview of Target Definition Files

• Creating the Target Type Metadata File

• Defining Metrics to Collect from the Target

• Creating the Default Collection File

• Guidelines for Creating Target Metadata

• Localizing Target Metadata

• Checking a New Target Type

• Testing Your Target Type Definitions

• Validating Your Metadata XML

• Troubleshooting the Target Creation Process

Introduction to Creating Target Metadata Files
As a plug-in developer, you are responsible for the following steps within the target metadata
files creation process:

1. Create the target definition file.

The target type metadata file tells the Management Agent what data to retrieve and how
to obtain that data for this particular target type.

For more information, see Creating the Target Type Metadata File.

2. Define metrics to collect from the target.

A metric refers to a specific piece of data collected from the target. A set of related
metrics collectively comprise a metric group.

For more information, see Defining Metrics to Collect from the Target.

3. Define target configuration data to collect.

You can collect configuration data for a target and save it in the Management Repository
as a snapshot representing the target's configuration at a specific point in time. Each
configuration snapshot is associated with a specific target instance.

For more information, see Collecting Target Configuration Data.

4. Create the default collection file.

The default collection file defines the metric data to be collected from targets and
uploaded to the Management Repository along with information such as the collection
schedule.

3-1

For more information, see Creating the Default Collection File.

5. Package the various definition files in the plug-in staging directory (plugin_stage):

• Target type metadata file

– plugin_stage/oms/metadata/targetType/target_type.xml
– plugin_stage/agent/metadata/target_type.xml

Note:

An identical copy of this file must be placed in both the /oms
and /agent directories.

• Default collection file

– plugin_stage/oms/metadata/default_collection/target_type.xml
– plugin_stage/agent/default_collection/target_type.xml

Note:

An identical copy of this file must be placed in both the /oms
and /agent directories.

• Configuration metadata file

plugin_stage/oms/metadata/snapshotlive/target-type_ecmdef.xml
For more information, see Validating, Packaging, and Deploying the Plug-in .

Overview of Target Definition Files
Two XML metadata files are required to define the target type that your plug-in will
enable Enterprise Manager Cloud Control to monitor and manage:

• Target type metadata file

The definition of a target type primarily consists of the metrics you want the
Management Agent to collect for the target. The file contains a list of all metrics
that will be collected for the target type, along with specifics on how to compute
each metric.

For more information, see Creating the Target Type Metadata File.

• Default collection file

This file defines the interval at which metric data will be collected or received from
the target. You can specify optional alert thresholds and optional corresponding
alerts messages for each metric. Cloud Control users can override the default
collection intervals, but the default values must be provided in this file.

For more information, see Creating the Default Collection File.

This chapter also describes the metadata definitions required to collect configuration
data for plug-in targets. This is an advanced feature but can be useful for many plug-
ins. For more information, see About the Configuration Definition Files.

Chapter 3
Overview of Target Definition Files

3-2

The following sections provide the summary of creating the target type and default collection
metadata files, as well as an overview of target configuration data collection.

Creating the Target Type Metadata File
The target type metadata file tells the Oracle Management Agent what data to retrieve and
how to obtain that data for this particular target type.

At the highest definition level, the target type metadata file is composed of four key XML
elements as described in Table 3-1.

Table 3-1 Key Elements of the Target Type Metadata File

Element Description

TargetMetadata Specifies information about the plug-in, such as name
and version.

Metric Defines a metric group, which in turn contains one or
more metrics that each define a specific piece of data
collected from the target.

InstanceProperties Defines properties that are populated when a target
instance is created.

CredentialTypes/CredentialSets Specifies credentials required to by the plug-in
authenticate with a target instance.

Enterprise Manager ships with predefined target type metadata files that cover the most
common target types. In situations where the predefined target metadata files do not fit the
types of targets you want to monitor, you can either:

• Define a new target type by creating a target type metadata file

• Use one of the predefined metadata files as a template for defining a new target type,
and then repackage the files as a new plug-in

This section briefly introduces the structure of the target type metadata file. A complete
example of a target type metadata file is provided with the EDK:

edk/samples/plugins/SampleHost/oms/metadata/targetType/demo_hostsample.xml

In the preceding directory path, edk represents the directory where you expanded the EDK
archive. For information about the EDK archive, see About the Extensibility Development Kit
(EDK).

For additional information about creating target type metadata files, Guidelines for Creating
Target Metadata.

Creating a Basic Target Type Metadata File
The following example shows the minimum required information that a target type file must
contain.

Example: Target Type File

<TargetMetadata META_VER="2.0" TYPE="demo_hostsample">
 <Display>
 <Label NLSID="hs_displayname">Demo Plugin Sample Host</Label>
 </Display>

Chapter 3
Creating the Target Type Metadata File

3-3

 <Metric NAME="Response" TYPE="TABLE">
 <Display>
 <Label NLSID="hs_response_displayname">Response</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Status" TYPE="NUMBER">
 <Display>
 <Label NLSID="hs_response_status">Status (up/down)</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
 <Property NAME="fake" SCOPE="INSTANCE"
 OPTIONAL="TRUE">USE_FAKE_DATA</Property>
 <Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
 <Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/emx/demo_hostsample/
datacollector.pl --collect Response --fake %fake%</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 </QueryDescriptor>
 </Metric>
 <InstanceProperties>
 <InstanceProperty NAME="SAMPLE_DATA" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="EMPLOYEE_ID_iprop">Employee ID</Label>
 </Display>
 </InstanceProperty>
 </InstanceProperties>
</TargetMetadata>

The following sections provide information about the XML definitions shown in the
previous example.

Naming the Target Type Metadata File
Oracle recommends that users adding new target types adhere to Enterprise Manager
naming conventions. This naming convention allows for file naming consistency in
environments where similar products from multiple vendors are used. The target
naming convention follows the form vendorID_productID_PluginTag.

For example:

test_demo_targetType.xml

Defining the Target Type Metadata
The first lines after the header of the target definition file identify the target type. The
following excerpt defines the metadata version (META_VER="2.0") and target type
(TYPE="test_demo_targetType").

<TargetMetadata META_VER="2.0" TYPE="test_demo_targetType">

The TYPE attribute and the META_VER attribute of the TargetMetadata element must
match the TYPE attribute and the META_VER attribute of the TargetCollection element
of the default collection metadata file. For more information about the default collection
metadata file, see Creating the Default Collection File.

Chapter 3
Creating the Target Type Metadata File

3-4

Metadata versioning allows different versions of the same target type metadata to exist
concurrently within the managed environment, although only one metadata version is allowed
per Management Agent. You should update the metadata version each time you update the
target metadata file.

The syntax for the meta value is MajorNumber.MinorNumber. The value for MinorNumber can
be either one or two digits. It is important that you choose to use either one or two digits for
MinorNumber, and continue to use that syntax throughout the plug-in's lifecycle.

A one-digit MinorNumber can be updated up to nine times, after which the MajorNumber
value must be increased. For example:

1.0, 1.1, 1.2, ...,1.9, 2.0, 2.1

A two-digit MinorNumber can be revised up to 99 times. For example:

1.01, 1.02, 1.09, ..., 1.10, 1.11, ..., 1.99, 2.01

Note that you cannot combine single-digit and two-digit formats. For example, increasing the
version from 1.9 to 1.10 is not valid.

If you modify the metadata for one or more metrics, or change credentials, or update the
target property file during plug-in development, be sure to increment the value of the
META_VER attribute of the TargetMetadata element to the next digit value. For example, if
the current version is "1.0", set the value to "1.1" if you modify the metric metadata:

<TargetMetadata META_VER="1.1" TYPE="demo_hostsample">

Continue to increment the version each time you modify your metrics. Otherwise,
NullPointerException errors may occur if the plug-in is deployed to the same development or
test installation that the previous version was deployed to.

Once plug-in development is complete, the META_VER value can safely be set to the actual
production version.

Defining Target Credentials
In most cases, the plug-in will be required to authenticate with each target instance that it will
collect data for, or run jobs against. Credential types and credential sets needed to enable
authentication are defined in the CredentialInfo element within the target type metadata file.

For more information, see Defining Credentials.

Credentials information for the target includes and defines the credentials fields (referred to
as columns) and the credentials sets specific to the target type. Enterprise Manager's security
framework provides facilities for managing these credentials and using them when performing
various management functions.

Defining Type Properties
The extensibility framework uses type properties to internally categorize the target type for
framework processing. They are not visible to the end user. Corresponding subsystems use
the type properties to enable features for the target type or to perform appropriate validation
checks.

The value set at the type property level applies to all targets of that type and across all
metaversions, unlike instance properties which only apply to a specific target.

Chapter 3
Creating the Target Type Metadata File

3-5

The following example specifies that the target type is a system class of target. The
extensibility framework uses this setting to display the target on all system pages.

<TypeProperties>
 <TypeProperty PROPERTY_NAME="is_system" PROPERTY_VALUE="1"/>
</TypeProperties>

Table 3-2 provides a description of the available type properties.

Table 3-2 Type Properties

Property Name Description

is_system Specifies the type as modelling a system type. You must set this
value for all system types.

• is_cluster: Specifies the type as modelling a cluster.
Clusters are subsets of systems.

• is_end_user: Set for systems constructed from user-
chosen entities; these are subsets of systems.

Note: The property value is always set to 1 for all the is_name
properties.

is_service Specifies the type as modelling a service.

Note: The property value is always set to 1 for all the is_name
properties.

is_aggregate Enterprise Manager sets this value automatically. Do not modify.

is_group Do not use

is_composite Do not use

is_install Set this value for an install home manageable entity (for
example, Oracle home)

is_existence Set this value for a discovered entity with an existence-only state,
that is, an entity that is discovered but cannot be managed by
Oracle yet.

Possible value:

• 1: Indicates a discovered entity with an existence-only state
Note: When the entity becomes a managed entity by Oracle, you
must remove this entry from the target type metadata file and
register the target type again.

priv_propagation_mode This property is used for privilege propagation and specifies the
privilege propagation mode.

Possible values:

• 0: No privilege propagation
• 1: Privilege propagation at instance level
• 2: All targets are privilege propagating

disallow_redundancy_gr
oup

Used by the redundancy group feature to disable redundancy
groups for certain target types (which have disallow redundancy
group set). Specifies whether redundancy group can contain this
type as a member.

Possible value:

• 1: Do not allow redundancy

member_target_type Used by the redundancy group feature to lock the target type to
the specified member_target_type.

Chapter 3
Creating the Target Type Metadata File

3-6

Table 3-2 (Cont.) Type Properties

Property Name Description

TargetVersion Specifies the name of the instance or dynamic property that
represents the target version for the target type (for all target
pages and plug-in certification).

Note: Oracle recommends including this property when you are
defining target types.

Example: Defining Type Properties

<TargetMetadata META_VER="1.1" TYPE="oracle_dbsys" CATEGORY_PROPERTIES=""
RESOURCE_BUNDLE_PACKAGE="oracle.sysman.db.rsc">
 <Display>
 <Label NLSID="oracle_dbsys_nlsid">Database System</Label>
 </Display>

 <TypeProperties>
 <TypeProperty PROPERTY_NAME="is_system" PROPERTY_VALUE="1"/>
 <TypeProperty PROPERTY_NAME="priv_propagation_mode" PROPERTY_VALUE="2"/>
 </TypeProperties>

 <MonitoringMode MEDIATOR="Repository"/>
</TargetMetadata>

Defining Instance Properties
Instance properties are populated when a target instance is created. The
InstanceProperties descriptor within the target type metadata file defines what properties
an administrator must specify in the Enterprise Manager Cloud Control console when adding
a new target instance of this particular target type.

Although the InstanceProperties section can be defined at various locations within the
target type metadata file, Oracle recommends defining this section at the very end of the file
for consistency. Instance properties defined in the target type metadata file are resolved to
values specified for these instance properties in the target type metadata file.

Target instance properties are named values that can be used for computing the metrics of
the target, or for display in the home page of the target. The list of target instance properties
is specified in the metadata to allow data driven user interfaces to register targets, and for the
Oracle Management Agent to validate that a target instance is complete.

Static Instance Properties
Instance properties are populated when a target instance is created. In this example, the
property is required (OPTIONAL="FALSE) and it is a credential property.

<InstanceProperties>
 <InstanceProperty NAME="password" OPTIONAL="FALSE" CREDENTIAL="TRUE">
 <Display>
 <Label NLSID="USER_PASSWORD">User Password</Label>
 </Display>
 </InstanceProperty>
</InstanceProperties>

Chapter 3
Creating the Target Type Metadata File

3-7

Dynamic Instance Properties
The values for dynamic instance properties are passed back by the Management
Agent collecting data from the target instance. They are typically used within a
QueryDescriptor to define properties passed to the fetchlet responsible for metric
collection. For more information about the QueryDescriptor element, see Table 3-4.
For more information about fetchlets, see Using Fetchlets .

The properties in the following example are described in Defining the Basic Response
Metric Group.

<InstanceProperties>
 <DynamicProperties NAME="AruidInfo" FORMAT="ROW" OPT_PROP_LIST="ARUID">
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
 <Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
 <Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>
 <Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/hostaruid.pl</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property> </QueryDescriptor>
 </DynamicProperties>
</InstanceProperties>

Using dynamic properties reduces the work involved in configuring a target by allowing
certain properties to be computed rather than requiring the user to correctly specify
their values (for example, the "Version" property of a database can be reliably
computed given addressing information).

Dynamic properties are computed in the order that they are defined in the XML file so
that later dynamic properties can use values from earlier dynamic properties in the
XML file if required.

The Management Agent allows for the fact that the target must be up for the
successful computation of these dynamic properties by recomputing the properties
each time a target restart is detected; that is, each time the target status changes to
Up.

Note:

Some properties can be computed without access to the target; therefore
there is some support for computing dynamic properties when the target is
down.

To compute a dynamic property when the target is down, include the
following attribute:

COMPUTE_WHEN_DOWN="TRUE"

Defining Metrics to Collect from the Target
Metrics are at the core of Cloud Control's target monitoring capabilities. When we
speak of Cloud Control's ability to monitor and manage various targets, what we are
really talking about is its ability to collect, process, and display target metrics.

Chapter 3
Defining Metrics to Collect from the Target

3-8

A metric refers to a specific piece of data collected from the target.

Metrics can viewed as being of two basic types:

• Pull metrics

In this model, the plug-in polls the target for metric data at the frequency specified in the
default collections file. This is the most common type of metric utilized by plug-ins.

A metric of this type requires the use of a fetchlet, a parametrized data access
mechanism that takes arguments (for example, a script, a SQL statement, a target
instance's properties) as input and returns formatted data.

Predefined fetchlets are provided by Oracle for use with plug-ins. For a list of available
fetchlets and information about their usage, see Using Fetchlets .

• Push metrics

In this model, the plug-in receives notifications that are sent asynchronously from the
target, without being requested. This type of metric requires a receivelet, which enables
the plug-in to receive such notifications. As with fetchlets, predefined receivelets are
provided by Oracle. For information about using receivelets, see Using Receivelets .

Metric Definition Files
The target metadata must define each type of metric the plug-in will collect, how and when
the metric data is to be collected, and what metric thresholds will trigger an incident to be
raised within Cloud Control.

Note:

All metrics that can be viewed from the Cloud Control UI must have a proper display
label and NLSID.

The metadata for metric groups and individual metrics is defined in two metadata files
packaged with the plug-in:

• The target type metadata file

The content of the target type metadata file consists primarily of metric definitions, along
with credential information and target properties. The fetchlet or receivelet that a metric
will use is defined in the QueryDescriptor or PushDescriptor element within the target
type metadata file.

For information about key metric definition elements, see Overview of Key Metric
Metadata Elements.

• The default collection metadata file

The frequency at which data is collected for each metric is defined in the default
collection metadata file. Metric Alert event conditions for each metric and the messages
to display for such alerts are also defined in this file.

For information about the default collection metadata file, see Creating the Default
Collection File.

Chapter 3
Defining Metrics to Collect from the Target

3-9

Defining the Basic Response Metric Group
As a matter of practice, Oracle recommends that you specify at least a single
Response metric group that includes the following metric for each target type:

• A Status metric that indicates target availability (required for all target types)

The corresponding default collection file must define a critical condition on the Status
metric that represents the target status as up or down. For more information, see
Defining Basic Metric Collection.

The following example (Response Metric) defines a Status metric. The return value of
Status is as follows:

• 0: Target status is down

• 1: Target status is up

The process by which the metric data is collected is defined in the QueryDescriptor
element. This descriptor specifies that the OSLineToken fetchlet invokes a Perl script
(emrepresp.pl) to collect the data. The Perl script returns a standard out (stdout) data
stream containing the collected data to the fetchlet.

Each property passed to the OSLineToken fetchlet execution is specified in a Property
tag within the QueryDescriptor element.

• The OSLineToken fetchlet requires that a GLOBAL property called command be set to
the command that is to be executed. Different tokens typically have specific
required properties. For more information about the OSLineToken fetchlet, see OS
Command Fetchlets.

• When a plug-in is deployed to a Management Agent, any scripts or binaries
associated that were packaged within the /agent/scripts directory in the plug-in
archive are written to the following directory in the Management Agent, where
AGENT_HOME is the Management Agent plug-in home directory and
plugin_name is the name of the plug-in:

AGENT_HOME/plugins/plugin_name

The scriptsDir property is a token that defines this location.

Note:

In Enterprise Manager 11g and earlier, the scripts bundled with the plug-
in were copied to the scripts directory under the Management Agent.
However, for this release the scripts included in the plug-in are used
directly.This changes the behavior of the scriptsDir property in the
QueryDescriptor element. Previously, it referred to the directory under
the Management Agent, but now it refers to the directory under the plug-
in.If you want to refer to the scripts directory under the Management
Agent, use the sdkScriptsDir property.

• The script property specifies the script (data_collector.pl) to be run.

The EDK provides an example of this script:

Chapter 3
Defining Metrics to Collect from the Target

3-10

edk/samples/plugins/HostSample/demo_hostsample/stage/agent/scripts/emx/
demo_hostsample

• The startsWith and delimiter properties specify the format of the STDOUT of the
script executed. In this case, the script will return a single row that looks like this:

em_result="value for Load|value for Status"

Example: Response Metric

<Metric NAME="Response" TYPE="TABLE">
 <TableDescriptor>
 <ColumnDescriptor NAME="Status" TYPE="NUMBER">
 <Display>
 <Label NLSID="oracle_emrep_resp_status">Status</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
 <Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property
 <Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>
 <Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/emrepresp.pl</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 </QueryDescriptor>
</Metric>

For a description of these elements, see Overview of Key Metric Metadata Elements.

Defining Advanced Metrics
You can define much more complex metrics, such as metrics that collect CPU performance
data or metrics for which values are computed from the values of other metrics. Examples of
such advanced or complex metric definitions can be seen in the sample target type metadata
file provided with the EDK:

edk/samples/plugins/HostSample/demo_hostsample/stage/oms/metadata/targetType/
demo_hostsample.xml

The following example shows a metric group containing metrics that collect CPU
performance data. As in the previous example, the QueryDescriptor element specifies that
the OSLineToken fetchlet will invoke the data_collector.pl script to collect the data.

Example: Defining Advanced Metrics

<Metric NAME="CPUProcessesPerf" TYPE="TABLE">
 <Display>
 <Label NLSID="hs_cpuprocessesperf_displayname">Host Process CPU Performance
 Statistics</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="ProcPID" TYPE="NUMBER" IS_KEY="TRUE">
 <Display>
 <Label NLSID="hs_cpuprocessesperf_procpid">PID</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="ProcUser" TYPE="STRING" IS_KEY="FALSE">
 <Display>
 <Label NLSID="hs_cpuprocessesperf_procuser">User</Label>
 </Display>

Chapter 3
Defining Metrics to Collect from the Target

3-11

 </ColumnDescriptor>
 <ColumnDescriptor NAME="ProcCPU" TYPE="NUMBER" IS_KEY="FALSE">
 <Display>
 <Label NLSID="hs_cpuprocessesperf_proccpu">CPU Usage (%)</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="ProcCmd" TYPE="STRING" IS_KEY="FALSE">
 <Display>
 <Label NLSID="hs_cpuprocessesperf_proccmd">Command</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
 <Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
 <Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>
 <Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/emx/demo_hostsample/data_
 collector.pl</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 </QueryDescriptor>
</Metric>

The following example shows a test metric. The Management Agent can check some
metrics to determine if a target has been specified correctly with valid instance
properties. Setting the IS_TEST_METRIC attribute to "TRUE" provides a Test button
when adding a target instance.

Example: Defining a Test Metric

<Metric NAME="Ping" TYPE="TABLE" IS_TEST_METRIC="TRUE" USAGE_TYPE="HIDDEN">
 <Display>
 <Label NLSID="label_metrics_ping">Ping Test</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="tcpIpPing" TYPE="NUMBER">
 <Display>
 <Label NLSID="test_ping">TCP Ping, Milliseconds</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OSLineToken">
 <Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
 <Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
 <Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl
 %sdkScriptsDir%/osresp.pl</Property>
 <Property NAME="ENVEM_TARGET_NAME" SCOPE="INSTANCE">hostName</Property>
 <Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
 <Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
 </QueryDescriptor>
</Metric>

The following examples show how to set UnitCategory and Unit NLSID on metric
columns.

Chapter 3
Defining Metrics to Collect from the Target

3-12

Note:

For a list of valid values for UnitCategory and Unit NLSID, see Metric Unit
Standardization.

Example 1: Setting UnitCategory and Unit NLSID

<TableDescriptor>
<ColumnDescriptor NAME="cpuutil" TYPE="NUMBER" IS_KEY="FALSE"
TRANSIENT="FALSE" HELP="NO_HELP">
<Display>
<Label NLSID="olv_server_load_cpuutil">CPU Utilization (%)</Label>
<Description NLSID="olv_server_load_cpuutil_desc">CPU Utilization (%)</
Description>
<Unit NLSID="EM_SYS_STANDARD_UTILIZATION_PERCENTAGE">PERCENTAGE</Unit>
<UnitCategory>UTILIZATION</UnitCategory>
</Display>

Example 2: Setting UnitCategory and Unit NLSID

<ColumnDescriptor NAME="mem_avail" TYPE="NUMBER" IS_KEY="FALSE"
TRANSIENT="FALSE" HELP="NO_HELP">
<Display>
<Label NLSID="olv_server_load_mem_available">Memory Available (GB)</Label>
<Description NLSID="olv_server_load_mem_available_desc">Memory Available
(GB)</Description>
<Unit NLSID="EM_SYS_STANDARD_DATASIZE_GB">GB</Unit>
<UnitCategory>DATA_SIZE</UnitCategory>
</Display>

Example 3: Setting UnitCategory and Unit NLSID

<ColumnDescriptor NAME="guest_vm_count" TYPE="NUMBER" IS_KEY="FALSE"
TRANSIENT="FALSE" HELP="NO_HELP">
<Display>
<Label NLSID="olv_server_guest_vms">Number of Guest VMs</Label>
<Description NLSID="olv_server_guest_vms_desc">Number of Guest VMs</
Description>
<Unit NLSID="EM_SYS_STANDARD_COUNT_NA">NA</Unit>
<UnitCategory>COUNT</UnitCategory>
</Display>
</ColumnDescriptor>

Defining Repository Metrics
By default, the Management Agent collects metrics but you can define repository metrics.
Repository metrics are collected at the Management Repository.

To define a repostitory metric, you must use the REPOSITORY attribute when defining the
Metric element. For more information about the Metric element, see Table 3-4.

Chapter 3
Defining Metrics to Collect from the Target

3-13

The following example provides an extract from a target metadata XML file where a
repository metric is defined.

Note:

When defining repository metrics, you must set the metric TYPE attribute to
TABLE. RAW is not supported for repository metrics.

Example: Defining Repository Metrics

 <Metric NAME="Response"
 TYPE="TABLE"
 REPOSITORY="TRUE">
 <Display>
 <Label NLSID="REPOS_SQL">REPOS_SQL</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Status" TYPE="NUMBER">
 <Display>
 <Label NLSID="Status">Status</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="REPOSITORY_SQL">
 <Property NAME="Type">SQL</Property>
 <Property NAME="Source">SELECT target_guid, 1 as Status from mgmt_targets
where target_type='tvmrtm200'</Property>
 </QueryDescriptor>
 </Metric>

Categorizing Metrics
The purpose of the categorization of metrics is to define the nature of the data that is
being collected. This is only for metrics that are visible in the All Metrics pages in the
Cloud Control console.

Oracle recommends using the following guidelines when defining metric categories:

• Categorize all Metrics and Metric Groups visible to the user in the All Metrics
page of the Cloud Control console.

• Use the published category values only as listed in Table 3-3.

• If all metrics in a metric group belong to the same category, then you can set the
category at the metric group level and leave the category empty at the metric level.
All metrics in the group will inherit this category. You can set one category only at
the metric group level. For an example, see Defining a Category at Metric Group
Level.

• If the metrics in the metric group have different categories, do not set a category at
the metric group level. In such cases, set the category at the metric level. Each
metric can have one category only. For an example, see the Defining a Category
at Metric Level example.

The Metric framework has a Default metric class and a set of metric categories within
this class. Table 3-3 provides a list of the available metric categories. You can
categorize your metrics into the appropriate category within the Default metric class

Chapter 3
Defining Metrics to Collect from the Target

3-14

Table 3-3 Metric Categories

Category Description

Availability Lets you know whether a target or component is up. Used mainly for Response or
Status metrics.

Capacity Defines how much you have of something.

Fault A severe error which results in a component not operating, or memory corruptions
or data corruptions.

Load How much work an entity is being asked to do.

LoadType Indicates the characteristics of the work that an entity is being asked to do.

Response How quickly is the system is responding.

BusinessKPI Measures output in business terms.

Utilization How much of something an entity is using

Security Reporting on security issues.

The following example categorizes all metrics within MyMetricGroup with a metric class of
Default and a metric category of Load.

Example: Defining a Category at Metric Group Level

<Metric NAME="MyMetricGroup" TYPE="TABLE">
 <Display> <Label>MyMetricGroup</Label> </Display>
 <CategoryValue CLASS="Default" CATEGORY_NAME="Load"/>
 <TableDescriptor>
 <ColumnDescriptor NAME="MyMetric1" TYPE="NUMBER"> </ColumnDescriptor>
 <ColumnDescriptor NAME="MyMetric2" TYPE="NUMBER"> </ColumnDescriptor>
 </TableDescriptor> </Metric>

The following example categorizes the MyMetric1 metric with a metric class of Default and a
metric category of Load, and the MyMetric2 metric with a metric class of Default and a metric
category of Load Type.

Example: Defining a Category at Metric Level

<<Metric NAME="MyMetricGroup" TYPE="TABLE">
 <Display>
 <Label>MyMetricGroup</Label>
 </Display> <TableDescriptor>
 <TableDescriptor>
 <ColumnDescriptor NAME="MyMetric1" TYPE="NUMBER">
 <Display>
 <Label>MyMetric1</Label>
 </Display>
 <CategoryValue CLASS="Default" CATEGORY_NAME="Load"/>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="MyMetric2" TYPE="NUMBER">
 <Display>
 <Label>MyMetric2</Label>
 </Display>
 <CategoryValue CLASS="Default" CATEGORY_NAME="Load Type"/>
 </ColumnDescriptor>
 </TableDescriptor>
</Metric>

Chapter 3
Defining Metrics to Collect from the Target

3-15

Defining Adaptive Thresholds
Enterprise Manager provides the option to statistically compute metric thresholds that
are adaptive in nature and this is available for all targets.

For more information about Adaptive Thresholds, see Oracle Enterprise Manager
Cloud Control Administrator's Guide.

You can provide a named configuration for your target type. This quick configuration
contains preconfigured metrics values and a computation mechanism.

To define a quick configuration:

1. Create a quick configuration file to determine the predefined values, and threshold
calculation method for a group of metrics.

The following example defines a quick configuration for the Host target type.

Example: Quick Configuration for Adaptive Thresholds

<?xml version="1.0" encoding="UTF-8"?>
<baselineIntegration xmlns="http://www.oracle.com/EnterpriseGridControl/
BaselineIntegration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/
BaselineIntg.xsd"
targetType="host" version="12.1.0.4">
<quickConfigration>
<quickConfigDescription defaultText="Default text "
resourceBundle="a.b.c.abcMsg" nlsId="SEC_CONFIG" />
<baselineConfig configType="MV" subinterval="NX" interval="7"
defaultText="Security Config" resourceBundle="a.b.c.abcMsg"
nlsId="SEC_CONFIG">
<metricSetting metricName="memfreePct" metricGroup="Load"
thrsholdMethod="SIGLVL" warnignLvl=".99" criticalLvl=".999"
numOccurrence="10" insufficientDataAction="UNSET" />
<metricSetting metricName="cpuUtil" metricGroup="Load"
thrsholdMethod="PCTMAX" warnignLvl="20" criticalLvl="30" numOccurrence="11"
insufficientDataAction="UNSET" />
metricSetting metricName="swapUtil" metricGroup="Load"
thrsholdMethod="PCTMAX" warnignLvl="40" criticalLvl="50" numOccurrence="12"
insufficientDataAction="UNSET" /
</baselineConfig>
<baselineConfig configType="MV" subinterval="NX" interval="21"
defaultText="Space Config" resourceBundle="a.b.c.abcMsg"
nlsId="SPACE_CONFIG">
<metricSetting metricName="memfreePct" metricGroup="Load"
thrsholdMethod="SIGLVL" numOccurrence="3" warnignLvl=".99"
criticalLvl=".999" insufficientDataAction="PRESERVE" />
<metricSetting metricName="cpuUtil" metricGroup="Load"
thrsholdMethod="PCTMAX" warnignLvl="25" numOccurrence="2" criticalLvl="35"
insufficientDataAction="PRESERVE" />
metricSetting metricName="activeMem" metricGroup="Load"
thrsholdMethod="PCTMAX" warnignLvl="45" criticalLvl="55" numOccurrence="5"
insufficientDataAction="PRESERVE" /
<metricSetting metricName="memUsedPct" metricGroup="Load"
thrsholdMethod="PCTMAX" warnignLvl="65" criticalLvl="75" numOccurrence="2"
insufficientDataAction="PRESERVE" />
</baselineConfig>

Chapter 3
Defining Metrics to Collect from the Target

3-16

</quickConfigration>
</baselineIntegration>

2. Register the quick configuration file with Enterprise Manager by placing the file in the
following location before plug-in deployment:

plugin_stage/oms/metadata/adaptiveThreshold/

For information about plug-in deployment, see Validating, Packaging, and Deploying the
Plug-in .

3. The end user activates the quick configuration from the Cloud Control UI (From the
Metric and Collection Settings page, select Advanced Threshold Management).

For information about using the Advanced Threshold Management feature, see the
Oracle Enterprise Manager Cloud Control Administrator's Guide.

Overview of Key Metric Metadata Elements

Table 3-4 Key Elements Used to Define Metrics

Element Description

Metric Required. Defines a metric group containing one or more metrics, each defined in a
ColumnDescriptor. The Metric element includes the following attributes:

• NAME: The name of the metric group, up to 64 characters long.

• TYPE: Valid values are "TABLE" or "RAW". Typically set to "TABLE". Do not modify the
type of the metric after creation.

TABLE - Metric data is loaded into generic tables. Usually these metrics are
performance or usage metrics. They can use the Enterprise Manager core
infrastructure for charting and display on the Cloud Control console.

RAW - Metric data is loaded into the table specified in the metric definition. The name
of this table must be the name of a valid table in the SYSMAN schema. Updatable
views are not allowed. Do not modify STORAGE_TABLE_NAME or
STORAGE_COLUMN_NAME.

• REPOSITORY: Specifies whether the metric is collected by Management Agent or at the
Management Repository. Valid values are:

TRUE: Metrics are collected at the Management Repository.

FALSE: Metrics are collected by the Management Agent (default). If you do not include
this attribute, then the defined metric is collected by the Management Agent.

• IS_TEST_METRIC: The Management Agent can check some metrics to determine if a
target has been specified correctly with valid instance properties. This attribute marks
this metric as one of the test metrics. By default, the value is set to "FALSE". Setting
this value to "TRUE" provides a Test button when adding a target instance.

• USAGE_TYPE: Specifies if the metric is viewable.

VIEW_COLLECT: If USAGE_TYPE=VIEW_COLLECT, then the metric will appear on the
Enterprise Manager Cloud Control UI.

COLLECT_UPLOAD: If USAGE_TYPE=COLLECT_UPLOAD, then the metric will be
displayed on the Metric Collection Settings page for modifying the collection
schedule.

HIDDEN: If USAGE_TYPE=HIDDEN, then the metric is not viewable and the Management
Agent will not upload data collected by the metric to the Management Repository.

Note: Do not modify the USAGE_TYPE of a metric.

TableDescriptor Required when the Metric TYPE attribute is set to “TABLE". It contains one or more
ColumnDescriptor elements, each defining a metric to collect

Chapter 3
Defining Metrics to Collect from the Target

3-17

Table 3-4 (Cont.) Key Elements Used to Define Metrics

Element Description

ColumnDescriptor Defines a single metric to be collected. It includes the following attributes:

• NAME: The name of the metric, up to 64 characters long.

• TYPE: Describes how the metric data will be stored in the Management Repository.
The value is either "NUMBER" or "STRING".

Note: Nested tables are not supported
• IS_KEY: Indicates if the metric is to be treated as a primary key column in the

Management Repository. Values are "TRUE" or "FALSE" (default).

Note: Do not change the number or the order of key columns across meta versions.
Oracle recommends using a stable key value. Do not use a line number, or time stamp,
or session ID as a key value

• TRANSIENT: The metric will not be uploaded to the Management Repository. Use this
attribute for calculating rate data. Values are "TRUE" or "FALSE" (default). For more
information, see Defining Target Metadata.

• COMPUTE_EXPR: This attribute specifies a formula for calculating the value of the
column. Columns previously defined in the Table descriptor can participate in the
calculation. Attaching an underscore (_) prefix to a column name denotes the previous
value of a column.

For a list of predefined special values, see ColumnDescriptor of Enterprise Manager
DTD .

Chapter 3
Defining Metrics to Collect from the Target

3-18

Table 3-4 (Cont.) Key Elements Used to Define Metrics

Element Description

QueryDescriptor Defines a command to run, which returns the set of data described in the
TableDescriptor. The element contains one or more Property elements, each defining
a property to pass in with the command invocation.

Note: You can refer to earlier defined properties using the %property_name% format. For
example:

<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
<Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>

The element includes a FETCHLET_ID attribute that identifies the fetchlet mechanism that
will be used to process the request. Properties required for the fetchlet invocation are
specified in one or more Property elements within the QueryDescriptor.

The following are among the fetchlets commonly used by plug-in developers:

• OS: Executes the given operating system command or script and returns the
command's output in a single cell table.

• OSLines: Similar to the fetchlet, but returns the output tokenized by lines.

• OSLineToken: Similar to the fetchlets, but the output is tokenized first by lines; each
line is then tokenized by a given delimiter set.

• HTTPDataLineToken: Invokes an HTTP request to the specified URL.

• SQL: Executes the specified SQL script against the specified Oracle Database.

• Snmp: Invokes the specified SNMP call to the specified SNMP agent.

• WBEM: Invokes the specified WBEM call to the specified CIMOM object repository.

For a complete list of available fetchlets and information about their usage, see Using
Fetchlets .

The SCOPE property defines where the property value is to be obtained. The following
scope options are available:

• SCOPE="GLOBAL". Obtain the property value from other variables defined within the
current target type metadata file. This includes constants, such as the "|" shown in the
Sample plugin_registry.xml File example.

• SCOPE="INSTANCE". Obtain the property value from instance properties.
• SCOPE="ENVxxx". Obtain the property value from an environment variable "xxx".
• SCOPE="SYSTEMGLOBAL". Obtain the property value from the emd.properties file

located in the $AGENT_HOME/sysman/config directory.
• SCOPE="USER". Obtain the property value from the collector or user.

Chapter 3
Defining Metrics to Collect from the Target

3-19

Table 3-4 (Cont.) Key Elements Used to Define Metrics

Element Description

PushDescriptor Defines object identifiers (OIDs). The Management Agent uses an SNMP receivelet to
listen for SNMP traps as defined in the target type's Management Information Base (MIB).
The PushDescriptor is part of the metric definition of a receivelet.

Defines a command to run, which returns the set of data described in the
TableDescriptor. The element contains one or more Property elements, each defining
a property to pass in with the command invocation.

Note: You can refer to earlier defined properties using the %property_name% format. For
example:

<Property NAME="MatchSpecificTrap" SCOPE="GLOBAL">50</Property>
<Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</Property>

The element includes a RECVLET_ID attribute that identifies the receivelet mechanism that
will be used to process the request. Properties required for the receivelet invocation are
specified in one or more Property elements within the PushDescriptor.

The SNMP receivelet is the only receivelet commonly used by plug-in developers. For more
information about the SNMP receivelet, see Using Receivelets .

The SCOPE property defines where the property value is to be obtained. The following
scope options are available:

• SCOPE="GLOBAL". Obtain the property value from other variables defined within the
current target type metadata file. For example, if a Match* property is GLOBAL-
scoped, then it determines with which metric the trap is associated.

• SCOPE="INSTANCE". Obtain the property value from instance properties. For
example, if the MatchAgentAddr property is an INSTANCE-scoped property, then it
determines to which target instance the trap belongs.

For examples of SCOPE property definitions, see the examples in Using Receivelets .

ElementDescriptor Used to compute aggregation metrics. Specifies the execution plan for evaluating a metric.
The Management Agent runs each statement of the plan, in the order it is defined, to
produce a Metric Result. The Metric Result generated as result of the evaluation of the last
statement of the execution plan will be returned.

Table 3-4 describes the key elements that define metrics. For additional information
about defining metrics, see Guidelines for Creating Target Metadata.

Troubleshooting Metric Definitions
This section provides some troubleshooting tips if you encounter any issues with your
metric definitions.

• To list metrics for a given target type, from a SQL*Plus session, enter the
following:

select * from mgmt_metrics where target_type=target_type and
type_meta_ver=max_type_meta

• To check if there are any metric load issues, from a SQL*Plus session, enter the
following:

select * from sysman.mgmt_system_error_log where module_name='METRIC_LOAD'
• To check if there are any collection issues during the metadata load, from a

SQL*Plus session, enter the following:

Chapter 3
Defining Metrics to Collect from the Target

3-20

select * from sysman.mgmt_system_error_log where
module_name='MGMT_COLLECTION.Collection Subsystem'

• To check what is being collect for a specific target, from a SQL*Plus session, enter the
following:

select * from sysman.gc_metric_values where entity_type=target_type and
entity_name=target_name

Creating the Default Collection File
The default collection metadata file for a target type defines the following:

• The metric data (including configuration collection metric data) to be collected from
targets and written to the Management Repository

• The frequency of at which this metric data is collected

• Thresholds that, when exceeded, will cause a Metric Alert event to be raised

• An optional message to display when a threshold is exceeded

Note:

For a default collection file, Oracle mandates that you use the same file name as
the target type metadata file name.

For example, the target type metadata file present under oms/metadata/
targetType/demo_hostsample.xml in HostSample plug-in must have the
corresponding default collection file with the same name under oms/metadata/
default_collection/demo_hostsample.xml.
For information about naming the target type metadata file, see Naming the Target
Type Metadata File.

Note that the value of the TYPE attribute and the META_VER attributein the default collection
metadata file must match the TYPE and the META_VER values defined in the target type
metadata file to create an association between them.

As noted, you can also specify Metric Alert event conditions on each metric that will be raised
as Incidents within Enterprise Manager Cloud Control. Such events are generated when a
threshold specified in this file is exceeded. For example, you may want to raise a WARNING
alert when CPU usage reaches 90% of capacity. You can also specify the message text to be
displayed in Enterprise Manager Cloud Control when an alert event is triggered.

The EDK includes an example of a default collection file in the following location:

/samples/plugins/HostSample/stage/oms/metadata/default_collection/demo_hostsample.xml

For information about defining the elements in the default collection file, see Overview of Key
Default Collection Metadata Elements and Guidelines for Creating Target Metadata.

Grouping Similar Metrics For Collection
For efficiency, metrics are typically grouped together for collection, enabling certain metrics to
be collected at the same time or same frequency. This is useful because it guarantees the

Chapter 3
Creating the Default Collection File

3-21

order of execution of the metrics, which is important if some metrics rely on the results
of other metrics.

Each group of metrics to be collected together is defined in a CollectionItem within
the default collection file. The collection schedule for the group is defined in a
Schedule element. The CollectionItem provides the end user with the most control to
enable or disable metrics and to change the collection schedule.

Each metric included in the group is in turn defined within a MetricColl element within
the CollectionItem. (Note that if the CollectionItem contains just a single metric,
like the Response metric example shown in Defining the Basic Response Metric Group,
it is not necessary to specify the MetricColl tag.)

Note that the UPLOAD value for the CollectionItem is set to 6, meaning that every sixth
collection of data will be written to the Management Repository. Because the
IntervalSchedule specifies that data will be collected every 5 minutes, the data will
be written to the Management Repository every 30 minutes (or every sixth data
collection).

<TargetCollection>
...
 <CollectionItem NAME="Perf" UPLOAD="6">
 <Schedule>
 <IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>
 </Schedule>
 <MetricColl NAME="CPUProcessesPerf">
 ...
 </MetricColl>
 <MetricColl Name="MemoryPerf">
 ...
 </MetricColl>
 </CollectionItem>
...
</TargetCollection>

You should consider grouping metrics into a CollectionItem if any of the following
applies:

• The metrics are logically related, such as all metrics related to performance

• The metrics should be collected at the same frequency, such as all metrics that
should be collected every 5 minutes

• The metrics should be collected at roughly the same time, such as metrics
collected during non-peak times

• You want to collect all of the metrics, or none of the metrics, at the same time

Note that if you have metrics that will be collected on demand, grouping them will
improve performance and reduce the communications required by the Management
Agent and Oracle Management Service to collect and return metric data from the
target.

Providing different collection intervals will provide the best flexibility to users to
schedule each metric independently. Grouping together unrelated metrics is not
advisable, as you will not have the ability to turn off collection of just a few metrics in
the group without disabling those metrics that you do need.

Chapter 3
Creating the Default Collection File

3-22

Defining Basic Metric Collection
The following represents the CollectionItem entry for the basic Response metric group,
which includes the Status metric. It specifies that data for this metric should be collected
every 5 minutes, which is the standard collection interval for this type of metric.

A condition has been set on the Status metric. For more information about alert conditions,
see Creating the Default Collection File and Table 3-5.

Note that because the CollectionItem contains just one metric (Status), it is not necessary
to include a MetricColl tag for the single metric.

<TargetCollection META_VER="2.0" TYPE="test_demo_targetType">
 ...
 <CollectionItem NAME="Response">
 <Schedule>
 <IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>
 </Schedule>
 <Condition COLUMN_NAME="Status" CRITICAL="0" OPERATOR="EQ"
CLEAR_MESSAGE_NLSID="Response_Status_clearalertmessage"
 MESSAGE="Failed to connect to database instance:
%oraerr%."MESSAGE_NLSID="Response_Status_alertmessage"/>
 </CollectionItem>
...
</TargetCollection>

Defining Advanced Metric Collection
The following example illustrates the collection of a more advanced metric that raises a
metric alert when specified WARNING and CRITICAL thresholds are exceeded. These
thresholds, and the message to send to Cloud Control when they are exceeded, are defined
in the Condition element.

The data for each metric is specified in a MetricColl element within a CollectionItem, as
shown in this example. For a description of the elements in this example, see Table 3-5.

Example: Defining Advanced Metric Collection

<TargetCollection>
...
 <CollectionItem NAME="Perf" UPLOAD="6">
 <Schedule>
 <IntervalSchedule INTERVAL="5" TIME_UNIT="Min"/>
 </Schedule>
 <MetricColl NAME="CPUProcessesPerf">
 <Condition COLUMN_NAME="ProcCPU" WARNING="75" CRITICAL="90" OPERATOR="GE"
 OCCURRENCES="2"
 MESSAGE="The value for %columnName% is %value%%%, which is above the
 critical (%critical_threshold%%%) or warning (%warning_threshold%%%)
 threshold."
 CLEAR_MESSAGE="The value for %columnName% is %value%%%, which is
 below the critical (%critical_threshold%%%) or warning (%warning_
 threshold%%%) threshold." />
 </MetricColl>
 </CollectionItem>
...
</TargetCollection>

Chapter 3
Creating the Default Collection File

3-23

Note that in addition to a message sent to Enterprise Manager when either the
WARNING or CRITICAL thresholds are passed, and “all clear" message to be sent when
an alert condition no longer exists has also been defined in the CLEAR_MESSAGE
attribute.

Defining Target Configuration Data Collections
As with all other metrics, the frequency at which the configuration metric data is
collected is defined default collection file. Given the size of target configuration
collections and the infrequent change rate, these metrics should ideally be collected
every 24 hours, during off-peak hours.

Note that the value of the TARGET_TYPE attribute of the root METADATA SNAP_TYPE
attribute in the configuration metadata file must be identical the TYPE attribute of
TargetCollection in the default collection file.

The following example defines the collection frequency for the HostConfig metric

<TargetCollection>
...
<CollectionItem NAME="HostSampleSnap" CONFIG="TRUE">
 <Schedule OFFSET_TYPE="INCREMENTAL">
 <IntervalSchedule INTERVAL="24" TIME_UNIT="Hr"/>
 </Schedule>
 <MetricColl NAME="HostConfig" />
 </CollectionItem>
...
</TargetCollection>

Overview of Key Default Collection Metadata Elements
Table 3-5 describes the key elements included in the default collection metadata file.

Table 3-5 Key Elements Within the Default Collection Metadata File

Element Description

TargetCollection Required. The root element for the file. It includes a TYPE attribute and
the META_VER attribute that must match the TYPE attribute and the
META_VER attribute of the TargetMetadata element in the target type
metadata file.

CollectionItem Defines a collection frequency and threshold values for a set of metrics.
The frequency defined in the included Schedule element will apply to
all metrics in the collection group. The element includes the following
attributes:

• NAME: Defines the set of metrics to be collected as a group.
• UPLOAD: Specifies what nth data collection is written to the

Management Repository. The default is 1, which means that
performance data is uploaded every time it is collected. In
Response Metric example, every 6th data collection is uploaded to
the Management Repository.

• UPLOAD_ON_FETCH: When set to TRUE, the first configuration
collection is uploaded to the Management Repository immediately.
All subsequent collections are bundled. By default, this value is set
to FALSE and the UPLOAD_ON_FETCH attribute is ignored.

Chapter 3
Creating the Default Collection File

3-24

Table 3-5 (Cont.) Key Elements Within the Default Collection Metadata File

Element Description

Schedule Contains an IntervalSchedule element defining the collection
frequency for a CollectionItem. It includes the following attributes:

• INTERVAL: The collection frequency.
• TIME_UNIT: The unit of time (such as Min for minutes) that the

value of INTERVAL corresponds to.
Note: Response metrics must be collected frequently. Define the
collection interval at a value between 1 minute and 5 minutes. Other
metrics should be collected less frequently. Usually an interval of 15
minutes is sufficient. However, if you are defining metrics collecting a lot
of data, then consider an interval of 30 minutes or 1 hour.

MetricColl Contains one or more Condition elements corresponding to a single
metric group defined in a Metric element in the target type metadata
file. Each condition must have an associated alert message that
includes a metric description with a specified unit and the %value%
placeholder for the value that causes the threshold to be raised.

The NAME attribute in this element must match the NAME attribute in
the corresponding Metric element.

Chapter 3
Creating the Default Collection File

3-25

Table 3-5 (Cont.) Key Elements Within the Default Collection Metadata File

Element Description

Condition Defines a metric alert condition. It contains the following optional
attributes:

• COLUMN_NAME: The name of a metric defined in a
ColumnDescriptor element in the target type metadata file. The
value of this attribute must match the NAME attribute of the
ColumnDescriptor element.

• WARNING: Defines the threshold at which a "warning" condition
exists. A metric alert will be generated when this value is
exceeded, which will include the text specified in the MESSAGE
attribute.

In most cases, to allow users to set the threshold value, set this
attribute to "NotDefined".

• CRITICAL: Defines the threshold at which a "critical" condition
exists. A metric alert will be generated when this value is
exceeded, which will include the text specified in the MESSAGE
attribute.

In most cases, to allow users to set the threshold value, set this
attribute to "NotDefined".

• OPERATOR: Determines how to apply the threshold values
specified in the CRITICAL and WARNING attributes. In the
Defining Advanced Metric Collection example, GE specifies that the
Warning threshold occurs when ProcCPU is greater than or equal
to 75 and the Critical threshold occurs when ProcCPU is greater
than or equal to 90. Other values include:

LE: Less than or equals

EQ: Equals

LT: Less than

GT: Greater than

NE: Not equal

CONTAINS: True if the second argument is a substring of the first
string.

MATCH: True if the first argument (regular expression) matches the
second argument.

• OCCURENCES: Defines the number of successive metric
collections that must be returned with the Warning or Critical
threshold exceeded before the warning or critical condition is
triggered. In most cases, set this value to 2 to avoid alerting on
spikes.

• MESSAGE: Contains a message to display when the thresholds
specified in the WARNING or CRITICAL attributes have been
exceeded.

The built-in message attributes such as %columnName% and
%critical_threshold% are embedded in the string; the appropriate
value will be substituted when the message is generated at
runtime. For example: "The value for %columnName% is %value%
%%. It has fallen below the critical (%critical_threshold%%%) or
warning (%warning_threshold%%%) threshold."

• CLEAR_MESSAGE: Contains an "all clear" message that will be
displayed when the value of the metric returns to a "non-alert"
value; that is, when it drops below the thresholds indicated in
WARNING and CRITICAL.

Chapter 3
Creating the Default Collection File

3-26

Troubleshooting the Collection Process
This section provides some troubleshooting tips if you encounter any issues with your
collection process.

To check if the collection is disabled for a specific target, from a SQL*Plus session, enter the
following:

select * from sysman.mgmt_collections where object_type=2 and object_guid=target_guid
and is_enabled=1

Guidelines for Creating Target Metadata
When developing target type definition files for new plug-ins, special consideration must be
paid to the way in which you want a particular target type to be monitored. How a target type
is monitored can greatly affect Enterprise Manager performance. Follow these general
guidelines for defining target metadata and collections to optimize system performance.

Defining Target Metadata
Metadata is data about data. Generically, the term refers to any data used to help the
identification, description, and location of a network entity. Target metadata for an Enterprise
Manager target consists of the metrics a user wants to expose and the methods used to
compute those metrics.

Note:

Ensure that all metrics that are viewable are categorized. At a minimum, metrics
that have thresholds must be categorized so that generated incidents are
categorized. For more information about categorization, see Categorizing Metrics.

• Metadata Version

Whenever the target metadata changes, increment the metadata version (META_VER). For
more information, see Defining the Target Type Metadata.

• Real-time Only Metrics

Performance metrics can be classified into metrics that must be computed to track
performance trends and others that are more useful to drill down to get the details at a
particular point in time. Real-time only metrics include those that need contextual
information to return detailed information about a particular subset of the system, such as
the resource utilization for specific processes, to diagnose further.

• Choice of Key Columns

A key column in a metric is used in the management repository to trend performance
data on an axis, such as the tablespace usage per database tablespace. Key-based
metrics should be used to model sub-components of the target for which meaningful
metric data should be collected, either for target monitoring or target diagnostic purposes.
As such, only key columns that are the logical identifiers of the target sub-components
should be included in the metric.

Chapter 3
Guidelines for Creating Target Metadata

3-27

Note that including key columns for which the number of distinct values collected
across a large number of targets could result in an excessive number of key
values being stored in the management repository. For example, using a
timestamp (or equivalent, like database SCN or UNIX ctime) as a key value will
result in a new value for every collection for every target, and is therefore not
advisable.

Including a combination of key columns can also be problematic. For example, if
you include three key columns in a metric, in which each key can take one of 10
target-specific values (10X10x10) multiplied by the number of targets, you would
be collecting data for 1000 keys per target. This could be considered excessive if
more than a handful of targets are being managed.

Do not define metrics that have nonsharable and durable keys across targets and
time.

You do not have to have key columns, but the query descriptor must return a
single row.

Note:

Do not modify key columns, that is, order, data type, or number after
creating a metric.

• Transient Columns

In some cases, metric columns can be used to compute the values of other more
interesting metric columns. When the original columns are not required, then you
can mark these columns as transient so that they are not uploaded to the
Management Repository, therefore saving space.

Metrics that are dependent on a duration of time must not be uploaded. Mark
these types of metrics as transient. This includes delta metrics such as Request
Process (last collection interval).

• Rate Metrics

Metrics should contain data values for recent activity. In many cases, to do this,
you must create rate metrics out of existing metrics. The COMPUTE_EXPR
attribute (defined in Table 3-4) specifies the formula for calculating the value of a
column. The following list provides the supported grammar for Compute
Expression:

expression := (cond_expr | (cond_expr ? cond_expr : cond_expr)
cond_expr := (string_expr |
(string_expr == string_expr) |
(string_expr < string_expr) |
(string_expr > string_expr) |
(string_expr <= string_expr) |
(string_expr >= string_expr) |
(string_expr __contains string_expr) |
(string_expr __beginswith string_expr) |
(string_expr __endswith string_expr) |
(string_expr __matches string_expr) |
(string_expr __delta string_expr))
string_expr := (simple_expr |
(simple_expr __leadingchars simple_expr) |
(simple_expr __trailingchars simple_expr) |
(simple_expr __substringpos simple_expr))

Chapter 3
Guidelines for Creating Target Metadata

3-28

simple_expr := (term |
(simple_expr + term) |
(simple_expr - term))
term := (unary_expr |
(term * unary_expr) |
(term / unary_expr))
unary_expr := (factor |
(__is_null factor) |
(__length factor) |
(__to_upper factor) |
(__to_lower factor) |
(__ceil factor) |
(__floor factor) |
(__round factor))
factor := (identifier |
string_literal |
number |
'(' expression ')')
string_literal := '\'' (character | "\\'")* '\''

To create rate metrics from existing metrics, define the following metrics:

– Calculating Delta

requests.completed.delta = (requests.completed > _requests.completed) ?
(requests.completed - _requests.completed) : 0

If the current value of requests.completed is more than the previous value, then
obtain delta by getting the difference between the current value and the last value.
Otherwise return 0.

– Calculating Rate

requests.completed (per minute) = (requests.completed > _requests.completed) ?
(requests.completed - _requests.completed) *60 /__interval: 0

If the current value of requests.completed is more than the previous value, then
obtain delta by getting the difference between the current value and the last value
and then multiplying by 60 and dividing by the interval between 2 collections.
Otherwise, return 0.

• Metrics and Microsoft Windows

When creating metrics for custom targets, it is important to take into account the cost
(CPU usage) of creating additional operating system (OS) processes. This is especially
true for systems running Microsoft Windows where process creation is much more CPU
intensive compared to UNIX-based systems such as Linux or Oracle Solaris. The
percentage CPU utilization increases linearly with creation of child processes. To
minimize process creation, avoid executing OS programs or commands from metric
collection scripts. For example, when writing Perl scripts, avoid using the system function
or backticks (``) to execute an OS command.

• Target Properties (Static Versus Dynamic)

Target properties are named values that can be used for computing the metrics of the
target, or for display in the home page of the target. The list of target properties is
specified in the metadata to allow data driven user interfaces to register targets, and for
the Management Agent to validate that a target instance is complete.

– Static Instance Properties: These are properties whose values need to be specified
for a target in the targets.xml entry for the target. An instance property can be marked
optional if the target declaration is considered complete even without the

Chapter 3
Guidelines for Creating Target Metadata

3-29

specification of the property. The metadata specification of a target property
can also provide a default value for use in a configuration user interface.

– Dynamic Instance Properties: The Management Agent also allows for target
instance properties to be computed. Such properties are computed using a
QueryDescriptor very similar to the ones used in metrics.

Use of dynamic properties reduces the work involved in configuring a target by
allowing certain properties to be computed rather than requiring the user to
correctly specify their values (for example, the Version property of a database
can be reliably computed given addressing information).

The Management Agent allows for the fact that the target needs to be up for
the successful computation of these dynamic properties by recomputing the
properties each time a target bounce is detected (each time the target status
changes to Up).

• Metrics

The metric concept, as it pertains to the Management Agent, can be used to
denote configuration and performance information.

– Configuration Metrics: Configuration metrics collect data similar to target
properties that denote the configuration of the target. This information is
periodically refreshed and can be used to track changes in the setup of a
target. The collection interval on such metrics is typically on the order of about
24 hours.

– Performance Metrics: Performance metrics are used to track the
responsiveness of a target. These metrics are typically collected more often
than configuration metrics though the interval of some performance metrics
may vary widely from those of others. Also, performance metrics usually ship
with thresholds that are the basis of performance alerts for the target.

A required metric for all targets is the "Response" metric consisting of a
"Status" column with a condition on it. This metric is used to track the
availability of the target.

The conventions used in naming your metrics are extremely important because
many areas of the Enterprise Manager user-interface are data-driven. For
example, actual metric column labels and key values can be part of the page title,
instruction text, or column headings. Specifically, these elements appear on the All
Metrics page, Metric and Collections Settings page, Event Rules page, Group
Charts page, and other pages within the Enterprise Manager user interface. For
this reason, Oracle recommends the following metric naming conventions.

– Ensure that metric column names are as explicit as possible. Do not include
count in the column name because it adds to the length of the name and does
not provide value to the end user. For example:

Errors (per minute)

Note: Do not use Error Count (per minute).

– All metric column names (labels) must be unique within a given target type
and version, and easily understood by the user (metric units used as required).
If the metric refers to a unit of measure, include the unit in the metric label
inside a parenthesis. For example:

Network Interface Total I/O Rate (MB/sec)

Requests Processed (per minute)

Chapter 3
Guidelines for Creating Target Metadata

3-30

Transactions Committed (%)

– Metrics that are increasing values which reset at startup should not be uploaded.
Mark these metrics as transient and include since startup in the metric label inside a
parenthesis. For example:

Processing Time (since startup)

Errors (since startup)

Requests (since startup)

Average Execution Time (ms - since startup)

– All metric column names (labels) should be self-explanatory without dependence on
the metric name. For example:

Tablespace Space Used (%)

– Key column names must be self-explanatory. Enterprise Manager uses these names
when specifying metric thresholds or configuring notifications. For readability, the
name of the key column name must fit easily within the phrase "all key column name
objects". For example:

all tablespace objects

– Across target versions, the same columns must use the same labels. This ensures
columns, such as metric columns and short names, have the same NLS IDs across
different target versions.

Defining Collections
Collections are the mechanism by which the Management Agent periodically computes the
metrics of a target and uploads the data to the Management Repository. The most important
thing to keep in mind when creating the collections for a target type is to avoid overburdening
the Management Repository with excess data. In a large enterprise with hundreds of
Management Agents and thousands of targets, the key to scalability is to limit the amount of
data collected about a target that is uploaded to the repository. This is especially important
since raw data is maintained for 24 hours - rollup benefits only accrue beyond that point.

Alert Message Guidelines
Alert messages tell the user when something is wrong. These messages should also assist
the user in solving the problem. Oracle recommends following these content guidelines when
writing alert messages:

• Alert messages should be meaningful, and must include the metric display name, metric
value and the thresholds that caused the alerts.

The most significant part of the message should be covered within the first 60 characters
of the message text. The reason is that the first part of the message is the most visible to
users in e-mail notifications, incident tables containing the alert message, and so on.

• Include warning thresholds and critical thresholds in the alert message.

• Target down messages should, in addition to indicating that the target is down, include
information indicating possible reasons why the target may be down.

• Include error codes and messages whenever possible.

The following is a good example of an alert message:

Chapter 3
Guidelines for Creating Target Metadata

3-31

CPU Load (Run Queue Length averaged over 15 minutes) is %value%, crossed warning
(%warning_threshold%) or critical (%critical_threshold%) threshold.

Note that you should not include information on how to resolve or diagnose the
problem in the alert message. You should instead provide this content in the Guided
Resolution section of Incident Manager. See Providing Content in the Guided
Resolution Region for more information.

Metric Evaluation Order
It is important to pay attention to metric evaluation order so as to avoid metric
collection failures. For example, the Response metric should be evaluated first in order
to prevent a collection failure when a target is down. Also, ensure that the metric
collection error is consistent. For example, you should have a new message every
time that a metric is collected.

When a CollectionItem tag is used to define a collection, then the Management
Agent evaluates all metrics with a collection item in order. However, collection items
run independent of each other.

Note:

Programmatic logic of the Management Agent distributes the metric
evaluations so that each evaluation is separated by approximately 10
seconds.

Collection Frequency
In general, there is almost never a good reason to collect information at intervals
smaller than 5 minutes. In the rare case where data variations occur at a smaller
granularity and administrators need to be notified sooner, the Management Agent
provides the capability to use a small collection interval to compute the metrics and
threshold information while still only uploading data once in every nn computation
cycles.

Controlling Number of Rows
Some metrics can result in the creation of a large number of rows in a Management
Repository table. In some cases, only a subset of these rows may need to be
uploaded to the repository. The Management Agent allows the specification of filter
conditions that can be used to find rows to skip uploading. Also, a "limit_to" clause can
be used on metrics that return sorted metric data to upload only the first n rows to the
repository.

Localizing Target Metadata
To localize your target metadata:

• Read About Target Metadata Localization

• Define the Resource Bundle Package

• Localize Metric Messages

Chapter 3
Localizing Target Metadata

3-32

• Package Resource Bundles

About Target Metadata Localization
Target metadata can optionally support localized strings, including target type display name
and metric and metric column labels, enabling Enterprise Manager to display labels in the
language and locale of each Enterprise Manager user. To support this feature, the target
metadata file must include the RESOURCE_BUNDLE_PACKAGE property in the
TargetMetadata tag. The RESOURCE_BUNDLE_PACKAGE property specifies the location of
the resource properties files that contains the localized target strings. For information about
the TargetMetadata tag, see Creating the Target Type Metadata File.

Define the Resource Bundle Package
Use the three-part plug-in id, followed by the package selected for the resource bundles. For
example, if the plug-in ID is test.group.domain, then define the resource bundle package as
follows:

RESOURCE_BUNDLE_PACKAGE=test.group.domain.rsc

In the previous example, rsc is the package selected for the resource bundles. You can use
any alphanumeric string for the package name but you cannot include special characters.

The strings included in the target metadata that can be externalized to the resource
properties file are the Label tags associated with the target type, metric and column items.

Note:

If the resource property cannot be loaded, then the Label tag has a default value
that is displayed and the NLSID property specifies the key to be used to load the
string resource that will be loaded in the user's locale.

You must place all of the strings defined for your target metadata in a resource properties file,
named target_typeMsg.properties. Include this file in the corresponding directory in the
resource deployment. For more information, see Package Resource Bundles.

In the following example, the plug-in ID is test.group.domain and the target type is
domain_widget.

Example: Defining a Resource Bundle Package for Target Metadata Localization

<TargetMetadata META_VER="1.0" TYPE="domain_widget"
RESOURCE_BUNDLE_PACKGE="test.group.domain.rsc">
<Display>
<Label NLSID="dom_widget">Domain Widget</Label>
</Display>

For this plug-in deployment, you must have a resource properties file named
test.group.domain.rsc.domain_widgetMsg.properties. This file contains all the strings for the
target metadata and includes the following:

Strings for the domain_widget target type within the test.group.domain plug-in
dom_widget = Domain Widget

Chapter 3
Localizing Target Metadata

3-33

Localize Metric Messages
In the default collection metadata file, metric collection conditions can specify the
following properties for the message alert and cleared message:

NLSID Description

MESSAGE

Specifies the default message (in English)
when a condition is met.

MESSAGE_NLS_ID

Specifies the resource identifier that will be used
to locate the translated version of the message
in the resource properties file associated with
the target type metadata.

CLEAR_MESSAGE

Specifies a cleared message to be sent
when an alert condition no longer exists.

CLEAR_MESSAGE_NLS_ID

Specifies the resource identifier that will be used
to locate the translated version of the cleared
message in the resource properties file
associated with the target type metadata.

The following example provides an example of a metric definition that includes the
resource identifier for the alert message and cleared message.

Example: Defining a Metric to Include Localization Properties

<MetricColl NAME="CPUPerf">
 <Condition COLUMN_NAME="non_nice" WARNING="NotDefined" CRITICAL="NotDefined"
 OPERATOR="GE"
 MESSAGE="The value for %columnName% is %value%%%. It has risen above the
critical (%critical_threshold%%%) or warning (%warning_threshold%%%) threshold."
 MESSAGE_NLS_ID="dhs_non_nice_cond_msg"
 CLEAR_MESSAGE="The value for %columnName% is %value%%%. It has fallen
below the critical (%critical_threshold%%%) or warning (%warning_threshold%%%)
threshold."
 CLEAR_MESSAGE_NLS_ID="dhs_non_nice_clear_msg" />

Package Resource Bundles
Before you package the resource bundle, check the About Resource Property Bundle
Content to ensure the contents of your package are formatted correctly.

About Resource Property Bundle Content
All of these resource properties files must be formatted as proper Java resource
properties bundles. Include the appropriate country and locale according to the
following Java specifications in the file names.

http://docs.oracle.com/javase/7/docs/api/java/util/
PropertyResourceBundle.html

Character encoding must be done according to the Java language specification for
those resource properties bundles that will be used for target metadata, jobs, and so
on.

Encoding of Flex resource properties files does not follow the same encoding as the
Java language specification. Therefore it is necessary to separate any string resources

Chapter 3
Localizing Target Metadata

3-34

http://docs.oracle.com/javase/7/docs/api/java/util/PropertyResourceBundle.html
http://docs.oracle.com/javase/7/docs/api/java/util/PropertyResourceBundle.html

that will be displayed in the Flex UI (MPCUI) into separate resource properties bundles. For
more information, see the Flex Documentation.

Packaging Resource Bundles
To package resource bundles:

1. Add the Resource properties files to a plug-in using a JAR file that includes the plug-in
staging area under the oms/archives directory from where the plug-in OPAR is created.
This jar file can contain properties files only and not any other files such as Java class
files, images, and so on.

2. Include the properties files in a directory where the path is the three part plug-in id,
followed by a subpackage name of your choice. For example, if the plug-in id is
test.group.domain, then the path to the resource properties files must be
test.group.domain.rsc, where rsc is the subpackage selected for the resource bundles as
described in Define the Resource Bundle Package.

3. Using the previous example, enter the following JAR command to create a JAR file to
include in the oms/archives directory of the plug-in stage area:

jar cvf test_group_resources.jar test/group/domain/rsc/*
4. Place the JAR file in the oms/archives directory and then the EDK tools can validate and

package the plug-in. For more information, see Validating, Packaging, and Deploying the
Plug-in .

Note:

If the JAR file contains anything other than properties files, then the following
validation error appears:

Plug-ins of type MP and MPP can only contain resource bundles in archives
in java properties format. Found other files in artifact.

./stage/oms/archives/test_group_resources.jar

Note:

For examples of resource properties bundles, see the following pages from The
Java Tutorial:

http://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

Checking a New Target Type
Before you register a new target type, check the following list:

• Target Type Name

Ensure that the target type name follows the following naming format, where plugin
represents the plug-in name and type represents the target type name:

Chapter 3
Checking a New Target Type

3-35

http://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

oracle_plugin_type

For example, oracle_vt_zone or oracle_emas_forms_server.

• Model

– Ensure that the target is a manageable entity or that it can be monitored. Also,
ensure that it makes business sense to model the target type.

– Ensure that the target type has a response metric and other quantifiable
numeric metrics

– Ensure that the target type is a required target and has an identifiable
presence even if Enterprise Manager is not installed.

– Identify the manageable entity class to which the target type belongs and set
the property correctly.

– Ensure that the Response metric has one numeric metric column only called
Status

• Version

– Ensure that the metadata version is defined correctly. For more information
about the metadata version number, see Defining the Target Type Metadata.

• Associations

– Ensure that no abstract association types are used. For example:

select assoc_type from mgmt_assoc_types where is_abstract=1
– Ensure that core association types are used. For example:

select assoc_type from mgmt_assoc_types where category=1
– Do not define the provided_by/relies_on_key_component allowed pair. The

Service framework automatically adds a service (provided_by/
relies_on_key_component allowed pair).

• Properties

– Do not store credentials such as user names and passwords in the target
properties.

– Include properties that are used for monitoring the target only in the target
properties. If data is not actively used by the Management Agent, then it is not
a target property.

– Add a target version property to capture the target version. By default,
Enterprise Manager uses a TargetVersion property to represent the target
version. For more information about this property, see Table 3-2.

Testing Your Target Type Definitions
Test your new target type definitions by using the metric browser. The metric browser
is a development utility that is an integral part of the Management Agent. As a
subsystem of the Management Agent, it allows you to quickly access the metric values
for targets monitored by the Management Agent without the overhead of a
Management Repository or other components of the Enterprise Manager framework.

Chapter 3
Testing Your Target Type Definitions

3-36

Activate the Metric Browser
To configure the Management Agent's metric browser for debugging metrics without the
Enterprise Manager Cloud Control console:

1. Check that the _enableMetricBrowser line in the $AGENT_HOME/sysman/config/
emd.properties file is enabled, where AGENT_HOME represents the home directory of
the Management Agent:

_enableMetricBrowser=True
2. Enter the following command to apply the changes that you made to the emd.properties

file:

emctl reload agent
3. Open the emd.properties file and check the EMD_URL line. It has the following format:

EMD_URL=http://host:port/emd/browser/main
Alternatively, you can use the emctl command to activate the metric browser as follows:

emctl setproperty agent -name _enableMetricBrowser -value true

View Your Metrics
After the target instance has been added to the targets.xml file and the new information has
been reloaded, you can view available targets and metrics through the metric browser.
Access the following URL using any web browser:

http://host:port/emd/browser/main

Tip:

To find the port number used by the Management Agent, open
the $AGENT_HOME/sysman/config/emd.properties file and search for the
EMD_URL line.

Note:

You must use the Management Agent operating system credentials to log in to the
metric browser.

Validating Your Metadata XML
To verify that your target metadata files are defined correctly, enter the following command
from the bin directory of the EDK:

empdk validate_plugin -stage_dir plugin_stage

In the preceding command, plugin_stage represents the plug-in staging directory.

Chapter 3
Validating Your Metadata XML

3-37

For information about the EDK, see About the Extensibility Development Kit (EDK) and
for more information about the empdk command and its usage, see Validating the Plug-
in.

Troubleshooting the Target Creation Process
This section provides some troubleshooting tips if you encounter any issues with your
targets.

My target is not added to Enterprise Manager

If your target is not added, do the following:

• Check the Oracle Management Service trace file (emoms.trc) for exceptions. The
OMS trace file is located in the EM_INSTANCE_BASE/em/OMS_NAME/
sysman/log/ directory, where EM_INSTANCE_BASE is the OMS Instance Base
directory (by default, this directory is under the parent directory of the Oracle
Middleware Home).

grep –i EntityManager.createEntities *
grep –i EntityUtil *

• If your target is added to the Management Repository but not to the Management
Agent, go to the agentStateDir/sysman/log directory and check the Management
Agent log file (gcagent_mdu.log). This log file tracks the metadata updates to the
Management Agent.

My target continues to show a pending status

If your target is monitored by the Management Agent and it shows a pending status,
then do the following:

• Check if the Management Agent is still monitoring the target.

To list the name and type of each target being monitored by a Management Agent:

1. Change directory to the AGENT_HOME/bin directory (UNIX) or the
AGENT_HOME\bin directory (Windows).

2. Enter the following command:

emctl config agent listtargets
3. Check the output for your target.

• Check that the plug-in is deployed on the Management Agent by reviewing the
following log file:

agent_inst/sysman/registry.xml
• Check that the Management Agent received the request to add the target. Go to

the agentStateDir/sysman/log directory and review the Management Agent log file
(gcagent_mdu.log).

• From a SQL*Plus session, run the tgtinfo.sql script, similar to:

@tgtinfo oracle_database orcl

The tgtinfo.sql script includes the following:

SELECT type_meta_ver, ':'||category_prop_1||':'||
 category_prop_2||':'||

Chapter 3
Troubleshooting the Target Creation Process

3-38

 category_prop_3||':'||
 category_prop_4||':'||
 category_prop_5||':' category_prop,
 target_guid,
 TO_CHAR(load_timestamp,'DD_MON-YY HH24:MI:SS'),

timezone_region,owner,host_name,emd_url,broken_reason,broken_str,manage_status,
 promote_status,
 dynamic_property_status
 FROM sysman.em_targets
 WHERE target_type='&&1'
 AND target_name='&&2'
/

Note:

If you are having issues running the script, edit the script to replace &&1 with the
type of the target and replace &&2 with the name of the target.

The output from the script includes the following information:

– TARGET_TYPE

Name of the target, such as oracle_database

– TYPE_META_VER

Metadata version number. Check that the metadata version is correct for the target.

– CATEGORY_PROP_1

Category properties can be used to distinguish different metric definitions based on
different configurations. Check that the value is correct for the target.

– BROKEN_REASON

If this value is greater than 0, then target is broken (for example, the target could not
be saved or it is missing required properties). The BROKEN_STR value will provide a
reason as to why the target is broken.

– MANAGE_STATUS

The manage status of the target. Possible values include:

* 0: Ignored

* 1: Not yet managed

* 2: Managed

* 3: Managed target component

– PROMOTE_STATUS

The promotion status of the target. Possible values include:

* 0: Cannot promote (an existence-only entity)

* 1: Eligable for promotion

* 2: Promotion in progress

* 3: Promoted to Management Agent

Chapter 3
Troubleshooting the Target Creation Process

3-39

* 4: Promotion in progress but target was added to the Management Agent
previously

– DYNAMIC_PROPERTY_STATUS

Status of the dynamic properties. Possible values include:

* 0: Dynamic properties have not been uploaded by the Management Agent

* 1: Dynamic properties are uploaded by the Management Agent

Chapter 3
Troubleshooting the Target Creation Process

3-40

4
Plug-in Builder

This chapter describes the following topics:

• Overview

• Prerequisites For Using Plug-in Builder

• Installing Plug-in Builder

• Creating an Enterprise Manager Plug-in Project

• Creating a Plug-in Project Using Sample Plug-ins

• Discovering Targets

• Deploying the Plug-in Archive into Enterprise Manager

• Adding a New Target Type

• Updating Target Type Information

• Adding a Collection Item for the Target

• Inserting or Updating Collection Item Properties

• Deinstalling Plug-in Builder

• Appendix

Overview
The Enterprise Manager Plug-in builder is a JDeveloper extension that helps integrators to
create plug-ins using JDeveloper editor. The intuitive GUI wizards available within the plug-in
builder enable you to easily develop plug-ins that can be imported and deployed onto
Enterprise Manager. Traditional way of creating a Metadata Plug-in using various XML editors
has always been prone to semantic and syntactic errors. Therefore, Oracle recommends
using this interactive development environment to take advantage of the various run time
validation intelligence embedded in the extension.

To develop plug-ins, you need to download the plug-in builder tool that is shipped with
Extensibility Development Kit (EDK). To download the EDK kit, from Cloud Control console,
select Setup, then Extensibility, and Development Kit. Following are the key components
required to develop metadata plug-ins:

• Plugin.xml: A plugin.xml file provides the metadata describing the plug-in, and is used
for deploying plug-ins. It contains properties that identify the plug-in, such as name and
version, and declares the set of target types that will be added to Enterprise Manager
Cloud Control.

• Plugin_registry.xml: A plugin_registry.xml file provides the metadata required by the
Management Agent to which the plug-in will be deployed. It is packaged in the /agent
directory within the plug-in archive and is deployed to the Management Agent that will
monitor a target.

4-1

• Target Type: A target type metadata file is an integral part of defining a new target
type. The target type file describes a set of metrics that can be collected for a
specific type of target. Essentially, it tells the Management Agent what data to
retrieve and how to obtain that data for this particular target type. To add a new
target type, provide the following details:

– Instance properties defines what properties an administrator must specify in
the Enterprise Manager Cloud Control console when adding a new target
instance of this particular target type.

– Credentials are required for a plug-in to authenticate with each target
instance that it will collect data for, or run jobs against. Credential types and
credential sets are needed to enable authentication.

– Metrics are at the core of Cloud Control's target monitoring capabilities.
Basically, Cloud Control's ability to monitor and manage various targets. This
in-turn refers to its ability to collect, process, and display target metrics.

• Default Collection: The default collection file defines the metric data to be
collected from targets and written to the Management Repository along with
information such as the collection frequency. The default collection metadata file
for a target type defines the following:

– The frequency of at which this metric data is collected.

– Thresholds that, when exceeded, will cause a Metric Alert event to be raised.

– An optional message to display when a threshold is exceeded.

Prerequisites For Using Plug-in Builder
• Ensure that you have downloaded and installed the latest version of JDK 7 on your

system.

• For developing plug-ins using plug-in builder, Oracle recommends using Oracle
JDeveloper 12.1.3.0.0 Studio Version. To install this JDeveloper version along with
the plug-in, follow the steps listed in Installing Plug-in Builder and a New
JDeveloper Instance.

Note:

If you select Oracle JDeveloper 12g 12.1.3.0.0 - Java Edition - Generic,
then you must have an existing JDeveloper instance running. To install
JDeveloper, see http://www.oracle.com/technetwork/developer-
tools/jdev/documentation/index.html. Following which, you can
install plug-in builder using the steps listed in Installing Plug-in Builder
into an Existing JDeveloper Instance.

• Ensure that you have downloaded the latest EDK kit to your local system. To do
so, follow the steps listed in Installing the Extensibility Development Kit (EDK).

Installing Plug-in Builder
This section contains the following topics:

• Installing Plug-in Builder and a New JDeveloper Instance

Chapter 4
Prerequisites For Using Plug-in Builder

4-2

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

• Installing Plug-in Builder into an Existing JDeveloper Instance

Note:

After installing the Plug-in Builder, to verify if the Plug-in Builder extension has been
properly deployed, follow these steps:

1. On the Oracle JDeveloper page, from help menu, select About.

2. In the About Oracle JDeveloper dialog box, select Extensions.

3. In the Extensions Tab, look for:

Name: EM Plug-in Builder
Identifier: oracle.em.edk.pluginbuilder
Version: 12.1.0.1.0
Status: Loaded

Installing Plug-in Builder and a New JDeveloper Instance
To install the JDeveloper studio version, and the plug-in builder components, follow these
steps:

1. Download the Generic Studio Edition of Oracle JDeveloper 12.1.3.0.0
(jdev_suite_121300.jar).

2. Set the following environmental variables:

On Unix:
export JAVA_HOME=/usr/jdk7
export EDK_HOME=/home/SCHARGE/13.2.0.0.0_edk_partner

On Windows:
set JAVA_HOME=C:\Program Files\Java\jdk7
set EDK_HOME=C:\Users\SCHARGE\13.2.0.0.0_edk_partner

3. Run the following command to install JDeveloper Studio binary:

On Unix:
$EDK_HOME/bin/setup.sh

On Windows:
%EDK_HOME%\bin\setup.bat

Installing Plug-in Builder into an Existing JDeveloper Instance
If you have an existing JDeveloper instance, then you must use JDeveloper update
mechanism to install plug-in builder extension. To do so, follow these steps:

1. Set the following environmental variables:

On Unix:
export JAVA_HOME=/usr/jdk7

On Windows:
set JAVA_HOME=C:\Program Files\Java\jdk7

Chapter 4
Installing Plug-in Builder

4-3

2. Run the command to start the existing JDeveloper instance.

3. On the Oracle JDeveloper page, from help menu, select Check for Updates.
Check for Updates Wizard is displayed.

4. On the Welcome page, click Next.

5. On the Source Page, select Install from Local File. Click browse, or enter the
path to the plug-in builder file:

On Linux

<EDK_INSTALL_DIR>/lib/empluginbuilder.zip
On Windows:

<EDK_INSTALL_DIR>\lib\empluginbuilder.zip
Where, EDK_INSTALL_DIR is the directory where EDK is installed.

Click Next.

6. On the Summary page, upgraded extensions, and the new extensions are
displayed. Click Finish.

You are then prompted to exit the JDeveloper wizard.

7. To update the JDeveloper reference to EDK, follow these steps:

a. Start the JDeveloper instance.

b. On the Oracle JDeveloper page, from Tools menu, select Preferences.

c. On the Preferences page, select EM Plug- in Builder, and update the location
of the EDK.

Note:

If you miss updating the EDK home location, the plug-in project fails
with set the EDK location error.

Creating an Enterprise Manager Plug-in Project
To create an Enterprise Manager project, follow these steps:

1. Run the command to start the existing JDeveloper instance.

2. On Oracle JDeveloper page, from File menu, select New. A New Gallery dialog
box is displayed.

3. On the left pane, from the Categories section, select Enterprise Manager Plugin,
and click OK to create a metadata plug-in project.

Chapter 4
Creating an Enterprise Manager Plug-in Project

4-4

4. In the Create EM Plug-in dialog box, enter the following details:

Figure 4-1 Create EM Plug-in

Table 4-1 Create EM Plug-in

Attribute Description

Company Name Ensure that you begin the name with an alphabetic value. The
length can range from one to eight characters. For example:
Sam123

Product Name Ensure that you begin the product name with an alphabetic value.
The length can range from one and eight characters. For example:
p123

Chapter 4
Creating an Enterprise Manager Plug-in Project

4-5

Table 4-1 (Cont.) Create EM Plug-in

Attribute Description

Product Tag Ensure that you start the product tag with x. The length of this
field can range from two and four characters. For example: xp1

Display Name Descriptive display name for the plug-in. For example: Plugin1

Version This is a pre-populated value. Describes the version of the plug-in.
For example: 12.1.0.1.0.

Category Select a category from the menu. By default it is Others.
Initial TargetType Name This is a pre-populated value that contains the suffix for initial

target type. For example: Type 1

TargetType Display Name Descriptive display name for target type. For example: Basic Target
Data.

Plug-in Directory This is the location where the plug-in project is created. Click
Browse, to change the directory location. For example: /home/
nbhaktha/pluginbuilder.

Click OK.

5. A new project is listed in the Application Navigator tab. If you have created more
than one project, then you can select the desired plug-in project from the
Application Navigator menu. When you expand the project, you will see three
primary resources: agent, discovery, and oms.

6. Right-click plugin.xml to view the details of the plug-in. Click Target Types tab to
view all the targets types added to the current plug-in. Click Collection Items tab
to view the list of collection items associated with this target.

7. To add new target types to a plug-in, see Adding a New Target Type.

8. To add collection items for a target, see Adding a Collection Item for the Target.

Note:

Starting with Enterprise Manager 12.1.0.4, out-of-box support for
discovery of targets is present. For more information, see Discovering
Targets.

9. Click refresh icon to view all the targets and collection items added into a plug-in
project. Note that these files are not physically added into the agent directory until
the staging phase. For information about how these files are packaged into a plug-
in project, see Appendix.

10. Right-click the project name and select Validate Plugin Distribution from the
context menu.

11. In the Validate EM Plugin dialog box, the Plugin Staging directory and Output
Directory values are pre-populated, you may change them if required. Click OK.

12. Right-click the project name, and select Create Plugin Archive from the context
menu.

13. In the Create Plugin Archive dialog box, the Plugin Staging Directory and Output
Directory values are pre-populated; you may change them if required. Click OK to
create the .Opar file.

Chapter 4
Creating an Enterprise Manager Plug-in Project

4-6

For more about importing and deploying the.Opar files, see Deploying the Plug-in
Archive into Enterprise Manager.

Creating a Plug-in Project Using Sample Plug-ins
To create an Enterprise Manager plug-in project using sample plug-ins, follow these steps:

1. Run the command to start the existing JDeveloper instance.

2. On Oracle JDeveloper page, from File menu, select New. A New Gallery dialog box is
displayed.

3. In the Categories section, select Enterprise Manager Plugin, then select Enterprise
Manager Plug-in from sample Plug-in.

4. Click OK.

5. In the Create EM Plugin dialog box, enter all the relevant plug-in details like Company
Name, Product Name, Product Tag, and Display Name.

Chapter 4
Creating a Plug-in Project Using Sample Plug-ins

4-7

Select one of the following samples from the list:

• Basic - oracle.samples.xsh1: This is a basic plug-in demonstrating minimal
monitoring capability like Target, Metrics definition and Reports.

• Intermediate - oracle.samples.xsh2: This is an intermediate plug-in
covering samples of Configuration collections, Job types and Target
Associations on top of Basic features

• Advanced - oracle.samples.xsh3: This is an advanced plug-in covering
Automatic Discovery, BI Publisher reports, Derived Associations and
Compliance standards along with Intermediate features

Enter the location for the new plug-in project.

Click OK.

This copies the sample into the specified project directory. It then modifies the
target type and collection files to use the new standard
(company_product_tag_type) and corrects the xml contents of the plugin, agent-
registry, targettype and default_collection files to reflect the data entered in the
wizard.

6. Right-click the project name, and select Validate Plugin Distribution from the
context menu.

7. In the Validate EM Plugin dialog box, the Plugin Staging directory and Output
Directory values are pre-populated, you may change them if required. Click OK.

8. Right-click the project name, and select Create Plugin Archive from the context
menu.

9. In the Create Plugin Archive dialog box, the Plugin Staging Directory and Output
Directory values are pre-populated; you may change them if required. Click OK to
create the .Opar file.

For more about importing and deploying the.Opar files, see Deploying the Plug-in
Archive into Enterprise Manager.

Chapter 4
Creating a Plug-in Project Using Sample Plug-ins

4-8

Discovering Targets
Starting with EDK 12.1.0.4.0, plug-in builder supports specifying discovery metadata and
target specific discovery code. That means, whenever a new target type is created, the
discovery metadata gets updated automatically to include the newly added target types. If
you do not want to discover some target types, then you can manually delete that information
from the discovery.xml file available at: <project_name>/Resources/oms/metadata/
discovery. To access and view the details of this xml file, see Viewing Basic Discovery
Information. The target specific discovery code is supported using a Perl script located
under /Resources/discovery folder. For any new target type added, the corresponding
discovery code should be added in the Perl script. For an example on how to update the Perl
script to discover targets, see Discovery Integration Example Requiring User Input.

See Also:

For more information about how discovery of targets can be accomplished in
Enterprise Manager manually, see Defining Target Discovery .

Updating Discovery Metadata for a Pre-existing Plug-in
If you have a plug-in that was created without the discovery metadata, then you can use the
Plug-in Builder to manually add the discovery files to the correct folders. Follow these steps
to enable discovery support for a pre-existing plug-in:

1. Select the project name from the Application Navigator menu.

2. Navigate to the following directory:

<Project_Name>/Resources/oms/metadata/discovery

If the discovery folder does not exist, then you will need to add it manually.

3. Edit the <company_name>_<product_name>_<tag>_discovery.xml file available in the
discovery folder to add the target type information to the metadata file. If the metadata
file does not exist, you may have to add it manually.

For details about what to add or edit in the discovery metadata file, refer to the sample
file available at: $EDK_HOME/samples/plugins/oracle.samples.xsh3/plugin_dist/oms/
metadata/discovery/sample_host3_discovery.xml

4. To add the Perl script that contains the logic to discover target types, navigate to the
following location:

<Project_Name>/Resources/discovery

If the discovery folder does not exist, then you will need to add it manually.

5. Edit the Perl script <company_name>_<product_name>_<tag>_discovery.pl to add the
relevant logic to discover all the target types that have been included in the metadata file
for discovery. If the Perl file does not exist, you may have to add it manually.

For details about what to add or edit in the Perl file, refer to the sample Perl script
available at: $EDK_HOME/samples/plugins/oracle.samples.xsh3/plugin_dist/
discovery/sample_host3_discovery.pl.

Chapter 4
Discovering Targets

4-9

6. Right-click the project name, and select Validate Plugin Distribution from the
context menu.

7. In the Validate EM Plugin dialog box, the Plugin Staging directory and Output
Directory values are pre-populated, you may change them if required. Click OK.

8. Right-click the project name, and select Create Plugin Archive from the context
menu.

9. In the Create Plugin Archive dialog box, the Plugin Staging Directory and Output
Directory values are pre-populated; you may change them if required. Click OK to
create the .Opar file.

For more about importing and deploying the.Opar files, see Deploying the Plug-in
Archive into Enterprise Manager.

Viewing Basic Discovery Information
To view the discovery information for all the target types that are bundled into a plug-
in, follow these steps:

1. Select the project name from the Application Navigator menu.

2. Navigate to the following directory:

<Project_Name>/Resources/oms/metadata/discovery
3. Double-click the xml file available in this directory to view the details. Essentially,

the xml records the following metadata information:

• General tab contains the details of the perl script that needs to be updated to
discover targets when the Oracle Management Agent starts up after
Enterprise Manager installation.

• Target Type Included tab lists of all the target types that are eligible for
discovery.

Deploying the Plug-in Archive into Enterprise Manager
Before you deploy the plug-in archive file into Enterprise Manager, perform the
following pre-requisite tasks:

1. The Enterprise Manager instance where you plan to deploy the plug-in, must have
the Software Library configured, and contain the plug-in archive file.

2. If you want to deploy the plug-in using the Plug-in Builder, ensure that the required
preferences are set. To set the Enterprise Manager Plug-in Builder preferences,
from the Tools menu, select Preferences. In the Preferences dialog box, select
EM Plug-in Builder, and select I would like to specify a test Enterprise
Manager installation.

Once the plug-in archive file (.opar) is ready, to deploy the plug-in archive file into
Enterprise Manager, right-click the project name, and from the context menu, select
Deploy Plug-in, and then click OK.

Chapter 4
Deploying the Plug-in Archive into Enterprise Manager

4-10

Note:

If you haven't created the Plug-in archive file, you will not be allowed to perform the
deploy step.

After the plug-in has been successfully deployed, to access the plug-in, log into Cloud
Control, and from the Setup menu, select Extensibility, then click Plug-ins. You must see
the newly deployed plug-in on the Plug-ins page.

Adding a New Target Type
There are two approaches to add a new target type. They are:

Table 4-2 Adding A Target Type

Approach 1 Approach 2

On Oracle JDeveloper page, from File menu,
select New. A New Gallery dialog box is
displayed.

Select the project name from the Application menu.

In the Categories section, select Metadata,
then select Target Type.

Expand the oms folder present inside the project
folder, and drill down to the targetType folder.

Click OK. Right-click the targetType folder, and select New

NA In the New Gallery window, select Metadata., then
click Target Type.

Click Ok.

1. In the Add Target Type dialog box, enter a unique name and a display name for the new
target type, then click OK.

Chapter 4
Adding a New Target Type

4-11

2. Click Refresh icon available in the Projects tab to view the new target type added.

Double-click the new target type added to view the details or to update the details.
For more information, see Updating Target Type Information.

Note:

The newly added target type automatically becomes available for discovery.
In order to discover the targets, you must ensure that the perl script available
in /Resources/discovery directory is manually updated to include all the
target type information. For more information, see Discovering Targets.

Updating Target Type Information
For a new Target Type, you need to provide the following details:

• Adding Instance Properties

• Adding Dynamic Properties

• Adding Credential Type

• Adding Credential Set

• Adding Metric Properties for a Target

Chapter 4
Updating Target Type Information

4-12

Note:

The metric references are completely synchronized with the collection metadata,
which means, if you delete or rename a metric for a target type, then the
corresponding reference in the collection items are also updated accordingly.

Adding Instance Properties
To define what properties an administrator must specify in the Enterprise Manager Cloud
Control console when adding a new target instance of this particular target type, follow these
steps:

1. Double-click the target type file (target_type.xml) to open with the Overview editor.

2. Select Properties tab, and click add (+) in the InstanceProperty section.

3. In the Insert InstanceProperty dialog box, enter a Name, NLSID, LABEL for the property. By
default OPTIONAL is set to False (unchecked), which means that a property must be
specified.

For example, you can add a property by name Password, and make OPTIONAL as false
(by deselecting the check box), which implies that the Administrator will need to specify a
password while adding a new target instance for this particular target type.

4. Click OK.

You can edit or delete the property by selecting the respective option available in the
InstanceProperty section.

Adding Dynamic Properties
The values for dynamic instance properties are passed back by the Management Agent
collecting data from the target instance. They are typically used within a QueryDescriptor to
define properties passed to the fetchlet responsible for metric collection. To add dynamic
instance properties, follow these steps:

1. Double-click the target type file (target_type.xml) to open with the Overview editor.

2. Select Properties tab, and click add (+) icon in the DynamicProperties section.

3. In the Insert DynamicProperty dialog box, enter a Name, PROP_LIST, and select FORMAT,
and FetchLet option from the menu.

For example:
NAME: AruidInfo
PROP_LIST: ARUID
FORMAT: ROW
FetchLet: OSLineToken

4. Click add (+) icon in the Query Properties section. In the add QueryDescriptor Property
dialog box, enter a name and define the scope for the new property.

NAME: scriptsDir
SCOPE: GLOBAL

5. Click OK.

Chapter 4
Updating Target Type Information

4-13

You can edit or delete the property by selecting the respective option available in
the DynamicProperties section.

Adding Credential Type
Credential type is the type of authentication supported by a target type. To add a
credential type, follow these steps:

1. Double-click the target type file (target_type.xml) to open with the Overview
editor.

2. Select Credentials tab, and click add (+) in the CredentialType section.

3. In the Insert CredentialType dialog box, enter a Name, NLSID, and label for the
credentials you are adding.

4. Click add (+) icon in the CredentialType Columns section.

5. In the add Credentialtype Column dialog box, enter the column values for each
credential type, and click OK.

For example, to create a host credential with two columns UserName and Password,
you need to provide the following details:

In the Insert CredentialType dialog box, enter the following details:
NAME: XP2HostCreds
NLSID: CREDS_HOST_HOSTCREDS
LABEL: XP2 Host Credentials

In the AddCredentialType Column, enter the following details:
NAME: XP2HostUserName
NLSID: CREDS_HOST_USERNAME
LABEL: XP2 Host UserName

NAME: XP2HostPassword
NLSID: CREDS_HOST_Password
LABEL: XP2 Password

You can edit or delete the Credentials by selecting the respective option available in
the CredentialType section.

Adding Credential Set
To create an instance of a CredentialType, follow these steps:

1. Double-click the target type file (target_type.xml) to open with the Overview
editor.

2. Select Credentials tab, and click add (+) in the CredentialSet section.

3. In the Insert CredentialSet dialog box, enter a unique name, select the Credential
type from the menu, select a value for usage, enter an NLSID, and a label for the
instance of the credential type that you are creating.

4. Click add (+) icon in the CredentialTypeColumns section.

5. In the Add CredentialSet Column dialog box, enter the column values for each
credential set, and click OK.

Chapter 4
Updating Target Type Information

4-14

For example, to create an instance of Host Credential type called Normal host credential with
two columns Normal Username and Normal Password, you need to provide the following
details:

In the Insert CredentialSet dialog box, enter the following details:
NAME: HostCredsNormal
CREDENTIALTYPE: XP2HostCreds
USAGE: PREFERRED_CRED
NLSID: CREDS_HOST_HOSTCREDS_NORMAL
LABEL: Normal Host Credentials

In the AddCredentialSet Column, enter the following details:
SET_COLUMN: username
TYPE_COLUMN: XP2HostUsername
NLSID: CREDS_HOST_HOSTCREDS_NORMAL
LABEL: Normal Username

SET_COLUMN: password
TYPE_COLUMN: XP2HostPassword
NLSID: CREDS_HOST_HOSTCREDS_NORMAL
LABEL: Normal Password

You can edit or delete the Credentials by selecting the respective option available in the
CredentialType section.

Adding Metric Properties for a Target
To add a metric property, follow these steps:

1. Double-click the target type file (target_type.xml) to open with the Overview editor.

2. Select Metrics tab, and click add (+) in the Metric section. The Metric Properties dialog
box is displayed.

3. In the general tab, enter name, NLSID, value, and type for the metric.

4. In the TableDescriptor tab, provide a name for the table, and follow the steps listed in
Adding ColumnDescriptor to add a ColumnDescriptor.

5. In the QueryDescriptor tab, select IncludeQueryDescriptor if you want to run a query.
Select the FETCHLET_ID from the menu, and insert the Query Properties. To add Query
Properties, see Adding QueryProperties.

6. In the ExecutionDescriptor tab, enter relevant values in the GetTables and GetViews
section. To do so, see Adding ExecutionDescriptor Table and Adding ExecutionDescriptor
View.

7. In the Configure Collection tab, to setup data configuration for the metric, click Add new.
For more information, see Configuring Collection Items for a Target.

8. Click Finish.

For example, the following graphic describes how to create a metric group containing metrics
that collect CPU performance data:

Chapter 4
Updating Target Type Information

4-15

You can edit or delete the metric property by selecting the respective option available
in the Metric section.

Adding ColumnDescriptor
To add a ColumnDescriptor, follow these steps:

1. In the TableDescriptor tab, click add (+) icon. Add ColumnDescriptor dialog box is
displayed.

2. Enter Name, Type, NLSID, and Label for the output column that you would like to
include in the table. Select the IS_PRIMARY check box to make the selected
column the primary key column in the Management Repository. Click OK.

Adding QueryProperties
To add a QueryDescriptor, follow these steps:

1. In the QueryDescriptor tab, click add (+) icon. Add QueryDescriptor Property
dialog box is displayed.

2. Enter Name and Scope for the query property. Click OK.

Adding ExecutionDescriptor Table
To add an ExecutionDescriptor table, follow these steps:

1. In the ExecutionDescriptor tab, click add (+) icon in the GetTables section. Add
ExecutionDescriptor Table dialog box is displayed.

2. Enter Name and Metric Name, and click OK.

Adding ExecutionDescriptor View
To add an ExecutionDescriptor view, follow these steps:

Chapter 4
Updating Target Type Information

4-16

1. In the ExecutionDescriptor tab, click add (+) icon in the GetViews section. Add
ExecutionDescriptor Table dialog box is displayed.

2. Enter Name and Metric Name. If you select Filter, you can provide a single column
name, and a corresponding value. If you do not select Filter, click add (+) icon to add
multiple column names and values. Click OK.

Configuring Collection Items for a Target
In the Configure Collection tab, you can perform the following tasks:

• Skip: Choose skip to bypass this step. Basically, no collection item is associated with
this metric.

• Add New: Choose Add New to configure a new collection item that will collect data for
this metric. To add or edit the properties for a collection item, see Inserting or Updating
Collection Item Properties.

• Use Existing: Choose Use Existing, and select the collection item from the menu to
associate an existing collection item to this metric for data collection.

Adding a Collection Item for the Target
There are two approaches to add new collection item for the target.

Table 4-3 Adding or Updating a Collection Item

Approach 1 Approach 2

Select the project name from the Application
menu.

Select the project name from the Application menu.

Expand the oms folder for your project, then
select Target Type.

A list of target types is displayed.

Open the plugin.xml file in an overview editor.

Select the target type to associate collection
item.

Select Collection Items tab.

A list of all the available collection items for the target
is displayed.

Select Metrics tab, then click Add icon. In the
Insert Metric wizard, select Configure
Collection, then click Add New.

Note: To add or edit the properties for a
collection item, see Inserting or Updating
Collection Item Properties

Select one collection item from the list, and do the
following:

In the General tab, the metadata version and target
type information is displayed.

In the Collection Items tab, the collection item name
is displayed.

Note: To add or edit the properties for a collection
item, see Inserting or Updating Collection Item
Properties

Inserting or Updating Collection Item Properties
To add or edit the properties of a collection item, follow these steps:

1. In the General tab, enter a name for the collection item. Upload value determines the
value following which the data will be written to the repository. For example, an UPLOAD
value of 6 implies that every sixth collection of data will be written to the Management

Chapter 4
Adding a Collection Item for the Target

4-17

Repository. Provide a value for Interval and the time unit. For example, an interval
of 5, and time unit of Min would mean that collection will happen at 5 minutes
interval. Click Next.

2. In the Conditions tab, you can set a metric alert condition. To do so, click Add (+)
in the Conditions section. The Add Conditions dialog box is displayed. Enter all the
values for your condition here, and click OK. Click Next.

3. In the Metric Collection tab, provide the necessary details, and click Finish.

The following example represents the CollectionItem entry for the basic Response
metric group, which includes the Status metric. It specifies that data for this metric
should be collected every 5 minutes, which is the standard collection interval for this
type of metric. A condition has been set on the Status metric.:

In the General tab, enter the following details:
META_VER: 1.0
TYPE: test_demo_targetType

In the CollectionItem tab, enter the following details:
NAME: Response
UPLOAD: 6
INTERVAL: 5
TIME_UNIT: Min

In the Add Condition Dialog box, enter the following details:
COLUMN_NAME: Status
CRITICAL: 0
OPERATOR: EQ
CLEAR_MESSAGE_NLSID: Response_Status_clearalertmessage
MESSAGE: Failed to connect to database instance: %oraerr%.

Deinstalling Plug-in Builder
To deinstall the plug-in builder, follow these steps:

1. Run the command to stop the existing JDeveloper instance.

2. Navigate to the JDeveloper Instance home:

On Linux

<EDK_INSTALL_DIR>/jdevhome/
On Windows:

<EDK_INSTALL_DIR>\jdevhome\
Where, EDK_INSTALL_DIR is the directory where EDK is installed.

3. Run the command to manually delete the following files:

• jdeveloper/jdev/extensions/oracle.em.edk.pluginbuilder.jar
• jdeveloper/jdev/extensions/oracle.em.edk.pluginbuilder.help.jar

4. Run the command to restart the JDeveloper instance.

Appendix
This section contains the following topics:

Chapter 4
Deinstalling Plug-in Builder

4-18

• Using the Structure View

• Using Property Inspector

• Directory Structure for a Plug-in Project

Using the Structure View
Structure view shows the element structure of the XML file and can be used to navigate to
specific elements whose attributes will then be displayed in the Property Inspector section.

Using Property Inspector
Instead of using the Overview section, you can choose to use the plug-in builder specific
labels and elements available in the property inspector section to modify the source XML
code of the plug-in. This section provides all the plug-in specific attributes that make the
editing experience user-friendly

Note:

For a complete list of DTD elements and their usage, see Enterprise Manager
DTD .

Directory Structure for a Plug-in Project
The following is a typical example for a plug-in project. This example describes four targets,
and their corresponding collection items. The collection items are essentially meant to collect
data from these target types. There are four Collection Items, one for each target. A Perl
script is available in the discovery folder. The primary function of this script is to automatically
discover all the targets added as a part of this project when the plug-in archive is imported
and deployed to Enterprise Manager.

Chapter 4
Appendix

4-19

Chapter 4
Appendix

4-20

5
Adding Information Publisher Reports

Defining new target types in Enterprise Manager through metadata plug-ins provides you with
the opportunity to add new report definitions. Plug-ins also enable you to add permanent
(SYSTEM) target type specific report definitions to Enterprise Manager using the Information
Publisher XML file format.

Note:

Information Publisher is deprecated as of Enterprise Manager 12c and Oracle
recommends using BI Publisher to create new reports.

This chapter includes the following sections:

• Introduction to Adding Information Publisher Reports

• Overview of SYSTEM Reports

• Understanding the Report Definition File

• Creating a Report Definition File

• Understanding the XML Report Definition Interface

• Using the ImportExport.xsd File

• About Enterprise Manager Command Line Interface (EM CLI) Verbs

• About Development Guidelines

Introduction to Adding Information Publisher Reports
As a plug-in developer, to add Information Publisher reports you must design your reports
based on the information that you want to show then create your report definition file as
follows:

1. Define the SQL and PL/SQL queries used to extract information from the management
repository.

For more information, see Defining SQL or PL/SQL Queries.

2. Create a test report interactively from the Enterprise Manager console.

For more information, see Creating a Test Report Interactively from the Enterprise
Manager Console.

3. Use EM CLI to generate the report definition file.

For more information, see Using EM CLI to Generate the Report Definition File.

5-1

Assumptions and Prerequisites
This chapter assumes that you are familiar with:

• Management Repository views against which you can write your own queries.

• The XML file format which you will use to create your report definition.

Overview of SYSTEM Reports
Adding report definitions through metadata plug-ins creates target type specific
SYSTEM reports. SYSTEM report definitions are handled differently from definitions
created through the Information Publisher user interface. SYSTEM reports are
permanent and cannot be deleted or edited by Enterprise Manager administrators. You
can add multiple report definitions to a metadata plug-in, thereby enabling you to
associate multiple reports with a specific target type.

Adding SYSTEM report definitions using metadata plug-ins and the Information
Publisher XML files enables users to access reports from the Enterprise Manager
console's Information Publisher Report Definition page.

About the Report Definitions Page
All report definitions added using metadata plug-ins are available from the Information
Publisher's Report Definitions page. As with out-of-box SYSTEM report definitions,
those added using metadata plug-ins are organized according to report category and
subcategory. SYSTEM report definitions cannot be deleted from the Enterprise
Manager console.

Understanding the Report Definition File
A report definition file is an XML file that contains code to extract relevant information
from the Management Repository (using repository views) and the report elements
used to format and display that data. The Information Publisher API enables you to
specify the report elements and parameters that you normally specify when creating a
report definition from the Enterprise Manager console. The fully formed report
definition file consists of four basic XML tags and takes on a hierarchical tag structure:

• <ReportDefinition>
Defines report identification parameters as well as encapsulates all report
elements used to build the report

• <ReportElement>
Defines the graphical display elements such as tables, charts, or text

• <ReportElementParameters>
Defines specific parameters required by individual report elements

• <ReportWideParmeters>
Defines parameters used by all report elements in the report definition file

Chapter 5
Overview of SYSTEM Reports

5-2

Creating a Report Definition File
As previously mentioned, the content of a report definition file consists of XML tags used to
construct a report. You will use both the Enterprise Manager console and EM CLI to develop
and generate your report definition file.

Metadata plug-ins enable you to define as many report definition files as required for a
particular target type.

About the Report Definition File Development Process
The process of developing a valid report definition file involves three steps:

1. Defining SQL or PL/SQL Queries

2. Creating a Test Report Interactively from the Enterprise Manager Console

3. Using EM CLI to Generate the Report Definition File

Defining SQL or PL/SQL Queries
The first step in creating your report definition is to create the SQL or PL/SQL queries used to
extract the requisite report information from the Management Repository. Enterprise Manager
provides management views with which you can safely extract data from the Management
Repository without reading from the base tables. Using repository views protects your queries
from changes to the repository schema that may occur in future releases and ensures your
SYSTEM report definitions remain functional.

The following query extracts information about blackout history for a target. The query uses
the MGMT$BLACKOUT_HISTORY, MGMT$BLACKOUTS, MGMT$TARGET, and
MGMT$METRIC_CURRENT repository views.

SELECT 'senior mts', count(value) FROM mgmt$metric_current
WHERE metric_column = 'Title' and LOWER(value) LIKE '%senior member%' AND
 target_guid = ??EMIP_BIND_TARGET_GUID??

SELECT bh.created_by "Created by", bh.start_time "Start", bh.end_time "End",
bo.reason "Reason", bo.description "Description"
FROM
MGMT$BLACKOUT_HISTORY bh, MGMT$TARGET tgt, MGMT$BLACKOUTS bo
WHERE tgt.target_name = bh.target_name AND tgt.target_type = bh.target_type
 AND tgt.target_guid = ??EMIP_BIND_TARGET_GUID?? AND bo.blackout_guid =
 bh.blackout_guid
ORDER BY end_time desc

UNION
SELECT 'consulting mts', count(value) FROM mgmt$metric_current
WHERE metric_column = 'Title' and LOWER(value) LIKE '%consulting%' AND
 target_guid = ??EMIP_BIND_TARGET_GUID?? ;

When an administrator views a report from the Enterprise Manager console that contains this
SQL query string, Information Publisher automatically binds the unique identifier for the
selected target to the ??EMIP_BIND_TARGET_GUID?? placeholder in the SQL query string.
The documentation for Chart from SQL and Table from SQL parameters provides information
about this bind variable placeholder as well as others you can include in your SQL query
string.

Chapter 5
Creating a Report Definition File

5-3

Creating a Test Report Interactively from the Enterprise Manager Console
After you have written and tested the SQL or PL/SQL query, you can use the
Enterprise Manager console to generate a version of your report interactively using the
Chart from SQL and Table from SQL report elements. By using the Information
Publisher user interface, you can easily prototype reports without having to create a
report definition file and import Plug-in Archive (OPAR) files.

You can also use this method of interactive prototyping to refine your queries and
ensure that the data extracted from the Management Repository and how that
information is rendered in your report meets your reporting requirements.

Using EM CLI to Generate the Report Definition File
After you are satisfied with the way your report is being rendered by Information
Publisher, you are ready to create the report definition file. To do this, use EM CLI to
generate the XML based Report Definition file. The EM CLI export_report verb
exports the report definition you developed using the Enterprise Manager console
(stored in the Management Repository) and generates the XML report definition file.
For example:

>emcli export_report
 -title="resource report"
 -owner="ADMINISTRATOR_JOE"
 -output_file="$HOME/reports/resource_report.xml"

After the report definition file is generated, you must edit the XML file to insert your
own plug-in specific information such as product_name, component_name, and
oms_version.

The following example shows the content of the report definition file for a report
detailing host configuration.

Example: Host Configuration Report Definition File

<?xml version = '1.0' encoding = 'UTF-8'?>
<ReportDefinition title="Host Performance Overview"
description="Overview of host performance" system_report="0"
category="Sample Host Reports" sub_category=
"Performance Reports" show_navigation="1" generate_context="0"
add_toc="0" product_name="EM" component_name="oracle_hostsample"
is_jit_multi_target="0" target_type="oracle_hostsample"
is_jit_target="1" style="BLAF" oms_version="11.1.0.1.0" xmlns="http://
www.example.com/DataCenter/ReportDefinition">

<ReportElement element_row="1" suppress_render="0"
 element_name_nlsid="IPMSG_USER_CHART_FROM_SQL" header_nlsid="Average
CPU
 Utilization (%)" element_type_nlsid="IPMSG_ANY_TARGET_TYPE"
element_order="0">
 <ReportElementParameters
 parameterName="oracle.sysman.eml.ip.render.elem.
 ChartParamController.chartType" parameterValue="pieChart"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.

Chapter 5
Creating a Report Definition File

5-4

 render.elem.sqlStatement" parameterValue="select column_label,
value
 "CPU Utilization (%)"

 from mgmt$metric_current where

 target_guid = ??EMIP_BIND_TARGET_GUID??

 and metric_name = 'CPUPerf'"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.
 elem.ChartParamController.width" parameterValue="200"/>
 </ReportElement>
 <ReportElement element_row="3" suppress_render="0"
element_name_nlsid="IPMSG_USER_CHART_FROM_SQL" header_nlsid="Memory
Utilization (KB)" element_type_nlsid="IPMSG_ANY_TARGET_TYPE"
element_order="1">
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.
 elem.ChartParamController.legendPosition" parameterValue="south"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.
 render.elem.ChartParamController.chartType"
parameterValue="barChart"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.
 render.elem.sqlStatement" parameterValue="select column_label,
value
 "Memory Utilization (KB)"

 from mgmt$metric_current where

 target_guid = ??EMIP_BIND_TARGET_GUID??

 and metric_name = 'MemoryPerf'"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.
 elem.ChartParamController.visualOrientation"
parameterValue="horizontal"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.
 render.elem.ChartParamController.width" parameterValue="600"/>
 </ReportElement>
</ReportDefinition>

About the Report Lifecycle: Updating Report Definitions
With the ability to add report definitions to Enterprise Manager comes the responsibility of
maintaining and updating the report definitions. Familiarity with the way in which Enterprise
Manager handles report definitions will enable you to anticipate system behavior and plan for
backwards compatibility.

When report definitions are deployed using metadata plug-ins, Enterprise Manager enables
newer versions of the report definitions to be installed. Update and redeploy report definitions
which are not valid with a newer version of Enterprise Manager with the new version of the
plug-in. Enterprise Manager does not install older versions of a report definition.

Design report definitions, and metadata plug-ins in general, with backwards compatibility in
mind. Future versions of report definitions should support previous versions of the target type
metadata. Report definition-metadata version incompatibility will be most apparent in the
following situations:

• Report definitions included with metadata plug-in version 1 and not included with
metadata plug-in version 2 will not disappear when version 2 is deployed.

• If version 1 and version 2 of a metadata plug-in are both deployed on the system,
Management Agents will collect data based on the metadata of the version installed on
that Agent; some will collect for version 1 metadata and some for version 2 metadata.

Chapter 5
Creating a Report Definition File

5-5

Only the version 2 report definitions will be installed (appear in the Enterprise
Manager console). For this reason, version 2 report definitions must support both
versions of the metadata.

Understanding the XML Report Definition Interface
The Information Publisher XML based report definition file provides an easily editable
medium for defining and customizing your Information Publisher reports using simple
XML tags.

About Report Definition Tags
Use the following XML tags to define and manipulate report information when creating
report definition files.

• <ReportDefinition>

• <ReportElement>

• <ReportElementParamters>

<ReportDefinition>
The <ReportDefinition> tag is the first XML tag that appears in the report definition
file and specifies essential information about your report such as title, description,
product name, or Oracle Management Service version. The following example shows
the <ReportDefinition> tag as defined for a host configuration report.

<ReportDefinition> Tag for the Host Configuration Report

<ReportDefinition
 title="Host Configuration Overview"
 description="Overview of host configuration" system_report="0"
 category="Sample Host Reports"
 sub_category="Configuration Reports"
 show_navigation="1"
 generate_context="0"
 add_toc="0"
 product_name="EM"
 component_name="oracle_hostsample"
 is_jit_multi_target="0"
 target_type="oracle_hostsample"
 is_jit_target="1"
 style="BLAF"
 oms_version="11.1.0.1.0"
 xmlns="http://www.example.com/DataCenter/ReportDefinition">

Tag Attributes

Table 5-1 Tag Attributes for the Host Configuration Report

Attribute Description

title Report title.

Chapter 5
Understanding the XML Report Definition Interface

5-6

Table 5-1 (Cont.) Tag Attributes for the Host Configuration Report

Attribute Description

description Description.

category Category name.

sub_category Subcategory name.

target_type Target type for late binding, or null if not late binding

add_hoc 1=show 0=hide table of contents

show_navigation Show navigation headers in report (tabs, etc) 1=show, 0=hide

product_name Product name, 'EM' (default)

component_name Product name. This must be set to the metadata plug-in target type.

oms_version Version '11.1' (default).

Report-wide Parameters

<ReportWideParameters
 parameterName="oracle.sysman.eml.ip.render.elem.TimePeriodParam"
 parameterValue="0:1"/>

<ReportElement>
The <ReportElement> tag is used to add a new report element to an existing report definition.

Input

Table 5-2 <ReportElement> Tag

Parameter Description

element_type_nlsid The element type name

header_nlsid The element header or null

element_order The order of this element, 1 based

element_row The row for this element, 1 based

<ReportElementParamters>
The <ReportElementParamters> tag is used to declare the parameters used for a report
element. Include all of the report element parameters you want to declare within the
<ReportElement> tag.

Table 5-3 <ReportElementParameters> Tag

Parameter Description

parameterName The parameter name

parameterValue The parameter value

Chapter 5
Understanding the XML Report Definition Interface

5-7

Using Element Parameters
Parameters used by some report elements dictate the operational behavior of those
elements. Use the <ReportElementParamters> tag to declare element parameters
associated with a <ReportElement>. The parameter names and values for each
element type are described in this section.

This section lists the parameters associated with specific report elements.

About Table Element Parameters
Use the Table element to show a tabular view of query results. The queries must be
made against management views.

To declare a Table element, use the following in the <ReportElement> tag:

<ReportElementParameters
element_name_nlsid=" IPMSG_USER_TABLE_FROM_SQL"
element_type_ nlsid="IPMSG_ANY_TARGET_TYPE">

• Element Name nlsid: IPMSG_USER_TABLE_FROM_SQL

• Element Type nlsid: IPMSG_ANY_TARGET_TYPE

Time Period

Table 5-4 Table Element Parameters Time Period

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TimePeriodParam".

Required No.

Default Value Null.

Valid Values "0:0" for last 24 Hours.

"0:1" for last 7 Days.

"0:2" for last 31 Days.

Summary Encoded time period.

Sort Column

Table 5-5 Table Render Sort Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.initialSortColumn".

Required No.

Default Value The first column in result set.

Valid Values Any valid column name.

Summary If this parameter is set, the sort column indicator is shown for the
column with this column name. If not set, the sort column indicator is
shown on the first column. In the SQL query, include an 'order by'
clause that sorts by this column.

Chapter 5
Understanding the XML Report Definition Interface

5-8

Sort Order

Table 5-6 Table Render Sort Order

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.initialSortOrder".

Required No.

Default Value "ascending".

Valid Values "ascending" or "descending".

Summary If this parameter is set, the sort column indicator is shown either as
ascending or descending, according to the value. If not set, the sort column
indicator is shown as ascending.

Name Value Pair Display

Table 5-7 Name Value Pair Display

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.nameValueDisplay".

Required No.

Default Value <none>.

Valid Values Positive integer value.

Summary If this parameter is set and only one row is returned from the query, the results
are displayed in a vertical list of name-value pairs. Set the value of this
attribute to the number of name/value columns to be displayed, normally "1".

Number of Rows to Show

Table 5-8 Number of Rows

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.numRowsToShow".

Required No.

Default Value "10".

Valid Values Positive integer value.

Summary The number of rows to display at one time in the generated table. You can
scroll through additional rows using the UI controls.

Is PL/SQL Statement

Table 5-9 Is PL/SQL Statement

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.sqlStatementIsPlSql".

Required No.

Default Value "false".

Chapter 5
Understanding the XML Report Definition Interface

5-9

Table 5-9 (Cont.) Is PL/SQL Statement

Attribute Description

Valid Values "true" or "false" .

Summary Whether a SQL statement is PL/SQL.

SQL or PL/SQL Statement

Table 5-10 SQL or PL/SQL Statement

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.sqlStatementIsPlSql".

Required No.

Default Value <None>.

Valid Values Any valid SQL SELECT statement.

Summary SQL statements can optionally bind values for targets, locale information,
and start/end date. The format of the SQL statement should include bind
variable placeholders for the options to be bound.

Bind Placeholders:

• ??EMIP_BIND_RESULTS_CURSOR??

For use with PL/SQL statements to bind a return cursor containing
results for display.

• ??EMIP_BIND_TARGET_GUID??

For use with SQL or PL/SQL to bind a target GUID.
• ??EMIP_BIND_START_DATE??

For use with SQL or PL/SQL to bind a start date.
• ??EMIP_BIND_END_DATE??

For use with SQL or PL/SQL to bind an end date.
• ??EMIP_BIND_TIMEZONE_REGION??

For use with SQL or PL/SQL to bind a time zone region.
• ??EMIP_BIND_LOCALE_COUNTRY??

For use with SQL or PL/SQL to bind a locale country.
• ??EMIP_BIND_LOCALE_LANGUAGE??

For use with SQL or PL/SQL to bind a locale language.
Do not append a semi-colon (;) to the end of the SQL statement unless it
is a PL/SQL statement.

Example: Specifying an Anonymous PL/SQL Block as a Parameter to an Element
Definition

To avoid issues with formatting, generate the report and export it to XML using the EM
CLI.

<ReportElementParameters
parameterName="oracle.sysman.eml.ip.render.elem.sqlStatement"
parameterValue="BEGIN DECLARE

 BEGIN

open ??EMIP_BIND_RESULTS_CURSOR?? for select

bh.created_by "Created by",
 bh.start_time
"Start",
 bh.end_time "End",
 bo.reason
"Reason",
 bo.description "Description"
 from

Chapter 5
Understanding the XML Report Definition Interface

5-10

MGMT$BLACKOUT_HISTORY bh,
 MGMT$TARGET tgt,
 MGMT$BLACKOUTS bo

where tgt.target_name = bh.target_name
 and tgt.target_type = bh.target_type

and tgt.target_guid = ??EMIP_BIND_TARGET_GUID??
 and bo.blackout_guid =
bh.blackout_guid

order by end_time desc;

 END;
END;"/>

Named SQL Statement

Table 5-11 Named SQL Statement

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.NamedSqlStatement".

Required No.

Default Value <none>.

Valid Values Any valid statement name.

Summary As an alternative to the "oracle.sysman.eml.ip.render.elem.sqlStatement".

You may use a Named SQL statement which refers to an actual SQL statement
stored in the Enterprise Manager repository.

You can register a Named SQL statement by providing an XML file containing
the name of the SQL statement as well as the SQL query as part of plug in
metadata.

For information about the Named SQL XML file XSD definition, see Using the
ImportExport.xsd File.

Maximum Number of Rows

Table 5-12 Number of Rows

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.maxNumberOfRowsAllowed".

Required No.

Default Value "2000".

Valid Values Any scaler numeric value.

Summary Set the maximum number of rows retrieved for display in the table. For
example, to show the top 10 xyz's elements, set the value to "10".

Null Data String Substitute

Table 5-13 Null Data String Substitute

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.nullDataStringSubstitue".

Required No.

Default Value ""

Valid Values A string.

Summary A string that will be substituted for null values returned.

Split Table into Multiple Tables by Column

Chapter 5
Understanding the XML Report Definition Interface

5-11

Table 5-14 Split Table

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.nullDataStringSubstitue".

Parameter String "oracle.sysman.eml.ip.render.elem.TableRender.tableSplitColumn".

Required No.

Default Value Null.

Valid Values Any valid column name.

Summary If this parameter is set, the table is split into separate tables with
subheaders as the value in this column changes. Order the data by this
column.

Column Group Header

Table 5-15 Column Group Header

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnGroupHeader"n.

Required No.

Default Value Null.

Valid Values Header string to use for a column group.

Summary This parameter provides a column header string.

This column group header spans columns between the columns specified
in "oracle.sysman.eml.ip.render.elem.TableRender.columnGroupStart
Col"n and
oracle.sysman.eml.ip.render.elem.TableRender.columnGroupEndCol"n.
The n suffix is a numeric value starting with 1 for the first column group,
sequentially ascending for subsequent column groups.

Column Group Start Column

Table 5-16 Column Group Start Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnGroupStartCol"n.

Required No.

Default Value Null.

Valid Values Any valid column name.

Summary Specifies the first column for a given column group. The n suffix is a
numeric value starting with 1 for the first column group, sequentially
ascending for subsequent column groups.

Column Group End Column

Chapter 5
Understanding the XML Report Definition Interface

5-12

Table 5-17 Column Group End Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnGroupEndCol"n.

Required No.

Default Value Null.

Valid Values Any valid column name.

Summary Specifies the first column for a given column group. The n suffix is a numeric
value starting with 1 for the first column group, sequentially ascending for
subsequent column groups.

Use Separate Rows for Values in a Cell

Table 5-18 Use Separate Rows for Values Within a Cell

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.useSeparateRowsColumns".

Required No.

Default Value Null.

Valid Values Comma separated list of valid column names.

Summary If this parameter is set, the delimited values of the column with the given name
specified will be displayed on separate rows within a containing row cell. More
than one column can be designated for this treatment by adding comma-
separated column names.

Use Separate Rows as Delimiters

Table 5-19 Use Separate Rows as Delimiters

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.useSeparateRowsDelimiter".

Required No.

Default Value , (comma).

Valid Values Any string.

Summary A character used to delimit tokens within a string.

Severity Icon in Column

Table 5-20 Severity Icon in Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.severityColumn".

Required No.

Default Value Null.

Valid Values Any valid column names.

Chapter 5
Understanding the XML Report Definition Interface

5-13

Table 5-20 (Cont.) Severity Icon in Column

Attribute Description

Summary A severity icon is substituted for valid severity values returned. To omit an icon,
your result set can contain null values in this column.

Availability Status Icon in Column

Table 5-21 Availability Status Icon in Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.availabilityStatusColumn".

Required No.

Default Value Null.

Valid Values Any valid column names.

Summary An availability status icon will be substituted for valid values returned. To
omit an icon your result set can contains null values in this column.

Render Image in Column

Table 5-22 Render Image in Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.imageFilenameColumns".

Required No.

Default Value Null.

Valid Values Comma separated list of column names.

Summary Optional parameter to display the given image filename in the indicated
columns. Indicate for which columns the given image should be rendered.
Specify a comma separated list of column names. The image filename
returned should contain a relative path starting with '/images',for example '/
images/xyz.gif'. Normally, a SQL decode function is used to translate a
numeric value into the appropriate image filename.

Target Type Column

Table 5-23 Target Type Column

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.targetTypeColumns".

Required No.

Default Value Null.

Valid Values Comma separated list of column names.

Summary Optional parameter to indicate for which columns the value returned should
be used as an internal target type to be translated into a display string for
that type. Specify a comma separated list of column names.

Chapter 5
Understanding the XML Report Definition Interface

5-14

About Filter Elements
The following table elements are used to create search filters that enable users to filter on
rows for multiple table columns. Three different filter types are permitted:

• Text-value

• List of values obtained from a SQL query

• List of values obtained from a comma-separated list in the element definition

Define Filter Name

Table 5-24 Define Filter Name

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterNames".

Required Yes.

Default Value Null.

Valid Values Comma separated list of filter names.

Summary Defines filter names in a comma-separated list. This parameter also defines the
ordering of filter elements.

Define Filter Prompt

Table 5-25 Define Filter Prompt

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterPrompt<name>Filter".

Required Yes.

Default Value Null.

Valid Values CF.

Summary Defines the prompt used in the Reports page for the filter name. The filter value is
accessed from the report element's SQL statement through ??
EMIP_BIND_PARAM<name>??. Without any other filter-related parameters, this
defines a filter which allows the user to provide a value via a text input field.

SQL Filter

Table 5-26 SQL Filter

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterSql<name>".

Required No.

Default Value Null.

Valid Values Any valid SQL SELECT statement.

Summary Defines the SQL query used to populate a list of values for a filter name that is
presented in the UI as a drill-down menu instead of the text input field.

Chapter 5
Understanding the XML Report Definition Interface

5-15

List of Filter Names

Table 5-27 List of Filter Names

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterList<name>".

Required No.

Default Value Null.

Valid Values Comma separated list of values.

Summary Defines a list of values for a filter name which is displayed in the UI as a
drill-down menu.

Translate List of Filter Names

Table 5-28 Translate List of Filter Names

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterTranslateValues<n
ame>".

Required No.

Default Value No.

Valid Values yes or no.

Summary Defines whether the values provided by filterSql or filterList should be
translated to the client locale.

Filter Tip Text

Table 5-29 Filter Tip Text

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterTip<name>Filter".

Required No.

Default Value Null.

Valid Values Alpha numeric text.

Summary Defines the text for a tool tip shown if the user moves the mouse over
the filter UI elements.

Default Filter Name

Table 5-30 Default Filter Name

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterDefault<name>".

Required No.

Default Value %.

Valid Values Alpha numeric text string.

Chapter 5
Understanding the XML Report Definition Interface

5-16

Table 5-30 (Cont.) Default Filter Name

Attribute Description

Summary Defines a default value for filter name. If no default value is given, '%' is
used instead.

Null Default Filter Name

Table 5-31 Null Default Filter Name

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterDefaultsToNull<name>".

Required No.

Default Value Null.

Valid Values yes or no.

Summary When defined, the default value is NULL instead of '%'.

Global Filter Elements

The following parameters act globally on the filter system.

Display Empty Table

Table 5-32 Display Empty Table

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterStartEmpty".

Required No.

Valid Values yes or no.

Summary If the value of this parameter is 'yes', then the report initially displays an empty
table. The table is populated when the user clicks the filter button in the UI.

Empty Table Headers

Table 5-33 Empty Table Headers

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterEmptyTableHeaders".

Required No.

Default Value Null.

Valid Values Comma-separated list of table headers.

Summary Defines the table headers used when starting with an empty table.

Table Header Type

Chapter 5
Understanding the XML Report Definition Interface

5-17

Table 5-34 Table Header Type

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterEmptyTableHeaderTy
pes".

Required No.

Default Value VARCHAR.

Valid Values Comma-separated list of table headers.

Summary This defines the table header types (column types) used when starting with
an empty table. This is a comma-separated list. If no header types are
specified, the table header types default to VARCHAR.

Overwrite Table Header Text

Table 5-35 Overwrite Table Header Text

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterHeaderText".

Required No.

Default Value Search Filter.

Valid Values Comma separated list of column names.

Summary Overwrites the default filter section header text.

Overwrite Default Filter Description

Table 5-36 Overwrite Default Filter Description

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterDescriptionText".

Required No.

Default Value Enter values to filter what is shown in the table.

Valid Values Alpha numeric text string.

Summary Overwrites the default filter section header text.

Overwrite Default Filter Tip Text

Table 5-37 Overwrite Default Filter Tip Text

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterTipText".

Required No.

Default Value The search filter is case sensitive. Use '%' as a wildcard.

Valid Values Alpha numeric text string.

Summary Overwrites the default filter section tip text.

Chapter 5
Understanding the XML Report Definition Interface

5-18

Overwrite Default Button Text

Table 5-38 Overwrite Default Button Text

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterButtonText".

Required No.

Default Value OK.

Valid Values Alpha numeric text string.

Summary Overwrites the default filter button text.

Empty Table Text

Table 5-39 Empty Table Text

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.filterEmptyTableText".

Required No.

Default Value (No rows returned).

Valid Values Alpha numeric text string.

Summary Specifies the text to be shown in an empty table before the filter is run.

Using Hyperlinks Within Tables
The following parameters are used to implement hyperlinks within tables and incorporate
improved link navigation between master and detail views. This method is an alternative to
using oracle.sysman.eml.ip.render.elem.TableRender.columnDestReportTitle<num>, which
first takes the user to the target selector page.

Link to Report

Table 5-40 Link to Report

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnDestHomepageReportTi
tle<num>".

Required No.

Default Value Null.

Valid Values Report definition link.

Summary This is the same as
oracle.sysman.eml.ip.render.elem.TableRender.columnDestReportTitle<num>
except that a link to a report definition on the target homepage is created.

Display Number of Columns

Chapter 5
Understanding the XML Report Definition Interface

5-19

Table 5-41 Display Number of Columns

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.numberOfColumnsShowe
d".

Required No.

Default Value Number of columns in the SQL.

Valid Values Number.

Summary Defines the number of columns from the element SQL to be displayed in
the UI. Additional columns from the SQL query are hidden but can be used
to create the hyperlinks to expose data in the detail report.

Display Target Name

Table 5-42 Display Target Name

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnDestTargetIndex<
num>".

Required No.

Default Value Null.

Summary Specifies the column (which may be hidden) that contains the target
name. The target name is used in the link to populate the target selection
on late binding reports.

Display Target Type

Table 5-43 Display Target Type

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnDestTypeIndex<nu
m>".

Required No.

Default Value Null.

Summary Specifies the column (which may be hidden) that contains the target type.
The target type is used in the link to populate the target selection on late
binding reports.

Display URL

Table 5-44 Display URL

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TableRender.columnDestURLIndex<nu
m>".

Required No.

Default Value Null.

Chapter 5
Understanding the XML Report Definition Interface

5-20

Table 5-44 (Cont.) Display URL

Attribute Description

Summary Specifies the column (which may be hidden) that contains an arbitrary
URL for a given table element.

Example: Report definition defining a master report that enables you to drill down
using a link to a detail report

<?xml version = '1.0' encoding = 'UTF-8'?>
<ReportDefinition title="My Master Report" description=
"A master report to show master/detail" system_report="0"
category="Test Reports" sub_category="Master and Detail"
show_navigation="1" generate_context="0" add_toc="1"
product_name="EM" component_name="SAMPLE" is_jit_multi_target="0" is_jit_target="0"
style="BLAF" oms_version="11.2.0.1.0" xmlns="http://www.example.com/DataCenter/
ReportDefinition">

<ReportElement element_row="1" suppress_render="0"
 element_name_nlsid="IPMSG_USER_ TABLE_FROM_SQL" header_nlsid="My Master Report
 Table" element_type_nlsid="IPMSG_ANY_TARGET_TYPE" element_order="0">
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.
 elem.TableRender.filterEmptyTableHeaders" parameterValue=
 "Target Name, Target Type"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.columnDestParamColumnIndexes1" parameterValue="0,1"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterHeaderText" parameterValue="My Filter Header"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterDescriptionText" parameterValue="My Filter description"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.
 render.elem.sqlStatement" parameterValue="SELECT TARGET_NAME "Target
 Name", TARGET_TYPE "Target Type"
 FROM MGMT$TARGET WHERE TARGET_NAME LIKE
 ??EMIP_BIND_PARAMNAME?? AND TARGET_TYPE LIKE
 ??EMIP_BIND_PARAMTYPE??"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterPromptNAME" parameterValue="Name"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.
 elem.TableRender.filterSqlTYPE" parameterValue=
 "select distinct target_type from mgmt$target"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterStartEmpty" parameterValue="yes"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterTipTYPE" parameterValue="Filter on the target types"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterPromptTYPE" parameterValue="Target Type"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterTipText" parameterValue="My Tip Text"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterNames" parameterValue="NAME,TYPE"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.numberOfColumnsShowed" parameterValue="2"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.columnDestReportTitle1" parameterValue="My Detail Report"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.
 TableRender.filterTipNAME" parameterValue="Filter on the target names"/>
 <ReportElementParameters parameterName="oracle.sysman.eml.ip.render.elem.

Chapter 5
Understanding the XML Report Definition Interface

5-21

 TableRender.filterButtonText" parameterValue="My button text"/>
 </ReportElement>
</ReportDefinition>

<?xml version = '1.0' encoding = 'UTF-8'?>
 <ReportDefinition title="My Detail Report" system_report="0"
 category="Test Reports" sub_category="Master and Detail" show_navigation="1"
 generate_context="0" add_toc="0" product_name="EM"
 is_jit_multi_target="0" is_jit_target="0" style="BLAF"
 oms_version="11.2.0.1.0"
 xmlns="http://www.example.com/DataCenter/ReportDefinition">
 <ReportElement element_row="1" suppress_render="0"
 element_name_nlsid="IPMSG_USER_TABLE_FROM_SQL" element_type_nlsid="IPMSG_ANY_
 TARGET_TYPE" element_order="0">
 <ReportElementParameters
 parameterName="oracle.sysman.eml.ip.render.elem.headerParam"
 parameterValue="Target Detail"/>
 <ReportElementParameters
 parameterName="oracle.sysman.eml.ip.render.elem.sqlStatement"
 parameterValue="SELECT TARGET_NAME "Target Name",
 TYPE_VERSION "Version"
 FROM MGMT$TARGET
 WHERE TARGET_TYPE LIKE ??EMIP_BIND_PARAM2??
 AND TARGET_NAME LIKE ??EMIP_BIND_PARAM1??"/>
 </ReportElement>
</ReportDefinition>

About the Chart Element
The Chart element is used to show a graphical view of query results. The queries must
be made against Management Repository views.

• Element Name: IPMSG_USER_CHART_FROM_SQL

• Element Type: IPMSG_ANY_TARGET_TYPE

Chart Type

Table 5-45 Chart Type

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.chartType".

Required No.

Default Value "pie chart".

Valid Values "barChart", "lineChart", "pieChart", "timeSeriesChart", and
"timeSeriesBarChart".

Summary Chart type to display.

Time Period

Table 5-46 Time Period

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TimePeriodParam".

Required No.

Chapter 5
Understanding the XML Report Definition Interface

5-22

Table 5-46 (Cont.) Time Period

Attribute Description

Default Value Null.

Valid Values "0:0" for last 24 Hours."0:1" for last 7 Days."0:2" for last 31 Days.

Summary Encoded time period.

Fill

Table 5-47 Fill

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.fill".

Required No.

Default Value "none".

Valid Values "none", "absolute", or "cumulative".

Summary Indicates if a line chart should fill the area under the lines. "none": no fill under
lines."absolute": lines are identical to the "none" setting but with the area under
the lines filled."cumulative": causes the values for the lines to be added or
stacked, then the areas underneath the lines are filled.Use caution when using
the fill attribute to ensure there is no confusion for the report user as to whether
the data in the chart is cumulative or absolute.

Height

Table 5-48 Height

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.height".

Required No.

Default Value "200".

Valid Values n, where n is any string that will correctly parse to a positive integer.

Summary Sets the display height of the chart in pixels.

Horizontal or Vertical

Table 5-49 Horizontal or Vertical

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.visualOrientation".

Required No.

Default Value "horizontal".

Valid Values "horizontal" or "vertical".

Summary Visual orientation of the chart. This attribute is only valid with the chartType
attribute set to barChart or timeSeriesChart. The attribute does not affect the
pieChart.

Chapter 5
Understanding the XML Report Definition Interface

5-23

Legend Position

Table 5-50 Legend Position

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.legendPosition".

Required No.

Default Value "east".

Valid Values "default", "east", "south".

Summary Specifies where the legend should be placed relative to the chart.

Is PL/SQL Statement

Table 5-51 Is PL/SQL Statement

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.sqlStatementIsPlSql".

Required No.

Default Value "false".

Valid Values "true" or "false".

Summary Set to "true" to indicate that the SQL statement is a PL/SQL statement.

SQL or PL/SQL Statement

Table 5-52 SQL or PL/SQL Statement

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.sqlStatement".

Required No.

Default Value <none>.

Valid Values Any valid SQL SELECT statement or PL/SQL block.

Chapter 5
Understanding the XML Report Definition Interface

5-24

Table 5-52 (Cont.) SQL or PL/SQL Statement

Attribute Description

Summary The SQL or PL/SQL statement can optionally bind values for targets,
locale information, and start/end date. The format of the statement should
include a bind variable placeholders for the options to be bound.

Bind Placeholders:

• ??EMIP_BIND_RESULTS_CURSOR??

For use with PL/SQL statement to bind a return cursor containing
results for display.

• ??EMIP_BIND_TARGET_GUID??

For use with SQL or PL/SQL to bind a target GUID.
• ??EMIP_BIND_START_DATE??

For use with SQL or PL/SQL to bind a start date.
• ??EMIP_BIND_END_DATE??

For use with SQL or PL/SQL to bind an end date.
• ??EMIP_BIND_LOCALE_COUNTRY??

For use with SQL or PL/SQL to bind a locale country.
• ??EMIP_BIND_LOCALE_LANGUAGE??

For use with SQL or PL/SQL to bind a locale language.
Do not append a semi-colon (;) to the end of the SQL statement unless it
is a PL/SQL statement.

Stacked Bar Chart

Table 5-53 Stacked Bar Chart

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.stacked".

Required No.

Default Value "false".

Valid Values "true" or "false".

Summary Indicates if a bar chart should be stacked.

Chart Title

Table 5-54 Chart Title

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.title".

Required No.

Default Value <none>.

Summary Chart title to identify chart for Americans with Disabilities Act compliance.

Width

Chapter 5
Understanding the XML Report Definition Interface

5-25

Table 5-55 Width

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.width".

Required No.

Default Value "400".

Valid Values n, where n is any String that will correctly parse to a positive integer.

Summary Specifies the display width of the element in pixels.

Y-Axis Label

Table 5-56 Y-Axis Label

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.yAxisLabel".

Required No.

Default Value <none>.

Valid Values String.

Summary If this parameter is supplied, it is used as the y-axis label for charts that
have an y-axis.

Slices as Percentage

Table 5-57 Slices as Percentage

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.pieShowSlicePer
centLab els".

Required No.

Default Value <none>.

Valid Values "true" or "false".

Summary If this parameter is supplied, it controls whether each slice is labeled with a
percentage value. This attribute is ignored for chartType attributes other
than pieChart.

Show Values in Legend

Table 5-58 Show Values in Legend

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.ChartParamController.pieValuesInLe
gend".

Required No.

Default Value "value".

Valid Values "percent", "value" or "none".

Chapter 5
Understanding the XML Report Definition Interface

5-26

Table 5-58 (Cont.) Show Values in Legend

Attribute Description

Summary For pie charts, this parameter specifies whether values for pie slices are
included in the legend along with the label for the pie slice. The default
value for this attributes is "value". If specified as either "percent" or
"value" then the numeric value is displayed along with the pie slice label
in the form, "pie slice label (numeric value)". If "percent" is specified,
then the percentage out of the total of all slice values is calculated and
displayed, otherwise, the raw value of the slice is displayed. To omit a
value in the legend, specify "none" as a value for this parameter. This
attribute is ignored for chartType attributes other than pieChart.

Understanding the Metric Details Element
To declare a Metric Details element, you would use the following in the ReportElement tag:

<ReportElementParameters
element_name_nlsid=" IPMSG_METRIC_DETAILS"
element_type_ nlsid="IPMSG_ANY_TARGET_TYPE" ………>

Target Type

Table 5-59 Target Type

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.MetDetInternalTargetType".

Required No.

Default Value "oracle_database".

Valid Values Any valid internal target type name.

Summary The type of target to be shown in the graph.

Metric Name

Table 5-60 Metric Name

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.MetDetSelectedMetric".

Required Yes.

Valid Values Valid metric name according to target type selected.

Summary Metric to be graphed.

Metric Column Name

Table 5-61 Metric Column Name

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.MetDetSelectedMetricColumn".

Chapter 5
Understanding the XML Report Definition Interface

5-27

Table 5-61 (Cont.) Metric Column Name

Attribute Description

Required Yes.

Valid Values Valid column name according to the metric and target type selected.

Summary Column of metric to be graphed.

Time Period

Table 5-62 Time Period

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TimePeriodParam".

Required No.

Default Value null.

Valid Values "0:0" for last 24 Hours.

"0:1" for last 7 Days.

"0:2" for last 31 Days.

Summary Encoded time period.

Width

Table 5-63 Width

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.MetDetWidth".

Required No.

Default Value 300.

Valid Values n, where n is any String that will correctly parse to a positive integer.

Summary Width of the image in pixels.

Height

Table 5-64 Height

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.MetDetHeight".

Required No.

Default Value 300.

Valid Values n, where n is any String that will correctly parse to a positive integer.

Summary Height of the image in pixels.

Legend Position

Chapter 5
Understanding the XML Report Definition Interface

5-28

Table 5-65 Legend Position

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.MetDetLegendPosition".

Required No.

Valid Values "south" (default), "east".

Summary Position of the legend relative to the chart.

Using Text Element Parameters
The Text element is used to display any message text you wish to provide for your report. To
declare a Text element, include the following in the ReportElement tag:

<ReportElementParameters
element_name_nlsid="IPMSG_STYLED_TEXT"
element_type_ nlsid="IPMSG_ANY_TARGET_TYPE" ………>

Message Text

Table 5-66 Message Text

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TextParamBean.textMessage".

Required No.

Default Value "" (empty String).

Valid Values Any text.

Summary Sets the message to display in the report.

Message Style

Table 5-67 Message Style

Attribute Description

Parameter Name "oracle.sysman.eml.ip.render.elem.TextParamBean.textStyleClass".

Required No.

Default Value "OraInstructionText".

Valid Values "OraInstructionText".

"OraTipText".

Summary Specifies the style class for the message text to adopt when displayed.

Link Destination

Table 5-68 Link Destination

Attribute Description

Parameter Name "ooracle.sysmn.eml.ip.render.elem.TextParamBean.textDestination".

Chapter 5
Understanding the XML Report Definition Interface

5-29

Table 5-68 (Cont.) Link Destination

Attribute Description

Required No.

Default Value None.

Valid Values Any URI.

Summary Specifies an optional link destination for this text element.

About Report-Wide Parameters
The following parameters apply to all reporting elements within the report definition.

Dynamic Time Selector

You can provide a dynamic time period selector for your report definition that enables
the report user to choose a specific time period with which to view the report.

If you are using Table from SQL or Chart from SQL report elements, you can structure
your SQL statement such that the start and end dates will be bound automatically for
you by Information Publisher. You achieve this by inserting placeholders (for
example, ??EMIP_BIND_START_DATE??) for the start and end date values as shown in
the following example.

Example: Automatic Binding of Start and End Dates

 'SELECT COLUMN_LABEL, ROLLUP_TIMESTAMP, AVERAGE
 FROM MGMT$METRIC_HOURLY
 WHERE TARGET_GUID = ??EMIP_BIND_TARGET_GUID??
 AND METRIC_LABEL = ''Load''
 AND KEY_VALUE = '' ''
 AND ROLLUP_TIMESTAMP > ??EMIP_BIND_START_DATE??
 AND ROLLUP_TIMESTAMP < ??EMIP_BIND_END_DATE??
 ORDER BY ROLLUP_TIMESTAMP'

See the online help documentation for Table from SQL or Chart from SQL for detailed
information.

Using the ImportExport.xsd File
The Information Publisher ImportExport.xsd file describes the format of the report
definition XML file. The following example shows a sample NamedSql.xsd file.

Example: Information Publisher ImportExport.xsd

<xsd:schema targetNamespace="http://www.example.com/DataCenter/ReportDefinition"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ms="http://www.example.com/DataCenter/ReportDefinition"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xsd:annotation>
 <xsd:documentation>
 This is the schema definition, used by metadata services and
the report import cli. It is used to fully specify a report definiton
 </xsd:documentation>
 </xsd:annotation>

Chapter 5
Using the ImportExport.xsd File

5-30

 <!-- ****************************** -->
 <!-- Main Element: ReportDefinition -->
 <!-- ****************************** -->
 <xsd:element name="ReportDefinition" type="ms:ReportDefinitionT"/>
 <!-- Defining Common Types used in a Report Definition -->
 <!-- ***************** -->
 <!-- ReportDefinitionT -->
 <!-- ***************** -->
 <!-- Documentation:
 ReportDefinitionT is type for main root element. All the Report Definitions
should validate to this type.
 --> <xsd:complexType name="ReportDefinitionT">
 <xsd:sequence>
 <xsd:element name="ReportWideParameters" type="ms:ReportWideParametersT"
minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="ReportElement" type="ms:ReportElementT" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="title" type="ms:String100Def" use="required"/>
 <xsd:attribute name="description" type="ms:String500Def"/>
 <xsd:attribute name="system_report" type="ms:BooleanDef" default="0"/>
 <xsd:attribute name="category" type="ms:String100Def" use="required"/>
 <xsd:attribute name="sub_category" type="ms:String100Def" use="required"/>
 <xsd:attribute name="target_type" type="ms:String64Def"/>
 <xsd:attribute name="is_jit_target" type="ms:BooleanDef" default="1"/>
 <xsd:attribute name="is_jit_multi_target" type="ms:BooleanDef" default="0"/>
 <xsd:attribute name="add_toc" type="ms:BooleanDef" default="0"/>
 <xsd:attribute name="pack_name" type="ms:String64Def"/>
 <xsd:attribute name="style" type="ms:String64Def" default="BLAF"/>
 <xsd:attribute name="show_navigation" type="ms:BooleanDef" default="1"/>
 <xsd:attribute name="product_name" type="ms:String100Def" default="EM"/>
 <xsd:attribute name="component_name" type="ms:String100Def"/>
 <xsd:attribute name="generate_context" type="ms:BooleanDef" default="0"/>
 <xsd:attribute name="oms_version" type="ms:NameDef" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="ReportElementT">
 <xsd:sequence>
 <xsd:element name="ReportElementParameters"
 type="ms:ReportElementParametersT" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="element_name_nlsid" type="ms:String256Def"
 use="required"/>
 <xsd:attribute name="element_type_nlsid" type="ms:String100Def"
 use="required"/>
 <xsd:attribute name="header_nlsid" type="ms:String100Def"/>
 <xsd:attribute name="element_order" type="xsd:integer"/>
 <xsd:attribute name="element_row" type="xsd:integer"/>
 <xsd:attribute name="suppress_render" type="ms:BooleanDef"/>
 </xsd:complexType>

 <xsd:complexType name="ReportElementParametersT">
 <xsd:attribute name="parameterName" type="ms:String100Def" use="required"/>
 <!-- parameterValue is in CDATA, but schema definition makes no
 distinction between this and string attribute. Therefore,
 don't specify any contstraints on the attribute, thereby allowing
 it to be unbouned in length.
 -->
 <xsd:attribute name="parameterValue" type="xsd:string" use="required"/>

Chapter 5
Using the ImportExport.xsd File

5-31

 </xsd:complexType>

 <xsd:complexType name="ReportWideParametersT">
 <xsd:attribute name="parameterName" type="ms:String100Def" use="required"/>
 <!-- parameterValue is in CDATA, but schema definition makes no
 distinction between this and string attribute. Therefore,
 don't specify any contstraints on the attribute, thereby allowing
 it to be unbouned in length.
 -->
 <xsd:attribute name="parameterValue" type="xsd:string" use="required"/>
 </xsd:complexType>

 <xsd:simpleType name="String64Def">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="64"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="String100Def">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="100"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="String500Def">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="500"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="String256Def">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="256"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="BooleanDef">
 <xsd:restriction base="xsd:integer">
 <xsd:enumeration value="0"/>
 <xsd:enumeration value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="NameDef">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="64"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Example: NamedSQL.xsd

Chapter 5
Using the ImportExport.xsd File

5-32

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ms="http://www.example.com/DataCenter/NamedSQL"
 targetNamespace="http://www.example.com/DataCenter/NamedSQL"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xsd:annotation>
 <xsd:documentation>
 This is the schema definition, used by metadata services. It is used
to fully specify a list of named sql that can be used in report definitions
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="NamedSQLStatements">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="NamedSQL" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="sqlName" type="xsd:string"/>
 <xsd:attribute name="sqlValue" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

About Enterprise Manager Command Line Interface (EM CLI)
Verbs

The following EM CLI verbs are used exclusively for report definition creation and
administration.

Example: EM CLI Verbs

emcli get_reports
 [-owner="<report-owner>"]
Description:
 This verb returns a list of reports owned by or viewable
 by the user logged into the cli.
Options:
 -owner The optional argument allows listing of viewable
 reports owned by a specific EM user.
Output:
 The output of this report will be space separated quoted
 strings for the report title and owner with each report on it
 own line.

emcli export_report
 -title="<report-title>"
 -owner="<report-owner>"
 -output_file="<file>"
Description:
 This verb exports a report definition and all its element
 definitions given its title and owner.
Options:
 -title
 The title of the report to export.
 -owner

Chapter 5
About Enterprise Manager Command Line Interface (EM CLI) Verbs

5-33

 The owner of the report to export. The logged-in emcli user
 must have view privliege for the report. Target names
 will not be exported. The report is uniquely defined using
 title/owner so both must be supplied.
 -output_file
 The name of the exported file.
Examples:
 emcli export_report \
 -title="maintenance report" \
 -owner="SHIFT1_OPERATOR" \
 -output_file="$HOME/reports/maint_report.xml"

emcli import_report
 [-force]
 -files="file1;file2;..."
Description:
 This verb imports a report definition from a XML file using
 the title in the xml file and the currently logged-in cli user
 as the owner of the report. If the report/owner already exists,
 the operation fails for that report with an appropriate error
 message. The report will be changed to a just-in-time report with
 the target type from the exported report. In addition, schedules
 and access privileges will need to be edited using the UI. The
 system enforces title/owner uniqueness, so an error will be thrown
 if there is already a report with the same title and owner.
Options:
 -force
 If report with same title/owner exists, first delete it
 (and all jobs and saved copies)
 -files
 List of Path/file name(s) of XML file(s), which contains
 valid Report definition(s).
Examples:
 emcli import_report \
 -files="$HOME/reports/maint_report1.xml;$HOME/reports/file2.xml"

About Development Guidelines
Oracle recommends adhering to the guidelines in this section when defining a report
definition file.

The Component Name Must be Set to the Target Type

The component name must be set to the target type for Enterprise Manager to
associate specific report definitions with a particular metadata plug-in. For example,

<ReportDefinition component_name="oracle_orgchart" … …

When Using Chart from SQL and Table from SQL Elements

• If your element accepts a single non-aggregate target (only), which is the case for
most metadata plug-in target types, you can take advantage of automatic time
zone date adjustment built into the Chart from SQL and Table from SQL elements
by setting the oracle.sysman.eml.ip.render.elem.adjustTimes parameter on
your element to 'true'. When this parameter is set, the start and end dates bound
to your SQL query will be adjusted from the report time zone to the target time
zone. Conversely, dates returned from the query will be adjusted from the target
time zone to the report time zone.

Chapter 5
About Development Guidelines

5-34

• If your element accepts multiple targets or aggregate targets, you are responsible for
handling time zone adjustment for your date values. You can obtain the report time zone
from the ??EMIP_BIND_TIMEZONE_REGION?? bind variable. For the report viewer to
understand the dates shown, dates displayed in a report must either conform to the
report time zone or explicitly display the time zone associated with each date. The
following examples illustrate common use cases.

Example: Adjusting a Date Returned in your Select Statement from the Time Zone
of a Given Target to the Report Time Zone

SELECT mgmt_view_util.adjust_tz(tbl.date,
tgt.timezone_region,
??EMIP_BIND_TIMEZONE_REGION??)
FROM mgmt$target tgt, sometable tbl
WHERE <your where clause here>

Example: Adjusting a Report Time Period Start and End Dates Used in the WHERE
Clause of Your SELECT Statement from the Report Time Zone to your Targets Time
Zone

SELECT <your selected columns here>
FROM mgmt$target tgt, sometable tbl
WHERE
 tgt.target_guid = ??EMIP_BIND_TARGET_GUID?? and
 tbl.Mydate > MGMT_VIEW_UTIL.ADJUST_TZ(
 ??EMIP_BIND_START_DATE??,
 ??EMIP_BIND_TIMEZONE_REGION??,
 tgt.TIMEZONE_REGION)
AND
 tbl.Mydate < MGMT_VIEW_UTIL.ADJUST_TZ(
 ??EMIP_BIND_END_DATE??,
 ??EMIP_BIND_TIMEZONE_REGION??,
 tgt.TIMEZONE_REGION)

Chapter 5
About Development Guidelines

5-35

6
Developing BI Publisher Reports

Oracle Business Intelligence Publisher (BI Publisher) is a strategic enterprise reporting
product that provides the ability to create and manage highly formatted reports from a wide
range of data sources. You can design the layout of your BI Publisher reports using Microsoft
Word or Adobe Acrobat then create the reports from different types of data sources.

Oracle Enterprise Manager Cloud Control is integrated with BI Publisher. Oracle recommends
using BI Publisher to create reports for Enterprise Manager Cloud Control 12c and later. BI
Publisher includes the Data Model Editor, which is a graphical user interface for building data
models within the BI Publisher interface, and the Layout Editor, which is a design tool that
enables you to create report layouts within BI Publisher.

This chapter includes the following topics:

• Introduction to Oracle BI Publisher

• Training and Resources

• About the Report Data Source

• Developing a Report

• Using the Enterprise Manager EDK for Staging and Deploying BI Publisher Reports

Introduction to Oracle BI Publisher
Plug-in developers:

1. Develop reports using data models and report templates.

For more information about developing a report, see "Developing a Report".

2. Stage and deploy reports.

For more information about staging and deploying reports, see "Using the Enterprise
Manager EDK for Staging and Deploying BI Publisher Reports".

Assumptions and Prerequisites
This chapter assumes you are familiar with the following:

• Management repository views against which you can write your own queries.

• Familiarity with BI Publisher.

Training and Resources
Before you start to develop a BI Publisher report, you should take advantage of the training
and reference resources available from Oracle:

• Getting Started with BI Publisher

• Oracle BI Publisher on oracle.com

6-1

https://www.oracle.com/middleware/technologies/bi-publisher.html

• Oracle BI Publisher blog

http://blogs.oracle.com/xmlpublisher/
• Oracle BI Publishing Consulting blog

http://bipconsulting.blogspot.com/

About the Report Data Source
The EMREPOS data source is available from the BI Publisher server configured for
use with Enterprise Manager reports. The EMREPOS data source connects to the
MGMT_VIEW account in the Management Repository and establishes the proper
security context (VPD) for the Enterprise Manager user logged on to BI Publisher.

As a security measure, BI Publisher reports that use the EMREPOS data source have
read-only access to the public MGMT$VIEW and GC$ views, and not to the underlying
Enterprise Manager tables. This model also supports sharing report queries with
Enterprise Manager users who might want to use the Enterprise Manager-provided
reports as a basis for their own reports.

Developing a Report
By default the reports and data models in the Enterprise Manager Cloud Control folder
are read only. Develop your own reports in your local folders and then have a BI
Publisher system administrator put the finished reports in a shared folder, outside of
the Enterprise Manager Cloud Control folder.

To develop a BI Publisher report:

1. Develop your data model, based on SQL queries against the Management
Repository.

The following components are required to develop a BI Publisher report:

• Data model

• Report template

• Sub template

First, develop your data model, based on SQL queries against the Management
repository, then design the layout of your report (the template) using Microsoft
Word for Windows. Your template refers to one of the two common Oracle
subtemplates: Portrait or Landscape.

Review the following reports for examples of this:

Enterprise Manager Cloud Control -> EM Sample Reports -> Targets of
Specified Type

Enterprise Manager Cloud Control -> EM Datamodels -> Targets of Specified
Type

2. Develop and test the SQL queries for report data and input parameters.

3. Create a data model in BI Publisher for your data queries.

4. Create parameters in BI Publisher for your report parameters.

5. Create a report layout for your report.

Chapter 6
About the Report Data Source

6-2

http://blogs.oracle.com/xmlpublisher/
http://bipconsulting.blogspot.com/

Start with the sample landscape or portrait layout RTF file provided with the Extensibility
Development Kit (EDK).

6. Create and test your report.

Download the report and data model using BI Publisher. The download option is located
on the 'more...' link under the name of each report/data model.

7. Export the report file (.xdoz) and data models (.xdmz) from BI Publisher into local files.

Using the Enterprise Manager EDK for Staging and Deploying
BI Publisher Reports

To deploy BI Publisher reports from a plug-in to a BI Publisher web application:

1. Create a metadata file that adheres to the following schema:

emcore/source/oracle/sysman/emSDK/ip/bipublisherreport/BIPublisherReport.xsd

The following is an example of a report metadata file:

<?xml version = '1.0' encoding = 'UTF-8' ?>
<BIPublisherReports
 xmlns="http://www.example.com/DataCenter/BIPublisherReport">
 <ReportFile relativePath="emreports" fileName="tvmlrb104a.jar"/>
 <ReportFile relativePath="emreports" fileName="tvmlrb104b.jar"/>
</BIPublisherReports>

2. Stage the BI Publisher reports, which are ZIP files with the extension .xdoz (report
definition) or .xdmz (report data model, that is, SQL) into one or more JAR files. These
files are referenced in the previous metadata file.

The $ORACLE_HOME/sysman/jlib/emreports.jar file provides an example.

$ unzip -l emreports.jar
Archive: emreports.jar
Label: EMGC_MAIN_LINUX_110220
 Length Date Time Name
--------- ---------- ----- ----
 0 02-20-2011 23:08 META-INF/
 71 02-20-2011 23:08 META-INF/MANIFEST.MF
 0 02-20-2011 23:08 bipublisherreports/
 0 02-20-2011 23:08 bipublisherreports/EM Datamodels/
 4776 02-20-2011 23:08 bipublisherreports/EM Datamodels/Usage Trend
Report.xdmz
 4854 02-20-2011 23:08 bipublisherreports/EM Datamodels/Usage Summary
Report.xdmz
 5008 02-20-2011 23:08 bipublisherreports/EM Datamodels/Charge Trend
Report.xdmz
 7344 02-20-2011 23:08 bipublisherreports/EM Datamodels/Consolidation
Reports.xdmz
 5043 02-20-2011 23:08 bipublisherreports/EM Datamodels/Charge Summary
Report.xdmz
 0 02-20-2011 23:08 bipublisherreports/Chargeback/
 52291 02-20-2011 23:08 bipublisherreports/Chargeback/Charge Trend
Report.xdoz
 66994 02-20-2011 23:08 bipublisherreports/Chargeback/Charge Summary
Report.xdoz
 26505 02-20-2011 23:08 bipublisherreports/Chargeback/Usage Trend Report.xdoz
 112150 02-20-2011 23:08 bipublisherreports/Chargeback/Usage Summary
Report.xdoz

Chapter 6
Using the Enterprise Manager EDK for Staging and Deploying BI Publisher Reports

6-3

 0 02-20-2011 23:08 bipublisherreports/Consolidation Planner/
 50114 02-20-2011 23:08 bipublisherreports/Consolidation Planner/
Consolidation Reports.xdoz
--------- -------
 335150 16 files

3. Create your plug-in JAR files.

The first directory in each JAR file must be bipublisherreports. All of the data
models for the reports must be in the same subdirectory, EM_Datamodels, just
under the bipublisherreports directory. For example:

a. The plug-in, which contains all of the metadata files and BI Publisher report
JAR files is installed dynamically (for metadata Plug-ins) using the plug-in
environment.

b. The BI Publisher report JAR files are placed in a subdirectory of the metadata/
bipublisherreport directory and referenced in the metadata file (emreports).

c. The BI Publisher reports for both platform and plug-ins are deployed to a BI
Publisher web application (either at plug-in installation time or sometime later
when BI Publisher is installed).

Plug-in reports are deployed when BI Publisher is integrated with Enterprise
Manager using the configureBIP script or sometime later using one of the
following EMCLI verbs:

• * emcli setup_bipublisher (see Help for usage details)

• * emcli deploy_bipublisher_reports[-force]
This last verb deploys the EM System reports (and optionally Extensibility
Development Kit plug-in loaded reports) to a previously setup EM to BI
Publisher relationship (using setup_bipublisher). It can also be used to
upload a reports JAR file (located on the Oracle Management Server
(OMS) filesystem). The operation will not overwrite existing BI Publisher
reports in the EM Reports folder unless -force is used in the command.

The following options are available:

Option Description

[-pluginid] In addition to Enterprise Manager system reports, you can
use this option to deploy any subsequently loaded plug-in
based BI Publisher reports.

[-pluginversion] This options limits the plug-ins to a specific version.

[-
reportsjarfile]

Use this option to deploy a single Enterprise Manager
reports JAR file that contains one or more BI Publisher
reports. This JAR file is located relative to the
OMS's $ORACLE_HOME. directory.

For example, the syntax for the emct plug-in is:

emcli deploy_bipublisher_reports -pluginid=oracle.sysman.emct -
pluginversion=12.1.0.0.0

Chapter 6
Using the Enterprise Manager EDK for Staging and Deploying BI Publisher Reports

6-4

Note:

Do not use overlapping folders from different JAR files and PLATFORM
JAR files. Doing this causes reports from the different JAR files to be
placed in the same BI Publisher folder. If the same report name is
referenced in multiple JAR files, there is no way of knowing which one
will be deployed last.

• emcli sync
Use Sync to synchronize the reports deployed in the plugins to BI Publisher. For
more information on using EMCLI sync, see sync in Enterprise Manager
Command Line Interface.

Chapter 6
Using the Enterprise Manager EDK for Staging and Deploying BI Publisher Reports

6-5

7
Collecting Target Configuration Data

This chapter provides information about defining configuration collection tables and
integrating them into the Enterprise Configuration Management framework.

This chapter contains the following sections:

• Introduction to Collecting Target Configuration Data

• About the Configuration Definition Files

• Modeling Enterprise Configuration Management Tables

• Customizing the Inventory and Usage Region of the UI

Introduction to Collecting Target Configuration Data
As a plug-in developer, you are responsible for the following steps with respect to
incorporating configuration-related functions into Enterprise Configuration Management for
each snapshot type:

1. Ensure that every bit of the configuration data that will be collected will not change from
one collection to the next unless there is an explicit action by an administrator.
Configuration data must only collect data that can change due to explicit administrator
actions but should stay unchanged without such actions.

2. Define an Enterprise Configuration Management-specific metadata file that defines
collection tables to match configuration collection metrics established as part of the target
type definition.

For more information, see Defining Configuration Collection Tables.

3. Name the snapshot type (the name must match the CollectionItem name specified on
the Management Agent side) for a given target type.

For more information, see Overview of Configuration Management Snapshot Metadata
Elements .

4. Register the metadata with Enterprise Configuration Management during plug-in
deployment. This creates tables for snapshot data, subject to any constraints imposed by
the Enterprise Configuration Management framework. It also registers the data tables in
Enterprise Configuration Management metadata tables.

For more information, see Registering Metadata With the Configuration Management
Framework.

5. Integrate with the standard Management Agent's collection mechanisms. Both
CollectionItem and corresponding metrics must be defined at the Management Agent.

For more information, see Modifications to Standard Collection Metrics and RAW Metrics.

6. Verify that the defined configuration collection data is returned to the Management
Repository by the Management Agent.

For more information, see Testing the Configuration Collection Data and Troubleshooting.

7-1

Assumptions and Prerequisites
This chapter assumes you are familiar with the following:

• Enterprise Manager concepts including Management Agents, metrics, and
collection items

• Plug-in development overview, including how to package a plug-in and its XML
files

About the Configuration Definition Files
The metadata for configuration collection is defined in three metadata files packaged
with the plug-in:

• Configuration metadata file

This file defines the tables in the Management Repository that will store collected
configuration data. In addition, the EDK includes an example of a configuration
metadata file:

\samples\plugins\HostSample\stage\oms\metadata\snapshotlive\demo_hostsample_e
cmdef.xml

For more information, see Defining Configuration Collection Tables.

• Target type metadata file

Each configuration data item is collected as a metric that is defined with other
metrics in the target type metadata file. In addition, the EDK includes an example
of a target type metadata file:

\samples\plugins\HostSample\stage\oms\metadata\targetType\demo_hostsample.xml

For more information, see Creating the Target Type Metadata File.

• Default collection metadata file

The frequency at which configuration data is collected for each metric is defined in
the default collection metadata file. Metric Alert event conditions for each metric
and the messages to display for such alerts are also defined in this file. In addition,
the EDK includes an example of a default collection metadata file:

\samples\plugins\HostSample\stage\oms\metadata\default_collection\demo_hostsa
mple.xml

For more information, see Creating the Default Collection File.

Modeling Enterprise Configuration Management Tables
This section describes how to create configuration snapshot tables. Assume that an
Oracle home target type definition is added to the Enterprise Manager framework.

You can define metadata and tables to store your configuration data and define
metrics to collect the data at the Management Agent.

Chapter 7
About the Configuration Definition Files

7-2

Each Enterprise Configuration Management metric defined in the target type metadata file
corresponds to a table defined by the configuration metadata XML file. For information about
target type metadata files, see Creating Target Metadata Files .

Tables can have parent-child relationships similar to foreign key constraints in the database.
For every parent table row, there are n numbers of child table rows, and every child table row
has exactly one parent table row. In effect, Enterprise Configuration Management allows
trees of tables, where each table has at most one parent table. A configuration can consist of
a set of these trees where no table is repeated.

From a database perspective, a table must include all key columns of its ancestor tables.
(Internally, each Enterprise Configuration Management table includes an
ECM_SNAPSHOT_ID column of type RAW(16) to identify the snapshot to which a given row
belongs.)

Metadata for the collection tables must specify at a minimum:

• Table names, column names, column types, and hierarchical relationships between
tables (if any).

• Key columns, that is columns that uniquely identify a row in a table. You must specify
keys correctly. Enterprise Manager UI, comparison, and history use key columns
extensively.

• UI display names that will in the Enterprise Manager generic UI.

Figure 7-1 shows the Oracle Home Entity Relationship Diagram (ERD) of the configuration
tables.

Figure 7-1 Oracle Home ERD with Tie-ins to the Framework

Chapter 7
Modeling Enterprise Configuration Management Tables

7-3

Defining Configuration Collection Tables
The configuration metadata XML file begins with the METADATA tag. The METADATA tag
establishes the relationship between the target type and the snapshot type, and
defines the UI display name.

<METADATAS>
 <METADATA SNAP_TYPE="oracle_home_config" TARGET_TYPE="oracle_home" VER="1">

 <METADATA_UI_NAME>Oracle Home Configuration</METADATA_UI_NAME>

 CONFIGURATION COLLECTION TABLE DEFINITIONS
 </METADATA>
<METADATAS>

The configuration collection table definitions are encapsulated within the METADATA tag.

For more information about the elements of the configuration metadata XML, see
Overview of Configuration Management Snapshot Metadata Elements . For
information about the XML Schema Definitions (XSD) that governs the configuration
XML files, see the Extensibility Development Kit (EDK) specifications.

EM_ECM_OH_HOME_INFO Table
The EM_ECM_OH_HOME_INFO table stores properties related to an Oracle software
installation. The metadata for this table is as follows:

<TABLE NAME="EM_ECM_OH_HOME_INFO" SINGLE_ROW="Y">
 <UI_NAME>Home Info</UI_NAME>
 <COLUMN NAME="HOME_LOCATION" TYPE="STRING" TYPE_FORMAT="1024">Install
Location</COLUMN>
 <COLUMN NAME="OUI_HOME_NAME" TYPE="STRING" TYPE_FORMAT="256" >OUI Home Name</
COLUMN>
 <COLUMN NAME="OUI_HOME_GUID" TYPE="STRING" TYPE_FORMAT="32" >OUI Home GUID</
COLUMN>
 <COLUMN NAME="HOME_TYPE" TYPE="STRING" TYPE_FORMAT="1" >Home Type</
COLUMN>
 <COLUMN NAME="HOME_POINTER" TYPE="STRING" TYPE_FORMAT="1024">Home Pointer</
COLUMN>
 <COLUMN NAME="IS_CLONABLE" TYPE="NUMBER" TYPE_FORMAT="1" >Is Clonable</
COLUMN>
 <COLUMN NAME="IS_CRS" TYPE="NUMBER" TYPE_FORMAT="1" >Is CRS</COLUMN>
 <COLUMN NAME="ARU_ID" TYPE="NUMBER" TYPE_FORMAT="10" >ARU ID of the
Oracle Home</COLUMN>
 <COLUMN NAME="HOME_SIZE" TYPE="NUMBER" TYPE_FORMAT="10" >Size of Oracle
Home (KB)</COLUMN>
</TABLE>

The corresponding database table is as follows:

COLUMN_NAME DATA_TYPE COLUMN_WIDTH KEY

ECM_SNAPSHOT_ID RAW 16 PK

HOME_LOCATION VARCHAR2 1024

OUI_HOME_NAME VARCHAR2 256

OUI_HOME_GUID VARCHAR2 32

Chapter 7
Modeling Enterprise Configuration Management Tables

7-4

COLUMN_NAME DATA_TYPE COLUMN_WIDTH KEY

HOME_TYPE VARCHAR2 1

HOME_POINTER VARCHAR2 1024

IS_CLONABLE NUMBER 1

IS_CRS NUMBER 1

ARU_ID NUMBER 10

HOME_SIZE (in KB) NUMBER 10

For this table, the Primary Key consists of ECM_SNAPSHOT_ID. The SINGLE_ROW="Y"
attribute from the metadata example indicates that each snapshot will have at most a single
row in this table and therefore you do not have to mark any other columns in the table as key.
This implies that the ECM_SNAPSHOT_ID column, which identifies the snapshot, will be the
only key column in the table.

EM_ECM_OH_DEP_HOMES Table
The EM_ECM_OH_DEP_HOMES table stores the locations of the Oracle home directories
that a given Oracle home depends on. This data is used to form dependency associations
between Oracle homes. The metadata for this table is as follows:

<TABLE NAME="EM_ECM_OH_DEP_HOMES">
 <UI_NAME>Dependee Oracle Homes</UI_NAME>
 <COLUMN NAME="DEP_HOME_LOCATION" TYPE="STRING" TYPE_FORMAT="1024"
IS_KEY="Y">Dependee Home Location</COLUMN>
</TABLE>

The corresponding database table is as follows:

COLUMN_NAME DATA_TYPE COLUMN_WIDTH KEY

ECM_SNAPSHOT_ID RAW 16 PK

DEP_HOME_LOCATION VARCHAR2 1024 PK

The primary key for this table consists of ECM_SNAPSHOT_ID and
DEP_HOME_LOCATION.

Note:

Key columns (in addition to ECM_SNAPSHOT_ID, which is always part of the key)
are marked with IS_KEY="Y" in the metadata file.

EM_ECM_OH_COMPONENT Table
The EM_ECM_OH_COMPONENT table stores information about Oracle software
components in the Oracle home directory. The metadata for this table is as follows:

<TABLE NAME="EM_ECM_OH_COMPONENT">
 <UI_NAME>Components installed in Oracle Home</UI_NAME>
 <COLUMN NAME="COMPONENT_NAME" TYPE="STRING" TYPE_FORMAT="128"

Chapter 7
Modeling Enterprise Configuration Management Tables

7-5

IS_KEY="Y">Component Name</COLUMN>
 <COLUMN NAME="COMPONENT_VERSION" TYPE="STRING" TYPE_FORMAT="64"
IS_KEY="Y">Base Version of Component</COLUMN>
 <COLUMN NAME="CURRENT_VERSION" TYPE="STRING"
TYPE_FORMAT="64" >Current Version of the Component</COLUMN>
 <COLUMN NAME="INSTALL_TIME"
TYPE="TIMESTAMP" >Install Time</COLUMN>
 <COLUMN NAME="IS_TOP_LEVEL" TYPE="NUMBER"
TYPE_FORMAT="1" >Is it a top level Component</COLUMN>
 <COLUMN NAME="EXTERNAL_NAME" TYPE="STRING"
TYPE_FORMAT="128" >External name</COLUMN>
 <COLUMN NAME="DESCRIPTION" TYPE="STRING"
TYPE_FORMAT="1024" >Description</COLUMN>
 <COLUMN NAME="LANGUAGES" TYPE="STRING"
TYPE_FORMAT="1024" >Languages</COLUMN>
 <COLUMN NAME="INSTALLED_LOCATION" TYPE="STRING"
TYPE_FORMAT="1024" >Installed Location</COLUMN>
 <COLUMN NAME="INSTALLER_VERSION" TYPE="STRING"
TYPE_FORMAT="64" >Installer Version</COLUMN>
 <COLUMN NAME="MIN_DEINSTALLER_VERSION" TYPE="STRING"
TYPE_FORMAT="64" >Minimum Deinstaller Version</COLUMN>

Note:

This metadata has no closing TABLE tag (yet) because it is a parent table to
the next table (EM_ECM_OH_COMP_INST_TYPE Table), which is included
as part of this TABLE tag.

The corresponding database table is as follows:

COLUMN_NAME DATA_TYPE COLUMN_WIDTH KEY

ECM_SNAPSHOT_ID RAW 16 PK

COMPONENT_NAME VARCHAR2 128 PK

COMPONENT_VERSION VARCHAR2 64 PK

CURRENT_VERSION VARCHAR2 64

INSTALL_TIME DATE -

IS_TOP_LEVEL NUMBER 1

EXTERNAL_NAME VARCHAR2 128

DESCRIPTION VARCHAR2 1024

LANGUAGES VARCHAR2 1024

INSTALLED_LOCATION VARCHAR2 1024

INSTALLER_VERSION VARCHAR2 64

MIN_DEINSTALLER_VERSION VARCHAR2 64

The primary key for this table consists of ECM_SNAPSHOT_ID,
COMPONENT_NAME, and COMPONENT_VERSION.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-6

EM_ECM_OH_COMP_INST_TYPE Table
The EM_ECM_OH_COMP_INST_TYPE table stores the installation type of Oracle software
components (Oracle Universal Installer (OUI) only). This a child table of
EM_ECM_OH_COMPONENT Table. The metadata for this table is as follows:

<TABLE NAME="EM_ECM_OH_COMP_INST_TYPE">
 <UI_NAME>Install Types of Components</UI_NAME>
 <COLUMN NAME="NAME_ID" TYPE="STRING" TYPE_FORMAT="128"
IS_KEY="Y">Install Type Name ID</COLUMN>
 <COLUMN NAME="INSTALL_TYPE_NAME" TYPE="STRING" TYPE_FORMAT="128"
>Install Type Name</COLUMN>
 <COLUMN NAME="DESC_ID" TYPE="STRING" TYPE_FORMAT="128"
>Install Type Description ID</COLUMN>
</TABLE>
</TABLE>

Note:

The extra closing </TABLE> tag is for the EM_ECM_OH_COMPONENT parent
table.

The corresponding database table is as follows:

COLUMN_NAME DATA_TYPE COLUMN_WIDTH KEY

ECM_SNAPSHOT_ID RAW 16 PK

COMPONENT_NAME VARCHAR2 128 PK

COMPONENT_VERSION VARCHAR2 64 PK

NAME_ID VARCHAR2 128 PK

INSTALL_TYPE_NAME VARCHAR2 128

DESC_ID VARCHAR2 128

For this table, the primary key consists of ECM_SNAPSHOT_ID, COMPONENT_NAME,
COMPONENT_VERSION, and NAME_ID.

Note:

COMPONENT_NAME and COMPONENT_VERSION are not listed here but are
inherited from the key columns of the parent table, and the values in these columns
must match a row in EM_ECM_OH_COMPONENT with the same values for
ECM_SNAPSHOT_ID, COMPONENT_NAME, and COMPONENT_VERSION.

Additional Information About the Configuration Metadata
Note the following when you are creating the configuration metadata XML file:

• Each table definition must specify its name and at least one column specification:

Chapter 7
Modeling Enterprise Configuration Management Tables

7-7

Example: Table Definition

<TABLE NAME="..." ...>
 Optional UI name
 Column definitions
Optional Indexes definitions: starting 12c PS1 platform release
 Optional Child Table definitions
</TABLE>

Table 7-1 provides the attributes of the TABLE element.

• Table names must be specific to a given snapshot type and cannot be shared by
multiple snapshot types. While internal Enterprise Manager names can start with
EM_, for plug-ins and addons, Oracle recommends that you start table names with
the plug-in tag (third part of a plugin ID) in upper case, followed by underscore. For
example, plugin “oracle.sysman.xyz" should define tables starting with XYZ_, such
as XYZ_CONFIG.

• Each column definition must specify its name and type at least:

<COLUMN NAME="..." TYPE="..." ...>...</COLUMN>

Table 7-1 provides the attributes of the COLUMN element.

• Columns can be of type STRING, NUMBER, TIMESTAMP, or RAW.
TYPE_FORMAT is optional; its meaning derives from the value of type. For a
string, it is the maximum string length. For a number, it is precision and scale, as
for an Oracle database (for example, TYPE_FORMAT="4, 9").

• Specify parent child relationships between tables by nesting the TABLE tags.

• Table and view names cannot exceed 25 characters.

• Table and column order is significant. The UI display replicates the order. Import
and export operations preserve the order. Delete operations (on table data) occur
in inverse order. Child rows are removed before parent rows.

• COLUMN tags contain the UI display name of the column.

• Tables require key columns that uniquely identify rows in the table. Oracle
recommends that the total size of the key columns is not too large (4,000 should
be the maximum but much smaller sizes are acceptable).

The key columns of all ancestor tables are automatically assumed to be inherited
by the child tables and are not repeated in the child table specification.

However, a table does not require a key if it has at most one row per parent row, or
per snapshot in the case of a top-level table. Tables that do not have a key must
specify the SINGLE_ROW="Y" attribute, which is set to "N" by default.

For information about the key elements of the configuration metadata, see Overview of
Configuration Management Snapshot Metadata Elements .

Overview of Configuration Management Snapshot Metadata Elements
Table 7-1 describes the key elements that define configuration management.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-8

Table 7-1 Key Elements of a Configuration Metadata XML File

Element Description

METADATAS The configuration metadata XML file starts with the METADATAS tag.

<METADATAS>
 One or more snapshot specifications
</METADATAS>

The snapshot specification corresponds to a METADATA tag.

METADATA The snapshot specification corresponds to a METADATA tag and includes at
least one table specification. It also defines the snapshot UI display name. It
includes the following attributes:

• VER: Specifies the plug-in developer-defined metadata version and must
be an integer (beginning with 1). Typically, each release increments the
version (if there are changes). Only the latest ECM metadata version
must be registered within a release (although Management Agents can
upload older compatible versions)

• SNAP_TYPE: Names the type of snapshot. Snapshot types are defined in
the context of target types. The name should begin with company name
followed by an underscore. For example, oracle_.

• TARGET_TYPE: Target type for which the snapshot type metadata is
defined.

• UI_IGNORE: Optional. Determines whether data is displayed as part of
the configuration browser. Values are N (default), which uses UI
functionality or Y, which ignores UI functionality.

• COMPARE_IGNORE: Optional. Determines whether to perform
comparisons on the data. Values are N (default), which uses Compare
functionality or Y, which ignores Compare functionality.

• COMPARE_UI_IGNORE: Optional. Determines whether to display data in
the comparison UI. Values are N (default), which uses Compare UI
functionality or Y, which ignores Compare UI functionality.

• HISTORY_IGNORE: Optional. Determines whether to track history on the
data. Values are N (default), which uses History functionality or Y, which
ignores History functionality.

• HISTORY_UI_IGNORE: Optional. Determines whether to display data in
the history UI. Values are N (default), which uses History UI functionality
or Y, which ignores History UI functionality.

Note: If you specify a value for a name_IGNORE attribute, then it is
specified for all tables unless overridden at a lower (TABLE or COLUMN)
level. Inheritance flows from metadata to tables, parent tables to child
tables, and from all tables to their columns.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-9

Table 7-1 (Cont.) Key Elements of a Configuration Metadata XML File

Element Description

TABLE Specifies the table name and at least one column. It includes the following
attributes:

• NAME: Required. Identifies the table uniquely

• SINGLE_ROW: Values are N (default) or Y, which indicates tables that have
at most one row per parent row or at most one row per snapshot in case
of top-level tables. In this latter case, no key is required. All key columns
(if any) are inherited from a parent table.

• UI_IGNORE: Optional. Determines whether data is displayed as part of
the configuration browser. Values are N (default), which uses UI
functionality or Y, which ignores UI functionality.

• COMPARE_IGNORE: Optional. Determines whether to perform
comparisons on the data. Values are N (default), which uses Compare
functionality or Y, which ignores Compare functionality.

• COMPARE_UI_IGNORE: Optional. Determines whether to display data in
the comparison UI. Values are N (default), which uses Compare UI
functionality or Y, which ignores Compare UI functionality.

• HISTORY_IGNORE: Optional. Determines whether to track history on the
data. Values are N (default), which uses History functionality or Y, which
ignores History functionality.

• HISTORY_UI_IGNORE: Optional. Determines whether to display data in
the history UI. Values are N (default), which uses History UI functionality
or Y, which ignores History UI functionality.

Note: If you specify a value for a name_IGNORE attribute, then it is
specified for all columns and a child table unless overridden at a lower
(TABLE or COLUMN) level.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-10

Table 7-1 (Cont.) Key Elements of a Configuration Metadata XML File

Element Description

COLUMN Each column definition must a NAME and TYPE attributes. It includes the
following attributes:

• NAME: Required. Identifies the table column uniquely.

• TYPE: Required. Values are STRING, NUMBER, TIMESTAMP, CLOB, or
RAW

• TYPE_FORMAT: Optional. Value depends on the value in the TYPE
attribute

• IS_KEY: Required. Specifies whether it is part of a key that uniquely
identifies a row in the table. The key columns of all ancestor tables are
automatically assumed to be inherited by the child tables.

Note: A table does not require a key (unless that of ancestor table keys, if
any) if it has only one row per parent row, or per snapshot in the case of a
top-level table. You must specify the SINGLE_ROW="Y" attribute (which
is set to “N" by default) for tables that do not have a key.

• UI_IGNORE: Optional. Determines whether data is displayed as part of
the configuration browser. Values are N (default), which uses UI
functionality or Y, which ignores UI functionality.

• COMPARE_IGNORE: Optional. Determines whether to perform
comparisons on the data. Values are N (default), which uses Compare
functionality or Y, which ignores Compare functionality.

• COMPARE_UI_IGNORE: Optional. Determines whether to display data in
the comparison UI. Values are N (default), which uses Compare UI
functionality or Y, which ignores Compare UI functionality.

• HISTORY_IGNORE: Optional. Determines whether to track history on the
data. Values are N (default), which uses History functionality or Y, which
ignores History functionality.

• HISTORY_UI_IGNORE: Optional. Determines whether to display data in
the history UI. Values are N (default), which uses History UI functionality
or Y, which ignores History UI functionality.

INDEXES Optional indexes are useful when a table is used in derived associations,
compliance rules, reports, or other queries where performance is important in
accessing table rows based on columns other than ECM_SNAPSHOT_ID.

An optional index definitions element <INDEXES> should specify at least one
<INDEX> element, and each <INDEX> element should specify name and
columns:

<INDEXES>
 <INDEX NAME="..." COLUMNS="..." />
 <INDEX NAME="..." COLUMNS="..." />
 …
</INDEXES>

• NAME: Required. Identifies the table column uniquely and should be
unique among all index names. Oracle recommends that the name
should be the same as table name followed by _IDX1, _IDX2, and so on.

• COLUMN: Required. Value should be a comma-separated list of column
names.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-11

Note:

A predefined ECM_METADATA_ID column is always added as the last
column for each index.

The following example provides a configuration metadata XML file for an oracle_home
_config snapshot. All *_IGNORE attributes keep their default values (N) because they
are not specified in the file.

Example: Configuration Metadata XML File

<METADATAS>
 <METADATA SNAP_TYPE="oracle_home_config" TARGET_TYPE="oracle_home" VER="1"

 <METADATA_UI_NAME>Oracle Home Configuration</METADATA_UI_NAME>

 <TABLE NAME="EM_ECM_OH_HOME_INFO" SINGLE_ROW="Y">
 <UI_NAME>Home Info</UI_NAME>
 <COLUMN NAME="HOME_LOCATION" TYPE="STRING" TYPE_FORMAT="1024">Install
Location</COLUMN>
 <COLUMN NAME="OUI_HOME_NAME" TYPE="STRING" TYPE_FORMAT="256">OUI Home Name</
COLUMN>
 <COLUMN NAME="OUI_HOME_GUID" TYPE="STRING" TYPE_FORMAT="32">OUI Home GUID</
COLUMN>
 <COLUMN NAME="HOME_TYPE" TYPE="STRING" TYPE_FORMAT="1">Home Type</COLUMN>
 <COLUMN NAME="HOME_POINTER" TYPE="STRING" TYPE_FORMAT="1024">Home Pointer</
COLUMN>
 <COLUMN NAME="IS_CLONABLE" TYPE="NUMBER" TYPE_FORMAT="1">Is Clonable</COLUMN>
 <COLUMN NAME="IS_CRS" TYPE="NUMBER" TYPE_FORMAT="1">Is CRS</COLUMN>
 <COLUMN NAME="ARU_ID" TYPE="NUMBER" TYPE_FORMAT="10">ARU ID of the Oracle
Home</COLUMN>
 <COLUMN NAME="HOME_SIZE" TYPE="NUMBER" TYPE_FORMAT="10">Size of Oracle Home
(KB)</COLUMN>
 </TABLE>

 <TABLE NAME="EM_ECM_OH_DEP_HOMES">
 <UI_NAME>Dependee Oracle Homes</UI_NAME>
 <COLUMN NAME="DEP_HOME_LOCATION" TYPE="STRING" TYPE_FORMAT="1024"
IS_KEY="Y">Dependee Home Location</COLUMN>
 </TABLE>

 <TABLE NAME="EM_ECM_OH_COMPONENT">
 <UI_NAME>Components installed in Oracle Home</UI_NAME>
 <COLUMN NAME="COMPONENT_NAME" TYPE="STRING" TYPE_FORMAT="128"
IS_KEY="Y">Component Name</COLUMN>
 <COLUMN NAME="COMPONENT_VERSION" TYPE="STRING" TYPE_FORMAT="64"
IS_KEY="Y">Base Version of Component</COLUMN>
 <COLUMN NAME="CURRENT_VERSION" TYPE="STRING" TYPE_FORMAT="64">Current
Version of the Component</COLUMN>
 <COLUMN NAME="INSTALL_TIME" TYPE="TIMESTAMP" >Install Time</COLUMN>
 <COLUMN NAME="IS_TOP_LEVEL" TYPE="NUMBER" TYPE_FORMAT="1">Is a top level
Component</COLUMN>
 <COLUMN NAME="EXTERNAL_NAME" TYPE="STRING" TYPE_FORMAT="128">External name</
COLUMN>
 <COLUMN NAME="DESCRIPTION" TYPE="STRING" TYPE_FORMAT="1024">Description</
COLUMN>
 <COLUMN NAME="LANGUAGES" TYPE="STRING" TYPE_FORMAT="1024" >Languages</COLUMN>
 <COLUMN NAME="INSTALLED_LOCATION" TYPE="STRING" TYPE_FORMAT="1024">Installed

Chapter 7
Modeling Enterprise Configuration Management Tables

7-12

Location</COLUMN>
 <COLUMN NAME="INSTALLER_VERSION" TYPE="STRING" TYPE_FORMAT="64">Installer Version</
COLUMN>
 <COLUMN NAME="MIN_DEINSTALLER_VERSION" TYPE="STRING" TYPE_FORMAT="64">Minimum
Deinstaller Version</COLUMN>

 <TABLE NAME="EM_ECM_OH_COMP_INST_TYPE">
 <UI_NAME>Install Types of Components</UI_NAME>
 <COLUMN NAME="NAME_ID" TYPE="STRING" TYPE_FORMAT="128" IS_KEY="Y">Install Type
Name ID</COLUMN>
 <COLUMN NAME="INSTALL_TYPE_NAME" TYPE="STRING" TYPE_FORMAT="128" >Install Type
Name</COLUMN>
 <COLUMN NAME="DESC_ID" TYPE="STRING" TYPE_FORMAT="128">Install Type
Description</COLUMN>
 </TABLE>

 </TABLE>

 </METADATA>
</METADATAS>

Note:

Use the information in this file to define a metric in the target type metadata file. For
more information, see Modifications to Standard Collection Metrics and RAW
Metrics.

Packaging Configuration Metadata
When you have completed your configuration metadata XML file, save the file in the following
directory in your plug-in staging directory:

oms/metadata/snapshotlive

After you save the configuration metadata file in the plug-in staging directory, it is available for
automatic registration during plug-in deployment.

For information about the plug-in staging directory or plug-in deployment, see Validating,
Packaging, and Deploying the Plug-in .

Registering Metadata With the Configuration Management Framework
After you complete the configuration metadata XML file, you must register it with the
Configuration Management framework. Place the configuration metadata XML file in the oms/
metadata/snapshotlive directory in your plug-in staging directory. Registration takes place
automatically during the installation or upgrade of the plug-in and the necessary schema
objects will be created and the configuration metadata registered with the Configuration
Management framework. For more information about the plug-in staging directory and
registration, see Validating, Packaging, and Deploying the Plug-in .

To manually run the registration service during development of XML-only plug-ins, enter the
following:

emctl register oms metadata
-sysman_pwd sysman password

Chapter 7
Modeling Enterprise Configuration Management Tables

7-13

-pluginId plugin ID
-service LiveSnapshotRegistration
-file snapshot metadata XML file

Note: Import the plug-in into the Management Repository before the command is run.

plugin ID is the ID of the plug-in to which the snapshot metadata target types belong.
The LiveSnapshotRegistration is the metadata service that creates and updates
configuration management schema objects and registers configuration metadata.

This command registers the snapshot configuration file (snapshot metadata XML file)
using SYSMAN credentials in your development environment.

Configuration Management provides the following utility that can be run optionally to
generate some additional files:

EDK_DIR/bin/empdk generate_metadata_resource -stage_dirplugin_stage
 -service LiveSnapshotRegistration
 -input_dir input directory
 [-out_dir output directory]
 [-file_extension list of file extensions/suffixes]
 [-debug debug file name]

where:

• EDK_DIR: Directory where EDK package is unzipped. (For more information, see
Installing the Extensibility Development Kit (EDK)).

• plugin_stage: Plug-in staging directory. (For more information, see Staging the
Plug-in).

• input directory: Directory containing the configuration metadata XML files.

• output directory:Directory to contain the generated resource files. If not specified,
then the resource files are generated in the current directory.

• list of file extensions/suffixes: Comma separated list of file extensions or suffixes
for the resource files. If not specified, then all supported resource files will be
generated in the output directory.

• debug file name: File that contains debug information. If not specified, then the
default log file (createplugin.logtime) is created in the output directory and stored
warning and error messages only.

For each configuration metadata XML file in the input directory, the specified resource
files are generated in the output directory with the file name
ecm_metadata_xml_file_name as the prefix and the following supported suffixes:

• .dlf
file_name.dlf is a file for translations of snapshot type name, table name, and
column name. A generated DLF file and its translated versions should be placed in
the plugin_stage/oms/rsc/ecm directory of the plug-in.

• _metrix.xml, _collection.xml
file_name_metric.xml and file_name_collection.xml can be used as starting
templates for Management Agent-side integration. For more information, see
Modifications to Standard Collection Metrics and RAW Metrics.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-14

Supporting Translation
Data Loading Format (DLF) translation files are used to support internationalization for the
display strings in plug-in metadata files so that the UI can display them in the language of the
end user. Usually, you provide an original (such as English) DLF file to translators who then
create similar files for other locales. All such files are loaded into the Management Repository
by Enterprise Manager during the installation of a plug-in.

Note:

Generating DLF files is optional and is required only if you require translation.

To generate DLF files for translation of the snapshot type name, table, and column names,
run the following command:

$ORACLE_HOME/emcore/pdk/partner/bin/empdk generate_metadata_resource
-stage_dir staging directory
-service LiveSnapshotRegistration
-input_dir input directory containing snapshot metadata XML file
-file_extension extension to use for generated DLF files
-out_dir output directory to which to generate the DLF files
[-debug debug output file]

You must place the generated DLF files and their corresponding translated versions in the
following directory of the plug-in:

plugin_stage/oms/rsc/ecm

The following manual additions are required in each DLF file:

<table xml:lang="en" name="MGMT_MESSAGES">
<lookup-key>
 <column name="MESSAGE_ID"/>
 <column name="SUBSYSTEM"/>
 <column name="LANGUAGE_CODE"/>
 <column name="COUNTRY_CODE"/>
</lookup-key>
<columns>
 <column name="MESSAGE_ID" type="string" maxsize="256"/>
 <column name="SUBSYSTEM" type="string" maxsize="64"/>
 <column name="LANGUAGE_CODE" type="string" language="%l"/>
 <column name="COUNTRY_CODE" type="string" language="%Cs"/>
 <column name="MESSAGE" type="string" maxsize="1000" translate="yes"/>
</columns>
<dataset>
GENERATED FILE CONTENT
</dataset>
</table>

Chapter 7
Modeling Enterprise Configuration Management Tables

7-15

Upgrading Configuration Data

Note:

You must increment your integer metadata version (VER attribute) whenever
you release a new version of metadata to your customers. The version
should be incremented in the ECM XML metadata file (VER attribute in the
METADATA element) as well as the corresponding Agent collection file.

For more information about the VER attribute, see Table 7-1.

When you are upgrading existing snapshot metadata, the following changes are
supported:

• New tables

• New non-key columns (these should appear after previously existing columns)

• New list of indexes (replaces any prior indexes)

• Increasing length of STRING type columns

• Values of UI_IGNORE, COMPARE_IGNORE, COMPARE_UI_IGNORE,
HISTORY_IGNORE, HISTORY_UI_IGNORE and UI_NAME attributes

Note:

• No key columns can be added or removed

• No columns formats except STRING can be altered

• The length of the STRING columns only can be increased

• New table cannot be added as a parent for an existing table

• Tables or columns cannot be removed from the existing snapshot
metadata

Take the following metadata example:

Example: Original Metadata Definition

<METADATAS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <METADATA VER="1"
 SNAP_TYPE="sn_dbconfig"
 TARGET_TYPE="sn_oracle_database"
 UI_IGNORE="Y"
 HISTORY_IGNORE="N"
 COMPARE_IGNORE="Y"
 COLLECTION_GROUP="COL_GRP_0">
 <METADATA_UI_NAME>Database Configuration</METADATA_UI_NAME>
 <TABLE NAME="TABLESPACES" DATA_SOURCE="R">
 <UI_NAME>Tablespaces</UI_NAME>
 <COLUMN NAME="TABLESPACE_NAME" TYPE="STRING" TYPE_FORMAT="30"

Chapter 7
Modeling Enterprise Configuration Management Tables

7-16

 IS_KEY="Y">Tablespace Name</COLUMN>
 <COLUMN NAME="SIZE" TYPE="NUMBER">Size</COLUMN>
 <COLUMN NAME="STATUS" TYPE="STRING" TYPE_FORMAT="10">Status</COLUMN>
 <TABLE NAME="DATAFILES">
 <UI_NAME>Datafiles</UI_NAME>
 <COLUMN NAME="FILE_NAME" TYPE="STRING" TYPE_FORMAT="1024"
 IS_KEY="Y">File Name</COLUMN>
 <COLUMN NAME="FILE_SIZE" TYPE="NUMBER" HISTORY_IGNORE="Y">Size</COLUMN>
 <COLUMN NAME="STATUS" TYPE="STRING" TYPE_FORMAT="9">Status</COLUMN>
 </TABLE>
 </TABLE>
 </METADATA>
</METADATAS>

The following example provides an example of an upgrade to the metadata definition
described in the previous example. The changes are highlighted in bold text.

Example: Upgraded Metadata Definition

<METADATAS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <METADATA VER="2"
 SNAP_TYPE="sn_dbconfig"
 TARGET_TYPE="sn_oracle_database"
 UI_IGNORE="Y"
 HISTORY_IGNORE="N"
 COMPARE_IGNORE="Y"
 COLLECTION_GROUP="COL_GRP_0">
 <METADATA_UI_NAME>Database Configuration</METADATA_UI_NAME>
 <TABLE NAME="TABLESPACES" DATA_SOURCE="R">
 <UI_NAME>Tablespaces</UI_NAME>
 <COLUMN NAME="TABLESPACE_NAME" TYPE="STRING" TYPE_FORMAT="30"
 IS_KEY="Y">Tablespace Name</COLUMN>
 <COLUMN NAME="SIZE" TYPE="NUMBER">Size</COLUMN>
 <COLUMN NAME="STATUS" TYPE="STRING" TYPE_FORMAT="10">Status</COLUMN>
 <TABLE NAME="DATAFILES">
 <UI_NAME>Datafiles</UI_NAME>
 <COLUMN NAME="FILE_NAME" TYPE="STRING" TYPE_FORMAT="1024"
 IS_KEY="Y">File Name</COLUMN>
 <COLUMN NAME="FILE_SIZE" TYPE="NUMBER" HISTORY_IGNORE="Y">Size</COLUMN>
 <COLUMN NAME="STATUS" TYPE="STRING" TYPE_FORMAT="10">Status</COLUMN>
 <COLUMN NAME="DESC" TYPE="STRING" TYPE_FORMAT="128">Status</COLUMN>
 </TABLE>
 </TABLE>
 <TABLE NAME="TABLESPACES_1" DATA_SOURCE="R" >
 <UI_NAME>Tablespaces_1</UI_NAME>
 <COLUMN NAME="TABLESPACE_NAME" TYPE="STRING" TYPE_FORMAT="30"
 IS_KEY="Y">Tablespace Name</COLUMN>
 <COLUMN NAME="SIZE" TYPE="NUMBER">Size</COLUMN>
 <COLUMN NAME="STATUS" TYPE="STRING" TYPE_FORMAT="10">Status</COLUMN>
 <COLUMN NAME="NOTES" TYPE="STRING" TYPE_FORMAT="128">Status</COLUMN>
 <TABLE NAME="DATAFILES_1">
 <UI_NAME>Datafiles_1</UI_NAME>
 <COLUMN NAME="FILE_NAME" TYPE="STRING" TYPE_FORMAT="1024"
 IS_KEY="Y">File Name</COLUMN>
 <COLUMN NAME="FILE_SIZE" TYPE="NUMBER" HISTORY_IGNORE="Y">Size</COLUMN>
 <COLUMN NAME="STATUS" TYPE="STRING" TYPE_FORMAT="10">Status</COLUMN>
 </TABLE>
 </TABLE>
 </METADATA>
</METADATAS>

Chapter 7
Modeling Enterprise Configuration Management Tables

7-17

Older Enterprise Manager releases allowed for the "DROP_EXISTING_DATA"
attribute in the METADATA element, but this should be removed as it is no longer
supported.

Note that if you must have non-backward compatible changes in your ECM metadata,
you must create a new snapshot type (that will not be comparable with old snapshot
type). ECM only supports backward compatible changes.

Modifications to Standard Collection Metrics and RAW Metrics
Enterprise Configuration Management data is collected by regular metrics, collections
and Management Agent mechanisms. This data is collected though regular RAW
metrics with the following modifications:

• Add a CONFIG="TRUE" attribute to all Metric and CollectionItem tags that collect
configuration snapshot information.

• Ensure that the CollectionItem NAME attribute is the same as the snapshot type
name (for example, oracle_home_config).

• The schedule for data collections must not specify an interval that is more frequent
than once per day.

Note:

Do not include ECM_SNAPSHOT_ID as a column in any RAW metric table
descriptor

When ancestor key columns are included in child tables, you can populate a
hierarchical set of tables one at a time, without having to express the hierarchical
relationships during the collection. You should list parent tables before corresponding
child tables in the Collection Item.

The following example provides a metric definition from the target type metadata XML
file for the EM_ECM_OH_HOME_INFO table defined in the configuration metadata
XML file example in Overview of Configuration Management Snapshot Metadata
Elements . The information highlighted in bold font is provided by the configuration
metadata XML file.

Note:

This is just an example and additional nonconfiguration-specific Management
Agent attributes might be required for your situation.

For more information about the target type metadata XML file, see Creating the Target
Type Metadata File.

Example: Defining a Metric

 <Metric NAME="EM_ECM_OH_HOME_INFO" TYPE="RAW" CONFIG="TRUE">
 <Display>
 <Label NLSID="…">Home Info</Label>

Chapter 7
Modeling Enterprise Configuration Management Tables

7-18

 </Display>
 <TableDescriptor TABLE_NAME="EM_ECM_OH_HOME_INFO">
 <ColumnDescriptor NAME="HomeLocation" COLUMN_NAME="HOME_LOCATION"
TYPE="S">
 <Display>
 <Label NLSID="…">Install Location</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="OuiHomeName" COLUMN_NAME="OUI_HOME_NAME"
TYPE="S">
 <Display>
 <Label NLSID="…">OUI Home Name</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="OuiHomeGuid" COLUMN_NAME="OUI_HOME_GUID"
TYPE="S">
 <Display>
 <Label NLSID="…">OUI Home GUID</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="HomeType" COLUMN_NAME="HOME_TYPE" TYPE="S">
 <Display>
 <Label NLSID="…">Home Type</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="HomePointer" COLUMN_NAME="HOME_POINTER" TYPE="S">
 <Display>
 <Label NLSID="…">Home Pointer</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="IsClonable" COLUMN_NAME="IS_CLONABLE" TYPE="N">
 <Display>
 <Label NLSID="…">Is Clonable</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="IsCrs" COLUMN_NAME="IS_CRS" TYPE="N">
 <Display>
 <Label NLSID="…">Is CRS</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="AruId" COLUMN_NAME="ARU_ID" TYPE="N">
 <Display>
 <Label NLSID="…">ARU ID of the Oracle Home</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="HomeSize" COLUMN_NAME="HOME_SIZE" TYPE="N">
 <Display>
 <Label NLSID="…">Size of Oracle Home (KB)</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <!-- TODO : EDIT: Edit the QueryDescriptor Element Template as required -->
 <QueryDescriptor FETCHLET_ID="" AGENT_MODE="">
 <Property NAME="" SCOPE=""></Property>
 </QueryDescriptor>
 </Metric>

The following example provides a definition of the metric collection from the default collection
metadata file for the metric defined in the previous example. The information highlighted in

Chapter 7
Modeling Enterprise Configuration Management Tables

7-19

bold font is provided by the configuration metadata XML file example in Overview of
Configuration Management Snapshot Metadata Elements .

For more information about the default collection metadata file, see Creating the
Default Collection File.

Example: Defining Metric Collection

<CollectionItem NAME="oracle_home_config_test" CONFIG="TRUE">
 <Schedule OFFSET_TYPE="INCREMENTAL">
 <!-- Configuration Collection is done at most once every 24 Hours -->
 <IntervalSchedule INTERVAL="24" TIME_UNIT="Hr" />
 </Schedule>
 <MetricColl NAME="EM_ECM_OH_HOME_INFO" />
 <MetricColl NAME="EM_ECM_OH_DEP_HOMES" />
 <MetricColl NAME="EM_ECM_OH_CRS_NODES" />
 <MetricColl NAME="EM_ECM_OH_CLONE_PROPS" />
 <MetricColl NAME="EM_ECM_OH_COMPONENT" />
 <MetricColl NAME="EM_ECM_OH_COMP_INST_TYPE" />
 <MetricColl NAME="EM_ECM_OH_COMP_DEP_RULE" />
 </CollectionItem>

For a plug-in, do not forget to include the metadata and default_collection XML files at
both oms and agent directories within the opar file.

Testing the Configuration Collection Data
After integrating the configuration collection tables into the configuration management
framework, you can test the configuration collection by completing the following steps:

1. Restart the Management Agent.

AGENT_HOME/agent/bin/emctl stop agent
AGENT_HOME/agent/bin/emctl start agent

In the preceding command, AGENT_HOME represents the Management Agent
home directory.

2. From Enterprise Manager Cloud Control, select Targets, then select the required
target.

3. Right-click the target and select Configuration, then select Last Collected to
view the most recent data collection.

4. Check that the required collected data is visible.

Troubleshooting
If you are having problems with your configuration collections, do the following:

1. Check that your snapshot type is registered in the
MGMT_ECM_SNAPSHOT_METADATA table:

select * from mgmt_ecm_snapshot_metadata
 where target_type = your_target_type
 and snapshot_type = your_snapshot_type;

You should see two rows. If not, check if there are any errors during registration in
the regular log files for MRS in the following directory.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-20

$ORACLE_HOME/cfgtoollogs/pluginca
2. Define the corresponding metrics to verify that collections begin and data accumulates. If

you are looking at the latest collection in the UI, make sure first that the UI_IGNORE flags
in the metadata are not Y for the data you are checking. If the collections are not
happening, then check the following:

• Make sure that your collection item name is the same as snapshot type and
CONFIG="TRUE" is specified for both the collection item and all its metrics.

For more information, see Modifications to Standard Collection Metrics and RAW
Metrics.

• Make sure your metrics are defined as RAW metrics and table descriptor
corresponds to your ECM tables.

• Check if the collection arrives to the Management Repository but is not updated as
"current".

In the MGMT_ECM_GEN_SNAPSHOT table, check the is_current status for your
target and snapshot type. If there are no rows, then the collection did not progress.
The IS_CURRENT flag should be set to Y to indicate the latest snapshot of data.
Rows with other IS_CURRENT values are possible for internal purposes. For
example, if there are no rows with the Y value, then IS_CURRENT values of T and D
would indicate a snapshot started loading but did not finish.

• Check the value of META_VER in agent target type metadata and default_collection
XML files.

During development, when any new metric or collection item is added, META_VER
may need to be bumped up in these files for registration of these new entries to
succeed. Check the latest instructions for Enterprise Management development
regarding the META_VER value.

For example, while during your development you may need to increase the version in
order to register your changes, only one increase of the version per release is
required, and therefore, while merging the code, META_VER may need to be the
same as before if it were already incremented for the current release.

From a collection perspective, you have to make sure that both new target type
metadata and default_collection XML files are successfully registered and that the
agent is restarted with latest files. The following commands can be used to register
target type metadata and default_collection XML files:

emctl register oms metadata -service targetType -file target type XML
filename [-core | -pluginId Plugin Id] [sysman_pwd "sysman password"]

emctl register oms metadata -service default_collection -file default
collection XML filename [-core | -pluginId Plugin Id] [sysman_pwd "sysman
password"]

Finally, for a given target instance you are testing, make sure that its META_VER
matches the META_VER of the loaded snapshot type in order to see the latest
collected data that is based on your latest META_VER.

• Check the Valid-Ifs defined for the target type, snapshot type, and the metric to see if
the category properties of the target instance match the Valid-Ifs. If not, the target
would not show corresponding data since the configuration would not be applicable
to such target.

• On the OMS Repository, check the mgmt_system_error_log table and
emoms_pbs.trc/log for the snapshot type.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-21

You can also examine the mgmt_metric_errors table using the following
command:

select * from mgmt_metric_errors
where target_guid = '<your target guid>'
 and coll_name = '<your snapshot type>'

At the agent, check gcagent.log and other files in agent log directory for the
same string.

• If that does not help, turn on agent backup file feature (add
backupUploadedFiles=true to emd.properties and restart the agent).

Search for your snapshot type in the following location to ensure the agent is
sending data to OMS and to see what it is sending:

agentStateDir/sysman/emd/upload/upload/succbkup/
• One potential problem you may run into relates to the configuration difference

feature.

If for some reason the configuration did not load, but the agent thinks that it
has, and if the configuration does not change from that point on, the agent will
keep sending short "nothing-changed" files types and the loader will keep
disregarding them. To clear this issue (or just eliminate it as a potential issue
while debugging), clear the agent log of config by running the following
comand (no spaces around comma):

emctl clearstate agent -incrementalconfig targetName,targetType

Then, to initiate the collection, run the following command:

emctl control agent runCollection targetName:targetType snapshot type

For example:

emctl clearstate agent -incrementalconfig
myOracleHomeTargetName,oracle_home
emctl control agent runCollection myOracleHomeTargetName:oracle_home
oracle_home_config

3. At Oracle Management Service and the Management Repository, check the
MGMT_SYSTEM_ERROR_LOG table and the emoms_pbs.trc file for the
snapshot type. Also check the MGMT_METRIC_ERRORS table as follows:

At the Management Agent, check the gcagent.log file and other files in agent log
directory for the same string.

4. If you still have problems, turn on the Management Agent backup file feature:

a. Open the emd.properties file.

b. Add the following line to the file:

backupUploadedFiles=true
c. Restart the Management Agent.

AGENT_HOME/agent/bin/emctl stop agent
AGENT_HOME/agent/bin/emctl start agent

In the preceding command, AGENT_HOME represents the Management
Agent home directory.

Chapter 7
Modeling Enterprise Configuration Management Tables

7-22

d. Search for your snapshot type in the following directory to ensure that the
Management Agent is sending data to the OMS:

agentStateDir/sysman/emd/upload/upload/succbkup/
5. A potential issue can arise relating to the configuration difference feature. If the

configuration did not load but the Management Agent interprets that the configuration did
load, (and if the configuration does not change), then the Management Agent sends short
files indicating that nothing changed and the loader will continue to disregard the files.

To clear or eliminate this potential issue, clear the Management Agent log as follows:

emctl clearstate agent -incrementalconfig targetName,targetType

For example:

emctl clearstate agent -incrementalconfig myOracleHomeTargetName,oracle_home

Then, to initiate the collection, run the following command:

emctl control agent runCollection targetName:targetType snapshot_type

For example:

emctl control agent runCollection myOracleHomeTargetName:oracle_home
oracle_home_config

6. From the Cloud Control console, test the history and comparison features to see how the
results look or if any flags should be tweaked.

a. From Enterprise Manager Cloud Control, select Targets, then select the required
target.

b. Right-click the target and select Configuration, then select History to view the
configuration history or select Compare to test the comparison feature.

Note:

For more information about these pages, see the Cloud Control online help.

Customizing the Inventory and Usage Region of the UI
After configuration data is collected, Enterprise Manager provides a generic UI application
that enables end users to review the configuration inventory summary. In addition to this
generic application, Oracle provides an XML interface to plug-in developers, which allows you
to add your own View By choice to the generic Inventory and Usage region.

To add the View By choice:

1. Define an inventory choice metadata XML using the InvSummary.xsd file and save the
file in plugin_stage/oms/metadata/invSummary, where plugin_stage is the staging
directory of the plug-in. For more information about the staging directory, see Validating,
Packaging, and Deploying the Plug-in . See Sample Inventory Choice XML Metadata File
for an example of an inventory choice metadata XML file.

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-23

Note:

To view the InvSummary.xsd file, from your downloaded EDK ZIP
archive, go to the lib directory and locate emCoreSDK.jar. From within
emCoreSDK.jar, find oracle/sysman/emSDK/core/config/ecm/inv/
InvSummary.xsd.

For more information about your downloaded EDK ZIP archive, see
Installing the Extensibility Development Kit (EDK).

2. Register the inventory choice metadata XML with the UI framework. Registration
takes place automatically during the installation or upgrade of the plug-in but you
might want to update your XML during plug-in development without having to
deploy the plug-in.

For example, to manually run the registration service during development of XML-
only plug-ins, enter the following:

emctl register oms metadata -[pluginID pluginid]-service invSummary -file
filename

In the previous example, pluginid represents the unique identifier assigned to the
plug-in and filename represents the full path and file name of your inventory choice
metadata XML, such as /plugin_stage/oms/metadata/invSummary/
HostsInvSummary_metadata.xml.

For more information about MRS, see Updating Deployed Metadata Files Using
the Metadata Registration Service (MRS)

About the Inventory Choice XML
Sample Inventory Choice XML Metadata File provides an example of an Inventory
Choice XML.

The following sections describe some of the sections of the XML file.

About the InventoryChoice Element
When creating an Inventory Choice XML, include the root element, similar to the
following:

<InventoryChoice iname="HOSTS" display_name="Hosts">

Table 7-2 InventoryChoice Element

Element Description

InventoryChoice This is the root element of the XML. It defines the customization.
It includes the following attributes:

• iname: Internal Name (NLSId in the DLF file with translated
strings)

• display_name: If there is no translated string in the DLF
file for iname, then the display name will appear.

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-24

About Supported Parameter Types
The following parameters are supported for this section (for a complete list of supported
parameter types, refer to the XSD documentation):

• Query id: Used in the ShowByChoice section as a Bind Id.

• SHOW_BY: Rollup Type

• TARGET_NAME: Target name of the target context

• TARGET_TYPE: Target type of the target context

• MEMBER_TARGET_TYPE: Member target type filter of group home page

Parameter Type represents the type of predefined parameters mentioned in XSD.

Applicable Target Types (Mandatory)
This section provides the list of target types for which the inventory choice is applicable.

<Applicable_Targettypes>
 <!--Internal target type names -->
 <!--If it has to be shown for enterprise context, give it as "enterprise"-->
 <TargetType>enterprise</TargetType>
 <TargetType>composite</TargetType>
 <TargetType>generic_system</TargetType>
 <TargetType>all</TargetType>

</Applicable_Targettypes>

This representation indicates that the inventory choice should be shown if region is integrated
in the console home page, or group home page, or generic system home pages. If
TargetType is set to all, then it appears by default in any inventory region on any page.

MasterData (Mandatory)
This section provides the data source for populating the region and details page Master table.

For each inventory choice, you can have many rollup SHOWBY choices. Usually, the same
data source can be used for more than one ShowBy choice because the group by clause will
change only. It's better to keep the SQl queries outside the ShowBy choice sections and then
reuse them inside the ShowBy choice section using the bind ID. This helps to avoid repeating
the SQL query in all the ShowBy choice sections.

You can use an SQL query as a data source. As part of the Master Data section, provide the
query for enterprise context and target context using a With clause. The SQL returns any
columns required for ShowBy choices.

<Query id="HOSTS_INV_MASTER_QUERY">
<Enterprise_Ctx>

<Sql>

 With InvQuery AS (SELECT name , base_version ,
vendor_name ,
 count(*) as num_hosts,…..
 With InvQuery AS (SELECT name , base_version ,
vendor_name ,
 count(*) as num_hosts,…..

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-25

 %GROUP_BY_SQL%
 </Sql>
 </Enterprise_Ctx>
 <!-- target context query -->
 <Target_Ctx>
 <Sql>
 ……
 </Sql>
<In_Parameters>
<Param position="1" type="TARGET_NAME"/>
…
</In_Parameters>
</Target_Ctx>
</Query>

%GROUP_BY_SQL% will be replaced by the SQL given in the ShowByChoice
sections.

Details data (Mandatory)
This section provides the data source for the details page from the Details table that
shows data for selected master table rows. You can have a list of SQLs in this section,
which can be reused in the ShowBy choice sections.

The data source for the details table should be an SQL query using Management
Repository views. You can't use database tables. For information about Management
Repository views, see Oracle Enterprise Manager Cloud Control Management
Repository Views Reference.

The format is the same as the Master Table section.

For the details query, use replaceable strings %FILTER_FOR_MASTER_ROWS%,
which can be replaced by selected master key row columns by the framework.

For example:

<Query id="HOSTS_DETAILS">
 <Enterprise_Ctx>
……
%FILTER_SELECT_FOR_MASTERROWS%
</Enterprise_Ctx>
</Query>

List of Rollup Types/ShowBy Choices (Optional)
This section represents the list of rollup types.

Hosts roll up by different types such as Platform, Version, or Vendor.

For example, this is the representation for rolling up Platform.

<ShowByList>
 <ShowBy iname="Platform" display_name="Platform" default_selection="true">

In this example,

• iname represents the ShowBy Name mapping to the NLSID as defined in the DLF
file.

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-26

• display_name represents the UI display name if no data is found for iname in the DLF
file.

• default_selection. If this option is set to true, then it represents the default selected value
in the Show By drop down list.

<MasterTableData>
 <SqlQuery bindid="HOSTS_INV_MASTER_QUERY">
 <!-- Group by sql will replace %GROUP_BY_SQL% given in the main query -->
 <Group_By_Sql>
 select name , patched, sum(num_hosts) as num_hosts from
InvQuery %FILTERDRILLDOWNVALUES% group by name,patched order by name
 </Group_By_Sql>
 </SqlQuery>
 </MasterTableData>

In this example, %FILTERDRILLDOWNVALUES% is a place holder to dynamically add
slice and dice dimensions of different Show By choices shown as a breadcrumb while
drilling down to many levels by clicking the count bars in details page.

For example, if platform and version are the Show By choices defined, then the user
would drill down to view the versions of hosts by platform , such as Windows.
%FILTERDRILLDOWNVALUES% will be replaced by platform = 'Windows' dynamically in
the place holder of the group by SQL.

Target Context Query
The Target_Ctx query filters the data in the target context. For example, if the inventory
choice is applicable for the group home page, then the TARGET_NAME will be filled with
group target name and the TARGET_TYPE will be filled with group target type at run time
when it's shown in the group target home page.Within the target_ctx SQL query, use these
<In_Parameters> at the appropriate places to filter inside a group context page.

UIColumnMapping Tag
The UiColumnMapping tag maps the UI column name with the backend SQL column names.
It also tells if the column is visible or not.

<UiColumnMapping id="name" backend_column="name" isKey="true" visible="true"
uiColumn_nls_id="Platform"/>
.....

Date NLS format:

If the type option is specified as "date", then see the following example:

<UiColumnMapping id="collection_time" backend_column="collection_time" isKey="false"
visible="true" type="date" uiColumn_nls_id="hosts_collection_time"/>

The UI framework will format as per the National Language Support (NLS) locale.

DLF Files
DLF files provide the NLS source of the column names

For example:

<row>
 <col name="MESSAGE_ID">HOSTS</col>

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-27

 <col name="SUBSYSTEM">ECM_INV_METADATA</col>
 <col name="MESSAGE">Hosts</col>
 </row>

Note that the subsystem is ECM_INV_METADATA.

Sample Inventory Choice XML Metadata File
The following example provides a sample Inventory Choice XML metadata file.

Example: Inventory Choice XML

<?xml version="1.0" encoding="UTF-8" ?>
<InventoryChoice iname="SampleHostsInv" display_name="SampleHostsInv">

 <Applicable_Targettypes>
 <TargetType>all</TargetType>
 <TargetType>enterprise</TargetType>
 </Applicable_Targettypes>
 <MasterData>
 <Query id="HOSTS_INV_MASTER_QUERY">

 <Enterprise_Ctx>

 <Sql>
 With InvQuery AS (
 select
 name,
 base_version,
 vendor_name,
 count(*) as num_hosts ,
 decode(sum(num_patches) , 0 , ''No'',''Yes'') as
patched
 from
 (
 select os.name, os.name||'' ''||os.base_version as
base_version, os.vendor_name,host,
 (select
 count(*)
 from
 MGMT$OS_PATCH_SUMMARY patch
 where
 patch.host =os.host and
 patch.target_guid = os.target_guid
) as num_patches
 from
 MGMT$OS_SUMMARY os
)m

 group by name,base_version,vendor_name
)

 %GROUP_BY_SQL%
 </Sql>
 </Enterprise_Ctx>
 <!-- target context query -->
 <Target_Ctx>
 <Sql>
 With InvQuery AS (
 select
 name,

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-28

 base_version,
 vendor_name,
 count(*) as num_hosts ,
 decode(sum(num_patches) , 0 , ''No'',''Yes'') as patched
 from
 (
 select os.name, os.name||'' ''||os.base_version as base_version,
os.vendor_name,host,
 (select
 count(*)
 from
 MGMT$OS_PATCH_SUMMARY patch
 where
 patch.host =os.host and
 patch.target_guid = os.target_guid
) as num_patches
 from
 MGMT$OS_SUMMARY os
 where os.snapshot_guid in
 (

 SELECT /*+ ORDERED */ ps.snapshot_guid
 FROM
 (
 select
 unique t.host_name as hname
 FROM
 mgmt$targets t,
 (
 SELECT m.assoc_target_guid as mguid
 FROM
 mgmt$target_flat_members m,

 WHERE

 mem.AGGREGATE_TARGET_NAME = ? and
 mem.aggregate_target_type= ? and
 mem.member_target_type like ? and

) lt1
 WHERE
 lt1.mguid = t.target_guid
)lt,

)
)
 group by name, base_version, vendor_name
)
 %GROUP_BY_SQL%

 </Sql>
 <In_Parameters>
 <!--Aggregate target name in which the inv choice data to be shown
-->
 <Param position="1" type="TARGET_NAME"/>
<!-- Aggregate target type -->
 <Param position="2" type="TARGET_TYPE"/>
 <Param position="3" type="MEMBER_TARGET_TYPE"/>

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-29

 </In_Parameters>
 </Target_Ctx>
 </Query>

 </MasterData>

 <DetailsData>
 <Query id="HOSTS_DETAILS">

 <Enterprise_Ctx>

 <Sql>
SELECT
 hostname,
 hwname,
 name,
 base_version,
 update_level,
 address_length_in_bits,
 vendor_name,
 freq,
 mem,
 disk,
 cpu_count,
 distributor_version,
 physical_cpu_count,
 logical_cpu_count,
 last_collection_timestamp
 FROM
 (

 SELECT
 hostname,
 hwname,
 name,
 base_version,
 update_level,
 address_length_in_bits,
 vendor_name,
 freq,
 mem,
 disk,
 cpu_count,
 distributor_version,
 physical_cpu_count,
 logical_cpu_count,
 last_collection_timestamp
 FROM
 (
 SELECT
 o.target_name as hostname,
 system_config || '' '' || MA as hwname,
 o.name as name,
 o.name||'' ''||o.base_version as base_version,
 o.update_level,
 o.address_length_in_bits,
 o.vendor_name,
 hw.FREQ as freq,
 hw.MEM as mem,
 hw.DISK as disk,
 hw.CPU_COUNT ,

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-30

 o.DISTRIBUTOR_VERSION ,
 hw.physical_cpu_count,
 hw.logical_cpu_count,
 o.LAST_COLLECTION_TIMESTAMP
 FROM
 MGMT$OS_HW_SUMMARY hw , MGMT$OS_SUMMARY o
 WHERE
 hw.host_name = o.host and
 hw.target_guid = o.target_guid and
 hw.SNAPSHOT_GUID = o.SNAPSHOT_GUID
)
 %FILTER_SELECT_FOR_MASTERROWS%)
 %FILTERDRILLDOWNVALUES%
 </Sql>
 </Enterprise_Ctx>
 <!-- target context query -->
 <Target_Ctx>
 <Sql>
 SELECT
 hostname,
 hwname,
 name,
 base_version,
 update_level,
 address_length_in_bits,
 vendor_name,
 freq,
 mem,
 disk,
 cpu_count,
 distributor_version,
 physical_cpu_count,
 logical_cpu_count,
 last_collection_timestamp
 FROM
 (
 SELECT UNIQUE
 hostname,
 hwname,
 name,
 base_version,
 update_level,
 address_length_in_bits,
 vendor_name,
 freq,
 mem,
 disk,
 cpu_count,
 distributor_version,
 physical_cpu_count,
 logical_cpu_count,
 last_collection_timestamp
 FROM
 (
 --provide the target context query here for filtering in composite
target..
 ...

) hw_list %FILTER_SELECT_FOR_MASTERROWS% order by hostname)
 %FILTERDRILLDOWNVALUES%

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-31

 </Sql>
 <In_Parameters>
 <Param position="1" type="TARGET_NAME"/>
 <Param position="2" type="TARGET_TYPE"/>
 <Param position="3" type="MEMBER_TARGET_TYPE"/>
.....................
 </In_Parameters>
 </Target_Ctx>
 </Query>

 </DetailsData>

 <ShowByList>
 <ShowBy iname="Platform" display_name="PLATFORM" default_selection="true">
 <MasterTableData>
 <SqlQuery bindid="HOSTS_INV_MASTER_QUERY">

 <!-- Group by sql will replace %GROUP_BY_SQL% given in the main query -->
 <Group_By_Sql>
 select name , patched, sum(num_hosts) as num_hosts from
InvQuery %FILTERDRILLDOWNVALUES% group by name,patched order by name
 </Group_By_Sql>

 </SqlQuery>
 <UiColumnMapping id="Platform" backend_column="name" isKey="true"
visible="true" uiColumn_nls_id="Platform"/>

 <UiColumnMapping id="num_hosts" backend_column="num_hosts" isKey="false"
uiColumn_nls_id="Hosts" countColumn="true"/>
 <UiColumnMapping id="patched" backend_column="patched" isKey="false"
uiColumn_nls_id="Patched"/>

 </MasterTableData>
 <DetailsTableData>
 <SqlQuery bindid="HOSTS_DETAILS"/>
 <UiColumnMapping id="Host Name" backend_column="hostname"
isKey="true" visible="true" uiColumn_nls_id="Host Name"/>
 <UiColumnMapping id="Platform" backend_column="name" isKey="true"
visible="true" uiColumn_nls_id="Platform"/>
 <UiColumnMapping id="Version" backend_column="base_version" isKey="true"
visible="true" uiColumn_nls_id="Version"/>
 <UiColumnMapping id="Vendor" backend_column="vendor_name" isKey="true"
visible="true" uiColumn_nls_id="Vendor"/>
 <UiColumnMapping id="Hardware" backend_column="hwname" isKey="true"
visible="true" uiColumn_nls_id="Hardware"/>
 <UiColumnMapping id="Update Level" backend_column="update_level"
isKey="true" visible="true" uiColumn_nls_id="Update Level"/>

 </DetailsTableData>

 </ShowBy>
 <ShowBy iname="Version" display_name="VERSION" default_selection="false">
 <MasterTableData>

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-32

 <SqlQuery bindid="HOSTS_INV_MASTER_QUERY">

 <!-- Group by sql will replace %GROUP_BY_SQL% given in the main query -->
 <Group_By_Sql>
 select base_version , patched, sum(num_hosts) as num_hosts
from InvQuery %FILTERDRILLDOWNVALUES% group by base_version,patched order by
base_version
 </Group_By_Sql>

 </SqlQuery>

 <UiColumnMapping id="Version" backend_column="base_version" isKey="true"
visible="true" uiColumn_nls_id="Version"/>
 <UiColumnMapping id="num_hosts" backend_column="num_hosts" isKey="false"
uiColumn_nls_id="Hosts" countColumn="true"/>
 <UiColumnMapping id="patched" backend_column="patched" isKey="false"
uiColumn_nls_id="Patched"/>
 </MasterTableData>
 <DetailsTableData>
 <SqlQuery bindid="HOSTS_DETAILS"/>
 <UiColumnMapping id="Host Name" backend_column="hostname"
isKey="true" visible="true" uiColumn_nls_id="Host Name"/>
 <UiColumnMapping id="Platform" backend_column="name" isKey="true"
visible="true" uiColumn_nls_id="Platform"/>
 <UiColumnMapping id="Version" backend_column="base_version"
isKey="true" visible="true" uiColumn_nls_id="Version"/>
 <UiColumnMapping id="Vendor" backend_column="vendor_name" isKey="true"
visible="true" uiColumn_nls_id="Vendor"/>
 <UiColumnMapping id="Hardware" backend_column="hwname" isKey="true"
visible="true" uiColumn_nls_id="Hardware"/>
 <UiColumnMapping id="Update Level" backend_column="update_level"
isKey="true" visible="true" uiColumn_nls_id="Update Level"/>

 </DetailsTableData>

 </ShowBy>

 <ShowBy iname="Vendor" display_name="VENDOR" default_selection="false">
 <MasterTableData>
 <SqlQuery bindid="HOSTS_INV_MASTER_QUERY">

 <!-- Group by sql will replace %GROUP_BY_SQL% given in the main
query -->
 <Group_By_Sql>
 select vendor_name, patched, sum(num_hosts) as
num_hosts from InvQuery %FILTERDRILLDOWNVALUES% group by vendor_name,patched order by
vendor_name
 </Group_By_Sql>

 </SqlQuery>
 <UiColumnMapping id="Vendor" backend_column="vendor_name" isKey="true"
visible="true" uiColumn_nls_id="Vendor"/>

 <UiColumnMapping id="num_hosts" backend_column="num_hosts"
isKey="false" uiColumn_nls_id="Hosts" countColumn="true"/>
 <UiColumnMapping id="patched" backend_column="patched" isKey="false"
uiColumn_nls_id="Patched"/>

 </MasterTableData>
 <DetailsTableData>
 <SqlQuery bindid="HOSTS_DETAILS"/>

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-33

 <UiColumnMapping id="Host Name" backend_column="hostname"
isKey="true" visible="true" uiColumn_nls_id="Host Name"/>
 <UiColumnMapping id="Platform" backend_column="name"
isKey="true" visible="true" uiColumn_nls_id="Platform"/>
 <UiColumnMapping id="Version" backend_column="base_version"
isKey="true" visible="true" uiColumn_nls_id="Version"/>
 <UiColumnMapping id="Vendor" backend_column="vendor_name"
isKey="true" visible="true" uiColumn_nls_id="Vendor"/>
 <UiColumnMapping id="Hardware" backend_column="hwname"
isKey="true" visible="true" uiColumn_nls_id="Hardware"/>
 <UiColumnMapping id="Update Level"
backend_column="update_level" isKey="true" visible="true"
uiColumn_nls_id="Update Level"/>

 </DetailsTableData>

 </ShowBy>
 </ShowByList>
</InventoryChoice>

Chapter 7
Customizing the Inventory and Usage Region of the UI

7-34

8
Adding Job Types

By defining new job types, you can extend the utility and flexibility of the Enterprise Manager
job system. Adding new job types also enables you to enhance corrective actions. This
chapter assumes that you are already familiar with the Enterprise Manager job system.

For information about the Enterprise Manager job system, refer to the Oracle Enterprise
Manager Cloud Control Administrator's Guide.

This chapter includes the following topics:

• About Job Types

• Introducing New Job Types

• Specifying a New Job Type in XML

• Using Commands

• About Command Error Codes

• Executing Long-Running Commands at the Oracle Management Service

• Specifying Parameter Sources

• Specifying Credential Information

• Specifying Security Information

• Specifying Lock Information

• Suspending a Job or Step

• Restarting a Job

• Adding Job Types to the Job Activity and Job Library Pages

• Examples: Specifying Job Types in XML

• About Performance Issues

• Adding a Job Type to Enterprise Manager

Introduction to Adding Job Types
As a plug-in developer, you are responsible for the following steps with regard to adding job
types:

1. Defining Job Types

You define a job type by using an XML specification that defines the steps in a job, the
work (command) that each step performs, and the relationships between the steps.

For more information, see "About Job Types".

2. Executing long-running commands

The job system enables plug-in developers to write commands that perform their work at
the Management Service level.

8-1

For more information. see"Executing Long-Running Commands at the Oracle
Management Service".

3. Specifying parameter sources

By default, the job system expects plug-in developers to provide values for all job
parameters, either when the job is submitted or at execution time (by adding or
updating parameters dynamically).

For more information, see "Specifying Parameter Sources".

4. Specifying credential information

For more information, see "Specifying Credential Information".

5. Specifying security information

For more information, see "Specifying Security Information".

6. Specifying lock information

For more information, see"Specifying Lock Information".

7. Suspending a job or step

For more information, see "Suspending a Job or Step".

8. Restarting a job

For more information, see "Restarting a Job".

About Job Types
Enterprise Manager enables you to define jobs of different types that can be executed
using the Enterprise Manager job system, thereby extending the number and
complexity of the tasks you can automate.

By definition, a job type is a specific category of job that carries out a well-defined unit
of work. A job type is uniquely identified by a string. For example, OSCommand may
be a job type that runs a remote command. You define a job type by using an XML
specification that defines the steps in a job, the work (command) that each step
performs, and the relationships between the steps.

Table 8-1 shows some of the Enterprise Manager job types and functions.

Table 8-1 Example of Job Types

Job Type Purpose

Backup Backs up a database.

Backup Management Performs management functions such as crosschecks and deletions
on selected backup copies, backup sets, or files.

CloneHome Clones an Oracle home directory.

DBClone Clones an Oracle Database instance.

DBConfig Configures monitoring for database releases earlier than release 10g.

Export Exports database contents or objects within an Enterprise Manager
user's schemas and tables.

GatherStats Generates and modifies optimizer statistics.

OSCommand Runs an operating system command or script.

Chapter 8
About Job Types

8-2

Table 8-1 (Cont.) Example of Job Types

Job Type Purpose

HostComparison Compares the configurations of multiple hosts.

Import Imports the content of objects and tables.

Load Loads data from a non Oracle database into an Oracle Database.

Move Occupant Moves occupants of the SYSAUX tablespace to another tablespace.

Patch Patches an Oracle product.

Recovery Restores or recovers a database, tablespaces, data files, or archived
logs.

RefreshFromMetalink Allows Enterprise Manager to download patches and critical patch
advisory information from My Oracle Support (https://
support.oracle.com).

Reorganize Rebuilds fragmented database indexes or tables, moves objects to a
different tablespace, or optimizes the storage attributes of specified
objects.

Multi-Task Runs a composite job consisting of multiple tasks.

SQLScript Runs a SQL or PL/SQL script using SQL*Plus.

Introducing New Job Types
An Enterprise Manager job consists of a set of steps and each step runs a command or
script. The job type defines how the steps are assembled. For example, which steps run
serially, which ones execute in parallel, step order, and dependencies. You can express a job
type, the steps, and commands in XML (for more information, see "Specifying a New Job
Type in XML"). The job system then constructs an execution plan from the XML specification
that enables it to run the steps in the specified order.

Specifying a New Job Type in XML
A new job type is specified in XML. The job type specification provides the following
information to the job system:

• Steps that make up the job.

• Commands or scripts to run in each step.

• How steps relate to each other. For example, whether steps run in parallel or serially, or
whether one step depends on another step.

• User credentials to authenticate the job (typically, the owner of the job must provide
these). The job type author must also declare these credentials in the job type XML.

• How specific job parameters should be computed (optional).

• What locks, if any, a running job execution must attempt to acquire and what happens if
the locks are unavailable.

• What privileges users must have to submit a job.

The XML job type specification is then added to a metadata plug-in archive. After the
metadata plug-in is added to Enterprise Manager, the job system has enough information to
schedule the steps of the job, as well as what to run in each step.

Chapter 8
Introducing New Job Types

8-3

https://support.oracle.com
https://support.oracle.com

Understanding Job Type Categories
A job type can have one of the following categories depending on how it performs
tasks on the targets to which it is applied:

• Single-Node

A single-node job type is a job type that runs the same set of steps in parallel on
every target on which the job is run. Typically, the target list for these job types is
not fixed. They can take any number of targets. The following are examples of
single-node job types:

– OSCommand

Runs an OS command or script on all of its targets.

– SQL

Runs a specified SQL script on all of its targets.

• Multi-Node or Combination

A multi-node job type is a job type that performs different, possibly inter-related
tasks on multiple targets. Typically such job types operate on a fixed set of targets.
For example, a Clone job that clones an application schema might require two
targets, a source database and a target database.

Note:

You can use iterative stepsets for multi-node and combination job types
to repeat the same activity over multiple targets.

Using Agent-Bound Job Types
An Agent-bound job type is one whose jobs cannot be run unless the Management
Agent of one or more targets in the target list is functioning and responding. A job type
that fits this category must declare itself to be Agent-bound by setting the agentBound
attribute of the jobType XML tag to true.

If a job type is Agent-bound, then the job system does not schedule any executions if
one or more of the Management Agents corresponding to the targets in the target list
of the job execution are not responding. The job (and all its scheduled steps) is set to
a special state called Suspended/Agent down. The job is kept in this state until the
Enterprise Manager repository tier detects that the Management Agent has restarted.

At this point, the job and its steps are set to scheduled status again and the job can
execute. By declaring their job types to be Agent-bound, a job-type writer can ensure
that the job system will not schedule the job when it has detected that the
Management Agent is down.

Chapter 8
Specifying a New Job Type in XML

8-4

Note:

Single-node job types are Agent-bound by default while multi-node job types are
not.

If an Agent-bound job has multiple targets in its target list, then it is marked as Suspended
even if one of the Management Agents goes down.

An example of an Agent-bound job type is the OSCommand job type, which executes an
OSCommand using the Management Agent of a specified target. However, not all job types
are Agent-bound. For example, a job type that executes SQL in the Management Repository
is not Agent-bound.

Enterprise Manager has a heartbeat mechanism that enables the repository tier to quickly
determine when a remote Management Agent goes down. After a Management Agent is
marked as Down, all Agent-bound job executions that have this Management Agent in their
target list are marked Suspended/Agent Down. However, there is still a possibility that the job
system might try to dispatch some remote operations during the time the Management Agent
went down and when the Management Repository detects the fact. In cases when the
Management Agent cannot be contacted and the step executes, the step is set back to a
SCHEDULED state and is retried by the job system. The series of retries continues until the
heartbeat mechanism marks the node as down, at which point the job is suspended.

When a job is marked as Suspended/Agent Down, by default the job system keeps the job in
that state until the Management Agent restarts. However, there is a parameter called the
grace period which, if defined, can override this behavior. The grace period is the maximum
amount of time (in minutes) that a job's execution is allowed to start executing within. If the
job cannot start within this grace period, the job execution is skipped for that schedule.

The only way that a job execution in a Suspended/Agent Down state can resume, is for the
Management Agents to come back up. You cannot use the resume_execution() APIs to
resume the job.

About Job Steps
The unit of execution in a job is called a step. A step has a command, which determines what
work the step will be doing. Each command has a Java class, called a command executor,
that implements the command. A command also has a set of parameters, which will be
interpreted by the command executor.

The job system offers a fixed set of pre-built commands, such as:

• the remote operation command (which executes a command remotely). For more
information, see Using the remoteOp Command.

• the file transfer command that transfers a file between two Management Agents. For
more information, see Using the fileTransfer Command.

• a get file command that streams a log file produced on the Management Agent tier into
the Management Repository. For more information, see Using the getFile Command.

Steps are grouped into sets called stepsets. Stepsets can contain steps or other stepsets and
can be categorized into the following types:

• Serial Stepsets

Chapter 8
Specifying a New Job Type in XML

8-5

Serial stepsets are stepsets where the steps execute serially. Steps in a serial
stepset can have dependencies on their execution. For example, a job can specify
that step S2 executes only if step S1 completes successfully, or that step S3
executes only if S1 fails.

Steps in a serial stepset can have dependencies only on other steps or stepsets
within the same stepset. By default, a serial stepset is considered to complete
successfully if the last step in the stepset completed successfully. It is considered
to have failed if the last step in the stepset failed. You can override this behavior by
using the stepsetStatus attribute as long as the step is not a dependent on another
(no successOf/failureOf/abortOf attribute).

• Parallel Stepsets

Parallel stepsets are stepsets whose steps execute in parallel (execute
simultaneously). Steps in a parallel stepset cannot have dependencies. A parallel
stepset is considered to have succeeded if all the parallel steps have completed
successfully. It is considered to have failed if any step within it failed. By default, a
parallel stepset is considered to have failed if one or more of its constituent steps
failed, and no steps were aborted. You can override this behavior by using the
stepsetStatus attribute.

• Iterative Stepsets

Iterative stepsets are special stepsets that iterate over a vector parameter. The
target list of a job is available using special, implicit parameters named
job_target_names and job_target_types. An iterative stepset iterates over the
target list or vector parameter and essentially executes the stepset N times; once
for each value of the target list or vector parameter.

Iterative stepsets can execute in parallel (N stepset instances execute at
simultaneously), or serially (N stepset instances are scheduled serially, one after
another). An iterative stepset is said to have succeeded if all its N instances have
succeeded. Otherwise, it is said to have failed if at least one of the N stepsets
aborted. It is said to have failed if at least one of the N stepsets failed and none
were aborted. An abort always causes an iterative stepset to stop processing
further.

Steps within each iterative stepset instance execute serially and can have serial
dependencies similar to those within serial stepsets. Iterative serial stepsets have
an attribute called iterateHaltOnFailure (not applicable for iterativeParallel
stepsets). If this is set to true, the stepset halts at the first failed or aborted child
iteration. By default, all iterations of an iterative serial stepset execute, even if
some of them fail (iterateHaltOnFailure=false).

• Switch Stepsets

Switch stepsets are stepsets where only one of the steps in the stepset is
executed based on the value of a specified job parameter. A switch stepset
includes a switchVarName attribute, which is a job (scalar) parameter with a value
that is examined by the job system to determine which of the steps in the stepset
must be executed. Each step in a switch stepset has a switchCaseVal attribute,
which is one of the possible values of the parameter specified by switchVarName.

The step in the switch stepset that is executed is the one whose switchCaseVal
parameter value matches the value of the switchVarName parameter of the switch
stepset. Only the selected step in the switch stepset is executed. Steps in a switch
stepset cannot have dependencies with other steps or stepsets within the same
stepset or outside.

Chapter 8
Specifying a New Job Type in XML

8-6

By default, a switch stepset is considered to complete successfully if the selected step in
the stepset completed successfully. It is considered to have failed if the selected step in
the stepset failed. Also, a switch stepset succeeds if no step in the stepset was selected.

For example, if there is a switch stepset with two steps, S1 and S2 and you specify the
following:

– switchVarName is sendEmail

– switchCaseVal for S1 is true

– switchCaseVal for S2 is false

If the job is submitted with the job parameter sendEmail set to true, then S1 will be
executed. If the job is submitted with the job parameter sendEmail set to false, then S2
will be executed. If the value of sendEmail is anything else, the stepset still succeeds but
does nothing.

• Nested Jobs

One of the steps in a stepset might itself be a reference to another job type. A job type
can include other job types within itself. However, a job type cannot reference itself.

Nested jobs are a convenient way to reuse blocks of functionality. For example,
performing a database backup is a job with a complicated sequence of steps. However,
other job types (such as patch and clone) might use the backup facility as a nested job.
With nested jobs, the job type writer can choose to pass all the targets of the containing
job to the nested job, or only a subset of the targets. Also, the job type can specify
whether the containing job should pass all its parameters to the nested job or whether the
nested job has its own set of parameters (derived from the parent job's parameters).

The status of the individual steps and stepsets (and possibly other nested jobs) within the
nested job determines the status of a nested job.

Note:

If a nested job refers to a job type with singleTarget set to true, then you must
explicitly specify the target type applicable for the nested job, using the
targetType attribute of the nested job. Without this, the nested job picks those
targets that correspond to its job type's default target type only.

Affecting the Status of a Stepset
The default algorithm by which the status of a stepset is computed from the status of its steps
can be altered by the job type, using the stepsetStatus attribute of a stepset. By setting
stepsetStatus to the name (ID) of a step, stepset, or job contained within it, a stepset can
indicate that the status of the stepset depends on the status of the specific step, stepset, or
job named in the stepStatus attribute. This feature is useful if the author of a job type wants a
stepset to succeed, even if certain steps within it fail.

An example is a step that runs as the final step in a stepset in a job that sends e-mails about
the status of the job to a list of administrators. The status of the job must be set to the status
of the step (or steps) that performs the work, and not the status of the step that sent the e-
mail. Only steps that are unconditionally executed can be named in the stepsetStatus
attribute. A step, stepset, or job that is executed as a successOf or failureOf dependency
cannot be named in the stepsetStatus attribute.

Chapter 8
Specifying a New Job Type in XML

8-7

Passing Job Parameters
To pass the parameters of the job to steps, enclose the parameter name in a
placeholder (contained within two % symbols). For example, %patchNo% represents
the value of a parameter named patchNo. The job system substitutes the value of this
parameter when it is passed to the command executor of a step.

Placeholders can also be defined for vector parameters by using the [] notation. For
example, the first value of a vector parameter called patchList is referenced as
%patchList%[1], the second is %patchList%[2].

The job system provides a predefined set of placeholders that can be used. These are
always prefixed by job_. The following placeholders are provided:

• job_iterate_index

The index of the current value of the parameter in an iterative stepset, when
iterating over any vector parameter. The index refers to the closest enclosing
stepset only. In case of nested iterative stepsets, the outer iterate index cannot be
accessed.

• job_iterate_param

The name of the parameter being iterated over, in an iterative stepset.

• job_target_names[n]

The job target name at position n. For single-node jobs, the array would always be
only of size 1 and refer only to the current node the job is execution on, even if the
job was submitted against multiple nodes.

• job_target_types[n]

The type of the job target at position n. For single-node jobs, the array would
always only be of size one and refer only to the current node the job is executing
on, even if the job was submitted against multiple nodes.

• job_name

The name of the job.

• job_type

The type of the job.

• job_owner

The Enterprise Manager user that submitted the job.

• job_id

The job id. This is a string representing a globally unique identifier (GUID).

• job_execution_id

The execution id. This is a string representing a GUID.

• job_step_id

The step id. This is an integer.

In addition to the above placeholders, the following target-related placeholders are
also supported:

• emd_root: The location of the Management Agent installation

Chapter 8
Specifying a New Job Type in XML

8-8

• perlbin: The location of the (Enterprise Manager) Perl installation

• scriptsdir: The location of Management Agent-specific scripts

The above placeholders are not interpreted by the job system, but by the Management
Agent. For example, when %emd_root% is used in the remoteCommand or args parameters
of the remoteOp command, or in any of the file names in the putFile, getFile and
transferFile commands, the Management Agent substitutes the actual value of the
Management Agent root location for this placeholder.

About Job Step Output and Errors
A step consists of a status (indicates whether it succeeded, failed, or terminated), some
output (the log of the step), and an error message. If a step failed, the command executed by
the step could indicate the error in the error message column. By default, the standard output
and standard error of an asynchronous remote operation is set to the output of the step that
requested the remote operation.

A step can choose to insert error messages by using either:

• the getErrorWriter() method in CommandManager (synchronous)

• the insert_step_error_ message API in the mgmt_jobs package (typically, this is called by
a remotely executing script in a command channel)

Using Commands
This section describes available commands and associated parameters. Targets of any type
can be provided for the target names and target type parameters described in the following
sections. The job system automatically identifies and contacts the Management Agent that is
monitoring the specified targets.

Using the remoteOp Command
The remote operation command has the identifier remoteOp. The command accepts a
credential usage with name as defaultHostCred, which you must have to perform the
operation on the host of the target. The binding can be performed as follows:

<step ID="Step_2" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="osCreds"/>
 </credList>
 <paramList>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="remoteCommand">%remoteCommand%</param>
 <param name="args">%args%</param>
 <param name="executeSynchronous">false</param>
 </paramList>
</step>

defaultHostCred is the credential usage which is understood by the command. For example,
the Java code in the command makes a call for credentials with this string, whereas osCreds
is the credential usage declared in the job type at the top level.

The remote operation command takes the following parameters:

• remoteCommand: The path name to the executable/script (for example, /usr/local/bin/perl).

Chapter 8
Using Commands

8-9

• args: A comma-separated list of arguments to the remoteCommand.

• targetName: The name of the target on which the command is executed. You can
use placeholders to represent targets.

• targetType: The target type of the target on which the command is executed.

• executeSynchronous: This option defaults to false whereby a remote command
always executes asynchronously on the Management Agent and updates the
status of the step after the command is executed.

If this option is set to true, then the command executes synchronously, waiting
until the Management Agent completes the process. Typically, this parameter is
set to true for quick, short-lived remote operations, such as starting up a listener.
For remote operations that take a long time to execute, this parameter must be set
to false.

Note:

This parameter is set to false and you cannot override the setting.

• successStatus: A comma-separated list of integer values that determines the
success of the step. If the remote command returns any of these numbers as the
exit status, then the step is successful. The default is zero. These values are only
applicable when executeSynchronous is set to true.

• failureStatus: A comma-separated list of integer values that determines the
failure of the step. If the remote command returns any of these numbers as the
exit status, the step has failed. The default is all nonzero values. These values are
only applicable when executeSynchronous is set to true.

• input: If specified, this is passed as standard input to the remote program.

• outputType: Specifies the type of output the remote command generates. This
option can have two values:

– Normal (default)

Normal output is output that is stored in the log corresponding to this step and
is not interpreted in any way.

– Command

Command output is output that can contain one or more command blocks,
which are XML sequences that map to preregistered SQL procedure calls.
This option enables remote commands to generate command blocks that can
be directly loaded into schema in the Management Repository.

The standard output generated by the executed command is stored by the job system
as the output corresponding to this step.

Using Auxiliary Credentials
In some cases, it might be necessary to pass on additional credentials for a remote
operation. These credentials are called auxiliary credentials because they are used in
addition to the host credentials required to connect to the Management Agent where
the remote operation must be spawned.

Chapter 8
Using Commands

8-10

The processing of auxiliary credentials depends on the process that is spawned at the
Management Agent. The job system provides a mechanism to extract the column values of a
credential into variables that can be used for substitution within the input parameter of the
remote operation command (remoteOp).

To use this option, you must define the auxiliary credential usage in the job type and the
credential type for which it should be appropriately set.

To consume the credential within a remote operation, use the following:

 <step ID="Command" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="defaultHostCred"/>
 <cred usage="defaultDBCred" reference="defaultDBCred">
 <map toParam="db_username" credColumn="DBUserName"/>
 <map toParam="db_password" credColumn="DBPassword"/>
 <map toParam="db_role" credColumn="DBRole"/>
 </cred>
 </credList>
 <paramList>
 <param name="remoteCommand">%perlbin%/perl</param>
 <param name="args">-I,%emd_root%/sysman/admin/scripts/jobutil,mylocation/
runSQL.pl,%OracleHome%, %SID%, %sqlplus_args%</param>
 <param name="input"><![CDATA[
 __EM_JOB_SQL_USER__=%db_username%
 __EM_JOB_SQL_PASSWORD__=%db_password%
 __EM_JOB_SQL_DBROLE__=%db_role%
 __EM_JOB_INPUT_STREAM_END__
]]>
 </param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 </paramList>
 </step>

Using the fileTransfer Command
The fileTransfer command transfers a file from one Management Agent to another. It can
also execute a command on the source Management Agent and transfer its standard output
as a file to the destination Management Agent or as standard input to a command on the
destination Management Agent. The fileTransfer command is always asynchronous and it
takes the following parameters:

<step ID="S1" command="fileTransfer">
 <credList>
 <cred usage="srcReadCreds" reference="mySourceReadCreds"/>
 <cred usage="dstWriteCreds" reference="myDestWriteCreds"/>
 </credList>
 <paramList>
 <param name="sourceTargetName">%job_target_names%[1]</param>
 <param name="sourceTargetType">%job_target_types%[1]</param>
 <param name="destTargetName">%job_target_names%[2]</param>
 <param name="destTargetType">%job_target_types%[2]</param>
 <param name="sourceFile">%sourceFile%</param>
 <param name="sourceCommand">%sourceCommand%</param>
 <param name="sourceArgs">%sourceArgs%</param>
 <param name="sourceInput">%sourceInput%</param>
 <param name="destFile">%destFile%</param>
 <param name="destCommand">%destCommand%</param>

Chapter 8
Using Commands

8-11

 <param name="destArgs">%destArgs%</param>
 </paramList>
</step>

The following command uses two credentials. The srcReadCreds credential is used to
read the file from the source and the dstWriteCreds credential is used to write the file
to the destination. The binding can be performed as follows:

<step ID="S1" command="fileTransfer">
 <credList>
 <cred usage="srcReadCreds" reference="mySourceReadCreds"/>
 <cred usage="dstWriteCreds" reference="myDestWriteCreds"/>
 </credList>
 <paramList>
 <param name="sourceTargetName">%job_target_names%[1]</param>
 <param name="sourceTargetType">%job_target_types%[1]</param>
 <param name="destTargetName">%job_target_names%[2]</param>
 <param name="destTargetType">%job_target_types%[2]</param>
 <param name="sourceFile">%sourceFile%</param>
 <param name="sourceCommand">%sourceCommand%</param>
 <param name="sourceArgs">%sourceArgs%</param>
 <param name="sourceInput">%sourceInput%</param>
 <param name="destFile">%destFile%</param>
 <param name="destCommand">%destCommand%</param>
 <param name="destArgs">%destArgs%</param>
 </paramList>
</step>

• sourceTargetName: The target name corresponding to the source Management
Agent.

• destTargetName: The target name corresponding to the destination Management
Agent.

• destTargetType: The target type corresponding to the destination Management
Agent.

• sourceFile: The file to be transferred from the source Management Agent.

• sourceCommand: The command to be executed on the source Management Agent.
If this is specified, then the standard output of this command is streamed to the
destination Management Agent. Both sourceFile and sourceCommand parameters
cannot be specified.

• sourceArgs: A comma-separated set of command-line parameters for the
sourceCommand.

• destFile: The location or file name of where the file is to be stored on the
destination Management Agent.

• destCommand: The command to be executed on the destination Management
Agent. If this is specified, then the stream generated from the source Management
Agent (whether from a file or a command) is sent to the standard input of this
command. You cannot specify both destFile and destCommand parameters.

• destArgs: A comma-separated set of command-line parameters for the
destCommand.

The fileTransfer command succeeds (and returns a status code of 0) if the file was
successfully transferred between the Management Agents. If there was an error, it
returns error codes appropriate to the reason for failure.

Chapter 8
Using Commands

8-12

About the putFile Command
The putFile command enables you to transfer large amounts of data from the Management
Repository to a file on the Management Agent. The transferred data can come from a Binary
Large Objects (BLOB) in the Management Repository, a file on the file system, or embedded
in the specification (inline).

If a file is being transferred, the location of the file must be accessible from the Management
Repository installation. If a BLOB in a Management Repository is being transferred, then it
must be in a table in the Management Repository that is accessible to the Management
Repository schema user (typically mgmt_rep).

The command accepts a credential usage with name as defaultHostCred. You must have
these credentials to write the file at the host of the target. The binding can be performed as
follows:

<step ID="S1" command="putFile">
 <credList>
 <cred usage="defaultHostCred" reference="osCreds"/>
 </credList>
 <paramList>
 <param name="sourceType">file</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="sourceFile">%oms_root%/myfile</param>
 <param name="destFile">%emd_root%/yourfle</param>
 </paramList>
</step>

The putFile command requires the following parameters:

• sourceType: The type of the source data. This can be SQL, file, or inline.

• targetName: The name of the target where the file is to be transferred (destination
Management Agent).

• targetType: The type of the destination target.

• sourceFile: The file to be transferred from the Management Repository (if sourceType is
set to fileSystem). This must be a file that is accessible to the Management Repository
installation.

• sqlType: The type of SQL data (if the sourceType is set to sql). Valid values are CLOB
and BLOB.

• accessSql: A SQL statement that is used to retrieve the BLOB data (if the sourceType is
set to sql). For example, " select output from my_output_table where
blob_id=%blobid%".

• destFile: The location or file name of where the file is to be stored on the destination
Management Agent.

• contents: If the sourceType is set to "inline", this parameter contains the contents of the
file. Note that the text can include placeholders for parameters in the form %param%.

The putFile command succeeds if the file was transferred successfully and the status code
is set to 0. On failure, the status code is set to an integer indicating the reason for failure.

Chapter 8
Using Commands

8-13

Using the getFile Command
The getFile command transfers a file from a Management Agent to the Management
Repository. The file is stored as the output of the step that executed this command.

The command accepts a credential usage with the name as defaultHostCred, which
you must have to read the file at the host of the target. The binding can be performed
as follows:

<step ID="S1" command="getFile">
 <credList>
 <cred usage="defaultHostCred" reference="osCreds"/>
 </credList>
 <paramList>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="sourceFile">%sourceFile%</param>
 <param name="destType">%destType%</param>
 <param name="destFile">%destFile%</param>
 <param name="destParam">%destParam%</param>
 </paramList>
</step>

The getFile command has the following parameters:

• sourceFile: The location of the file to be transferred to the Management Agent.

• targetName: The name of the target where the Management Agent will be
contacted to get the file.

• targetType: The type of the target.

The getFile command succeeds if the file was transferred successfully and the status
code is set to 0. On failure, the status code is set to an integer indicating the reason for
failure.

Using the execAndSuspend Command
The execAndSuspend command is similar to the remoteOp command but it is used for
executing a host process that restarts the Management Agent. Typically, use this
command in scenarios that update Management Agent binaries or configuration and
require a restart of the Management Agent. The command “posts" the Agent-based
operation to the Management Agent and switches its status to “success" immediately
while the subsequent step moves into a suspended status waiting for the “startup"
notification from the Management Agent.

It is important to follow these restrictions and guidelines:

• The command executed at the Management Agent must not produce any standard
output or errors. Such output, if any, must be redirected to a file or to null as part of
the submitted operation. Failure to do this could cause the command to fail.

• The job type must contain a step immediately after a step that runs the
execAndSuspend command. This successor step checks the success of the
operation that was submitted as part of the execAndSuspend step. Because the
Agent-based operation might have failed, the successor step must avoid using

Chapter 8
Using Commands

8-14

remoteOp and rely on direct Agent-based Java calls to check the status of the operation.

Most of the arguments to this command are similar to the remoteOp command. This
command accepts a credential usage with name as defaultHostCred, which you must have
to perform the operation on the host of the target. The binding can be performed as follows:

<step ID="Ta_S1_suspend" command="execAndSuspend">
 <credList>
 <cred usage="defaultHostCred" reference="osCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">%command%</param>
 <param name="args">%args%</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="suspendTimeout">2</param>
 </paramList>
</step>

The execAndSuspend command has the following parameters:

• remoteCommand: The path name to the executable or script, such as /usr/local/bin/perl.

• args: A comma-separated list of arguments to the remoteCommand

• targetName: The name of the target on which the command is executed. You can use
placeholders to represent targets

• targetType: The target type of the target on which the command is executed.

• input: If specified, this is passed as standard input to the remote program.

• suspendTimeout: The duration, in minutes, to wait for the notification of the Management
Agent's startup. If the notification is not received within this time, the execution resumes
and the successor step is executed. (The successor step is also executed if the
Management Agent's startup notification is received, so the successor step must
determine whether it timed out or completed successfully).

Here defaultHostCred is the credential usage which is understood by the command. For
example, the Java code in the command would make a call for credential with this string,
whereas the osCreds is the credential usage declared in the job type at the top level.

About Command Error Codes
The remoteOp, putFile, fileTransfer and getFile commands return the error codes listed
in Table 8-2. In the following messages, "command process" refers to a process that the
Management Agent executes that actually executes the specified remote command and
grabs the standard output and standard error of the executed command.

On a UNIX installation, this process is called nmo and is located in $EMD_ROOT/bin. It must
be SETUID to root before it can be used successfully. This does not pose a security risk
because nmo will not execute any command unless it has a valid username and password.

Table 8-2 Command Error Codes

Error Code Description

0 No error.

Chapter 8
About Command Error Codes

8-15

Table 8-2 (Cont.) Command Error Codes

Error Code Description

1 Could not initialize core module. Most likely, something is wrong with the installation
or environment of the Agent.

2 The Agent ran out of memory.

3 The Agent could not read information from its input stream.

4 The size of the input parameters was too large for the Agent to handle.

5 The command process was not setuid to root. (Every UNIX Agent installation has an
executable called nmo, which must be setuid root).

6 The specified user does not exist on this system.

7 The password was incorrect.

8 Could not run as the specified user.

9 Failed to fork the command process (nmo).

10 Failed to execute the specified process.

11 Could not obtain the exit status of the launched process.

12 The command process was interrupted before exit.

13 Failed to redirect the standard error stream to standard output.

Executing Long-Running Commands at the Oracle
Management Service

The job system enables plug-in developers to write commands that perform their work
at the Management Service level. For example, a command that reads two Large
Objects (LOBs) from the database and performs various transformations on them and
writes them back. The job system expects such commands to implement an (empty)
interface called LongRunningCommand, which is an indication that the command
executes synchronously on the middle tier, and could potentially execute for a long
time. This enables a component of the job system called the dispatcher to schedule
the long-running command as efficiently as possible, so as not to degrade the
throughput of the system.

Configuring the Job Dispatcher to Handle Long-Running Commands
The dispatcher is a component of the job system that executes the various steps of a
job when they are ready to execute. The command class associated with each step is
called and any asynchronous operations requested by it are dispatched; a process
referred to as dispatching a step. The dispatcher uses thread-pools to execute steps.
A thread-pool is a collection of a specified number of worker threads, any one of which
can dispatch a step.

The job system dispatcher uses two thread-pools:

• a short-command pool for dispatching asynchronous steps and short synchronous
steps

• a long-command pool for dispatching steps that have long-running commands

Chapter 8
Executing Long-Running Commands at the Oracle Management Service

8-16

Typically, the short-command pool has a larger number of threads (for example, 25)
compared to the long-running pool (for example, 10).

Usually the long-running middle-tier steps are few compared to more numerous, short-
running commands. However, the sizes of the two pools are fully configurable in the
dispatcher to suit the job mix at a particular site. Because multiple dispatchers can run on
different nodes, the site administrator can dedicate a dispatcher to only dispatch long-running
or short-running steps.

Specifying Parameter Sources
By default, the job system expects plug-in developers to provide values for all job
parameters, either when the job is submitted or at execution time (by adding or updating
parameters dynamically). Typically, an application supplies these parameters in one of the
following ways:

• Asking the user of the application at the time of submitting the job.

• Fetching parameter values from application-specific data (such as a table) and then
inserting them into the job parameter list.

• Generating new parameters dynamically through the command blocks in the output of a
remote command. These could be used by subsequent steps.

The job system offers the concept of parameter sources so that plug-in developers can
simplify the amount of application-specific code they have to write to fetch and populate job
or step parameters (such as the second category above). A parameter source is a
mechanism that the job system uses to fetch a set of parameters, either when a job is
submitted or when it is about to start executing.

The job system supports SQL (a PL/SQL procedure to fetch a set of parameters), credential
(retrieval of username and password information from the Enterprise Manager credentials
table) and user sources. Plug-in developers can use these pre-built sources to fetch a wide
variety of parameters. When the job system has been configured to fetch one or more
parameters using a parameter source, you do not have to specify the parameters in the
parameter list to the job when a job is submitted. The job system automatically fetches the
parameters and adds them to the parameter list of the job.

A job type can embed information about the parameters that must be fetched by having an
optional paramInfo section in the XML specification. The following example provides a
snippet of a job type that executes a SQL query on an application-specific table to fetch three
parameters, a, b, and c.

<jobType version="1.0" name="OSCommand" >
<paramInfo>
 <!-- Set of scalar params -->
 <paramSource paramNames="a,b,c" sourceType="sql" overrideUser="true">
 select name, value from name_value_pair_table where
 name in ('a', 'b', 'c');
 </paramSource>
</paramInfo>
.... description of job type follows
</jobType>

In the previous example, the paramInfo section contains the following elements:

• paramSource: Each paramSource tag references a parameter source that can be used to
fetch one or more parameters.

Chapter 8
Specifying Parameter Sources

8-17

• paramNames: The paramNames attribute is a comma-separated set of parameter
names that the parameter source is expected to fetch.

• sourceType: The sourceType attribute indicates the source that will be used to
fetch the parameters (one of sql, credential or user)

• overrideUser: The overrideUser attribute, if set to true, indicates that this
parameter-fetching mechanism will always be used to fetch the value of the
parameters, even if the parameter was specified by the user (or application) at the
time the job was submitted. The default for the overrideUser attribute is false,
indicating that the parameter source mechanism will be disabled if the parameter
was already specified when the job was submitted.

You can add additional source-specific properties to a parameter source that
describes the fetching mechanism in greater detail. Understanding SQLParameter
Source provides more information.

• evaluateOnRetry: The evaluateOnRetry attribute is an optional attribute,
applicable for all. The default setting is false for all, except credentials (credentials
ignores the value set and forces true). It indicates whether the parameter source
must be run again when a failed execution of this job type is retried.

Understanding SQLParameter Source
The SQL parameter source enables plug-in developers to specify a SQL query or a
PL/SQL procedure that fetches a set of parameters.

Using a PL/SQL Procedure to Fetch Scalar and Vector Parameters
The job type XML syntax is as follows:

 <paramSource sourceType="sql" paramNames="param1, param2, ...">
 <sourceParam name="procName" value="MyPackage.MyPLSQLProc"/>
 <sourceParam name="procParams" value="%a%, %b%[1], ..."/>
 </paramSource>

The values specified in paramNames are the names of the parameters that are
expected to be returned by the PL/SQL procedure specified in procName. The values in
procParams specify the list of values to be passed to the PL/SQL procedure.

PL/SQL Procedure Definition

The definition of the PL/SQL procedure must adhere to the following guidelines:

• The PL/SQL procedure must be accessible from the SYSMAN schema

• The PL/SQL procedure must have the following signature:

 PROCEDURE MySQLProc(p_param_names MGMT_JOB_VECTOR_PARAMS,
 p_proc_params MGMT_JOB_VECTOR_PARAMS,
 p_param_list OUT MGMT_JOB_PARAM_LIST)

The list of parameters specified in paramNames are passed as p_param_names to
the procedure.

The comma-separated list of values specified in procParams allows you to pass a
list of scalar (string/VARCHAR2) values as parameters to the procedure. These
values are substituted with job parameter references (if used), bundled into an

Chapter 8
Specifying Parameter Sources

8-18

array (in the order specified in the XML) and passed to the PL/SQL procedure as the
second parameter (p_proc_params).

The third parameter is an OUT parameter that contains the list of parameters fetched by
the procedure. The names of the parameters returned by this OUT parameter must
match the names specified in p_param_names.

Note:

Although this check is not currently enforced, Oracle recommends strongly that
you ensure that the names of the parameters returned by p_param_list
matches or is a subset of the list of parameter names passed in p_param_names.

Example

The following SQL parameter source creates a parameter named db_role_suffix based on an
existing parameter named db_role. It also preserves the type (scalar/vector) of the original
parameter and therefore looks up the parameter from the internal tables rather than have its
value passed (db_role is passed as a literal rather than as a substituted value). The values of
job_id and job_execution_id are passed substituted.

 <paramSource sourceType="sql" paramNames="db_role_suffix">
 <sourceParam name="procName" value="MGMT_JOB_FUNCTIONS.get_dbrole_
 prefix"/>
 <sourceParam name="procParams" value="%job_id%, %job_execution_id%, db_
 role"/>
 </paramSource>

Within the PL/SQL procedure MGMT_JOB_FUNCTIONS.get_dbrole_prefix, the
p_proc_params list contains the values corresponding to the job_id at index 1 and the
execution_id at index 2, while the element at index 3 corresponds to the literal text db_role.

Available SQL Paramsource Procedures

The Job System team provided the following PL/SQL procedures for use in job types across
Enterprise Manager:

• is_null

Checks whether the passed job variable is null. A missing variable is also considered
null. For each variable passed, the procedure creates a corresponding variable with the
scalar value true if the passed variable is non-existent or null. For all other cases, the
scalar value false is set. A vector of zero elements is considered non-null.

Example:

 <paramSource sourceType="sql" paramNames="a_is_null, b_is_null, c_is_null">
 <sourceParam name="procName" value="MGMT_JOB_FUNCTIONS.is_null"/>
 <sourceParam name="procParams" value="%job_id%, %job_execution_id%, a, b,
 c"/>
 </paramSource>

In this example, the job variables a, b, and c are checked for null values and the variables
a_is_null, b_is_null, and c_is_null are assigned the values of true or false
correspondingly.

• add_dbrole_prefix

Chapter 8
Specifying Parameter Sources

8-19

For every variable passed, the procedure prefixes the string AS if the value is not
null or Normal (case-insensitive), otherwise it returns null. Therefore, a variable
with value SYSDBA results in a value of AS SYSDBA, but a value of Normal
returns null. If the passed variable corresponds to a vector, the same logic is
applied to each individual element of the vector. This is useful while using DB
credentials to connect to a SQL*Plus session.

Example:

 <paramSource sourceType="sql" paramNames="db_role_suffix1, db_role_
 suffix2">
 <sourceParam name="procName" value="MGMT_JOB_FUNCTIONS.get_dbrole_
 prefix"/>
 <sourceParam name="procParams" value="%job_id%, %job_execution_id%,
db_
 role1, db_role2"/>
 </paramSource>

Here, the values of the variables db_role1 and db_role2 are prefixed with AS as
necessary and saved into variables db_role_suffix1 and db_role_suffix2
respectively.

About the User Parameter Source
The job system also offers a special parameter source called "user", which indicates
that a set of parameters must be supplied when a job of that type is submitted. If a
parameter is declared to be of source "user" and the "required" attribute is set to "true",
then the job system validates that all specified parameters in the source are provided
when a job is submitted.

The user source can be evaluated at job submission time or job execution time. When
evaluated at submission time, it causes an exception to be thrown if any required
parameters are missing. When evaluated at execution time, it causes the execution to
fail or stop if there are any missing required parameters.

<paramInfo>
 <!-- Indicate that parameters a, b and c are required params -->
 <paramSource paramNames="a, b, c" required="true" sourceType="user" />
</paramInfo>

The user source can also be used to indicate that a pair of parameters are target
parameters. For example:

<paramInfo>
 <!-- Indicate that parameters a, b, c, d, e, f are target params -->
 <paramSource paramNames="a, b, c, d, e, f" sourceType="user" >
 <sourceParam name="targetNameParams" value="a, b, c" />
 <sourceParam name="targetTypeParams" value="d, e, f" />
 </paramSource>
</paramInfo>

This example indicates that parameters (a,d), (b,e), (c,f) are parameters that hold
target information. Parameter "a" holds target names and "d" holds the corresponding
target types. Similarly with parameters "b" and "e", and "c" and "f". For each parameter
that holds target names, there must be a corresponding parameter that holds target
types. The parameters can be either scalar or vector.

Chapter 8
Specifying Parameter Sources

8-20

About the Inline Parameter Source
The inline parameter source allows job types to define parameters in terms of other
parameters. It is a convenient mechanism to construct parameters that can be reused in
other parts of the job type. The following example creates a parameter called filename based
on the job execution id, for use in other parts of the job type.

<jobType>
 <paramInfo>
 <!-- Indicate that value for parameter filename is provided inline -->
 <paramSource paramNames="fileName" sourceType="inline" >
 <sourceParam name="paramValues" value="%job_execution_id%.log" />
 </paramSource>
 </paramInfo>
.....
 <stepset ID="main" type="serial">
 <step command="putFile" ID="S1">
 ...
 <param name="destFile">%fileName%</param>
 ...
 </step>
 </stepset>
</jobType>

The following example sets a vector parameter called vparam to be a vector of the values v1,
v2, v3, and v4. Only one vector parameter at a time can be set using the inline source.

<jobType>
 <paramInfo>
 <!-- Indicate that value for parameter vparam is provided inline -->
 <paramSource paramNames="vparam" sourceType="inline" >
 <sourceParam name="paramValues" value="v1,v2,v3,v4" />
 <sourceParam name="vectorParams" value="vparam" />
 </paramSource>
 </paramInfo>
....

Using the checkValue Parameter Source
The checkValue parameter source enables job types to have the job system check that a
specified set of parameters has a specified set of values. If a parameter does not have the
specified value, then the job system either terminates or suspends the job.

<paramInfo>
 <!-- Check that the parameter halt has the value true. If not, suspend the job
-->
 <paramSource paramNames="halt" sourceType="checkValue" >
 sourceParam name="paramValues" value="true" />
 <sourceParam name="action" value="suspend" />
 </paramSource>
</paramInfo>

The following example checks whether a vector parameter v has the values v1,v2,v3, and v4.
Only one vector parameter at a time can be specified in a checkValue parameter source. If
the vector parameter does not have those values, in that order, then the job is terminated.

<paramInfo>
 <!-- Check that the parameter halt has the value true. If not, suspend the job -->

Chapter 8
Specifying Parameter Sources

8-21

 <paramSource paramNames="v" sourceType="checkValue" >
 <sourceParam name="paramValues" value="v1,v2,v3,v4" />
 <sourceParam name="action" value="abort" />
 <sourceParam name="vectorParams" value="v" />
 </paramSource>
</paramInfo>

About the properties Parameter Source
The properties parameter source fetches a named set of target properties for each of
a specified set of targets and stores each set of property values in a vector parameter.

The following example fetches the properties "OracleHome" and "OracleSID" for the
specified set of targets (dlsun966 and ap952sun) into the vector parameters ohomes
and osids, respectively. The first vector value in the ohomes parameter will contain the
OracleHome property for dlsun966, and the second will contain the OracleHome
property for ap952sun. Likewise with the OracleSID property.

<paramInfo>
 <!-- Fetch the OracleHome and OracleSID property into the vector params
ohmes, osids -->
 <paramSource paramNames="ohomes,osids" overrideUser="true"
sourceType="properties">
 <sourceParams>
 <sourceParam name="propertyNames" value="OracleHome,OracleSID" />
 <sourceParam name="targetNames" value="dlsun966,ap952sun" />
 <sourceParam name="targetTypes" value="host,host" />
 </sourceParams>
 </paramSource>
</paramInfo>

As with the credentials source, vector parameter names can be provided for the target
names and types.

<paramInfo>
 <!-- Fetch the OracleHome and OracleSID property into the vector params
ohmes, osids -->
 <paramSource paramNames="ohomes,osids" overrideUser="true"
sourceType="properties">
 <sourceParams>
 <sourceParam name="propertyNames" value="OracleHome,OracleSID" />
 <sourceParam name="targetNamesParam" value="job_target_names" />
 <sourceParam name="targetTypes" value="job_target_types" />
 </sourceParams>
 </paramSource>
</paramInfo>

Understanding Parameter Sources and Parameter Substitution
Parameter sources are applied in the order they are specified. Parameter substitution
(of the form %param%) can be used inside sourceParam tags, but the substituted
parameter must exist when the parameter source is evaluated. Otherwise, the job
system substitutes an empty string in its place.

Chapter 8
Specifying Parameter Sources

8-22

About Parameter Encryption
The job system offers the facility of storing specified parameters in encrypted form.
Parameters that contain sensitive information, such as passwords, must be stored in
encrypted form. A job type can indicate that parameters fetched through a parameter source
be encrypted by setting the encrypted attribute to true in a parameter source.

For example:

<paramInfo>
 <!-- Fetch params from the credentials table into vector parameters; store them
encrypted -->
 <paramSource paramNames="vec_usernames,vec_passwords" overrideUser="true"
 sourceType="credentials" encrypted="true">
 <sourceParams>
 <sourceParam name="credentialType" value="patch" />
 <sourceParam name="credentialColumns"
value="node_username,node_password" />
 <sourceParam name="targetNames" value="dlsun966,ap952sun" />
 <sourceParam name="targetTypes" value="host,host" />
 <sourceParam name="credentialScope" value="system" />
 </sourceParams>
 </paramSource>
</paramInfo>

A job type can also specify that parameters supplied by the user be stored in encrypted form:

<paramInfo>
 <!-- Indicate that parameters a, b and c are required params -->
 <paramSource paramNames="a, b, c" required="true" sourceType="user"
encrypted="true" />
</paramInfo>

Specifying Credential Information
Until Oracle Enterprise 11g release 1, credentials were represented as two parameters, (user
name and password). The job type owner can either have a credential parameter source to
extract these parameters or define these as user parameters, and then pass on the
parameters to the various steps that require the parameters.

This required knowledge about the credential set, credential types, and their columns, along
with knowledge about various authentication mechanisms, must be supported by the job
type, irrespective of the pool of authentication schemes that could be supported by the
Enterprise Manager. This restricted the freedom of the job type owner to model just the job
type and ignore the authentication required to perform the operations. To overcome these
issues and to evolve a unified mechanism in the job type to specify the credentials, Oracle
introduced a new concept called credential usage.

About Credential Usage
A credential usage is the point where the credential is required to perform an operation.
Credential submissions must be made against these usages only.

Chapter 8
Specifying Credential Information

8-23

Overview of Credential Binding
A credential binding is a reference of a credential by a step. Each step exposes its
credential usage which must be fulfilled in the metadata. Therefore, each credential
binding refers to a reference credential usage that is defined in the credential usage
section of the metadata. When the step requests its own credential usage, a binding
helps resolve which credential submission in a particular automation entity (Job or DP
instance) must be passed to that step.

In earlier releases, the job types had a credential parameter source to extract the user
name and password from the credentials (JobCredRecord) passed to the job and then
these were available as parameters to the entire job type. This behavior is deprecated
with no support and is superseded by the new credential usage structure.

The following Job type example shows the use of credentials declaration in the job
type:

<jobType version="1.0" name="OSCommandNG"
 singleTarget="true" targetTypes="all"
 defaultTargetType="host" editable="true"
 restartable="true" suspendable="true" >
 <credentials>
 <credential usage="hostCreds" authTargetType="host"
 defaultCredentialSet="HostCredsNormal"/>
 </credentials>
 <paramInfo>
 <paramSource sourceType="user" paramNames="command"
 required="true" evaluateAtSubmission="true" />
 <paramSource sourceType="inline"
 paramNames="TargetName,TargetType"
 overrideUser="true"
 evaluateAtSubmission="true">
 <sourceParam name="paramValues"
 value="%job_target_names%[1],
 %job_target_types%[1]" />
 </paramSource>
 <paramSource sourceType="properties"
 overrideUser="true"
 evaluateAtSubmission="false" >
 <sourceParam name="targetNamesParam"
 value="job_target_names" />
 <sourceParam name="targetTypesParam"
 value="job_target_types" />
 </paramSource>
 <paramSource sourceType="substValues"
 paramNames="host_command,host_args,os_script"
 overrideUser="true" evaluateAtSubmission="false">
 <sourceParam name="sourceParams"
 value="command,args,os_script" />
 </paramSource>
 </paramInfo>
 <stepset ID="main" type="serial" >
 <step ID="Command" command="sampleRemoteOp">
 <credList>
 <cred usage="OS_CRED" reference="hostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">%host_command%</param>
 <param name="args">%host_args%</param>

Chapter 8
Specifying Credential Information

8-24

 <param name="input"><![CDATA[%os_script%]]></param>
 <param name="largeInputParam">large_os_script</param>
 <param name="substituteLargeParam">true</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="executeSynchronous">false</param>
 </paramList>
 </step>
 </stepset>
</jobType>

The first set of three lines declares a credential usage in the job type. The next set of lines
binds the credential usage to that of the step. The user name and password cannot be
extracted by the jobs system and therefore can no longer be exposed as parameters.

XSD Elements – Credential Usage and Credential Binding
The XSD element credential usage and credentials binding are explained in Table 8-3 and
Table 8-4.

Table 8-3 Credential Usage (credential)

Attribute Required (Y/N) Description

usage Y Name of the credential through which it will be
referred in the job type. All credential
submissions are to be made for this name.

authTargetType Y Target type against which authentication is to be
performed for any operation. For example,
running “ls" any target means authentication
against the host.

defaultCredentialSet Y Name of the credential set to be picked up as a
credential if no submissions are found for the
credential usage when required.

credentialTypes N Name of the credential types which can only be
used for specifying the credentials. This is to
facilitate filtering of credentials in the credential
selector UI component.

displayName N Name that is intended to be shown in the
credential selector UI.

description N Description that is intended to be shown in the
credential selector UI.

Table 8-4 Credential Binding (cred)

Attribute / sub element Required (Y/N) Description

usage Y Credential usage understood by the step.

reference Y Credential usage referred to and present in the
declarations of the job type or DP metadata.

Chapter 8
Specifying Credential Information

8-25

Note:

The Credential Binding element can only be used inside the step or job
elements in the job type XML.

Specifying Security Information
Typically, a job type tends to perform actions that can be considered to be "privileged".
For example, patching a production database or affecting the software installed in an
Oracle home directory or the APPL_TOP directory. Such job types must be submitted
by Enterprise Manager users that have the appropriate level of privileges to perform
these actions.

The job system provides a section called securityInfo, which the author of a job type
can use to specify the minimum level of privileges (system and target) that the
submitter of a job of this type must have.

The securityInfo section enables the job type author to encapsulate the security
requirements associated with submitting a job in the job type itself. No further code
must be written to enforce security. Also, it ensures that Enterprise Manager users
cannot directly submit jobs of a specific type (using the job system APIs and bypassing
the application) unless they have the set of privileges defined by the job type author.

Example 1

The following example shows what a typical securityInfo section looks like. Suppose
you are writing a job type that clones a database. This job type requires two targets, a
source database and a destination node on which the destination database will be
created. This job type requires that the user submitting a clone job have a CLONE
FROM privilege on the source (database) and a MAINTAIN privilege on the destination
(node).

In addition, the user requires the CREATE TARGET system privilege to introduce a
new target into the system. Assuming that the job type is written so that the first target
in the target list is the source and the second target in the target list is the destination,
the security requirements for such a job type could be addressed as follows:

<jobType>
 <securityInfo>
 <privilege name="CREATE TARGET" type="system" />
 <privilege name="CLONE FROM" type="target" evaluateAtSubmission="false" >
 <target name="%job_target_names%[1]" type="%job_target_types%[1]" />
 </privilege>
 <privilege name="MAINTAIN" type="target" evaluateAtSubmission="false">
 <target name="%job_target_names%[2]" type="%job_target_types%[2]" />
 </privilege>
 </securityInfo>
 <!-- An optional <paramInfo> section will follow here, followed by the stepset
 definition of the job
 -->
 <paramInfo>

 </paramInfo>
 <stepset ...>
 </stepset>
</jobType>

Chapter 8
Specifying Security Information

8-26

The securityInfo section is a set of <privilege> tags. Each privilege could be a system or
target privilege, as indicated by the type attribute of the tag. If the privilege is a target
privilege, then the targets that the privilege is attached to must be explicitly enumerated, or
else the target_names_param and target_types_param attributes must be used as shown in
the following example. The usual %param% notation can be used to indicate job parameter
and target placeholders.

By default, all <privilege> directives in the securityInfo section are evaluated at job
submission time, after all submit-time parameter sources have been evaluated. The job
system throws an exception if the user does not have any of the privileges specified in the
securityInfo section.

Execution-time parameter sources are not evaluated at job submission time, so take care not
to use job parameters that might not have been evaluated yet. You could also direct the job
system to evaluate a privilege directive at job execution time by setting the
evaluateAtSubmission parameter to false.

The only reason you might want to do this is if the exact set of targets that the job is operating
on is unknown until the job execution time (for example, it is computed using an execution-
time parameter source). Execution-time privilege directives are evaluated after all execution-
time parameter sources are evaluated.

Example 2

Assume that you are writing a job type that requires a MODIFY privilege on each one of its
targets, but the exact number of targets is unknown at the time of writing. Use the
target_names_param and target_types_param attributes for this purpose. These specify
vector parameters from which the job system will get the target names and the corresponding
target types. These could be any vector parameters. This example uses the job target list
(job_target_names and job_target_types).

<securityInfo>
 <privilege name="MODIFY" type="target" target_names_param="job_target_names"
 target_types_param="job_target_types" />
</securityInfo>

Specifying Lock Information
Often executing jobs need to acquire resources. For example, a job applying a patch to a
database might need a mechanism to ensure that other jobs (submitted by other users in the
system) on the database are prevented from running while the patch is being applied. In
other words, it might want to acquire a lock on the database target so that other jobs that try
to acquire the same lock block (or terminate). This allows a patch job, once it starts, to
perform its work without disruption.

Sometimes, locks could be at more than one level. A hot backup of a database, for example,
can allow other hot backups to proceed (because they do not bring down the database), but
cannot allow cold backups or database shutdown jobs to proceed (because they shut down
the database, causing the backup to fail).

A job execution indicates that it is reserving a resource on a target by acquiring a lock on the
target. A lock is a proxy for reserving some part of the functionality of a target. When an
execution acquires a lock, it blocks other executions that try to acquire the same lock on the
target. A lock is identified by a name and a type and can be of the following types:

• Global: These are locks that are not associated with a target. An execution that holds a
global lock blocks other executions that are trying to acquire the same global lock (such
as a lock with the same name).

Chapter 8
Specifying Lock Information

8-27

• Target Exclusive: These are locks that are associated with a target. An execution
that holds an exclusive lock on a target blocks executions that are trying to acquire
any named lock on the target, as well as executions trying to acquire an exclusive
lock on the target. Target exclusive locks have no name: there is exactly one
exclusive lock per target.

• Target Named: A named lock on a target is analogous to obtaining a lock on one
particular functionality of the target. A named lock has a user-specified name. An
execution that holds a named lock blocks other executions that are trying to
acquire the same named lock, as well as executions that are trying to acquire an
exclusive lock on the target.

Example

Locks that a job type wants to acquire can be obtained by specifying a lockInfo section
in the job type. This example lists the locks that the job is to acquire, the types of
locks, as well as the targets on which it wants to acquire the locks:

<lockInfo action="suspend">
 <lock type="targetExclusive">
 <targetList>
 <target name="%backup_db%" type="oracle_database" />
 </targetList>
 </lock>
 <lock type="targetNamed" name="LOCK1" >
 <targetList>
 <target name="%backup_db%" type="oracle_database" />
 <target name="%job_target_names%[1]" type="%job_target_types%[1]" />
 <target name="%job_target_names%[2]" type="%job_target_types%[2]" />
 </targetList>
 </lock>
 <lock type="global" name="GLOBALLOCK1" />
</lockInfo>

This example shows a job type that acquires a target-exclusive lock on a database
target whose name is given by the job parameter backup_db. It also acquires a named
target lock named "LOCK1" on three targets, namely, the database whose name is
stored in the job parameter backup_db, and the first two targets in the target list of the
job. Finally, it acquires a global lock named "GLOBALLOCK1". The "action" attribute
specifies what the job system should do to the execution if any of the locks in the
section cannot be obtained (because some other execution is holding them). Possible
values are suspend (all locks are released and the execution state changes to
"Suspended:Lock") and abort (the execution terminates). The following points can be
made about executions and locks:

• An execution can only attempt to obtain locks when it starts (although it is possible
to override this by using nested jobs).

• An execution can acquire multiple locks. Locks are always acquired in the order
specified. Because of this, executions can potentially deadlock each other if they
attempt to acquire locks in the wrong order.

• Target locks are always acquired on targets in the same order as they are
specified in the <targetList> tag.

• If a target in the target list is null or does not exist, the execution terminates.

• If an execution attempts to acquire a lock it already holds, it succeeds.

• If an execution cannot acquire a lock (usually because another execution is
holding it), it has a choice of suspending itself or terminating. If it chooses to

Chapter 8
Specifying Lock Information

8-28

suspend itself, all locks it has acquired so far are released, and the execution is put in the
Suspended/Lock state.

• All locks held by an execution are released when an execution finishes (whether it
completes, fails, or is stopped). There might be several waiting executions for each
released lock and these are sorted by time, with the earliest request getting the lock.

When jobs that have the lockInfo section are nested inside each other, the nested job's locks
are obtained when the nested job first executes, not when an execution starts. If the locks are
not available, the parent execution can be suspended or terminated, possibly after a few
steps have executed already.

lockInfo Example 1

In this example, two job types called HOTBACKUP and COLDBACKUP perform hot backups
and cold backups, respectively, on the database. The difference is that the cold backup
brings the database down, but the hot backup leaves it up. Only one hot backup can execute
at a time and it keeps out other hot backups as well as cold backups.

When a cold backup is executing, no other job type can execute (since it shuts down the
database as part of its execution). A third job type called SQLANALYZE performs scheduled
maintenance activity that results in modifications to database tuning parameters (two
SQLANALYZE jobs cannot run at the same time).

Table 8-5 shows the incompatibilities between the job types. An 'X' indicates that the job
types are incompatible. An 'OK' indicates that the job types are compatible.

Table 8-5 Job Type Incompatibilities

Job Type HOTBACKUP COLDBACKUP SQLANALYZE

HOTBACKUP X X OK

COLDBACKUP X X X

SQLANALYZE OK X X

The following code example shows the lockInfo sections for the three job types. The cold
backup obtains an exclusive target lock on the database. The hot backup job does not obtain
an exclusive lock, but only the named lock "BACKUP_LOCK". Likewise, the SQLANALYZE
job obtains a named target lock called "SQLANALYZE_LOCK".

Assuming that the database that the jobs operate on is the first target in the target list of the
job, the lock sections of the two jobs look as follows:

<jobType name="SQLANALYZE">
 <lockInfo action="abort">
 <lock type="targetNamed" name="SQLANALYZE_LOCK" >
 <targetList>
 <target name="%job_target_names%[1]" type="%job_target_names%[1]" />
 </targetList>
 </lock>
 </lockInfo>
 Rest of the job type follows
</jobType>

Since a named target lock blocks all target exclusive locks, executing hot backups suspends
cold backups, but not analyze jobs (because they try to acquire different named locks).
Executing SQL analyze jobs terminates other SQL analyze jobs and suspends cold backups,

Chapter 8
Specifying Lock Information

8-29

but not hot backups. Executing cold backups suspends hot backups and terminates
SQL analyze jobs.

lockInfo Example 2

A job type called PATCHCHECK periodically checks a patch stage area and
downloads information about newly staged patches into the Management Repository.
Two such jobs cannot run at the same time; however, the job is not associated with
any target. The solution is for the job type to attempt to grab a global lock:

<jobType name="PATCHCHECK">
 <lockInfo>
 <lock type="global" name="PATCHCHECK_LOCK" />
 </lockInfo>
 Rest of the job type follows
</jobType>

lockInfo Example 3

A job type that nests the SQLANALYZE type within itself is shown in the following
example. The nested job executes after the first step (S1) executes.

<jobType name="COMPOSITEJOB">
 <stepset ID="main" type="serial">
 <step ID="S1" ...>

 </step>
 <job name="nestedsql" type="SQLANALYZE">

 </job>
 </stepset>
</jobType>

In the previous example, the nested job tries to acquire locks when it executes
(because the SQLANALYZE has a lockInfo section). If the locks are currently held by
other executions, then the nested job terminates (as specified in the lockInfo), which in
turn terminates the parent job.

Suspending a Job or Step
Suspended is a special state that indicates that steps in the job will not be considered
for scheduling and execution. A step in an executing job can suspend the job, through
the suspend_job PL/SQL API. This suspends both the currently executing step, and
the job itself.

Suspending a job means that all steps in the job that are currently in a "scheduled"
state are marked as "suspended" and will thereafter not be scheduled or executed. All
currently executing steps (for example, parallel stepsets) continue to execute.
However, when any currently executing step completes, the next steps in the job will
not be scheduled. Instead they are put in suspended state. When a job is suspended
on submission, the previous applies to the first steps in the job that would have been
scheduled.

Suspended jobs may be restarted at any time by calling the restart_job() PL/SQL API.
However, jobs that are suspended because of serialization (locking) rules are not
restartable manually. The job system restarts such jobs automatically when currently
executing jobs of that job type complete. Restarting a job effectively changes the state
of all suspended steps to scheduled and job execution proceeds normally.

Chapter 8
Suspending a Job or Step

8-30

Restarting a Job
If a job is suspended, failed, or terminated, you can restart it from any given step (typically,
the stepset that contains a failed or terminated step). For failed or terminated jobs, the steps
that get scheduled again depends on which step from which the job is restarted.

Restarting Versus Resubmitting
If a step in a job is resubmitted, it means that it executes regardless of whether the original
execution of the step completed or failed. If a stepset is resubmitted, then the first step,
stepset, or job in the stepset is resubmitted, recursively. Therefore, when a job is resubmitted,
the entire job is executed again by recursively resubmitting its initial stepset. The parameters
and targets used are the same that were used when the job was first submitted. Essentially,
the job executes as if it were submitted for the first time with the specified set of parameters
and targets. Also, you can use the resubmit_job API in the mgmt_jobs package to resubmit a
job. You can resubmit jobs even if the earlier executions completed successfully.

Restarting a job generally refers to resuming job execution from the last failed step (although
the job type can control this behavior using the restartMode attribute of steps/stepsets/jobs).
Usually, steps from the failed job execution that succeeded are not executed again.

To restart a failed or terminated job, call the restart_job API in the mgmt_jobs package. You
cannot restart a job that completed successfully.

Default Restart Behavior
Restarting a job creates a new execution called the restart execution. The original failed
execution of the job is called the source execution. All parameters and targets are copied
over from the source execution to the restart execution. Parameter sources are not
reevaluated, unless the original job terminated because of a parameter source failure.

To restart a serial or iterative stepset, the job system first examines the status of the serial
stepset. If the status of the serial stepset is "Completed", then all the entries for its constituent
steps are copied over from the source execution to the restart execution. If the status of the
stepset is "Failed" or "Aborted", then the job system starts top down from the first step in the
stepset.

If the step previously completed successfully in the source execution, it is copied to the
restart execution. If the step previously failed or aborted, it is rescheduled for execution in the
restart execution. After this step has finished executing, the job system determines the next
steps to execute. These could be successOf or failureOf dependencies, or simply steps/
stepsets/jobs that execute after the current step.

If the subsequent step completed successfully in the source execution, then it will not be
scheduled for execution again and the job system copies the source execution status to the
restart execution for that step. It continues in this fashion until it reaches the end of the
stepset. It then recomputes the status of the stepset based on the new executions.

To restart a parallel stepset, the job system first examines the status of the parallel stepset. If
the status of the stepset is "Completed", then all the entries for its constituent steps are
copied over from the source execution to the restart execution. If the status of the stepset is
"Failed" or "Aborted", then the job system copies over all successful steps in the steps from
the source to the restart execution. It reschedules all steps that failed or terminated in the

Chapter 8
Restarting a Job

8-31

source execution, in parallel. After these steps have finished executing, the status of
the stepset is recomputed.

To restart a nested job, the restart algorithm is applied recursively to the first (outer)
stepset of the nested job.

In the previous paragraphs, if one of the entities is a stepset or a nested job, then the
restart mechanism is applied recursively to the stepset or job. When entries for steps
are copied over to the restart execution, the child execution entries point to the same
output Character Large Object (CLOB) entries as the parent execution.

Using the restartMode Directive
A job type can affect the restart behavior of each step, stepset, or job within it by the
use of the restartMode attribute. You can set this to "failure" (default) or "always".

• When set to failure and the top-down copying process described in the previous
section occurs, the step, stepset, or job is copied without being executed again if it
succeeded in the source execution. If it failed or terminated in the source
execution, then it restarts recursively at the last point of failure.

• When the restartMode attribute is set to "always" for a step, the step is always
executed again in a restart, regardless of whether it succeeded or failed in the
source execution. The use of this attribute is useful when certain steps in a job
must always be executed again in a restart (for example, a step that shuts down a
database before backing it up).

For a stepset or nested job, if the restartMode attribute is set to "always", then all steps
in the stepset/nested job are restarted, even if they completed successfully in the
source execution. If it is set to "failure", then restart is attempted only if the status of
the stepset or nested job was set to Failed or Aborted in the source execution.

Individual steps inside a stepset or nested job might have their restartMode set to
"always" and such steps are always executed again.

Restart Examples

The following sections discuss a range of scenarios related to restarting stepsets.

Example 1

Consider the serial stepset with the sequence of steps below:

<jobtype ...>
<stepset ID="main" type="serial" >
 <step ID="S1" ...>
 ...
 </step>
 <step ID="S2" ...>
 ...
 </step>
 <step ID="S3" failureOf="S2"...>
 ...
 </step>
 <step ID="S4" successOf="S2"...>
 ...
 </step>
</stepset>
</jobtype>

Chapter 8
Restarting a Job

8-32

In this stepset, assume the source execution had S1 execute successfully and step S2 and
S3 (the failure dependency of S2) fail.

When the job is restarted, step S1 is copied to the restart execution from the source
execution without being re-executed (because it successfully completed in the source
execution). Step S2, which failed in the source execution, is rescheduled and executed.

If S2 completes successfully, then S4, its success dependency (which never executed in the
source execution), is scheduled and executed. The status of the stepset (and the job) is the
status of S4.

If S2 fails, then S3 (its failure dependency) is rescheduled and executed (since it had failed in
the source execution), and the status of the stepset (and the job) is the status of S3.

Assume that step S1 succeeded, S2 failed, and S3 (its failure dependency) succeeded in the
source execution. As a result, the stepset (and therefore the job execution) succeeded. This
execution cannot be restarted because the execution completed successfully although one of
its steps failed.

Finally, assume that steps S1 and S2 succeed, but S4 (S2's success dependency) failed. S3
is not scheduled in this situation. When the execution is restarted, the job system copies over
the executions of S1 and S2 from the source to the restart execution, and reschedules and
executes S4. The job succeeds if S4 succeeds.

Example 2

Consider the following:

<jobtype ...>
<stepset ID="main" type="serial" stepsetStatus="S2" >
 <step ID="S1" restartMode="always" ...>
 ...
 </step>
 <step ID="S2" ...>
 ...
 </step>
 <step ID="S3" ...>
 ...
 </step>
</stepset>
</jobtype>

In the previous example, assume that step S1 completes and S2 fails. S3 executes (because
it does not have a dependency on S2) and succeeds. The job, however, fails, because the
stepset main has its stepsetStatus set to S2.

When the job is restarted, S1 is executed again, although it completed the first time, because
the restartMode of S1 was set to "always".

Step S2 is rescheduled and executed, because it failed in the source execution. After S2
executes, step S3 is not rescheduled for execution again, because it executed successfully in
the source execution. If the intention is that S3 must execute in the restart execution, then its
restartMode must be set to "always".

In the previous example, if S1 and S2 succeeded and S3 failed, the stepset main would still
succeed (because S2 determines the status of the stepset). In this case, the job succeeds,
and cannot be restarted.

Example 3

Consider the following example:

Chapter 8
Restarting a Job

8-33

<jobtype ...>
<stepset ID="main" type="serial" >
 <stepset type="serial" ID="SS1" stepsetStatus="S1">
 <step ID="S1" ...>
 ...
 </step>
 <stepset ID="S2" ...>
 ...
 </step>
 </stepset>
 <stepset type="parallel" ID="PS1" successOf="S1" >
 <step ID="P1" ...>
 ...
 </step>
 <step ID="P2" ...>
 ...
 </step>
 <step ID="P3" ...>
 ...
 </step>
 </stepset>
</stepset>
</jobtype>

In this example, assume that steps S1 and S2 succeeded (and therefore, stepset SS1
completed successfully). Thereafter, the parallel stepset PS1 was scheduled, and
assume that P1 completed, but P2 and P3 failed. As a result, the stepset "main" (and
the job) failed.

When the execution is restarted, the steps S1 and S2 (and therefore the stepset SS1)
are copied over without execution. In the parallel stepset PS1, both the steps that
failed (P2 and P3) are rescheduled and executed.

Assume that S1 completed and S2 failed in the source execution. Stepset SS1 still
completed successfully because the status of the stepset is determined by S1, not S2
(because of the stepsetStatus directive). Assume that PS1 was scheduled and P1
failed, and P2 and P3 executed successfully. When this job is rescheduled, the step
S2 will not be executed again (because the stepset SS1 completed successfully). The
step P1 is not rescheduled and executed.

Example 4

Consider a slightly modified version of the XML in "Example 3":

<jobtype ...>
<stepset ID="main" type="serial" >
 <stepset type="serial" ID="SS1" stepsetStatus="S1" restartMode="always" >
 <step ID="S1" ...>
 ...
 </step>
 <stepset ID="S2" ...>
 ...
 </step>
 </stepset>
 <stepset type="parallel" ID="PS1" successOf="S1" >
 <step ID="P1" ...>
 ...
 </step>
 <step ID="P2" ...>
 ...
 </step>

Chapter 8
Restarting a Job

8-34

 <step ID="P3" ...>
 ...
 </step>
 </stepset>
</stepset>
</jobtype>

In the previous example, assume that S1 and S2 succeeded (and therefore, stepset SS1
completed successfully). Thereafter, the parallel stepset PS1 was scheduled, and assume
that P1 completed, but P2 and P3 failed. When the job is restarted, the entire stepset SS1 is
restarted (since the restartMode is set to "always"). This means that steps S1 and S2 are
successively scheduled and executed. Now the stepset PS1 is restarted, and because the
restartMode is not specified (it is always "failure" by default), it is restarted at the point of
failure, which in this case means that the failed steps P2 and P3 are executed again, but not
P1.

Adding Job Types to the Job Activity and Job Library Pages
To make a new job type accessible from the Enterprise Manager Cloud Console Job Activity
or Job Library page, you must to modify the following specific XML tag attributes.

• To display the job type on Job Activity page, set useDefaultCreateUI to "true" as shown in
the following example.

<displayInfo useDefaultCreateUI="true"/>
• To display the job type on the Job Library page, in addition to setting useDefaultCreateUI

attribute, you must also set the jobtype editable attribute to "true."

<jobtype name="jobType1" editable="true">
If you set useDefaultCreateUI="true" and editable="false", then the job type appears on the
Job Activity page only and not on Job Library page.This means you cannot edit the job
definition.

Adding a Job Type to the Job Activity Page
Figure 8-1 shows the result of setting the useDefaultCreateUI attribute to "true" and enabling
users to create a job to select the newly added job type from the Create Job menu.

Chapter 8
Adding Job Types to the Job Activity and Job Library Pages

8-35

Figure 8-1 Available Job Types from the Job Activity Page

Making the job type available from the Job Activity page also permits access to the
default Create Job user interface when a user attempts to create a job using the newly
added job type.

Adding the displayInfo Tag
You can add the displayInfo tag to the job definition file at any point after the </
stepset> tag and before the </jobtype> tag at the end of the job definition file, as
shown in the following example.

<jobtype ...>
<stepset ID="main" type="serial" >
 <stepset type="serial" ID="SS1" stepsetStatus="S1">
 <step ID="S1" ...>
 ...
 </step>
 <stepset ID="S2" ...>
 ...
 </step>
 </stepset>
 <stepset type="parallel" ID="PS1" successOf="S1" >
 <step ID="P1" ...>
 ...
 </step>
 <step ID="P2" ...>
 ...
 </step>
 <step ID="P3" ...>
 ...
 </step>
 </stepset>
</stepset>
<displayInfo useDefaultCreateUI="true"/>
</jobtype>

Chapter 8
Adding Job Types to the Job Activity and Job Library Pages

8-36

Adding a Job Type to the Job Library Page
To make the job type available from the Job Library page, you must also set the jobType tag's
editable attribute to "true" in addition to adding the displayInfo tag, This makes the newly
added job type a selectable option from the Create Library Job menu.

Making the Job Type Editable
The editable attribute of the jobtype tag is set at the beginning of the job definition file, as
shown in the following example.

<jobtype name="jobType1" editable="true">
<stepset ID="main" type="serial" >
 <stepset type="serial" ID="SS1" stepsetStatus="S1">
 <step ID="S1" ...>
 ...
 </step>
 <stepset ID="S2" ...>
 ...
 </step>
 </stepset>
 <stepset type="parallel" ID="PS1" successOf="S1" >
 <step ID="P1" ...>
 ...
 </step>
 <step ID="P2" ...>
 ...
 </step>
 <step ID="P3" ...>
 ...
 </step>
 </stepset>
</stepset>
<displayInfo useDefaultCreateUI="true"/>
</jobtype>

Examples: Specifying Job Types in XML
The following sections provide examples of specifying job types in XML.

Example 1

This example describes a job type called jobType1 that defines four steps, S1, S2, S3, and
S4. It executes S1 and S2 serially, one after another. It executes step S3 only if step S2
succeeds, and step S4 only if S2 fails. All the steps execute within an iterative subset, so
these actions are performed in parallel on all targets in the job target list of type database.

Chapter 8
Examples: Specifying Job Types in XML

8-37

Note:

These examples use percentage (%) symbols to indicate parameters,
%patchno%, %username%, %password%, and %job_target_name%.

The job system substitutes the value of a job parameter named "patchno" in
place of the %patchno%. Likewise, it substitutes the values of the
corresponding parameters for %username% and %password%.
%job_target_name% and %job_target_type% are "pre-built" placeholders
that substitute the name of the target that the step is currently executing
against.

The steps S2, S3, and S4 illustrate how you can use the remoteOp command to
execute a SQL*Plus script on the Management Agent.

The status of a job is failed if any of the following occurs:

• S2 fails and S4 fails

• S2 succeeds and S3 fails

Because S2 executes after S1 (regardless of whether S1 succeeds or fails), the status
of S1 does not affect the status of the job.

Example: Job Type Defining Four Steps

<jobtype name="jobType1" editable="true" version="1.0">
<credentials>
 <credential usage="defaultHostCred" authTargetType="host"
 defaultCredentialSet="DBHostCreds"/>
 <credential usage="defaultDBCred" authTargetType="oracle_database"
 credentialTypes="DBCreds"
 defaultCredentialSet="DBCredsNormal"/>
 </credentials>
 <stepset ID="main" type="iterativeParallel" iterate_param="job_target_types"
iterate_param_filter="oracle_database" >
 <step ID="s1" command="remoteOp"">
 <credList>
 <cred usage="defaultHostCred" reference="defaultHostCred"/>
 </credList>
 <paramList>
 <param name="remoteCommand">myprog</param>
 <param name="targetName">%job_target_names%[%job_iterate_
 index%]
 </param>
 <param name="targetType">%job_target_types%[%job_iterate_
 index%]
 </param>
 <param name="args">-id=%patchno%</param>
 <param name="successStatus">3</param>
 <param name="failureStatus">73</param>
 </paramList>
 </step>
 <step ID="s2" command="remoteOp"">
 <credList>
 <cred usage="defaultHostCred" reference="defaultHostCred"/>
 </credList>
 <paramList>

Chapter 8
Examples: Specifying Job Types in XML

8-38

 <param name="remoteCommand">myprog2</param>
 <param name="targetName">%job_target_names%[%job_iterate_
 index%]</param>
 <param name="targetType">%job_target_types%[%job_iterate_
 index%]</param>
 <param name="args">-id=%patchno%</param>
 <param name="successStatus">3</param>
 <param name="failureStatus">73</param>
 </paramList>
 </step>
 <step ID="s3" successOf="s2" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="defaultHostCred"/>
 <cred usage="defaultDBCred" reference="defaultDBCred">
 <map toParam="db_username" credColumn="DBUserName"/>
 <map toParam="db_passwd" credColumn="DBPassword"/>
 <map toParam="db_alias" credColumn="DBRole"/>
 </cred>
 </credList>
 <paramList>
 <param name="command">prog1</command>
 <param name="script">
 <![CDATA[
 select * from MGMT_METRICS where target_name=%job_target_type%[%job_
 iterate_param_index%]
]]>
 </param>
 <param name="args">%db_username%/%db_passwd%@%db_alias%</param>
 <param name="targetName">%job_target_names%[%job_iterate_
 index%]</param>
 <param name="targetType">%job_target_types%[%job_iterate_
 index%]</param>
 <param name="successStatus">0</param>
 <param name="failureStatus">1</param>
 </paramList>
 </step>
 <step ID="s4" failureOf="s2" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="defaultHostCred"/>
 </credList>
 <paramList>
 <param name="input">
 <![CDATA[
 This is standard input to the executed progeam. You can use placeholders
 for parameters, such as
 %job_target_name%[%job_iterate_param_index%]
]]>
 </param>
 <param name="remoteCommand">prog2</param>
 <param name="targetName">%job_target_names%[%job_iterate_
 index%]</param>
 <param name="targetType">%job_target_types%[%job_iterate_

index%]</param>
 <param name="args"></param>
 <param name="successStatus">0</param>
 <param name="failureStatus">1</param>
 </paramList>
 </step>
 </stepset>

Chapter 8
Examples: Specifying Job Types in XML

8-39

<displayInfo useDefaultCreateUI="true"/>
</jobtype>

Example 2

This example describes a job type that has two steps, S1 and S2, that execute in
parallel (within a parallel stepset ss1) and a third step, S3, that executes only after
both S1 and S2 have completed successfully. This is achieved by placing the step S3
in a serial stepset ("main") that also contains the parallel stepset ss1. This job type is a
"multi-node" job. The example uses %job_target_name%[1], %job_target_name%[2] in
the parameters to the commands. In stepsets other than an iterative stepset, you can
only refer to job targets by using their position in the targets array (which is ordered).

%job_target_name%[1] refers to the first target, %job_target_name%[2] to the second,
and so on. The assumption is that most multi-node jobs expect their targets to be in
some order. For example, a clone job might expect the source database to be the first
target, and the target database to be the second target. This job fails if any of the
following occurs:

• The parallel stepset SS1 fails (either S1, or S2, or both fail)

• Both S1 and S2 succeed, but S3 fails

The job type has declared itself to be Agent-bound. This means that the job is set to
Suspended/Agent Down state if either Management Agent (corresponding to the first
target or the second target) goes down.

Example: Job Type Defining Two Steps Followed by a Third Step

<jobtype name="jobType2" version="1.0" agentBound="true" >
 <stepset ID="main" type="serial" editable="true">
 <!-- All steps in this stepset ss1 execute in parallel -->
 <credentials>
 <credential usage="hostCreds" authTargetType="host"
 defaultCredentialSet="HostCredsNormal"/>
 </credentials>
 <stepset ID="ss1" type="parallel" >
 <step ID="s1" command="remoteOp" >
 <credList>
 <cred usage="defaultHostCred" reference="defaultHostCred"/>
 </credList>
 <paramList>
 <param name="remoteCommand">myprog</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="args">-id=%patchno%</param>
 <param name="successStatus">3</param>
 <param name="failureStatus">73</param>
 </paramList>
 </step>
 <step ID="s2" command="remoteOp" >
 <credList>
 <cred usage="defaultHostCred" reference="hostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">myprog</param>
 <param name="targetName">%job_target_names%[2]</param>
 <param name="targetType">%job_target_types%[2]</param>
 <param name="args">-id=%patchno%</param>
 <param name="successStatus">3</param>
 <param name="failureStatus">73</param>

Chapter 8
Examples: Specifying Job Types in XML

8-40

 </paramList>
 </step>
 </stepset>
 <!-- This step executes after stepset ss1 has executed, since it is inside the
serial subset "main"
 -->
 <step ID="s3" successOf="ss1" command="remoteOp" >
 ...
 </step>
 </stepset>
<displayInfo useDefaultCreateUI="true"/>
</jobtype>

Example 3

This example defines a new job type called jobType3 that executes jobs of type jobType1 and
jobType2 consecutively. The job2 job of type jobType2 is executed only if the first job fails. To
execute another job, the target list and the param list must be passed. The targetList tag
has a parameter called allTargets, which when set to true, passes along the entire target list
passed to this job. By setting allTargets to false, a job type has the option of passing along a
subset of its targets to the other job type.

In this example, jobType3 passes along all its targets to the instance of the job of type
jobType1, but only the first two targets in its target list (in that order) to the job instance of
type jobType2. There is another attribute called allParams (associated with paramList) that
performs a similar function with respect to parameters. If allParams is set to true, then all
parameters of the parent job are passed to the nested job. Typically the nested job has a
different set of parameters (with different names).

If allParams is set to false (default), then the job type can name the nested job parameters
explicitly and they do not have to have the same names as those in the parent job. Use
parameter substitution to express the nested job parameters in terms of the parent job
parameters, as shown in this example.

You can express the dependencies between nested jobs just as if they were steps or
stepsets. In this example, a job of type jobType3 succeeds if either:

• the nested job job1 succeeds

• job1 fails and job2 succeeds

Example: Defining a Job Type That Executes Jobs of Other Job Types

<jobType name="jobType3" editable="true" version="1.0">
 <stepset ID="main" type="serial">
 <job type="jobType1" ID="job1" >
 <target_list allTargets="true" />
 <paramList>
 <param name="patchno">%patchno%</param>
 </paramList>
 </job>
 <job type="jobType2" ID="job2" failureOf="job1" >
 <targetList>
 <target name="%job_target_names%[1]" type="%job_target_types%[1]" />
 <target name="%job_target_names%[2]" type="%job_target_types%[2]" />
 </targetList>
 <paramList>
 <param name="patchno">%patchno%</param>
 </paramList>
 </job>
 </stepset>

Chapter 8
Examples: Specifying Job Types in XML

8-41

<displayInfo useDefaultCreateUI="true"/>
</jobType>

Example 4

The Defining a Job Type That Generates Variables in a File example illustrates the use
of the generateFile command. Assume that you are executing a sequence of scripts,
all of which must source a common file that sets up some environment variables,
which are known only at runtime. One way to do this is to generate the variables in a
file with a unique name. All subsequent scripts are passed this file name as one of
their command-line arguments, which they read to set the required environment or
shell variables.

The first step, S1, in this job uses the generateFile command to generate a file named
app-home/execution-id.env. Because the execution id of a job is always unique, this
ensures a unique file name. It generates three environment variables, ENVVAR1,
ENVVAR2, and ENVVAR3, which are set to the values of the job parameters param1,
param2 and param3, respectively. These parameters must be set to the right values
when the job is submitted.

%job_execution_id% is a placeholder provided by the job system, while %app-home%
is a job parameter which must be explicitly provided when the job is submitted.

The second step, S2, executes a script called myscript. The first command-line
argument to the script is the generated file name. This script must "source" the
generated file, which sets the required environment variables, and then performs its
other tasks, as shown in the following code:

#!/bin/ksh
ENVFILE=$1
Execute the generated file, sets the required environment vars
. $ENVFILE
I can now reference the variables set in the file
doSomething $ENVVAR1 $ENVVAR2 $ENVVAR3...

The following example provides the full job type specification. Step S3 removes the file
that was created by the first step S1. It is important to clean up when using the putFile
and generateFile commands to write temporary files on the Management Agent. This
example performs the cleanup explicitly as a separate step, but it could also be done
by one of the scripts that executes on the remote host.

Additionally, the securityInfo section that specifies the user that submits a job of this
job type, must have MAINTAIN privilege on both the targets on which the job operates.

Example: Defining a Job Type That Generates Variables in a File

<jobtype name="jobType4" editable="true" version="1.0">
 <securityInfo>
 <privilege name="MAINTAIN" type="target" evaluateAtSubmission="false">
 <target name="%job_target_names%[1]" type="%job_target_types%[1]" />
 <target name="%job_target_names%[2]" type="%job_target_types%[2]" />
 </privilege>
 </securityInfo>
 <credentials>
 <credential usage="hostCreds" authTargetType="host"
 defaultCredentialSet="HostCredsNormal"/>
 </credentials>
 <stepset ID="main" type="serial">
 <step ID="s1" command="putFile" >
 <paramList>

Chapter 8
Examples: Specifying Job Types in XML

8-42

 <param name=sourceType>inline</param>
 <param name="destFile">%app-home%/%job_execution_id%.env</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name=contents">
 <![CDATA[#!/bin/ksh
 export ENVVAR1=%param1% export ENVVAR2=%param2% export ENVVAR3=%param3%
]]>
 </param>
 </paramList>
 </step>
<step ID="s2" command="remoteOp" >
 <credList>
 <cred usage="defaultHostCred" reference="hostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">myscript</param>
 <param name="targetName">%job_target_names%[2]</param>
 <param name="targetType">%job_target_types%[2]</param>
 <param name="args">%app-home%/%job_execution_id%.env</param>
 <param name="successStatus">3</param>
 <param name="failureStatus">73</param>
 </paramList>
 </step>
<step ID="s3" command="remoteOp" >
 <credList>
 <cred usage="defaultHostCred" reference="hostCreds"/>
 </credList>

 <paramList>
 <param name="remoteCommand">rm</param>
 <param name="targetName">%job_target_names%[2]</param>
 <param name="targetType">%job_target_types%[2]</param>
 <param name="args">-f, %app-home%/%job_execution_id%.env</param>
 <param name="successStatus">0</param>
 </paramList>
</step>
</stepset>
<displayInfo useDefaultCreateUI="true"/>
</jobtype>

Example 5

The following example illustrates the use of the repSQL command to execute SQL
statements and anonymous PL/SQL blocks against the Management Repository. The job
type specification below calls a SQL statement in the first step S1, and a PL/SQL procedure
in the second step. Note the use of the variables %job_id% and %job_name%, which are
special job-system placeholders. Other job parameters can be similarly escaped as well. Also
note the use of bind parameters in the SQL queries. The parameters sqlinparam[n] can be
used to specify bind parameters. There must be one parameter of the form sqlinparam[n]
for each bind parameter. Bind parameters must be used as far as possible to make optimum
use of database resources.

Example: Defining a Job Type That Executes SQL Statements and PL/SQL Procedures

<jobtype name="repSQLJob" editable="true" version="1.0">
 <stepset ID="main" type="serial">
 <step ID="s1" command="repSQL" >
 <paramList>
 <param name="sql">update mytable set status='executed' where

Chapter 8
Examples: Specifying Job Types in XML

8-43

 name=?</param>
 <param name="sqlinparam1">%job_name%</param>
 </paramList>
 </step>
 <step ID="s2" command="repSQL" >
<paramList>
 <param name="sql">begin mypackage.job_done(?,?,?); end;</param>
 <param name="sqlinparam1">%job_id%</param>
 <param name="sqlinparam2">3</param><param name="sqlinparam3">mgmt_rep</param>
</paramList>
</step>
</stepset>
<displayInfo useDefaultCreateUI="true"/>
</stepset>
</jobtype>

Example 6

This example illustrates the use of the switch stepset. The main stepset of this job is a
switch stepset where switchVarName is a job parameter called stepType. The possible
values (switchCaseVal) that this parameter can have are "simpleStep", "parallel", and
"OSJob", which will end up selecting, respectively, the step SWITCHSIMPLESTEP, the
parallel stepset SWITCHPARALLELSTEP, or the nested job J1.

<jobType version="1.0" name="SwitchSetJob" editable="true">
 <stepset ID="main" type="switch" switchVarName="stepType" >
 <credentials>
 <credential usage="hostCreds" authTargetType="host"
 defaultCredentialSet="HostCredsNormal"/>
 </credentials>

<step ID="SWITCHSIMPLESTEP" switchCaseVal="simpleStep" command="remoteOp">

 <credList>
 <cred usage="defaultHostCred" reference="hostCreds"/>
 </credList><paramList>
 <param name="remoteCommand">%command%</param>
 <param name="args">%args%</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 </paramList>
</step>
<stepset ID="SWITCHPARALLELSTEP" type="parallel" switchCaseVal="parallelStep">
 <step ID="P11" command="remoteOp" >
 <credList>
 <cred usage="defaultHostCred" reference="hostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">%command%</param>
 <param name="args">%args%</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 </paramList>
 </step>
 <step ID="P12" command="remoteOp" >
 <credList>
 <cred usage="defaultHostCred" reference="hostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">%command%</param>
 <param name="args">%args%</param>

Chapter 8
Examples: Specifying Job Types in XML

8-44

 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 </paramList>
</step>
</stepset>
<job ID="J1" type="OSCommandSerial" switchCaseVal="OSJob" >
 <paramList>
 <param name="command">%command%</param>
 <param name="args">%args%</param>
 </paramList>
 <targetList>
 <target name="%job_target_names%[1]" type="%job_target_types%[1]" />
 </targetList>
</job>
</stepset>
<displayInfo useDefaultCreateUI="true"/>
</jobType>

Example 7

This example shows the use of the <securityInfo> tag to ensure that only users that have
CLONE FROM privilege over the first target and MAINTAIN privilege over the second target
are able to submit jobs of the following type:

<jobType name="Clone" editable="true" version="1.0" >
 <securityInfo>
 <privilege name="CREATE TARGET" type="system" />
 <privilege name="CLONE FROM" type="target" evaluateAtSubmission="false" >
 <target name="%job_target_names%[1]" type="%job_target_types%[1]" />
 </privilege>
 <privilege name="MAINTAIN" type="target" evaluateAtSubmission="false">
 <target name="%job_target_names%[2]" type="%job_target_types%[2]" />
 </privilege>
 </securityInfo>
 <!-- An optional <paramInfo> section will follow here, followed by the stepset
definition of the job
 -->
 <paramInfo>

 </paramInfo>
 <stepset ...>

 </stepset>
<displayInfo useDefaultCreateUI="true"/>
</jobType>

Example 8

The following shows an example of a scenario where credentials are passed to a nested job
in the job type specification:

<jobType version="1.0" name="SampleJobType001" singleTarget="true" editable="true"
 defaultTargetType="host" targetTypes="all">
 <credentials>
 <credential usage="osCreds" authTargetType="host"
 defaultCredentialSet="HostCredsNormal" credentialTypes="HostCreds">
 <displayName nlsid="LABEL_NAME">OS Credentials</displayName>
 <description nlsid="LABEL_DESC">Please enter credentials.</description>
 </credential>
 </credentials>
 <stepset ID="main" type="serial">

Chapter 8
Examples: Specifying Job Types in XML

8-45

 <step ID="Step" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="osCreds" />
 </credList>
 <paramList>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 <param name="remoteCommand">/bin/sleep</param>
 <param name="args">1</param>
 </paramList>
 </step>
 <job ID="Nested_Job" type="OSCommand">
 <credList>
 <cred usage="defaultHostCred" reference="osCreds" />
 </credList>
 <targetList allTargets="true" />
 <paramList>
 <param name="command">/bin/sleep</param>
 <param name="args">1</param>
 </paramList>
 </job>
 </stepset>
</jobType>

About Performance Issues
This section provides a brief discussion on issues to consider when designing your job
type. These issues might impact the performance of your job type as well as the
overall job system.

Using Parameter Sources
The following issues are important in relation to the use of parameter sources:

• Parameter sources are a convenient way to obtain required parameters from
known sources, such as the Management Repository or the credentials table. The
parameter sources must be used only for quick queries that fetch information
stored somewhere else.

• Parameter sources that are evaluated at job execution time will, in general, effect
the throughput of the job dispatcher and must be used with care. In some cases,
the fetching of parameters at execution time might be unavoidable and if you do
not care whether the parameters are fetched at execution time or submission time,
set evaluateAtSubmission to false.

• When executing SQL queries to obtain parameters (using the SQL parameter
source), the usual performance improvement guidelines apply. These include
using indexes only where necessary and avoiding the joining of large tables.

Adding a Job Type to Enterprise Manager
To package a new job type with a metadata plug-in, you must adhere to the following
implementation guidelines:

New job types packaged with a metadata plug-in have two new files:

Chapter 8
About Performance Issues

8-46

• Job type definition XML file: Used by the job system during plug-in deployment to define
your new job type. There is one XML file for each job type.

• Job type script file: Installed on selected Management Agents during plug-in deployment.
A single script might be shared amongst different jobs.

The following two properties must be set to "true" in the first line of the job type definition XML
file:

• agentBound

• singleTarget

Here is an example:

<jobType version="1.0" name="PotatoUpDown" singleTarget="true" agentBound="true"
targetTypes="potatoserver_os">

Because the use of Java for a new job type is not supported for job types packaged with a
plug-in, new job types are agentBound and perform their work through a script delivered to
the Management Agent (the job type script file). The job type definition XML file contains a
reference to the job type script file and executes it on the Management Agent whenever the
job is run from the Enterprise Manager console.

Adding a Job Type to an Oracle Plug-in Archive (OPAR)
After you have created the job type definition XML file and modified the target type definition
file, add your files to an Oracle Plug-in Archive (OPAR) just as you would any other target
type. See Validating, Packaging, and Deploying the Plug-in for more information.

Chapter 8
Adding a Job Type to Enterprise Manager

8-47

9
Defining a Management User Interface

Enterprise Manager can be extended to support the management of new domains through
the introduction of discovery, monitoring, and automation. While the Enterprise Manager
framework provides a powerful set of features related to these management capabilities,
most plug-in developers need to expose management capabilities in a way that is appropriate
to their domain. The Metadata Plug-in Custom User Interface (MPCUI) features of Enterprise
Manager provide you with this capability.

This chapter contains the following sections:

• Introduction to Defining a Management User Interface

• MPCUI Concepts

• Creating a Custom UI for a Plug-in

• Creating the MPCUI Metadata File

• Defining Metadata

• Defining the MPCUI Application

• Packaging the MPCUI Implementation With the Plug-in

• Defining System Home Pages

• Defining Navigation

• Accessing Enterprise Manager Data

• Performing Task Automation

• Storing Session State

• Defining Page Layout Components

• Including Packaged Regions

• Defining Charts

• Defining Tables

• Defining Dialogs

• Defining Trains

• Defining Information Item and Information Displays (Label-Value Pairs)

• Using Built-in Renderers

• Defining Links

• Including Enterprise Manager Images

• Displaying a Processing Cursor

• Defining Icons for Target Types

• Displaying the Target Navigator

• Defining a UI for Guided Discovery

9-1

• Building the MPCUI Application into a JS Library

• About Logging

• Development Environment Options

• Home Page Customizations

• Accessibility Guidelines

• Localization Support

• Providing Online Help

• Migrating From Flex to HTML/JS/JET

Introduction to Defining a Management User Interface
As a plug-in developer, you are responsible for the following steps for defining a
custom user interface for managing your target types:

Note:

In addition to this document, the Extensibility Development Kit (EDK)
includes a complete sample implementation that should be used as a guide
during this process.

1. Decide on the model for your target including:

• Associations with other targets

• Performance metrics and configuration data

• Subcomponents of the target

• Administrative tasks and operations

2. Familiarize yourself with the capabilities provided by the MPCUI library, such as:

• UI components that are available (pages, charts, and so on)

• Services that are available (metric data, SQL query, associations, task
execution, and so on)

• Sample implementations and how they are constructed

3. Design the UI based on:

a. Data and tasks that are important

b. Capabilities provided by MPCUI and JavaScript Extension Toolkit (JET)

This can involve drawing the pages and describing their content, and reviewing the
page with domain experts to ensure they expose the appropriate management
capabilities.

4. Create the target metadata for the items in your design (see step 1). This
metadata is necessary to implement your UI later. For more information about
target metadata, see the relevant chapters within this guide.

5. Develop the SQL queries required to retrieve configuration data that will be
displayed in the UI. Typically, these queries reference the configuration CM$ views.

Chapter 9
Introduction to Defining a Management User Interface

9-2

http://www.oracle.com/technetwork/developer-tools/jet/overview/index.html

For more information about configuration data, see Collecting Target Configuration Data.

6. Identify and define the activities that make up your UI, such as pages, wizards, and
dialogs. The Integration metadata defines these activities.

For more information, see Defining Integration Metadata.

7. Implement your custom user interface using MPCUI and JET.

For more information, see Oracle JavaScript Extension Toolkit (Oracle JET).

HTML/JavaScript (JS) Implementation
You are responsible for the following steps:

1. Obtain a copy of NetBeans or comparable IDE.

For more information, see Development Environment Options.

Note:

NetBeans is not required, but the examples will be available in a format (nbm)
which ties them into NetBeans project creation flow. Example source also
available in a zip file for use with an alternate IDE.

2. Create a project to hold the source code for your custom UI. You can use the sample
project included in the EDK as a template, or you can use the MPCUI Starter project
which has the MPCUI JS library and all of the JET libraries but none of the implemented
pages from the samples.

For more information, see Developing MPCUI in NetBeans.

3. Create the MPCUI metadata file. This defines the set of activities included in the custom
UI.

This file includes:

• SQL statements used by your custom UI

• Menu items you want to include to support navigation to different pages defined in
your UI

• Reference to the JS library you built for your custom UI.

• Activity/Dialog/Train definitions used by the MPCUI to navigate through your UI.

For more information, see Creating the MPCUI Metadata File or Defining the Application
Activities.

4. Develop each activity (such as page or dialog). Typically, each page includes a page
class (an HTML file) and a controller class (written in JavaScript extending the
ActivityController class).

For more information, see Defining Pages, Defining Dialogs, and Defining Trains and
Train Pages.

5. Build your JS library and test your custom UI from NetBeans.

Chapter 9
Introduction to Defining a Management User Interface

9-3

http://www.oracle.com/technetwork/developer-tools/jet/overview/index.html

Note:

You must deploy at least one version of your plug-in before building and
testing. The deployed plug-in must include the target metadata (such as
metrics and configuration data). However, the plug-in does not have to
include your MPCUI metadata for testing.

6. Modify your plug-in to include the MPCUI metadata file and the JS library you built.

Place these files in the oms/metadata/mpcui directory of the plug-in staging area.

For more information, see Packaging the MPCUI Implementation With the Plug-in.

7. Test your custom UI by accessing a target home page from the Enterprise
Manager console.

This loads your custom UI in the context of the Enterprise Manager application
and displays the Enterprise Manager application and target menus.

In addition to this document, additional resources for developing with MPCUI/JET
components are provided:

• The API reference: This is located in your partner EDK directory under doc/
sdk_api_ref.html

• The HostSample example plug-in: The sample plug-in provided by Oracle provides
examples of many MPCUI features. It is located in the EDK under samples/
plugins/HostSample

You may also include any of the base HTML/JS/JET components (such as Button,
Label, and so on). Oracle develops the JET library, and you can find the
documentation for the JET library online at the following link:

http://www.oracle.com/technetwork/developer-tools/jet/overview/index.html

Assumptions and Prerequisites
This chapter assumes you are familiar with the following:

• Plug-in development overview, including how to package a plug-in and its XML
files

• HTML and JS technologies

• JET and its dependent libraries (jQuery, knockout, require)

MPCUI Concepts
There are several important concepts that should be understood when using the
MPCUI framework. These concepts are defined briefly in this section and discussed in
more detail in the subsequent sections.

MPCUI Metadata File
The MPCUI metadata file contains the bootstrap for your UI, which is used to define
the set of pages, dialogs, and trains that are included in the UI. The MPCUI framework
uses this information to drive the UI including managing navigation between UI
elements.

Chapter 9
MPCUI Concepts

9-4

http://www.oracle.com/technetwork/developer-tools/jet/overview/index.html

Activity
Top-level UI elements in the MPCUI are referred to generally as activities. Activities include
pages, dialogs, trains and train pages, URLs, and jobs.

Page
This is a construct that is provided by the MPCUI framework to simplify the construction of
the UI and make it fit more naturally into the larger Enterprise Manager console. Typically, this
will refer to an HTML file you create.

The MPCUI framework manages pages within the application, providing simple navigation
between pages and integrating them into the browser history and the Enterprise Manager
menu system.

Services
The MPCUI framework provides a series of services that can be used to retrieve data from
the Management Server or to process actions (jobs or remote operations).

Data Services
The Data Services provided by MPCUI include data services to retrieve metric data,
associations, target properties and so on. It includes a SQLDataService that can be used to
run named SQL statements within the plug-in.

Operation Services
MPCUI includes a Job service and RemoteOp service that can be used to perform
administrative actions against the targets managed by the plug-in code.

• The Job service requires the inclusion of job type definitions in the plug-in

• The RemoteOp service requires the registration of scripts with the plug-in framework

Asynchronous Service Request Handling
The MPCUI framework handles network requests asynchronously. This requires the use of a
result handler pattern where a request is made to the server and as part of the request, a
handler (or callback) is registered with the request. Upon completion of the request (or if a
fault occurs), the handler is called and passed the result.

URL
MPCUI provides a number of different capabilities related to the generation of URLs and the
ability to embed links to:

• Other Enterprise Manager pages

• Other pages within the MPCUI application

• External pages

Chapter 9
MPCUI Concepts

9-5

Creating a Custom UI for a Plug-in
You can create a custom plug-in UI via HTML/JS.

HTML/JS Implementation
To provide a custom UI with a plug-in, you must provide HTML pages for display and
JS for any programmatic conroller logic. The capabilities for what is possible with this
implementation is set by JET, which provides a variety of implementations and
standards to make developing a page or suite of pages easier.

While one of the goals of the MPCUI framework is to provide a simplified layer of
abstraction over the HTML/JS/JET framework with which it is implemented, you must
become familiar with the HTML/JS, the JET framework, and the JS libraries upon
which JET depends.

• HTML

• JavaScript

• JS Library File

HTML
The HTML page will determine the structure of your page, its layout, and what appears
to the plug-in user. Much of what you do using MPCUI can be accomplished in HTML.

JavaScript
For cases that require more complex handling of data or events, you might have to
develop part of the UI using JavaScript. All controller logic is implemented using JS.

JS Library File

When creating a custom UI, the final product will be delivered as a JS library file. All
HTML and JS created to run your plug-in UI are combined into a single JS library file.
This is what is packaged as a part of your plug-in. At runtime, the Enterprise Manager
wrapper page dynamically generates the required references to your JS library and
displays it for the plug-in user.

Note:

You can provide a minified version of your JS library for normal runtime and
also a debug version of the JS library, the use of which can be triggered with
the setting of a query parameter on the page.

Creating the MPCUI Metadata File
Each plug-in that includes MPCUI must include an MPCUI metadata file.

The metadata file:

Chapter 9
Creating a Custom UI for a Plug-in

9-6

• Defines SQL queries required by the MPCUI

• Defines the menu items required by the MPCUI

• Contains UI metadata for the target UI

• Contains UI metadata for discovery

• Specifies target icons, target navigator, and system home page options

For more information about the syntax for this file, see the XSD file located in the Extensibility
Development Kit (EDK) specifications.

The following examples provide a summary of the metadata-based UI MPCUI metadata file
and a summary of the UI metadata file

Example: MPCUI Metadata File

 <CustomUI target_type="demo_hostsample"
xmlns="http://www.oracle.com/EnterpriseGridControl/MpCui">

 <!-- SqlStatements defines the individual SQL statements that are used by
 the MPCUI code. Each statement is identified by a unique name and
 can only be referenced by that name from the MPCUI code itself -->
 <SqlStatements>
 <Sql name="INSTANCE_INFO">
 select * from...
 </Sql>
 </SqlStatements>

 <UIMetadata>
 <Integration>

 </Integration>

 </UIMetadata>

 <!-- MenuMetadata defines the set of menu items that should appear in the
 target menu on the homepage and specifies which of the MPCUI pages
 should be accessed from that menu item -->
 <MenuMetadata>
 <menu label="Host Sample">
 <menuItem>
 <command .. />
 </menuItem>
 </menu>
 </MenuMetadata>

 <EmuiConfig>
 <context-pane-visible>true</context-pane-visible>
 <large-icon>dhs_large.png</large-icon>
 <small-icon>dhs_small.png</small-icon>
 <use-framework-homepage>true</use-framework-homepage>
 </EmuiConfig>

 </CustomUI>

Everything within the <Integration> tag will define the metadata which runs your custom UI.

Overview of MPCUI Metadata Elements
Table 9-1 describes the key elements that define the metadata.

Chapter 9
Creating the MPCUI Metadata File

9-7

Table 9-1 Key Elements Used to Define Discovery Metadata

Element Description

SqlStatements The SqlStatements element contains the SQL statements that
enable you to access information stored in the Management
Repository. For more information about these SQL statements,
see Packaged SQL and the Query Service.

UIMetadata The UIMetadata element is the top-level container for the
integration and page (activity) definitions described by that
metadata:

<UIMetadata>

 <!-- The meta-data only definition must include an
Integration element
 which defines the set of activities (pages,
dialogs, etc.) that make up
 the application -->
 <Integration>
 ...
 </Integration>

</UIMetadata>

Integration The Integration element defines the integration metadata
used to specify the set of pages and to define task flows
between these pages (if required). For information about
integration metadata, see Defining Integration Metadata.

MenuMetadata The MenuMetadata element includes the menuItem elements
that define navigation to activities defined in the MPCUI
metadata. For more information about the MenuMetadata
element, see Defining Navigation.

EmuiConfig The EmuiConfig element includes elements to define the
following

• Target navigator (context-pane-visible)

For more information, see Displaying the Target Navigator.
• Icons to represent target types in the Cloud Control console

(large-icon, small-icon)

For more information, see Defining Icons for Target Types.
• System home page (use-framework-homepage)

For more information, see Defining System Home Pages.

Defining Metadata
For a complete example of an MPCUI metadata implementation, see the Demo
Sample implementation (data/metadata/stage/demo_hostsample_uimd.xml) provided
with the Extensibility Development Kit (EDK).

Defining Integration Metadata
Use the integration metadata to specify the set of pages and to define task flows
between these pages (if required).

Chapter 9
Defining Metadata

9-8

Example: Integration Metadata

<Integration>

 <!--
 The mpcuiLibVersion determines what UI technology stack your code
 runs against. The mpcuiLibVersion is backed by a specific version
 of MPCUI code, but it is also backed by a specific version of JET
 and the libraries that support JET (knockout, jquery, etc.)

 Setting this version guarantees that your code will perform correctly
 against this version of MPCUI and the version of JET which backs it.
 This defaults to MPCUI version 13.2.0.0.0 (backed by JET 2.3.0).
 -->

 <mp:Integration mpcuiLibVersion="13.2.0.0.0"
 xmlns:mp="http://www.oracle.com/EnterpriseGridControl/MpCuiIntegration"
 >
 <!--
 The sourceContext is the deploy time settings which help the MPCUI identify
 where certain aspects of your UI are located so that they may be installed
to
 the Repository.

 These settings are simply a utility to keep the notation in the rest of
the
 file more brief and closer to what was specified in the integration file
from
 the Flex implementation.
 -->
 <mp:sourceContext>
 <!--
 The jsRoot is used as a prefix to any of the jsLibraries or controller
 classes you may specify. It is only used for controller classes in the
 case of an exploded deploy (where each file goes in separately). This
 is not recommended for performance reasons. It is much more efficient
 to package all of your code, JS and HTML, as a library and deploy a single
 file.
 -->
 <mp:jsRoot path="js"/>
 <!--
 The viewRoot is used as a prefix to any of the activities class files
 (HTML, not controllers). Only used if broken out files are used
instead
 of a JS library for delivering a UI. It is much more preferable and
 performant to specify a library, but this is an option as well.
 eg: mp:viewRoot path="ui/view"
 -->
 <!-- The bundleRoot is used as the prefix to any path specified for a
 resourceBundle -->
 <mp:bundleRoot path="rsc"/>

 <!-- The cssRoot is used as the prefix to any path specified for a cssFile
 eg: mp:cssRoot path="ui/view/css"
 -->
 <mp:cssRoot path="css/dhs"/>
 </mp:sourceContext>

 <!--
 Any css files deployed with the plug-in will be loaded in the index.html

Chapter 9
Defining Metadata

9-9

 file.
 -->
 <mp:cssFiles>
 <mp:cssFile id="myCss" path="dhs.css" version="13.1.0.1.0"/>
 </mp:cssFiles>

 <!--
 Any JS libraries used by the UI would be declared here. This
includes any
 libraries the UI may depend upon outside of the ones already
required by
 the MPCUI and JET (so if you used a 3rd party library). It also
includes
 the UI of the plug-in if it is packaged as a library.

 The entries here are used to dynamically generate the main.js file
used by
 the UI at runtime. So any jsPath's listed here will be mapped to
that
 library in the paths at the top of the main.js file:

 requirejs.config({
 paths:
 {
 'knockout': 'libs/knockout/knockout-3.4.0',
 'jquery': 'libs/jquery/jquery-2.1.3.min',
 <jsPath.path>:<jsLibrary>
 ...

 Any jsShims listed here will be added as so:
 <jsShim.name>:
 {
 exports: '<jsShim.exports>',
 deps: ['<jsShim.deps[0]', '<jsShim.deps[1]',...]
 }

 jsShim.deps is a simple comma-delimited list of strings, which is
parsed
 to produce the output above.

 And any jsModules listed here will be added to the require
clause which
 instantiates the MPCUI application at the end of the main.js
file.
 There will be a default list of modules specified, but if you
need any
 additional ones you will have to list them here. They aren't all
added
 by default for runtime performance concerns.

 require([
 'ojs/ojcore',
 'knockout',
 'jquery',
 'emx/intg/MpAppLoader',
 'signals',
 'ojs/ojmodel',
 'ojs/ojknockout',
 <jsModule.module>,
 ...

Chapter 9
Defining Metadata

9-10

 -->
 <mp:jsLibraries>
 <!--
 When the main.js file is generated, each activity controller is put in the
 paths property mapping either to the jsLibrary marked as the default or
 to the library it is specifically noted for (jsPath.activityId)
 -->
 <mp:jsLibrary id="pluginLib" path="libs/dhs/demo_hostsample-min.js"
 debugPath="libs/dhs/demo_hostsample-debug.js"
 version="13.2.0.0.0" isDefault="true">
 <mp:jsModule module="ojs/ojmodel"></mp:jsModule>
 <mp:jsModule module="ojs/ojknockout"></mp:jsModule>
 <mp:jsModule module="ojs/ojknockout-model"></mp:jsModule>
 <mp:jsModule module="ojs/ojcomponents"></mp:jsModule>
 <mp:jsModule module="ojs/ojarraytabledatasource"></mp:jsModule>
 <mp:jsModule module="ojs/ojdatetimepicker"></mp:jsModule>
 <mp:jsModule module="ojs/ojtable"></mp:jsModule>
 <mp:jsModule module="ojs/ojdatagrid"></mp:jsModule>
 <mp:jsModule module="ojs/ojchart"></mp:jsModule>
 <mp:jsModule module="ojs/ojgauge"></mp:jsModule>
 <mp:jsModule module="ojs/ojlegend"></mp:jsModule>
 <mp:jsModule module="ojs/ojselectcombobox"></mp:jsModule>
 <mp:jsModule module="ojs/ojsunburst"></mp:jsModule>
 <mp:jsModule module="ojs/ojthematicmap"></mp:jsModule>
 <mp:jsModule module="ojs/ojtreemap"></mp:jsModule>
 <mp:jsModule module="ojs/ojvalidation"></mp:jsModule>
 <mp:jsModule module="ojs/ojslider"></mp:jsModule>
 <mp:jsModule module="ojs/ojpagingcontrol"></mp:jsModule>
 </mp:jsLibrary>
 <!--
 There can be only 1 default library. Any classes that aren't attached to
 another library will be attached to the default library.

 If not the default, you can associate an activity with the library with:
 mp:jsPath id="activityId"

 and the appropriate path will be added for that activity or the explicit
 path can be set:
 mp:jsPath path="dhs/MyController"

 Shims may also be specified:
 mp:jsShim name="myshim" exports="myshim" deps="jquery, ojs/ojcore"
 -->
 </mp:jsLibraries>

 <!--
 Resource bundles used by this application. They can be declared
 for the entire application or on a page-by-page basis as desired
 -->
 <mp:resourceBundles>
 <mp:MpBundle name="demoUiMsg" path="oracle.samples.xohs.rsc" isDefault="true"/>
 <mp:MpBundle name="demoJobMsg" path="oracle.samples.xohs.rsc"/>
 </mp:resourceBundles>

 <mp:activities>
 <!--
 Each page definition must have an id that is *different* than the page class,
 and must have a pageClass that references the HTML file that lays out the
 page. If the page includes a custom controller to do event handling then the
 pageControllerClass is set to point to the JavaScript class that defines
 the PageController extensions for this page. Finally, one of the pages in

Chapter 9
Defining Metadata

9-11

 the list should include the "isDefaultPage='true'" designation to
indicate
 the 1st page to be loaded.
 -->

 <!-- Pages -->
 <mp:PageActivityDef id='homePg' label='Home' pageClass='dhs/HomePage'
 pageControllerClass='dhs/HomePageController'
 isDefaultPage="true" />

 <mp:PageActivityDef id='perfPg' label='Performance' pageClass='dhs/
PerfPage'
 pageControllerClass='dhs/PerfPageController' />

 <mp:PageActivityDef id='adminPg' label='Administration'
 pageClass='dhs/CredentialsPage'
 pageControllerClass='dhs/
CredentialsPageController'/>

 <mp:PageActivityDef id='filesystemsPg' label='Filesystems'
 pageClass='dhs/FilesystemsPage'
 pageControllerClass='dhs/
FilesystemsPageController'/>

 <mp:PageActivityDef id='processesPg' label='Processes'
 pageClass='dhs/ProcessesPage'
 pageControllerClass='dhs/
ProcessesPageController' />

 <mp:PageActivityDef id='collectionsPg' label='Collections'
 pageClass='dhs/CollectItemPage'
 pageControllerClass='dhs/
CollectItemPageController' />

 <mp:PageActivityDef id='homeExtModelPg' label='Home (Ext Model)'
 pageClass='dhs/HomePageExtModel'
 pageControllerClass='dhs/HomePageModelController' />

 <!-- Trains -->
 <mp:TrainActivityDef id='addNewUserEmbeddedTrain' label='Add New User'>
 <mp:stepActivities>
 <mp:TrainStepActivityDef id='anuStep1' label='User Info'
 pageClass='dhs/user/UserInfo'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep3' label='Credentials'
 pageClass='dhs/user/Credentials'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep2' label='Expiry'
 pageClass='dhs/user/Expiry'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep4' label='Schedule'
 pageClass='dhs/user/Schedule'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep5' label='Notifications'
 pageClass='dhs/user/Notifications'
 pageControllerClass='dhs/user/
NotificationsTrainStepController'/>

Chapter 9
Defining Metadata

9-12

 <mp:TrainStepActivityDef id='anuStep6' label='Confirmation'
 pageClass='dhs/user/Confirm'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 </mp:stepActivities>
 </mp:TrainActivityDef>
 <!-- Add new filesystem train activity definition -->
 <mp:TrainActivityDef id='addNewFSCreateTrain' label='Add New Filesystem'
 trainControllerClass='dhs/filesystem/AddNewFilesystemTrainController'>
 <mp:stepActivities>
 <mp:TrainStepActivityDef id='anfStep1' label='Filesystem Info'
 pageClass='dhs/filesystem/FilesystemInfo'
 pageControllerClass='dhs/filesystem/AddNewFilesystemStepController'/>
 <mp:TrainStepActivityDef id='anfStep2' label='Credentials'
 pageClass='dhs/filesystem/Credentials'
 pageControllerClass='dhs/filesystem/AddNewFilesystemStepController'/>
 <mp:TrainStepActivityDef id='anfStep3' label='Confirmation'
 pageClass='dhs/filesystem/Confirm'
 pageControllerClass='dhs/filesystem/AddNewFilesystemStepController'/>
 </mp:stepActivities>
 </mp:TrainActivityDef>

 <!--
 Dialog activities are defined similar to pages and may also define parameters
 that should be set when accessing the dialog through invokeActivity calls.
 If these parameters are specified, then an input object can be provided and
 the framework will attempt to retrieve the values for these properties from
 the input. This is often done by calling the "bean()" method to construct
 the context but any object that includes the required properties may be
 passed
 -->
 <mp:DialogActivityDef id='metricHistExtModel' label='Metric History'
 dialogClass='dhs/MetricHistoryExtModelDlg'
 dialogControllerClass='dhs/MetricHistoryDlgModelController'>
 <mp:inputParams>
 <mp:InputParam name='targetName'/>
 <mp:InputParam name='targetType'/>
 <mp:InputParam name='metricName'/>
 <mp:InputParam name='metricColumns'/>
 <mp:InputParam name='timePeriod'/>
 <mp:InputParam
name='title'/>

 </mp:inputParams>
 </mp:DialogActivityDef>

 <mp:DialogActivityDef id='metricHistory' label='Metric History'
 dialogClass='dhs/MetricHistoryDialog'
 dialogControllerClass='dhs/MetricHistoryDialogController'>
 <mp:inputParams>
 <mp:InputParam name='targetName'/>
 <mp:InputParam name='targetType'/>
 <mp:InputParam name='metricName'/>
 <mp:InputParam name='metricColumns'/>
 <mp:InputParam name='timePeriod'/>
 <mp:InputParam
name='title'/>

 </mp:inputParams>
 </mp:DialogActivityDef>

Chapter 9
Defining Metadata

9-13

 <mp:DialogActivityDef id='searchProcDialog' label='Search Processes'
 dialogClass='dhs/SearchProcessDialog'
 dialogControllerClass='dhs/
SearchProcessDialogController'>
 <mp:inputParams>
 <mp:InputParam name="searchState" required="false" />
 </mp:inputParams>
 </mp:DialogActivityDef>

 <mp:DialogActivityDef id='credentialsDialog' label='Credentials'
 dialogClass='dhs/CredentialsDialog' >
 <mp:inputParams>
 <mp:InputParam name="credState" required="false" />
 </mp:inputParams>
 </mp:DialogActivityDef>

 <mp:DialogActivityDef id='fsCreateTrainDialog' label='Add New Filesystem'
 dialogClass='dhs/filesystem/FSCreateTrainDialog'
 dialogControllerClass="dhs/filesystem/
FSCreateTrainDialogController" />
 <mp:DialogActivityDef id='rpmInfoDialog' label='RPM Info'
 dialogClass='dhs/RPMInfoDialog'
 dialogControllerClass="dhs/
RPMInfoDialogController" />
 </mp:activities>
 </mp:Integration>
<Integration>

Defining Navigation
References to the page implementations are defined in the metadata in the previous
section, but the pages will not appear in the target instance specific menu unless
specifically added to that section of the XML file:

Defining a menu item in the metadata that can be used to access a page

The MenuMetadata item includes the menuItem elements that define navigation to
activities defined in the MPCUI metadata. For example, if the metadata includes the
following page definition:

 <mp:PageActivityDef id='processesPg' label='Processes' …/>

Specify a menuItem in the MenuMetadata element to allow navigation to the previous
page:

 <menuItem>
 <command id="processesPg" label="Processes"
 class="oracle.sysman.emSDK.pagemodel.menu.EMNavigationMenuCommand
 partialSubmit="true" >
 <property name="actionOutcome" value="goto_core-mpcustom-nav" /><property
name="paramsMap"><mapEntry name="pageid" value="processesPg" />
 </property>
 </command>
 </menuItem>

The key properties in the menuItem element are:

• label within the command element.

Chapter 9
Defining Metadata

9-14

label specifies the label that appears in the target menu on the home page. In the
example given, a menu item “Processes" would be included.

• the value specified for the actionOutcome property.

actionOutcome specifies the view ID for the page containing the SWF file.

Defining the MPCUI Application
The basis for the custom UI built using the MPCUI framework requires the construction of an
HTML/JS-based application. To simplify this process, the framework provides a series of
base classes and structures.

The Integration Metadata in the MPCUI metadata is the core piece of the MPCUI application.
It is used by the MRS to deploy the custom UI correctly. It is used by the runtime MPCUI
wrapper page to define the relationships between pages. It is used to populate the menu
items for the MPCUI page. (It is also used for these last 2 to achieve the same things in the
standalone console when running out of the IDE).

Defining the Application Activities
The MPCUI framework interacts with the integration metadata to understand the structure of
the application, allowing the framework to be the primary driver behind the display of and
navigation between the UI elements that make up the application.

The application activities are registered solely in the MPCUI integration metadata.

Example: Application Activities

<Integration>
 <mp:Integration mpcuiLibVersion="13.2.0.0.0"
 xmlns:mp="http://www.oracle.com/EnterpriseGridControl/MpCuiIntegration"
 >

...

 <!-- The integration class defines the pages, dialogs
 and trains included in the application -->
 <mp:activities>
 <!--
 Each page definition must have an id that is *different* than the page class,
 and must have a pageClass that references the HTML file that lays out the
 page. If the page includes a custom controller to do event handling then the
 pageControllerClass is set to point to the JavaScript class that defines
 the PageController extensions for this page. Finally, one of the pages in
 the list should include the "isDefaultPage='true'" designation to indicate
 the 1st page to be loaded.
 -->

 <!-- Pages -->
 <mp:PageActivityDef id='homePg' label='Home' pageClass='dhs/HomePage'
 pageControllerClass='dhs/HomePageController'
 isDefaultPage="true" />

 <mp:PageActivityDef id='perfPg' label='Performance' pageClass='dhs/PerfPage'
 pageControllerClass='dhs/PerfPageController' />

Chapter 9
Defining the MPCUI Application

9-15

 </mp:activities>
</mp:Integration>

Defining Pages
Each page must be registered with the MPCUI framework through the Integration
metadata by adding a PageActivityDef. The PageActivityDef is defined by:

• Page

The page is the concrete implementation of the page, that is its layout and
contents and is an HTML file.

• Page controller

The page controller is a class that extends the ActivityController base class
and encapsulates the set of handlers that support interacting with the Enterprise
Manager services layer to obtain data and bind it to the UI components and
respond to events issued by the UI on behalf of the end-user (e.g.button presses
or link clicks)

Each application must include at least one page (one page activity) and you must
identify one of the page activities as the default page.

Note:

The default page is displayed by the MPCUI framework as the home page
for the selected target

Page
The Page is the top-level UI element in the application. The framework provides
integration of pages into the Enterprise Manager console by::

• integrating pages with the Enterprise Manager menu system

• performing updates of the browser history so that pages can be bookmarked

• providing simple navigation between pages

Implement pages in HTML. The tag language that is used to describe the page
includes a mix of basic HTML, JET components, and MPCUI-provided components for
layout and data display. The description of each component and example for its use
are included in subsequent sections of this document.

For examples of the page class, see the HomePage.html and ProcessesPage.html
files from the Demo HostSample in the EDK.

Page Model
Components within the page display information obtained through the Enterprise
Manager services layer, and typically are bound to this data through the page model.
The page model is the set of data associated with the page. The framework manages
the lifecycle of this data so that as pages are displayed, data is loaded. When pages
are removed, the data is cleaned up.

Chapter 9
Defining the MPCUI Application

9-16

Specify the data included in the page model by:

• using data service tags

• adding data directly to the page model in the result handlers for Enterprise Manager
service requests

For additional information about describing the use of the service layer and how data is
added to the model, see Performing Task Automation.

The page model is implemented through the KnockoutJS library, which makes model objects
dynamic when bound in the HTML page. So references to items on the page model from
components in the HTML will be dynamically updated when the model is changed in the
controller. Oracle recommends that the Page code is limited to the layout of the UI elements
that make up the page. Delegate data binding and event handling to the controller. This
ensures that the MPCUI framework can manage the lifecycle of each page and the data
bound to it correctly.

Page Controller
The page controller is a class that extends the PageController base class and includes the
code that interacts with the Enterprise Manager services layer to obtain data and to process
administrative actions. Furthermore, the controller contains the set of event handlers that are
called in response to events issued from the Page components.

Note:

A page controller is not necessary if all of the data displayed in the page can be
specified through the component tags or the DataService tags and custom event
handling is not necessary.

For example, if a page is a container for a number of Chart components, then each
component supports the specification of the metric to be displayed in the chart. The
component interacts with the MPCUI framework to manage the life cycle of that
data correctly.

For cases where a controller is necessary, the init(page) method is the location in the code
where you can load data to be bound to the page UI elements. For examples for interacting
with Enterprise Manager services and binding using the page model, see Performing Task
Automation.

In addition to the init method, the controller includes methods that respond to events
originating in the page. In cases where it is necessary to perform some processing in
response to an event (for example, a button press), you can reference a method in the
controller that will be called when that event occurs.

• Within the Page:

 <mp-link id="showHistory" params="label: getString('SHOW_HISTORY'),
 destination: cb(controller.showHistoryDialog,
 bean('title', 'Title', 'metricName',
 'CPUProcessorPerf', 'metricColumns',
 ['CPUIdle'], 'timePeriod',
'LAST_DAY'))”>
 </mp-link>

Chapter 9
Defining the MPCUI Application

9-17

• Within the Controller:

HomePageController.prototype.showHistoryDialog = function(context, event) {
 this.page.invokeActivity('metricHistory', context);
 };

In the page code, a reference to controller is all that is necessary to interact with
code included in the page controller. The framework manages creating the controller
class when the page is loaded and provides the ability to call through into the
controller to take some action.

The framework simplifies the process for taking some actions by providing
convenience methods that can be called directly from the Page without requiring
additional event handlers in the controller. For example, accessing another activity can
be done in most cases without requiring additional controller code.

In the following example, clicking the link redirects the application to the processesPg
activity.

 <mp-link id="procLink" params="label: ‘Show Process’,
 destination: invokeActivityCb(‘processesPg’)">
 </mp-link>

Note:

For more information, see the HomePageController.js and
ProcessesPageController.js files from the Demo Sample.

Defining Dialogs
Dialogs are popup windows that display on top of the application without navigating
away from the current Page displayed. Dialogs are defined in HTML files and do not
have separate controller classes (although they can).

<mp-dialog params="mpDialog : { height:360, width:450 }" >
 <mp-row>
 <mp-column>
 <div style="width:100%;height:35px">
 <select id="selMemChart" data-bind="ojComponent: {component:
'ojSelect',
 options: model().timePeriodList, value:
model().selectTimePeriod, optionChange: cb(controller.changeChart),
 rootAttributes: {style:'max-width:20em'} }">
 </select>
 </div>
 <mp-chart id="metDataCustBinding"
 params="mpChart : { type: 'line',
 dataSelection: 'multiple',
 emptyText: 'No data',
 legend: {rendered: false},
 yAxis: {min: 0, max: 100},
 styleDefaults: {colors: Colors.DEFAULT_COLORS},
 animationOnDisplay: 'auto',
 targetName: appModel.target.name,
 targetType: appModel.target.type,
 metricName: model().metricName,
 metricColumns: model().metricColumns,

Chapter 9
Defining the MPCUI Application

9-18

 timePeriod: model().timePeriod}"
 style="width:100%;height:calc(100% - 35px)" >
 </mp-chart>
 </mp-column>
 <mp-row>
</mp-dialog>

In the previous example, the dialog references model as the source of the properties it uses
in the UI components.

Initialize the dialog model either:

• In a controller associated with the dialog

• By the MPCUI framework if the Dialog definition in the Integration class specifies input
parameters

 <mp:DialogActivityDef id='metricHistory' label='Metric History'
 dialogClass='MetricHistoryDialog' >
 <mp:inputParams>
 <mp:InputParam name='targetName'/>
 <mp:InputParam name='targetType'/>
 <mp:InputParam name='metric'/>
 <mp:InputParam name='columns'/>
 <mp:InputParam name='period'/>
 <mp:InputParam name='title'/>
 </mp:inputParams>
 </mp:DialogActivityDef>

Note:

In this case, you must supply a bean as input that includes the input parameters
required by the dialog.

<mp-link id="showHistory" params="label:
getString('SHOW_HISTORY'),
 destination: cb(controller.showHistoryDialog,
 bean('title', 'Title',
'metricName',
 'CPUProcessorPerf',
'metricColumns',
 ['CPUIdle'], 'timePeriod',
'LAST_DAY'))”>
</mp-link>

For more examples, see the MetricHistoryDialog.html and the
AvailabilityDialog.html files from the Demo Sample.

Defining Trains and Train Pages
The train activity enables you to define a train (a guided workflow or wizard) by stringing
together a series of pages.

To define a train, include a declaration of the train itself (TrainActivityDef) and each of the
steps (TrainStepActivityDef) in the Integration class:

Chapter 9
Defining the MPCUI Application

9-19

 <mp:TrainActivityDef id='addNewUserEmbeddedTrain' label='Add New User'>
 <mp:stepActivities>
 <mp:TrainStepActivityDef id='anuStep1' label='User Info'
 pageClass='dhs/user/UserInfo'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep3' label='Credentials'
 pageClass='dhs/user/Credentials'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep2' label='Expiry'
 pageClass='dhs/user/Expiry'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep4' label='Schedule'
 pageClass='dhs/user/Schedule'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep5' label='Notifications'
 pageClass='dhs/user/Notifications'
 pageControllerClass='dhs/user/
NotificationsTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep6' label='Confirmation'
 pageClass='dhs/user/Confirm'
 pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 </mp:stepActivities>
</mp:TrainActivityDef>

The TrainController includes the following methods:

• init(Train): a method that is called when the train is loaded, and enables you to
control the model associated with the train.

• trainDone: a method that is called when the user clicks the Finish or Cancel
button within the train. At that point, you can inspect the train state (whatever is
stored in the train model) to do one of the following

– Control if the train should complete and continue to the completion activity

– Take some other action such as moving the train back to a previous step by
using the train.setStep method or end the train and invoke another activity.

Each train step HTML within the train starts with the mp-train-step-page tag(a special
type of Page) and be associated with a controller (TrainStepController). In this case,
the controller is a special type of PageController, and includes support for
the init(Page) method that enables you to initialize the contents of the train page.
Because the page is within a train, it might refer to either its own page model (such
as model().property) or it might refer to data stored in the train model (such
as train.model().property).

Finally, in either the train step controller or the train controller, the code can check for
state and if the train can complete, that is, all the required information is entered, then
the controller code can call train.setMayFinish().

Defining URLs
UrlActivityDef support the ability to define a URL that can be accessed using the
invokeActivity directive from a UI component click handler (for example, InfoItem,
ImageLink, and Button). The URL can be represented as an absolute URL including all

Chapter 9
Defining the MPCUI Application

9-20

request parameters, or parameters can be supplied at runtime. To define the URL that should
have URL parameters substituted at runtime, define the UrlActivityDef to include inputParams
as follows:

 <mp:UrlActivityDef id='oracle' label='myExtApp' urlBase="http://www.extapp.com" >
 <mp:inputParams>
 <mp:InputParam
name='pageId' />

 </mp:inputParams>
 </mp:UrlActivityDef>

To reference the URL the invokeActivity directive used specifying the id of the UrlActivityDef
and passing a bean that includes the parameter and the appropriate value. The parameters
provided will be added to the URL as request parameters.

<mp-info-item id="currentLoad" params=”label: ‘CPU Load’,
 value: respData.result.getString('','Load'),
 destination: function(){invokeActivity('extapp',
bean('pageId','Load'));}”
></mp-info-item>

In this example, the URL that is accessed is http://www.extapp.com&pageId=Load.

Packaging the MPCUI Implementation With the Plug-in
Include the MPCUI implementation in a plug-in by placing a metadata definition of the MPCUI
in the /mpcui subdirectory of the plug-in stage directory. For information about the structure
and packaging of plug-ins, see Validating, Packaging, and Deploying the Plug-in .

Put the MPCUI metadata file and any other files (CSS, JS, etc.) in the following directories:

plugin_stage/oms/metadata/mpcui/my_mpcui_metadata.xml

plugin_stage/oms/metadata/mpcui/js/libs/mylib/my_mpcui.js
…

Note:

In the previous examples, set the names of the XML (my_mpcui_metadata.xml) and
other files according to your requirements as a plug-in developer.

Defining System Home Pages
For target types identified as system targets, there are three options for which home page is
rendered for the system target.

1. Display the Enterprise Manager default system home page.

This page shows a summary of the availability and incidents for the system members.
This option is enabled by either of the following:

• Omitting MPCUI metadata from your plug-in

Chapter 9
Packaging the MPCUI Implementation With the Plug-in

9-21

• Including MPCUI metadata in the plug-in and including the following
<EmuiConfig> element in the MPCUI metadata file:

Example: Using the Default System Home Page

<CustomUI target_type="demo_hostsystem"xmlns="http://www.oracle.com/
EnterpriseGridControl/MpCui">

 <EmuiConfig>
 <use-framework-homepage>true</use-framework-homepage>
 </EmuiConfig>
</CustomUI>

Figure 9-1 Default System Home Page

2. Display the Enterprise Manager default system home page, with some customized
content.

The home page can show a number of prepackaged regions in a customized
layout. The use of the default home page is controlled by metadata as illustrated in
the example in step 1.

The selection of regions and their layout on the home page is specified by
including systemUiIntegration metadata in the plug-in. For more information, see
Defining systemUiIntegration Metadata

Chapter 9
Defining System Home Pages

9-22

Figure 9-2 System Home Page With Some Customization

3. Construct a custom home page using the MPCUI capabilities included with the EDK.

The home page is constructed using HTML/JS and MPCUI. There are several data
services and UI components that are provided by MPCUI specific to system or composite
target types. For more information, see Defining System Regions

Figure 9-3 Customized System Home Page

Defining systemUiIntegration Metadata
To use the default system home page with some customized content:

Chapter 9
Defining System Home Pages

9-23

1. Define a systemUiIntegration Metadata XML file for your target type including the
following information:

• Preferred layout

• Add or remove regions (only required if you want to modify regions)

The following example provides an example of a systemUiIntegration
Metadata XML file.

For information about the XML Schema Definition (XSD) that governs the
systemUiIntegration Metadata XML file, see ORACLE_HOME/sysman/
emSDK/core/system/xml/SystemUiIntegration.xsd.

Example: systemUiIntegration Metadata XML

<systemUiIntegration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/
SystemUiIntegration.xsd"
 xmlns="http://www.oracle.com/EnterpriseGridControl/
SystemUiIntegration">

<general targetType="demo_hostsystem"
 defaultLayout="twoColumnNarrowLeft"
 showOptionalRegions="false"
 topLevelTarget="true"
 allowCreateFromSystemsUi="true"/>

 <region taskFlowId="/WEB-INF/db/system/region/db-system-region-hihgavail-
task-flow.xml#db-system-region-hihgavail-task-flow"
 titleResBundle="oracle.sysman.db.rsc.inst.DBMsg"
 titleNlsId="GENERAL"
 titleDefText="General"
 regionType="add"
 displayOrder="1" />

 <region taskFlowId="/WEB-INF/sdk/core/regions/events/console/incident-
overview-task-flow.xml#incident-overview-task-flow"
 titleResBundle="oracle.sysman.core.groups.ui.CoreGroupsUiMsg"
 titleNlsId="ISSUE_OVERVIEW"
 titleDefText="Issue Overview"
 regionType="add"
 displayOrder="4" />

 <region taskFlowId="/WEB-INF/sdk/core/regions/jobs/jobs-activity-task-
flow.xml#jobs-activity-task-flow"
 titleResBundle="oracle.sysman.db.rsc.inst.DBMsg"

titleNlsId="JOB_ACTIVITY"

titleDefText="Job Activity"
 regionType="add"

displayOrder="7" />

 <region taskFlowId="/WEB-INF/db/system/region/db-system-region-dep-members-
task-flow.xml#db-system-region-dep-members-task-flow"
 titleResBundle="oracle.sysman.core.groups.ui.CoreGroupsUiMsg"

titleNlsId="DEPENDENT_TARGETS"

titleDefText="Dependent Targets"

Chapter 9
Defining System Home Pages

9-24

 regionType="add"
 displayOrder="9" />

 <region taskFlowId="/WEB-INF/sdk/core/regions/gccompliance/target/compliance-
overview-task-flow-brief.xml#compliance-overview-task-flow-brief"
 titleResBundle="oracle.sysman.core.groups.ui.CoreGroupsUiMsg"

titleNlsId="COMPLIANCE_SUMMARY"

titleDefText="Compliance Standard Summary"
 regionType="add"

displayOrder="6" />

 <region taskFlowId="/WEB-INF/sdk/core/regions/mos/patch/target-patch-
recommendation-task-flow.xml#target-patch-recommendation-task-flow"
 titleResBundle="oracle.sysman.db.rsc.inst.DBMsg"

titleNlsId="PATCH_RECOMMEND"
 titleDefText="Patch
Recommendations"
 regionType="add"
 displayOrder="12"/>

 <region taskFlowId="/WEB-INF/config/adfc/blackout/region/emcore-groups-blackout-
task-flow.xml#blackout_group_taskflow"
 titleResBundle="oracle.sysman.core.groups.ui.CoreGroupsUiMsg"
 titleNlsId="BLACKOUTS"

titleDefText="Blackouts"
 regionType="add"
 displayOrder="2" />

 <region taskFlowId="/WEB-INF/sdk/core/regions/ecm/history/config-history-task-
flow.xml#config-history-task-flow"
 titleResBundle="oracle.sysman.db.rsc.inst.DBMsg"

titleNlsId="CONFIG_CHANGES"

titleDefText="Configuration Changes (24 Hours)"
 regionType="add"

displayOrder="5" />

</systemUiIntegration>
2. Save the systemUiIntegration Metadata XML file to the following directory:

plugin_stage/stage/oms/metadata/systemUiIntegration
3. If your plug-in is deployed already, then you can use the emctl register oms metadata

command to update the MPCUI part of your plug-in only. For more information about the
emctl register oms metadata command, see Updating Deployed Metadata Files Using
the Metadata Registration Service (MRS).

Defining System Regions
The MPCUI framework supports a number of regions that can be used as part of a home
page built to display information for a system target.

Chapter 9
Defining System Home Pages

9-25

Defining System Status Region
The system status region shows the recent availability of the system target and all of
its members. The region is included in the system home page by using the following
tag:

<mp-status-overview-region id="statusOverview" height="50%"></mp-status-overview-
region>

Figure 9-4 System Status Region

Defining System Issues Region
The system issues region shows the summary count of incidents for all of the targets
in the system. The region is included in the system home page by using the following
tag:

<mp-issues-overview-region id="issuesOverview" height="50%"></mp-issues-overview-
region>

Chapter 9
Defining System Home Pages

9-26

Figure 9-5 Issues Overview Region

Defining the System Job Activity Region
The system job activity region displays the number of jobs in each of the primary job status
for the system target and the summary for all the system members.

<mp-jobs-activity-region id="jobsOverview" height="40%"></mp-jobs-activity-region>

Figure 9-6 System Job Activity Region

Defining Navigation
Navigation in the MPCUI application can be either of the following:

Chapter 9
Defining Navigation

9-27

• Between activities defined in the application. For more information, see Navigation
to Activities.

• To other URLs, where URL refers to other Enterprise Manager pages or to
external URLs. For example:

http://www.example.com

For more information, see URL and Links.

Navigation to Activities
Defining Navigation describes the approach to navigating between activities. These
descriptions apply to navigating to activities from the menu or from another activity
defined in HTML..

This section describes how to navigate to another activity from within the controller
code, that is the JavaScript code associated with an activity.

 MyController.prototype.showProcessorHistory = function(event) {
 // show an example of invoking an activity (a dialog in this case) and
 // getting information from the dialog when it returns (is closed)

 // create the context to be passed to the dialog
 var bean = new Bean('targetName',
 TargetContext.getTargetName(), 'targetType',
 TargetContext.getTargetType(),
 'metric', 'CPUProcessorPerf', 'columns', ['CPUIdle'],
 'period', 'LAST_DAY', 'title', 'Metric History');

 this.page.invokeActivity('metricHistory', bean,

this.page.cb(this.processorHistoryDone));
 };

The preceding example shows a controller method that uses the
page.invokeActivity method to redirect to another activity (in this case, a dialog).

Note:

The callback input is this.page.cb(this.processorHistoryDone). The purpose
of this notation is to maintain the context within the callback. When a function
gets called, we guarantee the value of “this” by creating a closure.
“this.page.cb” is a helper utility which binds the current “this” to your callback,
so when the code finally gets into this.processorHistoryDone “this” has the
same value, which would typically be your Controller class.

URL and Links
There are a number of different methods for navigating from components in the
MPCUI application to other locations through a URL. Use the mp-link component to
render an HTML-style link including a tool tip and location.

• Absolute URL (external to Enterprise Manager)

Chapter 9
Defining Navigation

9-28

To provide a link to an absolute URL, use the “UrlAbs" class and an instance of this class
can then be associated with a Link destination or can be accessed through
the invokeActivity method.

 In the Page HTML:

 <mp-link id="gotoOracle" label="Oracle" destination="model().oracleUrl">

 </mp-link>

 In the Controller Class:
 page.setModel(“oracleUrl", new UrlAbs("http://www.oracle.com", "Oracle"));

Alternative method using invokeActivity:

 In the Page Class:
 <button label="Go To Oracle"
 click="function(){invokeActivity(model().oracleUrl)}" />
 <button label="Go To Oracle"
 click="invokeActivityCb(model().oracleUrl, null)" />

 In the Controller Class:
 page.setModel(“oracleUrl", new UrlAbs("http://www.oracle.com", "Oracle"));

• Link to Enterprise Manager Page Using Page Constants

In addition to absolute URLs, the MPCUI framework supports the ability to link to well
known Enterprise Manager pages by constructing a “UrlEm" object that can be
referenced from the Link destination or passed to the invokeActivity method as part of
a click handler. The reference guide includes a complete list in the
oracle.sysman.emx.Constants class of all page constants available and the
corresponding parameters that must be specified to produce a URL.

 // setup link to availability page
 var availLink:UrlEm = new UrlEm(Constants.PAGE_AVAILABILITY,
 [new InputParam(Constants.P_TARGET_NAME,
 ApplicationContext.getTargetName()),
 new InputParam(Constants.P_TARGET_TYPE,
 ApplicationContext.getTargetType()),
 new InputParam(Constants.P_PAGE_TYPE,
 Constants.BY_DAY)]);
 page.setModel("availPageLink", availLink);

• Link to Enterprise Manager Pages That Do Not Have Constants Defined

Note that UrlEm can only be used to access pages that are supported via page constants
in the oracle.sysman.emx.util.Constants class. For pages that do not currently have
constants defined, you can access a page by creating a UrlRel object containing the
page's ADF view ID value.

For example, to access the Bare Metal Provisioning dashboard, you would specify the
page's view ID (/faces/core-bmp-dashboard) as follows:

 var url:UrlRel = new UrlRel("/faces/core-bmp-dashboard", null);

The easiest way to find the view ID for a given ADF page is in the page URL; it is the
string following http://<server:host>/em/.

• Link to Enterprise Manager Target Home page

Chapter 9
Defining Navigation

9-29

A special case is to produce the URL to an Enterprise Manager target home page.
For this situation, use the static UrlEm.homepageUrl method:

 page.setModel("relatedHostLink", UrlEm.homepageUrl(host.name, host.type));
• Dynamic URL Using “DIRECT_URL"

For cases where a URL must be constructed dynamically at runtime from a data
service, the following option may be used. The activity id "DIRECT_URL" is
reserved for the special case and is provided by the framework. No UrlActivityDef
is declared in this case, but instead the invokeActivity directive is passed a bean
that specifies the "url" property. The value provided for that property will be used
as the URL to direct to when the component is clicked.

In the following example, the data service "respData" is queried to obtain a URL.
This would be replaced by whatever data service is used within the page to obtain
the necessary URL. This may be a MetricValuesDataService or a SqlDataService.

<mp-info-item id="currentLoad" params=”label: ‘CPU Load’,
 value: respData.result.getString('','Load'),
 destination: invokeActivity('DIRECT_URL',
 bean('url',
 respData.result.getString('','Load')))">
</mp-info-item>

Adding Links to External Applications
Providing the ability to link to other applications outside of Enterprise Manager is not
currently supported.

Accessing Enterprise Manager Data
The MPCUI framework provides access to Enterprise Manager services through
JavaScript interfaces to the Enterprise Manager Web services layer. You can access
these client services directly when necessary. Although in many cases, the services
are further abstracted through UI components that utilize them to interact with the
Enterprise Manager server to obtain the appropriate data to be displayed in the
management UI.

The following sections describe the various services included in the MPCUI framework
and provide brief examples of how these services can be used from your code.

Note:

The EDK does not support accessing arbitrary Web services. The
appropriate way to access Web services would through the Management
Agent residing on the service host, as either metrics, jobs or remote
commands invoked by a fetchlet.

Metric Services
The MPCUI provides a simple service for retrieving metric data from the Management
server in either real-time or historical form. For real-time data, the Oracle Management

Chapter 9
Accessing Enterprise Manager Data

9-30

Service accesses the Management Agent to retrieve the data, so use this for cases where
the metric can be collected efficiently in real time.

Using the Metric Values Service Transparently
Usually the metric values service is used transparently from a chart by specifying the metric
to be displayed in the chart and in the case of a line chart, the periodicity of the data.

<mp-chart id="cacheChart" style=”width:100%;height:100%”
 params=”mpChart: {
 type: ‘line’,
 metricName: ’MSSQL_MemoryStatistics’,
 metricColumns: ['cache_hit_ratio'],
 timePeriod: ’REALTIME’,
 interval: 15}" >
 </mp-chart>

In this case, the caller never interacts directly with the service. The MPCUI framework uses
the service to retrieve the data for the chart.

In the case of the table component, you can specify the metric directly also:

<mp-table id="processesTable" style=”width:100%;height:100%"
 params=”mpTable: {metricName: ’CPUProcessesPerf’,
 metricColumns: ['ProcUser', 'ProcCPU', 'ProcCmd'],
 timePeriod: ‘REALTIME’, interval: 30,
 columns: [
 {headerText: 'Key', field: 'key', id: 'key', headerStyle:
'width:50px'},
 {headerText: 'User', field: 'ProcUser', id: 'ProcUser', headerStyle:
'width:100px'},
 {headerText: 'CPU', field: 'ProcCPU', id: 'ProcCPU', headerStyle:
'width:80px'},
 {headerText: 'Command', field: 'ProcCmd', id: 'ProcCmd', headerStyle:
'width:400px'}
]}"
 >
</mp-table>

Using the MetricValuesDataService Tag
Use the mp-metric-values-data-service tag within a page (or dialog) to display metric data
in a table component, where the dataService attribute of the table is set to the data service.
Then the data from the metric service is displayed in the table or when data from the service
will be shared between multiple components (for example, the table and a link or label).

Example: Using the MetricValueDataService Tag

 <mp-data-services>
 <mp-metric-values-data-service id="mv1" params=”flattenData: true
 targetName: appModel.target.name,
 targetType: appModel.target.type,
 metricName: ‘Load’, columns: ['cpuUtil', 'cpuUser', 'cpuKernel'],
 timePeriod: ‘LAST_DAY’"
 > </mp-metric-values-data-service>
 </mp-data-services>
 <mp-table id="mvTable" params=”mpTable: { dataservice: ‘mv1’ }" > </mp-table>

Chapter 9
Accessing Enterprise Manager Data

9-31

Calling the Metric Value Service from a Controller
The metric value service can be called from within a controller. This is the most flexible
means of using the service and allows the caller to manipulate the data as necessary
before adding the final results to the model so that it can be displayed in the UI.

Retrieving Individual Values from the Metric Service (HTML)

You can retrieve individual values from the metric service in order to display them in a
Label, InfoItem, or other such component.

 <mp-metric-values-data-service id="procData" params="flattenData:true,
 targetName:appModel.target.name,
 targetType:appModel.target.type,
 metricName:'CPUProcessorPerf',
 columns:['CPUIdle'],
 timePeriod:'CURRENT',
 interval:15">
 </mp-metric-values-data-service>

Then from the component that will display the value:

<mp-info-item params="label: ‘CPU(0) Idle %’,
 value="procData.result.getString('0','CPUIdle')">
</mp-info-item>

Example: The Metric Service from a Controller

 var cpuPerf =
 TargetContext.getTargetContext().getMetric("CPUPerf");
 var cpuPerfSel = procMetric.getSelector(
 ['system','idle', 'io_wait']);
 cpuPerfSel.getData(page.cb(this.cpuDataHandler),
 MetricCollectionTimePeriod.CURRENT, page.getBatchRequest());

Use the metric service by creating a MetricSelector for a particular metric, and then
calling the getData method on that selector. When calling the getData method, two
parameters are passed:

• a callback to the handler that will be called with the result of the request

• the periodicity of the selection

When the service request has completed, either successfully or with an error, the
handler is called and passed the results of the request and a fault. The caller must
check for the presence of the fault before proceeding with any processing of the data
result.

Example: Metric Service Result Handler

 MyController.prototype.cpuDataHandler = function(cpuData, fault) {
 if (fault != null) return; // handle this better!

 var dataPoint = cpuData.results[0];
 var collectionTime = dataPoint.timestamp;
 var idleTime = dataPoint.data[0]['idle'];
 var systemTime = dataPoint.data[0]['system'];
 var ioWaitTime = dataPoint.data[0]['io_wait'];
 };

Chapter 9
Accessing Enterprise Manager Data

9-32

To access the data, you must have the reference to
dataService.result.getString(‘key','column'). The key is required to identify the row in
the sample to be returned in cases where the metric supports multiple keys. If the metric
does not include a key column, then the key value should be passed as ‘' or null. The column
is the data column to be retrieved from the metric definitions.

Each data point (TimestampMetricData) has a time stamp member that tells you when that
data point was collected, and includes a data array that is effectively a table for that metric.

If the metric has multiple keys (such as process, file systems, and so on), then the data array
has multiple rows, one for each key, and each row has the requested data columns. In the
previous examples, the data array contains one row for each process. If your metric does not
include key columns, then the data array contains a single row only.

Each row in the data array is a KeyMetricData object. If your metric has keys, then the
metricKey property tells you to which key the row applies. If you have no key for your metric,
then ignore this property. The KeyMetricData is a dynamic object into which you can index,
using the column name to get the value for that column.

In the previous examples, the code walks the rows in the data array, and for each row
(KeyMetricData) it gets the ‘ProcUser' column from the data. The original request also
included the ‘ProcCPU' and ‘ProcCmd' columns, so those could be accessed in the same
way, that is, data[‘ProcCPU'] or data[‘ProcCmd'].

Metric Data Source Filters
When using the metric data service through the mp-metric-values-data-service in HTML or
the MetricSelector in JavaScript, it may be useful to request that the set of data returned by
the service be filtered according to some additional selection criteria. This can be
accomplished within the controller by implementing a custom data source and then filtering
the results of the metric service in the controller and populating the custom data source with
the results.

It is also possible to define a metric filter that can be applied to the request which will cause
the service itself to filter the results and return only the filtered set to the client for display.

The metric filter, referred to as MetricPredicate, is made up of several elements, including
individual column filters, the filter operator, and the optional order by criteria. Each column
filter specifies a column to filter, the operator to filter by. and a value to filter against. The
column filters support typical operators for numeric data, including GT, LT, GE, and LE.

For string data, the operators include EQ, NE, and REGEX. The REGEX operator will
perform a regular expression string match using each value with the filter input value as the
pattern. The regular expression pattern match is done using Java regex libraries, so the
pattern should conform to the requirements of Java pattern matching.

The predicate operator combines the column filters into a single expression and supports
either an AND (all column filters must be satisified) or an OR (any of the column filters being
satisfied is sufficient). The order by criteria specifies a column to order the results by and a
row count to limit to. This is useful in cases where a "top-N" result is desired.

When constructing a metric filter, the columns filters can be optional and an order by only
specified. Alternately, the order by can be optional and the column filters only are specified.
When constructing a metric filter, all columns included in column filters and in the order by
must be part of the same metric, and it must be the metric that is being selected in the
corresponding metric data service request. Combining columns from multiple metrics into the
same filter is not supported.

Chapter 9
Accessing Enterprise Manager Data

9-33

The following example describes the process for defining a metric filter on a mp-
metric-values-data-service tag. The data service tag includes the "predicate" property
which is bound to the corresponding metric filter (MetricPredicate) as such:

<mp-metric-values-data-service
 id="fsMetDs"
 params=”metricName: ‘FilesystemPerf’,
 columns: ['MountPoint','Utilization','FreeKB','UsedKB','TotalKB','FSType',
 'FSName'],
 targetName: appModel.target.name,
 targetType: appModel.target.type,
 timePeriod: ‘LAST_HOUR’,
 predicate: model().fsFilter"
 ></mp-metric-values-data-service>

In the controller associated with the page, the filter is constructed by specifying the
filter columns, operator, and order by criteria. In the following example, the file systems
metric request from the service above is filtered to those filesystems with a TotalKB
size of greater than 1000kb and a regular expression match on the filesystem name
(FSName) of '.net'. Finally, the results are ordered by the FreeKB column descending
limited to the first five filesystems.

MyController.prototype.createFsFilter = function() {
 var filters = [
 new MetricFilter('TotalKB', MetricOperator.GT, 1000),
 new MetricFilter('FSName', MetricOperator.REGEX, '(.*)net(.*)')
];
 var orderBy = new MetricOrderBy('FreeKB', MetricOrderBy.DESC, 5);
 var predicate = new MetricPredicate(filters, MetricOperator.AND, orderBy);

 return predicate;
};

Custom Data Source
In addition to the metric and SQL data sources (and service tags) that can be used to
obtain data for charts, tables and other components, you can construct your own
custom data source for these components. This is useful in situations where you want
to obtain data from other MPCUI services and manipulate it before display. For
example, to combine data from two metrics, filter the data in some way, or otherwise
aggregate the data.

Creating a custom data source requires the use of controller code to obtain the source
data and then to manipulate it to create the data source. The custom data source
provides the following important behavior:

• Set column descriptors for the data included in the data source to provide help to
the UI component when displaying the data. The descriptor contains properties
such as data type, and display label (for legends or column headers).

• Support multiple data points to enable the display of the data in a time-series
chart.

• Support caching and modification of the data source allowing components to show
updated data as information underlying the data source changes.

Chapter 9
Accessing Enterprise Manager Data

9-34

Creating the Custom Data Source
Typically the custom data source (oracle.sysman.emx.model.CustomDataSource) is
constructed and set in the page model using Page.setModel. When constructing the data
source, you must specify the columns (or data items) that make up the data source along
with a flag that can indicate the following:

• If the data should be treated as if it includes a key

Specify the key only if the data source will be displayed in a chart that honors keys such
as a bar or column chart. If the data will be shown in a tabular view or a non-chart
component, then you do not have to identify one of the columns as a key.

• If the data should be treated as if it includes multiple timestamp samples

Specify that the data includes timestamps only if the data will be displayed in a time-
series chart (LineChart) and might have data samples added to the data source over
time by using the MPCUI polling mechanism.

function CustomDataSource(columns, hasKey, isTimeSeries)

The Array of columns specifies the data items included in the data source. This array can be
either:

• an array of strings, with each string specifying the label of the data item

• an array of column descriptors (either QueryColumDesc or CustomColumnDesc
Specifying a column descriptor enables you to specify a label for the column and a data
type (for QueryColumnDesc) or to specify additional properties to display the data in a
tabular display such as the column width, that is, if the column is sortable, and so on (for
CustomColumnDesc).

The following example shows a result handler in the controller that is set up to handle data
returned from a request to the SqlQueryService.

Example: Handling Data Returned From a Request to the SQLQueryService

// execute a SQL query and then massage the data for display
 var query = new SqlQueryService('CPU_USAGE',
 [SqlQueryInput.createParam("TARGET_GUID",
 TargetContext.getTargetContext().guid)]);
 query.execute(page.cb(this.cpuQueryHandler), page.getBatchRequest());
 }

 ProcessesPageController.prototype.cpuQueryHandler = function(result, fault) {
 var page = this.page;
 if (fault != null || result.getError() != null) {
 MpLog.logError(fault, "Getting CPU Data via SQL Query");
 return;
 }

 var cpuSqlData = page.getModel("cpuSqlData");
 if (cpuSqlData == null) {
 cpuSqlData = new CustomDataSource([
 new QueryColumnDesc("Processor", QueryColumnType.STRING),
 new QueryColumnDesc("Idle Percentage", QueryColumnType.DECIMAL),
 new QueryColumnDesc("Used Percentage", QueryColumnType.DECIMAL)
], true);
 page.setModel("cpuSqlData", cpuSqlData);

Chapter 9
Accessing Enterprise Manager Data

9-35

 }

 var rows = result.rows;
 if (rows != null) {
 for (var r=0; r<rows.length; r++) {
 var id = result.getString(r, 'CPU Number');
 var idle = result.getNumber(r, 'Idle %');
 var used = result.getNumber(r, 'Used %');
 cpuSqlData.setRow("Processor #"+id, idle, used);
 }
 }

 };

In the previous example, the data source is constructed with three columns and the
data types are specified. The second parameter to the constructor is passed as true,
indicating that the data should be treated as if it has a key. In this case, the first column
in the list is always treated as the key. You cannot specify a different position in the
data.

Finally, for each row in the SqlQueryResultSet (result.rows), the code constructs a
row in the custom data source.

Note:

For a complete working example, see the
demo_hostsample,ProcessesPageController.js in the EDK.

Binding the Data Source to a UI Component
In the page layout (for example, ProcessesPage.html), the data is bound to the UI
component using the customDataSource property. In the following example,
note cpuSqlTable. This is a table that displays the data loaded into
the cpuSqlData custom data source.

Example: Binding the Data Source to a UI Component

<mp-table id="cpuSqlTable" params="mpTable: { customDataSource:
model().cpuSqlData, rootAttributes: { style: 'width:100%;height:100%' } }">
</mp-table>

Figure 9-7 shows what the previous example displays.

Chapter 9
Accessing Enterprise Manager Data

9-36

Figure 9-7 Table Displaying Data Loaded into the cpuSqlData Custom Data Source

Updating the Custom Data Source
Because the data source is bound to the UI component, when you update it, the UI displays
the new data automatically. You have two options to update a custom data source:

1. Call either the CustomDataSource.setRow or setRows methods.

These methods are used when you have a data source that does not include
timestamped data. In this case, you are modifying the row or rows included in the data
source.

2. If the data source includes timestamped data, then call the
CustomDataSource.setTimestampedRows method.

This method adds a new sample to the time series and typically is used in the case
where the data source is displayed in a line chart. Adding a new sample by calling this
method causes a new time slice to appear on the line chart.

For more information about these methods, see the API Reference and the
demo_hostsample for examples using the Custom Data Source.

Computed Data Source
The Enterprise Manager metric collection framework supports the ability to compute values
from counters. However, the values are only guaranteed to be correct when retrieved from
the historical data collected by the agent and stored in the repository. Attempting to query
these values from a real-time request (for example, MetricValuesDataService with timePeriod
set to REALTIME) can lead to unexpected results as the value computed utilizes the last
counter stored during historical collection and not a counter stored for the real-time collection.
As such, if you require realtime display of computed metrics you may need to consider using
the computed data source.

The computed data source provides the ability to combine data from two metrics into a single
display. This is useful when the metric to be displayed is based on a compute expression
using a stored counter a described previously.

To use this data source, you typically define two metrics. One metric computes the values to
be collected and stored in the repository for historical purposes. This metric includes the
compute expressions that consume the stored counters. The other metric would be a

Chapter 9
Accessing Enterprise Manager Data

9-37

transient metric that only collects the counters themselves. This metric would not be
collected for historical purposes as the raw counter values are typically not useful.

You need both sets of metrics when constructing the computed data source in the UI
code. The first metric, which specifies the metrics in their computed form, is called the
"source" metric. The data source uses these metrics to define the display attributes for
the data, including the labels for the columns, and will also retrieve any required
historical data.

/**
* Construct a data source that shows the CPU-System% and CPU-Idle% from
historical
* data and then appends data to it from a real-time data source that acquires
* counter columns and derives the values from the counters. First declare the
* columns to be shown on the chart, the labels will be based on the metric-
column * labels and will obtain the historical data that initially populates the
chart.
*/
var srcCols = [
 new ComputeColumnDesc(TargetContext.getTargetContext(), "CPUPerf",
 "system"),
 new ComputeColumnDesc(TargetContext.getTargetContext(), "CPUPerf",
 "idle"),
];

/**
* These are the counter columns; they do not need to be from the same metric as
* the source columns, however the counter columns must be from the same metric
as
* all other counters.
*/
var ctrCols = [
 new ComputeColumnDesc(TargetContext.getTargetContext(), "CPUPerf",
 "systemCounter"),
 new ComputeColumnDesc(TargetContext.getTargetContext(), "CPUPerf",
 "idleCounter"),
];

/**
* create the data source and pass the source columns, the counter columns and a
* pointer to the compute function. Finally pass the page the data source will
be
* consumed on and the interval to be used to populate the data. The compute
* function will be called at each interval.
*/
var computedDataSource = new ComputeDataSource(srcCols, ctrCols,
 page.cb(this.computeFunction),
 page, PollingInterval.EVERY_15_SECONDS);
page.setModel("compDataSource", computedDataSource);

The computed data source will then send a request for the historical data, and will then
begin polling for the counters at the interval specified. Each time a sample is retrieved,
the compute function will be called and passed a reference to the computed data
source and a data point (TimestampMetricData) that contains the latest set of values
for the counter metrics.

The compute function can then compute values using the counters and must return a
data point that contains the metrics with the same name as those that were identified
in the source columns. In the previous example, the counter columns are

Chapter 9
Accessing Enterprise Manager Data

9-38

"systemCounter" and "idleCounter", but the data point that is returned from the compute
function must include a value for the source columns, "system" and "idle".

MyController.prototype.computeFunction = function(ds, dp) {
 // retrieve the counter values from the data point passed; could also retreive
 // any necessary context from the data source
 var systemCounter = dp.data[0]["systemCounter"];
 var idleCounter = dp.data[0]["idleCounter"];

 // compute values; this is where you would replicate the logic in your
 // computed metric
 var systemValue = systemCounter+Math.floor(Math.random()*(50 - 20 + 1)) + 20;
 var idleValue = idleCounter+Math.floor(Math.random()*(120 - 80 + 1)) + 80;

 // you must now return a TimestampMetricData object. You can use the one passed
and return
 // it, but to do so you must add columns to the data point. The index reference
[0] is
 // a reference to the fact that the datapoint could have multiple rows, one for
each key
 // but the example does *NOT* support multiple keys. Also, if you created a new
 // data point to return you would need to set the timestamp of the datapoint
 // correctly, using the timestamp of the sourced datapoint
 dp.data[0]["system"] = systemValue;
 dp.data[0]["idle"] = idleValue;

 return dp;
 };

Packaged SQL and the Query Service
While the MPCUI framework provides access to the most useful data through either UI
components or simplified services (such as the metric service), inevitably you must have
access to other information stored in the Management Repository in a more unstructured
form. The MPCUI framework provides a SQL query service for this access.

The SQL query service enables you to package SQL statements with your plug-in and then
run the statements through a Web service and then bind that data to UI elements in your
custom UI. The SQL query service does not provide an open-ended or scriptable API to the
Management Repository as this would expose a potential security risk.

The SQL query service can only run SQL statements that have been deployed to the
Management repository through the Enterprise Manager Extensibility Framework. This
ensures that the statements can access EDK views only. This still provides you with a lot of
flexibility and the ability to access data from your own views (for example, views generated
from Enterprise Manager configuration data) along with Enterprise Manager partner EDK
views.

You can encapsulate the query service entirely within the page code by using the mp-sql-
data-service tag. This tag allows the caller to specify the SQL to be processed and the
parameters to be passed. This data service object can then be bound to a table or to other UI
components that support it.

Example: Using the SQLDataService Tag

<mp-data-services>
 <mp-sql-data-service id="dbSummaryDS" params=”queryID: ‘DATABASE_SUMMARY’,
 properties: model().dbSummProp”>
 </mp-sql-data-service>

Chapter 9
Accessing Enterprise Manager Data

9-39

 </mp-data-services>
 <mp-table id="dbSummaryTable" params=”mpTable: { dataservice:
‘dbSummaryDS’ }" > </mp-table>

Retrieving Individual Values From the SQL DataService

To reference a specific cell returned from SQLdataService for use within a component
(such as Link or Label), the following type of reference is used:

<mp-sql-data-service id="ids" params=”queryID: ‘INSTANCE_INFO’,
 properties: props('TARGET_GUID',appModel.target.guid)" ></mp-
sql-data-service>

 ...

 <mp-info-item params=”label: ‘CPU Model’,
 value: ids.result.getString(0,'CPU Model')"></mp-info-
item>

The reference to the data service is through
dataService.result.getString(rowIndex,‘column'), where rowIndex is the row
returned from the query and column is the name of the column as specified in the
original SQL query.

The query service can also be called from within a controller, providing much more
flexibility in terms of how the data is manipulated before it is displayed. There are two
APIs that provide access to the query service:

• SqlQuery interface

The SqlQuery interface allows for a single SQL query to be processed, passing
the bind variable and receiving a result set in return. The result set provides an
interface quite similar to that of the JDBC ResultSet.

Example: Using the SqlQuery API

 var getInfoSvc = new SqlQuery("GET_TARGET_INFO",
 [["TARGET", name],["TYPE", type]]); // bind variables
 getInfoSvc.execute(page.cb(this.getTargetInfoHandler));

MyController.prototype.getTargetInfoHandler = function(resultSet, fault)
{
 var target;
 if (fault != null) {
 if (resultSet != null && resultSet.getError() == null) {
 target.setGuid(resultSet.getBase64Binary(0, "TARGET_GUID"));
 target.setTypeMetaVer(resultSet.getString(0, "TYPE_META_VER"));

 var props = [];
 for(var i=1; i<Target.NUM_PROPERTIES+1; i++)
 props.push(resultSet.getString(0, "CATEGORY_PROP_"+i));
 target.setCatProperties(props);
 }
 };

• BulkSqlQuery interface

The bind variables are referenced by name and correspond to the variables as
represented in the packaged SQL statement:

Chapter 9
Accessing Enterprise Manager Data

9-40

 SELECT target_guid, type_meta_ver, category_prop_1, category_prop_2,
 category_prop_3, category_prop_4, category_prop_5
 FROM mgmt_targets
 WHERE target_name = ?TARGET?
 AND target_type = ?TYPE?

When a number of queries can be processed in a single request, you can use the
BulkSqlQuery interface. Each query must be added to the bulk query and when all
queries to be processed have been added, the BulkSqlQuery.execute method is called
and passed the result handler that will be called with the results.

When a result handler for the SqlQuery is passed a single SqlQueryResultSet for the
processed query, the result handler for the BulkSqlQuery is passed a BulkResultSet.
Then it must retrieve the SqlQueryResultSet for each query using the request id
specified when the query was added.

A separate request id is required to support the case where the same query can be
processed multiple times with different bind variables as part of the same bulk request.

Example: Using the BulkSqlQuery API

var guidParam = [["TARGET_GUID", TargetContext.getTargetContext().guid]];

 var bulkQuery = new BulkSqlQuery();
 bulkQuery.addQuery("INSTANCE_INFO", "INSTANCE_INFO", guidParam);
 bulkQuery.addQuery("PROCESS_STATES", "PROCESS_STATES", guidParam);
 bulkQuery.addQuery("PROCESS_INFO", "PROCESS_INFO", guidParam);

 bulkQuery.execute(page.cb(this.pageDataHandler), page.getBatchRequest());

MyController.prototype.pageDataHandler = function(bulkResult, fault) {
 var info = bulkResult.getResultSet("INSTANCE_INFO");

Guidelines for Writing Packaged SQL
Adhere to the following guidelines when writing packaged SQL for the MPCUI:

• Packaged SQL can only access views that are part of the partner EDK. This includes any
views that are generated as a result of configuration metric definitions.

• Any SQL that attempts to modify data (update or delete) will be filtered by the MRS
during plug-in deployment.

• SQL statements that attempt data definition language (DDL) will be filtered out by the
MRS and are not allowed

• Anonymous PL/SQL (for example, begin, end constructs) are not allowed as access to
PL/SQL procedures is not allowed from packaged SQL

• Bind variables must be identified by a text identifier and prefixed and suffixed by a ?. For
example, ?TARGET_TYPE?

• Bind variables are not case sensitive

• The query service restricts the size of result sets to 1000 rows or 100,000 bytes, so care
should be taken to limit the size of the possible result set returned by a query.

Chapter 9
Accessing Enterprise Manager Data

9-41

Packaging SQL in the Plug-In
SQL Statements used in the MPCUI code are packaged with the MPCUI metadata
using the SqlStatements element

For information about the location of SQL statements in the MPCUI metadata, see
Overview of MPCUI Metadata Elements. For information about the MPCUI metadata
XSD, see the EDK Metadata API reference.

Getting Target Type Information
For cases where the plug-in UI requires information about a related target type, such
as its display name, but does not require the details about a specific instance of that
target type, the TargetFactory provides a function to retrieve this summary information.

The TargetFactory.getTargetTypeInfo function returns a TargetTypeInfo object that
contains the display name of the target type. When calling this function, pass a
TargetTypeInfo object with the internal targetType provided (for example,
"oracle_database) and a handler function. The handler will be called with the
TargetTypeInfo and any fault that occurred during the processing of the request:

var typeInfo = new TargetTypeInfo("oracle_database");
 TargetFactory.getTargetTypeInfo(typeInfo,
page.cb(this.getTypeInfoHandler));
 }

 MyController.prototype.getTypeInfoHandler = function(typeInfo, fault) {
 if (fault != null) {
 MpLog.logError(fault, "Getting Target Type Info");
 return;
 }

 MpLog.info("Target Display Label for (oracle_database):"+
 typeInfo.typeDisplayName);
 };

Working With Target Services
In addition to the services described previously, the MPCUI framework provides a
number of other services that are an integral part of the Target object
(oracle.sysman.emx.model.Target). When the MPCUI application is running, the
TargetContext.getTargetContext() call returns the Target instance for the primary
target.

You can construct other target instances for associated targets. In either case, use the
following methods to obtain additional information for these targets through the MPCUI
service layer.

Target Properties Service
For any instance of the Target class, you can call the getTargetInfo() method to
retrieve the target properties associated with that target instance. The returned target
information populates the properties of the Target instance including: guid,
catProperties, typeMetaVer, timezoneRegion, and so on.

Chapter 9
Accessing Enterprise Manager Data

9-42

For information about these properties, see the Target class documentation in the EDK (/doc/
partnersdk/mpcui/emcore/doc/oracle/sysman/emx/model/Target.html).

When calling the getTargetInfo() method, you must provide a handler. This handler will be
called when the targetInfo service returns. It is passed the fully populated Target instance
and a fault object that is set to include any errors that occurred during the processing of the
request to retrieve target properties:

var target = TargetContext.getTargetContext();
 target.getTargetInfo(page.cb(this.targetInfoHandler));

 MyController.prototype.targetInfoHandler = function(target, fault)

Note:

In the case of TargetContext.getTargetContext(), the current target information
is loaded when the application starts and it is not necessary to call
getTargetInfo() for that target instance unless you think that target properties
have changed.

Associated Targets Service
Use the target.getAssociatedTargets() method to retrieve the set of targets related to a
target instance. This method is called and passed an array of association types and a handler
that is called with the list of associated targets. Refer to the API documentation for a full
description of the types of the objects returned by this method:

// get associated host
 var target = TargetContext.getTargetContext();
 var assocTypes = [AssociationDataService.HOSTED_BY];
 target.getAssociatedTargets(assocTypes, page.cb(this.assocHandler));

 MyController.prototype.assocHandler = function(assocResult, fault) {
 var host = assocResult.getAssoc(AssociationDataService.HOSTED_BY);
 if(host != null)
 page.setModel("relatedHost", host.name);
 };

Metric Metadata Service
Use the target.getMetricMetadata () method to retrieve the metric definitions information
for a target instance. The metric metadata information is retrieved by calling the
Target.getMetric() method which returns a Metric object for a specified metric name. Refer
to the API documentation for a full description of the types of the objects returned by this
method:

var target = TargetContext.getTargetContext();
 target.getMetricMetadata(Util.createProxy(this, this.metadataHandler));

 MyController.prototype.metadataHandler = function(target, fault)

Chapter 9
Accessing Enterprise Manager Data

9-43

Note:

In the case of TargetContext.getTargetContext(), the current target metric
metadata is loaded when the application starts and it is not necessary to call
getMetricMetadata() for that target instance unless you think that target
metadata has changed (which is unlikely).

Availability Service
Use the target.getAvailability() method to retrieve current availability information
for a target instance. The availability information (AvailOverviewData) includes the
current status, the up time (%) for the last 24 hours and so on. Refer to the API
documentation for a full description of the types of the objects returned by this method:

var target = TargetContext.getTargetContext();
 target.getAvailability(page.cb(this.targetAvailHandler));

 MyController.prototype.getTargetAvailHandler = function(availInfo, fault)

Automated Polling of Service Requests

Note:

An important use of the “REALTIME" data selection for any chart, table, or
data service is that it initiates automated polling of the data at the specified
interval.

The MPCUI framework supports a limited subset of intervals (15, 30, 45, 60 seconds)
so that requests can be grouped together to avoid a large number of requests to the
Management Server.

The MPCUI framework starts and stops the polling of these requests automatically as
each page or dialog appears or is removed (goes out of scope).

You cannot initiate a polling request that is persistent beyond the scope of a page or
dialog.

Batching of Service Requests
In addition to the batching of polling requests, the MPCUI framework provides the
ability to explicitly batch requests made at runtime from activity (page or dialog)
controllers. Batching of requests is a good practice as it avoids additional round trips to
the Management Server which slows the performance of your UI pages and adds
additional overhead to the Management Server.

The most common opportunity to batch requests is as part of the activity initialization.

• For data services declared in the page layout (HTML file), the MPCUI framework
will batch the requests for you.

Chapter 9
Accessing Enterprise Manager Data

9-44

• For service requests you make from your controller.init() method, you can pass the
page's batch request to the service methods. The MPCUI framework calls
the init() method after your page is loaded.

The following example is extracted from the HomePageController.js file in the Demo Sample.
Note the instances of page.getBatchRequest() in the method. All requests made in this way
will be performed over a single pass to the Management Server.

Example: Batching Requests as Part of the Activity Initialization

 MyController.prototype.init = function(pg) {
 this.page =
pg;
 var target = TargetContext.getTargetContext();

 var guidParam = [["TARGET_GUID", target.guid]];
 var bulkQuery = new BulkSqlQuery();
 bulkQuery.addQuery("INSTANCE_INFO", "INSTANCE_INFO", guidParam);
 bulkQuery.addQuery("CPU_USAGE", "CPU_USAGE", guidParam);
 bulkQuery.execute(this.page.cb(this.queryResultHandler),
 this.page.getBatchRequest());

 // get processes metric to get process summary information
 var procMetric = target.getMetric("CPUProcessesPerf");
 var procSelector = procMetric.getSelector(['ProcUser', 'ProcCPU', 'ProcCmd']);
 procSelector.getData(this.page.cb(this.processesHandler),
 MetricCollectionTimePeriod.CURRENT, this.page.getBatchRequest());

 var cpuPerf = target.getMetric("CPUPerf");
 var cpuPerfSel = cpuPerf.getSelector(['system', 'idle', 'io_wait']);
 cpuPerfSel.getData(this.page.cb(this.cpuDataHandler),
 MetricCollectionTimePeriod.REALTIME,
this.page.getBatchRequest());

 // get associated host
 var assocTypes = [AssociationDataService.HOSTED_BY];
 target.getAssociatedTargets(assocTypes, this.page.cb(this.assocHandler),
 this.page.getBatchRequest());
};

You can use batch requests elsewhere in controller code by creating
a MultiServiceRequestor (batch request) and passing it to each request made. For example,
suppose that in response to a button click in the page, two requests will be made to the
Management Server to retrieve information. They could each be made separately (resulting
in two trips to the server) as shown in the following example:

Example: Creating Individual Batch Requests

var procMetric = TargetContext.getTargetContext().getMetric("CPUProcessesPerf");
var procSelector = procMetric.getSelector(['ProcUser', 'ProcCPU', 'ProcCmd']);
 procSelector.getData(this.page.cb(this.processesHandler),
 MetricCollectionTimePeriod.CURRENT); // 1st round trip

 var cpuPerf = TargetContext.getTargetContext().getMetric("CPUPerf");
 var cpuPerfSel = cpuPerf.getSelector(['system', 'idle', 'io_wait']);
 cpuPerfSel.getData(this.page.cb(this.cpuDataHandler),
 MetricCollectionTimePeriod.REALTIME); // 2nd round trip

Alternatively, you can combine the batch requests into a single batch request avoiding the
additional round trip to the Management server as shown in the following example:

Chapter 9
Accessing Enterprise Manager Data

9-45

Example: Combining Batch Requests

var batchRequest = new MultiServiceRequestor();

var procMetric = TargetContext.getTargetContext().getMetric("CPUProcessesPerf");
var procSelector = procMetric.getSelector(['ProcUser', 'ProcCPU', 'ProcCmd']);
 procSelector.getData(this.page.cb(this.processesHandler),
 MetricCollectionTimePeriod.CURRENT, batchRequest);

var cpuPerf = TargetContext.getTargetContext().getMetric("CPUPerf");
var cpuPerfSel = cpuPerf.getSelector(['system', 'idle', 'io_wait']);
 cpuPerfSel.getData(this.page.cb(this.cpuDataHandler),
 MetricCollectionTimePeriod.REALTIME, batchRequest);

 batchRequest.sendRequest(); // 1st and ONLY round trip!

Note:

You must call the sendRequest() method to commit the batch request.
Otherwise, no requests will be sent. In the case of the PageController.init
use of page.getBatchRequest(), this is not necessary because the MPCUI
framework will do it for you.

Software Library Search Service
When the plug-in UI requires information about Software Library entities, it can search
using different criteria, including name, status, maturity level, or entity attributes. The
desired entities can be filtered by specifying the query criteria using the SearchField
enumeration. A list of EntityInfo objects that represent an entity revision that match the
query criteria is returned. The URN in the EntityInfo object can be used as a unique
identifier for the entity revision. If any error has occurred, it will be set in
ListSwlibEntitiesResult.errorMessage.

// search the software library
 var swSearch = new ListSwlibEntities();
 swSearch.addSearchInput(new SearchInput(SearchField.NAME, "oracle"));
 var swlib = Swlib.getSwLib();
 swlib.listEntities(swSearch, Util.createProxy(this, this.swSearchHandler));
 }

 MyController.prototype.swSearchHandler = function(result, fault) {
 var r, e;
 if (fault != null) {
 MpLog.logError(fault, "Search Software Library");
 return;
 }

 for (var i=0; i<result.swlibEntitiesList.length; i++) {
 var entity = result.swlibEntitiesList[i];
 MpLog.info("Swlib Entity: "+entity.toString());
 }

 page.setModel("swlibContents", result.swlibEntitiesList);
 };

Chapter 9
Accessing Enterprise Manager Data

9-46

Performing Task Automation
The following sections describes how to perform task automation with examples.

It includes the following:

• Automation Services

• Working With Credentials

Automation Services
One of the more powerful aspects of the MPCUI framework is the ability to provide access to
administrative features through a UI customized to that purpose. The framework supports the
processing of administrative tasks through the Enterprise Manager job system and Web
services that provide access to the job system.

The MPCUI provides the following job services:

• Job.submit
• Job.runSynchronous
• JobExecution.getStatus
• JobExecution.getDetails
• JobExecution.stopJob
• JobExecution.deleteJob
• JobExecution.getJobDetailsURL
• RemoteOp.performOperation

Submitting or Running a Job
The job service allows any job that is registered with the plug-in target type to be submitted
for processing. The service does not support the ability to submit system job types at this
time.

Scheduling of jobs through the job service supports a limited set of the scheduling options
supported by the job system. The job schedule supports the following options:

• Immediate, once, hourly, daily, weekly, monthly, yearly

• Start and end time for repeat submissions

• Repeat count and frequency

• Starting period grace time

• Management Repository or target time zone

Supported job parameter types include Vector, Scalar, Large and ValueOf.

As with other services, requests are issued asynchronously. This requires that a handler is
provided that will be called when the request has completed (or failed). When submitting a
job, the result handler is called and passed a JobExecution object. This object contains the
processing context for the job that was submitted, and can be used to retrieve the status of
the job and operate on the job (stop or delete it).

Chapter 9
Performing Task Automation

9-47

Example: Submitting a Job

var job = new Job("backup", "MyBackup", null,
 TargetContext.getTargetContext(),
 [Job.jobParam("dsn", "AdminDS"), Job.jobParam("sql_cmd",stmt)],
 JobSchedule.IMMEDIATE);
 job.submit(this.page.cb(this.jobSubmitHandler));
}

MyController.prototype.jobSubmitHandler = function(exec, fault) {
 // using exec (JobExecution) can now get current status of job,
 // get step details, and start or stop the job
 var execId = exec.getExecutionId();
};

When a job is run in this way (using the submit method), the job is submitted for
processing and the service returns immediately. Therefore, the status of the job may
change from submitted to running, and then to complete and the client must check the
status periodically.

The job service also provides a way to submit a job for immediate processing and will
wait (synchronously) until the job execution completes, fails or reaches a timeout. The
client handler will not be called until this state is reached.

Example: Running a Synchronous Job

var job = new Job("backup", "MyBackup", null,
 TargetContext.getTargetContext(),
 [Job.jobParam("dsn", "AdminDS"), Job.jobParam("sql_cmd",stmt)],
 JobSchedule.IMMEDIATE);
 job.runSynchronous((this.page.cb(this.jobRunHandler), 30); // 2nd param is
timeout
}

MyController.prototype.jobRunHandler = function(exec, fault) {
 // using exec (SynchronousJobExecution) can get details about job execution;
 // this handler will not be called until the job completes, fails
 // or the timeout is reached
 var execId = exec.getExecutionId();
};

The Task interface is a simplified way of submitting a job for immediate processing,
without requiring all of the additional settings associated with the Job.submitJob API.

Example: Using the Task API

var task = new Task("TTisql", null, [Job.jobParam("dsn", "AdminDS"),
 Job.jobParam("sql_cmd",stmt)]);
 task.execute(this.page.cb(this.createTableHandler), 10); // timeout
is 10s
 }

 MyController.prototype.createTableHandler = function(result, fault) {
 var status = result.getRunStatus();
 if (status == JobStatus.RUNNING) {
 // timed out while waiting for job... still running

In the case of a synchronous job, the status of the job is available immediately from
the result passed to the handler; however, it should be checked to see if it equals

Chapter 9
Performing Task Automation

9-48

JobStatus.RUNNING. If so, then the request reached the specified timeout and the caller must
treat the job execution as if it were submitted asynchronously.

Getting Job Status and Step Details
After a job has been submitted, there are several APIs available to get the status of the job
and the details of each step including job output. To use these APIs, the caller must have a
valid JobExecution object, which is passed to the result handlers of submit and
runSynchronous APIs. Currently, there is no service provided that allows a client to search for
a job execution.

Example: Getting Job Status

MyController.prototype.submitHandler(exec, fault) {
 exec.getStatus(Util.createProxy(this, this.statusHandler));
};

MyController.prototype.statusHandler(status, fault) {
 if(status.getStatus() === JobStatus.FINISHED)

Getting the job status for a submitted job requires service request, and therefore requires a
handler to be called with the result (and possibly a fault if the request processing fails). In
addition to the status of the job, the job step details can be retrieved.

Getting Job Details:

Use the JobExecution object that is passed to the submit handler, to retrieve step output
details as well as the job status. If the job has failed or if the step has not completed, then no
data will be returned.

In the case of a synchronous job execution, the handler for the Job.runSynchronous or
Task.execute call can check the job status and if complete, retrieve the job details from the
result directly:

 MyController.prototype.createTableHandler = function(result, fault) {
 var status = result.getRunStatus();
 if(result != null && result.Status() === JobStatus.COMPLETED) {
 var steps = result.getStepDetail();
 for(var i=0; i<steps.length; i++) {
 var detail = steps[i];
 proc.addDetailText(detail.output);
 }

In the case of an asynchronous job execution, the handler for the Job.submit handler must
call JobExecution.getStatus, and then JobExecution.getDetails. Each call requires a
request to the server:

 MyController.prototype.submitJob = function() {
 var params = [];
 params.push(Job.jobParam("p0","p0value"));
 var job = new Job(type, name, desc, TargetContext.getTargetContext(),
 params, Job.immediateSchedule());
 job.submit(this.page.cb(this.submitHandler));
 };

 MyController.prototype.submitHandler = function(result, fault) {
 if(fault == null && result != null) {
 // get the job status; calls the server
 result.getStatus(oj.Object.createCallback(this, this.statusHandler));

Chapter 9
Performing Task Automation

9-49

 }
 };

 MyController.prototype.statusHandler = function(result, fault) {
 if(fault == null && result != null) {
 if(result.getStatus() === JobStatus.COMPLETED) {
 // now can get job output details

result.getJobExecution().getDetails(this.page.cb(this.detailsHandler));
 }
 }
 };

 MyController.prototype.detailsHandler = function(result, fault) {
 if(fault == null && result != null) {
 var steps = result.getStepDetail();
 for(var i=0; i<steps.length; i++) {
 var detail = steps[i];
 proc.addDetailText(detail.output);
 }
 }
};

Using a Timer to Periodically Check Job Status
If a job is submitted asynchronously (Job.submit) or runs synchronously but the
request reaches a timeout and returns a job status of JobStatus.RUNNING. This
indicates that the job is still running, and you might want to check the status of the job
again at a later point.

The easiest thing from a code perspective is to expose a UI element that the user
interacts with to cause the application to check the status of the job. For example, the
UI might show a Running indicator with a button or link labeled Check Status Now.
When the user clicks the button or link, it calls the JobExecution.getStatus method to
retrieve the updated status.

If the required interaction pattern is that the UI remains active while the job is running
in the background, and periodically updating the UI with information about the status of
the job, then the MPCUI provides a job API to perform period checking of the job
status. Each update calls a handler to provide the caller with the opportunity to
process the current status and update the UI with that information.

Stopping and Deleting a Job
Jobs submitted through the MPCUI APIs can be stopped or deleted using the following
APIs:

Example: Stopping a Job

 MyController.prototype.stopJob = function(exec) {
 // NOTE: the JobExecution must be a valid job context obtained from
submitted a job
 exec.stopJob(this.page.cb(this.stopJobHandler));
 };

 MyController.prototype.stopJobHandler = function(exec, fault) {
 if(fault == null && exec != null) {
 // job was successfully stopped

Chapter 9
Performing Task Automation

9-50

 }
 };

Example: Deleting a Job

MyController.prototype.deleteJob = function(exec) {
 // NOTE: the JobExecution must be a valid job context obtained from submitted a
job
 exec.deleteJob(this.page.cb(this.deleteJobHandler));
 };

 MyController.prototype.deleteJobHandler = function(exec, fault) {
 if(fault == null && exec != null) {
 // job was successfully deleted
 }
 };

For jobs that are submitted using the Job.runSynchronous API, the job can be deleted when
completed by passing the deleteWhenFinished parameter as true. It is the third parameter
and it defaults to false:

var job = new Job("backup", "MyBackup", null,
 TargetContext.getTargetContext(),
 [Job.jobParam("dsn", "AdminDS"), Job.jobParam("sql_cmd",stmt)],
 JobSchedule.IMMEDIATE);
 job.runSynchronous((this.page.cb(this.jobRunHandler), 30, true);

Remote Operations
Using a job to perform administrative tasks is the most flexible approach in terms of
scheduling and control (start, interrupt, or stop), but does come with the additional overhead
of managing the task being processed. For simple tasks that do not require control over
schedule and that are expected to be performed quickly, use the RemoteOp service.

This service allows the execution of a script packaged with the plug-in to be executed directly
through the Management Agent.

Note:

The script must be packaged with the plug-in in the agent/ scripts directory (as
described in the following section), and might require credentials or parameters to
be processed.

Packaging Scripts for Remote Operation

Scripts included in a plug-in for remote operations must be included in the staging area:

stage/agent/scripts

You can create additional subdirectories under /scripts if required. Scripts placed in this
location can be referenced using the RemoteOp service by referencing the %scriptsDir%
variable. For example:

Plug-in Stage Area

 ./stage/agent/scripts/process/kill_process.pl

Chapter 9
Performing Task Automation

9-51

MPCUI Code (JavaScript)

var params = [
 RemoteOp.param("%scriptsDir%/process/kill_process.pl"),
 RemoteOp.param(pid)];
 var remoteOp:RemoteOp = new RemoteOp("perl", params);
 remoteOp.performOperation(this.page.cb(this.killProcessHandler));

In this example, a RemoteOp object is constructed using the shell / command to run
and the parameters to pass into that shell. The first parameter must always be the
location of the script to be run, referencing its location relative to
the %scriptsDir% variable. Subsequent parameters are included as required for the
script being run.

To run the remote operation, the RemoteOp.performOperation method is called and
passed a function that will be called when the remote operation completes processing.
This handler has the following signature:

 MyController.prototype.killProcessHandler = function(remoteOp, fault)

If the remote operation failed to be communicated to the Management Agent, then
the fault parameter will include the details of that error. If the remote operation was
processed, then the fault will be null and the remoteOp parameter supplied.

Check the remoteOp parameter status because it can indicate an error status returned
during command execution on the Management Agent. The following example shows
this check being performed.

Example: Checking the remoteOp Parameter Status

/**
 * Check status; could be any number of problems some of which may result
 * in step output, some of which (like missing creds) result in a non-
successful
 * run status but no step details.
 *
 * result.getRunStatus() - the status of the job, refer to
Constants.JOB_*_STATUS
 * result.getStepDetail().stepName/detail - name and output from each step in
the job
 * result.getJob() - the complete job Object, to reference parameters:
 * result.getJob().parameter[0].paramName/paramValue[0]
 *
 */
 if(remoteOp.result.status !== Constants.JOB_COMPLETED_STATUS) {
 // job did *NOT* complete successfully
 var pid = remoteOp.getParameter(2).paramValue[0];
 var msg = "Unable to successfully kill process ["+pid+
 "]. The status of the command was: "
 +Util.getCatString(Util.JOB_STATUS, remoteOp.result.status)
 +"\nReturn Code: "+remoteOp.result.returnCode
 +"\nCommand Output: "+remoteOp.result.commandOutput;
 MessageAlert.show(msg, "Failed to Kill Process", Alert.OK);
 } else {
 // successful job execution; process was killed; can look at the
 // step details to get possible output from the job
 MpLog.debug("Command was successful: "
 +"\nReturn Code: "+remoteOp.result.returnCode
 +"\nCommand Output: "+remoteOp.result.commandOutput);
 var tableId = $
("#processesTable").data(CustomElement.MPCUI_CHILD_NODE).getChildNodeId();

Chapter 9
Performing Task Automation

9-52

 // Get the table object
 var ojt = $("#" + tableId).data(MetricDataBinding.BINDING_DATA);
 ojt.refreshImmediate();
 }

Working With Credentials
The Enterprise Manager credentials model supports three different modes for performing
operations that require credentials:

• Preferred Credentials

Specific credentials are set for a target or all targets of a particular type. In this mode, the
user does not select a set of credentials or provide credential values.

• Named Credential Set

Sets of credentials are created for a target or all targets of a particular type, and each set
is assigned a name. In this mode, the user is presented with a list of named sets and can
select the set that they would use to perform the operation.

• Override Credentials

In this mode, the user can supply credentials at runtime that are used to perform the
operation.

Retrieving Credential Information
MPCUI provides the facilities for retrieving credential information about a particular target.
The services can return information only that the current user is privileged to see. This
ensures that there is no unauthorized access to secure information. It also requires that you
must handle a situation where credential information might not be available to the user
accessing the MPCUI code.

Check for Preferred Credentials
To check if a target has preferred credentials set for it, call the
CheckPreferredCredsService.getPreferredCredsInfo method as follows:

var ccSvc = new CheckPreferredCredsService();
var target = TargetContext.getTargetContext();
 ccSvc.getPreferredCredsInfo(target.name, target.type,
 'HostCreds', this.page.cb(this.checkPrefCredsHandler));

The service returns a CheckPreferredCredsResult object, which indicates whether global
(applying to all target instances of the type) or instance (applying only to the single target
instance) credentials are available:

 MyController.prototype.checkPrefCredsHandler = function(result, fault) {
 if(fault != null)
 MessageAlert.show(fault.faultDetail, "Error Checking Preferred Creds");
 else {
 var msg = "Checked for Preferred Credentials for
 target("+TargetContext.getTargetName()+","+
 TargetContext.getTargetType()+" for set(HostCreds)
 user("+ApplicationContext.getEmUser()+") \n"+
 "Global Set = "+result.globalSet+" Instance Set = "
 +result.instanceSet;
 MessageAlert.show(msg, "Check Preferred Creds Result");

Chapter 9
Performing Task Automation

9-53

 }
};

Note:

If preferred credentials are set, you can submit a job or perform a remote
operation without passing any credentials information. In this case, the
preferred set will be used.

Retrieve Named Credentials Sets
You can retrieve the named credentials sets available for a particular target and:

• display the named credentials set in a choice (list or combo box)

• select from the named credentials set based on a convention required by your
plug-in

The following code requests all named sets for two different credentials types for the
current target, and calls the credSetResultHandler handler with the result:

 var target = TargetContext.getTargetContext();
 target.getCredentialSets(["HostCreds", "HostSampleCreds"],
 this.page.cb(this.credSetResultHandler));

The results handler can then consume the named sets return as appropriate (in this
example, constructing a data source for display in a table):

var credTableData;
 if(creds.credSet != null) {
 credTableData = creds.credSet.slice(0);

 // check to see if there are sets for both types
 var hostFound = false;
 var sampFound = false;
 for(var c=0; c<creds.credSet.length; c++) {
 if(creds.credSet[c].credentialType === "HostCreds")
 hostFound = true;
 else if(creds.credSet[c].credentialType === "HostSampleCreds")
 sampFound = true;
 }

 var missingType = (!hostFound ? "HostCreds" : "HostSampleCreds");
 var empty = new CredentialSet();
 empty.credentialType = missingType;
 empty.name = "<No Sets Found>";
 empty.guid = "";
 credTableData.push(empty);
 } else {
 empty = new CredentialSet();
 empty.credentialType = "<No Credential Sets Defined>";
 empty.name = "";
 empty.guid = "";
 credTableData = [empty];
 }

Chapter 9
Performing Task Automation

9-54

Passing Credentials to Jobs and Remote Operations
This section discusses passing preferred credentials and named set credentials to jobs and
remote operations.

Preferred Credentials

If the task (job or operation) to be performed attempts to use preferred credentials, then the
credentials parameter passed to the task is omitted. Both the job and remote operation
services will attempt to perform the task using preferred credentials. If no preferred
credentials are set, then an error will be returned

Named Set

To specify that a named set be used to perform a task, the credentials are passed in a
JobCredential (for jobs) and an OpCredential (for remote operations). In both cases, the
credentials object includes the following four properties that must be set:

• targetName: the target the credentials apply to, usually TargetContext.getTargetName()
• targetType: the type of the target the credentials apply to, usually

TargetContext.getTargetType()
• usage: the credentials usage as defined for the operation (see the job type definition).

This usage specifies which credentials types are required and where they are applied
during job execution

• credGuid: the identifier of the named set to be used. This is one of the properties of the
CredentialSet class, which holds named credential sets. For more information,
Retrieving Credential Information.

Reusable Credentials UI Components
MPCUI provides a credentials region that may be included in a page to allow the end user to
interact with the Enterprise Manager credentials subsystem to view the set of credentials
available and to select preferred, named, or override credentials when performing a task (job
or remote operation).

Figure 9-8 Credentials Region

Chapter 9
Performing Task Automation

9-55

To include this region in a page, add the following HTML:

Example: Adding a Credentials Region

<mp-credentials-region id="creds" style=”width:40%;height:100%"
 params=”targetName: appModel.target.name, targetType:
appModel.target.type,
 credentialType: ‘HostCreds’” ></mp-credentials-region>

From the page controller associated with the page, retrieve the settings applied by the
end user to this region:

Example: Retrieving Selected Credential Information

MyController.prototype.getCredsEntered = function(event) {
 var creds = Util.def($
("#creds").data(CredentialsRegionBinding.BINDING_DATA),
 null);
 if (creds == null) {
 // This notation is for use with the <mp-credentials-display> tag
 var credsId = $
("#creds").data(CustomElement.MPCUI_CHILD_NODE).getChildNodeId();
 creds = $("#" + credsId).data(CredentialsRegionBinding.BINDING_DATA);
 }
 var mode = creds.getMode();
 var msg = "Credential Option Selected: "+mode+"\n";

 var namedSet;
 var credentials;
 if (mode === CredentialsRegion.NAMED_MODE) {
 namedSet = creds.getNamedSet();
 msg += "Named Set Selected: "+namedSet;
 } else if (mode === CredentialsRegion.OVERRIDE_MODE) {
 try {
 credentials = creds.getOverrideCredentials();
 for(var c=0; c<credentials.length; c++)
 msg += "Field:"+credentials[c].label+", "+credentials[c].value+"\n";
 } catch(e) {
 msg += "Error Entering Credentials:\n";
 msg += e.message;
 }
 } else {
 // preferred selected...
 }
 MessageAlert.show(msg, "Credentials Entered");
 };

In the previous example, note that the mode determines if the user selected preferred,
named, or override credentials. Depending on the mode, the named set can be
retrieved (CredentialsRegion.getNamedSet()) or the override credentials can be
retrieved (CredentialsRegion.getOverrideCredentials()).

Managing Monitoring Credentials
The Target class provides the ability to retrieve and set the monitoring credentials for
the current target. To retrieve the monitoring credentials, an instance of the Target
class is required and the getMonitoringCredentials function is called, passing the
results handler that will receive the credential meta data including the monitoring
credentials set:

Chapter 9
Performing Task Automation

9-56

// get monitoring credentials
target.getMonitoringCredentials(this.page.cb(this.getMonCredResultHandler),
 this.page.getBatchRequest());

The handler would appear as follows:

 MyController.prototype.getMonCredResultHandler = function(cred, fault) {
 if(fault != null) {
 if(cred != null && cred.isMissingCredentials()) {
 // no monitoring credentials are set
 MpLog.info("Monitoring Credentials have not been set: "+fault.faultDetail);
 } else
 MpLog.logError(fault, "Get Monitoring Credentials");
 return;
 }

 /**
 * The CredentialTypeMetadata returned includes the meta-data for the
 * credentials as well as the actual values. NOTE: credentials never
 * return the actual values for any field identified as a password it only
 * returns the masked "****" value. You should never have any need to
 * access the actual values for a password field as any time credentials
 * are passed you are passing a credential set and don't need the actual
 * values of a pre-existing credentials set
 */

 var credFieldValues = cred.credentialSets[0].columnValues;
 for(var i=0; i<credFieldValues.length; i++) {
 var credField = credFieldValues[i];
 MpLog.debug("Monitoring Credentials["+credField.label+"] = "+credField.value);
 }
 };

To set the monitoring credentials, the credentials fields according to the credential type
specified for monitoring credentials. This is defined in your target metadata.

/**
* the CredentialSet passed contains the monitoring credentials to be set.
* Note that only the columnValues property of the credentials needs
* to be set when updating monitoring credentials as the framework
* derives the values for the credential set and type. It is CRITICAL
* that the label set for each columnValue is the column NAME and not
* the display label for that column. The name is the identifier assigned
* to the credential column in the target meta-data.
*
* In the demo_hostsample, for example, the credentials fields are:
* name: SampleCredUser label: User Id
* name: SampleCredPassword label: Password
* name: SampleCredRole label: Role
*/

var monitoringCreds = new CredentialSet();
monitoringCreds.columnValues = [
 new CredentialColumnValue("SampleCredUser", "myMonitoringUser"),
 new CredentialColumnValue("SampleCredPassword", "myMonitoringPassword"),
 new CredentialColumnValue("SampleCredRole", "myMonitoringRole")
];

var target = TargetContext.getTargetContext();
target.setMonitoringCredentials(monitoringCreds, Util.createProxy(this,
 this.setMonCredResultHandler));

Chapter 9
Performing Task Automation

9-57

Then the handler would appear as:

MyController.prototype.setMonCredResultHandler = function(cred, fault) {
 if (fault != null) {
 MpLog.logError(fault, "Set Monitoring Credentials");
 return;
 }

 /**
 * if the set monitoring credentials was successful then the handler is
 * called with no fault and the set of credentials that were passed in
 */
};

Storing Session State
The session state service provides the ability to store global state associated with the
custom UI. This is useful for cases where state should be maintained for the current
user, even as they move between pages outside of the HTML pages that define the
custom UI. For example, if the user modifies the state of the home page and then
navigates to the "All Metrics" page, and then upon returning to the home page you
wish to restore the state of the page as the user left it. Because the user has left the
pages that make up the MPCUI custom UI, it is necessary to store the state required
on the server-side session established for this user session and not within the
HTML/JS itself.

To set the session state, call the EmUser.setSessionData function, passing a
SessionAttributes object. The session attributes contain an array of SessionAttribute
objects, each of which has a corresponding name-value pair for the attributes stored.

CollectItemPageController.prototype.setSessionAttributes = function(modifier) {
 var page = this.page;

 var sessionData = new SessionAttributes();
 var item1Value = page.getModel("item1Value");
 var item2Value = page.getModel("item2Value");
 sessionData.attributes.push(new SessionAttribute("attr1", item1Value));
 sessionData.attributes.push(new SessionAttribute("attr2", item2Value));
 EmUser.setSessionData(sessionData,
page.cb(this.setSessAttrResultHandler));
 };

 CollectItemPageController.prototype.setSessAttrResultHandler =
function(attr, fault) {
 if (fault != null) {
 MpLog.logError(fault, "Set Session Data");
 return;
 }
 };

To retrieve the session state, use the corresponding EmUser.getSessionData service
function. This function will retrieve the session state requested by passing a list of
SessionAttributes and a handler that will be called with the result. This will be the
same SessionAttributes, populated with the data retrieved from the session:

CollectItemPageController.prototype.getSessionAttributes = function(modifier) {
 var sessionData = new SessionAttributes();
 sessionData.attributes.push(new SessionAttribute("attr1"));
 sessionData.attributes.push(new SessionAttribute("attr2"));

Chapter 9
Storing Session State

9-58

 EmUser.getSessionData(sessionData, this.page.cb(this.getSessAttrResultHandler),
modifier);
};

CollectItemPageController.prototype.getSessAttrResultHandler = function(attr, fault) {
 var page = this.page;

 if (fault != null) {
 MpLog.logError(fault, "Get Session Data");
 return;
 }
 for (var i=0; i<attr.attributes.length; i++) {
 var item = attr.attributes[i];
 if (item.name === "attr1") {
 page.setModel("lastItem1Value", item.value);
 } else if (item.name === "attr2") {
 page.setModel("lastItem2Value", item.value);
 }
 }
};

Defining Page Layout Components
To ensure that the MPCUI page resizes correctly when the browser window resizes, Oracle
recommends the following guidelines for page layout of an MPCUI-based page:

• Use the mp-row and mp-column containers

• The height and width can be set in percentage sizes.

• mp-row and mp-column use the flexible boxes (or flexbox) layout standard, so you
may also use flexbox settings to layout your components

For example, to create a layout of three rows, each occupying one third of the height of the
page, then enter the following in the HTML file:

Example: Defining a Page Layout of Three Rows

<mp-column style=”height:100%;width:100%">
 <!-- 1st row -->
 <mp-row style=”height:33%;width:100%">
 </mp-row>

 <!-- 2nd row -->
 <mp-row style=”height:33%;width:100%">
 </mp-row>

 <!-- 3rd row -->
 <mp-row style=”height:33%;width:100%">
 </mp-row>
 </mp-column>

Then enter the following to split each row horizontally into two separate or equal sections:

Example: Splitting Rows into Two Equal Sections

<mp-column style=”height:100%;width:100%">
 <!-- 1st row -->
 <mp-row style=”height:33%;width:100%">
 <mp-column style=”height:100%;width:50%" >
 </mp-column>

Chapter 9
Defining Page Layout Components

9-59

https://www.w3.org/TR/css-flexbox-1/

 <mp-column style=”height:100%;width:50%" >
 </mp-column>
 </mp-row>

 <!-- 2nd row -->
 <mp-row style=”height:33%;width:100%">
 <mp-column style=”height:100%;width:50%" >
 </mp-column>
 <mp-column style=”height:100%;width:50%" >
 </mp-column>
 </mp-row>

 <!-- 3rd row -->
 <mp-row style=”height:33%;width:100%">
 <mp-column style=”height:100%;width:50%" >
 </mp-column>
 <mp-column style=”height:100%;width:50%" >
 </mp-column>
 </mp-row>
 </mp-column>

Within each section, include individual components to fill out the layout of the page.

Note:

When using percentages to layout your page, it is important to remember to
set the height and width as a percentage at every level in the hierarchy.
Otherwise, the HTML will get confused about what container to which the
percentage applies.

Defining Panels
A panel is a visual box with a title that can be expanded and collapsed. For example,
in the Defining a Page Layout of Three Rows example, each of the rows could be split
up into separate panels rather than more vertical containers:

Example: Defining Panels

<mp-column style=”height:100%;width:100%">
 <!-- 1st row -->
 <mp-row style=”height:33%;width:100%">
 <mp-panel style=”height:100%;width:50%" params=”title: ‘Row 1 Region
1’" >
 </mp-panel>
 < mp-panel style=”height:100%;width:50%" params=”title: ‘Row 1 Region
2’" >
 </mp-panel>
 </mp-row>

 <!-- 2nd row -->
 <mp-row style=”height:33%;width:100%">
 <mp-panel style=”height:100%;width:50%" params=”title: ‘Row 2 Region
1’" >
 </mp-panel>
 < mp-panel style=”height:100%;width:50%" params=”title: ‘Row 2 Region
2’" >
 </mp-panel>

Chapter 9
Defining Page Layout Components

9-60

 </mp-row>

 <!-- 3rd row -->
 <mp-row style=”height:33%;width:100%">
 <mp-panel style=”height:100%;width:50%" params=”title: ‘Row 3 Region 1’" >
 </mp-panel>
 < mp-panel style=”height:100%;width:50%" params=”title: ‘Row 3 Region 2’" >
 </mp-panel>
 </mp-row>
 </mp-column>

The previous example results in a display similar to Figure 9-9. You can use each of the
panels to contain other UI components (such as tables and charts) to display meaningful
information. For more detailed examples, see the examples in the Demo Sample included in
the Extensibility Development Kit.

Figure 9-9 Panels

Including Packaged Regions
The MPCUI supplies several packaged regions that can be included in your page with a
single simple tag.

Availability Region
The availability region displays the availability of the target for the period specified in the mp-
availabilty-region tag daySpan property. It shows a segmented bar that shows details of the
target availability (such as outages) over that same period:

<mp-availability-region style=”width:25%;height:100%" params=”daySpan:1">
</mp-availability-region>

Chapter 9
Including Packaged Regions

9-61

Figure 9-10 Availability Region

Incidents and Problems Region
The incidents region shows the set of open incidents for the current target and all
related targets. It provides the option to filter the list of displayed incidents. The only
necessary settings for the region are the size (width/height):

<mp-incident-region style=”width:50%;height:100%"></mp-incident-region>

Figure 9-11 Incidents and Problems

Job Summary Region
The jobs summary region displays the count of jobs by status.

<mp-job-summary-region style=”width:20%;height:100%"></mp-job-summary-region>

Chapter 9
Including Packaged Regions

9-62

Figure 9-12 Job Summary

Credentials Region
For information about reusable credentials UI components, see Reusable Credentials UI
Components.

Defining Charts
MPCUI supports the chart standard set out by JET. You can feel free to use any chart type
which JET supports. MPCUI supports three chart types in particular. All of these chart types
have integral support for displaying metric information by specifying the metric properties.
Additionally, you can construct your own data for the chart using information obtained from
other services including SQLDataService and map it to the charts using
the dataService property.

The following examples and documentation for each chart type are a brief summary of the
various options available for each chart. For a complete description of each chart's
properties, refer to the API documentation. For examples of how these charts work at
runtime, see the Demo Sample included in the Extensibility Development Kit.

Line Chart
Typically, the line chart displays information over time (often referred to as a time-series
chart). Therefore, it lends itself to the display of metric information either historically or in real-
time. The chart includes properties for specifying the metricName and metricColumns (an
array) that should be shown in the chart and a timePeriod property that can be set to show
historical data or real-time sampled data. When timePeriod is set to "REALTIME", the chart
manages an automatic polling request for you and updates the chart data as new samples
arrive.

<mp-section id="loadChartSection" params="title: getString('CPU_LOAD')"
 style="width:75%" >
 <mp-chart id="loadChart" style="height:100%;width:100%"
 params="mpChart: {

Chapter 9
Defining Charts

9-63

 type: 'line',
 dataSelection: 'multiple',
 emptyText: 'No data',
 yAxis: {min: 0, max: 2},
 styleDefaults: {colors: Colors.DEFAULT_COLORS},
 animationOnDisplay: 'auto',
 targetName: appModel.target.name,
 targetType: appModel.target.type,
 metricName: 'Response',
 metricColumns: ['Load'],
 timePeriod: 'LAST_DAY'}"
 ></mp-chart>
</mp-section>

Figure 9-13 Example of a Line Chart

Providing Line Chart Data Source
In addition to specifying metrics to be plotted using the line chart, you can create your
own data source that is used by the chart to display data. For example, data obtained
through the SQL data service or some other means such as by using the polling
service and then creating the data samples to be added to the chart.

In the following example, the page includes a chart with
the customDataSource mapped to an item in the page model that is constructed in the
page controller.

• ProcessesPage.html
<mp-chart id="lchart_from_custom" style="height:100%;width:100%"
 params="mpChart: {
 type: 'line',
 customDataSource: model().cpuChartData,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}"
 >
</mp-chart>

• ProcessesPageController.js (init method)

 // setup a data provider for the CPU line chart; it will be
 // updated each time a new data sample comes back for this metric

 // first get the polling context for a 15 second interval
 var pollingCtx =
 page.pollingContext.getContext(PollingInterval.EVERY_15_SECONDS);

 // now get the metric to be selected and initiate the request (won't start
until

Chapter 9
Defining Charts

9-64

 // "startPolling" is called)
 var cpuPerf = TargetContext.getTargetContext().getMetric("CPUPerf");
 var cpuPerfSel = cpuPerf.getSelector(['system', 'idle', 'io_wait']);
 cpuPerfSel.getData(page.cb(this.cpuDataHandler),
 MetricCollectionTimePeriod.REALTIME, pollingCtx);

 // start polling; this will automatically stop when user moves to another page
 pollingCtx.startPolling();

• ProcessesPageController.js (cpuDataHandler method)

 ProcessesPageController.prototype.cpuDataHandler = function(cpuData, fault) {
 var page = this.page;
 if (fault != null || result.errorMessage != null) {
 MpLog.logError(fault, "Getting CPU Data via Metric Service");
 return;
 }

 var cpuData = page.getModel("cpuChartData");
 if (cpuData == null) {
 cpuData = new CustomDataSource(["Sys/IO", "Idle %"], false, true);
 page.setModel("cpuChartData", cpuData);
 }

 var cpuPt = result.results[0];
 var cpuSys = cpuPt.data[0]['system'];
 var cpuIO = cpuPt.data[0]['io_wait'];
 var cpuIdle = cpuPt.data[0]['idle'];
 var derivedCpu = cpuSys+cpuIO;

 cpuData.setTimestampedRow(cpuPt.timestamp, [derivedCpu, cpuIdle]); };

Controlling the Legend
All charts can include a legend that displays the items shown in the chart. Use the following
example to position the legend in one of four locations (top, bottom, start, end). The legend
settings are managed as a part of the JET interface, and are documented by the JET API
documentation.

 <mp-chart id="lchart" style="height:100%;width:100%"

 params="mpChart: {
 type: 'line',
 customDataSource: model().cpuChartData,
 emptyText: 'No data',
 legend: {position: ‘bottom’},
 animationOnDisplay: 'auto'}"
 >

</mp-chart>

Area Chart
The area chart is similar to the line chart and has the same attributes. It displays data in the
same way as LineChart. The showCumulativeLine property controls the display of an area
chart. For most area charts, this property should be included in set to “true" to show a
stacked or cumulative area chart. Otherwise, the area chart overlays the fill areas for each
series included in the chart.

Chapter 9
Defining Charts

9-65

<mp-chart id="cpuutil" style=”width:100%;height:100%"
 params=”mpChart: {
 type: ‘area’,
 metricName: ‘CPUProcessorPerf’,
 metricColumns: ['CPUIdle'],
 timePeriod: ‘LAST_DAY’}">
</mp-chart>

Bar (Horizontal) Chart
The bar chart exposes the same properties as the column chart both for visible
attributes and for specifying control over the data source:

<mp-chart id="spaceChart" style=”width:100%;height:100%"
 params=”mpChart: {
 type: ‘bar’,
 orientation: ‘horizontal’,
 timePeriod: ‘CURRENT’,
 groupBy: ‘byKey’,
 metricName: ‘MSSQL_Database’,
 metricColumns: ['spaceavailable']}">
</mp-chart>

Figure 9-14 Bar Chart

Grouping Bars
The groupBy property (available for bar and column charts) enables you to organize
data by key or by column. The default (by column) applies when the data set does not
include keys.

In the following example, the groupBy property is set to byColumn. This creates two
groups of columns, one for each data column, with all three keys appearing in each
group as displayed in Figure 9-15.

Example: Group By Column

<mp-chart id="userBarChart" style=”width:100%;height:100%"
 params=”mpChart: {
 type: ‘bar’,
 orientation: ‘horizontal,
 customDataSource: model().userData,
 groupBy: ‘byColumn’}">
</mp-chart>

Chapter 9
Defining Charts

9-66

Figure 9-15 Group By Column

In the following example, the groupBy property is set to byKey. This creates three groups, one
for each key, with both columns (the data items) appearing in each group as displayed in
Figure 9-16.

Example: Group by Key

 <mp-chart id="userBarChart" style=”width:100%;height:100%"
 params=”mpChart: {
 type: ‘bar’,
 orientation: ‘horizontal,
 customDataSource: model().userData,
 groupBy: ‘byKey’}">
</mp-chart>

Chapter 9
Defining Charts

9-67

Figure 9-16 Group By Key

Bar (Vertical Bar) Chart
The default setting for the bar chart is to have vertical bars. It exposes the same
properties as the horizontal bar chart both for visible attributes and for specifying
control over the data source:

<mp-chart id="brChart" style=”width:100%;height:100%"
 params=”mpChart: {
 type: ‘bar’,
 metricName: ‘CPUProcessorPerf,
 metricColumns: [‘CPUIdle’],
 timePeriod: ‘LAST_DAY’,
 groupBy: ‘byKey’}">
</mp-chart>

Figure 9-17 Bar Chart

Chapter 9
Defining Charts

9-68

Pie Chart
In the following example, the code constructs a pie chart by specifying the metric name and
metric columns. The MPCUI framework performs the necessary requests to obtain
information from the Management Server and populates the values in the chart.

Note:

For the metricColumns attribute, the value is set in the controller (see the
HomePageController.js example) in response to the user changing the value of the
combo box above the chart.

<mp-chart id="memChart" style="height:calc(100% - 35px);width:100%"
 params="mpChart: {
 type: 'pie',
 dataSelection: 'multiple',
 styleDefaults: {colors: Colors.DEFAULT_COLORS},
 targetName: appModel.target.name, targetType: appModel.target.type,
 metricName: 'MemoryPerf', metricColumns: model().memChartColumns,
 timePeriod: 'CURRENT',
 emptyText: 'No data',
 animationOnDisplay: 'auto'}"
 >
</mp-chart>

Figure 9-18 Pie Chart

Defining Tables
The following sections describe the different methods of defining tables, providing examples
of each method.

Chapter 9
Defining Tables

9-69

Data Service
The following example maps the table to the MetricDataService by specifying the
metricName and metricColumns. You do not have to specify the headerText attributes
for the columns because it will be filled with the metric column labels. You can override
these labels if required.

Example: Mapping a Table to the MetricDataService

<mp-section id="fsrowc2" params="title : ''" style="width:65%">
 <mp-section id="fsrowc2sec" style="height:10%" params="title : ''">
 <div id='toolbar-container' class="mp-flex-item"
style="height:100%;width:100%">
 <div id="myToolbar" aria-controls="player" style='float:right'
 data-bind="ojComponent: {component:'ojToolbar',
 tableId: 'processesTable'}">
 <button id="killProcessButtonJ"
 data-bind="mpTableAdminButton: {
 label: 'Kill (Job)',
 adminClick: cb(controller.killProcess, true, false)
 }">
 </button>
 </div>
 </div>
 </mp-section>
 <mp-section id="fsrowc2sec2" style="height:90%" params="title : ''">
 <mp-table id="processesTable"
 params="mpTable: {
 selectionMode: {row: 'single', column: 'multiple'},
 metricName: ‘CPUProcessesPerf’,
 metricColumns: ['ProcUser', 'ProcCPU', 'ProcCmd'],
 timePeriod: ‘REALTIME’,
 interval: 30,
 dataUpdateListener: cb(controller.processesTableUpdated)
 }, mpPagingControl: { pageSize: 15 }">
 </mp-table>
 </mp-section>
 </mp-section>

Note:

The mpPagingControl accepts the same inputs as the JET API for paging.
This interface folds those settings directly into the parameters for the mp-
table tag, but you are free to use all documented JET settings here.

Chapter 9
Defining Tables

9-70

Figure 9-19 Data Service

Custom Data Provider
In the following example, the data for the table is loaded in the controller, and mapped to the
page model processInfoData item. The processInfoData is an array of objects (of any type).
The field property specified for each column identifies the public property that will be
displayed in each column. In this case, the fieldname will also be used as the headerText.
You can supply the headerText property to override this label.

Example: Mapping a Table to the processInfoData Item

<mp-table id="processInfoTable" style=”width:100%;height:100%"
 params=”mpTable: {
 customDataSource: model().processInfoData,
 columns: [
 {headerText: 'Process ID', field: 'Process ID', id: 'pid',
headerStyle: 'width:100px'},
 {headerText: 'User', field: 'User', id: 'User', headerStyle:
'width:250px'},
 {headerText: 'Database', field: 'Database', id: 'Database',
headerStyle: 'width:100px'},
 {headerText: 'Status', field: 'Status', id: 'Status', headerStyle:
'width:100px'},
 {headerText: 'Command', field: 'Command', id: 'Command', headerStyle:
'width:250px'},
 {headerText: 'CPU Time', field: 'CPU Time', id: 'CPUTime',
headerStyle: 'width:100px'},
 {headerText: 'Memory Usage', field: 'Memory Usage', id: 'MemoryUsage',
headerStyle: 'width:100px'}
]}"
 >
</mp-table>

Getting Selected Rows
The rows currently selected in the table can be obtained from the selection property of the
JET table. This property is documented in the JET API documentation, and it contains only
start and end index values; no actual data. Those index values will have to be mapped back

Chapter 9
Defining Tables

9-71

to the underlying data object, either by retrieving it from the table object or from the
page model.

 // Get the child node in the mp-table
var tableId=$
("#processesTable").data(CustomElement.MPCUI_CHILD_NODE).getChildNodeId();
// Get the get the selection object from the JET table (child node)
 var selection = $("#" + tableId).ojTable("option", "selection");
 var selectionRow = (selection == null) ? null : Util.def(selection[0], null);
 if (selectionRow == null) {
 MessageAlert.show("No process has been selected. Select the process to stop
from the table below.", "No Process Selected");
 return;
 }
// The selection object is documented in the JET API reference, but it contains
no
// data, only index references into the underlying data object.
 var selectionRowIdx = selectionRow.startIndex.row; // Single row,
startIndex=endIndex
// Access the underlying data object
 var rawTableData = table.ojTable("option", "data");
 var processPromise = rawTableData.at(selectionRowIdx);
 processPromise.then(Util.createProxy(this, this.confirmPromiseHandler));

Defining Dialogs
When you construct a dialog, typically you require an HTML file only, using the mp-
dialog tag to start the HTML content.

Dialog Registration
To make a dialog available to be displayed using the invokeActivity method, you
must register it as an activity as part of the Integration class. In the following example,
note the following:

• id attribute: The ID is used to reference this dialog from other activities within the
application. It must be unique across all activities included in the application.

• dialogClass attribute: The dialogClass attribute is a reference to the HTML
which is the implementation for this dialog.

inputParams are optional, but they enable the dialog to be reused in situations where
input parameters are required and you want to pass an object as context directly from
the HTML using the bean directive. The MPCUI framework maps the input object
parameters to the dialog parameters.

If you do not define inputParams as part of the dialog definition, then any input data
required by the dialog (such as any custom properties) would have to be set in
JavaScript and the dialog shown using the Dialog.show method.

Example: Registering a Dialog

<mp:DialogActivityDef id='metricHistory' label='Metric History'
dialogClass='dhs/MetricHistoryDialog' >
 <mp:inputParams>
 <mp:InputParam name='targetName'/>
 <mp:InputParam name='targetType'/>
 <mp:InputParam name='metric'/>
 <mp:InputParam name='columns'/>

Chapter 9
Defining Dialogs

9-72

 <mp:InputParam name='period'/>
 <mp:InputParam name='title'/>
 </mp:inputParams>
 </mp:DialogActivityDef>

Figure 9-20 Metric History Dialog

Displaying a Dialog and Waiting for Close Events
If the dialog includes some state that is required when the dialog closes, then a close handler
can be passed to the invokeActivity method. This handler is called with the CloseEvent. This
handler identifies which button was pressed to close the dialog and retrieves the dialog object
itself to retrieve information from it.

Example: Waiting for a Close Event

HomePageController.prototype.showRpmDialog = function(data, event) {
 this.page.invokeActivity('rpmInfoDialog', null, this.page.cb(this.rpmInfoDone));
};
HomePageController.prototype.rpmInfoDone = function(event) {
 ...
};

In the previous example, the rpmInfoDone function is passed to invokeActivity. When the
dialog closes, the method is called and passed a CloseEvent.

Chapter 9
Defining Dialogs

9-73

Defining Trains
The train allows the definition of a multi-step UI, with next and previous buttons to
navigate between each step. The train is typically used in cases where the user is
going to create or modify an entity that has a large number of attributes that can be
organized into categories.

The train must be registered with the integration metadata, and includes a controller
that extends TrainController and a page for each step in the train and uses the mp-
train-step-page tag. Each step (train step page) can have its own controller class.
Because each step is a page with a controller, the layout, management of data and
response to events within the step is exactly the same as any other page in the
application. For more information about the Page, see Page.

The train step controller can access the train itself by referencing
the TrainStepPage.train property. Use this to access other information maintained
within the train object or its model.

Train Definition Example
The following example provides a definition of train and the next example shows the
train.

Example: Defining a Train

<mp:TrainActivityDef id='addNewUserEmbeddedTrain' label='Add New User'>
 <mp:stepActivities>
 <mp:TrainStepActivityDef id='anuStep1' label='User Info' pageClass='dhs/user/
UserInfo' pageControllerClass='dhs/user/AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep3' label='Credentials' pageClass='dhs/
user/Credentials' pageControllerClass='dhs/user/AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep2' label='Expiry' pageClass='dhs/user/
Expiry' pageControllerClass='dhs/user/AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep4' label='Schedule' pageClass='dhs/user/
Schedule' pageControllerClass='dhs/user/AddNewUserTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep5' label='Notifications' pageClass='dhs/
user/Notifications' pageControllerClass='dhs/user/
NotificationsTrainStepController'/>
 <mp:TrainStepActivityDef id='anuStep6' label='Confirmation' pageClass='dhs/
user/Confirm' pageControllerClass='dhs/user/
AddNewUserTrainStepController'/>
 </mp:stepActivities>
</mp:TrainActivityDef>

Chapter 9
Defining Trains

9-74

Figure 9-21 Train Example

Train Controller
The train controller is used to managed state kept across all pages in the train and respond to
changes in the train (movement between steps) and respond to the train completing when the
user clicks either the Finish or Cancel button.

Train State
State may be maintained in the Train model using the Train.model property. This property is a
dynamic property that can be used to hold any information appropriate to the train. Individual
pages can store their own state in their own model properties and may also access
information stored in the train model.

Train Events
Each train step controller can implement the init and destroy methods that are called when
the step starts or stops. The step can do either of the following:

• Perform a step-specific processing step

• Access the train and allow it to process higher level logic

The train controller can also be called when the train ends (Finish or Cancel) by adding a
listener function for the train done event:

Example: Adding a Listener Function

 // register a listener for the train complete event, this may be a cancel or finish.
 train.addEventListener(TrainEvent.TRAIN_EVENT, trainDone);

Chapter 9
Defining Trains

9-75

The listener (trainDone in the previous example) can inspect the train state and
determine if processing should continue or not. It can choose to direct control to some
other activity (page) or can set the train back to another step:

Example: Defining Actions at the End of the Train

MyTrainController.prototype.trainDone = function(event) {
 // train cancel/finish button was pressed, so caller can now validate
 // the train (look at the model). The caller has the various options
indicated below.
 var train = event.train;

 if(train.getModel("isComplete")) {
 // want to end the train, but go somewhere else (otherPage is a page id)
 train.endTrain("otherPage");
 } else {
 // go back to train at a certain step
 train.controller.setStepById("step2");
 }
};

Defining Information Item and Information Displays (Label-
Value Pairs)

The InfoDisplay and InfoItem classes allow you to display a set of label-value pairs
in a group with the labels right-aligned and the values left-aligned. Each entry
(InfoItem) in the display specifies a label, value, optional icon, destination, or click
property.

The destination or click properties cause the value to appear as a link. You can set
destination to either of the following:

• String that is the identifier for some other activity (page or dialog)

• URL object constructed in the controller
(see HomePage.html and HomePageController.js for examples)

You can specify the click handler instead of the destination and set it to a function
within the controller that will be called when the item is clicked by the user.

Example: Defining Label Value Pairs

<mp-info-display>
 <mp-info-item id="cpuModel" params="label : getString('CPU_MODEL'),
 value: model().configData().cpuModel"></mp-info-
item>
 <mp-info-item id="cpuIdle" params="label : getString('CPU0_IDLE'),
 value: procData.result.getString('0','CPUIdle'),
 imageRenderer: rendererFactory.get('CHECK_MARK',

bean('type','number','warning','95','critical','99'))
 "></mp-info-item>
 <mp-info-item id="osVersion" params="label : getString('OS_VERSION'),
 value: model().configData().osVersion"></mp-
info-item>
 <mp-info-item id="hostedBy" params="label : getString('HOSTED_BY'),
 value: model().host().info().name "></mp-info-
item>
</mp-info-display>

Chapter 9
Defining Information Item and Information Displays (Label-Value Pairs)

9-76

Figure 9-22 Label Value Pairs

Using Built-in Renderers
In addition to the ability to define custom renderers for table columns, headers, and other UI
elements using the capabilities provided by the JET framework, the MPCUI framework also
provides several built-in renderers that can be used to display custom icons in a table or for
an InfoItem.

These built-in renderers show an icon in place of a text value, either in a Table or InfoItem
component. The renderer is specified by using the "rendererFactory" directly in the HTML and
specifies a renderer id to select the renderer and then a set of input parameters for the
renderer depending on the renderer type.

For example, the following code results in an icon being displayed next to the value on the
InfoItem and shows a check mark, warning, or error icon depending on the value displayed in
the InfoItem:

<mp-info-item id="cpuIdle" params="label: getString('CPU0_IDLE'),
 value: procData.result.getString('0','CPUIdle'),
 imageRenderer: rendererFactory.get('CHECK_MARK',
 bean('type','number','warning','95','critical','99'))
 "></mp-info-item>

The first parameter, "CHECK_MARK" indicates which renderer to be used (see the complete
list below). The second parameter, "bean" specifies the input parameter for the check mark
renderer. This parameter will be different and in some cases optional depending on the
renderer selected. Refer to the API documentation for details regarding what each renderer
requires for input parameters.

The built-in renderers include the following:

• CHECK_MARK

Displays a check mark, warning icon or error icon depending on the value provided. The
renderer can either be used to display a check mark or error icon in the case where a
Boolean value is shown. The Boolean may be true/false, t/f or 0/1. If the 'type' parameter
is specified as 'number', then the value will be compared to thresholds provided in the
input parameters to also show a different icon if the following is beyond the specified
threshold.

Chapter 9
Using Built-in Renderers

9-77

• TARGET_TYPE

Displays the icon associated with a target type value. This is the internal target
type id, such as 'oracle_database', and not the actual displayed string
representation of the target type.

• TARGET_STATUS

Displays the icon associated with a status value. The status value will be up/down,
true/false, or 0/1 and will display an up or down arrow according to that value.

When the renderer is associated with an InfoItem, by default the value shown in the
InfoItem will be passed to the renderer to determine which icon should be displayed. In
cases where an alternative value should be used to control the renderer, the InfoItem
provides the "imageDataSource" property. This property can be bound to a data item
that is different than the displayed value.

Defining Links
Use the link component to display what appears to the user to be a link to a URL. The
link specifies a label property and also either a destination or click handler property.
The destination can be an activity id or a URL object constructed in the controller. For
information about the InfoItem class, see Defining Information Item and Information
Displays (Label-Value Pairs).

Figure 9-23 Link Example

Including Enterprise Manager Images
To reference one of the images shipped with the Enterprise Manager product from the
HTML, use the appModel.emImage function to refer to the desired image. Note that
the list of images and their filenames is not currently part of the Enterprise Manager
EDK and therefore is subject to change.

You should verify and test any use of this information with each new release of
Enterprise Manager. In a typical deployment, the images are located under the
emcore_war/images directory. For example::

Displaying a Processing Cursor
The UI displays the processing or busy cursor automatically when:

• Any new activity is accessed (page, train or dialog)

• Any request is made to the Management Server for data

Typically, you do not have to show the busy cursor. However, if you feel that you must
show the busy cursor, take care that the cursor is ended cleanly. Ensure that if

Chapter 9
Defining Links

9-78

exceptions are thrown while the busy cursor is shown, that they are caught and the cursor is
removed.

To show the cursor, call the MpCursor.setBusyCursor method.

To remove the cursor, call MpCursor.removeBusyCursor. Both methods accept an optional
owner parameter. This parameter allows you to nest multiple cursors calls.

Defining Icons for Target Types
You can specify icons to associate with a target type to be displayed in the Cloud Control
console wherever a target type icon is shown (such as next to the target menu).

MPCUI supports the following graphic formats for icons:

• PNG

• JPG

• GIF

Oracle recommends the following sizing for icons:

• Small icon: 16x16

• Large icon: 24x24

Save the icon files in the plugin_stage/oms/metadata/mpcui directory. For more information
about the plug-in staging directory, see Staging the Plug-in.

Example: Defining Icons

 <EmuiConfig>
 <large-icon>demo_hs_large_icon.png</large-icon>
 <small-icon>demo_hs_small_icon.png</small-icon>
 </EmuiConfig>

Figure 9-24 and Figure 9-25 provide examples of a small and a large icon.

Figure 9-24 Small Icon

Figure 9-25 Large Icon

Displaying the Target Navigator
The target navigator can be displayed on the left side of the home page of any composite
target or any of its members. The target navigator displays the composite target at its root
and then shows all members of the composite by searching for any contains associations
below it. Targets that are associated with the composite target can have other non-contains
associations with the composite target or with other targets. However, only those targets with
contains associations with the composite target are shown in the target navigator. You can

Chapter 9
Defining Icons for Target Types

9-79

add these containment associations through any of the supported mechanisms for
discovering or deriving associations. For more information, see Using Derived
Associations.

To enable the target navigator, the MPCUI metadata must include the <EmuiConfig>
element with the context-pane-visible property set to true. This must be set for the
composite target type as well as any of its member targets. If it is not set for member
targets, then the navigator will not appear showing the other members of the
composite when the home page is displayed for those targets.

By default, the context-pane-visible property is set to false and the target navigator
is not displayed.

Note:

If there are no contains associations, then the target navigator will not
appear, even if the context-pane-visible property is set to true.

Example: Enabling the Target Navigator

<?xml version = '1.0' encoding = 'UTF-8'?>

<CustomUI target_type="demo_hostsystem"xmlns="http://www.oracle.com/
EnterpriseGridControl/MpCui">

 <EmuiConfig>
 <context-pane-visible>true</context-pane-visible>
 </EmuiConfig>

</CustomUI>

Defining a UI for Guided Discovery
The MPCUI framework supports the ability to define a custom user interface that can
be registered as part of a guided discovery flow. After registration, this discovery flow
is available from the Add Targets Manually page. For more information about adding
targets manually, see Manually Adding Targets .

About Guided Discovery
The guided discovery flow provides you with the ability to add targets and associations
to Enterprise Manager by running discovery scripts on selected Management Agents
and calling service APIs to add the appropriate entities. This process is driven from a
user interface wizard (train) and can use information supplied by the end user to guide
the process. It is up to you to determine (based on your specific requirements) the
information required from the end user during this process. For examples, see the
plug-in samples in the EDK (demo_hostsample and demo_hostsystem). For more
information about discovery scripts, see Defining Target Discovery .

The services typically used during guided discovery include the following:

• TargetInfo services to retrieve Management Agents and targets, for example, for
target existence or target properties

Chapter 9
Defining a UI for Guided Discovery

9-80

• AssociationInfo services to retrieve existing associations

• Discovery service to run discovery scripts on selected Management Agents

• TargetManagement services to create or delete targets

• AssociationManagement services to create or delete associations

For more information about these services, see Using Discovery Service , Using Target
Information Services, and Using Target Management Services.

Supporting Guided Discovery
To add guided discovery to a plug-in, ensure that the following directories contain the
required files:

• plugin_stage/discovery

– Scripts that will be executed from the guided discovery flow. These scripts might
include multiple targets and associations. For more information about discovery
scripts, see Creating the Discovery Script.

– customdiscover.lst file. This file must include one line for each discovery script to be
provided with the plug-in. Each entry must reference a discovery category, which is a
unique identifier that will be used to identify the script to be executed when calling the
discovery service. The following entry shows a discovery category (DHS_DISC) that
is used to refer to the demo_hostsample_discovery.pl script during the guided
discovery flow.

DHS_DISC|demo_hostsample_discovery.pl
• plugin_stage/oms/metadata/discovery

Discovery metadata file (plugin_discovery.xml). For more information about the discovery
metadata file and an example of the discovery XML, see Creating Discovery XML. For
guided discovery, there are a number of attributes that must be specified correctly to
allow your guided discovery to be registered correctly.

– <DiscoveryModule name="DemoHostSample">
This is the unique name for the discovery module and must match the module name
used to register the discovery SWF in the MPCUI metadata file.

– <NlsValue>Discover Demo Host Sample Targets</NlsValue>
This is the label that appears in the Target Types list on the Add Targets Manually
page of the Cloud Control console.

<CustomDiscoveryUI>
 <LaunchADF>
 <DestOutcome>goto_core-mpcustomdiscovery-page</DestOutcome>
 </LaunchADF>
</CustomDiscoveryUI>

This must be exactly the same in your discovery metadata file. It ensures that the
guided discovery UI that you built and included in your plug-in will be launched.

• plugin_stage/oms/metadata/mpcui

– discovery.js

Similar to the MPCUI JS library created for a target home page, the guided discovery
UI is constructed as a JS library.

Chapter 9
Defining a UI for Guided Discovery

9-81

– MyMpcui.xml

In addition to the discovery JS library, the MPCUI metadata file must include
Integration metadata for the discovery module.

Example: SwfFiles Tag From MPCUI Metadata File

<mp:Integration mpcuiLibVersion="13.2.0.0.0" integrationType="discovery"
 discoveryModule="DemoHostSample"
 xmlns:mp="http://www.oracle.com/EnterpriseGridControl/
MpCuiIntegration"
>
…
</mp:Integration>

The <mp:Integration> entry is similar to the one created for the target
instance UI. However, this one specifies the discoveryModule. This UI is
launched when this discovery module is selected by the user in the Add
Targets Manually page in the Cloud Control console.

Constructing the Guided Discovery User Interface
The guided discovery UI is built using the MPCUI features for constructing an
HTML/JS UI. The UI components, such as regions, buttons, tables, dialogs, and so on
are used to construct a user interface to guide the user through the process of adding
new targets to Enterprise Manager. For information about adding these UI
components, see the relevant sections of this chapter, such as Defining Tables or
Defining Dialogs.

Discovery Integration
The integration metadata for the discovery UI defines the set of activities used by the
discovery UI. The discovery UI must include at least one PageActivity that is defined
with the isDefaultPage=true property indicating that this is the page that will be
loaded when the guided discovery starts. In the following example, (extracted from the
demo_hostsystem sample plug-in), take note of the discoHomePg activity.

Example: Integration Metadata

<mp:Integration mpcuiLibVersion="13.2.0.0.0" integrationType="discovery"
 discoveryModule="DemoHostSample"
 xmlns:mp="http://www.oracle.com/EnterpriseGridControl/
MpCuiIntegration"
 >
 <mp:sourceContext>
 <mp:jsRoot path="js"/>
 <mp:bundleRoot path="rsc"/>
 </mp:sourceContext>

 <mp:jsLibraries>
 <mp:jsLibrary id="pluginLib" path="libs/dhs/demo_hostsample_discovery-
min.js"
 debugPath="libs/dhs/demo_hostsample_discovery-debug.js"
 version="13.2.0.0.0" isDefault="true">
 <mp:jsModule module="ojs/ojmodel"></mp:jsModule>
 <mp:jsModule module="ojs/ojknockout"></mp:jsModule>
 <mp:jsModule module="ojs/ojknockout-model"></mp:jsModule>
 <mp:jsModule module="ojs/ojcomponents"></mp:jsModule>
 <mp:jsModule module="ojs/ojarraytabledatasource"></mp:jsModule>

Chapter 9
Defining a UI for Guided Discovery

9-82

 <mp:jsModule module="ojs/ojdatetimepicker"></mp:jsModule>
 <mp:jsModule module="ojs/ojtable"></mp:jsModule>
 <mp:jsModule module="ojs/ojdatagrid"></mp:jsModule>
 <mp:jsModule module="ojs/ojchart"></mp:jsModule>
 <mp:jsModule module="ojs/ojgauge"></mp:jsModule>
 <mp:jsModule module="ojs/ojlegend"></mp:jsModule>
 <mp:jsModule module="ojs/ojselectcombobox"></mp:jsModule>
 <mp:jsModule module="ojs/ojsunburst"></mp:jsModule>
 <mp:jsModule module="ojs/ojthematicmap"></mp:jsModule>
 <mp:jsModule module="ojs/ojtreemap"></mp:jsModule>
 <mp:jsModule module="ojs/ojvalidation"></mp:jsModule>
 <mp:jsModule module="ojs/ojslider"></mp:jsModule>
 </mp:jsLibrary>
 </mp:jsLibraries>
 <mp:resourceBundles>
 <mp:MpBundle name="demoUiMsg" path="oracle.samples.xohs.rsc" isDefault="true"/>
 <mp:MpBundle name="demoJobMsg" path="oracle.samples.xohs.rsc"/>
 </mp:resourceBundles>

 <mp:activities>
 <mp:PageActivityDef id='discoHomePg' label='Discovery Console'
 pageClass='dhs/discovery/DiscoveryTrainPage'
 pageControllerClass='dhs/discovery/
DiscoveryTrainPageController'
 isDefaultPage="true" />
 <mp:TrainActivityDef id='discoTrain' label='Discover New Targets'
 trainControllerClass='dhs/discovery/DiscoveryTrainController'>
 <mp:stepActivities>
 <mp:TrainStepActivityDef id='selAgentsStep' shortLabel="Select Agents"
 label='Add Demo Host Sample Targets: Select Agents'
 pageClass='dhs/discovery/SelectAgentStep'
 pageControllerClass='dhs/discovery/DiscoveryStepController'/>
 <mp:TrainStepActivityDef id='agentInputStep' shortLabel="Configure Inputs"
 label='Add Demo Host Sample Targets: Configure
Inputs'
 pageClass='dhs/discovery/AgentParamInputStep'
 pageControllerClass='dhs/discovery/DiscoveryStepController'/>
 <mp:TrainStepActivityDef id='selTargetsStep' shortLabel="Configure Targets"
 label='Add Demo Host Sample Targets: Configure Targets'
 pageClass='dhs/discovery/
SelectTargetsStep'
 pageControllerClass='dhs/discovery/DiscoveryStepController'/>
 <mp:TrainStepActivityDef id='summaryStep' shortLabel="Summary"
 label='Add Demo Host Sample Targets: Summary'
 pageClass='dhs/discovery/FinalizeStep'
 pageControllerClass='dhs/discovery/DiscoveryStepController'/>
 </mp:stepActivities>
 </mp:TrainActivityDef>
 <mp:DialogActivityDef id='configureInstancePropertiesDialog'
 label='Dialog InstProp'
 dialogClass='dhs/discovery/
ConfigureInstancePropertiesDialog'
 dialogControllerClass="dhs/discovery/ConfigureInstancePropertiesDialogController">
 <mp:inputParams>
 <mp:InputParam name='properties'/>
 <mp:InputParam name='discoveredName'/>
 <mp:InputParam name='rowIndex'/>
 </mp:inputParams>
 </mp:DialogActivityDef>
 <mp:DialogActivityDef id='targetHomeDialog' label='Dialog TargetHome'
 dialogClass='dhs/discovery/TargetHomeDialog'

Chapter 9
Defining a UI for Guided Discovery

9-83

 dialogControllerClass="dhs/discovery/
TargetHomeDialogController">
 <mp:inputParams>
 <mp:InputParam name='targetHome'/>
 <mp:InputParam name='rowIndex'/>
 </mp:inputParams>
 </mp:DialogActivityDef>
 </mp:activities>
</mp:Integration>

Structure of the Discovery UI
The discovery UI is often a single page that either has a train embedded in it, or that
displays dialogs to obtain information from the end user to guide the discovery
process. The steps of the guided discovery flow depends on the requirements, but
often involve the following:

1. Determine on which Management Agents to run a discovery script

2. Run the discovery script

3. Process the results of the discovery script, adding additional information provided
by the end user

4. Call APIs to add or delete targets

One important consideration about guided discovery is that it can be used to update
the topology of existing composite targets as well as discover new targets. In the case
of the sample plug-in (demo_hostsystem), the guided discovery UI allows the user to
add new system targets, but also allows the user to add or remove members from an
existing system.

This use case also illustrates the requirement to use Enterprise Manager APIs to
query for the set of existing targets known to Enterprise Manager to compare the set
with information returned from the discovery script to identify which targets are already
managed by Enterprise Manager and which are not. For example, the result might be
a list of new targets that should be added and a list of other targets that no longer exist
in the managed configuration and must be removed from Enterprise Manager.

This scenario also illustrates that the discovery application might also be integrated
with the custom UI built for the target home page. This provides the user with the
ability to update the configuration of an existing composite target directly from the
composite target home page.

See the HostSystemConfiguration page in the demo_hostsystem sample plug-in for
an example of using discovery UI from within a target home page.

Using Discovery Service
The Discovery service is used to run a discovery script included with your plug-in. For
a description of your plug-in requirements to support discovery, see Supporting Guided
Discovery.

The following example (included in the demo_hostsystem sample plug-in in the
DiscoveryTrainStepController) shows calling the discovery service
(TargetFactory.discoverTargets). This service includes an addRequest method that
can be called multiple times to process discovery on multiple Management Agents if
required.

Chapter 9
Defining a UI for Guided Discovery

9-84

Each call to the addRequest method is passed the following along with the handler that will be
called with the results of the discovery script:

• Request ID

A unique identifier (assigned by you) associated with that particular request which will
enable you to retrieve the specific results associated with that request.

• Agent

the Management Agent Target that the discovery should be run against

• Plug-in ID

The plug-in ID associated with the discovery to be run. A plug-in can include multiple
discovery modules and categories.

• Discovery category

The discovery category. This must map to a discovery script through an entry in the
discover.lst file included in the agent part of the plug-in.

Example: Discovery Service

/**
 * when doing discovery, the service will accept multiple requests to be
 * processed at the same time. this would typically be the case if multiple
 * agents were involved in the process, but could also be if different discovery
 * categories (scripts) were to be processed.
 *
 * the discovery request includes the following elements:
 * requestId a unique identifier associated with that particular request
 * that will allow you to retrieve the specific results associated
 * with that request.
 * agent the agent Target that the discovery should be run against
 * pluginId the pluginId associated with the discovery to be run; a plug-in
 * can include multiple discovery modules and categories
 * discCat the discovery category; this must map to a discovery script via
 * an entry in the discover.lst file included in the agent part of
 * the plugin
 * params parameters that are to be passed to the discovery script
 *
 * Note on discoveryModule - in addition to the pluginId, the discovery UI is
 * passed the discovery module associated with this discovery pass. If you've
 * chosen to implement multiple types of discovery operations from a single
 * discovery UI you may retrieve the discoveryModule to determine in what context
 * the UI was launched.
 */

var requestId = "DiscReq1";
var pluginId = ApplicationContext.getPluginId();
var discoveryCategory = "DHSYSTEM_DISC";
discSvc.addRequest(requestId, agent, pluginId, discoveryCategory, params);

var mrs = new MultiServiceResponder(this.page.cb(this.discoverResultsHandlerMul));
var batch = this.page.getBatchRequest();

var discRequest = TargetFactory.discoverTargets(discSvc, mrs.sync, batch);
discRequest.data["initProcessing"] = initProcessing;
mrs.addRequest("discoverTargets", discRequest);

batch.sendRequest();

Chapter 9
Defining a UI for Guided Discovery

9-85

The discovery results handler, declared as follows, is passed a fault object and the
discovery results.

DiscoveryStepController.prototype.discoverResultsHandlerMul = function(response)
{

If a fault did not occur during processing of the discovery script, then
the response.getFault(“discoverTargets”) will be null. The discovery object, retrieved
by response.getResult("discoverTargets"), includes an Array of the DiscoveryRequest
objects constructed by calling the addRequest method. Each request includes the
properties specified (such as agent, category, and so on) and also includes a
DiscoveredTargets object. The DiscoveredTargets object includes the list of targets
returned from the discovery script that was run on the target Management Agent for
the specified request. For more information about discovery scripts, see Creating the
Discovery Script and for information about the discovery objects returned by the
DiscoveryService, see the API documentation in the EDK.

Using Target Information Services
During the discovery process it is often necessary to obtain target information such as
a list of agents or the set of targets of a particular type. The target information service
provides a number of APIs that can be used for such purposes. This section provides
an overview of these services. For additional information, see the API documentation
in the EDK and for examples of their use, see the demo_hostsystem sample plug-in.

• TargetFactory.getAgents

The getAgents API enables you to retrieve a set of Management Agents that can
be used to perform discovery. You can filter the list by specifying selection
properties (Array of TargetProperty) such as selecting all the Management Agents
running on a Windows host.

• TargetFactory.getTargets

Use the getTargets API to retrieve a list of targets specifying any number of
selection criteria including hosts, target types, managed status, or metadata
version. Each item is specified as a list of possible values and the request can
include one or more selection criteria.

• Target.getSystemMembers

Use the getSystemMembers API to retrieve the list of system member targets.
These are targets that are included in the system through the systemStencil. For
information about the system targets, see the Oracle Enterprise Manager Cloud
Control Extensibility Programmer's Guide.

• Target.getCompositeMembers

Use the getCompositeMembers API to retrieve the list of composite member
targets. Composite members are those included in a composite (or system target)
through containment associations. For information about composite targets, see
the Oracle Enterprise Manager Cloud Control Extensibility Programmer's Guide.

Using Target Management Services
The target management services provide you with the ability to create or delete targets
or associations. In the case of target management, associations can also be passed
as part of the target definition and the associations are added as part of the process of
adding the target itself. This section provides an overview of these services. For

Chapter 9
Defining a UI for Guided Discovery

9-86

additional information, see the API documentation in the EDK and for examples of their use,
see the demo_hostsystem sample plug-in.

• TargetFactory.createTargets

Use the createTargets API add targets to Enterprise Manager. The process of adding
targets to Enterprise Manager forces the deployment of the necessary plug-in to the
Management Agents associated with each target. The request to this API is a list of
Target objects, each of which must, at a minimum, specify a name, type, and agent.
Typically, target instance properties (if used for this target type) can also be specified.

• TargetFactory.deleteTargets

Use the deleteTargets API to remove targets from Enterprise Manager. The request to
this API is a list of Target objects. Removing a target from Enterprise Manager should be
done with care as deleting the target is not reversible and it removes all target, metric,
and configuration history.

• Target.createAssociations

Use the createAssociations API to add associations between the specified target and
another target. Associations can be created in this way when creating them by using
derived associations or by using the system stencil. In all cases, the association must be
associated with a corresponding allowed pairs definition. For more information, see Using
Derived Associations.

• Target.deleteAssociations

Use the deleteAssociations API to delete associations between the specified target and
other targets.

Building the MPCUI Application into a JS Library
Your MPCUI Application will be delivered and installed as a JavaScript library. All of the
HTML files and JS files will be combined into a single file and minified. This ensures that your
custom UI will be as peformant as possible.

Creating the JS Library
The JS library is created with a combination of NodeJs and the RequireJS r.js script. r.js does
the work of creating and minifying your library and NodeJs is used as a platform to allow you
to run r.js from the command line.

1. Download and Install Node.js:

https://nodejs.org/en/download/

2. There are build.js and build-min.js files in the tools directory. These files contain the
instructions to build the debug and minified JS libraries respectively. Edit those files to list
out each of your JS files and HTML files in the include statement.

3. Expand build.xml. Right click the build target and select Run Target. This target will
create both the debug and minified JS library for your MPCUI Applications

4. Find the libraries in the tools/build directory.

Adding the JS Library to The Plug-in
With the JS library built, you need to add it to the stage directory and add a reference to it in
the Integration Metadata.

Chapter 9
Building the MPCUI Application into a JS Library

9-87

http://requirejs.org/
https://nodejs.org/en/download/

1. Move the library to the stage/oms/metadata/mpcui directory.

2. Add a reference to the Integration Metadata:

<mp:Integration mpcuiLibVersion="13.2.0.0.0"
 xmlns:mp="http://www.oracle.com/EnterpriseGridControl/
MpCuiIntegration"
 >
 <mp:sourceContext>

 <mp:jsRoot path="js/libs/dhs"/>
 </mp:sourceContext>
 <mp:jsLibraries>

 <mp:jsLibrary id="pluginLib" path="demo_hostsample-min.js"
 debugPath="demo_hostsample-debug.js"
 version="13.2.0.0.0" isDefault="true">
 <mp:jsModule module="ojs/ojmodel"></mp:jsModule>
 <mp:jsModule module="ojs/ojknockout"></mp:jsModule>
 <mp:jsModule module="ojs/ojknockout-model"></mp:jsModule>
 <mp:jsModule module="ojs/ojcomponents"></mp:jsModule>
 <mp:jsModule module="ojs/ojarraytabledatasource"></
mp:jsModule>
 <mp:jsModule module="ojs/ojdatetimepicker"></mp:jsModule>
 <mp:jsModule module="ojs/ojtable"></mp:jsModule>
 <mp:jsModule module="ojs/ojdatagrid"></mp:jsModule>
 <mp:jsModule module="ojs/ojchart"></mp:jsModule>
 <mp:jsModule module="ojs/ojgauge"></mp:jsModule>
 <mp:jsModule module="ojs/ojlegend"></mp:jsModule>
 <mp:jsModule module="ojs/ojselectcombobox"></mp:jsModule>
 <mp:jsModule module="ojs/ojsunburst"></mp:jsModule>
 <mp:jsModule module="ojs/ojthematicmap"></mp:jsModule>
 <mp:jsModule module="ojs/ojtreemap"></mp:jsModule>
 <mp:jsModule module="ojs/ojvalidation"></mp:jsModule>
 <mp:jsModule module="ojs/ojslider"></mp:jsModule>
 <mp:jsModule module="ojs/ojpagingcontrol"></mp:jsModule>
 </mp:jsLibrary>
 </mp:jsLibraries>

 ...

 </mp:Integration>

3. Use the EDK to create your OPAR.

4. Import and Deploy your plug-in to Enterprise Manager.

Chapter 9
Building the MPCUI Application into a JS Library

9-88

Element Description

mp:Integration The mpcuiLibVersion specified which version of
the MPCUI library (and JET library) your UI will
run against.

<mp:Integration
mpcuiLibVersion="13.2.0.0.0"
 xmlns:mp="http://
www.oracle.com/EnterpriseGridControl/
MpCuiIntegration">

For your discovery library,
set integrationType and discoveryModule.

<mp:Integration
mpcuiLibVersion="13.2.0.0.0"
 integrationType="discovery"
discoveryModule="DemoHostSample"
 xmlns:mp="http://
www.oracle.com/EnterpriseGridControl/
MpCuiIntegration"
 >

sourceContext The Integration Metadata was designed so that
you can reuse the Integration MXML file from a
Flex implementation. The sourceContext
bootstraps some of the old notation and limits the
ammount of duplication necessary in the paths of
the files contained in the plug-in.

<mp:sourceContext>
 <mp:jsRoot path="js/libs/dhs"/>
 <mp:cssRoot path="css/dhs"/>
 <mp:bundleRoot path="rsc"/>
</mp:sourceContext>

cssFiles Each css file your application uses is specified
here.

<mp:cssFiles>
 <mp:cssFile id="myCss"
path="dhs.css" version="13.1.0.1.0"/>
</mp:cssFiles>

Chapter 9
Building the MPCUI Application into a JS Library

9-89

Element Description

jsLibraries This tag defines each JS library used, along with
the dependencies each will require in the main.js
file.

<mp:jsLibraries>
 <mp:jsLibrary id="pluginLib"
path="libs/dhs/demo_hostsample-
min.js"
 debugPath="libs/dhs/
demo_hostsample-debug.js"
version="13.2.0.0.0"
 isDefault="true">
 <mp:jsModule module="ojs/
ojmodel"></mp:jsModule>
 <mp:jsModule module="ojs/
ojknockout"></mp:jsModule>
 <mp:jsPath ...></mp:jsPath>
 <mp:jsShim ...></mp:jsShim>
<!--
 There can be only 1 default
library. Any classes that aren't
attached to
 another library will be
attached to the default library.

 If not the default, you can
associate an activity with the
library with:
 mp:jsPath id="activityId"

 and the appropriate path will
be added for that activity or the
explicit
 path can be set:
 mp:jsPath path="dhs/
MyController"

 Modules to be added to the
initial require clause (where the
app is launched)
 can be added here:
 mp:jsModule module="ojs/
ojtable"

 Shims may also be specified:
 mp:jsShim name="myshim"
exports="myshim" deps="jquery, ojs/
ojcore"

-->

Chapter 9
Building the MPCUI Application into a JS Library

9-90

Element Description

resourceBundles
<mp:resourceBundles>
 <mp:MpBundle name="demoUiMsg"
path="oracle.samples.xohs.rsc"
isDefault="true"/>
 <mp:MpBundle name="demoJobMsg"
path="oracle.samples.xohs.rsc"/>

</mp:resourceBundles>

activities All pages, dialogs, trains, etc used by your UI. This
section can be taken directly from the MXML
Integration file and copied into the Integration
Metadata.

About Logging
The following sections discuss the logging options for MPCUI.

Add Logging to your Code
Use the logging facility (MpLog) to log messages from your code.

While logging can be useful in situations where diagnostics are necessary, it has a cost in
terms of code size and overhead. Therefore, use logging with care.

Perform logging by calling one of several MpLog methods (such as debug, info, error, or
fatal). The methods accept a message string and an optional list of parameters that must be
substituted.

To substitute parameters, indicate the parameter location using {#} format:

 MpLog.debug("The metric {1} was not found for the target {2}.", metricName,
targetName);

The message generated for this log statement appears in the following log output:

2017-04-22 11:10:17 [MpCui] DEBUG The metric CPU was not found for the target MYHOST

The level (info, debug, error, fatal) allows the user to enable log output for different classes of
messages.

• By default, all error and fatal messages are sent to the log output location.

• The info and debug level messages are only sent if these levels are explicitly enabled.

Furthermore, you can direct the messages for each level to different output locations. There
are three possible log locations:

• EMLOG: messages are sent to the Enterprise Manager application logs

• CONSOLE: messages are sent to the console log, accessible through the browser
developer tools

Chapter 9
About Logging

9-91

Options for Capturing Log Output
The options for capturing log output depend on your implementation:

• Running MPCUI from NetBeans

• Running MPCUI from the Enterprise Manager Console

Running MPCUI from NetBeans
When you are developing MPCUI using NetBeans, the log messages appear in the
console window at the bottom of the NetBeans integrated development environment
(IDE) by default.

To change these logging settings:

1. Open the data/mpCuiProperties.xml file..

2. Locate the loglevel element:

<!-- Logging
 level: DEBUG, INFO, ERROR, FATAL, WARN (or ALL)
 output location: CONSOLE, EMLOG
 format: level,output;level,output (e.g. DEBUG,CONSOLE;ERROR,EMLOG)
 -->
 <loglevel>ALL,EMLOG</loglevel>

3. Modify the loglevel element as required.

Running MPCUI from the Enterprise Manager Console
After the plug-in is deployed, the settings for logging are detected from the HTTP
request. The default setting is FATAL,CONSOLE;ERROR, CONSOLE.

The end user can modify the settings as follows:

1. Append the following to the URL in the address bar of the browser:

&loglevel=ALL,EMLOG
2. You can substitute ALL,EMLOG with any valid logging settings, such as

ERROR,CONSOLE and so on.

3. For diagnostic situations, add the following to the end of the URL:

&loglevel=ALL,CONSOLE

Chapter 9
About Logging

9-92

Figure 9-26 Viewing Log Messages

Development Environment Options
When building a custom UI for your plug-in, you have the following development environment
options:

• NetBeans

NetBeans is a free IDE which you can download from http://netbeans.org. For more
information about using NetBeans, see Overview of MPCUI Metadata Elements.

• An IDE of your choosing

There is no limitation on which IDE you use to develop your UI.

 Developing MPCUI in NetBeans
This section describes the process to follow when building a UI using the MPCUI libraries and
NetBeans. These steps assume the use of the sample application provided with the EDK
referred to as the Demo Host Sample (or demo_hostsample). As with many development
activities it is often easiest to start with a working example to understand how the provided
APIs work and how to use them to accomplish higher-level use cases.

To simplify the process for developing your custom UI, build and run the custom UI project
from NetBeans without having to redeploy the plug-in to Enterprise Manager after each
change. When running from NetBeans, your UI will not have access to the other Enterprise
Manager features and pages available to the console, but you will be able to exercise your UI
to ensure that it is functioning correctly before deploying it as part of your plug-in.

Setting up the Demo Sample Project
To set up the demo sample project:

Chapter 9
Development Environment Options

9-93

http://netbeans.org/

1. Locate the org-oracle-demo_hostsample.nbm file in the EDK distribution.

2. Copy this file to a location on your Windows system where you installed NetBeans.

3. From NetBeans, from the Tools menu, select Plugins.

4. Select the Downloaded tab and click the Add Plugins… button. Navigate to
the .nbm file and click Open.

5. In the Downloaded tab, select the Oracle MPCUI Demo Hostsample plugin and
click Install.

6. Click through the dialog that pops up and install the plug-in.

7. Click the New Project… icon or the File menu and then New Project…

8. Open the Samples folder and select HTML5/JavaScript. Select Oracle MPCUI
Demo Hostsample Project. Click Next and then Finish on the next screen.

9. This creates a Demo Hostsample project for you. Navigate to the js/dhs directory
to see the JaS Controller files and the view/dhs directory to see the HTML pages
that comprise the plug-in.

10. This process can be repeated for the Demo Hostsystem module, and the MPCUI
Starter module, which is a project which has all of the required dependencies (JET,
MPCUI, etc) but no page or controller implementations. The MPCUI Starter project
will appear under HTML5/JavaScript rather than Samples>HTML5/JavaScript.

For information about building the project’s JS library, see Packaging the MPCUI
Implementation With the Plug-in and Defining the MPCUI Application.

Running Demo Sample MPCUI from NetBeans

Note:

One of the advantages of MPCUI is that it allows you to test your UI as part
of the deployed plug-in or by running it from within NetBeans directly. This
latter option makes iterative development much simpler, however it requires
that at least one version of the plug-in is deployed to Enterprise Manager and
that a target instance has already been discovered before attempting to run
the UI.

After the Demo Sample plug-in has been deployed and you have created an instance
of the Oracle MPCUI Demo Hostsample Project in NetBeans, then you can run the
project from NetBeans.

1. From the Navigator, select demo_hostsample.

2. From the Run menu, select Run Project. To debug, you would right click on
index-debug.html and select Run File.

A browser window appears with a Management Server Connection login dialog.

Chapter 9
Development Environment Options

9-94

Note:

If the Management Server Connection dialog does not appear or if any other
error appears, then verify that the project was imported correctly and verify that
no errors appear in the Output>Browser Log tab that appears in the bottom of
the NetBeans window.

During normal operation, when the user accesses your UI through the
Enterprise Manager console by going to a target home page, this dialog does
not appear because the UI is running as an integral part of the Enterprise
Manager console and is embedded in a console session.

However, when running from NetBeans, your UI requires information to connect
to the Enterprise Manager site where your plug-in has been deployed and
where the target instance that you will manage is located. Enter the same
information for host, port and credentials that you would use to connect to your
running Enterprise Manager console. Use either http or https depending on
your configuration; however you must ensure that the ports you supply are
correct for the protocol supplied.

3. Below Target to Monitor, enter the target name and type (the internal type and not the
displayed label) of a target instance associated with this plug-in. It must be a target that
exists in Enterprise Manager already. If you are using the Demo Sample, then the target
type is demo_hostsample, and the name is the target name you provided when creating
the target instance.

4. Click OK.

The Demo Sample home page appears and is populated with data.

Note:

In this mode, the Enterprise Manager page decorations and the target context area
do not appear at the top of the page but they will appear when you access the
target home page from the Enterprise Manager console. A menu appears that
allows you to exercise the multiple pages included in your custom UI.

Elements of the Demo Sample UI
The following is a brief list of the components that make up the Demo Sample UI. For more
comments that describe the purpose of each file and the items demonstrated in each file, see
the source code.

demo_hostsample
 css/dhs
 dhs.css Style sheet for plug-in UI
 data/metadata
 demo_hostsample_uimd.xml An abbreviated metadata file used to create menu
 items in standalone mode
 data/metadata/stage
 demo_hostsample_uimd.xml Full metadata file used to package and deploy the
 plug-in
 em/mpcuiswf/loader/images Any images included with the custom UI go in
this

Chapter 9
Development Environment Options

9-95

 directory both in the running project and
in the
 stage/oms/metadata/mpcui directory.
 js/dhs
 HomePageController.js All of the controllers for the HTML pages
in the
 plug-in go in a plug-in specific directory
under
 the js directory.
 ProcessesPageController.js
 view/dhs
 HomePage.html The target homepage, contains the layout of
 the UI for the homepage
 ProcessesPage.html
 tools Contains the files and logic for building
the
 plug-in MPCUI Application into a single JS
 library containing all JS and HTML files.

Updating the Demo Sample
As you modify and rebuild your UI in NetBeans, you can run or debug the UI directly
from NetBeans as you make changes.

Note:

If you use the Chrome browser, you should install the NetBeans Connector
and the Knockoutjs context debugger in the Extensions. This will allow you to
debug through the NetBeans IDE.

Modifying the Deployed Plug-in
After you make changes to your UI in NetBeans, you can apply the changes to your
plug-in so that you can also view the updates from a target home page within the
Enterprise Manager console.

To do this, you must either create and deploy a new version of your plug-in or use the
metadata registration service (MRS).

MRS allows you to apply incremental updates to your plug-in without creating and
deploying a entirely new version. For more information about MRS, see Updating
Deployed Metadata Files Using the Metadata Registration Service (MRS).

After you have modified your custom UI:

1. Rebuild the JS library.

2. FTP or copy the library (and MPCUI XML file containing the Integration metadata)
to the server where your Enterprise Manager site is installed and where you
deployed the Demo Sample plug-in originally.

3. Copy this file to the location where you created the plug-in staging directory:

stage/oms/metadata/mpcui

Chapter 9
Development Environment Options

9-96

Note:

There is an existing version of this file in the directory (or a subdirectory) along
with an MPCUI metadata XML file.

4. Update the plug-in using the following command:

emctl register oms metadata -sysman_pwd sysman -pluginId oracle.sysman.xohs
-service mpcui -file demo_hostsample_uimd.xml

For information about the emctl command, see Updating Deployed Metadata Files Using
the Metadata Registration Service (MRS).

Setting Up a NetBeans Project for MPCUI
To set up a NetBeans, you can create an empty project (the MPCUI Starter Project, which
can be installed from the nbm file included with the EDK) or create a Demo Hostsample
project to use as a template.

Creating a NetBeans Project
If you are using the demo_hostsample project as a template (and some of these steps will
apply for the MPCUI Starter Project), you must complete the following steps before you set
up the NetBeans project for MPCUI.

1. Delete the contents of the following directories:

• /opar

• /rsc

These directories provide support for deploying the sample plug-in, but are not
appropriate to your new project.

2. In the data/metadata and data_metadata/stage directories, rename the
demo_hostsample_uimd.xml file to targettype_mpcui.xml, where targettype is the name
of your target type.

Delete all the other contents of the data/metadata directory except targettype_mpcui.xml.
The file in the data/metadata directory is a slimmed down version of the Integration
Metadata used to create the menu items and run the UI in standalone mode. The XML
file in data/metadata/stage is the fully populated file you would use to package with the
plug-in.

3. From the data directory, edit the mpCuiProperties.xml file as follows:

• Replace the OMS connection with the information for connecting to your Enterprise
Manager server.

 <!-- Default OMS Connection -->
 <hostname>myhost.us.example.com</hostname>
 <port>7777</port>
 <emUser>sysman</emUser>
 <password>sysman_pasword</password>

• Replace the <metadata> tag with the file name as created in step 2 (/metadata/
targettype_mpcui.xml)

Chapter 9
Development Environment Options

9-97

<!-- the filename that includes the mpcui meta-data that will
be included
in the plug-in. This is used to populate the menus for testing of the
UI in standalone (FlashBuilder) mode
If not specified then a default filename of <targetType>_menu.xml will
be used. -->
 <metadata>../metadata/targettype_mpcui.xml</metadata>

4. You are ready to start developing your UI. HTML pages go in a plug-in specific
directory in the view directory (for demo_hostsample, it’s view/dhs). JS controller
files go in a plug-in specific directory in the js directory (for demo_hostsample, it’s
js/dhs).

Home Page Customizations
Earlier versions of the Enterprise Manager extensibility framework supported the ability
to customize the default Enterprise Manager home page by:

• setting a set of charts to display on the home page

• defining a series of related links to display on the home page

For Enterprise Manager release 13.1, this is no longer supported. A new custom UI
implementation based on HTML/JS and JET will have to be created to replace this
previous implementation.

Accessibility Guidelines
The MPCUI framework is designed to support a user interface that complies with the
Oracle Global HTML Accessibility Guidelines (OGHAG). This section provides
information about accessibility standards for your UI implementation.

Also, JET provides guidelines and information to help with the implementation of JET
UIs (on which MPCUI is based) to meet accessibility standards. For more information,
see the JET Accessibility Page: https://www.oracle.com/webfolder/technetwork/jet/
index.html.

Accessibility Options in Enterprise Manager
Enterprise Manager provides the end user with the ability to set options for
accessibility including a screenreader option. The MPCUI framework is aware of these
settings and makes them available to you in your JS code (see
the oracle.sysman.emx.util.AdaSettings in the API reference).

Typically you do not have to check for these settings because MPCUI automatically
renders accessible components when the end user sets their account to require an
accessible user interface. Among other things, this replaces charts with an accessible
view of the same data.

Summary of Critical Issues
When constructing an accessible MPCUI custom UI, consider the following items:

• Use MPCUI Pages, dialog and components

These components include accessibility support.

Chapter 9
Home Page Customizations

9-98

https://www.oracle.com/webfolder/technetwork/jet/index.html
https://www.oracle.com/webfolder/technetwork/jet/index.html

• Set Name and Description

For components that require additional text description (such as images).

• Avoid conveying information using color.

Localization Support
To provide support for localized text resources, you must use strings in the custom UI. To do
this, you must:

• Register Bundles

• Reference Strings from HTML (Page, Dialog Definitions)

• Access Strings from JavaScript (Controller Code)

Register Bundles
To use resource properties files in MPCUI, you must register resource bundles in the
integration metadata. Include a block such as the following:

<mp:resourceBundles>
<mp:MpBundle name="demoUiMsg" path="oracle.samples.xohs.rsc" isDefault="true" />
<mp:MpBundle name="demoJobMsg" path="oracle.samples.xohs.rsc" />
</mp:resourceBundles>

As this shows, you can break up your resources into more than one bundle, and mark one
bundle as the default bundle. This simplifies access to strings in this bundle throughout the
rest of the UI code. The path attribute must be consistent with the path where the properties
files were added to the Properties JAR file. For information about the Properties JAR file, see
Package Resource Bundles.

Reference Strings from HTML (Page, Dialog Definitions)
To reference a string in a page or dialog class in HTML, the getString and getBundleString
methods are provided. The getString method retrieves strings from the default resource
bundle, and the getBundleString method retrieves strings from any bundle registered in the
Integration metadata.

The getString method is used as follows:

<mp-section id="configurationRegion" params=”title: getString('CONFIGURATION')"
 style=”height:60%;width:100%" ></mp-section>

This method locates a string with the key “CONFIGURATION" in the default resource bundle
(demoUiMsg) and uses it as the title of this inner region. If the string cannot be found, then
the key (CONFIGURATION) is shown.

The getBundleString method is used as follows:

<mp-info-item id="currentLoad" params=”label: getBundleString('demoJobMsg',
'JOBLOAD'),value: respData.result.getString('','Load')"> </mp-info-item>

The first parameter to getBundleString specifies the bundle from which to retrieve the string.

Chapter 9
Localization Support

9-99

Access Strings from JavaScript (Controller Code)
To access strings from the JavaScript code, use either the Util.getString method or the
Util.getBundleString method:

var str = RscUtil.getString("CONFIGURATION"); // retrieves string from default
bundle
var str2 = RscUtil.getBundleString("demoJobMsg", "JOBLOAD"); // retrieves string
from named bundle

Providing Online Help
If you want to include online help for your customized UI pages, package the help JAR
files in the following directory:

plugin_stage/oms/online_help

For an example of a help JAR file, see the plugin_sample_help.jar in the /oms/online
help directory of the demo_hostsample example in the EDK.

Migrating From Flex to HTML/JS/JET
This manual is a catalog of useful conversions between components and code
patterns in Flex to the components and code patterns implemented using JavaScript
(JS) and HTML, utilizing Oracle's JavaScript Extension Toolkit (JET). Many of the
custom Flex components and ActionScript (AS) classes have corresponding
components and classes built on the JS side. In many cases it will be a direct
conversion from one to the other. In addition, the framework supported classes were
nearly all reimplemented into JS, so all of the same structures and utilities will continue
to exist and operate in the same way as before.

In the current Flex-based framework, you have MXML files backed by ActionScript.
These are compiled into a SWF file and packaged with your plug-in to provide a
custom UI for your target.

In the new JET-based framework, you will have HTML files backed by JavaScript.
These are combined and minimized into a JS library and packaged with your plug-in to
provide a custom UI for your target.

• MXML files will be converted into HTML files

• ActionScript files will be converted into JS files

An MXML file representing a page in your plug-in will be converted into an HTML
page. The same MVC framework that existed in the Flex-based framework has been
brought forward into the JET-base framework, so the controller AS file backing your
MXML page will be converted into a controller JS file. All of the same web services
with all of the same APIs will be supported.

The Demo Hostsample example has been directly cut over from Flex to this new, JET-
based implementation.

Included in the MPCUI Framework is a set of custom tag (through KnockoutJS)
implementations which mirror tags available in Flex. A programmatic migration path is
not possible between Flex and HTML/JS, so the custom tag set cuts down on the

Chapter 9
Providing Online Help

9-100

learning curve and the effort required to convert a Flex implementation to an HTML/JS one.

Application Structure
In Flex, there is the ability to create a Page class and a Page Controller class from which to
extend to provide a Model View Controller (MVC) structure to the application. In JavaScript
and HTML, the implementation will be different, but the MPCUI has implemented a very
similar structure which repeats this same MVC in an HTML/JS application.

Model
The model is accessible through the controller to set values, and is accessible through the
View to display values. In a typical HTML page, this data flow is not dynamic. However,
through the use of the KnockoutJS library, any value set on the model:

var configData = { cpuModel: info.getString(0, "CPU Model"),
 osVersion: info.getString(0, "OS Version") };
 this.page.setModel("configData", configData);

becomes dynamic. Any integrator using JET or the MPCUI is encouraged to research the
libraries utilized to create their UI, but in this case, you will not have to deal directly with
Knockout observables if you don’t choose to. Any object set to the page model is made
dynamic automatically, so that you can access it in the HTML page:

<mp-info-item id="osVersion" params="label : getString('OS_VERSION'),
 value : model().configData().osVersion "></mp-
info-item>

without any additional work.

Page (View)
The Page is now an HTML page. The custom tags implemented for MPCUI give the page its
structure and will cut down on the overall content in the HTML file created for a plug-in.

<mp-data-services>
 <mp-sql-data-service id="ids" params="queryID:'INSTANCE_INFO',
properties:props('TARGET_GUID',appModel.target.guid)">
 </mp-sql-data-service>
 <mp-metric-values-data-service id="procData" params="flattenData:true,
 targetName:appModel.target.name,
targetType:appModel.target.type,
 metricName:'CPUProcessorPerf', columns:['CPUIdle'],
 timePeriod:'CURRENT', interval:15">
 </mp-metric-values-data-service>
 <mp-metric-values-data-service id="processorData"
params="flattenData:true,
 targetName:appModel.target.name,
targetType:appModel.target.type,
 metricName:'CPUProcessorPerf',
 columns:['CPUIdle','CPUUser','CPUSystem','CPUIOWait'],
 timePeriod:'CURRENT', predicate:model().processorFilter ">
 </mp-metric-values-data-service>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-101

 <mp-avail-data-service id="ads"
params="targetName:appModel.target.name,
 targetType:appModel.target.type, days:1">
 </mp-avail-data-service>
 <mp-association-data-service id="asc"
params="targetName:appModel.target.name,
 targetType:appModel.target.type, assocTypes:
['hosted_by']">
 </mp-association-data-service>
 <mp-metric-values-data-service id="respData"
params="flattenData:true,
 targetName:appModel.target.name,
targetType:appModel.target.type,
 metricName:'Response', columns:['Load'],
 timePeriod:'LAST_HOUR', flags:
'COUNTERS_FOR_RATE'">
 </mp-metric-values-data-service>
</mp-data-services>

 <!--
 The example below also demonstrates the ways data may be bound
to a UI component included in the page:

 1. Data Service Reference
 2. Global/Application Model Reference
 3. Page Model Reference
 4. Set Directly from Controller

 InfoDisplay/InfoItem click handling

 1. if a dataProvider specified for the InfoDisplay, then a
global click handler can be set for the entire component
 2. a click handler can be set for each InfoItem
 3. a click handler can call the invokeActivity method passing
an activity id and a bean (input context)
 4. a destination can be set for each InfoItem, and set to a
String that is an activity id
 5. a destination can be set for each InfoItem, and the
destination can be an actual Activity object constructed in the
controller
 -->
<mp-page>
 <mp-row>
 ...
 </mp-row>
</mp-page>

You can see that the data service tags are still available as they were in Flex, and the
HTML content starts with the <mp-page> tag.

Page Controller
This is the start of your topic.The Page Controller is implemented in JavaScript as a
“class.” There is no notion of class in JS, and no strong inheritance model if you do

Chapter 9
Migrating From Flex to HTML/JS/JET

9-102

create JS objects or classes. We use the prototypal inheritance available in JS, along with
require to structure a single JS file as a module and its own “class.”

When creating a new Page Controller, your new class will extend from the ActivityController
class provided by the MPCUI framework. At the top of any class, there is a define([])function()
{} block. This is the require library notation that makes this one class/one file structure
possible. It also serves as a de facto import block. Any of the classes used in the current
class would appear in the define-function block at the top of the file.

define([
 "emx/intg/ActivityController",
 "emx/intg/InputParam",
 "emx/intg/UrlEm",
 "emx/MpLog",
 "emx/util/TargetContext",
 "emx/model/TargetFactory",
 "emx/service/util/AssociationDataService",
 "emx/service/metricDataService/MetricCollectionTimePeriod",
 "emx/util/Constants",
 "emx/util/Util",
 "emx/service/sqlQuery/BulkSqlQuery",
 "emx/util/RscUtil",
 "emx/intg/ActivityDef"
],
 function(
 ActivityController,
 InputParam,
 UrlEm,
 MpLog,
 TargetContext,
 TargetFactory,
 AssociationDataService,
 MetricCollectionTimePeriod,
 Constants,
 Util,
 BulkSqlQuery,
 RscUtil,
 ActivityDef
) {

 /**
 * Each page in the plugin UI will typically have a controller class that
extends
 * ActivityController. The controller contains the functions that
populate data to
 * be shown in the page and respond to events in the page (button or link
clicks for
 * example). The controller should include an init method that will be
called when
 * the page is being initialized. This method can be used to setup any
data that
 * will be displayed in the page.
 */
 function HomePageController() {
 this.Init();

Chapter 9
Migrating From Flex to HTML/JS/JET

9-103

 };
 oj.Object.createSubclass(HomePageController, ActivityController,
"HomePageController");

 HomePageController.prototype.Init = function() {
 HomePageController.superclass.Init.call(this);
 };

 HomePageController.prototype.page;

 HomePageController.prototype.destroy = function(page) {
 // do any cleanup of view/model here
 };
 HomePageController.prototype.initComplete = function(page) {
 // do any setup which requires the page and its components to
be fully loaded
 };

 /*
 * initialize the model for the page; data services declared as
part of the page
 * will automatically be loaded and initialized by the framework
and don't need
 * to be initialized here in any way
 *
 * NOTE: the refresh parameter is added in 13.1 allowing the
controller to know
 * if this is the first pass through the page or an incremental
refresh triggered
 * by the page-level refresh button
 */
 HomePageController.prototype.init = function(page, refresh) {
 this.page = page;
 ...
 };
 ...
 return HomePageController;
});

The class has a constructor. The parent class is specified in
the oj.Object.createSubclass call and the object which is created by this class
definition is returned at the bottom of the file. The APIs which could be extended in the
Flex version of this class can also be extended in the JS version.

Any function put on the class prototype: HomePageController.prototype.init is available
to any instance of the class and can be referenced on the created object. Any function
put directly on the class is static and is referenced with the class name.

HomePageController.prototype.myFunc = function() {
 };

 HomePageController.myStaticFunc = function() {
 };

 var hpc = new HomePageController();

Chapter 9
Migrating From Flex to HTML/JS/JET

9-104

 var fVal = hpc.myFunc();
 var staticFVal = HomePageController.myStaticFunc();

Converting ActionScript to JavaScript
To mimic a class structure in JavaScript, MPCUI uses RequireJs to utilize the Asynchronous
Module Definition (AMD) API in conjunction with JS prototypal inheritance. The result is the
ability to break JS up into the same file structure as it was in AS.

ActionScript JavaScript Notes

package ... import list
define([
"emx/intg/
ActivityController", ...
],
function(
ActivityController, ...
) {
// Class Definition
});

NA

public class X extends Y oj.Object.createSubclass(
X, Y, "X");

NA

public var p:Page; X.prototype.p; Specifying a member of a class
requires you to put it on the
prototype in JS.

super.init(p) X.superclass.init.call(th
is, p);

NA

p = pg as X; (casting pg to be
class X)

p = pg; Not necessary to cast in JS

NA page.initModel(["cpuModel
", "osVersion"]);
or

page.setModel("cpuModel",
"");
page.setModel("osVersion"
, "");

Not necessary in Flex, but in JS,
all model properties have to be
initialized even if they don't have
a value to begin with

ApplicationContext.getTargetCon
text();

TargetContext.getTargetCo
ntext();

NA

Callbacks in Flex are as easy as
specifying the function name
only

In JS, you would use one of:

• page.cb(functionName)
• Util.createProxy(this,

this.functionName)
• oj.Object.createCallba

ck(this,
this.functionName)

In JavaScript, the context in
which you run a function is never
assured. You will want to create
a closure to ensure that the "this"
in the function being called is the
value the function expects.

page.model["loadDataSource"] page.getModel("loadDataSo
urce");

NA

Chapter 9
Migrating From Flex to HTML/JS/JET

9-105

http://requirejs.org/

Converting Flex Tags to MPCUI Custom HTML Tags
With the new JET-based framework, the custom components are supported as
both knockout custom bindings (<div data-bind="..."></div>) and as
knockout custom elements (<mp-info-display>, custom elements mean custom tags
as well). Using the custom bindings, you would be responsible for managing all
aspects of the layout of the page. For the custom elements, the layout is built into the
elements and there are elements specifically crafted to mimic the behavior of the Flex
layout options.

Data Services

Flex Tag Custom Binding Custom Element

<mp:services> <div class="dataServices"> <mp-data-services>

In the HTML page, this tag and all of the data services under it will come before the
page tag in the page.

SQL Data Service

Flex Tag Custom Binding Custom Element

<mp:SQLDataService
id="ids"

queryID="INSTANCE_INFO
"

properties="{props('TA
RGET_GUID',

appModel.target.guid)}
"/>

<div id="ids"
 data-
bind="mpSqlDataService
 : {

queryID:'INSTANCE_INFO
',

properties:props('TARG
ET_GUID',

appModel.target.guid)
}">
</div>

<mp-sql-data-service
id="ids"

params="queryID:'INSTA
NCE_INFO',

properties:props('TARG
ET_GUID',

appModel.target.guid)"
>
</mp-sql-data-service>

Note:

There is a closing "</div>" and a closing "</mp-sql-data-service>" tag in the
HTML examples. It is strongly recommended that you adopt this technique
for your HTML work. In the case of custom elements, this is a requirement.
No custom elements can be self-closing (".../>").

Chapter 9
Migrating From Flex to HTML/JS/JET

9-106

http://knockoutjs.com/

Metric Values Data Service

Flex Tag Custom Binding Custom Element

<mp:MetricValuesDataServ
ice id="procData"
 flattenData="true"

targetName="{appModel.ta
rget.name}"

targetType="{appModel.ta
rget.type}"

metricName="CPUProcessor
Perf"
 columns="{['CPUIdle']}"
 timePeriod="REALTIME"
 interval="15"
 />

<div id="procData"
 data-
bind="mpMetricValuesData
Service : {
 flattenData:true,

targetName:appModel.targ
et.name,

targetType:appModel.targ
et.type,

metricName:'CPUProcessor
Perf',
 columns:
['CPUIdle'],

timePeriod:'CURRENT',
 interval:15 }">
</div>

<mp-metric-values-data-
service id="procData"

params="flattenData:true
,

targetName:appModel.targ
et.name,

targetType:appModel.targ
et.type,

metricName:'CPUProcessor
Perf',
 columns:
['CPUIdle'],

timePeriod:'CURRENT',
interval:15">
</mp-metric-values-data-
service>

Association Data Service

Flex Tag Custom Binding Custom Element

<mp:AssociationDataServi
ce id="asc"

targetName="{appModel.ta
rget.name}"

targetType="{appModel.ta
rget.type}"

assocTypes="{['hosted_by
']}" />

<div id="asc"
 data-
bind="mpAssociationDataS
ervice : {

targetName:appModel.targ
et.name,

targetType:appModel.targ
et.type,
 assocTypes:
['hosted_by'] }">
</div>

<mp-association-data-
service id="asc"

params="targetName:appMo
del.target.name,

targetType:appModel.targ
et.type,
 assocTypes:
['hosted_by']">
</mp-association-data-
service>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-107

Availability Data Service

Flex Tag Custom Binding Custom Element

<mp:AvailDataService
id="ads"

targetName="{appModel.
target.name}"

targetType="{appModel.
target.type}" />

<div id="ads"
 data-
bind="mpAvailDataServi
ce : {

targetName:appModel.ta
rget.name,

targetType:appModel.ta
rget.type,
 days:1 }">
</div>

<mp-avail-data-
service id="ads"

params="targetName:app
Model.target.name,

targetType:appModel.ta
rget.type,
 days:1">
</mp-avail-data-
service>

Page

Flex Tag Custom Binding Custom Element

mp:Page <div class="mp-page-content
mp-flex">

<mp-page>

This tag will represent the topmost content container in the HTML file. Data services, if
there are any in the page, would be before the page tag, but the page tag is the start
of the content of the page. This custom binding example has 2 classes on it. The "mp-
page-content" sets the height and width to 100% so the page will be set to fill all of the
available space. This is important in HTML for 2 reasons:

1. HTML components will try to fill as little space as possible so if you don't tell it
100%, it won't expand out to fill the space and

2. for the layout engine to respect the correct height and width, they have to be set
on every component in the DOM.

If the parent isn't set, HTML can get confused by a percentage, so it's safest to set it
all the way down the page.

The other class specified relates to the layout engine supported by JET. The Flexible
Box Layout (or flexbox) is documented here. The "mp-flex" class initializes a flexbox
container for the whole page. The flexbox layout engine is used for the whole page.
This, in addition to an easier to read page, is one of the benefits of using the custom
element. Flexbox support is built into each custom element.

tabOrder
Not supported in the HTML tag.

Chapter 9
Migrating From Flex to HTML/JS/JET

9-108

https://www.w3.org/TR/2016/CR-css-flexbox-1-20160301/

Model Reference

Flex Tag Custom Binding Custom Element

{model.relatedHostType} model().relatedHostType model().relatedHostType

The model is setup automatically for you on the page as an object, so you can reference it in
the HTML similarly to how you did in your MXML page. As an observable, you reference the
model with parentheses: model() and whatever id you used to save the data (this is also
automatically made into an observable so any changes to model().id will automatically be
consumed by the HTML page).

HBox

Flex Tag Custom Binding Custom Element

mx:HBox <div class="mp-flex mp-flex-
row">

<mp-row>

If the height or width are not specified, they will automatically be set to 100% in the custom
element case.

Example:

<mp-row style="height:33%">
will result in a row taking up a third of the parent's space. width will automatically be set to
100%

VBox

Flex Tag Custom Binding Custom Element

mx:VBox <div class="mp-flex mp-flex-col"> <mp-column>

If the height or width are not specified, they will automatically be set to 100% in the custom
element case.

Example:

<mp-column style="width:50%">
will result in a column taking up half of the parent's space. height will automatically be set to
100%

Chapter 9
Migrating From Flex to HTML/JS/JET

9-109

Region

Flex Tag Custom Binding Custom Element

<mp:Region
id="summaryRegion"

title="{getString('SUM
MARY')}"
 height="50%"
width="100%" >

<div
style="width:100%;heig
ht:100%"
 data-bind="mpPanel:
{title : '',
 headerBorder :
false}" >
 <div
id="summaryRegion"
style="height:50%"
 data-
bind="mpSection: {
 title :
getString('SUMMARY'),
 level : 2,
headerBorder : true}">

<mp-panel
params="title: '',
headerBorder: false">
 <mp-section
id="summaryRegion"

style="height:50%"
 params="title :
getString('SUMMARY'),
 level : 2,
headerBorder : true">

InnerRegion

Flex Tag Custom Binding Custom Element

<mp:InnerRegion
id="statusRegion"

title="{getString('STA
TUS')}"
 height="40%"
width="100%" >

<div
id="statusRegion"
 style="height:40%"
 data-
bind="mpSection : {
 title :
getString('STATUS')}"
>

<mp-section
id="statusRegion"
 style="height: 40%"
 params="title :
getString('STATUS')" >

InfoDisplay

Flex Tag Custom Binding Custom Element

<mp:InfoDisplay width="100%"
height="100%">

<table data-
bind="mpInfoDisplay">

<mp-info-display>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-110

InfoItem

Flex Tag Custom Binding Custom Element

<mp:InfoItem
id="currentStatus"

label="{getString('CURRE
NT_STATUS')}"

value="{ads.currentStatu
s}"

image="{ads.currentStatu
sIcon}"

click="invokeActivity(Co
nstants.PAGE_AVAILABILIT
Y,

bean(Constants.P_TARGET_
NAME,appModel.target.name,

Constants.P_TARGET_TYPE,

appModel.target.type));"
 />

<tr id="currentStatus"
 data-
bind="mpInfoItem : {
 label :
getString('CURRENT_STATU
S'),
 value:
ads.currentStatus,
 image :
ads.currentStatusIcon,
 destination : '#'}">

<mp-info-item
 params="label :
getString('CURRENT_STATU
S'),
 value:
ads.currentStatus,
 image :
ads.currentStatusIcon,
 destination : '#'">

<mp:InfoItem
id="currentLoad"

label="{getString('CPU_L
OAD')}"

value="{respData.result.
getString('','Load')}"

imageRenderer="{appModel
.renderer('CHECK_MARK',

bean('type','number','wa
rning',

'0.1','critical','0.4'))
}" />

<tr id="cpuLoad"
 data-
bind="mpInfoItem : {
 label :
getString('CPU_LOAD'),
 value :
respData.result.getStrin
g('','Load'),
 imageRenderer:
rendererFactory.get('CHE
CK_MARK',

bean('type','number','wa
rning',

'0.1','critical','0.4'))
 }">

<mp-info-item
id="cpuLoad"
 params="label :
getString('CPU_LOAD'),
 value :
respData.result.getStrin
g('','Load'),
 imageRenderer:
rendererFactory.get('CHE
CK_MARK',

bean('type','number','wa
rning',

'0.1','critical','0.4'))
 ">

Chapter 9
Migrating From Flex to HTML/JS/JET

9-111

http://appModel.target.name/

Link

Flex Tag Custom Binding Custom Element

<mp:Link
id="allReports"

label="{getString('ALL
_REPORTS')}"

destination="{model.al
lReportsLink}" />

<a id="allReports"
 data-bind="mpLink:
{label:
getString('ALL_REPORTS
'),
 destination:
model().allReportsLink
 }" />

<mp-link
id="allReports"
 params="label:
getString('ALL_REPORTS
'),
 destination:
model().allReportsLink
">

Dialog

Flex Tag Custom Binding Custom Element

<mp:Dialog
 xmlns:mx="http://
www.adobe.com/2006/
mxml"
 xmlns:mp="http://
www.oracle.com/mpcui"
 width="550"
height="530"
 title="Credentials">

<div data-
bind="mpDialog : {
 height:620,
width:560,

title:'Credentials' }"
 >

<mp-dialog
params="mpDialog : {
 height:620,
width:560,

title:'Credentials' }"
 >

There are a couple of custom elements which follow a slightly different model for
passing parameters. Instead of listing out each parameter, they are listed out as
properties of a single parameter, such as mpDialog.

Train

Chapter 9
Migrating From Flex to HTML/JS/JET

9-112

TrainContainer

Flex Tag Custom Binding Custom Element

<mp:TrainContainer
id="createTrainContainer
"
 width="100%"
height="100%"

trainId="addNewFSCreateT
rain"

trainDone="{controller.t
rainDone(event)}" />

<div
style="width:100%;height
:100%"
 data-
bind="mpTrainContainer:
{
 trainId:
'addNewFSCreateTrain',
 trainDone:
controller.trainDone}">

<mp-train-container
 params="trainId:
'addNewFSCreateTrain',
 trainDone:
controller.trainDone">

TrainStepPage

Flex Tag Custom Binding Custom Element

<mp:TrainStepPage
 xmlns:mp="http://
www.oracle.com/mpcui"
 xmlns:mx="http://
www.adobe.com/2006/
mxml"
 width="100%"
height="100%"

<div
style="width:100%;height
:100%" >

<mp-train-step-page>

As with the mp-page tag, this is mostly a convenience for consistency.

Table
The MP table custom binding and element extend from the JET ojTable and will support all of
the properties documented on the JET website. In addition, the following properties will be
supported:

• targetName

• targetType

• metricName

• metricColumns

• keys

• timePeriod

• interval

• dataService

Chapter 9
Migrating From Flex to HTML/JS/JET

9-113

• customDataSource

• dataProvider

This support mirrors what is available in Flex for the acquisition of target instance data
for display in a table.

API Changes

Property Name New Property Specification Notes

paging paging: 'on' The paging control in JET is a
separate custom binding
which attaches to the same
data source as the table.

The table custom binding
manages that data source
behind the scenes, so this
indicates to the custom
binding that paging is
included.

Additionally, in the paging
binding, tableId is accepted as
an input to bind that to a table.

dataUpdateListener dataUpdateListener:
cb(controller.updateTable)

mpRenderer columns: { [{ mpRenderer:
rendererFactory.get(...) }] }

All of the same MP renderers
are supported in this release.

Examples
Table (using renderers)

Chapter 9
Migrating From Flex to HTML/JS/JET

9-114

Flex Tag Custom Binding

<table id="incidentsTable"
style="height:100%;width:100%"
 data-bind="mpTable: {
 customDataSource:
model().incidentsData,
 columns: [
 {displayIndex: 0, headerText:
'Summary', field: 'summary',
 id: 'summary', sortable:
'enabled',
 headerStyle: 'text-align:
left; white-
space:nowrap;width:200px',
 style: 'text-weight:bold;'},
 {displayIndex: 1, headerText:
'Target', field: 'target',
 id: 'target',
 mpRenderer:
rendererFactory.get('TARGET_TYPE'),
 style: 'text-align: center',
 headerStyle: 'text-
align:center;white-
space:nowrap;width:200px'},
 {displayIndex: 2, headerText:
'Severity',
 field: 'severity', id:
'severity',
 mpRenderer:
rendererFactory.get('SEVERITY'),
 style: 'text-align:
center'},
 {displayIndex: 3, headerText:
'Status',
 field: 'status', id:
'status'},
 {displayIndex: 4, headerText:
'Escalation',
 field: 'escalation', id:
'escalation'},
 {displayIndex: 5, headerText:
'Type', field: 'type', id: 'type'},
 {displayIndex: 6, headerText:
'Last Update',
 field: 'lastUpdate', id:
'lastUpdate' }]}" >
</table>

<mp-table id="incidentsTable"
style="height:100%;width:100%"
 params="mpTable: {
 customDataSource:
model().incidentsData,
 columns: [
 {displayIndex: 0, headerText:
'Summary', field: 'summary',
 id: 'summary', sortable:
'enabled',
 headerStyle: 'text-align:
left; white-
space:nowrap;width:200px',
 style: 'text-weight:bold;'},
 {displayIndex: 1, headerText:
'Target', field: 'target',
 id: 'target',
 mpRenderer:
rendererFactory.get('TARGET_TYPE'),
 style: 'text-align: center',
 headerStyle: 'text-
align:center;white-
space:nowrap;width:200px'},
 {displayIndex: 2, headerText:
'Severity',
 field: 'severity', id:
'severity',
 mpRenderer:
rendererFactory.get('SEVERITY'),
 style: 'text-align:
center'},
 {displayIndex: 3, headerText:
'Status',
 field: 'status', id:
'status'},
 {displayIndex: 4, headerText:
'Escalation',
 field: 'escalation', id:
'escalation'},
 {displayIndex: 5, headerText:
'Type', field: 'type', id: 'type'},
 {displayIndex: 6, headerText:
'Last Update',
 field: 'lastUpdate', id:
'lastUpdate' }]}" >
</mp-table>

The renderers supported in the Flex version are still supported and referenced from HTML in
much the same way they were in the Flex-based release.

Chapter 9
Migrating From Flex to HTML/JS/JET

9-115

Table (with paging)

Flex Tag Custom Binding

<table id="processesTable"
style="height:80%;width:100%"
 data-bind="mpTable: {
 selectionMode: {row:
'single', column: 'multiple'},
 dataService:
'processesDataSource',
 paging: true,
 dataUpdateListener:
cb(controller.processesTableUpdate
d) }">
</table>
<div id="paging"
style="width:100%"
 data-bind="mpPagingControl: {
 tableId: 'processesTable',
 pageSize: 15}" class="oj-
table-panel-bottom">
</div>

<mp-table id="processesTable"
 params="
 mpTable: {
 selectionMode: {row:
'single', column: 'multiple'},
 dataService:
'processesDataSource',
 dataUpdateListener:
cb(controller.processesTableUpdate
d) },
 mpPagingControl: {
 pageSize: 15 }">
</mp-table>

Notice with the custom element, the paging property isn't in the mpTable object and
the tableId is not in the mpPagingControl. These are detected and set automatically
as a part of the initialization of the custom element.

Chart
This MpCui component extends from the JET chart component, so the properties
specified below are supported in addition to all of the properties documented on the
JET website. Currently the same chart types which were supported in Flex will be
supported in the JET version (with the corresponding JET chart type in parentheses):

• LineChart (type:'line')

• AreaChart (type:'area')

• BarChart (type: 'bar', orientation: 'horizontal')

• ColumnChart (type: 'bar')

• PieChart (type: 'pie')

You are welcome to use the other chart types JET offers, but only the above charts will
support the following properties:

• targetName

• targetType

• metricName

• metricColumns

• keys

Chapter 9
Migrating From Flex to HTML/JS/JET

9-116

• timePeriod

• interval

• dataService

• customDataSource

• dataProvider

If you do wish to use another chart type, you can still use the mp-chart custom element or the
mpChart custom binding and it will serve as a pass through, but you will have to populate
your data as shown in the JET website.

API Changes

Property Name New Property
Specification

Flex Chart Type Notes

title title: { text: 'Title' } ALL

subtitle subtitle: { text: 'Subtitle' } ALL

footnote footnote: { text:
'Footnote' }

ALL

colors styleDefaults: { colors:
[] }

ALL

showLegend legend: { rendered: 'off' } ALL on (default) or off

legendLocation legend: { position:
'bottom' }

ALL Flex: left, right, top,
bottom; JET: auto
(default), start, end, top,
bottom

legendDirection ALL Not supported

selectionMode selection: 'single' ALL Flex: single, multiple;
JET: none, single,
multiple

mpSeries mpSeries: {...} ALL Series Supported in custom
binding/element

This is an array of series
objects which also
supports a few Flex
properties in addition to
all of the documented
JET series object
properties.

displayName mpSeries:
{ [{ displayName:
'Name' }] }

ALL Series Supported in custom
binding/element

dataFunction mpSeries:
{ [{ dataFunction:
cb(controller.myDatafun
ction }] }

ALL Series Supported in custom
binding/element

selectable ALL Series Not supported

Line/Area Chart

axisRenderers Line, Area, Bar, Column Accessible through
the xAxis and yAxis
property objects

Chapter 9
Migrating From Flex to HTML/JS/JET

9-117

Property Name New Property
Specification

Flex Chart Type Notes

xTitle xAxis: { title: 'Title' } Line, Area, Bar, Column

yTitle yAxis: { title: 'Title' } Line, Area, Bar, Column

yMax yAxis: { max: 35 } Line, Area

yMin yAxis: { min: 5 } Line, Area

startDate Line, Area Not supported

endDate Line, Area Not supported

dataCapacity dataCapacity: 250 Line, Area Supported in custom
binding/element (default
depends on the time
period selected)

showCumulativeLine showCumulativeLine:
'true'

Line, Area Supported in custom
binding/element

warningLine warningLine: { value: 5,
showOnTop: false }

Line, Area, Bar, Column Supported in custom
binding/element

alertLine alertLine: { value: 15,
showOnTop: true }

Line, Area, Bar, Column Supported in custom
binding/element

fillFunction LineSeries, AreaSeries Not supported

sortOnXField LineSeries, AreaSeries Not supported

interpolateValues LineSeries, AreaSeries Not supported

xField LineSeries, AreaSeries Not supported

yField LineSeries, AreaSeries Not supported

Bar/Column Chart

groupBy Bar, Column Supported in custom
binding/element (byKey,
byColumn)

seriesNames Bar, Column Future

sortBy Bar, Column Future

seriesProperties Bar, Column Not supported

labelPosition styleDefaults:
{ dataLabelPosition:
'auto' }

Bar, Column Flex: none, inside,
outside; JET: auto
(default), center,
aboveMarker,
belowMarker,
beforeMarker,
afterMarker

barWidthRatio Bar, Column Not supported

maxBarWidth styleDefaults:
{ maxBarWidth: 10 }

Bar, Column

type Bar, Column Flex: clustered, overlaid,
stacked, 100%; JET:
Not supported (stacking
available)

offset BarSeries,
ColumnSeries

Not supported

Chapter 9
Migrating From Flex to HTML/JS/JET

9-118

Property Name New Property
Specification

Flex Chart Type Notes

stacker stack: 'on' BarSeries,
ColumnSeries

Allows only to turn it on
or off

minField BarSeries,
ColumnSeries

Not supported

labelField BarSeries,
ColumnSeries

Not supported

labelFunction BarSeries,
ColumnSeries

Not supported

Pie Chart

labelPosition styleDefaults:
{ sliceLabelPosition:
'auto' }

Pie Flex: none, outside,
callout, inside,
insideWithCallout; JET:
auto (default), none,
outside, inside)

selectedColumn Pie Supported in custom
binding/element

selectedKey Pie Supported in custom
binding/element

innerRadius styleDefaults:
{pieInnerRadius: '0.5'},

Pie

textAlign Pie Flex: left, right, center;
JET: Not supported

explodeRadius styleDefaults:
{pieInnerRadius: '0.5',
selectionEffect:
'explode'},

PieSeries JET: selectionEffect:
explode, highlight,
highlightAndExplode

perWedgeExplodeRadiu
s

PieSeries Not supported

reserveExplodeRadius PieSeries Not supported

startAngle PieSeries Not supported

maxLabelRadius PieSeries Not supported

outerRadius PieSeries Not supported

labelFunction PieSeries Not supported

fillFunction PieSeries Not supported

field mpSeries: { [{ field:
"myField" }] }

PieSeries Supported in custom
binding/element

nameField mpSeries:
{ [{ nameField:
"myNameField" }] }

PieSeries Supported in custom
binding/element

labelField PieSeries Not supported

This is an example of what using some of the above notation would look like, when put
together:

Chapter 9
Migrating From Flex to HTML/JS/JET

9-119

Flex Tag Custom Binding

<div id="metDataCustBinding"
style="height:90%;width:100%"
 data-bind="mpChart: {
 type: 'line',
 title: {text: 'My Title'},
 subtitle: {text: 'My
subtitle'},
 dataSelection: 'multiple',
 emptyText: 'No data',
 yAxis: {title: 'Data', min:
0, max: 10},
 animationOnDisplay: 'auto',
 targetName: 'HostSample',
 targetType:
'demo_hostsample',
 metricName:
'CPUProcessorPerf',
 metricColumns:
['CPUUser','CPUSystem'],
 timePeriod: 'REALTIME',
 interval: 15}">
</div>

<mp-chart id="metDataCustBinding"
style="height:90%;width:100%"
 params="mpChart: {
 type: 'line',
 title: {text: 'My Title'},
 subtitle: {text: 'My
subtitle'},
 dataSelection: 'multiple',
 emptyText: 'No data',
 yAxis: {title: 'Data', min:
0, max: 10},
 animationOnDisplay: 'auto',
 targetName: 'HostSample',
 targetType:
'demo_hostsample',
 metricName:
'CPUProcessorPerf',
 metricColumns:
['CPUUser','CPUSystem'],
 timePeriod: 'REALTIME',
 interval: 15}">
</mp-chart>

Examples

Line Chart

Using customDataSource:

Flex Tag Custom Binding

<div id="lchart_from_custom"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'line',
 customDataSource:
model().cpuChartData,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</div>

<mp-chart id="lchart_from_custom"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'line',
 customDataSource:
model().cpuChartData,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</mp-chart>

from controller.init:

var cpuData = page.getModel("cpuChartData");
 if (cpuData == null) {
 cpuData = new CustomDataSource(["Sys/IO", "Idle %"],

Chapter 9
Migrating From Flex to HTML/JS/JET

9-120

false, true);
 page.setModel("cpuChartData", cpuData);
 }

Using metric specification (with keys specified):

Flex Tag Custom Binding

<div id="lchart_from_metric2"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'line',
 dataSelection: 'multiple',
 emptyText: 'No data',
 animationOnDisplay: 'auto',
 targetName: appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'FilesystemPerf',
 metricColumns: ['Utilization'],
 keys:
controller.page.keys([[['MountPoint'
, '/']],
 [['MountPoint', '/dev/
shm']]]),
 timePeriod: 'REALTIME',
 interval:60}">
</div>

<mp-chart id="lchart_from_metric2"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'line',
 dataSelection: 'multiple',
 emptyText: 'No data',
 animationOnDisplay: 'auto',
 targetName: appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'FilesystemPerf',
 metricColumns: ['Utilization'],
 keys:
controller.page.keys([[['MountPoint'
, '/']],
 [['MountPoint', '/dev/
shm']]]),
 timePeriod: 'REALTIME',
 interval:60}">
</mp-chart>

Showing reference lines:

Chapter 9
Migrating From Flex to HTML/JS/JET

9-121

Flex Tag Custom Binding

<div
id="lchart_from_metric_history"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'line',
 timeAxisType: 'enabled',
 dataSelection: 'multiple',
 emptyText: 'No data',
 title: {text: 'Free Swap
(KB)'},
 yAxis: {min: 0},
 warningLine : { value:
5000000, showOnTop: true },
 alertLine : { value: 1000000,
showOnTop: true },
 animationOnDisplay: 'auto',
 targetName:
appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'MemoryPerf',
 metricColumns: ['SwapFree'],
 timePeriod: 'LAST_DAY'}">
</div>

<mp-chart
id="lchart_from_metric_history"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'line',
 timeAxisType: 'enabled',
 dataSelection: 'multiple',
 emptyText: 'No data',
 title: {text: 'Free Swap
(KB)'},
 yAxis: {min: 0},
 warningLine : { value:
5000000, showOnTop: true },
 alertLine : { value: 1000000,
showOnTop: true },
 animationOnDisplay: 'auto',
 targetName:
appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'MemoryPerf',
 metricColumns: ['SwapFree'],
 timePeriod: 'LAST_DAY'}">
</mp-chart>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-122

Area Chart

Flex Tag Custom Binding

<div id="cpuAreaChartID"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'area',
 timeAxisType: 'enabled',
 dataSelection: 'multiple',
 emptyText: 'No data',
 animationOnDisplay: 'auto',
 yAxis: {min: 0, title: '%
Utilization'},
 targetName: appModel.target.name,
 targetType: appModel.target.type,
 metricName: 'CPUPerf',
 metricColumns: ['non_nice',
'nice', 'system', 'io_wait', 'irq'],
 timePeriod: 'REALTIME',
 interval: 30}" >
</div>

<mp-chart id="cpuAreaChartID"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'area',
 timeAxisType: 'enabled',
 dataSelection: 'multiple',
 emptyText: 'No data',
 animationOnDisplay: 'auto',
 yAxis: {min: 0, title: '%
Utilization'},
 targetName: appModel.target.name,
 targetType: appModel.target.type,
 metricName: 'CPUPerf',
 metricColumns: ['non_nice',
'nice', 'system', 'io_wait', 'irq'],
 timePeriod: 'REALTIME',
 interval: 30}" >
</mp-chart>

Bar Chart

The column chart differs from the bar chart only with the use of the 'orientation' property. If not
specified, it defaults to vertical (or a column chart).

Using customDataSource:

Flex Tag Custom Binding

<div id="bchart_from_custom"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'bar',
 orientation: 'horizontal',
 groupBy: 'byColumn',
 customDataSource:
model().fsTypeDataSource,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</div>

<mp-chart id="bchart_from_custom"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'bar',
 orientation: 'horizontal',
 groupBy: 'byColumn',
 customDataSource:
model().fsTypeDataSource,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</mp-chart>

from controller.init:

var fsTypeData = page.getModel("fsTypeDataSource");
 if (fsTypeData == null) {
 fsTypeData = new CustomDataSource([new QueryColumnDesc("nfs",

Chapter 9
Migrating From Flex to HTML/JS/JET

9-123

QueryColumnType.STRING),
 new
QueryColumnDesc("ext3", QueryColumnType.STRING),
 new
QueryColumnDesc("tmpfs", QueryColumnType.STRING)]);
 page.setModel("fsTypeDataSource", fsTypeData);
 }

Using dataService:

Flex Tag Custom Binding

<div id="bchart_from_sql"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'bar',
 orientation: 'horizontal',
 groupBy: 'byColumn',
 dataService:
'cpu_usage_from_sql',
 xAxis: {title: 'CPU Number'},
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</div>

<div id="cpu_usage_from_sql" data-
bind="mpSqlDataService : {
 queryID:'CPU_USAGE',

properties:props('TARGET_GUID',app
Model.target.guid) }">
 </div>

<mp-chart id="bchart_from_sql"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'bar',
 orientation: 'horizontal',
 groupBy: 'byColumn',
 dataService:
'cpu_usage_from_sql',
 xAxis: {title: 'CPU Number'},
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</mp-chart>

Column Chart

This is the start of your topic.The column chart differs from the bar chart only with the
use of the 'orientation' property. If not specified, it defaults to vertical (or a column
chart).

Using dataService:

Chapter 9
Migrating From Flex to HTML/JS/JET

9-124

Flex Tag Custom Binding

<div id="bchart_from_custom2"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'bar',
 dataService: 'topFiveFsData',
 emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</div>

<mp-chart id="bchart_from_custom2"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'bar',
 dataService: 'topFiveFsData',
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</mp-chart>

<mp-metric-values-data-service id="topFiveFsData"
 params="metricName:'FilesystemPerf',
 columns:['Utilization'],
 targetName:appModel.target.name,
 targetType:appModel.target.type,
 timePeriod:'REALTIME',
 interval: 30">
 </mp-metric-values-data-service>

Using metric specification:

Flex Tag Custom Binding

<div id="processorChart"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'bar',
 orientation: 'vertical',
 dataSelection: 'multiple',
 emptyText: 'No data',
 animationOnDisplay: 'auto',
 targetName:
appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'CPUProcessorPerf',
 metricColumns: ['CPUIdle'],
 timePeriod: 'LAST_DAY'}" >
</div>

 <mp-chart id="processorChart"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'bar',
 orientation: 'vertical',
 dataSelection: 'multiple',
 emptyText: 'No data',
 animationOnDisplay: 'auto',
 targetName: appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'CPUProcessorPerf',
 metricColumns: ['CPUIdle'],
 timePeriod: 'LAST_DAY'}" >
</mp-chart>

Pie Chart

Using customDataSource:

Chapter 9
Migrating From Flex to HTML/JS/JET

9-125

Flex Tag Custom Binding

<div id="cpuByUserChart"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'pie',
 title: {text: 'CPU % per
User'},
 customDataSource:
model().userSummaryData,
 selectedColumn:
model().userCpuCol,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</div>

<mp-chart id="cpuByUserChart"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'pie',
 title: {text: 'CPU % per
User'},
 customDataSource:
model().userSummaryData,
 selectedColumn:
model().userCpuCol,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</mp-chart>

from controller.init:

var userSummaryData = new CustomDataSource(["User","CPU %","Process
Count"], true);
 page.setModel("userSummaryData", userSummaryData);

Using dataService:

Flex Tag Custom Binding

<div id="pchart_from_mvds"
style="height:100%;width:100%"
 data-bind="mpChart: {
 type: 'pie',
 dataService:
'memory_data_from_metric_realtime'
,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</div>

<mp-chart id="pchart_from_mvds"
style="height:100%;width:100%"
 params="mpChart: {
 type: 'pie',
 dataService:
'memory_data_from_metric_realtime'
,
 emptyText: 'No data',
 animationOnDisplay: 'auto'}">
</mp-chart>

<mp-metric-values-data-service id="memory_data_from_metric_realtime"
 params="flattenData: true,
 metricName:'MemoryPerf',
 columns:
['MemFree','Buffers','Cached','SwapCached','Active','Inactive'],
 targetName:appModel.target.name,
 targetType:appModel.target.type,
 timePeriod:'REALTIME',
 interval: 15 ">
 </mp-metric-values-data-service>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-126

Using metric specification:

Flex Tag Custom Binding

<div id="memChart"
style="height:80%;width:100%"
 data-bind="mpChart: {
 type: 'pie',
 dataSelection: 'multiple',
 styleDefaults: {colors:
Colors.DEFAULT_COLORS},
 targetName:
appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'MemoryPerf',
 metricColumns:
model().memChartColumns,
 timePeriod: 'CURRENT',
emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</div>

 <mp-chart id="memChart"
style="height:80%;width:100%"
 params="mpChart: {
 type: 'pie',
 dataSelection: 'multiple',
 styleDefaults: {colors:
Colors.DEFAULT_COLORS},
 targetName: appModel.target.name,
 targetType:
appModel.target.type,
 metricName: 'MemoryPerf',
 metricColumns:
model().memChartColumns,
 timePeriod: 'CURRENT',
emptyText: 'No data',
 animationOnDisplay: 'auto'}" >
</mp-chart>

Prepackaged Regions

Target Instance Regions
Incident Region

Flex Tag Custom Binding Custom Element

<mp:IncidentRegion
id="eventsRegion"
 height="34%"
width="100%" />

<div data-
bind="mpIncidentRegion"
 style="height:33%"></
div>

<mp-incident-region
style="height:33%">
</mp-incident-region>

Job Activity Region

Flex Tag Custom Binding Custom Element

<mp:JobSummaryRegion
id="jobSummary"
 width="100%"
height="30%" />

<div data-
bind="mpJobSummaryRegion
"
 style="height:30%"></
div>

<mp-job-summary-region

style="height:35%;width:
100%">
</mp-job-summary-region>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-127

Availability Region

Flex Tag Custom Binding Custom Element

<mp:AvailabilityDetail
s id="availDetails"
width="100%"
height="100%"
daySpan="1"/>

<div data-
bind="mpAvailabilityRe
gion"

style="height:100%;wid
th:100%"></div>

<mp-availability-
region

style="height:100%;wid
th:100%">
</mp-availability-
region>

CredentialsRegion

Flex Tag Custom Binding Custom Element

<mp:CredentialsRegion
id="sampleCreds"
 width="40%"
height="100%"

credentialState="{mode
l.sampCredState}"

credentialType="{'Samp
leCredsType'}" />

<div id="sampleCreds"
 data-
bind="mpCredentialsReg
ion: {

credentialType:'Sample
CredsType',

credentialState:model(
).sampCredState
}"></div>

<mp-credentials-
region
id="sampleCreds"

params="credentialType
:'SampleCredsType',

credentialState:model(
).sampCredState">
</mp-credentials-
region>

CredentialsDisplay

Flex Tag Custom Binding Custom Element

<mp:CredentialsDisplay
 id="creds"
 width="100%"
height="100%"

credentialTypes="{['Ho
stCreds',

'SampleCredsType']}"

credentialState="{mode
l.credState}"/>

<div id="creds"
 data-
bind="mpCredentialsDis
play: {
 credentialTypes:
['HostCreds',

'SampleCredsType'],

credentialState:model(
).credState
}"></div>

<mp-credentials-
display id="creds"

params="credentialType
s:['HostCreds',

'SampleCredsType'],

credentialState:model(
).credState" >
</mp-credentials-
display>

System Regions
Status Overview Region

Chapter 9
Migrating From Flex to HTML/JS/JET

9-128

Flex Tag Custom Binding Custom Element

<mp:StatusOverviewRegion
 id="statusRegion"
 height="34%"
width="100%" />

<div data-
bind="mpStatusOverviewRe
gion"
 style="height:33%"></
div>

<mp-status-overview-
region
style="height:33%">
</mp-status-overview-
region>

Issues Overview Region

Flex Tag Custom Binding Custom Element

<mp:IssuesOverviewRegion
 id="issuesRegion"
 height="34%"
width="100%" />

<div data-
bind="mpIssuesOverviewRe
gion"
 style="height:33%"></
div>

<mp-issues-overview-
region
style="height:33%">
</mp-issues-overview-
region>

Jobs Activity Region

Flex Tag Custom Binding Custom Element

<mp:JobsActivityRegion
id="jobActivity"
 width="100%"
height="30%" />

<div data-
bind="mpJobsActivityRegi
on"
 style="height:30%"></
div>

<mp-jobs-activity-
region

style="height:35%;width:
100%">
</mp-jobs-activity-
region>

Chapter 9
Migrating From Flex to HTML/JS/JET

9-129

10
Customizing Incident Manager

This chapter describes how to customize the event details page to provide more diagnostic
information about the event and to facilitate quicker resolution of the underlying issue. Details
pages on the Incident Manager UI allow users to view the details of an event. The content of
such pages helps the user understand the basic nature of the underlying issue and provides
additional contextual details (such as text, links to diagnostic or resolution pages) to resolve
the issue quickly.

For incidents that have only one event, the customizations applied to the event details page
are automatically applied to the Incident Details page.

Note:

For information about Incident Management, see the Using Incident Management
chapter of the Oracle Enterprise Manager Cloud Control Administrator's Guide.

This chapter contains the following sections:

• Introduction to Customizing Incident Manager

• Understanding Supported Customizations

• Creating Event-Specific Customization XML

• Adding Customized Details About the Event

• Providing Content in the Guided Resolution Region

• Defining a Search String for My Oracle Support Knowledge

• Defining Conditions for Customization

• Registering Customizations

• Testing Incident Manager After Customization

Introduction to Customizing Incident Manager
As a plug-in developer, you are responsible for the following steps within customizing Incident
Manager:

1. Determine what customizations you require for your Incident Manager UI. For fine-
grained access, use conditions. For more information, see Understanding Supported
Customizations.

2. Construct the customization XML according to the XSD. For more information, see
Creating Event-Specific Customization XML .

3. Register your customization. For more information, see Registering Customizations.

4. Test the UI by publishing an event that matches the condition. For more information, see
Testing Incident Manager After Customization.

10-1

Understanding Supported Customizations
Figure 10-1 displays the General tab for a selected incident from the Incident Manager
page.

Figure 10-1 Incident Manager

The following customizations are supported for this page:

• Adding name-value pairs to the Incident Details region.

For more information, see Adding Customized Details About the Event.

• Customizing Action and Diagnostic links in the Guided Resolution region.

For more information, see Providing Content in the Guided Resolution Region .

• Adding recommendations to the Guided Resolution region.

For more information, see Adding Recommendations using XML .

• Specifying the default search phrase for My Oracle Support Knowledge.

For more information, see Defining a Search String for My Oracle Support
Knowledge.

Each customization specification has two parts:

1. Condition

This is the criteria used to identify an event for which the customized content will
be rendered. For example, consider a scenario where you want to show a
diagnostic link for metric alerts on a database. The condition would be "event class
is metric_alert and target type is oracle_database". Another example is where you

Chapter 10
Understanding Supported Customizations

10-2

to show the region containing a metric chart. This condition would be "event class is
metric_alert and metric_type is numeric".

Note:

Any target type name is supported. While matching an event, you match the
target type in the condition with the target type of the event

2. Action

The actions specify the customized content. For example, the specification of the
diagnostic link (that is, the label and the URL to be shown under it).

Creating Event-Specific Customization XML
Oracle provides an event-specific customization XSD so that you can write XML to describe
customizations for a specific event for display on the Incident Manager UI.

Note:

For a complete event-specific customization XML Schema Definitions (XSD), see
the Extensibility Development Kit (EDK).

The event-specific customization XSD defines how the Incident Manager UI supports UI
customization.

You can define fine-grained conditions to customize the Event Details or Incident Details
pages.

Example: Sample Metadata File

<evt:CustomUI AppliesTo="EVENT" EventClass ="metric_alert" TargetType =host">
 <evt:ConditionDetails>
 <evt:Condition>
 <evt:Attrib Name="metric_name" Value="Load"/>
 <evt:Attrib Name="metricColumn" Value="cpuUtil"/> </evt:Condition>
 </evt:ConditionDetails>
</evt:CustomUI>

Oracle recommends the following naming conventions for your metadata XML:

• event_class_description.xml

In the preceding file name:

– event_class represents the name of the event class

Event customization supports the following event classes:

* metric_alert

* target_availability

* job_status_change

* cs_rule_violation

Chapter 10
Creating Event-Specific Customization XML

10-3

* cs_score

* sla_alert

* metric_error

– description represents a short description of the event customization

For example, job_status_change_recommendation.xml

• event_class_target_type_description.xml

In the preceding file name:

– event_class represents the name of the event class

– target_type represents the name of the target type for which this event is
generated

– description represents a short description of the event customization

For example, host_metric_alert_diaglinks.xml

Note:

The maximum length of the file name is 255 characters.

For information about the directory location for the metadata XML, see Registering
Customizations.

Note:

Use the empdk validate_plugin command to validate the XML metadata
file. For more information about the empdk validate_plugin command, see
Validating, Packaging, and Deploying the Plug-in .

Overview of Event-Specific Customization Metadata Elements
Table 10-1 describes the key elements that define the event-specific customization
XML.

Chapter 10
Creating Event-Specific Customization XML

10-4

Table 10-1 Key Elements in Event-Specific Customization XML

Element Description

evt:CustomUI This is the root element of the XML. It defines the customization.

It includes the following attributes:

• AppliesTo: Applicable to event customizations. The only
valid value is EVENT.

• EventClass: Specifies the internal event class name and is
applicable only when the customization applies to an event.

• TargetType: Internal name of the target type. The
customization applies to events from all targets of this target
type.

evt:ConditionDetails Specifies the criteria on which the customizations are to be
applied.

evt:Condition Specifies a condition for the customization.

Note: Oracle supports one condition only within the
evt:ConditionDetails tag.

evt:DetailUI Specifies that you are customizing the Details region of the
Incident Manager UI page.

For more information, see Adding Customized Details About the
Event.

evt:GuidedResolutionDetail
s

Specifies that you are customizing the Guided Resolution region of
the Incident Manager UI page. Using this element, you can add
action links, diagnostic links, and recommendations.

For more information, see Adding Recommendations using XML .

About Events
This section provides common event attributes and the definition of the two most commonly-
used event types:

• Common Event Attributes

• Target Availability Event

• Metric Alert Event

Common Event Attributes
All events have the following common attributes:

Table 10-2 Common Event Attributes

Attribute Description

sys_event_class Event type

Possible values:

• target_availability: Target Availability events
• metric_alert: Metric Alert events

sys_event_name Event name to identify the nature of the event uniquely

Chapter 10
Creating Event-Specific Customization XML

10-5

Table 10-2 (Cont.) Common Event Attributes

Attribute Description

sys_event_key Name of a subcomponent within the event source object to which this
event is related. This is optional. Examples include a disk name on a
host, name of a tablespace, and so on

sys_event_msg Event message

sys_action_msg Action message

sys_source_obj_type Source object type. For example, JOBS for job-based events.

sys_source_obj_id Unique internal identifier of a Source object

sys_target_guid Unique internal identifier of a target

sys_target_name Target name

sys_target_owner Target owner

sys_target_version Target version

sys_target_lifecycle_status Lifecycle status

sys_incident_id Incident ID

sys_severity Severity of the event

Possible values:

• 32: Fatal
• 16: Critical
• 8: Warning
• 4: Minor Warning

sys_category Event category.

Possible values:

• Availability: 1
• Configuration: 2
• Capacity: 4
• Fault: 8
• Load: 16
• Performance: 32
• Security: 64
• Jobs: 128
• Diagnostics: 256
• Error: 512
• Business: 1024

Target Availability Event
The Target Availability Event represents a target's availability status.

The following example shows the event attributes defined by the target availability
XML file. Table 10-3 provides a list of all the event attributes for target availability.

Example: target_availability.xml file

<evt:EventClass Name="target_availability"
 NLSID="TARGET_AVAILABILITY"

ResourceBundle="oracle.sysman.core.common.events.classes.rsc.availability.Availab
ilityEventsMsg"

Chapter 10
Creating Event-Specific Customization XML

10-6

 TargetAware="ALWAYS"
 SourceObjectType="TARGET"
 Version="1.0"
 xmlns:evt="http://www.oracle.com/EnterpriseGridControl/eventclass_model"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/
eventclass_model EventClass.xsd">

 <evt:DescriptionNLSID>TARGET_AVAILABILITY_DESC</evt:DescriptionNLSID>

 <evt:AttributeDef>

 <!--This attribute is used to store the availability status of a target-->
 <evt:Attrib Name="target_status"
 DataType="STRING"
 isReferenced="false"
 NLSID="TARGET_STATUS"
 isValueTranslatable="true">
 <evt:DescriptionNLSID>TARGET_STATUS_DESC</evt:DescriptionNLSID>
 </evt:Attrib>

 <!--The guid of the severity record associated with this availability record-->
 <evt:Attrib Name="severity_guid"
 DataType="RAW"
 isReferenced="false"
 NLSID="SEVERITY_GUID"
 isValueTranslatable="false">
 <evt:DescriptionNLSID>SEVERITY_GUID_DESC</evt:DescriptionNLSID>
 </evt:Attrib>

 <!--The cycle guid of the severity record associated with this availability
record-->
 <evt:Attrib Name="cycle_guid"
 DataType="RAW"
 isReferenced="true"
 NLSID="CYCLE_GUID"
 isValueTranslatable="false">
 <evt:DescriptionNLSID>CYCLE_GUID_DESC</evt:DescriptionNLSID>
 </evt:Attrib>

 <!--The below attributes specifies the metric guid of response metric -->
 <evt:Attrib Name="metric_guid"
 DataType="RAW"
 isReferenced="true"
 NLSID="METRIC_GUID"
 isValueTranslatable="false">
 <evt:DescriptionNLSID>METRIC_GUID_DESC</evt:DescriptionNLSID>
 </evt:Attrib>

 <!--The below attribute represents a sub-state for availability states like
Status pending, Agent Unreachable and Blackout.
 TARGET STATUS CODE SUB_STATE

 Any 0 None (Default)
 Agent unreachable 1 Normal
 Agent unreachable 2 Host Down
 Agent unreachable 3 Disk Full
 Status Pending 10 Normal
 Status Pending 11 Stuck
 -->
 <evt:Attrib Name="avail_sub_state"

Chapter 10
Creating Event-Specific Customization XML

10-7

 DataType="NUMBER"
 isReferenced="false"
 NLSID="AVAILABILITY_SUB_STATE"
 isValueTranslatable="false">
 <evt:DescriptionNLSID>AVAILABILITY_SUB_STATE_DESC</
evt:DescriptionNLSID>
 </evt:Attrib>

 <!--The below attributes specifies the availability transition severity
 that resulted in the target availability status that is specified by
 target_status attribute -->
 <evt:Attrib Name="avail_severity"
 DataType="NUMBER"
 isReferenced="false"
 NLSID="AVAILABILITY_SEVERITY"
 isValueTranslatable="false">
 <evt:DescriptionNLSID>AVAILABILITY_SEVERITY_DESC</
evt:DescriptionNLSID>
 </evt:Attrib>
 </evt:AttributeDef>

 <evt:RefAttribSource><![CDATA[mgmt_avail.get_target_avail_ref_attribs]]></
evt:RefAttribSource>

 <!-- For availibility we don't have any identifier attribute list. -->
 <!-- So system will use target_guid, event_class name to generate the
identifier attribute. -->

 <evt:RuleAttribs>
 <evt:RuleAttrib Name="target_status" /></evt:RuleAttrib>
 <evt:RuleAttrib Name="avail_sub_state" /></evt:RuleAttrib>
 <evt:RuleAttrib Name="avail_severity" /></evt:RuleAttrib>
 </evt:RuleAttribs>

 <evt:NotifAttribs>
 <evt:NotifAttrib Name="target_status" />
 <evt:NotifAttrib Name="severity_guid" />
 <evt:NotifAttrib Name="avail_sub_state" />
 <evt:NotifAttrib Name="avail_severity" />
 <evt:NotifAttrib Name="metric_guid" />
 <evt:NotifAttrib Name="cycle_guid" />
 </evt:NotifAttribs>

 <evt:Severities>
 <evt:Severity>FATAL</evt:Severity>
 <evt:Severity>CRITICAL</evt:Severity>
 <evt:Severity>WARNING</evt:Severity>
 <evt:Severity>MINOR_WARNING</evt:Severity>
 <evt:Severity>INFORMATIONAL</evt:Severity>
 </evt:Severities>
</evt:EventClass>

Table 10-3 Event Attributes for Target Availability

Attribute Description

TARGET_STATUS Availability status

AVAILABILITY_SUB_STATE Availability substatus

AVAILABILITY_SEVERITY Transition severity

Chapter 10
Creating Event-Specific Customization XML

10-8

Metric Alert Event
A metric alert event is generated when an alert occurs for a metric on a specific target (for
example, CPU utilization for a host target) or metric on a target and object combination (for
example, space usage on a specific tablespace of a database target)

The following example shows the event attributes defined by the metric alert XML file.
Table 10-4 provides a list of all the event attributes for the metric alert event.

Example: metric_alert.xml

<evt:EventClass Name="metric_alert"
 NLSID="METRIC_ALERT_EVENT"
 TargetAware="ALWAYS"
 SourceObjectType="TARGET"

ResourceBundle="oracle.sysman.core.common.events.classes.rsc.metrics.MetricEventsMsg"
 Version="1.1"
 xmlns:evt="http://www.oracle.com/EnterpriseGridControl/eventclass_model"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/
eventclass_model EventClass.xsd">
 <evt:DescriptionNLSID>METRIC_ALERT_DESC</evt:DescriptionNLSID>
 <evt:AttributeDef>
 <evt:Attrib Name="metric_guid" DataType="RAW" isReferenced="false"
 NLSID="METRIC_GUID_NLSID" isValueTranslatable="false">
 <evt:DescriptionNLSID>METRIC_GUID_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_value" DataType="STRING" isReferenced="false"
 NLSID="KEY_VALUE_NLSID" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="severity_guid" DataType="RAW" isReferenced="false"
 NLSID="SEVERITY_GUID_NLSID" isValueTranslatable="false">
 <evt:DescriptionNLSID>SEVERITY_GUID_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="cycle_guid" DataType="RAW" isReferenced="true"
 NLSID="CYCLE_GUID_NLSID" isValueTranslatable="false">
 <evt:DescriptionNLSID>CYCLE_GUID_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="value" DataType="STRING" isReferenced="true"
 NLSID="VALUE_NLSID" isValueTranslatable="false">
 <evt:DescriptionNLSID>VALUE_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="metric_group" DataType="STRING" isReferenced="true"
 NLSID="METRIC_GROUP_NLSID" isValueTranslatable="true">
 <evt:DescriptionNLSID>METRIC_GROUP_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="metric_column" DataType="STRING" isReferenced="true"
 NLSID="METRIC_COLUMN_NLSID" isValueTranslatable="true">
 <evt:DescriptionNLSID>METRIC_COLUMN_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="metric_description" DataType="STRING" isReferenced="true"
 NLSID="METRIC_DESCRIPTION_NLSID" isValueTranslatable="true">
 <evt:DescriptionNLSID>METRIC_DESCRIPTION_DESC_NLID</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="coll_name" DataType="STRING" isReferenced="true"
 NLSID="COLL_NAME_NLSID" isValueTranslatable="true">
 <evt:DescriptionNLSID>COLL_NAME_DESC</evt:DescriptionNLSID>
 </evt:Attrib>

Chapter 10
Creating Event-Specific Customization XML

10-9

 <evt:Attrib Name="key_column_1" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_1" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_1</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_2" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_2" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_2</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_3" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_3" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_3</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_4" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_4" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_4</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_5" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_5" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_5</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_6" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_6" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_6</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_7" DataType="STRING" isReferenced="true"
 NLSID="ALERT_KEY_COL_NLSID_7" isValueTranslatable="true">
 <evt:DescriptionNLSID>ALERT_KEY_COL_DESC_7</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_1_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_1" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_1</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_2_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_2" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_2</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_3_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_3" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_3</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_4_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_4" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_4</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_5_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_5" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_5</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_6_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_6" isValueTranslatable="false">
 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_6</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="key_column_7_value" DataType="STRING"
isReferenced="true"
 NLSID="KEY_VALUE_PART_NLSID_7" isValueTranslatable="false">

Chapter 10
Creating Event-Specific Customization XML

10-10

 <evt:DescriptionNLSID>KEY_VALUE_PART_DESC_7</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="metric_type" DataType="NUMBER" isReferenced="true"
 NLSID="METRIC_TYPE" isValueTranslatable="false">
 <evt:DescriptionNLSID>METRIC_TYPE_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="num_keys" DataType="NUMBER" isReferenced="true"
 NLSID="NUM_KEYS" isValueTranslatable="false">
 <evt:DescriptionNLSID>NUM_KEYS_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="unit" DataType="STRING" isReferenced="true"
 NLSID="UNIT_NLSID" isValueTranslatable="true">
 <evt:DescriptionNLSID>UNIT_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="is_thresholdable" DataType="NUMBER" isReferenced="true"
 NLSID="IS_THRESHOLDABLE" isValueTranslatable="false">
 <evt:DescriptionNLSID>IS_THRESHOLDABLE_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="is_remote" DataType="NUMBER" isReferenced="true"
 NLSID="IS_REMOTE" isValueTranslatable="false">
 <evt:DescriptionNLSID>IS_REMOTE_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="is_long_running" DataType="NUMBER" isReferenced="true"
 NLSID="IS_LONG_RUNNING" isValueTranslatable="false">
 <evt:DescriptionNLSID>IS_LONG_RUNNING_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="is_udm" DataType="NUMBER" isReferenced="true"
 NLSID="IS_UDM" isValueTranslatable="false">
 <evt:DescriptionNLSID>IS_UDM_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 <evt:Attrib Name="is_metric_extension" DataType="NUMBER" isReferenced="true"
 NLSID="IS_METRIC_EXTENSION" isValueTranslatable="false">
 <evt:DescriptionNLSID>IS_METRIC_EXTENSION_DESC</evt:DescriptionNLSID>
 </evt:Attrib>
 </evt:AttributeDef>

 <evt:RefAttribSource><![CDATA[sysman.em_severity.get_metric_alert_ref_attribs]]></
evt:RefAttribSource>

 <evt:SignatureAttribs>
 <evt:SignaturePart>metric_guid</evt:SignaturePart>
 <evt:SignaturePart>key_value</evt:SignaturePart>
 </evt:SignatureAttribs>

 <evt:RuleAttribs>
 <evt:RuleAttrib Name="metric_group"/>
 <evt:RuleAttrib Name="metric_column"/>
 <evt:RuleAttrib Name="key_value"/>
 <evt:RuleAttrib Name="key_column_1_value"/>
 <evt:RuleAttrib Name="key_column_2_value"/>
 <evt:RuleAttrib Name="key_column_3_value"/>
 <evt:RuleAttrib Name="key_column_4_value"/>
 <evt:RuleAttrib Name="key_column_5_value"/>
 <evt:RuleAttrib Name="key_column_6_value"/>
 <evt:RuleAttrib Name="key_column_7_value"/>
 </evt:RuleAttribs>

 <evt:NotifAttribs>
 <evt:NotifAttrib Name="metric_guid"/>
 <evt:NotifAttrib Name="severity_guid"/>
 <evt:NotifAttrib Name="cycle_guid"/>

Chapter 10
Creating Event-Specific Customization XML

10-11

 <evt:NotifAttrib Name="coll_name"/>
 <evt:NotifAttrib Name="metric_group"/>
 <evt:NotifAttrib Name="metric_column"/>
 <evt:NotifAttrib Name="metric_description"/>
 <evt:NotifAttrib Name="value"/>
 <evt:NotifAttrib Name="key_value"/>
 <evt:NotifAttrib Name="key_column_1"/>
 <evt:NotifAttrib Name="key_column_1_value"/>
 <evt:NotifAttrib Name="key_column_2"/>
 <evt:NotifAttrib Name="key_column_2_value"/>
 <evt:NotifAttrib Name="key_column_3"/>
 <evt:NotifAttrib Name="key_column_3_value"/>
 <evt:NotifAttrib Name="key_column_4"/>
 <evt:NotifAttrib Name="key_column_4_value"/>
 <evt:NotifAttrib Name="key_column_5"/>
 <evt:NotifAttrib Name="key_column_5_value"/>
 <evt:NotifAttrib Name="key_column_6"/>
 <evt:NotifAttrib Name="key_column_6_value"/>
 <evt:NotifAttrib Name="key_column_7"/>
 <evt:NotifAttrib Name="key_column_7_value"/>
 <evt:NotifAttrib Name="num_keys"/>
 </evt:NotifAttribs>

 <evt:Severities>
 <evt:Severity>CRITICAL</evt:Severity>
 <evt:Severity>WARNING</evt:Severity>
 </evt:Severities>

</evt:EventClass>

Table 10-4 Event Class Attributes for Metric Alerts

Attribute Description

KEY_VALUE_DESC Monitored object for the metric corresponding to the Metric Alert
event

VALUE_DESC Value of the metric when the event triggered

METRIC_GROUP_DESC The name of the metric

METRIC_COLUMN_DESC The name of the metric column

KEY_COLUMN_1_VALUE Value of Key Column 1

KEY_COLUMN_2_VALUE Value of Key Column 2

KEY_COLUMN_3_VALUE Value of Key Column 3

KEY_COLUMN_4_VALUE Value of Key Column 4

KEY_COLUMN_5_VALUE Value of Key Column 5

KEY_COLUMN_6_VALUE Value of Key Column 6

KEY__COLUMN_7_VALUE Value of Key Column 7

IS_METRIC_EXTENSION_
DESC

Flag to indicate if the metric is metric extension

Adding Customized Details About the Event
The Incident Details region shows information about the event. It consists of system
attributes (such as the message, target name, and when the event was reported) and
the class attributes. You can customize the name-value pairs for the class attributes.

Chapter 10
Adding Customized Details About the Event

10-12

Through the event-specific customization XML, you can choose which attributes to show,
such as the labels for the name part, and whether you require a link under the value. For
more information, see Creating Event-Specific Customization XML .

Example: Constructing a Name-Value Pair

<evt:DetailUI>
 <evt:UIAttributeList>
 <evt:UIAttrib Name="metric_name">
 <evt:URL PageType="sdkcore-dummy-published-page-id">
 <evt:URLParam Name="target" Value="^TARGET:sys_target_name^"/>
 <evt:URLParam Name="type" Value="^TARGET:sys_target_type^"/>
 <evt:URLParam Name="metric" Value="^metric_name^"/>
 <evt:URLParam Name="metricColumn" Value="^metric_column^"/>
 <evt:URLParam Name="ctxType" Value="Hosts"/>
 </evt:URL>
 </evt:UIAttrib>
 </evt:UIAttributeList>
</evt:DetailUI>

The previous example constructs a name-value pair under the Incident Details region. The
name is the translated value of metric_name, which is an event class attribute. The value part
is the value of metric_name, with a link to the METRIC_DETAILS page with specified URL
parameters.

Note:

For the evt:URL tag, you must use an EDK published page id as the pageType. At
design-time, you cannot validate the link navigation so if you are using this API,
then you must verify that the link works correctly on the Incident Manager UI.

The URL parameters in the links can be:

• Event attributes: Must be enclosed in carets (^). For example, ^metric_name^.

For information about event attributes, see About Events.

• Target attributes: Must be prefixed with TARGET. For example,
^TARGET:sys_target_type^.

Possible target attributes:

– sys_target_name

– sys_target_type

– sys_target_owner

– sys_target_version

– sys_target_lifecycle_status

– sys_target_guid

For more information about these attributes, see Table 10-2.

• Event context attributes: Must be prefixed with EVENT. For example,
^EVENT:evt_context_attrib_name^.

Event context attributes enable the event publisher to provide additional event
information to event attributes and are defined as name-value pairs.

Chapter 10
Adding Customized Details About the Event

10-13

• Constants: Must be specified as literal strings. For example, byDay.

Note:

You can customize the Incident Details region to include class-specific
attributes only.

Providing Content in the Guided Resolution Region
You can make the following customizations to the Guided Resolution region:

1. Customize Repair and Diagnostic links (these links can be added or removed)

2. Add recommendations to the Guided Resolution region

3. Specify a default search phrase for My Oracle Support Knowledge

4. Add areas with text to the Guided Resolution region

The Guided Resolution region provides links to relevant Enterprise Manager pages to
help users debug and resolve issues. These context-sensitive links are grouped into
multiple areas based on the nature of content in the destination page of the link. The
following areas are displayed only if they have content.

• Diagnose: This area contains links that can help users diagnose the issue. For
example, for an event based on a target, the Diagnose area contains a link called
View topology that drills down to the Topology Viewer. You can add or remove
links in this area using the evt:DiagLinks tag (see the Adding a Link to the
Diagnostics Subsection example).

• Repair: This area contains links that can help users resolve the issue. For
example, for metric alerts with thresholds, this area might contain a link to Edit
Thresholds. You can add or remove links to and from this area using the
evt:ActionLinks tag. This area displays for open events only.

• Recommendation: This area contains text content drawn from the metric advisory,
if available. You can customize the content of this area using the
evt:Recommendation tag (see the Adding Recommendations example in Adding
Recommendations using XML).

• Any additional area: This area contains text content drawn from the metric
advisory, if available. You can customize the content of this section using the
evt:Sections tag (see the Adding Customized Areas example in Customizing
Sections).

The following example provides an example of adding a link to the Diagnostics list in
the Guided Resolution region using XML:

Example: Adding a Link to the Diagnostics Subsection

<evt:DiagLinks>
 <evt:Add>
 <evt:Link LinkID="diagLink1_example">
 <evt:Label>
 <evt:LocalizedLabel DefaultLabel="Edit Thresholds"
 NLSID="EDIT_METRIC_THRESHOLDS"
 ResourceBundle="oracle.sysman.resources.MntrResourceBundle"/>

Chapter 10
Providing Content in the Guided Resolution Region

10-14

 </evt:Label>
 <evt:URL PageType="sdkcore-published-page-id-for-edit-threshold">
 <evt:URLParam Name="target" Value="^TARGET:sys_target_name^"/>
 <evt:URLParam Name="type" Value="^TARGET:sys_target_type^"/>
 <evt:URLParam Name="event" Value="doEditTreshold"/>
 <evt:URLParam Name="metric" Value="^metric_name^"/>
 <evt:URLParam Name="collName" Value="^coll_name^"/>
 <evt:URLParam Name="keyValue" Value="^key_value^"/>
 <evt:URLParam Name="metricColumn" Value="^column^"/>
 </evt:URL>
 </evt:Link>
 </evt:Add>
</evt:DiagLinks>

In the previous example, the link text is derived from the evt:Label specification and the URL
is derived from evt:URL.

The URL parameters in the links can be:

• Event attributes: Must be enclosed in carets (^). For example, ^metric_name^.

For information about event attributes, see About Events.

• Target attributes: Must be prefixed with TARGET. For example,
^TARGET:sys_target_type^.

Possible target attributes:

– sys_target_name

– sys_target_type

– sys_target_owner

– sys_target_version

– sys_target_lifecycle_status

– sys_target_guid

For more information about these attributes, see Table 10-2.

• Event context attributes: Must be prefixed with EVENT. For example,
^EVENT:evt_context_attrib_name^.

Event context attributes enable the event publisher to provide additional event
information to event attributes and are defined as name-value pairs.

• Constants: Must be specified as literal strings. For example, byDay.

Adding Recommendations using XML
The Actions list in the Guided Resolution region enables you to provide some text describing
recommended steps that users can follow to diagnose or resolve the issue. Use any of the
Label tags to specify the recommendations.

Example: Adding Recommendations

<evt:GuidedResolutionDetails>
 <evt:GuidedResolution>
 <evt:Recommendation ID="reco_foo">
 <evt:Label>
 <evt:LocalizedLabel
 DefaultLabel="Recommendation for my event class"

Chapter 10
Providing Content in the Guided Resolution Region

10-15

 NLSID="MY_EVENT_CLASS_NLSID"
 ResourceBundle="oracle.sysman.MyResourceBundle"/>
 </evt:Label>
 </evt:Recommendation>
 </evt:GuidedResolution>
</evt:GuidedResolutionDetails>

You can use other variants of the evt:Label tag to construct more complex
Recommendations. For example, to substitute the value of an event attribute, such as
alertAction as the recommendation, use the following example:

Example: Adding a Complex Recommendation

<evt:GuidedResolutionDetails>
 <evt:GuidedResolution>

 <evt:Recommendation ID="reco_unique_id">
 <evt:Label>
 <evt:AttributeValue Name="alertAction" />
 </evt:Label>
 </evt:Recommendation>

 </evt:GuidedResolution>
</evt:GuidedResolutionDetails>

Customizing Sections
You can display textual information by adding sections to the Guided Resolution
region. For example, while prioritizing an incident about an out-of-the-box
Configuration Standard, it might be useful to see the rationale explaining why that
Configuration Standard was added. Each added area has a header and some textual
content.

To add sections to the Guided Resolution region, you can add specifications to the
customization XML similar to the following example:

Example: Adding Customized Areas

<evt:Sections>
 <evt:Add>
 <evt:Section ID = "section_eventclass_1">
 <evt:SectionHeader>
 <evt:Label>
 <evt:LocalizedLabel DefaultLabel="Section Hdr 1"

NLSID="TRANSLATION_ID"ResourceBundle="oracle.sysman.MyResourceBundle"/>

 </evt:Label>
 </evt:SectionHeader>
 <evt:SectionText>
 <evt:Label>
 <evt:LocalizedLabel DefaultLabel="Section for my event class"
 NLSID="MY_EVENT_CLASS_NLSID"
ResourceBundle="oracle.sysman.MyResourceBundle"/>
 </evt:Label>
 </evt:SectionText>
 </evt:Section>

Chapter 10
Providing Content in the Guided Resolution Region

10-16

 </evt:Add>
</evt:Sections>

Defining a Search String for My Oracle Support Knowledge
The customization framework provides a default search phrase in the following order of
preference:

1. Customized value from the plug-in developer

2. ORA error found in the Event Summary

3. Event Summary

The search string can be specified explicitly by using XML as shown in the following example.
This search string searches for a metric alert indicating high CPU usage for the plug-in
component.

Example: Defining a Search String

<evt:GuidedResolutionDetails>
 <evt:GuidedResolution>
 <evt:SearchPhrase>High CPU Utilization </evt:SearchPhrase>
 </evt:GuidedResolution>
</evt:GuidedResolutionDetails>

Defining Conditions for Customization
To select the events for which customizations are to be applied, you can define conditions
using the attributes of an event. To define conditions using attributes from the event payload
(for example, system attributes such as target name, target type, or event-class specific
attributes such as metric_name for metric alerts, or event-context attributes), use XML.

Conditions can be defined under the evt:ConditionDetails tag. You can specify various
event attributes here and they are joined together implicitly using an AND condition.

Note:

You can define one condition only under the evt:ConditionDetails tag.

Example: Defining a Condition

<evt:CustomUI AppliesTo ="EVENT" EventClass ="metric_alert" TargetType =host">
 <evt:ConditionDetails>
 <evt:Condition>
 <evt:Attrib Name="metric_name" Value="Load"/>
 <evt:Attrib Name="metricColumn" Value="cpuUtil"/>

 </evt:Condition>
 </evt:ConditionDetails>
...
</evt:CustomUI>

The following operators are supported to define conditions:

Chapter 10
Defining a Search String for My Oracle Support Knowledge

10-17

• EQ: Equals. This is the default operator

• NE: Not equals

• ISNULL: Is null

• ISNOTNULL: Is not null

• CONTAINS: Can be contained in the string (as a substring)

• BEGINSWITH: Begins with (for example, the event name begins with Tablespace)

• IN: In a predefined set of values (separated by pre-defined delimiter comma (,))

• NOT_IN: Not in a predefined set of values. Use for exclusion

Registering Customizations
The event-specific customization XML files are located in
the $PLUGIN_ORACLE_HOME/sysman/metadata/events/custmzn directory. In the
shipped version of the product, these XMLs are registered as part of the plug-in
installation.

If you are creating the XMLs for the first time in a view that is already set up or to test
changes, use the Metadata Registration Service (MRS) to register XML for the event
class. For more information about the MRS, see Updating Deployed Metadata Files
Using the Metadata Registration Service (MRS).

emctl register oms metadata -service eventSpecificCustmzn -file XML filename -
pluginId plugin_name -sysman_pwd sysman -debug

For example:

emctl register oms metadata -service eventSpecificCustmzn -file
metric_alert_host_load.xml -pluginId test.demo.xyz -sysman_pwd sysman -debug

You must restart the Oracle Management Service (OMS) after registering the event-
specific customization XML, using the emctl command from the OMS home directory
(OMS_HOME).

OMS_HOME>emctl stop oms
OMS_HOME>emctl start oms

You might encounter the following errors when you register your event-specific
customization XML:

• Syntax error in the XML

For information about the correct syntax and an example of the XML, see Creating
Event-Specific Customization XML .

• Incorrect values for attribute names

For information about attribute names, see About Events.

• Incorrect credentials

Incorrect credentials will not allow you to connect to the Management Repository.
Ensure that you are using authorized credentials.

Chapter 10
Registering Customizations

10-18

Testing Incident Manager After Customization
Test the Incident Manager UI by publishing an event that matches the condition and then
make sure that there is an incident created for it:

1. To access Incident Manager, from the Enterprise menu, select Monitoring, then select
Incident Manager.

The Incident Manager: My open incidents and problems page appears.

2. From Views, select either of the following:

• All open incidents to find the incident

• Events without incidents if you did not create an incident

Chapter 10
Testing Incident Manager After Customization

10-19

11
Using Derived Associations

Effective management of IT infrastructure requires knowledge of the relationships between IT
entities. Best practices such as those described by ITIL (Information Technology
Infrastructure Library) rely on capturing and using such relationships.

Enterprise Manager Cloud Control 13c extends the kinds of relationships being supported
and adds a declarative mechanism by which these relationships can be maintained. It also
determines the membership of entities in a system based on relationships. Based on
accurate relationships, various Enterprise Manager applications and components can support
customer uses such as:

• Dependency analysis.

For instance, to understand the impact (to applications and infrastructure) of shutting
down a host.

• Topology viewer.

• Change management.

For instance, tracking the source of cloned databases.

• End-to-end performance analysis, in which interdependencies between application
components must be known in order to analyze and isolate issues.

• Change tracking of relationships, such as changes in the way VM resources are
allocated.

This chapter covers the following:

• Introduction to Derived Associations

• Understanding Enterprise Manager Association Concepts

• About Association Derivation Rules Management

• Ensuring Performance

• Using Overlapping Associations

• Frequently Asked Questions

Introduction to Derived Associations
As an plug-in developer, you are responsible for defining those association types that apply to
your managed entity types and for verifying that the correct associations (association
instances) are present.

A manageable entity is an entity that Enterprise Manager is capable of managing. This
implies that the entity is exposed in some form to end users in the Cloud Control application,
and has well-defined attributes and semantics.

As a plug-in developer, you are responsible for the following steps with regard to derived
associations:

11-1

1. Identify all associations that need to be represented for any managed entities
(MEs) that you own.

This generally includes any containment or dependency associations between an
ME you own and any other MEs. For each kind of association identified, you may
need to coordinate with the owner of the related ME type to determine who should
be responsible for assuring that association instances of that type are kept up to
date. Some associations (in particular, hosted_by and managed_by) are
automatically maintained by Enterprise Manager, so association derivation rules
should not be used for these.

2. Understand the set of out-of-box association types that are shipped with
Enterprise Manager and ensure the use of the most appropriate type.

For more information, see About Out-of-Box Association Types.

3. Ensure that association derivation rules are used to (declaratively) describe the
associations that are to exist based on configuration data that resides in the
repository.

Rules are triggered by configuration collections (where target property changes
are also treated as a configuration collection).

For more information, see Using Association Derivation Rules Syntax and
Semantics.

4. You need to coordinate with the owners of other ME's regarding association
maintenance, as associations with your ME types often involve other plug-in's ME
types.

Decide which plug-in will package the rules. The plug-in that owns the rule must
ensure that it specifies all other needed plug-ins as prerequisites to ensure that all
target types and their ECM metadata is present prior to rule installation.

Advanced activation expressions, as described in Understanding Activation
Expressions can be used if it is not possible to assure all needed target types are
present. Rule triggers should reside in plug-ins that define target types specified
by the triggers. However, if target types are known to exist before the plug-in
installation, the triggers can reside along with the rule.

Assumptions and Prerequisites
This chapter assumes you are familiar with the following:

• Association types in general, association type hierarchy, concepts of allowed pairs
of manageable entity types for association types, forward and concrete (versus
abstract) association type, and the semantics of the Enterprise Manager out-of-
box association types.

• Target model, target properties, and target components.

• Enterprise Configuration Management configuration collections, including
treatment of target properties as configuration data.

• Plug-in development overview, including how to package a plug-in and its XML
files.

• Topology viewer (to view your associations).

Chapter 11
Introduction to Derived Associations

11-2

Understanding Enterprise Manager Association Concepts
In Enterprise Manager, the concept of a relationship is internally referred to as an association.
An association (association instance) represents a relationship between two managed
entities and specifies three values, namely, source, destination, and association type. For
instance, in “database1 exposed_by listener1", database1 is the source, listener1 is the
destination, and “exposed_by" is the association type.

This section describes association derivation rules, which provide a concise declarative
means of defining association types. Association derivation (so called because the existence
of associations is derived from collected data) provides a mechanism by which developers
can cause association instances to be created and removed based on data collected from a
target.

The association derivations are based on the data collected using configuration collections
and present in the Enterprise Manager repository. The association derivation mechanism
allows you to keep the association consistent with the collected configuration data and to
determine associations centrally based on all known data (instead of being done by agent
logic, which has access to less data).

About Out-of-Box Association Types
Enterprise Manager provides a common set of association types that should meet the needs
of most plug-in developers and you are encouraged to become familiar with these association
types and use them if applicable.

The cardinality specifies the cardinality for the overall association type. An allowed_pairs
(constraint) should not specify conflict cardinality, but may specify more specific cardinality.
An abstract association type can not have association instance created for it.

The following diagram shows the core association type hierarchy. For more information on
out-of-box association types, see Out-of-Box Associations

Figure 11-1 Core Association Type Hierarchy

Chapter 11
Understanding Enterprise Manager Association Concepts

11-3

Using Association Derivation
To use association derivation, complete the following:

1. Specify the logic to run after the collection of target configuration.

The logic derives a set of association instances in the form of triples that specify
the source managed entity GUID, association type, and destination managed
entity GUID. For instance, the association derivation logic for targets of type
oracle_listener could return triples that represent associations between the listener
and each database for which it listens.

2. Create and run a SELECT statement that contains the logic used to derive the
triples.

Each returned row contains association type, source, and destination columns and
represents an association that should exist.

3. Register the derivation logic against an Enterprise Configuration Management
snapshot type.

After every snapshot collection, the registered logic is invoked. Input to the logic is
the GUID of the target for which the data was collected.

When the association derivation logic for snapshot S of target T is executed, the
derived associations replace the previously derived associations for snapshot S of
target T. For example, if associations A1 and A2 were collected yesterday and only A1
is collected today, then A2 is effectively deleted.

About Automated Discovery and Promotion of Associations
One option for adding associations to Enterprise Manager is to provide a discovery
script which discovers targets and the associations between them, and the discovery
script is then scheduled to run on a selected set of agents by the end-user. The targets
and associations discovered by this type of script are automatically promoted, that is
they are automatically added to Enterprise Manager. This approach is useful for
associations that are between targets that are managed by your plug-in and therefore
the specific target identification is known (that is you create the targets on both ends of
the association). If these associations are to other targets not included in your plug-in,
then typically a derived association rule is used to specify how to locate the "external"
target.

A guided discovery process may be used if some interaction with the end-user or
administrator is necessary to filter the information discovered by the script, or if some
amount of post-processing is necessary to compare it to other information already
known to Enterprise Manager.

Understanding Association Creation During Guided Discovery
This approach is similar to the automated discovery approach described in the
previous section in that you provide a discovery script that can be run by an Enterprise
Manager agent. That discovery script may return any number of related targets and
the associations between them. The difference is that in the guided discovery case,
you provide a user interface that the end-user interacts with to drive the execution of
the discovery script and then process the results returned from it. This processing

Chapter 11
Understanding Enterprise Manager Association Concepts

11-4

takes the output from the discovery script and may further filter it or present it to the end-user
to allow them to add important information to it.

Guided discovery may also interact with the Enterprise Manager system using target services
to obtain information about targets already known to Enterprise Manager to perform
incremental updates to the topology of targets discovered. This approach is also used for
cases where the associations to be created are between targets that are managed by your
plug-in and therefore the specific target identification is known. That is you create the targets
on both ends of the association, but some additional intervention is needed before those
associations are added to Enterprise Manager.

Using Associations Derived from a System Stencil
This approach is used solely for creating system membership associations between a system
target and its members. The system target and its members are typically all part of a single
plug-in, as you must have knowledge of the types of associations that exist between the
system target and its members in order to form the system topology.

The system stencil defines the set of association paths that should be considered when
forming the system membership. In this way, the plug-in can traverse complex association
paths to locate targets that should be treated as members of the system. This is important in
cases where a system member is not directly associated with the system target by some
other "native" association.

If the plug-in does not include a target type that you wish to be treated as a system, then this
approach can be ignored.

Associations Derived from Rule
This approach for creating associations is particularly suited to cases where the destination
target of the association is not part of the plug-in but is known to be managed by Enterprise
Manager. For example, assume that the configuration of your target included a connection to
an Oracle database that was used to store information related to your target operation (such
as an application store). The configuration of your target knows something about the
database that it uses, likely some connection related details such as host-port-sid or host-
service.

You would like to represent this association between your target and the database in
Enterprise Manager so that if Enterprise Manager is managing the database, the end-user
can see this relationship and traverse it to obtain other information about that database and
manage it (if appropriate and allowed).

Because you do not know if Enterprise Manager is managing the database and the
identifying information you have is not the Enterprise Manager database target name, but
instead the connect information, you can construct a derivation rule that maps the connection
information in your target's configuration to that of a database in Enterprise Manager.

This approach is very useful for cases where you wish to construct this type of association
between a target that is part of your plug-in and some external target, particularly some
Enterprise Manager stack component like Oracle Fusion Middleware or the Oracle Database.

Chapter 11
Understanding Enterprise Manager Association Concepts

11-5

About Association Derivation Rules Management
Since Enterprise Manager Cloud Control 12c, Enterprise Manager Cloud Control
extends the use of associations by Enterprise Manager components and enhances the
overall association framework. It introduces new consumers of associations, including
the topology viewer.

Association framework enhancements include the treatment of associations as
configuration data. Enterprise Configuration Management features such as change
tracking and saved snapshots now apply to associations as well as to traditional
configuration data. Associations can now specify source and destination target
components, as well as target GUIDs.

The following sections provide detailed instructions on the use and management of
derivation rules:

• Using Association Derivation Rules Syntax and Semantics

• Understanding XML Metadata File Syntax and Semantics

• Using Rule Semantics

• Maintaining Performance

• About Regular Query and Trigger Patterns

• Diagnosing Issues

• Useful Examples

• Applying the Mechanical Steps of Integration

• Understanding Activation Expressions

• Troubleshooting and Debugging

Using Association Derivation Rules Syntax and Semantics
The following sections describe the contents of a rule, including name, query, triggers,
and database objects that can be referenced by rule queries.

Name

A rule is identified by a unique rule name that must be unique across all plug-ins.
Oracle recommends that you use a suitable prefix to avoid name conflicts. For
example, a company symbol or name followed by the plug-in name.

Query

The primary component of a rule is the rule query, which identifies a set of
associations. Each row returned by the query represents an association. The SQL
must return four columns whose names and types must be:

• assoc_type
(VARCHAR2(64)): the association type

• source_me_guid
(RAW(16)): a managed entity GUID

• dest_me_guid

Chapter 11
About Association Derivation Rules Management

11-6

(RAW(16)): a managed entity GUID

• derivation_target_guid, derivation_target_guid2, derivation_target_guid3
(RAW(16))

Often unnecessary, these are one or more optional target GUID columns that identify
targets involved in deriving the association (other than the source or destination).

– These cannot be a target component ID, but must be a target GUID.

– Columns should be used in order.

This means that queries returning derivation_target_guid2 must also return
derivation_target_guid. Queries returning derivation_target_guid3 must also
return derivation_target_guid and derivation_target_guid2 columns.

The need in some cases for a derivation target guid is illustrated by the case in which the
collection for a target determines associations between two other targets. For instance,
the collection for a Siebel Enterprise System determines associations between its
member targets.

In this case, the derivation target GUID is the target GUID of the Siebel Enterprise
System target, but the source and destination are other targets. Similar cases exist for
Oracle E-Business Suite and Oracle WebLogic Server, where configuration information is
collected from a single source, such as the Oracle WebLogic Server domain admin
server, and used to derive associations between the domain members.

Each row returned by the query must specify a valid association instance and must use a
concrete (not abstract) forward (not inverse) association type. Valid association instances
must specify managed entities that are valid for the specified association type. For example,
a hosted_by association must specify a destination that is a host target. Inverse association
types must not be returned. For example, do not use host_for, which is the inverse of
hosted_by and would be logged as an error.

Note that the rule query returns a repository-wide set of associations, but associations are
populated incrementally on behalf of one target at a time. When the rule is evaluated, it is
from the perspective of a single target. At evaluation time, the framework wraps the query
with an outer query. For example:

"SELECT … FROM <query> WHERE derivation_target_guid = <initiatingTarget> AND …"

Note:

You do not need to specify a DISTINCT keyword (at the outmost level) in your rule
query as the framework will eliminate the duplicates by itself when it wraps your
query with its own query.

Query size should not exceed 2000 characters. (It is planned to extend this to 4000
characters in a future release).

DB Objects Referenced by Rule Queries

For security reasons, the SYSMAN_RO user will execute your rule query. Therefore, only objects
accessible by this user are allowed to be referenced. For objects created outside of your
plug-in you can reference views exposed by the Extensibility Development Kit (EDK) at your
plug-in level, including those prefixed with MGMT$.

Chapter 11
About Association Derivation Rules Management

11-7

For objects created in your plug-in, you can reference CM$ views auto-generated by the
Enterprise Configuration Management framework for your target type collections. You
can also reference views prefixed with a DA_ prefix and packages with invokers rights
with a DA_ prefix.

Your query should not rely on associations unless you ensure that they are present by
the time the query is executed (for example, when corresponding triggers fire – see
below). For derived associations, the order of executions is not deterministic because
the order in which configurations arrive and then corresponding associations are
derived is arbitrary. An example of an association that can be used is a hosted_by
association, which appears during target discovery and is not a derived association.

Triggers

Triggers are usually provided in addition to the rule query. A trigger specifies a table
that, when changed, may impact the associations returned by the rule query. Generally
there are multiple triggers because the rule query often refers to data from multiple
tables and because changes to either target's data can affect the association rows
returned by the query.

Two triggers may not always be needed as it may be the case that the data for one of
the two targets does not change. For instance, an association rule that determines its
destination based on (immutable) identity properties of one of the targets is only
affected by changes to the source target's configuration. Even in that case, it may still
be desirable to specify two triggers. If the destination target can appear after the
source and this appearance causes the immediate creation of a new association, the
trigger is needed.

A trigger specifies the following:

• A snapshot table

A change to the table (due to upload of new data) will fire the trigger. You should
only include tables that affect the set of associations because needless firing of
triggers impacts performance. A table is identified by target type, snapshot type,
and table name.

• Column ID flag

This indicates whether the source, destination, or a derivation target guid should
be used to identify associations affected by the newly uploaded configuration data.
In other words, depending on this column value, associations for the source,
destination, or a derivation target will be replaced with a new set of associations
computed for that target when the trigger table data changes. Possible values
include source, destination, derivationTarget, derivationTarget2, or
derivationTarget3.

When the trigger fires, the association derivation framework will effectively replace all
currently existing associations where the given target is a source, destination, or
derivation (depending on the flag) with newly computed associations. To compute the
new set of associations, the rule query is executed with the corresponding column
bound to the target id. This simplified explanation assumes that associations only exist
because of this single rule and it would be slightly changed for a target components
case.

For example, a rule query accesses data from a listener configuration table and a
database configuration table and returns associations of the form <database> exposed
by <listener>. One trigger specifies the database configuration table and a column id
flag of source, because a change to the configuration table for a database may affect

Chapter 11
About Association Derivation Rules Management

11-8

rows where the database is the source of the association. Similarly, a second trigger specifies
the listener configuration table and a column id flag of the destination, because a change to
the configuration table for a listener may affect rows where the listener is the destination of
the association.

If multiple rules can be triggered for a snapshot table, then the order in which the triggers
execute is non-deterministic. This means that the developer cannot make any assumptions
about the order.

The table name (TN) specified in a trigger can actually be the name of a base table, view, or
synonym. In all cases, the underlying tables of TN are identified. A trigger is created for each
such table that is an Enterprise Configuration Management table.

Understanding XML Metadata File Syntax and Semantics
To create or update a rule, you edit an XML metadata file that defines the rule (or set of rules)
and then import it into the repository. The metadata import is done when a repository is
created or upgraded. It is also done when a plug-in is added, upgraded, or removed.

Schematically, you specify the following information for each rule in the file:

• Name

• Query

• 0 to n triggers with

– Fully qualified snapshot type (which includes target type).

– Metric table of that snapshot (view or synonym that refers to such a table)

Normally, this view is used by the rule query.

– Column flag (source, destination, derivationTarget, derivationTarget2, or
derivationTarget3).

– Optional details (used to specify target property names for triggers based on target
properties).

The XML semantics are designed to describe the latest state of a rule and its triggers, no
matter what the prior state was. So you only need the latest XML specification of a given rule
to know how the rule and its triggers are specified for a plug-in. Moreover, one plugin will not
be able to directly affect triggers of another plug-in. However, if a rule is removed, triggers
referencing the rule from the other plug-ins will not be useful.

The following outlines the rule query specification semantics:

• A non-empty query implies that you need to add or, if needed, overwrite a prior rule query
for a rule that had been registered by the same plug-in.

• Specifying no query implies removing the rule, if the rule query had been registered by
the same plugin, and no change otherwise.

Rule Location

Once a rule R with its query is located in a file F within a plug-in P, its corresponding XML
Rule element can never be removed from that file or from that plug-in (although its attributes
and subelements can be modified). Rule R will always be owned by plug-in P. If the rule does
need to be removed, a Rule element with no query sub-element must remain in file F
indicating that rule R had been removed. If it is important to move rule R to another file or
plug-in, you must rename the rule (to R2 for example), remove rule R using the above syntax

Chapter 11
About Association Derivation Rules Management

11-9

in file F, and add R2 in the new location. This will effectively remove R and create a
new rule R2.

Plug-in P that owns a rule R should be chosen carefully to ensure that all target types
needed by the rule query are present by the time plug-in P is installed. Rule R should
rely only on targets of types that are always present in Enterprise Manager (for
example, host), targets of types defined by plug-in P, or targets of types defined in
plug-ins that are prerequisites of plug-in P. If it is impossible to chose such a plug-in,
consider using the advanced feature of activation expressions discussed later.

Trigger Specification Semantics

In terms of trigger specification semantics, you should replace triggers in the same
plug-in with a new specified set of triggers. Alternatively, you can just remove any pre-
existing triggers if the newly specified set is empty.

Trigger Location

Normally triggers are defined as part of the rule definition in the same plug-in. This
way, when the rule changes, corresponding triggers can also change if needed.
However, in some cases it is preferable or only possible to place triggers in plug-ins
defining the target types of the triggers. For example, a rule that computes association
between targets and their corresponding Oracle Home targets cannot list all possible
target types and corresponding triggers.

Instead, plug-ins owning target types that want to use the rule specify the triggers for
the relevant target types. Therefore, a plug-in that owns an oracle_ias target type will
have a trigger for this rule with oracle_ias listed as the target type in the trigger. Such
triggers are changed or removed along with the corresponding plugin.

Once the rule's XML is listed in some file F in the plug-in that owns oracle_ias, it
cannot move to another file (even if it specifies only triggers for the rule). Note that in
our example, the rule query itself is not target type specific, as it only depends on the
Oracle Home target type and not other specific target types. Therefore, the rule is
defined in the plug-in P that is installed prior to the plug-ins (such as oracle_ias
plugin). This way, when the trigger is imported into Enterprise Manager, it finds the rule
already present.

The following points should also be taken into consideration:

• You should always have a rule and its triggers specified in at most one file for a
given plug-in.

For example, if some of the triggers for a rule (defined in a different plug-in P1) are
specified in two files for plug-in P2, an import of the second file would overwrite the
triggers that were specified in the first file. The order of import of the two files is not
guaranteed.

• An error will result if a query is specified for a rule that has been registered by a
different plug-in.

In other words, plug-ins that have not specified a rule query can only specify a new
set of triggers in their context, but cannot overwrite the query. Only one plug-in
effectively owns the rule query.

• An error will result if there is a trigger specification for a rule that does not exist or
is being removed (by not specifying the rule query).

• To effectively disable all triggers in all plug-ins for a given rule, the plug-in author
can just remove the rule, using the syntax mentioned previously. If needed, the
author can also create a rule with a different name as a replacement.

Chapter 11
About Association Derivation Rules Management

11-10

• To replace triggers, but not the rule query, in the plug-in that had specified the rule query
in a prior release, specify the same query again and a set of new triggers in the next
plug-in version.

Note:

In terms of performance, specifying textually the same query will result in the best
upgrade performance, since the framework will not need to recompute all
associations for the query.

The syntax for rule definitions is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="YesNo">
 <xs:annotation><xs:documentation>
 Type definition for the Yes/No atribute value.
 </xs:documentation></xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="Y"/>
 <xs:enumeration value="N"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NameDef">
 <xs:restriction base="xs:string">
 <xs:pattern value="[A-Za-z][A-Za-z0-9_]*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TriggerKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="C"/>
 <xs:enumeration value="H"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ColumnID">
 <xs:restriction base="xs:string">
 <xs:enumeration value="source"/>
 <xs:enumeration value="destination"/>
 <xs:enumeration value="derivationTarget"/>
 <xs:enumeration value="derivationTarget2"/>
 <xs:enumeration value="derivationTarget3"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="RuleContentWFlags">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="source_comp" type="YesNo" use="optional">
 <xs:annotation> <xs:documentation>
 Can source entity be a target component? Default: No
 </xs:documentation> </xs:annotation>
 </xs:attribute>
 <xs:attribute name="dest_comp" type="YesNo" use="optional">
 <xs:annotation> <xs:documentation>
 Can destination entity be a target component? Default: No
 </xs:documentation> </xs:annotation>

Chapter 11
About Association Derivation Rules Management

11-11

 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="RuleType">
 <xs:annotation> <xs:documentation>
 Rule definition.
 </xs:documentation> </xs:annotation>
 <xs:sequence minOccurs="0">
 <xs:choice>
 <xs:element name="query" type="RuleContentWFlags" minOccurs="0"
 maxOccurs="1">
 <xs:annotation> <xs:documentation>
 Query that returns 1 row per association. Must return
 columns named ASSOC_TYPE, SOURCE_ME_GUID, DEST_ME_GUID, and
 optionally, one or more of DERIVATION_TARGET_GUID,
 DERIVATION_TARGET_GUID2, DERIVATION_TARGET_GUID3.
 Returning DERIVATION_TARGET_GUID[N] column
 implies the query also returns DERIVATION_TARGET_GUID and all
 DERIVATION_TARGET_GUID[K] for all K between 2 and N.
 </xs:documentation> </xs:annotation>
 </xs:element>
 </xs:choice>
 <xs:element name="trigger" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="targetType" type="xs:string" minOccurs="1"
 maxOccurs="1"/>
 <xs:element name="snapshotType" type="xs:string" minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="table" type="xs:string" minOccurs="0"
 maxOccurs="1">
 <xs:annotation> <xs:documentation>
 Name of an ECM table or more likely a view whose query
 relies on ECM snapshot table(s). The table(s), when
 uploaded,
 should trigger evaluation of the rule. (The fully
 qualified name includes target type and snapshot
 type.)
 </xs:documentation> </xs:annotation>
 </xs:element>
 <xs:element name="idColumn" type="ColumnID" minOccurs="1"
 maxOccurs="1">
 <xs:annotation> <xs:documentation>
 Indicates whether source, destination, or a derivation
 target
 should be used to identify associations affected by the
 newly
 uploaded configuration data. In other words, depending on
 this
 column value, associations for the source, destination,
or
 a derivation target will be replaced with new set of
 associations computed for that target, when the trigger
 table data changes.
 ColumnID type definition contains allowed values.
 </xs:documentation> </xs:annotation>
 </xs:element>
 <xs:element name="details" type="xs:string" minOccurs="0"
 maxOccurs="1">
 <xs:annotation> <xs:documentation>

Chapter 11
About Association Derivation Rules Management

11-12

 Additional details for the trigger. Currently used for
 target properties table, in which case, it contains comma
 separated list of property names that should fire the
 trigger. Absence
 of property names indicates that any property change would
 fire the trigger (for the given target type).
 Note: white space is ignored.
 </xs:documentation> </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="kind" type="TriggerKind" use="optional">
 <xs:annotation> <xs:documentation>
 Kind of the trigger. "C" (configuration load trigger) by
 default.
 Other allowed value: "H" (host change trigger)
 </xs:documentation> </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="NameDef" use="required">
 <xs:annotation> <xs:documentation>
 Name of rule, which must be unique. Recommendation: Use a
 prefix that identifies your plugin.
 </xs:documentation> </xs:annotation>
 </xs:attribute>
 <xs:attribute name="activation_expr" type="xs:string" use="optional">
 <xs:annotation> <xs:documentation>
 Optional activation expression. If not present or empty, implies
 that the rule is always active. Else, the value is a Boolean
 activation expression which must produce true if and only if
 the rule should be active.

 The expression can use (case insensitive) "AND", "OR", and
 parenthesis. Operands of the expression are target types.
 Each occurrence of a target type evaluates to "true" if
 and only if the target type is present in EM.

 Note that a number of target types do not need to be listed in
 the expression because they are always going to be present
 whenever the rule is installed and present in EM installation.
 These include:
 - target types installed with the plugin where the rule resides
 (i.e. target types in the plugin which owns the rule)
 - target types in other plugins on which the plugin owning
 the rule depends
 - target types always installed with EM (like host)
 Thus, in many cases, if this option is used, a single target
 type, as in example 1 below, may suffice.

 Examples:

 (1) "oracle_ovm"
 This simple expression implies that the rule should be
 active only if oracle_ovm target type is installed at EM
 (in addition to any other target types that are already known
 to be present when this rule is installed).

 (2) "oracle_ovm and (oracle_oam_cluster or oracle_oim_cluster)"
 This expression implies that the rule should be active only if
 oracle_ovm target type is present and either oracle_oam_cluster or

Chapter 11
About Association Derivation Rules Management

11-13

 oracle_oim_cluster is also present.
 </xs:documentation> </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="Rules">
 <xs:complexType>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="Rule" type="RuleType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

For example:

<?xml version="1.0" encoding="UTF-8"?>
<Rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Rule name="ora_listensFor">
 <query>
 SELECT ...
 fill in query
 </query>
 <trigger>
 <targetType>oracle_database</targetType>
 <snapshotType>db_config</snapshotType>
 <table>CM$DB_CONFIG_TABLE</table>
 <idColumn>destination</idColumn>
 </trigger>
 </Rule>
</Rules>

Using Rule Semantics
The following algorithm depicts a simplified form of the semantics for rule R, where the
trigger specifies a query Q and a flag FC that corresponds to a column name of either
source, destination, or derivation target GUID.

When updates to a snapshot table are uploaded for some target t with a GUID of
t_guid, for each trigger that specifies the modified table, execute these statements:

DELETE FROM MGMT_ASSOC_INSTANCES
 WHERE <FC> = t_guid AND RULE_ID = R

INSERT INTO MGMT_ASSOC_INSTANCES
(SELECT a.*, R
 FROM (<Q>) a
 WHERE <FC> = t_guid)

The actual implementation differs from the above example for the following reasons:

• The actual implementation will not delete and then add the same association as
this would be inefficient.

Rather it will compare the current and new set, making changes only where
needed. Moreover, an actual delete statement also deletes any associations that
specify a target component of the target.

• It is possible that an association may be asserted by more than one origin

This is managed using an origins table, whose contents are rolled up into the
MGMT_ASSOC_INSTANCES table.

Chapter 11
About Association Derivation Rules Management

11-14

• Validity testing is performed at various points.

For example, to test that the association type is valid for the provided source and
destination MEs.

Maintaining Performance
Because the evaluation of derivation rules may be frequent, any poor performance of the rule
queries can be problematic. Rule authors must ensure that any needed indexes are present
and that they test query performance based on the specific queries that are generated for
each trigger.

In particular, testing of the rule query must be done for each trigger because each trigger
causes the execution of a different query. Note how rule query return values are bound to a
given target globally unique identifier (GUID) depending on your triggers.

You must have indexes that will make use of these bindings. Furthermore, queries should be
written in such a way that they would not prevent the push of bindings from outside into your
queries.

About Regular Query and Trigger Patterns
The following sections outline the regular patterns you would normally see in queries and
triggers. You should check whether your queries and triggers adhere to these patterns and if
not, document the reasons why (since such cases normally represent the exceptions from the
rules of thumb).

Query Patterns

The following outline common query patterns:

1. The derivation target should be non-null when the ECM configuration of such target is
used to derive associations between two other entities.

One known case for the use of derivation targets is associations with a database system.
The database instance target provides configuration, while associations are made with
the corresponding database system target. In such cases, the database instance must
act as a derivation target for the associations to the corresponding database system
target.

2. The query must only access objects such as CM$, other views that access Enterprise
Configuration Management data, or views that access target information, such as
MGMT_TARGETS.

For more information on the objects that can be accessed, see Using Association
Derivation Rules Syntax and Semantics.

3. Association types must be forward and concrete.

Trigger patterns

The following outline common trigger patterns:

1. The number of triggers will often be equal to the number of non-target-entity views in the
FROM clause. In other words if the mgmt_targets, mgmt_target_properties,
mgmt$target, mgmt$target_properties, and other such views are disregarded.

Each Enterprise Configuration Management view will correspond to one trigger. One
exception is when a table may be triggered from more than one target type (for example,

Chapter 11
About Association Derivation Rules Management

11-15

oracle_database and rac_database). In this case, multiple triggers for the same
Enterprise Configuration Management view could be supplied.

2. The table name of the trigger must be based on Enterprise Configuration
Management metadata tables for the snapshot specified by the trigger's target
type and snapshot type.

Normally, it should be one of the objects in the rule query FROM clause (for
example, a CM$ view).

3. A view specified in the trigger is joined (perhaps indirectly) in the query with a
target (or target component) entity.

The entity id will be returned as source, destination, or derivation target in the
select clause. The idColumn will match this.

For example, association between targets A and B is dependent on a join between
the cm$Aconfig and cm$Bconfig tables, where data from the cm$Aconfig table
comes from target A and data from the cm$Bconfig table comes from target B. The
trigger for the cm$Aconfig table will have an idColumn matching target A (for
example, source) and the trigger for the cm$Bconfig table will have an idColumn
that matches where target B GUID is returned (for example, destination).

4. The trigger target type must match the target type of the target returned by the
query in the column specified by idColumn.

More generally, the target type of the target returned by the rule query could be a
subtype or a target component of the trigger target type.

5. If trigger relies on target properties, specific property names should be identified in
the details tag.

Diagnosing Issues
To help diagnose issues and understand how associations were derived, the
framework records information about how associations were derived when in debug
mode. For more information on debug, see Troubleshooting and Debugging . It also
includes additional sanity (error) checking. For instance, one test checks that the
derivation target GUID is that of a real and current target.

Useful Examples
While the following examples include the use of target properties to illustrate their
proper employment, Oracle does not recommend relying on target properties. Instead,
configuration data should be properly modeled using ECM tables. For more
information, see Are there guidelines for when to use target properties? .

When reviewing these examples, it is helpful to remember the following concepts:

• Every target type has an Enterprise Configuration Management snapshot type
called orcl_tp_config.

It includes a snapshot table referenced by the GC$TARGET_PROPERTIES view, which
if needed should be used by the triggers. Current data for target properties can be
accessed through the MGMT_TARGET_PROPERTIES and MGMT$TARGET_PROPERTIES
EDK objects.

• Every Enterprise Configuration Management snapshot table will by default have a
view for accessing the current configuration data.

Chapter 11
About Association Derivation Rules Management

11-16

Its name will be that of the table, with the prefix CM$. Most rule queries will refer to
configuration tables through their CM$ views.

Host on a Virtual Machine
A ‘deployed_on' association type is used to represent the fact that a host target is deployed
on a virtual machine target.

The Query below returns all associations between a host and associated virtual machines
based on matching their MAC addresses. Triggers are defined so that they trigger the rule
whenever the corresponding configuration view (that includes the MAC address) changes.
The rule described below would reside in the plug-in defining virtual machine (host target type
is guaranteed to be present on any EM installation). Both triggers can be included in the rule
and would belong to the plug-in defining virtual machine.

<Rule name="...">
 <query>
 select 'deployed_on' as assoc_type,
 host.target_guid as source_me_guid,
 guest.cm_target_guid as dest_me_guid
 from mgmt$hw_nic host,
 cm$vt_vm_vnic guest
 where guest.mac_address = host.mac_address_std
 </query>
 <trigger>
 <targetType>host</targetType>
 <snapshotType>ll_host_config</snapshotType>
 <table>MGMT$HW_NIC</table>
 <idColumn>source</idColumn>
 </trigger>
 <trigger>
 <targetType>oracle_vm_guest</targetType>
 <snapshotType>ovm_guest_config</snapshotType>
 <table>CM$VT_VM_VNIC</table>
 <idColumn>destination</idColumn>
 </trigger>
 </Rule>

Target installed_at Oracle Home
The Oracle Home target type includes the INSTALL_LOCATION target property that contains
the name of the directory in which the Oracle Home resides. For all target types that are
installed in Oracle homes, there is an OracleHome target property that specifies the same
value as INSTALL_LOCATION. Whenever a target's OracleHome value matches the
INSTALL_LOCATION value and both targets reside on the same host, an installed_at
association exists.

Both a target's OracleHome and a home's INSTALL_LOCATION are subject to change. It is also
possible for a target or home to be created that in turn matches up with a home or target.
However, the value of a target's host is immutable.

Query

Returns all associations between Oracle Home targets and the targets that are installed in
them.

<Rule name="...">
 <query>
 select 'installed_at' as assoc_type,

Chapter 11
About Association Derivation Rules Management

11-17

 t.target_guid as source_me_guid,
 o.target_guid as dest_me_guid
 from mgmt_targets t,
 mgmt_targets o,
 mgmt_target_properties tp,
 mgmt_target_properties op
 where o.target_type = 'oracle_home' and
 t.host_name = o.host_name and
 tp.target_guid = t.target_guid and
 tp.property_name = 'OracleHome' and
 op.target_guid = o.target_guid and
 op.property_name = 'INSTALL_LOCATION' and
 tp.property_value = op.property_value
 </query>
 <trigger>
 <targetType>oracle_home</targetType>
 <snapshotType>orcl_tp_config</snapshotType>
 <table>GC$TARGET_PROPERTIES</table>
 <idColumn>destination</idColumn>
 <details>INSTALL_LOCATION</details>
 </trigger>
</Rule>

Trigger 2

The following trigger for the same rule would reside in the plug-in that defines
oracle_database target type:

<Rule name="...">
 <trigger>
 <targetType>oracle_database</targetType>
 <snapshotType>orcl_tp_config</snapshotType>
 <table>GC$TARGET_PROPERTIES</table>
 <idColumn>source</idColumn>
 <details>OracleHome</details>
 </trigger>
</Rule>

Trigger 3-n

This is the same as trigger 2 only with another target type that has an OracleHome
property. These triggers would reside with plug-ins that define corresponding target
types. This trigger has the same characteristics as trigger 2, except it uses a different
target type that has an Oracle_Home property.

Listener and Database
An exposed_by association type is used to represent the fact that a database is
exposed by a listener to applications. One way that this association can be created is
based on the ports for which the listener is configured.

Query

Returns all associations between a database and listener on the same machine such
that the ports match. Both triggers can reside with the rule in the plug-in that defines
Oracle database and Oracle listener target types.

<Rule name="...">
 <query>
 select 'exposed_by' AS assoc_type,

Chapter 11
About Association Derivation Rules Management

11-18

 oradb.target_guid AS source_me_guid,
 oralsnr_ports.cm_target_guid AS dest_me_guid
 from mgmt_targets oradb,
 mgmt_target_properties oradbprops1,
 mgmt_target_properties oradbprops2,
 cm$listener_ports oralsnr_ports
 where oradb.target_type = 'oracle_database'
 and oradb.target_guid = oradbprops1.target_guid
 and oradbprops1.property_name = 'MachineName'
 and oradbprops1.property_value = oralsnr_ports.machine_name
 and oradbprops1.target_guid = oradbprops2.target_guid
 and oradbprops2.property_name = 'Port'
 and oradbprops2.property_value = oralsnr_ports.listener_port
 </query>
 <trigger>
 <targetType>oracle_database</targetType>
 <snapshotType>orcl_tp_config</snapshotType>
 <table>GC$TARGET_PROPERTIES</table>
 <idColumn>source</idColumn>
 <details>MachineName</details>
 </trigger>
 <trigger>
 <targetType>oracle_listener</targetType>
 <snapshotType>listener_config</snapshotType>
 <table>CM$LISTENER_PORTS</table>
 <idColumn>destination</idColumn>
 </trigger>
</Rule>

Applying the Mechanical Steps of Integration
After you decide on the ME/association model and write the rules, proceed with the
implementation as follows:

1. If your rules need Enterprise Configuration Management configuration data not yet
present, add new Enterprise Configuration Management metrics or extend the existing
ones.

If needed, you should add new Enterprise Configuration Management tables or columns.
You must also make sure that the default collection schedule specifies <Schedule
OFFSET_TYPE="INCREMENTAL">. Failure to do so will delay the loading of the configuration
such that, for instance, newly discovered targets may not get associations for thirty
minutes or more.

2. The Association types framework has the concept of allowed pairs indicating which target
types are allowed to be associated by a given association type. If you are creating
associations between ME types that are not listed as allowed pairs for the respective
association type, add the needed pairs.

3. Create one or more files to define the association derivation rules. Syntax errors, such as
failing to conform to the XSD, are passed through as Java exceptions. You may want to
use JDeveloper or another tool to confirm that you have created a valid document.

4. Test the rule files by importing them using the following command:

emctl register oms metadata -sysman_pwd sysman -pluginId <your.plugin.id> -
service derivedAssocs -file <fileName>

Validity testing is performed, so diagnostics may result.

5. Package the files into your plug-in.

Chapter 11
About Association Derivation Rules Management

11-19

Place them so that they are imported at repository creation or upgrade time in
accordance with the conventions defined by the metadata framework. If part of a
plug-in, place the files in a location similar to:

<stage_dir/plugin_dist>/oms/metadata/derivedAssoc

6. Test the derivation rules with cases that exercise every rule trigger that you
specified.

One option is to initiate the upload of the Enterprise Configuration Management
configuration data and check that the associations are properly established.
Alternatively, you can directly call the PL/SQL procedure that will trigger the rules:

DECLARE
 temp GC$DERIV_ASSOC_CHANGE_LIST := GC$DERIV_ASSOC_CHANGE_LIST();
BEGIN
 GC$ECM_CONFIG.run_assoc_deriv_rule(
 p_target_guid => hextoraw('CC70BC294B82E7E9A95DFC257CFA6459'), --
 Updated target/ME guid
 p_rule_name => '...', -- your rule name
 p_column_flag => 'D', -- column flag specifying the
 perspective from which to fire the rule. Possible values:
 S|D|T|U|V (implying source,destination, derivation target,
 derivation target 2, or derivation target 3, respectively)
 p_change_list => temp);
 COMMIT;
 -- examine p_change_list if needed
END;

Note:

Test the performance of your queries for each trigger after the
corresponding output of the query has been bound, as described in
Ensuring Performance.

Use the import utility to make rule changes and try again.

Special Triggers: Host Name Change Triggers
With this release, a new kind of trigger is supported for when the host name of a target
changes. If your query relies on the host_name column of the mgmt_targets table, this
trigger can be useful as it will fire when the host_name column changes, for example,
upon relocation of the target.

The trigger syntax specifies a “kind" attribute of the “trigger" element with a value of
“H" (which stands for “Host change" trigger). Trigger sub-elements will specify target
type, which the trigger applies, and idColumn, which identifies the perspective from
which to evaluate the rule. Possible values for idColumn are the same as those for
regular triggers.

For example:

<trigger kind="H">
 <targetType>oracle_database</targetType>
 <idColumn>source</idColumn>
</trigger>

Chapter 11
About Association Derivation Rules Management

11-20

This specifies that the rule (which the trigger is part of) has to be reevaluated from the source
perspective whenever oracle_database target's host_name column changes.

In general, the same rules apply to host change triggers as to regular triggers, including
applicable trigger patterns (such as trigger pattern 4, which indicates that the column returned
by the query corresponding to idColumn should be type or subtype of the targetType
element). The rules related to trigger lifecycle and regular trigger placements in files and
plug-ins also apply to host name change triggers.

Understanding Activation Expressions
As described previously, rules are normally owned by the plug-ins that require all target types
needed by the rule query to be present by the time the rule is installed. However, on rare
occasions you may encounter a case where two or more plug-ins needed by a rule query are
independent and any one of the plug-ins may exist without the presence of the other. In other
words, it may not be possible to specify that one plug-in is a prerequisite of another for a
given rule query that relies on configuration tables and data from target types of both plug-
ins.

For such cases, you can specify an activation expression in a rule that will indicate when the
rule should be active. Note that the rule is still owned by (at most) a single plug-in and the
rule query can only be specified in one plug-in that will in the future be responsible for
changing or removing the rule. However, the rule could be inactive for as long as not all
needed target types are present on the system.

In terms of syntax, you specify activation expression using an attribute in the Rule element
where the rule's query is specified:

<Rule name="..." activation_expr="..."> ...

Normally, when the activation_expr attribute is not present, it implies that the rule should
always be active. If it is present, its value is a Boolean expression which must produce true if
and only if the rule should be active. The expression can use (case insensitive) "AND", "OR",
and parenthesis. Operands of the expression are target types. Each occurrence of a target
type evaluates to "true" if and only if the target type is present in Enterprise Manager.

Note that a number of target types do not need to be listed in the expression because they
are always going to be present whenever the rule is installed and present in Enterprise
Manager installation. These include:

• target types installed with the plug-in where the rule resides (target types in the plug-in
that owns the rule).

• target types in other plug-ins on which the plug-in owning the rule depends.

• target types always installed with Enterprise Manager (like host).

Therefore, in many cases when activation expression is used, a single target type as
described in Example 1 below may suffice:

1. Example 1: oracle_ovm

This simple expression implies that the rule should be active only if oracle_ovm target
type is installed in Enterprise Manager (in addition to any other target types that are
already known to be present when this rule is installed).

This kind of activation expression could be expected in a rule with a query that relies on
configuration tables of oracle_ovm and oracle_xyz (for example) target types. Assuming

Chapter 11
About Association Derivation Rules Management

11-21

these target types belong to different and independent plug-ins, if the rule is
placed in a plug-in owning oracle_xyz target type, its activation expression would
be oracle_ovm.

2. Example 2: oracle_ovm and (oracle_oam_cluster or oracle_oim_cluster)

This expression implies that the rule should be active only if the oracle_ovm target
type is present and either oracle_oam_cluster or oracle_oim_cluster is also
present.

Please note that activation expressions should be used very carefully and rarely, since
their usages are error prone due to lack of checks prior to rule activation. For example,
any typo in a target type or any logical expression error may result in the rule never
being activated or not being activated in correct cases. Enterprise Manager cannot
check for validity of target types because it will assume unknown target types in the
expression may get installed in the future.

The following describes how the activation expression feature interacts with other
derived association features:

• During a new release of a rule XML, if rule query is unchanged but the activation
expression is changed, the activation expression is updated and the rule is
activated or deactivated if needed. If the rule is activated or deactivated, the rule's
association instances are reevaluated or removed, respectively.

• Whenever Enterprise Manager adds or removes a target type (due to installation
or deinstallation of a plugin for example), Oracle will reevaluate relevant activation
expressions and activate or deactivate corresponding rules accordingly.

Note that target type addition is performed before any corresponding targets and
their associations or data are added. Target type deletion is done after target
instances and their associations are removed. Therefore, we do not reevaluate
corresponding association instances for the affected rules. By the time the rule is
activated due to the addition of a target type, no associations should exist for such
a rule.

Similarly, when the rule is deactivated due to the removal of a target type, the
associations are also removed because all targets of that target type are removed.
This logic applies to all known cases, including when the target types in the
expression are those of source, destination, or one of the derivation targets. Thus,
there is no reevaluation of the rule upon target type addition or removal.

• Note that there is a difference between the quarantine feature and the activation
expressions. The quarantine feature is controlled by the end-users or
administrators to decide which rule evaluations to turn off. On the other hand,
activation expressions are controlled by the rule authors and a given Enterprise
Manager setup (for example, the presence or absence of involved target types).

Rules that were never activated cannot be quarantined. Otherwise, all other
combinations are supported. For example, if a quarantined rule is deactivated and
then activated again using an activation expression, it stays quarantined.

Similarly, if an active rule gets quarantined by an administrator and later becomes
deactivated due to a target type removal, administrators can still unquaratine it so
that if it ever gets activated, it will start computing associations.

• When a rule is being removed, rules activation expression and its activation status
are ignored. In other words, a rule can be removed even if it is inactive.

In general, there are four kinds of version specifications that are supported:

• "target_type[version], e.g. "oracle_ovm[3.7]"

Chapter 11
About Association Derivation Rules Management

11-22

Indicates that this part of the expression is true only if the specified version of the target
type is present. In above example, if oracle_ovm target type version 3.7 is not installed,
the expression will evaluate to false even if other versions of oracle_ovm are present.

• "target_type[version1-version2], e.g. "oracle_ovm[3.7-5.2]"

Indicates that this part of the expression is true only if a version of the target type is
present that is between the indicated versions, including the two specified versions. Thus,
in above example, the expression would be true if oracle_ovm target type of version 3.7,
3.8, 4.5, 5.0, or 5.2 is present.

If, on the other hand, none of the installed versions of oracle_ovm target type fall into the
range between 3.7 and 5.2, "oracle_ovm[3.7-5.2]" would evaluate to false.

• "target_type[version-], e.g. "oracle_ovm[3.7-]"

Indicates that this part of the expression is true only if a version of the target type is
present that is the same as the specified version or greater than the specified version.
This is the most commonly used variation and the specified version would normally be
the one where a table used by the rule query is introduced into a target type collection. In
above example, the expression will evaluate to true if and only if a version of 3.7 or
higher for target type "oracle_ovm" is installed at Enterprise Manager.

• "target_type[-version], e.g. "oracle_ovm[-5.2]"

Indicates that this part of the expression is true only if a version of the target type is
present that is the same as the specified version or less than the specified version. Thus,
in above example, the expression will evaluate to true if and only if a version of 5.2 or
less for target type "oracle_ovm" is installed on Enterprise Manager.

Note:

There are no spaces between target type and the opening square bracket.

Version specification is optional. You can use just target type specification implying
that any version of the target type would satisfy that part of the expression.

For example:

"oracle_ovm[3.7-] and (oracle_oam_cluster or oracle_oim_cluster[-2.5] or
oracle_oim_cluster[2.8-])"

This expression implies that the rule should be active only if oracle_ovm target type of
version 3.7 or higher is present, and either oracle_oam_cluster (of any version) or
oracle_oim_cluster of versions 2.5 and below or 2.8 and above is also present.

Troubleshooting and Debugging
You can begin debugging by initiating the configuration collections used to fire your triggers.
These collections occur when a target is used for the first time or whenever you make
changes to the configuration data contained in the tables or views specified in your triggers.
You can restart the Management Agent to recollect the data. Make sure that the data in your
configuration tables changes as expected before checking whether the triggers fired.

Chapter 11
About Association Derivation Rules Management

11-23

Check that your rule query produces all the required associations across your
development Enterprise Manager repository.

Finally, you can manually run the GC$ECM_CONFIG.RUN_ASSOC_DERIV_RULE PL/SQL API
to manually create the required associations as if the rule did fire during the
configuration change.

If the associations you expect are not created, then:

1. Make sure your query produces the required association when run manually and
binding a source or destination GUID to the correct target.

2. Check for errors in relevant error tables mentioned in this section.

If this does not help, then you must figure out where the process is failing. This can be
any of the following:

• The configuration collection is not collected

• The configuration collection is not changing in the place specified by the trigger

• The trigger firing resulted in an error

• The trigger that did fire is not producing the required association

• The trigger firing action did not get processed yet because of a queue backlog

Troubleshooting Tips

The following list provides tips about how to investigate your issue with associations
not being created:

• Make sure that the rule is active and not quarantined in your environment:

select r.rule_name, q.column_flag, r.is_active,
 case when q.quarantined_time is null
 then 'No' else 'Yes' end as is_quarantined
from mgmt_deriv_rules r, mgmt_deriv_rule_queries q
where r.rule_id = q.rule_id and r.rule_name = your_rule_name;

• Check for derived association-related errors in the Management Repository:

select *
 from mgmt_system_error_log
 where module_name = 'EM.deriv'
 order by occur_date desc

Optionally, you can add an "and error_msg like '%<your rule name>%'" condition
or use other substrings related to your association to limit the results, if there are
too many that seem unrelated.

For example, if you see a message containing "ORA-20624: Specified assoc does
not match any constraint assoc type", this implies that the allowed type pair for this
association type and source/destination target types was not registered in the
repository.

• If you can reproduce the issue, turn on additional logging and call one of the
following:

EMDW_LOG.SET_TRACE_LEVEL('EM.deriv', EMDW_LOG.LINFO); COMMIT;

EMDW_LOG.SET_TRACE_LEVEL('EM.deriv', EMDW_LOG.LDEBUG); COMMIT;

DEBUG is very verbose and includes the queries used.

Chapter 11
About Association Derivation Rules Management

11-24

Note:

– The module name is EM.deriv.

– New sessions get a new level. Existing sessions, such as long-running
sessions, are not affected by the change as implemented in EMDW_LOG.

– You can turn logging off using the constant EMDW_LOG.LOFF.

• View the log.

Logging is performed on the EMDW_TRACE_DATA table. Use this query to view the log:

SELECT log_timestamp, TRIM(log_message)
FROM emdw_trace_data
WHERE module = 'EM.deriv'
ORDER BY log_timestamp ASC

Note:

Adding conditions such as "log_message like" and "log_message like '%<your
rule name>%'" condition can reduce your results.

• Check the log to confirm that the correct rules are getting triggered.

Look for the line "Resulting action list:" followed by a line for each action that specifies the
rule and column flag S|D|T|U|V.

• Determine which trigger should have fired and for which target your required association
should have been created. For example, check the saved_timestamp in the
MGMT$ECM_CURRENT_SNAPSHOTS view for your snapshots that trigger one of your
triggers to see which one changed and was last saved.

Next, check if the trigger did not fire because of a queue backlog. This applies to larger
sites that are more likely to have backlogs in execution queues.

1. Check the derived association queue for retry actions:

select * from em_deriv_retry_actions
 where is_pending = 'T'
 and rule_id = (select rule_id from mgmt_deriv_rules
 where rule_name = <'<your rule name>')
 and target_guid in (list of hextoraw(<target_guid on both ends of your
 missing associations - or just the target you found
 should have triggered the evaluation>);

If this statement returns rows, then evaluation of the trigger is still pending due to the
backlog.

2. If you have a trigger that relies on target properties, then check the target properties
queue to see if the system has processed all the follow-up actions for a given target
property update:

select * from EM_TPROPS_PENDING

 where target_guid = hextoraw(<target guid of the target with changed
 target property>);

Chapter 11
About Association Derivation Rules Management

11-25

This query returns all the yet-unprocessed target properties in the queue for
which the trigger would not have fired yet.

• Test your rule query (if debugging is turned on as described in a previous bullet
point).

In the emdw_trace_data table, find the variant of the query executed immediately
after the line that reads After query: Try to execute it, replacing :x with
HEXTORAW(target guid). The GUID can be found earlier in the log on the
vvvvvvvvvvv RUN_SNAPSHOT_RULES line.

It should return a row for each association that should exist based on the specified
rule and the collection for your target. If not, check that you did not enter an
incorrect query or specify the wrong flag on the trigger.

You can try variants on the last line. For example:

WHERE source_me_guid = :y
WHERE dest_me_guid = :y
WHERE derivation_target_guid[N] = :y

• After you have logged the rule query, the log reflects the rows in the
MGMT_ASSOC_INST_ORIGINS table that need to be changed, followed by the actual
association rows in MGMT_ASSOC_INSTANCES.

• Check that the association instances are present in MGMT_ASSOC_INST_ORIGINS.

If so, the derived association rule listed in column DERIVATION_RULE_ID has
correctly asserted the existence of that association. Something is preventing the
association from being created. Is the association type correct, and are the
allowed type pairs registered with the association framework? Were any
exceptions thrown?

Ensuring Performance
The rules you provide may be fired frequently, depending on the triggers you define
and the change frequency for the corresponding configuration tables. Poor
performance of frequently triggered rules can adversely affect overall OMS operation.

A rule query is mapped to more specific queries. The query that gets executed
depends on the column flag of the trigger (source, destination, or derivationTarget[N]
column). As noted previously, the rule query <Q> is mapped to a query of this form:

SELECT a.*,
 FROM (<Q>) a
 WHERE <FC> = ?

where the parameter is the GUID of the target for which the Enterprise Configuration
Management collection fired the trigger and <FC> is the source/destination/
derivationTarget[N] column of your query specified by the trigger.

As you can see, the overall query (<Q>) will be filtered based on one of the target
GUIDs that it returns. This means that query plans will generally start with data for that
target and perform joins from there. Your query plans must push the “<FC> = ?"
predicate all the way down and start evaluation with this predicate. Normally, they
contain many nested loops that on the deepest level perform above binding and then
get to the rest of the data starting from there via indexed lookups. Normally, there
should be no full table scans of potentially large data tables (or hash joins).

Chapter 11
Ensuring Performance

11-26

Consider the example in Listener and Database. When the first trigger fires, the query will
bind a database target and look for associated listener targets. The only way the Enterprise
Manager repository can find the other end of the association (for example, the listener
targets) is via “cm$listener_ports oralsnr_ports" joins on the machine_name and listener_port
columns. If the table under view cm$listener_ports can be large, rule author should ensure an
index exists starting with these two columns to quickly locate the listener targets instead of
performing a full table scan on the table.

For each trigger, you must ensure that supporting indexes are present and that you test the
performance of your queries after surrounding them in the query, as described earlier.
However, if for example you have multiple triggers for the source column flag, you may have
to test the performance only once as the generated query will be the same for both queries.

Using Custom Configuration Specifications for Data Collection
Skip this note if you are not familiar with Custom Configuration Specifications (CCS). CCS
tables are generic so that they can accommodate a variety of data and so tend not to perform
well for querying. However, properly modeled ECM tables are specific to the data being
collected and can perform well for critical code paths, like derived associations computation
code. Therefore, you should not use CCS collected data for derived association rules.
Instead, collect the data required for derived associations separately using standard ECM
collections.

Using Overlapping Associations
It is possible for more than one rule to derive the same association, although usually you
should avoid creating such overlapping rules. This section describes what happens when an
association is derived by multiple rules and includes suggestions on when to avoid this and
how.

Overlap Between Associations Derived by Rules
When more than one rule derives the same association, that association continues to exist
until each rule no longer derives it.

Sometimes, this is what you want. For instance, suppose each of two application target types
has knowledge of both the Oracle WebLogic Server on which it runs and the database it
accesses. Based on that knowledge, each has a way to derive an association between the
Oracle WebLogic Server and the database. If either rule derives the association, that
association is real and should exist. Only when both rules no longer derive the association
can you be sure that the association no longer exists.

The "exists when any rule derives it" semantics may not be what you intend. Consider two
rules that could be defined for the installed_on association between the database and
Oracle home. Both access the same data, but one is triggered by a property change to the
Oracle home and the other by a change to the database. As soon as either rule determines
the relationship is gone, the association should be deleted. In such a case, you should use a
single rule with two triggers.

Suppose you did not take care to write only one rule in such cases. You may think that this
mistake is not serious as, after all, the association will soon be deleted. But this is not so, and
the bogus association may exist indefinitely. If in the example described above the
association was derived using two rules, then the database is upgraded and its OracleHome
property gets changed. The association with the old home should be removed, but this will
not happen until the other rule is fired. However, nothing about the Oracle Home target has

Chapter 11
Using Overlapping Associations

11-27

changed, so its rule is not triggered and the association remains. Indeed, it is often the
case that only one target is changed and the other remains unchanged for a long
period of time.

As a general rule of thumb, associations based on data from a specific set of tables
should be derived using a single rule with multiple triggers.

Unless there are different reasons for asserting an association exists, you should only
use one rule. In such cases, the associations returned by derivation rules should be
disjoint. Another way to state this is that for those associations, the set of all rows
returned by all rule queries must specify no duplications. An association is identified by
source, destination, and association type. So this means that the combination of these
three values should be unique.

Creating Associations for Composite and System Target
Types

There are several types of associations that must be considered when constructing
either a composite target or a system target, and there are several ways in which
these associations can be added to Enterprise Manager. The following describes each
of these types of associations, how they are used by the Enterprise Manager
framework and the typical approach to how they are created.

Composite Membership and the Containment Association
The first important association type is the "contains" association. This association type
is typically added between a composite target and each of its members. The presence
of this association is necessary in order to populate the target navigator (tree) for a
composite target. The set of targets that are members of a composite (associated with
it through a "contains" association) can be retrieved using the getCompositeMembers()
method of the Target class.

These containment associations are most often created during discovery, using either
a fully automated approach or through the guided discovery process. In either case,
the discovery scripts provided with the plug-in are used to identify the set of
containment associations between the composite and its members. Other non-
containment associations may also be discovered; however, they will not affect the
membership of the composite and will not affect the contents of the target navigator.

If the composite target is also to be treated as a system, it is strongly recommended
that the system stencil include rule paths that represent the type of containment
associations created in this way. This ensures that the target navigator and system
membership display member targets consistently.

Other Non-Composite Associations (Composite Topology)
In addition to the discovery of containment associations, you may wish to represent
other types of associations between the members of your composite topology. These
associations may have meaning only to your target administrators and may be used by
your plug-in code to perform other operations.

These associations are typically created using a discovery script, either as part of fully
automated discovery or through the guided discovery process.

Chapter 11
Creating Associations for Composite and System Target Types

11-28

System Membership Associations
System membership is constructed by the Enterprise Manager framework based on the
system stencil. This stencil defines the set of native associations that should be considered
when identifying the system members. These native associations are typically either
containment or other non-composite associations.

If these associations are found during the evaluation of the system stencil, the destination
targets are added as system members.

Associations to External Targets
Up to this point all of the associations discussed have been between targets that are
assumed to be part of the same plug-in, and therefore your plug-in code including discovery
and UI has intimate direct knowledge of the configuration and topology of these targets.

However, in some cases your target configuration may include associations to other targets
not included in your plug-in, such as an Oracle Database used as an application or backing
store for your targets. The configuration of your target knows something about the database
that it uses, likely some connection related details such as host-port-sid or host-service.

You would like to represent this association between your target and the database in
Enterprise Manager so that if Enterprise Manager is managing the database, the end-user
can see this relationship and traverse it to obtain other information about that database and
manage it (if appropriate and allowed).

Because you do not know if Enterprise Manager is managing the database and the
identifying information you have is not the Enterprise Manager database target name, but
instead the connect information, you can construct a derivation rule that maps the connection
information in your target's configuration to that of a database in Enterprise Manager.

Regarding the Timing of Association Creation
Because the creation and deletion of targets and associations can be initiated from various
sources (such as automated discovery, guided discovery, derived association rules, and
system stencil rules), there are cases where the topology of a composite entity in Enterprise
Manager may not appear in sync with the reality of that entity. As a plug-in developer, it is
important that you are aware of this and account for it in information you present to end-users
whenever possible.

One typical situation that may occur is that the discovery of targets occurs, configuration
information is collected, and this is followed by the modification of associations as derivation
rules are processed by the Enterprise Manager association framework. In this scenario, the
user will first see the topology of the entity, including any association added during discovery.
However, the additional associations created by derivation rules will not appear until
sometime later.

Frequently Asked Questions
This section addresses three of the most frequently asked questions:

1. Which tables can I reference in a rule query?

2. Are there guidelines for when to use target properties?

Chapter 11
Frequently Asked Questions

11-29

3. What is the relationship between discovered and derived associations?

Which tables can I reference in a rule query?
In most cases, your query will just reference configuration (Enterprise Configuration
Management) tables using the CM$ views, and so will your triggers. For a more
complete list of objects that can be referenced, see Using Association Derivation
Rules Syntax and Semantics.If you refer to other tables and if that data may change
independently of Enterprise Configuration Management table changes, then the
associations may not be updated when needed. If you have a use case in which a non
Enterprise Configuration Management table is referenced where changes to that table
must trigger rule evaluation, contact your Oracle representative.Another consideration
is the component in which the table is located. If the table your rule references is not
part of the Enterprise Manager core EDK, your plug-in must account for the
dependency on that table's plug-in. For example, you must ensure that any object that
you reference already exists in the repository using a plug-in dependency mechanism.

Are there guidelines for when to use target properties?
Target properties are being treated as configuration data and there is an Enterprise
Configuration Management snapshot table that is populated for each target type.
Some care should be taken in using data from this table:

• Many target properties are set at discovery time and never modified.

• Querying name/value pair data can be awkward and take longer than queries on
other tables where the data is more structured.

– If the data is available from both the target properties table and an Enterprise
Configuration Management snapshot table, you should use the latter.

– If you need to add collection of configuration data, you should do so in an
Enterprise Configuration Management table, not as a new row in the target
properties table.

In general, the use of target properties should be avoided and data should be collected
and modelled using standard ECM mechanisms.

However, a rule may need to refer to target properties if, for example, the target has no
Enterprise Configuration Management collections that can be added. If an association
to such a target is to be created, there must be some way to identify it (for example,
the rule must refer to its target properties).

If you must use target properties, you should reference MGMT_TARGET_PROPERTIES in
your rule query. You can also reference MGMT$TARGET_PROPERTIES in the rule query if
the view already performs the join you need to do. However, in triggers you must use
the GC$TARGET_PROPERTIES view for the orcl_tp_config snapshot type.

MGMT_TARGET_PROPERTIES should be used in queries because it is more efficient, but
may include some properties not available in the GC$ view. Triggering is only available
based on property changes in the GC$ view. For example, the GC$ view only includes
those properties that are properly registered with Enterprise Manager.

Chapter 11
Frequently Asked Questions

11-30

What is the relationship between discovered and derived associations?
This is another example of overlapping associations (for more information, see Using
Overlapping Associations). For instance, you may have discovery logic that discovers an
association between targets T1 and T2, plus a rule that derives the same association. Oracle
recommends that you do not write two sets of logic to create the same association. In this
case it is suggested that:

• If a derivation rule is needed because the association may change, you should just write
the derivation rule.

• If the association that is discovered will not change until the source or destination is
removed, then discovering the association is fine and may be simpler or more efficient.

If you do write two sets of logic to create the same association (discovery logic and derivation
rule), then the discovered association will remain and the derivation logic will also assert the
existence of that association. If the rule evaluation later determines that the association
should no longer exist, the rule's assertion will be removed, but the association will continue
to exist unless you manually delete the discovered association.

Chapter 11
Frequently Asked Questions

11-31

12
Defining Target Discovery

The discovery of targets in Enterprise Manager can be accomplished in several different
ways including automated discovery scripts, manual addition of targets by specifying target
properties, and manual addition of targets using guided discovery.

Automatic target discovery is the process by which targets are located and added to
Enterprise Manager. Automatic discovery begins when the Oracle Management Agent starts
up after installation. Targets located on the server where the Management Agent is running
are discovered and sent to the Management Repository as targets that are not yet managed.
The end user can choose which targets to monitor by promoting these targets as targets
managed by Enterprise Manager.

This chapter contains the following sections:

• Introduction to Defining Target Discovery

• Creating Discovery XML

• Creating the Discovery Script

• Packaging Discovery XML and Discovery Content

• Setting Up and Testing Discovery

• Manually Adding Targets

• Configuring and Promoting Targets for Monitoring by Enterprise Manager

• Examples for Using Generic Discovery Framework

• Configuring Automatic Discovery For Plug-ins

Introduction to Defining Target Discovery
As a plug-in developer, you are responsible for the following steps within the discovery
process:

1. Create discovery metadata.

Use the Discovery XML Schema Definition (XSD) for guidelines about creating a
discovery metadata XML file.

Within the metadata:

• Define the discovery modules using the DiscoveryModule element.

• Define discovery parameters (if required) using the DiscoveryInput element.

For information about creating discovery metadata, see Creating Discovery XML.

2. Create the discovery script using Perl.

The discovery script enables the Management Agent to automatically discover all the
target types belonging to a plug-in.

For information about creating the discovery script, see Creating the Discovery Script.

12-1

3. Identify additional Perl modules or JAR files that are required for discovery.

4. Bundle the discovery metadata and contents into the plug-in staging directory
(plugin_stage).

a. Save the discovery XML in the plugin_stage/oms/metadata/discovery
directory.

b. Save the discovery content in the plugin_stage/discovery directory

For information about packaging, see Packaging Discovery XML and Discovery
Content.

5. Repackage (if necessary) and deploy the plug-in.

After the plug-in archive is created and the plug-in is deployed to the Management
Server, the end user can initiate discovery using the discovery configuration UI for
the discovery modules that are registered.

For information about deploying the plug-in, see Validating, Packaging, and
Deploying the Plug-in .

6. Configure automatic discovery:

a. Log in to Enterprise Manager.

b. Select Setup, then select Add Target, and then select Configure Auto
Discovery.

The Configure Auto Discovery page appears. For information about the
options on this page, see the Enterprise Manager online help.

For more information about configuring automatic discovery, see Configuring
Automatic Discovery For Plug-ins.

7. Test discovery results.

For information about testing discovery, see Setting Up and Testing Discovery.

Creating Discovery XML
Oracle provides a Discovery XSD so you can write discovery metadata XML to register
with the discovery framework. Registering with discovery framework enables the
discovery pages to launch discovery of the target types belonging to a plug-in.

For more information about the Discovery XSD, see the Extensibility Development Kit
(EDK) specifications.

The following section and the Discovery Integration XML With Discovery Parameters
example provide examples of discovery XML.

Generic Discovery Integration Example
In this example, discovery requires no information entered and promotion of the target
does not require any special logic.

There are no special requirements for configuring the target except that you must have
access to the UI.

The following example provides the discovery integration XML for this discovery.

Chapter 12
Creating Discovery XML

12-2

Note:

You are not restricted on the naming of the discovery XML file. However, the
standard convention is plugin_discovery.xml.

Example: Discovery Integration XML

<?xml version="1.0" encoding="UTF-8"?>
 <EmTargetDiscovery
 xmlns="http://www.oracle.com/EnterpriseGridControl/disc_metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/
disc_metadata discovery.xsd ">
 <DiscoveryInfo>
 <AutomaticDiscovery>
 <DiscoveryModule name="simple_disc_plugin"
resourceBundlePkg="oracle.sysman.simpleplugin.rsc.simplePluinMsg">
 <Display NLSID="SIMPLE_DISC_MODULE">
 <NlsValue>simple_disc_plugin</NlsValue>
 </Display>

 <SupportedAgentOsList>
 <SupportedAgentOs>2000</SupportedAgentOs>
 </SupportedAgentOsList>
 <BasicDiscoveryInfo>
 <DiscoveryScript>SimplePluginDisc.pl</DiscoveryScript>
 <DiscoveryCategory>SIMPLE_PLUGIN_DISC</DiscoveryCategory>
 </BasicDiscoveryInfo>
 <TypesDiscovered>
 <TargetType>simple_plugin_target_type1</TargetType>
 <TargetType>simple_plugin_target_type2</TargetType>
 </TypesDiscovered>
 </DiscoveryModule>
 </AutomaticDiscovery>
 </DiscoveryInfo>
 </EmTargetDiscovery>

After the previous XML is registered, the discovery framework can launch discovery of
simplePluginType using the SimplePluginDisc.pl discovery script.

Discovery Script Example
For example, you can have the following content in the SimplePluginDisc.pl script to discover
two target instances:

#all the discovery scripts get emdRoot and hostname of the agent as arguments to the
script.
my ($emdRoot, $hostName) = @ARGV;
#Discovery root is sent to the script as env variable.
my $discovery_root = $ENV{DISC_ROOT};
print "\<Targets\>\n";
print "\<Target TYPE=\"simple_plugin_target_type1\" NAME=\"smpl_tgt1\"\>\n";
print "\<Property NAME=\"Prop1\" VALUE=\"prop1_foo\"/\>\n";
print " \<Property NAME=\"Prop2\" VALUE=\"prop2_value_bar\"/\>\n";
print " \<\/Target\>\n";
print " \<Target TYPE=\"simple_plugin_target_type2\" NAME=\"smpl_tgt2\"\>\n";
print " \<Property NAME=\"Prop1\" VALUE=\"value_foo\"/\>\n";

Chapter 12
Creating Discovery XML

12-3

print " \<Property NAME=\"Prop2\" VALUE=\"value_bar\"/\>\n";
print " \<\/Target\>\n";
print "\<\/Targets\>\n";

This script produces the following output:

<Targets>
 <Target type ="simple_plugin_target_type1" NAME="smpl_tgt1" >
 <Property NAME="Prop1" VALUE="prop1_foo" />
 <Property NAME="Prop2" VALUE="prop2_value_bar" />
 </Target>
 <Target type="simple_plugin_target_type2" NAME="smpl_tgt2" >
 <Property NAME="Prop1" VALUE="value_foo" />
 <Property NAME="Prop2" VALUE="value_bar" />
 </Target>
 </Targets>

After your plug-in is deployed on the Management Server, the discovery module is
listed in the Discovery UI. Users can configure discovery of this module on one or
more Management Agents. This causes the discovery content of the plug-in to be
deployed on the Management Agent and subsequently causing the discovery script to
be run at the Management Agent.

For example, when you run this discovery script through autodiscovery, the targets will
be generated and sent to the Management Server as Not Yet Managed targets. Using
the Discovery Results UI, you can promote these two targets as managed targets by
Enterprise Manager.

Note:

There are methods for writing debug information such as EMD_PERL_INFO,
EMD_PERL_DEBUG, and EMD_PERL_ERROR, which can be accessed
through the Perl package emdcommon.pm. You can then find the trace
information (written through Perl methods) in the Oracle Management Agent
trace file (emagent_perl.trc) in the Management Agent log directory.

Overview of the Discovery Metadata Elements
Table 12-1 describes the key elements that define the discovery metadata:

Table 12-1 Key Elements in a plugin_discovery.xml File

Element Description

EmTargetDiscovery The root element for the file

DiscoveryInfo Specifies one or more autodiscovery modules for this plug-in.
Each auto discovery module is associated with a discovery
script that is run on the Management Agent

AutomaticDiscovery Specifies the autodiscovery module

DiscoveryModule This is an element within the autodiscovery module. It includes
the name attribute, which defines the name of the discovery
module.

Chapter 12
Creating Discovery XML

12-4

Table 12-1 (Cont.) Key Elements in a plugin_discovery.xml File

Element Description

SupportedAgentOSList Specifies the list of Management Agent platforms on which
this discovery is supported. It includes the
SupportedAgentOS attribute, which defines the platforms.
The valid value is 2000 (All platforms).

BasicDiscoveryInfo Specifies the discovery script to be run and an optional
category name. It includes the following attributes:

• DiscoveryScript: Defines the name of the discovery
script

• DiscoveryCategory: Defines the category name
(optional)

TypesDiscovered Specifies the list of target types that can be discovered using
this discovery module. It includes the TargetType attribute,
which defines the target type name.

DiscoveryInput Specifies the information to be entered by the user during
discovery. The information entered by the user is available as
environment variables in the discovery script running at the
Management Agent

Creating the Discovery Script
After the discovery XML is registered, the discovery framework uses a discovery script to
launch discovery.

To create a discovery script:

1. Use Perl to write the top-level discovery script. This script can call Java, Shell, and so on.

2. By default, three variables are provided to the discovery Perl script:

a. The discovery framework provides emdRoot and the host name of the Management
Agent as arguments to the script:

For example:

my ($emdRoot, $hostName) = @ARGV;
b. The discovery root directory is sent to the script as an environment variable.

For example:

my $discovery_root = $ENV{DISC_ROOT};
c. If there are discovery inputs, then they are made available as environment variables.

For example:

my $crs_home = $ENV{‘CRS_HOME'};
Ideally, the output of the discovery script returns all the name-value pairs that are required to
add a target of a target type. If not, the user must provide any remaining values at target
promotion time.

The Sample Discovery Script example provides an example of a discovery Perl script.

Chapter 12
Creating the Discovery Script

12-5

Discovered Targets DTD
The discovery Perl script must produce output which conforms to the following
Document Type Definition (DTD):

Example: Discovered Targets DTD

<!ELEMENT Targets (Target*) >
<!ATTLIST Targets
 >

<!--

 Target defines a target instance, it may also define Properties

 TYPE(required) : the target type.
 NAME(required) : the target name. It must be unique within a type
 across all nodes.

 DISPLAY_NAME(optional) : the display name for a target.will be
 defaulted to NAME if not given.
-->

<!ELEMENT Target (Property*) >
<!ATTLIST Target
 TYPE CDATA #REQUIRED
 NAME CDATA #REQUIRED
 DISPLAY_NAME CDATA #IMPLIED
 >

<!--
 A Property tag describes a name-value pair of target instance properties

 NAME(required) : the property name .
 VALUE(required) : the property value.
-->
<!ELEMENT Property EMPTY>
<!ATTLIST Property
 NAME CDATA #REQUIRED
 VALUE CDATA #REQUIRED
 >

Packaging Discovery XML and Discovery Content
The following sections describe where to include the discovery XML and content in the
plug-in staging directory.

Location of the Discovery Metadata File
When you complete the discovery metadata XML file, include the file in the following
directory of the plug-in staging directory:

plugin_stage/oms/metadata/discovery

Chapter 12
Packaging Discovery XML and Discovery Content

12-6

Package Discovery Content
Discovery content refers to all the Perl scripts, Perl modules, and JAR files (if any) that are
required to perform discovery of a particular target type

For Enterprise Manager Cloud Control 12c, discovery content is shipped to the Management
Agent only when the user attempts discovery for the first time. Discovery content
corresponding to a particular discovery module will reside in its own area.

Discovery and monitoring scripts are separate. Both are parts of your plug-in. You can run
discovery without monitoring content. The lifecycle of both are managed by the discovery or
plug-in lifecycle frameworks and is transparent to plug-in developers.

You must package the discovery content required for discovering a particular target type. For
example, for an existing database discovery, the discovery content is oracledb.pl along with
any required utilities for running database discovery.

Note:

You must package the discovery metadata file with the Oracle Management Server
archive and not the Management Agent archive.

Create a discovery directory under plugin_stage for installing content for each discovery plug-
in. For more information about the directories under plugin_stage, see Validating, Packaging,
and Deploying the Plug-in .

Example: Directory Structure for Installing Discovery Content

plugin_stage/discovery/
 |
 |
 |__other subdirectories created as you specified

For Oracle Database discovery, the discovery content might look similar to the following:

plugin_stage/discovery/
 |
 |
 |___oracledb.pl
 |
 |
 |__utl
 |
 |___oracledbUtl.pl
 |
 |___initParamFileUtl.pl
 |
 |___winRegistry.pl

If any custom Perl modules are required for the discovery process, then place the modules
under a similar directory structure as shown previously. The discovery root variable provided
to the discovery script can be used to load this Perl module. For example, if your perl
modules are placed under the plugin_stage/discovery/utl/pm directory, then you can load
them from the discovery script as follows:

Chapter 12
Packaging Discovery XML and Discovery Content

12-7

my ($emdRoot,$hostName,$crsHome) = @ARGV;
my $discovery_root = $ENV{DISC_ROOT};
require "$discovery_root/utl/pm/propertiesFileParser.pm";
require "$discovery_root/utl/pm/Targets.pm";

Note:

Perl content that will be used by the discovery module and for other
purposes, such as administration of the targets, should be packaged with the
discovery bundle as well as the plug-in bundle.

Java Content Required by Discovery Scripts
Some discovery scripts (such as for Oracle Fusion Middleware) use JAR files in the
process of discovery. If the JAR files are discovery-specific only, then they should be in
discovery area.

If there are Java methods written to perform discovery, then they should be moved to a
separate class file where possible, to avoid shipping content not required by discovery.

Oracle recommends separating discovery content and management content so that
discovery can be performed independent of the management content present. This
helps you to decide whether you want to install the plug-in to manage the discovered
targets, if any. The discovery content should be lightweight and include the files
necessary for discovery only.

For example, you can place the JAR containing discovery-specific code of the
particular discovery module under the following directory:

plugin_stage/discovery/lib

Note:

The individual discovery script is responsible for constructing the class path.

You can create your own directory structure in the discovery content area for a
particular discovery module. The top level Perl scripts responsible for each discovery
module, such as Fusion Middleware, construct the class path before running the Java
utilities that they use. Because the JAR files specific to a discovery module will be in
their own discovery content area, the discovery Perl script can construct the required
class path easily. Again, the code responsible for performing discovery only should be
separated out and installed in the discovery content area specific to the particular
discovery module.

Setting Up and Testing Discovery
For testing purposes, you can run discovery:

1. Log in to Enterprise Manager.

https://em_host:em_port/em/

Chapter 12
Setting Up and Testing Discovery

12-8

2. From the console, select Setup, then Add Target, and then Configure Auto Discovery.

The Configure Auto Discovery page appears.

3. In the Configure Auto Discovery tables, under Discovery Module, select Multiple Target-
Type Discovery on Single Host.

The Target Discovery (Agent Based) page appears.

4. Select the required agent host name and click Run Discovery Now.

When target discovery is complete, a Completed Successfully window appears.

Manually Adding Targets
In addition to automatic discovery, Cloud Control allows you to manually add hosts as well as
a wide variety of Oracle software and components as managed targets. When you add a
target manually, you do not need to go through the process of discovery by adding the target
directly. Discovering targets in this way eliminates the need to consume resources on the
agent to perform discovery when it is not needed.

You must be able to specify the properties of a target to be managed and create an
Enterprise Manager managed target.

Not all target types can be manually added. During registration with the discovery framework,
the target type owner indicates whether a target type can be manually added or not.

See the following sections for instructions:

• Manually Adding Host Targets

• Manually Adding Non-Host Targets

Manually Adding Host Targets
A wizard guides you through the process of manually deploying a Management Agent to a
new host target.

For instructions on installing a Management Agent, see "Installing Oracle Management
Agent" in the Enterprise Manager Cloud Control Basic Installation Guide.

Manually Adding Non-Host Targets
A configuration page or wizard based on target type metadata listing all the instance
properties required to manage target is displayed.

You can specify a name for the target and provide the required configuration information.

To add targets manually to Enterprise Manager:

1. Log in into Enterprise Manager.

2. From the Setup menu, select Add Target, then select Add Targets Manually.

Enterprise Manager displays the Add Targets Manually page.

3. Under the Add Targets Manually page, go to the Add Targets Manually sub-section and
select one of the following options:

• Add Non-Host Targets Using Guided Process

Chapter 12
Manually Adding Targets

12-9

From the Target Types list, select one of the target types to add, such as
Oracle Cluster and High Availability Service, Oracle Database Machine,
or WebLogic Domain Discovery, then click Add Using Guided Discovery.
This process will also add related targets.

• Add Non-Host Targets by Specifying Target Monitoring Properties

From the Target Type list, select one of the target types to add, such as Fusion
J2EE Application, Applications Utilities, or Supplier Portal, and from the
Monitoring Agent list, select the required Monitoring Agent, then click Add
Manually.

4. After you select the target type, you will follow a wizard specific to the target type
to add the target.

Upon confirmation, the target becomes a managed target in Enterprise Manager.
Enterprise Manager accepts the information, performs validation of the supplied
data where possible and starts monitoring the target.

Note:

For more information about adding targets manually to Enterprise Manager,
see Oracle Enterprise Manager Online Help.

Configuring and Promoting Targets for Monitoring by
Enterprise Manager

Discovery of targets on Enterprise Manager managed hosts provides you with a list of
targets such as new databases, and SQL servers which are not yet managed by
Enterprise Manager. This helps you to determine if any of the new targets found are
candidates for monitoring and managing by Enterprise Manager.

The Enterprise Manager UI allows you to review discovered unmanaged targets and
promote targets to be managed by Enterprise Manager for monitoring.

Note:

For more information about configuring and promoting targets, see Oracle
Enterprise Manager Online Help.

Examples for Using Generic Discovery Framework
You can use the generic discovery UI to launch and schedule discovery to run
periodically at the Management Agent. For the generic discovery UI to launch
discovery, you must specify the inputs that are required through the registration XML.
Enterprise Manager uses this information to construct the generic discovery UI.

Chapter 12
Configuring and Promoting Targets for Monitoring by Enterprise Manager

12-10

Discovery Integration Example Requiring User Input
In this example, discovery requires the user to enter information. The user is prompted to
enter values for CRS_HOME and CRS_HOME1. The user does not have to enter a value for
CRS_HOME but a value for CRS_HOME1 is mandatory

There are no special requirements for configuring the target except that you must have
access to the UI.

Note:

While supported, Oracle does not recommend the use of required discovery inputs
because it eliminates the benefits of automatic discovery. You can use optional
discovery inputs as hints to optimize the discovery process.

Example: Discovery Integration XML With Discovery Parameters

<?xml version="1.0" encoding="UTF-8"?>
 <EmTargetDiscovery
 xmlns="http://www.oracle.com/EnterpriseGridControl/disc_metadata"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.oracle.com/EnterpriseGridControl/disc_metadata
discovery.xsd ">
 <DiscoveryInfo>
 <AutomaticDiscovery>
 <DiscoveryModule name="simple_disc_plugin"
resourceBundlePkg="oracle.sysman.simpleplugin.rsc.simplePluinMsg">

 <Display NLSID="SIMPLE_DISC_MODULE_MSG_ID">
 <NlsValue>simple_disc_plugin</NlsValue>
 </Display>
 <SupportedAgentOsList>
 <SupportedAgentOs>2000</SupportedAgentOs>
 </SupportedAgentOsList>

 <BasicDiscoveryInfo>
 <DiscoveryScript>simple_plugin_disc.pl</DiscoveryScript>
 <DiscoveryCategory>SIMPLE_PLUGIN_DISC</DiscoveryCategory>
 </BasicDiscoveryInfo>
 <TypesDiscovered>
 <TargetType>simple_plugin_target_type1</TargetType>
 <TargetType>simple_plugin_target_type2</TargetType>
 </TypesDiscovered>

 <!-- optional discovery hint -->
 <DiscoveryInput name="CRS_HOME" isRequired="false">
 </DiscoveryInput>

 <!-- a required discovery input -->
 <DiscoveryInput name="CRS_HOME1" isRequired="true">
 </DiscoveryInput>

 </DiscoveryModule>
 </AutomaticDiscovery>

Chapter 12
Examples for Using Generic Discovery Framework

12-11

 </DiscoveryInfo>
 </EmTargetDiscovery>

After the previous XML is registered, the discovery framework can launch discovery
using the simple_plugin_disc.pl discovery script

The simple_plugin_disc.pl script can access the discovery parameters as illustrated in
the sample simple_plugin_disc.pl script.

Example: Sample Discovery Script

my $discovery_root = $ENV{DISC_ROOT};

#Inputs passed to the script.
my $crs_home = $ENV{'CRS_HOME'};
my $crs_home1 = $ENV{'CRS_HOME1'};

#add the logic here to find the targets.

print "\<Targets\>\n";
print " \<Target TYPE=\"simple_plugin_target_type1\" NAME=\"smpl_tgt1\"\>\n";
print " \<Property NAME=\"Prop1\" VALUE=\"prop1_foo\"/\>\n";
print " \<Property NAME=\"Prop2\" VALUE=\"prop2_value_bar\"/\>\n";
print " \<\/Target\>\n";
print " \<Target TYPE=\"simple_plugin_target_type2\" NAME=\"smpl_tgt2\"\>\n";
print " \<Property NAME=\"Prop1\" VALUE=\"value_foo\"/\>\n";
print " \<Property NAME=\"Prop2\" VALUE=\"value_bar\"/\>\n";
print " \<\/Target\>\n";
print "\<\/Targets\>\n";

Note:

For guidelines about the output of the discovery Perl script, see Discovered
Targets DTD.

Configuring Automatic Discovery For Plug-ins
You can configure automatic discovery for targets in a plug-in to run at the
Management Agent-side. Currently, automatic discovery is scheduled to run every day.

Configuration is done from the Oracle Management Server where your metadata
resides.

Note:

For plug-ins deployed before the Management Agents are installed or plug-
ins deployed to new hosts, discovery runs every 24 hours automatically (only
if discovery does not require any user inputs).

You can configure parameters from the Enterprise Manager UI after the
Management Agents are installed or deployed.

Chapter 12
Configuring Automatic Discovery For Plug-ins

12-12

After discovery, the targets are sent to Enterprise Manager. The end user can then review the
targets and choose which targets to monitor by promoting the targets as targets managed by
Enterprise Manager.

Note:

For more information about configuring automatic discovery, see Oracle Enterprise
Manager Online Help.

Chapter 12
Configuring Automatic Discovery For Plug-ins

12-13

13
Adding Compliance Standards

The Oracle Enterprise Manager Compliance Management solution provides the capability to
define, customize, and manage compliance frameworks and compliance standards.

To view a visual demonstration about the Compliance Management framework, access the
following URL and click Begin Video.

https://apex.oracle.com/pls/apex/f?
p=44785:24:0::NO:24:P24_CONTENT_ID,P24_PREV_PAGE:5773,1

This chapter contains the following sections:

• Introduction to Adding Compliance Standards

• About the Compliance Standard Rules

• Defining Compliance Standards

• Defining a Compliance Framework

• Defining Compliance Content

• Removing Compliance Content

• Supporting Translation

• Packaging Compliance XML

• Setting Up and Testing Compliance Standards and Rules

• More Compliance Examples

• Publishing Compliance Content Using Self Update

Introduction to Adding Compliance Standards
As a plug-in developer, you are responsible for the following steps when adding compliance
standards:

1. Define compliance standard rules.

Compliance standard rules can be either of the following:

• Repository check-based rules

• Real-time monitoring rules.

For information about defining compliance standard rules, see About the Compliance
Standard Rules.

2. Define a compliance standard.

For more information, see Defining Compliance Standards.

3. Define a compliance framework.

For more information, see Defining a Compliance Framework.

4. Package the compliance standard rules, standards, and framework as metadata XML.

13-1

https://apex.oracle.com/pls/apex/f?p=44785:24:0::NO:24:P24_CONTENT_ID,P24_PREV_PAGE:5773,1
https://apex.oracle.com/pls/apex/f?p=44785:24:0::NO:24:P24_CONTENT_ID,P24_PREV_PAGE:5773,1

For more information, see Packaging Compliance XML.

5. Set up and test the compliance content.

For more information, see Setting Up and Testing Compliance Standards and
Rules.

6. Deploy the plug-in.

For information about deploying plug-ins, see Validating, Packaging, and
Deploying the Plug-in .

Assumptions and Prerequisites
This chapter assumes you are familiar with the following:

• Plug-in development overview, including how to package a plug-in and its XML
files.

• If you are installing compliance data with the emctl register oms metadata -
service gccompliance command, it will require an
EM_COMPLIANCE_UTIL.trigger_rule_dependency_job callback. You must enter the
following commands through SQL*Plus as the SYSMAN user:

begin EM_COMPLIANCE_UTIL.trigger_rule_dependency_job;
end;
/

Note:

This is necessary only if you are using the emctl register oms
metadata -service gccompliance command to install compliance
content.

If you are installing the plug-in, then you do not have to enter the
previous SQL.

For more information about the emctl register oms metadata command, see
Updating Deployed Metadata Files Using the Metadata Registration Service
(MRS).

About the Compliance Standard Rules
This section provides a description of the following:

• Defining Repository Check-based Rules

• Defining Real-time Monitoring Rules

Defining Repository Check-based Rules
A repository check-based rule checks the configuration state of one or more targets. A
rule is compliant if the test fails to identify a violation. In other words, the test
determines that the configuration item is in the required state or has the prescribed
value. Any rule that uncovers a violation is noncompliant.

Chapter 13
About the Compliance Standard Rules

13-2

The data source that is evaluated by a rules test condition can be based on a repository
query. A rules test condition can be implemented using a threshold condition based on the
underlying metrics or queries column value, or SQL expression, or a PL/SQL function. (The
policies are similar to Oracle Enterprise Manager 10g Release 5).

The key points in this area include:

• Defining Compliance Standard Rules, Compliance Standards, and Compliance
Frameworks

• Replacing out-of-box policy groups (10.2.x/11.10) with Compliance Standards that you
create referring to Compliance Standard Rules

• Mapping your compliance standards to the appropriate Compliance Frameworks

• Defining Oracle Business Intelligence Publisher (BI Publisher) reports for compliance

The following example provides the syntax for defining repository rules and the next example
provides an example of a repository rule definition.

Note:

For the complete compliance XML Schema Definitions (XSDs), see the following
JAR file:

$ORACLE_HOME/sysman/jlib/gccomplianceCommon.jar

Note:

For additional examples, see More Compliance Examples.

Example: Repository Rule Definition Syntax

<xsd:complexType name="RuleT">
 <xsd:sequence>
 <xsd:element name="DisplayName" type="std:DisplayString256Def"
minOccurs="0"/>
 <xsd:element name="TargetType" type="std:Name256Def"/>
 <xsd:element name="IsSystem" type="std:BooleanDef" minOccurs="0"
default="false"/>
 <xsd:element name="IsHidden" type="std:BooleanDef" minOccurs="0"
default="false"/>
 <xsd:element name="evaluateAlways" type="std:BooleanDef"
default="false" minOccurs="0"/>
 <!-- E.g. target version, platform based filter -->
 <xsd:element ref="std:TargetPropertyFilter" minOccurs="0"/>
 <xsd:element name="Description" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="Impact" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="Recommendation" type="std:DisplayString800Def"

Chapter 13
About the Compliance Standard Rules

13-3

minOccurs="0"/>
 <xsd:element name="FixLinkList" type="std:FixLinkListT"
minOccurs="0"/>
 <xsd:element name="ViolationContextList"
type="std:ViolationContextListT"/>
 <xsd:element name="CheckSource" type="std:CheckSourceT"
minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Severity" default="MinorWarning"
minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="MinorWarning"/>
 <xsd:enumeration value="Warning"/>
 <xsd:enumeration value="Critical"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="LifeCycleStatus" default="Development"
minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Development"/>
 <xsd:enumeration value="Production"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="KeywordList" type="std:KeywordListT"
minOccurs="0"/>
 <xsd:element name="UrlLink" type="std:String4000Def"
minOccurs="0"/>
 <xsd:element name="ViolationMessage"
type="std:DisplayString800Def" minOccurs="0"/>
 <xsd:element name="ClearViolationMessage"
type="std:DisplayString800Def" minOccurs="0"/>
 <xsd:element name="Author" type="std:Name256Def" minOccurs="0"/>
 <xsd:element name="LastUpdatedBy" type="std:Name256Def"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="std:Name256Def" use="required"/>
 <xsd:attribute name="oms_version" type="std:Name32Def"
use="required"/>
 </xsd:complexType>

The following example is defined for oracle_database target_type, which is part of the
database plug-in.

Youcan define a rule for any target type registered with Enterprise Manager.

Example: Sample Rule

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_rule1">
 <DisplayName nlsid="SAMPLE_RULE_1_NAME">Sample Rule 1</DisplayName>
 <TargetType>oracle_database</TargetType>

Chapter 13
About the Compliance Standard Rules

13-4

 <IsSystem>true</IsSystem>
 <TargetPropertyFilter>
 <PropertyItem>
 <PropertyName>orcl_gtp_operating_system</PropertyName>
 <ValueList>
 <Value>Windows</Value>
 </ValueList>
 </PropertyItem>
 <PropertyItem>
 <PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>8.1.6+</Value>
 </ValueList>
 </PropertyItem>
 </TargetPropertyFilter>
 <Description nlsid="SAMPLE_RULE_1_DESC">Checks for use of a single
control file</Description>
 <Impact nlsid="SAMPLE_RULE_1_IMPACT">The control file is one of the most
important files in an Oracle database. It maintains many physical
characteristics
and important recovery information about the database. If you lose the only
copy
of the control file due to a media error, there will be unnecessary down
time and
other risks.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_1_RECO">Use at least two control
files that are multiplexed on different disks.</Recommendation>
 <ViolationContextList>
 <Column type="String" name="FILE_LIST">
 <DisplayLabel nlsid="SAMPLE_RULE_1_COL_1">FILE_LIST</
DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 <Column type="Number" name="CONTROL_FILE_COUNT">
 <DisplayLabel nlsid="SAMPLE_RULE_1_COL_2">CONTROL_FILE_COUNT</
DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 </ViolationContextList>
 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>oracle_database</TargetType>
 <MetricName>sample_rule1</MetricName>
 <SourceType>SQL</SourceType>
 <Source>select CONTROL_FILE_COUNT, FILE_LIST, TARGET_GUID from
MGMT$CS_DB_CONTROL_FILE_COUNT</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>FILE_LIST</ColumnName>
 <ColumnType>String</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_1_COL_1">FILE_LIST</

Chapter 13
About the Compliance Standard Rules

13-5

ColumnLabel>
 </MetricColumnInfo>
 <MetricColumnInfo>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel
nlsid="SAMPLE_RULE_1_COL_2">CONTROL_FILE_COUNT</ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>
 <ParamValue>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <MinorWarnThreshold>1</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <ThresholdCriteria>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <TestOperator>EQ</TestOperator>
 <ThresholdValue>1</ThresholdValue>
 <ThresholdType>Number</ThresholdType>
 </ThresholdCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>MinorWarning</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</Keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_1_VIOL_MSG">The database has
an insufficient number of control files.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_1_VIOL_CLEAR_MSG">The
database has sufficient number of control files.</
ClearViolationMessage>
 <Author>SYSMAN</Author>
</Rule>

Table 13-1 provides a description of the tags used to define a repository rule:

Chapter 13
About the Compliance Standard Rules

13-6

Table 13-1 Key Tags for Defining Repository Rules

Tag Subtag Description

DisplayName NA The display name of the rule. It provides the nlsid
attribute to support the translation of messages.

TargetType NA The type of target to which this rule is can be
associated

IsSystem NA True for out-of-the-box rules. Otherwise, False

IsHidden NA False by default.

When set to True, the IsHidden rules are not
visible in the UI and no events are generated.
This element should be set to true for out-of-the-
box rules

Description NA The description of the rule. It provides the nlsid
attribute to support the translation of messages.

Impact NA Impact if the rule violates (when rule is
noncompliant). It provides the nlsid attribute to
support the translation of messages

ViolationContextList NA Violation context defines a violation to a rule
uniquely. Violation context lists columns from
<Source> Query, which will be visible as a part
of the violation. Each column must mark as key
or non-key.

The mandatory target_guid column from
<Source> query is implicitly added to the
violation context and should not be included in
the violation context explicitly.

NA Column Metric Column name. Uses Attributes name and
type

• DisplayLabel: Display name for column. It
provides the nlsid attribute to support the
translation of messages

• IsHidden: True, if this column should not be
displayed as a part of a violation context.
Otherwise, False.

• IsKey: True, if this column is a key

CheckSource NA Defines the data source for Rule evaluation.

..RepositoryCheckDefinit
ion

NA Defines data source for a repository rule.

Chapter 13
About the Compliance Standard Rules

13-7

Table 13-1 (Cont.) Key Tags for Defining Repository Rules

Tag Subtag Description

NA Metric Defines data source query.

• MetricName: Name of metric

• SourceType: SQL. The only supported
SourceType

• Source: This is a SQL query written over
MGMT$_% views. (Enterprise Manager
provides MGMT$_% views, see Oracle
Enterprise Manager Cloud Control
Management Repository Views Reference.).
If required, this SQL query can be written
over other provided views that they have a
direct SELECT privilege to the
MGMT_VIEW user in Enterprise Manager.

Note: You can specify target_guid within a
rule source query. This ensures that
target_guid will get bound in the query at
runtime. This can lead to improved
performance.

For example:

select a.cm_target_guid as
target_guid,
a.SESS_LAZY_DESER_ENABLED from
MGMT$WEBLOGIC_CLUSTER a,
mgmt$target_flat_members mtfm where
mtfm.member_target_guid =
a.cm_target_guid and
mtfm.aggregate_target_type =
'exalogic_system' and
a.cm_target_guid = :target_guid

• MetricColumnList: List of columns in
Source query

• MetricColumnInfo: Metric column

ColumnName: Metric Column name

ColumnType: Metric Column Type

isKey: True, if column is a key column.
Otherwise, False.

ColumnLabel: Column display name

ParameterList NA List of parameters

Note: If parameters are specified and used in a
where clause, then you can customize the
parameter value at compliance standard rule and
target type level or compliance standard rule and
target instance level. This enables the user to
customize or control the check definition
behavior per target instance or at the target type
level.

RuleParameter NA Parameter definition

NA ParamName Name of parameter

NA ParamType parameter Type (String or number)

Chapter 13
About the Compliance Standard Rules

13-8

Table 13-1 (Cont.) Key Tags for Defining Repository Rules

Tag Subtag Description

ParameterDefaultSetting
s

Default values for parameters

NA ParamValue Define a default value for a parameter:

• ParamName: Name of parameter

• CritThreshold/WarnThreshold/
MinorWarnThreshold: Parameter default
value. For critical severity, use
CritThreshold. For warning severity, use
WarnThreshold. For minor warning
severity, use MinorWarnThreshold.

TestCondition NA The TestCondition tag operates over the data
source fetched by running the Metric's <Source>
Query. Any data source row that satisfies the
condition is a violation to the rule

NA ThresholdCriter
ia

Requires a column from Source Query, a
threshold value, and operator (=,<,>, and so on)
to relate the column value and threshold value.

NA SqlWhereClauseC
riteria

Requires a SQL condition over the columns from
<Source> query. Optionally, this condition can
include one or more parameters.

Severity NA Severity of Rule (Critical, Warning,
MinorWarning)

LifeCycleStatus NA Lifecycle status of rule, (Development or
Production)

UrlLink NA Detail URL for the Rule, containing details about
the rule

ViolationMessage NA Message recorded with violation (for rule). Used
for notifications. It provides the nlsid attribute to
support the translation of messages

ClearViolationMessage NA Message recorded with clearing of violation (for
rule). Used for notifications. It provides the nlsid
attribute to support the translation of messages.

KeywordList NA List of keywords associated with the Rule.

NA Keyword Keywords applicable to the compliance standard

Author NA Rule Author.

Defining Real-time Monitoring Rules
You can use a real-time monitoring rule to monitor any action that can happen against a file, a
database object, or a Microsoft Windows Registry key. It can also monitor the starting and
stopping of processes, and the logging in, logging out, and switching user (su) activity of
users. The real-time aspect of the monitoring means that it captures the exact time the action
occurred along with the user that performed the action.

Results from real-time monitoring can be reconciled with a Change Management system
such as BMC Remedy. This reconciliation can automatically determine if an action was
supposed to happen (authorized) or not (unauthorized). If a customer does not have a

Chapter 13
About the Compliance Standard Rules

13-9

Change Management server, this audit status annotation can be made manually
through the UI.

A major part of any IT compliance initiative is to ensure that your IT operations staff
are making changes and managing the environment according to corporate policies.
By reconciling what is happening in the environment to the customer's change
management process, real-time monitoring helps to identify out-of-policy actions that
will either lead to a high risk environment, or a compliance control that will fail audits.

Creating a real-time monitoring rule involves the following steps. These are explained
further below.

• Choose the target type and entity type being monitored. A rule can also be limited
based on certain target type properties (OS, target version, hardware platform,
and target lifecycle)

• Choose one or more target type facets to monitor

• Choose one or more observations to watch for

• Choose zero or more facets to filter the results that are monitored

• Choose the change management reconciliation options

Integration points in this area include:

• Defining (one or more) facets for your target types. Facets define the low level
artifacts that will be monitored

• Defining new compliance standard rules for new or existing compliance standards

• Mapping your compliance standard rules and compliance standards to the out-of-
box compliance frameworks that are related to industry standard frameworks.

• Creating connectors to support new ticketing systems (including definition of
custom region). This can also be used to extend out-of-box change reconciliation
support (currently limited to Remedy 7.x). For information about the process for
creating new connectors, see the Oracle Enterprise Manager Connector
Integration Guide.

What Entity Types Can I Monitor?
When you define a real-time monitoring rule, the first thing you have to decide is what
entity type on a host to monitor. For Oracle Enterprise Manager Cloud Control 12c, the
following entity types can be monitored with Real-time Monitoring Rules:

• OS File

• OS Process

• OS User

• Microsoft Windows Registry

• Microsoft Active Directory User

• Microsoft Active Directory Computer

• Microsoft Active Directory Group

• Oracle Database Table

• Oracle Database View

• Oracle Database Procedure

Chapter 13
About the Compliance Standard Rules

13-10

• Oracle Database User

• Oracle Database Index

• Oracle Database Sequence

• Oracle Database Function

• Oracle Database Package

• Oracle Database Library

• Oracle Database Trigger

• Oracle Database Tablespace

• Oracle Database Materialized View

• Oracle Database Cluster

• Oracle Database Link

• Oracle Database Dimension

• Oracle Database Profile

• Oracle Database Public DB Link

• Oracle Database Synonym

• Oracle Database Public Synonym

• Oracle Database Segment

• Oracle Database Type

• Oracle Database Role

• Oracle Database SQL Query Statement

These entity types are fixed by the capabilities of the current release and cannot be
extended. However, you can use them when creating facets and Real-Time monitoring rules.

In addition to facets defining what can be monitored, there is a set of entities that can be used
for filtering also. The following list includes the most commonly used filtering entity types:

• OS Process

• OS User

• Oracle Database User

• Time Window

• Host

When you create a Real-time monitoring rule, choose what to monitor (that is, what files).
Then choose if you want to use filtering so that only actions performed by certain users, or at
certain periods of time are monitored.

About Real-time Monitoring Facets
Target Type Facets are used to specify the list of entities to monitor. These facets can be
used again at a later time in any number of rules. They can be created on their own, or
created inline with a Real-time Monitoring rule.

In the case of OS File monitoring, a facet could be a list of distinct single files, patterns with
wildcards that would include many files, or simply an entire directory.

Chapter 13
About the Compliance Standard Rules

13-11

These patterns can also include parameters with a default, but can be overridden as
required for each target.

The following are some examples of facets that may be defined for a HOST target type
and an OS FILE entity type:

User Credential Files

• /etc/passwd
• /etc/shadow
• /etc/mail/trusted-users
Network Configuration Files

• /etc/hosts
• /etc/resolv.conf
• /etc/hosts.*
• /etc/defaultrouter
• /etc/nsswitch.conf
• /etc/netmasks

{app_install_directory}/network/config
Here are some examples of facets that might be defined for a HOST target type and
an OS PROCESS entity type. These might be monitored in real-time because any of
these processes started on a production server could lead to a significant security risk.

Network Configuration Tools

• ifconfig
• xhost
The following table provides a list of hypothetical facets that you might create for your
given target type. The facet name can be anything you choose. For some plug-in
developers, there might be many more facets than these limited examples. For each
facet, there is a description of the included patterns.

Target-Type Facet Description

Log files List each log file the target type has.

Customers want to monitor when regular users modify a log
file (not a system user)

Binary Files List each binary the target type has.

Rules can be created to monitor if a binary is tampered with or
when a binary is patched. Instead of listing each individual
binary, it can also list a whole directory, but exclude frequently
changing files

Library Files List each library the target type has.

Rules can be created to monitor if a library is tampered with or
when a library is patched. Instead of listing each individual
library, it can also list a whole directory, but exclude frequently
changing files

General Configuration Files List any configuration files that are user changeable normally,
but the user might want to capture changing.

Chapter 13
About the Compliance Standard Rules

13-12

Target-Type Facet Description

Security Key Files List any files that store certificates, keys, and so on.

This can be a whole directory also, but exclude files that
change regularly. This is to monitor if any users read the files
in an attempt to get the content of the certificates.

Security Configuration Files List any files that configure how security works in the target
type, such as encryption configuration, and so on

Application Users List the typical application users (that is, Oracle, root), and so
on.

Users can use this facet to filter monitoring changes where
they do not care if the application user makes the change

Utility Processes Any utility processes that normally run during a maintenance
period, but should not be run during production

Registry Keys Any Microsoft Windows registry keys that affect the
configuration of the target

Configuration Tables Any database tables that store configuration data.

Creating Real-time Monitoring Facets
This section provides an overview of the XML tags used in creating a real-time monitoring
facet and an example of XML fragment showing facet creation. Facets can be created on
their own as shown in this example, or inline with a real-time monitoring rule creation.

Table 13-2 provides descriptions of the tags used to define a Real-time monitoring facet:

Table 13-2 Key Tags Used to Define a Real-Time Monitoring Facet

Tag Subtag Description

Name NA The internal name of the facet. This must be unique
across all facets that exist and is not visible on the
UI.

DisplayName NA The display name of the facet. It provides the nlsid
attribute to support the translation of messages.

TargetType NA The type of target to which this rule can be
associated.

EntityType NA The entity type for which you are creating the facet
(such as osfile, osprocess, osuser, and so on)

IsSystem NA True, for out-of-the-box rules. Otherwise, False.

Description NA The description of the facet. It provides the nlsid
attribute to support the translation of messages.

Author NA The Enterprise Manager user that is the author of
the facet.

LastUpdatedBy NA The Enterprise Manager user that last updated the
facet. This should be same as the author for your
initially created data.

SourcePattern/
GeneralPattern:

NA Container holding the pattern definition that makes
up the facet

Chapter 13
About the Compliance Standard Rules

13-13

Table 13-2 (Cont.) Key Tags Used to Define a Real-Time Monitoring Facet

Tag Subtag Description

NA Patterns/Pattern Collection of patterns that define the facet. A single
facet can be made up of include and exclude
patterns.

• Value: An actual pattern. This pattern can
include wildcards and parameters. Parameters
are specified or bounded by { and }. Parameters
must have a default value which is defined
further down in the XML.

The entity type determines the limitations on
how wildcards are used. The product
documentation outlines these limitations per
entity type.

• Description: Description of the pattern. It
provides the nlsid attribute to support the
translation of messages.

• IsIncluded: Whether this pattern is an include
pattern or exclude pattern. The notion of include
or exclude is useful for wildcards. You can have
a pattern which includes an entire directory, then
you can exclude subdirectories or individual files
under that included directory. A value of 0
indicates that this pattern is an exclude pattern.
1 indicates an include pattern.

NA Parameters/
Parameter

Collection of pattern default values for each
parameter introduced in the patterns. Parameters are
not shared across facets. If you use the same
parameter name in two facets, each facet must
define its own default value.

• Name: The parameter name used in the patterns
defined above in the XML

• Value: The default value for this parameter.
Users can override this parameter value per
target when associating a Compliance Standard
to one or more targets where this facet is in use.

• Description: Description of the parameter. It
provides the nlsid attribute to support the
translation of messages.

• isActive: Whether this parameter is currently
in use in the list of patterns. This should always
be 1 as you would not define new parameters
without using them in the patterns

Example: Sample Facet Definition

<Facet xmlns="http://www.oracle.com/DataCenter/ConfigStd" is_time_window="0">
 <Name>network_configuration_files</Name>
 <DisplayName nlsid="SAMPLE_FACET_DNAME">Networking configuration files</
DisplayName>
 <TargetType>host</TargetType>
 <EntityType>osfile</EntityType>
 <IsSystem>1</IsSystem>
 <Description nlsid="SAMPLE_FACET_DESC">Files on a standard UNIX operating
system that contain configuration relevant to the networking operations.</

Chapter 13
About the Compliance Standard Rules

13-14

Description>
 <Author>SYSMAN</Author>
 <LastUpdatedBy>SYSMAN</LastUpdatedBy>
 <SourcePattern>
 <GeneralPattern>
 <Patterns>
 <Pattern>
 <Value>{ETCDIR}/hosts</Value>
 <Description nlsid="SAMPLE_FACET_PATTERN_1_DESC">Contains IP to
hostname mappings</Description>
 <IsIncluded>1</IsIncluded>
 </Pattern>
 <Pattern>
 <Value>{ETCDIR}/resolv.conf</Value>
 <Description nlsid="SAMPLE_FACET_PATTERN_2_DESC">Contains local
name resolution mappings.</Description>
 <IsIncluded>1</IsIncluded>
 </Pattern>
 <Pattern>
 <Value>{ETCDIR}/appsecurity/*</Value>
 <Description nlsid="SAMPLE_FACET_PATTERN_3_DESC">All files in a
directory used for my custom application.</Description>
 <IsIncluded>1</IsIncluded>
 </Pattern>
 <Pattern>
 <Value>{ETCDIR}/appsecurity/sample.conf</Value>
 <Description nlsid="SAMPLE_FACET_PATTERN_4_DESC">Excluding one
file that is not a production configuration file that does not need to be monitored.</
Description>
 <IsIncluded>0</IsIncluded>
 </Pattern>

 <Parameters>
 <Parameter>
 <Name>ETCDIR</Name>
 <Description nlsid="SAMPLE_FACET_PARAMETER_1_DESC">Location where
all base Unix configuration files sit.</Description>
 <Value>/etc</Value>
 <IsActive>1</IsActive>
 </Parameter>
 </Parameters>
 </GeneralPattern>
 </SourcePattern>
</Facet>

Creating Real-time Monitoring Facets for Time Windows
Time windows are a special type of facet that is used for filtering real-time monitoring.
Typically, the Enterprise Manager end user creates time window facets since they are specific
to their own operations schedules, but this document includes the content for reference
purposes.

Table 13-3 provides a description of the tags of a time window facet:

Chapter 13
About the Compliance Standard Rules

13-15

Table 13-3 Key Tags Used to Define a Time Window Facet

Tag Subtag Description

Name NA The internal name of the facet. This
must be unique across all facets that
exist and is not visible on the UI.

DisplayName NA The display name of the facet. It
provides the nlsid attribute to support
the translation of messages.

TargetType NA The type of target to which this rule is
associated

EntityType NA The entity type for which you are
creating the facet. For this example, it
is timewindow

IsSystem NA True, for out-of-the-box rules.
Otherwise, False.

Description NA The description of the facet. It provides
the nlsid attribute to support the
translation of messages.

Author NA The Enterprise Manager user that is
the author of the facet.

LastUpdatedBy NA The Enterprise Manager user that last
updated the facet. This should be
same as the author for your initially
created data.

SourcePattern/
SchedulePattern

NA NA

NA TZDisplayName The display name of the time zone in
English. For example Greenwich Mean
Time (UTC+0).

NA Duration • DurStartMinute: The minute
starting from 00:00 (midnight)
when the time window starts. For
example, 1439 = 11:59PM

• DurEndMinute: The minute
starting from 00:00 (midnight)
when the time window ends

• DurMinute: Precalculated
duration that can be used for
describing the time window,
especially if it spans two days. A
duration must be less or equal to
1440 (24 hours)

Chapter 13
About the Compliance Standard Rules

13-16

Table 13-3 (Cont.) Key Tags Used to Define a Time Window Facet

Tag Subtag Description

NA Recurrence • RecStartDate: The date that the
time window starts

• RecurrencePattern:

RecPattern: The type of
recurrence. Options are: "Single",
"Daily", "Weekly", "Monthly", or
"Yearly".

RecPatternDays:Represents the
days of the week, comma
separated values. Sunday = 1,
Saturday = 7.

RecPatternFrequency: The
frequency for repeating if the type
of recurrence is to do "Every X of
some pattern".

Example: Sample Time Window Facet Definition

 <Facet is_time_window="1>
 <Name>general_working_hours</Name>
 <DisplayName>General Working Hours</DisplayName>
 <TargetType>host</TargetType>
 <EntityType>timewindow</EntityType>
 <IsSystem>0</IsSystem>
 <Description>Define the work hour from 9:00 am to 5:00 pm</Description>
 <Author>SYSMAN</Author>
 <LastUpdatedBy>SYSMAN</LastUpdatedBy>
 <SourcePattern>
 <SchedulePattern>
 <TZDisplayName/>
 <Duration>
 <DurStartMinute>540</DurStartMinute>
 <DurEndMinute>1020</DurEndMinute>
 <DurMinute>480</DurMinute>
 </Duration>
 <Recurrence>
 <RecStartDate>2010-07-26</RecStartDate>
 <RecurrencePattern>
 <RecPattern>WEEKLY</RecPattern>
 <RecPatternDays>1,2,5</RecPatternDays>
 <RecPatternFrequency>1</RecPatternFrequency>
 </RecurrencePattern>
 </Recurrence>
 </SchedulePattern>
 </SourcePattern>
 </Facet>

Creating Real-time Monitoring Rules
This section provides an overview of the XML tags used in creating a real-time monitoring
rule and an example XML fragment showing rule creation. This XML fragment assumes that
the facet has been created already and is referenced in this rule.

Chapter 13
About the Compliance Standard Rules

13-17

Table 13-4 provides a description of the tags used to define a real-time rule:

Table 13-4 Key Tags Used to Define a Real-time Rule

Tag Subtag Description

DisplayName NA The display name of the rule. It provides the
nlsid attribute to support the translation of
messages.

TargetType NA The type of target to which this rule is associated

IsSystem NA True, for out-of-the-box rules. Otherwise, False.

Description NA The description of the rule. It provides the nlsid
attribute to support the translation of messages.

Impact NA Impact if the rule violates (when rule is
noncompliant). It provides the nlsid attribute to
support the translation of messages

ViolationContext
List

NA Violation context defines a violation to a rule
uniquely. Violation context lists columns from
<Source> Query, which will be visible as a part
of the violation. Each column must mark as key
or non-key.

The mandatory target_guid column from
<Source> query is implicitly added to the
violation context and should not be included in
the violation context explicitly.

NA Column Metric Column name. Uses Attributes name and
type:

• DisplayLabel: Display name for column. It
provides the nlsid attribute to support the
translation of messages

• IsHidden: True, if this column should not
be displayed as a part of a violation context.
Otherwise, False.

• IsKey: True, if this column is a key.

CheckSource NA Defines the data source for Rule evaluation.

NA RealTimeMonitorin
gLogicDefinition

Defines data source for Real-time Monitoring
Rule

NA EntityType The type of monitoring performed (that is,
osfile, osprocess, osuser, and so on). A full
list is available in What Entity Types Can I
Monitor?.

Chapter 13
About the Compliance Standard Rules

13-18

Table 13-4 (Cont.) Key Tags Used to Define a Real-time Rule

Tag Subtag Description

NA Facets The collection of facets to refer to in this rule.
Some facets can be monitoring facets and some
might be filtering facets.

• Facet Reference: The internal reference
name of the facet

Name: The internal reference name of the
facet that the rule refers to

TargetType: The target type of the
referenced facet. This should always be the
same as the rule target type for your
content.

EntityType: The entity type of the
referenced facet

IsFilteredFacet: 0 indicates this facet
reference is used to determine what to
monitor. 1 indicates this facet reference is a
filter.

InvertedFilteredFacet: Only applicable
if IsFilteredFacet=1. This specifies that
the patterns in the facet definition are
inverted (1) or not (0). If a filter facet was for
“Production Hours" and then it was inverted,
then monitoring will only occur outside of
the pattern defined for “Production Hours"

NA ObservationTypes/
ObservationType

The types of observations you want to monitor in
real-time.

Name: Internal reference name for the
observation type you want to have monitored in
this rule.

NA Settings • CMSetting: Settings related to the
performance of change management
reconciliation.

The auto_authorized=0 attribute indicates
manual reconciliation only. 1 indicates
integration with a change management
server. Typically, you cannot use this field
because the connector would not exist yet.
If you create a rule without CM settings, a
customer can override the rule and set their
own custom CM settings after associating
the rule with a Compliance Standard.

CMConnector: The connector the rule
should use for automatic reconciliation.

AnnotateAuthObservation: Indicates
whether the Change Management
connector should annotate authorized
observations into the requests that made
the observations authorized.

Chapter 13
About the Compliance Standard Rules

13-19

Table 13-4 (Cont.) Key Tags Used to Define a Real-time Rule

Tag Subtag Description

NA AdvancedSetting Advanced rule settings

• GroupSetting: Settings about how
observation bundles will be closed.
Observation bundles collect a series of
actions that happen against the same rule,
by the same user, and on the same target
over a short period of time.

ObsGroupIdleTimeout: The timeout
period (in minutes) after the last user action
before a bundle will be closed.

ObsGroupMaxAge: The maximum duration
(in minutes) of an observation bundle.

ObsGroupMaxObservations: The
maximum number of observations in an
observation bundle.

• GenerateEventByManualAuth: If you are
using manual reconciliation, then you have
the option of generating informational level
events when observations occur. 1 indicates
that an informational event will be created
for each observation group. 0 indicates that
no informational event will be created.

NA Options Additional options that can be configured based
on the entity type. Some entity types will not
have options.

• Option (Name/Value): A single name or
value pair option setting.

Severity NA Severity of the rule (Critical, Warning, or
MinorWarning)

LifeCycleStatus NA Lifecycle status of the rule (Development or
Production)

UrlLink NA Detail URL for the rule, containing details about
the rule

ViolationMessage NA Message recorded with violation (for the rule).
Used for notifications. It provides the nlsid
attribute to support the translation of messages.

ClearViolationMe
ssage

NA Message recorded with clearing of violation (for
the rule). Used for notifications. It provides the
nlsid attribute to support the translation of
messages.

KeywordList NA List of keywords associated with the rule

NA Keyword Keywords applicable to the compliance standard

Author NA Rule author

Example: Sample Rule Definition

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd"
Name="monitor_critical_os_config_files">

Chapter 13
About the Compliance Standard Rules

13-20

 <DisplayName nlsid="SAMPLE_RULE_NAME">Monitor critical OS configuration
files</DisplayName>
 <TargetType>host</TargetType>
 <IsSystem>True</IsSystem>
 <Description nlsid="SAMPLE_RULE_DESC">Monitor several critical
 configuration areas of a Linux host to ensure no configuration
changes are
 happening out of bounds. Monitoring is only done during production
 hours.</Description>
 <Impact nlsid="SAMPLE_RULE_IMPACT">Capturing real-time changes to these
files may indicate a serious security issue.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_RECO">Ensure that change management
policy documents how and when changes should be made in production.
 Create compensating controls to address these out of bound issues.</
Recommendation>
 <ViolationContextList/>
 <CheckSource>
 <RealTimeMonitoringLogicDefinition>
 <EntityType>osfile</EntityType>
 <Facets>
 <FacetReference>
 <Name>network_configuration_files</Name>
 <TargetType>host</TargetType>
 <EntityType>osfile</EntityType>
 <IsFilteredFacet>0</IsFilteredFacet>
 <InvertFilteredFacet>0</InvertFilteredFacet>
 </FacetReference>
 <FacetReference>
 <Name>maild_configuration_files</Name>
 <TargetType>host</TargetType>
 <EntityType>osfile</EntityType>
 <IsFilteredFacet>0</IsFilteredFacet>
 <InvertFilteredFacet>0</InvertFilteredFacet>
 </FacetReference>
 <FacetReference>
 <Name>sshd_configuration_files</Name>
 <TargetType>host</TargetType>
 <EntityType>osfile</EntityType>
 <IsFilteredFacet>0</IsFilteredFacet>
 <InvertFilteredFacet>0</InvertFilteredFacet>
 </FacetReference>
 <FacetReference>
 <Name>crontab_configuration_files</Name>
 <TargetType>host</TargetType>
 <EntityType>osfile</EntityType>
 <IsFilteredFacet>0</IsFilteredFacet>
 <InvertFilteredFacet>0</InvertFilteredFacet>
 </FacetReference>
 <FacetReference>
 <Name>kernel_configuration_files</Name>
 <TargetType>host</TargetType>
 <EntityType>osfile</EntityType>
 <IsFilteredFacet>0</IsFilteredFacet>
 <InvertFilteredFacet>0</InvertFilteredFacet>
 </FacetReference>

Chapter 13
About the Compliance Standard Rules

13-21

 <FacetReference>
 <Name>production_hours</Name>
 <TargetType>host</TargetType>
 <EntityType>timewindow</EntityType>
 <IsFilteredFacet>1</IsFilteredFacet>
 <InvertFilteredFacet>0</InvertFilteredFacet>
 </FacetReference>
 </Facets>
 <ObservationTypes>
 <ObservationType>
 <Name>osfile_create_suc</Name>
 </ObservationType>
 <ObservationType>
 <Name>osfile_content_modified_suc</Name>
 </ObservationType>
 <ObservationType>
 <Name>osfile_delete_suc</Name>
 </ObservationType>
 <ObservationType>
 <Name>osfile_content_mod_archive_suc</Name>
 </ObservationType>
 </ObservationTypes>
 <Settings>
 <CMSetting auto_authorized="0">
 <CMConnector></CMConnector>
 <AnnotateAuthObservation></AnnotateAuthObservation>
 </CMSetting>
 <AdvancedSetting>
 <GroupSetting>
 <ObsGroupIdleTimeout>15</ObsGroupIdleTimeout>
 <ObsGroupMaxAge>30</ObsGroupMaxAge>
 <ObsGroupMaxObservations>1000</
ObsGroupMaxObservations>
 </GroupSetting>
 <GenerateEventByManualAuth>0</
GenerateEventByManualAuth>
 </AdvancedSetting>
 </Settings>
 <Options>
 <Option value="10" name="osfile_archivenumber"/>
 <Option value="50000"
name="osfile_polling_maxfilealert"/>
 <Option value="100"
name="osfile_archive_maxsrcfilealert"/>
 </Options>
 </RealTimeMonitoringLogicDefinition>
 </CheckSource>
 <Severity>MinorWarning</Severity>
 <LifeCycleStatus>Development</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</keyword>
 <Keyword nlsid="SECURITY">Security</keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_VIOL_MSG">Violation due to
change in critical OS configuration files during production hours.</

Chapter 13
About the Compliance Standard Rules

13-22

ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_VIOL_CLRMSG">Cleared violation
due to change in critical OS configuration files during production hours.</
ClearViolationMessage>
 <Author>SYSMAN</Author>
</Rule>

Defining Compliance Standards
Compliance Standards are mapped to Compliance Standard Rules (Repository Rules or
Real-time Monitoring Rules) in a hierarchical fashion.

The following example provides the syntax for defining compliance standards and the next
example provides an example of a Compliance Standard Definition.

Note:

For the complete compliance XSDs, see the following JAR file:

$ORACLE_HOME/sysman/jlib/gccomplianceCommon.jar

Note:

For additional examples, see More Compliance Examples.

Example: Compliance Standard Definition Syntax

<xsd:complexType name="StandardT">
 <xsd:sequence>
 <xsd:element name="DisplayName" type="std:DisplayString128Def"
minOccurs="0"/>
 <xsd:element name="TargetType" type="std:Name128Def" minOccurs="1"
maxOccurs="1"/>
 <xsd:element ref="std:TargetPropertyFilter" minOccurs="0"/>
 <xsd:element name="Author" type="std:Name256Def" default="ORACLE"
minOccurs="0"/>
 <xsd:element name="Version" type="xsd:nonNegativeInteger" default="1"
minOccurs="0"/>
 <xsd:element name="LifeCycleStatus" default="Development"
minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Development"/>
 <xsd:enumeration value="Production"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="IsHidden" type="std:BooleanDef" minOccurs="0"

Chapter 13
Defining Compliance Standards

13-23

default="false"/>
 <xsd:element name="IsSystem" type="std:BooleanDef" minOccurs="0"
default="false"/>
 <xsd:element name="IsAutoEnable" type="std:BooleanDef"
minOccurs="0" default="false"/>
 <xsd:element name="Description" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="KeywordList" type="std:KeywordListT"
minOccurs="0"/>
 <xsd:element name="ReferenceURL" type="std:String4000Def"
minOccurs="0"/>
 <xsd:element name="FrontMatter" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="RearMatter" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="Notice" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="Body" type="std:BodyT" minOccurs="0"/>
 <xsd:element name="ExtraInfo" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="std:NameDef" use="required"/>
 <xsd:attribute name="oms_version" type="std:Name32Def"
use="required"/>
 </xsd:complexType>

Table 13-5 provides a description of the tags used in defining Compliance Standards:

Table 13-5 Key Tags Used in Defining Compliance Standards

Tag Subtag Description

DisplayName NA The display name of the compliance standard. It
provides the nlsid attribute to support the translation
of messages.

Note: The nlsid attribute is not applicable to
metadata plug-ins.

TargetType NA The type of target to which this compliance standard
can be associated

Author NA Compliance standard author

Version NA The version of the compliance standard

LifeCycleStatus NA Lifecycle status of compliance standard
(Development or Production)

IsSystem NA True, if the compliance standard is provided out-of-
the-box. Otherwise, False.

Description NA Description of the compliance standard. It provides
the nlsid attribute to support the translation of
messages.

IsAutoEnable NA If set to True, the compliance standard will be
associated with all exiting targets for the defined
target type. (Defined using TargetType)

Chapter 13
Defining Compliance Standards

13-24

Table 13-5 (Cont.) Key Tags Used in Defining Compliance Standards

Tag Subtag Description

KeywordList NA A list of keywords applicable to the compliance
standard

NA Keyword Keywords applicable to the compliance standard

ReferenceURL NA The reference URL of the compliance standard

FrontMatter NA Front matter message. It provides the nlsid attribute
to support the translation of messages.

RearMatter NA Rear matter message. It provides the nlsid attribute
to support the translation of messages.

Notice NA Notice message. It provides the nlsid attribute to
support the translation of messages.

Body NA Body of the compliance standard. Can have one or
more of the following listed elements

NA RuleFolder Defines a rule folder. A RuleFolder can have the
following:

RuleFolder
RuleReference
Include Standard Reference
• DisplayName: The display name of the Rule

Folder. It provides the nlsid attribute to support
the translation of messages.

• Description: Description of the Rule Folder. It
provides the nlsid attribute to support the
translation of messages.

Note: The nlsid attribute is not applicable to
metadata plug-ins.

• ReferenceURL: The reference URL of the Rule
Folder

• Importance: Importance of Rule Folder (Low/
Normal/High)

NA Include Include another compliance standard reference to
the including compliance standard

NA RuleReference Include rule reference to the compliance standard

Example: Sample Compliance Standard 1

<Standard xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_cs1">
 <DisplayName nlsid="SAMPLE_CS_1_NAME">Sample Compliance Standard 1</
DisplayName>
 <TargetType>oracle_database</TargetType>
 <TargetPropertyFilter>
 <PropertyItem>

<PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>8.1.6+</Value>
 </ValueList>

Chapter 13
Defining Compliance Standards

13-25

 </PropertyItem>
 </TargetPropertyFilter>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_CS_1_DESC">Sample Description</
Description>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</Keyword>
 </KeywordList>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <Body>
 <RuleFolder name="sample_RF_1">
 <DisplayName
nlsid="SAMPLE_RF_1_NAME">Sample Rulefolder</DisplayName>
 <Description
nlsid="SAMPLE_RF_1_DESC">This includes rules that checks for use of a
single control file</Description>
 <ReferenceURL>http://
www.oracle.com/db_rf1</ReferenceURL>
 <Importance>Normal</Importance>
 <RuleReference>
 <Name>sample_rule1</Name>
 <TargetType>oracle_database</
TargetType>
 <Importance>Normal</Importance>
 </RuleReference>
 </RuleFolder>
 </Body>
</Standard>

Defining a Compliance Framework

Note:

Although the Compliance Framework term is used throughout this document,
the XML API uses the term Group or SubGroup. This is an internal name used
for the XML structure that is not exposed on the Enterprise Manager UI.

The following example provides the syntax for defining a compliance framework and
the next example provides an example of a compliance framework definition.

Chapter 13
Defining a Compliance Framework

13-26

Note:

For the complete compliance XSDs, see the following JAR file:

$ORACLE_HOME/sysman/jlib/gccomplianceCommon.jar

Note:

For additional examples, see More Compliance Examples.

Example: Compliance Framework Definition Syntax

<xsd:complexType name="StandardGroupT">
 <xsd:sequence>
 <xsd:element name="DisplayName" type="std:DisplayString128Def"
minOccurs="0"/>
 <xsd:element name="Author" type="std:Name256Def" default="ORACLE"
minOccurs="0"/>
 <xsd:element name="Version" type="xsd:nonNegativeInteger" default="1"
minOccurs="0"/>
 <xsd:element name="LifeCycleStatus" default="Development"minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Development"/>
 <xsd:enumeration value="Production"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="Description" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="KeywordList" type="std:KeywordListT" minOccurs="0"/>
 <xsd:element name="ReferenceURL" type="std:String4000Def"
minOccurs="0"/>
 <xsd:element name="FrontMatter" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="RearMatter" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="Notice" type="std:DisplayString800Def"
minOccurs="0"/>
 <xsd:element name="IsHidden" type="std:BooleanDef"
minOccurs="0"default="false"/>
 <xsd:element name="IsSystem" type="std:BooleanDef"
minOccurs="0"default="false"/>
 <xsd:element name="GroupBody" type="std:GroupBodyT" minOccurs="0"/>
 <xsd:element name="ExtraInfo" type="xsd:string"
minOccurs="0"maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="std:NameDef" use="required"/>

Chapter 13
Defining a Compliance Framework

13-27

 <xsd:attribute name="oms_version" type="std:Name32Def"
use="required"/>
 </xsd:complexType>

Table 13-6 provides a description of the tags used in defining a Compliance
Framework:

Table 13-6 Key Tags Used in Defining a Compliance Framework

Tag Subtag Description

DisplayName NA The display name of the compliance
framework. It provides the nlsid attribute to
support the translation of messages.

Author NA Author of the compliance framework

Version NA The version of the compliance framework

LifeCycleStatus NA The lifecycle status of the compliance
framework (Development or Production)

IsSystem NA True, if compliance framework is provided out-
of-the box. Otherwise, False.

Description NA Description of compliance framework. It
provides the nlsid attribute to support the
translation of messages.

Note: The nlsid attribute is not applicable to
metadata plug-ins.

KeywordList NA List of keywords applicable to compliance
framework

NA Keyword Keywords applicable to the compliance
standard

ReferenceURL NA The reference URL of the compliance
framework

FrontMatter NA Front matter message. It provides the nlsid
attribute to support the translation of messages

RearMatter NA Rear matter message. It provides the nlsid
attribute to support the translation of
messages.

Notice NA Notice message. It provides the nlsid attribute
to support the translation of messages.

ExtraInfo NA Additional information about the compliance
framework.

GroupBody NA Defines the body of the compliance framework.
It can have one or more of the following
elements:

Chapter 13
Defining a Compliance Framework

13-28

Table 13-6 (Cont.) Key Tags Used in Defining a Compliance Framework

Tag Subtag Description

NA SubGroup Defines a child framework element. A child
framework element can include the following:

Child framework
Include Standard Reference.

• DisplayName: The display name of the
child framework

• Description: Description of the child
framework

• ReferenceURL: The reference URL of the
child framework

• Importance: Importance of child
framework (Low, Normal, or High)

NA StandardReference Includes the compliance standard reference to
the compliance framework

Example: Sample Compliance Framework

<StandardGroup xmlns="http://www.oracle.com/DataCenter/ConfigStd"
name="sample_csg" oms_version="12.1.0.1.0">
 <DisplayName nlsid="SAMPLE_CSG_NAME">Sample Compliance Framework</
DisplayName>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <Description nlsid="SAMPLE_CSG_DESC">Sample Description</Description>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>
 </KeywordList>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <IsHidden>false</IsHidden>
 <IsSystem>true</IsSystem>
 <GroupBody>
 <SubGroup name="SampleSubgroup">
 <DisplayName nlsid="SAMPLE_CSG_SUBGROUP_NAME">Sample Child
Framework</DisplayName>
 <Description nlsid="SAMPLE_CSG_SUBGROUP_DESC">Sample Child
framework Description</Description>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <Importance>Normal</Importance>
 <StandardReference>
 <Name>sample_cs3</Name>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <Importance>Normal</Importance>
 </StandardReference>
 </SubGroup>
 </GroupBody>
 </StandardGroup>

Chapter 13
Defining a Compliance Framework

13-29

Defining Compliance Content
The following example provides the syntax for defining compliance content and the
Sample XML Compliance Metadata example provides an example of XML compliance
metadata.

Note:

For additional examples, see More Compliance Examples.

Example: Compliance Content Definition Syntax

<xsd:complexType name="ComplianceContentT">
 <xsd:sequence>

 <!-- Cummulative change since the first release.-->
 <xsd:element ref="std:ChangeList" minOccurs="0" maxOccurs="1"/>
 <!-- End Cummulative change since the first release -->

 <!-- Current state of entities -->
 <xsd:element ref="std:Facet" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="std:Rule" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="std:Standard" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="std:StandardGroup" minOccurs="0" maxOccurs="unbounded"/>
 <!-- Current state of entities -->
 </xsd:sequence>
 <xsd:attribute name="oms_version" type="std:Name32Def" use="required"/>
 <xsd:attribute name="name" type="std:Name64Def" use="required"/>
 <!-- content_version of compliance content should be equal to version of last
change tag if any. -->
 <xsd:attribute name="content_version" type="std:Name64Def" use="optional"
default = "12.1.0.0.0"/>
 <xsd:attribute name="IsCompareEnabled" type="std:BooleanDef" use="optional"
default = "true"/>
</xsd:complexType>

<xsd:element name="ComplianceContent" type="std:ComplianceContentT"/>

Table 13-7 provides a description of some of the attributes used in defining compliance
content:

Table 13-7 Compliance Content Attributes

Attribute Description

oms_version Version of Oracle Management Service (OMS)

name Name of the compliance content

content_version Version of the compliance content

Chapter 13
Defining Compliance Content

13-30

Table 13-7 (Cont.) Compliance Content Attributes

Attribute Description

IsCompareEnabled Specifies whether a rule or compliance standard is updated
incrementally or if the entire rule or compliance standard is
regenerated.

Possible Values:

• True: For each rule and standard tag, the software finds the
incremental change automatically and updates the entity
incrementally. For example, if only one rule is updated in a
compliance standard, only that rule is updated in the compliance
standard and then the updated rule is reevaluated for all targets
associated to the compliance standard at the time of the rule
update (where the rule is a repository rule)

• False: The user must specify <UpdateRule> within the
<ChangeList><Change..>....</ChangeList></Change>
tags. This causes the rule to be overridden (that is, all attributes
and definitions).

Similarly, if a compliance standard is updated, it will override the
standard completely and and regenerate results (in case of
repository check-based standards).

Note: If you set isCompareEnabled = false, then you must provide
all the changes that were made in each version cumulatively since the
compliance content was created. This is very important for metadata
consistency.

Oracle recommends that you always summarize the changes in each
version even if the isCompareEnabled attribute is set to true.
Because if you need to switch from isCompareEnabled= true
(default) to isCompareEnabled=false at a future date, then all
historical changes across different versions of the compliance content
will be available to you.

Example: Sample XML Compliance Metadata

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE ComplianceContent [
<!ENTITY rule SYSTEM "SampleRuleThresholdCondition.xml">
<!ENTITY standard SYSTEM "SampleComplianceStandard.xml">
<!ENTITY standardgroup SYSTEM "SampleComplianceStandardGroup.xml">
]>
<ComplianceContent xmlns="http://www.oracle.com/DataCenter/ConfigStd" name="Sample
Compliance Framework" oms_version="11.2.0.1.0">
<ChangeList>
 <Change version="12.2.0.0.0">
 <UpdateRule>
 <RuleName>sample_rule</RuleName>
 <TargetType>oracle_database</TargetType>
 </UpdateRule>
 <UpdateStandardGroup>
 <StandardGroupName>sample_csg</StandardGroupName>
 <StandardGroupAuthor>SYSTEM</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 </UpdateStandardGroup>
 </Change>
</ChangeList>
&rule;
&standard;

Chapter 13
Defining Compliance Content

13-31

&standardgroup;
</ComplianceContent>

Removing Compliance Content
To remove or delete compliance content, enter the following command:

emctl deregister oms metadata -sysman_pwd sysman -core -service gccompliance -
file DeleteComplianceContent.xml

In the previous command, DeleteComplianceContent.xml represents the name of the
Delete Compliance Content XML file.

The following examples provide the syntax for defining Delete Compliance Content
and an example of a Delete Compliance Content XML file.

Example: Delete Compliance Content Syntax

<!-- delete compliance metadata corresponding to the compliance content name
provided. -->
 <xsd:complexType name="DeleteComplianceContentT">
 <xsd:attribute name="name" type="std:Name64Def" use="required"/>
 </xsd:complexType>
<xsd:element name="DeleteComplianceContent" type="std:DeleteComplianceContentT"/>

Example: DeleteComplianceContent XML

 <DeleteComplianceContent xmlns="http://www.oracle.com/DataCenter/ConfigStd"
name="Sample Compliance Framework" />

Supporting Translation

Note:

Translation is supported for the Oracle Fusion Middleware plug-in only.

For each nlsid attribute in the XML samples, you must specify a Data Loading Format
(DLF) map entry. A DLF file contains the English string for each defined nlsid
attribute. These strings are available for translation.

Example: Sample DLF File

<?xml version="1.0" encoding="UTF-8"?>
<table xml:lang="en" name="MGMT_MESSAGES">

<!-- lookup-key indicates which columns are used by
 TransX to recognize a row as a duplicate -->
<lookup-key>
 <column name="MESSAGE_ID"/>
 <column name="SUBSYSTEM"/>
 <column name="LANGUAGE_CODE"/>
 <column name="COUNTRY_CODE"/>
</lookup-key>

Chapter 13
Removing Compliance Content

13-32

<!-- columns field indicates which columns will be loaded as
 part of processing the dataset and which should be
 translated by the Translation Group -->
<columns>
 <column name="MESSAGE_ID" type="string" maxsize="64"/>
 <column name="SUBSYSTEM" type="string" maxsize="64"/>
 <column name="LANGUAGE_CODE" type="string" language="%l"/>
 <column name="COUNTRY_CODE" type="string" language="%Cs"/>
 <column name="MESSAGE" type="string" maxsize="1000" translate="yes"/>
</columns>

<!-- dataset specifies the data to be loaded into the repository -->
<dataset>

 <row>
 <col name="MESSAGE_ID">SAMPLE_RULE_NAME</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Rule</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_RULE_DESC</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Checks for use of a single control file</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_RULE_IMPACT</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">The control file is one of the most important files in an
Oracle database. It maintains many physical characteristics and important
recovery information about the database. If you lose the only copy of the control
file due to a media error, there will be unnecessary down time and other risks.</col>
 </row>

<row>
 <col name="MESSAGE_ID">SAMPLE_RULE_RECO</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Use at least two control files that are multiplexed on
different disks.</col>
 </row>

<row>
 <col name="MESSAGE_ID">SAMPLE_RULE_COL_1</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">FILE_LIST</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_RULE_COL_2</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">CONTROL_FILE_COUNT</col>
 </row>

<row>
 <col name="MESSAGE_ID">SAMPLE_RULE_VIOL_MSG</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">The database has an insufficient number of control files.</col>
 </row>

<row>

Chapter 13
Supporting Translation

13-33

 <col name="MESSAGE_ID">SAMPLE_RULE_VIOL_CLEAR_MSG</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">The database has sufficient number of control files.</
col>
</row>

<!-- Standard NLSID Mappings -->

<row>
 <col name="MESSAGE_ID">SAMPLE_CS_NAME</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Compliance Standard</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_CS_DESC</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Description</col>
 </row>

<row>
 <col name="MESSAGE_ID">SAMPLE_RF_NAME</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Rulefolder</col>
</row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_RF_DESC</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">This includes rules that checks for use of a single
control file.</col>
 </row>

<!-- Standard Group NLSID Mappings -->

 <row>
 <col name="MESSAGE_ID">SAMPLE_CSG_NAME</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Compliance Framework</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_CSG_DESC</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Description</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_CSG_SUBGROUP_NAME</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Child Framework</col>
 </row>

 <row>
 <col name="MESSAGE_ID">SAMPLE_CSG_SUBGROUP_DESC</col>
 <col name="SUBSYSTEM">POLICY</col>
 <col name="MESSAGE">Sample Child Framework Description</col>
 </row>

</dataset>
</table>

Chapter 13
Supporting Translation

13-34

Note:

If the DLF entry is for a real-time monitoring facet or pattern, then the subsystem is
GCCOMPLIANCE_CCC. For all other rules, the subsystem is POLICY.

Packaging Compliance XML
This section indicates the location of the XML and DLF files.

• XML Files

Store all the XML files in the following directory:

plugin_stage/oms/metadata/gccompliance/

In the previous directory path, plugin_stage is the plug-in staging directory.

For more information about the plug-in staging directory, see Staging the Plug-in.

• DLF Files

Store all the DLF files in the following directory:

plugin_stage/oms/rsc/area/gccompliance

In the previous directory path, plugin_stage is the plug-in staging directory and area
represents the subcomponent such as db for database or ecm for configuration
management.

Setting Up and Testing Compliance Standards and Rules
To test your compliance standards or rules, do the following:

• Install Compliance Content

• Test Compliance Standard

Install Compliance Content
To install compliance content:

1. Use the following command to install the compliance content:

emctl register oms metadata -sysman_pwd password -core -service gccompliance -file
ComplianceContent.xml

2. Submit the following job for back-end processing:

begin em_compliance_util.trigger_rule_dependency_job;end;

Test Compliance Standard
To test your compliance standard:

1. Log in to the Cloud Control console.

2. From the Enterprise menu, select Compliance, then select Library.

Chapter 13
Packaging Compliance XML

13-35

The Compliance Library page appears.

3. Click Compliance Standards.

4. Select the required compliance standard, then click Associate Targets.

The Target Association for Compliance Standard: Compliance Standard Name
page appears, where Compliance Standard Name is the name of your selected
compliance standard.

5. Click Add.

The Search and Select: Targets window appears.

6. Select the target that you want to evaluate, then click Select.

7. From the Target Association for Compliance Standard: Compliance Standard
Name page, click OK.

8. Click Yes to the Save Association message.

The Compliance Standards page appears.

The previous steps trigger the evaluation, which occurs in a background job.

9. After a few minutes, from the Enterprise menu, select Compliance, then select
Results.

The Compliance Standards Evaluation Results page appears.

10. Select your compliance standard, then click Show Details.

The Compliance Standard Result Detail page appears.

11. From the left-hand side of the page, expand Compliance Standard Name to view
any nodes, then click a node to view the results for that node.

Figure 13-1 Compliance Standard Result Detail

Chapter 13
Setting Up and Testing Compliance Standards and Rules

13-36

Constraints for Testing
Note the following constraints when you are testing your compliance standards or rules:

• The MGMT_VIEW user must have the SELECT privilege on the views used in the query

• target_guid must be one of the SELECT attributes in the query

• Alias names or select clause names must be less than 64 characters

• Ensure that the standard references from a compliance standard are imported first. Place
the standard references first in the compliance content list.

• At least one column from the SELECT clause of the SQL source must be marked as a
non-key column in the violation context definition and metric definition.

• The target_guid column must not be specified for violation context columns or for metric
definitions.

• If the query references views from outside of the enclosing plug-in, then the views must
be exposed by the EDK to the plug-in (at the plug-in EDK level).

• If the SQL source query of a repository rule refers to a PLSQL function, then ensure that
it refers to global PLSQL functions only, and not package functions (that is, if those
PLSQL functions depend on tables whose update triggers a rule evaluation). This is
required to generate the list of tables which the rule evaluation outcome depends on
correctly. Execute privileges must be granted to the mgmt_view user on this function.

• The target type of the rule included in a compliance standard must be the same as that of
the immediate parent standard.

• Key columns of STRING type must contain less than 64 characters.

More Compliance Examples
This section provides additional examples of compliance content, rules, compliance
standards, and compliance framework.

Note:

The examples in this chapter apply to both Enterprise Manager 12c and Enterprise
Manager 13c.

The following example provides an example of compliance content version 1 and the next
example provides an example of compliance content version 2. Version 1 is the initial version
of the compliance content. Note that the content version number is 12.1.0.1.0, while the
content version in the Compliance Content Version 2 example is 12.1.0.2.0.

Compliance content contains a ChangeList element. The ChangeList element describes the
changes that have occurred since the first version of compliance content, such as updated
rules, standards, and so on.

Example: Compliance Content Version 1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE ComplianceContent [

Chapter 13
More Compliance Examples

13-37

<!ENTITY rule1 SYSTEM "SampleRule1.xml">
<!ENTITY rule2 SYSTEM "SampleRule2.xml">
<!ENTITY rule3 SYSTEM "SampleRule3.xml">
<!ENTITY rule4 SYSTEM "SampleRule4.xml">
<!ENTITY rule5 SYSTEM "SampleRule5.xml">
<!ENTITY rule6 SYSTEM "SampleRule6.xml">
<!ENTITY standard1 SYSTEM "SampleComplianceStandard1.xml">
<!ENTITY standard2 SYSTEM "SampleComplianceStandard2.xml">
<!ENTITY standard3 SYSTEM "SampleComplianceStandard3.xml">
<!ENTITY standardgroup SYSTEM "SampleComplianceFramework.xml">]
]>
<ComplianceContent xmlns="http://www.oracle.com/DataCenter/ConfigStd"
name="SampleComplianceContent" oms_version="12.1.0.1.0"
content_version="12.1.0.1.0">
<ChangeList>
 <!-- ChangeList tag process each of the Change Tag with respect to the
version of the ComplianceContent installed in repository. -->
 <Change version="12.1.0.1.0">
 <!-- AddSubGroupWithinStandardGroup will introduce a subgroup within an
existing compliance framework/standard group in repository. -->
 <!-- AddStandardReferenceToStandardGroup will introduce a reference to
a standard within an existing compliance framework/standard group in
repository. -->
 <AddSubGroupWithinStandardGroup order="2">
 <StandardGroupName>oracle_pci</StandardGroupName>
 <StandardGroupAuthor>ORACLE</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 <SubGroup name="sampleSubgroup1">
 <DisplayName>sub1</DisplayName>
 <ReferenceURL>http://
sampleAddedSubgroup.com</ReferenceURL>
 <Importance>High</Importance>
 </SubGroup>
 </AddSubGroupWithinStandardGroup>
 <AddStandardReferenceToStandardGroup>
 <StandardGroupName>oracle_pci</StandardGroupName>
 <StandardGroupAuthor>ORACLE</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 <SubGroupListInfo>
 <SubGroupElem>oracle_pci_ctrlobj_a</
SubGroupElem>
 </SubGroupListInfo>
 <StandardReference>
 <Name>sample_cs1</Name>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 </StandardReference>
 </AddStandardReferenceToStandardGroup>
 </Change>
</ChangeList>
<!--List of compliance standard rules -->
&rule1;
&rule2;
&rule3;
&rule4;
&rule5;
&rule6;
<!--List of compliance standards -->
&standard1;
&standard2;
&standard3;

Chapter 13
More Compliance Examples

13-38

<!--List of compliance standard groups/frameworks-->
&standardgroup;
</ComplianceContent>

The following example provides an example of a compliance rule that checks for use of a
single control file

Example: Sample Rule 1

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd" oms_version="12.1.0.1.0"
name="sample_rule1">
 <DisplayName nlsid="SAMPLE_RULE_1_NAME">Sample Rule 1</DisplayName>
 <TargetType>oracle_database</TargetType>
 <IsSystem>true</IsSystem>
 <TargetPropertyFilter>
 <PropertyItem>
 <PropertyName>orcl_gtp_operating_system</PropertyName>
 <ValueList>
 <Value>Windows</Value>
 </ValueList>
 </PropertyItem>
 <PropertyItem>
 <PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>8.1.6+</Value>
 </ValueList>
 </PropertyItem>
 </TargetPropertyFilter>
 <Description nlsid="SAMPLE_RULE_1_DESC">Checks for use of a single control file</
Description>
 <Impact nlsid="SAMPLE_RULE_1_IMPACT">The control file is one of the most
important files in an Oracle database. It maintains many physical characteristics
and important recovery information about the database. If you lose the only copy
of the control file due to a media error, there will be unnecessary down time and
other risks.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_1_RECO">Use at least two control files that are
multiplexed on different disks.</Recommendation>
 <ViolationContextList>
 <Column type="String" name="FILE_LIST">
 <DisplayLabel nlsid="SAMPLE_RULE_1_COL_1">FILE_LIST</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 <Column type="Number" name="CONTROL_FILE_COUNT">
 <DisplayLabel nlsid="SAMPLE_RULE_1_COL_2">CONTROL_FILE_COUNT</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 </ViolationContextList>
 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>oracle_database</TargetType>
 <MetricName>sample_rule1</MetricName>
 <SourceType>SQL</SourceType>
 <Source>select CONTROL_FILE_COUNT, FILE_LIST, TARGET_GUID from
MGMT$CS_DB_CONTROL_FILE_COUNT</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>FILE_LIST</ColumnName>
 <ColumnType>String</ColumnType>

Chapter 13
More Compliance Examples

13-39

 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_1_COL_1">FILE_LIST</ColumnLabel>
 </MetricColumnInfo>
 <MetricColumnInfo>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_1_COL_2">CONTROL_FILE_COUNT</
ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>
 <ParamValue>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <MinorWarnThreshold>1</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <ThresholdCriteria>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <TestOperator>EQ</TestOperator>
 <ThresholdValue>1</ThresholdValue>
 <ThresholdType>Number</ThresholdType>
 </ThresholdCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>MinorWarning</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</Keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_1_VIOL_MSG">The database has an
insufficient number of control files.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_1_VIOL_CLEAR_MSG">The database has
sufficient number of control files.</ClearViolationMessage>
 <Author>SYSMAN</Author>
</Rule>

The following example provides a sample compliance rule that checks for use of a
single control file.

Example: Sample Rule 2

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_rule2">
 <DisplayName nlsid="SAMPLE_RULE_2_NAME">Sample Rule 2</DisplayName>
 <TargetType>oracle_database</TargetType>
 <IsSystem>true</IsSystem>
 <TargetPropertyFilter>
 <PropertyItem>
 <PropertyName>orcl_gtp_operating_system</PropertyName>
 <ValueList>
 <Value>Windows</Value>

Chapter 13
More Compliance Examples

13-40

 </ValueList>
 </PropertyItem>
 <PropertyItem>
 <PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>8.1.6+</Value>
 </ValueList>
 </PropertyItem>
 </TargetPropertyFilter>
 <Description nlsid="SAMPLE_RULE_2_DESC">Checks for use of a single control file</
Description>
 <Impact nlsid="SAMPLE_RULE_2_IMPACT">The control file is one of the most important
files in an Oracle database.
It maintains many physical characteristics and important recovery information
about the database. If you lose the only copy of the control file due to a media
error, there will be unnecessary down time and other risks.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_2_RECO">Use at least two control files that are
multiplexed on different disks.</Recommendation>
 <ViolationContextList>
 <Column type="String" name="FILE_LIST">
 <DisplayLabel nlsid="SAMPLE_RULE_2_COL_1">FILE_LIST</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 <Column type="Number" name="CONTROL_FILE_COUNT">
 <DisplayLabel nlsid="SAMPLE_RULE_2_COL_2">CONTROL_FILE_COUNT</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 </ViolationContextList>
 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>oracle_database</TargetType>
 <MetricName>sample_rule2</MetricName>
 <SourceType>SQL</SourceType>
 <Source>select CONTROL_FILE_COUNT, FILE_LIST, TARGET_GUID from
MGMT$CS_DB_CONTROL_FILE_COUNT</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>FILE_LIST</ColumnName>
 <ColumnType>String</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_2_COL_1">FILE_LIST</ColumnLabel>
 </MetricColumnInfo>
 <MetricColumnInfo>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_2_COL_2">CONTROL_FILE_COUNT</
ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>

Chapter 13
More Compliance Examples

13-41

 <ParamValue>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <MinorWarnThreshold>1</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <ThresholdCriteria>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <TestOperator>EQ</TestOperator>
 <ThresholdValue>1</ThresholdValue>
 <ThresholdType>Number</ThresholdType>
 </ThresholdCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>MinorWarning</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</Keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_2_VIOL_MSG">The database has an
insufficient number of control files.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_2_VIOL_CLEAR_MSG">The database has
sufficient number of control files.</ClearViolationMessage>
 <Author>SYSMAN</Author>
</Rule>

The following example provides an example of a compliance rule that checks for use
of a single control file.

Example: Sample Rule 3

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_rule3">
 <DisplayName nlsid="SAMPLE_RULE_3_NAME">Sample Rule 3</DisplayName>
 <TargetType>oracle_database</TargetType>
 <IsSystem>true</IsSystem>
 <TargetPropertyFilter>
 <PropertyItem>
 <PropertyName>orcl_gtp_operating_system</PropertyName>
 <ValueList>
 <Value>Windows</Value>
 </ValueList>
 </PropertyItem>
 <PropertyItem>
 <PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>8.1.6+</Value>
 </ValueList>
 </PropertyItem>
 </TargetPropertyFilter>
 <Description nlsid="SAMPLE_RULE_3_DESC">Checks for use of a single control
file</Description>
 <Impact nlsid="SAMPLE_RULE_3_IMPACT">The control file is one of the most
important files in an Oracle database.
It maintains many physical characteristics and important recovery information
about the database. If you lose the only copy of the control file due to a media
error, there will be unnecessary down time and other risks.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_3_RECO">Use at least two control files
that are multiplexed on different disks.</Recommendation>
 <ViolationContextList>

Chapter 13
More Compliance Examples

13-42

 <Column type="String" name="FILE_LIST">
 <DisplayLabel nlsid="SAMPLE_RULE_3_COL_1">FILE_LIST</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 <Column type="Number" name="CONTROL_FILE_COUNT">
 <DisplayLabel nlsid="SAMPLE_RULE_3_COL_2">CONTROL_FILE_COUNT</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>false</IsKey>
 </Column>
 </ViolationContextList>
 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>oracle_database</TargetType>
 <MetricName>sample_rule3</MetricName>
 <SourceType>SQL</SourceType>
 <Source>select CONTROL_FILE_COUNT, FILE_LIST, TARGET_GUID from
MGMT$CS_DB_CONTROL_FILE_COUNT</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>FILE_LIST</ColumnName>
 <ColumnType>String</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_3_COL_1">FILE_LIST</ColumnLabel>
 </MetricColumnInfo>
 <MetricColumnInfo>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>false</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_3_COL_2">CONTROL_FILE_COUNT</
ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>
 <ParamValue>
 <ParamName>CONTROL_FILE_COUNT</ParamName>
 <MinorWarnThreshold>1</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <ThresholdCriteria>
 <ColumnName>CONTROL_FILE_COUNT</ColumnName>
 <TestOperator>EQ</TestOperator>
 <ThresholdValue>1</ThresholdValue>
 <ThresholdType>Number</ThresholdType>
 </ThresholdCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>MinorWarning</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</Keyword>

Chapter 13
More Compliance Examples

13-43

 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_3_VIOL_MSG">The database has an
insufficient number of control files.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_3_VIOL_CLEAR_MSG">The database has
sufficient number of control files.</ClearViolationMessage>
 <Author>SYSMAN</Author>
</Rule>

The following example provides an example of a compliance rule that checks that no
unintended ports are left open.

Example: Sample Rule 4

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_rule4">
 <DisplayName nlsid="SAMPLE_RULE_4_NAME">Sample Rule 4</DisplayName>
 <TargetType>host</TargetType>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_RULE_4_DESC">Ensure that no unintended ports are
left open</Description>
 <Impact nlsid="SAMPLE_RULE_4_IMPACT">Open ports may allow a malicious user
to take over the host.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_4_RECOMM">Do not open insecure ports.</
Recommendation>
 <ViolationContextList>
 <Column type="Number" name="port">
 <DisplayLabel nlsid="SAMPLE_RULE_4_PORT_COL">Port Number</
DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>true</IsKey>
 </Column>
 </ViolationContextList>
 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>host</TargetType>
 <MetricName>sample_rule4</
MetricName>
 <SourceType>SQL</SourceType>
 <Source>SELECT target_guid, port as port, port as dummy FROM
MGMT$ESM_PORTS_LATEST</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>port</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>true</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_4_LABEL">Port
Number</ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName
nlsid="SAMPLE_RULE_4_DFLT_PORT_PNAME">DFLT_PORT</ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>
 <ParamValue>
 <ParamName>DFLT_PORT</ParamName>

Chapter 13
More Compliance Examples

13-44

 <MinorWarnThreshold>655</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <SqlWhereClauseCriteria>
 <WhereClause>:port < :DFLT_PORT</WhereClause>
 </SqlWhereClauseCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>Critical</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_4_MESG">The host is in an insecure state.
Port %port% is open.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_4_CLR_MESG">Port %port% is not open.</
ClearViolationMessage>
 <Author>ORACLE</Author>
 <LastUpdatedBy><SYSTEM></LastUpdatedBy>
</Rule>

The following example provides an example of a compliance rule that checks that no
unintended ports are left open.

Example: Sample Rule 5

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd" oms_version="12.1.0.1.0"
name="sample_rule5">
 <DisplayName nlsid="SAMPLE_RULE_5_NAME">Sample Rule 5</DisplayName>
 <TargetType>host</TargetType>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_RULE_5_DESC">Ensure that no unintended ports are left
open</Description>
 <Impact nlsid="SAMPLE_RULE_5_IMPACT">Open ports may allow a malicious user to take
over the host.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_5_RECOMM">Do not open insecure ports.</
Recommendation>
 <ViolationContextList>
 <Column type="Number" name="port">
 <DisplayLabel nlsid="SAMPLE_RULE_5_PORT_COL">Port Number</DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>true</IsKey>
 </Column>
 </ViolationContextList>
 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>host</TargetType>
 <MetricName>sample_rule5</
MetricName>
 <SourceType>SQL</SourceType>
 <Source>SELECT target_guid, port as port, port as dummy FROM
MGMT$ESM_PORTS_LATEST</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>port</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>true</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_5_LABEL">Port Number</

Chapter 13
More Compliance Examples

13-45

ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName nlsid="SAMPLE_RULE_5_DFLT_PORT_PNAME">DFLT_PORT</
ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>
 <ParamValue>
 <ParamName>DFLT_PORT</ParamName>
 <MinorWarnThreshold>655</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <SqlWhereClauseCriteria>
 <WhereClause>:port < :DFLT_PORT</WhereClause>
 </SqlWhereClauseCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>Critical</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_5_MESG">The host is in an insecure
state. Port %port% is open.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_5_CLR_MESG">Port %port% is not
open.</ClearViolationMessage>
 <Author>ORACLE</Author>
 <LastUpdatedBy><SYSTEM></LastUpdatedBy>
</Rule>

The following example provides an example of a compliance rule that checks that no
unintended ports are left open.

Example: Sample Rule 6

<Rule xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_rule6">
 <DisplayName nlsid="SAMPLE_RULE_6_NAME">Sample Rule 6</DisplayName>
 <TargetType>host</TargetType>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_RULE_6_DESC">Ensure that no unintended ports are
left open</Description>
 <Impact nlsid="SAMPLE_RULE_6_IMPACT">Open ports may allow a malicious user
to take over the host.</Impact>
 <Recommendation nlsid="SAMPLE_RULE_6_RECOMM">Do not open insecure ports.</
Recommendation>
 <ViolationContextList>
 <Column type="Number" name="port">
 <DisplayLabel nlsid="SAMPLE_RULE_6_PORT_COL">Port Number</
DisplayLabel>
 <IsHidden>false</IsHidden>
 <IsKey>true</IsKey>
 </Column>
 </ViolationContextList>

Chapter 13
More Compliance Examples

13-46

 <CheckSource>
 <RepositoryCheckDefinition>
 <Metric>
 <TargetType>host</TargetType>
 <MetricName>sample_rule6</
MetricName>
 <SourceType>SQL</SourceType>
 <Source>SELECT target_guid, port as port, port as dummy FROM
MGMT$ESM_PORTS_LATEST</Source>
 <MetricColumnList>
 <MetricColumnInfo>
 <ColumnName>port</ColumnName>
 <ColumnType>Number</ColumnType>
 <isKey>true</isKey>
 <ColumnLabel nlsid="SAMPLE_RULE_6_LABEL">Port Number</
ColumnLabel>
 </MetricColumnInfo>
 </MetricColumnList>
 </Metric>
 <ParameterList>
 <RuleParameter>
 <ParamName nlsid="SAMPLE_RULE_6_DFLT_PORT_PNAME">DFLT_PORT</
ParamName>
 <ParamType>Number</ParamType>
 </RuleParameter>
 </ParameterList>
 <ParameterDefaultSettings>
 <ParamValue>
 <ParamName>DFLT_PORT</ParamName>
 <MinorWarnThreshold>655</MinorWarnThreshold>
 </ParamValue>
 </ParameterDefaultSettings>
 <TestCondition>
 <SqlWhereClauseCriteria>
 <WhereClause>:port < :DFLT_PORT</WhereClause>
 </SqlWhereClauseCriteria>
 </TestCondition>
 </RepositoryCheckDefinition>
 </CheckSource>
 <Severity>Critical</Severity>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>
 </KeywordList>
 <ViolationMessage nlsid="SAMPLE_RULE_6_MESG">The host is in an insecure state.
Port %port% is open.</ViolationMessage>
 <ClearViolationMessage nlsid="SAMPLE_RULE_6_CLR_MESG">Port %port% is not open.</
ClearViolationMessage>
 <Author>ORACLE</Author>
 <LastUpdatedBy><SYSTEM></LastUpdatedBy>
</Rule>

The following example provides an example of a compliance standard that includes rules to
check for use of a single control file.

Example: Sample Compliance Standard 1

<Standard xmlns="http://www.oracle.com/DataCenter/ConfigStd" oms_version="12.1.0.1.0"
name="sample_cs1">
 <DisplayName nlsid="SAMPLE_CS_1_NAME">Sample Compliance Standard 1</DisplayName>
 <TargetType>oracle_database</TargetType>

Chapter 13
More Compliance Examples

13-47

 <TargetPropertyFilter>
 <PropertyItem>
 <PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>Windows</Value>
 </ValueList>
 </PropertyItem>
 <PropertyItem>
 <PropertyName>orcl_gtp_target_version</PropertyName>
 <ValueList>
 <Value>8.1.6+</Value>
 </ValueList>
 </PropertyItem>
 </TargetPropertyFilter>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_CS_1_DESC">Sample Description</Description>
 <KeywordList>
 <Keyword nlsid="CONFIGURATION">Configuration</Keyword>
 </KeywordList>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <Body>
 <RuleFolder name="sample_RF_1">
 <DisplayName nlsid="SAMPLE_RF_1_NAME">Sample Rulefolder</
DisplayName>
 <Description nlsid="SAMPLE_RF_1_DESC">This includes rules that
checks for use of a single control file</Description>
 <ReferenceURL>http://www.oracle.com/db_rf1</ReferenceURL>
 <Importance>Normal</Importance>
 <RuleReference>
 <Name>sample_rule1</Name>
 <TargetType>oracle_database</TargetType>
 <Importance>Normal</Importance>
 </RuleReference>
 </RuleFolder>
 </Body>
</Standard>

The following example provides an example of a compliance standard that includes
rules to check for open unsecured ports.

Example: Sample Compliance Standard 2

<Standard xmlns="http://www.oracle.com/DataCenter/ConfigStd"
oms_version="12.1.0.1.0" name="sample_cs2">
 <DisplayName nlsid="SAMPLE_CS_2_NAME">Sample Compliance Standard 2</
DisplayName>
 <TargetType>host</TargetType>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_CS_2_DESC">Sample Description</Description>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>
 </KeywordList>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <Body>
 <RuleFolder name="sample_RF_2">

Chapter 13
More Compliance Examples

13-48

 <DisplayName nlsid="SAMPLE_RF_2_NAME">Sample Rulefolder</DisplayName>
 <Description nlsid="SAMPLE_RF_2_DESC">This includes rules that checks for
open insecure ports.</Description>
 <ReferenceURL>http://www.oracle.com/db_rf1</ReferenceURL>
 <Importance>Normal</Importance>
 <RuleReference>
 <Name>sample_rule4</Name>
 <TargetType>host</TargetType>
 <Importance>Normal</Importance>
 </RuleReference>
 </RuleFolder>
 </Body>
</Standard>

The following example provides an example of a compliance standard that includes rules to
check for open unsecured ports.

Example: Sample Compliance Standard 3

<Standard xmlns="http://www.oracle.com/DataCenter/ConfigStd" oms_version="12.1.0.1.0"
name="sample_cs3">
 <DisplayName nlsid="SAMPLE_CS_3_NAME">Sample Compliance Standard 3</DisplayName>
 <TargetType>host</TargetType>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <IsSystem>true</IsSystem>
 <Description nlsid="SAMPLE_CS_3_DESC">Sample Description</Description>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>
 </KeywordList>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <Body>
 <RuleFolder name="sample_RF_3">
 <DisplayName nlsid="SAMPLE_RF_3_NAME">Sample Rulefolder</DisplayName>
 <Description nlsid="SAMPLE_RF_3_DESC">This includes rules that checks
for open insecure ports.</Description>
 <ReferenceURL>http://www.oracle.com/db_rf1</ReferenceURL>
 <Importance>Normal</Importance>
 <RuleReference>
 <Name>sample_rule5</Name>
 <TargetType>host</TargetType>
 <Importance>Normal</Importance>
 </RuleReference>
 </RuleFolder>
 </Body>
</Standard>
]]

The following example provides an example of a compliance framework.

Example: Sample Compliance Framework

<StandardGroup xmlns="http://www.oracle.com/DataCenter/ConfigStd" name="sample_csg"
oms_version="12.1.0.1.0">
 <DisplayName nlsid="SAMPLE_CSG_NAME">Sample Compliance Framework</DisplayName>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <LifeCycleStatus>Production</LifeCycleStatus>
 <Description nlsid="SAMPLE_CSG_DESC">Sample Description</Description>
 <KeywordList>
 <Keyword nlsid="SECURITY">Security</Keyword>

Chapter 13
More Compliance Examples

13-49

 </KeywordList>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <IsHidden>false</IsHidden>
 <IsSystem>true</IsSystem>
 <GroupBody>
 <SubGroup name="SampleSubgroup">
 <DisplayName nlsid="SAMPLE_CSG_SUBGROUP_NAME">Sample Child
Framework</DisplayName>
 <Description nlsid="SAMPLE_CSG_SUBGROUP_DESC">Sample Child
framework Description</Description>
 <ReferenceURL>http://sampleurl.com</ReferenceURL>
 <Importance>Normal</Importance>
 <StandardReference>
 <Name>sample_cs3</Name>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 <Importance>Normal</Importance>
 </StandardReference>
 </SubGroup>
 </GroupBody>
 </StandardGroup>

The following example provides an example of compliance content.

Example: Compliance Content Version 2

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE ComplianceContent [
<!ENTITY rule1 SYSTEM "SampleRule1.xml">
<!ENTITY rule2 SYSTEM "SampleRule2.xml">
<!ENTITY rule3 SYSTEM "SampleRule3.xml">
<!ENTITY rule5 SYSTEM "SampleRule5.xml">
<!ENTITY rule6 SYSTEM "SampleRule6.xml">
<!ENTITY standard1 SYSTEM "SampleComplianceStandard1.xml">
<!ENTITY standard3 SYSTEM "SampleComplianceStandard3.xml">
<!ENTITY standardgroup SYSTEM "SampleComplianceFramework.xml">
]>
<ComplianceContent xmlns="http://www.oracle.com/DataCenter/ConfigStd"
name="SampleComplianceContent" oms_version="12.1.0.1.0"
content_version="12.1.0.2.0">
<ChangeList>
 <!-- ChangeList tag process each of the Change Tag with respect to the version
of the ComplianceContent installed in repository. -->

 <Change version="12.1.0.1.0">

 <!-- AddSubGroupWithinStandardGroup/AddStandardReferenceToStandardGroup tags
will modify StandardGroup definition. -->
 <!-- AddSubGroupWithinStandardGroup will introduce a subgroup within an
existing compliance framework/standard group in repository. -->
 <!-- AddStandardReferenceToStandardGroup will introduce a reference to a
standard within an existing compliance framework/standard group in repository.
-->

 <AddSubGroupWithinStandardGroup order="2">
 <StandardGroupName>oracle_pci</StandardGroupName>
 <StandardGroupAuthor>ORACLE</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 <SubGroup name="sampleSubgroup1">
 <DisplayName>sub1</DisplayName>

Chapter 13
More Compliance Examples

13-50

 <ReferenceURL>http://sampleAddedSubgroup.com</ReferenceURL>
 <Importance>High</Importance>
 </SubGroup>
 </AddSubGroupWithinStandardGroup>
 <AddStandardReferenceToStandardGroup>
 <StandardGroupName>oracle_pci</StandardGroupName>
 <StandardGroupAuthor>ORACLE</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 <SubGroupListInfo>
 <SubGroupElem>oracle_pci_ctrlobj_a</SubGroupElem>
 </SubGroupListInfo>
 <StandardReference>
 <Name>sample_cs1</Name>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 </StandardReference>
 </AddStandardReferenceToStandardGroup>
 </Change>

 <Change version="12.1.0.2.0">

 <!-- Delete will be remove rule/standard from repository if present, else it
will be noop. -->

 <DeleteStandard>
 <StandardName>sample_cs2</StandardName>
 <StandardAuthor>SYSTEM</StandardAuthor>
 <StandardVersion>1</StandardVersion>
 </DeleteStandard>

 <DeleteRule>
 <RuleName>sample_rule4</RuleName>
 <TargetType>host</TargetType>
 </DeleteRule>

 <!-- Entities with Update tag will override definitions if they exist in the
repository. -->
 <!-- Please note that if standard/rule is updated then old results are
 replaced by new results based on standard/rule definition after update. -->

 <UpdateRule>
 <RuleName>sample_rule5</RuleName>
 <TargetType>host</TargetType>
 </UpdateRule>
 <UpdateStandard>
 <StandardName>sample_cs3</StandardName>
 <StandardAuthor>SYSTEM</StandardAuthor>
 <StandardVersion>1</StandardVersion>
 </UpdateStandard>

 <UpdateStandardGroup>
 <StandardGroupName>sample_csg</StandardGroupName>
 <StandardGroupAuthor>SYSTEM</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 </UpdateStandardGroup>

 <!-- AddSubGroupWithinStandardGroup will introduce a subgroup within an
existing compliance framework/standard group in repository. -->
 <!-- AddStandardReferenceToStandardGroup will introduce a reference to a
standard within an existing compliance framework/standard group in repository. -->

Chapter 13
More Compliance Examples

13-51

 <AddSubGroupWithinStandardGroup order="2">
 <StandardGroupName>oracle_pci</StandardGroupName>
 <StandardGroupAuthor>ORACLE</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 <SubGroup name="sampleSubgroup2">
 <DisplayName>sub2</DisplayName>
 <ReferenceURL>http://sampleAddedSubgroup.com</ReferenceURL>
 <Importance>High</Importance>
 </SubGroup>
 </AddSubGroupWithinStandardGroup>
 <AddStandardReferenceToStandardGroup>
 <StandardGroupName>oracle_pci</StandardGroupName>
 <StandardGroupAuthor>ORACLE</StandardGroupAuthor>
 <StandardGroupVersion>1</StandardGroupVersion>
 <SubGroupListInfo>
 <SubGroupElem>oracle_pci_ctrlobj_a</SubGroupElem>
 </SubGroupListInfo>
 <StandardReference>
 <Name>sample_cs3</Name>
 <Author>SYSTEM</Author>
 <Version>1</Version>
 </StandardReference>
 </AddStandardReferenceToStandardGroup>
 </Change>

</ChangeList>
<!--List of compliance standard rules -->
&rule1;
&rule2;
&rule3;
&rule5;
&rule6;
<!--List of compliance standards -->
&standard1;
&standard3;
<!--List of compliance standard groups/frameworks -->
&standardgroup;
</ComplianceContent>

Publishing Compliance Content Using Self Update
If you want to publish compliance content without having to deploy the plug-in, than
use the Self Update console.

To publish and apply compliance content from the Self Update console:

1. Create a compliance content JAR file from the XML content using the following
command:

-jar cvfM compliancecontent.jar compliance_content_files

Note:

Similarly, multiple DLF files can be combined in a JAR file.

Chapter 13
Publishing Compliance Content Using Self Update

13-52

2. Create a manifest file to specify the name of the compliance content, label, and the
version of the compliance content to be published. This manifest file specifies
compliancecontent.jar and compliancedlf.jar in order respectively.

Example: Sample Manifest File

<?xml version="1.0" encoding="utf-8"?>
<tns:EntityInstance xmlns:tns="http://www.oracle.com/EnterpriseGridControl/
SelfUpdateManifest"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" EntityType="param"
EntityTypeVersion="12.1.0.1.0" Vendor="Oracle" Maturity="TEST">

<tns:Description><![CDATA[<param>]]></tns:Description>

<tns:AttributeList>
<tns:Version>12.1.0.1.0</tns:Version>
<tns:Attribute Name="name" Value="<param>" Label="display_name"/>
</tns:AttributeList>
<tns:Readme><![CDATA[<param>]]>
</tns:Readme>
<tns:CustomParamList/>
<tns:DependsOn/>
<tns:ArchiveList>
<tns:Archive Filename="param"/>
<tns:Archive Filename="param"/>
</tns:ArchiveList>
<tns:CustomData/>
</tns:EntityInstance>

3. Create a SAR (self update archive) file from the manifest file, compliancecontent.jar, and
compliancedlf.jar using the following command:

edkutil prepare_update -manifest manifest_file_name -archivedir
directory_containing_compliancecontent.jar_and_compliancedlf.jar -out
sar_file_name

Note:

Before you import the SAR file into Enterprise Manager, make sure that the
Software Library is configured.

For more information, see Setting Up the Software Library.

4. Import the SAR file into Enterprise Manager using the following command:

emcli import_update -omslocal -file=complete_path_to_sar_file

Note:

Using the -omslocal flag means that the file must be placed on the Oracle
Management Server (OMS) file system.

5. Log in to Enterprise Manager. From the Setup menu, select Extensibility, and then Self
Update.

The Self Update page appears.

Chapter 13
Publishing Compliance Content Using Self Update

13-53

6. From the Status area, check that Downloaded Updates is set to 1 for Compliance
Content.

7. In the Type column, click Compliance Content.

The Self Update: Compliance Content page appears.

8. Select the row with downloaded in the Status column, then Apply. Follow the
steps in the wizard that appears.

9. From the Actions list, select Apply and check that the Status column reads
succeeded.

10. Verify the imported compliance content from the Compliance Library. To view the
Compliance Library, from the Enterprise menu, select Compliance, then select
Library.

Chapter 13
Publishing Compliance Content Using Self Update

13-54

14
Validating, Packaging, and Deploying the
Plug-in

This chapter contains the following sections:

• Introduction to Validating, Packaging, and Deploying the Plug-in

• Staging the Plug-in

• Validating the Plug-in

• Creating the Plug-in Archive

• Importing and Deploying the Plug-in Archive into Enterprise Manager

• Adding a Target Instance

• Updating Deployed Metadata Files Using the Metadata Registration Service (MRS)

Introduction to Validating, Packaging, and Deploying the Plug-in
As a plug-in developer, you are responsible for the following steps within the validation,
packaging, and deployment process:

1. Create the staging directory (plugin_stage):

The staging directory structure defines the location of files as they will be deployed to
Oracle Management Service and Management Agents.

For more information, see Staging the Plug-in.

2. Validate the plug-in.

Use the empdk validate_plugin command to validate the content of the plug-in once
you have designed and developed it. This command verifies that the XML metadata files
are compliant.

For more information, see Validating the Plug-in.

3. Create the Oracle Plug-in Archive (OPAR) file.

The plug-in archive is the standard way of distributing the plug-in for importing and
deploying the plug-in across different installations of the Enterprise Manager Cloud
Control.

For more information, see Creating the Plug-in Archive.

4. Import the OPAR into Enterprise Manager.

Use the emcli import_update command to import the plug-in into Enterprise Manager.

For more information, see Importing and Deploying the Plug-in Archive into Enterprise
Manager.

5. Deploy the plug-in.

You must deploy a plug-in on the Oracle Management Service before it is used for
monitoring targets.

14-1

For more information, see Deploying the Plug-in on Oracle Management Service
(OMS).

6. Add target instances for the deployed plug-in to monitor.

For more information, see Adding a Target Instance.

7. Use the Metadata Registration Service (MRS) to deploy updated metadata files.

The MRS allows you to upload one or more updated metadata files to the Oracle
Management Service and Management Agents where your plug-in is deployed.
The MRS registers the updated metadata files with Enterprise Manager, and
overwrites the existing metadata with your updates.

For more information, see Updating Deployed Metadata Files Using the Metadata
Registration Service (MRS).

Staging the Plug-in
After you have created the plug-in files, the next step is to stage the plug-in in
preparation for validation and packaging. The staging directory structure defines the
location of files as they will be deployed to Oracle Management Service and
Management Agents.

The following example provides an example of the staging directory structure and
Table 14-1 describes the archive directory structure. Files are placed in the archive
based on whether they are deployed to Oracle Management Service, Management
Agents, or both. When the plug-in is deployed to an OMS instance or a Management
Agent, the requisite files are copied to their respective directory locations.

Example: Plug-in Directory Structure

plugin_stage/
 |
 plugin.xml
 agent/
 |
 plugin_registry.xml
 default_collection/
 |
 target_type.xml
 metadata/
 |
 target_type.xml
 scripts/
 |
 scripts
 oms/
 |
 metadata/
 |
 default_collection/
 |
 target_type.xml
 derivedAssoc/
 |
 derivedAssoc_rule.xml

Chapter 14
Staging the Plug-in

14-2

 discovery/
 |
 discovery.xml
 gccompliance/
 |
 ComplianceContent_name.xml
 jobTypes/
 |
 job_type.xml
 mpcui/
 |
 mpcui.xml
 reports/
 |
 report.xml
 snapshotlive/
 |
 target-type_ecmdef.xml
 targetType/
 |
 target_type.xml
 discovery/
 |
 discovery scripts

Note:

Use of the specified subdirectory names within the archive are not required, but are
recommended by Oracle.

Table 14-1 File Locations in Plug-in Archive Structure

File Directory Notes

plugin.xml plugin_stage/ Required. This file defines generic
plug-in metadata that is deployed to
Oracle Management Service. Place it
at the root level within the archive
structure.For more information, see
Creating the plugin.xml File.

plugin_registry.x
ml

plugin_stage/agent/ Required. This file defines metadata
describing the plug-in used by the
Management Agent. It must be placed
at the top level of the /agent
directory. For more information, see
Creating the plugin_registry.xml File.

Chapter 14
Staging the Plug-in

14-3

Table 14-1 (Cont.) File Locations in Plug-in Archive Structure

File Directory Notes

target_type.xml plugin_stage/oms/metadata/
targetType/
plugin_stage/agent/metadata/

Required. This file defines metrics to
be collected or computed for the
target type.

An identical copy of this file must be
placed in both the /oms and /agent
directories. For more information, see
Creating the Target Type Metadata
File.

default_collectio
ns.xml

plugin_stage/oms/metadata/
default_collection/
plugin_stage/agent/
default_collection/

Required. This file defines metric
collection parameters such as metric
data collection frequency and default
metric alert thresholds.

An identical copy of this file must be
placed in both the /oms and /agent
directories. For more information, see
Creating the Default Collection File.

Note: Oracle recommends that you
name the default collections metadata
file with the same file name as the
target type metadata file.

target-
type_ecmdef.xml

plugin_stage/oms/metadata/
snapshotlive/

Optional. Defines configuration data
collection. For more information, see
Defining Configuration Collection
Tables.

job_type.xml plugin_stage/oms/metadata/
jobTypes/

Optional. Place all job type definition
files in the /jobTypes directory. For
more information, see Adding Job
Types .

report.xml plugin_stage/oms/metadata/
reports/

Optional. Put report definition files in
the /reports directory.

derivedAssoc_rule
.xml

plugin_stage/oms/metadata/
derivedAssoc/

Optional. Place the metadata file that
defines the association derivation
rules (or set of rules) in this directory.
For more information, see Using
Derived Associations.

ComplianceContent
_name.xml

plugin_stage/oms/metadata/
gccompliance/

Optional.
ComplianceContent_name.xml
contains references to compliance
standards, rules, and frameworks.
This directory can contain compliance
rule, compliance standard, and
compliance framework XML files. For
more information, see Packaging
Compliance XML.

compliance.dlf plugin_stage/oms/rsc/area/
gccompliance/

Optional. Place all Data Loading
Format (DLF) map entry (DLF) files
associated with compliance rules or
standards definitions in this directory.

Chapter 14
Staging the Plug-in

14-4

Table 14-1 (Cont.) File Locations in Plug-in Archive Structure

File Directory Notes

mpcui.xml plugin_stage/oms/metadata/
mpcui/

Optional. Place all management user
interface metadata files in this
directory. For more information, see
Defining a Management User
Interface .

discovery.xml plugin_stage/oms/metadata/
discovery/

Optional. Place discovery metadata
files in this location. For more
information, see Packaging Discovery
XML and Discovery Content.

discovery script file(s) plugin_stage/discovery/ Optional. Place the Perl scripts and
JAR files (if any) that are required to
perform automatic discovery in this
location. For more information, see
Packaging Discovery XML and
Discovery Content.

script file(s) plugin_stage/agent/scripts/ Optional. Put any scripts that will be
deployed to Management Agents,
such as metric collection scripts
invoked by fetchlets, in this location.

Use of the /scripts directory is not
required but is recommended, as it
allows use of the %scriptsDir%
token from metric query descriptors
defined in the target-type.xml file and
in job type command references.

Modifying File Permissions Within the Plug-in Directory
To specify customized file permissions for scripts packaged under the plug-in directory:

1. Create the following text file in the relevant directory (oms, agent, or discovery):

plugin_stage/oms/file_permissions.txt
plugin_stage/agent/file_permissions.txt
plugin_stage/discovery/file_permissions.txt

2. Specify the permissions for multiple files, each in one row. The format of the text file is
similar to the following:

file_name:file_permission_number

or

file_pattern:file_permission_number

In these formats:

• file_name represents the name of the file that will have permissions changed

• file_pattern represents a pattern that the script will search for, such as a certain file
type or all file names containing the pattern. Then all matched files will have
permissions changed.

• file_permission_number represents the UNIX permission description of the file. This
is the new permissions value of the matched files.

Chapter 14
Staging the Plug-in

14-5

For example, to change the permissions of all occurrences of example1.sh to 655
within the plugin_stage/oms directory, add the following entry to the
plugin_stage/oms/file_permissions.txt file:

example1.sh:655

To change the permissions of all script files (of file type *.sh) to 655 within the
plugin_stage/discovery directory, add the following entry to the plugin_stage/
discovery/file_permissions.txt file:

*.sh:655

To change the permissions of all files beginning with abc to 655 within the
plugin_stage/agent directory, add the following entry to the plugin_stage/agent/
file_permissions.txt file:

abc*:655
3. Save and close the file_permissions.txt file. These permissions are read and

retained during plug-in creation with the OPAR and later used during the plug-in
software installation. For more information about plug-in creation, see Creating the
Plug-in Archive.

Validating the Plug-in
Validate the plug-in throughout the development cycle, and before packaging the plug-
in. Use the empdk validate_plugin command to validate the content of the plug-in
after you have designed and developed it to verify that the XML metadata files are
compliant. The tool is run against the specified plug-in staging directory and generates
a report of any violations found. Specify the format of the generated report using the -
format option.

The following example provides the command usage.

Example: empdk validate_plugin Command Usage

 empdk validate_plugin -stage_dir staging directory
 [-tmp_dir temporary working location]
 [-out_dir output directory]
 [-format (html|text|xml)]
 [-conn_desc] - not used by external developers
 [-repos_user Enterprise Manager repository owner]
 [-debug [file to output debug information to]]

The following example validates the plug-in source files in the specified staging
directory, and generates the validation report as a text file in the current working
directory:

edk\bin>empdk validate_plugin -stage_dir C:\plugin_staging -format text

Table 14-2 provides the options that can be used to validate the plug-in.

Table 14-2 Options for Validating the Plug-in

Option Description

-tmp_dir Specify a temporary location to extract the plug-in files into. If not
specified, it defaults to the current directory.

Chapter 14
Validating the Plug-in

14-6

Table 14-2 (Cont.) Options for Validating the Plug-in

Option Description

-out_dir The directory the validation report file will generated into. If not
specified, the report file will be generated in the current working
directory.

-debug Specify a file name where you want to store the debug
information. If not specified, the default log file
(validateplugin.logtime) will be created in the out directory and
will store warning and error message only. If specified, then it will
store all the debugging information to that log file

-format The format the validation report will be generated in. If not
specified, the report will be generated as a text file.

Creating the Plug-in Archive
After you have created the plug-in stage directory and validated the plug-in, the next step is
to create an Oracle Plug-in Archive (OPAR) file. The OPAR file plays an important role at
various stages of the plug-in lifecycle. It serves the following:

• The plug-in archive is the standard way of distributing the plug-in for importing and
deploying the plug-in across different installations of the Enterprise Manager Cloud
Control.

• You must test the plug-in being developed on an Enterprise Manager Cloud Control
installation.

A plug-in is created by adding the files previously discussed to an OPAR using the Enterprise
Manager Extensibility Development Kit (EDK). For more information about the EDK, see the
Oracle Enterprise Manager Cloud Control Extensibility Programmer's Guide.

To create an OPAR, at the command prompt, enter the empdk create_plugin command. For
more information about the create_plugin verb, see the command line help

The empdk create_plugin command syntax is as follows:

empdk create_plugin -stage_dir staging dir -conn_desc repository_connection_string -
repos_user username [-repos_password repos_password]
 -out_dir output_directory [-debug] [-force]

For example:

edk\bin>empdk create_plugin -stage_dir C:\pluginstagdir -conn_desc
myhost.us.example.com:25055:$ORACLE_SID -repos_user sysman -out_dir /tmp/plugins

Table 14-3 provides the options that can be used to create an OPAR:

Chapter 14
Creating the Plug-in Archive

14-7

Table 14-3 Options for Creating an OPAR

Option Description

-tmp_dir This option enables the command to create a temporary
directory while executing. You can specify the path you want to
use for this by providing a value following the option. Specify an
existing directory or else you will receive an error. If not
specified, then the out directory will be used for temporary
location. If no out directory is specified, the current directory is
the default.

-out_dir The directory in which the plug-in archive (*.opar) file will be
created. If not specified, the plug-in archive will be created in the
current directory.

-debug Specify a file name where you want to store the debug
information.If not specified, the default log file
(createplugin.logtime) will be created in the out directory and will
store only warning and error messages. If specified, then it will
store all the debugging information to that log file. This
debugging information can be used to identify issues you may
encounter while creating a plug-in. You can append the log
created when you are filing a support request for a create plug-in
related issue.

-force If the out directory contains an OPAR with the same name, then
you will be prompted to specify whether to overwrite the existing
OPAR. If provided, it will automatically overwrite the existing
OPAR. This is disabled by default.

-conn_desc The connection descriptor that will connect to the Management
Repository that the plug-in metadata will be written to when the
plug-in is imported into Enterprise Manager.

Specify the connection descriptor using the following syntax:
host:port:sid
For example:

myhost.us.example.com:25055:$ORACLE_SID

-repos_user The user to connect to the Management Repository.

If the command runs successfully, then a plugin_version.plugin_id.opar archive will be
created in the directory where you ran this command.

If the command fails, an appropriate error message will be displayed. The parameters
passed to the commands vary from user to user and across systems where the plug-in
is being created.

Some common mistakes while trying to create the plug-in archive are:

• If the path to the staging directory is entered incorrectly, then it raises a File not
found or an Input not found exception.

• The empdk command not found exception will be shown if you have not changed
your current directory to the expanded EDK directory.

• If the disk where you are trying to create the OPAR has inadequate memory, then
an Input/Output-related exception might occur.

Chapter 14
Creating the Plug-in Archive

14-8

Importing and Deploying the Plug-in Archive into Enterprise
Manager

Once you have the plug-in archive ready with your *.opar file, you must import the plug-in into
Enterprise Manager. Importing ensures that the content that you have created and packaged
in the plug-in is available within Enterprise Manager.

Note:

You must first import the plug-in before it can be deployed onto Enterprise Manager.

Prerequisites for Importing the Plug-in
The following prerequisites are met before importing the plug-in.

Setting Up the Software Library
1. Create a folder in the system where Enterprise Manger is installed. For example, /net/

hostname/scratch/aime/swlib1.

2. From the console, select Enterprise, then Provisioning and Patching, and then
Software Library.

3. Click Actions, then Administration.

4. Click Add.

5. In the pop up window, enter a name and location. For example, swlib1 and /net/
hostname/scratch/aime/swlib1. This should be the folder that you created in step 1.

6. Wait for the processing to finish.

Setting Up the EM CLI Utility
You will use the Enterprise Manager Command Line Utility, or EM CLI, to import the plug-in
archive for deployment to Enterprise Manager.

• A page is provided in the Cloud Control console with instructions on setting up EM CLI.
Access the page at the following URL:

https://em_host:em_port/em/console/emcli/download

For example:

https://emserver.test.com:7799/em/console/emcli/download
• After setting up EM CLI, synchronize the EM CLI client with an Oracle Management

Service (OMS):

emcli sync

After synchronization, all verbs and associated command line help available to this OMS
become available at the EM CLI client.

Chapter 14
Importing and Deploying the Plug-in Archive into Enterprise Manager

14-9

Importing the Plug-in Archive
Once packaged, the plug-in must be imported into Enterprise Manager Cloud Control
using the emcli import_update command. You have two options depending on where
EM CLI is installed:

• If EM CLI is on the same system as the system where you created the plug-in
archive (*.opar file), then run the following command.

emcli import_update
 -file="<path to *.opar file you created>"
 -omslocal

The -omslocal flag indicates that the plug-in archive is on the same system
where you are running this command and the path exists on this system.

For example:

emcli import_update -file=/tmp/sample_plugin.opar -omslocal
• If you are running EM CLI on a different system than the system where you

created the plug-in archive (*.opar file), then run the following command:

emcli import_update
 -file="path to the .opar file"
 -host="host name of plug-in host"
 -credential_name="credential for plug-in host"
 -credential_owner="credential owner on the plug-in host"

where:

– -file: The absolute path to the *.opar file on the system where you created
the archive.

– -host: The host name for the host target where the file is available.

– -credential_name: The name of the credentials on the remote system you are
connecting to.

– -credential_owner: The owner of the credentials on the host system you are
connecting to.

For example:

emcli import_update -file=/tmp/sample_plugin.opar -
host="host1.test.com" -credential_name="myOracleCred" -
credential_owner="password"

• As an alternative to the previous step, you can also run the following command:

emcli import_update
 -file="path to *.opar file you created"
 -host="hostname"
 -credential_set_name="setname"

-credential_set_name: The set name of the preferred credential stored in the
Management Repository for the host target. It can be one of the following:

– HostCredsNormal: The default unprivileged credential set.

– HostCredsPriv: The privileged credential set.

Chapter 14
Importing and Deploying the Plug-in Archive into Enterprise Manager

14-10

Deploying the Plug-in on Oracle Management Service (OMS)
A plug-in must be deployed on Oracle Management Service (OMS) before it can be used to
monitor targets. Follow the steps below to deploy the plug-in on Enterprise Manager Cloud
Control.

Note:

Plug-ins must be deployed on Oracle Management Service before being deployed
on Management Agents.

Plug-ins for specific target types are deployed automatically on Management
Agents that will monitor those target types. For more information, see Adding a
Target Instance.

To deploy a plug-in on the Oracle Management Server:

1. From the Setup menu, select Extensibility, then Plug-ins.

Enterprise Manager displays the list of plug-ins that have been downloaded and can be
deployed on the Plug-ins page.

2. On the Plug-ins page, select the specific plug-in you want to deploy.

3. Click Deploy On, then select Management Servers.

Ensure that dependent plug-ins are deployed and that all existing Management Agents
are compatible with the version of the specified plug-in. Enterprise Manager prompts for
credentials if the Management Agent is not available.

4. On the Deploy Plug-in window, enter the required details. Note that you will require the
Management Repository SYS user password to complete the deployment process.

From the Version list, select the Plug-in version. The Target Type information is
displayed in the table. Enter the Repository sys Password, then click Continue.

5. Proceed through the steps in the Deploy Plug-in windows.

6. Click Deploy to deploy the selected plug-in on all Enterprise Manager servers.

Enterprise Manager displays a page that allows you to monitor the deployment status.
Enterprise Manager deploys the selected plug-in on all Enterprise Manager Servers.

You can also monitor the deployment status by going to the Enterprise Manager Cloud
Control console, then going to the Plug-ins page as described in step 1, selecting the
plug-in and select the Recent Deployment Activities tab at the bottom of the page for
the selected plug-ins. This bottom section also lets you see details of your plug-in, which
includes the plug-in ID, version, vendor, and so on.

If any of the steps during plug-in deployment fails, the log file is available
in $ORACLE_HOME/cfgtoollogs/pluginca/*. Append these files when logging a support
request for failure while deploying the plug-in. You can also use them to debug the
problem.

Chapter 14
Importing and Deploying the Plug-in Archive into Enterprise Manager

14-11

Important Details Regarding Plug-in Deployment
• You can import multiple versions of the same plug-in. The version to deploy can be

selected from a list if you are using Cloud Control to deploy the plug-in, or can be
specified on the command line if using EM CLI.

• Only one version can be deployed on the Oracle Management Service (OMS) at
any given time. If a later version has been deployed previously, it cannot be
downgraded to an earlier version.

• Updating a plug-in to a new version does not remove the content of the older plug-
in(s) that were imported.

• The Management Agent can have the same or earlier version of the plug-in that is
deployed on the OMS. A version later than the version on the OMS is not allowed
on the Management Agent.

• The plug-in on OMS and the Management Agent can be updated independently of
each other as long as the version on the OMS is the latest version.

• Available updates are visible on the Plug-ins page. They can be downloaded from
the Enterprise Manager store or imported using EM CLI as described in Importing
the Plug-in Archive.

Adding a Target Instance
When the plug-in is deployed on OMS, it is ready to monitor target instances.

Note:

In the current Cloud Control release, deployment of a plug-in to a
Management Agent that will monitor targets is no longer required. Instead,
the plug-in for a specific target type is automatically deployed with the
Management Agent that will monitor targets of that type.

This is a significant change from previous releases, in which plug-ins had to
be manually deployed to a Management Agent first. Then a target instance
had to be added to the Management Agent manually.

You can add targets that the plug-in will monitor through Enterprise Manager Cloud
Control by selecting Add Targets from the Setup menu. The process for adding
targets - known in Cloud Control terminology as target promotion - varies depending
on the option you choose.

You can also add a target instance using the EM CLI utility. Open a command prompt
and run the following command:

emcli add_target
 -name="name"
 -type="type"
 -host="hostname"
 [-properties="pname1:pval1;pname2:pval2;..."]...
 [-separator=properties="sep_string"]

Chapter 14
Adding a Target Instance

14-12

 [-subseparator=properties="subsep_string"]
 [-credentials="userpropname:username;pwdpropname:password;..."]
 [-input_file="parameter_tag:file_path"]
 [-display_name="display name"]
 [-groups="groupname1:grouptype1;groupname2:grouptype2;..."]...
 [-timezone_region="gmt offset"]
 [-monitor_mode="monitor mode"]
 [-instances="rac database instance target name1:target type1;..."
]

For example:

emcli add_target
 -name="cluster_database"
 -type="rac_database"
 -host="myhost.us.example.com"
 -monitor_mode="1"
 -
properties="ServiceName:service.us.example.com;ClusterName:newdb_cluster"
 -
instances="database_inst1:oracle_database;database_inst2:oracle_database"

Use the emcli help add_target help command to see more options when adding the target
instance.

If targets have been added before, they will be promoted and monitored by the plug-in after it
is deployed.

Updating Deployed Metadata Files Using the Metadata
Registration Service (MRS)

As part of the plug-in development process, you will package your plug-in as an archive and
deploy it to an Enterprise Manager Cloud Control installation to test it. However, you will likely
not want to re-deploy the plug-in each time you make changes to various metadata files.

Note:

You must update the metadata version each time you update a metadata file.

The Metadata Registration Service (MRS) allows you to upload one or more updated
metadata files to the Oracle Management Service and Management Agents your plug-in has
been deployed to. The updated metadata files will be registered with Enterprise Manager,
and will overwrite the existing metadata with your updates.

Chapter 14
Updating Deployed Metadata Files Using the Metadata Registration Service (MRS)

14-13

Note:

For target types and default collections, some additional steps are required
for using MRS, see Target Types and Default Collections.

This service is invoked through the emctl register oms metadata command. The
syntax is as follows:

emctl register oms metadata -service Metadata Service Id (-file metadata file
to register | -file_list file containing list of files to register)
 [-core | -pluginId Plugin Id] [-sysman_pwd "sysman password"]

For example, the following command registers changes to target type metadata file:

emctl register oms metadata -service targetType -file /staging/
demo_hostsample.xml -pluginId test.demo.xyz -sysman_pwd myempassword

Table 14-4 describes the usage of the command.

Table 14-4 emctl Command Usage

Option Required
Y/N

Description

-service Y Specify the type of metadata to register. Values are:

• targetType: Specify for target type metadata.

• default_collection: Specify for default
collection metadata.

• LiveSnapshotRegistration: Specify for
configuration metadata registration

• CredStoreMetadata: Specify for

• jobTypes: Specify for

• report: Specify for Report Metadata
Registration

• bipublisherreport: Specify for BI Publisher
report metadata.

• discovery: Specify for discovery metadata.

• derivedAssocs: Specify for associations
metadata.

• gccompliance: Specify for compliance rules,
compliance standards, and compliance
framework metadata.

• mpcui: Specify for management user interface
metadata.

-file N The path and file name for a single metadata file to
upload and register. Either -file or -file_list
can be included.

-file_list N The path and file name for a file containing a list of
metadata file paths (one on each line).

-core N Not valid for plug-in development.

Chapter 14
Updating Deployed Metadata Files Using the Metadata Registration Service (MRS)

14-14

Table 14-4 (Cont.) emctl Command Usage

Option Required
Y/N

Description

-pluginId N The unique three-part identifier given to the
deployed plug-in to update. See Defining the Plug-in
ID for details.

-sysman_pwd Y The Enterprise Manager user password.

Target Types and Default Collections
For target types and default collections, some additional steps are required for using MRS if
there are existing targets of this target type.

If you have an existing target and you want to update the metadata files during the plug-in
development process, follow these steps:

1. Register the new metadata files using the emctl register oms metadata command.

emctl register oms metadata -service targetType -file full path/
TargetTypeMetadata.xml -pluginId Plugin Id -sysman_pwd sysman

emctl register oms metadata -service storeTargetType -file full path/
TargetTypeMetadata.xml -pluginId Plugin Id -sysman_pwd sysman

emctl register oms metadata-service default_collection -file full path/
TargetTypeCollection.xml -pluginId Plugin Id -sysman_pwd sysman

emctl register oms metadata-service systemStencil -file full path/
TargetTypeStencil.xml -pluginId Plugin Id -sysman_pwd sysman

2. Place the metadata XML files in the correct directories of the plug-in home directory
(PLUGIN_AGENT_HOME) in the Management Agent as shown. The
PLUGIN_AGENT_HOME directory is created when the plug-in is deployed to the
Management Agent. The default location is AGENT_BASE_DIR/plugins.

$PLUGIN_AGENT_HOME/metadata/
$PLUGIN_AGENT_HOME/default_collection

3. Restart the Management Agent.

AGENT_HOME/agent/bin/emctl stop agent
AGENT_HOME/agent/bin/emctl start agent

In the preceding command, AGENT_HOME represents the Management Agent home
directory.

Chapter 14
Updating Deployed Metadata Files Using the Metadata Registration Service (MRS)

14-15

15
Defining Software Library Metadata

The chapter introduces Software Library framework, and describes how you can define and
register metadata that is used by plug-in integrators, to extend a Software Library to include
extensions, and Out-of-box entities. After registering the custom extensions, you can use
interfaces like Software Library console, EM CLI, Action Script API, and so on, to create,
manage, and access Software Library entities. Primarily, the chapter contains the following
topics:

• Introduction to Software Library Framework

• Defining Software Library Metadata

• Organizing Software Library Metadata Files

• Adding the Software Library Metadata to Enterprise Manager

• Using Software Library Entities

Note:

For conceptual information about any of the topics covered in this chapter, see
Oracle Enterprise Manager Cloud Control Extensibility Programmer's Guide.

Introduction to Software Library Framework
After defining and registering the new metadata, you can extend the Software Library
framework to become aware of new types of software or scripts or configurations. You can
use these entities in the existing or custom automation logic represented by a job type or
deployment procedure.

As a plug-in developer, you will be able to define the following Software Library metadata:

• Folder

Software Library allows you to organize the different user-defined or out-of-box entities
into logical folders for efficient management.

For more information, see Defining Folders.

• Type and Subtype

A type and subtype together define the common traits of the entities it represents in terms
of common and searchable metadata/configuration properties, their default values, file
association requirements, etc. All entities in Software Library have an associated type
and a subtype.

For more information, see Defining Types and Defining Subtypes.

• Entity

Entities are the primary artifacts stored in Software Library. They are identified by the
type/subtype they have been created with and the folder they are present in.

15-1

For more information, see Defining Entities.

Defining Software Library Metadata
This section contains the following topics:

• Defining Folders

• Defining Types

• Defining Subtypes

• Defining Entities

Note:

To view an example which describes how to use the Software Library
artifacts, follow these steps:

1. In Cloud Control, from Setup menu, select Extensibility, and click
Development Kit.

2. On the Extensibility Development Kit page, in the Getting Started
section, five samples are listed in the samples directory. The Sample
Host Plugin 2 (Sample II) is the plug-in sample that covers information
about Software Library artifacts.

Once you have downloaded the EDK kit to your local system, select
oracle.samples.xsh2 sample available in /samples/plugins/ directory. If
you further drill down to /samples/plugins/oracle.samples.xsh2/
plugin_dist/oms/metadata directory, the swlib folder is displayed which
contains the necessary examples.

Note:

All the Software Library Metadata described in this section must be included
in the XML file as described in Organizing Software Library Metadata Files.
Following which, you must register them using the information available in
Adding the Software Library Metadata to Enterprise Manager.

Defining Folders
The following example describes how you can create two top level folders called
MPFolder1 and MPFolder2, with a subfolder named Subfolder under each of these
folders:

<Folders>
 <Folder name="MPFolder1">
 </Folder>
 <Folder name="MPFolder2">
 </Folder>
 <Folder name="MPFolder1/subfolder">
 </Folder>

Chapter 15
Defining Software Library Metadata

15-2

 <Folder name="MPFolder2/subfolder">
 </Folder>
</Folders>

After defining and registering the folders, when the plug-in is deployed, these folders will be
displayed in Software Library console with a lock symbol, which means that the folders are
Oracle-Owned, and can not be editted. You can customize them using the Create Like
functionality available in Software Library. All the other folders that are created using
Enterprise Manager console by users appear without the lock symbol, and can be editted by
anyone who has been given the required accesses on the folder.

Defining Types
The following example describes how to create two Type artifacts called MPType1 and
MPType2:

<Types>
<EntityType internalName="MPType1"/>
<EntityType internalName="MPType2"/>
</Types>

Defining Subtypes
The following example describes how you can create a subtype MPSubtype1 for the type
MPType1:

<EntitySubtype internalName="MPSubtype1" type="MPType1">
 <EntityProperties filename="MPSubtype-entPropDict.xml"/>
 <GenericUISpecification>
 <Create>
 <ContentDescriptor>
 <DisplayName default="Describe"/>
 <Description default="Describe"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/sdkcore-
regions-swlib-describe-task-flow.xml#sdkcore-regions-swlib-describe-task-
flow" contentType="ADFRegion"/>
 </ContentDescriptor>
 <ContentDescriptor>
 <DisplayName default="Select Files"/>
 <Description default="Select Files"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/sdkcore-
regions-swlib-upload-task-flow.xml#sdkcore-regions-swlib-upload-task-flow"
contentType="ADFRegion"/>
 </ContentDescriptor>
 <ContentDescriptor>
 <DisplayName default="Review"/>
 <Description default="Review"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/sdkcore-
regions-swlib-review-task-flow.xml#sdkcore-regions-swlib-review-task-flow"
contentType="ADFRegion"/>
 </ContentDescriptor>
 </Create>
 <Edit>
 <ContentDescriptor>
 <DisplayName default="Describe"/>

Chapter 15
Defining Software Library Metadata

15-3

 <Description default="Describe"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/
sdkcore-regions-swlib-describe-task-flow.xml#sdkcore-regions-swlib-
describe-task-flow" contentType="ADFRegion"/>
 </ContentDescriptor>
 <ContentDescriptor>
 <DisplayName default="Select Files"/>
 <Description default="Select Files"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/
sdkcore-regions-swlib-upload-task-flow.xml#sdkcore-regions-swlib-
upload-task-flow" contentType="ADFRegion"/>
 </ContentDescriptor>
 </Edit>
 <View>
 <ContentDescriptor>
 <DisplayName default="Describe"/>
 <Description default="Describe"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/
sdkcore-regions-swlib-describe-task-flow.xml#sdkcore-regions-swlib-
describe-task-flow" contentType="ADFRegion"/>
 </ContentDescriptor>
 <ContentDescriptor>
 <DisplayName default="Select Files"/>
 <Description default="Select Files"/>
 <Content contentId="/WEB-INF/sdk/core/regions/swlib/
sdkcore-regions-swlib-upload-task-flow.xml#sdkcore-regions-swlib-
upload-task-flow" contentType="ADFRegion"/>
 </ContentDescriptor>
 </View>
 </GenericUISpecification>
 </EntitySubtype>

Once a subtype defined is registered, entities of this subtype can be created (if
creation is not blocked) using the Software Library console. To do so, from Enterprise
menu, select Provisioning and Patching , then click Software Library. From the
Software Libray page, select a user-owned folder. From Actions menu, select Create,
and then select Type and then the SubType. All the sub-types that belong to the type
selected are displayed. For more information, see the following graphic file.

Chapter 15
Defining Software Library Metadata

15-4

Ideally, you must see the subtypes you created as a part of this list, if not, there is an issue
with registration. For more information on registerting the sub-type, see Adding the Software
Library Metadata to Enterprise Manager.

Entity Properties File
Following is the entity properties file MPSubtype-entPropDict.xml:

<?xml version="1.0"?>
<Dictionary xmlns="http://www.oracle.com/sysman/emgc/Properties">
 <TypeDefinitions>
 <DictionaryItem refID="MPAttr1" purpose="PURPOSE_TopLevel">
 <PropType typeCode="TYPE_String">
 <SimpleType className="java.lang.String" uiHintReadOnly="false"
uiHintHidden="false" secret="false" guid="false">
 <Constraints/>
 </SimpleType>
 </PropType>
 </DictionaryItem>

 <DictionaryItem refID="MPAttr2" purpose="PURPOSE_TopLevel">
 <PropType typeCode="TYPE_String">
 <SimpleType className="java.lang.String" uiHintReadOnly="false"
uiHintHidden="false" secret="false" guid="false">
 <Constraints/>
 </SimpleType>
 </PropType>
 </DictionaryItem>

 <DictionaryItem refID="MPAttr3" purpose="PURPOSE_TopLevel">

Chapter 15
Defining Software Library Metadata

15-5

 <PropType typeCode="TYPE_String">
 <SimpleType className="java.lang.String"
uiHintReadOnly="false" uiHintHidden="false" secret="false"
guid="false">
 <Constraints/>
 </SimpleType>
 </PropType>
 </DictionaryItem>
 </TypeDefinitions>
 <DynamicTypes/>
</Dictionary>

To use the file, ensure that you make the following changes:

• MPAttr1, MPAttr2, and MPAttr3 are the names of the entity properties, remove the
properties that are not required, and change the names of the properties that you
retain appropriately.

Copy the DictionaryItem section from the above sample to create more entity
properties. Note that, you can only update the name, you cannot change other
aspects of the entity property.

• The entity properties for this sub-type are displayed as Other Attributes in
Sotware Library console. Only, after the subtype metadata with entity property
definitions are registered, while creating or editing entities, you can specify values
for the entity properties. However, note that you can not define new entity
properties.

Chapter 15
Defining Software Library Metadata

15-6

Defining Entities
The following example describes how you can create an entity of the type MPType and
subtype MPSubtype in the folder MPFolder1:

 <Entity name="MPTSEntity">
 <Type>MPType</Type>
 <Directory>/MPFolder1</Directory>
 <Subtype>MPSubtype</Subtype>
 <Fileset>
 <FileEntry>
 <path>payload.zip</path>
 <sourcePath>payloadSrc.zip</sourcePath>
 </FileEntry>
 </Fileset>
 <ExternalID>0.1</ExternalID>
 </Entity>

FileSet: A file payloadSrc.zip should be present in the same directory as of this XML. The
entity will have a file entry payload.zip.

ExternalID : A decimal floating point number of the form xxxxxxxx.x, which means, a
maximum 8 digits before decimal point, and one digit after decimal point is allowed. For
example, 0.6, 23.9, an so on. When registering metadata again, the external IDs of the
entities are compared. Entities whose ExternalID matches the ExternalID of the latest
revision currently registered will not get registered again.

For example:

• If the entity MPTSEntity in MPFolder1 is registered with ExternalID 0.1, the an entity with
revision 0.1 is created. If ExternalID is not specified, then the default value is 0.1.

• If XML is updated and registered again without changing ExternalID, then his entity will
not be registered, and a warning will be logged. Entity will continue to have 0.1 revision.

• If the ExternalID is changed to 0.2, and registered again, then the registration will be
applied, and a revision 0.2 is created in addition to the earlier registered 0.1 revision.
Consequently, multiple increments might need to be performed to ExternalID for it to be
registered during the development and testing phase. However, before the release,
ensure that you reset it back to the correct value and track it correctly.

Organizing Software Library Metadata Files
To organize the Software Library Metadata files, follow these steps:

1. Once you have the XMLs to define types, subtypes, folders, and entities ready, navigate
to the following location:

$OMS_PLUGIN/metadata/swlib
2. Create a directory for your functional area (for example, functionalArea), in the following

location:

$OMS_PLUGIN/metadata/swlib/functionalArea
3. Create a driving file (swlib.xml)

4. Edit order.xml file available at the following location: $OMS_PLUGIN/meadata, to add an
entry for the newly created functionalArea/swlib.xml file:

Chapter 15
Organizing Software Library Metadata Files

15-7

Here is a sample example of how your directory structure should look:

swlib/
 order.xml
 functionalArea/swlib.xml
 functionalArea1/swlib.xml

Here is a sample example of the contents of order.xml file:

<order>
 <name>functionalArea/swlib.xml</name>
 <name>functionalArea1/swlib.xml</name>
</order>

Note:

For each functional area in the plug-in, you must add an entry in the
order.xml file as described in the example.

Adding the Software Library Metadata to Enterprise
Manager

Adding the Software Library Metadata to Enterprise Manager is a two-step process as
described in this section:

• Step 1: Validating Metadata XML

• Step 2: Adding Metadata XML to OPAR

Step 1: Validating Metadata XML
For the purpose of testing, use emctl to register the metadata as follows:

emctl register oms metadata -service swlib -file <Metadata Instance file> -
pluginId <Plugin Id> [-sysman_pwd "sysman password"]
Where:
Metadata Instance file is the path to the folder containing order.xml. For
example, $OMS_PLUGIN/metadata/swlib.

Note:

If you have not added a Software Library location, then the emctl register
command will not work, instead, you will see an error message as follows:

EM-04040: Metadata operation is skipped. Reason: Software Library OMS
shared storage is not configured, skipping metadata registration.
Check /u01/inst/em/EMGC_OMS1/sysman/log/emctl.log for more details.

Also, if the metadata XML file is repeatedly registered for entities, then you must
ensure that the external ID element is incremented each time. For example, if there

Chapter 15
Adding the Software Library Metadata to Enterprise Manager

15-8

are 11 entities defined in XML, four of which have same ExternalID, and seven have updated
ExternalID, then you will see the following message:

Total 0 errors, 4 warnings. 7 entities imported.
Metadata registration successful

Note:

OMS must be restarted for the registration to take effect, when a metadata
registered using emctl contains types or subtypes. However, OMS need not be
restarted for the registration of types and subtypes, when the Software Library
metadata defined in a plug-in contains types or subtype, and is deployed.

Oracle recommends that you check the logs even if the registration is successful,
as there may be some warnings. These warnings are mainly caused when the
external ID is not modified, inturn causing entity registration to fail. To view the logs,
navigate to the following location:

$INSTANCE_HOME/sysman/log/emctl.log

Step 2: Adding Metadata XML to OPAR
When a plug-in OPAR is deployed containing Software Library metadata organized in the way
described above, Software Library metadata will be registered if Software Library is
configured on the system. Software Library metadata XMLs are to be included in the OPAR
like any other metadata. See Chapter 13, "Validating, Packaging, and Deploying the Plug-in"
for more information.

Note 1: If Software Library is not configured at plug-in deployment time, the plug-in's Software
Library metadata will get registered whenever Software Library is configured for the first time
after the plugin deployment.

Using Software Library Entities
Software Library entities created by the plug-in may represent a patch/script/configuration or
any other software relevant to the plug-in. To use these entities after they have been created
using the options described in previous sections, consider one of the following approaches:

• Using Job Types

• Using EMCLI Verbs

Note:

For information about how plug-in Graphical User Interface uses the Software
Library search service, see Software Library Search Service .

For information about how to use the Component step and Directive Step available
in User Defined Deployment Procedure to automate a custom deployment activity,
see Oracle Enterprise Manager Lifecycle Management Administrator's Guide

Chapter 15
Using Software Library Entities

15-9

Using Job Types
Software Library makes use of the following job types:

• SwlibStageEntities - Transfers files associated with a Software Library Entity to
a destination host target.

• SwlibUploadFiles - Uploads files to be associated with a Software Library Entity
to the appropriate Software Library storage location specified.

You can create your own job types, which inturn contain these jobtypes. For example,
you can create a jobtype XML that containsthe SwlibStageEntities jobtype as
follows:

<?xml version="1.0"?>
<jobType name="StageWrap" version="1.0" singleTarget="true" targetTypes="host"
editable="true">
 <credentials>
 <credential usage="destHostCreds" authTargetType="host"
defaultCredentialSet="HostCredsNormal">
 </credential>
 <credential usage="destNfsHostCreds" authTargetType="host"
defaultCredentialSet="HostCredsPriv">
 </credential>
 </credentials>
 <paramInfo>
 <paramSource sourceType="user" paramNames="stageLocation, entityURN"
 required="true" evaluateAtSubmission="true" />
 <paramSource sourceType="user" paramNames="stageFileEntryPaths,
operMode, autoRetry" required="false"/>
 <paramSource sourceType="inline" paramNames="operMode">
 <sourceParam name="paramValues" value="mount"/>
 <sourceParam name="overwriteExistingFiles" value="yes"/>
 </paramSource>
 </paramInfo>
 <stepset ID="main" type="serial">
 <step ID="preStage" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="destHostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">%job_default_shell%</param>
 <param name="args">ls, -R, %stageLocation%</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 </paramList>
 </step>
 <job ID="stage" type="SwlibStageEntities">
 <credList>
 <cred usage="destHostCreds" reference="destHostCreds"/>
 <cred usage="destNfsHostCreds" reference="destNfsHostCreds"/>
 </credList>
 <paramList>
 <param name="entityURN">%entityURN%</param>
 <param name="stageFileEntryPaths" valueOf="stageFileEntryPaths"/>
 <param name="stageLocation">%stageLocation%</param>
 <param name="operMode">%operMode%</param>
 <param name="autoRetry">%autoRetry%</param>
 <param name="overwriteExistingFiles">%overwriteExistingFiles%</param>
 </paramList>

Chapter 15
Using Software Library Entities

15-10

 <targetList allTargets="true" />
 </job>
 <step ID="postStage" command="remoteOp">
 <credList>
 <cred usage="defaultHostCred" reference="destHostCreds"/>
 </credList>
 <paramList>
 <param name="remoteCommand">%job_default_shell%</param>
 <param name="args">ls, -R, %stageLocation%</param>
 <param name="targetName">%job_target_names%[1]</param>
 <param name="targetType">%job_target_types%[1]</param>
 </paramList>
 </step>
 </stepset>
 <displayInfo
 useDefaultCreateUI="true"
 showParams="true">

 <jobTypeDisplayInfo>
 <nlsValue>Stage Wrap</nlsValue>
 </jobTypeDisplayInfo>
 <parameterDisplayInfo name="stageLocation" showInResults="true"
showInCreate="true">
 <parameterLabel>
 <nlsValue>Stage Location</nlsValue>
 </parameterLabel>
 <parameterHint>
 <nlsValue>Directory location on target where the files from the entity
will be transferred.</nlsValue> </parameterHint>
 <parameterTextBox lines="1" />
 </parameterDisplayInfo>
 <parameterDisplayInfo name="entityURN" showInResults="true" showInCreate="true">
 <parameterLabel>
 <nlsValue>Entity URN</nlsValue>
 </parameterLabel>
 <parameterHint>
 <nlsValue>Internal identifier of the entity</nlsValue>
 </parameterHint>
 <parameterTextBox lines="1" />
 </parameterDisplayInfo>
 </displayInfo>
</jobType>

Jobs of jobtype SwlibStageEntities expect the following inputs:

• Stage Location: The directory path where the file of the entity will be transferred.

• Entity URN: This is the internal identifier of the entity, which can be obtained any one of
the following methods:

– In Enterprise Manager Cloud Control, from the Enterprise menu, select
Provisioning and Patching, then click Software Library. On the Software Library
home page, from View menu, select Internal ID to enable it. Copy and supply the
Internal ID value available to the job as the value of this parameter.

– You can use the emcli verb list_swlib_entities with the parameter-
show_entity_rev_id to obtain the Internal ID. Copy and supply the Internal ID value
available to the job as the value of this parameter.

Chapter 15
Using Software Library Entities

15-11

Using EMCLI Verbs
You can use the EMCLI verbs provided by Software Library to add Software Library
storage location, create folders, create entities, upload files for entities, modify entities,
and so on. For more information about EMCLI verbs, see Oracle Enterprise Manager
Command Line Interface and the Oracle Enterprise Manager Lifecycle Management
documentation available in the Oracle Help Center:

https://docs.oracle.com/en/enterprise-manager/

Chapter 15
Using Software Library Entities

15-12

http://docs.oracle.com/en/

16
Defining Credentials

As part of the target type definition, you can define the types of credentials specific to the
plug-in target type. For example, you can define the username and password required by the
plug-in to connect to a target instance to collect metric data, or to invoke a specific Enterprise
Manager job.

The Enterprise Manager credential subsystem enables Enterprise Manager administrators to
store credentials in a secure manner as preferences or operation credentials. The credentials
can then be used to perform various system management activities such as real-time
monitoring, patching, provisioning, and other target administrative operations.

In this release, the credential subsystem supports storing, accessing, and modifying of fixed
number user name/password based credentials as preferred credentials, which other
Enterprise Manager subsystems access to build automation solutions. The credential
subsystem also supports sudo/powerbroker based impersonation support.

This chapter covers the following:

• Introduction to Security Concepts

• Defining Credential Metadata

Introduction to Security Concepts
The following sections describe the concepts associated with credential service integration:

• Credential Types

Credential type is the type of authentication supported by a target type. Various
authentication schemes are supported, including native agent authentication and SSH.
Fore more information, see Understanding Credential Types.

• Named Credentials

A named credential contains a users' authentication information on a system and can be
a user name and password, a public key-private key pair, or an X509v3 certificate. For
more information, see About Named Credentials.

• Authentication Target Type

An authenticating target type is the target type that a credential can authenticate against.
For more information, see Authenticating Target Types.

• Credential Sets

A credential set is a placeholder for a credential and can be used to decouple credentials
from the system that uses a credential. For more information, see Overview of Credential
Sets

• Credential Store

The credential store is a logical store for all the named credentials of an Enterprise
Manager administrator in the Enterprise Manager. For more information, see Using the
Credential Store

16-1

• Credential Reference

The credential reference refers to a credential. For more information, see About
the Credential Reference

Understanding Credential Types
Credential type is the type of authentication supported by a target type. For example, a
host can support a user name and password based authentication, public key
authentication, or kerberos authentication. Various authentication schemes are
supported, including native agent authentication and SSH.

The native agent authentication scheme employs a user name and password
structure, while the SSH key authentication scheme uses a user name/private key/
public key structure.

About Named Credentials
A named credential contains a users' authentication information on a system. A named
credential can be a user name and password, a public key-private key pair, or an
X509v3 certificate. An Enterprise Manager administrator can store these credentials
as named entities in Enterprise Manager to use when performing operations such as
running jobs, patching, and other system management tasks. For example, you can
store the user name and password that you want to use for patching as
MyPatchingCreds. You can then later submit a patching job that uses
MyPatchingCreds to patch the production databases.

Named credentials can be created for the credential types in Enterprise Manager 12c.
The most commonly used credential types for host and database target types are
described in the following sections.

For more information about named credentials, see the Configuring and Using Target
Credentials section in the Oracle Enterprise Manager Cloud Control Security Guide.

Authenticating Target Types
The authenticating target type is the target type that a credential can authenticate
against. For example, a SQLScript job has the host credential DBHostCreds that is
used to authenticate against the database host. Therefore, the target type for
DBHostCreds is Database Instance and the authenticating target type is Host.

Overview of Credential Sets
A credential set is a placeholder for a credential. Credential sets can be used to
decouple credentials from a system that uses a credential. For example, a patching
job can be submitted to use the credential set "Normal Host Credentials" while being
executed.

The "Normal Host Credentials" credential set can also be set to the actual named
credential. The credential set to named credential mapping for the target can be
changed without editing the system that uses the credential.

Chapter 16
Introduction to Security Concepts

16-2

Using the Credential Store
The credential store is a logical store for all the named credentials of an Enterprise Manager
administrator in the Enterprise Manager. The Enterprise Manager administrator's user name
has a logical private credential store. Individual credentials can be identified by credential
names. Enterprise Manager administrators can add, edit, and delete named credentials in the
credential store.

About the Credential Reference
The credential reference is a way to refer to a credential. There are three ways credentials
can be referenced:

• Credential Name

The credential is referenced using the name of the credential in the credential store.

• Credential Set

The credential is referenced using the credential set name and the target name. The
lookup retrieves the credential associated with the credential set name and target name.

• Direct

The credential is specified by providing the values of the attributes. This reference does
not refer to a credential in the credential store.

Defining Credential Metadata
Credential metadata is defined within the target type metadata file. See Creating Target
Metadata Files for more information about this file.

All credential metadata for a target type is defined within the CredentialInfo element. This
element in turn contains the following subelements:

• A CredentialType element that defines the type of credentials to be used to access
target instances

• A CredentialSet element that instantiates an instance of CredentialType

The following example defines username and password the credentials required to
authenticate with hosts running instances of the target.

Example: Credential Metadata

<TargetMetadata>

...
 <CredentialInfo>
 <!-- The types of credentials: target host username/password -->
 <CredentialType NAME="HostCreds">
 <Display>
 <Label NLSID="CREDS_HOST_HOSTCREDS">Host Credentials</Label>
 </Display>
 <CredentialTypeColumn NAME="HostUserName" IS_KEY="TRUE">
 <Display>
 <Label NLSID="CREDS_HOST_USERNAME">UserName</Label>
 </Display>
 </CredentialTypeColumn>

Chapter 16
Defining Credential Metadata

16-3

 <CredentialTypeColumn NAME="HostPassword">
 <Display>
 <Label NLSID="CREDS_HOST_Password">Password</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
<!-- The CredentialSet that creates an instance of CredentialType -->
 <CredentialSet NAME="HostCredsNormal" CREDENTIAL_TYPE="HostCreds"
 USAGE="PREFERRED_CRED">
 <Display>
 <Label NLSID="CREDS_HOST_HOSTCREDS_NORMAL">Normal Host Credentials</Label>
 </Display>
 <CredentialSetColumn TYPE_COLUMN="HostUserName" SET_COLUMN="username">
 <Display>
 <Label NLSID="CREDS_NORMAL_USER">Normal Username</Label>
 </Display>
 </CredentialSetColumn>
 <CredentialSetColumn TYPE_COLUMN="HostPassword" SET_COLUMN="password">
 <Display>
 <Label NLSID="CREDS_NORMAL_PASSWORD">Normal Password</Label>
 </Display>
 </CredentialSetColumn>
 </CredentialSet>
<CredentialInfo>
...
</TargetMetadata>

Overview of Credential Elements
The key elements that define credentials are described in the following table:

Table 16-1 Key elements in a plugin.xml file

Element Required (Y/N) Description

CredentialInfo Y The root element for the credentials
definition. Contains CredentialType and
CredentialSet elements.

CredentialType Y Contains one or more
CredentialTypeColumn elements, each
defining a credential such as
"TargetUsername" or "TargetPassword".
Used to access target instances.

CredentialSet Y Instatiates an instance of the credential set
defined in CredentialType. It includes the
following attributes:

• CREDENTIAL_TYPE

Identifies the CredentialType from which
this CredentialSet is created.

• USAGE

Values are MONITORING (default),
which is used to directly connect to the
target, PREFERRED_CRED, which is
the user's preferred credentials, or
SYSTEM, which is used by specialized
applications such as patching or cloning.

Chapter 16
Defining Credential Metadata

16-4

Table 16-1 (Cont.) Key elements in a plugin.xml file

Element Required (Y/N) Description

CredentialSetColumn Y A subelement of CredentialType. Defines a
single credential and maps that credential to
its corresponding column in the
CredentialType. It includes the following
attributes:

• TYPE_COLUMN
Specifies the CredentialTypeColumn
that this CredentialSetColumn maps to.

• SET_COLUM
Identifies the column definition in the
CredentialSet.

Chapter 16
Defining Credential Metadata

16-5

17
Defining a Chargeback Entity Type

Chargeback provides a way to meter and charge for resource use, where a resource is an
entity known to Enterprise Manager. Typically, these entities are managed entities of type
host, database, and WebLogic Server, for which specific metrics can be collected and
charged. An administrator assigns rates and other usage factors to these metrics so they
become charge items in something called a charge plan that is assigned to a target instance.
A daily Chargeback job collects the metrics and calculates charges against resource use.

Although Enterprise Manager recognizes hundreds of entity types, relatively few are enabled
for Chargeback out-of-box. As a plug-in developer you can use the extensibility feature to
enable Chargeback on entity types defined within the plug-in, by leveraging extensibility
Metadata Services (MDS). To take advantage of MDS, you create an XML file that models a
new Chargeback entity type on an Enterprise Manager managed entity (ME) and defines
charge items based on Enterprise Manager metrics and configurations.

This chapter describes how to define a new entity type to be added to Chargeback. The
chapter contains the following sections:

• Chargeback Extensibility Toolkits

• Steps to Develop and Test New Chargeback Entity Type

• The Chargeback Model

• Sample Chargeback MDS XML File

• Registering the Chargeback MDS

• Testing the Entity Type Plug-in

Chargeback Extensibility Toolkits
Besides the internal implementation of the Chargeback extensibility framework, the following
toolkits are available to plug-in developers:

• Chargeback metadata service (MDS) registration XML schema

emSDK\emMrsXsds\oracle\sysman\emSDK\chargeback\ChargebackMetadata.xsd
• Chargeback callback signature and built-in implementation (built-in callback enables the

plug-in developer to register the callback in the Chargeback metadata file for the new
entity type)

Included in the pl/sql package GC$CHARGEBACK
The pl/sql callback has the following signature:

PROCEDURE add_entity_callback_name(
p_em_entity_guid IN RAW,
p_usage_mode_name IN VARCHAR2 DEFAULT NULL,
p_entity OUT GC$CBA_ENTITY);

Using these tools, you can define Chargeback metadata to provide Chargeback support for a
new entity type of a managed Enterprise Manager target type and register the built-in

17-1

callback so that entity instances can be added using the Chargeback user interface
and incorporated in the daily job schedule.

Steps to Develop and Test New Chargeback Entity Type
The basic flow to develop and test a new Chargeback entity type involves the following
tasks:

1. Define the Chargeback metadata for the entity and charge items. Include the
appropriate callbacks to interact with the Chargeback user interface.

2. Register the Chargeback metadata file. An alternate course of action is to include
the XML file in a plug-in and deploy the plug-in.

3. Create a charge plan in Chargeback that includes the charge items defined in the
metadata.

4. Add the new entity type to Chargeback using the Add Entities wizard.

5. Assign the charge plan you created to the added entity type.

6. Trigger the daily data collection job to populate the tables.

7. Run reports in Chargeback on the new entity type to view charges and metrics.

The Chargeback Model
This section describes the basic concepts as they relate to the primary elements within
the Chargeback metadata file.

Enterprise Manager Entity Type

The Enterprise Manager entity type serves as a model for the Chargeback entity type
to be defined. Typically it is an Enterprise Manager target type recognized as a
manageable entity (ME).

Chargeback Entity Type

The Chargeback entity type is modeled after its container Enterprise Manager entity
type. The Chargeback entity type is characterized by its usage mode; that is, how it is
to be metered. Usage mode can involve parent-child relationships with other
Chargeback entity types. A Chargeback entity type that is metered directly typically
has a set of charge items defined.

More than one Chargeback entity type can be modeled after an Enterprise Manager
entity type, but only one can be active in a given release.

Usage Mode

Usage mode defines how the Chargeback entity type is to be metered: directly or
through its member entity types. It can also indicate which charge items to meter. A
Chargeback entity type can have different usage modes to suit different situations, but
only one can be the default.

Charge Template

The charge template indicates the charge items through which to meter the
Chargeback entity type. One charge template serves for each usage mode related to
direct metering. A composite or parent Chargeback entity type does not require a
charge template as they have no direct charge items.

Chapter 17
Steps to Develop and Test New Chargeback Entity Type

17-2

Charge Item

A ChargeItem element in the Chargeback metadata file is akin to a charge item type
definition. It defines the type of data to be collected and how.

A charge item can be based on an ME configuration, metric, or property. A charge item can
also be a fixed amount.

Entity Callback

There are two entity instance level callbacks that can be registered for each Chargeback
entity type.

• Add entity callback–called by the Chargeback Add Entities wizard when the administrator
selects an entity to add to Chargeback. There are two built-in implementations, intended
for plug-in developers:

gc$chargeback.add_em_entity_cb(
 p_em_entity_guid IN RAW,
 p_usage_mode_name IN VARCHAR2 DEFAULT NULL,
 p_entity OUT GC$CBA_ENTITY);

gc$chargeback.add_em_entity_and_members_cb(
 p_em_entity_guid IN RAW,
 p_usage_mode_name IN VARCHAR2 DEFAULT NULL,
 p_entity_arr OUT GC$CBA_ENTITY_ARR);

• Add member callback–called both by the Chargeback Add Entities wizard when the
administrator selects an entity to add to Chargeback, and by the Chargeback data
collection job to discover members that may have been added to the composite entity.
There is one built-in implementation, also intended for plug-in developers:

gc$chargeback.add_entity_members_cb(
 p_em_entity_guid IN RAW,
 p_usage_mode_name IN VARCHAR2 DEFAULT NULL,
 p_entity_arr OUT GC$CBA_ENTITY_ARR);

Both gc$chargeback.add_em_entity_and_members_cb and
gc$chargeback.add_entity_members_cb are implemented based on a chargeback_parent
association.

The built-in callbacks do not apply automatically to the Chargeback entity type. The
Chargeback entity instance will not be visible in the Add Entities wizard unless you register
the applicable callback in the Chargeback metadata file. You cannot override these callbacks.

Sample Chargeback MDS XML File
The sample Chargeback metadata file complements the Host Sample included in the EDK. It
proposes to add Chargeback support for the Host Sample to include a fixed base charge for
each host instance in addition to a rate charged for each gigabyte of storage and memory
used on the host instance.

<?xml version="1.0" encoding="UTF-8" ?>
<ChargebackMetadata name="demo_hostsample_cba" description="Chargeback meta
data for demo_hostsample" version="1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ChargebackEntityType name="demo_hostsample" displayLabel="Demo Plugin
Sample Host" labelNlsId="name" description="Chargeback entity type for
sample target type demo_hostsample"

Chapter 17
Sample Chargeback MDS XML File

17-3

 descriptionNlsId=""
mappingEmEntityType="demo_hostsample"

resourceBundle="oracle.sysman.eml.rsc.chargeback.demo_hostsample_cbaMsg
" defaultUsageMode="metered">
 <ChargeItems>
 <!-- fixed item -->
 <ChargeItem name="BaseCharge" displayLabel="Base Charge"
labelNlsId="em_ct_base_chg" type="fixed"
 dataType="number" category="instance"
aggregationType="sum" description="Base charge for a demo_hostsample
instance">
 <QueryExpression type="internal"></QueryExpression>
 </ChargeItem>
 <!-- config -->
 <!-- usage -->
 <ChargeItem name="memUsageMB" displayLabel="Memory Usage"
labelNlsId="em_ct_mem_usg" type="metric"
 dataType="number" unit="GB" unitNlsId="em_ct_u_GB"
category="memory"
 aggregationType="avg" description="Memory used (GB)">
 <QueryExpression type="internal" valueColumn="value/
(1024*1024)"
 emEntityGuidColumn="entity_guid"
 metricGroup="MemoryPerf"
metricColumn="MemTotal"
 utcCollectionDateColumn="collection_time_utc">
 </QueryExpression>
 </ChargeItem>
 <ChargeItem name="diskUsageGB" displayLabel="Disk Space Usage"
labelNlsId="em_ct_disk_usg" type="metric"
 dataType="number" unit="GB" unitNlsId="em_ct_u_GB"
category="storage"
 aggregationType="avg" description="Disk storage used
(GB)">
 <QueryExpression type="internal" valueColumn="value/
(1024*1024)"
 emEntityGuidColumn="entity_guid"
 metricGroup="FilesystemPerf"
metricColumn="UsedKB"
 utcCollectionDateColumn="collection_time_utc">
 </QueryExpression>
 </ChargeItem>
 </ChargeItems>
 <ChargeTemplates>
 <ChargeTemplate name="demo_hostsampleMetered"
displayLabel="Charge template for metering demo_hostsample"
 labelNlsId="http_dedicated"
description="Charegeback charge template for metering Http
demo_hostsample"
 descriptionNlsId="demo_hostsample_desc"
usageMode="metered" isMaster="yes"></ChargeTemplate>
 </ChargeTemplates>
 <UsageModes>
 <UsageMode name="metered" displayLabel="Metered"

Chapter 17
Sample Chargeback MDS XML File

17-4

labelNlsId="metered" type="dedicated" isChargeable="yes"
 isNavigational="no"
defaultChargeTemplate="demo_hostsampleMetered" description="The usage is
metered in demo_hostsample level."></UsageMode>
 </UsageModes>
 </ChargebackEntityType>
 <EntityCallbacks>
 <EntityCallback callbackProc="GC$CHARGEBACK.add_em_entity_cb"
type="addEmEntity" entityType="demo_hostsample"/>
 </EntityCallbacks>
</ChargebackMetadata>

Table 17-1 lists the key elements in the Chargeback MDS XML file used to define a new
Chargeback entity type. See the ChargebackMetadata.xsd for the complete set of all
elements and attributes available.

Table 17-1 Key Elements for Defining a New Chargeback Entity Type

Element Attribute Description

ChargebackMetadata name (Required) Unique name of the Chargeback entity
set.

ChargebackEntityType name (Required) Unique name of the Chargeback entity
type.

NA displayLabel (Required) Display label of the Chargeback entity
type.

NA mappingEmEntity
Type

Enterprise Manager manageable entity type of the
Chargeback entity type, if applicable.

NA defaultUsageMod
e

Default usage mode that applies to the Chargeback
entity type. The entity type can have multiple usage
modes, but only one can be the default.

ChargeItem name (Required) Unique name of the charge item.

NA displayLabel (Required) Display label of the charge item.

NA type (Required) The charge item's data source. Can be:
metric, config, property, or fixed.

NA dataType (Required) Charge item data type. Can be: string or
number.

NA aggregationType How to aggregate data collected hourly into a daily
total. Acceptable values are sum (total the hourly
numbers) or avg (take the average of the hourly
numbers). Default is avg.

NA isChargeable Stipulates that the administrator can set a rate directly
on the charge item when creating a charge plan.
Default is yes.

NA canBeChargeSetC
ond

Stipulates that the set of charge plan rates defined for
a charge plan configuration apply to the Chargeback
entity instance only if the instance has the same
value as the plan conditional value for the charge
item. Default is no.

Chapter 17
Sample Chargeback MDS XML File

17-5

Table 17-1 (Cont.) Key Elements for Defining a New Chargeback Entity Type

Element Attribute Description

NA canBeChargeRate
Cond

Stipulates that the administrator can set a conditional
rate on the charge item such that it is applicable only
for a Chargeback entity with the specific value on the
item. Default is yes.

NA category Logical resource category of the charge item. Can be:
activity, cpu, instance , memory, storage,
network, service, software, uptime, or
unclassified. Default is unclassified.

Key name (Required) Name of the charge item key column.

NA displayLabel (Required) Display label of the charge item key.

QueryExpression type (Required) Type of query expression. Defines how to
collect the charge item data. For purposes of this
discussion, internal is the expected value. This
means that the metric, config, or property of the ME
type is pulled into Chargeback based on the metric
group and column names, the configuration view and
column names or the property name, respectively.

NA entityNameColum
n
emEntityTypeCol
umn
emEntityNameCol
umn
emEntityGuidCol
umn
utcCollectionDa
teColumn
collectionDateC
olumn
keyColumn

These attributes are common to all charge items.
They define the data to be extracted from the
Enterprise Manager repository for the entity type.

NA metricGroup
metricColumn

These attributes are specific to charge items based
on metrics.

NA viewName
valueColumn

These attributes are specific to charge items based
on configurations.

NA propertyName
valueColumn

These attributes are specific to charge items based
on target properties.

ChargeTemplate name (Required) Unique name of the charge template to
used for the Chargeback entity type.

NA displayLabel (Required) The charge template display label.

NA usageMode (Required) Usage mode name associated with the
charge template.

Chapter 17
Sample Chargeback MDS XML File

17-6

Table 17-1 (Cont.) Key Elements for Defining a New Chargeback Entity Type

Element Attribute Description

NA isMaster Stipulates that the charge template is the master
template for the Chargeback entity type.

A master charge template contains all the charge
items defined for the Chargeback entity type so there
is no need to include an item list as part of the
chargeTemplate element. In the absence of a
master charge template, however, the element must
include the list of charge items in the Chargeback
metadata file.

Acceptable values are yes or no. Default is no.

UsageMode name (Required) Unique name of the Chargeback entity
type's usage mode.

NA displayLabel (Required) Usage mode display label.

NA type Usage mode type. Acceptable values are dedicated
(where the entity type is metered by instance, for
example) or shared (where the entity type is metered
by service, for example). Default is dedicated.

NA defaultChargeTe
mplate

Charge template in the Chargeback entity type that
can serve as the default for the current usage mode.

NA isChargeable Stipulates that an entity using this usage mode can
be chargeable.

Acceptable values are yes or no. Default is yes.

NA isNavigational Stipulates that the entity using the this usage mode is
navigational; that is, it has children.

Acceptable values are yes or no. Default is no.

EntityCallback entityType (Required) Name of the entity type to which it applies.

NA type The type of entity callback. Acceptable values are
addEmEntity or addMembers.

NA callbackProc (Required) Identifies the entity callback procedure.

About NLS IDs

NLS IDs are mostly optional in the XML file. If not defined explicitly in the file, they are
generated internally based on a formula. For example:

• The entity type display name nls id becomes e_entity_type_name

• The entity type description nls id becomes e_entity_type_name_desc

• Similarly, usage mode display name nls id becomes u_usage_mode_name

• The usage mode description name nls id becomes u_usage_mode_name_desc

This autogeneration satisfies the requirements of the ResourceBundle file.

Registering the Chargeback MDS
Manually run the registration service to register the plug-in by executing a command similar
to the following:

Chapter 17
Registering the Chargeback MDS

17-7

emctl register oms metadata
 -service chargeback -core -sysman_pwd <sysmanPWD>
 -file <directory> demo_hostsample_cba.xml

Where directory is the location of the Chargeback metadata file. Upon successful
registration, proceed with testing.

As an alternative to registering the plug-in, you can include the XML file in the plug-in
and deploy the plug-in. The XML file appears in the oms/metadata/chargeback folder
in the Oracle Plug-in Archive (OPAR) file. Administrators as well as plug-in developers
can use this method.

Testing the Entity Type Plug-in
Having defined and registered the plug-in, proceed with the following tasks to ensure
proper setup. Tasks are outlined here. For details, see the Chargeback Administration
chapter in the Cloud Administration Guide or use the Chargeback online help. All tasks
assume that you are logged in to Enterprise Manager Cloud Control and working in
Chargeback (select Chargeback from the Enterprise menu).

Create a Charge Plan

Create a charge plan for the Demo Plugin Sample Host that includes the charge items
defined in the Chargeback metadata file.

1. On the Charge Plans tab, select Plan on the Create menu.

2. Name the plan (Demo Host Plan), then click Add to select the Demo Plugin
Sample Host entity type.

3. Click Add Item and select the Base Charge item defined in the Chargeback
metadata file. Click OK.

Repeat for the other items defined in the Chargeback metadata file (Disk Space
Usage and Memory Usage).

4. Set rates for the three charge items. Base Charge is a flat rate per period. The
other two are per GB/period charges.

5. Click Save to complete plan creation.

Add an Entity of the New Type

Add an entity of the new type to Chargeback to track charge and metering data.

1. On the Entities tab, click the Add Entities button.

2. In the wizard, click Add.

3. Search for entities of type Demo Plugin Sample Host and select one to add to
Chargeback. Leave the default usage mode (Metered). Click Next.

4. Select the row of the entity you just added and click the Assign Plan button.

5. Select the plan (Sample Host Plan) in the list and click OK. Click Next.

6. Review your selections and click Submit. Chargeback confirms that the entity was
added. The entity appears in the table together with its charge plan assignment.

Review Chargeback Data

Chapter 17
Testing the Entity Type Plug-in

17-8

Chargeback data collection occurs on a 24-hour cycle, but you can cause it to happen on-
demand. On the Entities tab, select On-demand data collection from the Action menu.
The tables are updated to reflect the most recent data.

View charge and metering data for the Demo Plugin Sample Host entity type.

1. Select the Reports tab in Chargeback.

2. Search for Demo Plugin Sample Host under Entities.

3. Select a metric to view.

4. Click the View Report button to recalculate based on your selections. The summary
graphs redraw to display charge percentages.

5. View details in the lower pane. Reconfigure the display by changing the options.

Chapter 17
Testing the Entity Type Plug-in

17-9

18
Monitoring Using Web Services and JMX

You can extend Enterprise Manager to monitor Web services and JMX-instrumented
applications for critical events, performance problems, error conditions, and statistics.

Enterprise Manager's ability to monitor WSDL and JMX-enabled targets enables you to
consolidate monitoring and management operations. When added to the Enterprise Manager
framework, Enterprise Manager functionality, such as notifications, jobs, and reporting, is
automatically extended to these targets.

This chapter contains the following topics:

• Overview

• Monitoring Using Web Services in Enterprise Manager

• Monitoring Using WS-Management in Enterprise Manager

• Monitoring a Standalone JMX-instrumented Java Application or JVM Target

• Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

• Adding a Target to a Management Agent

• Monitoring Credential Setup

• Viewing Monitored Metrics

• Creating JMX Metric Extensions

• Surfacing Metrics from a Standalone JVM or Oracle Coherence

• Monitoring Using RESTful Services

Overview
Using Enterprise Manager to monitor targets that expose a Web services management
interface, JMX-instrumented applications and servers, and standalone Java Virtual Machine
(JVM) targets entails defining a new target type via metadata plug-ins.

Creating a metadata plug-in consists of four basic steps:

1. Generate the target metadata and default collection files to be added to the plug-in.

2. Create an Oracle Plug-in Archive containing the target definition files for one or more
plug-ins. A single archive may contain more than one plug-in.

3. Import the plug-in into Enterprise Manager.

4. Deploy the plug-in to the appropriate Management Agents.

For more information about each of these steps, see Validating, Packaging, and
Deploying the Plug-in .

Procedural information for the monitoring targets can be found in the following sections:

18-1

• Monitoring Using Web Services in Enterprise Manager discusses software
components exposing an external interface that communicate across a network
using a standard messaging protocol.

• Monitoring a Standalone JMX-instrumented Java Application or JVM Target
discusses standalone Java applications running on J2SE5.0 or higher that are
instrumented using JMX MBeans.

• Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers
discusses JMX applications running on Oracle WebLogic Application Servers 9.x
or above.

Monitoring a Standalone JMX-instrumented Java Application or JVM Target explains
how to generate metadata and default collection files for your custom JMX-enabled
application by guiding you through the MBeans for which you are interested in
collecting data, and helping you define the MBeans as metrics in Enterprise Manager.
Even if your standalone Java application is not instrumented through JMX, you can still
monitor the JVMs it is running on by directly creating the built-in JVM target instances
as defined in Configuring a Standalone Java Application or JVM Target.

After the metadata and default collection files are created, you can follow the normal
metadata plug-in mechanism to deploy your plug-in and create target instances of your
Java application target type.

Monitoring Using Web Services in Enterprise Manager
Web services are loosely coupled software components that expose an external
interface via the Web Service Definition Language (WSDL). These components
communicate across a network using a standard messaging protocol called Simple
Object Access Protocol (SOAP). The Management Agent's Web service Fetchlet (with
ID WSF) supports SOAP communication.

Note:

For more information about the Web services standard, see the World Wide
Web Consortium (W3C) website:

http://www.w3.org

Prerequisites

• Management Agent version 12.1.0.0.0 or later installed on that host.

• Oracle Management Server (OMS) version 12.1.0.0.0 or later with which the
Management Agent communicates.

Creating Metadata and Default Collection Files
Defining a target type to be monitored through a Web services interface includes
creating the requisite target definition files, which are required to collect metrics from
resources that support the WSDL interface:

• Target Metadata

• Default Collection

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-2

http://www.w3.org

Enterprise Manager provides an easy-to-use Web services command-line tool that simplifies
creating plug-ins by automatically generating these requisite files. Information retrieval is
achieved through the Web services fetchlet that is integrated with the Management Agent.

The command-line tool works by parsing a specified WSDL file for all operations, and
enables you to select one or more operations to be invoked. If multiple port types are
specified in the WSDL file, the tool prompts you to select one of them. Operations are listed
along with their parameters. A Web service operation can be one of four types:

• One Way

• Request Response

• Solicit Response

• Notification

The Request Response operation type is particularly useful: The selected operation could
have primitive or complex parameters and results. The result of Web service invocation is
displayed in a table (the tool prompts you to provide labels for the table columns). You can
also filter result attributes by specifying an Xpath expression (see the RowType property in the
generated target metadata, CalculatorService Target Metadata File example). Filter attributes
can be useful for complex return types from which only few attributes are interesting.

The Web services command-line tool supports Web services with the following binding and
encoding styles:

• DOC/literal

• DOC/Wrapped

• RPC/encoded

Web Services CLI Command-line Tool Syntax
The Web services CLI command-line tool syntax is as follows:

emctl wscli [-metadata | -help] [-options]

The command accepts the following options:

• -wsdl=file | URL: WSDL file or URL (mandatory)

• -username=user ID: user name if the WSDL is protected

The command-line tool requires a WSDL file name or URL to locate the WSDL for a Web
service. For example, for a Calculator service Web service, a WSDL URL would be as
follows:

http://localhost:44861/CalWS/CalculatorPort?WSDL

The command tool script requires access to the Enterprise Manager home directory
(EM_HOME) to run. The tool defaults to ORACLE_HOME (ensure this environment variable
is set properly before using this tool).

The tool parses specified WSDL for all the port types and binding (supported protocols such
as HTTP get/post, SOAP) to list all the operations. If there are multiple port types in WSDL,
you will first be prompted to choose a port type.

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-3

Web Services Command-line Tool Security
The command-line tool generates metadata required by Enterprise Manager for target
monitoring purposes through the WSDL file. When you run this tool, you only require
read permission on the WSDL file or URL and permission to save generated files to
the appropriate directory.

Generating the Files
The following example shows a sample WSDL file passed to the command-line tool to
generate the target metadata and collection files.

Example: Sample WSDL File CalculatorService.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<!-- Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is
Oracle JAX-WS 2.1.5. -->
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://tests.jaxws.oracle.com/"
xmlns:ns0="http://www.oracle.com/jaxws/tests"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" name="CalculatorService"
targetNamespace="http://tests.jaxws.oracle.com/">
 <wsdl:types>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0"
targetNamespace="http://www.oracle.com/jaxws/tests/types">
 <xs:complexType name="calculatorFaultInfo">
 <xs:sequence>
 <xs:element name="number" type="xs:int"/>
 <xs:element name="reason" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 <xs:schema xmlns:ns1="http://www.oracle.com/jaxws/tests/types"
xmlns:tns="http://www.oracle.com/jaxws/tests" xmlns:xs="http://www.w3.org/2001/
XMLSchema" version="1.0" targetNamespace="http://www.oracle.com/jaxws/tests">
 <xs:import namespace="http://www.oracle.com/jaxws/tests/types"/>
 <xs:element name="CalculatorException" nillable="true"
type="tns:CalculatorException"/>
 <xs:element name="CalculatorWrapperException" nillable="true"
type="ns1:calculatorFaultInfo"/>
 <xs:complexType name="CalculatorException">
 <xs:sequence>
 <xs:element name="Message" type="xs:string"/>
 <xs:element name="Number" type="xs:int"/>
 <xs:element name="Reason" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:tns="http://tests.jaxws.oracle.com/"
targetNamespace="http://tests.jaxws.oracle.com/">
 <xsd:complexType name="add">
 <xsd:sequence>
 <xsd:element name="arg0" type="xsd:int"/>
 <xsd:element name="arg1" type="xsd:int"/>
 </xsd:sequence>

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-4

 </xsd:complexType>
 <xsd:element name="add" type="tns:add"/>
 <xsd:complexType name="addResponse">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="addResponse" type="tns:addResponse"/>
 <xsd:complexType name="square">
 <xsd:sequence>
 <xsd:element name="arg0" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="square" type="tns:square"/>
 <xsd:complexType name="squareResponse">
 <xsd:sequence>
 <xsd:element name="arg0" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="squareResponse" type="tns:squareResponse"/>
 <xsd:complexType name="checkNumber">
 <xsd:sequence>
 <xsd:element name="arg0" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="checkNumber" type="tns:checkNumber"/>
 <xsd:complexType name="checkNumberResponse">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:boolean"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="checkNumberResponse" type="tns:checkNumberResponse"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="addInput">
 <wsdl:part name="parameters" element="tns:add"/>
 </wsdl:message>
 <wsdl:message name="addOutput">
 <wsdl:part name="parameters" element="tns:addResponse"/>
 </wsdl:message>
 <wsdl:message name="squareInput">
 <wsdl:part name="parameters" element="tns:square"/>
 </wsdl:message>
 <wsdl:message name="squareOutput">
 <wsdl:part name="parameters" element="tns:squareResponse"/>
 </wsdl:message>
 <wsdl:message name="checkNumberInput">
 <wsdl:part name="parameters" element="tns:checkNumber"/>
 </wsdl:message>
 <wsdl:message name="checkNumberOutput">
 <wsdl:part name="parameters" element="tns:checkNumberResponse"/>
 </wsdl:message>
 <wsdl:message name="CalculatorWrapperException">
 <wsdl:part name="CalculatorWrapperException"
element="ns0:CalculatorWrapperException"/>
 </wsdl:message>
 <wsdl:message name="CalculatorException">
 <wsdl:part name="CalculatorException" element="ns0:CalculatorException"/>
 </wsdl:message>
 <wsdl:portType name="Calculator">
 <wsdl:operation name="add">

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-5

 <wsdl:input xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
message="tns:addInput" ns1:Action=""/>
 <wsdl:output xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
message="tns:addOutput" ns1:Action=""/>
 </wsdl:operation>
 <wsdl:operation name="square">
 <wsdl:input xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
message="tns:squareInput" ns1:Action=""/>
 <wsdl:output xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
message="tns:squareOutput" ns1:Action=""/>
 </wsdl:operation>
 <wsdl:operation name="checkNumber">
 <wsdl:input xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
message="tns:checkNumberInput" ns1:Action=""/>
 <wsdl:output xmlns:ns1="http://www.w3.org/2006/05/addressing/wsdl"
message="tns:checkNumberOutput" ns1:Action=""/>
 <wsdl:fault name="CalculatorWrapperException"
message="tns:CalculatorWrapperException"/>
 <wsdl:fault name="CalculatorException"
message="tns:CalculatorException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="CalculatorSoapHttp" type="tns:Calculator">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/
soap/http"/>
 <wsdl:operation name="add">
 <soap:operation soapAction=""/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="square">
 <soap:operation soapAction=""/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="checkNumber">
 <soap:operation soapAction=""/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="CalculatorWrapperException">
 <soap:fault name="CalculatorWrapperException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 <wsdl:fault name="CalculatorException">
 <soap:fault name="CalculatorException" use="literal"
encodingStyle=""/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-6

 <wsdl:service name="CalculatorService">
 <wsdl:port name="CalculatorPort" binding="tns:CalculatorSoapHttp">
 <soap:address location="http://localhost:8888/CalWSBA/CalculatorPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

The following example uses the WSDL file shown in the previous example. First, the tool
parses the WSDL for all port types and bindings (supported protocols such as HTTP get/post
or SOAP) to list all the operations. If there are multiple port types in the WSDL, the tool first
prompts you to select a port type.

To start the command-line tool:

1. Go to the $AGENT_HOME/bin directory.

2. Run the following command:

$ emctl wscli -metadata -wsdl=/tmp/CalculatorWS.wsdl

Once invoked, the command-line tool automatically prompts you for the requisite information,
as shown in the following example. If you need to quit a command-line tool session, you can
press Ctrl+C at any point to exit. Session information will not be saved.

Example: Sample Web Services Command-Line Tool Session

Oracle Enterprise Manager 12c Release 1 Cloud Control 12.1.0.1.0
Copyright (c) 1996, 2011 Oracle Corporation. All rights reserved.

OracleHome : /oracle/oms/agent
EMDROOT : /oracle/oms/agent

Generate Metric Metadata for Web Service Monitoring

Reading WSDL Document at /tmp/CalculatorWS.wsdl...done.

==> Enter the metadata file name [/tmp/target/metadata/CalculatorService.xml] :

* Selected Service: CalculatorService

* Selected Port: CalculatorPort

All operations for the selected Port "CalculatorPort":
[1] squareResponse square(int arg0)
[2] checkNumberResponse checkNumber(int arg0)
[3] addResponse add(int arg0, int arg1)

==> Enter the index [1-3] of operation to select: 1
* Selected Operation:
 squareResponse square(int arg0)

Define new metric group:
==> Enter the name for this metric group [square]:

Return value(s) for the selected operation:
[1] //ns0:squareResponse/arg0 <int>

==> Enter the index [1-1] of metric to display: 1
==> Enter the name for this metric [arg0]: SquareResult
==> Enter the label for this metric [SquareResult]:

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-7

==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for this item <y/n>? [n] :

Setup operation Argument: square.arg0 <type:int>
==> Enter value [%square.arg00001%] :

==> Do you want to use jps-config-jse.xml <y/n>? [n] :

==> Do you want to add User/Password Credential <y/n>? [n] : y
==> Enter the name for User/Password credential set [UserCredentialSet01] :

==> Do you want to add SSL TrustStore Credential <y/n>? [n] :

==> Do you want to add SSL KeyStore Credential <y/n>? [n] :

==> Do you want to add KeyStore Credential <y/n>? [n] :

==> Do you want to add Encryption Key Credential <y/n>? [n] :

==> Do you want to add Signature Key Credential <y/n>? [n] :

==> Is this metric group for periodic collection <y/n>? [y] :
The following units are for collection frequency:
[1] Min
[2] Hr
[3] Day

==> Enter the index [1-3] of unit for this collection: 1
==> Enter the frequency of collection in Min: 30

==> Do you want to add another metric group <y/n>? [n] :

Files Generated:
- Target Metadata file: /tmp/target/metadata/CalculatorService.xml
- Target Collection file: /tmp/target/metadata/CalculatorServiceCollection.xml

The command-line tool generates the metadata required to monitor the
CalculatorService target type as shown in the following example.

Example: CalculatorService Target Metadata File

<!DOCTYPE TargetMetadata SYSTEM "../dtds/TargetMetadata.dtd">
<TargetMetadata META_VER="1.0" TYPE="CalculatorService">
 <Display>
 <Label NLSID="NLSID_CALCULATOR_SERVICE">CalculatorService</Label>
 <ShortName NLSID="NLSID_CALCULATOR_SERVICE">CalculatorService</ShortName>
 <Description NLSID="NLSID_CALCULATOR_SERVICE">CalculatorService</Description>
 </Display>
 <Metric NAME="square" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_SQUARE">square</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="SquareResult" TYPE="STRING">
 <Display>
 <Label NLSID="COL_SQUARE_RESULT">SquareResult</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-8

 <QueryDescriptor FETCHLET_ID="WSF">
 <Property NAME="ProxyHost" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyHost</Property>
 <Property NAME="ProxyPort" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyPort</Property>
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE"
OPTIONAL="FALSE">square.SecurityPolicy</Property>
 <Property NAME="ServiceEndpoint" SCOPE="INSTANCE"
OPTIONAL="FALSE">square.ServiceEndpoint</Property>
 <Property NAME="ServiceName" SCOPE="GLOBAL"
OPTIONAL="FALSE">ns0:CalculatorService</Property>
 <Property NAME="PortName" SCOPE="GLOBAL" OPTIONAL="FALSE">ns0:CalculatorPort</
Property>
 <Property NAME="OperationName" SCOPE="GLOBAL" OPTIONAL="FALSE">square</
Property> <Property NAME="MessageType" SCOPE="GLOBAL" OPTIONAL="FALSE">SOAP</
Property>
 <Property NAME="SOAPBindingStyle" SCOPE="GLOBAL" OPTIONAL="FALSE">DOCUMENT</
Property>
 <Property NAME="SOAPBindingUse" SCOPE="GLOBAL" OPTIONAL="FALSE">LITERAL</
Property>
 <Property NAME="ParameterStyle" SCOPE="GLOBAL" OPTIONAL="FALSE">WRAPPED</
Property>
 <Property NAME="SOAPVersion" SCOPE="GLOBAL" OPTIONAL="FALSE">SOAP_1_1</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL" OPTIONAL="FALSE"><![CDATA[[ns0="http://
tests.jaxws.oracle.com/"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL" OPTIONAL="FALSE">//ns0:squareResponse/
arg0</Property>
 <Property NAME="ColType" SCOPE="GLOBAL" OPTIONAL="FALSE">SquareResult:STRING</
Property>
 <Property NAME="Payload" SCOPE="GLOBAL" OPTIONAL="FALSE"><![CDATA[<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://tests.jaxws.oracle.com/">
 <ns1:square>
 <arg0>%square.arg00001%</arg0>
 </ns1:square>
 </soap:Body>
 </soap:Envelope>]]></Property>
 <Property NAME="UserCredential" SCOPE="GLOBAL"
OPTIONAL="FALSE">UserCredentialSet01</Property>
 <CredentialRef NAME="UserCredentialSet01">UserCredentialSet01</CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="CSFKeyCredential">
 <Display>
 <Label NLSID="CRED_TYPE">CSF-Key Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="CSFKey">
 <Display>
 <Label NLSID="CRED_C_S_F_KEY">Alias CSF Key</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialType NAME="AliasCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Alias Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="Alias">
 <Display>
 <Label NLSID="CRED_ALIAS">Alias (i.e. username, encryption key, signature
key, etc)</Label>
 </Display>
 </CredentialTypeColumn>

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-9

 <CredentialTypeColumn NAME="Password">
 <Display>
 <Label NLSID="CRED_PASSWORD">Password for the alias</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="UserCredentialSet01" USAGE="MONITORING">
 <AllowedCredType TYPE="CSFKeyCredential"/>
 <AllowedCredType TYPE="AliasCredential"/>
 </CredentialSet>
 </CredentialInfo>
 <InstanceProperties>
 <InstanceProperty NAME="ProxyHost" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_PROXY_HOST">Proxy Server Name</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="ProxyPort" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_PROXY_PORT">Proxy Server Port</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="square.SecurityPolicy" CREDENTIAL="FALSE"
OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_SQUARE_SECURITY_POLICY">[square] Authentication/Web
Service Policy</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="square.ServiceEndpoint" CREDENTIAL="FALSE"
OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_SQUARE_SERVICE_ENDPOINT">[square] Web Service
Endpoint URL</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="square.arg00001" CREDENTIAL="FALSE" OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_SQUARE_ARG00001">[square] square.arg0</Label>
 </Display> </InstanceProperty> </InstanceProperties></TargetMetadata>

The command-line tool also generates the requisite collection file as shown in the
following example.

Example: CalculatorService Default Collection File

<!DOCTYPE TargetCollection SYSTEM "../dtds/TargetCollection.dtd">
<TargetCollection TYPE="CalculatorService">
 <CollectionItem NAME="square">
 <Schedule>
 <IntervalSchedule TIME_UNIT="Min" INTERVAL="30"/>
 </Schedule>
 </CollectionItem>
</TargetCollection>

After the tool generates the target metadata and collection files, you can create the
Oracle Plug-in archive. For more information, see Creating the Plug-in Archive.

Chapter 18
Monitoring Using Web Services in Enterprise Manager

18-10

Monitoring Using WS-Management in Enterprise Manager
Beginning with Enterprise Manager 12c, WS-Management (WS-MAN)-compliant resources
can be monitored using the fetchlet WSManagementFetchlet.

The fetchlet communicates with the WS-MAN resources using WS-Transfer protocol, which
defines a number of management operations that the managed resources should support.
However, in the current release, the fetchlet only supports the operation WS-Transfer GET.

Note:

For more information about the monitor WS-Management standard, see the DMTF
Web Services Management website:

http://www.dmtf.org/standards/wsman

Prerequisites

• Management Agent version 12.1.0.0.0 or greater installed on that host.

• Oracle Management Server (OMS) version 12.1.0.0.0 or greater with which the
Management Agent communicates.

Creating Metadata and Default Collection Files
Enterprise Manager provides an easy-to-use WS-Management CLI command-line tool that
simplifies creating new Management Plug-ins by automatically generating the requisite target
metadata and default collection files. Information retrieval is achieved via the
WSManagementFetchlet that is integrated with the Management Agent.

Resources, which support WS-Management interface, should describe their model-specific
elements using XML Schema Definition (XSD) representation and expose the XSD as a
public accessible link just like WSDL for Web services.

The command-line tool works by parsing a specified XSD file for the managed WS-MAN
resource and then prompts you to select the interested resource properties to construct a
monitoring metric.

WS-Management CLI Command-line Tool Syntax
The WS-Management CLI command-line tool syntax is as follows:

Usage: emctl wsmancli [-metadata | -help] [-options]

The command accepts the following options:

• -schema=file | URL: Resource XSD file or URL [mandatory]

• -username=user ID : User name if the schema is protected

The command-line tool requires a XSD file name or URL to locate the resource schema. For
example, for a Traffic Light WS-Management service, a XSD URL would be as follows:

http://localhost:8888/TrafficLight?xsd

Chapter 18
Monitoring Using WS-Management in Enterprise Manager

18-11

http://www.dmtf.org/standards/wsman

The command tool script requires access to the Enterprise Manager home directory
(EM_HOME) to run. The tool defaults to ORACLE_HOME (ensure this environment
variable is set properly before using this tool).

Command-line Tool Security
The command-line tool generates metadata required by Enterprise Manager for target
monitoring purposes via the resource XSD. When you run this tool, you only need read
permission on the XSD file or URL and permission to save generated files to the
appropriate directory.

Generating Target Metadata and Collection Files
The following example shows a sample XSD file passed to the command-line tool to
generate the target metadata and collection files.

Example: Sample XSD File TrafficLight.xsd

<?xml version="1.0" encoding="UTF-8"?><xs:schema targetNamespace="http://
schemas.wiseman.dev.java.net/traffic/1/light.xsd" elementFormDefault="qualified"
blockDefault="#all" xmlns:tl="http://schemas.wiseman.dev.java.net/traffic/1/
light.xsd" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="TrafficLightType">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="color" type="xs:string"/>
 <xs:element name="x" type="xs:int"/>
 <xs:element name="y" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="trafficlight" type="tl:TrafficLightType"/>
</xs:schema>

To start the command-line tool:

1. Go to the $AGENT_HOME/bin directory.

2. Execute the following command:

$ emctl wsmancli -metadata -schema= http://localhost:8080/Traffic?xsd
Once invoked, the command-line tool automatically prompts you for the requisite
information, as shown in the following example. If you need to quit a command-line
tool session, you can press Control+C at any point to exit. Session information will not
be saved.

Example: Sample WS-Management CLI Command-Line Tool Session

Oracle Enterprise Manager 12c Release 1 Cloud Control 12.1.0.0.0
Copyright (c) 1996, 2011 Oracle Corporation. All rights reserved.

OracleHome : /oracle/oms/agent
EMDROOT : /oracle/oms/agent

Generate Metric Metadata for WS-Management Resource Monitoring

Reading Resource XSD Document at http://localhost:8080/Traffic?xsd...done.

==> Enter the name for this target type: TrafficLight

Chapter 18
Monitoring Using WS-Management in Enterprise Manager

18-12

==> Enter the metadata file name [/tmp/target/metadata/TrafficLight.xml] :

Define new metric group name:
==> Enter the name for this metric group: trafficLight

WS-Addressing namespaces:
[1] http://www.w3.org/2005/08/addressing
[2] http://schemas.xmlsoap.org/ws/2004/08/addressing

==> Enter the index [1-2] to select: 1

SOAP Envelope namespaces:
[1] http://www.w3.org/2003/05/soap-envelope
[2] http://schemas.xmlsoap.org/soap/envelope/

==> Enter the index [1-2] to select: 1

Resource properties:
[1] trafficlight:color
[2] trafficlight:name
[3] trafficlight:x
[4] trafficlight:y

==> Enter the index [1-4] of property to display: 2
==> Enter the name for this metric [name]:
==> Enter the label for this metric [name]:
==> Is this a key metric <y/n>? [n] : y
==> Do you want to add another metric <y/n>? [n] : y

Resource properties:
[1] trafficlight:color
[2] trafficlight:x
[3] trafficlight:y

==> Enter the index [1-3] of property to display: 1
==> Enter the name for this metric [color]:
==> Enter the label for this metric [color]:
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for this item <y/n>? [n] :
==> Do you want to add another metric <y/n>? [n] : y

Resource properties:
[1] trafficlight:x
[2] trafficlight:y

==> Enter the index [1-2] of property to display: 1
==> Enter the name for this metric [x]:
==> Enter the label for this metric [x]:
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for this item <y/n>? [n] :
==> Do you want to add another metric <y/n>? [n] : y

Resource properties:
[1] trafficlight:y

==> Enter the index [1-1] of property to display: 1
==> Enter the name for this metric [y]:
==> Enter the label for this metric [y]:
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for this item <y/n>? [n] :

Chapter 18
Monitoring Using WS-Management in Enterprise Manager

18-13

==> Enter comma-separated list of Selector elements: name

==> Do you want to add User/Password Credential <y/n>? [n] : y
==> Enter the name for User/Password credential set [UserCredentialSet01] :

==> Is this metric group for periodic collection <y/n>? [y] :
The following units are for collection frequency:
[1] Min
[2] Hr
[3] Day

==> Enter the index [1-3] of unit for this collection: 1
==> Enter the frequency of collection in Min: 30

==> Do you want to add another metric group <y/n>? [n] :

Files Generated:
- Target Metadata file: /tmp/target/metadata/TrafficLight.xml
- Target Collection file: /tmp/target/metadata/TrafficLightCollection.xml

The command-line tool generates the metadata required to monitor the target type
TrafficLight as shown in the following example.

Example: TrafficLight Target Metadata File

<!DOCTYPE TargetMetadata SYSTEM "../dtds/TargetMetadata.dtd">
<TargetMetadata META_VER="1.0" TYPE="TrafficLight">
 <Display>
 <Label NLSID="NLSID_TRAFFIC_LIGHT">TrafficLight</Label>
 <ShortName NLSID="NLSID_TRAFFIC_LIGHT">TrafficLight</ShortName>
 <Description NLSID="NLSID_TRAFFIC_LIGHT">TrafficLight</Description>
 </Display>
 <Metric NAME="trafficLight" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_TRAFFIC_LIGHT">trafficLight</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor IS_KEY="TRUE" NAME="name" TYPE="STRING">
 <Display>
 <Label NLSID="COL_NAME">name</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="color" TYPE="STRING">
 <Display>
 <Label NLSID="COL_COLOR">color</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="x" TYPE="STRING">
 <Display>
 <Label NLSID="COL_X">x</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="y" TYPE="STRING">
 <Display>
 <Label NLSID="COL_Y">y</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="WSManagementFetchlet">

Chapter 18
Monitoring Using WS-Management in Enterprise Manager

18-14

 <Property NAME="ProxyHost" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyHost</Property>
 <Property NAME="ProxyPort" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyPort</Property>
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE"
OPTIONAL="TRUE">trafficLight.SecurityPolicy</Property>
 <Property NAME="ResourceURL" SCOPE="INSTANCE"
OPTIONAL="FALSE">trafficLight.ResourceURL</Property>
 <Property NAME="To" SCOPE="INSTANCE" OPTIONAL="FALSE">trafficLight.To</Property>
 <Property NAME="OptionSet" SCOPE="INSTANCE"
OPTIONAL="TRUE">trafficLight.OptionSet</Property>
 <Property NAME="Locale" SCOPE="INSTANCE" OPTIONAL="TRUE">trafficLight.Locale</
Property>
 <Property NAME="MaxEnvelopeSize" SCOPE="INSTANCE"
OPTIONAL="TRUE">trafficLight.MaxEnvelopeSize</Property>
 <Property NAME="OperationTimeout" SCOPE="INSTANCE"
OPTIONAL="TRUE">trafficLight.OperationTimeout</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL" OPTIONAL="FALSE"><![CDATA[[ns1="http://
schemas.wiseman.dev.java.net/traffic/1/light.xsd"][ns0="http://www.w3.org/2001/
XMLSchema"][wsa="http://www.w3.org/2005/08/addressing"][env="http://www.w3.org/2003/05/
soap-envelope"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL" OPTIONAL="FALSE">
//ns1:trafficlight/ns1:name,//ns1:trafficlight/ns1:color,//ns1:trafficlight/ns1:x,//
ns1:trafficlight/ns1:y</Property>
 <Property NAME="ColType" SCOPE="GLOBAL"
OPTIONAL="FALSE">name:STRING,color:STRING,x:STRING,y:STRING</Property>
 <Property NAME="ReplyTo" SCOPE="GLOBAL" OPTIONAL="FALSE">http://www.w3.org/
2005/08/addressing/role/anonymous</Property>
 <Property NAME="Action" SCOPE="GLOBAL" OPTIONAL="FALSE">http://
schemas.xmlsoap.org/ws/2004/09/transfer/Get</Property>
 <Property NAME="TransferOperation" SCOPE="GLOBAL" OPTIONAL="FALSE">GET</Property>
 <Property NAME="SelectorSet" SCOPE="GLOBAL"
OPTIONAL="FALSE">[name,%trafficLight.name%]</Property>
 <Property NAME="UserCredential" SCOPE="GLOBAL"
OPTIONAL="FALSE">UserCredentialSet01</Property>
 <CredentialRef NAME="UserCredentialSet01">UserCredentialSet01</CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="CSFKeyCredential">
 <Display>
 <Label NLSID="CRED_TYPE">CSF-Key Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="CSFKey">
 <Display>
 <Label NLSID="CRED_C_S_F_KEY">Alias CSF Key</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialType NAME="AliasCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Alias Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="Alias">
 <Display>
 <Label NLSID="CRED_ALIAS">Alias (i.e. username, encryption key, signature
key, etc)</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="Password">
 <Display>
 <Label NLSID="CRED_PASSWORD">Password for the alias</Label>
 </Display>

Chapter 18
Monitoring Using WS-Management in Enterprise Manager

18-15

 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="UserCredentialSet01" USAGE="MONITORING">
 <AllowedCredType TYPE="CSFKeyCredential"/>
 <AllowedCredType TYPE="AliasCredential"/>
 </CredentialSet>
 </CredentialInfo>
 <InstanceProperties>
 <InstanceProperty NAME="ProxyHost" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_PROXY_HOST">Proxy Server Name</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="ProxyPort" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_PROXY_PORT">Proxy Server Port</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.SecurityPolicy"
 CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_SECURITY_POLICY">[trafficLight]
Authentication/Web Service Policy</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.ResourceURL" CREDENTIAL="FALSE"
OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_RESOURCE_U_R_L">[trafficLight] Resource
URL (wsman:ResourceURL)</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.To" CREDENTIAL="FALSE" OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_TO">[trafficLight] Network Address of
the service (wsa:To)</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.OptionSet" CREDENTIAL="FALSE"
OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_OPTION_SET">[trafficLight] Set of
wsman:Option. Format: [<OptionName1>, value:<value1>,
type:<type1>, mustComply:<true|false>][<OptionName2>,
value:<value2>, type:<type>, mustComply:<true|false>][...]</
Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.Locale" CREDENTIAL="FALSE"
OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_LOCALE">[trafficLight] wsman:Locale
(RFC 3066 language code). Format: e.g. en-US</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.MaxEnvelopeSize"
 CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_MAX_ENVELOPE_SIZE">[trafficLight]
wsman:MaxEnvelopeSize in Octets. Format: e.g. 8192</Label>
 </Display>

Chapter 18
Monitoring Using WS-Management in Enterprise Manager

18-16

 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.OperationTimeout"
 CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_OPERATION_TIMEOUT">[trafficLight]
wsman:OperationTimeout. Format: e.g. PT30S</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="trafficLight.name" CREDENTIAL="FALSE" OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_TRAFFIC_LIGHT_NAME">[trafficLight] Value for the Selector
"name"</Label>
 </Display>
 </InstanceProperty>
 </InstanceProperties>
</TargetMetadata>

The command-line tool also generates the requisite collection file as shown in the following
example.

Example: TrafficLight Default Collection File

<!DOCTYPE TargetCollection SYSTEM "../dtds/TargetCollection.dtd">
<TargetCollection TYPE="TrafficLight">
 <CollectionItem NAME="trafficLight">
 <Schedule>
 <IntervalSchedule TIME_UNIT="Min" INTERVAL="30"/>
 </Schedule>
 </CollectionItem>
</TargetCollection>

After the command-line tool generates the target metadata and collection files, you can
create the Metatdata Plug-in archive. See Creating the Plug-in Archive.

Monitoring a Standalone JMX-instrumented Java Application or
JVM Target

Note:

If your Java application is not JMX-instrumented, but you want to monitor the J2SE
1.5 or higher JVM on which it is running, go directly to Configuring a Standalone
Java Application or JVM Target to create target instances of type JVM. This enables
you to monitor these JVMs in Enterprise Manager, preferably from an Enterprise
Manager Agent installed on the same host as your JVM. However, the prerequisites
and known limitations discussed below still apply.

Enterprise Manager provides an out-of-box JVM target type. This enables you to add and
configure metrics from standalone J2SE1.5 JVMs that are enabled for remote management
in Enterprise Manager version 10.2.0.3 or later.

If your standalone Java application exposes data through JMX MBeans as for a J2EE
application deployed on an Oracle Container for J2EE, you can use the JMX command-line
tool to define such an application as an Enterprise Manager target type and generate a
metadata and default collection file for this target type. You can monitor your standalone

Chapter 18
Monitoring a Standalone JMX-instrumented Java Application or JVM Target

18-17

application targets from an Enterprise Manager Agent, preferably installed on the
same host as your JVM. Multiple JVMs running on that host can be monitored by the
same Enterprise Manager Agent.

You can collect metrics from user-defined MBeans on a standalone J2SE1.5 or higher
JVM and place them into Enterprise Manager using the JMX fetchlet. The fetchlet is
designed for a standalone Sun J2SE1.5 or higher JVM containing user-defined
MBeans that use JMX OpenTypes as arguments and return values.

Prerequisites

• Java virtual machine J2SE 1.5 or higher instance running on a specific host. This
JVM could be running a JMX-enabled application that exposes metrics via
MBeans that need to be monitored as a target in Enterprise Manager. If the
application does not expose MBeans, the JVM itself could be monitored using the
built-in JVM target type provided in Enterprise Manager. See Configuring a
Standalone Java Application or JVM Target for more information.

• Monitoring and management from remote systems enabled. Set this system
property when you start the JVM:

com.sun.management.jmxremote.port=portNum
For additional information about enabling the JVM for remote management, see
the following document:

http://docs.oracle.com/javase/7/docs/technotes/guides/management/
agent.html

• Management Agent version 10.2.0.3 or later installed on that host.

• Oracle Management Server (OMS) version 10.2.0.3 or greater with which the
Management Agent communicates.

Known Limitations

Currently, the jmxcli tool only allows you to browse and monitor MBeans (platform and
application-defined) that are available on the default platform MBeanserver on the
target JVM instance. The tool does not support monitoring a custom MBeanServer on
the target JVM instance. The jmxcli tool primarily handles attributes as well as
parameter and return values for operations that are OpenTypes, such as SimpleTypes,
CompositeTypes, TabularTypes, and arrays of SimpleTypes.

Generating Metadata and Default Collection Files
As with Web services, the command-line tool (jmxcli) simplifies creating the requisite
target definition files: metadata and the default collection file for a standalone JMX-
instrumented Java application. The tool is an offline configuration utility that connects
you to an MBeanServer on a J2SE1.5 or higher JVM and enables you to browse
available MBeans. It can also append metrics to an existing set of files during a
subsequent invocation of the tool.

During a command-line tool session, you select specific MBeans and then choose the
desired attributes/statistical values or operations Enterprise Manager needs to retrieve
or invoke periodically on these MBeans to collect these values. The tool helps define
packaging for these collected values as one or more Enterprise Manager metrics (with
columns), and also enables you to specify a metric collection interval.

Chapter 18
Monitoring a Standalone JMX-instrumented Java Application or JVM Target

18-18

JMX Command-line Tool Syntax
The JMX command-line tool syntax is as follows:

cd Agent Instance dir/bin
emctl jmxcli -t JVM
 [-l JMXServiceURL
 -h hostname
 -p port
 -u username
 -c credential/password
 -w work directory
 -e true/false
 [-m MBeanName | -d jmx_domain | -s mBeanPattern]
]

The jmxcli command accepts the following options:

• -t JVM Indicates that the MBeanServer is on a standalone JVM

• -l JMXServiceURL of the target JVM

• -h Hostname of the JVM. Default: "localhost" if the -l option is not specified

• -p RMI/RMIS port of the JVM. Default: "23791" if the -l option is not specified. From the
ORACLE_HOME/opmn/bin directory of your Application Server 10.1.3.0 or later instance, run
opmnctl status -1 to determine the RMI port for the OC4J for which MBeans were
deployed.

• -u Valid user name for the JVM. Default: None

• -c Password for the above user. Default: None. The password is only used to retrieve
data and is not stored anywhere.

• -w Work directory where the metadata and default collection files are created. Default:
Current directory. When invoking the command-line tool, you must have write permission
on this directory to create subdirectories and add files. If the metadata and default
collection files already exist within that directory, you have the option of appending to or
overwriting the original files.

• -e True for enabling the SSL connection to the JVM. Default: false

You can also specify ONE of the following three parameters (-m, -d or -s) to retrieve a subset
of MBeans available on the MBeanServer. By default, all MBeans on the MBeanServer are
displayed for you to select from if none of these parameters are specified.

• -m MBean ObjectName of the required MBean that needs to be retrieved and examined.
If this is an ObjectName pattern-matching multiple MBeans, you are shown a list of all
MBeans that match the pattern, and you can select one at a time to work on.

• -d MBean domain of the required application whose MBeans need to be retrieved and
examined. For example, you want to browse all MBeans for an application (myApp).
MBeans for this application would be available in the JMX domain "myApp".

• -s MBean pattern matching an set of similar MBeans from which the metrics are to be
defined. The -s parameter allows bulk retrieval of JMX Attributes/Statistics from multiple
MBeans of a similar type.

If you specify the -s parameter, the resulting metrics created during this jmxcli session
appear as a table in the Enterprise Manager console with multiple rows — one row

Chapter 18
Monitoring a Standalone JMX-instrumented Java Application or JVM Target

18-19

representing each MBean that matches the specified pattern, and with the MBean
ObjectName as a key column. For example, if you specify -s
'oc4j:j2eeType=Servlet,*' the resulting metric will have multiple rows, one for
each servlet that matches the ObjectName pattern. Besides the MBean
ObjectName column, other columns would be the attributes or fields from the
return object of the operation, selected during the jmxcli session.

Generating the Files
The following steps explain how to prepare for and then use the JMX command-line
tool to generate the files.

1. Bring up the standalone JVM instance with the MBeans. The following example
shows an invocation of the JVM:

JDK15/bin/java com.sun.management.jmxremote
com.sun.management.jmxremote.port=6789
com.sun.management.jmxremote
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false MyJMXEnabledApp $*

The jmxcli tool connects to the port number above as a JSR-160 client.

2. Go to the $ORACLE_HOME/bin directory of the 10.2.0.3 or later version of the
Enterprise Manager Agent.

3. Set the environment variable as follows:

setenv USER_JARS /myAppHome/myJar1.jar;/myAppHome/myJar2.jar

This step is needed if custom classes are being returned in attributes and/or
operations in any of the MBeans registered with the target MBeanServer. The
Enterprise Manager Agent (fetchlet) can only effectively monitor attributes and/or
operations that return JMX OpenTypes.

Note:

If the application-defined MBeans are returning custom classes, you
need to also set up the corresponding user jar file in the CLASSPATH of the
Enterprise Manager Agent monitoring this application. To do this,
manually insert the location of this jar into the $ORACLE_HOME/sysman/
config/classpath.lst file.

4. Run the following command:

./emctl jmxcli -t JVM -h localhost -p 6789 u user -c password

where:

• -t JVM indicates that the MBeanServer is running on a standard JVM

• -h Host name where the JVM is running

• -p Port number that enables the JVM for JSR-160 remote access

You can also specify an -l JMXServiceURL option instead of -h host and -p port
options.

Chapter 18
Monitoring a Standalone JMX-instrumented Java Application or JVM Target

18-20

You can invoke jmxcli with a -w work directory option to create the metadata and
default collection files in the specified work directory. If you do not specify -w when you
start jmxcli, it defaults to the current directory, which is the directory where you start
jmxcli.

Once invoked, the command-line interface automatically prompts you for the requisite
information, as shown in the Sample JMXCLI Session example. For most of the prompts, you
can just press enter to use defaults. If you need to quit a JMX command-line tool session,
you can press Control+C at any point to exit. Session information will not be saved.

When the session concludes after you exit, the result will be a myJ2EEApp.xml file (or
whatever target type you specified) as metadata/myJ2EEApp.xml, and a
default_collection/myJ2EEApp.xml file if you specified periodic collection.

Sample JMXCLI Invocations

The following sample enables you to browse all MBeans on a remote MBeanServer:

./emctl jmxcli -t JVM -p 6789 (the host defaults to "localhost")

The following sample invokes the command-line interface and filters MBeans based on the
MBeanPattern specified as the argument for the -m option:

./emctl jmxcli -t JVM -p 6789 -m "java.lang:*"

Example: Sample JMXCLI Session

oracleHome=/ade/sparmesw_emas_ml/oracle
userJars=

Connecting to server: localhost:6789
Connecting without authentication. For specifying username and password use
the -u and -c options.

Obtained 14 MBeans matching pattern java.lang:*.

Enter the target type for this metric: [myJ2EEApp] myJavaApp

Enter the target version: [1.0]

Enter the target metadata file: [./metadata/myJavaApp.xml]

Enter the default collections file: [./default_collection/myJavaApp.xml]

Enter a label for this target type: [myJavaApp]

Enter a description for this target type: [myJavaApp]
The available targets are:
0: sun.management.CompilationImpl
 (java.lang:type=Compilation)

1: sun.management.MemoryManagerImpl
(java.lang:name=CodeCacheManager,type=MemoryManager)

2: sun.management.GarbageCollectorImpl
(java.lang:name=Copy,type=GarbageCollector)

3: sun.management.MemoryPoolImpl (java.lang:name=Eden Space,type=MemoryPool)

4: sun.management.RuntimeImpl (java.lang:type=Runtime)

Chapter 18
Monitoring a Standalone JMX-instrumented Java Application or JVM Target

18-21

5: sun.management.ClassLoadingImpl (java.lang:type=ClassLoading)

6: sun.management.MemoryPoolImpl (java.lang:name=Survivor
Space,type=MemoryPool)

7: sun.management.ThreadImpl (java.lang:type=Threading)

8: sun.management.GarbageCollectorImpl
(java.lang:name=MarkSweepCompact,type=GarbageCollector)

9: com.sun.management.UnixOperatingSystem (java.lang:type=OperatingSystem)

10: sun.management.MemoryImpl (java.lang:type=Memory)

11: sun.management.MemoryPoolImpl (java.lang:name=Code
Cache,type=MemoryPool)

12: sun.management.MemoryPoolImpl (java.lang:name=Tenured
Gen,type=MemoryPool)

13: sun.management.MemoryPoolImpl (java.lang:name=Perm
Gen,type=MemoryPool)

Enter the index of target/MBean you wish to monitor or press <Ctrl-C> to quit: 4

Following metric source types are available for selected target(s):
 0: JMX Attributes

Enter the index of your choice or press <Ctrl-C> to quit: 0

Attributes are:

 0: BootClassPath Return Value: java.lang.String
 1: BootClassPathSupported Return Value: boolean
 2: ClassPath Return Value: java.lang.String
 3: InputArguments Return Value: [Ljava.lang.String;
 4: LibraryPath Return Value: java.lang.String
 5: ManagementSpecVersion Return Value: java.lang.String
 6: Name Return Value: java.lang.String
 7: SpecName Return Value: java.lang.String
 8: SpecVendor Return Value: java.lang.String
 9: SpecVersion Return Value: java.lang.String
 10: StartTime Return Value: long
 11: SystemProperties Return Value:
javax.management.openmbean.TabularData
 12: Uptime Return Value: long
 13: VmName Return Value: java.lang.String
 14: VmVendor Return Value: java.lang.String
 15: VmVersion Return Value: java.lang.String
Select one or more items as comma-separated indices: 6,7,8

Number of possible columns in the resultant metric are 3.

Enter the name for this metric column at index=0 : [Name]
Is this column a KEY Column <y/n>? [n] y
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [Name]
Enter the NLSID for column: [Name]
Enter the UNIT for column "Name": [millisec, kb etc..]

Enter the name for this metric column at index=1 : [SpecName]

Chapter 18
Monitoring a Standalone JMX-instrumented Java Application or JVM Target

18-22

Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [SpecName]
Enter the NLSID for column: [SpecName]
Enter the UNIT for column "SpecName": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n]

Enter the name for this metric column at index=2 : [SpecVendor]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [SpecVendor]
Enter the NLSID for column: [SpecVendor]
Enter the UNIT for column "SpecVendor": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n]

Enter the name of this metric: RuntimeMetric
Enter the label for this metric: [RuntimeMetric]

Do you want periodic collection for this metric <y/n>? [n] y
Enter the collection interval in seconds: 300
Periodic collection interval is: 300 seconds.

Do you want to create another metric <y/n>? [n]
Written the metadata xml file: ./metadata/myJavaApp.xml.
Creating new file: ./default_collection/myJavaApp.xml.
Updated the default collection file for myJavaApp at location
./default_collection/myJavaApp.xml.
Exiting...

Using the Metadata and Default Collection Files
Look at the currentDir/metadata and currentDir/default_collection directories to see
the myTarget.xml files (for the target type you specified earlier).

You can use these files as follows:

• Convert the files to an Oracle Plug-in Archive (OPAR) and push them from OMS to the
Agent and target instances created from OMS. See Validating, Packaging, and Deploying
the Plug-in and Configuring a Standalone Java Application or JVM Target.

• Edit the files, extract the metric definitions and QueryDescriptors, move them to other
metadata and default collection files, and post-process them by creating
ExecutionDescriptors as needed.

If you want the status information of your targets to appear correctly in the Enterprise
Manager console, you need to define a Response metric. See Displaying Target Status
Information for more information.

Monitoring JMX Applications Deployed on Oracle WebLogic
Application Servers

The JMX fetchlet, supplied with 11.1 Management Agents, enables you to monitor key
metrics in your JMX-instrumented applications deployed on Oracle WebLogic Application
Server 9.x or later.Monitoring JMX-instrumented applications with Enterprise Manager entails
defining a new target type that Enterprise Manager can monitor via Management Plug-ins. As
with the Web services wscli command-line tool (and as was possible for Oracle Application
Servers (OC4J), Enterprise Manager provides an jmxcli command-line tool to automate the

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-23

generation of the target metadata and collection files for custom JMX instrumented
applications on weblogic servers..

Prerequisites

• Oracle WebLogic Server 9.x or higher instance running on a specific host with a
JMX-enabled application deployed on it that needs to be monitored as a target in
Enterprise Manager.

• Management Agent version 11.1 or greater installed (preferably) on that host.

• Oracle Management Server (OMS) version 10.2.0.4 or greater with which the
Management Agent communicates.

• The jmxcli tool primarily handles attributes and parameter and return values for
operations that are OpenTypes. Examples: SimpleTypes, CompositeTypes,
TabularTypes, and arrays of SimpleTypes.

Creating Metadata and Default Collection Files using jmxcli
As with Web services, the JMX command-line tool (jmxcli) simplifies creating the
requisite target definition files: metadata and the default collection file. The tool is an
offline configuration utility that connects you to an MBeanServer and enables you to
browse available MBeans. It can also append metrics to an existing file during a
subsequent invocation of the tool.During a command-line tool session, you select
specific MBeans and then choose the desired JMX attributes/statistical values the
Enterprise Manager needs to retrieve or JMX operations that need to be invoked
periodically on these MBeans to collect these values. The tool helps define packaging
for these collected values as one or more Enterprise Manager metrics (with columns),
and also enables you to specify a metric collection interval and thresholds for the
columns.

JMX Command-line Tool Syntax
The JMX command-line tool syntax is as follows for a JMX-enabled target on an
Oracle WebLogic Application Server:

./emctl jmxcli -t WebLogic [help|options]
 where options are: [-l JMX ServiceURL
 -u username
 -c credential/password
 -w work directory
 [-m MBeanName | -d jmx_domain | -s mBeanPattern]
]

The jmxcli command accepts the following options:

• l - JMXServiceURL to the WebLogic managed server hosting the custom MBeans
in the form

service:jmx:t3://host:t3port/jndi/weblogic.management.mbeanservers.runtime
• u - Valid user name for the WebLogic domain. Default: "weblogic"

• c - Password associated with the user specified by the -u option. Default: None. If
you do not specify a password, you are prompted for the password.

• w - Directory where the metadata and default collection files created by the JMX
command-line tool are placed. Default: Current directory.

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-24

When invoking the command-line tool, you must have write permission on this directory
to create subdirectories and add files. If the metadata and default collection files already
exist within that directory, you have the option of appending to or overwriting the original
files.

You can also specify ONE of the following three parameters (-m, -d or -s) to retrieve a subset
of MBeans available on the MBeanServer. By default, all MBeans on the MBeanServer are
displayed for you to select from if none of these parameters are specified.

• m - MBean ObjectName of the required MBean that needs to be retrieved and examined.
If this is an ObjectName pattern-matching multiple MBeans, you are shown a list of all
MBeans that match the pattern, and you can select one at a time to work on.

• d - MBean domain of the required application whose MBeans need to be retrieved and
examined. For example, you want to browse all MBeans for an application (myApp).
MBeans for this application would be available in the JMX domain "myApp".

• s - MBean pattern-matching an existing set of MBeans from which the metrics are to be
defined. The -s parameter allows retrieval of JMX Attributes/Statistics from multiple
MBeans of a similar type into one Metric.

If you specify the -s parameter, the resulting metrics created during this jmxcli session
appear as a table in the Enterprise Manager console with multiple rows - one row
representing each MBean that matches the specified pattern (with the MBean
ObjectName as a key column if no other key columns are defined). For example, if you
specify -s 'com.bea:Type=ServletRuntime,*' the resulting metric will have multiple rows,
one for each servlet that matches the ObjectName pattern. Besides the MBean
ObjectName key column, other columns would be the attributes or fields from the return
object of the operation, selected during the jmxcli session.

Generating the Files
To start the JMX command-line tool:

1. Go to the $AGENT_HOME/bin directory.

2. Run the following command:

./emctl jmxcli -t WebLogic [OPTIONS]
Once invoked, the command-line interface automatically prompts you for the requisite
information, as shown in the following example. If you need to quit a JMX command-line tool
session, you can press Control+C at any point to exit. Session information will not be saved.

The following example illustrates a sample jmxcli session:

Example: jmxcli Session

$./emctl jmxcli -t WebLogic -l "service:jmx:t3://host:22048/jndi/
weblogic.management.mbeanservers.runtime" -u weblogic -c password -s
"*:type=soainfra_bpel_requests,*"

NOTE 1: The -s option above will result in a metric with as many rows as the number of
MBeans which match the ObjectName pattern specified, every time the metric is collected by
the agent. If you need to always collect from a specific Mbean then use the -m
<ObjectName> option instead of the -s <Mbean pattern> used in above example.

NOTE 2: If you need to use t3s to connect to the weblogic server then the following env
variable needs to be set before invoking the jmxcli

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-25

setenv USER_JAVA_PROPS=-Dweblogic.security.TrustKeyStore=CustomTrust
 -Dweblogic.security.CustomTrustKeyStoreFileName=$ORACLE_HOME/sysman/config/
montrust/AgentTrust.jks
 -Dweblogic.security.SSL.enforceConstraints=off
 -Dweblogic.security.SSL.ignoreHostnameVerification=true
 -Djavax.net.ssl.trustStore=$ORACLE_HOME/sysman/config/montrust/AgentTrust.jks
(or set USER_JAVA_PROP= … equivalent on win32)
setenv USER_JARS <; separated list of jars needed in classpath if custom
authentication modules are involved in SSL connection>

A semi-colon is used as a delimiter for the list of jar files.

Example: setenv USER_JARS "jar1;jar2;jar3"
In some cases, if MBeans return custom WebLogic objects in their MBeanInfo, the
weblogic.jar may need to be set to the above env variable before invoking the jmxcli.

Example: setenv USER_JARS $BEA_HOME/server/lib/weblogic.jar
oracleHome=/ade/sparmesw_egcli/oracle/work/middleware/oms
userJars=
Connecting to server:
 service:jmx:t3://host1:22048/jndi/weblogic.management.mbeanservers.runtime
Connecting as user: weblogic
Obtained 3 MBeans matching pattern *:type=soainfra_bpel_requests,*.

Enter the target type for this metric: [myJ2EEApp] myCustomWLApp
Enter the target version: [1.0]
Enter the target metadata file: [./metadata/myCustomWLApp.xml]
Enter the default collections file: [./default_collection/myCustomWLApp.xml]
Enter a label for this target type: [myCustomWLApp]
Enter a description for this target type: [myCustomWLApp]
The available targets are:
0: DMS metric mbean
 (oracle.dms:name=/soainfra/engines/bpel/requests/
engine,type=soainfra_bpel_requests)
1: DMS metric mbean
 (oracle.dms:name=/soainfra/engines/bpel/requests/
system,type=soainfra_bpel_requests)
2: DMS metric mbean
 (oracle.dms:name=/soainfra/engines/bpel/requests/
invoke,type=soainfra_bpel_requests)
Following metric source types are available for selected target(s):
 0: JMX Attributes
Enter the index of your choice or press <Ctrl-C> to quit: 0
Attributes are:
 0: active_count Return Value: java.lang.Integer
 1: active_maxValue Return Value: java.lang.Integer
 2: active_minValue Return Value: java.lang.Integer
 3: active_value Return Value: java.lang.Integer
 4: Name Return Value: java.lang.String
 5: Parent Return Value: java.lang.String
 6: scheduled_count Return Value: java.lang.Integer
 7: scheduled_maxValue Return Value: java.lang.Integer
 8: scheduled_minValue Return Value: java.lang.Integer
 9: scheduled_value Return Value: java.lang.Integer
 10: threadCount_count Return Value: java.lang.Integer
 11: threadCount_maxValue Return Value: java.lang.Integer
 12: threadCount_minValue Return Value: java.lang.Integer
 13: threadCount_value Return Value: java.lang.Integer

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-26

Select one or more items as comma separated indices: 4,0,1,2
Number of possible columns in the resultant metric are 4.

Enter the name for this metric column at index=0 : [Name]
Is this column a KEY Column <y/n>? [n] y

Specifying "y" signifies that the value of this column is unique in case multiple rows are
returned.

Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [Name]
Enter the NLSID for column: [Name]
Enter the UNIT for column "Name": [millisec, kb etc..]

Enter the name for this metric column at index=1 : [active_count]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [active_count]
Enter the NLSID for column: [active_count]
Enter the UNIT for column "active_count": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n] y
Creating threshold!!
Following operators are available for creating thresholds:
 0: GT
 1: EQ
 2: LT
 3: LE
 4: GE
 5: CONTAINS
 6: NE
 7: MATCH

Enter the index of your choice or press <Ctrl-C> to quit: 0
Enter the CRITICAL threshold: [NotDefined] 50
Enter the WARNING threshold: [NotDefined] 45
Enter the number of occurrences that trigger threshold: [6] 3
Enter the message to be used when threshold is triggered: [active_count is %value% and
has crossed warning (%warning_threshold%) or critical (%critical_threshold%)
threshold.]
Enter NLSID for the message used when threshold is triggered: [active_count_cond]
Enter the name for this metric column at index=2 : [active_maxValue]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [active_maxValue]
Enter the NLSID for column: [active_maxValue]
Enter the UNIT for column "active_maxValue": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n]

Enter the name for this metric column at index=3 : [active_minValue]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [active_minValue]
Enter the NLSID for column: [active_minValue]
Enter the UNIT for column "active_minValue": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n]

Enter the name of this metric: bpel_requests
Enter the label for this metric: [bpel_requests]

Do you want periodic collection for this metric <y/n>? [n] y
Enter the collection interval in seconds: 300

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-27

Periodic collection interval is: 300 seconds.

Do you want to create another metric <y/n>? [n]
Written the metadata xml file: ./metadata/myCustomWLApp.xml.
Creating new file: ./default_collection/myCustomWLApp.xml.
Updated the default collection file for myCustomWLApp at location ./
default_collection/myCustomWLApp.xml.
Exiting...

Example: Sample jmxcli Invocation (using -m and defining multiple metrics from
multiple Mbeans in one jmxcli session

$./emctl jmxcli -t WebLogic -l "service:jmx:t3://host1:22048/jndi/
weblogic.management.mbeanservers.runtime" -u weblogic -c password -m
"com.bea:ApplicationRuntime=soa-infra,WebAppComponentRuntime=soa_server1_/b2b,*"

oracleHome=/ade/sparmesw_egcli/oracle/work/middleware/oms
userJars=
Connecting to server: service:jmx:t3://host1:22048/jndi/
weblogic.management.mbeanservers.runtime
Connecting as user: weblogic
Obtained 8 MBeans matching pattern com.bea:ApplicationRuntime=soa-
infra,WebAppComponentRuntime=soa_server1_/b2b,*.

Enter the target type for this metric: [myJ2EEApp] myCustomWLApp

Enter the target version: [1.0]

Enter the target metadata file: [./metadata/myCustomWLApp.xml]

Enter the default collections file: [./default_collection/myCustomWLApp.xml]
The file ./metadata/myCustomWLApp.xml already exists.

Do you want to overwrite the existing file, append to it, or quit <o/a/q>? [a]

Note: Because the file already exists, it will be appended.

Appending to existing file: ./metadata/myCustomWLApp.xml.
The available targets are:
0: (com.bea:ApplicationRuntime=soa-
infra,Name=JspServlet,ServerRuntime=soa_server1,Type=ServletRuntime,WebAppCompone
ntRuntime=soa_server1_/b2b)
1: (com.bea:ApplicationRuntime=soa-
infra,Name=transportServlet,ServerRuntime=soa_server1,Type=ServletRuntime,WebAppC
omponentRuntime=soa_server1_/b2b)
2: (com.bea:ApplicationRuntime=soa-
infra,Name=transportServletV,ServerRuntime=soa_server1,Type=ServletRuntime,WebApp
ComponentRuntime=soa_server1_/b2b)
3: (com.bea:ApplicationRuntime=soa-
infra,Name=b2b_starter_wls,ServerRuntime=soa_server1,Type=ServletRuntime,WebAppCo
mponentRuntime=soa_server1_/b2b)
4: (com.bea:ApplicationRuntime=soa-infra,Name=soa_server1_soa_server1_/
b2b,ServerRuntime=soa_server1,Type=PageFlowsRuntime,WebAppComponentRuntime=soa_se
rver1_/b2b)
5 (com.bea:ApplicationRuntime=soa-
infra,Name=WebServiceServlet,ServerRuntime=soa_server1,Type=ServletRuntime,WebApp
ComponentRuntime=soa_server1_/b2b)
6: (com.bea:ApplicationRuntime=soa-
infra,Name=RedirectUIServlet,ServerRuntime=soa_server1,Type=ServletRuntime,WebApp
ComponentRuntime=soa_server1_/b2b)
7: (com.bea:ApplicationRuntime=soa-

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-28

infra,Name=FileServlet,ServerRuntime=soa_server1,Type=ServletRuntime,WebAppComponentRun
time=soa_server1_/b2b)
Enter the index of target/MBean you wish to monitor or press <Ctrl-C> to quit: 4
Following metric source types are available for selected target(s):
 0: JMX Attributes
 1: JMX Operations
Enter the index of your choice or press <Ctrl-C> to quit: 0

Attributes are:
 0: AppName Return Value: java.lang.String
 1: ContextPath Return Value: java.lang.String
 2: HttpServerName Return Value: java.lang.String
 3: Name Return Value: java.lang.String
 4: PageFlows Return Value: [Ljavax.management.ObjectName;
 5: Parent Return Value: javax.management.ObjectName
 6: ServerName Return Value: java.lang.String
 7: Type Return Value: java.lang.String

Select one or more items as comma separated indices: 3,0,1

Number of possible columns in the resultant metric are 3.
Enter the name for this metric column at index=0 : [Name]
Is this column a KEY Column <y/n>? [n] y
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [Name]
Enter the NLSID for column: [Name]
Enter the UNIT for column "Name": [millisec, kb etc..]

Enter the name for this metric column at index=1 : [AppName]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [AppName]
Enter the NLSID for column: [AppName]
Enter the UNIT for column "AppName": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n]

Enter the name for this metric column at index=2 : [ContextPath]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [ContextPath]
Enter the NLSID for column: [ContextPath]
Enter the UNIT for column "ContextPath": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n]
Enter the name of this metric: PageFlowsRuntime
Enter the label for this metric: [PageFlowsRuntime]

Do you want periodic collection for this metric <y/n>? [n] y
Enter the collection interval in seconds: 3600
Periodic collection interval is: 3600 seconds.

Do you want to create another metric <y/n>? [n] y

This indicates more metrics need to be created in this jmxcli session. This process will
repeat until you answer "n" to the question.

Do you want to create another metric <y/n>? [n]
Written the metadata xml file: ./metadata/myCustomWLApp.xml.
Updated the default collection file for myCustomWLApp at location ./

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-29

default_collection/myCustomWLApp.xml.
Exiting...

After the JMX command-line tool generates the target metadata and collection files,
you can create the Oracle Plug-in archive (OPAR).

Displaying Target Status Information
For the status information of your targets to appear correctly within the Enterprise
Manager console, you must define a metric, called Response, that has a column,
named Status, with a critical threshold set. The status of target instances of this type
appears in the console as "Up" (available) if the metric value is below the critical
threshold. When the threshold is exceeded, the target status appears as "Down" in the
console.

You can create the Response metric in another jmxcli session (append the metric to
the metadata and collection files created in an earlier session).

Example: Adding a Response Metric

setenv USER_JARS $T_WORK/middleware/wlserver_10.3/server/lib/weblogic.jar

This is required as some MBeans return WebLogic-specific classes which the JMX
client (jmxcli) needs in its classpath.

$./emctl jmxcli -t WebLogic -l "service:jmx:t3://host1:22048/jndi/
weblogic.management.mbeanservers.runtime" -u weblogic -c password -m
com.bea:Type=ApplicationRuntime,Name=soa-infra,*"

For J2EE applications deployed on WebLogic it may be appropriate to make the
ActiveVersionState JMX attribute of the ApplicationRuntime Mbean corresponding to
the application deployment as the Status column. However, any other attribute of any
other relevant Mbean to the application could also be used.

oracleHome=/ade/sparmesw_egcli/oracle/work/middleware/oms
userJars=
Connecting to server: service:jmx:t3://host1:22048/jndi/
weblogic.management.mbeanservers.runtime
Connecting as user: weblogic
Obtained 1 MBeans matching pattern
 com.bea:Type=ApplicationRuntime,Name=soa-infra,*.
Enter the target type for this metric: [myJ2EEApp] myCustomWLApp
Enter the target version: [1.0]
Enter the target metadata file: [./metadata/myCustomWLApp.xml]
Enter the default collections file: [./default_collection/myCustomWLApp.xml]
The file ./metadata/myCustomWLApp.xml already exists.

Do you want to overwrite the existing file, append to it, or quit <o/a/q>? [a]
Appending to existing file: ./metadata/myCustomWLApp.xml.
The available targets are:
0: (com.bea:Name=soa-infra,ServerRuntime=soa_server1,Type=ApplicationRuntime)
Enter the index of target/MBean you wish to monitor or press <Ctrl-C> to quit: 0
Following metric source types are available for selected target(s):
 0: JMX Attributes
 1: JMX Operations
Enter the index of your choice or press <Ctrl-C> to quit: 0
Attributes are:
 0: ActiveVersionState Return Value: java.lang.Integer
 1: ApplicationName Return Value: java.lang.String

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-30

 2: ApplicationVersion Return Value: java.lang.String
 3: ClassRedefinitionRuntime Return Value: javax.management.ObjectName
 4: ComponentRuntimes Return Value: [Ljavax.management.ObjectName;
 5: EAR Return Value: java.lang.Boolean
 6: HealthState Return Value: weblogic.health.HealthState
 7: KodoPersistenceUnitRuntimes Return Value: [Ljavax.management.ObjectName;
 8: LibraryRuntimes Return Value: [Ljavax.management.ObjectName;
 9: MaxThreadsConstraintRuntimes Return Value: [Ljavax.management.ObjectName;
 10: MinThreadsConstraintRuntimes Return Value:
[Ljavax.management.ObjectName;
 11: Name Return Value: java.lang.String
 12: OptionalPackageRuntimes Return Value: [Ljavax.management.ObjectName;
 13: Parent Return Value: javax.management.ObjectName
 14: QueryCacheRuntimes Return Value: [Ljavax.management.ObjectName;
 15: RequestClassRuntimes Return Value: [Ljavax.management.ObjectName;
 16: Type Return Value: java.lang.String
 17: WorkManagerRuntimes Return Value: [Ljavax.management.ObjectName;
 18: WseeRuntimes Return Value: [Ljavax.management.ObjectName;

Select one or more items as comma separated indices: 0

Number of possible columns in the resultant metric are 1.

Enter the name for this metric column at index=0 : [ActiveVersionState] Status

Note: The column name must be "Status".

In this case since the Enterprise Manager target is an application. You must mark the target
as down even when the container is down, i.e., when the JMX connection cannot be
established. To achieve this (show the application as down when the server is down as well)
you can add the following QueryDescriptor property to the Response metric generated in the
metadata file:

<Property NAME="valueWhenDown" SCOPE="GLOBAL">0</Property>

Here, 0 is the value returned for the Status column when the JMX connection cannot be
established with the server (the server itself is down).

Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [Status]
Enter the NLSID for column: [Status]
Enter the UNIT for column "Status": [millisec, kb etc..]
Do you want to create a threshold for this column <y/n>? [n] y
Creating threshold!!
Following operators are available for creating thresholds:
 0: GT
 1: EQ
 2: LT
 3: LE
 4: GE
 5: CONTAINS
 6: NE
 7: MATCH

Enter the index of your choice or press <Ctrl-C> to quit: 6
Enter the CRITICAL threshold: [NotDefined] 2

Status of target is marked down if a CRITICAL THRESHOLD is triggered on the Status
column of the Response Metric. In this case if value != ACTIVATED (such as: != 2)

Chapter 18
Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers

18-31

Enter the WARNING threshold: [NotDefined]
Enter the number of occurrences that trigger threshold: [6] 1
Enter the message to be used when threshold is triggered: [Status is %value% and
has crossed warning (%warning_threshold%) or critical (%critical_threshold%)
threshold.]
Enter NLSID for the message used when threshold is triggered: [Status_cond]

Enter the name of this metric: Response

Note: The metric name must be "Response".

Enter the label for this metric: [Response]

Do you want periodic collection for this metric <y/n>? [n] y
Enter the collection interval in seconds: 30
Periodic collection interval is: 30 seconds.

Do you want to create another metric <y/n>? [n]
Written the metadata xml file: ./metadata/myCustomWLApp.xml.
Updated the default collection file for myCustomWLApp at location ./
default_collection/myCustomWLApp.xml.
Exiting...

Using the Metadata and Default Collection Files
Look at the currentDir/metadata and currentDir/default_collection directories
to see the myTarget.xml files (for the target type you specified earlier).

You can use these files as follows:

• Convert the files to an Oracle Plug-in Archive (OPAR). See Creating the Plug-in
Archive.

• Move the OPAR to the OMS. See Importing and Deploying the Plug-in Archive into
Enterprise Manager.

• Push the OPAR to the Agents. See Importing and Deploying the Plug-in Archive
into Enterprise Manager.

• Create custom target instances. See Adding a Target Instance for a Custom J2EE
Application on WebLogic

If you want the status information of your targets to appear correctly in the Enterprise
Manager console, you need to define a Response metric. See Displaying Target
Status Information for more information.

Adding a Target to a Management Agent
Once the plug-in has been deployed to the OMS, you are ready to add targets defined
by your metadata plug-in to different monitoring Management Agents.

For illustrative purposes, the following steps show how to add the sample
CalculatorService and TrafficLight as targets.

Adding a Web Services Target - CalculatorService
To add the CalculatorService target, perform the following steps:

1. From the Setup menu, select Add Target and then Add Targets Manaully.

Chapter 18
Adding a Target to a Management Agent

18-32

2. Select Add Non-Host Targets by Specifying Target Monitoring Properties.

3. From the Target Type menu, select CalculatorService.

4. From the Monitoring Agent menu, select the required monitoring Management Agent.

5. Click Add Manaully to proceed.

6. Enter the property values of the target to be monitored.

7. Click OK to complete the process. The confirmation window displays information on the
newly added target.

Adding a WS-Management Target - TrafficLight
To add the sample TrafficLight target, perform the following steps:

1. From the Setup menu, choose Add Target and then Add Targets Manually.

2. Select Add Non-Host Targets by Specifying Target Monitoring Properties.

3. Select TrafficLight from the Target Type drop-down menu.

4. Select the desired agent from the Monitoring Agent drop-down menu.

Chapter 18
Adding a Target to a Management Agent

18-33

5. Click Add Manually to proceed.

6. Enter the property values of the target to be monitored.

7. Click OK to complete the process. The confirmation window displays information
on the newly added target.

Configuring a Standalone Java Application or JVM Target
If you deployed a plug-in that defines a standalone Java application or you want to use
the built-in JVM target type, you can begin configuring your JVM or JMX-enabled Java
application targets so that metrics for these targets can be collected in Enterprise
Manager Cloud Control.

On the system running the JVM, install an Enterprise Manager Agent version 10.2.0.3
or later. Although recommended, this is not necessary for JVM and standalone Java

Chapter 18
Adding a Target to a Management Agent

18-34

application targets: The monitoring Agent does NOT have to be local to the target JVM.

To add the JVM target instance, perform the following steps:

1. From the Setup menu of Enterprise Manager console (top right), select Add Target and
then Add Targets Manually.

2. Select Add Non-Host Targets by Specifying Target Monitoring Properties.

3. From the Target Type menu, select JVM.

4. From the Monitoring Agent list, select the required Management Agent (preferably a
Management Agent local to the JVM being monitored).

Chapter 18
Adding a Target to a Management Agent

18-35

5. Enter the instance properties for this JVM or Java application instance that the
Management Agent needs to monitor, then click OK.

Table 18-1 provides definitions for the instance properties.

Chapter 18
Adding a Target to a Management Agent

18-36

Table 18-1 JVM Instance Properties

Property Definition

Name Target name for this JVM instance.

MachineName Host name where this JVM is running.

Admin Port Number Port number a JSR-160 client can use (such as jconsole when using
the “remote" option) to connect to the JVM. (This is the port specified
for the –Dcom.sun.management.jmxremote.port property when
the JVM is started up to enable remote management.)

User Name Required if JVM started with:
Dcom.sun.management.jmxremote.authenticate=true with a
password and access file.

JVM Admin User
Password

See the preceding User Name property.

Communication Protocol Establishes a connection to the MBeanServer on the target JVM.
This corresponds to the properties of the JMX ServiceURL needed to
establish the JMX connection to the target MBeanServer. The default
of rmi should be retained.

Service Name Establishes a connection to the MBeanServer on the target JVM.
This corresponds to the properties of the JMX ServiceURL needed to
establish the JMX connection to the target MBeanServer. The default
of jmxrmi should be kept.

SSL Trust Store Location of the SSL Trust Store, which is needed if the target JVM
has SSL enabled with
com.sun.management.jmxremote.ssl=true on its startup.

SSL Trust Store
Password

Password needed to access the SSL Trust Store path.

Custom Lookup Provider
Class

Full package name of a user-implemented Java lookup class that can
be integrated into the Enterprise Manager client and be used to
perform a custom lookup of the MBeanServer through LDAP or other
lookup protocols.

6. Navigate to the All Metrics page of the added JVM (Java application) target to see the
metrics collected from the JVM (Java application) to Enterprise Manager. These metrics
are exposed by the platform MBeans, which is available on JDK1.5 or above, or from
application-defined MBeans for your Java application.

To navigate to JVM target home page from the Targets menu, choose All Targets and
then select your JVM target instance.

To navigate to the All Metrics page, from the Target menu, select Monitoring and then
All Metrics from the JVM target's home page menu.

Chapter 18
Adding a Target to a Management Agent

18-37

The following graphic shows the collected metric details.

Table 18-2 Properties the Fetchlet Uses

Property Default Description

MachineName localhost MBean server host machine name.

Port 8888 Port on which the MBean server is listening for
connections.

Username null User name if required for a connection.

Password null Password if required for a connection.

Protocol rmi Protocol used for the connection.

Service jmxrmi Service used for the connection.

SSLTrustStore null Path to the SSLTrustStore.

SSLTrustStorePassword null Password needed to access the SSLTrustStore
path.

Chapter 18
Adding a Target to a Management Agent

18-38

Adding a Target Instance for a Custom J2EE Application on WebLogic
You have a custom J2EE application on WebLogic from which you need to collect custom
metrics into Enterprise Manager that are exposed via JMX Mbeans. Once you have defined
and deployed a plug-in that defines your custom target type, you can begin configuring your
JMX-enabled J2EE application target instances on the various Management Agents to where
you deployed the plug-ins. This enables Enterprise Manager to collect metrics for these
target instances.

1. From the Setup menu, select Add Target and then Add Target Manually. Select the
Add non-Host targets by specifying Target Monitoring Properties option.

2. Select your custom target type created earlier and deployed to the OMS

3. Select the monitoring Management Agent where you want to create an instance of this
target type (this should preferably be an emagent local to the target)

4. Click Add Manually.

5. Enter the requisite target properties, as shown in the following graphic, then click OK.
The newly added target appears in the "All Targets" list.

Note:

If the jmxcli was invoked with a -l <serviceURL> option, then the following
screen would prompt for a JMXServiceURL property which can be entered as
follows:

service:jmx:t3://<host>:<port>/jndi/
weblogic.management.mbeanservers.runtime

Instead of entering the MachineName, Admin Port number and Service Name
as three distinct target instance properties.

Chapter 18
Adding a Target to a Management Agent

18-39

Table 18-3 Target Properties

Property Definition

Name Unique name for this target instance.

MachineName Host name/IP Address of the system running the 9.x version or
later of the Oracle WebLogic Application Server.

Username User Name used to establish the JMX connection to the
WebLogic server. This could be either an administrator or
monitor user.

JVM Admin User
Password

Password for preceding user.

Communication
Protocol

t3 (default) or t3s.

Service Name weblogic.management.mbeanservers.runtime (or other
MbeanServer where the application registers its Mbeans).

Metric Source WebLogic

The metrics created can be viewed by navigating to the target instance home page
and navigating to the All Metrics page (from the Target menu, choose
Monitoring and then All Metrics).

Monitoring Credential Setup
Some target types require monitoring credentials to be set for target instances. In the
demo plug-ins, both CalculatorService and TrafficLight require monitoring credentials.
The following steps demonstrate how to set up the credentials:

1. From the Setup menu, select Security and then Monitoring Credentials.

2. Select CalculatorService and then click Manage Monitoring Credentials.

Chapter 18
Monitoring Credential Setup

18-40

3. Select Calculator1 and then click Set Credentials.

4. Select AliasCredential from Credential Type. Enter values for Alias and Password.

Chapter 18
Monitoring Credential Setup

18-41

5. Click Save to finish.

6. Repeat the above steps for the target TrafficLight1.

Viewing Monitored Metrics
With a target instance added to the Management Agent for monitoring, you can now
view metrics defined for your target type. As before, the sample targets are used to
illustrate the procedure.

1. From the All Targets page, click the target you added in the previous step.
Enterprise Manager takes you to that target's home page.

2. From the Target menu, select Monitoring and then All Metrics. The All Metrics
page appears for the monitored target. An expandable tree list for each metric
enables you to drill down to view specific metric parameters, as shown below:

Chapter 18
Viewing Monitored Metrics

18-42

Creating JMX Metric Extensions
If you wish to collect metrics from your custom J2EE application deployed on Oracle Fusion
middleware and exposed via JMX attributes into Enterprise Manager, you can use either the
Enterprise Manager console or the jmxcli command line tool. The latter also supports
defining Metric Extensions from JMX operations and supports the creation of a Metric
Extension Archive (MEA) which then must be imported into the OMS via the console and
then tested and deployed to the desired J2EE application target instances representing your
custom application.

Note:

While you can select attributes that are not open types using the Mbean browser,
the JMX metric extension UI supports only open type attributes. An error will occur if
the UI is used to create metrics by selecting attributes which are not open types.

Using the Enterprise Manager Console
1. From the Enterprise menu, select Monitoring and the Metric Extensions. The Metric

Extension page displays.

2. Click Create to create a Metric Extension.

3. Select "Application Deployment" target type (or any other appropriate Enterprise
Manager target type for which this metric needs to be defined) and specify a meaningful
name for your metric extension. Keep in mind that you might eventually end up creating
additional metric extensions on the "Application Deployment" target type both for this
application and for other custom applications so it is desirable to capture both the metric
name and the application name in the metric extension name, whenever possible.

Also select JMX for the Adapter.

Note the "Collection Schedule" section below the "General Properties" section. This is
where you define how often this metric is to be collected, or if this is realtime-only metric
(in which case the Disabled button should be selected.).

Chapter 18
Creating JMX Metric Extensions

18-43

If "Alerting and Historical Trending" is selected, you can also select an Upload
Interval, which indicates which samples (whose frequency is specified in the
"Repeat Every" field) are uploaded to the Enterprise Manager repository for
historical trending. For example if Collection frequency is specified as 15 minutes
and the Upload Interval is 3, then every 3rd sample will be uploaded into the
repository (every 45 minutes) and will be available for historical trending. However
"alerts" that are possibly triggered due to threshold violations will be available for
every collection (15 minutes).

4. Click Next and specify the required properties needed for a JMX-based metric.
These are defined in the Basic Properties section and are:

• Metric: The Mbean ObjectName or Pattern and

• Column Order: A semi-colon separated list of JMX attributes for above Mbean
(if a metric needs to be defined using a JMX operation, use the jmxcli as
shown in a following section)

Note that the Mbean ObjectName or pattern defined previously must not have any
server-specific key properties defined. These properties may be replaced with a
wildcard ("*").

For example, if an Mbean object name is
com.bea:Type=foo,Location=Server1,Name=abc then it may be appropriate to
define this as com.bea:Type=foo,* in the "Metric" property described above. Also,
if the Mbean ObjectName is a pattern, please be aware that multiple Mbeans
could be returned making this metric a "table" with multiple rows (each row
representing the JMX attributes of an Mbean matching the ObjectName pattern).
In this case we need to define at least one or more columns as Key columns so
that each row is unique in the resultant metric.

Chapter 18
Creating JMX Metric Extensions

18-44

For the preceding step, there is a Browse Mbeans button that makes it easier to
configure these two properties by allowing you to browse an MbeanServer and selecting
an Mbean and its JMX attributes that need to be represented by this metric being defined
in the metric extension.

If you click Browse Mbeans, you must perform the following in sequence.

• Select the Target: Select an instance of the target type that you need to use to define
this metric. This target instance is used to help configure the metric and does not
have to be the target instance on which the metric is eventually defined.

• Enter the Mbean Pattern: Here, you enter an Mbean Object Name or pattern for the
Mbean you are interested in monitoring

• Click List Mbeans: This will be displayed in the table under "Select Mbean and
Attributes", the Mbeans that match the Mbean pattern or the text "No Mbean listed or
none matches Mbean Pattern" if there is no match. You can iteratively update the
previous "Enter Mbean pattern" field and click List Mbeans to refine the list of
Mbeans displayed.

Chapter 18
Creating JMX Metric Extensions

18-45

• Select an Mbean of interest: This will automatically populate the table below
with the JMX attributes for the selected Mbean.

You can multi-select (using Control + click) multiple attributes and then click
Select to accept the selections.

Chapter 18
Creating JMX Metric Extensions

18-46

5. You must now specify the required parameters "Metric" and "Column Order" needed to
define a JMX based metric extension.

Note that the Mbean name populated in the "Metric" field should not have any instance
specific information in its key properties (like Location=Server1 or ServerName=foo) if
this metric extension can be applied to multiple servers besides the one that was
selected/used to configure the metric extension using the "Browse Mbean" wizard above.
These instance-specific key properties could be replaced with a wildcard "*" as
appropriate to make this a valid Mbean ObjectName pattern.

Chapter 18
Creating JMX Metric Extensions

18-47

Explanation of Specifiable Properties

Required Properties:

• metric -- This is the MBean ObjectName or ObjectName pattern whose
attributes are to be queried. Since this is specified as metric metadata, it
needs to be instance agnostic so instance specific key-properties if any (like
servername), on the MBean ObjectName may need to be replaced with
wildcards.

• columnOrder -- This is a semi colon separated list of JMX attributes in the
order they need to be presented in the metric

Advance Properties:

• identityCol -- This is an MBean key property that needs to be surfaced as a
column when it is not available as a JMX attribute. For example:
com.myCompany:Name=myName,Dept=deptName, prop1=prop1Val,
prop2=prop2Val In above case setting identityCol as Name;Dept (note that
separator is a semi-colon) will result in two additional key columns
representing Name and Dept besides the columns representing the JMX
attributes specified in the columnOrder property above.

• autoRowId -- This is the prefix used for an automatically generated row in case
the MBean ObjectName pattern specified in metric property matches multiple
MBeans and none of the JMX attributes specified in the columnOrder are
unique for each. The autoRowId value specified here will be used as a prefix
for the additional key column created. For example, if the metric is defined as
com.myCompany:Type=CustomerOrder,* columnOrder is
CustomerName;OrderNumber;DateShipped (and assuming
customerName;OrderNumber;DateShipped may not be unique if an order is
shipped in two parts).

Setting autoRowId as "ShipItem-" will populate an additional key column for
the metric for each row with ShipItem-0, ShipItem-1.

• MetricService -- True/False indicates whether MetricService is enabled on the
target WebLogic domain. This would be unchecked or false in most cases for
user-defined metrics except when metrics that are exposed via the Oracle
DMS MBean needs to be collected. If set to true, then the basic property
"metric" above should represent the MetricService table name and the basic
property "columnOrder" will represent a semicolon separated list of column
names for aforementioned MetricService table.

6. Specify the Columns for this metric (if you have used the "Browse Mbeans" step
earlier, then these columns are automatically pre-filled for you). You may need to
edit these pre-created columns by the "Browse Mbean" wizard to specify columns
that are "Key columns". This done in the event an Mbean pattern is specified in the
previous step for the "Metric" property, and multiple Mbeans could match this
Mbean pattern for any of the target instances to which this metric extension will be
applied to.

If the order of the columns are changed (using Move Up - Move Down buttons)
then the corresponding order of the semi-colon separated columns in the "Column
Order" property in the previous step also needs to be updated accordingly (using
Back).

Chapter 18
Creating JMX Metric Extensions

18-48

If needed, edit the columns as desired to make them a Key Column as shown in the
following graphic.

Once columns are labeled and edited, click Next. We are now ready to test the metric
extension

Chapter 18
Creating JMX Metric Extensions

18-49

7. Click Add to select a target instance on which to test this metric extension. This
could preferably be a different target instance than the one used to define the
metric extension (if the Browse Mbeans button was used to help in defining the
metric extension earlier).

Now select a target instance in the Test Targets table and then click Run Test
above that table.

The metric values are displayed in the Test Results table (if there are errors ,then
those are also shown).

If errors are present, click Back and fix the errors and re-run the test.

8. Once satisfied with the Test, click Next to view a summary of the metric extension
and then click the Finish to define the metric extension.

Chapter 18
Creating JMX Metric Extensions

18-50

9. Before deploying the metric extension to selected target instances the metric extension
needs to be saved as a "Deployable draft". This will let the metric extension designer
deploy the metric extension to selected target instances and verify the metric collection
but will prevent other administrators from deploying this metric extension until after it has
been tested and the designer is satisfied.

10. Select the metric extension just created and saved as a deployable draft. From the
Actions menu, choose Deploy to Targets.

Chapter 18
Creating JMX Metric Extensions

18-51

11. Select the target instances that this metric extension needs to be tested on and
click Submit. For example, if the metric extension is defined on an "Application
Deployment" target type and represents a metric from a Custom Mbean registered
by a custom JEE application, the instances of that custom application could be
selected. This will schedule a job to asynchronously deploy the metric extension to
the Management Agents monitoring the selected targets.

12. Monitor the status of the Pending deploy operation of the metric extension to
selected targets by refreshing this page periodically to monitor the Status column
and Failed Deploy Operations table for any possible errors during deployment.

Chapter 18
Creating JMX Metric Extensions

18-52

13. From the Enterprise menu, select Monitoring and then Metric Extension. On the
Metric Extension home page, your metric extension appears as a row in the table with a
column "Deployed Targets" representing the count of the number of targets this metric
extension is deployed to.

From the Actions menu, choose Manage Target Deployments from the table after
selecting the desired metric extension. This will list the target instances this metric
extension is deployed to.

14. Click on the value in the "Target Name" column for the target instance you want to verify
the metric extension on. This takes you to the home page of the target.

15. For middleware targets, navigate to the Target Type/Monitoring/ Performance Summary
(or in general to the Target Type /Monitoring /All Metrics) page.

Chapter 18
Creating JMX Metric Extensions

18-53

16. From the Performance Summary page, the newly created metric will be visible on
the Metric Palette and can be selected and charted on the page.

17. Once satisfied with testing the metric extension on one or more target instances,
the metric extension can be published from the Metric Extension page (from the
Actions menu, choose Publish Metric Extensions) and then deployed to remaining
target instances.

Using the JMXCLI to create a Metric Extension Archive
If you do not wish to use the Enterprise Manager console (or do not want to surface an
Enterprise Manager metric exposed via a JMX operation), you can use the command
line tool JMXCLI to create a Metric Extension Archive. This can then be imported into
the OMS, edited, tested, published and then deployed to required instances of the
target type on which it is defined. The following illustrates the use of jmxcli in creating
a Metric Extension archive.

1. cd Agent_Instance_Home/bin

2. setenv USER_JARS $T_WORK/middleware/wlserver_10.3/server/lib/weblogic.jar
(this should not be necessary if your Mbeans just return JMX Open Types and not
any custom classes).

Chapter 18
Creating JMX Metric Extensions

18-54

3. emctl jmxcli -t WebLogic -MEXT -l "service:jmx:t3://host1:7018/jndi/
weblogic.management.mbeanservers.runtime" -u weblogic -c password -m
"*:Type=ThreadPoolRuntime,*" -w /scratch/TEMP/

Options:

-l : JMX serviceURL to connect to the WebLogic server. Replace the host:port above with
what is appropriate for your instance

-u : WebLogic user having access to required MBeans

-c : Password for the WebLogic user

-m : Mbean ObjectName or pattern.

-w : Temporary work directory where the Metric Extension Archive (which can later be
imported into the OMS console) is created.

Oracle Enterprise Manager 12c Release 1 Cloud Control 12.1.0.0.0
Copyright (c) 1996, 2011 Oracle Corporation. All rights reserved.
Using Plugin Root /ade/sparmesw_egc802/oracle/emagent/gcagent/plugins/
oracle.sysman.emas.agent.plugin_12.1.0.0.0
Connecting to server: service:jmx:t3://host1:7018/jndi/
weblogic.management.mbeanservers.runtimeConnecting as user: weblogic
Obtained 1 MBeans matching pattern *:Type=ThreadPoolRuntime,*.
Enter an existing target type for this Metric Extension:
[j2ee_application]
Enter the name of the Metric Extension: [myMEXT] myAppME_1
Enter the Metric Extension version: [1.0]
Enter the Metric Extension metadata file location: [./metadata/
ME#24#myAppME_1.xml]
Enter the Metric Extension collection file location: [./collection/
ME#24#myAppME_1.xml]
Enter a label for this Metric Extension: [myAppME_1]
Enter a description for this Metric Extension: [myAppME_1]
The available targets are:
0: This bean is used to monitor the self-tuning queue <h3
class="TypeSafeDeprecation">Deprecation of MBeanHome and Type-Safe
Interfaces</h3>
<p class="TypeSafeDeprecation">This is a type-safe interface for a
WebLogic Server MBean,
which you can import into your client classes and access through
<code>weblogic.management.MBeanHome</code>.
As of 9.0, the <code>MBeanHome</code> interface and all type-safe
interfaces for WebLogic Server MBeans are deprecated.
Instead, client classes that interact with WebLogic Server MBeans should
use standard JMX design patterns in which clients use the
<code>javax.management.MBeanServerConnection</code> interface to discover
MBeans, attributes, and attribute types at runtime.
For more information, see "Developing Manageable Applications with JMX"
on <a href="http://www.oracle.com/technology/products/weblogic/
index.html" shape="rect">http://www.oracle.com/technology/products/
weblogic/index.html.</p>

(com.bea:Name=ThreadPoolRuntime,ServerRuntime=EMGC_ADMINSERVER,Type=Thread
PoolRuntime)
Enter the index of target/MBean you wish to monitor or press <Ctrl-C> to
quit: 0

Chapter 18
Creating JMX Metric Extensions

18-55

Following metric source types are available for selected target(s):
 0: JMX Attributes
 1: JMX Operations
Enter the index of your choice or press <Ctrl-C> to quit: 0
Attributes are:
 0: CompletedRequestCount Return Value:
java.lang.Long
 1: ExecuteThreadIdleCount Return Value:
java.lang.Integer
 2: ExecuteThreads Return Value:
[Lweblogic.management.runtime.ExecuteThread;
 3: ExecuteThreadTotalCount Return Value:
java.lang.Integer
 4: HealthState Return Value: weblogic.health.HealthState
 5: HoggingThreadCount Return Value: java.lang.Integer
 6: MinThreadsConstraintsCompleted Return Value:
java.lang.Long
 7: MinThreadsConstraintsPending Return Value:
java.lang.Integer
 8: Name Return Value: java.lang.String
 9: Parent Return Value: javax.management.ObjectName
 10: PendingUserRequestCount Return Value:
java.lang.Integer
 11: QueueLength Return Value: java.lang.Integer
 12: SharedCapacityForWorkManagers Return Value:
java.lang.Integer
 13: StandbyThreadCount Return Value: java.lang.Integer
 14: Suspended Return Value: java.lang.Boolean
 15: Throughput Return Value: java.lang.Double
 16: Type Return Value: java.lang.String
Select one or more items as comma separated indices: 5,13
Number of possible columns in the resultant metric are 2.
Enter the name for this metric column at index=0 :
[HoggingThreadCount]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [HoggingThreadCount]
Enter the NLSID for column: [HoggingThreadCount]
Enter the UNIT for column "HoggingThreadCount": [millisec, kb
etc..]
Do you want to create a threshold for this column <y/n>? [n]
Enter the name for this metric column at index=1 :
[StandbyThreadCount]
Is this column a KEY Column <y/n>? [n]
Is this column for SUMMARY_UI <y/n>? [n]
Enter the label for column: [StandbyThreadCount]
Enter the NLSID for column: [StandbyThreadCount]
Enter the UNIT for column "StandbyThreadCount": [millisec, kb
etc..]
Do you want to create a threshold for this column <y/n>? [n]
Do you want periodic collection for this metric <y/n>? [n] y
Enter the collection interval in seconds: 300
Periodic collection interval is: 300 seconds.
Written the metadata xml file: ./metadata/ME#24#myAppME_1.xml.
Creating new file: ./collection/ME#24#myAppME_1.xml.

Chapter 18
Creating JMX Metric Extensions

18-56

Updated the default collection file for j2ee_application at location ./
collection/ME#24#myA
ppME_1.xml.
createMextArchive: Adding metadata
createMextArchive: Adding collection file
createMextArchive: Adding mea.xml file

Creating Metric Extension zip archive: ./MEA_ME$myAppME_1.zip
Please import this into Enterprise Manager Cloud Control using the
console.
Exiting...

The previous session creates a ZIP file MEA_ME$myAppME_1.zip in the directory
specified by the -w option when jmxcli is invoked (or in current directory if -w is not
specified).

Import this into the Enterprise Manager console as shown below. From the Enterprise
menu, choose Monitoring and then Metric Extensions to access the Metric Extensions
home page.

After the Management Extension Archive is imported as shown in the preceding example,
it can be edited (and modified), tested, published and deployed.

Surfacing Metrics from a Standalone JVM or Oracle Coherence
Users can also use the mechanism outlined in previous section to create additional metrics
that are not available out-of- box for Oracle Coherence or JVM targets and the data for which
are available via JMX Mbean attributes.

Chapter 18
Surfacing Metrics from a Standalone JVM or Oracle Coherence

18-57

Using the Enterprise Manager Console
The procedure is similar to the ones followed in previous section for extending metrics
on j2ee_application target types except that you must select target type "JVM" or
"Oracle Coherence xxx" in Step 3 for defining the Metric Extension on JVM or Oracle
Coherence target types.

Using JMXCLI
The steps are similar to those for using JMXCLI to define a Metric Extension Archive
for custom J2EE applications except that the start-up arguments when jmxcli is
invoked as follows:

emctl jmxcli -t JVM -MEXT -h adc2180736 -p 6789 -m "*:*" -w /scratch/TEMP/

You must specify target type on which the Metric Extension is defined to be JVM or
oracle_coherence as appropriate (instead of the default j2ee_application).

Monitoring Using RESTful Services
Monitoring REST-compliant Web resources is achieved using the REST fetchlet. For
more information about the REST fetchlet, see REST Fetchlet .

Chapter 18
Monitoring Using RESTful Services

18-58

19
Using Receivelets

This chapter contains the following sections:

• About Receivelets

• SNMP Receivelet

About Receivelets
A receivelet is a library that allows Enterprise Manager to receive external notifications sent
by third-party network elements. These are notifications that are asynchronously sent and
without any requests from the Management Agent.

Usually, the Management Agent data retrieval mechanism is based on a polling model, that
is, modular libraries, called fetchlets. Fetchlets collect values of various metrics from their
managed targets on a regular basis. The Management Agent then compares the gathered
data with user-defined thresholds and generates events when the thresholds were met.

Receivelets are a more efficient way of dealing with these metrics. It depends on the ability of
the managed target to detect the condition for its own events, and then communicate with
Enterprise Manager only when an event occurs. When this communication happens, the
Management Agent uses receivelets to receive the information.

You can use receivelets as a quicker way to get alerts on data that will be eventually collected
via fetchlets. You can also use receivelets as a way to send both alerts and data, or just alerts
for cases where there is no real data chart associated with the alert.

A receivelet is not a substitute for a fetchlet, but it is another way of collecting data. It is more
for immediacy of notification compared to periodic polling that the fetchlet offers. Therefore, if
you can fetch data, then use fetchlets to get that data. However, if your server is capable of
sending you events or data at a cost lower than that associated with fetchlets, then use
receivelets.

A receivelet may be tightly coupled to a particular type of managed target, or may be useful
to a broad range of potential targets.

The SNMP receivelet is offered with Enterprise Manager as described in the following
section.

SNMP Receivelet
An SNMP receivelet allows you to receive SNMP trap notifications from third-party network
elements, and translate them into a form compatible with Oracle Management Service
(OMS).

While monitoring third-party entities in your managed environment, if the third-party entity
wants to send a notification to Enterprise Manager, then the SNMP agent of that third-party
entity sends a notification to the Management Agent. These notifications are in the form of
SNMP traps that get triggered asynchronously and without any requests from the
Management Agent.

19-1

Since these traps are based on SNMP, the Management Agent uses SNMP
receivelets to receive and translate these SNMP traps into a form compatible with
OMS.

When the SNMP traps are received, the SNMP receivelet extracts information
pertaining to those object identifiers (OIDs) that are defined in the <PushDescriptor>
section of the target type metadata file only. For more information about the target type
metadata file, see Creating the Target Type Metadata File.

When a customer wants to manage a network element using the SNMP receivelet,
they must configure the element's SNMP agent to send traps to the responsible
Management Agent's SNMP receivelet. When the SNMP receivelet receives such
traps, it translates them to an Enterprise Manager format (such as an event or
datapoint based on the push descriptor information), and stores that information (in
XML files) in the upload directory. The Upload Manager checks for such new files in
the upload directory, and then uploads those files to OMS. Then Enterprise Manager
accesses OMS to extract the collected information and displays it to the user.

Receiving SNMP Traps

To receive SNMP traps, you have to make some configuration settings at the
Management Agent side and at SNMP target agent side.

This enables the SNMP targets to send SNMP traps to the SNMP receivelet. When
the SNMP traps are received, the SNMP receivelet uses the Push Descriptor
properties, such as MatchAgentAddr, MatchEnterprise, and so on, to identify the target
and metric for which the traps belongs. Then the SNMP receivelet uses the Push
Descriptor properties, such as Eventmetric-column or Eventmetric-columnOID,
SeverityCode, and so on, to convert the traps into an event. When this happens, the
SNMP receivelet uploads the converted event to the Management Repository and it is
now available in the Cloud Control console.

Configuration Settings Required at the Management Agent Side

By default, the SNMP receivelet listens over UDP on the same port as that of the
Management Agent. However, if you want to use a different listening port for the
SNMP receivelet, then add the SnmpRecvletListenNIC(=8002) entry to the
emd.properties file.

Configuration Settings Required at SNMP Target Agent Side

Configure the SNMP target agent to send its traps to the SNMP target agent's host
name and port.

Input Parameters

Table 19-1 SNMP Receivelet Input Parameters

Parameter Type Description Use

MatchEnterprise String Note: For Push Descriptors that intend to
match SNMPv1 traps only.

OID used to define the trap being sent.

Note: If MatchEnterprise is present, then you
must include MatchGenericTrap and
MatchSpecificTrap also.

Required (SNMPv1)

MatchGenericTrap String Code for a generic SNMP trap. Required (SNMPv1)

Chapter 19
SNMP Receivelet

19-2

Table 19-1 (Cont.) SNMP Receivelet Input Parameters

Parameter Type Description Use

MatchSpecificTrap String Trap defined in a MIB (not one of the generic
traps), the ID assigned in that MIB.

Required (SNMPv1)

MatchTrapOID String Note: For Push Descriptors that intend to
match SNMPv2 or SNMPv3 traps.

For an SNMPv2 or SNMPv3 trap, this is the
OID assigned to the NOTIFICATION-TYPE in
the MIB definition of the trap.

Required (SNMPv2, SNMPv3)

MatchAgentAddr String IP address of the generating SNMP agent, as
sent in the trap.

Required

MatchVarBind String If this parameter is present, its value is an
OID. If a trap is received that matches the
other Match* parameters, it still must have
this OID on its received varbind list.
Otherwise, it will not generate an Enterprise
Manager event or datapoint.

Optional

UseCredential String Specifies credential use. If it is set to TRUE,
then the receivelet will accept SNMPv3 traps
using a set of target SNMPv3Creds sent to
the receivelet as a CredentialRef. Also, if
UseCredential is set, then the string property
"hostname" and the numeric property "PORT"
must be specified; their values will be used
for engine-id discovery.

Optional

Eventmetric-column String Specifies that, on receiving this trap, the
receivelet must generate a severity on this
metric column. The value of metric-column
must be the value of this parameter. (This
case is useful where the expected values of
the Enterprise Manager metric are not the
same as the triggering SNMP variable.)

Required, if events have to be
generated. However, if
Eventmetric-columnOID is
provided, then this is not
required.

Eventmetric-
columnOID

String Specifies that, on receiving this trap, the
receivelet must generate a severity on this
metric column. The value of the metric
column should be taken from the varbind in
the trap with an OID equal to the value of this
parameter.

Required, if events have to be
generated. However, if
Eventmetric-column is
provided, then this is not
required.

SeverityCode String Specifies the level at which the severity must
be generated. The value of this parameter
must be 'CRITICAL', 'WARNING', or 'CLEAR'.

Note: SeverityCode or SeverityCodeOID
must be present if events are to be generated
when the trap is received. However, if the
Push Descriptor intends to generate a metric
datapoint (and specifies one or more
Datametric-columnOID properties), then it
must not have a SeverityCode or
SeverityCodeOID property.

Required. However, if
SeverityCodeOID is provided,
or the Push Descriptor is
generating a metric datapoint,
then this is not required.

Chapter 19
SNMP Receivelet

19-3

Table 19-1 (Cont.) SNMP Receivelet Input Parameters

Parameter Type Description Use

SeverityCodeOID String Specifies the level at which the severity
should be generated. If the varbind in the trap
with OID equal to the value of this parameter
is one of the strings 'CRITICAL', 'WARNING',
or 'CLEAR', then the severity must be
generated at that level; otherwise, no severity
must be generated. (This parameter is only
used if you are designing a trap exclusively
for use with Enterprise Manager, but can be
useful in this case.)

Note: SeverityCode or SeverityCodeOID
must be present if events are to be generated
when the trap is received. However, if the
Push Descriptor intends to generate a metric
datapoint (and specifies one or more
Datametric-columnOID properties), then it
must not have a SeverityCode or
SeverityCodeOID property.

Required. However, if
SeverityCode is provided, or
the PushDescriptor is
generating a metric datapoint,
then this is not required.

Datametric-
columnOID

String Specifies that, on receiving this trap, the
receivelet must generate a datapoint on the
metric, for which the value of this metric
column should be taken from the varbind in
the trap with OID equal to the value of this
parameter. (An SNMP Push Descriptor can
have many Data* parameters, in which case
a single row will be returned, with all specified
columns populated from the appropriate
varbind in the trap. An SNMP Push Descriptor
cannot have both a Data* parameter and a
Severity* parameter, nor can it have multiple
Severity* parameters.)

Required, if datapoints have to
be generated.

Keymetric-columnOID String Severity or datapoint generated by this Push
Descriptor should contain a key-value for this
metric column. The key-value should be
taken from the varbind in the trap with OID
equal to the value of this parameter. For
every key-column in the metric definition,
there must be a Key* parameter in the Push
Descriptor.

Optional

Contextmetric-
columnOID

String If the Push Descriptor generates a severity,
then the severity must contain a value for this
metric column in its event context. The value
should be taken from the varbind in the trap
with OID equal to the value of this parameter.
If the Push Descriptor generates a datapoint,
then this parameter is ignored.

Optional. This can be used for
severities only.

Example

The following example shows what a trap from a vendor-specific router looks like.

Chapter 19
SNMP Receivelet

19-4

Example: Trap from a Vendor-Specific Router

ascendLinkDown TRAP-TYPE
 ENTERPRISE ascend
 VARIABLES { ifIndex, ifAdminStatus, ifOperStatus, ifType,
 ifName }
 DESCRIPTION "This trap is in addition to the generic linkDown
 trap defined in RFC1215. This trap provides
 additional information such as ifAdminStatus,
 ifOerStatus, ifName, slotIfSlotIndex, slotIfItemIndex.
 This is an Alarm class trap and it can
 be enabled/disabled via alarmEnabled and/or
 ascendLinkDownTrapEnabled in trap profile.
 This trap is sent only if rfc1215 linkDown trap is generated."
 ::= 50

The following example shows how the trap will be received by the Management Agent. Note
that <x> in this example is the value of ifIndex that identifies the particular interface that's
having problems.

Example: Trap Received by the Management Agent

Message:
 version: 0
 community: 'public'
 Trap-PDU:
 enterprise: enterprises.ascend (1.3.6.1.4.1.529)
 agent-addr: 138.2.204.10
 generic-trap: 6
 specific-trap: 50
 time-stamp: <timestamp from router's sysUptime>
 variable-bindings:
 Name: ifIndex.<x> (1.3.6.1.2.1.2.2.1.1.<x>)
 Type: INTEGER
 Value: <x>

 Name: ifAdminStatus.<x> (1.3.6.1.2.1.2.2.1.7.<x>)
 Type: INTEGER
 Value: up (1)

 Name: ifOperStatus.<x> (1.3.6.1.2.1.2.2.1.8.<x>)
 Type: INTEGER
 Value: down (2)

 Name: ifType.<x> (1.3.6.1.2.1.2.2.1.3.<x>)
 Type: INTEGER
 Value: iso88023-csmacd (7)

 Name: ifName.<x> (1.3.6.1.2.1.2.2.1.31.<x>)
 Type: DisplayString
 Value: 'eth0'

The following example shows how the metric can be defined in the target type metadata file.

Chapter 19
SNMP Receivelet

19-5

Example: Metric Defined in the Target Type Metadata File

<Metric NAME="interfaces" TYPE="TABLE">
 <TableDescriptor>
 <ColumnDescriptor NAME="name" TYPE="STRING" IS_KEY="TRUE"/>
 <ColumnDescriptor NAME="type" TYPE="NUMBER" IS_KEY="FALSE"/>
 <ColumnDescriptor NAME="status" TYPE="NUMBER" IS_KEY="FALSE"/>
 <ColumnDescriptor NAME="configured_status" TYPE="NUMBER"
IS_KEY="FALSE"/>
 </TableDescriptor>
</Metric>

To Receive SNMPV1 Trap

The following example shows how the push descriptor can be defined in the target
type metadata file to trigger a severity.

Example: Push Descriptor in the Target Type Metadata File For Triggering a
Severity

<PushDescriptor RECVLET_ID="SNMPTrap">
 <Property NAME="MatchEnterprise" SCOPE="GLOBAL">1.3.6.1.4.1.529</
Property>
 <Property NAME="MatchGenericTrap" SCOPE="GLOBAL">6</Property>
 <Property NAME="MatchSpecificTrap" SCOPE="GLOBAL">50</Property>
 <Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</
Property>
 <Property NAME="SeverityStatusOID"
SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.8</Property>
 <Property NAME="KeyNameOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.31</
Property>
 <Property NAME="ContextTypeOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.3</
Property>
 <Property NAME="ContextConfigured_statusOID"
SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.7</Property>
 <Property NAME="SeverityCode" SCOPE="GLOBAL">CRITICAL</Property>
 <CredentialRef NAME="monCreds">monCredentials</CredentialRef>
</PushDescriptor>

The following example shows how the push descriptor can be defined in the target
type metadata file to trigger a datapoint, which would specify the reporting of data on
the same trap, with ifName as the key-column and the other three as data columns.

Example: Push Descriptor in the Target Type Metadata File For Triggering a
Datapoint

<PushDescriptor RECVLET_ID="SNMPTrap">
 <Property NAME="MatchEnterprise" SCOPE="GLOBAL">1.3.6.1.4.1.529</
Property>
 <Property NAME="MatchGenericTrap" SCOPE="GLOBAL">6</Property>
 <Property NAME="MatchSpecificTrap" SCOPE="GLOBAL">50</Property>
 <Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</
Property>
 <Property NAME="KeyNameOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.31</
Property>

Chapter 19
SNMP Receivelet

19-6

 <Property NAME="DataStatusOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.8</
Property>
 <Property NAME="DataTypeOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.3</
Property>
 <Property NAME="DataConfigured_statusOID"
SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.7</Property>
<CredentialRef NAME="monCreds">monCredentials</CredentialRef>
</PushDescriptor>

To Receive SNMPV2 Notifications

The following example shows how the push descriptor can be defined in the target type
metadata file to trigger a severity:

Example: Push Descriptor in the Target Type Metadata File For Triggering a Severity

<PushDescriptor RECVLET_ID="SNMPTrap">
 <Property NAME="MatchTrapOID" SCOPE="GLOBAL">1.3.6.1.4.1.529.50</Property>
 <Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</Property>
 <Property NAME="SeverityStatusOID"
 SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.8</Property>
 <Property NAME="KeyNameOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.31</Property>
 <Property NAME="ContextTypeOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.3</
Property>
 <Property NAME="ContextConfigured_statusOID"
 SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.7</Property>
 <Property NAME="SeverityCode" SCOPE="GLOBAL">CRITICAL</Property>
 <CredentialRef NAME="monCreds">monCredentials</CredentialRef>
</PushDescriptor>

The following example shows how the push descriptor can be defined in the target type
metadata file to trigger a datapoint, which would specify the reporting of data on the same
trap, with ifName as the key-column and the other three as data columns.

Example: Push Descriptor in the Target Type Metadata File For Triggering a Datapoint

<PushDescriptor RECVLET_ID="SNMPTrap">
 <Property NAME="MatchEnterprise" SCOPE="GLOBAL">1.3.6.1.4.1.529</Property>
 <Property NAME="MatchGenericTrap" SCOPE="GLOBAL">6</Property>
 <Property NAME="MatchSpecificTrap" SCOPE="GLOBAL">50</Property>
 <Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</Property>
 <Property NAME="KeyNameOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.31</Property>
 <Property NAME="DataStatusOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.8</
Property>
 <Property NAME="DataTypeOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.3</Property>
 <Property NAME="DataConfigured_statusOID"
 SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.7</Property>
 <CredentialRef NAME="monCreds">monCredentials</CredentialRef>
</PushDescriptor>

To Receive SNMPV3 Notifications

The following example shows how the push descriptor can be defined in the target type
metadata file to trigger a severity.

Chapter 19
SNMP Receivelet

19-7

Example: Push Descriptor in the Target Type Metadata File For Triggering a
Severity

<PushDescriptor RECVLET_ID="SNMPTrap">
 <Property NAME="MatchTrapOID" SCOPE="GLOBAL">1.3.6.1.4.1.529.50</
Property>
 <Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</
Property>
 <Property NAME="SeverityStatusOID"
 SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.8</Property>
 <Property NAME="KeyNameOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.31</
Property>
 <Property NAME="ContextTypeOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.3</
Property>
 <Property NAME="ContextConfigured_statusOID"
 SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.7</Property>
 <Property NAME="SeverityCode" SCOPE="GLOBAL">CRITICAL</Property>
 <Property NAME="hostname" SCOPE="INSTANCE">snmpHost</Property>
 <Property NAME="PORT" SCOPE="INSTANCE">snmpPort</Property>
 <CredentialRef NAME="monCreds">monCredentials</CredentialRef>
</PushDescriptor>

The following example shows how the push descriptor can be defined in the target
type metadata file to trigger a datapoint, which would specify the reporting of data on
the same trap, with ifName as the key-column and the other three as data columns.

Example: Push Descriptor in the Target Type Metadata File For Triggering a
Datapoint

<PushDescriptor RECVLET_ID="SNMPTrap">
 <Property NAME="MatchEnterprise" SCOPE="GLOBAL">1.3.6.1.4.1.529</
Property>
 <Property NAME="MatchGenericTrap" SCOPE="GLOBAL">6</Property>
 <Property NAME="MatchSpecificTrap" SCOPE="GLOBAL">50</Property>
 <Property NAME="MatchAgentAddr" SCOPE="INSTANCE">AdminAddress</
Property>
 <Property NAME="KeyNameOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.31</
Property>
 <Property NAME="DataStatusOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.8</
Property>
 <Property NAME="DataTypeOID" SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.3</
Property>
 <Property NAME="DataConfigured_statusOID"
 SCOPE="GLOBAL">1.3.6.1.2.1.2.2.1.7</Property>
 <Property NAME="hostname" SCOPE="INSTANCE">snmpHost</Property>
 <Property NAME="PORT" SCOPE="INSTANCE">snmpPort</Property>
 <CredentialRef NAME="monCreds">monCredentials</CredentialRef>
</PushDescriptor>

The following example shows how the monCredentials is defined in target type
metadata file

Chapter 19
SNMP Receivelet

19-8

Example: monCredentials in the Target Type Metadata File

<CredentialInfo>
 <CredentialSet NAME="monCredentials" USAGE="MONITORING">
 <AllowedCredType TYPE="SNMPV1Creds" />
 <AllowedCredType TYPE="SNMPV3Creds" />
 </CredentialSet>
</CredentialInfo>

SNMPV1Creds or SNMPV3Creds values for the respective targets must be set from the
Cloud Control console by selecting Setup, then Security, and then Monitoring Credentials.

To receive an SNMPV1 trap or SNMPV2 Notification, the user must choose SNMPV1Creds.
Choosing SNMPV1Creds will ask for “Community String" parameter value. Appropriate
community string values need to be set by the user.

To receive an SNMPV3 Notification, the user must choose SNMPV3Creds. Choosing
SNMPV3Creds will ask for “UserName", “Auth Password", “Auth Protocol" and “Privacy
Password" parameter values. The user must set the required values according to the
secLevel they want to use.

Example: SNMV1 Trap Received by the Management Agent

Message:
version: 0
community: 'public'
Trap-PDU:
enterprise: enterprises.ascend (1.3.6.1.4.1.529)
agent-addr: 138.2.204.10
generic-trap: 6
specific-trap: 50
time-stamp: <timestamp from router's sysUptime>
variable-bindings:
Name: ifIndex.<x> (1.3.6.1.2.1.2.2.1.1.<x>)
Type: INTEGER
Value: <x>
Name: ifAdminStatus.<x> (1.3.6.1.2.1.2.2.1.7.<x>)
Type: INTEGER
Value: up (1)
Name: ifOperStatus.<x> (1.3.6.1.2.1.2.2.1.8.<x>)
Type: INTEGER
Value: down (2)
Name: ifType.<x> (1.3.6.1.2.1.2.2.1.3.<x>)
Type: INTEGER
Value: iso88023-csmacd (7)
Name: ifName.<x> (1.3.6.1.2.1.2.2.1.31.<x>)
Type: DisplayString
Value: 'eth0'

Example: SNMV2/SNMPV3 Notification Received by the Management Agent

Message: Recevied from address 138.2.204.10 (ip address from UDP layer)
version: 1 (or 3 i.e 1 for snmpv2 and 3 for snmpv3 notification)
Security params : (community if SNMPV2, SNMPV3 security params if SNMPV3)
Trap-PDU:

Chapter 19
SNMP Receivelet

19-9

variable-bindings:
Name: sysUpTime.0 (.1.3.6.1.2.1.1.3.0)
Type: INTEGER
Value: 43053404
Name: snmpTrapOID.0 (1.3.6.1.6.3.1.1.4.1.0)
Type: Object Identifier
Value: 1.3.6.1.4.1.529.50
Name: ifAdminStatus.<x> (1.3.6.1.2.1.2.2.1.7.<x>)
Type: INTEGER
Value: up (1)
Name: ifOperStatus.<x> (1.3.6.1.2.1.2.2.1.8.<x>)
Type: INTEGER
Value: down (2)
Name: ifType.<x> (1.3.6.1.2.1.2.2.1.3.<x>)
Type: INTEGER
Value: iso88023-csmacd (7)
Name: ifName.<x> (1.3.6.1.2.1.2.2.1.31.<x>)
Type: DisplayString
Value: 'eth0'

Notes

• The target type metadata file can have multiple metrics with push descriptor
definitions. Also, a single metric can have multiple push descriptors attached.

• For event format, ensure that your push descriptor defines only one Event*
parameter indicating one metric column as described in Table 19-1. The event
push descriptor can have one or more Context* parameters to indicate additional
metric column values to send as part of an AlertContext.

• For datapoint format, ensure that your push descriptor defines one or more Data*
properties as described in Table 19-1 and demonstrated in the Push Descriptor in
the Target Type Metadata File For Triggering a Datapoint example and the Push
Descriptor in the Target Type Metadata File For Triggering a Datapoint example in
this chapter.

Chapter 19
SNMP Receivelet

19-10

20
Using Fetchlets

This chapter contains the following sections:

• About Fetchlets

• OS Command Fetchlets

• SQL Fetchlet

• SNMP Fetchlet

• HTTP Data Fetchlets

• URLXML Fetchlet

• URL Timing Fetchlet

• Dynamic Monitoring Service (DMS) Fetchlet

• JDBC Fetchlet

• WBEM Fetchlet

• JMX Fetchlet

• Web Service Fetchlet

• WS-Management Fetchlet

• REST Fetchlet

About Fetchlets
Enterprise Manager data retrieval is handled through predefined "fetchlets." A fetchlet is a
parametrized data access mechanism that takes arguments (for example, a script, a SQL
statement, a target instance's properties) as input and returns formatted data. Each fetchlet
handles a specific type of data access. The fetchlets supplied with Enterprise Manager
provide data retrieval capability for the most common data access methods, such as SQL,
SNMP (Simple Network Management Protocol), HTTP, and DMS (Dynamic Monitoring
Service). To handle more complex data access requirements, Enterprise Manager also
provides an OS command fetchlet that allows developers to implement custom metric
collection methods.

The following sections describe the fetchlets supplied with Enterprise Manager:

OS Command Fetchlets
The operating system (OS) command fetchlets allow you to obtain metric data by executing
OS commands (either individually or from scripts) that return a standard out (stdout) data
stream.

Three OS command fetchlets are available:

• OS Fetchlet (raw)

20-1

• OSLines Fetchlet (split into lines)

• OSLineToken Fetchlet (tokenized lines)

OS Fetchlet
The OS fetchlet executes a given OS command and returns the command's output in
a single cell table.

Input Parameters

Table 20-1 OS Fetchlet Input Parameters

Parameter Type Description Use

command string Operating system command to be executed. Required

ENVname string OSFetchlet parameters starting with "ENV"
appear in the execution environment for the
command as name environment variables

Zero or more

errStartsWith String When defined, this property allows you to
define a custom prefix for error messages. If
this property is not defined, the OSFetchlet
defaults to "em_error=" as the message
prefix.

Optional

script string Specifies the script to be executed if
command property only provides an
interpreter. For example, command might
consist of "perl." script is then used to specify
the particular perl script to be run.

Although scripts can be specified directly
from the command parameter, using the
script parameter adds to stylistic clarity and
readability when defining a target type
metadata file.

Optional

args string A property that is taken as one or more
arguments to the command and script
properties.

Although args can be specified directly from
the command parameter, using the args
parameter adds to stylistic clarity and
readability when defining a target type
metadata file.

Optional

separateErrorStrea
m

boolean If an error occurs while executing a
command, this property instructs the fetchlet
whether to return both the stdout and stderr
to the user as an error message. When set to
TRUE, only stderr output is sent to the user
as an error message when there is a
command error. When set to FALSE (default
value), both the stdout and the stderr are sent
to the user as an error message upon
command failure.

Optional.
(TRUE/FALSE)

Chapter 20
OS Command Fetchlets

20-2

Table 20-1 (Cont.) OS Fetchlet Input Parameters

Parameter Type Description Use

em_metric_timeout integer Metric timeout period (in seconds). After the
timeout period has finished, the Management
Agent returns a timeout exception and
terminates any child processes that may have
been created. The Management Agent does
not terminate any of the grandchild
processes.

Specify "-1" for no timeout period.

Optional

Example

You want to obtain metric data by executing the UNIX echo command.

To run the command from the shell environment, enter:

echo Line 1|some more|even more\nLine 2\n\nLine 4|a little more|\n|Line 5\n|Line 6|\n|
Line 7|again|\nLine 8|the|end

The echo command produces the following standard output:

Line 1|some more|even more
Line 2

Line 4|a little more|
|Line 5
|Line 6|
|Line 7|again|
Line 8|the|end

Using the OS fetchlet with the given example command.

The fetchlet returns the following 1 x 1 table:

Figure 20-1 Table Returned by the OS Fetchlet

The raw output of the OS command is returned. Any standard error output is appended to the
standard output.

Error Handling

Chapter 20
OS Command Fetchlets

20-3

Any problems encountered launching the command (For example, the command
program no longer exists) results in an
oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping a
java.io.IOException. If the command exits with a non-zero exit value, the fetchlet
throws an oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping an
oracle.sysmand.emd.fetchlets.CommandFailedException.

Notes

Commands are not executed as if they are being run in a shell. This means that
common shell symbols do not work, including piping, output redirection, and
backgrounding.

Commands cannot read from standard input.

The fetchlet blocks and waits for the command to finish.

OSLines Fetchlet (split into lines)
The OS Lines fetchlet executes a given OS command and tokenizes the OS
command's output. The output is tokenized by lines. The fetchlet returns the tokens in
a single column table. The nth row in the table represents the nth line in the output of
the OS command.

To get the raw, untokenized output of an OS command, use the OS fetchlet. To get the
output of an OS command tokenized by lines and each line tokenized by a given
delimiter, see the OS Line Token fetchlet.

Input Parameters

Table 20-2 OSLines Fetchlet Input Parameters

Parameter Type Description Use

command string Operating system command to be executed. Required

startsWith string Only lines starting with this string are
included in the result.

Optional;
default = "" (all
lines are
included)

ENVname string Parameters starting with "ENV" appear in the
execution environment for the command as
name environment variables

Zero or more of
these

errStartsWith string When defined, this property allows you to
define a custom prefix for error messages. If
this property is not defined, the OSFetchlet
defaults to "em_error=" as the message
prefix.

Optional

script string Specifies the script to be executed if
command property only provides an
interpreter. For example, command might
consist of "perl." script is then used to specify
the particular perl script to be run.

Although scripts can be specified directly
from the command parameter, using the
script parameter adds to stylistic clarity and
readability when defining a target type
metadata file.

Optional

Chapter 20
OS Command Fetchlets

20-4

Table 20-2 (Cont.) OSLines Fetchlet Input Parameters

Parameter Type Description Use

args string A property that is taken as one or more
arguments to the command and script
properties.

Although args can be specified directly from
the command parameter, using the args
parameter adds to stylistic clarity and
readability when defining a target type
metadata file.

Optional

separateErrorStream boolean If an error occurs while executing a
command, this property instructs the fetchlet
to whether to return both the stdout and
stderr to the user as an error message. When
set to TRUE, only stderr output is sent to the
user as an error message when there is a
command error. When set to FALSE (default
value), both the stdout and the stderr are sent
to the user as an error message upon
command failure.

Optional.
(TRUE/FALSE)

em_metric_timeout integer Metric timeout period (in seconds). After the
timeout period has finished, the Management
Agent returns a timeout exception and
terminates any child processes that may have
been created. The Management Agent DOES
NOT kill any of the grandchild processes.

Specify "-1" for no timeout period.

Optional

Example

Take the following UNIX command:

echo Line 1|some more|even more\nLine 2\n\nLine 4|a little more|\n|Line 5\n|Line 6|\n|
Line 7|again|\nLine 8|the|end

It produces the following output:

Line 1|some more|even more
Line 2

Line 4|a little more|
|Line 5
|Line 6|
|Line 7|again|
Line 8|the|end

Running OSLinesFetchlet with the given example command produces the following single
column table.

Chapter 20
OS Command Fetchlets

20-5

Figure 20-2 Table Returned by the OS LINES Fetchlet

Note that without content, "\n" results in a blank line inserted between Line 2 and Line
4.

Note:

Commands are not executed as if they are being run in a shell. This means
that common shell symbols do not work, including piping, output redirection,
and backgrounding.

Commands cannot read from standard input.

The fetchlet blocks and waits for the command to finish.

The standard output of the command is captured and the standard error is
captured and appended to the standard output.

Lines are tokenized using "\n".

OSLineToken Fetchlet (tokenized lines)
The OS Line Token fetchlet executes a given OS command and tokenizes the output
of the OS command. The output is tokenized first by lines, and then each line is
tokenized by a given delimiter set. The fetchlet returns the tokens in a table. The nth
row in the table represents the nth line in the output of the OS command. The nth
column in the table represents the nth token in a line as determined by the given
delimiter set.

To get the raw, untokenized output of an OS command, see OS Fetchlet.

Input Parameters

Table 20-3 OSLineToken Fetchlet Input Parameters

Parameter Type Description Use

command String Operating system command to be executed. Required

Chapter 20
OS Command Fetchlets

20-6

Table 20-3 (Cont.) OSLineToken Fetchlet Input Parameters

Parameter Type Description Use

delimiter String Set of characters that act as delimiters to
tokenize the lines

Optional;
default = ""
(just breaks
output into
lines)

startsWith String Only lines starting with this string are
included in the result

Optional;
default = "" (all
lines are
included)

ENVname String Parameters starting with "ENV" appear in the
execution environment for the command as
name environment variables

Zero or more of
these

errStartsWith String When defined, this property allows you to
define a custom prefix for error messages. If
this property is not defined, the OSFetchlet
defaults to "em_error=" as the message
prefix.

Optional

script String Specifies the script to be executed if
command property only provides an
interpreter. For example, command might
consist of "perl." The script is then used to
specify the particular perl script to be run.

Although scripts can be specified directly
from the command parameter, using the
script parameter adds to stylistic clarity and
readability when defining a target type
metadata file.

Optional

args String A property that is taken as one or more
arguments to the command and script
properties.

Although args can be specified directly from
the command parameter, using the args
parameter adds to stylistic clarity and
readability when defining a target type
metadata file.

Optional

separateErrorStream Boolean If an error occurs while executing a
command, this property instructs the fetchlet
to whether to return both the stdout and
stderr to the user as an error message.
When set to TRUE, only stderr output is sent
to the user as an error message when there
is a command error. When set to FALSE
(default value), both the stdout and the stderr
are sent to the user as an error message
upon command failure.

Optional.
(TRUE/FALSE)

Chapter 20
OS Command Fetchlets

20-7

Table 20-3 (Cont.) OSLineToken Fetchlet Input Parameters

Parameter Type Description Use

em_metric_timeout Integer Metric timeout period (in seconds). After the
timeout period has finished, the Management
Agent returns a timeout exception and
terminates any child processes that may
have been created. The Management Agent
DOES NOT kill any of the grandchild
processes.

Specify "-1" for no timeout period.

Optional

Example

Take the following UNIX command:

echo Line 1|some more|even more\nLine 2\n\nLine 4|a little more|\n|Line 5\n|Line
6|\n|Line 7|again|\nLine 8|the|end

It produces the following output:

Line 1|some more|even more
Line 2

Line 4|a little more|
|Line 5
|Line 6|
|Line 7|again|
Line 8|the|end

Running OSLineTokenFetchlet with the given example command and a single
character "|" for the delimiter generates the following table:

Figure 20-3 Table Returned by the OS Token Lines Fetchlet

Error Handling

Any problem launching the command (unable to find the command program) results in
an oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping a
java.io.IOException.

Chapter 20
OS Command Fetchlets

20-8

If the command exits with a non-zero exit value, the fetchlet throws a
oracle.sysman.emSDK.emd.fetchlet.MetricSourceException wrapping a
oracle.sysmand.emd.fetchlets.CommandFailedException.

Notes

Commands are not executed as if they are being run in a shell. This means that common
shell symbols do not work, including piping, output redirection, and backgrounding.

The fetchlet promptly closes the input stream to the running command.

The fetchlet blocks and waits for the command to finish.

Lines are tokenized using "\n".

The delimiter can be a single character or a set of characters. For example, it can be "|+_", if
the line should be broken up by pipes, pluses, and underscores. If two or more delimiters are
together in the output text, such as "||" or "+|+", then it is as if there are empty string tokens
between them. These empty strings get columns in the result table. It is not considered that
there are empty strings preceding a delimiter that starts a line or following a delimiter that
ends a line.

In order to express non-printable characters in the delimiter set (such as tabs) in XML, use
"&#xHH;" where H is the hexadecimal identifier for the character.

Invoke an OS Fetchlet as a Specific User for Metric Collection
Depending on requirements, your plug-in may need to utilize the OS fetchlet to invoke a pre-
existing script on the Management Agent monitoring a target to collect data for a specific
metric as a specific user; that is, as a user other than the default "oracle" user.

Enterprise Manager supports the use of Privilege Delegation Providers (sudo and
powerbroker) to invoke metric collections as a specific user. Enabling PDP for a plug-in
requires credential setup on both the plug-in and on hosts where the target(s) being
monitored are deployed.

In your plug-in, you must set the credential reference in the metric definition in the target
metadata file. In the example, example Credentialref line has "your_cred". This value refers to
monitoring credential set name.

Example: Credential Reference in Target Metadata

<TargetMetadata TYPE="my_type" NAME="my_target_name">
 ...
 <Metric NAME="my_special_metric" TYPE="TABLE">
 <TableDescriptor>
 <ColumnDescriptor NAME="test" TYPE="STRING"/>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OS">
 <Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>
 <Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/your_
 script.pl</Property>
 <CredentialRef NAME="OSCreds">your_cred</CredentialRef>
 </QueryDescriptor>
 </Metric>
 ...
</TargetMetadata>

On the Management Agent monitoring the target, a referenced credential type must be
created that points to host:HostCreds, and allow the monitoring credential set be of the new

Chapter 20
OS Command Fetchlets

20-9

type that you add. See Oracle Enterprise Manager Cloud Control Administrator's
Guide for details on privilege delegation setup using Enterprise Manager Cloud
Control.

The credential data will be persisted to the target metadata file (target.xml) for the
Management Agent monitoring the target.

The following example defines the referenced credential type MyHostCreds in
target.xml, which is of the credential type host:HostCreds.

Example: Credential Type Definition in Management Agent

<Target TYPE="<removed>" NAME="<removed>" DISPLAY_NAME="<removed>" ON_HOST=""
EMD_URL="https://<removed>/emd/main/" TIMEZONE_REGION=""
IDENTIFIER="TARGET_GUID=<removed>">
...
<CredentialType NAME="MyHostCreds"><CredentialTypeRef REF_NAME="HostRef"
REF_TYPE="HostCreds" REF_TARGETTYPE="host"
ASSOCIATION="host"><CredentialTypeRefColumn NAME="HostUserName"
REF_TYPECOLUMN="HostUserName"/><CredentialTypeRefColumn NAME="HostPassword"
REF_TYPECOLUMN="HostPassword"/></CredentialTypeRef></CredentialType>
...
</Target>

When monitoring credentials are updated Cloud Control (via Setup->Security-
>Monitoring Credentials), the data shown above will be updated on the Management
Agent automatically.

The next example defines the HostMonCredSet monitoring credential set, which is of
type MyHostCreds (and therefore type host:HostCreds)

<CredentialSet NAME="HostMonCredSet" CREDENTIAL_TYPE="MyHostCreds"
USAGE="MONITORING"><AllowedCredType TYPE="MyHostCreds"/>
</CredentialSet>

SQL Fetchlet
The SQL fetchlet executes a given SQL statement on a given database as a given
user and returns the table result.

Input Parameters

Table 20-4 SQL Fetchlet Input Parameters

Parameter Type Description Use

Connection
Information

MachineName String Database host Required

Port Integer Database port Required

SID String Database SID Required unless
ServiceName is
specified

ServiceName String Database ServiceName Required unless
SID is specified

Chapter 20
SQL Fetchlet

20-10

Table 20-4 (Cont.) SQL Fetchlet Input Parameters

Parameter Type Description Use

OracleHome String Database's Oracle Home (used in
conjunction with
OidRepSchemaName).

Required when
OidRepSchema
Name is used.

Credential
Information

UserName String user name Required

password String user password Optional; default
is ""

Role String Role used when connecting to the
database (e.g., SYSDBA)

Optional; allowed
choices are
SYSDBA,
SYSOPER, and
NORMAL
(default)

General

STATEMENT String SQL statement or PL/SQL block Required unless
FILENAME is
specified.

FILENAME String Full path of the file containing the
SQL statement or PL/SQL block

Required unless
STATEMENT is
specified.

NUMROWS Integer Maximum number of rows to output. Required

Bind Parameters

SQLINPARAM<pos
ition>

String Value of input parameter at position
<position>

Zero or more,
one for each
input parameter.

SQLOUTPARAMP
OS

Integer Position of output parameter, if it
exists

There can be
exactly one
output
parameter, if it
exists.

SQLOUTPARAMT
YPE

String Type of the output parameter, if it
exists.

There can be
exactly one
output parameter
type, if it exists.

transpose TRUE/FALSE If TRUE, the result is transposed:
rows to columns and columns to
rows.

Notes

The SQL statement or PL/SQL block can be specified either through the STATEMENT
property, or via a file whose name is provided through the FILENAME property.

The SQL fetchlet supports input parameters. Input and output parameters are indicated in the
SQL/PLSQL text in the usual way, by using ":<number>". Input parameters can be used to
bind values to both SQL queries and PL/SQL blocks.

Chapter 20
SQL Fetchlet

20-11

Input parameter values are specified as properties of the form
SQLINPARAM<position>. There can be any number of input parameters. The input
parameters need to be scalar: input parameters of type ARRAY and STRUCT are not
supported.

The SQL fetchlet supports the execution of anonymous PL/SQL blocks (which may
call other functions or procedures) to retrieve data. When executing a block of PL/
SQL, data is returned to the fetchlet by means of an OUT parameter. There can be
exactly one out parameter. It must be of type SQL_CURSOR (a PL/SQL REF
CURSOR), or it must be a named type that represents an array of objects. In the latter
case, each field of the object represents one column of the table; and each object
instance in the array represents one complete row in the table. The OUT parameter
position and type are specified by means of the properties SQLOUTPARAMPOS and
SQLOUTPARAMTYPE. If an OUT parameter is specified, then the fetchlet assumes it
is executing PL/SQL and treats the STATEMENT property as an anonymous PL/SQL
block.

Note:

When using a SQLOUTPARAMTYPE of type 'ARRAY', you must identify the
array as follows:

• If you create the array type specified in the SQLOUTPARAMTYPE from
SQL*Plus or any utility without using double quotation marks to
surround the array name, then you must specify the array name using all
upper-case letters in the target metadata file for this property. The reason
for this because the RDBMS automatically changes the array name to all
upper-case.

• If you create the array type specified in the SQLOUTPARAMTYPE from
SQL*Plus or any utility using double-quotation marks to surround the
array name, then the RDBMS retains the case specified. For this reason,
users must specify the array name using the same case used in the
target metadata file.

If no OUT parameter is specified, the fetchlet assumes that it is executing a SQL
query.

Note that all input parameters to the SQL fetchlet are strings. This means that all other
datatypes will have to be converted to strings. This is straightforward for datatypes
such as numbers, but not, for example, dates and timestamps. You can pass an
absolute date or timestamp by passing a character representation of the value (using a
DateFormat class). There is no way currently to pass in a date function, such as
SYSDATE or SYSDATE+1. In such case, you could embed the date argument directly
in the SQL, for example:

begin func1(:1, :2, SYSDATE); end;

The other caveat is passing null arguments to a procedure. Consider the following
SQL:

STATEMENT=begin func1(:1,:2); end;
SQLINPARAM1=null
SQLOUTPARAMPOS=2
SQLOUTPARAMTYPE=fooret

Chapter 20
SQL Fetchlet

20-12

Assume that the first argument is intended to be a varchar2. By parameterizing it and passing
'null' as the first argument, what we are really doing is passing the *string* 'null' to the
argument, and not a null value. If you intend to pass a null value, do the following:

STATEMENT=begin func1(null, :1); end;
SQLOUTPARAMPOS=1
SQLOUTPARAMTYPE=fooret

Examples

The following properties execute a query (get all users) with no parameters:

Example 1: Query With No Parameters

MachineName=skini-pc
Port=1521
SID=o817
UserName=scott
password=tiger
STATEMENT=select * from all_users;
NUMROWS=30

The following properties execute a query (get the first few objects of a specified type owned
by a specified user) with input parameters:

Example 2: Query With Input Parameters

MachineName=skini-pc
Port=1521
SID=o817
UserName=scott
password=tiger
STATEMENT=select * from all_objects where owner=:1 and object_type=:2 and rownum<:3tt>
NUMROWS=30
SQLINPARAM1=SYSTEM
SQLINPARAM2=INDEX
SQLINPARAM3=10

The following example executes a PL/SQL procedure that returns a cursor and has input
parameters:

Example 3: PL/SQL Procedure With Input Parameters

achineName=skini-pc
Port=1521
SID=o817
UserName=scott
password=tiger
STATEMENT=begin :1 := skini_junk.func1(:2); end;
NUMROWS=30
SQLINPARAM2=SYSTEM
SQLOUTPARAMPOS=1
SQLOUTPARAMTYPE=sql_cursor

The following example specifies a PL/SQL procedure that returns an array of strings:

Example 4: PL/SQL Procedure Returning an Array of Strings

MachineName=skini-pc
Port=1521
SID=o817
UserName=scott

Chapter 20
SQL Fetchlet

20-13

password=tiger
STATEMENT=begin skini_junk.newproc(:1,:2); end;
NUMROWS=30
SQLINPARAM1=SYSTEM
SQLOUTPARAMPOS=2
SQLOUTPARAMTYPE=my_string_array

The following example specifies a PL/SQL package that returns an array of structures:

Example 5: PL/SQL Package Returning an Array of Structures

MachineName=skini-pc
Port=1521
SID=o817
UserName=scott
password=tiger
STATEMENT=begin :1 := skini_junk.func2(:2,:3,:4,:5,:6); end;
NUMROWS=30
SQLINPARAM2=somename
SQLINPARAM3=someplace
SQLINPARAM4=someanimal
SQLINPARAM5=something
SQLINPARAM6=22
SQLOUTPARAMPOS=1
SQLOUTPARAMTYPE=my_struct_array

The following example provides the PL/SQL used in the previous examples for
reference.

Example 6: PL/SQL Used in Examples

create or replace type my_type as Object (
 name varchar2(128),
 place varchar2(128),
 animal integer,
 thing number,
 thing2 number);
/
create or replace type my_struct_array as table of my_type;
/

create or replace type my_string_array as table of varchar2(3000);
/

create or replace type my_int_array as table of integer;
/

create or replace package skini_junk as

type Jcr is ref cursor;

function func1(username in varchar2) return Jcr;
function func2(name varchar2, place varchar2, animal integer,
 thing number, thing2 number) return my_struct_array;
procedure newproc(name varchar2, outArray OUT my_string_array);
procedure newproc2(numrows in varchar2, outArray OUT my_int_array);

end skini_junk;
/

create or replace package body skini_junk as

Chapter 20
SQL Fetchlet

20-14

function func1(username in varchar2) return Jcr is
cr Jcr;
begin
 open cr for select object_name, object_type, status from all_objects where
 owner=upper(username);

 return cr;
end;

function func2(name varchar2, place varchar2, animal integer,
 thing number, thing2 number) return my_struct_array IS
ret my_struct_array := my_struct_array();

begin
 ret.extend(50);

 for i in 1..50 loop
 ret(i) := my_type(name || i,
 place || i,
 animal+i,
 thing+i,
 thing2+i);
 end loop;
 return ret;
end;

procedure newproc(name varchar2, outArray OUT my_string_array) IS
begin
 outArray := my_string_array();
 outArray.extend(100);

 for i in 1..100 loop
 outArray(i) := name || i;
 end loop;
end;

procedure newproc2(numrows in varchar2, outArray OUT my_int_array) IS
begin
 outArray := my_int_array();
 outArray.extend(numrows);
 for i in 1..numrows loop
 outArray(i) := i;
 end loop;
end;

end skini_junk;
/

SNMP Fetchlet
An object identifier (OID) corresponds to either a MIB variable instance or a MIB variable with
multiple instances. Given a list of OIDs, the SNMP fetchlet polls an SNMP agent on a given
host for corresponding instances.

Input Parameters

Chapter 20
SNMP Fetchlet

20-15

Table 20-5 SNMP Fetchlet Input Parameters

Parameter Type Description Use

hostname String Host name of the SNMP agent Required. Default is "localhost"

Examples:

"bigip.host.example.com"

"148.87.10.5"

PORT String Port of the SNMP agent Optional. Default is "161"

COMMUNITY String SNMP community string Optional. Default is "public"

TIMEOUT String SNMP timeout. Optional. Default is five seconds

OIDS String A list of substrings separated by
delimiters. Each substring starts
with an OID (in numerical dot
notation), and can be optionally
ended with *PlacementOID.
(See notes for details.)

Required.

Examples:

"1.3.6.1.2.1.2.1.1.1.0,1.3.6.1.2.1.2.1.1.3.0,1.3.6.1.2.1.
2.1.1.5.0"

"1.3.6.1.2.1.2.1.2.2.1.2

1.3.6.1.2.1.2.1.2.2.1.10

1.3.6.1.2.1.2.1.2.2.1.16"

"1.3.6.1.2.1.2.2.1.3 1.3.6.1.2.1.2.2.1.5

1.3.6.1.2.1.4.20.1.1*1.3.6.1.2.1.4.20.1.2

1.3.6.1.2.1.4.20.1.3*1.3.6.1.2.1.4.20.1.2"

DELIM String A delimiter to separate
individual substrings in OIDS.

Optional; default is whitespace characters, (dot),
*(star) and 0-9 (digits) cannot be used as delimiters

TABLE String Each OID in OIDS corresponds
to a variable with multiple
instances if this parameter is
"TRUE" and to a single variable
instance if it is "FALSE".

Optional; default is "FALSE"

PINGMODE Boolea
n

Used for defining PINGMODE
Response metric

If set to TRUE, then a
successful GetResponse
generates a single-row, single-
column table with the value "1"
in its cell. A timeout generates a
single-row, single-column table
with the value "0".

This is useful for defining a
Response metric for an SNMP-
based target.

Optional. Default is "FALSE"

Chapter 20
SNMP Fetchlet

20-16

Table 20-5 (Cont.) SNMP Fetchlet Input Parameters

Parameter Type Description Use

IGNORE_TIME
OUT_ERR_BO
OLEAN

Boolea
n

Specifies whether to generate
an error when a non-
PINGMODE invocation times
out while waiting for a response.

If set to TRUE, then a non-
PINGMODE invocation that
times out while waiting for a
response should not generate a
metric collection error. This is
reasonable behavior for targets
that define a PINGMODE
Response metric. If that
Response metric is going to
generate an availability severity
when the SNMP agent stops
responding, then there is no
need to generate metric errors
on any non-Response metrics
that happen to run before the
Response metric can identify
the problem.

Optional. Default is "TRUE"

MAX_NUM_RO
WS_FETCH

Integer The maximum number of rows
to be returned by a TABLE
invocation.

The configuration property
"SnmpTableMaxNumRowsFetch
" can override the default value.

Optional. Default is 1000

CONTEXT_NA
ME

String Along with
CONTEXT_ENGINE_ID, these
two properties specify a set of
SNMPv3 credentials, which
replace the community string
used by SNMPv1 and
SNMPv2c.

Note: If these two properties
are specified, then the
COMMUNITY and the
VERSION parameters are
ignored, and the sent request is
an SNMPv3 request.

Optional. No default value

CONTEXT_ENG
INE_ID

String For information about this
parameter, see the
CONTEXT_NAME description.

Optional. No default value

Chapter 20
SNMP Fetchlet

20-17

Table 20-5 (Cont.) SNMP Fetchlet Input Parameters

Parameter Type Description Use

VERSION String Specifies the SNMP version.

If the following occurs, then
VERSION is set to "v2c",
indicating an SNMPv2c request:

• disallowV1Requests is set
to TRUE or hasV2Types is
set to TRUE

and
• CONTEXT_NAME and

CONTEXT_ENGINE_ID
are not specified

If these previous conditions do
not apply, then VERSION is set
to "v1" indicating an SNMPv1
request.

Optional. Default is "v1"

disallowV1Requ
ests

Boolea
n

This parameter enables the
user to specify that the
Management Agent should use
SNMPv2c only when sending
any request to a particular
target

Optional. Default is "FALSE"

hasV2Types Boolea
n

This parameter is a global-
scoped property for an SNMP
QueryDescriptor that includes
OIDs for MIB variables whose
types are 64-bit integer values.
These are not representable in
SNMPv1. Even if other requests
for the same target instance are
sent using SNMPv1, the target-
type owner knows that this
request must be SNMPv2c.

Optional. Default is "FALSE"

USE_GET_NEX
T_ONLY

Boolea
n

If an SNMP QueryDescriptor is
SNMPv2c, according to the
conditions described in the
VERSION description, and if
TABLE is TRUE, then the
multiple rows that the SNMP
fetchlet returns will be fetched
using the SNMPv2c GetBulk
request, and not the GetNext
request used in SNMPv1.

If USE_GET_NEXT_ONLY is
set to TRUE, then the SNMP
fetchlet returns will be fetched
using GetNext requests.

Optional. Default is "FALSE

Error Handling

MissingParameterException is thrown if either host name or OIDS is not given.
FetchletException is thrown if TABLE is not equal to either TRUE or FALSE, an I/O

Chapter 20
SNMP Fetchlet

20-18

error occurs while sending or receiving SNMP messages to or from the agent, or the agent
responds with an SNMP error.

Notes

The table returned by the fetchlet contains a column for every OID in OIDS. If input OIDs
correspond to single variable instances, the table will have just one row with those instances.
On the other hand, if the OIDs correspond to variables with multiple instances, each column
in the table will contain instances for its OID and each row will correspond to a different
subidentifier. (A subidentifier is an OID extension that uniquely identifies a particular variable
instance for some MIB variable.) OIDS must contain either all OIDs with subidentifiers or all
OIDs without the subidentifiers.

For example, to request the variable instances for the three OIDs: sysDescr, sysUpTime, and
sysName, OIDS would have to be "1.3.6.1.2.1.2.1.1.1.0 1.3.6.1.2.1.2.1.1.3.0
1.3.6.1.2.1.2.1.1.5.0". In this case, all OIDs contain the instance subidentifier, ".0". The return
table appears as follows (the actual values may be different):

Figure 20-4 SNMP Fetchlet

Alternatively, assume that some MIB contains the following 3 columns and 4 instances:

Figure 20-5 SNMP Fetchlet: Columns 3 and 4 Content

To construct a table with 3 columns corresponding to ifDescr, ifInOctets, and ifOutOctets,
OIDS would be defined as follows

"1.3.6.1.2.1.2.1.2.2.1.2 1.3.6.1.2.1.2.1.2.2.1.10 1.3.6.1.2.1.2.1.2.2.1.16"

The fetchlet returns the following:

Chapter 20
SNMP Fetchlet

20-19

Figure 20-6 SNMP Fetchlet:ifDescr, ifInOctets, and ifOutOctets OIDS

The rows correspond to subidentifiers 1,2,3,4 respectively.

Any OID in OIDS can be appended with another placement OID. The variable
instances for the placement OID do not appear in the returned table. Instead, they
determine the place for the variable instances of the original OID within a column. In
particular, for every variable instance I with subidentifier S in the set of instances for
the original OID, (a) there must exist a variable instance X with subidentifier S in the
set of instances corresponding to the placement OID, and (b) X is used as the
subidentifier for the instance I.

For example, consider a MIB containing the following 3 columns, each with 4 variable
instances:

Figure 20-7 SNMP Fetchlet: MIB Content with 4 Variable Instances

To construct a table containing ifDescr and ipAdEntNetMask, OID of ipAdEntIfIndex
would have to be used as the placement OID to "align" the columns. Thus, the OIDS
input to the fetchlet would be "1.3.6.1.2.1.2.1.2.2.1.2
1.3.6.1.2.1.2.1.4.20.1.3*1.3.6.1.2.1.2.1.4.20.1.2". The fetchlet output will be as follows:

Figure 20-8 SNMP Fetchlet: Table Containing ifDescr and ipAdEntNetMask

Chapter 20
SNMP Fetchlet

20-20

If OIDS were "1.3.6.1.2.1.2.1.2.2.1.2 1.3.6.1.2.1.2.1.4.20.1.3" for the previous example, the
output would be as follows:

Figure 20-9 SNMP Fetchlet: Alternate OID

HTTP Data Fetchlets
The HTTP data fetchlets obtain the contents of a URL and returns the contents of the URL as
data. Three fetchlets are available:

• URL Fetchlet

• URL Lines

• URL Lines Token

URL Fetchlet (raw)
The URL fetchlet gets the contents of a given URL and returns the contents of the URL in a
single cell table.

To get the output of a URL tokenized by lines and each line tokenized by a given delimiter,
see the URL Line Token fetchlet.

Input Parameters

Table 20-6 URL Fetchlet Input Parameters

Name Description Use

url URL to retrieve the contents of required

proxyHost proxy host through which to make the URL
connection.

optional

proxyPort proxy port through which to make the URL
connection.

optional

Example

Take the following URL:

http://localhost/nhcities.txt

Chapter 20
HTTP Data Fetchlets

20-21

It has the following contents:

Line 1: Nashua, Keene,

Line 2: Concord

Line 3: , Conway, Manchester, Milford, Brookline,

Line 4:

Line 5: Hollis, Meredith

Now run the URL fetchlet with the given URL. The fetchlet returns the following one-
by-one table:

Figure 20-10 URL Fetchet Output

The raw contents of the URL is returned.

Error Handling

MissingParameterException if URL parameter is missing. FetchletException if the URL
is malformed or an I/O error occurs in retrieving the content of the URL.

URL Lines Fetchlet (split into lines)
The URL fetchlet gets the contents of a given URL and tokenizes the contents of the
URL. The output is tokenized by lines. The fetchlet returns the tokens in a single
column table. The nth row in the table represents the nth line of the URL contents.

Note:

To get the raw, untokenized contents of a URL, see the URL fetchlet. To get
the contents of a URL tokenized by lines and each line tokenized by a given
delimiter, see the URL Line Token fetchlet.

Table 20-7 URL Lines Fetchlet Input Parameters

Name Description Use

url URL to retrieve the contents of required

proxyHost proxy host through which to make the URL
connection.

optional

Chapter 20
HTTP Data Fetchlets

20-22

Table 20-7 (Cont.) URL Lines Fetchlet Input Parameters

Name Description Use

proxyPort proxy port through which to make the URL
connection.

optional

startsWith only lines starting with this string are included
in the result

optional; default = ""
(all lines are included)

Example

Take the following URL:

http://localhost/nhcities.txt

It has the following contents:

Line 1: Nashua, Keene,

Line 2: Concord

Line 3: , Conway, Manchester, Milford, Brookline,

Line 4:

Line 5: Hollis, Meredith

Now run the URL fetchlet with the given URL.

The fetchlet returns the following table:

Figure 20-11 URL LInes Fetchlet Output

Error Handling

MissingParameterException if URL parameter is missing.

FetchletException if the URL is malformed or an I/O error occurs in retrieving the content of
the URL.

Notes

Lines are tokenized using "\n".

Chapter 20
HTTP Data Fetchlets

20-23

URL Line Token Fetchlet (tokenized lines)
The URL fetchlet gets the contents of a given URL and tokenizes the contents of the
URL. The output is tokenized first by lines, and then each line is tokenized by a given
delimiter set. The fetchlet returns the tokens in a table. The nth row in the table
represents the nth line of the URL content. The nth column in the table represents the
nth token in a line as determined by the given delimiter set.

To get the raw, untokenized contents of a URL, see the URL fetchlet.

Table 20-8 URL Line Token Fetchlet Input Parameters

Name Description Use

url URL to retrieve the contents of required

delimiter set of characters that act as delimiters to
tokenize the lines

optional; default = ""
(just breaks output
into lines)

proxyHost proxy host through which to make the URL
connection.

optional

proxyPort proxy port through which to make the URL
connection.

optional

startsWith only lines starting with this string are included
in the result

optional; default = ""
(all lines are included)

Example

Take the following URL:

http://localhost/nhcities.txt

It has the following contents:

Line 1: Nashua, Keene,

Line 2: Concord

Line 3: , Conway, Manchester, Milford, Brookline,

Line 4:

Line 5: Hollis, Meredith

Now run the URL fetchlet with the given URL and a single character "," for the
delimiter.

The fetchlet returns the following table:

Chapter 20
HTTP Data Fetchlets

20-24

Figure 20-12 URL Token Lines Output

Error Handling

MissingParameterException if URL parameter is missing.

FetchletException if the URL is malformed or an I/O error occurs in retrieving the content of
the URL.

Notes

Lines are tokenized using "\n".

The delimiter can be a single character or a set of characters. For example, it can be "|+_", if
the line should be broken up by pipes, pluses, and underscores. If two or more delimiters are
together in the output text, such as "||" or "+|+", then it is as if there are empty string tokens
between them. These empty strings get columns in the result table. It is NOT considered that
there are empty strings preceding a delimiter that starts a line or following a delimiter that
ends a line.

In order to express non-printable characters in the delimiter set (such as tabs) in XML, use
"&#xHH;" where H is the hexadecimal identifier for the character.

URLXML Fetchlet
The URL XML fetchlet obtains the XML content of a given URL, and extracts information
based on a given pattern. A pattern is a list of "chunks" of XML to match against. The return
table is a table with a column for each grabber (*) in the pattern in order and a row each time
the pattern chunk matches in the XML content.

Input Parameters

Table 20-9 URLXML Fetchlet Input Parameters

Name Description Use

url URL to retrieve the contents of Required.

pattern The pattern used to extract information from XML;
this is a list of XML chunks that that is compared
against the XML content of the URL. Each chunk
contains one or more "grabbers" (*) in the text
portion of the elements that define what should
the flattened into text and extracted.

Required.

proxyHost The proxy host through which to make the URL
connection.

Optional.

Chapter 20
URLXML Fetchlet

20-25

Table 20-9 (Cont.) URLXML Fetchlet Input Parameters

Name Description Use

proxyPort The proxy port through which to make the URL
connection.

Optional.

ignoreDtd If set to TRUE, specifies that the DTD file
referenced by the content XML should be ignored.
This is useful in cases where the DTD file cannot
be accessed.

Optional.

generateKey If set to true, a unique key will be generated for
each row. The key will occupy the first column of
the result, and will be numeric.

Optional.

throwConnException If set to TRUE, a java.net.ConnectException will
be thrown. Otherwise, it will be caught and an
empty result set will be returned. Setting this
property to FALSE provides behavior which is
consistent with the DMSFetchlet.

Optional. The default
value is TRUE.

Example

Take the following URL:

http://localhost/urlxmltestfile.xml

It has the following content:

<?xml version="1.0"?>
<testfile>
 <test>Simple text</test>
 <test><level>A little more complex</level></test>
 <test></test>
 <notatest></notatest>
 <test>Yet more complexity<level>Even a little more complex</level>Will it
ever stop?</test>
 <test1>must match<level>extract me!</level></test1>
 <test1>must match here<level>extract me, too!</level></test1>
</testfile>

Running the URL XML fetchlet with the given URL and the pattern:

<testfile><test>*<level>*</level></test></testfile>

returns the following table:

Figure 20-13 URL XML Fetchlet Output

Error Handling

MissingParameterException if URL or pattern parameters are missing.

A FetchletException is generated if:

Chapter 20
URLXML Fetchlet

20-26

• The URL is malformed.

• An I/O error occurs in retrieving the content of the URL.

• The URL contents or pattern contains invalid XML.

Notes

Setting the proxy host and/or port changes these settings for the java.net package for the
whole Java environment and is not thread-safe if the proxy settings are changing.

URL Timing Fetchlet
The URL Timing fetchlet gets the contents of a given URL, timing not only the base page
source but any frames or images in the page as well.

Input Parameters

Table 20-10 URL Timing Fetchlet Input Parameters

Parameter Description Use

url# URL(s) to download. "url0" is required but any number
of URLs can be specified beyond url0 that following the
convention: url0, url1, url2, url3.

Required.

proxy_host Proxy host used to make a URL connection. Optional. Specifies the
proxy to be used for
accessing URLs. If the
proxy_host_override
value is provided, then
that value will be used
instead.

proxy_port Port used by the proxy host used make the URL
connection.

Optional.

dont_proxy_for Domains for which the proxy will not be used. Optional. For
example, .us.example.co
m, .uk.example.com

use_proxy When used in conjunction with the proxy override input
parameters, use_proxy specifies a proxy to be used in
lieu of the original proxy. When set to false without the
proxy override parameters set, no proxy is used.

Optional. Parameter can
be set to true or false.

proxy_host_overrid
e

Alternate proxy host used to make the URL
connection.

Optional. Overrides
proxy_host.

proxy_port_overrid
e

Alternate proxy port used to make the URL connection. Optional. Overrides
proxy_port.

dont_proxy_overrid
e

Do not use the proxy for domains. Optional. Parameter can
be set to true or false.

internet_cert_loc Path pointing to the location of a certificate to be used
to access a secure (HTTPS) URL.

Optional.

auth_realm Realm for the Basic Authentication log on. If the realm
is not specified for the authentication, authentication
does not occur and the download of the page fails with
a 401 response code.

Optional.

auth_user User name for Basic Authentication. Optional.

auth_password Password for Basic Authentication. Optional.

Chapter 20
URL Timing Fetchlet

20-27

Table 20-10 (Cont.) URL Timing Fetchlet Input Parameters

Parameter Description Use

retries Number of times to retry the url if it initially fails. Optional. Default = 1

connection_timeout Wait time (in milliseconds) allowed to establish a
connection to a server. This time also includes time
required for name resolution.

Optional. Default= 60000
milliseconds (1 minute)

read_timeout Idle time in the read waiting for the server to respond.
For example, if no data is received from the server
during the specified timeout period, the operation is
considered failure.

Optional. Default =
12000 milliseconds (2
minutes)

timeout Number of milliseconds after which the page download
is considered a failure. This will detect if the site is
functional but is extremely slow.

Optional. Default =
300000 ms (5 minutes)

status_comparator When collating the rows to make a single row, the
status_comparator parameter will indicate whether all
URLs should have been a success (and) or any URLs
should have been a success (or).

Optional. Default = and

cache Indicates whether to use a cache when accessing an
URL. Set the parameter to "n" to specify that no cache
be used.

Optional. Default =
yNote: The scope of the
cache is per request.
There is no persistent
cache across multiple
get metric requests.

output_format Specifies the output format to be used: summary,
detailed, repeat_column. For more information on
output formats, see Metric Columns and Output
Modes.

Required. summary :
gives a default set of
metrics in a single row
for all urlsdetailed: gives
a default set of metrics
for each
url.repeat_column : gives
a single row of metric
with timing for each of
the url.

metrics Specifies which metric columns need to be returned.
For more information on metrics columns returned for
each output format, see Table 20-12

Optional. Allows you to
specify of what needs to
be returned from the
fetchlet and in which
order.Example: status,
status_description,
total_response_time

Metric Columns and Output Modes

The format of information and specific metric information returned are controlled by the
"output_format" and "metrics" input parameters. Table 20-11 lists the format categories
and the metrics (columns) returned by each. For a description of available metric
columns, see Table 20-12

Chapter 20
URL Timing Fetchlet

20-28

Table 20-11 URLTIMING Fetchlet: Output Formats

Output Format Description Metric Columns

summary Returns a default set of metrics
in a single row for all URLs

If the metrics input parameter is
specified, then only the columns
specified will be returned.

computed_response_time,
status, status_description,
dns_time, connect_time,
redirect_time, first_byte_time,
html_time, content_time,
total_response_time, rate,
max_response_time,
avg_response_time,
avg_connect_time,
avg_first_byte_time,
broken_count, broken_content

detailed Returns a default set of metrics
for each url.

If the metrics input parameter is
specified, then only the columns
specified will be returned.

url, computed_response_time,
status, status_description,
dns_time, connect_time,
redirect_time, first_byte_time,
html_time, content_time,
total_response_time, rate,
redirect_count, html_bytes,
content_bytes, total_bytes,
avg_connect_time,
avg_first_byte_time,
broken_count, broken_details

repeat_column Returns a single row of metrics
with timing for each of the URLs.

If the metrics input parameter is
specified, then those columns
will be returned for each URL
followed by overall status and
status_description. (Note the
output will always be single row).

total_response_time repeated for
each URL followed by overall
status and status_description.

Metric Columns

Table 20-12 shows the metric columns returned by the URLTIMING fetchlet.

Table 20-12 URLTIMING Fetchlet: Metric Columns

Column Name Description

status The overall status of all URLs. By default AND is used to compute
overall status but this can be changed using the status_comparator
input parameter.

connect_time The time to connect to the server and send the request.

first_byte_time Time taken between sending the request and reading the first byte
from the response.

total_response_time Time taken for fetching ALL urls and associated content (gif, css,
javascript, and so on).

max_response_time Also referred as Slowest page time. This the time taken by the slowest
URL.

avg_response_time Average response time for URL. Computed as total response time /
number of pages (urls).

Chapter 20
URL Timing Fetchlet

20-29

Table 20-12 (Cont.) URLTIMING Fetchlet: Metric Columns

Column Name Description

rate Kilo Bytes per second. This is computed by total bytes received / total
time taken to receive them.

html_time Total time taken to download the html part of all pages. This time
excludes time to fetch images and other contents. (Includes time to
fetch frame html).

content_time Time taken to download the page content (gif, javascripts, css, and so
on).

redirect_time Total time taken for all redirects occurring while fetching the set of urls
specified.

redirect_count Number of redirects.

total_bytes Total number of bytes.

html_bytes Total number of HTML bytes. (Includes bytes for frame html).

content_bytes Total number of content bytes.

status_description This is present only when the status is down. Corresponds to HTTP
Status description.

request_count Number of request made. (Includes all html as well as content
requests).

broken_count Number errors while fetching images or other content elements.

broken_details List of images or other content elements that could not be fetched.
This has format of url[broken list], url[broken list...

computed_response_time This time approximates the time it would have taken for a client (like
browser) to fetch all the pages in the transaction. This number is
computed as if the contents of every page (gifs, css, and so on) were
fetched using multiple threads.

avg_connect_time Total connect_time / total number of connections made.

avg_first_byte_time Total First Byte Time / Number of requests made (either to fetch
HTML or content).

dns_time Time to resolve host name (not implemented, always returns zero).

url Returns the url, can only be used in 'detailed' output_format.

Example

Take the following URL:

url0=http://www.example.com/

With the input parameter output_format=summary, the fetchlet returns the following
table (minus the headers on the columns):

Figure 20-14 Summary Output Format

Chapter 20
URL Timing Fetchlet

20-30

With output_format = summary and metrics = total_response_time, status, status_description
the fetchlet returns the following table (minus the headers on the columns):

Figure 20-15 Summary Output Format with Specified Metric Columns

With output_format = summary and metrics = total_response_time, status, status_description
the fetchlet returns the following table (minus the headers on the columns) and the server is
giving error:

Figure 20-16 Summary Output Format with Specified Metric Columns and Internal
Server Error

Take the following URL:

url0=http://www.example.com/
url1=http://nedc.us.example.com/

With the output_format=summary, the fetchlet returns the following table (minus the headers
on the columns). Here the numbers are time taken for fetching both the urls.

Figure 20-17 Summary Output Format for Two URLs

With the output_format=detailed, the fetchlet returns the following table (minus the headers
on the columns):

Figure 20-18 Detailed Output for Two URLs

Chapter 20
URL Timing Fetchlet

20-31

With the output_format=repeat_column, the fetchlet returns the following table (minus
the headers on the columns):

Figure 20-19 Repeat Column Output Format

Error Handling

Metric error if the URL parameter is missing, malformed, or if the metric cannot be
computed.

Notes

The time required to perform a retry will be added on to the total time of the page. For
example, if two retries are performed and then a success occurs, the total page time
will be the time of the page that succeeded plus the time it took for the two retries to
fail.

Proposed usage:

• For basic monitoring:

Use url0=<URL to be monitored> , output_mode=summary and specify
metrics=status, computed_response_time, status_description

• For getting all columns:

Use url0=<url to be monitored> , output_mode=summary

Dynamic Monitoring Service (DMS) Fetchlet
The Dynamic Monitoring Service (DMS) fetchlet contacts an Application Server (AS)
and then collects the metrics instrumented by the DMS.

The DMS allows application and system developers to measure and export
customized, component-specific performance metrics. The Oracle Management Agent
allows software components to import runtime performance data into Oracle
Enterprise Manager Cloud Control.

The DMS fetchlet is an Oracle Management Agent plug-in module that allows the
Management Agent to import the performance data that is exported by the DMS.
Using the DMS fetchlet, any component that is instrumented using DMS API calls may
share its performance data with Enterprise Manager Cloud Control.

Advantages to Using DMS for Oracle Management Agent Integration
With DMS, a component can insulate itself from the operational details of the
Management Agent. A component would not need to deploy (or maintain) its own
fetchlet or deploy (or maintain) a Tcl script or shell script to plug into one of the existing
fetchlets. A component would not need to devise its own new way of measuring or
exporting performance metrics. Performance metrics can be measured and reported in
a consistent way across components. The DMS fetchlet contacts the remote DMS
runtime directly with no need for forking shell scripts or Tcl scripts. Most importantly,

Chapter 20
Dynamic Monitoring Service (DMS) Fetchlet

20-32

DMS automatically produces the long, complicated metadata document for you and thereby
saves many hours of tedious and error-prone hand editing.

Input Parameters

Table 20-13 DMS Fetchlet Input Parameters

Name Type Description Use

oraclehome String Top directory under which the
monitored IAS instance is installed. It
is used only for monitoring local IAS
processes. For monitoring remote IAS
processes, users should give it an
empty value and specify property
"opmnremoteport" and/or "machine"
instead.

Required.

Example:

"/private/oracle/ias"

version String AS Version number of the target. It is
used to distinguish the version of
monitored AS instance.

Optional

Example:

"9.0.4"

opmnport Integer Oracle Process Monitoring and
Notification (OPMN) port. It is used
primarily for monitoring remote AS
processes. It should be specified
together with property "machine". If it
is present and valid , property
"oraclehome" and "httpport" are
ignored.

Optional

Example:

"6200"

httpport Integer HTTP port is used primarily for
monitoring stand-alone processes. It
should be specified together with
property "machine". It will be ignored,
if property "opmnport" is present. If it
is present and valid, property
"oraclehome" is ignored.

Optional

Example:

"7777"

machine String Host name where the Internet
Application Server (AS) instance runs.
It should be specified together with
property "opmnport". If it is not
present, the local host is assumed.

Optional

Example:

"my-sun.us.example.com"

metric String Name of the table-type metric. Required

Example:

"Servlets"

columnOrder String A list of metric column names
separated by ";". The column names
must be specified in same order as
they appear in the target type
metadata file.

Do not include "name", "host",
"process" and "fullname" columns.

Required

Example:

"processTimes;totalRequest;
requestRate"

Chapter 20
Dynamic Monitoring Service (DMS) Fetchlet

20-33

Table 20-13 (Cont.) DMS Fetchlet Input Parameters

Name Type Description Use

usecache String Whether to cache this metric. The
legal values are "true", "false" and
"refreshall" with "true" being the
default. The "refreshall" value tells the
DMS to delete its cache data and
retrieve the most recent data from all
targets.

Optional.

Example: "false"

Setting "usecache" to "false"
will bypass DMS caching

proxyHost String Proxy host through which to make the
HTTP connection

Optional

Example:

"proxy.us.example.com"

proxyPort Integer Proxy port through which to make the
HTTP connection

Optional

Example:

"80"

dontProxyFor String Domains for which the proxy will not
be used.

Optional

Example:

".us.example.com" or
"18.219.0"

useDefaultProxy String When used in conjunction with the
proxy override parameters, this
variable specifies a proxy other than
the original one. When set to false
without the proxy override parameters
set, no proxy at all is used.

Optional

Example:

"true" or "false"

proxyHostOverride String proxy host through which to make the
HTTP connection

Optional

Example:

"www-
proxy.us.example.com"

proxyPortOverride Integer proxy port through which to make the
HTTP connection

Optional

Example:

"80"

authrealm String Realm for the Basic Authentication
logon. If the realm is not specified for
the authentication, authentication does
not occur and the download of the
page fails with a 401 response code.

Optional

Example:

"Please input your flex
account login:"

authuser String Username for Basic Authentication Optional

"superuser"

authpwd String Password for Basic Authentication Optional

Example:

"welcome"

Error Handling

The DMS fetchlet throws MissingParameterException if any of the properties
"oraclehome", "metric", "columnOrder", "opmnport", or "httpport" is missing. It throws
FetchletException if any of the ports given is not valid.

Chapter 20
Dynamic Monitoring Service (DMS) Fetchlet

20-34

Notes

The first four columns of the metric table returned are always column "name", "fullname",
"host" and "process". Therefore, do not include them in columnOrder string. Property
"machine" should be specified together with either properties "opmnport" or "httpport". In this
case, the property "oraclehome" is ignored.

DMS Fetchlet/Oracle Management Agent Integration Instructions
DMS has been used in several components (such as Apache, JServ, OSE, and Portal) to
provide a consistent performance monitoring infrastructure for Oracle 9i Application Server.
The Sensors are easy to use and save most of the work related to performance
measurement because they hide most of the details related to timing, counting, and
categorization. Finally, DMS hides many Management Agent details from component
developers and much of the Management Agent integration effort.

Integrating DMS Data with the Management Agent
As mentioned earlier, DMS allows application and system developers to measure and export
customized, component-specific performance metrics. The Oracle Management Agent
enables software components to import runtime performance data into Enterprise Manager
Cloud Control. This section describes how to integrate DMS performance metrics with the
Management Agent.

Step 1: Install AS

Step 2: Install Enterprise Manager Cloud Control

Step 3: Instrument your Component with DMS

To enable DMS metrics for Enterprise Manager Cloud Control, you must follow two additional
rules:

• Rule 1: All Nouns exported to the Management Agent must have types Noun types
can be set either by specifying the "type" parameter in the Noun.create() methods or by
using the Noun.setType(String) method. The idea is that every Noun type will be
converted automatically to a Management Repository table. Every Noun of a given type
will become a row in the type's corresponding Management Repository table. The metrics
contained by a Noun become columns in the Management Repository table metric. Any
Noun without a type will not be exported to Management Agent.

• Rule 2: All Nouns of a given type must contain a consistent set of Sensor names
Because the metrics contained by a Noun become columns in a management repository
table, you must make sure that all Nouns of a given type contain the same Sensors. This
ensures that each row of the corresponding Management Repository table has the same
set of columns. DMS does not check this constraint for you.

For example, the following Java snippet shows how to create typed Nouns that contain a
consistent set of Sensors. DMS will automatically convert these into a Management
Repository table named "MyType":

 /* first create the nouns*/
 Noun n1 = Noun.create("/myExample/myComponent/noun1", "MyType");
 Noun n2 = Noun.create("/myExample/myComponent/noun2", "MyType");

 /* next, create the Sensors */
 PhaseEvent pe1 = PhaseEvent.create(n1, "criticalPhase", "a critical interval");
 PhaseEvent pe2 = PhaseEvent.create(n2, "criticalPhase", "a critical interval");

Chapter 20
Dynamic Monitoring Service (DMS) Fetchlet

20-35

 Event e1 = Event.create(n1, "importantEvt", "an important event");
 Event e2 = Event.create(n2, "importantEvt", "an important event");

 /* here is a third set that shows the use of Noun.setType(String) */
 PhaseEvent pe3 = PhaseEvent.create(
 "/myExample/myComponent/noun3/criticalPhase",
 "a critical interval");
 Event e3 = PhaseEvent.create(
 "/myExample/myComponent/noun3/importantEvt",
 "an important event");
 Noun n3 = Noun.get("/myExample/myComponent/noun3");
 n3.setType("MyType");

For this example, the "MyType" table will contain three rows and four columns.
Besides the columns corresponding to the two Sensors, there will be a "name" column
and a "path" column that will contain the DMS path name including the process name
and "/myExample/myCom...".

If these Nouns/Sensors are created in several servlet engines within the AS site, then
the AggreSpy will find each of the servlet engines and will aggregate all of the Nouns/
Sensors into a single MyType table.

Step 4: Generate your Target Metadata Document

You can generate the Target Metadata Document using your browser. Point your
browser to your AS site that you want to monitor using the following URL:

http://YOUR_AS_HOST:YOUR_AS_PORT/YOUR_SERVLET_PATH/AggreSpy?format=targetmetadata

You should use the actual host, port and servlet path of your AS installation in the
above URL. The servlet path usually defaults to "servlet". The XML document you get
is the Target Metadata Document for your AS site. The first comment of the XML
document explains where you can obtain the Target Metadata Document and
instructions telling you what needs to be done to this document.

Step 5: Install the Target Metadata Document

Follow the steps described in the first comment of the XML document. Save the XML
document to a file called "oracle_dms.xml" under the "metadata" directory of your
Enterprise Manager installation (OMS_ORACLE_HOME/sysman/admin/metadata/). If
you want to monitor a subset of the metrics or merge the metrics with the ones in the
existing "oracle_dms.xml" file, you should save this new definition to a separate file
called target_name.xml. You will also need to change the Target Type entry in the
generated metadata document.

Next, you should add the target instance information of your AS site to your
"targets.xml" file residing under the top directory of your Enterprise Manager
installation. You can find a block of XML tags in the comment you read. They look like:

<Target Type='oracle_dms' NAME='DMS_YOUR-IAS-HOST_YOUR-IAS-PORT' VERSION='2.0'>
 <Property NAME='host' VALUE='YOUR_IAS_HOST' />
 <Property NAME='port' VALUE='YOUR_IAS_PORT' />
 <Property NAME='dmsPath' VALUE='YOUR_SERVLET_PATH' />
</Target>

Copy this block and paste it to the targets.xml file between <targets> and </targets>
tags.

Chapter 20
Dynamic Monitoring Service (DMS) Fetchlet

20-36

Finally, to add the new target metadata file and target instance information from the
targets.xml file to Enterprise Manager Cloud Control, you must run the following command:

>$ORACLE_HOME/bin/emctl reload

Step 6: View Your Metrics

You are ready to view your metrics using Enterprise Manager's Metric Browser. First, make
sure that AS and your component are still running. Next, restart the Oracle Management
Agent. Finally, point your browser to your Management Agent installation using the following
URL:

http://YOUR_AGENT_HOST:YOUR_AGENT_PORT/emd/browser/main

The Management Agent port information can be found in the $AGENT_HOME/sysman/
config/emd.properties file at the EMD_URL line.

You should use the actual host and port of your Management Agent installation in the above
URL. You will find your AS site listed as the target "DMS_YOUR-AS-HOST_YOUR-AS-
PORT". If you click the link, you will see a list of metric IDs. You can browse your metrics by
clicking on the respective metric IDs.

JDBC Fetchlet
Call-level interfaces such as JDBC permit external access to SQL database manipulation and
update commands. The Java Database Connectivity (JDBC) fetchlet allows you to execute
common JDBC commands and obtain their response time for any type of database.

Input Parameters

Table 20-14 JDBC Fetchlet Input Parameters

Name Description Use

Transaction Name (Standard) Required.

Beacon Name (Standard) Required.

Connect String Connection string provided by the user. The
Connect String must comply with the URL format
specified by the vendor of the database to which
the user is trying to connect.

Examples:

Format required by Oracle:

jdbc:oracle:thin:@hostname:port

Format required by MySQL:

jdbc:mysql://hostname:port

Required.

Chapter 20
JDBC Fetchlet

20-37

Table 20-14 (Cont.) JDBC Fetchlet Input Parameters

Name Description Use

Class Name String The driver class name to be used for connections.

Example:

oracle.jdbc.driver.OracleDriver

You have two options for configuring the Agent to
use the .jar file containing the driver:

1. Place the .jar file in $JAVA_HOME/jre/lib/ext.
CLASSPATH does not need to be modified.

2. Place the .jar file anywhere and update
CLASSPATH in emd.properties file with the
path to jar. Bounce Agent. This should be
scripted and be transparent to user.

Required.

Username User name to be used when connecting to the
database.

Required.

Password Password to be used when connecting to the
database.

Required.

Role User Role Required.

Statement SQL statement to be executed. Use of PL/SQL is
possible by using prepareCall() API.

Required.

Table 20-15 Metric Columns Collected

Column Description

Status Status of the test. Status is 'down' if there is a SQLException
generated by the fetchlet.

Total Time Time required for the fetchlet to execute the test.

Connect Time Time required for DriverManager.getConnection() to complete.

Prepare Time Time required for conn.prepareStatement() to complete.

Execute Time Time required for stmt.executeQuery() to complete.

Fetch Time Time required for while(rs.next()) { rs.getRow() } to complete.

Close Time Time required for closing resultset, statement, connection to
complete.

Number of rows Number of rows fetched.

Total time per row

Fetch time per row

Example: Properties Passed to JDBC Fetchlet

The following example provides the properties passed to the JDBC fetchlet when
invoked.

<QueryDescriptor FETCHLET_ID="JDBC">
<Property NAME="TxnName" SCOPE="GLOBAL">TxnName</Property>
<Property NAME="BeaconName" SCOPE="GLOBAL">BeaconName</Property>
<Property NAME="connstring" SCOPE="INSTANCE">connString</Property>
<Property NAME="username" SCOPE="INSTANCE">username</Property>

Chapter 20
JDBC Fetchlet

20-38

<Property NAME="password" SCOPE="INSTANCE">password</Property>
<Property NAME="statement" SCOPE="GLOBAL">select * from user_tables</Property>
<Property NAME="classstring" SCOPE="GLOBAL">oracle.jdbc.none</Property>
<Property NAME="role" SCOPE="GLOBAL" OPTIONAL="TRUE">DBA</Property>
<Property NAME="useconnpool" SCOPE="GLOBAL" OPTIONAL="TRUE">FALSE</Property>
<Property NAME="GetTimingData" SCOPE="GLOBAL">TRUE</Property>
</QueryDescriptor>

WBEM Fetchlet
The WBEM fetchlet accesses a CIMOM and retrieves requested information using the
specified CIM class. The CIM class is mapped to a Management Repository table metric. The
name of the CIM class is the name of the table metric that is returned, and the properties
defined for the CIM class are used to name the table columns for the metric. The properties
of interest must be specified during metric definition.

The fetchlet returns the instances that have been instantiated for the CIM class as rows of the
Management Repository table metric.

Input Parameters

Table 20-16 WBEM Fetchlet Input Parameters

Name Type Description Use

hostname String Host name of the CIMOM Optional; default is
"localhost"

port Integer Port for the CIMOM Optional; default is 5988

namespace String CIM Namespace Optional; default is "root/
cimv2"

username String User name to use for CIMOM
authorization on the host where the
CIMOM is running

Required

password String Password to use for CIMOM
authorization on the host where the
CIMOM is running

Required

CIMclassname String Name of the CIM class whose
instances will be returned

Required for all operations
except STATUS. STATUS
operations just check
whether the CIMOM is
running, so a class name is
not needed.

operation String Operation to be performed. Supported
operations include COUNT, which
returns a count of the number of
instances in the class, VALUES, which
returns the values of the specified
properties for each instance of the
class, or STATUS, which provides
status information about the CIMOM.

Optional, default is VALUES

Chapter 20
WBEM Fetchlet

20-39

Table 20-16 (Cont.) WBEM Fetchlet Input Parameters

Name Type Description Use

properties String The property names from the CIM
class definition that we are interested
in collecting.

Required for VALUES
operation. If the operation is
VALUES, we can have 1 to
N of these, separated by a
semicolon. If the operation is
VALUES, and no properties
are provided, an error is
returned. Properties are
handed to the EMD in the
order that they are specified.

Error Handling

The following types of errors have been identified for the WBEM fetchlet.

MissingParameterException occurs when:

• No CIM Class parameters match.

Fetchlet exception occurs when:

• The class name is not found in the CIMOM namespace.

• The namespace is not found.

• The connection to the CIMOM does not have valid credentials.

• The connection to the CIMOM failed because the CIMOM was not running.

• The CIM class property does not exist

• An unsupported operation was specified

• No properties were specified.

Notes

Ports: Some CIMOM client interfaces expose the port that the CIMOM is listening on
while some clients do not. To cover both cases, the port is exposed as an optional
input parameter that defaults to port 5988. This is the default Pegasus CIMOM listener
port. The Java API that is provided through Sun's Wbem Services does not expose the
CIMOM port.

Protocols: Most CIMOMs support either an RMI or HTTP protocol for communicating
with the CIMOM. The testing that has been done shows that the HTTP protocol is not
as stable, and in some cases, not fully implemented in the CIMOM. Because of this,
the protocol currently defaults to RMI. The actual parameters for the WBEM Services
CIMOM for the protocol are: CIMClient.CIM_RMI or CIMClient.CIM_XML.

Fetchlet Operations: The WBEM APIs are very flexible at allowing clients to traverse
the class hierarchies that are defined and their associations. At this point in time, the
options on accessing CIM data from an EMD are restricted to counting, getting the
properties of classes, and CIMOM status. These are the more important operations
that need to be performed for monitoring. As additional requirements come in, we can
add new operations to support them if necessary. For the prototype, only the count
operation has been implemented.

Chapter 20
WBEM Fetchlet

20-40

Authentication: Most CIMOMs provide APIs to support authentication through a user identity
mechanism. The majority of the CIMOMs have not implemented the API, so this capability is
really a no-op. In any case, we've supplied the capability in the fetchlet so that as CIMOM
implementations catch up with the standard, we'll have the necessary support in place.

Examples

The Wbem fetchlet supports three basic operations. At this point, the fetchlet only handles
one operation at a time, so you cannot mix count, status, and value operations within a single
fetchlet call. Example 1 shows how to write the metadata for a COUNT operation:

Example 1: COUNT Operation Metadata

<Metric NAME="Load" TYPE="TABLE">
 <Display>
 <Label NLSID="wbem_cimom_load">Load</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Active Clients" TYPE="NUMBER" IS_KEY="FALSE">
 <Display>
 <Label NLSID="wbem_cimom_active_clients">Active CIMOM Clients</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="Wbem">
 <Property NAME="username" SCOPE="GLOBAL">guest</Property>
 <Property NAME="password" SCOPE="GLOBAL">guest</Property>
 <Property NAME="CIMClassname" SCOPE="GLOBAL">EX_SFLProvider</Property>
 <Property NAME="operation" SCOPE="GLOBAL">COUNT</Property>
 </QueryDescriptor>
 </Metric>

The FETCHLET_ID is identified as Wbem. Property names are passed to the fetchlet for the
required parameters user name, password, and CIMClassname. The operation is identified
as COUNT.

The following example shows how to implement a Response Status metric to determine
whether the CIMOM is running or not. It returns a value of 1 if the connection to the CIMOM
is successful, otherwise 0.

Example 2: Response Status Metric

 <Metric NAME="Response" TYPE="TABLE">
 <Display>
 <Label NLSID="wbem_cimon_response">Response</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Status" TYPE="NUMBER" IS_KEY="FALSE">
 <Display>
 <Label NLSID="wbem_cimom_response_status">Status</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="Wbem">
 <Property NAME="username" SCOPE="GLOBAL">guest</Property>
 <Property NAME="password" SCOPE="GLOBAL">guest</Property>
 <Property NAME="operation" SCOPE="GLOBAL">STATUS</Property>
 </QueryDescriptor>
 </Metric>

Chapter 20
WBEM Fetchlet

20-41

The default operation is the VALUES operation. It is used to fetch the values of a class
that is defined in the CIMOM.

In the final example, the EX_Teacher class is accessed and fetches the name column.
Name is the key of the class and of the new metric being defined, so the IS_KEY
property is set to true. The CIM class properties will be mapped to the Enterprise
Manager columns in the order that they are specified in the properties property. In this
case, there is only 1 property - Name.

Example 3: Single Property Fetched for a Class

<Metric NAME="EX_Teacher" TYPE="TABLE">
 <Display>
 <Label NLSID="wbem_EX_Teacher">EX_Teacher Class</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Name" TYPE="STRING" IS_KEY="TRUE">
 <Display>
 <Label NLSID="wbem_ex_teacher_name">Name</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="Wbem">
 <Property NAME="username" SCOPE="GLOBAL">guest</Property>
 <Property NAME="password" SCOPE="GLOBAL">guest</Property>
 <Property NAME="CIMClassname" SCOPE="GLOBAL">EX_Teacher</Property>
 <Property NAME="properties" SCOPE="GLOBAL">Name</Property>
 </QueryDescriptor>
 </Metric>

If multiple properties are fetched for a class, semi-colons should separate them. The
properties should be provided in the order that the column descriptors are specified for
the metric table definition.

Example 4: Multiple Properties Fetched for a Class

<Metric NAME="EX_SFLProvider" TYPE="TABLE">
 <Display>
 <Label NLSID="wbem_EX_SFLProvider">EX_SFLProvider Class</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Name" TYPE="STRING" IS_KEY="TRUE">
 <Display>
 <Label NLSID="wbem_ex_sfl_name">Name</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="Win" TYPE="NUMBER" IS_KEY="FALSE">
 <Display>
 <Label NLSID="wbem_ex_sfl_win">Win</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor NAME="Lost" TYPE="NUMBER" IS_KEY="FALSE">
 <Display>
 <Label NLSID="wbem_ex_sfl_lost">Lost</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="Wbem">
 <Property NAME="username" SCOPE="GLOBAL">guest</Property>
 <Property NAME="password" SCOPE="GLOBAL">guest</Property>
 <Property NAME="CIMClassname" SCOPE="GLOBAL">EX_SFLProvider</Property>

Chapter 20
WBEM Fetchlet

20-42

 <Property NAME="properties" SCOPE="GLOBAL">Name;Win;Lost</Property>
 </QueryDescriptor>
 </Metric>

JMX Fetchlet
The JMX fetchlet retrieves Java Management Extensions (JMX) attributes (or invokes a JMX
operation) from an MBean and returns the result as a (table) metric. If the ObjectName
specified is an ObjectName pattern, then multiple rows are returned. Each row corresponds
to an MBean matching the specified ObjectName pattern.

Input Parameters

Table 20-17 JMX Fetchlet Major Input Parameters

Name Type Description Use

MachineName String MBean server host name Optional

Port Port on which the MBean server is listening
for new connections

Optional

UserName String User name for JMX connections, if required Required

password String Password for JMX connections, if required Required

protocol String Protocol used for the connection Optional

service String Service used for connection Optional

serviceURL String serviceURL used for JMX connection. This
is instead of the previous MachineName,
Port, protocol, and service properties.

Note: For middleware targets, the
serviceURL can be obtained from either the
farm or managedServer association
depending on whether metric needs to be
collected from AdminServer or the
managed server.

Required
(unless
MachineName
and Port are
specified)

Metric String Mbean object name (or if
MetricService=true, the DMS table name)

Required

columnOrder String Semi colon separated list of JMX attributes
for the previous MBean corresponding to
the column definitions in the
TableDescriptor of the metric.

Required

operation String Name of the JMX operation to be
invoked.In this case, the columnOrder
represents the values from the return object
to be populated in the Metric. (Oracle
recommends using jmxcli to generate this).

Optional

arguments String The XML representing the arguments for
the JMX operation. Oracle recommends
using jmxcli to generate this.

Optional

MetricService Boolean MetricService=true implies that the metric
is retrieved by the Oracle-specific DMS
Metric Service. In this case the previous
columnOrder property is a list of column
names and the ‘metric' property indicates
the actual DMS table name.

Optional

Chapter 20
JMX Fetchlet

20-43

Table 20-17 (Cont.) JMX Fetchlet Major Input Parameters

Name Type Description Use

identityCol String The Mbean object name key (or a semi-
colon separated list of keys) that will be
extracted from the Mbean ObjectName and
surfaced as key columns in the resultant
metric.If the value ‘canonical' is specified,
an additional key metric column with the
complete Mbean object name is returned
by the fetchlet.This property makes sense
only if the previous metric property is an
ObjectName pattern that matches more
than one Mbean on the server.

Optional

autoRowID String Prefix for an automatically generated key
column. The suffix is sequential numbers
starting at 1.For example, autoRowID set to
ROW_ generates a key column at position
0 with values ROW_1, ROW_2, and so on
up to the number of rows returned.This is
usually the case if none of the other
columns (JMX attributes selected) are
unique and multiple rows are returned as a
result of multiple mbeans matches and
mbean pattern.

Optional

useCache Boolean Applicable only when MetricService=true
and indicates if metric service cache needs
to be used

Optional

ServerNames String Applicable only when MetricService=true
and is a semicolon list of server names
from which the DMS metrics need to be
retrieved. This is relevant only when
collecting these metrics from the
AdminServer (that is, serviceURL points to
AdminServer through farm association),
which has metrics from all managed
servers

Optional

valueWhenNoMBean Number Typically used for response metrics and has
the value that the fetchlet returns as a
single row and column when no mbeans
are found that match the given mbean
pattern (in the previous metric property).

Optional

valueWhenDown Number Typically used for response metrics. This
has the value that the fetchlet returns as a
single row and column when the connection
to the server fails due to a connection
exception (indicating that the server is
down).

Optional

admlMap String Applicable only when MetricService=true
and is an XML snippet that indicates what
adml parameters need to be passed for this
adml table.(Oracle recommends using
jmxcli to generate this).

Optional

Notes:

Chapter 20
JMX Fetchlet

20-44

1. The JMX fetchlet is used to retrieve primarily JMX attributes from Mbeans on a target
MbeanServer. It can also retrieve attributes from multiple MBeans of the same kind in the
form of a table (with multiple rows where each row represents a matching MBean).

For example, if an MBean ObjectName pattern specifies servlets, (that is,
:Type=ServletRuntime, in the metric property), and the columnOrder specifies
A1;A2;A3, then the resultant metric will have one row for each servlet.

2. If the metric data must be obtained using a JMX operation (this is not typical for collecting
metrics), then the QueryDescriptor property operation must specify the JMX operation
name and the arguments are an XML representation of the parameters to be passed into
the JMX operation.

For example, the following QueryDescriptor indicates the invocation of a JMX operation
called "getNumUserSessions" with a single string argument with a value="total".

Example: Specifying a JMX Operation Name

<Metric NAME="GetNumUserSessions" TYPE="TABLE" USAGE_TYPE="HIDDEN">
 <Display>
 <Label NLSID="GetNumUserSession">GetNumUserSession</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor NAME="Get Num User Sessions" TYPE="STRING">
 <Display>
 <Label NLSID="Get Num User Sessions">Get NumUser Sessions</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="JMX">
 <Property NAME="serviceURL" SCOPE="ASSOCTGT"
ASSOCIATION_NAME="farm">serviceURL</Property>
 <Property NAME="UserName" SCOPE="ASSOCTGT" OPTIONAL="TRUE"
ASSOCIATION_NAME="farm">UserName</Property>
 <Property NAME="password" SCOPE="ASSOCTGT" OPTIONAL="TRUE"
ASSOCIATION_NAME="farm">password</Property>
 <Property NAME="instName.parameter" SCOPE="INSTANCE">instName</Property>
 <Property NAME="metric"
SCOPE="GLOBAL">oracle.forms.FormsJ2EEapplication.%instName.parameter%:,type=Runtime
,*</Property>
 <Property NAME="operation" SCOPE="GLOBAL">getNumUserSessions</Property>
 <Property NAME="columnOrder" SCOPE="GLOBAL">getNumUserSessions</Property>
 <Property NAME="arguments" SCOPE="GLOBAL"> <![CDATA[<arguments>
 <argument type="java.lang.String">
 <value>total</value>
 </argument>
</arguments>]]>
 </Property>
 </QueryDescriptor>
 </Metric>

3. A QueryDescriptor for the JMX fetchlet contains JMX connection information. This is
usually in the form of a serviceURL. If the serviceURL property is not available in the
QueryDescriptor, then the combination of MachineName, Port, protocol, and service
properties must be present in the QueryDescriptor to provide connection information to
the JMX fetchlet.

Chapter 20
JMX Fetchlet

20-45

Web Service Fetchlet
In target metadata files generated by the Web Services Command-Line tool, the
<QueryDescriptor> element specifies the properties that will be passed to the Web
Services fetchlet when being invoked.

Note:

From Release 13.1 onwards, the Web Service fetchlet is available from the
Enterprise Manager for Fusion Apps and the Enterprise Manager for Fusion
Middleware plug-ins.

To use this fetchlet, you must have the Enterprise Manager for Fusion Apps
and the Enterprise Manager for Fusion Middleware plug-ins deployed on
both the OMS and the Management Agent.

Input Parameters

Table 20-18 lists the supported properties:

Table 20-18 Web Service Fetchlet Properties

Name Description Use Comments

ServiceName Web service
name

Required.

Service Name must be
prefixed with a valid
namespace.

All referenced
namespaces are
specified by the
property "Namespace"

PortName Web service port
name

Required.

Port Name must be prefixed
with a valid namespace.

All referenced
namespaces are
specified via the
property "Namespace"

OperationName Web service
operation name

Required.

Operation Name must be
prefixed with a valid
namespace.

All referenced
namespaces are
specified by the
property "Namespace"

ServiceEndpoint Web service
endpoint

Required.

A valid URL.

WsdlURL Web service
WSDL URL

Optional.

A valid URL.

Required only if it is a
RPC/Encoded Web
service

ParameterStyle SOAP parameter
mapping style

Optional.

- BARE

- WRAPPED

Optional only if it is a
RPC/Encoded or
REST-ful Web service

Payload Web service
operation request
payload

Required.

Must be specified using the
CDATA section.

Chapter 20
Web Service Fetchlet

20-46

Table 20-18 (Cont.) Web Service Fetchlet Properties

Name Description Use Comments

SOAPBindingStyle SOAP binding
style

Optional.

- DOCUMENT

- RPC

Optional only if it is a
RPC or Encoded Web
service

SOAPBindingUse SOAP binding
use

Optional

- ENCODED

- LITERAL

Optional only if it is a
RPC or Encoded Web
service

SOAPVersion SOAP version Optional

- SOAP_1_1

- SOAP_1_2

Optional only if it is an
RPC or Encoded Web
service

MessageType Web service
message type

Optional

- SOAP

- REST

Optional only if it is a
RPC or Encoded Web
service

SecurityPolicy Security policy Required

- NONE

- BASIC_AUTHENTICATION

Namespace Set of all
namespaces
referenced

Optional. Contains all the
namespaces referenced in
the metric

Specify using notation:
[ns0="uri0"][ns1="uri1"]

Example: [ns0="http://
type.abc.com"]

[ns1="http://app.abc.com"]

ColType Collection result
column type

Required

List of metric column type
(separated by comma)

Example:
msgId:STRING,source:STRI
NG,detail:STRING

RowType Collection result
row type

Required

List of XPath expression
corresponding to metric
columns (separated by
comma)

For example: //
ns0:eventResponse/msgId,

//ns0:eventResponse/source,

SSLKeyStoreCrede
ntial

SSL keystore
credentialSet
name

Optional

A valid CredentialSet of a
Store Credential Type
defined in the
<CredentialInfo>

Must be defined as a
monitoring credential.

Chapter 20
Web Service Fetchlet

20-47

Table 20-18 (Cont.) Web Service Fetchlet Properties

Name Description Use Comments

SSLTrustStoreCred
ential

SSL truststore
credentialset
name

Optional

A valid CredentialSet of a
StoreCredential Type defined
in the <CredentialInfo>

Must be defined as a
monitoring credential.

UserCredential User token
credentialset
name

Optional

A valid CredentialSet of a
AliasCredential or
CSFKeyCrdential Type
defined in the
<CredentialInfo>

Must be defined as a
monitoring credential.

ValueWhenDown Default response
when target is
down

Required (only for response
metric). Not required for
regular metric. For Response
metric, when a target is
down, this value (if specified)
will be returned.

A target is considered
as down when the
Fetchlet catches a
ConnectionException.

Examples

Example 1 provides an example of a metric definition for Remote Procedure Call
(RPC) or encoded Web services and Example 2 provides an example of a metric
definition for doc or literal Web services.

Example 1: Metric Definition for RPC or Encoded Web Service

 <Metric NAME="getVacantRooms" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_GET_VACANT_ROOMS">getVacantRooms</Label>
 </Display>

 <TableDescriptor>
 <ColumnDescriptor IS_KEY="TRUE" NAME="roomID" TYPE="STRING">
 <Display>
 <Label NLSID="COL_ROOM_ID">roomID</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="floor" TYPE="STRING">
 <Display>
 <Label NLSID="COL_FLOOR">floor</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="number" TYPE="STRING">
 <Display>
 <Label NLSID="COL_NUMBER">number</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="rate" TYPE="STRING">
 <Display>
 <Label NLSID="COL_RATE">rate</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="roomType" TYPE="STRING">
 <Display>
 <Label NLSID="COL_ROOM_TYPE">roomType</Label>

Chapter 20
Web Service Fetchlet

20-48

 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="smoking" TYPE="STRING">
 <Display>
 <Label NLSID="COL_SMOKING">smoking</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="available" TYPE="STRING">
 <Display>
 <Label NLSID="COL_AVAILABLE">available</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OWSM_WSF">
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE">NONE</Property>
 <Property NAME="WsdlURL" SCOPE="INSTANCE">wsdlURL</Property>
 <Property NAME="ServiceEndpoint" SCOPE="INSTANCE">serviceURL</Property>
 <Property NAME="ServiceName" SCOPE="GLOBAL">ns0:SimpleHotelServiceRE</Property>
 <Property NAME="PortName" SCOPE="GLOBAL">ns0:HotelService</Property>
 <Property NAME="OperationName" SCOPE="GLOBAL">getVacantRooms</Property>
 <Property NAME="MessageType" SCOPE="GLOBAL">SOAP</Property>
 <Property NAME="SOAPBindingStyle" SCOPE="GLOBAL">RPC</Property>
 <Property NAME="SOAPBindingUse" SCOPE="GLOBAL">ENCODED</Property>
 <Property NAME="ParameterStyle" SCOPE="GLOBAL">BARE</Property>
 <Property NAME="SOAPVersion" SCOPE="GLOBAL">SOAP_1_1</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL"><![CDATA[[ns1="http://
hotel.apps.muws/"][ns0="http://hotel.apps.muws/rpc/"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL">//ns1:getVacantRoomsResponse/return/item/
@roomID,//ns1:getVacantRoomsResponse/return/item/floor,
 //ns1:getVacantRoomsResponse/return/item/number,//ns1:getVacantRoomsResponse/
return/item/rate,//ns1:getVacantRoomsResponse/return/item/roomType,
 //ns1:getVacantRoomsResponse/return/item/smoking,//ns1:getVacantRoomsResponse/
return/item/available</Property>
 <Property NAME="ColType"
SCOPE="GLOBAL">roomID:STRING,floor:STRING,number:STRING,rate:STRING,roomType:STRING,smo
king:STRING,available:STRING</Property>
 <Property NAME="Payload" SCOPE="GLOBAL"><![CDATA[<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns="http://hotel.apps.muws/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <soap:Body soap:encodingStyle="">
 <ns:getVacantRooms/>
 </soap:Body>
 </soap:Envelope>]]></Property>
 </QueryDescriptor>
 </Metric>

Example 2: Metric Definition for Doc or Literal Web Service

 <Metric NAME="square" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_SQUARE">square</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="arg0" TYPE="STRING">
 <Display>
 <Label NLSID="COL_ARG0">arg0</Label>
 </Display>
 </ColumnDescriptor>

Chapter 20
Web Service Fetchlet

20-49

 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="OWSM_WSF">
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE">NONE</Property>
 <Property NAME="ServiceEndpoint" SCOPE="INSTANCE">serviceURL</Property>
 <Property NAME="ServiceName" SCOPE="GLOBAL">ns0:CalculatorService</
Property>
 <Property NAME="PortName" SCOPE="GLOBAL">ns0:CalculatorPort</Property>
 <Property NAME="OperationName" SCOPE="GLOBAL">square</Property>
 <Property NAME="MessageType" SCOPE="GLOBAL">SOAP</Property>
 <Property NAME="SOAPBindingStyle" SCOPE="GLOBAL">DOCUMENT</Property>
 <Property NAME="SOAPBindingUse" SCOPE="GLOBAL">LITERAL</Property>
 <Property NAME="ParameterStyle" SCOPE="GLOBAL">WRAPPED</Property>
 <Property NAME="SOAPVersion" SCOPE="GLOBAL">SOAP_1_1</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL"><![CDATA[[ns0="http://
tests.jaxws.oracle.com/"]
[ns1="http://www.oracle.com/jaxws/tests"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL">//ns1:squareResponse/arg0</
Property>
 <Property NAME="ColType" SCOPE="GLOBAL">arg0:STRING</Property>
 <Property NAME="Payload" SCOPE="GLOBAL"><![CDATA[<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://www.oracle.com/jaxws/tests">
 <ns1:square>
 <arg0>%square.arg00001%</arg0>
 </ns1:square>
 </soap:Body>
 </soap:Envelope>]]></Property>
 </QueryDescriptor>
 </Metric>

Using Credentials for Authentication
If basic authentication is required, then you must configure or define the following in
the metric definition:

1. Set the SecurityPolicy property to BASIC_AUTHENTICATION:

 <Property NAME="SecurityPolicy" SCOPE="INSTANCE">BASIC_AUTHENTICATION</
Property>

2. Add the following properties to the <QueryDescriptor> element:

 <Property NAME="UserCredential" SCOPE="GLOBAL"> UserCredentialSet </
Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet</CredentialRef>

3. Define the credential type after the <Metric> tag:

………
 <Property NAME="UserCredential" SCOPE="GLOBAL">UserCredentialSet </
Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet </
CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="AliasCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Alias Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="Alias">
 <Display>

Chapter 20
Web Service Fetchlet

20-50

 <Label NLSID="CRED_ALIAS">Alias (i.e. username, encryption key,
signature key, etc)</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="Password">
 <Display>
 <Label NLSID="CRED_PASSWORD">Password for the alias</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="UserCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="AliasCredential"/>
 </CredentialSet>
 </CredentialInfo>

Example: Using Keystore and Truststore for SSL

…………
 <Property NAME="SSLTrustStoreCredential"
SCOPE="GLOBAL">SSLTrustStoreCredentialSet</Property>
 <Property NAME="SSLKeyStoreCredential" SCOPE="GLOBAL">SSLKeyStoreCredentialSet</
Property>
NAME="SSLTrustStoreCredentialSet">SSLTrustStoreCredentialSet</CredentialRef>
 <CredentialRef NAME="SSLKeyStoreCredentialSet">SSLKeyStoreCredentialSet</
CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="StoreCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Store Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="StoreLocation">
 <Display>
 <Label NLSID="CRED_STORE_LOCATION">Store Location</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="StoreType">
 <Display>
 <Label NLSID="CRED_STORE_TYPE">Store Type</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="StorePassword">
 <Display>
 <Label NLSID="CRED_STORE_PASSWORD">Store Password</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="SSLTrustStoreCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="StoreCredential"/>
 </CredentialSet>
 <CredentialSet NAME="SSLKeyStoreCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="StoreCredential"/>
 </CredentialSet>
 </CredentialInfo>

Chapter 20
Web Service Fetchlet

20-51

WS-Management Fetchlet
In target metadata files generated by the wsmancli Command-Line Tool, the
<QueryDescriptor> element specifies the properties that will be passed to the
WSManagement fetchlet when being invoked.

Note:

From Release 13.1 onwards, the WS-Management fetchlet is available from
the Enterprise Manager for Fusion Middleware plug-in.

To use this fetchlet, you must have the Enterprise Manager for Fusion
Middleware plug-in deployed on both the OMS and the Management Agent.

Input Parameters

Table 20-19 provides a complete list of the supported properties:

Table 20-19 WS Management Fetchlet Properties

Name Description Use

ResourceURI URI of a resource class
representation or instance
representation
(wsman:ResourceURL)

Required

Any valid URI according to RFC 3986

To Transport address of a
service (wsa:To).

Required

Any valid network transport address.

Action wsa:Action identifies which
operation is to be carried
out against the resource.

Required

Current release only supports "http://
schemas.xmlsoap.org/ws/2004/09/
transfer/Get".

TransferOperation Name of the WS-Transfer
operation.

Required

Current release only supports "GET".

Locale Specifies the language that
the client requests (and
sometimes requires) and
the response text to be
translated into
(wsman:Locale)

Optional

Any valid value for the standard XML
attribute xml:lang

MaxEnvelopeSize The size to indicate that
client expects a response
whose total SOAP envelope
does not exceed the
specified number of octets
(wsman:MaxEnvelopeSize)

Optional

Value should not be less than 8192

Chapter 20
WS-Management Fetchlet

20-52

Table 20-19 (Cont.) WS Management Fetchlet Properties

Name Description Use

OperationTimeout The value to indicate that
client expects a response or
a fault within the specified
time
(wsman:OperationTimeout).

Optional

Specify the value using format
xs:duration (see http://www.w3.org/
2001/XMLSchema:duration).

OptionSet A set of switches to the
service to modify or refine
the nature of the request
(wsman:OptionSet).

Optional

Specify the values using the notation:

[<OptionName1>, value:<value1>,
type:<type1>, mustComply:<true|
false>][<OptionName2>,
value:<value2>, type:<type>,
mustComply:<true|false>][...]

ReplyTo The header to be present in
all request messages when
a reply is required
(wsa:ReplyTo).

Optional

It should be either a valid address for a
new connection using any transport
supported by the service or the URI
http://schemas.xmlsoap.org/ws/
2004/08/addressing/role/anonymous
(see WS-Addressing)

SelectorSet Set of selectors that identify
the instance of resource to
be accessed
(wsman:SelectorSet)

Required

Specify the value using the format
below:

[S1, V1][S2, V2]...[Sn, Vn]

Where

- S1, S2, ..., Sn are Selector names

- V1, V2, ..., Vn are Selector values

SecurityPolicy Security policy Required

- NONE

- BASIC_AUTHENTICATION

Namespace Set of all namespaces
referenced

Required

Specify using notation: [ns0="uri0"]
[ns1="uri1"]..

Example: [ns0="http://type.abc.com"]
[ns1="http://app.abc.com"]

ColType Collection result column
type

Required

List of metric column types (separated
by comma)

Example:
msgId:STRING,source:STRING,detail:
STRING

RowType Collection result row type Required

List of XPath expression corresponding
to metric columns (separated by
comma)

For example: //ns0:eventResponse/
msgId,//ns0:eventResponse/source

Chapter 20
WS-Management Fetchlet

20-53

Table 20-19 (Cont.) WS Management Fetchlet Properties

Name Description Use

SSLKeyStoreCredential SSL keystore credentialSet
name

Optional

A valid CredentialSet of a Store
Credential Type defined in the
<CredentialInfo>

SSLTrustStoreCredentia
l

SSL truststore
credentialSet name

Optional

A valid CredentialSet of a
StoreCredential Type defined in the
<CredentialInfo> tag.

UserCredential User token credentialSet
name

Optional

A valid CredentialSet of a
AliasCredential or CSFKeyCrdential
Type defined in the <CredentialInfo>
tag.

ValueWhenDown Default response when
target is down

Required (only for response metric).
Not required for regular metric. For
Response metric, when a target is
down, this value (if specified) will be
returned.

A target is considered as down when
the Fetchlet catches a
ConnectionException

Example: Metric definition for using the WS-Management Fetchlet

The following example provides an example of a metric definition using the WS-
Management fetchlet.

 <Metric NAME="trafficLight" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_TRAFFIC_LIGHT">trafficLight</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor IS_KEY="YES" NAME="name" TYPE="STRING">
 <Display>
 <Label NLSID="COL_NAME">name</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="color" TYPE="STRING">
 <Display>
 <Label NLSID="COL_COLOR">color</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="x" TYPE="STRING">
 <Display>
 <Label NLSID="COL_X">x</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="y" TYPE="STRING">
 <Display>
 <Label NLSID="COL_Y">y</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>

Chapter 20
WS-Management Fetchlet

20-54

 <QueryDescriptor FETCHLET_ID="WSManagementFetchlet">
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE">NONE</Property>
 <Property NAME="ResourceURL" SCOPE="INSTANCE">resourceURL</Property>
 <Property NAME="To" SCOPE="INSTANCE">To address</Property>
 <Property NAME="OptionSet" SCOPE="INSTANCE">optionSet</Property>
 <Property NAME="Locale" SCOPE="INSTANCE">locale</Property>
 <Property NAME="MaxEnvelopeSize" SCOPE="INSTANCE">maxEnvelopeSize</Property>
 <Property NAME="OperationTimeout" SCOPE="INSTANCE">operationTimeout</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL"> <![CDATA[[ns1="http://
schemas.wiseman.dev.java.net/traffic/1/light.xsd"]
 [ns0="http://www.w3.org/2001/XMLSchema"]
 [wsa="http://www.w3.org/2005/08/addressing"]
 [env="http://www.w3.org/2003/05/soap-envelope"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL">//ns1:trafficlight/ns1:name,//
ns1:trafficlight/ns1:color,//ns1:
 <Property NAME="ColType"
SCOPE="GLOBAL">name:STRING,color:STRING,x:STRING,y:STRING</Property>
 <Property NAME="ReplyTo" SCOPE="GLOBAL">http://www.w3.org/2005/08/addressing/
role/anonymous</Property>
 <Property NAME="Action" SCOPE="GLOBAL">http://schemas.xmlsoap.org/ws/2004/09/
transfer/Get</Property>
 <Property NAME="TransferOperation" SCOPE="GLOBAL">GET</Property>
 <Property NAME="SelectorSet" SCOPE="GLOBAL">[name,Light1]</Property>
 </QueryDescriptor>
 </Metric>

Using Credentials
If basic authentication is required, then configure or define in the metric definition:

1. Set the SecurityPolicy property to BASIC_AUTHENTICATION:

 <Property NAME="SecurityPolicy" SCOPE="INSTANCE">BASIC_AUTHENTICATION</Property>
2. Add the following properties in the <QueryDescriptor> tag:

 <Property NAME="UserCredential" SCOPE="GLOBAL"> UserCredentialSet </Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet</CredentialRef>

3. Define the credential type after the <Metric> tag:

 ………
 <Property NAME="UserCredential" SCOPE="GLOBAL">UserCredentialSet </Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet </CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="AliasCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Alias Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="Alias">
 <Display>
 <Label NLSID="CRED_ALIAS">Alias (i.e. username, encryption key,
signature key, etc)</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="Password">
 <Display>
 <Label NLSID="CRED_PASSWORD">Password for the alias</Label>
 </Display>
 </CredentialTypeColumn>

Chapter 20
WS-Management Fetchlet

20-55

 </CredentialType>
 <CredentialSet NAME="UserCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="AliasCredential"/>
 </CredentialSet>
 </CredentialInfo>

Example: Using Keystore and Truststore for SSL

 …………
 <Property NAME="SSLTrustStoreCredential"
SCOPE="GLOBAL">SSLTrustStoreCredentialSet</Property>
 <Property NAME="SSLKeyStoreCredential"
SCOPE="GLOBAL">SSLKeyStoreCredentialSet</Property>
<CredentialRef NAME="SSLTrustStoreCredentialSet">SSLTrustStoreCredentialSet</
CredentialRef>
 <CredentialRef NAME="SSLKeyStoreCredentialSet">SSLKeyStoreCredentialSet</
CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="StoreCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Store Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="StoreLocation">
 <Display>
 <Label NLSID="CRED_STORE_LOCATION">Store Location</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="StoreType">
 <Display>
 <Label NLSID="CRED_STORE_TYPE">Store Type</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="StorePassword">
 <Display>
 <Label NLSID="CRED_STORE_PASSWORD">Store Password</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="SSLTrustStoreCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="StoreCredential"/>
 </CredentialSet>
 <CredentialSet NAME="SSLKeyStoreCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="StoreCredential"/>
 </CredentialSet>
 </CredentialInfo>

REST Fetchlet
The REST fetchlet provides target monitoring for RESTful web resources. Based on
input properties, this fetchlet can construct a request to communicate with the
managed targets using HTTP standards. It can retrieve relevant data from the
response to build and return monitoring metrics.

This release supports the following RESTful web services only:

• HTTP methods

– GET: Define a reading access of the source without any side-effects. The
resource is never changed through a GET request.

Chapter 20
REST Fetchlet

20-56

– POST: Update an existing resource or create a new resource.

– HEAD: vCheck if a given path is serviceable.

• Media type of request or response representations

– application/xml (both request and response)

– application/json (both request and response)

– text/xml (response only)

– application/x-www-form-urlencoded (request only)

• Authentication scheme

Supports BASIC authentication.

Response Processing
The fetchlet relies on response data to construct monitoring metrics. Because the response
media type can be application/xml, application/json, or text/xml, different mechanisms are
adapted to process the response. Table 20-20 describes the different mechanisms for each
response media type.

Table 20-20 Resonse Processing Mechanism

Media Type Mechanism

application/xml XPath Query is used for processing XML data.

The fetchlet property, RowType, specifies a list of XPath expressions
corresponding to metric columns (separated by comma) for retrieving
column data.

For example:

<records>
 <ns2:Record xmlns:ns2="urn:com.office.directory">
 <name>Peter</name>
 <phone>+1 (650) 555-0100</phone>
 </ns2:Record>
 <ns2:Record xmlns:ns2="urn:com.office.directory">
 <name>John</name>
 <phone>+1 (650) 555-0185</phone>
 </ns2:Record>
</records>

Assume the monitoring metric has two columns (name and phone).
The corresponding XPath expressions are:

• //records/ns.2:Record/name
• //records/ns.2:Record/phone
The following is an example of extracted data:

Peter, +1 (650) 555-0100
John, +1 (650) 555-0185

Chapter 20
REST Fetchlet

20-57

Table 20-20 (Cont.) Resonse Processing Mechanism

Media Type Mechanism

application/json JSONPath is used for processing JavaScript Object Notation (JSON)
data. JSONPath expressions refer to a JSON structure in the same
way as XPath expressions are used in an XML document.

For example:

{
 “Record":
 [
 {
 “name":"Peter"
 “phone":"+1 (650) 555-0100"
 },
 {
 “name":"John"
 “phone":"+1 (650) 555-0185"
 },
]
 }

Assume the monitoring metric has two columns (name and phone).
The corresponding JSONPath expressions are:

• $.Record.name
• $.Record.phone
The following example is an example of extracted data:

Peter, +1 (650) 555-0100
John, +1 (650) 555-0185

text/xml Because text is a non-structural representation, there is no way to
extract any specific data from it. Instead, the entire response is
returned.

Input Parameters

Table 20-21 provides a complete list of the supported properties.

Table 20-21 REST Fetchlet Properties

Name Description Optional

BaseURI Base URI of the RESTful web service No

RequestElementPayload Request element payload (XML/JSON) in string format.
Must be specified using the CDATA section if it is XML

Yes

RequestMetadata Request metadata in XML format No

SecurityPolicy Specifies authentication scheme. Either NONE or
BASIC_AUTHENTICATION

No

Chapter 20
REST Fetchlet

20-58

Table 20-21 (Cont.) REST Fetchlet Properties

Name Description Optional

Namespace Set of all namespaces referenced in the metric. Specify
using notation: [ns0="uri0"][ns1="uri1"]...

For example:

[ns0="http://type.abc.com"][ns1="http://
app.abc.com"]

No

ColType Collection result column type. List of metric column type
(separated by comma).

For example:

msgId:STRING,source:STRING,detail:STRING

No

RowType Collection result row type. List of path (XPath or
JsonPath) expressions corresponding to metric columns
(separated by comma).

For example:

//ns0:eventResponse/msgId,//ns0:eventResponse/
source,//ns0:eventResponse/detail

No

SSLKeyStoreCredential SSL keystore credential set name. It must be defined as a
monitoring credential and contain these credential
columns:

Location, Type, Password

Yes

SSLTrustStoreCredential SSL truststore credentialset name. It must be defined as
a monitoring credential and contain these credential
columns:

Location, Type, Password

Yes

UserCredential User token credentialset name. It must be defined as a
monitoring credential and contain these credential
columns:

Alias, Password

Yes

ProxyHost Host name of the proxy server to make the URL
connection

Yes

ProxyPort Port number of the proxy server to make the URL
connection

Yes

The following example shows an example of the Fectchlet Query Descriptor from a target
metadata file. For more information about the target metadata files, see Creating Target
Metadata Files .

Note:

The fetchlet ID is RESTFetchlet.

Example: Fetchlet Query Descriptor

Chapter 20
REST Fetchlet

20-59

<QueryDescriptor FETCHLET_ID="RESTFetchlet">
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE">ListAll.SecurityPolicy</
Property>
 <Property NAME="BaseURI" SCOPE="INSTANCE">ListAll.BaseURI</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL">
 <![CDATA[[ns0="urn:com.office.directory"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL">//ns0:Record/name,//ns0:Record/title,
 //ns0:Record/phone,//ns0:Record/building,//ns0:Record/floor,
 //ns0:Record/office</Property>
 <Property NAME="ColType" SCOPE="GLOBAL">name:STRING,title:STRING,phone:STRING
 ,building:STRING,floor:STRING,office:STRING</Property>
 <Property NAME="RequestMetadata" SCOPE="GLOBAL">
 <![CDATA[<Resource path="/">
 <Resource path="lookup/list">
 <Method elementDefined="false"
 accept="application/xml" name="GET"/>
 </Resource>
 </Resource>
 </Property>]]>
 <Property NAME="UserCredential" SCOPE="GLOBAL">UserCredentialSet</Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet</CredentialRef>
</QueryDescriptor>

Using HTTPS and Self-Signed Certificates
When calling an HTTPS URL with a self-signed SSL certificate from a REST fetchlet,
the credential set must be specified in the target metadata file.

<QueryDescriptor FETCHLET_ID="RESTFetchlet">

 <Property NAME="SSLTrustStoreCredential" SCOPE="GLOBAL">
 SSLTrustStoreCredentialSet</Property>
 <CredentialRef NAME="SSLTrustStoreCredentialSet">
 SSLTrustStoreCredentialSet</CredentialRef></QueryDescriptor>
<CredentialInfo>
 <CredentialType NAME="StoreCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Store Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="StoreLocation" IS_SENSITIVE="FALSE">
 <Display>
 <Label NLSID="CRED_STORE_LOCATION">Store Location</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="StoreType" IS_SENSITIVE="FALSE">
 <Display>
 <Label NLSID="CRED_STORE_TYPE">Store Type</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="StorePassword">
 <Display>
 <Label NLSID="CRED_STORE_PASSWORD">Store Password</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="SSLTrustStoreCredentialSet" USAGE="MONITORING"
CONTEXT_TYPE="TARGET">
 <AllowedCredType TYPE="StoreCredential"/>
 </CredentialSet>
</CredentialInfo>

Chapter 20
REST Fetchlet

20-60

In Enterprise Manager Cloud Control 12c (12.1.0.3), a new fetchlet property,
“SSLTrustServerCert", was added. If set to “TRUE", the fetchlet uses the non-validating mode
for the server certificate, and there is no need to provide or specify the SSL trust store.

<Property NAME="SSLTrustServerCert" SCOPE="GLOBAL">TRUE</Property>

Using REST CLI to Generate Metadata
REST CLI is a client command line tool for generating target metadata and default collection
files to enable the Management Agent to monitor RESTful web resources through invoking
the REST fetchlet.

Use the following emctl command to invoke REST CLI:

emctl restcli

Table 20-22 provides a list of the command-line arguments that you can use with the emctl
restcli command.

Table 20-22 Command-line Arguments Supported by REST CLI

Argument Description Example

metadata Generate target metadata -metadata
wadl WADL location -wadl=http://......

-wadl=file:///.....
wsdl WSDL location -wsdl=http://......

-wsdl=file:///.....
username User name to log in to the host -username=admin
proxyhost Host name of the proxy server -proxyhost=proxy.example.com
proxyport Port number of the proxy server -proxyport=80

To use REST CLI:

1. Run the REST CLI command with the Web Application Description Language (WADL)
location. For example:

emctl restcli -wadl=http://host.us.example.com:17382/OfficeDirectoryBA/
application.wadl

If the WADL location is access protected, then enter a user name and password.

The Running REST CLI example below provides an example of a user running the REST
CLI tool.

2. REST CLI prompts you to enter the target type and location where the output directory
will contain the generated target and collection metadata files.

3. REST CLI lists out all the available resources paths for monitoring. You must select a
resource path and one of its methods to define monitoring metric for that resource.

4. REST CLI also prompts you to define the collection schedule.

When all the information is gathered from the user, the tool generates the target and
default collection metadata files under the specified output directory similar to the

Chapter 20
REST Fetchlet

20-61

metadata provided in the REST CLI-Generated Target Metadata example at the
end of this section.

Example: Running REST CLI

Generate Metric Metadata for REST Web Resource Monitoring

Enter password for "weblogic" :

Reading WADL Document at
http://host.us.example.com:17382/OfficeDirectoryBA/application.wadl...done.

==> Enter the name for this target type : OfficeDirectory

==> Enter metadata file name [/scratch/work/metadata/OfficeDirectory.xml] :

All resource paths available for monitoring :
[1] /add
[2] /lookup/list
[3] /lookup/phone
[4] /lookup/building/people
[5] /db/count

==> Enter the index [1-5] to select : 2
* Selected Resource Path : /lookup/list

All methods available from the selected path :
[1] application/xml[Record] GET()
[2] application/json[Record] GET()

==> Enter the index [1-2] to select : 1
* Selected Resource Method: application/xml[Record] GET()

Define new metric group :
==> Enter the name for this metric group [GET] : ListGet_XML

Return value(s) for the selected method :
[1] //ns0:Record/name <string>
[2] //ns0:Record/title <string>
[3] //ns0:Record/phone <string>
[4] //ns0:Record/building <string>
[5] //ns0:Record/floor <string>
[6] //ns0:Record/office <string>

==> Enter the index [1-6] of metric to display : 1
==> Enter the name for this metric [name] :
==> Enter the label for this metric [name] :
==> Is this a key metric <y/n>? [n] : y
==> Do you want to add another metric <y/n>? [y] :

Return value(s) for the selected method :
[1] //ns0:Record/title <string>
[2] //ns0:Record/phone <string>
[3] //ns0:Record/building <string>
[4] //ns0:Record/floor <string>
[5] //ns0:Record/office <string>

==> Enter the index [1-5] of metric to display : 1
==> Enter the name for this metric [title] :
==> Enter the label for this metric [title] :

Chapter 20
REST Fetchlet

20-62

==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for it <y/n>? [n] :
==> Do you want to add another metric <y/n>? [y] :

Return value(s) for the selected method :
[1] //ns0:Record/phone <string>
[2] //ns0:Record/building <string>
[3] //ns0:Record/floor <string>
[4] //ns0:Record/office <string>

==> Enter the index [1-4] of metric to display : 1
==> Enter the name for this metric [phone] :
==> Enter the label for this metric [phone] :
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for it <y/n>? [n] :
==> Do you want to add another metric <y/n>? [y] :

Return value(s) for the selected method :
[1] //ns0:Record/building <string>
[2] //ns0:Record/floor <string>
[3] //ns0:Record/office <string>

==> Enter the index [1-3] of metric to display : 1
==> Enter the name for this metric [building] :
==> Enter the label for this metric [building] :
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for it <y/n>? [n] :
==> Do you want to add another metric <y/n>? [y] :

Return value(s) for the selected method :
[1] //ns0:Record/floor <string>
[2] //ns0:Record/office <string>

==> Enter the index [1-2] of metric to display : 1
==> Enter the name for this metric [floor] :
==> Enter the label for this metric [floor] :
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for it <y/n>? [n] :
==> Do you want to add another metric <y/n>? [y] :

Return value(s) for the selected method :
[1] //ns0:Record/office <string>

==> Enter the index [1-1] of metric to display : 1
==> Enter the name for this metric [office] :
==> Enter the label for this metric [office] :
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for it <y/n>? [n] :

Setup request parameters

==> Do you want to add User/Password Credential <y/n>? [n] : y

==> Do you want to add SSL TrustStore Credential <y/n>? [n] :

==> Do you want to add SSL KeyStore Credential <y/n>? [n] :

==> Is this metric group for periodic collection <y/n>? [y] :
The following units are for collection frequency:
[1] Min

Chapter 20
REST Fetchlet

20-63

[2] Hr
[3] Day

==> Enter the index [1-3] of unit for this collection : 1
==> Enter the frequency of collection in Min : 5

==> Do you want to add another metric group <y/n>? [n] : y

All resource paths available for monitoring :
[1] /add
[2] /lookup/list
[3] /lookup/phone
[4] /lookup/building/people
[5] /db/count

==> Enter the index [1-5] to select : 3
* Selected Resource Path : /lookup/phone

All methods available from the selected path :
[1] application/json[PhoneInfo] GET(name)
[2] application/xml[PhoneInfo] GET(name)

==> Enter the index [1-2] to select : 1
* Selected Resource Method: application/json[PhoneInfo] GET(name)

Define new metric group :
==> Enter the name for this metric group [GET] : LookupGet_JSON

Return value(s) for the selected method :
[1] $..name <string>
[2] $..phone <string>

==> Enter the index [1-2] of metric to display : 1
==> Enter the name for this metric [name] :
==> Enter the label for this metric [name] :
==> Is this a key metric <y/n>? [n] : y
==> Do you want to add another metric <y/n>? [y] :

Return value(s) for the selected method :
[1] $..phone <string>

==> Enter the index [1-1] of metric to display : 1
==> Enter the name for this metric [phone] :
==> Enter the label for this metric [phone] :
==> Is this a key metric <y/n>? [n] :
==> Do you want to create threshold for it <y/n>? [n] :

Setup request parameters
==> Enter value for query parameter "name" [%LookupGet_JSON.name0000%] :
Harry Smith

==> Do you want to add User/Password Credential <y/n>? [n] : y

==> Do you want to add SSL TrustStore Credential <y/n>? [n] :

==> Do you want to add SSL KeyStore Credential <y/n>? [n] :

==> Is this metric group for periodic collection <y/n>? [y] :
The following units are for collection frequency:

Chapter 20
REST Fetchlet

20-64

[1] Min
[2] Hr
[3] Day

==> Enter the index [1-3] of unit for this collection : 1
==> Enter the frequency of collection in Min : 5

==> Do you want to add another metric group <y/n>? [n] :

Files Generated:
- Target Metadata file: /scratch/work/metadata/OfficeDirectory.xml
- Target Collection file: /scratch/work/metadata/OfficeDirectoryCollection.xml

Example: REST CLI-Generated Target Metadata

<TargetMetadata META_VER="1.0" TYPE="OfficeDirectory">
 <Display>
 <Label NLSID="NLSID_OFFICE_DIRECTORY">OfficeDirectory</Label>
 <ShortName NLSID="NLSID_OFFICE_DIRECTORY">OfficeDirectory</ShortName>
 <Description NLSID="NLSID_OFFICE_DIRECTORY">OfficeDirectory</Description>
 </Display>
 <Metric NAME="ListGet_XML" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_LIST_GET_XML">ListGet_XML</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor IS_KEY="TRUE" NAME="name" TYPE="STRING">
 <Display>
 <Label NLSID="COL_NAME">name</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="title" TYPE="STRING">
 <Display>
 <Label NLSID="COL_TITLE">title</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="phone" TYPE="STRING">
 <Display>
 <Label NLSID="COL_PHONE">phone</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="building" TYPE="STRING">
 <Display>
 <Label NLSID="COL_BUILDING">building</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="floor" TYPE="STRING">
 <Display>
 <Label NLSID="COL_FLOOR">floor</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="office" TYPE="STRING">
 <Display>
 <Label NLSID="COL_OFFICE">office</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="JAXRS_Fetchlet">
 <Property NAME="ProxyHost" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyHost</
Property>
 <Property NAME="ProxyPort" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyPort</

Chapter 20
REST Fetchlet

20-65

Property>
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE"
OPTIONAL="FALSE">ListGet_XML.SecurityPolicy</Property>
 <Property NAME="BaseURI" SCOPE="INSTANCE"
OPTIONAL="FALSE">ListGet_XML.BaseURI</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL" OPTIONAL="FALSE"><!
[CDATA[[ns0="urn:com.office.directory"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL" OPTIONAL="FALSE">//ns0:Record/
name,//ns0:Record/title,//ns0:Record/phone,//ns0:Record/building,//
ns0:Record/floor,//ns0:Record/office</Property>
 <Property NAME="ColType" SCOPE="GLOBAL"
OPTIONAL="FALSE">name:STRING,title:STRING,phone:STRING,building:STRING,
floor:STRING,office:STRING</Property>
 <Property NAME="RequestMetadata" SCOPE="GLOBAL" OPTIONAL="FALSE"><!
[CDATA[<Resource path="/">
 <Resource path="lookup/list">
 <Method elementDefined="false" accept="application/xml" name="GET"/>
 </Resource>
</Resource>
]]></Property>
 <Property NAME="UserCredential" SCOPE="GLOBAL"
OPTIONAL="FALSE">UserCredentialSet</Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet</
CredentialRef>
 </QueryDescriptor>
 </Metric>
 <Metric NAME="LookupGet_JSON" TYPE="TABLE">
 <Display>
 <Label NLSID="NLSID_LOOKUP_GET_JSON">LookupGet_JSON</Label>
 </Display>
 <TableDescriptor>
 <ColumnDescriptor IS_KEY="TRUE" NAME="name" TYPE="STRING">
 <Display>
 <Label NLSID="COL_NAME">name</Label>
 </Display>
 </ColumnDescriptor>
 <ColumnDescriptor IS_KEY="FALSE" NAME="phone" TYPE="STRING">
 <Display>
 <Label NLSID="COL_PHONE">phone</Label>
 </Display>
 </ColumnDescriptor>
 </TableDescriptor>
 <QueryDescriptor FETCHLET_ID="JAXRS_Fetchlet">
 <Property NAME="ProxyHost" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyHost</
Property>
 <Property NAME="ProxyPort" SCOPE="INSTANCE" OPTIONAL="TRUE">ProxyPort</
Property>
 <Property NAME="SecurityPolicy" SCOPE="INSTANCE"
OPTIONAL="FALSE">LookupGet_JSON.SecurityPolicy</Property>
 <Property NAME="BaseURI" SCOPE="INSTANCE"
OPTIONAL="FALSE">LookupGet_JSON.BaseURI</Property>
 <Property NAME="Namespace" SCOPE="GLOBAL" OPTIONAL="FALSE"><!
[CDATA[[ns0="urn:com.office.directory"]]]></Property>
 <Property NAME="RowType" SCOPE="GLOBAL"
OPTIONAL="FALSE">$..name,$..phone</Property>
 <Property NAME="ColType" SCOPE="GLOBAL"
OPTIONAL="FALSE">name:STRING,phone:STRING</Property>
 <Property NAME="RequestMetadata" SCOPE="GLOBAL" OPTIONAL="FALSE"><!
[CDATA[
<Resource path="/">
 <Resource path="lookup/phone">

Chapter 20
REST Fetchlet

20-66

 <Method elementDefined="false" accept="application/xml" name="GET">
 <Parameter style="query" value="Harry Son" name="name"/>
 </Method>
 </Resource>
</Resource>
]]></Property>
 <Property NAME="UserCredential" SCOPE="GLOBAL"
OPTIONAL="FALSE">UserCredentialSet</Property>
 <CredentialRef NAME="UserCredentialSet">UserCredentialSet</CredentialRef>
 </QueryDescriptor>
 </Metric>
 <CredentialInfo>
 <CredentialType NAME="CSFKeyCredential">
 <Display>
 <Label NLSID="CRED_TYPE">CSF-Key Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="CSFKey">
 <Display>
 <Label NLSID="CRED_CSFKEY">Alias CSF Key</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialType NAME="AliasCredential">
 <Display>
 <Label NLSID="CRED_TYPE">Alias Credential Type</Label>
 </Display>
 <CredentialTypeColumn NAME="Alias">
 <Display>
 <Label NLSID="CRED_ALIAS">Alias (i.e. username, encryption key,
signature key, etc)</Label>
 </Display>
 </CredentialTypeColumn>
 <CredentialTypeColumn NAME="Password">
 <Display>
 <Label NLSID="CRED_PASSWORD">Password for the alias</Label>
 </Display>
 </CredentialTypeColumn>
 </CredentialType>
 <CredentialSet NAME="UserCredentialSet" USAGE="MONITORING">
 <AllowedCredType TYPE="CSFKeyCredential"/>
 <AllowedCredType TYPE="AliasCredential"/>
 </CredentialSet>
 </CredentialInfo>
 <InstanceProperties>
 <InstanceProperty NAME="ProxyHost" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_PROXY_HOST">Proxy Server Name</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="ProxyPort" CREDENTIAL="FALSE" OPTIONAL="TRUE">
 <Display>
 <Label NLSID="PROP_PROXY_PORT">Proxy Server Port</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="ListGet_XML.SecurityPolicy"
 CREDENTIAL="FALSE" OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_LIST_GET_XML_SECURITY_POLICY">[ListGet_XML]
Authentication/Web Service Policy</Label>
 </Display>
 </InstanceProperty>

Chapter 20
REST Fetchlet

20-67

 <InstanceProperty NAME="ListGet_XML.BaseURI" CREDENTIAL="FALSE"
OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_LIST_GET_XML_BASE_URI">[ListGet_XML] Resource
Base URI</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="LookupGet_JSON.SecurityPolicy"
 CREDENTIAL="FALSE" OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_LOOKUP_GET_JSON_SECURITY_POLICY">[LookupGet_JSON]
Authentication/Web Service Policy</Label>
 </Display>
 </InstanceProperty>
 <InstanceProperty NAME="LookupGet_JSON.BaseURI" CREDENTIAL="FALSE"
OPTIONAL="FALSE">
 <Display>
 <Label NLSID="PROP_LOOKUP_GET_JSON_BASE_URI">[LookupGet_JSON]
Resource Base URI</Label>
 </Display>
 </InstanceProperty>
 </InstanceProperties>
</TargetMetadata>

Chapter 20
REST Fetchlet

20-68

21
Enterprise Manager DTD

A DTD provides the grammar for the XML files, thus describing what content is expected in
each of its related XML files. When creating a new XML file, you need to carefully study its
DTD to understand what content needs to be present in that file.

This chapter to provides a lookup of DTD elements to facilitate integration with Oracle Server
Technology products:

• Terminology

• Target Metadata DTD Elements

• Target Collection DTD Elements

Terminology
This chapter provides a lookup of DTD elements to facilitate integration with Oracle Server
Technology products. Most of the examples in the document are snippets of an XML file.

Target: Target is a managed entity. A managed entity can be a hardware device or a software
resource. Examples of a target are: host system, Oracle database, SMTP service etc.

Associated Target: Targets whose data depend on each other.

Metric: Collectable data

Mid Tier: OMS – Oracle Management Server

Container: A container is an entity that houses an Oracle installation. Currently two kinds of
containers are possible – Oracle Home (Database, Enterprise Manager, Oracle Application
Server installs) and ApplTop (application installs).

Cluster Targets: Cluster targets span across many hosts. All cluster targets represent the
same target. The agents monitoring each of the cluster targets will produce the same metric
result, severities, and so on.

Cluster Interfaces: Standard interfaces that the agent uses to talk to the cluster target.

Target Metadata DTD Elements
This section defines DTD elements used by Enterprise Manager.

TargetMetadata
The TargetMetadata describes the metadata for a target type. Metadata for a target describes
its measurable characteristics, format of the collected data and the mechanism to collect or
compute that data.

<!ELEMENT TargetMetadata (Display*, TypeProperties?, AssocTarget*,
DiscoveryHelper?, MonitoringMode*, AltSkipCondition?, MetricClass*, Metric*,
CredentialInfo?, InstanceProperties?, SSH_ERROR_MSG?)>

21-1

<!ATTLIST TargetMetadata
META_VER CDATA #REQUIRED
TYPE CDATA #REQUIRED
REQUIRED_AGENT_VERSION CDATA #IMPLIED
HELPID CDATA #IMPLIED
HELP CDATA #IMPLIED
CATEGORY_PROPERTIES CDATA #IMPLIED
RESOURCE_BUNDLE_PACKAGE CDATA #IMPLIED
TARGET_TYPE_CATEGORY CDATA #IMPLIED
HOST_BINDING_REQUIRED (TRUE | FALSE) "TRUE"
>

Note:

The maximum length allowed for the various attributes mentioned in the file
must be mentioend in tagsize.properties. This will be used to truncate the
length of the attributes in the metadata file while loading the metadata
information into the repository.

Attributes
META_VER: Describes the version of metadata.

TYPE: Specifies the Target type.

HELPID: Not used.

HELP: Not used.

CATEGORY_PROPERTIES: Semicolon separated list of properties, used as
properties for ValidIf. Currently, each target type can have up to 5 properties used as
category property. EMAgent evaluates the values of the category properties and
makes it available within the metadata.

RESOURCE_BUNDLE_PACKAGE:

REQUIRED_AGENT_VERSION: This attribute indicates the minimum agent version
for the metadata. TargetMetadata marked with this attribute will be valid on Agent
versions greater than or equal to the specified version.

TARGET_TYPE_CATEGORY: Determines the Category to which the target type
belongs to. Multiple Target Type Categories can be specified as semicolon seperated
list of Categories.

HOST_BINDING_REQUIRED: Indicates whether the target needs a host target.

(TRUE (default) | FALSE)

Chapter 21
Target Metadata DTD Elements

21-2

Elements
Display

TypeProperties

AssocTarget

DiscoveryHelper

MonitoringMode

AltSkipCondition

MetricCategory

Metric

CredentialInfo

InstanceProperties

SSH_ERROR_MSG

Used In
TargetMetadata is a top-level element.

Examples
<TargetMetadata TYPE="example1" META_VER="2.0"
REQUIRED_AGENT_VERSION="10.2.0.1.0">
. . .
</TargetMetadata>
The Metadata in the above example has REQUIRED_AGENT_VERSION attribute set to
"10.2.0.1.0". This metadata will be valid only on agent versions 10.2.0.1.0 and higher.

<TargetMetadata TYPE="example1" META_VER="2.0">
<Metric NAME="prop" TYPE="TABLE">
<TableDescriptor>
<ColumnDescriptor NAME="name" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="value" TYPE="STRING" />
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
</QueryDescriptor>
</Metric>
</TargetMetadata>

Chapter 21
Target Metadata DTD Elements

21-3

This is a very simple example that describes a Target type, ‘exmaple1' having data
(Metric) that needs to be collected in the following format. The quoted values are
evaluated by the ‘OS' Fetchlet in accordance with the scoping rules defined in
Property.

Table 21-1 Metric Prop

Name Value

Host Name NAME

<TargetMetadata TYPE="example2" META_VER="2.0">
<Metric NAME="perf" TYPE="TABLE">
<TableDescriptor>
<ColumnDescriptor NAME="char" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="value" TYPE="STRING" />
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OSLineToken" >
<Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl %scriptsDir%/
example1/perf.pl %port% </Property>
<Property NAME="delimiter" SCOPE="GLOBAL">=</Property>
<Property NAME="port" SCOPE="INSTANCE">accessPort</Property>
</QueryDescriptor>
</Metric>
<InstanceProperties>
<InstanceProperty NAME="accessPort" />
</InstanceProperties>
</TargetMetadata>
This sample illustrates the use of InstanceProperties. InstanceProperties element
associates ‘accessPort' to be associated with the target instance. The metric ‘perf' is
collected as shown below. The quoted values are evaluated by the ‘OSLineToken'
Fetchlet in accordance with the scoping rules defined in Property.

Table 21-2 Metric: perf

Char Value

Command ‘%perlBin%/perl %scriptsDir%/example1/perf.pl %port%'

Delimiter =

Port 'accessPort'

<TargetMetadata TYPE="example3" META_VER="2.0" CATEGORY_PROPERTIES="OS">
<Metric NAME="prop" TYPE="TABLE">

Chapter 21
Target Metadata DTD Elements

21-4

. . .
</Metric>
<InstanceProperties>
<DynamicProperties NAME="VersionAndLocation" FORMAT="ROW"
PROP_LIST="OS;OracleHome;Version">
<QueryDescriptor FETCHLET_ID="OSLineToken">
<Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
<Property NAME="ENVEmdOS" SCOPE="SYSTEMGLOBAL">_emdOS</Property>
<Property NAME="ENVVersion" SCOPE="SYSTEMGLOBAL">_emdVersion</Property>
<Property NAME="ENVORACLE_HOME" SCOPE="SYSTEMGLOBAL">emdRoot</Property>
<Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>
<Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/emdlocandver.pl </Property>
<Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
<Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
</QueryDescriptor>
</DynamicProperties>
</InstanceProperties>
</TargetMetadata>
This sample uses a DynamicProperties element to return OS, OracleHome and Version
properties. The scripts return results that are parsed to return the properties listed in the
PROP_LIST attribute.

Display
Specifies the information to be used by the Console UI for displaying the element that has
this tag.

<!ELEMENT Display (ValidIf*, Label, ShortName?, Icon?, Description?, Unit?)>
<!ATTLIST Display
FOR_SUMMARY_UI (TRUE | FALSE) "FALSE">
Metric owners needs to follow the same metric metadata registration mechanism to add units
and unit category to their metrics. The standard metric units are as follows:

• Adding units and unit category

<ColumnDescriptor NAME="Network_Sent_Rate" TYPE="NUMBER">
<Display>
<Unit>KBPS</Unit>
<UnitCategory>RATE<UnitCategory>
</Display>
</ColumnDescriptor>

Chapter 21
Target Metadata DTD Elements

21-5

• Adding Metrics with no units

<ColumnDescriptor NAME=“Number of Requests" TYPE="NUMBER">
<Display>
<Unit>NA</Unit> -- Counter Metric, No Unit
<UnitCategory>COUNT<UnitCategory>
</Display>
</ColumnDescriptor>

<ColumnDescriptor NAME=“Service specified by the local port" TYPE="NUMBER">
<Display>
<Unit>NA</Unit> -- PORT, No Unit
<UnitCategory>PORT</UnitCategory>
</Display>
</ColumnDescriptor>

For more information on standard metric units, see Metric Unit Standardization.

Attributes
FOR_SUMMARY_UI: Indicates whether a column is visible in the condensed UI.
Condensed view is necessary when all the columns cannot fit in one UI page. In a
condensed view, only columns whose FOR_SUMMARY_UI=TRUE will be displayed.

TRUE | FALSE (default)

Elements
ValidIf

Label

ShortName

Icon

Description

Unit

Used In
TargetMetadata

Metric

ColumnDescriptor

CredentialType

CredentialTypeColumn

CredentialSet

CredentialSetColumn

InstanceProperty

Chapter 21
Target Metadata DTD Elements

21-6

Examples
Display element must contain a Label element. The elements ShortName, Icon, Description
and Unit are optional. If ValidIf element(s) are present then all the conditions in the ValidIf
elements must be satisfied for the element to be displayed.

<Display FOR_SUMMARY_UI="TRUE">
<Label NLSID="emd_resp_stat">Status</Label>
</Display>
This example describes the display characteristics for the element that includes it. The
‘FOR_SUMMARY_UI' set to TRUE forces the UI to display the element in the condensed
view also.

<Display FOR_SUMMARY_UI="TRUE">
<ValidIf>
<CategoryProp NAME="OS" CHOICES="SunOS"/>
</ValidIf>
<Label NLSID="id_name_for_agent">Agent Name</Label>
<ShortName NLSID="id_short_name">Name</ShortName>
<Icon GIF="a.gif">Name</Icon>
<Description NLSID="id_for_description">Displays the Agent Name</Description>
</Display>
This sample describes the display characteristics for an element that are valid only for
‘SunOS' OS.

SSH_ERROR_MSG
Free form error message to be displayed at the console in case SSH is not available for
monitoring a remote target of this type.

<!ELEMENT SSH_ERROR_MSG (#PCDATA)>
<!ATTLIST SSH_ERROR_MSG
NLSID CDATA #REQUIRED
>

Attributes
NLSID: The NLSID of the free form error message

Elements
None.

Chapter 21
Target Metadata DTD Elements

21-7

Used In
TargetMetadata

Examples
<SSH_ERROR_MSG NLSID="ssh_error_nlsid">
Target data will not be available until sshd is available
</SSH_ERROR_MSG>

TypeProperties
The TypeProperties holds TypeProperty elements for the target type.

<!ELEMENT TypeProperties (TypeProperty*)>

Attributes
None.

Elements
TypeProperty

Used In
TargetMetadata

Examples
<TypeProperties>
<TypeProperty PROPERTY_NAME="a_name" PROPERTY_VALUE="a_value"/>
</TypeProperties>
The property name-value pair, a_name,a_value, would apply to the target type.

TypeProperty
TypeProperty element contains the property name-value pair for a target type.

<!ELEMENT TypeProperty EMPTY>
<!ATTLIST TypeProperty
PROPERTY_NAME CDATA #REQUIRED
PROPERTY_VALUE CDATA #IMPLIED
>

Chapter 21
Target Metadata DTD Elements

21-8

Attributes
PROPERTY_NAME: Name of the target type property.

PROPERTY_VALUE: Value of the target type property.

Elements
None.

Used In
TypeProperties

Examples
Refer to the example for TypeProperties.

AssocTarget
The AssocTarget describes how two targets are related to each other. Targets may be
associated for a number of reasons some of them being: rendering topology maps, root
cause analysis, determining availability of targets, minimizing redundancy in data collection
and transmission and determining order for data collection or job execution amongst others.
For instance, if a fault occurs on a target, its associated target might be affected too. This
information would be valuable in root cause analysis.

<!ELEMENT AssocTarget (AssocPropDef*)>
<!ATTLIST AssocTarget
ASSOC_TARGET CDATA #IMPLIED
TYPE CDATA #IMPLIED
ASSOCIATION_NAME CDATA #IMPLIED
NAME_NLSID CDATA #IMPLIED
DESCRIPTION CDATA #IMPLIED
DESCRIPTION_NLSID CDATA #IMPLIED
SOURCE_TARGET_TYPE CDATA #IMPLIED
ASSOC_TARGET_TYPE CDATA #IMPLIED
CARDINALITY (OPTIONAL_SINGLE_CARDINAL |
REQUIRED_SINGLE_CARDINAL |
OPTIONAL_MULTI_CARDINAL |
REQUIRED_MULTI_CARDINAL) #IMPLIED
ASSOC_TYPE (RELATES_TO|DEPENDS_ON | CONNECTS_TO |
SERVICE_ACCESS_POINT|RUNS_ON|

Chapter 21
Target Metadata DTD Elements

21-9

CONTAINS|HOSTED_BY|MONITORED_BY|
OPTIONALLY_CONNECTS_TO) #IMPLIED
COMPUTE_RULE (PARENT | MEMBER | NONE) “NONE"
>

Attributes
ASSOC_TARGET: the name of the associated target.

TYPE: the target type of the associated target.

ASSOCIATION_NAME: deprecates ASSOC_TARGET. Specifies the name of the
association

ASSOC_TARGET_TYPE: deprecates TYPE. Specifies the target type that is
associated with this target. ‘ANY' can be used to indicate that the association target
could be any target type.

NAME_NLSID: NLSID for association name

DESCRIPTION: Description

DESCRIPTION_NLSID: NLSID for description string

SOURCE_TARGET_TYPE: If association starts from a target, other than the target
itself, the target type of the source target is specified in this attribute. ‘ANY' can be
used to indicate that the source could be any target type.

CARDINALITY: Specifies the cardinality of the associated targets. Supported values
are:

1. OPTIONAL_SINGLE_CARDINAL: zero or one targets as associated

2. REQUIRED_SINGLE_CARDINAL: exactly one associated target

3. OPTIONAL_MULTI_CARDINAL: zero or several associated targets

4. REQUIRED_MULTI_CARDINAL: one or more associated targets

ASSOC_TYPE: Describes the relation of the associated targets. Supported Values
are:

1. RELATES_TO (default): implies "some" generic relationship

2. DEPENDS_ON: Dependency on associated target

3. CONNECTS_TO: Source target connects to assoc target

4. SERVICE_ACCESS_POINT

5. RUNS_ON: Source target runs on (installed on) assoc target

6. CONTAINS: Source target contains assoc target

7. HOSTED_BY: Similar to runs on

8. MONITORED_BY: Source target is monitored by assoc target (agent)

9. OPTIONALLY_CONNECTS_TO

COMPUTE_RULE: Describes how the Association is computedIif not already present)
for the target instance. Supported values are:

Chapter 21
Target Metadata DTD Elements

21-10

1. PARENT: will be constructed based on the first parent of the target.

2. MEMBER: will be construced based on the first child of the target.

3. NONE (default): Association for the target instance is not automatically computed.

Elements
AssocPropDef (Not supported in version 10.2.)

Used In
TargetMetadata

Examples
AssocTarget element for versions prior to 10.2 MUST have the following attributes:

1. ASSOC_TARGET

2. TYPE

AssocTarget element for versions 10.2 and later MUST use the following attributes at least.

1. ASSOCIATION_NAME instead of ASSOC_TARGET.

2. ASSOC_TARGET_TYPE instead of TYPE.

<TargetMetadata TYPE="oracle_email" META_VER="2.0">
<AssocTarget ASSOCIATION_NAME="IM"
SOURCE_TARGET_TYPE="oracle_email"
ASSOC_TARGET_TYPE="oracle_im"
ASSOCIATION_TYPE="DEPENDS_ON"
NAME_NLSID="im_assoc_name"
DESCRIPTION="This association captures Email-IM dependency"
DESCRIPTION_NLSID="im_assoc_description" />
. . .
</TargetMetadata>
This element would be defined in ‘oracle_email' and would represent the following relation:

Oracle_email -----DependsOn----à oracle_im

AssocPropDef
The AssocPropDef describe the properties for an association. This element is not supported
in version 10.2.

<!ELEMENT AssocPropDef EMPTY>
<!ATTLIST AssocPropDef
NAME CDATA #REQUIRED

Chapter 21
Target Metadata DTD Elements

21-11

REQUIRED (TRUE | FALSE) #REQUIRED>

Attributes
NAME: Name of the property.

REQUIRED: Indicates whether the property is required.

TRUE | FALSE

Elements
None.

Used In
AssocTarget

Examples
This element is not supported.

DiscoveryHelper
The DiscoveryHelper helps the agent in its process of discovering the target type.

<!ELEMENT DiscoveryHelper (DiscoveryHint*) >
<!ATTLIST DiscoveryHelper
CATEGORYNAME CDATA #REQUIRED
OUI_BASED (TRUE | FALSE) "TRUE"
>

Attributes
CATEGORYNAME: name of the category in discover.lst which discovers targets for a
given type.

OUI_BASED: boolean value to indicate if this discovery used OUI inventory info.

TRUE (default) | FALSE

Elements
DiscoveryHint

Used In
TargetMetadata

Chapter 21
Target Metadata DTD Elements

21-12

DiscoveryHint
The DiscoveryHint allows users to specify any hint which can be a guide to discovery.

<!ELEMENT DiscoveryHint (Display?) >
<!ATTLIST DiscoveryHint
NAME CDATA #REQUIRED
>

Attributes
NAME: name of the hint to guide discovery process

Elements
Display

Used In
DiscoveryHelper

MetricClass
MetricClass provides a means for classifying Metrics into categories. Metrics can be
classified into categories based on multiple characteristics such as Function (Perf, Load,
Config), EvaluationCost (Cheap, Medium, Expensive) and Applicability (Typical, Esoteric).

<!ELEMENT MetricClass (MetricCategory*)>
<!ATTLIST MetricClass
NAME CDATA #REQUIRED
NLSID CDATA #IMPLIED>

Attributes
NAME: Is the name of the class (e.g. Functional)

NLSID: Is the translation ID. The naming convention is metric_class_<classname>

Elements
MetricCategory

Used In
TargetMetadata

Chapter 21
Target Metadata DTD Elements

21-13

Examples
<TargetMetadata TYPE="example3" META_VER="2.0">
<MetricClass NAME="EvaluationCost" NLSID="id_for_eval_cost_class">
<MetricCategory NAME="CHEAP" NLSID="id_for_cheap_cat"/>
<MetricCategory NAME="MEDIUM" NLSID="id_for_medium_cat"/>
<MetricCategory NAME="EXPENSIVE" NLSID="id_for_expensive_cat"/>
</MetricClass>
<Metric NAME="metric1" TYPE="TABLE">
<CategoryValue Class="EvaluationCost" CATEGORY_NAME="CHEAP"/>
. . .
</Metric>
. . .
</TargetMetadata>
The example describes adding a ‘EvaluationCost' MetricClass for a Target type
‘example3'. EvaluationCost has 3 categories: CHEAP, MEDIUM, and EXPENSIVE.
Metric, ‘metric1' is a CHEAP metric to evaluate.

Refer to the explanations of CategoryValue, Metric for more details.

MetricCategory
A MetricCategory element lists each choice within a classification of metrics.

<!ELEMENT MetricCategory EMPTY>
<!ATTLIST MetricCategory
NAME CDATA #REQUIRED
NLSID CDATA #IMPLIED>

Attributes
NAME: The name of the category (e.g. Security)

NLSID: The NLSID of the category. The naming convention here is
metric_cat_<category_name>

Elements
None.

Used In
MetricClass

Chapter 21
Target Metadata DTD Elements

21-14

Examples
Refer to the example for MetricClass.

Metric
A metric element is used to declare the different measurable characteristics (performance,
load, configuration and so on) of a target. The metric element describes the structure of the
collected data as well as how to compute the information.

Note:

Oracle recommends that every target type have a special metric named
“Response". This metric should have a column called “Status". The type creator
should also set up a collection of this metric and set up a condition (see
TargetCollection.dtd) on the Status column. The availability system (target up/down
status over time) uses alerts on this metric column to provide up/down statistics
over time.

Note: QueryDescriptor is required for Management Repository metrics.

<!ELEMENT Metric ((ValidIf | ValidMidTierVersions)*, Display?,
CategoryValue* ,TableDescriptor?, ((QueryDescriptor | ExecutionDescriptor) |
PushDescriptor)*)>
<!ATTLIST Metric
NAME CDATA #REQUIRED
TYPE (NUMBER | STRING | TABLE | RAW | EXTERNAL | REPOSITORY_TABLE |
REPOSITORY_NUMBER | REPOSITORY_STRING | REPOSITORY_EVENT) "NUMBER"
REPOSITORY (TRUE|FALSE) "FALSE"
USAGE_TYPE (VIEW_COLLECT | REALTIME_ONLY | HIDDEN | HIDDEN_COLLECT |
COLLECT_UPLOAD) "VIEW_COLLECT"
KEYS_FROM_MULT_COLLS (TRUE | FALSE) "FALSE"
IS_TEST_METRIC (TRUE | FALSE) "FALSE"
KEYS_ONLY (TRUE | FALSE) "FALSE"
REMOTE (TRUE | FALSE) "FALSE"
IS_TRANSPOSED (TRUE | FALSE) "FALSE"
HELP CDATA #IMPLIED
IS_METRIC_LONG_RUNNING (TRUE|FALSE) "FALSE"
CONFIG (TRUE|FALSE) "FALSE"
FORCE_CACHE (TRUE | FALSE) "FALSE"
COLLECT_ON_ALL_NODES (TRUE | FALSE) "FALSE"

Chapter 21
Target Metadata DTD Elements

21-15

INCREMENTAL (TRUE|FALSE) "FALSE"
NUM_CACHE_VALUES CDATA "1"
LOCAL_ONLY (TRUE | FALSE) "FALSE"
>

Attributes
NAME: Specifies Metric name, it uniquely identifies it within the scope of its target
type.

TYPE: Specifies the data type. Supported metric types are:

a) NUMBER (default): Deprecated – Instead use a table with 1 column of type
NUMBER.

b) STRING: Deprecated – Instead use a table with 1 column of type STRING

c) TABLE: Tabular data

d) RAW: Tabular data

e) EXTERNAL: Data not parsed/fronted by EMD.

f) REPOSITORY_EVENT

REPOSITORY: This attribute indicates a metric that will be collected by the
Management Repository. This is a boolean attribute.

FALSE (default) indicates that the metric is collected by the Management Agent.

TRUE indicates that the metric is collected at the Management Repository. When this
attribute is set to TRUE, the query descriptor must be similar to the following:

 <QueryDescriptor FETCHLET_ID="REPOSITORY_SQL">
 <Property NAME="Type">SQL</Property>
 <Property NAME="Source">CDATA</Property>
 </QueryDescriptor>

There must be one query descriptor only. Possible values for Type are:

• SQL

• PLSQL

• BULK_PLSQL

Note:

When REPOSITORY is set to TRUE, the Metric TYPE must be TABLE.
RAW is not supported for Repository metrics.

USAGE_TYPE: This defines the purpose of the metric. Supported types are:

a) VIEW_COLLECT (default): These are metrics that are both viewable and collected.

b) REALTIME_ONLY: These are metrics that cannot be collected. The rules on key
uniqueness are not applied to these metrics.

Chapter 21
Target Metadata DTD Elements

21-16

c) HIDDEN: Metrics are tagged hidden when they shouldn't be collected nor visible from the
console. The data is not uploaded either. These are "temporary" metrics used to compute
other metrics.

d)HIDDEN_COLLECT: Metric can be collected. It will not be viewable. The data is not
uploaded. It is similar to HIDDEN, but collection criteria can be defined for it.

e) COLLECT_UPLOAD: Metric can be collected and uploaded, Metadata is uploaded to
MGMT_METRICS but it is not viewable in All Metrics page.

Mapping of old USAGE_TYPE values

DISPLAY_ONLY: REALTIME_ONLY

MULTI_KEY: VIEW_COLLECT

COLLECT_ONLY: VIEW_COLLECT

The metric browser automatically decides which metrics to not display.

KEYS_FROM_MULT_COLLS: If TRUE, the attribute indicates that there are multiple key
columns. The combination of key columns uniquely identifies a row. If the value is TRUE only
then can the metric be collected in multiple collection items.

TRUE | FALSE (default)

IS_TEST_METRIC: The agent can check some metrics to determine if a target has been
correctly specified with valid instance properties. This attribute marks this metric as one of the
test metrics.

TRUE or FALSE (default)

HELP: Help text – This attribute is not used.

KEYS_ONLY: It is used to tag special metrics that have only key columns. Note that in
general, such metrics are not useful in collections (since no data is uploaded), but there may
be special cases where the metric is used to just retrieve a set of keys.

TRUE or FALSE (default)

IS_METRIC_LONG_RUNNING: IF true, the metric is long running. This gives the metric
engine, a hint that this query will take relatively longer to finish. A special property
EM_IS_METRIC_LONG_RUNNING will be passed to fetchlet automatically.

TRUE or FALSE (default)

CONFIG: This is a special designation for CONFIG metrics that are uploaded differently by
the Enterprise Manager framework.

TRUE or FALSE (default)

REMOTE: It is used to tag metrics that can be evaluated from a remote location. These
metrics could be evaluated from "beacon" nodes

IS_TRANSPOSED: It is used to tag metrics that generate data as name value pairs and the
UI treats the names as "column headers". These are useful when the number of rows (or data
categories) is not known at design time.

FORCE_CACHE: For collected metrics, this is a strong hint to the agent to cache the results
of a metric collection. In the absence of this hint, the agent may only start caching the result
of a metric after it realizes that someone will try to use the cached value.

Chapter 21
Target Metadata DTD Elements

21-17

COLLECT_ON_ALL_NODES: For a clustered target, metrics marked with this attribute
set to TRUE, will be collected on all the nodes of the cluster.

TRUE | FALSE (default)

INCREMENTAL: This attribute is used ONLY by the OCM collector. This attribute is
TRUE iff the metric is incremental i.e. the rows collected during a collection do not
replace the ones collected during the previous collection but rather add to them. This
is the case for metric data whose lifespan extend across collections for example the
ECM_RUNNING_PRODUCTS metric.

NUM_CACHE_VALUES: Starting with 11, the agent will support the ability to cache
multiple collection results in memory for access by the EMDClient getMetricHistory
API. The value of this attribute defaults to 1, but the user can set it to a higher value
such as 15 or 60

LOCAL_ONLY: Specifies that a metric should be collected for local targets only and
skipped for remote targets.

Elements
ValidIf

ValidMidTierVersions

Display

CategoryValue

TableDescriptor

QueryDescriptor

ExecutionDescriptor

PushDescription

Used In
TargetMetadata

Examples
<TargetMetadata TYPE="example1" META_VER="2.0"
CATEGORY_PROPERTIES="OS;Version">
<Metric NAME="prop" TYPE="TABLE">
<Display>
<Label NLSID="example1_metric">Example1 Metric</Label>
</Display>
<TableDescriptor>
<ColumnDescriptor NAME="name" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="value" TYPE="STRING" />
</TableDescriptor>

Chapter 21
Target Metadata DTD Elements

21-18

<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
</QueryDescriptor>
</Metric>
</TargetMetadata>
This is the most common form of a metric definition. The statement declares the metric,
‘example1', to contain tabular data.

If a metric has a “TABLE" type, the value will be returned as a set of rows each containing a
set of values (columns). A list will be a special case of the Table. A Table Metric must have a
TableDescriptor defined.

<Metric NAME="Inventory" TYPE="EXTERNAL" >
<ValidIf>
<CategoryProp NAME="OS" CHOICES="SunOS"/>
</ValidIf>
<Display>
<Label NLSID="host_Inventory">Inventory</Label>
</Display>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="emdRoot" SCOPE="SYSTEMGLOBAL">emdRoot</Property>
<Property NAME="emHome" SCOPE="SYSTEMGLOBAL">agentStateDir</Property>
<Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
<Property NAME="hostConfigClasspath" SCOPE="SYSTEMGLOBAL">hostConfigClasspath</
Property>
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
<Property NAME="type" SCOPE="INSTANCE">TYPE</Property>
<Property NAME="display_target_name" SCOPE="INSTANCE">DISPLAY_NAME</Property>
<Property NAME="display_target_type" SCOPE="INSTANCE">TYPE_DISPLAY_NAME</
Property>
<Property NAME="command" SCOPE="GLOBAL">"%perlBin%/perl" "%scriptsDir%/osm/
ecmCollectInventory.pl" "%hostConfigClasspath%" "%perlBin%" "%emdRoot%"
"%emHome%" "%hostname%" "%loaderFile%" "%emHome%/sysman/config/
OUIinventories.add" "%type%" "%display_target_name%" "%display_target_type%"</
Property>
</QueryDescriptor>
</Metric>

Chapter 21
Target Metadata DTD Elements

21-19

This example declares ‘Inventory' as EXTERNAL which implies that the metric will be
evaluated in the correct format and will be placed in the upload directory. The
EMAgent will not parse the metric result. The ValidIf element ensures that the metric
will be evaluated only for ‘SunOS' OS.

<Metric NAME="AddressMap" TYPE="TABLE" FORCE_CACHE="TRUE">
The contents would be similar to a TABLE metric
</Metric>
In this example, the agent is forced to cache the results for the AddressMap metric.

<Metric NAME="ICMPPing" TYPE="TABLE" IS_TEST_METRIC="TRUE"
USAGE_TYPE="HIDDEN">
The contents would be similar to a TABLE metric
</Metric>
‘ICMPPing' is identified as a test metric. The agent will use its value to verify that the
target identified by the instance properties is correct. Since the purpose of this metric
is for INTERNAL use only, it is marked as ‘HIDDEN'.

USAGE_TYPE Summary:

USAGE_TYPE KEY_UNIQU
E_CHECK

COLLECTAB
LE

MGMT_MET
RICS_RAW

MGMT_ME
TRICS

VIEWABLE

VIEW_COLLECT Y Y Y Y Y

REALTIME_ONLY N N N Y N

HIDDEN Y N N Y N

HIDDEN_COLLECT Y Y N Y N

COLLECT_UPLOA
D

Y Y Y Y Y

<Metric NAME="http_raw" TYPE="TABLE" KEYS_FROM_MULT_COLLS="TRUE"
REMOTE="TRUE">
The contents would be similar to a TABLE metric
</Metric>
‘http_raw' metric can be evaluated from a remote location and therefore is tagged as
‘REMOTE'.

<Metric NAME="openPorts" TYPE="RAW" CONFIG="TRUE" KEYS_ONLY="TRUE"
HELP="NO_HELP">
<ValidIf>
<CategoryProp NAME="OS" CHOICES="SunOS"/>
</ValidIf>
<Display>
<Label NLSID="host_open_ports_ESM">Open Ports</Label>
</Display>

Chapter 21
Target Metadata DTD Elements

21-20

<TableDescriptor TABLE_NAME="esm_collection">
<ColumnDescriptor NAME="property" COLUMN_NAME="property" TYPE="STRING"
IS_KEY="TRUE" HELP="NO_HELP"/>
<ColumnDescriptor NAME="value" COLUMN_NAME="value" TYPE="STRING" IS_KEY="TRUE"
HELP="NO_HELP"/>
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OSLineToken">
<Property NAME="scriptsDir" SCOPE="SYSTEMGLOBAL">scriptsDir</Property>
<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
<Property NAME="command" SCOPE="GLOBAL">%perlBin%/perl</Property>
<Property NAME="script" SCOPE="GLOBAL">%scriptsDir%/openports.pl</Property>
<Property NAME="startsWith" SCOPE="GLOBAL">em_result=</Property>
<Property NAME="delimiter" SCOPE="GLOBAL">=</Property>
</QueryDescriptor>
</Metric>
‘openPorts' is defined as a CONFIG metric. Since the type is RAW, EMAgent expects the
values in the correct format.

<Metric NAME="storage_reporting_data" TYPE="RAW" CONFIG="TRUE"
IS_METRIC_LONG_RUNNING="TRUE">
The contents would be similar to a RAW metric
</Metric>
This specifies that storage_reporting_data takes a long time to execute.

ValidIf
The ValidIf element is used to create type definitions that apply to multiple flavors of a target.
To do this, certain properties of the target (up to a max of 5) can be marked as category
properties, and ValidIf elements can be placed in portions of the metadata to indicate that
they are only applicable if the target's property values match the specified values.

The CategoryProp elements within a ValidIf should all match for the containing element to be
evaluated. A containing element may include multiple ValidIfs to indicate its applicability for
different sets of conditions.

<!ELEMENT ValidIf (CategoryProp+)>

Attributes
None.

Elements
CategoryProp

Chapter 21
Target Metadata DTD Elements

21-21

Used In
Metric

QueryDescriptor

Display

MonitoringMode

InstanceProperty

DynamicProperties

ExecutionDescriptor

PushDescription

CollectionItem

Examples
<TargetMetadata TYPE="example1" META_VER="2.0"
CATEGORY_PROPERTIES="OS;Version">
<Metric NAME="prop" TYPE="TABLE">
<ValidIf>
<CategoryProp NAME="OS" CHOICES="SunOS"/>
<CategoryProp NAME="Version" CHOICES="5.9"/>
</ValidIf>
<TableDescriptor>
<ColumnDescriptor NAME="name" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="value" TYPE="STRING" />
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
</QueryDescriptor>
</Metric>
</TargetMetadata>
This example indicates that the category properties, ‘OS' and ‘Version' must have
values, ‘SunOS' and ‘5.9' for the metric, ‘prop' to be evaluated. EMAgent allows the
definition of upto 5 category properties which can be used in ValidIfs elements.

CategoryProp
The CategoryProp element is used to list the allowed values for a property for the
ValidIf to match.

Chapter 21
Target Metadata DTD Elements

21-22

<!ELEMENT CategoryProp EMPTY>
<!ATTLIST CategoryProp
NAME CDATA #REQUIRED
CHOICES CDATA #REQUIRED>

Attributes
NAME: Specifies the name of the category property.

CHOICES: Specifies the values the property can have. This may contain values separated by
";".

Elements
None.

Used In
ValidIf

Examples
<ValidIf>
<CategoryProp NAME="OS" CHOICES="SunOS"/>
<CategoryProp NAME="Version" CHOICES="5.8;5.9"/>
</ValidIf>
If the example described in the ValidIf statement is modified such that the ‘Version'
CategoryProperty now has two choices 5.8 and 5.9, the metric would be evaluated for
‘SunOS' versions 5.8 and 5.9.

<ValidIf>
<CategoryProp NAME="OS" CHOICES="SunOS"/>
</ValidIf>
<ValidIf>
<CategoryProp NAME="OS" CHOICES="AIX"/>
</ValidIf>
A metric that has ValidIfs as shown above, would be evaluated if OS is either SunOS or AIX.

Note: If ValidIfs are used to differentiate between multiple definitions of the same metric, there
should be no cases where multiple definitions of the metric get validated.

<Metric NAME="a_metric" TYPE="TABLE">
<ValidIf>
<CategoryProp NAME="C1" CHOICES="A;B">
</ValidIf>

Chapter 21
Target Metadata DTD Elements

21-23

. . .
</Metric>
<Metric NAME="a_metric" TYPE="TABLE">
<ValidIf>
<CategoryProp NAME="C1" CHOICES="A;C">
</ValidIf>
. . .
</Metric>
The above example demonstrates how NOT to use ValidIfs.

ValidMidTierVersions
The ValidMidTierVersions element is used in the mid tier based versioning support in
the agent.

This element can be used either under a Metric or within a CustomTableMapper
element. When present, it indicates to the agent that a Metric definition or a
CustomTableMapper definition only applies for a certain set of mid tier versions.

<!ELEMENT ValidMidTierVersions EMPTY>
<!ATTLIST ValidMidTierVersions
PLUG_IN CDATA #IMPLIED
START_VER CDATA #IMPLIED
END_VER CDATA #IMPLIED>

Attributes
PLUG_IN: Optional attribute that allows a particular mid tier plug in to be referenced. If
not specified, this tag applies to the core OMS version.

START_VER: Starting version (inclusive, optional) the element is applied from.

END_VER: Ending version (exclusion, optional) that the element is applicable to.

Elements
None.

Used In
Metric

CustomTableMapper

Chapter 21
Target Metadata DTD Elements

21-24

Examples
Every ValidMidTierVersions element needs to have at least one of START_VER or END_VER
specified.

<Metric NAME="metric1" TYPE="RAW">
<TableDescriptor>
<CustomTableMapper REP_TABLE_NAME="table1">
<ValidMidTierVersions PLUG_IN="DB" START_VER="10.1" END_VER="10.3"/>
<ColumnMapper METRIC_COLUMN="col1" REP_TABLE_COLUMN="col1_rep"/>
</CustomTableMapper>
<ColumnDescriptor NAME="c1" COLUMN_NAME="col1" TYPE="STRING"/>
<ColumnDescriptor NAME="c2" COLUMN_NAME="col2" TYPE="STRING"/>
</TableDescriptor>
<QueryDescriptor>
. . .
</QueryDescriptor>
</Metric>
The CustomTableMapper element mapping ‘metric1' to repository table, ‘table1' is applicable
only for DB Plugin versions between 10.1 (inclusive) and 10.3 (not inclusive).

<ValidMidTierVersions START_VER="10.1.0.1"/>
This element if present in a Metric or CustomTableMapper would indicate to the EMAgent
that the Metric or the CustomTableMapper is applicable only to OMS versions 10.1.0.1 and
higher.

<ValidMidTierVersions END_VER="10.2"/>
This element if present in a Metric or CustomTableMapper would indicate to the EMAgent
that the Metric or the CustomTableMapper is applicable only to OMS versions less than (not
including) 10.2.

TableDescriptor
TableDescriptor describes the structure of the data for the metric of type TABLE.

<!ELEMENT TableDescriptor (ColumnDescriptor+, CustomTableMapper*)>
<!ATTLIST TableDescriptor
TABLE_NAME CDATA #IMPLIED
SKIP_TARGET_COLUMN (TRUE | FALSE) "FALSE"
SKIP_METRIC_COLUMN (TRUE | FALSE) "FALSE"
SKIP_COLLTIME_PK (TRUE | FALSE) "FALSE"

Chapter 21
Target Metadata DTD Elements

21-25

SKIP_COLLTIME_COLUMN (TRUE | FALSE) "FALSE">

Note:

SKIP_COLLTIME_PK attribute is deprecated. This attribute specifies that the
collection timestamp should not be a part of the primary key. This was used
to indicate that the latest row should override any previous rows with the
same primary key. Since this can now be done by simply altering the table
definition in the repository, SKIP_COLLTIME_PK is not useful any more.

Attributes
TABLE_NAME: This attribute specifies the repository database table into which the
collected data will be loaded to. Note: Only RAW metrics can define this attribute. If a
TableDescriptor contains CustomTableMapper elements, it should not contain a
TABLE_NAME attribute.

SKIP_TARGET_COLUMN: This attribute is applicable for a RAW metric only. If set to
TRUE, Target GUID column will not be generated.

TRUE | FALSE (default)

SKIP_METRIC_COLUMN: This attribute is applicable for a RAW metric only. If set to
TRUE, the Metric Name column will not be generated.

TRUE | FALSE (default)

SKIP_COLLTIME_PK: Deprecated in version 10.2.The SKIP_COLLTIME_PK option
can be used if the collection timestamp needs to be generated, but not added as a
primary key.

TRUE | FALSE (default)

Elements
ColumnDescriptor

CustomTableMapper

Used In
Metric

Examples
A Table Metric must have a TableDescriptor defined. It describes columns of the table.

<Metric NAME="prop" TYPE="TABLE">
<Display>
<Label NLSID="example1_metric">Example1 Metric</Label>
</Display>

Chapter 21
Target Metadata DTD Elements

21-26

<TableDescriptor>
<ColumnDescriptor NAME="name" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="value" TYPE="STRING" />
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
</QueryDescriptor>
</Metric>
This is the most common usage for the TableDescriptor element that represents a metric of
TYPE=TABLE. For mid-tier versioning support refer to the Examples for
CustomTableMapper.

<TableDescriptor TABLE_NAME="esm_collection">
This declaration is valid only for a RAW metric. This element contains the description of
esm_collection table within a RAW metric.

<TableDescriptor TABLE_NAME="mgmt_db_compatibility"
SKIP_COLLTIME_PK="TRUE" SKIP_COLLTIME_COLUMN="TRUE"
SKIP_METRIC_COLUMN="TRUE" SKIP_TARGET_COLUMN="TRUE">
The SKIP attributes may be applied only to RAW metrics. The EMAgent automatically
generates TARGET_GUID, METRIC_NAME and COLLECTION_TIMESTAMP columns for a
raw metric unless explicitly indicated by setting SKIP attributes to TRUE. The
TableDescriptor, in this sample explicitly requests the omission of the default columns.

ColumnDescriptor
The ColumnDescriptor elements describe each column in a table. The agent also supports
one level of nesting of tables for RAW metrics. This allows metrics to return a table of data in
place of a column which is uploaded in the context of the containing row. For example: In a
metric that returns a list of expensive SQL statements in a database, a column that returns
the multi-row explain plan for the SQL statement could be returned in a nested raw metric
column.

<!ELEMENT ColumnDescriptor (Display?, CategoryValue*, TableDescriptor?)>
<!ATTLIST ColumnDescriptor
NAME CDATA #REQUIRED
TYPE (NUMBER | STRING | RAW | CLOB | BLOB) "NUMBER"
IS_FILENAME (TRUE | FALSE) "FALSE"
IS_KEY (TRUE | FALSE) "FALSE"
TRANSIENT (TRUE | FALSE) "FALSE"
COMPUTE_EXPR CDATA #IMPLIED
REPLACE_FETCHED_VALUE (TRUE | FALSE) "FALSE"

Chapter 21
Target Metadata DTD Elements

21-27

COLUMN_NAME CDATA #IMPLIED
IS_LONG_TEXT (TRUE | FALSE) "FALSE"
IS_DATE (TRUE | FALSE) "FALSE"
STATELESS_ALERTS (TRUE|FALSE) "FALSE"
IS_TIMESTAMP (TRUE | FALSE) "FALSE"
NON_THRESHOLDED_ALERTS (TRUE | FALSE) “FALSE"
KEYONLY_THRESHOLDS (TRUE | FALSE) “FALSE"
RENDERABLE (TRUE | FALSE) “TRUE"
HELP CDATA #IMPLIED>

Attributes
NAME: This is the metric column name.

TYPE: Specifies the data type.

Supported types are:

a) NUMBER (default)

b) STRING.

c) RAW: This is for nested table support. A column may be defined as RAW to indicate
it is a nested-table. Note: Only 1 level of nested table is allowed.

d) CLOB: CLOB holds large character data such as a log file.

e) BLOB: BLOB holds binary data (.zip files, .tar, files, etc.).

IS_KEY: is set to true if this column is the primary key (uniquely identifies the row in
the returned rows). For any two rows returned, the value of the key column cannot be
the same, else there will be a primary key violation. Note: Upto 5 columns can be
marked with IS_KEY=TRUE. If no column is defined as key, the default value for the
key is null (therefore should only return 1 row at a time)

TRUE | FALSE (default)

TRANSIENT: This will not be uploaded to repository. Only used to calculate rate data.

TRUE | FALSE (default)

COMPUTE_EXPR: This attribute specifies the formula for calculating the value of the
column. Columns previously defined in the Table descriptor can participate in the
calculation. Attaching a ‘_' prefix to a column name denotes previous value of a
column. Refer to the Examples for details about the expression grammar and usage.

Predefined special values:

a) __interval: collect interval.

b) __sysdate: current system time.

c) __GMTdate: current GMT time.

d) __contains: tests a given string expression for presence of a string expression.

Chapter 21
Target Metadata DTD Elements

21-28

e) __beginswith: tests whether a given string expression begins with a specified string
expression.

f) __endswith: testw whether a given string expression ends with the specified string
expression.

g) __matches: tests whether a given string expression matches a specified string expression.

h) __delta: computes the difference between the current value and the previous value.

i) __leadingchars: returns the leading characters in the specified string.

j) __trailingchars: returns the trailing characters in the specified string.

k) __substringpos: returns the position of the occurrence of the pattern within a specified
string.

l) __is_null: tests whether the expression is NULL

m) __length: returns the length of the string expression.

n) __to_upper: converts the string to upper case.

o) __to_lower: converst the string to lower_case.

p) __ceil: returns the smallest integral value not less than identifier.

q) __floor: returns the largest integral value not greater than the identifier.

r) __round: rounds to nearest integer, away from zero.

Prior to version 11, columns with COMPUTE_EXPR attributes could only be present after all
the fetchlet returned columns. As part of bug 4869048, special compute expr columns will be
allowed to be mixed in columns that get values from fetchlets.

COLUMN_NAME: This value will be used if the metric type is RAW to identify the database
column.

IS_LONG_TEXT: This value will only be used when the metric is RAW and the column will be
in digested form. The agent has support for metrics that expect to return the same long string
repeatedly in metric results. If a column is marked with IS_LONG_TEXT="TRUE", the agent
sends a row mapping the string to a digest into the MGMT_LONG_TEXT table and thereafter
only sends the digested value as the data to the repository.

TRUE | FALSE (default)

IS_DATE: This value will only be used when the metric is RAW and the column is date type.

TRUE | FALSE (default)

STATELESS_ALERTS: If this attribute is set to TRUE, it indicates to Enterprise Manager that
alerts on this column will not have corresponding clears. This allows the UI to decide whether
to allow users to manually clear alerts on this column.

TRUE | FALSE (default)

IS_TIMESTAMP: The value in this column will be used as the collection time for this row. If
set to true, the values for this column should be specified in the yyyy-MM-dd HH:mm:ss z
format (For example: "2003-07-30 08:41:05 PST"). The list of valid time zones is listed in
the $ORACLE_HOME/sysman/emd/supportedtzs.lst file.

HELP: Not used.

Chapter 21
Target Metadata DTD Elements

21-29

IS_FILENAME: When set to TRUE, it indicates that the column value is a file name
that contains the real content that needs to be sent. IS_FILENAME attribute is valid
only for CLOB/BLOB column types.

NON_THRESHOLDED_ALERTS: This attribute is used to indicate that there might be
alerts for the metric column without there being a thresholded condition for it (eg:
through server generated alerts).

TRUE | FALSE (default)

KEYONLY_THRESHOLDS: If this attribute is set to TRUE, conditions cannot apply to
all metric rows and all Condition elements for the column need a KeyColumn element.

TRUE | FALSE (default)

RENDERABLE: A FALSE value for this attribute indicates that the value for this
column maybe generated by the engine and may be cryptic or random enough to be of
any use to the user. The UI would not display this value and would not allow the user
to set thresholds for this value.

TRUE (default) | FALSE

REPLACE_FETCHED_VALUE: This attribute is only applicable if COMPUTE_EXPR is
set, and for inner compute expressions (see above). If set, this tells the agent to use
the compute expression value in place of the corresponding column returned by the
fetchlet. If not set, the metric engine will right shift all existing fetchlet returned values
to make place for the computed value.

TRUE | FALSE (default)

Elements
Display

CategoryValue

TableDescriptor

Used In
TableDescriptor

Examples
Each column must specify the name and the data type for the column. The column can
also be tagged as a key column. These column values qualify the value returned in the
non-key columns.

For example: In a metric for top 10 processes, the process name will be the key
column while the residence memory size, cpu, time used will be the value columns.

<ColumnDescriptor NAME="ciscoMemoryPoolName" TYPE="STRING" IS_KEY="TRUE">
<Display>
<Label NLSID="cisco_mem_pool_name">Memory Pool Name</Label>
</Display>
</ColumnDescriptor>

Chapter 21
Target Metadata DTD Elements

21-30

This is the most common usage of the ColumnDescriptor element. ‘ciscoMemoryPoolName'
is a key column in a metric. The values of this column are of type, ‘STRING'. The optional
Display element when included in the ColumnDescriptor, associates a UI Label with the
Column.

<ColumnDescriptor NAME="pgScan" TYPE="NUMBER" IS_KEY="FALSE" TRANSIENT="TRUE"
HELP="NO_HELP"/>
The attribute, ‘TRANSIENT' indicates that the column is used for internal calculations only and
should not be uploaded to the repository.

<ColumnDescriptor NAME="property" COLUMN_NAME="property" TYPE="STRING"
IS_KEY="TRUE" HELP="NO_HELP"/>
The ‘COLUMN_NAME' attribute will be used in RAW metrics to identify a database column.

<ColumnDescriptor NAME="log_file_message" TYPE="STRING" IS_KEY="FALSE"
IS_LONG_TEXT="TRUE"/>
‘IS_LONG_TEXT' attribute, when set to TRUE, is an indication to the EMAgent to expect long
values.

<ColumnDescriptor NAME="load_timestamp" COLUMN_NAME="load_timestamp"
TYPE="STRING" IS_DATE="TRUE" IS_KEY="FALSE"/>
This example defines a column ‘load_timestamp' for a RAW metric with values in the date
format.

<ColumnDescriptor NAME="log_file_match_count" TYPE="NUMBER" IS_KEY="FALSE"
STATELESS_ALERTS="TRUE"/>
This definition indicates that the alerts on the column, ‘log_file_match_count' will not have
corresponding clears. The UI can provide the users the option to manually clear alerts for this
data.

The example for TableDescriptor describes a table metric with ColumnDescriptor elements.

Note:

It is invalid for a ColumnDescriptor to both be a key and a timestamp column.

CLOB/BLOB is only valid inside RAW metrics. When TYPE is set to CLOB or BLOB, the
ColumnDescriptor can also have IS_FILENAME attribute set to TRUE, in which case, the
column value is the name of the file whose content should be sent rather than the column
value itself. For CLOB/BLOB columns, the destination columns in the repository table should
also be of CLOB/BLOB type.

Compute Expression Support:

Supported Grammar:

expression := (cond_expr | (cond_expr ? cond_expr : cond_expr)
cond_expr := (string_expr |
(string_expr == string_expr) |
(string_expr < string_expr) |

Chapter 21
Target Metadata DTD Elements

21-31

(string_expr > string_expr) |
(string_expr <= string_expr) |
(string_expr >= string_expr) |
(string_expr __contains string_expr) |
(string_expr __beginswith string_expr) |
(string_expr __endswith string_expr) |
(string_expr __matches string_expr) |
(string_expr __delta string_expr))
string_expr := (simple_expr |
(simple_expr __leadingchars simple_expr) |
(simple_expr __trailingchars simple_expr) |
(simple_expr __substringpos simple_expr))
simple_expr := (term |
(simple_expr + term) |
(simple_expr - term))
term := (unary_expr |
(term * unary_expr) |
(term / unary_expr))
unary_expr := (factor |
(__is_null factor) |
(__length factor) |
(__to_upper factor) |
(__to_lower factor) |
(__ceil factor) |
(__floor factor) |
(__round factor))
factor := (identifier |
string_literal |
number |
'(' expression ')')
string_literal := '\'' (character | "\\'")* '\''
Usage:

<ColumnDescriptor NAME="pgScan" TYPE="NUMBER" />

Chapter 21
Target Metadata DTD Elements

21-32

<ColumnDescriptor NAME="pgScanRate" TYPE="NUMBER" IS_KEY="FALSE"
COMPUTE_EXPR="(pgScan-_pgScan)/__interval"/>
The value of the column is calculated using the given compute expression. The value of the
column is calculated using the present value of the ‘pgScan' column, the previous value of
the same column (‘_pgScan') and the collect interval. Note: ‘pgScan' column should be
defined before any column can use its value in the COMPUTE_EXPR.

<ColumnDescriptor NAME="baseDir" TYPE="STRING" />
<ColumnDescriptor NAME="component" TYPE="STRING" COMPUTE_EXPR="'/httpd'" />
<ColumnDescriptor NAME="full_path" TYPE="STRING" COMPUTE_EXPR="baseDir +
component + ‘/egs/log/' "/>
The value of the column, ‘full_path' is “<baseDir>/httpd/egs/log/" where <baseDir> is the
value of the column baseDir.

<ColumnDescriptor NAME="value1" TYPE="NUMBER" COMPUTE_EXPR="Col __contains
‘ay'" />
<ColumnDescriptor NAME="value2" TYPE="NUMBER" COMPUTE_EXPR="Col __beginswith
‘Mon'" />
<ColumnDescriptor NAME="value3" TYPE="NUMBER" COMPUTE_EXPR="Col_ _endswith
'day'" />
<ColumnDescriptor NAME="value4" TYPE="NUMBER" COMPUTE_EXPR="Col __matches
'Sun*'" />
If the value of Col, in the above metric, is “Sunday", the outcome of the COMPUTE_EXPR
will be as follows:

value1 = 1
value2 = 0
value3 = 1
value4 = 1
<TableDescriptor>
<ColumnDescriptor NAME="parse_str" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="startpos" TYPE="NUMBER" COMPUTE_EXPR="parse_str
__substringpos ‘#D1'" />
<ColumnDescriptor NAME="num_trailing" TYPE="NUMBER" COMPUTE_EXPR="(__length
parse_str) - startpos" />
<ColumnDescriptor NAME="trim_str" TYPE="STRING"
COMPUTE_EXPR="parse_str__trailingchars num_trailing" />
<ColumnDescriptor NAME="endpos" TYPE="NUMBER" COMPUTE_EXPR="trim_str
__substringpos ‘#E1'" />
<ColumnDescriptor NAME="result_str" TYPE="STRING" COMPUTE_EXPR="trim_str
__leadingchars endpos" />
</TableDescriptor>

Chapter 21
Target Metadata DTD Elements

21-33

The sample TableDescriptor describes a simple method for extracting a substring from
a given string. If the data represented by “parse_str" is of the form:

#A1 10

#B1 20

#C1 30

#D1 40

#E1 50

#F1 60

The “result_str" has the value “#D1=40".

CategoryValue
A CategoryValue element indicates the category for a metric, column or condition
under a particular classification. If a CategoryValue is defined for a Metric element, it is
valid for all the ColumnDescriptors in that Metric. If it is defined for a
ColumnDescriptor, that column will have a category value that overrides the union of
what it has and what is defined for the Metric.

The following MetricCategories are predefined for the MetricClass, ‘FUNCTIONAL':

a) FAULT: metrics that can be used to indicate a breakdown in a component or
occurrence of an error that indicates some component or user is unable to
successfully complete processing. Example: AlertLog – Archiver hung

b) WORKLOAD_VOLUME: metrics that capture the workload on a system induced in
proportion to the user's or batch jobs running against the system. It usually is an
indication of how much work is done. Example: User calls (per second)

c) WORKLOAD_TYPE: metrics that capture the type of workload on a system
independent of demand. It usually is an indication of what kind of work is done.
Example: Logical Reads (per transaction)

d) PERFORMANCE: metrics that can be classified to measure the performance of a
system. It usually is an indication of how well the system is doing. Example: Database
response (per second)

e) CAPACITY: metrics that measure the usage of a fixed resource. Example: CPU
Usage (per second)

f) CONFIGURATION: metrics that check the configuration of a target against a
recommended best-practice configuration.

g) SECURITY: metrics that relate to the security aspects of the system.

<!ELEMENT CategoryValue EMPTY>

<!ATTLIST CategoryValue

CLASS CDATA #REQUIRED

CATEGORY_NAME CDATA #REQUIRED>

The category class of a metric should be ‘DEFAULT’ by default. Following are the
category names for the ‘DEFAULT’ class:

Chapter 21
Target Metadata DTD Elements

21-34

• Availability: Metric that collects target availability related data, for example, Response
metric.

• BusinessKPI: Metric that measures KPI related information are included under this
category.

• Capacity: Metric that measures the usage of a fixed resource, for example CPU Usage
(per second).

• Fault: Metric that can be used to indicate a breakdown in a component or occurrence of
an error. This error indicates that some component or user is unable to successfully
complete a specified process, for example, AlertLog – Archiver hung.

• Load: Metric that captures the load on a system induced in proportion to the user’s or
batch jobs running against the system. It is usually an indication of how much work is
done, for example, User calls (per second).

• LoadType: Metric that captures the type of load on a system independent of demand. It is
usually an indication of what kind of work is done, for example, Logical Reads (per
transaction).

• Security: Metric that relates to the security aspects of the system.

• Utilization: Metric that captures the utilization of resources or service.

• Response: Metric that can be classified to measure the response of a system. It is
usually an indication of the system status (how well it is doing), for example, Database
response (per second).

• Error: Metric that captures errors that are occurring are included in this category, for
example, ORA error occurring in a database alert log.

Attributes
CLASS: Name of the metric class.

CATEGORY_NAME: Name of the metric category.

Elements
None.

Used In
Metric

ColumnDescriptor

Condition

Examples
<TargetMetadata TYPE="example3" META_VER="2.0">
<MetricClass NAME="EvaluationCost" NLSID="id_for_eval_cost_class">
<MetricCategory NAME="CHEAP" NLSID="id_for_cheap_cat"/>
<MetricCategory NAME="MEDIUM" NLSID="id_for_medium_cat"/>
<MetricCategory NAME="EXPENSIVE" NLSID="id_for_expensive_cat"/>

Chapter 21
Target Metadata DTD Elements

21-35

</MetricClass>
<Metric NAME="metric1" TYPE="TABLE">
<CategoryValue Class="EvaluationCost" CATEGORY_NAME="CHEAP"/>
. . .
</Metric>
. . .
</TargetMetadata>
This example illustrates the use of CategoryValue for a Metric. “metric1" is “CHEAP" to
evaluate.

<Metric NAME="FileSystems" TYPE="TABLE" >
<CategoryValue CLASS="FUNCTIONAL" CATEGORY="WORKLOAD_VOLUME" />
<TableDescriptor>
<ColumnDescriptor NAME="FileSystem" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="totalSpace" TYPE="NUMBER" >
<CategoryValue CLASS="FUNCTIONAL" CATEGORY="CAPACITY" />
</ColumnDescriptor>
<ColumnDescriptor NAME="diskUsedPct" TYPE="NUMBER />
<TableDescriptor>
....
</Metric>
In this sample, the column, “totalSpace" has a CategoryValue, “CAPACITY" which
overrides the CategoryValue, “WORKLOAD_VOLUME" associated with the metric.

CustomTableMapper
The CustomTableMapper element is part of the mid tier based versioning project that
allows custom (RAW) metrics to change their destination tables based on the version
of the mid tier.

The TableDescriptor for a RAW metric can have multiple CustomTableMapper
elements - one per set of mid tier versions - with each CustomTableMapper providing
repository table and column mappings for the TableDescriptor's Columns.

<!ELEMENT CustomTableMapper (ValidMidTierVersions*, ColumnMapper*)>
<!ATTLIST CustomTableMapper
REP_TABLE_NAME CDATA #REQUIRED>

Attributes
REP_TABLE_NAME: Indicates the table name that the content of the metric should be
uploaded to.

Chapter 21
Target Metadata DTD Elements

21-36

Elements
ValidMidTierVersions

ColumnMapper

Used In
TableDescriptor

CustomTableMapper

Examples
<TableDescriptor>
<ColumnDescriptor NAME="c1" COLUMN_NAME="col1" TYPE="STRING"/>
<ColumnDescriptor NAME="c2" COLUMN_NAME="col2" TYPE="STRING"/>
<CustomTableMapper REP_TABLE_NAME="table1">
<ValidMidTierVersions PLUG_IN="DB" START_VER="10.1" END_VER="10.3"/>
<ColumnMapper METRIC_COLUMN="col1" REP_TABLE_COLUMN="col1_rep"/>
</CustomTableMapper>
</TableDescriptor>
This sample illustrates Mid-tier based versioning. TableDescriptor element must not contain
the TABLE_NAME attribute. The sample describes a mapping of the metric to the repository
table, ‘table1' for Mid-tier versions between 10.1 (inclusive) and 10.3 (not inclusive). Metric
column, ‘col1' maps to ‘col1_rep' in the repository table, ‘table1'.

Refer to the example for ValidMidTierVersions also.

ColumnMapper
The ColumnMapper element is part of a CustomTableMapper element and describes the
mapping between the ColumnDescriptor and the repository column its data should end up in.

The presence of a ColumnMapper provides the mapping for the column in a particular
repository table, and indicates that the column is required in the table. To indicate that a
column should not be uploaded to a particular version of the repository, there should not be a
ColumnMapper for that column

<!ELEMENT ColumnMapper EMPTY>
<!ATTLIST ColumnMapper
METRIC_COLUMN CDATA #REQUIRED
REP_TABLE_COLUMN CDATA #REQUIRED>

Attributes
METRIC_COLUMN: Name of the ColumnDescriptor this applies to

Chapter 21
Target Metadata DTD Elements

21-37

REP_TABLE_COLUMN: The database table column name this data should end up in.

Elements
None.

Used In
CustomTableMapper

Examples
Refer to the Examples for CustomTableMapper.

QueryDescriptor
The query descriptor allows the framework to find the fetchlet as well as pass on the
query information for obtaining performance data values from the target. The fetchlet
can be identified by a well known id that is known to the EMAgent. It may also contain
properties that will be passed to the fetchlet.

<!ELEMENT QueryDescriptor (ValidIf*, Property*) >
<!ATTLIST QueryDescriptor
FETCHLET_ID CDATA #REQUIRED
NEED_CHARSET_CONVERT (TRUE | FALSE) "TRUE"
REMOTE (TRUE | FALSE) "FALSE"
ON_TARGET (TRUE | FALSE) "FALSE"
>

Attributes
FETCHLET_ID: Specifies the ID of the fetchlet to use that is known to the EMAgent.
This attribute must point to an element from the $ORACLE_HOME/lib/fetchlets.reg file.

NEED_CHARSET_CONVERT: If the metric result is in correct "UTF8" encoding, this
flag should be set to "FALSE" so that EMAgent will not do any character conversion.

TRUE (default) | FALSE

REMOTE: This attribute enables the agent to select the appropriate QueryDescriptor
based on whether the target is local or remote. A single QueryDescriptor with
REMOTE=false indicates that the same querydescriptor will be used for local and
remote targets. A single QueryDescriptor with REMOTE=true indicates that the
querydescriptor will be used ONLY if the target is remote and skipped if the target is
remote. If there are 2 QueryDescriptors one with REMOTE=true, the other MUST be
REMOTE=false.

TRUE | FALSE (default)

ON_TARGET: A value of TRUE indicates that the metric must be evaluated on the
target whereever it may be. For a local target, this attribute is ignored. For a remote
target, the metric is evaluated over SSH.

Chapter 21
Target Metadata DTD Elements

21-38

TRUE | FALSE (default)

Elements
ValidIf

Property

Used In
Metric

DynamicProperties

Examples
The query descriptor associated will contain the metadata that can be used to collect the
value of the metric. For example: SQL Query.

<TargetMetadata TYPE="example1" META_VER="2.0">
<Metric NAME="prop" TYPE="TABLE">
<TableDescriptor>
<ColumnDescriptor NAME="name" TYPE="STRING" IS_KEY="TRUE" />
<ColumnDescriptor NAME="value" TYPE="STRING" />
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
</QueryDescriptor>
</Metric>
</TargetMetadata>
This simple example describes a query descriptor that is used in a Metric and relies on the
‘OS' fetchlet to return the property ‘hostname'.

<TargetMetadata TYPE="example1" META_VER="2.0">
<Metric NAME="prop" TYPE="TABLE">
. . .
</Metric>
<InstanceProperties>
<DynamicProperties NAME="VersionAndLocation" FORMAT="ROW"
PROP_LIST="OS;OracleHome;Version">
<QueryDescriptor FETCHLET_ID="OSLineToken">
<Property NAME="ENVEmdOS" SCOPE="SYSTEMGLOBAL">_emdOS</Property>
<Property NAME="ENVVersion" SCOPE="SYSTEMGLOBAL">_emdVersion</Property>

Chapter 21
Target Metadata DTD Elements

21-39

<Property NAME="ENVORACLE_HOME" SCOPE="SYSTEMGLOBAL">emdRoot</Property>
</QueryDescriptor>
</DynamicProperties>
</InstanceProperties>
</TargetMetadata>
This example illustrates the use of a QueryDescriptor to evaluate a DynamicProperties
element.

Property
Describes the information to be passed to the fetchlets.

<!ELEMENT Property (#PCDATA)>
<!ATTLIST Property
NAME CDATA #REQUIRED
SCOPE (GLOBAL | INSTANCE | USER | SYSTEMGLOBAL | ENV | HOST | CACHE)
"GLOBAL"
OPTIONAL (TRUE | FALSE) "FALSE">
Property values are resolved as follows:

1. The value is looked up in the specified scope

2. For each potential instantiation (ie %<varname>%) in the looked up value, varname
is looked up as follows:

a. In the property values itself (ie in one of the earlier properties).

b. In the instance properties

c. In the systemglobal scope (emd.properties)

d. The value is checked for automatic property.

The following Automatic Properties are defined for a target:

1. NAME - substitutes Target Name

2. TYPE - substitutes Target type

3. DISPLAY_NAME – substitutes display name for the target

4. TYPE_DISPLAY_NAME – substitutes display name for the type

5. GUID – substitutes the guid

Note:

All lookups are case-sensitive.

Chapter 21
Target Metadata DTD Elements

21-40

Attributes
NAME: Name of the property.

SCOPE: Defines how the value of the property is to be resolved.

Supported values for Scope are:

a) GLOBAL (default): The property needs to be resolved in the Target Type Definition XML
file.

b) INSTANCE: The property will be resolved by discovery. The PCDATA in that case should
be the NAME of the property set in the discovery XML file.

c) USER: The property will be resolved by the caller(collector or the interactive end-user).
The PCDATA in that case should be the name of the Property to be used when prompting the
caller (in the case of interactive user).

d) SYSTEMGLOBAL: Use emd.properties to resolve the property.

e) ENV: Use environment variable to resolve the property.

f) HOST: The property must be resolved as an instance variable of the 'host' target on that
EMAgent. For example, the OS property

g) CACHE: The value must be obtained from the previous evaluation of the metric. Any
column returned in the previous evaluation can be specified, and this is only applicable to
single row OR non-key metrics.

OPTIONAL: is meant to call out those properties that need NOT be available when provided
to the fetchlet. The EMAgent will validate that it can find valid values for all non-optional
properties before calling through to a fetchlet.

TRUE | FALSE (default)

Elements
Contains character data representing the value for the property.

Used In
QueryDescriptor

PushDescription

Examples
<Property NAME="perlBin" SCOPE="SYSTEMGLOBAL">perlBin</Property>
‘perlBin' Property has ‘SYSTEMGLOBAL' scope which implies that emd.properties file is used
to resolve the property

<Property NAME="delimiter" SCOPE="GLOBAL">|</Property>
‘delimiter' property has ‘GLOBAL' scope.

<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>

Chapter 21
Target Metadata DTD Elements

21-41

‘hostname' has ‘INSTANCE' scope which implies that the value will be resolved by
discovery. The value ‘NAME' must match the field in the discovery XML file.

<Property NAME="SNAPSHOT_TYPE" SCOPE="USER">SNAPSHOT_TYPE</Property>
This property will be resolved by the caller. ‘SNAPSHOT_TYPE' is the name of the
property when prompting the caller.

<Property NAME="ENVNMUPM_TIMEOUT" OPTIONAL="TRUE"
SCOPE="SYSTEMGLOBAL">NMUPM_TIMEOUT</Property>
The property, ‘ENVNMUPM_TIMEOUT' is identified as an OPTIONAL property. All
properties that are not OPTIONAL have to be validated by the EMAgent before the
fetchlet is called.

Use of the property elements is illustrated in the following examples:

QueryDescriptor, ValidIf, TargetMetadata.

Label
This represents the Label that will be displayed in UI.

<!ELEMENT Label (#PCDATA)>
<!ATTLIST Label
NLSID CDATA #REQUIRED>

Attributes
NLSID: Will contain the ID used to lookup the string in to the resource bundle

Elements
Character data.

Used In
Display

Examples
This element must be present in the Display element.

<Label NLSID="host_load_cpuLoad">Run Queue Length (5 minute average)</
Label>
This element is defined in a Display element and represents the label to display.

Refer to the example for Display.

ShortName
ShortName is the short representation of the Metric Display name it should be less
than 12 characters in length.

Chapter 21
Target Metadata DTD Elements

21-42

<!ELEMENT ShortName (#PCDATA)>
<!ATTLIST ShortName
NLSID CDATA #REQUIRED>

Attributes
NLSID: Will contain the ID used to lookup the string in to the resource bundle

Elements
Character data.

Used In
Display

Examples
<ShortName NLSID="host_load_cpuLoad_short">CPU Load (5min)</ShortName>
This element is defined in a Display element and represents the short name to display.

Refer to the example for Display.

Icon
This represents the icon to be used.

<!ELEMENT Icon (#PCDATA)>
<!ATTLIST Icon
GIF CDATA #IMPLIED>

Attributes
GIF: Will contain the name and the filepath for the image to be displayed.

Elements
Character data.

Used In
Display

Examples
Refer to the example for Display.

Description
This holds the description of the displayed entity.

Chapter 21
Target Metadata DTD Elements

21-43

<!ELEMENT Description (#PCDATA)>
<!ATTLIST Description
NLSID CDATA #IMPLIED>

Note:

It is preferred to have a description of the metric, for example what
information it is collecting. If the description is provided, then it is displayed
on the All metrics page.

Attributes
NLSID: Will contain the ID used to lookup the string in to the resource bundle.

Elements
Character data.

Used In
Display

Examples
Refer to the example for Display.

Unit
This holds the Unit information for the displayed data.

There are some standard units and unit nls ids that are supported. Use the appropriate
nls ids and display names for these standard units mentioned below. The translation
for these system supported units (nls ids that start with "em__sys__"), is done at the
system level and does not need to be translated on a per target type basis.

Supported Units:

Standard Percent: used for metrics who values are between 0 and 100%

NLSID: "em__sys__standard_percent"

Display: "%"

Usage: <Unit NLSID="em__sys__standard_percent">%</Unit>

Generic Percent: used for metrics who values can be in +ve and -ve percentages as
well - like -50% or 200%

NLSID: "em__sys__generic_percent"

Display: "%"

Usage: <Unit NLSID="em__sys__generic_percent">%</Unit>

Chapter 21
Target Metadata DTD Elements

21-44

<!ELEMENT Unit (#PCDATA)>
<!ATTLIST Unit
NLSID CDATA #IMPLIED>

Attributes
NLSID: Will contain the ID used to lookup the string in to the resource bundle.

Elements
Character data.

Used In
Display

Examples
Refer to the example for Display.

MonitoringMode
MonitoringMode element indicates the mediator for data collection. Presence of this element
in TargetMetadata element, indicates that the target is of cluster type. Mediation is required
for a cluster type target to provide data collection consistency across all cluster type target
agents. Cluster targets can be OMS mediated, Agent mediated or Repository mediated.
MEDIATOR attribute specifies the mediation. CLUSTERDESCRIPTOR attribute points to the
shared library that implements the cluster interfaces needed by the agent. This is applicable
only for AgentMediated clusters.

<!ELEMENT MonitoringMode (ValidIf*)>
<!ATTLIST MonitoringMode
MEDIATOR (AgentMediated|OMSMediated) #REQUIRED
CLUSTERDESCRIPTOR CDATA #IMPLIED>

Attributes
MEDIATOR: Specifies the mediator to use.

Supported values are:

a) AgentMediated

b) OMSMediated

CLUSTERDESCRIPTOR: Describes the type of the cluster. This is applicable for Agent
mediation only.

Elements
ValidIf

Chapter 21
Target Metadata DTD Elements

21-45

Used In
TargetMetadata

Examples
<TargetMetadata META_VER="2.0" TYPE="example1"
CATEGORY_PROPERTIES="OS;OSVersion">
. . .
<MonitoringMode MEDIATOR="OMSMediated">
<ValidIf>
<CategoryProp NAME="OSVersion" CHOICES="5.8"/>
<CategoryProp NAME="OSVersion" CHOICES="5.9"/>
</ValidIf
</MonitoringMode>
. . .
</TargetMetadata>
This example indicates the target, ‘example1' is of cluster type and is OMS Mediated
only for the OSVersions 5.8 and 5.9. For the other versions it acts like a normal target.
All the Management Agents would monitor the target. Absence of this element makes
the target a normal target.

AltSkipCondition
The agent has logic to skip evaluation of metrics for targets that are known to be down
to reduce generation of metric errors due to connection failures. Metrics are skipped
whenever there is an error in evaluating the Response metric or there is a non-clear
severity on the Response, Status condition. If a target needs to have its metric
evaluation stop on a condition other than the Response, Status column, this can be
specified by creating an AltSkipCondition element.

<!ELEMENT AltSkipCondition EMPTY >
<!ATTLIST AltSkipCondition
METRIC CDATA #REQUIRED
COLUMN CDATA #REQUIRED
ASSOC_TARGET CDATA #IMPLIED>

Attributes
METRIC: Name of the result metric

COLUMN: Name of the column

ASSOC_TARGET: may be used to point to the conditions in an associated target.

Chapter 21
Target Metadata DTD Elements

21-46

Elements
None.

Used In
TargetMetadata

Examples
<TargetMetadata TYPE="example1" META_VER="2.0">
<AltSkipCondition METRIC="metric1" COLUMN="Status"/>
<Metric NAME="Response" TYPE="TABLE">
<TableDescriptor>
<ColumnDescriptor NAME="Status" TYPE="NUMBER" IS_KEY="FALSE"/>
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="hostname" SCOPE="INSTANCE">NAME</Property>
</QueryDescriptor>
</Metric>
<Metric NAME="metric1" TYPE="TABLE">
<TableDescriptor>
<ColumnDescriptor NAME="Status" TYPE="NUMBER" IS_KEY="FALSE"/>
</TableDescriptor>
<QueryDescriptor FETCHLET_ID="OS">
<Property NAME="homedir" SCOPE="INSTANCE">home</Property>
</QueryDescriptor>
</Metric>
</TargetMetadata>
This example describes a target whose metric evaluation will be skipped whenever there is
an error in evaluating the Response metric or there is a non-clear severity on the Response
Status column. In addition to that, metric evaluation will be skipped if errors or non-clear
severity are encountered on the Status column of the ‘metric1' metric as well.

<AltSkipCondition METRIC="Response" COLUMN="State" ASSOC_TARGET="t2"/>
If the ‘example1' target type in the above example was associated with another target type.
The AltSkipCondition can be used to skip evaluating example1's metric based on Response
metric's ‘State' column in the other target type.

The association ‘t2' has to be defined in the targets.xml file for example1.

Chapter 21
Target Metadata DTD Elements

21-47

CredentialInfo
Credential types are metadata for sets of credentials. They describes the components
of the credential (CredentialTypeColumns), which is the key etc. In some cases,
CredentialTypes may be composed of existing CredentialTypes (in this or other target
types)

CredentialSets are the instances of CredentialTypes that apply to a particular target.
Of particular importance are the monitoring credential sets whose values are mapped
to the instance properties of the target.

<!ELEMENT CredentialInfo (CredentialType*, CredentialSet*)>

Attributes
None.

Elements
CredentialType

CredentialSet

Used In
TargetMetadata

Examples
<TargetMetadata TYPE="example1" META_VER="2.0">
. . .
<CredentialInfo>
<CredentialType NAME="DBCreds" >
<CredentialTypeColumn NAME="DBUsername" IS_KEY="true" />
<CredentialTypeColumn NAME="DBPassword" />
<CredentialTypeColumn NAME="DBRole" />
</CredentialType>
<CredentialSet NAME="DBCredsMonitoring" CREDENTIAL_TYPE="DBCreds"
USAGE="monitoring">
<CredentialSetColumn TYPE_COLUMN="DBUsername" SET_COLUMN="UserName" />
<CredentialSetColumn TYPE_COLUMN="DBPassword" SET_COLUMN="password" />
<CredentialSetColumn TYPE_COLUMN="DBRole" SET_COLUMN="role" />
</CredentialSet>
<CredentialSet NAME="DBCredsSysdba" CREDENTIAL_TYPE="DBCreds"
USAGE="monitoring">

Chapter 21
Target Metadata DTD Elements

21-48

<CredentialSetColumn TYPE_COLUMN="DBUsername" SET_COLUMN="SYSDBAUserName" />
<CredentialSetColumn TYPE_COLUMN="DBPassword" SET_COLUMN="SYSDBApassword" />
<CredentialSetColumn TYPE_COLUMN="DBRole" SET_COLUMN="SYSDBArole" />
</CredentialSet>
</CredentialInfo>
. . .
</TargetMetadata>
CredentialInfo may have CredentialType and CredentialSet elements. This is illustrated in this
example. Target type, ‘example1' is associated with ‘DBCreds', ‘DBCredsMonitoring' and
‘DBCredsSysdba' credentials.

CredentialType
CredentialType elements contain the description of a type as composed of component
columns (one of which may be the key) or as a composite of other predefined credential
types.

<!ELEMENT CredentialType (Display?, (CredentialTypeColumn|CredentialTypeRef)+)>
<!ATTLIST CredentialType
NAME CDATA #REQUIRED>

Attributes
NAME: Unique Name of the CredentialType

Elements
Display

CredentialTypeColumn

CredentialTypeRef

Used In
CredentialInfo

Examples
CredentialType may contain an optional Display element specifying the display
characteristics for the CrendentialType and one or more of either the CredentialTypeColumn
or the CredentialTypeRef.

<CredentialType NAME="HostCreds" >
<CredentialTypeColumn NAME="HostUserName" IS_KEY="TRUE">
<CredentialTypeColumn NAME="HostPassword">
</CredentialType>

Chapter 21
Target Metadata DTD Elements

21-49

In this sample ‘HostCreds' is declared as a CredentialType. Refer to a more detailed
example in CredentialInfo.

CredentialTypeColumn
CredentialType is defined as a set of Credential Columns. Each
CredentialTypeColumn may provide a list of values that are the only allowed values for
this column.

<!ELEMENT CredentialTypeColumn (Display?, CredentialTypeColumnValue*)>
<!ATTLIST CredentialTypeColumn
NAME CDATA #REQUIRED
IS_KEY (TRUE|FALSE) "FALSE">

Attributes
NAME: Name of the column

IS_KEY: If multiple sets are created of this credential type, is this the column by which
one set is differentiated from another.

TRUE | FALSE (default)

Elements
Display

CredentialTypeColumnValue

Used In
CredentialType

Examples
CredentialTypeColumn may contain an optional Display element specifying the display
characteristics for the CredentialTypeColumn and optional
CredentialTypeColumnValue element(s).

<CredentialTypeColumn NAME="HostUserName" IS_KEY="TRUE">
<Display FOR_SUMMARY_UI="TRUE">
<Label NLSID="host_username">UserName</Label>
</Display>
</CredentialTypeColumn>
The HostUserName column is the key in a (username,password) credential type. This
column would be displayed in a condensed version of the UI and the label associated
with this is ‘UserName'. Refer to a more detailed example in CredentialInfo.

Chapter 21
Target Metadata DTD Elements

21-50

CredentialTypeColumnValue
CredentialTypeColumnValue holds the allowed values for a CredentialTypeColumn.

<!ELEMENT CredentialTypeColumnValue (#PCDATA)>
<!ATTLIST CredentialTypeColumnValue
IS_DEFAULT (TRUE|FALSE) "FALSE">

Attributes
IS_DEFAULT: Is set to true if this is the default value in the list.

TRUE | FALSE (default)

Elements
Character data representing the value

Used In
CredentialTypeColumn

Examples
<CredentialType NAME="DBCreds" >
<CredentialTypeColumn NAME="DBUsername" IS_KEY="true" />
<CredentialTypeColumn NAME="DBPassword" />
<CredentialTypeColumn NAME="DBRole">
<CredentialTypeColumnValue IS_DEFAULT="true">normal</CredentialTypeColumnValue>
<CredentialTypeColumnValue>sysdba</CredentialTypeColumnValue>
</CredentialTypeColumn>
</CredentialType>
The ‘DBRole' column in ‘DBCreds' credential type may have the following values:

1. normal (default value)

2. sysdba

Refer to the example in CredentialInfo. The example shows the context for the
CredentialType element

CredentialTypeRef
This element allows a credential type to refer to other predefined credential types. It contains
mapping of the columns in the original credential type to columns of the credential type being
defined.

Chapter 21
Target Metadata DTD Elements

21-51

<!ELEMENT CredentialTypeRef (CredentialTypeRefColumn*)>
<!ATTLIST CredentialTypeRef
REF_NAME CDATA #REQUIRED
REF_TYPE CDATA #REQUIRED
REF_TARGETTYPE CDATA #IMPLIED
ASSOCIATION CDATA #IMPLIED>

Attributes
REF_NAME: Specifies the name for this CredentialTypeRef.
REF_TYPE: Credential type referred to.

REF_TARGETTYPE: The target type that contains the original credential type. Specify
Null if this is the same target type.

ASSOCIATION: Refers to the association of this target with the other target for whom
credentials are maintained here. Note that this value needs to be one of the
AssocTarget elements above.

Elements
CredentialTypeRefColumn

Used In
CredentialType

Examples
<CredentialType NAME="FMCreds" >
<CredentialTypeRef NAME="FMDBCreds1" REF_TYPE="DBCreds"
REF_TARGET_TYPE="oracle_database" ASSOCIATION="firstDB">
<CredentialTypeRefColumn NAME="FMUserName1" REF_TYPECOLUMN="DBUsername" />
<CredentialTypeRefColumn NAME="FMpassword1" REF_TYPECOLUMN="DBPassword" />
<CredentialTypeRefColumn NAME="FMRole1" REF_TYPECOLUMN="DBRole" />
 </CredentialTypeRef>
</CredentialType>

FMCreds defines a credential type whose columns FMUserName1, Fmpassword1 and
FMRole are mapped to DBCred's DBUsername, DBPassword and DBRole columns
respectively.

Refer to the example in CredentialInfo. The example shows the context for the
CredentialType element

CredentialTypeRefColumn
This element maps the columns in the referred credential type to this credential type's
columns.

<!ELEMENT CredentialTypeRefColumn EMPTY>
<!ATTLIST CredentialTypeRefColumn
 NAME CDATA #REQUIRED
 REF_TYPECOLUMN CDATA #REQUIRED>

Chapter 21
Target Metadata DTD Elements

21-52

Attributes
NAME: Name of column in this credential type.

REF_TYPECOLUMN: Name of the column in the referred credential type

Elements
None

Used In
CredentialTypeRef

Examples
Refer to the examples for CredentialTypeRef.

CredentialSet
This element defines a set of elements that form a named credential set for this target type. A
credential set provides values for one of the credential types defined for this target type. The
credential set may contain credentials for one of 3 usages: monitoring, preferred credentials
or app specific functionality.

<!ELEMENT CredentialSet (Display?, CredentialSetColumn+)>
<!ATTLIST CredentialSet
 NAME CDATA #REQUIRED
 CREDENTIAL_TYPE CDATA #REQUIRED
 USAGE (MONITORING|PREFERRED_CRED|SYSTEM) "MONITORING"
 CONTEXT_TYPE (TARGET|CONTAINER|COLLECTION) "TARGET"
 CONTEXT CDATA #IMPLIED>

Attributes
NAME: Name of the credential set

CREDENTIAL_TYPE: The credential type that this set provides values for.

USAGE: Is this credential set used for monitoring, as preferred credentials or for app specific
stuff?Supported values are:

• MONITORING (default): Specifies credentials that management applications can use to
connect directly to the target.

• PREFERRED_CRED: Specifies a user's preferred credentials.

• SYSTEM: Specifies a fixed set of credentials that are used by certain specialized
applications (patching, cloning etc.)

• CONTEXT_TYPE: Specifies what kind of entity, the set pertains to.

Supported values are:

– TARGET (default): These are the stored credentials for a target that could be used by
applications such as job system, patch etc.

Chapter 21
Target Metadata DTD Elements

21-53

– CONTAINER: These are the stored credentials for a container. These are
always host credentials.

– COLLECTION: These are credentials associated with user-defined metrics.

• CONTEXT: Specifies the metric that this set is for. Refers to collection credentials
only.

Elements
Display

CredentialSetColumn

Used In
CredentialInfo

Examples
CredentialSet contains an optional Display element that specifies the display
characteristics for the CredentialSet element and at least 1 CredentialSetColumn.

<CredentialSet NAME="HostPrefCreds" CREDENTIAL_TYPE="HostCreds"
USAGE="PREFERRED_CRED">
 <CredentialSetColumn TYPE_COLUMN="HostUsername"
SET_COLUMN="HostPrefUserName" />\
 <CredentialSetColumn TYPE_COLUMN="HostPassword"
SET_COLUMN="HostPrefPassword" />
</CredentialSet>

This sample illustrates usage of a user credential set.

<CredentialSet NAME="DBCredsMonitoring" CREDENTIAL_TYPE="DBCreds"
USAGE="monitoring">
 <CredentialSetColumn TYPE_COLUMN="DBUsername" SET_COLUMN="UserName"/>
 <CredentialSetColumn TYPE_COLUMN="DBPassword" SET_COLUMN="password"/>
 <CredentialSetColumn TYPE_COLUMN="DBRole" SET_COLUMN="role"/>
</CredentialSet>

DBCredsMonitoring defines a credential set that may be used by the agent for
monitoring a database.

<CredentialSet NAME="HostSystemCreds" CREDENTIAL_TYPE="HostCreds" USAGE="SYSTEM">
 <CredentialSetColumn TYPE_COLUMN="HostUsername"
SET_COLUMN="HostPrefUserName"/>
 <CredentialSetColumn TYPE_COLUMN="HostPassword"
SET_COLUMN="HostPrefPassword"/>
</CredentialSet>

HostSystemCreds is an example of a System credential type.

Refer to the example in CredentialInfo. The example shows the context for the
CredentialType element.

Chapter 21
Target Metadata DTD Elements

21-54

CredentialSetColumn
Credential set columns map the columns of a credential type to the source of their values. In
the case of monitoring credential sets, the source is instance properties of the target.

<!ELEMENT CredentialSetColumn (Display?, CredentialSetColumnValue*) >
<!ATTLIST CredentialSetColumn
 TYPE_COLUMN CDATA #REQUIRED
 SET_COLUMN CDATA #REQUIRED>

Attributes
TYPE_COLUMN: Name of the column in the CredentialType.

SET_COLUMN

Elements
Display

CredentialSetColumnValue

Used In
CredentialSet

Examples
CredentialSetColumn contains an optional Display element that specifies the display
characteristics for the CredentialSetColumn element and optional
CredentialSetColumnValue element(s).

Refer to the example for CredentialSet

CredentialSetColumnValue
This element holds the allowed values for a CredentialSetColumn.

<!ELEMENT CredentialSetColumnValue (#PCDATA)>
<!ATTLIST CredentialSetColumnValue
 IS_DEFAULT (TRUE|FALSE) "FALSE">

Attributes
IS_DEFAULT: Set this attribute to true if the element represents the default value in the list.

Elements
Character data representing the value.

Used In
CredentialSetColumn

Chapter 21
Target Metadata DTD Elements

21-55

Examples
Refer to the example for CredentialSet.

InstanceProperties
The InstanceProperties element declares the "properties" of a target type. Some
properties are obtained from the targets.xml file, and may be optional or required, and
others can be computed using DynamicProperties elements using the values of other
properties.

The Agent uses the information in the InstanceProperties element to determine when
a target has not been sufficiently configured, and to compute the dynamic properties
for the target. The console UIs use the information about the properties to create UIs
where a target can be created from scratch or an existing target's properties are
modified.

InstanceProperties holds target InstanceProperty(s) and DynamicProperties elements.

<!ELEMENT InstanceProperties ((InstanceProperty | DynamicProperties)*)>

Attributes
None

Elements
InstanceProperty

DynamicProperties

Used In
TargetMetadata

Examples
Refer to the example for QueryDescriptor and TargetMetadata.

InstanceProperty
An InstanceProperty element contains the definition of an instance property.

<!ELEMENT InstanceProperty (ValidIf*, (PCDATA | Display)*)>
<!ATTLIST InstanceProperty
NAME CDATA #REQUIRED
OPTIONAL (TRUE | FALSE) "FALSE"
IN_PRIMARY_KEY (TRUE | FALSE) "FALSE"
CHECK_FOR_MODIFIABLE (TRUE | FALSE) "FALSE"
CREDENTIAL (TRUE | FALSE) "FALSE"
READONLY (TRUE | FALSE) "FALSE"
NEED_REENTER (TRUE | FALSE) "FALSE"
HIDE_ENTRY (TRUE | FALSE) "TRUE"
CHECK_ORIGINAL (TRUE | FALSE) "FALSE"
IS_COMPUTED (TRUE|FALSE) "FALSE"

Chapter 21
Target Metadata DTD Elements

21-56

WAS_REQUIRED (FALSE|TRUE) "FALSE"
>

Attributes
NAME: Name of the property

OPTIONAL: Is a value for the property required

TRUE | FALSE (default)

CREDENTIAL: Is the property sensitive in nature. Such properties are usually saved
obfuscated in targets.xml

TRUE | FALSE (default)

READONLY: Marks this element as ReadOnly.

TRUE | FALSE (default)

NEED_REENTER: If TRUE, will require user to enter the value twice at command line.

TRUE | FALSE (default)

HIDE_ENTRY: If TRUE, will show the character user typed as '*'.

TRUE (default) | FALSE

CHECK_ORIGINAL: If TRUE, before modify, user need to type the original value.

IS_COMPUTED: If TRUE, indicates that it describes a dynamic property.

WAS_REQUIRED: This was an instance property that was required prior to 10.2 but is now a
dynamic property. This property would be sent to 10.1 OMS if set to TRUE. Default value is
FALSE (See bug/ER 4631553 for more details).

Elements
ValidIf

Display

Used In
TargetMetadata

Examples
If InstanceProperty element contains ValidIf elements, all the conditions must be met for the
property to be evaluated. InstanceProperty also optionally contains either Display elements or
character data.

<InstanceProperty NAME="password" OPTIONAL="FALSE" CREDENTIAL="TRUE">

Example: for an oracle_database target one InstanceProperty has the NAME "password",
which is not OPTIONAL and which is a "CREDENTIAL".

Refer to additional examples for InstanceProperty described in TargetMetadata

Chapter 21
Target Metadata DTD Elements

21-57

DynamicProperties
DynamicProperties elements allow a target to specify a query that will return a set of
values corresponding to the instance properties of the target. The values are turned
into target properties and are accessible to other query descriptors from the
INSTANCE scope.

<!ELEMENT DynamicProperties (ValidIf*, (QueryDescriptor | ExecutionDescriptor)+)
>
<!ATTLIST DynamicProperties
NAME CDATA #REQUIRED
PROP_LIST CDATA #IMPLIED
OPT_PROP_LIST CDATA #IMPLIED
FORMAT (TABLE | ROW) "TABLE"
IS_CRITICAL (TRUE | FALSE) "FALSE"
>

Note:

If CategoryProperties are instantiated through DynamicProperty
evaluation, such a failed DynamicProperty evaluation would cause the agent
to reject the target unless the value of the category property is available in
targets.xml.

Attributes
NAME: attribute simply identifies the property collector, for error tracing etc.

PROP_LIST: Contains ‘;' separated values that specify a list of names of properties
that can be returned by the query descriptor. The result MUST contain the properties
listed here.

OPT_PROP_LIST: Contains ‘;' separated values that specify a list of names of
properties that can be returned by the query descriptor. The result MAY contain the
properties listed here.

FORMAT: Specifies the format for the return data.

Supported values are:

• TABLE (default): If the FORMAT is "TABLE" (the default), the return value must be
a table of instance property values. The table returned must be a two-column
(NAME, VALUE) table.

• ROW: If the FORMAT is "ROW", the contents of the one row are taken as the
values of the properties in the same order they are listed in the PROP_LIST, and
then in the OPT_PROP_LIST lists.

IS_CRITICAL: To denote that a dynamic property is cirtical for the target one can
specify the IS_CRITICAL flag attribute. The default value of this flag is FALSE and is
assumed if this attribute is not present. When the value of this attribute is specified as
TRUE, then on failure / timeout during computation of that dynamic property, we
reschedule the computation of all dynamic / instance properties of that target as per
the values of parameters given in the emd.properties file.

Chapter 21
Target Metadata DTD Elements

21-58

Elements
ValidIf

QueryDescriptor

ExecutionDescriptor

Used In
InstanceProperties

Examples
If DynamicProperties element contains ValidIf elements, all the conditions must be met for
the property to be evaluated. In addition to this it must also include at least 1 instance of
either QueryDescriptor or ExecutionDescriptor.
The property names in the PROP_LIST and OPT_PROP_LIST are used in conjunction with
InstanceProperty declarations while validating target type metadata.

<DynamicProperties NAME="VersionAndLocation" FORMAT="ROW"
PROP_LIST="OS;OracleHome;Version">

DynamicProperties, ‘VersionAndLocation' has a ROW format and returns ‘OS',
‘OracleHome', ‘Version' as properties.

Note that if a query descriptor returns a property value that is already available, the property
is ignored. If multiple DynamicProperties queries return a property, the value from the first
one is used.

The example in TargetMetadata includes the context for DynamicProperties element.

ExecutionDescriptor
ExecutionDescriptor specifies the execution plan for evaluating a metric. MAgent executes
each statement of the plan, in the order it is defined, to produce a Metric Result. The Metric
Result generated as result of the evaluation of the last statement of the execution plan will be
returned.

<!ELEMENT ExecutionDescriptor (ValidIf*, (GetTable | GetView | GroupBy | Union |
JoinTables)*)>

Attributes
None

Elements
ValidIf

GetTable

GetView

Chapter 21
Target Metadata DTD Elements

21-59

GroupBy

Union

JoinTables

Used In
Metric

DynamicProperties

Examples
If ExecutionDescriptor element contains ValidIf elements, all the conditions must
be met for the element to be evaluated. In addition to this it must also include 0 or
more instances of either 1 of the following elements: GetTable, GetView, GroupBy,
Union, JoinTables
ExecutionDescriptor is used to compute aggregation metric.

<TargetMetadata META_VER="3.0" TYPE="host">
. . .
<Metric NAME="Load" TYPE="TABLE">
. . .

<ExecutionDescriptor>
<GetTable NAME="DiskActivity"/>
<GetView NAME="AvgSrvcTimeView" FROM_TABLE="DiskActivity">
 <Column NAME="DiskActivityavserv"/>
</GetView>
<GroupBy NAME="DA_MaxAvServ" FROM_TABLE="AvgSrvcTimeView">
<AggregateColumn NAME="longestServ" COLUMN_NAME="DiskActivityavserv"
OPERATOR="MAX" />
</GroupBy>
<GetTable NAME="_LoadInternal"/>
<JoinTables NAME="Load">
<Table NAME="_LoadInternal"/>
<Table NAME="DA_MaxAvServ"/>
</JoinTables>
</ExecutionDescriptor>
</Metric>

<Metric NAME="_LoadInternal" TYPE="TABLE" USAGE_TYPE="HIDDEN">
 . . .
</Metric>

<Metric NAME="DiskActivity" TYPE="TABLE">
 . . .
</Metric>

 </TargetMetadata>

This ExecutionDescriptor in this sample generates the following intermediate
Metric results after executing each statement:
§ GetTable: The metric result, ‘DiskActivity' contains all the columns
of ‘DiskActivity' metric. The result of this operation is similar to the SQL
statement,
“Select * from DiskActivity"
§ GetView: The metric result, ‘AvgSrvcTimeView' contains only

Chapter 21
Target Metadata DTD Elements

21-60

‘DiskActivityavserv' column of ‘DiskActivity' metric.
§ GroupBy: Metric result, ‘DA_MaxAvServ' is a grouping of the
‘AvgSrvcTimeView' based on the ‘longestServ' which is the max value of the
‘DiskActivityavserv' column.
§ GetTable: Metric result, ‘_LoadInternal' contains all the columns of the
‘_LoadInternal' metric.
§ JoinTable: ‘Load' metric contains a join of the ‘_LoadInternal' and
‘DA_MaxAvServ' metrics.

The last metric is returned as the result for the ‘Load' metric.

GetTable
This element is used within an ExecutionDescriptor element and is equivalent to the following
SQL operation:

Select * from T.

T is a metric.

<!ELEMENT GetTable EMPTY>
<!ATTLIST GetTable
 NAME CDATA #REQUIRED
 ASSOC_TARGET CDATA #IMPLIED
 METRIC_NAME CDATA #IMPLIED
 USE_CACHE (TRUE | FALSE | TRUE_IF_COLLECT) "FALSE">

Attributes
NAME: Name of the metric.

ASSOC_TARGET: Target from which data is collected. This attribute is optional and when
omitted, the METRIC_NAME points at a metric in the same target.

METRIC_NAME: Name of the metric that originates the request. If omitted, attribute NAME is
used as METRIC_NAME.

USE_CACHE: Specifies whether the data can be fetched from the cache.

TRUE | FALSE (default) | TRUE_IF_COLLECT

Elements
None

Used In
ExecutionDescriptor

Examples
<GetTable NAME="DiskActivity"/>

This statement gets all the columns of the ‘DiskActivity' metric.

Refer to the example in ExecutionDescriptor.

Chapter 21
Target Metadata DTD Elements

21-61

GetView
GetView creates a sub-table from a table. The newly created table is identified by the
NAME attribute. It must be unique in the ExecutionDescriptor. This element is
equivalent to the following SQL statement:

Select column1, column2,. . . from T

T is a metric.

<!ELEMENT GetView ((ComputeColumn | Column)*, (Filter | In)*)>
<!ATTLIST GetView
 NAME CDATA #REQUIRED
 FROM_TABLE CDATA #REQUIRED>

Attributes
NAME: Name of the view.

FROM_TABLE: Table from which to generate the view.

Elements
ComputeColumn

Column

Filter

In

Used In
ExecutionDescriptor

Examples
GetView may contain 0 or more instances of either ‘ComputeColumn' or ‘Column'
elements and 0 or more instances of either ‘Filter' or ‘In' elements.

<GetView NAME="AvgSrvcTimeView" FROM_TABLE="DiskActivity">
 <Column NAME="DiskActivityavserv"/>
 </GetView>

This is equivalent to the following SQL statement:

create view AvgSrvcTimeView as
select DiskActivityavserv from DiskActivity.

If no Column elements are present in GetView, all columns in the table are included.

Refer to the example in ExecutionDescriptor.

Chapter 21
Target Metadata DTD Elements

21-62

Filter
Specifies the filter criteria. Filter is used to determine whether a row will be included in the
new table. If a row does not satisfy any Filter criteria, it will be excluded.

<!ELEMENT Filter (#PCDATA)>
<!ATTLIST Filter
 COLUMN_NAME CDATA #REQUIRED
 SCOPE (GLOBAL | INSTANCE | SYSTEMGLOBAL) "GLOBAL"
OPERATOR (EQ | LT | GT | LE | GE | NE | CONTAINS | MATCH | ISNULL | ISNOTNULL) "EQ">

Attributes
COLUMN_NAME: Column name on which the filter criteria is to be applied.

SCOPE:

Supported values are:

• GLOBAL (default)

• INSTANCE

• SYSTEMGLOBAL

• OPERATOR: Specifies the operation to perform.

Supported operators are:

• EQ (default): Equal

• LT: Less than

• GT: Greater than

• LE: Less than or equal to

• GE: Greater than or equal to

• NE: Not equals

• CONTAINS: contains

• MATCH: matches

• ISNULL: is NULL

• SNOTNULL: is not NULL

Elements
Character data representing the filter criteria.

Used In
GetView

Examples
<ExecutionDescriptor>
 <GetTable NAME="Servlet_raw" USE_CACHE="TRUE_IF_COLLECT"/>

Chapter 21
Target Metadata DTD Elements

21-63

 <GetView NAME="result" FROM_TABLE="Servlet_raw">
 <Filter COLUMN_NAME="totalRequests1" OPERATOR="GT">0</Filter>
 </GetView>
</ExecutionDescriptor>

The result of the ExecutionDescriptor is the metric ‘result' that has totalRequests1 >
0.

Column
Represents a column to include in the new table.

<!ELEMENT Column EMPTY>
<!ATTLIST Column
 NAME CDATA #REQUIRED
 COLUMN_NAME CDATA #IMPLIED
 TABLE_NAME CDATA #IMPLIED>

Attributes
NAME: Specifies the name of the column of a metric.

COLUMN_NAME: Specifies the name of the column. It can be omitted if it is same as
NAME.

TABLE_NAME: Specifies the name of the metric. If Column is a part of the GetView
element, this attribute must be excluded.

Elements
None

Used In
GetView

JoinTables

Examples
<Column NAME="DiskActivityavserv"/>

‘DiskActivityavserv' is the metric column that is selected for the operation.

<Column NAME="responseTime" TABLE_NAME="groupbyapps"/>

Column, ‘responseTime' from ‘groupbyapps' metric is selected for the operation.

Refer to the example in ExecutionDescriptor

ComputeColumn
This element describes how to compute the values of a column.

<!ELEMENT ComputeColumn EMPTY>
<!ATTLIST ComputeColumn
 NAME CDATA #REQUIRED

Chapter 21
Target Metadata DTD Elements

21-64

 EXPR CDATA #REQUIRED
 IS_VALUE (TRUE | FALSE) "FALSE"
DEFAULT_WHEN_EMPTY (TRUE | FALSE) "FALSE"
DEFAULT_VALUE CDATA #IMPLIED>

Attributes
NAME: Name of the column.

EXPR: Expression that is evaluated to calculate the value. Refer to the Examples of
ColumnDescriptor for details about the expression grammar and usage.

IS_VALUE: If set to TRUE, the EXPR points to the actual string value else EXPR is the
expression used to calculate the column.

TRUE | FALSE (default)

DEFAULT_WHEN_EMPTY:

TRUE | FALSE (default)

DEFAULT_VALUE: Default value for the column. If not specified the default value will be set
to “0".

Elements
None

Used In
GetView

GroupBy

Examples
<GetView NAME="NEW_TABLE" FROM_TABLE="ORIG_TABLE">
<Column NAME="cn1" COLUMN_NAME="A" />
<Column NAME="cn2" COLUMN_NAME="B" />
<ComputeColumn NAME="cn3" EXPR="cn1+cn2" />
<ComputeColumn NAME="cn4" EXPR="cn1/cn2" DEFAULT_WHEN_EMPTY="TRUE" DEFAULT_VALUE="1"/>
<ComputeColumn NAME="isMultiThreaded.value" IS_VALUE="TRUE" EXPR="true" />
<Filter COLUMN_NAME="C" OPERATOR="EQ">3</Filter>
 </GetView>

Refer to the Examples of ColumnDescriptor for details about the expression grammar and
additional examples of expressions that are acceptable in the EXPR attribute.

In
This element is equivalent of the SQL Statement select * from from_table where
column_name in (select in_column_name from in_table_name)

<!ELEMENT In EMPTY>
<!ATTLIST In
 COLUMN_NAME CDATA #REQUIRED
 IN_TABLE_NAME CDATA #REQUIRED
 IN_COLUMN_NAME CDATA #REQUIRED>

Chapter 21
Target Metadata DTD Elements

21-65

Attributes
COLUMN_NAME: Column name to search for.

IN_TABLE_NAME: Table in which to search for.

IN_COLUMN_NAME: Column name of the table specified in IN_TABLE_NAME
attribute.

Elements
None

Used In
GetView

GroupBy
GroupBy will perform aggregation operation on a table/view to create a new table. This
element is equivalent to the SQL statement: Select sum(column_name) from
table_name

<!ELEMENT GroupBy (By*, (AggregateColumn | ComputeColumn)*)>
<!ATTLIST GroupBy
 NAME CDATA #REQUIRED
 FROM_TABLE CDATA #REQUIRED>

Attributes
NAME: Specifies the name of the grouping.

FROM_TABLE: Specifies the name of the metric.

Elements
By

AggregateColumn

ComputeColumn

Used In
GetView

Examples
This element may include 0 or more elements of ‘By' and 0 or more elements of either
AggregateColumn or ComputeColumn.
<GroupBy NAME="DA_MaxAvServ" FROM_TABLE="AvgSrvcTimeView">

This statement results in DA_MaxAvServ containing the result of the groupby
operation applied to the AvgSrvcTimeView metric.

Chapter 21
Target Metadata DTD Elements

21-66

Refer to the example in ExecutionDescriptor.

By
'By' element defines a column that constitutes a GroupBy clause. Each ‘By' element will be
added to the result table as a column.

<!ELEMENT By EMPTY>
<!ATTLIST By
 NAME CDATA #REQUIRED
 COLUMN_NAME CDATA #IMPLIED>

Attributes
NAME: Name of the new column.

COLUMN_NAME: name for the new column.

Elements
None

Used In
GroupBy

Examples
NAME must be unique within the new table. If COLUMN_NAME is not given, will be the same
as NAME

AggregateColumn
This element describes an operation to be performed on a column.

<!ELEMENT AggregateColumn EMPTY>
<!ATTLIST AggregateColumn
 NAME CDATA #REQUIRED
 COLUMN_NAME CDATA #REQUIRED
 OPERATOR (MAX | MIN | SUM | AVG | COUNT) "SUM">

Attributes
NAME: Specifies the name of the AggregateColumn

COLUMN_NAME: Specifies the column name of the metric on which the operation is to be
performed.

OPERATOR: Specifies the operation to be performed.

Supported operators are:

• MAX

• MIN

• SUM (default)

Chapter 21
Target Metadata DTD Elements

21-67

• AVG

• COUNT

Elements
None

Used In
GroupBy

Examples
<AggregateColumn NAME="longestServ" COLUMN_NAME="DiskActivityavserv"
OPERATOR="MAX" />

This operation results in the calculation of the Maximum value from the
‘DiskActivityavserv' column.

Refer to the example in ExecutionDescriptor.

Union
Union element describes an operation to combine/merge two or more tables. Only
tables with the same number of columns can be unioned together. This element is
equivalent of the SQL statement:

Select * from T1 Union
Select * from T2

<!ELEMENT Union (Table+)>
<!ATTLIST Union
 NAME CDATA #REQUIRED
 DISTINCT (TRUE | FALSE) "FALSE">

Attributes
NAME: Specifies the name for the union.

DISTINCT: If TRUE, any row that is exactly the same as previous row will be
discarded.

TRUE | FALSE (default)

Elements
Table

Used In
ExecutionDescriptor

Examples
Union element must include atleast 1 Table element.

Chapter 21
Target Metadata DTD Elements

21-68

<Union NAME="result4">
 <Table NAME="result" />
 <Table NAME="result1" />
 <Table NAME="result2" />
 <Table NAME="result3" />
 </Union>

‘result4' will be a union of the 4 Tables. The resulting table will have the same column name
list as first table.

Note:

Only tables with the same number of columns can be unioned together. The newly
created table is identified by NAME. It must be unique in the ExecutionDescriptor.

Table
This element describes the metrics that can take part in Table operations like Union and
JoinTables.

<!ELEMENT Table EMPTY>
<!ATTLIST Table
 NAME CDATA #REQUIRED>

Attributes
NAME: Specifies the name of the metric.

Elements
None

Used In
Union

JoinTables

Examples
<Table NAME="result" />

This example describes ‘result' as a metric that can participate in Table operations.

Refer to the example of Union.

JoinTables
This element describes the join operation. It is equivalent of the SQL statement:

Select C1, C2 where . . .

Chapter 21
Target Metadata DTD Elements

21-69

<!ELEMENT JoinTables (Table, Table+, (Column | ComputeColumn)*, Where*)>
<!ATTLIST JoinTables
 NAME CDATA #REQUIRED
 OUTER (TRUE | FALSE) "FALSE"
 BOTH_SIDE (TRUE | FALSE) "FALSE">

Attributes
NAME: Specifies the name of the join.

OUTER: If true, specifies an OUTER join.

TRUE | FALSE (default).

BOTH_SIDE: If true, specifies BOTH_SIDE. The results would contain the same
number of rows as a UNION.

TRUE | FALSE (default)

Elements
Table

Column

ComputeColumn

Where

Used In
ExecutionDescriptor

Examples
JoinTables must include atleast 2 ‘Table' elements, 0 or more elements of either
‘Column' or ‘ComputeColumn' and 0 ore more elements of ‘Where' element.

<JoinTables NAME="Load">
 <Table NAME="_LoadInternal"/>
 <Table NAME="DA_MaxAvServ"/>
 </JoinTables>

This example defines ‘Load' as a join of ‘_LoadInterval' and ‘DA_MaxAvServ' metrics.

Refer to the example in ExecutionDescriptor.

Where
<!ELEMENT Where EMPTY>
<!ATTLIST Where
 FROM_TABLE CDATA #REQUIRED
 FROM_KEY CDATA #REQUIRED
 OPERATOR (EQ | GT | GE | LE | LT | NE | CONTAINS | MATCH) "EQ"
 JOIN_TABLE CDATA #REQUIRED
 JOIN_KEY CDATA #REQUIRED>

Chapter 21
Target Metadata DTD Elements

21-70

Attributes
FROM_TABLE:

FROM_KEY:

OPERATOR: Specifies the operator in the where clause.

Supported operators are:

• EQ (default): Equals

• GT: Greater than

• GE: Greater than or equal to

• LE: Less than or equal to

• LT: Less than

• NE: Not equals

• CONTAINS: Contains

• MATCH: matches

JOIN_TABLE:

JOIN_KEY:

Elements
None

Used In
JoinTables

Examples
<JoinTables NAME="all" OUTER="TRUE">
 <Table NAME="groupbyapps" />
 <Table NAME="groupbyappsejb" />
 <Column NAME="Application" TABLE_NAME="groupbyapps"/>
 <Column NAME="activeRequests" TABLE_NAME="groupbyapps"/>
 <Column NAME="responseTime" TABLE_NAME="groupbyapps"/>
 <Column NAME="activeMethods" TABLE_NAME="groupbyappsejb"/>
 <Column NAME="avgMethodExecTime" TABLE_NAME="groupbyappsejb"/>
 <Where FROM_TABLE="groupbyapps" JOIN_TABLE="groupbyappsejb"
 FROM_KEY="Application" JOIN_KEY="ApplicationName"/>
</JoinTables>

PushDescription
The push descriptor identifies a recvlet that is responsible for supplying data and/or events
for a metric, and specifies data to be passed to that recvlet for each target. The name used
for the recvlet here should match the recvlet name used in recvlets.reg.

Chapter 21
Target Metadata DTD Elements

21-71

<!ELEMENT PushDescriptor (ValidIf*, Property*) >
<!ATTLIST PushDescriptor
 RECVLET_ID CDATA #REQUIRED>

Attributes
RECVLET_ID: Specifies the ID of the recvlet to use that is known to the EMAgent.
This attribute must point to an element from the $ORACLE_HOME/lib/recvlets.reg file.

Elements
ValidIf

Property

Used In
Metric

Examples
PushDescriptor may include 0 or more elements of ‘ValidIf' and ‘Property'.

<Metric . . .>
. . .
<PushDescriptor RECVLET_ID="AQMetrics">
<Property NAME="QueueName" SCOPE="GLOBAL">ALERT_QUE</Property>
<Property NAME="MachineName" SCOPE="INSTANCE">MachineName</Property>
<Property NAME="Port" SCOPE="INSTANCE">Port</Property>
<Property NAME="SID" SCOPE="INSTANCE">SID</Property>
<Property NAME="UserName" SCOPE="INSTANCE">UserName</Property>
<Property NAME="password" SCOPE="INSTANCE">password</Property>
<Property NAME="Role" SCOPE="INSTANCE">Role</Property>
<Property NAME="InstanceName" SCOPE="INSTANCE">InstanceName</Property>
<Property NAME="KeyField" SCOPE="GLOBAL">OBJECT_NAME</Property>
<Property NAME="KeyColumn" SCOPE="GLOBAL">name</Property>
</PushDescriptor>
 </Metric>

The properties included in the PushDescriptor are passed to the ‘AQMetrics'
receivelet. This receivelet provides data and/or events for the metric.

Target Collection DTD Elements
Target Collection drives the background collection of metrics for the purposes of
uploading their values in a central repository and/or the check of their values against
specified conditions.

Note that the XML files conforming to this DTD will be generated by the system (Could
be generated from Servlet Frontend or collector).

EMAgent can have more than one collection files each containing metrics that need to
be collected for a particular target.

Chapter 21
Target Collection DTD Elements

21-72

TargetCollection
A TargetCollection describes the metric that needs to be collected for a particular target. This
element applies to both default collections (type level) and instance specific collections.
NAME, LEVEL and INCLUDE_DEFAULT attributes apply only to instance specific collections.

It can have 0 or more CollectionItem and CollectionLevel elements. The CollectionLevel
element applies only to the default collections.

<!ELEMENT TargetCollection (CollectionLevel*, CollectionItem*) >
<!ATTLIST TargetCollection
 TYPE CDATA #REQUIRED
 NAME CDATA #IMPLIED
 LEVEL CDATA #IMPLIED
 INCLUDE_DEFAULT (TRUE|FALSE) "TRUE">

Attributes
TYPE: Specifies the target type.

NAME: Specifies the name of the target. If this is the top-level element, NAME must not be
null. If this file is included, it could be null. This attribute applies only to instance specific
collections.

LEVEL: Specifies the collection level. The default will be the minimum. This attribute applies
only to instance specific collections.

INCLUDE_DEFAULT: If set to TRUE, will include default collection with the same target
TYPE. This attribute applies only to instance specific collections.

TRUE (default) | FALSE

Elements
CollectionLevel

CollectionItem

Used In
TargetCollection is a top-level element.

Examples
<TargetCollection TYPE="preferred" >

<CollectionItem NAME = "Load" UPLOAD_ON_FETCH="TRUE">

<Schedule OFFSET_TYPE="INCREMENTAL">
<IntervalSchedule INTERVAL = "15" TIME_UNIT = "Min"/>
</Schedule>

<MetricColl NAME = "NfsOperations">
<Filter COLUMN_NAME="NfsCallsRate" OPERATOR="LE">100000</Filter>
<Condition COLUMN_NAME="NfsServPercentBadCalls" CRITICAL="10" WARNING="5"
OPERATOR="GT" OCCURRENCES="3" MESSAGE="NFS Bad Calls are %value%%%."
MESSAGE_NLSID="netapp_filer_nfs_operations_nfs_per_bad_calls"/>

Chapter 21
Target Collection DTD Elements

21-73

</MetricColl>

<MetricColl NAME = "CifsOperations">
<Filter COLUMN_NAME="CifsCallsRate" OPERATOR="LE">100000</Filter>
<Condition COLUMN_NAME="CifsPercentBadCalls" CRITICAL="10" WARNING="5"
OPERATOR="GT" OCCURRENCES="3" MESSAGE="CIFS Bad Calls %value%%%."
MESSAGE_NLSID="netapp_filer_cifs_operations_cifs_per_bad_calls"/>
</MetricColl>

<MetricColl NAME = "SystemLoad" />

</CollectionItem>
</TargetCollection>

This example illustrates the preferred method of declaring CollectionItems. One
collection item specifies multiple metrics with their own filter criteria and
Condition elements defined.

<TargetCollection TYPE="network" >

 <CollectionItem NAME = "Response">

 <Schedule>

 <IntervalSchedule INTERVAL = "300" TIME_UNIT = "Sec"/>

 </Schedule>

 <Condition COLUMN_NAME="Status"
 CRITICAL="ok"
 OPERATOR="NE"
 OCCURRENCES="3"
 MESSAGE="%target% adaptor is inaccesible or is connected."
 MESSAGE_NLSID="network_response_status"/>
 </CollectionItem>

</TargetCollection>

This example describes a default collection for ‘network' target type. The metric is
provided as the NAME attribute for the CollectionItem. This method of providing metric
NAME in the CollectionItem is for backward compatibility only. Use the example with
MetricColls instead.

TargetCollection includes optional ‘CollectionLevel' element(s) and ‘CollectionItem'
element(s)

<TargetCollection TYPE="oracle_beacon" >

NAME attribute implies that this might not be in the default_collections.

CollectionLevel
This element represents Collection Level List. It applies only to the default collections.
The order implies the ‘contains' relationship.

<!ELEMENT CollectionLevel EMPTY>
<!ATTLIST CollectionLevel
 NAME CDATA #REQUIRED>

Chapter 21
Target Collection DTD Elements

21-74

Attributes
NAME: the name of the collection level

Elements
None

Used In
TargetCollection

Examples
<TargetCollection TYPE="example2"> <CollectionLevel NAME="LEVEL1"/>
<CollectionLevel NAME="LEVEL2"/> <CollectionLevel NAME="LEVEL3"/> . . .
<MetricColl NAME="metric1"> <ItemProperty NAME="prop1">foo</ItemProperty>
<Condition COLUMN_NAME="value" CRITICAL="bar" OPERATOR="EQ"/> </MetricColl></
TargetCollection>
The order for the collection level implies that LEVEL2 contains LEVEL1 collection items and
LEVEL3 would include both LEVEL2 and LEVEL1 items.

Once the levels are declared using this element, the LEVEL attributes would refer to these
levels.

CollectionItem
A CollectionItem defines the collection of one or more metrics. It has a schedule.

<!ELEMENT CollectionItem (ValidIf*, Schedule?, (MetricColl+ | (ItemProperty*, Filter*,
LimitRows?, Condition*)))>
<!ATTLIST CollectionItem
 NAME CDATA #REQUIRED
 LEVEL CDATA #IMPLIED
 UPLOAD CDATA "YES"
 UPLOAD_ON_FETCH (TRUE | FALSE) "FALSE"
 ATOMIC_UPLOAD (TRUE | FALSE) “FALSE"
 POSTLOAD_PROC CDATA #IMPLIED
 PRELOAD_PROC CDATA #IMPLIED
 CONFIG (TRUE | FALSE) "FALSE"
 CONFIG_METADATA_VERSION CDATA #IMPLIED
 TIMEOUT CDATA #IMPLIED
 COLLECT_WHEN_DOWN (TRUE | FALSE) "FALSE"
 COLLECT_WHEN_ALTSKIP (TRUE | FALSE) "FALSE"
 COMBINE_WITH_OTHER_COLLECTION (TRUE | FALSE) "TRUE"
 PROXY_TARGET_NAME CDATA #IMPLIED
 PROXY_TARGET_TYPE CDATA #IMPLIED
 PROXY_TARGET_TZ CDATA #IMPLIED
 PROXY_TARGET_TZ_REGION CDATA #IMPLIED
 INITIAL_UPLOADS CDATA #IMPLIED
 DISABLED (TRUE | FALSE) "FALSE"
 REQUIRED (TRUE | FALSE) "FALSE">

Chapter 21
Target Collection DTD Elements

21-75

Attributes
NAME: Specifies the name of the collection.

LEVEL: The collection level.

UPLOAD: This attribute, if not specified, will be deemed as YES. NUMBER indicates
how often the CollectionItem is uploaded. (Upload every 'n' collections).

YES (default) | NO | NUMERIC

UPLOAD_ON_FETCH: Collection Items marked as UPLOAD_ON_FETCH will have
the same behavior as ATOMIC_UPLOAD with 1 difference – the upload occurs
immediately.

TRUE | FALSE (default)

COLLECT_WHEN_DOWN: The default behavior is that the collection stops if the
Response metric (if present for the target) indicates that the status of the target is
down. The exception being the Response metric itself. But the behavior of not
collecting when target is down can be overridden by setting this attribute to TRUE.

TRUE | FALSE (default)

COLLECT_WHEN_ALTSKIP: The default behavior is that the collection of metrics
stops if an AltSkipCondition has been defined and there is a severity on the condition.
Setting this attribute to TRUE allows collections to proceed even when this is the case.
Note that a severity on the Response/Status condition is only overcome by using the
COLLECT_WHEN_DOWN attribute.

TRUE | FALSE (default)

PROXY_TARGET_NAME: Used for proxy collection support, specifies Name of target
data and severities should be uploaded for

PROXY_TARGET_TYPE: Used for proxy collection support, specifies Type.

PROXY_TARGET_TZ_REGION: Used for proxy collection support, specifies
Timezone Region String (Eg "US/Pacific")

PROXY_TARGET_TZ: Used for proxy collection support, specifies Timezone (minutes
from GMT: eg -420)

TIMEOUT: This is the time by which the metric evaluation is expected to finish. The
time is provided in seconds. If the evaluation takes more than this time, the agent
aborts the metric evaluation and returns a TIMEOUT exception. If this attribute is not
provided or a value of zero, the agent defaults to twice the frequency of this metric
evaluation in the collection file. Users can provide a time of less than zero to avoid any
sort of timeout. A value less than 0 will force the agent to wait until the metric is
evaluated completely.

POSTLOAD_PROC: Only applicable in UPLOAD_ON_FETCH situations. This
attribute specifies an optional pl/sql procedures that the receiver should invoke when it
receives the file with the contents of this collection.

PRELOAD_PROC: Only applicable in UPLOAD_ON_FETCH situations. This attribute
specifies an optional pl/sql procedures that the receiver should invoke when it receives
the file with the contents of this collection.

Chapter 21
Target Collection DTD Elements

21-76

CONFIG: This attribute is used to tag collections of CONFIG metrics - these are handled
specially by the Enterprise Manager framework. Note: Collection Items for CONFIG Metrics
cannot specify ATOMIC_UPLOAD as FALSE. TRUE | FALSE (default)

INITIAL_UPLOADS: Defaults to 2, but can be set to a different number if more initial uploads
need to be sent up before skipping uploads based on the UPLOAD parameter.

ATOMIC_UPLOAD: Collection Items marked as ATOMIC_UPLOAD will be bundled into a
single file which will be uploaded in the regular upload interval (5 minutes).

TRUE | FALSE (default)

CONFIG_METADATA_VERSION: This attribute is used to specify version of CONFIG
metrics.

COMBINE_WITH_OTHER_COLLECTION: Agent typically combines collections and
executes them in a single thread sequentially to save on threads based on the interval. This
can cause some delay in the metric execution if a previous one is taking some time. However
some metrics would require to be executed on time. Setting this flag to FALSE would ensure
that this metric is executed in its own thread.

TRUE (default) | FALSE

DISABLED: If set to TRUE, the agent will ignore this collection item.

REQUIRED: If set to TRUE, the console will disallow users from disabling this item.

Elements
ValidIf

MetricColl

ItemProperty

Filter

LimitRows

Condition

Used In
TargetCollection

Examples
CollectionItem may contain ‘ValidIf' element(s) which must all be satisfied for the
CollectionItem to be evaluated. It may contain an optional ‘Schedule' element and either a
‘MetricColl' element or either ‘ItemProperty', ‘Filter', ‘LimitRows' or ‘Condition' elements.

For backward compatibility, a single metric can be specified using the NAME attribute, and its
properties, filters and conditions can be provided as child elements.

The NEW preferred DTD has one or more Metric elements within a CollectionItem each
indicating a metric to collect, and the filters, thresholds, etc. to associate with it.

<CollectionItem NAME="ProgramResourceUtilization">

Chapter 21
Target Collection DTD Elements

21-77

This is an example of a simplest form of this element. ‘ProgramResourceUtilization is a
CollectionItem.

<CollectionItem NAME = "general_collection" UPLOAD="12"
INITIAL_UPLOADS="4">
In this sample, ‘general_collection' will be uploaded 4 times (number dictated by
INITIAL_UPLOADS) initially and after that it will be uploaded once every 12 times
(number dictated by UPLOAD attribute).

<CollectionItem NAME = "Inventory" UPLOAD_ON_FETCH = "TRUE" TIMEOUT =
"3600">
‘Inventory' collection item will be uploaded when the metrics are collected. Timeout
specified is 1 hour.

<CollectionItem NAME = "oracle_security" UPLOAD_ON_FETCH = "TRUE" CONFIG =
"TRUE">
‘oracle_security' in this sample, involves collecting CONFIG metrics and should be
indicated as such to the EMAgent.

<CollectionItem NAME = "UserResourceUsage" UPLOAD="YES"
UPLOAD_ON_FETCH="FALSE" COLLECT_WHEN_DOWN="FALSE">
The UPLOAD attribute can take a ‘Yes', ‘No' or a numeric value. ‘UserResourceUsage'
collection will be attempted even when the response metric indicates that the target is
down.

The PROXY_TARGET_TZ_REGION takes precedence over PROXY_TARGET_TZ if
both are specified

Refer to the example in TargetCollection.

MetricColl
The MetricColl element refers to a metric that is being collected within a collection
item.

<!ELEMENT MetricColl (ItemProperty*, Filter*, LimitRows?, Condition*)>
<!ATTLIST MetricColl
 NAME CDATA #REQUIRED
 TRANSIENT (TRUE|FALSE) “FALSE"
 UPLOAD_IF_SEVERITY (WARNING|CRITICAL|CHANGE_ONLY) "CHANGE_ONLY">

Attributes
NAME: This is the name of the metric to collect.

TRANSIENT: If this attribute is set to TRUE would indicate that the data of this metric
should be uploaded or is collected to refresh the cache used in the evaluation of other
metrics.UPLOAD_IF_SEVERITY: Only effective when UPLOAD=NO and
UPLOAD=N>1.

Supported values are:

• CHANGE_ONLY (default): Upload data when there is severity change

Chapter 21
Target Collection DTD Elements

21-78

• WARNING: Upload data when there is severity change and when any condition is in
WARNING or CRITICAL

• CRITICAL: Upload data when there is severity change and when any condition is in
CRITICAL

Elements
ItemProperty

Filter

LimitRows

Condition

Used In
CollectionItem

Examples
MetricColl may include optional ItemProperty element(s), Filter element(s), a single optional
LimitRows element and optional Condition element(s).

<MetricColl NAME = "WebServicesService"/>

This is the typical usage for MetricColl. ‘WebServicesService' metric is associated with a
CollectionItem.

Refer to the example in TargetCollection.

LimitRows
LimitRows is a filtering mechanism that can be applied to the collected data, before the data
is sent to the repository via the Upload Manager. It limits the number of rows hat are
uploaded.

<!ELEMENT LimitRows EMPTY>
<!ATTLIST LimitRows
 COLUMN_NAME CDATA #IMPLIED
 SORT_ORDER (ASCEND|DESCEND|NO_ORDER) "NO_ORDER"
 LIMIT_TO CDATA #REQUIRED>

Attributes
COLUMN_NAME:

SORT_ORDER:

Supported values are:

• ASCEND:

• DESCEND:

• NO ORDER (default):

LIMIT_TO: Specifies the limit for the number of rows in the collection.

Chapter 21
Target Collection DTD Elements

21-79

Elements
None

Used In
CollectionItem

MetricColl

Examples
<LimitRows LIMIT_TO="16" />

This example limits the collection results to 16 rows.

ItemProperty
This element describes a name value pair for a property.

<!ELEMENT ItemProperty (#PCDATA)>
<!ATTLIST ItemProperty
 NAME CDATA #REQUIRED
ENCRYPTED (NA|FALSE|TRUE) “NA"
>

Attributes
NAME: Name of the Item property

ENCRYPTED: Indicates whether the property value will be encrypted.

The following values are defined for the attribute:

NA (default): Encryption is not available. The agent will not attempt to encrypt the
value.

FALSE: Encryption is available. The agent will attempt to encrypt the value.

TRUE: Encryption is available. The agent has encrypted the value.

Elements
Character data

Used In
CollectionItem

MetricColl

Examples
<TargetCollection TYPE="example2">
 . . .

Chapter 21
Target Collection DTD Elements

21-80

 <MetricColl NAME="metric1">
 <ItemProperty NAME="prop1">foo</ItemProperty>
 <Condition COLUMN_NAME="value" CRITICAL="bar" OPERATOR="EQ"/>
 </MetricColl>
</TargetCollection>

‘prop1', ItemProperty will be utilized to compute the value of ‘prop1' property defined in
‘USER' scope in ‘metric1' in TargetMetadata for target type ‘example2'.

Filter (for Target Collection)
Filter defines a filtering mechanism that can be applied to the collected data before the data
is sent to the repository via the Upload manager. If filtering is not applied, all the data that is
collected through a Fetchlet is sent to the repository. As a result the repository can get filled
quickly when uploading certain metrics. To alleviate this problem, filtering mechanism is
applied to the data before uploading. The filter criteria are specified in collection xml.

<!ELEMENT Filter (#PCDATA)>
<!ATTLIST Filter
 COLUMN_NAME CDATA #REQUIRED
 OPERATOR (EQ|LT|GT|LE|GE|NE|CONTAINS|MATCH) "EQ"
 AFTER_SEVERITY_CHECKING (TRUE|FALSE) "FALSE" >

Note:

Filter elements for TargetCollection and TargetMetadata are different.

Attributes
COLUMN_NAME: Name of the column in the metric to filter on.

OPERATOR: Specifies the operation

EQ (default): Equals

LT: Less than

GT: Greater than

LE: Less than or equal to

GE: Greater than or equal to

NE: Not equals

CONTAINS: Contains

MATCH: Matches

AFTER_SECURITY_CHECKING: If TRUE, filter will be applied after severity checking.

TRUE | FALSE (default)

Elements
Character data

Chapter 21
Target Collection DTD Elements

21-81

Used In
CollectionItem

MetricColl

Examples
<Filter COLUMN_NAME="total_connections" OPERATOR="NE">0</Filter>

The result will include only those rows where ‘total_connections' not equal to 0.

Condition
Condition element defines when a severity will be triggered.

<!ELEMENT Condition (CategoryValue*, KeyColumn*, FixitJob?)>
<!ATTLIST Condition
 CRITICAL CDATA #IMPLIED
 WARNING CDATA #IMPLIED
 OPERATOR (EQ | LT | GT | LE | GE | NE | CONTAINS | MATCH) "GT"
 OCCURRENCES CDATA "1"
 NO_CLEAR_ON_NULL (TRUE | FALSE) "FALSE"
 MESSAGE CDATA #IMPLIED
 MESSAGE_NLSID CDATA #IMPLIED
 COLUMN_NAME CDATA #REQUIRED
 PUSH (TRUE | FALSE) "FALSE"
 GENERATE_INIT_CLEAR (TRUE | FALSE) "FALSE"
 ALERT_CONTEXT CDATA #IMPLIED
 CLEAR_MESSAGE CDATA #IMPLIED
 CLEAR_MESSAGE_NLSID CDATA #IMPLIED
 STATELESS_ALERT (TRUE | FALSE) "FALSE"
>

If it is Table Metric, MetricColumn is used to define which column and key to use to
identify the row and column.

If KEYONLY_THRESHOLDS is set to TRUE for a Metric column, the Condition
element must include a KeyColumn element.

Attributes
CRITICAL: Threshold. A special value, “NotDefined" for the threshold ensures that the
result of the operation specified by the OPERATOR will fail.

WARNING: Threshold. “NotDefined" may also be applied to WARNING.

OPERATOR: Specifies the operation to evaluate the condition.

EQ: Equals

LT: Less than

GT (default): Greater than

LE: Less than or equal to

GE: Greater than or equal to

Chapter 21
Target Collection DTD Elements

21-82

NE: Not equals

CONTAINS: Contains

MATCH: Matches

OCCURRENCES: The default value is 1.

NO_CLEAR_ON_NULL: This attribute is used to control severity clearing when a null value is
returned for a metric column. It defaults to FALSE with the behavior that a null value ends up
clearing previous alert severities. With a TRUE value for this attribute, null values will be
skipped in severity evaluations without clearing the severity.

MESSAGE: The message attribute is a message template that will be used to generate
messages to be sent with the event occurrence. This message can contain the following
place holders.

• %value%: The value of the metric (or column of metric)

• %target%: name of the target

• %metric_id%: metric id

• %column_name% This will be the value of any column this can include value columns as
well as key columns

• %warning_threshold%: the warning threshold of the condition

• %critical_threshold%: the critical threshold of the condition

• %num_of_occur%: number of occurrences

MESSAGE_NLSID: Specifies the String ID of the ResourceBundle for the message.

*COLUMN_NAME: For table metric, COLUMN_NAME defines which column will be checked.
KeyColumn will be used to identify a row.

PUSH: This attribute is used to distinguish conditions created for push-based alerts from
conditions that are evaluated over the collected data. The agent does not evaluate
PUSH="TRUE" conditions.

GENERATE_INIT_CLEAR: This attribute can be used to override the agent's behavior of not
generating a severity the very first time a CLEAR is generated. Set this to TRUE if you do
want the initial CLEAR.

ALERT_CONTEXT: This attribute will be used to pass the related alert context. This new
attribute may contain a list of column names separated by ";".

CLEAR_MESSAGE: Specifies a different message when an alert is cleared. If this attribute is
missing then the MESSAGE attribute is used when alerts are cleared.

CLEAR_MESSAGE_NLSID: Specifies the NLSID for the clear message. If absent, the
MESSAGE_NLSID is used when alerts are cleared.

STATELESS_ALERT: The default is false. If this attribute is set to TRUE, it indicates to
Enterprise Manager not to retain any state associated with the condition. The default is False.

Elements
CategoryValue

KeyColumn

Chapter 21
Target Collection DTD Elements

21-83

FixitJob

Used In
CollectionItem

MetricColl

Examples
Condition element may include optional CategoryValue element(s), KeyColumn
element(s) and an optional FixitJob element.

If the result after the keys are applied contains more than one row, the event
occurrence generated will have content/message for each row that has crossed the
threshold.

MATCH is used for regular expression.

For example:

OPERATIOR="MATCH" CRITICAL=".*ORA.*ERR.*"

This statement will match a string containing both ORA and ERR such as "ORA-ERR
345".

CategoryValue sub tags are used to classify the Condition along two axis, CLASS and
CATEGORY. For e.g. CLASS=Fruits, CATEGORY=RedFruits Categorization of
Conditions is useful for Root Cause Analysis among other things.

<Condition COLUMN_NAME="alertSeverity"
 CRITICAL="NotDefined"
WARNING="NotDefined"
OPERATOR="LE"
 OCCURRENCES="1"
 MESSAGE="%alertConcatString%"
NO_CLEAR_ON_NULL="TRUE"
 MESSAGE_NLSID="host_alertLog_alertSeverity_cond"/>

<Condition COLUMN_NAME="State"
CRITICAL="open"
 OPERATOR="EQ"
 MESSAGE="%Description%"
 ALERT_CONTEXT="In-contextLaunchURL"
 NO_CLEAR_ON_NULL="TRUE" />

These are examples of the Condition element.

<TargetCollection TYPE="examplec1" >
<CollectionItem NAME = "Response">
 <Schedule>
 <IntervalSchedule INTERVAL = "300" TIME_UNIT = "Sec"/>
 </Schedule>
 <Condition COLUMN_NAME="Status"
 CRITICAL="ok"
 OPERATOR="NE"
 OCCURRENCES="3"
 MESSAGE="%target% adaptor is inaccesible or is connected."
 MESSAGE_NLSID="network_response_status"/>
</CollectionItem>

Chapter 21
Target Collection DTD Elements

21-84

</TargetCollection>

This sample gives the context for the Condition element.

For additional examples refer to TargetCollection example.

KeyColumn
The KeyColumn element is used to specify the key column for a table. It identifies a row of a
table. This element must be present in a Condition element if KEYONLY_THRESHOLDS
attribute is set for a Metric column.

<!ELEMENT KeyColumn (#PCDATA)>
<!ATTLIST KeyColumn
 COLUMN_NAME CDATA #REQUIRED
 OPERATOR (EQ | LIKE) "EQ">

Attributes
COLUMN_NAME: Specifies name of the key column

OPERATOR:

Supported values are:

• EQ (default) : Equals

• LIKE: like

Elements
Character data

Used In
Condition

Examples
<Condition COLUMN_NAME="col3" WARNING="def" OPERATOR="CONTAINS">
 <KeyColumn COLUMN_NAME="col1">keyA</KeyColumn>
</Condition>

FixitJob
This element describes the action to be taken in response to an alert.

<!ELEMENT FixitJob (Property*) >
<!ATTLIST FixitJob
 TYPE CDATA #IMPLIED >

Attributes
TYPE: Specifies the type of the job.

Chapter 21
Target Collection DTD Elements

21-85

Elements
Property

Used In
Condition

Examples
<TargetCollection TYPE="examplec1" >

 <CollectionItem NAME = "FixitExample" UPLOAD_ON_FETCH="TRUE">
 <Schedule>
 <IntervalSchedule INTERVAL="60" TIME_UNIT="Sec" />
 </Schedule>

 <MetricColl NAME="metric1"/>

<Condition COLUMN_NAME="col2" CRITICAL="0" OPERATOR="GT" OCCURRENCES="1">
 <FixitJob TYPE="OSCommand">

 <Property NAME="prop_env" SCOPE="ENV">EMDROOT</Property>
 <Property NAME="prop_loc" SCOPE="INSTANCE">FILE_LOC</Property>
 <Property NAME="COMMAND" SCOPE="GLOBAL">rm %prop_loc %</Property>
 </FixitJob>
 </Condition>
 </CollectionItem>
</TargetCollection>

This example illustrates a simple FixitJob that deletes files in response to a condition.
The COMMAND property specifies the command that is executed when the value in
col2 of the metric triggers the condition.

Chapter 21
Target Collection DTD Elements

21-86

A
Out-of-Box Associations

Enterprise Manager provides a common set of association types that should meet the needs
of most plug-in developers. As a plug-in developer, you are encouraged to become familiar
with these association types and use them if applicable. As a plug-in developer, you should
also update the Table of Integrators and Documents with links to the documents describing
your association types and your usage of all association types (allowed_pairs).

The following tables provide details on the out-of-box associations:

• Table A-1

• Table A-2

• Table A-3

• Table A-4

• Table A-5

• Table A-6

• Table A-7

• Table A-8

• Table A-9

• Table A-10

• Table A-11

• Table A-12

• Table A-13

• Table A-14

• Table A-15

• Table A-16

• Table A-17

• Table A-18

• Table A-19

• Table A-20

A-1

Table A-1 application_contains

Basic Details Source/Destination Description Usage

extends:
Contains

Core/Extended:
Core

Display Name:
"contains (app
component)"

Inverse:member
_of_application

Source: any aggragate
type which is not kind
of composite, for
example
oracle_emrep. For the
source type of
composite type, user
should use
composite_contains or
assoc types extended
from it.

Destination: member
entity types, for
example,
j2ee_applications for
Enterprise Manager
console and backend
service are members
for oracle_emrep

Cardinality: 0..*

Capture the membership
between application and its
members. The source is an
aggregation of the
members. One member
can be part of multiple
aggregations.

Indicate a membership
of an application, Can
be used in the
topology.

Table A-2 app_composite_contains

Basic Details Source/Destination Description Usage

extends:
application_cont
ains,
composite_conta
ins

Core/Extended:
Core

Display Name:
"contains
(app_composite
component)"

Inverse:member
_of_composite_a
pp

Source: any applicaion
that is also a
composite type, for
example siebel_server.
For the source type of
cluster type, user
should use
cluster_contains

Destination: member
entity types, for
example,
siebel_component_gro
up is a member of
siebel_server

Cardinality: 0..*

Capture the membership
between application and its
members. The membership
is also a kind of
composition. One member
can be part of only one
composition

Indicate a
membership of an
application, Can be
used in the topology.

Appendix A

A-2

Table A-3 authenticated_by

Basic Details Source/Destination Description Usage

extends:
depends_on

Core/Extended:
Core

Display Name:
"authenticated_by
)"

Inverse:authentica
tes

Source: An ME that
requires authentication

Destination: Me
providing the
Authentication, for
example: oracle_ldap

Cardinality: 0..1

Capture the membership
between application and its
members. The membership is
also a kind of composition. One
member can be part of only
one composition

Indicate a membership
of an application, Can
be used in the
topology.

Table A-4 composite_contains (abstract)

Basic Details Source/Destination Description Usage

extends:
contains,uses

Core/Extended:
Core

Display Name:
"CompositeContai
ns"

Inverse:
member_of_comp
osite

Source: Source: any
composite types

Destination: Members
of the composite.

Cardinality: 0..*

A form of aggregation which
requires that a part instance be
included in at most one
composite at a time. For
example: If a database D1 is
part of Oracle RAC cluster R1,
it cannot be part of another
cluster R2. This is used to
place a box around the source
and all its members to indicate
that the members cannot be
part of another source.

The restriction applies to
specific concrete association
type extended from
composite_contains. An ME
can be a destination of no more
than 1 assoc of type T if T
extends composite-contains.
But an ME can be destination
with different source ME as
long as the concrete
composit_contains types are
different.

Current usage is to link
cluster targets
(rac_database,cluster,w
eblogic_cluster) to its
members. Framework
functionality, such as
topology viewer, can
use it.

Appendix A

A-3

Table A-5 cluster_contains

Basic Details Source/Destination Description Usage

extends:
composite_
contains

Core/Extended:
Core

Display Name:
"contains (in
cluster)"

Inverse:member
_of_cluster

Source: A cluster
target type, such as
RAC or Cluster

Destination: Member
type of the cluster. The
cluster member types
should be the same

Cardinality: 1..*

Cluster membership,
where the members are of
the same type and
together provide scalability
and redundancy. Also
indicates composite
containment; Cluster A
cluster_contains B implies
that B cannot be member
of another cluster C.

Tools like Consolidation
Planner need to know
cluster membership.
Also, all the general
tools such as Topology
Viewer.

Table A-6 connects_through

Basic Details Source/Destination Description Usage

extends:
depends_ on

Core/Extended:
Core

Display Name:
"connects_throu
gh"

Inverse:
connects

Source: An ME which
is connecting to
another ME via a
intermediate path.
Example: an
application connecting
to database via listener

Destination: Me
providing the access
point for another ME
(oracle_listener,
oracle_apache, slb)

Cardinality: 0..*

Application
connects_through
Listener, which exposes
database.Service
connects_through
oracle_apache, which
exposes oracle_oc4j.

Used in Applications
topology to represent
the connection to the
end via an intermediate
path. Example:
connects_through
listener, which exposes
database.The source
will also have a direct
functional dependency
directly on the end point
(application
stores_on_db
database)In functional
view, the direct
dependency of
stores_on_db will be
shown, in physical view,
the listener link will be
shown.

Appendix A

A-4

Table A-7 contains (abstract)

Basic Details Source/Destination Description Usage

extends: none

Core/Extended:
Core

Display Name:
"contains"

Inverse:
member_of

Any source ME and its
member ME types

Cardinality: 0..*

Indicates containment
membership. A contains B
implies that B is one of the
parts that make up A.

All containment
relationships should be
captured by plug-in
developers except that
system membership is
captured by the OMS and
TC containment is not
required to be represented
via an assoc instance. You
must use the concreted
types, which extend from
"contains"

However, user can query
instances for all the
association types which
extend from the
"constains". Framework
functionality, such as
topology viewer, can
query this type of
associations.

Table A-8 depends_on(abstract)

Basic Details Source/Destination Description Usage

extends: uses

Core/Extended:
Core

Display Name:
"Depends on"

Inverse:
depended_on_by

Source: any ME type

Destination: any ME type

Cardinality: 0..*

For any ME A that depends
on ME B for its availability. If
ME B is not available, the
availability of A may be
impacted.

Framework functionalities,
such as RCA and
Topology Viewer, can use
it.

Table A-9 deployed_on

Basic Details Source/Destination Description Usage

extends: runs_on,
member_of_applic
ation

Core/Extended:
Core

Display Name:
"Deployed on"

Inverse: deploys

Source: any ME except
target component

Destination: j2ee
container

Cardinality: 1..*

Application A is deployed
into a J2EE? container B.

Topology viewer can
display the application
deployed on a j2ee
server .

Appendix A

A-5

Table A-10 exposes

Basic Details Source/Destination Description Usage

extends: uses

Core/Extended:
Core

Display Name:
"exposes"

Inverse:
exposed_by

Source: ME providing
the access point for
another ME
(oracle_listener,
oracle_apache, slb)

Destination: ME of
target being accessed
via the source.

Cardinality: 0..*

Some ME's functionality
is exposed through other
ME, such as
oracle_listener exposes
oracle_database to
application,
oracle_apache expose
oc4j.Capture more
semantics for uses: What
the listener can do gets
impacted if the db goes
down, but listener itself
does not go down, it is
degraded mode.

Used to represent the
entry points for targets/
systems.

Listener exposes
oracle_database. In this
case it is strictly not the
database target which is
providing the accesspoint,
the oracle database can
be thought of providing
the services which are
available via the listener.

oracle_http exposes oc4j.
Here again, the oc4j
target may not be
providing the http service,
the http service could be
running as a seperate
service which lets an
application connect to
oc4j.

Framework functionality,
such as topology
viewer, can use it.

Table A-11 hosted_by

Basic Details Source/Destination Description Usage

extends: runs_on

Core/Extended:
Core

Display Name:
"hosted_by"

Inverse: host_for

Source: any ME type
except a system,
service, or target
component

Destination: host

Cardinality: 1

For any target T that is
hosted_by H, the
process(es) that comprise
T execute on host H.A
target can be hosted by
only one host.

Used to locate the
targets running on the
given host.

Appendix A

A-6

Table A-12 installed_at

Basic Details Source/Destination Description Usage

extends: uses

Core/Extended:
Core

Display Name:
"installed_at"

Inverse:
install_home_for

Source: any ME except
target component

Destination: A ME
representing an install
home

Cardinality: 1

A installed at B indicates
that B represents the install
home for A Example: oracle
database --> installed_at -->
oracle_home.

Used to denote the link to
the install home where the
software for the ME is
installed.Used in patching
to get to the oracle home
where the target is
installed.

Table A-13 internal_contains (for internal OMS use only)

Basic Details Source/Destination Description Usage

extends: contains

Core/Extended:
Core

Display Name:
"InternalContains"

Inverse:
internal_member_
of

Source: System/Group

Destination: A system
can contain any ME
except group, a group
can contain any ME
except target component

Cardinality: 0..*

A special form of an
association that specifies a
whole-part relationship
between the system and a
component part. The
component part can exist
independent of the system
and can be part of multiple
systems. System A contains
B implies that B is one of
the parts that make up A. B
can also be included in
other system C

User should normally use
Group/System API to find
the members. But use can
query the
'internal_contains' against
table/view.

Table A-14 managed_by

Basic Details Source/Destination Description Usage

extends:
monitored_by,
uses

Core/Extended:
Core

Display Name:
"managed_by"

Inverse: manages

Source: any ME type
except target component

Destination: an ME type
that can provide
management
functionality for other ME
types. For example,
oracle_cs can manage
oracle_database,
oracle_listener etc.

Cardinality: 1..* (A
specific allowed_pair can
have stricter cardinality,
such as 1)

The destination ME may
work as watchdog and can
start source target. The
entity which manages
another entities can make
change to the managed
entities, which the
monitored_by doesn't have
this semantic.

Framework functionality,
such as topology viewer,
can use the association

Appendix A

A-7

Table A-15 monitored_by

Basic Details Source/Destination Description Usage

extends:

Core/Extended:
Core

Display Name:
"monitored_by"

Inverse: monitors

Source: any ME type
except target
component

Destination: agent

Cardinality: 1
(cardinality is 1 at any
given moment)

For any target T that is
monitored by an agent.
Example: target T-->
monitored_by -> agent A .

Used in agent
syncrononzation/
availability calculations/
framework code

Table A-16 provided_by

Basic Details Source/Destination Description Usage

extends:
depends_on

Core/Extended:
Core

Display Name:
"provided_by"

Inverse: provides

Source: an ME,
typically representing
some kind of service,
such as the db service,
fusion product,
webservice

Destination: A system
or a target which is
providing the service

Cardinality: 1

A provided_by B indicates
that the service of B is
provided by ME A.

Topology viewer can
display the association

Table A-17 runs_on (abstract)

Basic Details Source/Destination Description Usage

extends:
depends_on

Core/Extended:
Core

Display Name:
"runs_on"

Inverse: runs

Source: any ME except
target component

Destination: any ME
which provides
infrastructure for other
MEs to run, such as
VM.

Cardinality: 1

A run_on B indicates that
B provides infrastructure
for some processes of A
to execute. Note:
processes is used in the
English sense and does
not indicate OS
processes.

Framework functionality,
such as topology
viewer, can use it.

Table A-18 stores_on

Basic Details Source/Destination Description Usage

extends:
depends_on

Core/Extended:
Core

Display Name:
"stores_on"

Inverse: stores

Source: typically a
target which stores
data. For example:
oracle_database or sql
server.

Destination: an ME
representing storage.
For example: netapp
filer or exadata.

Cardinality: 0..*

Indicates the link to the
target representing the
storage of the bits. A
stored_on B indicates that
B provides infrastructure
for storage of bits of A,
Example: datafile--
>stored_on--
>netapp_filer. The stored
data can be static or
updatable.

Used to denote the link
to the storage
infrastructure. This is to
visually locate the
storage details in the
topology.

Appendix A

A-8

Table A-19 stores_on_db

Basic Details Source/Destination Description Usage

extends:
stores_on

Core/Extended:
Core

Display Name:
"Data Repository"

Inverse:
data_repository_fo
r

Source: an ME that
stores data in a
database.

Destination: ME
providing the database
repository for storing the
data Example:
application stores_on_db
oracle_database.

Cardinality: 0..*

Represents depends_on in
that if the database server is
down, the source can be
down.

Used in Applications
topology to represent the
database where an
applications data is
stored.

Table A-20 uses (abstract)

Basic Details Source/Destination Description Usage

extends: None

Core/Extended:
Core

Display Name:
"uses"

Inverse: used_by

Source: any ME type

Destination: any ME type

Cardinality: 0..*

For any ME A that depends
on ME B for its working but
does not affect availability.

Used in topology pages to
indicate non availability
dependency

Appendix A

A-9

B
Plug-in Technical Checklist

Every metadata plug-in is assessed for quality and best practices using the Self Validation
checklists included in this appendix.

Oracle recommends that you self-validate your plug-in against these checklists before
submitting your plug-in for a formal review. Alternatively contact the Enterprise Manager
Release Management team for the latest version of this checklist.

It includes the following sections:

• Checking your Plug-in

• Checking Targets

• Checking Customized UIs

• Checking Job Types

• Checking Reports

• Testing your Plug-in

Checking your Plug-in
Table B-1 provides a list to check the plug-in data.

For more information about defining plug-in metadata, see Defining the Plug-in .

Table B-1 Plug-in Metadata Checklist

Category Checklist Item

Readme Tag Include a Readme tag in the plugin.xml file that provides a description of your plug-in.
Ensure that it is at least 80 characters in length.

For more information, see Table 2-1

Display Name Attribute Include a DisplayName attribute in the plugin.xml file such as:

<PluginAttributes DisplayName="Oracle Sun ZFS Storage Appliance"
Type="MP"/>

For more information, see Table 2-1

TargetTypeList Tag Include a TargetTypeList tag in the plugin.xml file such as:

<TargetTypeList> <TargetType isIncluded="TRUE"
name="sun_storage_7000" />

B-1

Table B-1 (Cont.) Plug-in Metadata Checklist

Category Checklist Item

Version Support
Information

If you are supporting a specific version or specific range of versions for these targets,
ensure you define these versions. If you do not specify versions, then Enterprise
Manager assumes that this plug-in can monitor and manage all versions of the target
type.

Note: It is not a mandatory requirement to specify supported versions, but check
whether you need it.

The following example is from a database plug-in:

<TargetType name="oracle_database">
<VersionSupport> <SupportedVersion supportLevel="Comprehensive"
minVersion="9.2.0.8.0" maxVersion="9.2.0.8.0"/>
<SupportedVersion supportLevel="Comprehensive" minVersion="10.1.0.5.0"
maxVersion="10.1.0.5.0"/>
<SupportedVersion supportLevel="Comprehensive" minVersion="10.2.0.4.0"
maxVersion="10.2.0.5.0"/>
<SupportedVersion supportLevel="Comprehensive" minVersion="11.1.0.7.0"
maxVersion="11.1.0.7.0"/>
<SupportedVersion supportLevel="Comprehensive" minVersion="11.2.0.1.0"
maxVersion="11.2.0.3.0"/>
</VersionSupport>

For more information, see Table 2-1

Specific Plug-in Category Choose a specific category other than “Others". Contact the Oracle Extensibility
reviewers if your plug-in does not fit into the following predefined categories.

• Applications
• Databases
• Middleware
• Engineered Systems
• Cloud
• Servers, Storage and Network
For more information, see Table 2-1

Generic Plug-in The default is Generic, so Oracle recommends removing the <PluginOMSOSAruId>
tag or define as follows:

<PluginOMSOSAruId value="2000"/>

For more information, see Table 2-1

Size of the OPAR less than
2 MB

Ensure that your Oracle Plug-in Archive (OPAR) file is less than 2 MB.

For more information about the OPAR file, see Creating the Plug-in Archive.

Plug-in Validation Report Ensure that no violations are reported in the plug-in validation report.

For more information, see Validating the Plug-in.

Repository Connection
Details

Ensure that the plug-in validation report does not show any skipped validations
because of missing repository connection details.

Checking Targets
Table B-2 provides a checklist which applies to defined targets for your plug-in. This
checklist is only applicable if you have files in the plugin_stage/oms/metadata/
targetTypes directory.

Appendix B
Checking Targets

B-2

For more information about targets, see Creating Target Metadata Files and Collecting Target
Configuration Data.

Table B-2 Targets Checklist

Category Checklist Item

Target Type Name Ensure that the target type name follows the pattern company_plugin_tag_type
_name, such as oracle_vt_zone or oracle_emas_forms_server

Target is an Entity Ensure that the target is a monitorable and manageable entity and it makes business
sense to model it.

Identifiable Presence Ensure that the target being modelled has a identifiable presence even if Enterprise
Manager is not installed.

Manageable Entity Class Identify the manageable entity class to which the target type belongs and set the
property accordingly:

• is_system
• is_end_user_system

Note: This property is for end-user systems. Most plug-ins do not require this so
check with the Oracle Extensibility reviewers before setting the property.

• is_service
• is_install_home
• is_group

Note: This property should be set the target_type=composite group only.
• is_existence_only

Note: This property should be set for new targets that are not fully managed or
monitored.

For more information, see Table 3-2.

Monitoring Mode This check applies to repository-side targets only. Ensure that MonitoringMode is set
to Repository for Repository target types.

Monitoring Mode This check applies to MultiAgent-side targets only.

Set MonitoringMode set to OMSMediated for multi-agent target types.

Response Metric All target types must have a response metric defined.

For more information, see Defining the Basic Response Metric Group.

Target Type Metadata
Version

The Target Type metadata version consists of 2 numbers, MM.NN where MM is the
major version number and NN is the minor version number.

Set the major version number to the main plug-in release, such as 12 if the plug-in
release is 12.1.N.N.N and 13 if the plug-in version is 13.N.N.N.N.

Set the minor version number to 2 digits starting with 01, such as 13.01 to start with
for 13.x plug-ins

Note: You do not have to update the metadata version if you are changing query or
execution descriptor or the agent-side script.

For more information, see Defining the Target Type Metadata.

Appendix B
Checking Targets

B-3

Table B-2 (Cont.) Targets Checklist

Category Checklist Item

Target Type Metadata Minor
Version

Ensure that the minor version number uses a 2 digit format, such as 13.01 instead of
13.1.

Note: Minor versions are compared right-padded to 20 digits, so 13.9 > 13.10 in
meta version semantics, since 13=13 and 9 right padded to 20 digits is greater than
10 right padded to 20 digits (900000... > 100000..). The number of digits in the minor
version must be consistent when you move from one version to another. Having 2
digits in the minor version allows you to bump up until 99.

DDR patches supplied on top of previous releases use the format 13.NNYYWWW. If
you are providing a metadata patch on top of 13.01, then the patch version is
13.0113005 (for 5th week of 2013). 13.0113005 is greater than 13.01 but less than
13.02 in target type metadata version semantics

For more information, see Defining the Target Type Metadata.

Associations Ensure that no abstract association types are used (select assoc_type from
mgmt_assoc_types where is_abstract=1).

Associations Ensure that only core association types are used (select assoc_type from
mgmt_assoc_types where category=1)

Associations Ensure that the Provided_by/relies_on_key_component allowed pair is not defined
between the service and any other target type.

Valid Target Properties Ensure that the Target properties include only properties that are used for monitoring
the target, such as collecting a metric.

Do not use target properties as a name value pair to dump data against the target. If
it is not actively used by the Management Agent, then it is not a target property.

Target Version Property Ensure that the Target version property is added.

The Target version property captures the target version. By default, Enterprise
Manager uses the "version" property to represent the target version.

Target version is required for managing the target so that you can indicate that a
particular version of the target is deprecated with a new release of plug-in. It helps
administrators to determine the versions of the products they are using also.

Credential Sets Ensure that credentials are defined as Credential Sets.

For more information, see Defining Credentials.

Storing Credentials Do not store credentials (user name or password) in target properties. They must be
modelled as credentials.

Response Metric Ensure that the Response metric category has only one numeric metric called
Status.

For more information, see Defining the Basic Response Metric Group.

Metric Definitions Check that there are no hardcoded paths to Perl in your metric definitions.

Metric Definitions Ensure that no defined key column stores Timestamp or Date or has key parts that
are variable such as Date, Timestamp, Line Number, or Session Id.

Metric Definitions Ensure that no credential values are passed as command-line arguments to scripts
in the metric definitions

Metric Definitions Ensure that user names and passwords are passed by stdin to scripts and not by
environment variables.

Metric Collection Item Do not use the UPLOAD_ON_FETCH attribute when defining a collection item.

For more information, see Table 3-5

Appendix B
Checking Targets

B-4

Table B-2 (Cont.) Targets Checklist

Category Checklist Item

Metric Definitions Ensure that the display names for metrics and metric columns are user-friendly and
have proper NLSID.

For more information, see Metric Definition Files.

Metric Definitions Ensure that configuration metric definitions use type RAW (not TABLE).

For more information, see Table 3-4

Metric Definitions Ensure that any count or number type metric column is not defined as type STRING.

Metric Definitions Ensure that metric keys do not have high cardinality, that is, a metric does not collect
thousands of keys.

For more information, see Defining Target Metadata

Metric Definitions Ensure that you categorized your metrics within the Default metric class.

For more information, see Categorizing Metrics.

Metric Definitions Ensure that configuration metrics only collect data that is explicitly changed due to
administrator actions.

Target Configuration Data Ensure that the integer VER attribute is specified in the Configuration Metadata XML
file.

For more information, see Table 7-1

Target Configuration Data Ensure that table names begin with the plug-in tag followed by an underscore and
can be a maximum size of 25 characters.

Target Configuration Data Ensure that table and column names are in uppercase.

Target Configuration Data Ensure that the size of columns is reasonable.

Target Configuration Data Ensure that User Interface (UI) names for tables and columns are reasonable and
user-friendly because these appear in the UI and can be seen by end users.

Target Configuration Data Ensure that key columns are correctly identified for each table (for non-single row
tables)

Target Configuration Data Ensure that flags with default settings are not repeated. Do not repeat flags in every
table or column that have default settings. Use flags for non-default setting overrides
only. List all flags (including default setting) at METADATA level if you want to list
them in one place.

Target Configuration Data Ensure that the META_VER attribute in the target collection files matches the
corresponding META_VER attribute defined for the target type.

Metric Collection Items Ensure that the Response CollectionItem defined for the Response metric has a
frequent schedule. Oracle recommends a collection interval between 1 and 5
minutes.

Metric Collection Items Ensure that conditions are not defined on key columns

Metric Collection Items Ensure that values used with MetricColl elements are valid metric values in the target
type metadata XML.

Metric Collection Items Ensure that messages defined for conditions use substitution variables for threshold
values instead of hardcoding values.

Metric Collection Items Ensure that Alert messages include metric display names, metric values and the
thresholds that caused the alerts. Ensure that the main alert is conveyed in first 80
chars of the message.

Upgrading Targets When upgrading a target type from an earlier release, ensure that data column types
are not modified

Upgrading Targets When upgrading a target type from an earlier release, ensure that the key columns,
order, data type, or number are not modified

Appendix B
Checking Targets

B-5

Table B-2 (Cont.) Targets Checklist

Category Checklist Item

Upgrading Targets When upgrading a target type from an earlier release, ensure that the metric type is
not modified (such as TABLE to RAW)

Upgrading Targets When upgrading a target type from an earlier release, ensure that for RAW metrics,
STORAGE_TABLE_NAME or STORAGE_COLUMN_NAME are not modified

Upgrading Targets When upgrading a target type from an earlier release, ensure that the USAGE_TYPE
of a metric is not modified.

Derived Associations Ensure that your derived association rules start with proper prefix.

For more information, see Using Association Derivation Rules Syntax and Semantics

Derived Associations Ensure that your triggers satisfy all trigger patterns in the guide.

For more information, see About Regular Query and Trigger Patterns.

Derived Associations Ensure that your rule query only contains simple joins and one FROM clause. (If it is
more complex, then explain how performance will be ensured)

Derived Associations Test performance for each perspective on which your rule might get triggered

Derived Associations Check that you have necessary indexes defined for joined columns (especially for
larger data tables)

Checking Customized UIs
Table B-3 provides a checklist which applies to the customized UI for your plug-in. This
checklist is only applicable if you have a customized UI.

For more information about customized UIs, see Defining a Management User
Interface .

Table B-3 Customized User Interface Checklist

Category Checklist Item

Adobe Flash Player Check that your custom UI works with the supported version of Adobe Flash Player.

See the Enterprise Manager certification matrix available on My Oracle Support for
supported versions.

https://support.oracle.com/

Browser Version
Compatibility

Check that your custom UI works with the supported versions of Web browsers.

See the Enterprise Manager certification matrix available on My Oracle Support for
supported versions.

https://support.oracle.com/

Accessibility Ensure that the UI complies with the Oracle Global HTML Accessibility Guidelines
(OGHAG).

For more information, see Accessibility Guidelines.

Performance Run performance tests on all new pages to ensure they load under a reasonable
time limit.

Appendix B
Checking Customized UIs

B-6

https://support.oracle.com/
https://support.oracle.com/

Checking Job Types
Table B-4 provides a checklist which applies to job types defined for your plug-in. This
checklist is only applicable if you have files in the plugin_stage/oms/metadata/jobTypes
directory.

For more information about Job Types, see Adding Job Types .

Table B-4 Job Types Checklist

Category Checklist Item

Job Type Name Ensure the job type name is of the form plugin_tag_VerbNoun.

• By using the plugin_tag as the prefix, you ensure the job type does not conflict
with similar named job types from other plug-ins

• An appropriate verb-noun combination ensures that the objective of the job type
is clear to the customer.

Oracle recommends names such as oracle_as_RunHostProcess,
oracle_db_BackupDB, oracle_as_RotateLogs

Display Names Ensure the job type's NLS information clearly conveys the intention of the job type.
Keep in mind that there might be similar named job types from other plug-ins.

Oracle recommends names such as dbBackupDB - "Backup Oracle Database", or
asRotateLogs - "Rotate Weblogic Logs"

Checking Reports
Table B-5 provides a checklist which applies to reports defined for your plug-in. This checklist
is only applicable if you have files in the plugin_stage/oms/metadata/reports directory.

For more information about reports, see Adding Information Publisher Reports and
Developing BI Publisher Reports .

Table B-5 Reports Checklist

Category Checklist Item

SQL Usage

Information Publisher
Reports only

Ensure that NamedSQL is used rather than a raw SQL statement parameter in a
report.

Oracle recommends using Named SQL because it makes patching and changing
your SQL more robust. If a user does a CREATE LIKE on your report, then they get
an actual copy of the SQL statement unless you use Named SQL, in which case they
get a pointer to the Named SQL. If you subsequently change the SQL, then the user
gets the new copy from the Named SQL pointer.

BI Publisher Reports only Ensure that the report includes proper header and footer subtemplates.

Testing your Plug-in
Table B-6 provides a checklist for self-testing your plug-in.

For more information, see Validating, Packaging, and Deploying the Plug-in .

Appendix B
Checking Job Types

B-7

Table B-6 Plug-in Self-Test Checklist

Category Checklist Item

Deployment Scenarios Confirm that you tested in the following deployment sequence:

1. Deploy on Oracle Management Service (OMS)

2. Deploy on Management Agent

3. Remove from Management Agent

4. Remove from OMS

5. Redeploy on OMS

6. Redeploy on Management Agent

For more information, see Importing and Deploying the Plug-in Archive into
Enterprise Manager.

Upgrade If this is not the first version of your plug-in, ensure that you have tested your plug-in
upgrade on the same Enterprise Manager installations as the earlier supported
versions of your plug-in.

Appendix B
Testing your Plug-in

B-8

C
Metric Unit Standardization

Metric owners need to specify the metric unit and unit category for each of the metric column
(except keys columns). The following table lists the standard metric units:

Unit
Category

Unit Code Unit Display Unit NLS ID

BOOLEAN BOOLEAN boolean EM_SYS_STANDARD_BOOLEAN_BOOLEAN
COUNT NA n/a EM_SYS_STANDARD_COUNT_NA
DATA_SIZE BLOCK blocks EM_SYS_STANDARD_DATASIZE_BLOCK
DATA_SIZE BYTE Byte EM_SYS_STANDARD_DATASIZE_BYTE
DATA_SIZE KB KB EM_SYS_STANDARD_DATASIZE_KB
DATA_SIZE MB MB EM_SYS_STANDARD_DATASIZE_MB
DATA_SIZE GB GB EM_SYS_STANDARD_DATASIZE_GB
DATA_SIZE TB TB EM_SYS_STANDARD_DATASIZE_TB
DATE NA n/a EM_SYS_STANDARD_DATE_NA
ENUM NA n/a EM_SYS_STANDARD_ENUM_NA
FREQUENCY HZ Hz EM_SYS_STANDARD_FREQUENCY_HZ
FREQUENCY KHZ KHz EM_SYS_STANDARD_FREQUENCY_KHZ
FREQUENCY MHZ Mhz EM_SYS_STANDARD_FREQUENCY_MHZ
FREQUENCY GHZ GHz EM_SYS_STANDARD_FREQUENCY_GHZ
FREQUENCY THZ MHz EM_SYS_STANDARD_FREQUENCY_THZ
IPV4 NA n/a EM_SYS_STANDARD_IPV4_NA
IPV6 NA n/a EM_SYS_STANDARD_IPV6_NA
MESSAGE NA n/a EM_SYS_STANDARD_MESSAGE_NA
NA NA n/a EM_SYS_STANDARD_NA_NA
NAME NA n/a EM_SYS_STANDARD_NAME_NA
PARAMETER NA n/a EM_SYS_STANDARD_PARAMETER_NA
PERCENTAG
E

PERCENTAG
E

% EM_SYS_STANDARD_PERCENT_PERCENT

PORT NA n/a EM_SYS_STANDARD_PORT_NA
POWER WATT watt EM_SYS_STANDARD_POWER_WATT
POWER KILOWATT kiloWatt EM_SYS_STANDARD_POWER_KILOWATT
POWER MEGAWATT megawatt EM_SYS_STANDARD_POWER_MEGAWATT
POWER GIGAWATT gigaWatt EM_SYS_STANDARD_POWER_GIGAWATT
POWER AMP ampere EM_SYS_STANDARD_POWER_AMP
PROPERTY NA n/a EM_SYS_STANDARD_PROPERTY_NA
RATE ACCESSSEC accesses per

sec
EM_SYS_STANDARD_RATE_ACCESSPS

RATE BLOCKSEC blocks per sec EM_SYS_STANDARD_RATE_BLOCKSEC
RATE BPS bytes per sec EM_SYS_STANDARD_RATE_BPS

C-1

Unit
Category

Unit Code Unit Display Unit NLS ID

RATE CENTISECO
NDSPR

centiseconds
per request

EM_SYS_STANDARD_RATE_CENTISECONDSPR

RATE CHARACTER
SEC

characters per
second

EM_SYS_STANDARD_RATE_CHARACTERSEC

RATE CONNECTIO
NSEC

connections
per second

EM_SYS_STANDARD_RATE_CONNECTIONSEC

RATE GBPS GB per sec EM_SYS_STANDARD_RATE_GBPS
RATE IOSEC I/O per

second
EM_SYS_STANDARD_RATE_IOPS

RATE KBPS KB per sec EM_SYS_STANDARD_RATE_KBPS
RATE MBPS MB per sec EM_SYS_STANDARD_RATE_MBPS
RATE MESSAGEMI

NUTE
messages per
minute

EM_SYS_STANDARD_RATE_MESSAGEPM

RATE MESSAGESE
C

messages per
second

EM_SYS_STANDARD_RATE_MESSAGEPS

RATE MILLISECRE
QUEST

ms per
request

EM_SYS_STANDARD_RATE_MILLISECREQUEST

RATE MINUTE minute EM_SYS_STANDARD_RATE_MINUTE
RATE OPERATIOND

AY
operations per
day

EM_SYS_STANDARD_RATE_OPERATIONDAY

RATE OPERATIONH
OUR

operations per
hour

EM_SYS_STANDARD_RATE_OPERATIONHOUR

RATE OPERATIONI
NTERVAL

operations per
interval

EM_SYS_STANDARD_RATE_OPERATIONINTERVAL

RATE OPERATION
MINUTE

operations per
minute

EM_SYS_STANDARD_RATE_OPERATIONMINUTE

RATE OPERATIONS
EC

operation per
second

EM_SYS_STANDARD_RATE_OPERATIONSEC

RATE OPERATIONT
RANS

operations per
transaction

EM_SYS_STANDARD_RATE_OPERATIONTRANS

RATE REQUESTSE
C

requests per
second

EM_SYS_STANDARD_RATE_REQUESTPS

RATE SECOND per second EM_SYS_STANDARD_RATE_SEC
RATE TRANSACTIO

NSEC
transactions
per second

EM_SYS_STANDARD_RATE_TRANPS

STATUS NA n/a EM_SYS_STANDARD_STATUS_NA
TEMPERATU
RE

C celsius EM_SYS_STANDARD_TEMPERATURE_C

TEMPERATU
RE

F fahrenheit EM_SYS_STANDARD_TEMPERATURE_F

TIME CENTISECO
NDS

centiseconds EM_SYS_STANDARD_TIME_CENTISECONDS

TIME DAYS days EM_SYS_STANDARD_TIME_DAYS
TIME HOURS hours EM_SYS_STANDARD_TIME_HOURS
TIME MICROSEC microseconds EM_SYS_STANDARD_TIME_MICROSEC
TIME MILLISECON

DS
ms EM_SYS_STANDARD_TIME_MILLISEC

Appendix C

C-2

Unit
Category

Unit Code Unit Display Unit NLS ID

TIME MILLISECRE
QUEST

ms per
request

EM_SYS_STANDARD_TIME_MILLISECREQUEST

TIME MINUTES minutes EM_SYS_STANDARD_TIME_MINUTE
TIME MONTHS months EM_SYS_STANDARD_TIME_MONTHS
TIME NANOSEC nanoseconds EM_SYS_STANDARD_TIME_NANOSEC
TIME SECOND seconds EM_SYS_STANDARD_TIME_SEC
TIME SECONDREQ

UEST
seconds per
request

EM_SYS_STANDARD_TIME_SECONDREQUEST

TIME WEEKS weeks EM_SYS_STANDARD_TIME_WEEKS
TIME YEARS years EM_SYS_STANDARD_TIME_YEARS
TIME_STAMP NA n/a EM_SYS_STANDARD_TIMESTAMP_NA
URL NA n/a EM_SYS_STANDARD_URL_NA
UTILIZATION PERCENTAG

E
% EM_SYS_STANDARD_UTILIZATION_PERCENTAGE

Appendix C

C-3

Index

A
accessibility guidelines, 9-98
accessing Enterprise Manager data, 9-30
accessing strings from ActionScript, 9-100
adding a target instance, 14-12
adding an entity type, 17-8
adding reports, 5-1
adding targets manually, 12-9
advanced metric collection, defining, 3-23
advanced metrics, defining, 3-11
advanced plug-in, creating, 1-5
application activities, defining, 9-15
area charts, 9-65
asynchronous service request handling, 9-5
automatic discovery, configuring, 12-12
automatic target discovery, 12-1
automation services

about, 9-47
running jobs, 9-47
submitting jobs, 9-47

availability region, 9-61
Availability Status Icon in Column, 5-8

B
bar charts, 9-66
basic metric collection, defining, 3-23
basic plug-in, creating, 1-4
basic response metric group, defining, 3-10
BI Publisher

integraged with Oracle Enterprise Manager
Cloud Control, 6-1

report data source, 6-2
training and resources, 6-1

BI Publisher reports, 6-4
Adobe Acrobat, 6-1
Microsoft Word, 6-1
staging and deploying, 6-3

BulkSqlQuery interface, 9-40

C
callback signature, 17-1
categories, metric, 3-14

categorizing metrics, 3-14
charge item, 17-3
charge plan, 17-1
charge template, 17-2
Chargeback

MDS file, 17-3
new entity type, 17-2
registering MDS, 17-7
testing new entity, 17-8
usage mode, 17-2
XML elements, 17-5

ChargebackMetadata.xsd, 17-5
Chart element, 5-22
Chart Title, 5-25
Chart Type, 5-22
charts

area charts, 9-65
bar charts, 9-66, 9-68
defining, 9-63
horizontal charts, 9-66
line charts, 9-63
pie charts, 9-69
vertical bar charts, 9-68

checking job status, 9-50
collected configuration data, 7-2
collecting target configuration data, 7-1
column charts, 9-68
Column Group End Column, 5-12
Column Group Header, 5-12
Column Group Start Column, 5-12
columns, transient, 3-28
commands

emcli add_target, 14-12
emcli import_upate, 14-10
emctl register oms metadata, 14-14, 14-15
empdk validate_plugin, 14-6

compliance content, example, 13-30
compliance examples, 13-37
compliance framework

defining, 13-26
syntax, 13-26
tags, 13-28, 13-30

compliance standard rules, 13-2
compliance standards

adding, 13-1

Index-1

compliance standards (continued)
defining, 13-23
process, 13-1
syntax, 13-23
tags, 13-23

compliance XML, packaging, 13-35
configuration collection tables, 7-1, 7-4
configuration data, upgrading, 7-16
configuration management tables, 7-2
configuration metadata, 7-7
configuration metadata file, 7-2
configuration metadata XML file, 7-4

elements, 7-8
example, 7-12
packaging, 7-13

configuring automatic discovery, 12-12
creating a charge plan, 17-8
creating connectors, 13-10
creating event-specific customization XML, 10-3
creating plug-in archive, 14-7
creating plug-ins, 4-1

adding targets, 1-1
advanced plug-in, 1-5
basic plug-in, 1-4
deploying, 1-1
designing, 1-1
developing, 1-1
importing into Enterprise Manager, 1-1
intermediate plug-ins, 1-5
packaging, 1-1
staging, 1-1
testing, 1-1
validating, 1-1

creating plugin_registry.xml file, 2-7
creating plugin.xml file, 2-3
credentail store, 16-1
credential elements

CredentialType, 16-4
credential information

retrieving, 9-53
credential region, 9-63
credentials

authenticating target type, 16-1
defining, 16-1
elements, 16-4
metadata, 16-3
named credentials, 16-1
sets, 16-1
types, 16-1, 16-2
X509v3 certificate, 16-1

custom data source, 9-34
creating, 9-35
updating, 9-37

CustomDataSource.setTimestampedRows
method, 9-37

customization specification, 10-2
customizing Incident Manager, 10-1

D
Data Model Editor, 6-1
data services, 9-5
data source

line chart, 9-64
data source, binding, 9-36
default collection file, 1-5, 3-2
default collection file, creating, 3-21
default collection metadata elements, overview,

3-24
default collections metadata file, 3-9, 7-2
default filter, overwrite description, 5-18
Define Filter Name, 5-15
define filter prompt, 5-15
defining

advanced metrics, 3-11
defining a management user interface, 9-2
defining a plug-in, 2-1

introduction, 2-1
defining compliance framework, 13-26
defining management user interface, process,

9-2
defining metrics, 3-8
defining navigation, 9-14
defining pages, 9-16
defining target type metadata, 3-4
deleting jobs, 9-50
demo sample Flex UI, elements, 9-95
demo sample MPCUI, 9-94
demo sample project, setting up, 9-93
deployed plug-in

modifying, 9-96
deploying plug-ins, 14-9, 14-11
deprecating, plug-ins, 2-10
developing plug-ins, 1-1
development guidelines, reports, 5-34
dialogs

defining, 9-72
displaying, 9-73
registration, 9-72

dialogs, defining, 9-18
discovery content, 12-7
discovery content, packaging, 12-7
discovery examples, 12-10
discovery framework, 12-3, 12-5
discovery inputs, 12-5
discovery metadata elements, 12-4
discovery process, 12-1
discovery script

creating, 12-5
example, 12-3

Index

Index-2

discovery script (continued)
variables, 12-5

discovery scripts, 12-7, 12-8
discovery XML, creating, 12-2
discovery XSD, 12-2
DLF file, 13-32
DMS Fetchlet/Agent Integration Instructions,

20-35
DTD, 21-1
dynamic instance properties, 3-8
Dynamic Monitoring Service, 20-32
Dynamic Monitoring Service (DMS) fetchlet,

20-32
Dynamic Time Selector, 5-30

E
EDK, 1-2, 1-5, 9-2, 12-2

downloading, 1-2
installing, 1-3

EDK, components, 1-2
EM CLI utility, 14-12

setting up, 14-9
emagent_perl.trc, 12-4
emcli add_target command, 14-12
emcli import_upate command, 14-10
emctl register oms metadata command, 14-14,

14-15
emd_common.pl file, 12-4
empdk validate_plugin command, 14-6
emptly tabel, display, 5-17
Empty Table Text, 5-19
empty table, header type, 5-17
empty table, headers, 5-17
EMREPOS data source, 6-2
Enterprise Manager data, accessing, 9-30
Enterprise Manager DTD, 21-1
entity callback, 17-3
entity type, 17-1, 17-2
entity types, 13-10
entity types, filtering, 13-11
event-specific customization metadata elements,

10-4
event-specific customization XML, 10-3
event-specific customization XSD, 10-3
extensibility

plugin builder, 4-1
Extensibility

Software Library properties file, 15-5
Extensibility Development Kit, see EDK, 1-3
extensibility toolkits, for Chargeback, 17-1

F
facet, definition, 13-11

facets, 13-10
fetchlet, definition, 3-8
fetchlets

DMS, 20-32
HTTP data, 20-21
JDBC, 20-37
JMX, 20-43
OS command, 20-1
overview, 20-1
REST, 20-56
SNMP, 20-15
SQL, 20-10
URL timing, 20-27
URLXML, 20-25
WBEM, 20-39
web services, 20-46
WS-Management, 20-52

file locations
compliance DLF files, 13-35
compliance XML, 13-34
compliance_rule.xml, 14-4
compliance.dlf, 14-4
configuration metadata XML file, 7-13
default_collections.xml, 14-4
derivedAssoc_rule.xml, 14-4
discovery JARs, 12-8
discovery metadata, 12-6
discovery.xml, 14-5
job_type.xml, 14-4
mpcui.xml, 14-5
plugin.xml, 14-2
report.xml, 14-4
target_type.xml, 14-4
target-type_ecmdef.xml, 14-4

file permissions, modifying, 14-5
files

configuration metadata, 7-2
default collections, 7-2
DLF, 13-32
metric definition, 3-9
MPCUI metadata file, 9-6
plugin_discovery.xml, 12-4
target type metadata, 7-2

Fill, 5-22
filter name, default, 5-16
filter name, null default, 5-17
filter names, translate, 5-16
filter tip text, 5-16
filtering entity types, 13-11
framework

discovery, 12-3, 12-5

G
generic discovery integration example, 12-2

Index

Index-3

getData method, 9-32
getTargetInfo() method, 9-42
grouping similar metrics, 3-21
guided discovery, defining UI, 9-80
Guided Resolution region

adding customizations, 10-14
Guided Resolution region, customizing, 10-2

H
Height, 5-23, 5-28
home page customizations, migrating, 9-98
horizontal charts, 9-66
Horizontal or Vertical, 5-23
HTML/JS implementation, 9-6
HTTP data fetchlets, 20-21
HTTP Data Fetchlets, 20-21
hyperlinks, tables, 5-19

I
icons, defining, 9-79
importing plug-in into Enterprise Manager, 14-9
importing the plug-in, prerequisites, 14-9
Incident Details region, 10-2

adding customizations, 10-12
Incident Manager

customizing, 10-1
incidents and problems region, 9-62
InfoItem class, 9-76
information displays

defining, 9-76
information item

defining, 9-76
Information Publisher, 5-1
init method, 9-17
installing the EDK, 1-3
instance properties, defining, 3-7
integration metadata, defining, 9-8
intermediate plug-in, 1-5
Is PL/SQL Statement, 5-9, 5-24

J
Java content, required by discovery, 12-8
JDBC fetchlet, 20-37
JDBC Fetchlet, 20-37
JMX, 18-1
JMX command line tool

syntax, 18-19
usage, 18-20

JMX fetchlet, 20-43
JMX-enabled application, 18-2
job service, 9-47
job status, checking, 9-50

job summary region, 9-62
JVM target type, 18-17
JVM Target, configuring, 18-34

L
label-value pairs, 9-76
Layout Editor, 6-1
Legend Position, 5-24, 5-28
legend, controlling, 9-65
line chart data source, 9-64
line charts, 9-63
Link Destination, 5-29
links, defining, 9-78
list filter names, 5-16
localizing, target metadata, 3-32
logging

adding to your code, 9-91
options for output, 9-92

M
managed entity, 17-1, 17-2
management user interface

defining, 9-1
Maximum Number of Rows, 5-11
MBeans, 18-2
MDS file, for Chargeback, 17-3
MenuMetadata element, 9-14
Message Style, 5-29
Message Text, 5-29
metadata

basic plug-in, 2-2
configuration, 7-2
default collection elements, 3-24
default collection file, 3-2
defining target types, 3-4
definitions, 3-2
discovery, 12-4
plugin.xml file, 2-3
target type definition file, 1-4
target type file, 3-2
updating deployed files, 14-13
versioning, 3-5

metadata registration service (MRS), 14-13
metadata-only implementation, process, 9-3
metric categories, 3-14
Metric Column Name, 5-27
metric definition files, 3-9
Metric Details Element, 5-27
Metric Extension Archive, 18-54
Metric Name, 5-27
metric services, 9-30
Metric Unit Standardization, C-1
metric, definition, 3-8

Index

Index-4

metrics, defining, 3-8
migrating home page customizations, 9-98
monitor target instances, 14-12
monitoring entity types, 13-10
monitoring scripts, 12-7
MPCUI, 9-1

providing online help, 9-100
MPCUI application

defining, 9-15
MPCUI concepts

activity, 9-5
page, 9-5
services, 9-5

asynchronous service request handling,
9-5

data services, 9-5
operation services, 9-5

URL, 9-5
MPCUI development environment options, 9-93
MPCUI framework services, 9-5
MPCUI implementation

packaging, 9-21
MPCUI metadata elements, 9-7
MPCUI metadata file

creating, 9-6

N
Name Value Pair display, 5-9
name-value pairs, adding, 10-2
named credentials sets, 9-54
navigation, defining, 9-14, 9-27
NLS IDs, 17-7
Not Yet Managed targets, 12-4
Null Data String Substitute, 5-8
Number of Rows to Show, 5-9

O
online help, defining in MPCUI, 9-100
OPAR, 14-7
operation services, 9-5
options, 6-4
Oracle plug-in archive file

see OPAR, 14-7
oracle_home target, 7-12
OS Command fetchlets, 20-1
OS Command Fetchlets, 20-1
OSFetchlet, 20-2
OSLinesFetchlet, 20-4
OSLineTokenFetchlet, 20-6
out-of-box compliance frameworks, 13-10
out-of-box policy groups, 13-3
Overwrite Default Button Text, 5-19
Overwrite Default Filter Tip Text, 5-18

P
packaged regions

availability region, 9-61
credentials region, 9-63
incidents and problems region, 9-62
including, 9-61
job summary region, 9-62

packaged SQL, 9-39
packaged SQL, writing, 9-41
packaging compliance XML, 13-35
packaging discovery content, 12-6, 12-7
packaging discovery XML, 12-6
packaging tool, 1-2
page controller, 9-17
page layout components

defining, 9-59
page model, 9-16
page.invokeActivity method, 9-28
pages, defining, 9-16
permissions, file, 14-5
pie charts, 9-69
plug-in

basic metadata, 2-2
creating archive, 14-7
defining, 2-1
deploying, 14-9, 14-11
deprecating, 2-10
designing, 1-4
importing, 14-9
packaging, 1-2
packaging SQL, 9-42
staging, 14-2
UI custom, 9-6
upgrading, 2-10
validating, 1-2, 14-6

plug-in archive, 14-7
plug-in archive, importing, 14-10
plug-in creation process, 1-1
plug-in definition files

creating, 2-3
plugin-registry.xml, 2-3
plugin.xml, 2-3

plug-in definition process, 2-1
plug-in deployment, 14-12
plug-in development, getting started, 1-1
plug-in ID

plug-in tag, 2-2
product ID, 2-2
vendor ID, 2-2

plug-in identifier, 2-2
see plug-in ID, 2-2

plug-in stage area, 9-51
plug-in staging directory, 7-13, 12-6, 13-35

Index

Index-5

plug-in version
about, 1-1
defining, 2-2

plugin builder, 4-1
adding collection items, 4-17
adding metric properties for a target, 4-15
adding target type, 4-11
collection item, 4-1
create Enterprise Manager plug-in, 4-4
creating a plug-in project, 4-4
creating sample plug-ins, 4-7
deinstallation, 4-18
importing and deploying PAR files, 4-10
installation, 4-2
overview, 4-1
plugin_registry.xml, 4-1
plugin.xml, 4-1
prerequisites, 4-2
target discovery, 4-9
target type, 4-1
updating target type information, 4-12
with existing Jdeveloper, 4-3
with fresh Jdeveloper installation, 4-3

plugin_discovery.xml
EmTargetDiscovery element, 12-4

plugin_discovery.xml file, 12-4
plugin_registry.xml, 4-1
plugin_registry.xml file

creating, 2-7
elements, 2-8
example, 2-7
Version attribute, 1-1

plugin.xml, 4-1
plugin.xml file

creating, 2-3
elements, 2-4
example, 2-3
PluginVersion attribute, 1-1

preferred credentials, 9-53
prerequisites for adding compliance standards,

13-2
prerequisites, collection configuration data, 7-2
process

compliance standards, 13-1
discovery, 12-1
plug-in definition, 2-1
target configuration data collection, 7-1
target metadata files creation, 3-1
validation, packaging, and deployment, 14-1

processing cursor, displaying, 9-78
promoting Not Yet Managed targets, 12-10
pull metrics, 3-9
push metrics, 3-9

R
rate metrics, 3-28
RAW metrics, 7-18
real-time monitoring facets, 13-11

creating, 13-13
tags, 13-13
time windows, 13-15

real-time monitoring rules, 13-9
creating, 13-17
tags, 13-17

Receivelet, 19-1
receivelet, definition, 3-8
referencing strings from HTML, 9-99
registering bundles, 9-99
registering event-specific customizations, 10-18
registering MDS, for Chargeback, 17-7
remote operations, 9-51
RemoteOp service, 9-51
Render Image in Column, 5-8
report definition files, creating, 5-3
Report Definitions page, 5-2
report definitions, updating, 5-5
report testing, interactive, 5-4
Report-Wide Parameters, 5-30
ReportDefinition tag, 5-6
repository check-based rules, 13-2
repository rule definition

example, 13-4
repository rule syntax, 13-3
repository rule syntax, description, 13-6
Response metric, JMX, 18-20
REST CLI, 20-61
REST fetchlet, 20-56
RESTful web resources, 20-56
reusable credentials UI components, 9-55
rule source query, 13-8

S
scripts for remote operation, packaging, 9-51
security

Web Services, 18-4
Separate Rows as Delimiters, 5-8
Separate Rows for Values in Cell, 5-8
service requests

batching, 9-44
service requests, automated polling, 9-44
setRows method, 9-37
Severity Icon, 5-13
Show Values in Legend, 5-26
similar metrics for collection, 3-21
Slices as Percentage, 5-26
SNMP fetchlet, 20-15
SNMP Fetchlet, 20-15

Index

Index-6

SNMP Receivelets, 19-1
SOAP, 18-2
Software Library entities

using EM CLI verbs, 15-12
using job types, 15-10

Software Library framework, 15-1
adding metadata to Enterprise Manager,

15-8
defining entities, 15-7
defining metadata, 15-2
entity properties files, 15-5
introduction, 15-1
organizing metadata files, 15-7
using entiies, 15-9

software library, setting up, 14-9
Sort Column, 5-8
sort order, 5-8
Split Table into Multiple Tables by Column, 5-8
SQL fetchlet, 20-10
SQL Fetchlet, 20-10
SQL filter, 5-15
SQL or PL/SQL queries, reports, 5-3
SQL or PL/SQL Statement, 5-8, 5-11, 5-24
SqlQuery interface, 9-40
Stacked Bar Chart, 5-25
staging directory structure, 14-2
staging the plug-in, 14-2
Standalone Java Application, configuring, 18-34
standard collection metrics, 7-18
static instance properties, 3-7
stopping jobs, 9-50
strings

accessing from ActionScript, 9-100
referencing from HTML, 9-99

supported customizations, 10-2
surfacing metrics

Oracle Coherence, 18-57
Standalone JVM, 18-57

system home pages, defining, 9-21
systemUiIntegration metadata XML file, 9-24

T
Table Element parameters, 5-8
table header text, overwrite, 5-18
tables

custom data provider, 9-71
data service, 9-70
defining, 9-69
getting selected rows, 9-71

target configuration data collections
defining, 3-24
process, 7-1

target configuration data, collecting, 7-1
target credentials, defining, 3-5

target definition files
overview, 3-2

target descriptors
TargetMetadata and Display, 3-4

target discovery, defining, 12-1
target instance properties, 3-7
target instance, adding, 14-12
target metadata, 3-9

localizing, 3-32
target metadata files

creating, 3-1
target metadata files creation process, 3-1
target navigator, 9-79
target services

associated targets service, 9-43
availability service, 9-44
metric metadata service, 9-43
target properties service, 9-42
working with, 9-42

Target Type, 5-14, 5-27
target type facets, 13-11
target type metadata file, 3-2, 3-9, 7-2

creating, 3-3
example, 3-3
naming, 3-4

target.getAssociatedTargets() method, 9-43
target.getAvailability() method, 9-44
Target.getMetric() method, 9-43
target.getMetricMetadata () method, 9-43
targets

WSDL and JMX-enabled, 18-1
targets, adding manually, 12-9
task automation, 9-47
test metric, 3-12
testing discovery, 12-8
testing Incident Manager, 10-19
Text Element Parameters, 5-29
Time Period, 5-8, 5-22, 5-28
time window facet

tags, 13-15
train controller, 9-75
train events, 9-75
train pages, defining, 9-19
train state, 9-75
trains

defining, 9-74
definition example, 9-74
train controller, 9-75
train events, 9-75
train state, 9-75

trains, defining, 9-19
transient columns, 3-28
translation support, 13-32
type properties, defining, 3-5

Index

Index-7

U
UI customization, 9-6
updating deployed metadata files, 14-13
upgrading plug-ins, 2-10
URL Fetchlet (raw), 20-21
URL Line Token Fetchlet, 20-24
URL Lines Fetchlet, 20-22
URL timing fetchlet, 20-27
URL Timing Fetchlet, 20-27
UrlEm.homepageUrl method, 9-30
URLXML fetchlet, 20-25
URLXML Fetchlet, 20-25
usage mode, in Chargeback, 17-2

V
validating the plug-in, 14-6
verification tool, 1-2
version, plug-in, 1-1
versioning metadata, 3-5
vertical bar charts, 9-68
views

GC$, 6-2

views (continued)
MGMT$VIEW, 6-2

W
WBEM fetchlet, 20-39
Web services, 18-1
Web Services, 18-2

command-line tool, 18-2
monitoring, 18-2

Web services CLI, 18-3
web services fetchlet, 20-46
Web Services Target, adding, 18-32
WebLogic, Custom J2EE application, 18-39
Width, 5-22, 5-27
WS-Management, 18-11
WS-Management fetchlet, 20-52
WS-Management Target, adding, 18-33
WSDL, 18-1, 18-2
WSManagementFetchlet, 18-11

Y
Y-Axis Label, 5-26

Index

Index-8

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Getting Started with Plug-in Development
	About the Plug-in Creation Process
	About the Extensibility Development Kit (EDK)
	Contents of the EDK

	Installing the Extensibility Development Kit (EDK)
	Designing the Plug-in
	Creating a Basic Plug-in
	Creating an Intermediate Plug-in
	Creating an Advanced Plug-in

	2 Defining the Plug-in
	Introduction to Defining the Plug-in
	About Plug-in Metadata
	Defining the Plug-in ID
	Defining the Plug-in Version

	Creating Plug-in Definition Files
	Creating the plugin.xml File
	Overview of plugin.xml Elements
	Certifying Plug-ins

	Creating the plugin_registry.xml File
	Overview of plugin_registry.xml Elements

	Validating Plug-in Definition Files
	Adding Log Viewer Support to Your Plug-in
	Defining Plug-ins for Upgrade
	Deprecating a Plug-in

	3 Creating Target Metadata Files
	Introduction to Creating Target Metadata Files
	Overview of Target Definition Files
	Creating the Target Type Metadata File
	Creating a Basic Target Type Metadata File
	Naming the Target Type Metadata File
	Defining the Target Type Metadata
	Defining Target Credentials
	Defining Type Properties
	Defining Instance Properties
	Static Instance Properties
	Dynamic Instance Properties

	Defining Metrics to Collect from the Target
	Metric Definition Files
	Defining the Basic Response Metric Group
	Defining Advanced Metrics
	Defining Repository Metrics
	Categorizing Metrics
	Defining Adaptive Thresholds
	Overview of Key Metric Metadata Elements
	Troubleshooting Metric Definitions

	Creating the Default Collection File
	Grouping Similar Metrics For Collection
	Defining Basic Metric Collection
	Defining Advanced Metric Collection
	Defining Target Configuration Data Collections
	Overview of Key Default Collection Metadata Elements
	Troubleshooting the Collection Process

	Guidelines for Creating Target Metadata
	Defining Target Metadata
	Defining Collections
	Alert Message Guidelines
	Metric Evaluation Order
	Collection Frequency
	Controlling Number of Rows

	Localizing Target Metadata
	About Target Metadata Localization
	Define the Resource Bundle Package
	Localize Metric Messages
	Package Resource Bundles
	About Resource Property Bundle Content
	Packaging Resource Bundles

	Checking a New Target Type
	Testing Your Target Type Definitions
	Activate the Metric Browser
	View Your Metrics

	Validating Your Metadata XML
	Troubleshooting the Target Creation Process

	4 Plug-in Builder
	Overview
	Prerequisites For Using Plug-in Builder
	Installing Plug-in Builder
	Installing Plug-in Builder and a New JDeveloper Instance
	Installing Plug-in Builder into an Existing JDeveloper Instance

	Creating an Enterprise Manager Plug-in Project
	Creating a Plug-in Project Using Sample Plug-ins
	Discovering Targets
	Updating Discovery Metadata for a Pre-existing Plug-in
	Viewing Basic Discovery Information

	Deploying the Plug-in Archive into Enterprise Manager
	Adding a New Target Type
	Updating Target Type Information
	Adding Instance Properties
	Adding Dynamic Properties
	Adding Credential Type
	Adding Credential Set
	Adding Metric Properties for a Target
	Adding ColumnDescriptor
	Adding QueryProperties
	Adding ExecutionDescriptor Table
	Adding ExecutionDescriptor View
	Configuring Collection Items for a Target

	Adding a Collection Item for the Target
	Inserting or Updating Collection Item Properties
	Deinstalling Plug-in Builder
	Appendix
	Using the Structure View
	Using Property Inspector
	Directory Structure for a Plug-in Project

	5 Adding Information Publisher Reports
	Introduction to Adding Information Publisher Reports
	Assumptions and Prerequisites

	Overview of SYSTEM Reports
	About the Report Definitions Page

	Understanding the Report Definition File
	Creating a Report Definition File
	About the Report Definition File Development Process
	Defining SQL or PL/SQL Queries
	Creating a Test Report Interactively from the Enterprise Manager Console
	Using EM CLI to Generate the Report Definition File

	About the Report Lifecycle: Updating Report Definitions

	Understanding the XML Report Definition Interface
	About Report Definition Tags
	<ReportDefinition>
	<ReportElement>
	<ReportElementParamters>

	Using Element Parameters
	About Table Element Parameters
	About Filter Elements
	Using Hyperlinks Within Tables

	About the Chart Element

	Understanding the Metric Details Element
	Using Text Element Parameters
	About Report-Wide Parameters

	Using the ImportExport.xsd File
	About Enterprise Manager Command Line Interface (EM CLI) Verbs
	About Development Guidelines

	6 Developing BI Publisher Reports
	Introduction to Oracle BI Publisher
	Assumptions and Prerequisites

	Training and Resources
	About the Report Data Source
	Developing a Report
	Using the Enterprise Manager EDK for Staging and Deploying BI Publisher Reports

	7 Collecting Target Configuration Data
	Introduction to Collecting Target Configuration Data
	Assumptions and Prerequisites

	About the Configuration Definition Files
	Modeling Enterprise Configuration Management Tables
	Defining Configuration Collection Tables
	EM_ECM_OH_HOME_INFO Table
	EM_ECM_OH_DEP_HOMES Table
	EM_ECM_OH_COMPONENT Table
	EM_ECM_OH_COMP_INST_TYPE Table
	Additional Information About the Configuration Metadata

	Overview of Configuration Management Snapshot Metadata Elements
	Packaging Configuration Metadata
	Registering Metadata With the Configuration Management Framework
	Supporting Translation
	Upgrading Configuration Data
	Modifications to Standard Collection Metrics and RAW Metrics
	Testing the Configuration Collection Data
	Troubleshooting

	Customizing the Inventory and Usage Region of the UI
	About the Inventory Choice XML
	About the InventoryChoice Element
	About Supported Parameter Types
	Applicable Target Types (Mandatory)
	MasterData (Mandatory)
	Details data (Mandatory)
	List of Rollup Types/ShowBy Choices (Optional)
	Target Context Query
	UIColumnMapping Tag
	DLF Files

	Sample Inventory Choice XML Metadata File

	8 Adding Job Types
	Introduction to Adding Job Types
	About Job Types
	Introducing New Job Types
	Specifying a New Job Type in XML
	Understanding Job Type Categories
	Using Agent-Bound Job Types
	About Job Steps
	Affecting the Status of a Stepset
	Passing Job Parameters
	About Job Step Output and Errors

	Using Commands
	Using the remoteOp Command
	Using Auxiliary Credentials

	Using the fileTransfer Command
	About the putFile Command
	Using the getFile Command
	Using the execAndSuspend Command

	About Command Error Codes
	Executing Long-Running Commands at the Oracle Management Service
	Configuring the Job Dispatcher to Handle Long-Running Commands

	Specifying Parameter Sources
	Understanding SQLParameter Source
	Using a PL/SQL Procedure to Fetch Scalar and Vector Parameters

	About the User Parameter Source
	About the Inline Parameter Source
	Using the checkValue Parameter Source
	About the properties Parameter Source
	Understanding Parameter Sources and Parameter Substitution
	About Parameter Encryption

	Specifying Credential Information
	About Credential Usage
	Overview of Credential Binding
	XSD Elements – Credential Usage and Credential Binding

	Specifying Security Information
	Specifying Lock Information
	Suspending a Job or Step
	Restarting a Job
	Restarting Versus Resubmitting
	Default Restart Behavior
	Using the restartMode Directive

	Adding Job Types to the Job Activity and Job Library Pages
	Adding a Job Type to the Job Activity Page
	Adding the displayInfo Tag

	Adding a Job Type to the Job Library Page
	Making the Job Type Editable

	Examples: Specifying Job Types in XML
	About Performance Issues
	Using Parameter Sources

	Adding a Job Type to Enterprise Manager
	Adding a Job Type to an Oracle Plug-in Archive (OPAR)

	9 Defining a Management User Interface
	Introduction to Defining a Management User Interface
	HTML/JavaScript (JS) Implementation
	Assumptions and Prerequisites

	MPCUI Concepts
	MPCUI Metadata File
	Activity
	Page
	Services
	Data Services
	Operation Services
	Asynchronous Service Request Handling

	URL

	Creating a Custom UI for a Plug-in
	HTML/JS Implementation
	HTML
	JavaScript
	JS Library File

	Creating the MPCUI Metadata File
	Overview of MPCUI Metadata Elements

	Defining Metadata
	Defining Integration Metadata
	Defining Navigation

	Defining the MPCUI Application
	Defining the Application Activities
	Defining Pages
	Page
	Page Model
	Page Controller

	Defining Dialogs
	Defining Trains and Train Pages
	Defining URLs

	Packaging the MPCUI Implementation With the Plug-in
	Defining System Home Pages
	Defining systemUiIntegration Metadata
	Defining System Regions
	Defining System Status Region
	Defining System Issues Region
	Defining the System Job Activity Region

	Defining Navigation
	Navigation to Activities
	URL and Links
	Adding Links to External Applications

	Accessing Enterprise Manager Data
	Metric Services
	Using the Metric Values Service Transparently
	Using the MetricValuesDataService Tag
	Calling the Metric Value Service from a Controller
	Metric Data Source Filters

	Custom Data Source
	Creating the Custom Data Source
	Binding the Data Source to a UI Component
	Updating the Custom Data Source

	Computed Data Source
	Packaged SQL and the Query Service
	Guidelines for Writing Packaged SQL
	Packaging SQL in the Plug-In
	Getting Target Type Information

	Working With Target Services
	Target Properties Service
	Associated Targets Service
	Metric Metadata Service
	Availability Service

	Automated Polling of Service Requests
	Batching of Service Requests
	Software Library Search Service

	Performing Task Automation
	Automation Services
	Submitting or Running a Job
	Getting Job Status and Step Details
	Using a Timer to Periodically Check Job Status
	Stopping and Deleting a Job
	Remote Operations

	Working With Credentials
	Retrieving Credential Information
	Check for Preferred Credentials
	Retrieve Named Credentials Sets

	Passing Credentials to Jobs and Remote Operations
	Reusable Credentials UI Components
	Managing Monitoring Credentials

	Storing Session State
	Defining Page Layout Components
	Defining Panels

	Including Packaged Regions
	Availability Region
	Incidents and Problems Region
	Job Summary Region
	Credentials Region

	Defining Charts
	Line Chart
	Providing Line Chart Data Source
	Controlling the Legend

	Area Chart
	Bar (Horizontal) Chart
	Grouping Bars

	Bar (Vertical Bar) Chart
	Pie Chart

	Defining Tables
	Data Service
	Custom Data Provider
	Getting Selected Rows

	Defining Dialogs
	Dialog Registration
	Displaying a Dialog and Waiting for Close Events

	Defining Trains
	Train Definition Example
	Train Controller
	Train State
	Train Events

	Defining Information Item and Information Displays (Label-Value Pairs)
	Using Built-in Renderers
	Defining Links
	Including Enterprise Manager Images
	Displaying a Processing Cursor
	Defining Icons for Target Types
	Displaying the Target Navigator
	Defining a UI for Guided Discovery
	About Guided Discovery
	Supporting Guided Discovery
	Constructing the Guided Discovery User Interface
	Discovery Integration

	Structure of the Discovery UI
	Using Discovery Service
	Using Target Information Services
	Using Target Management Services

	Building the MPCUI Application into a JS Library
	Creating the JS Library
	Adding the JS Library to The Plug-in

	About Logging
	Add Logging to your Code
	Options for Capturing Log Output
	Running MPCUI from NetBeans
	Running MPCUI from the Enterprise Manager Console

	Development Environment Options
	 Developing MPCUI in NetBeans
	Setting up the Demo Sample Project
	Running Demo Sample MPCUI from NetBeans
	Elements of the Demo Sample UI
	Updating the Demo Sample
	Modifying the Deployed Plug-in

	Setting Up a NetBeans Project for MPCUI
	Creating a NetBeans Project

	Home Page Customizations
	Accessibility Guidelines
	Accessibility Options in Enterprise Manager
	Summary of Critical Issues

	Localization Support
	Register Bundles
	Reference Strings from HTML (Page, Dialog Definitions)
	Access Strings from JavaScript (Controller Code)

	Providing Online Help
	Migrating From Flex to HTML/JS/JET
	Application Structure
	Model
	Page (View)
	Page Controller

	Converting ActionScript to JavaScript
	Converting Flex Tags to MPCUI Custom HTML Tags
	Data Services
	SQL Data Service
	Metric Values Data Service
	Association Data Service
	Availability Data Service

	Page
	tabOrder
	Model Reference

	HBox
	VBox
	Region
	InnerRegion
	InfoDisplay
	InfoItem

	Link
	Dialog
	Train
	TrainContainer
	TrainStepPage

	Table
	API Changes
	Examples

	Chart
	API Changes
	Examples
	Line Chart
	Area Chart
	Bar Chart
	Column Chart
	Pie Chart

	Prepackaged Regions
	Target Instance Regions
	System Regions

	10 Customizing Incident Manager
	Introduction to Customizing Incident Manager
	Understanding Supported Customizations
	Creating Event-Specific Customization XML
	Overview of Event-Specific Customization Metadata Elements
	About Events
	Common Event Attributes
	Target Availability Event
	Metric Alert Event

	Adding Customized Details About the Event
	Providing Content in the Guided Resolution Region
	Adding Recommendations using XML
	Customizing Sections

	Defining a Search String for My Oracle Support Knowledge
	Defining Conditions for Customization
	Registering Customizations
	Testing Incident Manager After Customization

	11 Using Derived Associations
	Introduction to Derived Associations
	Assumptions and Prerequisites

	Understanding Enterprise Manager Association Concepts
	About Out-of-Box Association Types
	Using Association Derivation
	About Automated Discovery and Promotion of Associations
	Understanding Association Creation During Guided Discovery
	Using Associations Derived from a System Stencil
	Associations Derived from Rule

	About Association Derivation Rules Management
	Using Association Derivation Rules Syntax and Semantics
	Understanding XML Metadata File Syntax and Semantics
	Using Rule Semantics
	Maintaining Performance
	About Regular Query and Trigger Patterns
	Diagnosing Issues
	Useful Examples
	Host on a Virtual Machine
	Target installed_at Oracle Home
	Listener and Database

	Applying the Mechanical Steps of Integration
	Special Triggers: Host Name Change Triggers
	Understanding Activation Expressions
	Troubleshooting and Debugging

	Ensuring Performance
	Using Custom Configuration Specifications for Data Collection

	Using Overlapping Associations
	Overlap Between Associations Derived by Rules

	Creating Associations for Composite and System Target Types
	Composite Membership and the Containment Association
	Other Non-Composite Associations (Composite Topology)
	System Membership Associations
	Associations to External Targets
	Regarding the Timing of Association Creation

	Frequently Asked Questions
	Which tables can I reference in a rule query?
	Are there guidelines for when to use target properties?
	What is the relationship between discovered and derived associations?

	12 Defining Target Discovery
	Introduction to Defining Target Discovery
	Creating Discovery XML
	Generic Discovery Integration Example
	Discovery Script Example
	Overview of the Discovery Metadata Elements

	Creating the Discovery Script
	Discovered Targets DTD

	Packaging Discovery XML and Discovery Content
	Location of the Discovery Metadata File
	Package Discovery Content
	Java Content Required by Discovery Scripts

	Setting Up and Testing Discovery
	Manually Adding Targets
	Manually Adding Host Targets
	Manually Adding Non-Host Targets

	Configuring and Promoting Targets for Monitoring by Enterprise Manager
	Examples for Using Generic Discovery Framework
	Discovery Integration Example Requiring User Input

	Configuring Automatic Discovery For Plug-ins

	13 Adding Compliance Standards
	Introduction to Adding Compliance Standards
	Assumptions and Prerequisites

	About the Compliance Standard Rules
	Defining Repository Check-based Rules
	Defining Real-time Monitoring Rules
	What Entity Types Can I Monitor?
	About Real-time Monitoring Facets
	Creating Real-time Monitoring Facets
	Creating Real-time Monitoring Facets for Time Windows
	Creating Real-time Monitoring Rules

	Defining Compliance Standards
	Defining a Compliance Framework
	Defining Compliance Content
	Removing Compliance Content
	Supporting Translation
	Packaging Compliance XML
	Setting Up and Testing Compliance Standards and Rules
	Install Compliance Content
	Test Compliance Standard
	Constraints for Testing

	More Compliance Examples
	Publishing Compliance Content Using Self Update

	14 Validating, Packaging, and Deploying the Plug-in
	Introduction to Validating, Packaging, and Deploying the Plug-in
	Staging the Plug-in
	Modifying File Permissions Within the Plug-in Directory

	Validating the Plug-in
	Creating the Plug-in Archive
	Importing and Deploying the Plug-in Archive into Enterprise Manager
	Prerequisites for Importing the Plug-in
	Setting Up the Software Library
	Setting Up the EM CLI Utility

	Importing the Plug-in Archive
	Deploying the Plug-in on Oracle Management Service (OMS)
	Important Details Regarding Plug-in Deployment

	Adding a Target Instance
	Updating Deployed Metadata Files Using the Metadata Registration Service (MRS)
	Target Types and Default Collections

	15 Defining Software Library Metadata
	Introduction to Software Library Framework
	Defining Software Library Metadata
	Defining Folders
	Defining Types
	Defining Subtypes
	Entity Properties File

	Defining Entities

	Organizing Software Library Metadata Files
	Adding the Software Library Metadata to Enterprise Manager
	Step 1: Validating Metadata XML
	Step 2: Adding Metadata XML to OPAR

	Using Software Library Entities
	Using Job Types
	Using EMCLI Verbs

	16 Defining Credentials
	Introduction to Security Concepts
	Understanding Credential Types
	About Named Credentials
	Authenticating Target Types
	Overview of Credential Sets
	Using the Credential Store
	About the Credential Reference

	Defining Credential Metadata
	Overview of Credential Elements

	17 Defining a Chargeback Entity Type
	Chargeback Extensibility Toolkits
	Steps to Develop and Test New Chargeback Entity Type
	The Chargeback Model
	Sample Chargeback MDS XML File
	Registering the Chargeback MDS
	Testing the Entity Type Plug-in

	18 Monitoring Using Web Services and JMX
	Overview
	Monitoring Using Web Services in Enterprise Manager
	Creating Metadata and Default Collection Files
	Web Services CLI Command-line Tool Syntax
	Web Services Command-line Tool Security
	Generating the Files

	Monitoring Using WS-Management in Enterprise Manager
	Creating Metadata and Default Collection Files
	WS-Management CLI Command-line Tool Syntax
	Command-line Tool Security
	Generating Target Metadata and Collection Files

	Monitoring a Standalone JMX-instrumented Java Application or JVM Target
	Generating Metadata and Default Collection Files
	JMX Command-line Tool Syntax
	Generating the Files

	Using the Metadata and Default Collection Files

	Monitoring JMX Applications Deployed on Oracle WebLogic Application Servers
	Creating Metadata and Default Collection Files using jmxcli
	JMX Command-line Tool Syntax
	Generating the Files
	Displaying Target Status Information

	Using the Metadata and Default Collection Files

	Adding a Target to a Management Agent
	Adding a Web Services Target - CalculatorService
	Adding a WS-Management Target - TrafficLight
	Configuring a Standalone Java Application or JVM Target
	Adding a Target Instance for a Custom J2EE Application on WebLogic

	Monitoring Credential Setup
	Viewing Monitored Metrics
	Creating JMX Metric Extensions
	Using the Enterprise Manager Console
	Using the JMXCLI to create a Metric Extension Archive

	Surfacing Metrics from a Standalone JVM or Oracle Coherence
	Using the Enterprise Manager Console
	Using JMXCLI

	Monitoring Using RESTful Services

	19 Using Receivelets
	About Receivelets
	SNMP Receivelet

	20 Using Fetchlets
	About Fetchlets
	OS Command Fetchlets
	OS Fetchlet
	OSLines Fetchlet (split into lines)
	OSLineToken Fetchlet (tokenized lines)
	Invoke an OS Fetchlet as a Specific User for Metric Collection

	SQL Fetchlet
	SNMP Fetchlet
	HTTP Data Fetchlets
	URL Fetchlet (raw)
	URL Lines Fetchlet (split into lines)
	URL Line Token Fetchlet (tokenized lines)

	URLXML Fetchlet
	URL Timing Fetchlet
	Dynamic Monitoring Service (DMS) Fetchlet
	Advantages to Using DMS for Oracle Management Agent Integration
	DMS Fetchlet/Oracle Management Agent Integration Instructions
	Integrating DMS Data with the Management Agent

	JDBC Fetchlet
	WBEM Fetchlet
	JMX Fetchlet
	Web Service Fetchlet
	Using Credentials for Authentication

	WS-Management Fetchlet
	Using Credentials

	REST Fetchlet
	Response Processing
	Using HTTPS and Self-Signed Certificates
	Using REST CLI to Generate Metadata

	21 Enterprise Manager DTD
	Terminology
	Target Metadata DTD Elements
	TargetMetadata
	Attributes
	Elements
	Used In
	Examples

	Display
	Attributes
	Elements
	Used In
	Examples

	SSH_ERROR_MSG
	Attributes
	Elements
	Used In
	Examples

	TypeProperties
	Attributes
	Elements
	Used In
	Examples

	TypeProperty
	Attributes
	Elements
	Used In
	Examples

	AssocTarget
	Attributes
	Elements
	Used In
	Examples

	AssocPropDef
	Attributes
	Elements
	Used In
	Examples

	DiscoveryHelper
	Attributes
	Elements
	Used In

	DiscoveryHint
	Attributes
	Elements
	Used In

	MetricClass
	Attributes
	Elements
	Used In
	Examples

	MetricCategory
	Attributes
	Elements
	Used In
	Examples

	Metric
	Attributes
	Elements
	Used In
	Examples

	ValidIf
	Attributes
	Elements
	Used In
	Examples

	CategoryProp
	Attributes
	Elements
	Used In
	Examples

	ValidMidTierVersions
	Attributes
	Elements
	Used In
	Examples

	TableDescriptor
	Attributes
	Elements
	Used In
	Examples

	ColumnDescriptor
	Attributes
	Elements
	Used In
	Examples

	CategoryValue
	Attributes
	Elements
	Used In
	Examples

	CustomTableMapper
	Attributes
	Elements
	Used In
	Examples

	ColumnMapper
	Attributes
	Elements
	Used In
	Examples

	QueryDescriptor
	Attributes
	Elements
	Used In
	Examples

	Property
	Attributes
	Elements
	Used In
	Examples

	Label
	Attributes
	Elements
	Used In
	Examples

	ShortName
	Attributes
	Elements
	Used In
	Examples

	Icon
	Attributes
	Elements
	Used In
	Examples

	Description
	Attributes
	Elements
	Used In
	Examples

	Unit
	Attributes
	Elements
	Used In
	Examples

	MonitoringMode
	Attributes
	Elements
	Used In
	Examples

	AltSkipCondition
	Attributes
	Elements
	Used In
	Examples

	CredentialInfo
	Attributes
	Elements
	Used In
	Examples

	CredentialType
	Attributes
	Elements
	Used In
	Examples

	CredentialTypeColumn
	Attributes
	Elements
	Used In
	Examples

	CredentialTypeColumnValue
	Attributes
	Elements
	Used In
	Examples

	CredentialTypeRef
	Attributes
	Elements
	Used In
	Examples

	CredentialTypeRefColumn
	Attributes
	Elements
	Used In
	Examples

	CredentialSet
	Attributes
	Elements
	Used In
	Examples

	CredentialSetColumn
	Attributes
	Elements
	Used In
	Examples

	CredentialSetColumnValue
	Attributes
	Elements
	Used In
	Examples

	InstanceProperties
	Attributes
	Elements
	Used In
	Examples

	InstanceProperty
	Attributes
	Elements
	Used In
	Examples

	DynamicProperties
	Attributes
	Elements
	Used In
	Examples

	ExecutionDescriptor
	Attributes
	Elements
	Used In
	Examples

	GetTable
	Attributes
	Elements
	Used In
	Examples

	GetView
	Attributes
	Elements
	Used In
	Examples

	Filter
	Attributes
	Elements
	Used In
	Examples

	Column
	Attributes
	Elements
	Used In
	Examples

	ComputeColumn
	Attributes
	Elements
	Used In
	Examples

	In
	Attributes
	Elements
	Used In

	GroupBy
	Attributes
	Elements
	Used In
	Examples

	By
	Attributes
	Elements
	Used In
	Examples

	AggregateColumn
	Attributes
	Elements
	Used In
	Examples

	Union
	Attributes
	Elements
	Used In
	Examples

	Table
	Attributes
	Elements
	Used In
	Examples

	JoinTables
	Attributes
	Elements
	Used In
	Examples

	Where
	Attributes
	Elements
	Used In
	Examples

	PushDescription
	Attributes
	Elements
	Used In
	Examples

	Target Collection DTD Elements
	TargetCollection
	Attributes
	Elements
	Used In
	Examples

	CollectionLevel
	Attributes
	Elements
	Used In
	Examples

	CollectionItem
	Attributes
	Elements
	Used In
	Examples

	MetricColl
	Attributes
	Elements
	Used In
	Examples

	LimitRows
	Attributes
	Elements
	Used In
	Examples

	ItemProperty
	Attributes
	Elements
	Used In
	Examples

	Filter (for Target Collection)
	Attributes
	Elements
	Used In
	Examples

	Condition
	Attributes
	Elements
	Used In
	Examples

	KeyColumn
	Attributes
	Elements
	Used In
	Examples

	FixitJob
	Attributes
	Elements
	Used In
	Examples

	A Out-of-Box Associations
	B Plug-in Technical Checklist
	Checking your Plug-in
	Checking Targets
	Checking Customized UIs
	Checking Job Types
	Checking Reports
	Testing your Plug-in

	C Metric Unit Standardization
	Index

