
Oracle® Communications ASAP
Cartridge Development Guide

Release 7.4
F40779-02
January 2024

Oracle Communications ASAP Cartridge Development Guide, Release 7.4

F40779-02

Copyright © 2012, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

1 Overview

About Cartridge Creation Options 1-1

Design Studio for ASAP 1-1

XML 1-2

Stored Procedures 1-2

About ASAP Cartridges 1-2

ASAP Cartridge Contents 1-2

Cartridge Creation Workflow 1-3

About Cartridge XML Schemas 1-4

ServiceModel.xsd 1-4

SA_archive.xsd 1-6

About Service Modeling 1-7

2 Creating a Cartridge Project

About Cartridge Types 2-1

Defining Network Cartridge Project Parameters 2-1

Defining Network Cartridge Identification Tokens 2-2

Selecting the Vendor Token 2-2

Selecting the Technology Token 2-3

Selecting the Software Load Token 2-3

Defining the Scope of the Network Cartridge 2-4

Creating a Design Studio Project 2-4

Defining Service Cartridge Project Parameters 2-4

Importing and Extending Network Cartridges in Service Cartridges 2-4

iii

3 Configuring Network Element Connections

About Network Element Configuration Components 3-1

About Network Elements and Network Element Connections 3-1

Network Elements and Network Element Connections 3-2

Creating and Configuring Network Element and Network Element Connections 3-2

Adding Target Network Elements 3-4

Setting Network Element Throughput Control 3-4

About Configuring a Java Network Connection Handler or State Table 3-5

Creating an Network Element Connection Handler 3-6

Mapping a Network Element to a Network Element Processor 3-7

4 Mapping Network Element Commands to Actions, Entities, and
Parameters

About Identifying Network Element Commands and Parameters 4-1

Defining Actions and Entities 4-1

Selecting the Action Tokens 4-1

Selecting Entity Tokens 4-2

Generating a Cartridge Layout 4-3

About Parameter Types 4-3

Default Values Rules and Guidelines 4-5

About Creating a Data Dictionary 4-5

Creating an ASAP Cartridge Project Data Dictionary Using Design Studio 4-6

Scalar Parameters 4-6

Creating a Scalar Parameter using Design Studio 4-6

Indexed Parameters 4-7

Compound Parameters 4-8

Creating a Compound Parameter using Design Studio 4-9

Compound Indexed Parameters 4-10

Compound Parameters Rules and Guidelines 4-10

XML Parameters 4-11

Creating an XML Parameter using Design Studio 4-11

XPath Parameters 4-12

Creating an XPATH Parameter using Design Studio 4-12

Grouping Scalar Parameters using Design Studio Structured Elements 4-13

5 Creating and Configuring Atomic Actions

About Creating and Configuring Atomic Actions 5-1

Creating and Configuring an Atomic Action 5-1

About Retry Properties 5-4

iv

Example 1: Configuring Retry Properties at the Network Element Instance Level 5-6

Example 2: Configuring Retry Properties at the Atomic Action Level 5-6

About Delayed Failure Properties 5-7

About Composite Priorities 5-8

About Configuring a Rollback Atomic Action 5-11

About Rollback Atomic Action Parameters 5-12

About Atomic Action Rollback Functionality 5-12

Rollback Order 5-12

Rollback Failure 5-13

Order Timeout 5-13

Rollback Completion 5-13

Rollback Upon Failure 5-13

Rollback Upon Cancellation of an Order 5-13

Rollback Upon Revision to an Order 5-15

Configuring ignore_rollback 5-16

6 Configuring Static Routing

Configuring Static Network Element Routing 6-1

Configuring Atomic Action Routings by Using a Network Element 6-2

Configuring Atomic Action Routings by Using ID_ROUTING 6-4

Routing by ID_ROUTING 6-5

Configuring Atomic Action Routings by Using USER_ROUTING 6-6

Configuring Atomic Action Routings by Using a Directory Number 6-7

7 Configuring Dynamic Routing

Configuring Dynamic Network Element Routing 7-1

Enabling Dynamic Routing 7-1

Network Template Configuration 7-1

Dynamic Network Element Routing Scenarios 7-3

Network Element Identification 7-4

Scenario 1 – One Service Action to Multiple Atomic Actions Routed to One NE 7-4

Scenario 2 – One Service Action to Multiple Atomic Actions Routed to Different
NEs 7-6

Scenario 3 – One Service Action to Multiple Atomic Actions Routed to Different
NEs 7-8

Scenario 4 – One Service Action to Multiple Atomic Actions Routed to Multiple NEs 7-9

Scenario 5 – One Service Action to Multiple Atomic Actions Routed to Different
NEs 7-11

Scenario 6 – Common URL 7-13

Dynamic Routing Configuration Errors 7-14

v

Managing Communication and Order Parameters 7-15

Backward Support for MPM Protocols 7-15

Software Load and Technology Type 7-16

NE Configuration Parameters 7-16

8 Creating Service Actions

About Creating and Configuring Service Actions 8-1

Creating Service Actions 8-2

Configuring Service Action Default Sequence 8-2

Configuring Service Action Fail and Complete Events 8-3

About Mapping a Service Action to Atomic Actions 8-3

About Limiting Independent Network Element Commands to Optimizing the Network
Element Interface 8-4

Adding Atomic Actions to a Service Action 8-5

About Atomic Action Spawning Logic 8-6

Configuring Atomic Action Spawning Conditions 8-7

Components of Service-Action-to-Atomic-Action Translation Expressions 8-7

Supported Parameters for Translation Expressions 8-8

Supported Operators for Translation Expressions 8-8

Supported Values for Translation Expressions 8-9

Defining Service Action-Atomic Action Translation Expressions 8-9

Translation Function Conflicts 8-10

About Service Actions and Rollback 8-10

Enabling the CSDL Rollback Functionality 8-11

Enabling Work Order Rollback Functionality for the Service Request Processor
Emulator 8-11

About Configuring a Rollback Point (Point of No Return) 8-12

Configuring a Rollback Point 8-12

9 Configuring Base Exit and User Exit Types

About User Errors and Thresholds 9-1

About Base Exit Types 9-1

Behaviors of RETRY and RETRY_DIS 9-3

About User Exit Types 9-4

Using Regular Expression Search Patterns 9-4

Using Search Patterns Against Long Switch Responses 9-5

About User Exit Types for Unknown Errors 9-6

About User Exit Types for Success Cases 9-6

Mapping User Exit Types to Base Exit Types Based on Context 9-6

Creating New User Exit Types 9-6

vi

Configuring User Exit Types 9-7

Examples: User Exit Types 9-7

Example: Unstable Network Element Connections 9-7

Example: Configuration of Context Sensitive Exit Types 9-8

Example: Exit Type Rationalization 9-8

10

Configuring Dynamic and Static Event Templates for Return Parameters

About Static and Dynamic Event Templates for Return Parameters 10-1

Configuring a Dynamic Events Template 10-2

JSRP (OSS/J) Work Order Event Information 10-5

Extended Work Order Complete and Failure Schemas 10-5

FailedServicesType Schema Type 10-7

Services Schema Type 10-8

Controlling the Return of Enhanced Event Information with includeServiceActionDetail 10-9

JSRP Server Configuration Parameter INCLUDE_SERVICE_ACTION_DETAIL 10-9

Additional Event Data 10-10

OSS/J Support by Schema Parameters 10-10

Work Order Property includeServiceActionDetail 10-10

JSRP Server Configuration Parameter USE_ORIGINAL_INSTANCE_NUMBER 10-11

11

Creating Java Connection Handlers

About Java Network Element Connection Handlers 11-1

Creating New Network Element Connection Handlers 11-1

Generating a Telnet Network Element Connection Handler Implementation 11-2

Generating a Custom NE Connection Handler Implementation 11-3

About Communication Protocol Parameters 11-3

Specifying Global or Local Communication Parameters 11-4

User-defined Parameters 11-5

Device-specific Interface Parameters 11-5

CORBA Interface Communication Parameters 11-7

Serial Port Hardwired Communication Parameters 11-8

Serial Port Dialup Communication Parameters 11-8

Telnet Port Communication Parameters 11-9

SSH Telnet Communication Parameters 11-11

Socket Port Communication Parameters 11-13

FTP Port Communication Parameters 11-14

LDAP Port Communication Parameters 11-17

TL1 Port Communication Parameters 11-17

SNMP Port Communication Parameters 11-18

vii

StreamConnection Interface 11-20

Creating Connection Methods and Helper Classes 11-20

Creating a Provisioning Prompt 11-21

Enabling Loopback Mode 11-21

Implementing Secure Login Functionality 11-21

Connection Management Issues 11-22

Creating a Java Telnet Connection Class 11-23

12

Creating Action Processors and Programs for Processing Requests and
Responses

About Action Processors and Programs 12-1

About the Ratio of Provisioning Commands to Atomic Actions 12-2

About Creating and Configuring Action Processors 12-3

Creating an Action Processor 12-3

Understanding the Auto-Generated Java CLI Code 12-4

About Configuring the CLI Command Structure 12-5

About the CLI Command Structure Elements 12-5

Configuring the CLI Command Structure 12-6

About Parsing and Configuring CLI Command Requests 12-6

Provided Methods for Manipulating Parameters 12-7

Defining Custom Methods for Manipulating Parameters 12-9

Configuring CLI Command Requests 12-9

About Configuring CLI Command Responses 12-11

Configuring CLI Command Responses 12-11

Auto-Generating the Java CLI Files 12-12

About Auto-Generated and Synchronized CLI Java Files 12-12

Backing Up Files 12-16

Understanding the Auto-Generated Java Code Stubs 12-17

Auto-Generating the Java Stubs 12-18

About Auto-Generated Java Files 12-19

Understanding Generated Code for Compound Parameters 12-21

Example: Typical Processor Call Sequence 12-24

Writing Java Processor Execute Method Logic 12-25

Example: Telnet Provisioning Class Flow 12-25

About Writing Java Programs from Scratch and Naming Conventions 12-26

Associating an Action Processors to the Java Code 12-26

Java Package Naming Convention 12-27

Java Class Naming Convention 12-27

Java Helper and Utility Class Naming Convention 12-27

Java Method Naming Convention 12-28

viii

Java Variables Naming Convention 12-28

Java Constants Naming Convention 12-28

Understanding Unit Testing 12-29

Running Unit Test Cases 12-30

Running Unit Tests with the JDT Debugger 12-30

Understanding Unit Test Property Files 12-30

Configuring a Unit Test 12-32

Understanding Java Libraries in Design Studio 12-32

Referenced Libraries 12-33

Other Libraries 12-33

Programming Best Practices 12-33

Using Default Values 12-34

Enabling Value and Range Checking 12-34

Logging Diagnostic Messages 12-34

TCP/IP Message Parsing Options 12-35

Use of Journal Functionality 12-35

13

Creating Java User Exit Types

Developing Return Parameters in Java Action Processors 13-1

About Return Parameters in Java Action Processors 13-1

Configuring Java Methods for Return Parameters to SARM 13-1

Return Parameter Types 13-4

Global Returned Parameter 13-4

Service Action Returned Parameter 13-4

Atomic Action Returned Parameter 13-4

Returned Information for Upstream Purposes 13-5

Indexed Rollback Returned Parameter 13-5

Use Cases for Returning Parameters 13-5

Query for Rollback Information 13-5

Error and Diagnostic Information 13-5

Configuring Response Logging and Network Element History Capture 13-5

User Defined Exit Types 13-6

14

Documenting ASAP Cartridges

About Design Studio Cartridge Documentation 14-1

15

Work Order Processing and Sample Work Orders

Work Order Processing Overview 15-1

General Work Order Processing 15-2

ix

OSS/J or Web Service Work Order Processing with XML or XPath Parameters 15-2

About Testing Cartridge Elements with Sample Work Orders 15-4

About SRP Emulator Sample Work Orders 15-4

About JSRP Sample OSS/J Work Orders 15-5

Sample OSS/J Work Order with Conditional Logic Using XML Parameters 15-5

Sample OSS/J Work Order with Conditional Logic using XPath Parameters 15-9

About Web Service Sample Work Orders 15-12

Guidelines for Creating Sample Work Orders 15-13

Troubleshooting Atomic Actions 15-13

Troubleshooting Service-Action-to-Atomic-Action Translation Errors 15-14

16

Creating and Deploying a SAR File (ASAP Cartridge)

SAR File Creation and Deployment Options 16-1

SAR File Folder Structure Options 16-1

ASAP 4.7 SAR File Folder Structure 16-2

ASAP 4.6 SAR File Folder Structure 16-2

Creating an ASAP 4.6 SAR File 16-5

Deploying Service Models with the Service Activation Deployment Tool 16-5

Using the SADT Command Line Interface 16-6

Using the SADT Command Line Interface in Interactive Mode 16-6

Using the SADT Command Line Interface in Script Mode 16-8

Using the SADT Web Interface 16-9

Viewing Deployed Service Activation Models 16-10

Deploying a service activation archive file 16-11

Undeploying a Service Activation Model 16-12

Deploying Multiple Cartridges 16-12

Using the SADT JMX Interface 16-13

Configuring JMX Interfaces to Validate XML Documents 16-13

Loading ASAP Services Dynamically 16-14

A Configuring Services Using XML

Configuration Restrictions and Limitations A-1

Configuring ASAP Services A-1

Planning A-2

Configuring Atomic Actions A-2

Adding Supporting Data A-5

Configuring Service Actions A-5

Mapping Atomic Actions to Service Actions A-6

Mapping User Exit Types to Base Exit Types A-7

x

Creating Activation-Model.xml A-10

Configuring Network Element Throughput Using XML A-11

B Configuring Services Using Stored Procedures

Configuring ASAP Services Using Stored Procedures B-1

Configuring Service Actions B-1

Configuring Atomic Actions B-1

Configuring Atomic Action Parameters B-2

Configuring Service Action-to-Atomic Action Mappings B-2

Configuring Atomic Action-to-Program Mappings B-3

Configuring Network Elements Using Stored Procedures B-3

Configuring Host Network Elements B-3

Configuring Host to Remote Network Element Mappings B-4

Configuring NEP-to-Host NE Mappings B-4

Configuring Resource Pools B-5

Configuring Communication Parameters B-5

Configuring Network Element Error Thresholds B-5

Configuring User Errors and Thresholds B-6

Configuring Static Routing B-6

Configuring Atomic Action Routings by ID_ROUTING Using Stored Procedures B-6

Configuring Atomic Action Routings by USER_ROUTING B-7

Configuring Atomic Action Routings by Distinguished Name B-8

Configuring Network Element Blackout Periods (optional) B-8

Checking Network Element Blackout Periods B-8

Configuring External Device Drivers (Deprecated) B-8

Adding an EDD to ASAP Start-up Procedures B-9

Adding an EDD as an ASAP Component B-9

Setting EDD Communication Parameters B-9

Setting EDD Configuration Parameters B-13

X.25 and X.29 Interface Configuration Parameters B-13

SNMP Interface Configuration Parameters B-14

xi

Preface

This guide provides guidance and best practices for creating Oracle Communications
ASAP cartridges using Oracle Communications Service Catalog and Design - Design
Studio for Activation.

Audience
This guide includes information for:

• Business analysts

• Cartridge service or network modelers

• Cartridge developers

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

This chapter provides an overview of the cartridge contents and the creation process.

About Cartridge Creation Options
Oracle Communications ASAP supports the following methods for creating cartridges:

• Design Studio for ASAP

• XML

• Stored Procedures

This guide does not provide details for creating ASAP C or C++ cartridges; however, the
general workflow described in this book applies.

Design Studio for ASAP
The recommended development environment for creating a cartridge is Oracle
Communications Service Catalog and Design - Design Studio. This guide describes the
cartridge development process with Design Studio.

Design Studio simplifies the creation, assembly, and deployment of services across multiple
domains. Design Studio functionality includes:

• Creating, deploying, and managing cartridges

• Extending cartridges into customer specific service configurations

• Managing and deploying complex multi-domain services to production, test, and
development environments

• Modeling network element instances using predefined network element instance and
connection attributes

• Creating and deploying patches

Design Studio has been optimized for developing Java-based ASAP cartridges.

Even though activation cartridges can be built outside Design Studio, this is not the
recommended approach. Design Studio speeds up the development process and optimizes
cartridge design and implementation by providing:

• Service model and Java stubs autogeneration feature

• Enforced naming conventions and consistency

• Cartridge documentation autogeneration

• Standard Eclipse development editors for business logic implementation (Java classes)

• Intuitive cartridge deployment/undeployment

• Testing harness

• Identifies problems and errors at development time

1-1

• GUI interface

ASAP cartridges created in Design Studio are validated again the ASAP schemas
described in "About Cartridge XML Schemas" during the build process and when
deploying the cartridge service activation archive (SAR) file to the ASAP environment.

For more information, see the Design Studio Help.

XML
You can create ASAP Java, C, or C++ cartridges using XML that must conform to
ASAP cartridge schemas (see "About Cartridge XML Schemas"). This is an older way
of creating ASAP cartridges described in "Configuring Services Using XML."

Stored Procedures
Stored procedures have been deprecated.

You can directly add cartridge-specific information to the ASAP databases using
SQL*Plus stored procedures. All cartridge-related stored procedures are described in
"Configuring Services Using Stored Procedures."

About ASAP Cartridges
ASAP cartridges are discrete software components developed for ASAP. An ASAP
cartridge provides specific domain behavior on top of the core ASAP software. This
domain behavior includes a part of, or all services on a network element (NE), element
management system (EMS), or network management system (NMS). In this guide, all
of these systems are collectively called NEs.

An ASAP cartridge is not a standalone component, but it operates in conjunction with
the core ASAP software. Cartridges can be designed for a specific vendor, technology,
and software load, and elements within each network cartridge can be reused in the
creating of common or mixed service model cartridges. For more information, see
"About Service Modeling."

An ASAP cartridge can be used to configure ASAP to provision the following:

• NEs from a specific vendor (for example, Nokia).

• Technologies, such as HLR and GSM.

• Services that are supported on an NE, such as Wireless, Optical for VoIP, IPTV, or
high speed internet.

ASAP Cartridge Contents
An ASAP cartridge contains the following components:

• An interface from ASAP to the NE that includes the following:

– NE, NE template, or dynamic NE template containing connection protocol
details, connection parameters required by the connection handler, and other
services.

– One or more connection handlers with associated Java code to run connection
details provided in the NE, NE template, or dynamic NE template elements.

Chapter 1
About ASAP Cartridges

1-2

• A mapping of NE generated user exit types that you defined in the action processor
methods to one of eight ASAP base exit types. You can also optionally map your user exit
types to a regular expression search pattern.

• A set of action processors that include the following:

– The action processor type: Either a Java processor class, or a State Table. The State
Table option is available for backward compatibility of older cartridges.

– The action processor class: This Java class can be manually or automatically
generated using Design Studio.

– The action processor method: If you selected the option to autogenerate your Java
code, Design Studio creates an execute method contained in the action processor
class where you must implement the man-machine language (MML) commands that
ASAP sends to the NE using the attributes and parameters specified in the atomic
actions. You must also specify logic for your user exit types in this method. If you did
not select the option to autogenerate your Java code, Design Studio allows you to
create and select your own method.

• A set of atomic actions in the form of Atomic Service Description Layer (ASDL)
commands that include the following:

– A list of user-defined attributes that include the kind of routing support required to
route the atomic action to an NE, and any parameters required by the associated
MML command that ASAP implements and sends to the NE

– Rollback, retry, and index related atomic action configuration attributes

– A list of associated action processors that implement the MML command that ASAP
sends to the NE

• A set of service action commands in the form of Common Service Description Layer
(CSDL) commands that form meaningful service actions. Each service action can
incorporate one or more atomic actions.

• Sample work orders

Cartridge Creation Workflow
You should fully understand the functionality and attributes for each NE that your cartridge
must manage before you start to develop an ASAP cartridge. With this understanding, you
can develop a service model focused on capturing the re-usable behavior in each NE.

The following list outlines the workflow required to build a cartridge. For additional details,
rules, and guidelines for each step in the cartridge creation process, refer to subsequent
sections in this document.

1. Select your cartridge type: service or network cartridge.

2. Define your NE details (for example, connection protocol and the maximum number of
connections the NE supports, and so on). You can also create NE templates and dynamic
NE templates at this time.

3. Define the corresponding connection handler for your NE.

4. Implement one or more Java classes with methods to run the NE connection details. You
must associate your Java classes to your connection handler.

5. Identify the MML commands or API calls and parameters that your NE requires.

6. Map user-defined exit types (UDETs) to a base exit type.

Chapter 1
About ASAP Cartridges

1-3

7. Create corresponding atomic actions for each MML command or API call.

8. Specify the parameters used for the MML command or API call in the
corresponding atomic action.

9. Create action processors and associated Java execute methods that implement
the associated MML command.

10. Configure the Java execute method to handle MML response messages from the
NE. Associate each NE response message to a UDET.

11. Associate the action processors to a corresponding atomic action.

12. Create a service action and associate it to one or more atomic actions to create a
meaningful service.

13. Create sample work orders.

14. Deploy the cartridge.

15. Test the cartridge.

About Cartridge XML Schemas
ASAP cartridges created using Design Studio or with XML must conform to the
ASAP_Home/xml/xsd/ServiceModel.xsd schema. The SAR file structure (created
automatically when you use Design Studio, or manually when you use XML) must
conform to the ASAP_Home/xml/xsd/SA_Archive.xsd schema.

This section describes the uses and structure of ServiceModel.xsd and
SA_archive.xsd.

ServiceModel.xsd
The ServiceModel.xsd file defines the content and structure of one or more
ServiceModel.xml files. This file ensures that the element hierarchy and document
structure of the ServiceModel.xml file are correct and ensures that element and
attribute content adheres to the defined datatype.

Figure 1-1 shows the element and structure of the ServiceModel.xsd schema as
described in the Java Online Reference available with the ASAP installation files.

Chapter 1
About Cartridge XML Schemas

1-4

Figure 1-1 ServiceModel.xsd Elements and Structure

The ServiceModel.xsd file contains the elements and structure to define:

Chapter 1
About Cartridge XML Schemas

1-5

• Atomic actions and their associated rollback conditions, timeout and retry settings,
parameters and associated devices and software loads

• Device mappings (atomicDeviceMap), which provide a type definition to map
atomic actions to NE types

• Service actions and their associated rollback conditions, priorities, provisioning
events, and mappings to atomic actions

• Base-exit-type-to-user-exit-type mappings

• Event template mappings to return extended event information

Note:

Design Studio automatically conforms to this schema when you generate a
cartridge, although the Design Studio GUI screens do not necessarily map to
each schema elements.

Depending on the service modeling strategy, the service definition can be contained in
one or more service model files. For example, all of your service definitions can be
contained in a single service model file. Alternatively, larger organizations can
distribute, add, modify, and delete service actions over three different service model
files or create a service model file for each service.

The ServiceModel.xsd file is fully annotated, and the ASAP_Home/samples/sadt
directory contains sample service models.

The XML files you create that contain the service models can have any name,
provided the <ServiceModel> element in the activation model deployment descriptor
(activation-model.xml) correctly references it.

SA_archive.xsd
The SA_Archive.xsd file is the schema upon which activation-model.xml is based.
The activation-model.xml file identifies the components contained in the service
activation archive to be deployed by the SADT or the installCartridge script.

Note:

Design Studio automatically conforms to this schema when you generate a
cartridge SAR file.

These components include, at a minimum, one or more service models and the
required State Tables or JInterpreter provisioning classes. You can optionally include
other components, such as:

• The cLibraryFile type (enables you to identify C or C++ library files)

• Customized SQL (the SQLDeploy type allows you to add customer data to both
the SRP and NEP schemas)

• Documentation (including design guidelines, API documentation, and so forth).

Chapter 1
About Cartridge XML Schemas

1-6

The ComponentType attribute appears as follows in the SA_Archive.xsd file:

<xsd:complexType name="ComponentType">
<xsd:annotati<xsd:documentation>A component type can one of either a serviceModel, a
Java EDD implementation, a customized SQL or a state table.
 </xsd:documentation>
</xsd:annotation>
<xsd:choice>
<xsd:element name="serviceModel" type="am:XMLFileType"/>
<xsd:element name="javaProvisioningFile" type="am:ProvisioningClassFileType"/>
<xsd:element name="cLibraryFile" type="am:CLibraryFileType"/>
<xsd:element name="stateTable" type="am:StateTableFileType"/>
<xsd:element name="srpSQLFile" type="am:SQLDeployType"/>
<xsd:element name="nepSQLFile" type="am:SQLDeployType"/>
</xsd:choice>

The activation-model.xml file must reside in the META-INF directory.

The SA_Archive.xsd file is fully annotated, and the ASAP_Home/samples/sadt directory
contains activation-model.xml files contained in the sample SAR files included with ASAP.

About Service Modeling
ASAP supports the following service models:

• Vendor, technology, and software load-specific service model

This service model aligns common service actions and atomic actions with one vendor,
technology, and software load. Design Studio for ASAP refers to this model as a network
cartridge.

• Common service model

This service model groups service actions and atomic actions for different vendor,
technology, and software loads into one service cartridge. Each service action and atomic
action combination supports only one vendor, technology, and software load. Design
Studio for ASAP refers to this model as a service cartridge.

• Mixed service model

This service model associates a service action to atomic actions created for different
vendor, technology, and software loads. Design Studio for ASAP also refers to this model
as a service cartridge.

For more information on these service models, see the Design Studio Help.

You must design your cartridges to enable the use of the service models you require, for
example, by applying naming conventions and parameter standards across cartridges so that
merging of cartridge-specific objects into a common or mixed service model can occur on a
customer project. This guide provides guidelines and best practices for creating each element
using such consistent conventions and standards to facilitate service modeling.

Chapter 1
About Service Modeling

1-7

2
Creating a Cartridge Project

This chapter describes how to define an Oracle Communications ASAP cartridge project.

About Cartridge Types
ASAP provides two cartridge types that support the three service models (see "About Service
Modeling"):

• Network cartridges

• Service cartridges

Network cartridges can be used to implement the vendor, technology, and software load
specific service models. Service cartridges can be used to implement both common and
mixed service models.

Note:

You can select the cartridge type and all components described in this chapter
using the New Studio Activation Cartridge Project Wizard in Design Studio for
ASAP. For more information about this wizard, see the discussion on setting up an
activation cartridge in Design Studio Help.

Defining Network Cartridge Project Parameters
Network cartridges target a single vendor, technology, and software load. The development
process starts with the network element (NE) interface documents, identifying the services
and commands supported and then deciding which set of services to be implemented.
Specific customer business logic has no impact, because the solution layer must be
implemented as a service cartridge. The scope is to develop generic, reusable libraries of
atomic actions, which can then be used for custom solutions projects.

Network cartridges typically support a one-to-one mapping between service action and
atomic actions, simplifying service modeling; however, this pushed back the problem of
creating meaningful services to the work order level. For more recommendations about
scenarios where network cartridges are appropriate, see the Design Studio Help.

You can purchase network cartridges from Oracle, or you can create your own network
cartridge.

Defining network cartridge project parameters includes the following tasks:

• Defining Network Cartridge Identification Tokens

• Defining the Scope of the Network Cartridge

• Creating a Design Studio Project

2-1

Defining Network Cartridge Identification Tokens
Name each network cartridge using elements that uniquely identify it. The following
items are included in a cartridge name:

• Vendor

• Technology

• Software load

Note:

You define these three elements using the New Studio Activation Cartridge
Project Wizard in Design Studio for ASAP. For more information about this
wizard, see the discussion on setting up an activation cartridge in the Design
Studio Help.

Selecting the Vendor Token
The Vendor token is a string that uniquely identifies the manufacturer of the NE: for
example, ALU for Alcatel-Lucent, or ERIC for Ericsson. It is embedded in the service
modeling object names and Java method names. Use Table 2-1 to select a vendor
token, otherwise check the NASDAQ symbol for hints but do not use symbols that are
cryptic, for example the SONUS NASDAQ symbol is SONSE which is not as
meaningful as SONUS.

Table 2-1 Vendor Token Examples

Company Vendor Token

Alcatel-Lucent ALU

Ericsson ERIC

Cisco CSCO

Comverse CMVT

Copper Mountain CMTN

Logica LGIA

Lucent LUC

Nokia NOK

Nortel NT

Redback RBAK

Siemens SIEM

Sonus SONUS

Vodafone VF

Chapter 2
Defining Network Cartridge Project Parameters

2-2

Selecting the Technology Token
The technology token is a string that identifies the category of services or vendor
classification of equipment to which the NE belongs: for example, HLR for Home Location
Register or DSLAM for Digital Subscriber Line Access Module. In some cases, a vendor
specific term (such as DMS or STINGER) may be used in place of the technology token.

See Table 2-2 for technology token examples.

Table 2-2 Technology Token Examples

Vendor Technology Token Description

Generic HLR Home Location Register NE

Generic DSLAM Digital Subscriber Line Access Module

Generic VMS Voice Mail Server

Generic SMS Short Message Server

Nortel DMS Digital Multiplex System Voice NE

Alcatel-Lucent STINGER Digital Subscriber Line Access Module

Selecting the Software Load Token
The software load is an alphanumeric string representing the software load of the element
management system (EMS) that manages the NE, or the software load running on the NE
itself. The selection of the software load to be supported is based on the entity (EMS,
Network Management System (NMS), or NE itself) that the cartridge is designed to interface
with.

A software load containing a minor release number (for example, 1.2) has a corresponding
software load token of 1-2. This is the same token used in the name and configuration of the
sample NE and in the atomic action to Java method mapping (see the sftwr_load token of
tbl_nep_asdl_prog). Do not use periods in the name of the software load token, use dashes
instead.

A cartridge only supports one technology and software load. When the software load for a
particular technology changes, build a new cartridge to support the new software load.

In general, create a new cartridge release when a major or minor change in the software load
occurs, and specifically when the changes between these releases are significant. Some
vendors make significant changes in their software between minor releases (for example 1.2
to 1.3); other vendors make the significant changes in their cartridges between major
releases (for example 3.0 to 4.0).

Using an x in the second or third digit of the cartridge software load value indicates that the
release does not have significant changes for any releases that change the digit marked as x.
For example, a cartridge marked with software load 1-2-x, assumes that small changes occur
in the third digit. Changes in the cartridge may be needed if additions are made to the NE
software as part of such a release, but the cartridge software load remains intact and the
cartridge remains backward compatible.

Chapter 2
Defining Network Cartridge Project Parameters

2-3

Defining the Scope of the Network Cartridge
Two approaches can be taken in determining the scope of the network cartridge:

• Comprehensive - aimed at supporting as much functionality as provided by the
NE. You may develop more than one service package (see "Selecting Entity
Tokens") for the various services supported on an NE (for example, Frame Relay,
FRATM, and ATM services). For cartridges supporting many different types of
services, the comprehensive approach can require significant development effort.

• Service-specific – often driven by a customer request or market demand for
support for a particular set of services on an NE: for example, ATM PVCs.
Because the scope of the cartridge is limited to a subset of functionality, this
approach often requires less development effort. Additional services in the form of
sub-cartridges can be supported on the NE in the future.

Factors influencing the approach that is taken include the time available to implement
the cartridge, customer priorities and the number of services provided by the NE.

Creating a Design Studio Project
Design Studio for ASAP automatically creates your directory structure for you as you
add new service actions, atomic actions, and action processors.

The project name should identify the name of the vendor, the technology, and the
software load to differentiate your cartridge from other cartridge projects.

Defining Service Cartridge Project Parameters
Service cartridge can select components from any network cartridge to create
customized service models that can simultaneously activate and configure diverse
NEs from any vendor, technology, and software release.

For more information about the kinds service cartridges, see the Design Studio Help.

Importing and Extending Network Cartridges in Service Cartridges
Service cartridges extend and customize the services provided in network cartridges.
To access the service action, atomic actions, action processors, network connections,
user exit types, and event templates configured in network cartridges, you must import
the network cartridges in Design Studio before creating a service cartridge project.

For more information about importing cartridge projects from SAR files, see Design
Studio Help.

Note:

Importing cartridge projects from SAR files is deprecated functionality. Oracle
recommends that you distribute and deploy Design Studio Projects rather
than SAR files.

Chapter 2
Defining Service Cartridge Project Parameters

2-4

Note:

You can reuse service actions, atomic actions, action processors, network
connections, user exit types, and event templates configured in network cartridges
purchased from Oracle in a customized service cartridge; however, the source code
for Java action processor classes, methods, or State Tables are not provided. If you
require access to specific code in order to extend existing network cartridge, Java,
or State Table implementations, request access by raising a service request with
Oracle Support.

Chapter 2
Defining Service Cartridge Project Parameters

2-5

3
Configuring Network Element Connections

This chapter describes how to configure Oracle Communications ASAP to connect to a
network element (NE).

About Network Element Configuration Components
Every cartridge must create the following components to enable a connection to an NE:

• NEs and NE connections: see "About Network Elements and Network Element
Connections"

• NE connection handler and associated Java code: see "About Configuring a Java
Network Connection Handler or State Table"

• NE to network element processor (NEP) mapping: see "Mapping a Network Element to a
Network Element Processor"

You can also create the following:

• NE templates

NE templates provide reusable NE information that can be used to quickly create new
NEs with similar attribute requirements. For more information, see the Design Studio
Help.

• Dynamic NE templates

Use the Dynamic NE Template editor to define a dynamic NE template entity. The entity
routes orders based on network and communication data provided as order parameters,
rather than using preconfigured static, locally maintained data. For more information, see
"Configuring Dynamic Routing ."

About Network Elements and Network Element Connections
ASAP supports two types of NE connections:

• Host: Indicating a programmable NE directly connected to ASAP.

• Remote: Associated with the host NE and programmed through the designated host.
ASAP routes service requests in the form of atomic actions through the host NE to the
appropriate remote NE.

A host NE is an NE that has an interface through which remote NEs can be programmed.
Several remote NEs covering a given area can be associated with a host NE, which
increases the effective coverage of the NE group. Host NEs are not required to have remote
NEs assigned to them.

ASAP can interface with many NE technologies and software loads over several logical and
physical interfaces. The definitions for each host NE resides in tbl_host_clli in the service
activation request manager (SARM) database. The records in this table define the different
technologies (switch types) and software loads that are currently used by all service request
processors (SRPs) and NEs in the system. The ASAP State Table or Java method

3-1

interpreters reference this table to find the technology and software version for each
SRP/NE in the system.

The definition for the remote NE resides in the user-configurable table (tbl_clli_route),
which maps host NEs to remote NEs. Work orders sent to ASAP target the remote NE
value populated within tbl_clli_route, so if the target NE is the host NE, then you must
enter the name of the host NE in the remote NE field.

For more information about these tables, see ASAP Developer's Guide.

You can create and configure a host NE with Design Studio using the Network
Element Wizard. You can designate one or more remote NEs or specify a host NE as
the target for work orders after you have created a host NE from the Network Element
editor Target Network Element tab.

To create and configure host NEs and remote NEs, see the following sections:

• Network Elements and Network Element Connections

• Adding Target Network Elements

• Setting Network Element Throughput Control

Network Elements and Network Element Connections
When you create an NE, you populate the tbl_host_clli table. This static table
contains the host NE, the technology, and the software load of each NE in the ASAP
system. It also contains records for each host NE to which the NEPs interface.

You can create an NE using Oracle Communications Service Catalog and Design -
Design Studio with the Network Element Wizard.

tbl_resource_pool is a static table that defines the collection of command processors
(devices) that the NEP uses to establish connections to NEs. Groups of command
processors are called resource pools. Each NE configuration determines a primary
resource pool that defines one or more devices the NEP uses to connect to that NE.
These devices are not used to connect to other NEs. Each NEP has an auxiliary
resource pool that contains devices used by the NEP to establish connections to any
NE managed by the NEP. These primary and auxiliary resource pools are defined in
this table. You must populate this table to add command processors.

The devices contained in resource pools are configured for a specific type of
connection protocol.

The maximum connections setting for an NE must not exceed the number of devices
in the primary resource pool.

If an NE allows for multiple simultaneous connections, the NE should have more than
one device configured in its primary resource pool. Oracle recommends two or more
connections in the resource pool.

For more information about connection pools, see the discussion about the NEP
session manager in ASAP Server Configuration Guide.

Creating and Configuring Network Element and Network Element Connections
To create and configure NEs and NE connections:

1. In Design Studio, open an Activation project.

Chapter 3
About Network Elements and Network Element Connections

3-2

2. Select the Studio menu, then select New, then select Activation, and then select
Network Element.

The Network Element Wizard appears.

3. In the Entity field, enter an entity name.

4. Click Finish.

The Network Element editor appears.

5. In the General tab, do the following:

a. In the Connection Pool Name field, enter a connection pool name. Creates a
connection pool of devices that the NEP uses to establish connections to NEs. For
more information about connection pools, see ASAP Server Configuration Guide.

b. In the Protocol field, enter a connection protocol. ASAP supports multiple
communication protocols, and provides optional pre-configured parameters for these
protocols. For more information about these protocols and parameters, see "About
Communication Protocol Parameters."

c. In the Drop Timeout (minutes) field, enter the drop timeout threshold in minutes.
This field specifies the time threshold in which an NE receives no work orders from
ASAP after which ASAP drops the connection. For more information about the Drop
Timeout parameter, see ASAP Server Configuration Guide.

d. In the Spawn Threshold (AA) field, enter the spawn threshold. This field specifies
the number of pending atomic actions in an NE connection queue before the SARM
spawn a new NE connection. For more information, see ASAP Server Configuration
Guide.

e. In the Maximum Connections field, enter the maximum number of connections. This
field specifies the maximum number of connections that can be established to an NE.
For more information, see ASAP Server Configuration Guide.

f. In the Kill Threshold (AA) field, enter a kill threshold. This field specifies the
termination of an NE connection when the number of atomic actions within an NE
queue falls below this threshold. For more information, see ASAP Server
Configuration Guide.

g. In the Retry Count field, enter a the maximum number of retries. This field specifies
the maximum number of retries, if an NE work order requests times out. If the
number of retries exceeds retry count, then the order fails and rolls back. This
attribute is configurable at the NE level, the atomic action level, the system level, and
the work order level. For more information, see "About Retry Properties."

h. In the Retry Interval field, enter a retry interval time. This field specifies the time
period in seconds between NE retries. This attribute is configurable at the NE level,
the atomic action level, the system level, and the work order level. For more
information, see "About Retry Properties."

i. In the Throughput field, enter the minimum number of transaction per NE instance.
This field specifies the NE instance throughput control – the minimum number of
transaction per NE instance. For more information, see "Setting Network Element
Throughput Control."

j. In the Transaction Per field, enter a time value for the Throughput parameter. For
more information, see "Setting Network Element Throughput Control."

6. In the Connection tab, click Add.

The Add Predefined Parameters dialog box appears.

Chapter 3
About Network Elements and Network Element Connections

3-3

7. Do one of the following:

• To accept the auto generated parameters that ASAP preconfigures for the
protocol, click Yes.

• To create your own parameters click No.

Adding Target Network Elements
tbl_clli_route is a static table that contains the mapping between a remote NE and its
host NE. You must populate this table if you want to specify a remote NE-to-host NE
mapping. If you do not want to use a remote NE, you must specify the host NE as the
target NE. Work orders are routed based on the Target NE Name field (called
mach_clli in tbl_clli_route). In addition, you can associate individual atomic actions
to specific remote NEs.

Any changes you make to the mapping relationships between host NEs to remote NE
take effect at runtime. All other changes require that you restart the SARM.

To configure and create a network connection:

1. In Design Studio, open an Activation project.

2. Open an existing Network Element.

3. From the Network Element editor, on the Target Network Elements tab, click
Add.

4. In the Target NE Name area, do one of the following:

• If you want to route work orders to the host NE, enter the name of the host NE.

• If you want to route work orders through the host NE to one ore more remote
NEs, enter the name of the remote NE.

5. (Optional) If you want to associate an atomic action to your NE, click Select and
add an atomic action from the list of available atomic actions. This option is
available only if you have already created atomic actions.

Setting Network Element Throughput Control
Throughput control mechanism controls the number of transactions per unit of time.
This mechanism ensures that networks elements are not overloaded.

To prevent certain types of NEs from becoming overloaded, it may be necessary to
control the volume of transactions that are being sent from ASAP. A central throughput
control mechanism enables you to configure a specific throughput per unit of time for
NE instances, which ensures that no more than a specific number of transactions are
sent to the NE per unit of time.

Consider the following scenario:

It has been discovered that the throughput limitations of a specific NE (that responds
to ASAP asynchronously) require that no more than 20 transactions per second can
be sent to the NE. Otherwise, some response messages are not generated and are
therefore never received by ASAP. To prevent overloading and ensure the NE
generates all required response messages, the service modeler configures throughput
controls for this NE instance as described below.

To configure the throughput control for a NE instance:

Chapter 3
About Network Elements and Network Element Connections

3-4

1. In the NE Template editor, modify the throughput properties used to create new NE
instances.

When modifying the properties used to create new NE instances, you ensure that any
future NE instances use the appropriate throughput properties. To do this, update the
throughput values in the NE Template editor as follows:

a. In the Throughput field, enter 20 as the number of transactions.

Valid Throughput field values range from 1 - 9999.

b. In the Transactions Per field, enter Seconds as the unit of time.

2. In the Network Element editor, modify the throughput properties for any existing NE
instances of that type.

Update the throughput values as follows:

a. In the Throughput field, enter 20 as the number of transactions.

Valid Throughput field values range from 1 - 9999.

b. In the Transactions Per field, enter Seconds as the unit of time.

3. In the Dynamic NE Template editor, modify the throughput properties for any existing
Dynamic NE Template used for NE instances of that type.

Update the throughput values as follows:

a. In the Throughput field, enter 20 as the number of transactions.

Valid Throughput field values range from 1 - 9999.

b. In the Transactions Per field, enter Seconds as the unit of time.

4. Save all modified NE templates, NEs, and dynamic NE templates.

You can now deploy the configuration to an ASAP environment for testing.

About Configuring a Java Network Connection Handler or State
Table

An NE connection handler associates an NE to Java code that implements the connection
from the NEP to the NE.

In Design Studio, when you create an NE, you must choose a supported protocol for your
NEP-to-NE connection. Then you can add one ore more connections to the NE. ASAP
provides you with optional base connection parameters. If you choose to accept these base
parameters, ASAP will automatically generate supporting Java code (for more information
about autogenerated protocol-specific communication parameters, see "About
Communication Protocol Parameters").

ASAP sends these communication parameters to Java methods that you create to implement
the connection. For more information about the Java code used to implement the connection,
see "Creating Connection Methods and Helper Classes."

Chapter 3
About Configuring a Java Network Connection Handler or State Table

3-5

Note:

Communication parameters are not part of the data dictionary used for
atomic actions.

Creating an Network Element Connection Handler
To create an NE connection handler:

Note:

This procedure also includes information about creating a C++ State Table
and program. This feature is included for legacy C-based cartridges.

1. In Design Studio, open an Activation project.

2. Select Studio, then select New, then select Activation, then select NE
Connection Handler.

The NE Connection Handler Wizard appears.

3. Do the following:

• In the Project field, enter the name of the project.

• In the Name field, enter the name of the network connection handler element.

• In the Folder field, you can choose to create a new folder, or select an existing
folder.

4. Click Finish.

The NE Connection Handler editor appears.

5. In the Connection Handlers section, click Add.

A new connection handler appears with the same vendor, technology, and
software load of the project.

6. Click New.

The Studio Activation Java Connection Handler Wizard appears.

Note:

Ensure that a dot does not precede the package name. If a dot precedes
the package name, remove it.

7. In the Name field, enter a connection handler name.

8. From the Connection Type list, do one of the following:

• To create a new telnet NE connection handler, select Telnet. Telnet NE
Connection Handler automatically generates the code for telnet connections.

Chapter 3
About Configuring a Java Network Connection Handler or State Table

3-6

This extends the telnet connection to support the interface. The NE Connection
Handler editor indicates where additional code is required.

• To create a custom NE connection handler, select Custom. Use this NE Connection
Handler if the connections are not telnet. Custom Connection Handlers generate a
skeleton to implement the IconnectionHandler and extends the base NE connection
class. The NE Connection Handler editor indicates where additional code is required.

9. Click Finish.

Note:

The code is generated after but is not synchronized (that is, it does not
automatically generate every time you change the NE Java code.) The
developer must manage all the changes to automatically generated classes
after they are created.

Mapping a Network Element to a Network Element Processor
You must map NEs to NEPs. NEPs perform the following tasks related to NE connectivity:

• Support a session manager that manages high level interaction with an NE including
routing to resource pools and determining which command processor (a thread that
implements user-defined State Tables or Java methods for connecting to an NE) to use
within a resource pool.

• Provide two interpreters (Interpreter for State Tables and JInterpreter for Java methods)
that runs custom code that handles protocol and device-specific communication with
NEs.

• Support for a connection handler method within the command processor that provides a
transparent interface between the user-created Java methods and the protocol-specific
communication details: for example, TCP/IP, serial, SSH, SSH FTP, and so on.

• Support for a Multi-Protocol Manager (MPM) within the command processor that provides
a transparent interface between the user-created State Tables and the protocol-specific
communication details: for example, serial async, X.25, TCP/IP, CMIP, and so on. ASAP
maintains protocol-specific communication parameters in the SARM and loads them from
the database by the NEP after you determine the communication protocol to use and
prior to connecting to the NE.

• Manage connect, disconnect, login, connection spawning thresholds, connection
destruction thresholds, maximum connections, and device throughput as defined in the
information configured in ASAP cartridges.

For more information about NEP functionality, see ASAP Server Configuration Guide.

To map an NE to an NEP:

1. In Design Studio, select Studio, then New, then Project, then Environment Project.

The New Studio Environment Project Wizard appears.

2. In the Project name field, enter a project name.

3. Click Finish.

The Open Associated Perspective? dialogue box appears.

Chapter 3
Mapping a Network Element to a Network Element Processor

3-7

4. Click No.

5. From an Activation project, select Studio, then New, then Environment, then
Studio Environment.

The Studio Environment Wizard appears.

6. In the Name field, enter a name for the Studio Environment.

7. Click Finish.

8. From an Activation project, select Studio, then New, then Environment, then
NEP Map.

The NEP Map Wizard appears.

9. Do the following:

a. From the Project list, select an environment project.

b. From the Studio Environment list, select an environment.

c. In the Entity field, enter a name for the NEP-to-NE mapping.

d. Click Finish.

The NEP Map editor appears.

10. In the Network Element Processor Map area, click Add.

The Select a Network Element screen appears.

11. Select the NE you want to map your NEP to.

12. Click OK.

13. (Optional) If you have more than one NEP server, you can specify the name of the
NEP server in the NEP Server field.

Chapter 3
Mapping a Network Element to a Network Element Processor

3-8

4
Mapping Network Element Commands to
Actions, Entities, and Parameters

This chapter describes how to map network element (NE) commands to cartridge actions,
entities, and parameters.

About Identifying Network Element Commands and Parameters
The bottom-up methodology begins with the identification of the NE commands, man-
machine language (MML) commands or API calls, to be supported in the NE specification for
the relevant service packages. You must develop an understanding of the services provided
by the NE and the sequence in which the commands are provisioned to implement the
services. This simplifies the effort of identifying action processors, atomic actions, and service
action commands. You must also identify the parameters required to provision each action.

Defining Actions and Entities
Every service action, atomic action, and action processor consists of a combination of the
following:

• Vendor, technology, and software load (see "Defining Network Cartridge Project
Parameters" and "Defining Service Cartridge Project Parameters")

• Actions (see "Selecting the Action Tokens")

• Entities (see "Selecting Entity Tokens")

Note:

Using Design Studio for ASAP, you can define actions and entities using the Atomic
Action Wizard, Service Action Wizard, Action Processor Wizard, or Cartridge Layout
tool. For more information on these features, see Design Studio Help.

Selecting the Action Tokens
This set of tokens represents the actions that can be taken on the NE. Different NE vendors
may use different tokens to represent identical actions (for example, ADD and SET). NEs
from different vendors may use similar tokens to represent different actions (for example ADD
and ACTIVATE). Oracle recommends that you select one of the mainstream actions (as
shown in the list below) without distorting the meaning of the action taken. If this is not
possible, select the action token reflected in the vendor documentation.

Actions can be any verb however the mainstream actions recommended by Oracle are as
follows:

• ADD

4-1

• DEL

• CHG

• ACTIVATE

• DEACTIVATE

• QRY

The action token used in a service action is in most cases the same as the action
token used in the corresponding atomic action, and action processor when there is a
one-to-one mapping. Many-to-one mapping reflects the net result of the actions taken
at the atomic action and action processor level in the action of the service action.
Action processors in most cases should use the same action as defined in the atomic
action.

Table 4-1 provides an example of a service action-to-atomic and action processor
mapping.

Table 4-1 Service Action, Atomic Action, and Action Processor Action Mapping

Service Action Verb Atomic Action Verbs Action Processor Verbs

C_ALU-MOCA_R6_ADD_CAW A_ALU-MOCA_R6_ASSIGN_CAW
A_ALU-MOCA_R6_ENABLE_CAW

I_ALU-MOCA_R6_ASSIGN_CAW
I_ALU-MOCA_R6_ENABLE_CAW

Selecting Entity Tokens
NEs can have various domain-specific entities that require further specification. These
entities are the recipient of the action verbs.

In some cases, the volume of services supported on an NE requires that you create
logical functional groups of services called service packages. For example, a cartridge
for an NE that supports various types of data services might have the following service
packs:

• ATM
• FRAME
• FRATM
• BGP
When multiple service packages organize a cartridge, a common service package can
contain common components, if applicable, such as connection classes, helper
classes, common actions taken across service packages, and so on.

You can also choose the service names that can be manipulated in the cartridge.
Services could be subscribers, features such as call waiting, three way calling, or
logical components such as cross connects. For example:

• X-CONN
• SUBS
• CALL-FORWARD
• THREE-WAY-CALLING
• PORT

Chapter 4
Defining Actions and Entities

4-2

• GSM-SUBS
Service package and service name should be used in the naming convention of service
action, atomic action, and action processor commands. Separate compound service package
and service sub-tokens with a dash rather than an underscore. For example:

Table 4-2 Service Action, Atomic Action, and Action Processors Entity Tokens

Service Action Entity Atomic Action Entity Action Processor Entity

C_NOK-HLR-R4_ADD_BGP-SUBS A_NOK-HLR-R4_ADD_BGP-SUBS
A_NOK-HLR-R4_ENABLE-BGP-SUBS

I_NOK-HLR-R4_ADD_BGP-SUBS
I_NOK-HLR-R4_ENABLE_BGP-SUBS

Generating a Cartridge Layout
For activation network cartridges, service actions, atomic actions, and action processors are
created and linked in a 1:1:1 relationship for all combinations of the actions and entities you
specify.

For an activation service cartridge, only service actions are created, allowing a non-restricted
association either with already existing network activation cartridges atomic actions or new
atomic actions defined as part of the solution. For activation service cartridges, a decision
must also be made about the type of service model you create (common, mixed, or vendor/
technology/software load-specific), which affects the naming convention used for the atomic
actions.

When using the cartridge generation feature, you specify the actions that will be performed by
the cartridge (for example, ADD, MOD, DEL, QUERY and so on) and the entities targeted by
these actions (for example, PORT, SUBSCRIBER, SUBSCRIPTION, LINE, and so on). After
entering this information into the Project editor Cartridge Layout tab, you can generate a
framework model by clicking the Generate Cartridge button.

Design Studio uses the action and entity tokens in the Java autogeneration feature (class and
package names) therefore do not use special characters (like dashes) when naming these
components. Use single tokens when defining actions and entities. Use standard names for
actions whenever possible, like ADD, DELETE, QUERY and MODIFY across all the
cartridges. Use short and descriptive names for entities. Whenever the cartridge template
cannot be auto generated in a single pass, use the feature several times. For example:

• In the first pass, generate a template for ADD, DELETE, QUERY, MODIFY actions and
SUBSCRIBER and FEATURE entities

• Remove actions and entities for which the template has been generated under the
Cartridge Layout tab and add new actions and entities (like ENABLE, DISABLE,
BLOCK, UNBLOCK actions and SERVICE entity).

The cartridge generation feature does not overwrite a framework that already exists. Rather,
it adds to framework new and modified actions and entities. Additionally, Design Studio does
not delete old actions or entities. You can, however, delete them manually.

About Parameter Types
Each atomic action has parameters that are sent to the NEP by the atomic action. The
parameters determine whether the SARM transmits a particular atomic action.

Chapter 4
Generating a Cartridge Layout

4-3

tbl_asdl_parm is a Static Table that is used by the SARM to define the parameter
labels and values associated with a given atomic action. It also provides the mapping
between the service action parameter labels received from the service request
processor (csdl_lbl) and the atomic action parameter labels (asdl_lbl) transmitted to
the NEP for interpretation by the Interpreter State Tables.

For each service action label (csdl_lbl), the SARM checks the current service action
parameter name-value pairs for a matching label. If no matching label is found, it
checks for a label in the work order global parameter name-value pairs. If no matching
label is found in either of these parameter name value pairs and the parameter type
(param_typ) which is mandatory, the default value (default_vlu), is used.

If no default value is set, the SARM registers an atomic action parameter mapping
failure. If the parameter is indexed, the csdl_lbl must contain a ++ or the SARM will
not start.

Atomic action parameters can be one of the following types:

• R: required scalar

• O: optional scalar

• C: required compound

• N: optional compound

• M: mandatory indexed

• I: optional indexed

• X: required XML

• Y: optional XML

• P: required XPATH

• Q: optional XPATH

• + –: the current index value for this atomic action. Only applicable to indexed
atomic actions.

Note:

You can create, modify, or delete new runtime parameters, specify the
parameter type, and specify whether the parameter is optional or mandatory
using the Design Studio Data Schema editor. See Design Studio Help
references for the Activation tab and the Details tab for the ASAP Data
Schema editor.

Chapter 4
About Parameter Types

4-4

Figure 4-1 ASAP Parameter Types

Default Values Rules and Guidelines
Provide default values for parameters only when the NE documentation suggests that one
value or setting is much more common to use than another.

About Creating a Data Dictionary
You may use a data dictionary with ASAP in the following two scenarios:

• When you have identified the NE commands and identified actions and entities (or
generated a cartridge framework), you must create a data dictionary of all parameters
required for the NE commands. In this scenario, you are creating the data dictionary
based on the information you have gathered about the NE.

• You import an existing data dictionary into Design Studio, and you must associate the
relevant data or structured elements to NE commands, actions, and entities. In this
scenario, the data dictionary already exists, and you must map and configure these data
elements for use with ASAP.

For more information about creating a data dictionary, see Design Studio Help.

Chapter 4
About Creating a Data Dictionary

4-5

After you have created the data dictionary, you must encapsulate the parameters
within atomic actions. In most cases, you create one atomic action for each of the
provisioning actions that can be taken on the NE. For more information about creating
atomic actions, see "Creating and Configuring Atomic Actions ."

Creating an ASAP Cartridge Project Data Dictionary Using Design
Studio

Design Studio automatically creates a data dictionary for each cartridge project when
you create a new Design Studio cartridge project. Design Studio also creates data
dictionaries for cartridges imported into Design Studio.

Scalar Parameters
Scalar parameters are conventional name-value pair parameters.

 Service Action C-ADD_FEATURE
 PARM NE_ID NEWYORK
 PARM LEN 2111112
 PARM LATA 516
 PARM LCC 555

Creating a Scalar Parameter using Design Studio
To create a mandatory, optional, or indexed scalar parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Simple Schema Element.

The Create Data Schema Element wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a
scalar parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor
supports multiple languages for this field. The field adjacent to Display Name
displays your language. You can define a Display Name field value for any
language you select from the list. For more information, see Design Studio
Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

6. Click Finish.

Chapter 4
About Creating a Data Dictionary

4-6

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select SCALAR.

10. (Optional) Select Indexed to index the parameter.

Indexed Parameters
These parameters contain a sequential numerical index value to tell the SARM that it should
run the same operation (for example, an atomic action) for all occurrences of that index.
Consequently, if there are several options on a particular service action command (OPT1,
OPT2, OPT3, etc.), you can specify the OPT parameter as an indexed parameter. When you
specify the OPT parameter as an indexed parameter, the SARM generates several
occurrences of that same atomic action, and each command has a different value for the
option being transmitted to the NEP.

If there are 100 such indexed parameters on the service action command, the SARM
transmits the same atomic action 100 times. Each time the SARM transmits the atomic
action, the parameter has a different option value.

If an indexed parameter is configured to be transmitted on a given atomic action, only one
indexed parameter value is transmitted with each atomic action, and the same atomic action
is run repeatedly.

For instance, if the work order contains:

• OPT1 = 3WC

• OPT2 = CWT

And the service action-to-atomic action mapping contains the following:

Service Action Parameter Atomic Action parameter
------------------------ -------------------------
OPT[++] OPTION

Note:

By convention, the ++ notation appears at the end of the label within square
brackets. This convention makes it easy to identify the index.

That particular atomic action is run twice. The first time, the atomic action has an OPTION
parameter with the value 3WC. The second time, the atomic action has an OPTION
parameter with the value of CWT.

Regardless of whether the service action references a State Table or a Java provisioning
class, the service action has access only to one parameter, which in this example is OPTION.

Chapter 4
About Creating a Data Dictionary

4-7

Compound Parameters
Compound parameters contain structures or arrays of information that are represented
by a particular structure name or compound parameter name. Each compound
parameter can contain a large number of elements. If you use compound parameters,
you only require a single entry in the ASAP translation tables to call the compound
parameter and all its associated parameter elements.

If you configure a compound parameter to be transmitted on an atomic action, ASAP
transmits all elements for the compound parameter to the NEP at the same time.

Note:

In the case of compound parameters, the base name of the parameter on the
work order must be exactly as specified in the tbl_asdl_parm and the base
name must not have a period in it.

For example, if there is a compound parameter with the base name CMPNDPARAM
specified in the tbl_asdl_parm as type C, you can define a work order with the
following parameters:

CMPNDPARAM1=value1
CMPNDPARAM2=value2
CMPNDPARAM3=value3
CMPNDPARAMABC=value4

A compound parameter can be used by selecting parameter type C or N. A compound
parameter (whether it is indexed or not) does not trigger the multiple execution of the
same atomic action.

The following formats are supported for compound parameters:

• Format 1 – Suffix cannot contain a period. For example:

– BasenameSuffixA

– BasenameSuffixB

– BasenameSuffixC

• Format 2 – a period comes directly after the basename. For example:

– Basename.SuffixA

– Basename.SuffixB

– Basename.SuffixC

Note:

The basename must match the name defined in tbl_asdl_parm.

Chapter 4
About Creating a Data Dictionary

4-8

Creating a Compound Parameter using Design Studio
To create a compound parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Structured Schema Element.

The Create Data Schema Structure wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select COMPOUND.

Note:

All child elements inherit the Activation tab attributes from the base compound
element.

10. (Optional) Select Indexed to index the parameter.

11. From the Data Element area, right click the new parameter.

12. Select Add Simple Child Schema Element.

Chapter 4
About Creating a Data Dictionary

4-9

Note:

Compound parameters do not support structured child schema
elements.

13. Enter the following:

a. In the Name field, enter an element name.

b. In the Display Name field, enter a display name. The Data Schema editor
supports multiple languages for this field. The field adjacent to Display Name
displays your language. You can define a Display Name field value for any
language you select from the list. For more information, see the Design Studio
Help.

c. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

14. Click Finish.

15. Repeat steps 7 to 10 for any additional parameters to be included in the
compound parameter.

Compound Indexed Parameters
The compound parameter can have an index. If using a compound indexed parameter,
the parameter type must be C. The following format is supported for only indexed
compound parameters.

• Basename[1].Suffix

• Basename[2].Suffix

• Basename[3].Suffix

You can define compound parameters and indexed parameters at the same time. This
allows for the specification of multi-dimensional data elements.

Note:

For an example of a compound indexed parameter, see "Scenario 4 – One
Service Action to Multiple Atomic Actions Routed to Multiple NEs."

Compound Parameters Rules and Guidelines
Avoid the use of compound parameters unless absolutely necessary. Using
compounds makes the SARMs error checking capability far less effective and makes
order entry through Order Control Application (OCA) more difficult. When multiple sets
of parameters that have variable numbers of elements must be passed to the same

Chapter 4
About Creating a Data Dictionary

4-10

implementation method for provisioning, a compound parameter with an associated index
can be used (the index is purely for logical representation of the data and should not be
confused with the atomic action indexing capability in ASAP). For example, a Java method
that provisions multiple features in an optimized manner could be passed a compound
structure containing variables as shown:

FEATURE[1].NAME = 3WC
FEATURE[2].NAME = CFD
FEATURE[2].NUM_RINGS = 5
BLOCKED_NUMBER[1].PATTERN[1]
BLOCKED_NUMBER[1].PATTERN[2]

Whenever an index is used within an atomic action parameter label, the index is
encapsulated within brackets (regardless of the type of ASAP parameter):

SUD[1].CODE = A
SUD[1].VALUE = 1
SUD[2].CODE = C
SUD[2].VALUE = 7

Though rarely configured within a cartridge, support for dynamic routing should be
considered in certain scenarios such as IP (routers) configuration. In such cases, the
reserved COMM_PARAM label should be configured as an optional compound in the
parameter list for each atomic action.

XML Parameters
Thee XML and XPATH parameter types are used in service modeling for network actions
(atomic actions), similar to existing scalar, index, and compound parameter type. XML can be
used as values for both information parameters and extended work order properties.

If the network action (atomic action) contains an XML parameter; JProcessor class within
the Java enabled NEP loads the XML data from the SARM database and makes the raw
XML available as the value of the XML parameter and as a Document Object Model (DOM)
object.

XML parameters pass structured information into ASAP. The values of these XML parameters
must be well formed XML that can be successfully processed by a standard XML parser.

Creating an XML Parameter using Design Studio
To create an XML parameter using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Simple Schema Element.

The Create Data Schema Element wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

Chapter 4
About Creating a Data Dictionary

4-11

c. In the Display Name field, enter a display name. The Data Schema editor
supports multiple languages for this field. The field adjacent to Display Name
displays your language. You can define a Display Name field value for any
language you select from the list. For more information, see the Design Studio
Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select XML.

XPath Parameters
The XPath parameter type defines an XPath expression into XML data. From the
runtime perspective, the JSRP, SARM and Java enabled NEP transfers XML data and
XPath expressions to each other by saving the complex data into the SARM database,
loading them from the database, and evaluating the XPath expression against the
XML data.

When you provision a work order, the SARM loads the XML data from the SARM
database and evaluates an XPath expression against the XML data in the following
cases:

• An XPath parameter is used as part of service action spawning logic to determine
whether an atomic action should be spawned or not

• An XPath parameter is used to spawn multiple instances of the same atomic
actions depending on how many instances of XML elements are present in the
work order

If there is an XPath parameter present in the atomic action, JProcessor evaluates the
associated XPath expression when a user requests the value of the XPath parameter.

XPath parameters provide a mechanism to extract fragments from another XML
parameter at runtime. In ASAP they are always used in association with an XML
parameter, called in Design Studio, the Dependent XML. Design Studio enforces the
association when defining XPath parameter in the context of an atomic action, but not
in the context of data schema entity. If the association is defined in the context of a
data schema entity, Design Studio makes an attempt to recreate it when the XPath
data element is used in the context of an atomic action.

Creating an XPATH Parameter using Design Studio
To create an XML parameter using Design Studio:

Chapter 4
About Creating a Data Dictionary

4-12

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Simple Schema Element.

The Create Data Schema Element wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a scalar
parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select XPATH.

10. (Optional) Select Indexed to index the parameter.

11. In the Dependent XML field create or select a dependent XML. This attribute displays the
path of the XML file that defines the parameter. This field is available only for the XPATH
run-time type parameter.

Grouping Scalar Parameters using Design Studio Structured Elements
You can group ASAP scalar parameters in Design Studio by using the structured schema
element feature. The structure element is a container that holds ASAP parameters. For
example the following scalar groups can be defined using two levels of structure elements:

Structure element1
 Structure element2
 Scalar1
 Scalar2
Structure element3
 Structure element4
 Scalar3
 Scalar4

In a real world scenario, these structure could be as follows:

Chapter 4
About Creating a Data Dictionary

4-13

Person
 Name
 First_name
 Last_name
Place
 Address
 Number
 Street

The structure elements used in Design Studio are converted into individual ASAP
scalar parameters by absorbing the structured element names into the scalar
parameter name. The example used above describing a person and place would by
default look as follows as ASAP parameters:

Person_Name_First_name
Person_Name_Last_name
Place_Address_Number
Place_Address_Street

The default character used to separate the elements in the ASAP parameter names is
the underscore (_). It is possible to change this character. See Design Studio for more
information.

To group scalar parameters using Design Studio:

1. Select Studio, then select Show Design Perspective.

2. Select the Data Element tab.

3. Right click in the Data Element dialog box.

4. Select Add Structured Schema Element.

The Create Data Schema Structure wizard appears.

5. Enter the following:

a. In the Entity field, enter the name of the project to which you want to add a
scalar parameter.

b. In the Name field, enter an element name.

c. In the Display Name field, enter a display name. The Data Schema editor
supports multiple languages for this field. The field adjacent to Display Name
displays your language. You can define a Display Name field value for any
language you select from the list. For more information, see Design Studio
Help.

d. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

6. Click Finish.

The new parameter appears in the Data Element dialog box.

7. Click the new parameter.

The Data Schema editor appears.

Chapter 4
About Creating a Data Dictionary

4-14

8. In the Element section, click the Activation tab.

9. From the Runtime type list, select SCALARS.

10. From the Data Element area, right click the new parameter.

11. Select one of the following:

• Add Simple Child Schema Element: Select this attribute if you want to immediately
define xml or scalar parameters within the first structured element. If you select this
option, go to step 12.

• Add Structured Child Schema Element: Select this attribute if you want additional
structured child schema elements below the first structured element. If you select this
option, repeat steps 5 to 11.

12. Enter the following:

a. In the Name field, enter an element name.

b. In the Display Name field, enter a display name. The Data Schema editor supports
multiple languages for this field. The field adjacent to Display Name displays your
language. You can define a Display Name field value for any language you select
from the list. For more information, see the Design Studio Help.

c. In the Multiplicity field, select one of the following:

• Required: This attribute makes the parameter mandatory.

• Optional: This attribute makes the parameter optional.

• Range: Any ranged parameter with a Minimum value greater than 0 is
considered a mandatory ASAP parameter. Any ranged parameter with a
Minimum value of 0 is considered an optional ASAP parameter.

13. Click Finish.

14. Repeat steps 12 to 13 for any additional parameters to be included in the scalar or xml
parameter group.

Chapter 4
About Creating a Data Dictionary

4-15

5
Creating and Configuring Atomic Actions

This chapter describes how to create and configure Oracle Communications ASAP atomic
actions.

About Creating and Configuring Atomic Actions
An Atomic Service Activation Layer (ASDL) or atomic action is an ASAP command that is
associated with a particular Common Service Description Layer (CSDL) or service action
command. A service action describes the service action to be performed, and can contain
one or more atomic action. The atomic actions associated with the service action performs
the operations on one or more Network Elements (NEs) in order to fulfil the services action.

The naming convention for a network cartridge atomic action is as follows:

A_vendor-technology_softwareload_action_entity

where:

• A: indicates an atomic action.

• vendor: vendor identifies the manufacturer of the NE. See "Selecting the Vendor Token."

• technology: technology identifies the category of services or vendor's equipment
classification to which the NE belongs. See "Selecting the Technology Token."

• softwareload: softwareload represents the version of the EMS that manages the NE, or
the version running on the NE. See "Selecting the Software Load Token."

• action: action is the action that can be taken on the NE. See "Selecting the Action
Tokens."

• entity: entity is a domain-specific entity that is the recipient of the action. See "Selecting
Entity Tokens."

The tokens in the name are separated by underscore characters. Compound tokens include
a dash as a separator. If the software load token includes a dot (.), the system replaces it with
a dash. All characters in the name must be in upper case.

If entities are used, entity must include the service package in its name. For example an
atomic action belonging to the GSM service package would be named as follows:

A_CSCO-IOS_12-2-X_ADD_GSM-MAX-PREFIX

Service cartridge atomic actions do not have to follow the naming convention.

Design Studio for ASAP enforces this naming convention when you create an atomic action
using the Atomic Action Wizard.

Creating and Configuring an Atomic Action
You can create an atomic action using Design Studio with the Atomic Action Wizard.

5-1

Each atomic action within the SARM has a configuration record that you can set up.
This record contains the following attributes:

• Atomic action timeout and retry properties.

• Atomic action used for rollback: Determines which rollback atomic action the
SARM must use if a rollback is required.

• Routing support: You can choose the routing method you want to use to send the
atomic action to the Network Element Processor (NEP).

tbl_asdl_config is a user-populated static table that defines the atomic action
configuration information required to handle routing and rollback at the atomic action
level. It is used by the SARM to determine whether rollback is required for this atomic
action, and if so, the rollback atomic action to use.

To configure an atomic action using Design Studio:

1. Select Studio, then New, then Activation, then Atomic Action.

2. From the Atomic Action Wizard, do the following:

• Enter an action name that corresponds to a network element (NE) command.

• Enter an entity name that corresponds to an NE service name or service
package you want to configure.

3. Click Finish.

The Atomic Action editor appears.

4. In the Parameters tab, add right click in the dialog box.

5. Do one of the following:

• If you want to add a simple element:

a. Click Add Simple Data Element.

The Add Simple Element dialog box appears.

b. Select one or more elements.

c. Click Finish.

• If you want to add a structured element:

a. Click Add Structured Data Element.

The Add Structured Element dialog box appears.

b. Select one or more elements.

c. Click Finish.

6. In the Details tab, select a routing method for the atomic action from the Routing
Support list:

• None: Indicates that no routing method has been selected.

• DN Routing: Indicates that DN routing has been selected. For more
information about DN routing, see "Configuring Atomic Action Routings by
Using a Directory Number."

• NE Routing: Indicates that NE routing has been selected. For more
information about NE routing, see "Configuring Atomic Action Routings by
Using a Network Element."

Chapter 5
About Creating and Configuring Atomic Actions

5-2

• ID Routing: Indicates that ID routing has been selected. For more information about
ID routing, see "Configuring Atomic Action Routings by Using ID_ROUTING."

• User Defined Routing: Indicates that user-defined routing has been selected. For
more information about user-defined routing, see "Configuring Atomic Action
Routings by Using USER_ROUTING."

• Dynamic Routing: Indicates that dynamic routing has been selected. For more
information about user-defined routing, see "Configuring Dynamic Routing ."

Note:

Selecting a routing method populates parameters specific to the routing method
you selected in the Atomic Action editor Parameters tab.

7. In the Details tab, select atomic action routing configuration information from the Details
Information section:

• Provide Parameter Count: Select to indicate that the NEP should send the current
index value for the atomic action.

• Index Count: Specify the name of the parameter for obtaining the index value in
Java provisioning classes.

• Timeout (Second): Specify the number of seconds before the ASAP server
considers an atomic action in-progress as failed. The default value is 0, which means
ASAP server will not consider the atomic action in-progress as failed. For more
information, see "About Retry Properties."

• Rollback Atomic Service: Specify an atomic action that rolls back the changes of
the current atomic action in a failure scenario.

For example, atomic action A is mapped to service action B. The rollback is
configured on the service action. On the Atomic Action editor, in the Details tab, for
the atomic action entity A, you select an atomic action Y. In case of a failure scenario,
the service action B is rolled back and atomic action Y is called to rollback the action
of atomic action A. For more information, see "About Configuring a Rollback Atomic
Action."

• Retry: Enables the Retry Count and the Retry Interval fields. For more information,
see "About Retry Properties."

• Retry Count: Specifies the number of times the atomic action can be tried at the NE.
For more information, see "About Retry Properties."

• Retry Interval (Second): Specifies the time interval, in seconds, between each retry
attempt by ASAP. For more information, see "About Retry Properties."

8. In the Mappings tab, click Add.

The Action Processor Selection Dialog appears.

9. Do one of the following:

• If you have already created an action processor, select the action processor and click
OK.

• If you have not created an action processor and you want to create one now, click
New.

Chapter 5
About Creating and Configuring Atomic Actions

5-3

The Action Processor Wizard appears. For more information about creating
and configuring an action processor, see "Creating an Action Processor."

About Retry Properties
Retry properties instruct the SARM to retry an atomic action according to the Retry
Count and Retry Interval parameter that you have configured. If the atomic action
does not complete after the final retry, the SARM fails it.

Timeout and retry attributes are configurable at:

• The atomic action level using the Timeout (second), Retry Count, and Retry
Interval (second) attributes. These attributes are defined in the Design Studio
Atomic Action editor Details tab.

• At the NE level using the Drop Time Out (minutes), Retry Count and Retry
Interval attributes. These attributes are defined in the Design Studio Network
Element editor General tab.

• At the work-order level.

• At the system level.

If an atomic action needs to be retried, the atomic action timeout and retry attributes
are applied first. If no atomic action timeout and retry attributes are configured, the
attributes configured for the NE apply. If no timeout and retry attributes are configured
for the NE, the work order attributes are applied. If no work order timeout and retry
attributes are configured, system-wide attributes are used.

If ASDL_TIMEOUTS is disabled in the ASAP.cfg file, all atomic action timeouts are
disabled, regardless of whether timeout and retry data is configured for the atomic
action.

These properties are specified on the work order. Default retry properties are also
specified in ASAP.cfg.

Table 5-1 Retry Properties

Property Description

NUM_TIMES_RETRY Specifies the number of atomic action retries to be applied to an
atomic action if the atomic action fails with a “Fail But Retry"
condition.

RETRY_TIME_INTERVAL Defines the time interval between atomic action retries if an
atomic action fails with a “Fail but Retry" condition.

When defining hard error thresholds, you must consider the following points:

• The host NE, atomic action, and atomic action user exit code must already be
defined.

• The same host NE, atomic action, and atomic action user exit code combination
can only be used once.

For more information about configuring user exit types, see "Configuring Base Exit and
User Exit Types ."

Because different NEs often have different retry requirements, it is necessary to
provide a flexible retry mechanism that enables retry properties to be specified at the

Chapter 5
About Retry Properties

5-4

NE instance level and at the atomic action level (this is in addition to the ability to configure a
single set of system-wide retry properties, which apply to all atomic actions and all NEs that
trigger a retry).

Flexible retry configuration in ASAP enables specification of retry properties in the following
locations:

• ASAP.cfg: This configuration file contains values for the Number of Retries and the Retry
Interval, which will be used whenever a retry occurs, on any NE or atomic action, if no
other values are configured elsewhere.

• Work Order: If the Number of Retries and Retry Time Interval are specified on a work
order, these values will override those defined elsewhere in the system (including the
ASAP.cfg: file, atomic action level, or NE instance level).

• Atomic Action: If you specify the Number of Retries and Retry Interval at the atomic
action level, and a retry is encountered on any of the action processors mapped to that
atomic action, the values you specify will be used. These values will override those
defined at the NE instance level and at the ASAP.cfg: level.

• Network Element Instance: If you specify the Number of Retries and Retry Interval on
the Network Element editor, any command triggering a retry against this NE instance will
use the retry values you specify. These values will override those defined at the
ASAP.cfg: level.

• NE Template: If you specify the Number of Retries and Retry Interval on the NE
Template editor, any NE created from the template will inherit the retry values you specify.

• Dynamic NE Template: If you specify the Number of Retries and Retry Interval on the
Dynamic NE Template editor, any NE instances dynamically created using the template
will inherit the retry values you specify. These values will override those defined at the
ASAP.cfg: level.

Figure 5-1 Retry Properties Locations

Chapter 5
About Retry Properties

5-5

Example 1: Configuring Retry Properties at the Network Element
Instance Level

A specific vendor's NE often responds with a FUNCTION BUSY message, meaning
that it cannot presently process commands and that the command should be retried at
a later time (there is not necessarily any problem with the command itself, but the load
on the NE is too large at this particular moment). Best practices dictate that a
command will eventually succeed if tried 3 times with a 10-second interval between
tries. To ensure that the command is properly retried, the service modeler should
configure the retry properties at the NE instance level. The work order will fail only if
the configured Number of Retries is exceeded.

To configure retry properties at the NE instance level:

1. In the User Defined Exit Type editor, update the user-defined exit type
configuration entry that corresponds to the FUNCTION BUSY response to specify
an exit type of RETRY when this response message is encountered.

2. Modify the retry properties for any existing NE instances of that type.

To do this, update the retry values in the NE editor for each NE instance as
follows:

• In the Number of Retries field, enter 3.

• In the Retry Interval field, enter 10. (seconds)

3. Modify the retry properties for any existing Dynamic NE Template used for NE
instances of that type.

To do this, update the retry values in the Dynamic NE Template editor as follows:

• In the Number of Retries field, enter 3.

• In the Retry Interval field, enter 10. (seconds)

4. Ensure that all NE templates, NEs, and dynamic NE templates that were changed
have been saved.

After saving, you can deploy the configuration to an ASAP environment for testing.

Example 2: Configuring Retry Properties at the Atomic Action Level
When trying to change the LEN on a specific vendor's NE, the NE responds with an
INVALID STATE error message if the customer line is in use. In this scenario, best
practices dictate that ASAP retry the atomic action 10 times with an interval of 300
seconds between each attempt before a failure is be generated. The following
example demonstrates how the service modeler configures the retry properties at the
atomic action level to meet this criteria.

1. In the User Defined Exit Type editor, update the user-defined exit type
configuration entry that corresponds to the INVALID STATE response to specify an
exit type of RETRY when this response message is encountered.

2. When examining this NE's retry requirement, there are two options that would
support the requirement:

Chapter 5
About Retry Properties

5-6

a. Modify the retry properties for the NE template (so that the configuration is carried
over to any new NE instances that are created), for each NE instance of that type,
and for each Dynamic NE template of that type.

b. Modify the retry properties for the specific service action (change LEN). In this
example, assuming the change LEN atomic action is specific to the vendor
equipment in question (either a common atomic action mapping to only one vendor
and technology, or a vendor and technology-specific atomic action mapping to a
single action processor), and assuming the retry behavior specified for this
requirement is unique to the atomic action (change LEN), then simply update the
retry properties for the atomic action.

Note:

Option a) requires multiple updates (to the NE Template, each NE instance,
and each Dynamic NE Template). Option b) requires a single update.

3. Modify the retry properties for the change LEN atomic action.

Update the retry values in the Atomic Action editor as follows:

a. In the Number of Retries field, enter 10.

b. In the Retry Interval field, enter 300. (seconds)

Note:

To update the retry value in an editor field, activate the field by selecting the
corresponding check box. Retry values have no digit limit but must be positive
integers. Retry values can be 0 if overriding the ASAP.cfg configured retry
values is required.

4. Save changes to atomic actions.

You can now deploy the configuration to an ASAP environment for testing.

About Delayed Failure Properties
Delayed Failure properties instruct the SARM to continue provisioning an order until the
Order Delayed Failure Threshold is reached and the order is failed. These properties are
work order properties.

Chapter 5
About Delayed Failure Properties

5-7

Table 5-2 Delayed Failure Properties

Property Description

Delayed Failure
Property

Requests the SARM to treat all hard errors on atomic actions as Delayed
Failures. The SARM skips any subsequent atomic action in the service
action, continues provisioning at the next service action, and then fails the
order. You can use the Delayed Failure property to override the
ASDL_EXIT configuration in the State Table program or Java method.
This property should only be set when there are no dependencies on
subsequent service actions on the work order.

Upon hard failure of an atomic action, the associated service action is
failed by ASAP, even if the Delayed Failure property is set.

Order Delayed Fail
Threshold

Specifies the number of delayed failures that a particular order can have
before the order is explicitly failed. This property is intended for batch
orders.

Rollback must be turned off for delayed failure to work.

About Composite Priorities
The composite priority mechanism ensures a balance between maximizing throughput
and the need to provision higher priority atomic actions over those with lower priority.
This mechanism does not guarantee the explicit sequential execution of work orders.
Rather, it is designed to ensure that high priority orders are not impeded by lower
priority orders that are in progress at the same time. ASAP will use any available
processing power to activate orders, and does so by activating many orders in parallel
across many network devices.

After orders are placed in the in-progress queue, each atomic action on the order
inherits the work order properties including the due date and time, order priority and
action. These attributes are used to determine where the atomic action should be
placed in the pending queue but do not guarantee that it will be provisioned in advance
of any other atomic action. The following diagram shows the importance of the
attributes (from left to right) in the prioritization of the atomic action. Details of the
algorithm are explained in the main flow of the use case.

Chapter 5
About Composite Priorities

5-8

Figure 5-2 Composite Priorities

ASAP maintains one pending queue for each NE. Many orders are processed at the same
time but only a single atomic action is active for each order at any given time due to the serial
nature of atomic action processing within an order. In other words, if there are 100 orders in
progress, there are 100 active atomic actions. While ASAP is processing a high priority
atomic action for one work order, atomic actions from lower priority orders will also be
processed against different NEs. ASAP retrieves future-dated orders from the database
based on their due date/time, and subjects these orders to composite prioritization at the
atomic action level. When a work order is submitted to ASAP, it is subject to
BATCH_SLEEP_INTERVAL, which is the time period between SARM database queries for
orders that have become due.

Composite priorities operate as follows:

1. A work order is submitted into ASAP with the following attributes:

a. Due date and time

b. Priority

c. Action (query, remove, change or add)

2. When the order arrives at its due date and time and BATCH_SLEEP_INTERVAL expires,
its first atomic action, referred to as the active atomic action for the purposes of this
example, is inserted into the pending queue according to the following algorithm:

a. Search through the pending queue comparing the priority of the active atomic action
(as inherited from the work order) to those already in the queue. If there are no
atomic actions with identical priorities insert the atomic action into the queue
according to its priority (in other words, an active atomic action with a priority of 4 is
inserted behind an atomic action with a priority of 3 but ahead of an atomic action
with a priority of 6 – the lower the number, the higher the priority and hence the closer
to the front of the pending queue) and proceed to step 3.

Chapter 5
About Composite Priorities

5-9

b. For the subset of atomic actions in the pending queue whose priorities match
the active atomic actions priority, ASAP examines the due dates and times of
each and inserts the active atomic action into the queue according to its due
date and time. In other words, the active atomic action is inserted behind
atomic actions with older due dates and times but ahead of atomic actions with
newer due dates and times. atomic actions with older due dates and times are
closer to the front of the pending queue. Go to step 3.

c. For the subset of atomic actions in the pending queue whose priorities and
due dates and times match the priority and due date and time of the active
atomic action, insert the atomic action into the pending queue according to its
action. An active atomic action with an action of “Query" is inserted ahead of
atomic actions with other actions. The priority of the action from highest to
lowest is Query, Remove, Change, Add.

3. Eventually the atomic action is moved to the in-progress queue where it provisions
and completes. While the SARM is being notified that the atomic action has
completed an idle connection is detected and another atomic action may be
scheduled.

If the active atomic action is placed in the retry queue, the retry timer starts. During
the time the active atomic action remains in the retry queue other atomic actions
may be scheduled.

When the retry time interval expires and the atomic action is placed back in the
pending queue, step 2 is repeated.

Figure 5-3 shows multiple pending queues (one for NE A and one for NE B). NE A has
many high priority atomic actions (for example: priority 1, 2) in its pending queue while
NE B has many lower priority atomic actions (for example priority 7, 8, 9) in its pending
queue. Because there only low priority atomic actions in NE Bs pending queue, these
will be provisioned at the same time as the high priority atomic actions on NE As
pending queue.

Figure 5-3 Pending Queues

Chapter 5
About Composite Priorities

5-10

The following diagram shows a single queue containing low priority atomic actions when a
high priority atomic action arrives. The high priority atomic action is inserted ahead of all
lower priority atomic actions in the pending queue and as a result will be placed in-progress
before any of the others. When the high priority atomic action has completed, the SARM must
be notified and an idle connection will be detected. At this time another atomic action
(possibly of greater, equal or lower priority) may be scheduled (for example: in this example
the atomic action with priority 7).

Figure 5-4 Pending Queues

About Configuring a Rollback Atomic Action
You can configure atomic actions in the system to perform rollback on a failed provisioning
activity by setting its rollback flag and specifying a rollback atomic action. For example, if you
have an atomic action for creating a service, you can select a rollback atomic action from
deleting a service. See "Creating and Configuring an Atomic Action" for instructions about
enabling the rollback feature and assigning a rollback atomic action to a standard atomic
action. You must also enable the rollback functionality at the service action level to enable
atomic action rollback. To enable rollback at the service action level, see "Enabling the CSDL
Rollback Functionality."

Chapter 5
About Configuring a Rollback Atomic Action

5-11

Note:

The SARM will only roll back atomic actions that you have configured with
these settings.

Atomic actions can perform the following types of rollback:

Table 5-3 Atomic Action Rollback Types

Rollback Description

Provisioning Rollback Used when a work order fails while provisioning.

Cancellation Rollback Used when a cancellation request is applied to an existing order in
the SARM.

Correction Rollback Used when a correction request is applied to an existing order in the
SARM.

About Rollback Atomic Action Parameters
The parameters that are sent to the rollback atomic action are automatically pre-
determined, consequently, you do not need to define or configure the atomic action
parameters for a rollback atomic action in tbl_asdl_parm. Rollback parameters are
created in the atomic action State Table using the SEND_PARAM action function with
an option of R (or ReturnRollbackParam) in the JInterpreter.

If a rollback parameter is created for an atomic action using SEND_PARAM, the value
of this parameter remains the same for the rollback atomic action. For example, if a
rollback parameter is created in another atomic action using the same name as the
initial rollback atomic action parameter, the value of this new rollback parameter will
not overwrite the value provided to the initial rollback atomic action. If you send a
rollback atomic action parameter that has the same name as the forward atomic
action, the rollback atomic action parameter takes precedence. When the rollback
atomic action is run, it receives the value of the rollback atomic action parameter.

The rollback parameters created by a particular atomic action are provided exclusively
to its rollback atomic action, and are not shared with other atomic actions. You cannot
use rollback parameters to share information between rollback atomic actions.

About Atomic Action Rollback Functionality
The following sections describe additional considerations for rollback functionality.

Rollback Order
Atomic actions are rolled back in reverse order of completion. When the rollback
process begins, the last completed atomic action is rolled back first, followed by the
second-to-last completed atomic action, etc.

Chapter 5
About Configuring a Rollback Atomic Action

5-12

Rollback Failure
The rollback of an atomic action can either complete or fail. During rollback processing, the
status of every rollback atomic action is recorded as either Completed or Failed.

If the configuration variable is set to 0, the service action status will be set to "rollback
successful" even if one or more rollback atomic actions fail to complete. The failure of a
rollback atomic action is ignored and the rollback of previous atomic actions continues.

If the configuration variable is set to 1, the service action status will be set to "rollback failed"
if a rollback atomic action fails for any reason.

Order Timeout
The order timeout parameter is ignored on rollback.

Rollback Completion
Rollback processing ends when the final rollback atomic action has either completed or
failed. If the rollback was initiated as a result of a cancellation, a work order Completion
Notification is sent to the SRP. In all other cases, the SRP receives a work order Failure
Notification.

Rollback Upon Failure
When a work order fails, the SARM performs the following rollback steps:

1. As the SARM loads a work order for provisioning, it scans all of the service actions in the
work order to determine if one or more has been configured for rollback in the event of
failure.

2. If none of the service actions have been configured for rollback in the event of failure,
rollback is not performed if the work order fails.

3. If rollback has been configured on one or more service actions and the work order
property specifies rollback, the SARM sets a global flag on the work order to indicate that
rollback is required.

4. If the work order fails, the SARM notifies the SRP that rollback is to be performed and
starts the procedure.

5. When rollback is complete, the SARM sends an Order Failure notification to the SRP.

Note:

During normal provisioning, when atomic action failure occurs, the SARM
immediately fails the work order and rolls back all successfully completed
atomic actions.

Rollback Upon Cancellation of an Order
When processing a work order cancellation, the SARM does not reference the service action
rollback configuration, but invokes rollback at the atomic action level.

Chapter 5
About Configuring a Rollback Atomic Action

5-13

Note:

The ASAP work order cancellation functionality is intended to provide the
ability to cancel a work order in the short period of time between the
submission of an order to ASAP and the reception of an event indicating the
order is in a final state (such as completed, failed). Oracle recommends that
orders are not canceled outside this window as this can lead to additional un-
needed performance overhead and fallout risk in ASAP. For example,
terminating the service of a subscriber that has been successfully created
means rolling back all of the original atomic actions rather than simply
deleting the subscriber (a single atomic action). In addition, because data in
ASAP should be maintained only for a limited period of time (see data
purging and archival strategies section), use of cancellation functionality is
subject to purging constraints.

The SARM performs the following rollback steps when a work order is cancelled:

1. When the SARM receives the cancellation request, it halts the work order when
the current atomic action completes.

2. Before the rollback operation begins, the SARM notifies the SRP that the work
order rollback is to be performed.

3. The SARM references the atomic action log to determine which atomic actions
have been completed on the order.

4. The SARM rolls back completed atomic actions for which rollback is configured
and rollback atomic actions are defined.

5. Upon completion, the SARM sends the SRP a Completion Notification.

Depending on the status of the work order when it is cancelled, a different rollback
procedure is performed. The different work order status values and their corresponding
rollback procedures are described in Table 5-4:

Table 5-4 Cancellation Order Status Rollback Procedures

Order Status Rollback Procedure

Initial order The order is cancelled and no provisioning is needed or occurs.

In Progress order The SARM accepts the cancellation request and begins to roll back
the order when the current atomic action on the work order completes.
It reloads all completed atomic actions from the database, determines
which ones require rollback by referencing their rollback flags, and
then runs the rollback atomic actions. When the rollback procedure is
complete, the SARM transmits a work order Completion Notification to
the SRP. No reference is made to the work order rollback flag or to the
rollback status of the service actions.

Completed order The rollback procedure is identical to the procedure used for In-
Progress orders, except there is no delay at the start, such as waiting
for the last atomic action to complete before starting to roll back the
order.

Failed order The rollback procedure is identical to the procedure used for
Completed orders.

Chapter 5
About Configuring a Rollback Atomic Action

5-14

Rollback Upon Revision to an Order
For the failed order to be rolled back explicitly, one or more service actions must be
configured for rollback. The SARM automatically rolls back the work order before receiving
and processing a new copy of it.

The rollback procedure for a revision or correction request depends on the state of the work
order as described in Table 5-5:

Table 5-5 Revision Order Status Rollback Procedures

Order Status Rollback Procedure

Initial order The order is overwritten and no rollback occurs.

In Progress order The SARM rejects the request for an order revision or correction from the
SRP and no rollback occurs.

Completed order The SARM rejects the order revision or correction request and no rollback
occurs.

Failed order If all service actions on the work order are aborted, then no explicit rollback
is performed.

If explicit rollback is not performed upon receipt of an order failure and revision request, the
activation of a new copy of the work order may cause a fallout at the NE because parts of the
original work order may have been activated. Intelligent NE State Tables in the ASAP NEP
manage such potential conflicts. After concluding that a provisioning request has failed, the
State Table queries the switch and determines if the provisioning activity represented by this
command has already been applied to the NE. If so, ASAP issues a soft error and continues
processing the new order.

Note:

If rollback is not performed explicitly, the SRP can be designed to transmit a
cancellation request on the original order, and then send a correction order that is
dependent on the cancellation. In this way, the failed order is rolled back and the
revision is only applied when the cancellation is complete.

Table 5-6 shows database variables and tables that you must configure to implement rollback
of completed atomic actions:

Table 5-6 Rollback of Completed Atomic Actions Parameters

Variable In Table

ignore_rollback tbl_asdl_config

rollback_req tbl_csdl_config

For information about these database tables, refer to ASAP Developer's Guide.

Chapter 5
About Configuring a Rollback Atomic Action

5-15

Configuring ignore_rollback
This configuration variable is located in the tbl_asdl_config table in the SARM
database:

• If it is set to Y, rollback is ignored for the specified atomic action even if the
rollback flag on the work order is set to Y.

• If it is set to N, rollback is required for the specified atomic action.

Note:

If employing the delayed_failure property (see "About Delayed Failure
Properties"), rollback must be turned off. Service action-level rollback
must be set to N, and ignore rollback must be set to Y.

The following example employs a configuration that requires:

• Setting the work order wo_timeout parameter to the required value.

• Configuring the rollback parameters in tbl_asdl_config.

In this example, the work order has one service action with three atomic actions. The
expected result is that the work order fails after exceeding the time specified in the
wo_timeout parameter on the work order and all completed atomic actions are rolled
back.

Chapter 5
About Configuring a Rollback Atomic Action

5-16

Figure 5-5 Rollback Sequence of Operations

1. SRP submits work order to the SARM for provisioning.

2. The SARM starts provisioning the work order and sets the timer for work order timeout
based on the timeout value. The SARM sends a WO_STARTUP event notification to the
SRP.

3. The SARM starts provisioning the first atomic action in the work order.

4. The first atomic action is successfully provisioned.

5. The SARM starts provisioning the second atomic action in the work order.

6. While provisioning the second atomic action, a work order timeout occurs.

7. The SARM sends a WO_TIMEOUT (Fail) event notification to the SRP. The SARM resets
the timer to zero and waits until the second atomic action completes.

8. When the second atomic action completes (with a Success or Fail status) all successfully
completed atomic actions are rolled back.

9. The SARM sends a WO_ROLLBACK event notification to the SRP.

10. Rollback completes and the work order is failed. The SARM sends a WO_TIMEOUT
(Fail) event notification to the SRP. The SARM may also send a WO_FAILURE event
notification to the SRP.

Chapter 5
About Configuring a Rollback Atomic Action

5-17

6
Configuring Static Routing

This chapter describes how to configure static network element (NE) routing for Oracle
Communications ASAP.

Configuring Static Network Element Routing
To increase the coverage of a host NE, several remote NEs covering a given area can be
associated with a host NE. Service requests in the form of atomic actions are routed through
the host NE to the appropriate remote NE.

ASAP determines the host NE using one of the following routing mechanisms:

• Dynamic Routing – See "Dynamic Network Element Routing Scenarios."

• Remote Network – The NE identifier determines the communication parameters for the
NE on which the service is to be provisioned. See "Configuring Atomic Action Routings
by Using a Network Element."

• Atomic Action Parameter – ID_ROUTING information specified as an atomic action
parameter. See "Configuring Atomic Action Routings by Using ID_ROUTING."

• User Routing – User-defined stored procedure that uses information from the
USER_ROUTING atomic action parameter and/or the atomic action. See "Configuring
Atomic Action Routings by Using USER_ROUTING."

• Directory Number – The host NE is not identified but is determined by the directory
number specified on the work order. See "Configuring Atomic Action Routings by Using a
Directory Number."

The routing logic has embedded priorities, which can affect the routing option you choose
when multiple parameters are defined for work order information. Priorities between the
routing logic are as follows:

• Routing by remote NE.

• Routing by ID_ROUTING.

• Routing by user-defined procedure.

• Routing by DN.

Figure 6-1 shows a system view of the atomic action routing logic in ASAP.

6-1

Figure 6-1 Atomic Action Routing Logic

Configuring Atomic Action Routings by Using a Network Element
The service action commands the Service Activation Request Manager (SARM)
receives from the Service Request Processor (SRP) contain an NE identifier. This NE
identifier is a reference to the communication parameters for the NE that ASAP should
connect to. Based on these communication parameters, ASAP determines the host
NE upon which the atomic action is to be provisioned.

The mandatory MCLI parameter that must be configured as an atomic action
parameter when using static routing by NE ID must include the NE technology token
as part its corresponding asdl_lbl. The convention is shown as follows:

NE_ID_technology

Chapter 6
Configuring Static Network Element Routing

6-2

This is the same token that is used to populate the technology field when defining new NE
instances to ASAP and in the naming convention for service action and atomic actions.
Examples are shown in table 6-1:

Table 6-1 MCLI to NE_ID Technology Parameter Mapping

asdl_lbl (Atomic Action Label) csdl_lbl (Service Action label)

MCLI NE_ID_GWC

MCLI NE_ID_HLR

An atomic action that queries an NE must be configured with a parameter (see
tbl_asdl_parm) called RET_PARM_TYPE that has a default of IC indicating that both
information parameters and service action parameters are to be returned from the
implementation method. During the implementation of the associated method, these
parameter combinations will be supported and the appropriate parameters and types shall be
passed back to the SARM. Other possible values that the default may be changed to include:

• C: service action parameters

• W: work order parameters

• I: information parameters

• IC: information parameters and service action parameters

• IW: information parameters and WO parameters

Note:

If a value is not provided for the RET_PARM_TYPE parameter or if it is left out of
the atomic action parameter list, no parameters are returned from the query.

An atomic action may or may not be able to identify the host or remote NE to which it is to be
routed. If the service action command received by the SARM contains a remote NE identifier,
routing is achieved through a user-populated routing table in the SARM.

If the remote NE is not identified in the service action command, the host NE is determined
by the directory number specified in the atomic action. The directory number consists of the
NPA, NXX, and Line. Figure 6-2 illustrates this routing.

Chapter 6
Configuring Static Network Element Routing

6-3

Figure 6-2 Routing by Host/Remote NE Identifier

Configuring Atomic Action Routings by Using ID_ROUTING
For flexible routing between atomic actions and NEs, you can use the ID_ROUTING
atomic action parameter, and the tbl_id_routing database table. tbl_id_routing is a
static database table that enables you to map between ID_ROUTING and the NE.
Based on the information in the table, the ID_ROUTING is mapped to the host NE,
which is loaded into memory when the SARM starts.

The ID_ROUTING parameter can be represented as any string of numbers and or
characters to a maximum of 255 characters (or, in the case of an IP address, four sets
of 255 characters – 255.255.255.255). You can define the parameter as part of a work
order or a service action. ID_ROUTING can be a phone number, customer number, IP
address, or any other identifier you choose.

If the work order provides ID_ROUTING information, such as phone number or
customer number, you can get the host NE associated with the ID_ROUTING using
the mapping table. The mapping table will provide the following matches:

Chapter 6
Configuring Static Network Element Routing

6-4

• Exact matching

• Range matching

This allows precise matches or ranges within which the supplied parameters fall, so that one
or multiple atomic actions can be routed to an NE at a time, based on configuration.

The ID_ROUTING/atomic action host common language location identifier code (CLLI)
mapping table is binary-searched to get the associated host NE, associated with the atomic
action to be provisioned and the ID_ROUTING. In the case of characters, the ASCII order is
compared; in the case of numbers, the size of the number is compared.

The following mapping example displays how the characters can be compared.

"1" !="+1", "01"=="1","1"<"A", "A"<"a", "A"<"AA"

Note:

Refer to ASAP Developer's Guide for information on using "= =" operators with IP
addresses.

The stored procedures that you can use as external interfaces are the following:

• SSP_list_id_routing (RC1, host_clli) – Lists the host NE and ID_ROUTING mapping
records in the SARM database.

• SSP_new_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) –
Defines the host NE and ID_ROUTING mapping records in the SARM database.

• SSP_del_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) – Deletes
the host NE and ID_ROUTING mapping records from the SARM database.

For more information on these stored procedures, refer to the ASAP Developer's Guide.

Routing by ID_ROUTING
The following steps must be followed when routing by ID_ROUTING:

• Populating the routing table (tbl_id_routing).

• Defining the atomic action parameter. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\oraRoutingServices.

• Defining the work order. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\RoutingSrpInput.

• Starting ASAP and submitting the work order.

The following example displays how to populate tbl_id_routing.

sqlplus -s $SARM_USER/$(GetPassword $SARM_USER 2)
<<HERE | grep -v "successfully completed"

set serveroutput on
var retval number

prompt Defining the ID_ROUTING Configurations

exec :retval := SSP_del_id_routing ;

Chapter 6
Configuring Static Network Element Routing

6-5

exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'BAL', 'CAL');
exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'DEL', 'FAL);
exec :retval := SSP_new_id_routing ('BOSTON', '', '120000', '220000');

HERE

You can add new records to the database dynamically without downtime on the server
by using the Add new NE Configuration command (113) of asap_utils. This
command must be used after loading the ASAP database.

For more information about asap_utils, see ASAP Server Configuration Guide.

For more information about the tbl_id_routing table, see the ASAP Developer's
Guide.

Configuring Atomic Action Routings by Using USER_ROUTING
You can perform atomic action routing by using a user-defined procedure. Routing by
user-defined procedure provides the following:

• Allows for custom provided logic for atomic action routing

• Uses the atomic action parameter USER_ROUTING

• Uses the external interface SSP_get_user_routing

• Allows you to write your own routing logic using the predefined external user
interface

The USER_ROUTING parameter can be represented as any string of characters to a
maximum of 255 characters. You can define it as part of a work order, or as a service
action parameter.

If the atomic action parameter USER_ROUTING information is provided in the work
order, then the user-defined stored procedure is called. The user-defined procedure
takes the asdl_cmd and the value of USER_ROUTING as input arguments, and
returns the host NE to be routed.

You can use the following stored procedure as an external interface:

• SSP_get_user_routing (user_routing, asdl_cmd, host_clli, ret_val) – Returns
a host NE (host_clli) that is used to route the atomic action. You must provide
your own routing logic in the body of SSP_get_user_routing to find the host NE
(CLLI) using the USER_ROUTING atomic action parameters, and the asdl_cmd if
required.

For more information on the above stored procedure, refer to the ASAP Developer's
Guide.

To use USER_ROUTING, perform the following steps:

1. Write the stored procedure SSP_USER_ROUTING. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\user_routing_proc.sp.

2. Define and populate the routing table, if required. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\user_routing_table.tbl and
ASAP_Home\samples\ASDL_ROUTE\oraLoadRouting.

3. Define the atomic action parameter. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\oraRoutingServices.

Chapter 6
Configuring Static Network Element Routing

6-6

4. Define the work order. A sample is located in
ASAP_Home\samples\ASDL_ROUTE\RoutingSrpInput.

5. Run ASAP and submit the work order.

When you choose a user-defined procedure with a database table, the database must be
accessed every time the routing is requested. Consequently, there will be a slight
performance degradation.

Configuring Atomic Action Routings by Using a Directory Number
Atomic actions are routed through a directory number (DN) identifier. The DN is identified on
the work order and is passed to an atomic action as a parameter. Figure 6-3 illustrates atomic
action routing by DN.

Figure 6-3 Routing by DN

Depending on your telecommunications situation, you may require routing based on different
parts of the phone number/atomic action combination; for example, NXX and the first two
digits of the line number.

Chapter 6
Configuring Static Network Element Routing

6-7

An atomic action instance will be routed according to the DN/atomic action routing
table if the atomic action parameter MCLI is set to SKIPCLLI on the work order. This
value implies that the remote NE information is not known.

Before you can add a new routing, you must have already defined both the host NE
and the atomic action in ASAP.

You can edit routing definitions provided the new routing definition does not already
exist in ASAP.

• SSP_new_dn_map – This stored procedure defines atomic action routings by
directory number.

• SSP_list_dn_map – This stored procedure lists directory mappings for atomic
action, directory, exchange number, or for all of them.

• SSP_del_dn_map – This stored procedure deletes a directory number mapping
from the SARM database.

Chapter 6
Configuring Static Network Element Routing

6-8

7
Configuring Dynamic Routing

This chapter describes how to configure dynamic routing for Oracle Communications ASAP
atomic actions.

Configuring Dynamic Network Element Routing
The Dynamic Network Element (NE) Routing feature allows ASAP to provision NEs based on
network and communication data provided as order parameters rather than loaded from static
Service Activation Request Manager (SARM) configuration tables. ASAP routes the
translated Atomic Service Description Layer (atomic action) commands to the appropriate
NEs based on specific routing information contained in the work order. This dynamically
provided communication data is identical to the communication data normally defined in static
tables and used by the devices [command processor threads in the Network Element
Processor (NEP) to connect and log in to.

For information on configuring static routing, see " Configuring Static Network Element
Routing."

Dynamic NE routing is most commonly used for IP-based provisioning, but is applicable to all
downstream communication protocols. For example, it is possible to dynamically route
provisioning tasks that use serial dialup connections in the downstream.

Dynamic routing functions as follows:

1. The SARM receives a work order.

2. The SARM uses the NE_ID (mapped to the atomic action label MCLI) parameter to
determine if the order is to be routed statically or dynamically. The NE_ID, or any other
Common Service Description Layer (service action) label defined for the parameter,
identifies either an NE resource or a dynamic routing template resource configured in
ASAP. Examples for mapping the atomic action label MCLI to different service action
labels are provided later in this chapter.

3. If the NE_ID identifies a network template, the SARM uses this to dynamically set up a
session manager, connection pool, and command processors.

4. The SARM uses the drop timeout (discussed later in this chapter) to terminate
connections to the NE.

5. After the primary connection is dropped, the command processor, connection pool, and
session manager are cleaned up.

Enabling Dynamic Routing
This section describes how to configure ASAP to enable dynamic routing.

Network Template Configuration
A network template describes an ASAP connection environment that consists of an NEP,
primary connection pool and its attributes (spawn threshold, kill threshold, max connections,

7-1

and drop-timeout). ASAP uses the template to set up a connection pool and session
manager for each dynamically identified NE.

In conventional static configurations, the work order identifies a real NE to be
provisioned via the reserved atomic action parameter named MCLI. In dynamic
routing, this parameter identifies a template for dynamic routing.

A static routing definition contains a parameter that references MCLI as follows:

<parameter name="MCLI" xsi:type="SimpleParameterType">
<required>true</required>
<parameterValueMap>NE_ID</parameterValueMap>
</parameter>

In this situation, a work order can identify the target NE by defining a parameter called
NE_ID and assigning a value that references a statically configured NE resource in
ASAP.

A dynamic routing configuration appears as follows:

<parameter name="MCLI" xsi:type="SimpleParameterType">
<required>true</required>
<parameterValueMap>TEMPLATE_ID</parameterValueMap>
</parameter>

In this situation, a work order can identify a network template by defining a parameter
called TEMPLATE_ID and assigning a value that references a network template
resource in ASAP.

Table 7-1 Comparing Static and Dynamic Configuration

Static Dynamic

Atomic action reserved work
order parameter MCLI

Identifies NE Identifies network template

tbl_clli_route, tbl_host_clli,
tbl_nep, tbl_ne_config,
tbl_resource_pool,
tbl_comm_param

Specifies connection
environment for a specific NE

Specifies a dynamic routing
template

You can use the Service Activation Configuration Tool (SACT) and
ActivationConfig.xsd schema to create and deploy network templates. When
deployed, the network template is identified in tbl_ne_config. For more information on
the SACT, see ASAP Server Configuration Guide. You can alternatively use Design
Studio to create and deploy network templates. For more information about using
Design Studio to configure dynamic routing, see the Design Studio Modeling Activation
Help.

If you are going to use SACT, you can write the XML configuration file from scratch,
use an XML editor to generate the XML code, or use a sample from the ASAP_home/
samples/sadt/SampleCommonConfig directory as the basis for the XML
configuration file, where ASAP_home is the directory in which ASAP is installed.

A sample XML configuration file for dynamic routing appears below:

<dynamicRoutingTemplate name="DYN_DALLAS">
<nepServerName>NEP_S235</nepServerName>
<vendor>DYNAMIC_VENDOR</vendor>
<technology>DYNAMIC_TECH</technology>

Chapter 7
Configuring Dynamic Network Element Routing

7-2

<softwareLoad>DYNAMIC_SL</softwareLoad>
<maximumConnections>5</maximumConnections>
<dropTimeout>1</dropTimeout>
<spawnThreshold>3</spawnThreshold>
<killThreshold>0</killThreshold>
<read_timout>5</read_timeout>
<write_timeout>5</write_timeout>
<lineType>TELNET_CONNECTION</lineType>
<communicationParameter>
<label>DynLab1</label>
<value>
<value>DynVal1</value>
</value>
<description>DynDesc1</description>
</communicationParameter>
<label>LOGIN_PROMPT</label>
<value defaultValue="login:">
<value>login:</value>
<description>Login prompt.</description>
</communicationParameter>
<communicationParameter>
<label>READ_TIMEOUT</label>
<value defaultValue=5>
<value>5</value>
<description>Integer</description>
</communicationParameter>
<communicationParameter>
<label>WRITE_TIMEOUT</label>
<value defaultValue=5>
<value>5</value>
<description>Integer</description>
</communicationParameter>
</dynamicRoutingTemplate>

The template name (DYN_DALLAS) specified in the dynamicRoutingTemplate tag
identifies the template that must be specified in the work order.

Parameters provided on the work order override statically defined values in the template.

For specific tag definitions, refer to the comments in activationConfig.xsd.

After you have written the dynamic routing XML configuration file, you can use a command-
line tool to configure it into ASAP. For more information, see the ASAP Server Configuration
Guide.

Dynamic Network Element Routing Scenarios
This section describes different routing scenarios and the configurations required to support
them. Dynamic routing requires that communication parameters used in creating a
connection must be passed down as order parameters.

Dynamic routing is supported by any protocol including TCP/IP. Consequently, ASAP cannot
mandate keyword parameters to specify a target NE's communication parameters. For
TCP/IP-based protocols, an IP address and port are usually sufficient parameters to specify a
connection. Other protocols require different communication parameters: HTTP may include
a URL, and Common Object Request Broker Architecture (CORBA) may use an
Interoperable Object Reference (IOR) string. There is no limit to the set of communication
parameters that can be used to uniquely identify a target NE.

Chapter 7
Configuring Dynamic Network Element Routing

7-3

Network Element Identification
NE identification is provided by means of the reserved compound parameter
COMM_PARM and its reserved member COMM_PARM.NE_ID. Only work order
parameters mapped to the key compound parameter of COMM_PARM are identified
as dynamic communication parameters. The subset of communication parameters
identified by COMM_PARM.NE_ID is used by ASAP to uniquely identify a specific NE.

For example, you could identify the communication parameters for an NE instance
using TCP/IP connections with one or more of the following:

• COMM_PARM.NE_ID.HOST_IPADDR

• COMM_PARM.NE_ID.PORT

• COMM_PARM.NE_ID.HOST_USERNAME

• COMM_PARM.NE_ID.HOST_PASSWORD

For CORBA devices, the communication parameter may appear as follows:

• COMM_PARM.NE_ID.IOR

• COMM_PARM.NE_ID.USERNAME

• COMM_PARM.NE_ID.PASSWORD

Each parameter is used to create a key that uniquely identifies that NE. Based on the
key, the SARM initializes a session manager. For instance, if you wanted only the IP
address and security credentials to uniquely identify an NE, you would specify port as
COMM_PARM.PORT (without the NE_ID) so that it does not come into play when
identifying a target NE.

Another provisioning request with the same set of communication parameters but with
a different user name and password identifies a different NE to ASAP. ASAP would
create two sets of resources for each NE: connection pool, session manager,
command processor, devices, and so on.

The following sections describe different routing scenarios.

Scenario 1 – One Service Action to Multiple Atomic Actions Routed to One NE
In this scenario, an upstream inventory system is used to maintain certain logical NE
attributes including routing information. The set of NEs that will use dynamic routing
have identical connection characteristics, consequently, they can share a single
dynamic routing template. Work orders are submitted to ASAP with enough
information to identify the template to be used for dynamic routing. All values
configured in the template are then applied to establish the connection.

Figure 7-1 shows a single service action mapped to one or more atomic actions, all of
which are routed to a single NE.

Chapter 7
Configuring Dynamic Network Element Routing

7-4

Figure 7-1 One Service Action to Multiple Atomic Actions Routed to One NE

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID_A=TEMPLATE_1
COMM_PARM.NE_ID.URL=http://www.abc.com
COMM_PARM.NE_ID.HOST_USERNAME=jsmith
COMM_PARM.NE_ID.HOST_PASSWORD=<password1>

Table 7-2 shows the parameter mappings service model configuration.

Table 7-2 Scenario 1 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM COMM_PARM Compound

A-SERVICE_1 MCLI TEMPLATE_ID_A Scalar

A-SERVICE_2 COMM_PARM COMM_PARM Compound

A-SERVICE_2 MCLI TEMPLATE_ID_A Scalar

A-SERVICE_3 COMM_PARM COMM_PARM Compound

A-SERVICE_3 MCLI TEMPLATE_ID_A Scalar

This configuration routes all three atomic actions to the same NE because they each receive
the same set of communication parameters. Table 7-3 shows the downstream program (State
Table or JInterpreter class) parameters:

Table 7-3 Scenario 1 Parameters

Label Value

A-SERVICE_1 -

MCLI TEMPLATE_1

URL http://www.abc.com

username jsmith

password <password1>

A-SERVICE_2 -

Chapter 7
Configuring Dynamic Network Element Routing

7-5

Table 7-3 (Cont.) Scenario 1 Parameters

Label Value

MCLI TEMPLATE_1

URL http://www.abc.com

username jsmith

password <password1>

A-SERVICE_3 -

MCLI TEMPLATE_1

URL http://www.abc.com

username jsmith

password <password1>

The COMM_PARM and COMM_PARM.NE_ID are stripped from the work order
parameter so that the downstream provisioning program receives the parameters in
the name/value pair that is expected.

Scenario 2 – One Service Action to Multiple Atomic Actions Routed to Different
NEs

Figure 7-2 presents a single service action mapped to two or more atomic actions,
each of which is routed to a different NE but all using the same network template.

Figure 7-2 One Service Action to Multiple Atomic Actions Routed to Different
NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID=TEMPLATE_1
SUBSCRPTION_A.NE_ID.URL=http://www.abc.com
SUBSCRIPTION_A.NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A.NE_ID.HOST_PASSWORD=<password1>

Chapter 7
Configuring Dynamic Network Element Routing

7-6

SUBSCRPTION_B.NE_ID.URL= http://www.def.com/
SUBSCRIPTION_B.NE_ID.HOST_USERNAME=dmiller
SUBSCRIPTION_B.NE_ID.HOST_PASSWORD=<password2>
SUBSCRPTION_C.NE_ID.URL=http://www.ghi.com
SUBSCRIPTION_C.NE_ID.HOST_USERNAME=djones
SUBSCRIPTION_C.NE_ID.HOST_PASSWORD=<password3>

Table 7-4 shows the service model configuration parameter mappings.

Table 7-4 Scenario 2 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A Compound

A-SERVICE_1 MCLI TEMPLATE_ID Scalar

A-SERVICE_2 COMM_PARM SUBSCRIPTION_B Compound

A-SERVICE_2 MCLI TEMPLATE_ID Scalar

A-SERVICE_3 COMM_PARM SUBSCRIPTION_C Compound

A-SERVICE_3 MCLI TEMPLATE_ID Scalar

The atomic action parameter MCLI in this case identifies the network template. In static
routing, the atomic action parameter MCLI identifies the NE.

This configuration routes each atomic action to a different NE. Table 7-5 shows the
downstream program (State Table or JInterpreter class) parameters.

Table 7-5 Scenario 2 Parameters

Label Value

A-SERVICE_1 -

MCLI TEMPLATE_1

URL http://www.abc.com

HOST_USERNAME jsmith

HOST_PASSWORD <password1>

A-SERVICE_2 -

MCLI TEMPLATE_1

URL http://www.def.com

HOST_USERNAME jsmith

HOST_PASSWORD <password2>

A-SERVICE_3 -

MCLI TEMPLATE_1

URL http://www.ghi.com

HOST_USERNAME jsmith

HOST_PASSWORD <password3>

Chapter 7
Configuring Dynamic Network Element Routing

7-7

Scenario 3 – One Service Action to Multiple Atomic Actions Routed to Different
NEs

Figure 7-3 shows a single service action that is mapped to two or more atomic actions,
each of which is routed to a different NE. Each NE is using a different network
template.

Figure 7-3 One Service Action to Multiple Atomic Actions Routed to Different
NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID_A=TEMPLATE_1
SUBSCRPTION_A.NE_ID.URL=http://www.abc.com
SUBSCRIPTION_A.NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A.NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID_B=TEMPLATE_2
SUBSCRPTION_B.NE_ID.URL= http://www.def.com/
SUBSCRIPTION_B.NE_ID.HOST_USERNAME=dmiller
SUBSCRIPTION_B.NE_ID.HOST_PASSWORD=<password2>
TEMPLATE_ID_C=TEMPLATE_3
SUBSCRPTION_C.NE_ID.URL=http://www.ghi.com
SUBSCRIPTION_C.NE_ID.HOST_USERNAME=djones
SUBSCRIPTION_C.NE_ID.HOST_PASSWORD=<password3>

Table 7-6 shows the service model configuration parameter mappings.

Table 7-6 Scenario 3 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A Compound

A-SERVICE_1 MCLI TEMPLATE_ID_A Compound

A-SERVICE_2 COMM_PARM SUBSCRIPTION_B Compound

A-SERVICE_2 MCLI TEMPLATE_ID_B Compound

Chapter 7
Configuring Dynamic Network Element Routing

7-8

Table 7-6 (Cont.) Scenario 3 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_3 COMM_PARM SUBSCRIPTION_C Compound

A-SERVICE_3 MCLI TEMPLATE_ID_C Compound

The atomic action parameter MCLI in this case identifies the network template. In static
routing, the atomic action parameter MCLI identifies the NE.

This configuration routes each atomic action to a different NE. Table 7-7 shows the
downstream program (State Table or JInterpreter class) parameters.

Table 7-7 Scenario 3 Parameters

Label Value

A-SERVICE_1 -

MCLI TEMPLATE_1

URL http://www.abc.com

HOST_USERNAME jsmith

HOST_PASSWORD <password1>

A-SERVICE_2 -

MCLI TEMPLATE_2

URL http://www.def.com

HOST_USERNAME dmiller

HOST_PASSWORD <password2>

A-SERVICE_3 -

MCLI TEMPLATE_3

URL http://www.ghi.com

HOST_USERNAME djones

HOST_PASSWORD <password3>

Scenario 4 – One Service Action to Multiple Atomic Actions Routed to Multiple NEs
Figure 7-4 shows a case that differs from the previous scenario in that all of the atomic
actions are sent to each NE.

Chapter 7
Configuring Dynamic Network Element Routing

7-9

Figure 7-4 One Service Action to Multiple Atomic Actions Routed to Multiple
NEs

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID[1]=<TEMPLATE_1>
SUBSCRIPTION[1].NE_ID.URL=http://www.abc.com
SUBSCRIPTION[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION[1].NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID[2]=<TEMPLATE_2>
SUBSCRIPTION[2].NE_ID.URL= http://www.def.com/
SUBSCRIPTION[2].NE_ID.HOST_USERNAME=dmiller
SUBSCRIPTION[2].NE_ID.HOST_PASSWORD=<password2>
TEMPLATE_ID[3]=<TEMPLATE_3>
SUBSCRIPTION[3].NE_ID.URL=http://www.ghi.com
SUBSCRIPTION[3].NE_ID.HOST_USERNAME=djones
SUBSCRIPTION[3].NE_ID.HOST_PASSWORD=<password3>

Table 7-8 shows the service model configuration parameter mappings.

Table 7-8 Scenario 4 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION[++] Compound

A-SERVICE_1 MCLI TEMPLATE_ID[++] Compound

A-SERVICE_2 COMM_PARM SUBSCRIPTION[++] Compound

A-SERVICE_2 MCLI TEMPLATE_ID[++] Compound

A-SERVICE_3 COMM_PARM SUBSCRIPTION[++] Compound

A-SERVICE_3 MCLI TEMPLATE_ID[++] Compound

This configuration routes each atomic action to each NE. Table 7-9 shows the
downstream program (State Table or JInterpreter class) parameters.

Chapter 7
Configuring Dynamic Network Element Routing

7-10

Table 7-9 Scenario 4 Parameters

Iteration Label Value

A-SERVICE_1

- MCLI TEMPLATE_1

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI TEMPLATE_2

2 URL http://www.def.com

2 HOST_USERNAME dmiller

2 HOST_PASSWORD <password2>

- MCLI TEMPLATE_3

3 URL http://www.ghi.com

3 HOST_USERNAME djones

3 HOST_PASSWORD <password3>

Each atomic action is called three times, each time with a different set of communication
parameters.

Table 7-9 applies to A-SERVICE_2 and A-SERVICE_3 as well.

Scenario 5 – One Service Action to Multiple Atomic Actions Routed to Different NEs
Figure 7-5 shows atomic actions that are routed to one or more NEs, and others that are
routed to another NE.

Figure 7-5 One Service Action to Multiple Atomic Actions Routed to Different NEs

Chapter 7
Configuring Dynamic Network Element Routing

7-11

The work order includes the following service action and communication parameters:

C-SERVICE
TEMPLATE_ID_A[1]=<template_1>
SUBSCRIPTION_A[1].NE_ID.URL=http://www.abc.com
SUBSCRIPTION_A[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A[1].NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID_A[2]=<template_2>
SUBSCRIPTION_A[2].NE_ID.URL=http://www.pqr.com
SUBSCRIPTION_A[2].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_A[2].NE_ID.HOST_PASSWORD=<password4>
TEMPLATE_ID_B[1]=<template_1>
SUBSCRIPTION_B[1].NE_ID.URL=http://www.abc.com
SUBSCRIPTION_B[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_B[1].NE_ID.HOST_PASSWORD=<password1>
TEMPLATE_ID_B[2]=<template_2>
SUBSCRIPTION_B[2].NE_ID.URL=http://www.pqr.com
SUBSCRIPTION_B[2].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_B[2].NE_ID.HOST_PASSWORD=<password4>
TEMPLATE_ID_B[3]=<template_3>
SUBSCRIPTION_B[3].NE_ID.URL= http://www.c.com/
SUBSCRIPTION_B[3].NE_ID.HOST_USERNAME=drichler
SUBSCRIPTION_B[3].NE_ID.HOST_PASSWORD=<password9>
TEMPLATE_ID_C[1]=<template_2>
SUBSCRIPTION_C[1].NE_ID.URL=http://www.pqr.com
SUBSCRIPTION_C[1].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_C[1].NE_ID.HOST_PASSWORD=<password4>
TEMPLATE_ID_C[2]=<template_3>
SUBSCRIPTION_C[2].NE_ID.URL= http://www.c.com/
SUBSCRIPTION_C[2].NE_ID.HOST_USERNAME=drichler
SUBSCRIPTION_C[2].NE_ID.HOST_PASSWORD=<password9>

Table 7-10 shows the service model configuration parameter mappings.

Table 7-10 Scenario 5 Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A[++] Compound

A-SERVICE_1 MCLI TEMPLATE_ID_A[++] Compound

A-SERVICE_2 COMM_PARM SUBSCRIPTION_B[++] Compound

A-SERVICE_2 MCLI TEMPLATE_ID_B[++] Compound

A-SERVICE_3 COMM_PARM SUBSCRIPTION_C[++] Compound

A-SERVICE_3 MCLI TEMPLATE_ID_C[++] Compound

This configuration routes atomic action A-SERVICE_1 to NE_1 and NE_2; A-
SERVICE_2 to NE_1, NE_2, and NE_3; and A-SERVICE_3 to NE_2 and NE_3.
Table 7-11 shows the downstream program (State Table or JInterpreter class)
parameters.

Table 7-11 Scenario 5 Parameters

Iteration Label Value

A-SERVICE_1 - -

- MCLI <template_1>

Chapter 7
Configuring Dynamic Network Element Routing

7-12

Table 7-11 (Cont.) Scenario 5 Parameters

Iteration Label Value

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI <template_2>

2 URL http://www.pqr.com

2 HOST_USERNAME dabrams

2 HOST_PASSWORD <password4>

A-SERVICE_2 - -

- MCLI <template_1>

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI <template_2>

2 URL http://www.pqr.com

2 HOST_USERNAME dabrams

2 HOST_PASSWORD <password4>

3 MCLI <template_3>

3 URL http://www.c.com

3 HOST_USERNAME drichler

3 HOST_PASSWORD <password9>

A-SERVICE_3 - -

1 MCLI <template_2>

1 URL http://www.pqr.com

1 HOST_USERNAME dabrams

1 HOST_PASSWORD <password4>

- MCLI <template_3>

2 URL http://www.c.com

2 HOST_USERNAME drichler

2 HOST_PASSWORD <password9>

Scenario 6 – Common URL
The following sample shows a common URL that is shared:

• Global Parameter

SUBSCRIPTION_A.NE_ID.URL=http://www.abc.com
• C-SERVICE

Chapter 7
Configuring Dynamic Network Element Routing

7-13

TEMPLATE_ID=<template_1>
SUBSCRIPTION_A[1].NE_ID.HOST_USERNAME=jsmith
SUBSCRIPTION_A[1].NE_ID.HOST_PASSWORD=<password1>
SUBSCRIPTION_A[2].NE_ID.HOST_USERNAME=dabrams
SUBSCRIPTION_A[2].NE_ID.HOST_PASSWORD=<password4>

Table 7-12 shows the service model configuration parameter mappings.

Table 7-12 Common URL Parameter Mappings

asdl_cmd asdl_lbl csdl_lbl param_typ

A-SERVICE_1 COMM_PARM SUBSCRIPTION_A[++] Compound

A-SERVICE_1 MCLI TEMPLATE_ID Scalar

Table 7-13 shows the downstream program (State Table or JInterpreter class)
parameters.

Table 7-13 Common URL Parameters

Iteration Label Value

A-SERVICE_1 - -

- MCLI <template_1>

1 URL http://www.abc.com

1 HOST_USERNAME jsmith

1 HOST_PASSWORD <password1>

- MCLI <template_2>

2 URL http://www.pqr.com

2 HOST_USERNAME dabrams

2 HOST_PASSWORD <password4>

Dynamic Routing Configuration Errors
If the maximum connections limit is reached, an exception is thrown indicating that the
atomic action cannot be dispatched because all connections are in use. The atomic
action is put in pending queue so that it can be processed when a connection is
available.

A routing error (ROUT_ERR) event is logged and the work order fails in the following
circumstances:

• The network template identifier is not defined on the order, or the identifier does
not reference a valid template resource configured in ASAP.

• The combined total length of all communication labels and values exceeds 2048.

When dynamic communication parameters (as provided on an ASAP work order) are
invalid (due to an incorrect IP address or port, for instance) the work order is not
explicitly failed. Failing an order in this manner is generally reserved for incorrect
activation parameters rather than invalid communication parameters. When incorrect
communication parameters are detected (by the inability to establish a connection with
the NE) the work order is placed in the retry queue. When the error in communication

Chapter 7
Configuring Dynamic Network Element Routing

7-14

parameters is detected, use Order Control Application (OCA) to stop the order, change the
invalid communication parameters and re-submit the order to ASAP.

OCA tracks the revision history of all orders.

Refer to ASAP OCA User Guide for information about OCA.

Managing Communication and Order Parameters
Parameters defined with the same label as both communication and order parameters will
conflict. In order of precedence, order communication parameters override static parameters
if they have the same label. Oracle recommends that solutions developers not use conflicting
labels for both communication and order parameters.

During provisioning, parameters contained in work orders override work order communication
parameters (COMM_PARM), which override static communication parameters contained in
tbl_comm_param (see Figure 7-6).

Figure 7-6 Order Parameter Precedence

Backward Support for MPM Protocols
Dynamic routing can be used in conjunction with Multi-Protocol Manager-supported protocols
such as Telnet, FTP, and socket. These protocols require recognized keywords such as
HOST_IPADDR, HOST_NAME and PORT to create a connection. These parameter names
must be used to enable the MPM supported protocols.

Chapter 7
Configuring Dynamic Network Element Routing

7-15

An atomic action requires the following parameters to be routed using the MPM socket
protocol:

• COMM_PARM.NE_ID.HOST_IPADDR or COMM_PARM.NE_ID.HOST_NAME

• COMM_PARM.NE_ID.PORT

Software Load and Technology Type
Software load and technology type may be defined statically (tbl_host_clli) or provided
by an upstream system as parameters on a work order.

Consequently, each atomic action requires the following reserved communication
parameters:

• COMM_PARM.NE_ID.SFTWR_LOAD or COMM_PARM.SFTWR_LOAD

• COMM_PARM.NE_ID.TECH_TYPE or COMM_PARM.TECH_TYPE

These parameters can be defined dynamically on each order or statically in the
network template.

The software load and technology type are established after when the NEP first
establishes a connection to the NE. After the connection has been established, all
subsequent values of SFTWR_LOAD and TECH_TYPE received from subsequent
work orders destined to the same NE instance are ignored. The software load and
technology type are reloaded the next time ASAP sets up a session manager,
connection pool, and command processors for that NE.

NE Configuration Parameters
Some of NE configuration parameters (such as max_connections, drop_timeout,
spawn_threshold, kill_threshold, and line_type) may be provided by an upstream
system as Work Order communication parameters.

The following work order communication parameters can be specified to override the
defaults:

• COMM_PARM.NE_ID.MAX_CONNECTIONS or
COMM_PARM.MAX_CONNECTIONS

• COMM_PARM.NE_ID.DROP_TIMEOUT or COMM_PARM.DROP_TIMEOUT

• COMM_PARM.NE_ID.SPAWN_THRESHOLD or
COMM_PARM.SPAWN_THRESHOLD

• COMM_PARM.NE_ID.KILL_THRESHOLD or COMM_PARM.KILL_THRESHOLD

• COMM_PARM.NE_ID.LINE_TYPE or COMM_PARM.LINE_TYPE

These parameters are used to initialize the session manager and command
processors. After the session is established for the NE, parameters those coming from
subsequent work orders to the same NE instance will be ignored until the session
manager is removed from memory (when the primary connection to the NE is closed).

Chapter 7
Configuring Dynamic Network Element Routing

7-16

8
Creating Service Actions

This chapter describes how to create service actions for Oracle Communications ASAP.

About Creating and Configuring Service Actions
A Common Service Description Layer (CSDL) or service action command is an ASAP
command that is associated with a particular work order. The service action command is
associated with one or more operations on one or more network elements (NEs).

Service action command names are comprised of the string C_ (for Service Action) as well as
attributes including the cartridge identification elements (tokens), actions, and services that
have been selected for the cartridge. The tokens are separated by underscores, and
compound tokens (if required) include a dash as a separator. If the software load token
includes a "." it is replaced by a dash. All characters in the name must be in uppercase. The
naming convention is as follows:

C_vendor-technology_softwareload_action_entity

Where

• C_: This prefix indicates a service action.

• vendor: see "Selecting the Vendor Token"

• technology: see "Selecting the Technology Token"

• softwareload: see "Selecting the Software Load Token"

• action: see "Selecting the Action Tokens"

• entity: see "Selecting Entity Tokens"

Note:

If service packages are used, the service token should include the service package
in its name. For example a service action belonging to the BGP service package
would be named as follows:

C_CSCO-IOS_12-2-X_ADD_BGP-MAX-PREFIX

Identify and model meaningful services as service action commands. The first step is to
create a one-to-one mapping between each service action and atomic action. For example,
an atomic action that adds three-way calling to a subscriber line should have an associated
service action that allows for this feature to be activated individually by an upstream system:

8-1

Table 8-1 Service-Action-to-Atomic-Action Mapping (One-to-One)

Service Action Atomic Action

C_NOKIA_HLR_M11_ADD-3WC A_NOKIA_HLR_M11_ADD-3WC

Where possible, also model other meaningful services. For example an atomic action
to nail up a relay point on a Nortel Passport NE should also be modeled into a more
meaningful service. The service action configuration should therefore include an
individual service action that allows the relay point to be nailed up as well as a service
action that implements a more meaningful service such as the activation of permanent
virtual circuit (which makes use of the atomic action to nail up a relay point among
other atomic actions that are used to construct the PVC):

Table 8-2 Meaningful Service-Action-to-Atomic-Action Mapping

Service Action Atomic Action Meaningful Service

C_NT-PP_12-4_SPECIFY_NRP A_NT-PP_12-4_SPECIFY_NRP No

C_NT-PP_12-4_ADD_ATM-PVC A_NT-PP_12-4_ADD_VCC
A_NT-PP_12-4_SPECIFY_NRP
A_NT-PP_12-4_CREATE_X-CONN

Yes

Service cartridge service actions do not have to follow this naming convention.

Design Studio for ASAP automatically enforces this naming convention when you
create a service action with the Service Action Wizard.

Creating Service Actions
To create a service action using Design Studio, use the following procedure:

1. Select Studio, then New, then Activation, and then Service Action.

2. From the Service Action Wizard, do the following:

• In the Action field, enter an action name that corresponds to an NE command.

• In the Entity field, enter an entity name that corresponds to an NE service
name or service package you want to configure.

3. Click Finish.

The Service Action editor appears.

Configuring Service Action Default Sequence
Service action level refers to the relative ordering of the service action within the work
order. The SARM must have the service action level in case it receives service actions
from a service request processor (SRP) or a Java SRP that is not in the work order in
which it must be provisioned. Using the service action level, the SARM can re-order
the service actions on an ASAP work order.

Assign service action levels based on the logical sequence in which the service action
commands would need to occur if they were contained within a single work order. For

Chapter 8
About Creating and Configuring Service Actions

8-2

example, on some NEs where a change line command is not available, a work order may
contain service actions to

1. Query the line for line attribute information.

2. Delete the line.

3. Recreate the line with new attributes.

4. Re-assign the old attributes

Assigning the levels as shown in the following list ensures that service actions are run in the
correct order if they were for some reason out of sequence on the original order:

• Query 100

• Delete 120

• Add 140

• Modify/change 160

To configure a service action sequence using Design Studio:

1. From the Service Action editor, click the Properties tab.

2. In the Level field, enter a service action sequence level.

Configuring Service Action Fail and Complete Events
You can optionally configure a service action to trigger a return event to the SRP or JSRP
when it receives a defined event.

• Service Action Completion Event – The event that is triggered if this service action
completes successfully. These events can either be system events or custom events. For
information about system events and configuring system events see the ASAP System
Administrator's Guide.

• Service Action Failure Event – The event that is triggered if this service action fails.
These events can either be system events or custom events. For information about
system events and configuring system events, see the ASAP System Administrator's
Guide.

Each service action command must be defined in a static user-configured translation table
that specifies the particular characteristics of the service action command. tbl_csdl_config is
a user-created static table that contains all service actions. Each work order submitted to can
have one or more associated service actions.

To configure a service action fail or complete event using Design Studio:

1. From the Service Action editor, in the Properties tab, select a service action completion
event from the Service Action Completion Event list.

2. From the Service Action Failure Event list, select a service action failure event.

About Mapping a Service Action to Atomic Actions
After you have defined service action commands, atomic actions, and atomic action
parameters, you can establish mapping relationships between the service action commands
and atomic actions. You must define which atomic actions are transmitted to the NEP for a
given service action command.

Chapter 8
About Mapping a Service Action to Atomic Actions

8-3

A service action command can have one or more atomic actions. Multiple atomic
actions must be performed in the correct sequence, otherwise the service action can
fail. This sequence is identified when creating the mapping relationship. In the
example below, the atomic action CREATE_LINE must be performed before any
options are added to that line.

Table 8-3 Service-Action-to-Atomic-Action Mappings

Service Action Atomic Action Parameters Description

CREATE_RES_LINE CLEAR_INTERCEPT MCLI="NEWYORK",

NPA="516",

NNX="555",

LINE="1212"

Clear the intercept for
the directory number
before adding line.

CREATE_RES_LINE CREATE_LINE MCLI="NEWYORK",

LEN="2111112",

NPA="516",

NNX="555",

LINE="1212",

PARTY="I",

PIC="333"

Create the line in the
NE.

CREATE_RES_LINE SET_OPTION_ON MCLI="NEWYORK",

LEN="2111112",

NPA="516",

NNX="555",

LINE="1212",

OPT="TTR"

Add the Touch Tone
feature to the line.

ADD_FEATURE SET_OPTION_ON MCLI="NEWYORK",

LEN="2111112",

NPA="516",

NNX="555",

OPT="CAW"

Add the Call Waiting
feature to the line.

Note:

Any changes or additions you make to mapping relationships only take effect
after the SARM server is restarted.

About Limiting Independent Network Element Commands to
Optimizing the Network Element Interface

The goal of NE interface optimization is to limit the number of independent NE
commands (either MML or API calls) that ASAP sends to an NE. Collect related
service activation requests and combine them into a single service activation request
that ASAP sends to the NE. This avoids performance overhead associated with
checking multiple NE responses and provides a higher degree of throughput to the
NE.

Chapter 8
About Mapping a Service Action to Atomic Actions

8-4

In the non-optimized (standard) approach, a number of independent atomic actions are
combined together to create a service action as shown in the following example:

C_NOKIA-HLR_M11_ADD_FEATURES
 A_NOKIA-HLR_M11_ADD_CW
 A_NOKIA-HLR_M11_ADD_3WC
 A_NOKIA_HLR_M11_ADD_CF
 …others feature atomic actions…

In this example, a service, C_NOKIA-HLR_M11_ADD_FEATURES, spawns multiple atomic
actions that activate features on a subscriber line. Because each Java method has one
feature-related NE command embedded in it, each atomic action that runs sends one NE
command to the NE and each atomic action is responsible for checking the response from
the NE to verify its success. Though this approach enables tight feature-specific parameter
checking in the SARM, the error checking required after ASAP sends each command creates
a significant amount of overhead. This approach is suitable when ASAP provisions a small
volume of work orders and performance is not a major factor; however, when ASAP
provisions a large volume of work orders, this approach may impair the performance of
ASAP.

When NE interface optimization is used, a Java method is created that combines the multiple
feature requests into one or more NE commands. Some NEs have a length limit to the
command string and therefore some splitting of commands may be necessary. The Java
method is used to examine the feature flags on the work order and then construct a larger NE
command. A generic atomic action maps to the main Java method and all of the possible
atomic action parameters for adding the supported features to the subscriber line are
associated with the following atomic action:

C_NOKIA-HLR_M11_ADD_FEATURES
 A_NOKIA-HLR_M11_ADD_FEATURES

When a Java method sends more than one command to an NE, it must be transaction
oriented. For example, if a Java method sends multiple commands to an NE and the third
command fails, it is necessary to roll back the previous two commands before failing the
atomic action

An optimized design requires that all of the atomic action parameters provided to the Java
method be configured as optional in the SARM. This reduces the error-checking ability of the
SARM and results in a higher degree of fallout at the NE level. Additional coding,
maintenance, and testing effort is also required within each Java method. The benefits of this
design includes reducing the number of independent commands that are sent to the NE and
reducing the number of atomic actions and responses that ASAP must manage. For more
information about atomic action to Java method and MML command ratio, see "About the
Ratio of Provisioning Commands to Atomic Actions."

In addition to providing a standard set of atomic actions that map to the individual NE
commands on an NE, it may be possible to implement atomic actions that support NE
interface optimization if coupling of commands is supported by the NE. This is most common
in the voice networks where numerous features (such as creating a subscriber and adding a
number of features) are needed to provide different levels of service to a customer. If the NE
does support this functionality, it must be supported in the cartridge in addition to the standard
service modeling approach.

Adding Atomic Actions to a Service Action
To add atomic actions to a service action using Design Studio:

Chapter 8
About Mapping a Service Action to Atomic Actions

8-5

1. From the Service Action editor, click the Atomic Actions tab, and then click Add.

The Atomic Action Selection dialog box appears.

2. In the Matching items list, select an atomic action.

3. Click OK.

The atomic action you selected is added to the atomic action list in the Atomic
Actions tab.

Note:

Atomic actions are run in the order in which they are added to a service
action from the top of the list to the bottom. You can change the position
of atomic actions in Atomic Actions tab using the up and down arrows.

About Atomic Action Spawning Logic
When given a particular service action command and its parameters, the SARM refers
to a static user-populated translation table to generate one or more atomic actions for
this service action with certain conditions. tbl_csdl_asdl is a static table that is used
by the SARM and contains these mappings between service action commands and
atomic actions. For each atomic action associated with a service action, the SARM
verifies whether the atomic action should be spawned for the specified service action.
The final determination of whether the atomic action is spawned depends on the
atomic action parameter translation process specified in the tbl_asdl_parm database
table.

ASAP's translation logic makes it possible to determine whether or not to spawn an
atomic action based on a range of values, or based on equal, not equal, greater than
or less than conditions. It is also possible to combine conditions using an AND or OR
operator. This logic permits detailed computations required to run an atomic action on
the NE, to be performed in the service-action-to-atomic-action translation step, rather
than in the atomic action to NE translation step, and streamlines bandwidth usage
during NEP to NE communications. The expanded set of possibilities for service-
action-to-atomic-action translation allows for a greater flexibility in the translation and
mapping process and a more efficient processing effort.

The generation of each atomic action can also depend on the results of previous
atomic actions that return parameters to the SARM upon successful completion.

This arrangement provides a mechanism for flexible translation, allowing the SARM to
use one of the following methods to perform service-action-to-atomic-action
translation.

• Unconditional translation: The SARM always generates the atomic action for this
service action. ASAP supports the following unconditional translation option:

– Always – The SARM always generates the atomic action for this service
action.

• Conditional translation: The SARM uses conditional logic to decide whether to
generate the atomic action. If the label and/or values associated with the
conditional translation are not configured in the database, the atomic action fails.
ASAP supports the following conditional translation options:

Chapter 8
About Atomic Action Spawning Logic

8-6

– Always with Include Expression option: The user can define a logical expression
using a number of criteria for a service action parameter. The range of options
available allows an atomic action to be generated if the service action parameter
value is within a set range of values or if the service action parameter is greater than,
or less than, or equal to, a specified value. More than one condition can be combined
in the expression, using an AND or OR operator. For more information about creating
logical expressions, see "Components of Service-Action-to-Atomic-Action Translation
Expressions" and "Defining Service Action-Atomic Action Translation Expressions."

– Defined – The SARM only generates a particular atomic action if the stated service
action parameter is defined on the service action.

– Not Defined – The SARM only generates a particular atomic action if the stated
service action parameter is not defined on the service action.

– Equals – The SARM only generates a particular atomic action if the stated service
action parameter is defined on the service action and has a particular parameter
value.

Note:

Always use optional parameters to spawn atomic actions using the Equals,
Defined, and Not Defined conditional translation options. Using a mandatory
parameter creates error messages if the mandatory parameter is not used.

Configuring Atomic Action Spawning Conditions
To configure atomic action spawning conditions using Design Studio:

1. From the Service Action editor, in the Atomic Actions tab, select one of the following
options:

• Always

• Defined

• Not Defined

• Equals

2. (Optional) Select Include Expression. This option is only available with the Always
condition.

3. (Optional) Enter a logical expression in the Include Expression text box. This option is
only available with the Always condition.

4. (Optional) Enter an atomic action parameter label in the Parameter Label field. This
option is available for the Defined, Not Defined, and Equals conditions.

5. (Optional) Enter an atomic action parameter label value in the Parameter Value field.
This option is only available for the Equals condition.

Components of Service-Action-to-Atomic-Action Translation Expressions
The eval_exp column (also called Include Expression field in Design Studio) in the
tbl_csdl_asdl_eval table contains an algebraic expression (as a string) that combines all the
parameters to be checked. If the value of the eval_exp in the tbl_csdl_asdl_eval is not
NULL, the string is parsed and the expression is evaluated to TRUE or FALSE. If the

Chapter 8
About Atomic Action Spawning Logic

8-7

expression cannot be evaluated (for example, incorrect semantics or non-existent
parameter), the translation fails.

The expression for the service-action-to-atomic-action translation contains
<parameter operator [value]> groups. To specify the order operations, you must use
brackets in the algebraic expression. A string with a length of 255 can accommodate a
number of conditions. The average is 20 groups of <parameter operator [value]>
groups. Each parameter or value should not exceed 30 bytes in length.

Supported Parameters for Translation Expressions
The parameters that may be included in the expression and to be checked are:

• Service action parameters and work order parameters

• Technology and software load

Table 8-4 shows the predefined parameters available to use with each translation
expression.

Table 8-4 Predefined Parameters

Parameters Description

HOST_NE Remote NE.

TECH Technology or NE type. This parameter is read from memory and loaded
when SARM starts.

SFTWR Software that runs on the NE. This parameter is read from memory and
loaded when SARM starts.

The parameters in the algebraic expression must match one of the parameter names
that come from SARM, such as service action or work order parameters. You can
define all other parameters and you can check any number of parameters in the
algebraic expression (limit of 255 bytes.)

Supported Operators for Translation Expressions
Table 8-5 shows the operators you can use in the service-action-to-atomic action
translation expression.

Table 8-5 Service-Action-to-Atomic-Action Translation Expression Operators

Operators Description

Boolean: AND, OR and
NOT

These Boolean operators are applied against Boolean values
returned by operations performed on parameters. For example:
NUM3 < 9999 AND NUM2 <333

The expression to enter in tbl_csdl_asdl is (NUM3 < 9999) AND
(NUM2 <333)

Operators to be used
against parameters

Parameter value not required: ISDEF, NOTDEF. For example:
NOTDEF VAR7 AND NUM2 > 333

The expression in tbl_csdl_asdl is (NOTDEF VAR7) AND (NUM2
> 333)

Chapter 8
About Atomic Action Spawning Logic

8-8

Table 8-5 (Cont.) Service-Action-to-Atomic-Action Translation Expression
Operators

Operators Description

Parameter value is
required

Integer operators: >, <, >=, =<, =, !=

String operators: LIKE, !LIKE

For example: (VAR7=72) AND (CENTER !LIKE “YORK")

Supported Values for Translation Expressions
The operators >, <, >=, =<, != and = are used only for integer values. The values provided for
these operators in the expression must be convertible to an integer or the translation will fail.
These operators trigger the conversion when the expression is parsed.

For string values, you use the operators LIKE and !LIKE (that is, not LIKE) and the values
require quotation marks, for example, CENTER !LIKE “YORK". These operators accept the
wildcards % and ?. For example: (TECH LIKE “D?S") AND (SFTWR !LIKE “BCS%")

A value is not required for the ISDEF and NOTDEF operators. The groups evaluate to TRUE
or FALSE and they can be aggregated together using the operands AND and OR.

All other parameters to be included in the expression can have any name, as long as they
match a service action or work order parameter label. If a parameter label is not defined on
the incoming work order, translation will fail.

Defining Service Action-Atomic Action Translation Expressions
The use of brackets in the service-action-to-atomic-action translation expression to specify
the order of the operations simplifies the following aspects of the service-action-to-atomic-
action translation process:

• Precedence of the operators is already determined

• Increased performance when evaluating each atomic action for service action translation

• Coding, maintenance, and enhancements of service actions and atomic actions

To avoid errors, you must use spaces between Literal operators and labels and Literal
operators and values.

The format is:

(DIS LIKE "B747")

Note:

Literal operators are: LIKE, !LIKE, ISDEF, NOTDEF. The operators AND and OR
always have their operands in brackets, therefore no blank space is mandatory on
either side.

A space between other operators and the operands is recommended but not mandatory.

(AAA < 72) AND (NOTDEF BBB)

Chapter 8
About Atomic Action Spawning Logic

8-9

To specify the order of the operations, each operator and its operands must be
enclosed in a set of brackets:

((A < 8) OR ((NOTDEF B) AND ((C != 3) OR (NOT(D = 9)))))

Table 8-6 shows the possible values in the eval_exp column of tbl_csdl_asdl_eval.

Table 8-6 eval_exp column values

Value Description

NULL Used when you do not require the enhanced service-action-to-atomic-
action translation. You can leave the eval_exp column of tbl_csdl_asdl_eval
empty. This expression translates to TRUE, which means the translation
relies completely on the cond_flag column. As a result, existing functionality
is not affected and an AND is placed between the new and the existing
functionality.

These conditions are identified in columns cond_flag and eval_exp. An
atomic action is valid only if both conditions are satisfied.

Valid algebraic
expression

If you require the enhanced service-action-to-atomic-action translation, you
must use a valid algebraic expression that evaluates to TRUE or FALSE in
the eval_exp column of the tbl_csdl_asdl_eval table. The evaluation of an
expression fails if it finds any syntax error in the expression, or if it cannot
get a value for a parameter when the value is required.

TRUE The string that is evaluated by the C code to the boolean value TRUE. This
is similar to A (always) for existing functionality.

If the evaluation of the expression fails, a SYS_ERR diagnostic message is logged in
the diagnostic file, and the atomic action is not included on the service action.

The expression evaluates to TRUE or FALSE, which would result in spawn or don't
spawn the atomic action, respectively. You must ensure that the translation expression
is correct. When the SARM starts or the configuration changes are dynamically re-
loaded, the syntax of the translation expressions is checked.

Translation Function Conflicts
Ensure that there is no conflict between the conditions set by the different entities, if
you use the following:

• Conditional service-action-to-atomic-action spawning logic

• Standard service-action-to-atomic-action spawning logic

• Atomic action to program or Java method mapping logic

You must also consider that the SARM service-action -to-atomic-action spawning logic
creates an AND condition between these entities.

About Service Actions and Rollback
As part of the service action configuration, you must identify whether the service action
rolls back in the event of failure. When the SARM begins provisioning a work order, it
scans each service action on the order to determine if rollback has been configured. If
rollback has been configured for one or more service actions, the SARM flags the work
order as requiring rollback in the event of failure.

Chapter 8
About Service Actions and Rollback

8-10

Table 8-7 shows the service action level rollback qualifications.

Table 8-7 Service Action-Level Rollback Qualifications

Qualification Description

Atomic actions must also be configured for
rollback separately

Atomic actions associated with the service actions are
not affected by the rollback configuration for service
actions.

Override default behavior using order
property

The service action Level Rollback Configuration
defines the default behavior for a service action. This
setting is ignored if the work order Rollback Property
specifies no rollback in the event of a work order
failure.

Service action rollback configuration is a
prerequisite for work order rollback

If the WO Rollback Property is turned on and no
service actions are configured to require rollback, the
work order will not roll back in the event of a failure.

The end state of rolled back service actions is
unknown

During rollback processing, a list of all completed
atomic actions is obtained. Regardless of whether an
atomic action completes or fails, rollback of previous
atomic actions continues. Consequently, the end state
of the service action is unknown and must be tested.

Enabling the CSDL Rollback Functionality
The rollback_req configuration variable is located in tbl_csdl_config in the SARM
database. If it is set to Y, rollback occurs. If it is set to N, no rollback occurs.

If a service action that requires rollback fails, the dynamic work order structure in the SARM
memory is flagged and the entire work order is rolled back.

Note:

If employing the delayed_failure property (see "About Delayed Failure Properties"),
rollback must be turned off, rollback_req must be set to N, and ignore rollback must
be set to Y.

To enable CSDL rollback functionality using Design Studio:

1. From the Service Action editor, click the Properties tab, select Rollback.

Enabling Work Order Rollback Functionality for the Service Request
Processor Emulator

The wo_rback configuration variable located in tbl_wo_def in the SRP database defines
whether the work order rolls back in the event of failure.

Chapter 8
About Service Actions and Rollback

8-11

Note:

tbl_wo_def and this variable are only applicable when using the SRP
emulator.

• If set to Y, rollback for a work order occurs if the work order times out or fails.

• If set to N, no rollback for the work order occurs.

• If not specified, the SARM uses D, the default value. In this case, rollback depends
on the service action parameter rollback_req in tbl_csdl_config. If rollback_req is
set for service action, then the work order rolls back when it times out or fails.

About Configuring a Rollback Point (Point of No Return)
You can configure atomic actions so that when a rollback situation occurs, rollback will
only be partially performed, stopping at the atomic action configured to be the point of
no return. By configuring the Rollback Point (pointOfNoReturn in the XML) value in
an atomic action, you can cause the following actions:

• No point of no return functionality - Rollback is performed normally.

• State: An atomic action can be configured as the rollback point (also called a point
of no return) for partial rollback. If rollback occurs, and execution has continued
beyond this point, execution is rolled back to this atomic action but no further.

• Stop: An atomic action can be configured as the rollback point for a rollback. After
execution has continued past this atomic action, no rollback can occur.

An example scenario with atomic action1, atomic action2, atomic action3 and atomic
action4, with atomic action2 configured for point of no return for partial rollback (for
example, with a PNR=1), would work as follows. atomic action1, atomic action2 and
atomic action3 run correctly. A work order timeout occurs on atomic action4. atomic
action3 is rolled back but because atomic action2 is considered to be the point of no
return for partial rollback, neither atomic action2 nor atomic action1 is rolled back.

In the same scenario, if atomic action2 is configured for point of no return with no
rollback (for example, PNR=2), then no rollback occurs at all.

Configuring a Rollback Point
To configure a point of no return using Design Studio:

1. From the Service Action editor, click the atomic actions tab, and then click the
empty Rollback Point field for an atomic action.

A list appears.

2. Select one of the following options:

• Leave the field blank to maintain full rollback functionality.

• State

• Stop

Chapter 8
About Service Actions and Rollback

8-12

9
Configuring Base Exit and User Exit Types

This chapter describes how to define an Oracle Communications ASAP user-defined exit
types (UDETs) and map them to ASAP base exit types.

About User Errors and Thresholds
Network element errors can be associated with exit types. An exit type reflects the status of
an atomic action at any point during the processing of that atomic action. Atomic action exit
types that are associated with atomic action completion and failure scenarios are termed
base exit types. The Service Activation Request Manager (SARM) database contains several
tables that reference base exit types (in other words, contain a base_types column). You can
define custom user-defined exit types (also known as user errors) that you can then map to
ASAP events. User-defined errors are stored in the Service Request Manager (SARM)
tbl_user_err table.

After you have defined user errors, you can define user error thresholds to elicit user-defined
responses or events should the failure threshold for an atomic action be exceeded. For
example, if a host network element (NE) returns a given error notification from a specific
atomic action a given number of times (the defined threshold), the appropriate user-defined
event is issued. User defined error thresholds are stored in tbl_err_threshold.

About Base Exit Types
In provisioning, when a user exit type is returned from a State Table or JNEP Java code, the
corresponding base type is found. For State Tables, the Network Element Processor finds the
base type. For the JNEP Java code, JNEP finds the base type and sends this base type to
the NEP.

There are seven base types defined in SARM database tbl_user_err. If you try to define
more base types in tbl_user_err, at startup and load time, the NEP server detects it as an
error and terminates the server.

These base exit types include the following:

• SUCCEED – The atomic action ran successfully. The NEP successfully completes the
atomic action and the SARM provisions the next atomic action on the work order. The
completed atomic action and its associated parameters are saved by the SARM to
facilitate rollback, if necessary.

• FAIL – Hard error; the atomic action failed, which results in the failure of the work order.
The NEP State Table or the JInterpreter method sends this response if the provisioning
activity has failed and work order provisioning must stop. The SARM then fails the entire
work order and notifies the SRP of the work order failure event. If rollback is configured
on the work order, the SARM rolls back any previously completed atomic actions.

9-1

Note:

FAIL is predefined in the Java code like other base types. You may
define other user exit types based on it.

To use this exit type from Java code, the Java method should call the
setASDLExitType method. Oracle recommends adding error text to the
failure to clarify diagnostic messages. For example:

setASDLExitType("FAIL", "User error text for FAIL");

• RETRY – The atomic action will be retried later. The NEP State Table or the
JInterpreter method sends this response when it is determined that the atomic
action must be retried. While the atomic action is waiting to be retried, the
connection to the NE can be used to provision other atomic actions destined to
that NE. This is in contrast to the Maintenance Mode condition in which no other
atomic actions are transmitted to the NE. If the atomic action does not complete
after the final retry, the SARM fails it. The atomic action and associated
parameters are logged only once by the SARM after the final try. When the retry
threshold is reached, a system event indicates that the atomic action (and
consequently the work order) has failed. Using the Control subsystem, you can
map this system event to generate the appropriate alarm.

The number and frequency of retry attempts are governed by work order
properties, and in the event that these properties are not defined on the work
order, by ASAP.cfg configuration parameters.

For more information about RETRY behavior, see "Behaviors of RETRY and
RETRY_DIS."

• RETRY_DIS – This is a base type which is similar to RETRY. This base type
means the atomic action did not complete and needs to be retried. You can base
new user exit types on RETRY_DIS. (DIS refers to disconnect rather than disable).

When RETRY_DIS is returned from a State Table or Java provisioning class, the
related port is disconnected. The atomic action will fail but will be retried by NEP
server. The NEP server will indicate this to the SARM server. Just before the NEP
server retries the atomic action, it has to establish a new connection because it
was disconnected. The NEP will establish a connection again and will retry the
same atomic action. This will continue as long as RETRY_DIS is returned from the
State Table or Java provisioning class.

If the parameter IO_ASDL_RETRY (which has a default value of 0) is defined as 1
in the ASAP.cfg file, the atomic action with RETRY_DIS exit code will be only
retried as many times as is indicated by NUM_TIMES_RETRY. In this case,
RETRY_DIS functions similar to RETRY with the difference of the additional
disconnect and reconnect after each atomic action retry.

The NUM_TIMES_RETRY parameter represents the number of times the SARM
sends an atomic action to the NEP to be processed after the NEP returns it with a
'Fail but Retry' status. A work order is failed when the number of retries equals the
value specified for NUM_TIMES_RETRY. The RETRY_DIS base exit type can
occur if a device is found to be in an abnormal state and must be manually reset.

For more information about RETRY_DIS behavior, see "Behaviors of RETRY and
RETRY_DIS."

Chapter 9
About Base Exit Types

9-2

• MAINTENANCE – The atomic action failed because the NE is currently unavailable to
receive provisioning requests. The State Table or the JInterpreter method sends this
atomic action response after being notified that the NE is currently unable to accept
provisioning updates. The NEP automatically logs off and disconnects from the NE. On
receiving this atomic action response, the SARM moves the atomic action from the In
Progress atomic action queue to the Pending queue, and then marks the status of the NE
as Maintenance. The SARM waits for the NEP to transmit an NE Available notification
after it has successfully re-established its primary connection to the NE. The atomic
action and its associated parameters are not logged by the SARM because the atomic
action itself did not actually fail.

• SOFT_FAIL – The atomic action has encountered an error has occurred that is not
serious enough to halt the successful provisioning of the order. For example, this event
can occur when the State Table or JInterpreter method logic detects that a user is
attempting to add a feature to a line that already has that option. The SARM receives the
relevant atomic action response and manages it in the same manner as an atomic action
completion, with one exception. The SARM sets the Exceptions flag on the work order
Completion notification returned to the SRP to indicate that some of the provisioning
activity that was requested by the originating system was not performed. The failed
atomic action and its associated parameters are saved by the SARM.

• DELAYED_FAIL – The atomic action had failed during provisioning. The SARM skips any
subsequent atomic action in the service action, continues provisioning at the next service
action, and then fails the order. The failed atomic action and its associated parameters
are saved by the SARM. Rollback and delayed failure are incompatible because the
intent of this base type is to continue provisioning subsequent Service Actions, while
rollback would reverse successfully provisioned Service Actions. It it therefore
recommended that you set the service action rollback parameter to N and the
ignore_rollback parameter to Y. Delayed failure should only be used when there are no
dependencies on subsequent Service Actions. If dependencies exist, the subsequent
provisioning actions will fail.

• STOP – The atomic action has stopped processing. The NEP State Table or the
JInterpreter method sends this response when it detects that the work order has been set
in a stopped state. While the work order is in a stopped state, the Work Order Manager in
the SARM only accepts requests to resume or cancel this work order. You can submit
such requests through an Order Control Application (OCA) or Service Request Processor
(SRP) API call by resubmitting the stopped work order.

Behaviors of RETRY and RETRY_DIS
When IO_ASDL_RETRY is a set to 0 (the default value):

1. The atomic action will fail but will be retried again (same behavior for both RETRY and
RETRY_DIS).

2. The related port used will be kept intact for RETRY but disconnected for RETRY_DIS.

3. The port will be connected again (only for RETRY_DIS).

For RETRY, retry happens according to the NUM_TIMES_RETRY and
RETRY_TIME_INTERVAL parameters, but not for RETRY_DIS.

For RETRY_DIS, steps a), b) and c) will be repeated as long as the State Table or Java
provisioning class for that atomic action returns with RETRY_DIS.

When IO_ASDL_RETRY is set to 1:

Chapter 9
About Base Exit Types

9-3

1. Atomic action will fail but will be retried again (same behavior for RETRY and
RETRY_DIS).

2. The related port used will be kept intact for RETRY but disconnected for
RETRY_DIS.

3. The port will be connected again (only for RETRY_DIS).

For both RETRY and RETRY_DIS, retry happens according to the
NUM_TIMES_RETRY and RETRY_TIME_INTERVAL parameters.

Steps a), b) and c) will be repeated NUM _TIMES_RETRY times only.

How to use RETRY_DIS:

State tables

RETRY_DIS is usable for the State Table action function ASDL_EXIT. For example:

2000 ASDL_EXIT 'RETRY_DIS:Retry and disconnect - %error'

JNEP

RETRY_DIS is predefined in the Java code like other base types. You may define
other user exit types based on it.

To use this exit type from Java code, the Java method should call the
setASDLExitType method. For example:

setASDLExitType("RETRY_DIS", "User error text for RETRY_DIS");

About User Exit Types
User exit types allow cartridge developers and systems administrators to map atomic
action exit codes to one of the predefined base exit types. Base exit types determine
the product behavior. Cartridges map return codes and status values from an NE to a
user-defined exit type.

Regular expressions (regex) are used to perform pattern searches on responses from
NEs. The pattern used is stored in tbl_user_err in the SARM database. The user exit
type contains a regex pattern that is applied at runtime.

Regular expressions enable users to associate a series of responses to a specific
base type. For example, a regular expression 6 can identify a pattern where any
response with the character 6 followed by any number of characters will translate to
base type of FAIL. Regular expressions can also allow very specific searches within a
response from an NE.

Regular expressions are typically compiled before being run. Compilation produces a
binary version of the expression and ensures that the syntax of the regular expression
is correct. This compilation occurs using SACT and SADT when user exit types are
deployed into ASAP as part of a cartridge. If the syntax is incorrect during compilation,
SADT displays an error message and the deployment of the user exit type fails.

The supported regular expression version is consistent with Java 1.4.x regular
expressions.

Using Regular Expression Search Patterns
The following provides additional regular expression search examples:

Chapter 9
About User Exit Types

9-4

• ^.*\b(one|two|three)\b.*$ = matches a complete line of text that contains one, two or
three.

• ^(?=.*?\bone\b)(?=.*?\btwo\b)(?=.*?\bthree\b).*$ matches a complete line of text that
contains all of the words one, two and three.

• "[^"\r\n]*" matches a single-line string that does not allow the quote character to appear
inside the string.

• \b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b matches any IP address.

For more information about search patterns, refer to the Java SE website:

http://docs.oracle.com/javase/8/

Using Search Patterns Against Long Switch Responses
There is a known issue with the Java.util.regex package from Java. Any match pattern with
alteration on a string that is greater than 1400 bytes causes an exception and a stack
overflow. This situation is not uncommon, particularly when implementing services and you
want to match the appearance of a word in a switch response. The following describes how
to work around this issue.

In the following example, a command is sent to an NE and a multiline reply is received in
which you want to match a keyword:

You may attempt to match the word COMPLETED in the reply as follows:

if (Pattern.matches("(.|\r|\n)*COMPLETED(.|\r|\n)*", replyString)){
System.out.println("Matches \"COMPLETED\"");
} else {
System.out.println("No Match");
}

The problem will be encountered if the length of the replyString length exceeds 1400 bytes.

In the above sample, the “." signifies any character except a line terminator, that is, any of the
following set of characters:

• \n (line feed, the UNIX line terminator)

• \r (carriage return)

• \u0085 (next line)

• \u2028 (line separator)

• \u2029 (paragraph separator)

• the sequence \r\n

Typically, to match . and \r and \n (or any combination of these), you would use (.|\r\n)* and
this causes the problem.

However, Java Regexp enables you to match any characters including line terminator by
means of an embedded flag expression. ((s).)* enables the flag to let "." match any character
as well as line terminator. The problem is avoided by changing the search pattern to "((?
s).)*COMPLD((?s).)*".

Chapter 9
About User Exit Types

9-5

http://docs.oracle.com/javase/8/

About User Exit Types for Unknown Errors
You must identify as many error codes or error messages from the NE as possible,
and create user exit types for these errors. However; it is often difficult or impossible to
map every possible error message. For these unknown error messages, create a
catch-all user exit type, such as NO_MATCH_FOUND with a base exit type of FAIL.

The API call setTypeByMatch returns the error label (user-defined exit type field, as
defined in Design Studio) for each match, but in case that no match is found (there is
no modeled entry for this response pattern) it returns NULL. The code should
associate all unknown errors with this type. setTypeByMatch can be overridden to
handle this case. For example:

……………………………
logger.logDebug("NE REPLY: " + reply);
String exitValue = exitType.setTypeByMatch(reply);
logger.logDebug("Match returned for pattern <<" + reply + ">> is: "+ exitValue);
//If no match can be found among the defined exit types
if (exitValue == null) {
 exitValue = "NO_MATCH_FOUND";
 exitType.setTypeByMatch(exitValue);
}…………………..

About User Exit Types for Success Cases
Always identify the success case. This success case is the response pattern that
means that the request successfully completed on the NE. Add it to the user-defined
exit type mapping entries. This avoids failing the atomic action if no mapping is found
for this case.

Mapping User Exit Types to Base Exit Types Based on Context
In some cases may require different atomic action exit types based on the context (like
service) when the same response is received from the NE. For example, the same
atomic action may be linked with various service actions (services) and should have a
different exit status based on the service it is part of. The error code received is the
same, but the outcome (fail, retry, warning) depends in this case on the incoming
service action. For example, it is possible that the business requirements allow certain
actions to be performed when creating an account but bar them when modifying the
same account. In any of such cases, UDET granularity can be defined at service
action or atomic action level. The UDET editor allows specifying the service action or
atomic action for which the defined pattern and exit type will apply.

Creating New User Exit Types
Use the User Exit Type Wizard to create a user-defined exit type.

To create a new user-defined exit type:

1. Select Studio, then select Show Design Perspective.

2. Select Studio, select New, select Activation, then select User Defined Exit
Type.

3. Select the project for this element and enter a name for the entity.

Chapter 9
About User Exit Types

9-6

4. (Optional) Select a location for the entity.

By default, Design Studio saves the entity to your default workspace location. You can
enter a folder name in the Folder field or select a location different from the system
provided default location. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

5. Click Finish to create the user-defined exit type.

Configuring User Exit Types
You can configure user-defined exit types using the User Defined Exit Type editor.

To configure a user exit type:

1. In the Cartridge view, double-click a User-Defined Exit Type entity to open the User
Defined Exit Type editor.

2. In the User Defined Exit Types area, click Add.

This enables the fields in the User Defined Exit Types Detail area of the editor and
populates those fields with default values.

3. In the Pattern field, enter a value.

For example, enter SUCCESS, DENIED, RESOURCE BUSY, and so on.

4. Select the corresponding base exit type.

5. Enter the User Defined Exit Type for this pattern.

For example, you might enter AA1_SUCCESS.

6. Select File, then Save.

Note:

Use the Service Action and Atomic Action fields when creating Service
Cartridges.

Examples: User Exit Types
Consider the following user exit type examples:

• Example: Unstable Network Element Connections

• Example: Configuration of Context Sensitive Exit Types

• Example: Exit Type Rationalization

Example: Unstable Network Element Connections
Problem: On an Ericsson network element during activation (after a successful connection
and login to the network element) the login to the network element is randomly terminated. As

Chapter 9
Examples: User Exit Types

9-7

an atomic action may be in progress against the network element at the time the
connection was dropped it must be placed back in the queue for later activation and
the connection must be re-established.

Solution: Configure a user exit type with the RETRY_DIS base type that triggers when
the login prompt is detected during normal activation. This allows for the atomic action
to retry at a later time after instructing ASAP to disable the current connection. If there
is only one connection to the network element then ASAP eventually re-enables the
connection and re-login.

Example: Configuration of Context Sensitive Exit Types
Problem: The customer has a network in which each HLR (referred to as a primary
HLR) has a backup HLR (referred to as a secondary HLR). Services must be activated
on both HLRs but if activations fail on primary HLRs the work order must be failed; if
activations fail on secondary HLRs they must be soft failed.

Solution: Create different atomic actions that map to the same implementation.
Configure two user-defined exit types that include the atomic action names in the
configuration. Configure the base type for the primary atomic action with FAIL.
Configure the base type for the secondary atomic action with SOFT_FAIL. The service
model for this configuration is shown in the following diagram:

The user-defined exit type configuration is shown as follows:

In this example, whenever the response from the network element contains the strings
SUB and EXISTS and the atomic action is A_HLR_ADD_SUB-PRIMARY, then a failure
is triggered. Whenever the response from the network element contains the strings SUB
and EXISTS and the atomic action is A_HLR_ADD_SUB-SECONDARY then a soft
failure is triggered.

Example: Exit Type Rationalization
Problem: There are too many exit type entries with similar attributes present in the
configuration, resulting in potentially high maintenance costs.

Chapter 9
Examples: User Exit Types

9-8

Solution: Where possible, collapse multiple exit type rows. For example, collapsing rows that
have identical attributes other than the software load may be possible when the network
element responses remain the same across software loads. A prime example of when exit
type rationalization should occur is when multiple delivered cartridges are employed in the
solution for the same network element. Because the user exit types in delivered cartridges
always contain the vendor, technology, and software load attributes to ensure uniqueness,
exit type rationalization is generally possible.

Chapter 9
Examples: User Exit Types

9-9

10
Configuring Dynamic and Static Event
Templates for Return Parameters

This chapter describes how to create static and dynamic event templates for parameters
returned from an network element (NE) as the result of an Oracle Communications ASAP
work order.

About Static and Dynamic Event Templates for Return
Parameters

Return parameters such as work order properties, information parameters, global work order
parameters and service action return parameters can be returned on an ASAP Event. The
details returned are controlled by template entries. These are configured using the
eventTemplate object. The serviceAction and eventType attributes are used to identify the
template. The returnDataSet object indicates which parameter names to retrieve. For more
information refer to the descriptions of the tbl_event_dataset and tbl_event_template
tables in the ASAP Developer's Guide.

Event templates can be configured statically or dynamically. Dynamic event templates are
configured within work order properties sent to ASAP. Static event templates are configured
within a cartridge. Dynamic event templates have precedence over static ones. Therefore, if
there is any work order with a dynamic event template that matches an ASAP event related
to that work order, no static event template will be checked.

For information about configuring dynamic event templates, see "Configuring a Dynamic
Events Template." For information about creating a static event template, see Design Studio
Help.

ASAP searches for any configured event template when any one of the following events
occurs:

• Order Startup Event

• Order Complete Event

• Order Timeout Event

• Order Fail Event

Note:

If work order event is not an Order Fail Event, ignore the service action specified in
the Service Action field.

For an Order Startup event:

10-1

1. ASAP searches for an event template with the event type Order Startup Event
and that has the same parameter name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the
event type Order Startup Event.

3. If the search returns nothing, no event template is configured.

For an Order Complete event:

1. ASAP searches for an event template with the event type Order Complete Event
and that has the parameter name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the
event type Order Complete Event.

3. If the search returns nothing, no event template is configured.

For an Order Timeout event:

1. ASAP searches for an event template with the event type Order Timeout Event
and that has same parameter name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the
event type Order Timeout Event.

3. If the search returns nothing, no event template is configured.

For an Order Fail event:

1. ASAP searches for an event template with the event type Order Fail Event, has
the service action specified in the Service Action field, and that has the same
parameter name and value as the work order.

2. If the search returns nothing, ASAP searches for an event template that has the
event type Order Fail Event, has the service and has the same parameter name
and value as the work order.

3. If the search returns nothing, ASAP searches for an event template that has the
event type Order Fail Event and has the service action specified in the Service
Action field.

4. If the search returns nothing, ASAP searches for an event template that has the
event type Order Fail Event.

5. If the search returns nothing, no event template is configured.

Configuring a Dynamic Events Template
The extended work order property (or parameter) should be in the following format:

return_<event_template_name>%<event_type>%[service_action]

In this syntax, <...> means mandatory parameter, [...] means optional parameter; % is
a separator.

Example:

return_ETEMP1%CompleteEvent%Service Action_1

Here,

• ETEMP1 is the event template name.

Chapter 10
Configuring a Dynamic Events Template

10-2

• CompleteEvent is the work order event type.

• Service Action_1 is the service action name.

An extended work order parameter in the format above is passed from the work order as an
extended work order property. The value of that parameter, even if specified, is ignored.

return_dataset_<event_template_name>%<parameter_type>%[service_action]
%<parameter_name>"

In this syntax, <...> means mandatory parameter, [...] means optional parameter; % is
separator.

Example:

return_dataset_ETEMP1%infoParam%Service Action_1%MCLI

Here,

• ETEMP1 is the event template name.

• infoParam is the parameter type.

• Service Action_1 is the service action name (Service Action name)

• MCLI is the name of the parameter.

The parameter type has to be one of the following event parameter types:

• infoParam

• orderParameter

• serviceValue

• extendedWoProperty

Example (xml) 1:

<createOrderByValueRequest…..
……
….
…
<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP1%orderStartupEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%apiClientId</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%XYZ</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>XYZ</mslv-sa:name>
<mslv-sa:value>12349</mslv-sa:value>
</mslv-sa:extendedWoProperty>
</mslv-sa:extendedWoProperties>
</orderValue>
</createOrderByValueRequest>

Example (xml) 2:

Chapter 10
Configuring a Dynamic Events Template

10-3

<createOrderByValueRequest…..
……
….
…
<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP1%orderStartupEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%apiClientId</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%XYZ</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>XYZ</mslv-sa:name>
<mslv-sa:value>12349</mslv-sa:value>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP2%orderCompleteEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_N1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%orderParameter%TESTP2</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%serviceValue%Service
Action_TELNET%XML_csdl_P1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
</mslv-sa:extendedWoProperties>
</orderValue>
</createOrderByValueRequest>

Example (xml) 3:

<createOrderByValueRequest…..
……
….
…
<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP1%orderStartupEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%apiClientId</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP1%extendedWoProperty%XYZ</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>

Chapter 10
Configuring a Dynamic Events Template

10-4

<mslv-sa:extendedWoProperty>
<mslv-sa:name>XYZ</mslv-sa:name>
<mslv-sa:value>12349</mslv-sa:value>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_ETEMP2%orderCompleteEvent</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_N1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%orderParameter%TESTP2</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%serviceValue%Service Action_TELNET%XML_csdl_P1</
mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_N2</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%INFOP_A1_N1</mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>return_dataset_ETEMP2%infoParam%Service Action_TELNET_B%INFOP_B1_N1</
mslv-sa:name>
<mslv-sa:value/>
</mslv-sa:extendedWoProperty>
</mslv-sa:extendedWoProperties>
</orderValue>
</createOrderByValueRequest>

JSRP (OSS/J) Work Order Event Information
Additional information is returned for work order complete and failure events processed
through JSRP servers. Network information is provided for failed services indicating what the
last communicated network was when the service failed.

Extended work order complete and failure events contain the tags failedServices and
services. This extension is configurable through a work order user property in order to
provide backward compatibility. The failed services and services tags also contain the event
template service parameters and info parameters, which may be used to pass upstream
parameters that are relevant to services within an order.

For complete details of schema elements, refer to the ASAP Online Reference.

After ASAP is installed, you can access the schema files in the ASAP_Home/xml/xsd
directory.

Extended Work Order Complete and Failure Schemas
The work order complete event (CompleteEventType) schema type includes the extended
tags - failedServices, and services.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-5

The failed event (FailEventType) schema type is extended as shown to include the
two new tags - failedServices, and services.

Figure 10-1 Work Order Complete Event Schema

The failed event (FailEventType) schema type is extended as shown to include the
two new tags - failedServices, and services.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-6

Figure 10-2 Work Order Failed Event Schema

FailedServicesType Schema Type
The failedServicesType tag contains information detailing a failed work order's services. A
failed service has the new fields reason, neId, tech_type and softwareLoad. These fields
give the reason the work order failed failure for the service specified by serviceKey, and
identify the NE that a network action (for example, atomic action, atomic action) was
executing when the failure occurred.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-7

Services Schema Type
The ServicesType tag includes details on services for a work order, except those that
failed. As shown, each service inside the ServicesType tag includes a tag
serviceState, which contains the state of the service.

The information parameters (infoParams) and service parameters
(serviceParameters) are shown within the related service (instead at the order level
as with previous releases).

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-8

Controlling the Return of Enhanced Event Information with
includeServiceActionDetail

The work order user property includeServiceActionDetail is used to control the inclusion of
the work order complete (CompleteEvent) and failure (FailedEvent) types.

If includeServiceActionDetail is true, the failedServices and services information will be
included in the work order complete and failure events. If includeServiceActionDetail is false
or if includeServiceActionDetail does not exist (the default), then the extra information is not
included in the work order complete and failure events.

For example:

<mslv-sa:extendedWoProperties>
<mslv-sa:extendedWoProperty>
<mslv-sa:name>includeServiceActionDetail</mslv-sa:name>
<mslv-sa:value>true</mslv-sa:value>
</mslv-sa:extendedWoProperty>
...
<\mslv-sa:extendedWoProperties>

JSRP Server Configuration Parameter
INCLUDE_SERVICE_ACTION_DETAIL

The JSRP server configuration parameter INCLUDE_SERVICE_ACTION_DETAIL controls
this feature in addition to the work order user property includeServiceActionDetail.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-9

If the JSRP server configuration parameter is set to true, then the failedServices and
services information will be included in every work order complete, failure, or timeout
event. The work order user property will override the JSRP server configuration
parameter. The JSRP server configuration parameter is defined in the deployment
descriptor for JSRP in the deployed ASAP$env_id.ear file.

Additional Event Data
With augmented event data, the work order properties, infoparms, global work order
parameters, and service action return parameters can be returned on an ASAP event.

This additional event data and the contents of the additional event data are controlled
by template entries. The extra parameter information is sent from the SARM to the
JSRP, eliminating the need for the JSRP to perform additional queries to the database.
Additionally, the SRT is able to add XML event data to the JMS header properties.

Refer to ASAP Developer's Guide for schema and other information.

OSS/J Support by Schema Parameters
The ASAP JSRP supports the following:

• The co:type and sa:primaryKey tags of the sa:serviceKey tag in work orders are
OSS/J compliant - the name of the service is provided by the tag co:type and the
service instance number is provided by the tag sa:primaryKey.

• Soft failures (that is, exceptions) and rollback exceptions are provided based on a
service (for example, Service Action), in addition to the work order level and
rollback exceptions.

• You can specify the service sequence numbers for a work order. (Previous
versions of ASAP number the services according to the order in which they are put
inside a work order.)

Note:

Service and failed service information is only provided only for work order
complete, failure, and timeout events.

The enhancements to the events apply only to events processed through
JSRP servers.

The network information is provided only for failed services that indicate the
last network communicated with when the service failed.

Work Order Property includeServiceActionDetail
The work order user property includeServiceActionDetail controls the extension of
the work order complete, failure, and timeout event types with the two extended tags.

If the value is true, the failedServices and services information are included in the
work order complete, failure, and timeout events. If the value is false or such a

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-10

property does not exist (the default), then this extra information is not included in the work
order complete, failure, and timeout events.

JSRP Server Configuration Parameter
USE_ORIGINAL_INSTANCE_NUMBER

When the value of USE_ORIGINAL_INSTANCE_NUMBER is set to true, the <co:type> tag
should be populated with service detail. The USE_ORIGINAL_INSTANCE_NUMBER
parameter can be found in the ejb-jar.xml file in ASAP$env_id.ear:srp and in the ejb-
jar.xml file in SRT.ear. Ensure that the values in both files match. For more information, see
ASAP Server Configuration Guide.

Chapter 10
JSRP (OSS/J) Work Order Event Information

10-11

11
Creating Java Connection Handlers

This chapter describes how to create Java and State Table implementations for network
element (NE) connections and atomic action scripts that implement MML commands for
Oracle Communications ASAP.

The following sections provide information about the Java connection handler:

• About Java Network Element Connection Handlers

• Creating New Network Element Connection Handlers

• Generating a Telnet Network Element Connection Handler Implementation

• Generating a Custom NE Connection Handler Implementation

• About Communication Protocol Parameters

• Creating Connection Methods and Helper Classes

• Creating a Provisioning Prompt

• Enabling Loopback Mode

• Implementing Secure Login Functionality

• Connection Management Issues

• Creating a Java Telnet Connection Class

The NE Connection Handlers with Java implementation manage the connections with
network elements based on the communication parameters in an NE Template.

About Java Network Element Connection Handlers
The Java implementation NE Connection Handler needs to implement the
IConnectionHandler interface, which provides a common interface for interacting with
connections and requires few methods to be written.

Different types of NE Connection Handlers can be created:

• Telnet: When you create a new telnet NE Connection Handler, it generates code for telnet
connections. This extends the telnet connection to support the interface. The NE
Connection Handler editor indicates where additional code is required.

• Custom: Create this NE Connection Handler if the connections are not telnet. Custom
Connection Handlers generate a skeleton to implement the IconnectionHandler and
extends the base NE connection class. The NE Connection Handler editor indicates
where additional code is required.

Creating New Network Element Connection Handlers
You use the NE Connection Handler Wizard to create new NE Connection Handler entities.

To create a new NE Connection Handler entity:

11-1

1. Select Studio, select New, select Activation, then select NE Connection
Handler.

The NE Connection Handler Wizard appears.

2. Select the project for this element and enter a name for the entity.

3. (Optional) Select a location for the entity.

By default, Design Studio saves the entity to your default workspace location. You
can enter a folder name in the Folder field or select a location different from the
system-provided default. To select a different location:

a. Click the Folder field Browse button.

b. Navigate to the directory in which to save the entity.

c. Click OK.

4. Click Finish to create the NE Connection Handler.

Generating a Telnet Network Element Connection Handler
Implementation

You need to generate a Telnet Network Element Connection Handler implementation if
you want to extend a telnet connection to support the interface.

To generate a Telnet NE Connection Handler Implementation:

1. Create an NE Connection Handler with the NE Connection Handler Wizard.

See "Creating New Network Element Connection Handlers" for more information.

2. In the Cartridge view, double-click the entity to open the NE Connection Handler
editor.

3. In the editor, enter a description and select Java Connection Handler as the NE
Connection Handler type.

4. Click Add.

The Vendor, Technology, and Software Load fields are populated.

5. Click New.

The Studio Activation Java Connection Handler Wizard appears.

6. Ensure that Telnet appears in the Connection Type field.

Note:

Ensure that a dot does not precede the package name. If a dot precedes
the package name, remove it.

7. Click Finish.

The code is generated ready for implementation.

Chapter 11
Generating a Telnet Network Element Connection Handler Implementation

11-2

Note:

The code is generated once but not synchronized (that is, it will not be rewritten
and the developer owns the generated class).

Generating a Custom NE Connection Handler Implementation
Generate a custom NE Connection Handler implementation if you want to extend the base
NE connection class of a connection other than telnet.

To generate a custom NE Connection Handler implementation:

1. Create an NE Connection Handler with the NE Connection Handler Wizard.

See "Creating New Network Element Connection Handlers" for more information.

2. In the Cartridge view, double-click the entity to open the NE Connection Handler editor.

3. In the editor, enter a description and select Java Connection Handler as the NE
Connection Handler type.

4. Click Add.

The vendor, technology, and software Load fields are populated.

5. Click New.

The Studio Activation Java Connection Handler Wizard appears.

6. In the Connection Type field, select Custom.

Note:

Ensure that a dot does not precede the package name. If a dot precedes the
package name, remove it.

7. Click Finish.

The code is generated ready for implementation.

Note:

The code is generated once but not synchronized (that is, it will not be rewritten
and the developer owns the generated class).

About Communication Protocol Parameters
Communication parameters enable you to configure the information required to communicate
through one of the ASAP-supported device interfaces. When the NEP command processor
connects to an NE, these parameters are loaded into memory and used in the connection
process. When the NEs are connected, they are loaded as NE program (State Table or Java

Chapter 11
Generating a Custom NE Connection Handler Implementation

11-3

program) variables prior to the execution of each program. This method ensures that
the program has access to any user-defined information through the communication
parameters.

Communication parameters can also be defined on the work order. These parameters
defined on the work order override the statically pre-configured values contained in an
ASAP cartridge. This feature is used for dynamic NE routing (see "Configuring
Dynamic Routing ").

The NEP supports the following interfaces to the downstream network:

• Dedicated and dialup serial

• TCP/IP socket (standalone and in conjunction with the JInterpreter)

• Telnet

• SNMP interfaces with which EMSs and NEs can be configured.

• Hostpad device interfaces

• LDAP, as the standard for uniform access to directory services.

• CORBA over IIOP (in conjunction with the JInterpreter)

• C/C++

• CAPI

• X.25, X.29, and TL1

• SFTP

Refer to the ASAP Developer's Guide for information on the action functions that
support for these interfaces.

Interfaces using such technologies can be developed rapidly due to their script-driven
nature, requiring little or no additional software development. These supported network
interfaces allow telecommunications carriers to interface with external systems using
simple scripts, thereby isolating end users from specific communication details.

Specifying Global or Local Communication Parameters
Using Design Studio, you can specify global communication parameters that apply to
all connections to a particular NE. You can also customize a connection with local
parameters that apply only to that connection.

Typically, a parameter is defined for a specific host NE and connection. If the various
host NEs and connections share the same parameter values, however, the number of
communication parameter entries can be reduced.

For example, you must define 33 mandatory X29 Pad interface-specific
communication parameters for the X29 Pad interface. Most of these parameters have
the same value. Defining each parameter separately for every X29 connection to each
host NE results in the following:

• Considerable effort to configure these parameters one at a time.

• Additional memory resources required by the NEP to maintain these parameters in
memory.

Chapter 11
About Communication Protocol Parameters

11-4

You can resolve these issues by defining one common set of parameters for all X29
connections to avoid repetition. Specifically, for a particular device interface, you can define
parameters with the following groupings:

• All host NEs and all connections (common host, common device).

• All host NEs and a specific connection (common host, specific device).

• A specific NE and all connections to that NE (specific host, common device).

• A specific NE and a specific connection (specific host, specific device).

These parameters are processed in the order they are listed. They override any previous
entries defined for the host NE and the device of a particular command processor in the NEP.
Communication parameters defined on the work order override preconfigured values if the
NEP is configured for dynamic NE routing.

User-defined Parameters
Communication parameters are available to every State Table or Java method that is run.
You can specify various parameters that can be host NE or device-specific on the State Table
or the Java provisioning method, and then the State Tables or Java provisioning methods can
employ host NE or device-specific processing. For example, if a dialup connection requires
delay, a communication parameter can be defined for use by the DIALUP State Table.

Device-specific Interface Parameters
Typically, a parameter is defined for a specific host NE and connection. If the various host
NEs and connections share the same parameter values, those values can be defined once to
avoid repetition.

To communicate with the NE, ASAP opens a connection through the device interface, writes
data to the device, and reads data from the device using I/O-related communication
parameters.

The following communication parameters apply only to serial, telnet, and other terminal-
based interfaces:

• Terminal based interface communication parameters.

• Serial interface communication parameters.

• Telnet interface communication parameters.

• Socket interface communication parameters.

• Generic interface communication parameters.

The following sections describe device interface types which are associated with mandatory
parameters.

Table 11-1 illustrates the device types associated with each interface type:

Table 11-1 Interface – Device Type Matrix

Interface Device Types Applies to

Terminal-based communication
devices

G – Generic Port Terminal-Based State Tables

Chapter 11
About Communication Protocol Parameters

11-5

Table 11-1 (Cont.) Interface – Device Type Matrix

Interface Device Types Applies to

Terminal-based communication
devices

T – Telnet Port State Tables and Java

Terminal-based communication
devices

D – Serial Port Dialup State Tables

Terminal-based communication
devices

H – Serial Port Hardwired State Tables

Message-based communication
devices

S – Socket Port State Tables and Java

Message-based communication
devices

M – Generic Port Message-Based State Tables

Message-based communication
devices

F – FTP Port State Tables

Message-based communication
devices

F - FTP Port for SFTP State Tables and Java

Message-based communication
devices

W – LDAP Port State Tables and Java

Message-based communication
devices

P – SNMP Port State Tables

Message-based communication
devices

C – CORBA Java

Table 11-2 describes the communication parameters that apply for terminal based
interfaces.

Table 11-2 Common Terminal-based Communication Parameters

Parameter Default Description

VS_WIDTH - Virtual Screen width.

VS_LENGTH - Virtual Screen length.

VS_CRLF_MAP - A boolean flag that you can set to map LF to CR_LF
automatically. The default is set not to map.

GR_WAIT_TIMEOUT - The wait timeout period, in seconds, that the thread
reading from the Virtual Screen waits for the thread
writing to the Virtual Screen to notify it of any new
data. Increase this value if the State Table
processing fails before data arrives from the NE.

Generic Port Terminal Based and Generic Port Message-Based are specific to EDDs.
For information on the communication parameters for these device types, see the
discussion about generic EDD API parameters in the ASAP Server Configuration
Guide.

tbl_comm_param contains communication parameters required for the NEP to
communicate with various external systems. You must populate this table to configure
communication parameters.

Chapter 11
About Communication Protocol Parameters

11-6

Table 11-3 lists and describes the parameter settings in the ASAP.cfg file to enable State
Table interfaces. For more information about these parameters, see the discussion about NE
API parameters in the ASAP Server Configuration Guide.

Table 11-3 State Table Interface Configuration Parameters

Interface Parameter Required Default Description

Serial NE SERIAL_IF_SUPPORTED Mandatory 1 Boolean flag. Specifies whether the serial
NE interface should be enabled.

Telnet NE TELNET_IF_SUPPORTED Mandatory 1 Boolean flag. Specifies whether the Telnet
NE interface should be enabled.

Socket NE SOCKET_IF_SUPPORTED Mandatory 1 Boolean flag. Specifies whether the
socket NE interface should be enabled.

FTP NE FTP_IF_SUPPORTED Mandatory 1 Boolean flag. Specifies whether the FTP
NE interface should be enabled.

To perform NEP FTP services, you must
use the State Table NEP FTP action
functions. Refer to the ASAP Developer's
Guide for more information.

LDAP LDAP_IF_SUPPORTED Mandatory 1 Indicates whether LDAP is enabled.

To set up a control connection to the appropriate server, you must also set up the
communication parameters in the SARM database table tbl_comm_param.

The XXX_IF_SUPPORTED variables are only relevant for loading protocol libraries used by
State Tables. CORBA support is offered for Java provisioning only. There is no
CORBA_IF_SUPPORTED variable in ASAP.cfg.

The following sections describe the required parameters for each interface.

CORBA Interface Communication Parameters
The CORBAConnection class provides basic functionality to connect to NEs with CORBA
interfaces. Custom classes should inherit from this class and implement the connect() and
disconnect() methods to an old CORBA OCA server which, has been replaced with a non-
CORBA Java OCA server since ASAP 7.0.0. For example, the OCAConnection custom
class implements the connection and disconnection methods to a CORBA OCA server.

Sample code is located in
ASAP_Home\ASAP\samples\JeNEP\jenep_demo\CORBA\OCAConnection.java

The CORBAConnection class provides a wrapper around an ORB. The initialization of the
ORB can be customized by extending CORBAConnection and overriding the functions
getInitialArguments and getInitialProperties. Both of these values are used in the ORB.init
call implemented in the connect method. The default is to use null for both arguments and
properties, which loads the ORB provided by the JRE.

The “C" device type is used in tbl_comm_param and tbl_resource_pool to relate
communication parameters to a CORBA device type.

The “C" device type is not supported for State Table MPM libraries.

In situations where the NEP is configured for LOOPBACK, all of the operations on
CORBAconnection return success.

Chapter 11
About Communication Protocol Parameters

11-7

For more information on Class CORBAConnection and
com.mslv.activation.jinterpreter, refer to the ASAP Java Online Reference.

Serial Port Hardwired Communication Parameters
The NEP server provides built-in support for serial port hardwired communications
interfaces.

Table 11-4 lists and describes the serial port hardwired communication parameters that
are in addition to the common terminal-based parameters described in Table 11-2.

Table 11-4 Serial Port Hardwired Communication Parameters

Parameter Default Description

TTY N/A UNIX or Linux port. For a hardwired interface, this value
is specific to each host. For a dialup interface, this value
remains the same for all host NEs.

DIALUP_NUM N/A Dialup number. This parameter is required only for a
dialup interface and is different for every NE.

OPEN_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to
open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
write to the device.

READ_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to
read from the device. Currently, this is only applicable to
the socket interface.

DISABLE_PORT_ON_
LOGIN

N/A Determines whether the port should be disabled if login
to the NE fails. If the parameter is equal to zero, then the
port is not disabled.

BAUD N/A Baud rate for transmission. The valid values are ‘300',
‘600', ‘1200', ‘2400', ‘4800', ‘9600', and ‘19200'.

PARITY N/A The parity, which can be either odd, even, or no parity.
Enter ‘O' for odd, ‘E' for even, and ‘N' for no parity.

STOP N/A Number of stop bits per character. The valid values are
‘1' and ‘2'.

SIZE N/A Number of bits per character. The valid values are ‘5', ‘6',
‘7', ‘8'.

Serial Port Dialup Communication Parameters
The NEP server provides built-in support for serial port dialup communications
interfaces.

Table 11-5 lists and describes serial port dialup communication parameters, in addition
to the common terminal-based parameters described in Table 11-2.

Chapter 11
About Communication Protocol Parameters

11-8

Table 11-5 Serial Port Dialup Communication Parameters

Parameter Default Description

TTY N/A UNIX or Linux port. For a hardwired interface, this value is
specific to each host. For a dialup interface, this value
remains the same for all host NEs.

DIALUP_NUM N/A Dialup number. This parameter is required only for a dialup
interface and is different for every NE.

OPEN_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to open
the device. The wait timeout parameter is only applicable to
the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to write
to the device.

READ_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to read
from the device. Currently, this is only applicable to the socket
interface.

DISABLE_PORT_ON_L
OGIN

N/A Determines whether the port should be disabled if login to the
NE fails. If the parameter is equal to zero, then the port is not
disabled.

BAUD N/A Baud rate for transmission. The valid values are ‘300', ‘600',
‘1200', ‘2400', ‘4800', ‘9600', and ‘19200'.

PARITY N/A The parity, which can be either odd, even, or no parity. Enter
‘O' for odd, ‘E' for even, and ‘N' for no parity.

STOP N/A Number of stop bits per character. The valid values are ‘1'
and ‘2'.

SIZE N/A Number of bits per character. The valid values are ‘5', ‘6', ‘7',
‘8'.

Telnet Port Communication Parameters
The NEP server provides built-in support for a TCP/IP Telnet communications interface. You
can enable and configure the NEP Telnet driver to communicate with NEs using the standard
Telnet terminal emulation. In conjunction with the standard action functions and terminal-
based virtual screen manipulation action functions, commands and command arguments can
be constructed, parsed, sent, and received by the NE-specific State Table programs over
such Telnet connections.

Table 11-6 lists and describes the State Table telnet port communication parameters, in
addition to the common terminal-based parameters described in Table 11-2.

Table 11-6 Telnet Port Communication Parameters for State Tables

Parameter Default Description

SOCKET_CLIENT N/A Socket server or client. The only valid value is ‘C' because the
communication is a Telnet client. Not valid for the Java Telnet
Interface.

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host NE.

PORT 23 Telnet service port.

Chapter 11
About Communication Protocol Parameters

11-9

ASAP also contains a Java telnet library. A virtual screen implementation is provided to
simplify data manipulation.

NEConnection is an abstract class defined in package jinterpreter. All JInterpreter
connection classes must extend this class in order to be evocable by the NEP. Oracle
Communications provides the TelnetConnection class, which integrates the telnet
and virtual screen implementations provided by the telnet library.

The TelnetConnection class also supports a piped stream interface, similar to the raw
input stream available from the underlying TCP/IP connection. The read, write and
waitfor operations defined on TelnetConnection act on the stream to retrieve and
send data. This interface leaves the incoming data in a stream format for simple
parsing scenarios. In simple parsing situations, a provisioning activity may only need
to pick off a simple response string from the NE. In these situations, it can be simpler
to use a waitfor call to track the response from the NE rather than use the structured
format of the virtual screen.

By default, both the virtual screen and piped stream are enabled by the
TelnetConnection class. The method TelnetConnection.setStreamEnabled
(boolean enabled) can be used to enable or disable the stream.

In situations where the NEP is configured for LOOPBACK, the InputStream and
OutputStream returned by the StreamConnection always return success for every
read and write call. The InputStream.read methods return a size read integer of 1
with the value set to an empty character ' '. All of the TelnetConnection send and
VirtualScreen get/read calls always return success.

For information on the JInterpreter API for the Telnet connection class, refer to the
ASAP Java Online Reference.

Table 11-7 lists and describes the Java telnet port communication parameters for the
JInterpreter, in addition to the common terminal-based parameters described in
Table 11-2.

Table 11-7 Telnet Port Communication Parameters for the JInterpreter

Parameter Default Description

HOST_USERID N/A User name.

HOST_PASSWORD N/A Password.

OPEN_TIMEOUT 5 seconds Connection establishment timeout (in seconds).

READ_TIMEOUT 1 second Timeout for the telnet read functions (in seconds).

HOST_NAME N/A Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host NE.

PORT 23 Telnet service port.

LOGIN_PROMPT login: Reserved. The login prompt expected in the telnet
session.

PASSWORD_PROMP
T

Password > Reserved. The password prompt expected in the
telnet session.

Chapter 11
About Communication Protocol Parameters

11-10

Note:

The default TelnetConnection class uses parameters defined in tbl_comm_param
(VS_LENGTH, VS_WIDTH, HOST_USERID, HOST_PASSWORD, HOST_NAME,
HOST_IPADDR, PORT) to initialize the telnet session. A solutions developer may
use the provided TelnetConnection class as a connection handler as configured in
tbl_nep_asdl_prog. It is also possible to extend the TelnetConnection class to
override the provided functionality. For instance, a solutions developer may wish to
override the connect, login or disconnect methods to implement custom
functionality.

Refer to the Common Terminal-based Communication Parameters table for more
information on virtual screen-related parameters.

SSH Telnet Communication Parameters
Table 11-8 contains the communication parameters for the SSH protocol in addition to the
common terminal-based parameters described in Table 11-2.

Table 11-8 SSH Communication Parameters

Parameter Default Description

HOST_NAME N/A The machine name of the NE

HOST_IPADDR N/A The IP address of the NE

SSH_SUPPORT YES SSH is supported or not

SSH_PORT 22 The SSH port number

SSH_VERSION SSH2 The SSH version; either SSH1 or SSH2

SSH_AUTH_METHOD PASSWORD The authentication method; either PASSWORD or
PUBLIC_KEY.

SSH_PREF_PUBLIC_KEY PUBLIC_KEY_SSH
RSA

The preferred public key; either
PUBLIC_KEY_SSHRSA or
PUBLIC_KEY_SSHDSS.

SSH_PREF_CIPHER_CS CIPHER_BLOWFIS
H_CBC

The preferred CS cipher; either
CIPHER_BLOWFISH_CBC,
CIPHER_TRIPLEDES_CBC, TWOFISH128_CBC,
TWOFISH192_CBC, TWOFISH256_CBC,
TWOFISH_CBC, CAST128_CBC, AES128_CBC,
AES192_CBC, AES256_CBC

SSH_PREF_CIPHER_SC CIPHER_BLOWFIS
H_CBC

The preferred SC cipher: either
CIPHER_BLOWFISH_CBC,
CIPHER_TRIPLEDES_CBC, TWOFISH128_CBC,
TWOFISH192_CBC, TWOFISH256_CBC,
TWOFISH_CBC, CAST128_CBC, AES128_CBC,
AES192_CBC, AES256_CBC

SSH_PREF_MAC_CS HMAC_MD5 The preferred CS message authentication; either
HMAC_MD5 or HMAC_SHA1.

SSH_PREF_MAC_SC HMAC_MD5 The preferred SC message authentication
HMAC_MD5 or HMAC_SHA1.

Chapter 11
About Communication Protocol Parameters

11-11

Table 11-8 (Cont.) SSH Communication Parameters

Parameter Default Description

SSH_PREF_COMP_CS COMPRESSION_N
ONE

The preferred CS compression
COMPRESSION_NONE or
COMPRESSION_ZLIB.

SSH_PREF_COMP_SC COMPRESSION_N
ONE

The preferred SC compression
COMPRESSION_NONE or
COMPRESSION_ZLIB.

VS_TYPE vt100 Virtual screen type.

VS_WIDTH 80 Virtual screen width.

VS_LENGTH 24 Virtual screen length.

SSH_TRANSPORT SOCKET Specifies the SSH Transport to be used.

Set the value to SOCKET for direct SSH
connections.

Set the value to HTTP_PROXY if SSH connections
need to be established via an HTTP proxy.

The value SOCKET indicates SocketTransport and
the value HTTP_PROXY indicates
HttpProxyTransport.

HTTP_PROXY_HOST NA The host name of the HTTP proxy server.

Note: Configure this parameter if
SSH_TRANSPORT is set to HTTP_PROXY.

HTTP_PROXY_PORT NA The HTTP proxy port number.

Note: Configure this parameter if
SSH_TRANSPORT is set to HTTP_PROXY.

Login information for the NE/device needs to be populated in the Control database
(TBL_CLASSB_SECU) in order for SSH to work. Table 11-9 lists and describes the
SSH security parameters for the SSH protocol that should be stored in the Control
database. For more information about securely storing NE login information, see
"Implementing Secure Login Functionality."

Table 11-9 SSH Security Parameters

Parameter Default Description

HOST_USERID NA User name to log in to the NE.

HOST_PASSWORD NA For telnet: the password authentication: user password to
login the NE.

For SSH: Public key authentication: The passphrase used
for the private key.

PRIV_KEY_FILE NA The machine name of the NE

HTTP_PROXY_USER NA The user name of the HTTP proxy server.

Note: Configure this parameter if SSH_TRANSPORT is
set to HTTP_PROXY and HTTP proxy requires
authentication.

Chapter 11
About Communication Protocol Parameters

11-12

Table 11-9 (Cont.) SSH Security Parameters

Parameter Default Description

HTTP_PROXY_PASS
WORD

NA The HTTP proxy password.

Note: Configure this parameter if SSH_TRANSPORT is
set to HTTP_PROXY and HTTP proxy requires
authentication.

Socket Port Communication Parameters
The NEP server provides built-in support for a TCP/IP socket-based communications
interface. You can enable and configure the NEP socket driver to communicate with NEs
using message-based communication. In conjunction with the standard action functions,
message building action functions, and message I/O action functions, NE-specific messages
can be constructed and parsed, sent, and received by the NE-specific State Table programs
over such socket connections.

A SocketConnection class is provided which wrappers a java.net.Socket instance. The
SocketConnection class can be extended to provide custom functionality on top of the
conventional socket interface. A SocketConnection implements the StreamConnection
interface. The StreamConnection interface defines methods common to stream-based
protocols.

By default, the connect method uses the communication parameters defined by
HOST_NAME, HOST_IPADDR and PORT.

In situations where the NEP is configured for LOOPBACK, the InputStream and
OutputStream returned by the StreamConnection always return success for every read and
write call. The InputStream.read methods return a size read integer of 1 with the value set to
an empty character ' '.

For information on the JInterpreter API for the Socket connection class, refer to the ASAP
Java Online Reference.

Table 11-10 Socket Port Communication Parameters

Parameter Default Description

PORT N/A Port of the remote socket listener.

OPEN_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
write to the device.

READ_TIMEOUT 1 The wait timeout period, in seconds, that ASAP waits to
read from the device. Currently, this is only applicable to
the socket interface.

DISABLE_PORT_ON_L
OGIN

0 Determines whether the port should be disabled if login to
the NE fails. If the parameter is equal to zero, then the port
is not disabled.

SOCKET_CLIENT N/A Socket server or client. The only valid value is ‘C' because
the communication is a Socket client.

Chapter 11
About Communication Protocol Parameters

11-13

Table 11-10 (Cont.) Socket Port Communication Parameters

Parameter Default Description

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host NE.

SOCKET_FAMILY 2 The only valid value is ‘2' because only the Internet
address family is supported.

FTP Port Communication Parameters
The NEP server provides built-in support for a TCP/IP FTP client interface. This client
interface allows for FTP and SFTP communication. You can enable and configure the
NEP FTP driver to communicate with NEs for file transfer. In conjunction with the
standard action functions, UNIX or Linux file management action functions, and FTP
action functions, files, and contents of files can be constructed, managed, sent, and
received by the NE-specific State Table programs over such FTP connections.

You can write a State Table Program using the FTP action functions provided by the
NEP. The request is submitted to the NE and the NE FTP server analyzes the request
and takes the proper FTP-related functions. The NE sends the correct responses back
to the NEP through the FTP control and data connections. Response messages are
stored in the appropriate diagnostic files.

Numerous FTP commands and choices are provided by the FTP protocol specification
to control the way a file is transferred. Although the NEP FTP does not use all possible
options, it does support the minimum requirements for a standard FTP client.

For more information on FTP action functions, see the ASAP Developer's Guide.

FTP uses the following TCP connections to transfer files:

• Control Connection – Initiated by the client (NEP FTP) to a server (NE FTP
server). Prior to this connection the server does a passive open on the port for
FTP (port 21) and waits for a client to connect. The control connection stays alive
during the entire communication session between client and server. This
connection is used for sending and receiving FTP commands and replies (error
codes, status information, etc.).

• Data Connection – Created each time a file (or directory listing, etc.) is
transferred between the client and server. The client uses an ephemeral port,
which is supplied by the system host, for each connection.

The following diagram shows the high level functional architecture of the NEP FTP and
the NE FTP server based upon the RFC 959 FTP model. The diagram shows the two
TCP connections and the respective components for interpreting FTP commands and
transferring files. FTP users (State Table programs) do not deal with FTP commands
and replies. These are handled by the protocol interpreters on both sides and
whenever a file is about to be transferred, a data connection is established.

Chapter 11
About Communication Protocol Parameters

11-14

Figure 11-1 NEP FTP and NE FTP Server Functional Architecture

The NEP FTP is the FTP client component of the NEP which provides State Table programs
the capability to send and receive files to and from an NE, and to also delete files.

The NEP Multi-Protocol Manager handles the initial FTP control connection to the NE. After
the connection is successful, the FTP State Table commands are interpreted and the
appropriate FTP commands are sent to the NE FTP server through the control connection.

Whenever a file is transferred, the NEP FTP creates a data connection and the file is
transferred through that connection.

FTP communication is a core ASAP NE interface. The SARM database table
tbl_comm_param must contain entries for the remote server address, port, host name, user
ID, and password. You must also set up the device type and device value in the table which
are F and COMMON_DEVICE_CFG respectively.

For information about tbl_comm_param, see tbl_comm_param in the ASAP Developer's
Guide.

Chapter 11
About Communication Protocol Parameters

11-15

Table 11-11 FTP Port Communication Parameters

Parameter Default Description

HOST_USERID None User name.

OPEN_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits
to open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits
to write to the device.

READ_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits
to read from the device. Currently, this is only
applicable to the socket interface.

DISABLE_PORT_ON_
LOGIN

N/A Determines whether the port should be disabled if
login to the NE fails. If the parameter is equal to zero,
then the port is not disabled.

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host NE.

PORT 21 Telnet service port.

Note:

To complete a connection, either HOST_NAME or HOST_IPADDRESS must
be provided, or both.

Table 11-12 lists the port parameters for SFTP communication.

Table 11-12 SFTP Port Communication Parameters

Parameter Default Description

HOST_USERID None User name.

HOST_PASSWORD None Password associated with
HOST_USERID.

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host
NE.

PORT 22 Telnet service port.

Note:

To complete a connection, either HOST_NAME or HOST_IPADDRESS must
be provided, or both.

Chapter 11
About Communication Protocol Parameters

11-16

LDAP Port Communication Parameters
The NEP server enables ASAP to communicate with LDAP (Lightweight Directory Access
Protocol) Directory Servers through the LDAP protocol using TCP/IP. Connectivity to LDAP
Directory Servers (NEs) is provided by the Multi-Protocol Manager. The LDAP interface
allows inquiries, additions, modifications, and deletions of records stored in LDAP-enabled
directories. The LDAP interface is implemented using Version 3 of the LDAP protocol.

The LdapConnection class provides a wrapper around a netscape.ldap.LDAPConnection
class. As with SocketConnection, it provides a simple interface for returning the underlying
netscape.ldap.LDAPConnection class for manipulation. A solutions developer is free to
extend the default LdapConnection class to implement custom functionality.

For more information on Class LdapConnection and com.mslv.activation.jinterpreter,
refer to the ASAP Java Online Reference.

In situations where the NEP is configured for LOOPBACK, all operations on
LdapConnection return success.

HOST_NAME or HOST_IPADDR represent a hostname to which to connect or a dotted
string representing the IP address of this host.

Table 11-13 LDAP Port Communication Parameters

Parameter Default Description

HOST_USERID None User name.

OPEN_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to
write to the device.

READ_TIMEOUT 1.0 The wait timeout period, in seconds, that ASAP waits to
read from the device. Currently, this is only applicable to
the socket interface. 0 = no timeout.

DISABLE_PORT_ON_L
OGIN

N/A Determines whether the port should be disabled if login to
the NE fails. If the parameter is equal to zero, then the port
is not disabled.

HOST_NAME HOST_CLLI Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host NE.

PORT 389 the TCP or UDP port number to which to connect or
contact.

LDAP_VERSION 2 LDAP version to use. If VERSION2, use 2. If VERSION3,
use 3.

SIZELIMIT 2 The size of the search results set asked from the directory
server. Minimum 1, Maximum 500.

TL1 Port Communication Parameters
TL1 is a communication standard for specifying information exchanges between Operations
Support Systems (OSSs) and NEs. Several NEs and/or Element Management Systems use

Chapter 11
About Communication Protocol Parameters

11-17

TL1 for communication with external systems. TL1 can be used in conjunction with
Telnet or X.25 protocols.

TL1 support is provided in the NEP by writing C or C++ functions. These functions are
typically written by the developer as part of the software customization.

Over Telnet, TL1 support refers to a number of ASAP State Table action functions that
encapsulate much of the encoding and positional logic, required in the generation of
TL1 messages. This simplifies the State Tables that generate TL1 command
sequences.

To interface with NEs supporting TL1, the State Tables can do the following:

• Translate ASAP work orders and service actions, represented by atomic actions,
into TL1 commands.

• Send the commands to the destination NE through various communication
mechanisms supported by ASAP.

• Receive and retrieve TL1 acknowledgment and response.

• Transfer information back to the SARM and save it for later use.

For more information on the TL1 interface, see the ASAP Developer's Guide.

SNMP Port Communication Parameters
The SNMP option provides an interface to communicate with any SNMP NE through
ASAP State Table programs.

You can write a State Table Program using SNMP action functions provided by the
NEP. This request is submitted to the NE, and the SNMP agents can send traps back
to the NEP and print to the ASAP diagnostic file.

The NEP SNMP manager provides SNMP agents with access to SNMP management
operations through State Table action functions, and intercepts the management
responses and SNMP traps. The NEP SNMP coexists with other interface types in the
same NEP, including core interfaces such as TL1 and X.25/X.29.

ASAP processes each State Table program in an interactive mode by sending a
command to an NE and waiting for a response. ASAP also processes more than one
State Table program simultaneously with multiple connections to NEs.

Figure 11-2 illustrates the SNMP Manager interface.

Chapter 11
About Communication Protocol Parameters

11-18

Figure 11-2 SNMP Manager Interface

To interface with NEs supporting the SNMP, State Tables can do the following:

• Send requests to the agents.

• Receive traps from the agents.

• Receive trap messages from the agents, used to notify the NEP of errors and other
significant events encountered during the process.

The NEP SNMP option supports SNMPv1, SNMPv2*, and SNMPv2c, including
authentication, authorization, access control, and privacy.

For more information on the SNMP interface, see the ASAP Developer's Guide.

Table 11-14 SNMP Port Communication Parameters

Parameter Default Description

OPEN_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to open
the device. The wait timeout parameter is only applicable to
the serial interface.

WRITE_TIMEOUT 5 The wait timeout period, in seconds, that ASAP waits to write
to the device.

READ_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to read
from the device. Currently, this is only applicable to the socket
interface.

DISABLE_PORT_ON_L
OGIN

N/A Determines whether the port should be disabled if login to the
NE fails. If the parameter is equal to zero, then the port is not
disabled.

Chapter 11
About Communication Protocol Parameters

11-19

StreamConnection Interface
The StreamConnection interface allows a solutions developer to write JProcessor
implementations independent of specific protocol APIs. This means that a single
JProcessor implementation can reference only StreamConnection interface methods,
and be able to switch underlying connection handler classes such as Socket and
Telnet without having to modify the provisioning code.

All stream-based protocols such as socket and telnet implement the
StreamConnection interface. See "Telnet Port Communication Parameters" and
"Socket Port Communication Parameters" for more details.

For more information on the StreamConnection interface, refer to the ASAP Java
Online Reference.

Creating Connection Methods and Helper Classes
Connection methods are used by ASAP core to establish a connection (also referred
to as a device) and/or to login to an NE.

To implement a connection method and connection handler, you need to know:

• The NE activation interface and protocol

• The logic and parameters required for connecting and disconnecting to and from
the NE

• Knowledge for implementing client protocols such as HTTP, web service, CORBA,
TCP/IP

• Knowledge about third party libraries or frameworks required to implement a non
TCP/IP protocol. For example, Apache AXIS for WSDL defined web service,
Apache Common HttpClient for HTTP, and so on.

• If any secure data must be stored in the ASAP database

In Design Studio, a Java class maps to a connection handler (see "Creating an
Network Element Connection Handler"). This Java class must implement the
IConnectionHandler interface that provides a common interface for the various
protocols. It contains some standard methods such as connect () and disconnect ().
The business logic depends on the NE interface protocol and connection/
disconnection handshake sequence.

For non-telnet based cartridges the connection class should typically contain a
connect() method and a disconnect() method. Helper methods are implemented to
get at variables or objects that are stored by the connection class. For example the
prompt is picked up from tbl_comm_param and when a provisioning method needs to
get at it, it will invoke a method of the connection class to get the provisioning prompt.
There may be helper methods for getting username, password, and so on. Sometimes
a send() method may be implemented and called from the provisioning method after
getting a reference to the connection object.

In case of a Telnet interface to the NE, Design Studio auto generates the skeleton
code for the connection handler. The TelnetConnection class from the core
framework is extended by the cartridge. The login() and disconnect() methods are
implemented (the connect() method as supported in the core can be re-used as is).

Chapter 11
Creating Connection Methods and Helper Classes

11-20

For telnet based cartridges there is also no need to implement send() and waitfor() methods
because they are available in the core framework.

Other protocols, such as SOAP XML, TCP/IP, web services, CORBA, and so on) depend
much more on the server side implementation; therefore more code has to be written to
handle connections to these NEs. Write a dummy client outside the ASAP environment to test
connectivity. Many of the provisioning guides give sample code illustrating how to connect
and provision a service. After that is tested in a standalone mode, it can be ported into an
ASAP cartridge because Java is platform independent.

Other cartridges that use generic protocols need to implement their own send() and waitfor()
methods. Sometimes (for example with Soap/XML protocols) establishing a connection on
the URL to the remote server does not guarantee that the connection is usable. In this case
an actual query message for a non-existing subscriber is made within the connection class
itself to ensure that the connection is valid. If this query fails, then a ConnectionException()
is thrown back so that the connection can be retried instead of all the provisioning orders
failing.

Creating a Provisioning Prompt
Where possible (for example for certain TCP/IP based protocols such as telnet) checking that
the correct prompt and level are present should be performed before each command is sent
to the NE. This should be implemented as a separate callable method. In addition a method
should be provided to be able to obtain the correct prompt and/or level in case an error has
occurred.

Enabling Loopback Mode
When using the standard core ASAP send() and get() Java methods no additional loopback
code should be required to be implemented in the cartridge because the standard loopback
mechanism takes care of providing the exact responses requested.

Implementing Secure Login Functionality
In the current ASAP implementation login information for NEs is stored in tbl_comm_param
in "clear" format. This makes that possible for sensitive data to be easily accessible by un-
authorized persons (ASAP also automatically displays communication parameters in
diagnostic files). It is very important to be able to store this type of data in a non-readable
(encrypted) format.

There are two aspects to security: secure data storage and secure data encryption. The
cartridge must be able to accommodate both:

1. Secure Data Storage - There are two types of data: ASAP secure data and custom
secure data, which are identified by two class types (0- ASAP data, 1- custom data).
ASAP secure data is stored in credential store factory (CSF) wallet located in
ASAP_Home/install/cwallet.sso and custom secure data in tbl_classB_secu table in
the control database. tbl_classB_secu allow entries in a name/value format with other
fields for class type, security level, caching of data etc. The layout of this table is as
follows:

SQL> desc tbl_classB_secu;
Name Null? Type
--- -------- ----------------------------
NAME NOT NULL VARCHAR2(80)

Chapter 11
Creating a Provisioning Prompt

11-21

VALUE NOT NULL VARCHAR2(255)
CLASS NOT NULL NUMBER(38)
S_CACHE NOT NULL NUMBER(38)
C_DATE NOT NULL DATE
DESC1 VARCHAR2(255)

2. Secure Data Encryption – Custom secure data can be stored either in "clear" or in
"encrypted" format. ASAP secure data is always encrypted.

To load the class B data, which contains NE access information, use the following
steps:

1. Create an input file that contains the data to be stored in tbl_classB_secu. For
example:

###
#
This info is added to 'tbl_classB_secu' entries -
to be added using asap_security_tool
#
Entries format: NAME:VALUE:CLASS:S_CACHE:DESCRIPTION
#
Example: DMS_USER:user123:1:0:User name for DMS100 access
#
###
#
USER_NOKIA:username:1:0:Login name for Nokia HLR
PASS_NOKIA:password:1:0:Password for Nokia HLR
#

2. Load the content of this file into control database using asap_security_tool utility:

asap_security_tool -u $CTRL_USER -p $CTRL_PASSWORD -r <secure data input
file>

To retrieve the secure data from the tables within the cartridge Java code use the
methods provided in the Security Java class (see Java Online Reference). The
following sample code shows how the encrypted user ID and password are retrieved
from the secure tables:

logger.logDebug("Getting access secure data");
Security sec = ASCAppl.getSecurity();
try {
 String secUsername = sec.getSecureData("USER_NOKIA", 1);
 logger.logDebug("Retrieved secure user name");
 String secPassword = sec .getSecureData("PASS_NOKIA", 1);
 logger.logDebug("Retrieved secure password");
} catch (SQLException e) {
 logger.logDebug("Exception caught while retrieving secure data: " + e);
}

After retrieved, data is automatically decrypted and ready to be sent to the NE. Make
sure that this data is not written into the cartridge diagnostics. Display 10 asterisks
instead (the number of asterisks should not match the actual length of the password).

Connection Management Issues
Never fail a work order due to connection failure in the case where connection
management (for example corba connections) is supported within the cartridge code.
Orders are only failed when the NE returns an error message indicating that data on
the order is invalid.

Chapter 11
Connection Management Issues

11-22

Where possible avoid explicitly disabling connections from within the cartridge code. ASAP
core handles the disabling of connections when the connection class exits with failure.

When communication parameters necessary to establish a connection are missing (as
determined in the connection class for the cartridge) the cartridge must log a meaningful error
message to the diagnostic files to indicate which parameter is missing and what the expected
parameter is used for.

A new and improved Java SEND method has been implemented in ASAP core which will not
force the calling cartridge code to handle exceptions (for example IOException or
TelnetException), but will manage these exceptions internally. When connections go down
atomic actions should be put back in the appropriate queue and rescheduled by ASAP
automatically. The core should manage disabling and re-enabling the device accordingly.

In some cases (with certain TCP/IP-based cartridges and possibly others) certain delays are
incurred when connecting and/or logging into NEs (reference the Ericsson MSS-C cartridge).
In such cases implement a communication parameter (tbl_comm_param) that allows for a
delay (thread.sleep()) interval to be configured in the field. It should be possible to set this to
0 so that no delay is incurred.

Creating a Java Telnet Connection Class
This section describes the steps to create a Java Telnet connection class. Use these steps as
a guideline for constructing your own cartridge.

To create a Java Telnet connection class:

1. Create an NE as described in "Creating and Configuring Network Element and Network
Element Connections" with the following exceptions:

a. In the Protocol field, select the Telnet/SSH.

b. When adding a connection, accept the autogenerated parameters.

c. Select the All Communications Parameters tab.

d. Modify the communication parameter values that your connection requires.

e. Click Add Global to add any additional parameters that your connection requires.

f. Edit the Label, Value and Description columns to specify the new parameter. For
example:

• In the Label field, enter PROMPT.

• In the Value field, enter #.

• In the Description field, enter This value defines the initial prompt symbol.

2. Create a Network Handler as described in "Creating an Network Element Connection
Handler" with the following exceptions:

a. From the Connection Type list, select the Telnet.

b. In the Class field, click New.

The Studio Activation Java Connection Handler wizard appears.

c. In the Name field, enter a name for the connection handler.

d. In the Connection Type list, select the Telnet.

e. Click Finish.

Chapter 11
Creating a Java Telnet Connection Class

11-23

The connection_handler_name.java file opens in Design Studio (where
connection_handler_name is the name of the connection handler).

3. In the connection_handler_name.java file, get the connection parameters for any
parameters you added in addition to the autogenerated parameters. For example:

 try {
 String n_prompt = getCommParam("PROMPT");
 setPrompt(n_prompt);

This sample uses the getCommParam method to retrieve data from the PROMPT
parameter defined in addition to the autogenerated parameters.

Note:

The following method gets all autogenerated parameters:

super.login();

4. Add code to wait for the login prompt. For example:

 -- Wait for the login prompt from the network element.
 if (login_prompt != null)
 waitfor(login_prompt);
 else
 waitfor("login:");

5. Add code to send the username. For example:

 this.sendln(userid);
6. Add code to wait for the password prompt. For example:

 -- Wait for the password prompt. --
 if (password_prompt != null)
 waitfor(password_prompt);
 else
 waitfor("Password:");

7. Add code to send the password. For example:

 this.sendln(password);
8. Add code to wait for the unix prompt. For example:

 -- Wait for the normal network element prompt. --
 if (n_prompt != null)
 waitfor(n_prompt);
 else
 waitfor(">");

In this example, the prompt was defined using the PROMPT parameter with the =
value. Had this value not been defined, it would have used the default > value.

9. Add code to specify an error diagnostic message. For example:

 } catch (Exception e) {
 Diagnostic.diag(Diagnostic.SANE, this, "Login failed: " +
 e.getMessage());
 throw new TelnetException("Login failed: " + e.getMessage());
 }

Chapter 11
Creating a Java Telnet Connection Class

11-24

10. Add code to specify a success diagnostic message. For example:

 Diagnostic.diag(Diagnostic.SANE, this, "Successfully logged in to the " +
"network element.");
}

Chapter 11
Creating a Java Telnet Connection Class

11-25

12
Creating Action Processors and Programs for
Processing Requests and Responses

This chapter describes how to create action processors and Java programs for atomic
actions that implement man-machine language (MML) commands for Oracle
Communications ASAP.

About Action Processors and Programs
The Network Element Processor (NEP) is the ASAP server component that manages
interactions with network elements (NEs) and element management systems (EMSs). The
NEP receives atomic actions from the service activation request manager (SARM) and uses
programs to interact with the NE. Based on the programs, the NEP sends commands to the
NE and returns responses from the NE to the SARM.

The NEP must choose the correct program to fulfill the atomic action. To determine which
program to use, the NEP uses action processors. Action processors map atomic actions to
programs. When you create ASAP cartridges, you can either write state table programs or
Java programs from scratch, or configure the action processor to auto-generate Java
programs.

This chapter describes the following:

• How to create and configure action processors.

• How to auto-generate Java command line interface (CLI) code and the situations where
you need to write custom business logic. Auto-generating CLI code is available for
cartridges that use CLI commands, such as TL1 over TCP/IP and Telnet over TCP/IP.

• How to auto-generate Java code stubs and the places where you need to write custom
business logic. Auto-generating a Java stub is available for any cartridge type.

• Recommendations for writing Java programs from scratch.

• How to auto-generate unit test cases and the places where you need to write custom
business logic.

Note:

This chapter does not provide information about writing state tables. For more
information about state tables, see ASAP Server Configuration Guide and ASAP
Developer's Guide.

While you can write a Java implementation or a state table implementation, Oracle
recommends that you auto-generate Java stubs or Java CLI code. This method
provides code that you would normally have to write yourself.

12-1

When the NEP receives an atomic action and its parameters from the SARM, the NEP
determines what program to run based on the SARM tbl_nep_asdl_prog table. This
table contains the mappings between atomic actions and programs that is defined in
the action processor. The table defines the following columns:

• asdl_cmd: The atomic action passed to the NEP interpreter or jinterpreter.

• tech: The technology type of the NE that the NEP interpreter or jintepreter
interacts with. With Java programs, the values in this column are a combination of
vendor and technology separated by a dash (for example, ALU-FTTU).

• sftwr_load: The software version of the software currently running on the NE.

• program: The state table or the Java program that the state table interpreter or
jinterpreter must run to fulfill the atomic action.

• interpreter_type: A value of S indicates a state table program and a value of J
indicates a Java program.

Table 12-1 shows how the same atomic action can map to various vendors,
technologies, and software versions.

Table 12-1 Atomic-Action-to-Program Mappings

asdl_cmd tech sftwr_lo
ad

program interpreter
_type

CLEAR_INTERCEPT ALU-DMS BCS35 com.alu.dms.bcs35.ClearInterceptProxy.execute J

CREATE_LINE ALU-DMS BCS35 com.alu.dms.bcs35.CreateLineProxy.execute J

SET_OPTION_ON ALU-DMS BCS35 com.alu.dms.bcs35.SetOptionOnProxy.execute J

CLEAR_INTERCEPT CSCO-INV 1.0 com.csco.inv.1_0.ClearInterceptProxy.execute J

CREATE_LINE CSCO-INV 1.0 com.csco.inv.1_0.CreateLineProxy.execute J

SET_OPTION_ON CSCO-INV 1.0 com.csco.inv.1_0.SetOptionOnProxy.execute J

For more information about the NEP, the state table interpreter, and the JInterpreter,
see ASAP Server Configuration Guide. For more information about
tbl_nep_asdl_prog, see ASAP Developer's Guide.

About the Ratio of Provisioning Commands to Atomic Actions
Whenever possible, map each atomic action to a program containing only one
provisioning command. As a general rule, the fewer commands associated with the
atomic action, the easier it is to use the atomic action as a building block in the
implementation of higher level services. However, in some less common scenarios,
several actions must be run on the NE in sequence. In such cases, you map a single
atomic action to more than one action.

For example, NEs that require certain modes to be set before a provisioning command
can be sent to the NE may need to encapsulate the commands to set the modes along
with the provisioning command.

Review the following considerations before deciding whether to encapsulate several
commands:

• Determine whether encapsulating the mode commands substantially increases
ASAP and router performance.

Chapter 12
About Action Processors and Programs

12-2

• Determine whether the service model becomes less complicated when commands are
encapsulated. Reducing service model complexity allows the service modeler to focus on
implementing service offerings rather than on understanding and modeling mode setting
dependencies for every service.

• Determine whether encapsulating mode commands removes the need to have complex
mutex logic within the cartridge. For example, multiple ASAP work orders destined to the
same NE may result in interleaved atomic actions. In some devices, without
implementing mutex logic, atomic actions fail because the router is in an indeterminate
mode for any given atomic action.

• Determine whether encapsulating mode commands removes the for implement additional
logic for connection handlers. For example, if each atomic action sets its own mode,
when a connection to a router is lost, at any point the connection handler would not have
to determine whether any mode setting commands must be re-run.

For additional considerations at the service action level, see "About Limiting Independent
Network Element Commands to Optimizing the Network Element Interface."

About Creating and Configuring Action Processors
An action processor maps an atomic action to a Java program or state table program. For
every action processor, you need to define a program as the implementation that performs
the work.

The naming convention for action processors is the same as the naming convention for
atomic actions, with the exception of the prefix: Action processors use the prefix I whereas
atomic actions use the prefix A. See "About Creating and Configuring Atomic Actions" for
information about the naming convention.

Design Studio for ASAP automatically enforces this naming convention when you create an
action processor with the Action Processor Wizard.

Creating an Action Processor
To create an action processor:

1. From an Activation project, select Studio, then select New, then Activation, and then
Action Processor.

2. From the Action Processor Wizard, enter the following:

• From the Project list, select a cartridge project in which to create the action
processor.

• In the Action field, the name of the action that the action processor performs (see
"Selecting the Action Tokens").

• In the Entity field, enter an entity that is the object of the action (see "Selecting Entity
Tokens").

3. Click Finish.

The Action Processor editor appears. From the action processor, you can either auto-
generate code or associate the action processor with code that you have written yourself.
For more information about these options, see:

• Understanding the Auto-Generated Java CLI Code

• Understanding the Auto-Generated Java Code Stubs

Chapter 12
About Creating and Configuring Action Processors

12-3

• About Writing Java Programs from Scratch and Naming Conventions

• Understanding Unit Testing

Understanding the Auto-Generated Java CLI Code
After you create the action processor, you can auto-generate the CLI Java code. You
auto-generate the code when you want ASAP to interact with NEs that use CLI-based
commands such as TL1 over TCP/IP or Telnet over TCP/IP. The code that is
generated sends requests. You can include additional post processing logic if required.
You must add business logic to the generated code for receiving responses.

Note:

The CLI code generation option is available for cartridges created or
upgraded to ASAP 7.3.2 or later releases. If you are designing a cartridge
that is not CLI-based, see "Understanding the Auto-Generated Java Code
Stubs."

Before you can auto-generate CLI Java code, you must have created and configured
the atomic action associated to the action processor. See "Creating and Configuring
Atomic Actions " for instructions.

To auto-generate CLI Java code, you perform the following tasks:

• Configure the default command structure of the CLI commands that ASAP sends
to the NE. For more information, see "About the CLI Command Structure
Elements."

• The action processor editor Request tab. This tab defines the CLI commands that
ASAP builds and sends to the NE. You can parse sample CLI commands to
generate the elements names that are part of the outgoing command or manually
add the command parameters. You can map these command parameters to
atomic action parameters or define them as static parameters. For more
information, see "Configuring CLI Command Requests."

• The action processor editor Response tab. This tab defines a response pattern
and the position of the value within the response pattern that matches with an
ASAP user exit type. You must also add response handling logic to the generated
Java code. For more information, see "About Configuring CLI Command
Responses."

Consider the following restrictions when choosing to auto-generate CLI Java code:

• The auto-generated code applies to network cartridges only; not to service
cartridges.

• The auto-generated code supports only a one-to-one mapping ratio between the
action processor and CLI command.

• If you want to use the CLI code generation function in cartridges developed before
Design Studio 7.3, you must delete the old action processor and generate a new
action processor. You must manually copy over any descriptive information
contained in the old action processor.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-4

About Configuring the CLI Command Structure
After you create an activation project, you can define the Java CLI command structure. The
command structure defines the delimiters to use in CLI commands. You define a general
command structure for request commands. When you configure the request commands, you
can overwrite the general structure if a command you're configuring requires a different
structure.

You must enable auto-parsing of CLI commands if you want Design Studio to automatically
parse and map CLI command parameters to atomic action parameters when you configure
your Java CLI command requests.

When automatically parsed, the command parameters are mapped to the atomic action
parameters that have the same parameter names. If a command parameter name does not
match any atomic action parameter name, you must manually map that command parameter
to an action parameter.

About the CLI Command Structure Elements
After you create an activation project, you can define the CLI command structure. The
command structure can have one or more of the following elements:

• Header Body Separator: Defines the separator between the header and the rest of the
CLI command.

• Parameter Separator: Defines the separator between parameters within the CLI
command.

• Parameter Name-Value Separator: Defines the separator between a parameter and its
value.

• Compound Parameter Encloser: Defines the separator that encloses compound
parameters.

• Compound Parameter Index Separator: Defines the separator between members of a
compound parameter.

• Command Tail: Defines the character at the end of the CLI command.

• End of Command Control Character: Defines the command control character or string
at the end of the CLI command. For example, a carriage return or a line-feed character.

Each command structure elements can take one of the following values:

• NONE: Select this value if the CLI command does not use the element.

• : COLON: Select this value if the element should be a colon.

• , COMMA: Select this value if the element should be a comma.

• . DOT: Select this value if the element should be a period.

• = EQUAL: Select this value if the element should be the equals sign.

• ; SEMI_COLON: Select this value if the element should be a semicolon.

• SPACE: Select this value if the element should be a space.

• CARRIAGE: Select this value if the element should be a carriage return.

• NEW LINE: Select this value if the element should be a new line.

• Ctrl+C: Select this value if the element should be the Ctrl+C key combination.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-5

• OTHER: Select this value if the element requires one or more characters not
specified in this list. When you select OTHER, a field appears next to the list in
which you enter one or more special characters. For example, if the End of
Command Control Character is the word COMMIT, you could specify this using
the OTHER option.

Configuring the CLI Command Structure
To configure the Java CLI command structure:

1. Open the activation project editor.

2. Click the Command Structure tab.

3. For each command structure element, do the following:

a. From the Header Body Separator list, select the command structure element.

b. From the Parameter Separator list, select the command structure element.

c. From the Parameter Name-Value Separator list, select the command
structure element.

d. From the Compound Parameter Encloser list, select the command structure
element.

e. From the Compound Parameter Index Separator list, select the command
structure element.

f. From the Command Tail list, select the command structure element.

g. From the End of Command Control Character list, select the command
structure element.

h. Click OK.

4. Enable the Command Auto-Parsing check box if you want to enable the
Command Auto-Parse Override check box for all new action processors in the
action processor editor Request tab.

5. Save the changes.

About Parsing and Configuring CLI Command Requests
Parsing Java CLI command parameters extracts the parameters from a sample CLI
command and maps the parameters to corresponding atomic action parameters. You
parse command parameters when you configure your CLI command requests. When
you parse and configure CLI command requests, you can do the following:

• Manually parse the parameters or specify to automatically parse the parameters.

• Add logic that calls a helper method that manipulates atomic action parameters for
name-value parameters or value-only parameters. Helper methods are not used
for static string parameters because those parameters are not mapped to atomic
action parameters.

You can use the helper methods defined in these files:

– Utils.java: This file contains predefined methods. See "Provided Methods for
Manipulating Parameters" for more information.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-6

– ReusableMethods.java: You can define your own custom helper methods in this file.
See "Defining Custom Methods for Manipulating Parameters" for more information.

Provided Methods for Manipulating Parameters
The Utils.java file contains helper methods that you can use to manipulate atomic action
parameters and values. The methods include tasks such as appending characters to a
parameter, concatenating two or more parameters, and so on. Design Studio generates the
Ultils.java file when you configure your request CLI commands. You can access this file from
the Design Studio Package Explorer view in the src directory.

All methods defined in Utils.java throw exceptions defined in the
ProvCartridgeException.java file, which is auto-generated when you add a sample
command.

Table 12-2 describes the methods contained in Utils.java and provides examples. For more
information about using the methods, open the Utils.java file in the Package Explorer view.
You can access this file after entering a CLI command to parse when configuring your CLI
command requests.

Table 12-2 Utils.java Methods

Method Description Example

append This method appends a value
to a parameter.

The following appends the hash character to the MSISDN
parameter:

append(MSISDN,"#")

concat This method concatenates
multiple parameters together
with a specified delimiter. The
first value specifies the
delimiter. You can specify
multiple parameters after the
delimiter using the Java
variable arguments feature.
The method returns a string
after concatenating all the
parameters passed. For
example, you can use this
method when you have to join
two atomic action parameters
into one parameter in the CLI
command.

The following concatenates the MSISDN and LCC_CODE
parameters using a dash delimiter:

concat("-","MSISDN","LCC_CODE")

encloseWith This method encloses a
parameter between two strings.

The following encloses the MSISDN parameter between two hash
characters:

encloseWith(MSISDN,"#","#")

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-7

Table 12-2 (Cont.) Utils.java Methods

Method Description Example

fixedLength This method ensures that a
parameter value is of a fixed
number of characters. The
method takes the required
length of the parameter, the
character to be used as
padding, and the mapped
parameter. If appender is true,
the padding characters are
prefixed otherwise it is suffixed.
The method returns a string
with a length equal to the
length passed by prefixing or
suffixing the padded character
to the value passed.

The following appends the * padding character to the MSISDN
parameter value if its value length is less than 5. Because the
boolean flag is set to true, the padding character is added to the
beginning of the value:

fixedLength("MSISDN",MSISDN,5, '*', true)

prepend This method adds a value to
the beginning of a parameter.

The following adds the hash character to the beginning of the
MSISDN parameter:

prepend(MSISDN,"#")

replaceWith This method replaces all
occurrences of a string in the
parameter value with a new
string.

The following replaces dashes with hash characters within the
MSISDN parameter value:

replaceWith(MSISDN,"--", "##")

substring This method extracts a
substring from a parameter
value. The substring is
identified by its start and end
character positions in the value.
For example, if the value of
MSDN were ABCDE and the
start position is 3 and end
position is 5, then the return
value is CDE.

The following extracts the 3rd, 4th, and 5th characters from the
value of the MSISDN parameter:

substring(MSISDN,3,5)

translate This method translates a
parameter value to a specified
value. You specify the
translation using value pairs
separated by an equals sign
(=). Delimit each pair with a
comma (,).

For example if an upstream
system sends "Y" or "N", and
the NE expects "Yes" or "No",
you can translate the incoming
values using "Y=Yes, N=No".

This method returns the new
value. If the method syntax is
incorrect, the method returns
null.

The following takes the ACTIVATE parameter value from the
atomic action and translates the value from Y to Yes or from N to
No.:

translate(ACTIVATE,"Y=Yes,N=No")

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-8

Defining Custom Methods for Manipulating Parameters
When you configure you Java CLI command requests, you can add logic that calls a helper
method to manipulate atomic action name-value parameters or value-only parameters. If you
need helper methods other than those defined in the Utils.java file, you can define your own
in the ReusableMethods.java file. (For information about the methods in the Utils.java file,
see "Provided Methods for Manipulating Parameters.") Design Studio generates the
ReusableMethods.java file when you configure your request CLI commands. You can
access this file from the Design Studio Package Explorer view in the src directory.

The methods you define in ReusableMethods.java must throw exceptions defined in the
ProvCartridgeException.java file.

Configuring CLI Command Requests
To configure a CLI command request:

1. Open the action processor editor and click the Editor tab.

2. From the Type list, select CLI Code Generation.

The Request and Response tabs appears.

3. Click the Request tab.

4. If the CLI command you want to configure does not conform to the command structure
you previously configured (in "About the CLI Command Structure Elements"), select
Overwrite in Separators area and configure the command structure you need. Do the
following:

a. From the Header Body Separator list, select the command structure element.

b. From the Parameter Separator list, select the command structure element.

c. From the Parameter Name-Value Separator list, select the command structure
element.

d. From the Compound Parameter Encloser list, select the command structure
element.

e. From the Compound Parameter Index Separator list, select the command structure
element.

f. From the Command Tail list, select the command structure element.

g. From the End of Command Control Character list, select the command structure
element.

See "About Configuring the CLI Command Structure" for information about the structure
elements and their values.

5. In the Input Command field, enter a sample CLI command to use as a template for
defining the action processor parameters. The sample command should be a typical CLI
command that you want ASAP to send to NEs to fulfill the atomic action that the action
processor is associated with.

6. Parse the command and map the command parameters to action parameters by doing
one of the following:

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-9

Tip:

Preview the structure of the command in the Preview area as you map
CLI command elements to atomic action parameters.

For example, the following command shows a header called HSDPA, a
value-only parameter, two value-pair parameters, two static parameters,
and ends with the COMMIT control character:

HSDPA:<mcliVal>,LCC_CODE=<user_routingVal>,LINE=<lineVal>,static,
program,;COMMIT

To automatically parse the CLI command:

a. Select the Command Auto-Parsing check box.

The Parse Input Command button becomes selectable.

b. Click the Parse Input Command button.

The command parameters are parsed based on the parameter structure
separators you configured. The parameters appear in the Parameters area in
the Element Name list.

If the parameter name does not match any atomic action parameter, then the
parameter is still added to the Element Name list, but does not map to any
atomic action parameter in the Maps To field.

c. If all parameter names are mapped to atomic action parameters, go to step 7.

d. If some parameters are not mapped to atomic action parameters, go to the
instructions for manually parsing the CLI command below.

To manually parse the sample CLI command:

a. Using your mouse, highlight and right-click on a parameter in the command.

b. If you want to designate the parameter as the command header, select
Command Header.

The parameter appears in the Command Header field.

c. If you want to designate the parameter as a command parameter, select
Command Parameter, then select the value type to use in the command:

• Name Value Pair: When you select this option, the parameter name and
value are used. You must select a parameter from the atomic action from
which the value is populated.

• ValueOnly: When you select this option, only the parameter value is used.
You must select a parameter from the atomic action from which the value
is populated.

• StaticString: When you select this option, only the parameter name is
used. Static strings do not contain values and cannot be associated with
atomic action parameters.

After you make your selection, the highlighted parameter appears in the
Element Name list. When you select one of the auto-generated parameters
from the Element Name list, the associated atomic action parameters appear
in the Maps To field (except for StaticString parameters).

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-10

7. (Optional) For Name Value Pair and ValueOnly parameters, add a line of logic in the
Parameter Logic field that calls a helper method that manipulates the atomic action
parameter and click OK.

You can use the helper methods defined in either the Utils.java file (see "Provided
Methods for Manipulating Parameters" or the ReusableMethods.java file (see "Defining
Custom Methods for Manipulating Parameters."

You can nest two or more commands in the Parameter Logic field. For example, the
following line nests the encloseWith method within the concat method:

concat("*",encloseWith(MCLI,"#","#"),MY_TEST)
8. If you need to add more complex logic for a particular parameter that can be enabled by

a one line method as in the Parameter Logic field, click Edit Parameter Logic. The first
time you click this button Design Studio generates additional java files where you can
make these modifications. If you make changes to the command parameter to atomic
action parameter mappings after you have clicked the Edit Parameter Logic button for
the first time, new files are not generated if you click the Edit Parameter Logic button
again. For more information about the files generated when you click the Edit Parameter
Logic button, see "About Auto-Generated and Synchronized CLI Java Files."

About Configuring CLI Command Responses
You must write additional code for handling CLI command responses. Design Studio
generates the ResponseHandlerImplementation.java file when you configure your CLI
commands. You can access this file from the Design Studio Package Explorer view in the
src directory.

You can also configure the action processor to search for a specific response snippet in
response messages before sending the response to the user defined exit type code you have
written.

Configuring CLI Command Responses
To configure a CLI command response:

1. Open the action processor editor and click the Editor tab.

2. From the Type list, select CLI Code Generation.

The Request and Response tabs appears.

3. Click the Response tab.

4. In the Response Section, Response area, Response field, enter a description of the
response.

5. If you want the action processor to search for responses with specific headers or exit type
patterns before sending the response to the user exit type code, do the following:

a. In the Response Section, Exit Type, Response Header field, enter a response
header.

b. In the Response Section, Exit Type, Exit Type Pattern field, enter a response
pattern.

c. Click Mark Positions button.

The Mark Positions Specifier dialog appears.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-11

d. In the Start Position field, enter a starting position from 1 to 10. The start
position must be less than the end position.

e. In the End Position field, enter an end position from 1 to 10. The end position
must be greater than the start position.

6. Click Edit Response Logic. The ResponseHanderlImplementation.java file
opens in the Package Explorer view.

7. Add response handling code to the file. For more information about the
ResponseHanderlImplementation.java file, see "Auto-Generating the Java CLI
Files."

Auto-Generating the Java CLI Files
To auto-generate the Java CLI code files:

1. Open the action processor editor and select the Editor tab.

2. From the Type list, select CLI Code Generation.

3. Click New.

Design Studio automatically generates Java code.

The Class field points to the auto-generated proxy java file (for example,
alu.fttu.x74.ont.add.generated.AddOntProxy). This file contains a proxy class that
is situated between the NEP and action processor and manages the interaction
between them.

The Method field points to the execute method within the processor java file (for
example alu.fttu.x74.action.ont.add.AddOntProcessor.java).

For more information about the auto-generated Java files and code and the areas
where you must include additional business logic, see "About Auto-Generated and
Synchronized CLI Java Files."

4. Click Finish.

About Auto-Generated and Synchronized CLI Java Files
After the Java files are generated, Design Studio automatically updates those files that
are synchronized whenever you build the cartridge. Never make changes to
synchronized files because Design Studio overwrites these files when you build the
cartridge. You can, however, modify files that are not synchronized.

Oracle recommends that you backup the cli_project/src directory (where cli_project is
the activation project that contains the CLI code) to a source control system. This
directory contains all the modifiable CLI Java files. For more information about backing
up this folder, see Developer's Guide.

Table 12-3 describes the Java files that are created when you auto-generated them,
and whether the generated files are synchronized and modifiable.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-12

Note:

In the files specified in Table 12-3, action and entity represent the action and entity
values you selected when you created the action processor (see "Creating an
Action Processor").

Table 12-3 CLI Code Generation Java Files

Java File Description Sync Mod

ActionEntityPr
ocessor.java

This file contains the ActionEntityProcessor class that implements the generated
processor interface. The ActionEntityProcessor class includes the execute class
and the following methods:

• ILogger is an interface for debug logs. When the processor is running on the
ASAP system, it logs to the Diagnosis log. If you are running the processor in
JUnit, you can use other implementations of logger to log to the console
instead.

• IExitType enables you to set the exit type explicitly or by matching a response
string against the user-defined exit types.

• ActionEntityInput For more information, see ActionEntityInput.java in this table.
• ActionEntityOutput For more information ActionEntityOutput.java in this table.
• IConnectionHander For more information, see "Creating Java Connection

Handlers."
The logic in the execute class is fully functional when you auto-generate the CLI
Java files. The code is generated based on the command element to atomic action
mappings that you configured using the action processor editor Request tab. The
code is also based on the Exit Type Pattern field in the action processor editor,
Response tab. You specify a response snippet in this field that the code searches
for in response messages. You use the Mark Positions button to specify what part
of the response snippet to verify before sending the response to the user defined
exit type code you have written. For more information about exit types, see
"Creating Java User Exit Types."

The ActionEntityProcessor.java file is auto-generated when you click the New
button as described in "Auto-Generating the Java CLI Files." However, if the file
already exists when you click the New button, then the file will not be auto-
generated and will not reflect any changes that you made to the action processor
since you first auto-generated the file. If you want to Design Studio to auto-generate
the file, you must delete the old file first.

No Yes

ModifyGener
atedMML.jav
a

This file contains methods you can use to augment the generated MML command if
you require any additional post processing. For example, you may need to encrypt
the CLI command before sending it.

No Yes

ResponseHa
ndlerImplem
entation.java

This file contains the ResponseHandlerImplementation class that implements the
ResponseHandlerInterface. You must do the following in this file:

• Declare return parameter variables.
• Write response parsing code.
• Return the parameter value in the response.

No Yes

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-13

Table 12-3 (Cont.) CLI Code Generation Java Files

Java File Description Sync Mod

ActionEntityIn
put.java

This file contains the InputBean. The InputBean has set and get methods for all
parameters of the atomic action and provides setters and getters for manipulating
parameters.

If the parameter is a scaler (simple type), it is received as a string and can be used
immediately.

For information about compound parameters, see "Understanding Generated Code
for Compound Parameters" If you need to add logic to the input parameters, for
example, if you are mapping a CLI command to more than one compound
parameter, you can click the Edit Parameter Logic button in the action processor
editor Request tab to generate files where you can add this logic. For more
information about these generated files, see Table 12-4.

Yes No

ActionEntityO
utput.java

This file contains the Output class that enables you to populate output parameters.
There are convenience methods for populating parameters to varying scope within a
work order. Examples of parameters are as follows:

• Action parameters, which are available to the service action
• Input parameters
• Global parameters, which are available to everything
• Rollback parameters, which enable you to populate for the rollback action if it is

defined in the atomic action
The output parameters are not explicitly defined in the model, so there are no
convenience methods. To set a parameter, you need to know its string name and
include it.

Yes No

ActionEntityPr
ocessorInterf
ace.java

This file contains the processor interface that is implemented by the
ActionEntityProcessor class. This interface is synchronized whenever the cartridge
model changes so the ActionEntityProcessor class always has the correct cartridge
data available.

Yes No

ActionEntityPr
oxy.java

This file contains the Proxy that is situated between the NEP and Processor class
and manages the interaction between them. Proxy sets up all classes used by the
processor and initiates and calls the processor. Most importantly, the proxy
simplifies the work required by the Processor by:

• Creating all instances of the InputBean and initializing CompoundBeans so
they are available and populated through the processor.

• Performing much of the standard logging, including the entry and exit of the
processor and the contents of the parameters passed in for debugging.

• Extending the JProcessor. This isolates the portion of the Java processor code
that needs to relate directly to the version of the activation, and allows the
processor, its interface, and all its related classes and interfaces to run outside
of the ASAP system and, therefore, to be unit tested

When creating a Java processor from the action processor editor, the resulting class
name is "Proxy" because the proxy gets initiated by the NEP (the Proxy is registered
to be called in the activation).

Yes No

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-14

Table 12-3 (Cont.) CLI Code Generation Java Files

Java File Description Sync Mod

ConnectionH
andler.java

This file contains the ConnectionHandler class that extends a protocol class and
implements the IConnectionHandler. IConnectionHandler is an instance of the
connection handler that is associated with the vendor, technology, and software
version of the action processor. For the Telnet connection handler, the basic
methods on the interface can be used to send requests (because it is string-based).
For technologies (for example, SOAP or XML) that provide multiple convenience
methods, the processor may test the type of connection handler and pass the
request to a more specific connection handler to obtain access to the convenience
methods. If you want to expose more explicit methods when writing a connection
handler, you can define an interface that extends IConnectionHandler and ensure
that those methods are available through that interface. The processor should
always use an interface when interacting with the ConnectionHandler, to achieve the
implementation in more than one way and allow for unit testing. For more
information about unit testing, see "Understanding Unit Testing."

No Yes

BaseActionEn
tityTestCase.j
ava

This file contains the unit test case for the action processor. For more information
about this generated file, see "Understanding Unit Testing."

Yes No

MMLConstru
ctor.java

This file contains the code that builds the CLI command based on the command
structure. For information about the command structure, see "About the CLI
Command Structure Elements." The code does the following:

• Adds the command header to the CLI command
• Adds the header body separator after the header
• Adds parameters to the CLI command after the header
• Adds the command tail to the CLI command
• Adds the command end-of-message character to the CLI command

Yes No

MMLConstru
ctor.Interface
.java

This file provides the methods that the MML Constructor class implements. Yes No

ResponseHa
ndlerInterfac
e.java

This file contains the interface code that ResponseHandlerImplementation.java
implements.

Yes Yes

Separators.ja
va

This file contains the command separators you specified when configuring the
command structure. For more information about configuring the command structure,
see "About the CLI Command Structure Elements."

Yes No

ISystemPara
meters.java

This file contains the interface that extends the IBaseSystemParameters interface.
The methods in IBaseSystemParameters class are implemented by the
SystemParameter class.

Yes No

SystemPara
meters.java

This file contains the SystemParameter class that implements the methods in the
IBaseSystemParameters interface, such as getWorkOrderId(), getActionName(),
and so on. The SystemParameter class extends the BaseSystemParameters class.

Yes No

Table 12-4 describes the Java files that Design Studio creates when perform the tasks
required to auto-generate Java CLI code.

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-15

Note:

The files generated when using the Parameter Logic field or the Edit
Parameter Logic field specified in Table 12-4 use the ElementName
variable. ElementName is the parameter name in the Element Name list
when the parameter is a Name Value Pair (for example ID_ROUTING.java).
ElementName is a combination of the atomic action parameter in the Maps
To field followed by an underscore and the parameter name in the Element
Name list when the parameter is ValueOnly (for example,
MCLIValue_LINE.java).

Note:

The files generated when using the Parameter Logic field or the Edit
Parameter Logic field specified in Table 12-4 that are not synchronized will
not reflect any changes made to the mappings between the command
parameters and the atomic action parameters after you generate these files
for the first time. You must delete these files manually if you want to auto-
generate them again.

Table 12-4 Parameter Logic, Edit Parameter Logic, and Input Command Java Files

Java Files Description Sync Mod

ProvCartridg
eException.j
ava

This file contains the exception class used by the methods defined in the Utils.java
file.

Yes No

ReusableMet
hods.Java

This file contains the ReusableMethods class. You can use this file to define one-
line methods that you can use when configuring your CLI command requests (see
"Configuring CLI Command Requests"). This class should use the exception logic
defined in ProvCartridgeException.java.

No Yes

Utils.java This file contains predefined one-line methods that you can use in the action
processor editor Request tab Parameter Logic field. For more information about
these methods, see "Provided Methods for Manipulating Parameters."

Yes No

ElementName
.java

This file is generated when you add a one-line method to the parameter logic when
configuring your CLI command requests (see "Configuring CLI Command
Requests").

Yes No

ElementName
_Implementa
tion.java

This file is generated when you modify the parameter logic that you specified when
configuring your CLI command requests. You can add custom logic to this file if you
need to include more complicated processing instructions than those in Utils.java or
in ResuableMethods.java.

No Yes

ElementName
_Interface.jav
a

This file defines an interface for the ElementName_Implementation class in the
ElementName_Implementation.java file. This file is generated when you modify the
parameter logic that you specified when configuring your CLI command requests.

Yes No

Backing Up Files
You should implement source control for the cli_project/src directory (where cli_project
is the Design Studio Activation project root folder)

Chapter 12
Understanding the Auto-Generated Java CLI Code

12-16

Understanding the Auto-Generated Java Code Stubs
You can use the action processor to auto-generate Java files with classes and methods
configured for the protocol and attributes you selected. The auto-generated code are code
stubs that provides a logical framework where you must include your business logic for
sending and receiving responses.

The Java with code generation implementation for an action processor creates a Java
processor that composes messages to be sent to a device, evaluates the response for errors,
extracts output information from the response, and populates the information into output
parameters.

Figure 12-1 shows some of the auto-generated files, whether they are synchronized, and how
they relate to each other.

Figure 12-1 Generated and Synchronized Java Files

When you configure the action processor to auto-generate Java code stubs, the central class
is the Processor. You must add business logic to this class. The Processor is created only
once. The processor includes sample code based on the associated atomic action
parameters at creation time. You should delay creating the processor until the action

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-17

processor is associated with an atomic action that has fully defined parameters. If
parameters are not yet defined or the action processor is not yet associated with the
atomic action, then the generated sample code will be incomplete and will require
additional coding.

Note:

Synchronized classes or interfaces are rebuilt every time you save changes
to atomic action parameters (for example, classes and interfaces are
synchronized with the model and reflect the model). Therefore, you should
never make code changes to any synchronized class or interface. Design
Studio overwrites the code when you run the next build (with changes in the
model). You should write code only for the Processor class.

There are 2 methods in the Processor:

• execute
• init
The main method is execute. When called, it is provided with the following:

• A number of classes to perform operations.

• An input class that contains all input parameters.

• An output class to populate the output parameters.

• Access to a logger.

• An implementation of the exit type to match responses against user-defined exit
types and to set the exit type for the processor.

• Access to the Connection Handler to send requests and get responses from a
connected device.

Auto-Generating the Java Stubs
To auto-generate Java stubs:

1. Open the action processor editor and select the Editor tab.

2. From the Type list, select Java Action Processor (with Code Generation).

3. If you have not already done so, create and fully configure an atomic action that
includes the required parameters. You must associate the atomic action to this
action processor. For more information about creating and configuring an atomic
action, see "Creating and Configuring an Atomic Action."

Note:

If you do not create and configure the atomic action the auto-generated
code will not function properly.

4. Click New.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-18

The Studio Activation Java Implementation Wizard appears.

5. In the Package field, enter a valid package name. You can use the default package
name or enter a name of your choice. The default Package name uses the vendor,
technology, software version, entity, and action that you selected when creating the action
processor (see step 2).

For example:

alu.fttu.x74.ont.add
6. In the Name field, enter a name that appears in many of the auto-generated Java files

and the classes they contain. You can use the default name or enter a name of your
choice. The default name is a combination of the action and the entity.

For example:

AddOnt
7. Click Finish.

Design Studio automatically generates Java code.

The Method field points to the auto-generated proxy java file (for example,
alu.fttu.x74.ont.add.generated.AddOntProxy). This file contains a proxy class that is
situated between the NEP and Processor class and manages the interaction between
them.

The Class field points to the execute method within the processor java file (for example
alu.fttu.x74.action.ont.add.AddOntProcessor.java). You must add business logic to this
class.

For more information about the auto-generated Java code and where you must include
business logic, see "About Auto-Generated Java Files ."

About Auto-Generated Java Files
Table 12-5 shows the Java files containing the classes and interfaces used by the Processor.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-19

Table 12-5 Auto-Generated Java Files

Java Files Description Sync Mod

ActionEntityPr
ocessor.java

This file contains the ActionEntityProcessor class that implements the generated
and synchronized processor interface. The ActionEntityProcessor class includes
the execute class with following methods:

• ILogger is an interface for debug logs. When the processor is running on the
Oracle Communications ASAP system, it logs to the Diagnosis log. If you are
running the processor in JUnit, you can use other implementations of logger to
log to the console instead.

• IExitType enables you to set the exit type explicitly or by matching a
response string against the user-defined exit types.

• ActionEntityInput For more information, see ActionEntityInput.java in this
table.

• ActionEntityOutput For more information ActionEntityOutput.java in this table.
• IConnectionHander For more information, see "Creating Java Connection

Handlers."
You need to write the logic in the execute class for each atomic action to achieve
the desired action in a NE. Use the Java editor in the Package Explorer view of the
Java perspective to write the code.

When implementing the action processor, Design Studio provides you with support
such as auto-generation of code and sample data. In Design Studio, this is currently
set up specifically for the Telnet protocol (Soap, CORBA, and other protocols
require more coding; for example, you must write your own logic for send methods,
requests, to extend the connection class, and so on.).

Code for the processor is auto-generated by the proxy (getter and setter methods
for each parameter) which provides you with an API to manipulate the data. For
example, for an incoming object, methods such as getBilling are auto-generated
(the type of methods depend on the parameters specified in the service model and
how they are mapped). You can use these auto-generated methods in the
processor class to get the value for the parameters.

To obtain the required method to get a value for a parameter, type the name of the
parameter followed by a dot. This displays all available methods for the parameter.

No No

ActionEntityIn
put.java

This file contains the InputBean. The InputBean is tied to the parameters of the
atomic action (has set and get methods for all parameters of the atomic action), and
provides setters and getters for manipulating parameters.

If the parameter is a scaler (simple type), it is received as a string and can be used
immediately

If the parameter is a compound, see "Understanding Generated Code for
Compound Parameters."

Yes No

ActionEntityO
utput.java

The Output class enables you to populate output parameters. There are
convenience methods for populating parameters to varying scope within a work
order. Examples of parameters are as follows:

• Action parameters are available to the service action.
• Input parameters.
• Global parameters are available to everything.
• Rollback parameters enable you to populate for the rollback action if it is

defined within the atomic action.
The output parameters are not explicitly defined in the model, so there are no
convenience methods. To set a parameter you need to know its string name and
include it.

Yes No

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-20

Table 12-5 (Cont.) Auto-Generated Java Files

Java Files Description Sync Mod

ActionEntityPr
ocessorInterf
ace.java

The processor interface is implemented by the ActionEntityProcessor class. This
interface is synchronized whenever the cartridge model changes.

Yes No

ActionEntityPr
oxy.java

Proxy is situated between the NEP and Processor class and manages the
interaction between them. Proxy sets up all classes used by the Processor and
initiates and calls the Processor. Most importantly, the proxy simplifies the work
required by the Processor by:

• Creating all instances of the InputBean and initializes CompoundBeans so they
are available and populated through the processor.

• Performing much of the standard logging, including the entry and exit of the
processor and the contents of the parameters passed in for debugging.

• Extending the JProcessor. This isolates the portion of the Java processor code
that needs to relate directly to the version of the activation, and allows the
processor, its interface, and all its related classes and interfaces to run outside
of the ASAP system and, therefore, to be unit tested

When creating a Java processor from the action processor editor, the resulting
class name is "Proxy" because the proxy gets initiated by the NEP (Proxy is
registered to be called in the activation). When you open that implementation it
opens to the Processor class, where you write your code for editing.

Yes Yes

ConnectionH
andler.java

This file contains the ConnectionHandler class that extends a protocol class and
implements the IConnectionHandler. IConnectionHandler is an instance of the
Connection Handler that is associated with the vendor, technology, and software
load of the action processor. For the Telnet Connection Handler, the basic methods
on the interface can be used to send requests (because it is string-based). For
technologies (for example, SOAP or XML) that provide multiple convenience
methods, the Processor may want to test the type of Connection Handler and pass
it to a more specific Connection Handler to obtain access to the convenience
methods. If you want to expose more explicit methods when writing a Connection
Handler, you can define an interface that extends the IConnectionHandler and
ensure that those methods are available through that interface. The Processor
should always use an interface when interacting with the ConnectionHandler, to
achieve the implementation in more than one way and allow for unit testing. For
more information about unit testing, see "Understanding Unit Testing."

No Yes

BaseActionEn
tityTestCase.j
ava

This file contains the unit test case for the action processor. For more information
about this generated file, see "Understanding Unit Testing."

Yes No

ISystemPara
meters.java

This file contains the interface which extends the IBaseSystemParameters interface.
Those functions within IBaseSystemParameters class are implemented by
SystemParameter class.

Yes No

SystemPara
meters.java

This file contains the the SystemParameter class that implements the respective
functions of IBaseSystemParameters interface such as getWorkOrderId(),
getActionName(), and so on, by extending BaseSystemParameters class.

Yes No

Understanding Generated Code for Compound Parameters
The InputBean returns another bean that represents the compound if the parameter is a
compound parameter with named members,. The returned bean has convenience methods
to get the members within the compound. A compound bean for every defined type of
compound parameter is created. You also get a set of instances of these beans based on the
work order (you get a list of these). If the compound parameter does not have named
members, it provides a vector of the members.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-21

Note:

Specify the compound members whenever possible. Indicating the members
will simplify the coding required and eliminate possible code to mode
synchronization issues.

Multi-instance Compound parameters start at index one (e.g. CMPD[1]).

Bracket type (Index Parameter Identification Tokens) and delimiter (Indexed Parameter
Delimiter) settings are configured on the Project editor Cartridge Locations tab in the
Code Generation area. Design Studio applies these settings to all generated code
within the cartridge. The following examples assume the defaults (square brackets
with a period delimiter).

The following example shows a scalar parameter.

Service Action Parameter Name: SCALAR
Atomic Action Parameter Name: SCALAR
Order Format:
 SCALAR
Usage:
 String myscalar = parms.getMyScalar();

The following example shows a compound parameter with no members specified.

Service Action Parameter Name: CMPD
Atomic Action Parameter Name: CMPD
Order Format:
Entries will have the compound name as a prefix. There may be multiple entries
with that prefix. For example, a compound named "CMPD" may have the following
entries on an order.
 CMPD
 CMPD.X
 CMPD.Y
 CMPD.Z
Usage:
 String mycmpd = parms.getMyCmpd
 String x = parms.getMyCmpd ("X");
 String y = parms.getMyCmpd ("Y");
 String z = parms.getMyCmpd ("Z");

The following example shows a compound parameter with members.

Service Action Parameter Name: CMPDMBR
Atomic Action Parameter Name: CMPDMBR
Order Format:
 CMPDMBR.A
 CMPDMBR.B
 CMPDMBR.C
Usage:
 MyCmdMbrBean mycmpdmbr = parms.getMyCmpdMbr();
 mycmpdmbr.getA();
 mycmpdmbr.getB();
 mycmpdmbr.getC();

The following example shows a multi-instance compound parameter with no members
specified.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-22

Service Action Parameter Name: CMPDMULTI
Atomic Action Parameter Name: CMPDMULTI
Order Format:
Entries will have the compound name as a prefix. There may be multiple entries with
that prefix. For example, a compound named "CMPDMULTI" may have the following entries
on an order.
 CMPDMULTI[1]
 CMPDMULTI[1].X
 CMPDMULTI[1].Y
 CMPDMULTI[1].Z
 CMPDMULTI[2].X
 CMPDMULTI[2].Y
 CMPDMULTI[2].Z
Usage:
 String mycmpdmulti = parms.getMyCmpdMulti ();
 String x1 = parms.getMyCmpdMulti (1, "X");
 String y1 = parms.getMyCmpdMulti (1, "Y");
 String z1 = parms.getMyCmpdMulti (1, "Z");
 String x2 = parms.getMyCmpdMulti (2, "X");
 String y2 parms.getMyCmpdMulti (2, "Y");
 String z2 = parms.getMyCmpdMulti (2,"Z");

The following example shows a multi-instance compound parameter with members.

Service Action Parameter Name: CMPDMULTIMBR
Atomic Action Parameter Name: CMPDMULTIMBR
Order Format:
 CMPDMULTIMBR[1].A
 CMPDMULTIMBR[1].B
 CMPDMULTIMBR[1].C
 CMPDMULTIMBR[2].A
 CMPDMULTIMBR[2].B
 CMPDMULTIMBR[2].C
Usage:
 MyCmpdMultiMbrBean[] mycmpdmultimbr = parms.getMyCmpdMultiMbr();
 for (int i = 0; i <mycmpdmultimbr.length; i++)
 {
 MyCmpdMultiMbrBean bean = mycmpdmultimbr[i];
 bean.getA();
 bean.getB();
 bean.getC();
 }

The following example shows an indexed compound parameter with no members.

Service Action Parameter Name: CMPDIDX[++]
Atomic Action Parameter Name: CMPDIDX
Order Format:
Entries will have the compound name as a prefix. There may be multiple entries with
that prefix. For example, a compound named "CMPDIDX" may have the following entries on
an order.
 CMPDIDX[0]
 CMPDIDX[0].X
 CMPDIDX[0].Y
 CMPDIDX[0].Z
 CMPDIDX[1].X
 CMPDIDX[1].Y
 CMPDIDX[1].Z
Usage:
 String mycmpdidx = parms.getMyCmpdIdx();
 String x = parms.getMyCmpdIdx ("X");

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-23

 String y = parms.getMyCmpdIdx ("Y");
 String z = parms.getMyCmpdIdx ("Z");

Note:

The implementation will be called multiple times, providing one instance of
the compound during each call.

The following example shows a compound parameter with members.

Service Action Parameter Name: CMPDIDXMBR[++]
Atomic Action Parameter Name: CMPDIDXMBR
Order Format:
 CMPDIDXMBR[0].A
 CMPDIDXMBR[0].B
 CMPDIDXMBR[0].C
 CMPDIDXMBR[1].A
 CMPDIDXMBR[1].B
 CMPDIDXMBR[1].C
Usage:
 MyCmpdIdxMbrBean mycmpdidxmbr = parms.getMyCmpdIdxMbr();
 mycmpdidxmbr.getA();
 mycmpdidxmbr.getB();
 mycmpdidxmbr.getC();

Note:

• The implementation will be called multiple times providing one instance
of the compound during each call.

• For multi-instance compounds, member parameters cannot be set as
required because the system cannot determine whether a member is
present or if there are additional entries.

Example: Typical Processor Call Sequence
The proxy:

1. The proxy creates the input, the output, and the exit type classes.

2. The proxy populates the exit type classes and initializes them.

3. The proxy creates the processor that will be called and initializes it.

4. If the logger needs to be used by the processor, the proxy provides this during the
init method call.

5. The proxy invokes the processor by calling the execute method with the input,
output, connection, and exit type.

6. The processor obtains parameters from the InputBean to compose a message or
command to be sent to a device.

7. The processor calls the send request to send that message to the device.

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-24

8. The processor sets the exit type based on the response.

9. The processor sets output parameters based on the response.

The processor may parse the response to obtain additional values for populating the
output parameters.

10. The proxy cleans up the processor.

11. The proxy looks at the exit type that was set and populates it for return to the NEP, and
cleans up the exit type.

12. The proxy extracts all output parameters for return to the NEP and to populate the work
order.

The proxy then cleans up this class and (16) the remaining classes.

Note:

You are only responsible for the items related to the processor (steps 6 through 9);
the proxy handles all other items.

Writing Java Processor Execute Method Logic
The basic development steps to write the logic for the execute method of a Java Processor
class are as follows:

To write Java Processor execute method logic:

1. Extract parameters from InputBean (retrieve information).

2. Use these parameters to build a command.

3. Send a message or command to the switch using the send request in Telnet.

4. Handle the response by setting the user-defined exit type.

See "Configuring Base Exit and User Exit Types " for more information about setting the
user-defined exit type.

5. Using the OutputBean, you have the option to return some parameters upstream to log,
infoparm, and so on.

Occasionally, for Telnet, you may need to build some helper classes, perform data derivation,
and create parsers.

Example: Telnet Provisioning Class Flow
The following list describes the flow for Telnet provisioning classes.

1. Initialize generic data

2. Get the connection reference

3. Get the NE ID

4. Enable the response log

5. Get the work order parameters and build the AsapParameter objects passing the
parameter label and value

Chapter 12
Understanding the Auto-Generated Java Code Stubs

12-25

6. Build the provisioning command with a specific action type and append parameter
objects to the command

7. Convert the command to a string

8. send the command to the switch

9. Obtain the NE response

10. Exit with the appropriate user-defined -> base exit type.

//***** initialize generic data: get connection reference, get ne ID, enable
response log
initialize();
//****** get work order parameters and build AsapParameter objects passing the
param label and value
String imsi = getParam(IMSI);
String bserv = getParam(BSERV);
String msisdn = getParam(MSISDN);
String nbr = getParam(NBR);
AsapParameter imsiParm = new AsapParameter(IMSI, imsi);
AsapParameter bservParm = new AsapParameter(BSERV, bserv);
AsapParameter msisdnParm = new AsapParameter(MSISDN, imsi);
AsapParameter nbrParm = new AsapParameter(NBR, bserv);
//***** Build the provisioning command with a specific action type and append
parameter objects to the command
ProvisioningCommand cmd = new
ProvisioningCommand(SAConstants.CREATE_BASIC_SRV); //***create command for
adding a basic service
cmd.append(imsiParm).append(bservParm).append(msisdnParm).append(nbrParm);
//***** command ready! convert it to string mml and send it to the switch
String strCmd = cmd.toString();
String reply = sendNeRequest(strCmd);
//*****handle response, set user exit type etc
handler.checkResponse(reply); //optional
UserExitType uet = handler.getUserExitType(reply);
setASDLExitType(uet.getUserExitType(), uet.getUserErrorText());

About Writing Java Programs from Scratch and Naming
Conventions

You must extend the com.mslv.activation.jinterpreter.JProcessor class when
writing Java code from scratch. Oracle recommends using the auto-generated code
options. For more information about JProcessor, see ASAP Java Online Reference.

This section provides naming convention recommendations when writing Java
programs from scratch.

Associating an Action Processors to the Java Code
To associate and action processor to the Java code you created:

1. Open the action processor editor and select the Editor tab.

2. From the Type list, select Java Action Processor.

3. In the Class field, enter a class name.

4. In the Method field, enter a method name.

Chapter 12
About Writing Java Programs from Scratch and Naming Conventions

12-26

5. Manually create the Java classes and methods to implement your network connection.

Java Package Naming Convention
The Java package naming convention consists of the constant prefix
com.oracle.cartridge.oss in lowercase, with each of the tokens separated by a period (.)
character. Each of the tokens must be separated by an underscore (_) character. The format
of a Java package is as follows:

com.oracle.cartridge.oss.vendor_technology_softwareload_entity_action_

Where:

• vendor: specifies the vendor name (see "Selecting the Vendor Token").

• technology: specifies the technology (see "Selecting the Technology Token").

• softwareload: specifies the software load (see "Selecting the Software Load Token").
Java class naming conventions exclude all period (.) characters from the software load
token. For example, software load version 5.1 must appear as 51.

• entity: specifies the entity (see "Selecting Entity Tokens").

• action: specifies the action (see "Selecting the Action Tokens").

The following example illustrates the structure of a Java package used for the Alcatel-Lucent
fiber to the user (FTTU) node running software load 7, providing the pay-per-view (PPV)
service, with a buy action:

com.mslv.activation.cartridge.alu.fttu.7.ppv.buy

The convention used in most cartridges is based on the Metasolv name. For example
com.mslv.cartridge.activation.cartridge.

Java Class Naming Convention
A Java class is a single entity that is contained within a Java package. The following list
contains each of the types of cartridge Java classes and their corresponding naming
conventions:

Connection class—Connection.java (for example HLRConnection.java)
Provisioning class—<*>Provisioning.java (for example HLRProvisioning.java)
Library class—<*>Lib.java

Class names should be nouns, in mixed case, with the first letter capitalized and with the first
letter of each internal word capitalized. Try to keep your class names simple and descriptive.
The wildcard token (*) used in the naming convention for provisioning and library classes is
an optional string that can be used to either divide a provisioning or library class that is too
large in size or identify a group of related features that are contained in the provisioning or
library classes.

Java Helper and Utility Class Naming Convention
Java helper and utility class file names consists of a series of tokens that are separated by
the underscore (_) character. Each token must begin with a lowercase letter. The ".jar"
constant always appears at the end of the Java library file name to identify the file as a Java
library file. The maximum allowable length for a Java library file name is dictated by the
operating system.

Chapter 12
About Writing Java Programs from Scratch and Naming Conventions

12-27

The format of Java helper and utility classes is as follows:

vendor_technology_softwareload_entity.jar

Where:

• vendor: specifies the vendor name (see "Selecting the Vendor Token").

• technology: specifies the technology (see "Selecting the Technology Token").

• softwareload: specifies the software load (see "Selecting the Software Load
Token"). Java class naming conventions exclude all period (.) characters from the
software load token. For example, software load version 5.1 must appear as 51.

• entity: specifies the entity (see "Selecting Entity Tokens").

The following example illustrates the structure of a Java library file that contains the
byte code to support VDSL service activation on a Alcatel-Lucent FTTU NE running
software load 7.2:

alu_fttu_72_vdsl.jar

Java Method Naming Convention
Methods should be verbs. Tokens contained in the Java methods names are
concatenated or separated using a combination of the period (.) and underscore (_)
characters. The Java method naming convention consists of two tokens that are
concatenated. The format of a Java method is as follows:

actionentity

Where:

• action: specifies the action (see "Selecting the Action Tokens").

• entity: specifies the entity (see "Selecting Entity Tokens").

The first letter of the action must appear in lowercase and the first letter of all
subsequent tokens must appear in uppercase. The following example illustrates the
structure of a Java method used for the Alcatel-Lucent FTTU NE supporting a pay per
view (PPV) service:

addPpv

Java Variables Naming Convention
Variable names should be short yet meaningful. The choice of a variable name should
be a mnemonic, and designed to indicate the intent of its use. One-character variable
names should be avoided except for temporary "throwaway" variables. Common
names for temporary variables are i, j, k, m, and n for integers; c, d, and e for
characters.

Java Constants Naming Convention
The names of variables declared class constants should be all uppercase with words
separated by underscores (_).

Chapter 12
About Writing Java Programs from Scratch and Naming Conventions

12-28

Understanding Unit Testing
Unit testing in Design Studio does not need to be implemented to complete a cartridge,
although it is highly recommended for these reasons:

• Unit testing contributes to building quality code.

• Unit testing provides repeatable tests for regression.

You can test the processor outside of the ASAP system because the interfaces and
generative classes of the Java processor are all independent of the ASAP system and its
classes (the generated InputBeans and output are not tied to ASAP). To run the processor, a
TestCase is generated once (with a sample test based on information at the time of creation),
after which the developer owns it and can extend it.

The unit test framework initiates all tests in test subfolder. Unit testing is implemented as a
JUnit test. JUnit tests can optionally be run with the JDT Debugger.

Figure 12-2 shows the generated test case and how it relates to the processor, input, and
output files.

Figure 12-2 Generated Test Cases

Chapter 12
Understanding Unit Testing

12-29

The TestCase simulates the proxy for each individual test, and:

• Creates an implementation of the interfaces, either the real implementation or a
stubbed test implementation.

• Generates input and output beans.

• Invokes the processor.

The TestCase is a JUnitTestCase. Each TestCase can contain many tests, and each
test is defined by a no-parameter method beginning with "test".

The generated TestCase has a framework that provides a test. The test runs based on
input files, which find the data and test criteria for a particular test. This framework
enables developers to create simple files to define new tests. This works for any
standard type of test where you pass in data and check the request to ensure it was
sent as expected, and that the returned exit type is the one you expected. Also, this
allows for a simple, standard response to be used inside the test.

Sample test classes are provided for simulating IExit and ILogger. A base output
class provides the methods required for output classes.

Running Unit Test Cases
Run the TestCase class as a JUnit test, or as a Java application. Running as a JUnit
test provides a richer user experience by providing results in the JUnit view. Running
as a Java application allows the TestCase to be run as part of an automated test
framework. Java application test case results appear in the Eclipse IDE in the Console
view.

To run unit test cases:

1. Right click the TestCase class and select Run As.

2. Select JUnit Test or Java Application.

Design Studio displays the results in the JUnit view or Console view, depending on
your selection in step 2. Logging information is sent to the Console View.

Running Unit Tests with the JDT Debugger
To run unit test cases with the JDT debugger:

1. Set breakpoints in your Processor class as desired.

2. Right click the TestCase class and select Run As.

3. Select JUnit Test or Java Application.

The unit test is run and the debugger will break as appropriate, allowing for full
debugger functionality, including variable inspection and code stepping.

Understanding Unit Test Property Files
You use a set of property files to set up a unit test (both are property file and follow the
Java property file format):

• testdata file (for example, TestExample.testdata)

• testinfo file (for example, TestExample.testinfo).

Chapter 12
Understanding Unit Testing

12-30

Note:

The testinfo file is optional. Design Studio uses defaults if it is not present.

Testdata file

The testdata format for naming the input parameters is similar to that within a work order.
However, you must populate the test data with atomic action labels (and not service action
labels). Run the unit test as if the parameters have been previously defaulted.

Apply the defaults that are normally set by the SARM (based on what is configured in the
atomic action) as if they had been applied in the test data (the processor runs after those
defaults have been set). The unit test data should be based on data that has already been
defaulted and based on names relating to the atomic action label (and not the service action
label).

When you fill in the test data for compounds or incoming repeating elements, use square
brackets to indicate the index for a compound as in the following example.

Example Action Processor input property file
NETID=ERIC-SDP_3-6-2-HOST
MSISDN=0701234567
FAF_LIST[1].FAF_N=0701237777
FAF_LIST[1].TSC=O
FAF_LIST[1].RCO=1
FAF_LIST[1].K=400
FAF_LIST[2].FAF_N=07052
FAF_LIST[2].TSC=4
FAF_LIST[2].K=100
FAF_LIST[3].FAF_N=071
FAF_LIST[3].K=500

Testinfo file

You can use this optional file to define the properties for which you are testing. You can also
define what expected request the processor should create, the expected canned response
returned to the processor, the expected exit type and whether it should be tested.

Note:

If you do not define a testinfo file, then by default the test case only tests whether
the exit type is succeed (that is, to confirm that the test data has gone through).

Example Action Processor test info property file
request.check=true
request.value=Test Message
response.value=Test Response
Exit Type values:
SUCCEED
FAIL
RETRY
MAINTENANCE
SOFT_FAIL
DELAYED_FAIL

Chapter 12
Understanding Unit Testing

12-31

STOP
exittype.check=true
exittype.value=SUCCEED

If you wish to have multiple request and response values in your test, you can specify
multiple values in the testinfo file. Add a dot separated numeric suffix to the value
(starting at 1).

If your request or response has multiple lines or special character, follow the standard
Java property guidelines.

Example Action Processor test info property file
request.check=true
request.value.1=Test Message 1
request.value.2=Test Message 2
response.value.1=Test Response 1
response.value.2=Test Response 2
Exit Type values:
SUCCEED
FAIL
RETRY
MAINTENANCE
SOFT_FAIL
DELAYED_FAIL
STOP
exittype.check=true
exittype.value=SUCCEED

Configuring a Unit Test
To configure a unit test:

1. Select File, select New, then select File.

2. Create a file name.testdata.

For example, you might create a file called TestExample.testdata.

Note:

Place this file in a subfolder of the action processor implementation
package named test.

3. Enter the text for the file.

The file format is a Java property file, so each entry specifies the parameter and its
value.

4. Repeat steps 1 and 2 as necessary to create a second file name.testinfo.

For example, you might create a file called TestExample.testinfo.

Understanding Java Libraries in Design Studio
There are several types of Java libraries available in Design Studio.

Chapter 12
Understanding Java Libraries in Design Studio

12-32

Referenced Libraries
Activation libraries are utilized by many cartridges and include the following:

• studio_2_6_0.jar: This library contains the base implementation files extending
JProcessor for auto-generated Java stubs and auto-generated CLI code. For more
information about JProcessor, see the ASAP Java Online Reference.

• asaplibcommon.jar: This library contains the core ASAP packages. For more
information, see the ASAP Java Online Reference.

• JInterp.jar: This library contains the jinterpreter packages, classes, and methods that
you can use to develop Java programs that the JNEP uses to communicate with NEs.
For more information about the jinterpreter packages, see the ASAP Java Online
Reference.

Activation libraries are automatically added to the project when you create an action
processor. They are added to the project classpath to enable the Java development toolkit
access.

Note:

• The studio_2_6_0.jar file is not installed by the ASAP installation. The
studio_2_6_0.jar must be added to the ASAP installation prior to deployment
of a Design Studio-created cartridge. Configure the studio_2_6_0.jar,
asaplibcommon.jar, and JInterp.jar files on the server. See the discussion of
installing a cartridge using Design Studio in ASAP Installation Guide.

• When you are packaging a cartridge, exclude the studio_2_6_0.jar,
asaplibcommon.jar, and JInterp.jar files. These JAR files are installed on the
Activation server and are shared by all cartridges If you include these JAR files,
Design Studio generates an error.

Other Libraries
Add other libraries to the lib folder under the project. Update the Java project properties to
set the Java buildpath to make use of those libraries. See Eclipse help for adding folder or
packages to the Java buildpath.

In the Project editor Packaging tab, select Libraries to display any jar files contained in the
lib folder.

Programming Best Practices
The following sections include programming best practices applicable for writing Java
implementations.

Chapter 12
Programming Best Practices

12-33

Using Default Values
Avoid hard coding default values in the Java methods. If there is a need to set a
default value for one or more parameter the atomic action default configuration should
be used (see tbl_asdl_parm).

Even if a default value has been configured in the cartridge (tbl_asdl_parm) for a
particular parameter there is no guarantee that a default will be assigned in the
customer specific service model (for example common service model), therefore the
Java code cannot assume that the parameter will have a value and should therefore
verify that it is not NULL before attempting to use it.

Enabling Value and Range Checking
The Java code must verify that parameters have a non-null value and log an error to
the diagnostic file if such a parameter is missing (even if it is expected that it will be
configured as a "required" parameter within the SARM) that are needed by an NE to
ensure successful execution of the provisioning command. This checking is often used
in common service modeling scenarios where it is not possible to perform error
checking at the atomic action level. For example, a parameter may be required by one
vendor, technology and software load and not another.

Perform value and range checking of atomic action parameters where possible within
the Java code when an NE does not respond with a meaningful error message
indicating which parameter has an invalid range/value.

If an NE expects a variable to be padded in some way the cartridge should perform the
padding.

Logging Diagnostic Messages
Ensure that the ASAP core code (as well as cartridge code) does not write to stdout
and stderr unless absolutely necessary. Instead, diagnostic messages should be
written to the ASAP diagnostic files when required. For more information, see the Java
diag method in the Diagnosis class in the ASAP Java Online Reference.

When ASAP is started, stderr and stdout messages are explicitly redirected to a file
called ASAP.Console. For more information about the start_control_sys script that is
called by the start_asap_sys script, see ASAP System Administrator's Guide. Writing
to stdout and stderr can result in the ASAP.Console file dramatically increasing in
size.

When logging optional parameters to the diagnostic files be sure to check if they have
actually been defined first (including the MCLI parameter which is optional if
ID_ROUTING is being used).

Do not log passwords of any kind (NE login passwords, database connection
passwords etc.) to the ASAP diagnostic files.

Remove all internal debugging related diagnostic messages from the cartridge code
when unit testing by the cartridge developer is complete.

Three diagnostic logging levels can be used within the cartridges. The developer can
use KERN that should provide diagnostic messages more technical and debugging
related. Use LOW for diagnostic message that are more cartridge related to show

Chapter 12
Programming Best Practices

12-34

important information during development phase and test phase. Use SANE for diagnostic
messages that are more informational. For more information about diagnostic levels, see
ASAP Administrator's Guide.

Log messages which are stored in SARM database table tbl_srq_log to provide cartridge
related information about work orders. For the telnet base cartridge, ASAP has already
implemented that functionality, but for the CORBA, SOAP and another protocols you need to
implement log messages, providing information about which method was run, and provide all
atomic action parameters implemented in the method, log NE response, and error messages.

TCP/IP Message Parsing Options
When using the TCP/IP protocol you can take the following two approaches when parsing
responses from the NE:

• parsing the raw response

• using the virtual screen in conjunction with ASAP core method calls.

Parsing the raw response means that more cartridge code is required, however it results in
improved performance. In domains such as wireless where high volumes of work orders are
expected, consider parsing the raw response from the NE.

The virtual screen mechanism extracts only the meaningful text strings from the responses
and places them in the correct position on a two dimensional virtual screen where responses
may be extracted using Cartesian coordinates. This approach results in less cartridge code
however it decreases the performance of the cartridge. Use the virtual screen approach in
low volume scenarios where ease of implementation is preferred.

Use of Journal Functionality
Some switches provide a journal ID as a response when a command is processed. If a
subsequent error occurs on a later provisioning activity (either to the same switch or a
different one) and rollback is therefore initiated, the journal ID can be used to undo
commands that have previously been processed. This way, the cartridge does not have to
keep track of exactly what commands were performed or query the switch in anticipation of
rollback being performed (for example, to get the features on a line before a delete is
performed so that they could be reapplied to the line at a later time). The journal IDs do
however need to be remembered as each command is processed until the work order is
completed.

Cartridges must support journaling capability where provided by the NE and should support
use of this approach for rollback purposes.

Chapter 12
Programming Best Practices

12-35

13
Creating Java User Exit Types

This chapter describes how to create Java and State Table implementations for network
element (NE) connections and atomic action scripts that implement MML commands for
Oracle Communications ASAP.

Developing Return Parameters in Java Action Processors
The following sections provide information about the Java action processor:

• About Return Parameters in Java Action Processors

• Configuring Java Methods for Return Parameters to SARM

• Return Parameter Types

• Use Cases for Returning Parameters

• Configuring Response Logging and Network Element History Capture

• User Defined Exit Types

About Return Parameters in Java Action Processors
Parameters are returned individually as a name value pair using the following API calls:

• returnCSDLParam

• returnRollbackParam

• returnInfoParam

• returnGlobalParam

Parameters can also be returned in a properties list which can contain multiple name value
pairs using the following API calls:

• returnCompoundCSDLParam

• returnCompoundRollbackParam

• returnCompoundInfoParam

• returnCompoundGlobalParam

This API is available the Java JProcessor class described in the ASAP Java Online
Reference.

Configuring Java Methods for Return Parameters to SARM
For Java methods that perform querying, depending on the value of the atomic action
parameter RET_PARM_TYPE responses must be passed back to the SARM as either
service action parameters, work order parameters, information parameters or some
combination of these as follows:

• C - service action parameters

13-1

• W - work order parameters

• I - information parameters

• IC - information parameters and service action parameters

• IW - information parameters and WO parameters

If a default value is not provided for the RET_PARM_TYPE parameter or if it is left out
of the atomic action parameter list then no parameters is returned from the query. The
parameter names for service action and work order parameters must not conflict with
the parameter names that come in on the work order therefore parameters of type "C"
and "W" must be prefixed with the token "OLD_". Information parameters do not
require this prefix.

Query responses should be parsed where possible rather than passing raw responses
upstream including responses that are organized into columns. In general the format
for the labels would be feature tag_column header = value. For example a query for
feature information that results in the following response:

NAME PROV ACT NPI C-NUMBER
CFU ...CALL FWD Y A I 6742727

Should return the following:

CFU_PROV = Y
CFU_ACT = A
CFU_NPI = I
CFU_C-NUMBER = 6742727

If a column does not have a value then no parameter needs to be defined for that item.

Data extracted from a switch printout (for example, a query) must be passed back to
the SARM as NE history for retrieval by clients such as OCA. For TCP/IP telnet the
startResponseLog and returnResponse Java methods perform this automatically.
For non-TCP/IP telnet protocols such as CORBA, the log method must be explicitly
invoked to capture the name value pairs.

If an error occurs on the NE, an error text variable and an error code variable (if an
error code is present) must be created and passed to the SARM as service action
parameters. The value passed back for the exit text should be a meaningful alphabetic
string created from the NE response. These variables are often used in customer
defined atomic action spawning logic. The naming convention for the error text label
and value is:

technology_action_entity_EXIT_TEXT = generic error

For example,

AUC_ADD_SUBS_EXIT_TEXT = SUBSCRIBER_ALREADY_EXISTS

The naming convention for the error code label and value is:

technology_action_entity_EXIT_CODE = <error code>

For example,

AUC_ADD_SUBS_EXIT_CODE = 00016

Chapter 13
Developing Return Parameters in Java Action Processors

13-2

For all atomic actions that ran successfully on the NE, the error text and error code passed
back to the SARM should be set to the value "SUCCEED" and "–1" respectively. For
example:

AUC_ADD_SUBS_EXIT_TEXT = SUCCEED
AUC_ADD_SUBS_EXIT_CODE = -1

If it is not possible to determine the context for which the error occurred (for example for
some NEs an error code and/or error text is not provided or cannot be interpreted) than the
exit text and exit code should be set as appropriately as possible to reflect the error even if
they may not be as visually meaningful.

AUC_ADD_SUBS_EXIT_TEXT = UNDEFINED
AUC_ADD_SUBS_EXIT_CODE = exception number

If an error code is not provided by the NE leave it without a value.

The presence of the generic error text will ensure that the cartridge implementation methods
are compatible with a common service model. The presence of the technology token in the
naming convention prevents collisions from occurring when similar atomic actions are being
run on multiple NEs from a single service action (for example a service action to create a new
subscriber may mean that the subscriber needs to be created on the FNR, AUC and HLR).

In common service modeling scenarios the error text code needs to follow the format
described above; however, currently the team is using the actual user-defined exit type label
(stored in the config file) as the label for the service action parameter. This includes the
vendor, technology and software load which means that spawning logic implemented by
customers would need to be implemented as follows:

A_DO_SOMETHING (if ERIC-AUC_3-1_ADD_SUBS_EXIT_TEXT = SUBSCRIBER_ALREADY_EXISTS ||

 if NOK-AUC_3-1_ADD_SUBS_EXIT_TEXT = SUBSCRIBER ALREADY EXIST ||

 if NT-AUC_7-2_ADD_SUBS_EXIT_TEXT = SUBSCRIBER ALREADY EXIST)

The future guideline will likely be to provide both a vendor specific code and a generic code.
There could be hundreds or thousands of codes coming back from a vendor and it may be
difficult to map them uniquely across multiple vendors. The generic code is the cartridge
interpretation and the vendor code gives the service modeler access to the precise code if
desired.

When a hard failure is detected by the cartridge (this means a call will need to be made to
return the core exit type), prior to exiting from the cartridge code the following two information
parameters must be created:

USER_EXIT_TYPE = <the user defined exit type tag>
USER_EXIT_DESC = <the user defined exit type description - human readable description
of the error>

The description should be retrieved from tbl_user_err along with the base and core exit
types. If the description is not available the actual error message from the switch should be
provided.

An enhancement has been opened on the user-defined exit type mechanism to ensure that
this is handled automatically by the core in the future. The core will automatically generate
these labels, populate them with the user type and description and pass them back to the
SARM as information parameters.

Chapter 13
Developing Return Parameters in Java Action Processors

13-3

When a hard failure is detected on a rollback atomic action (this means a call will need
to be made to return the core exit type), prior to exiting from the cartridge code the
following two information parameters must be created:

ROLLBACK_USER_EXIT_TYPE = <the user defined exit type tag>
ROLLBACK_USER_EXIT_DESC = <the user defined exit type description - human
readable description of the error>

If the method is set to soft fail when a certain error is received the error code value
should still be set to the generic error (because additional atomic actions may need to
be spawned based on the error that has occurred).

Return Parameter Types
The following sections describes return parameter types and usage.

Note:

Any return parameter cannot exceed 255 characters. If it does, the return
parameter value will be empty, and the information will not be returned.

To avoid this situation, split large return values into multiple return messages
when you implement your Java or State Table code.

Global Returned Parameter
Global parameters provide contextual information that different service actions can
use. These global parameters are valid for the entire work order scope. Local
parameters have precedence over Global parameters if the local parameters are
defined.

Global and local work order parameters can be defined when you create a work order
Activation Test Case, or an NE Template using Design Studio for ASAP. For more
information, see Design Studio for ASAP.

Service Action Returned Parameter
Parameters defined in a service action overrides global parameters and there is no
limit to the number of parameters you can associate with a service action.

Service action parameters are returned to give context between different atomic
actions, and are valid in the service action scope. Returned service action parameters
overwrites the previous parameter of the same type. Any subsequent atomic actions
associated to the service action use the returned value.

Atomic Action Returned Parameter
Atomic action parameters are not returned explicitly; however, service action
parameters are returned which may be implicitly be re-mapped to subsequent future
forward atomic actions.

Chapter 13
Developing Return Parameters in Java Action Processors

13-4

Returned Information for Upstream Purposes
SRP can only retrieve these parameters. Used usually for upstream information purposes.
Error code and diagnostic information can be set in this type of return parameter. These
parameters are not used parameter data for subsequent service model interactions at the
service action or atomic action level.

Information parameters are returned for the upstream system only for future retrieval. These
parameters are not available to any future forward or rollback atomic actions within the
current or other service actions.

Indexed Rollback Returned Parameter
Rollback parameters may be returned as indexed scalar or compound parameters. However,
each separate instance must be returned as a name-value pair with the name corresponding
to the correct index. For example, name=BASE[1] = AAA, BASE[2] = BBB. For a compound
each element within the structure and its instance number must be explicitly returned.

Use Cases for Returning Parameters
The following section will outline some of the current best practice guidelines used in the field
to address particular use cases implemented in existing cartridges.

Query for Rollback Information
The convention is to return service action parameters with the prefix ?OLD_?, which will then
be the service action service parameters used for any rollback atomic actions.

There may be uses where it is desired to simply return the service action parameter with the
same name as in the forward scenario if this simplifies the service model from having to re-
map the service action to atomic action parameter in different context‘s.

Any parameter whether it is service action or ROLLBACK can be used in a Rollback atomic
action; however CDSL parameters are persisted in the service action scope.

Error and Diagnostic Information
Generally error parameters are returned as Information parameters to the SRQ to be
retrieved later by an upstream system. This error information can be returned as a series of
one or more information parameters, or it can be custom encoded into a single value to be
associated with one parameter name. For example, Name = ERRORINFO, Value = ?
ERRORCODE | ERRORDESCRIPTION | MODULE?. This custom encoding needs to agree
with the upstream system which will decode the single value.

If an error value is required as part of the evaluation expression in the service model for
subsequent service logic, then the error value should be passed back to SARM as service
action parameters and named appropriately in the parameter name.

Note that there are no specific Error parameters, it depends its uses.

Configuring Response Logging and Network Element History Capture
For stream-based protocols supported by core ASAP (for example TCP/IP Telnet) the Java
startResponseLog and returnResponse methods should be called whether the virtual screen

Chapter 13
Developing Return Parameters in Java Action Processors

13-5

is being employed by the cartridge or not. This results in switch responses being
stored in tbl_srq_log where they can be retrieved by upstream systems or viewed
through OCA and hence explicit calls to the Java log method can be avoided.

Response logging can be activated/deactivated by setting the NE_CMD_LOG_ON
option (which can be configured on a per NEP basis) in ASAP.cfg.

For stream-based protocols supported by core ASAP (for example TCP/IP Telnet),
whenever confidential data must be sent to an NE the data should be prevented from
being written into tbl_srq_log. There are two sets of methods that can be used as
wrappers around the ?send? method calls to control core ASAP behavior in this
manner:

• The disableCommandLog and enableCommandLog method calls result in no data
being written into tbl_srq_log and should therefore only be employed if absolutely
necessary (this impairs the ability to debug).

• The maskCommandLog and unMaskCommandLog result in asterisks being
written to tbl_srq_log instead of the raw characters and is the preferred approach
when secure data is being managed.

RULE: for non-stream based protocols such as CORBA it is not possible to use the
core ASAP response logging functionality and therefore explicit calls to the log method
(JProcessor class) must be made within the cartridge to capture NE history into
tbl_srq_log. Ensure that for such protocols explicit calls are made to the log method to
record the API call that is being made as well as the return code and/or return text
received back from the NE if they are available. For performance reasons at this time
do not place calls to log each parameter used in the API call (because these are
available through OCA by querying on the work order and also through the
diagnostics). In the case where XML documents are being constructed within the
cartridge and transmitted using non-stream based protocols the entire XML document
should be recorded using a call to the log method.

User Defined Exit Types
Where possible, user-defined exit types will be provided in the cartridge.

In the absence of a user-defined exit type configuration (for example the customer has
removed those provided by the cartridge) the cartridge default should be to fail
responses that lie outside the normal success detection criteria.

The mapping between a message received from the switch and its corresponding
user-defined exit type (user_type) should be kept within a cartridge specific
configuration file with the following naming convention:

<vendor>_<technology>_<swld>_UserExitTypes.xml

The mapping between the user-defined exit type and its corresponding base exit type
(base_type) is contained in tbl_user_err.

Improvements to the user-defined exit type lookup mechanism in ASAP core are
pending.

The following data columns in tbl_user_err must be populated:

• NE_VENDOR

• TECH_TYPE

• SFTWR_LOAD

Chapter 13
Developing Return Parameters in Java Action Processors

13-6

• USER_TYPE

• BASE_TYPE

• DESCRIPTION

• SEARCH_PATTERN

The naming convention of user_type, <vendor>_<technology>_<swld>_<error tag>, is no
longer required. user_type is for <error_tag> only.

tbl_user_err currently has a 20-character limit and therefore some truncation of the
user_type may be required for it to be successfully loaded into the table. An issue is opened
on core to increase the size of this table.

The data contained in tbl_user_err must be loaded into a RAM cache upon startup of the
NEP.

When regular expressions (regex) are used to perform pattern searches on responses from
NE, the following situations should be considered when defining a search pattern (to avoid
exception and stack overflow). If the NE response is greater than 1400 characters, then
suggest to use the search pattern as follow:

((?s).)*<search string>((?s).)*

Use the fail exit type when the NE indicates that an order cannot be processed due to
incorrect parameter values.

In the case where numerous (for example hundreds) of responses/error codes are described
in the NE specification, a subset of the most commonly occurring responses will be
supported.

Apply the following guidelines when assigning exit types to error messages:

• Hard Fail—used for non-recoverable errors that cause the immediate failure of a work
order. For example, when an invalid provisioning parameter has been used.

• Soft Fail—may be used when for minor errors that should not stop the provisioning of the
order for example assigning a feature that has already been added to the subscriber line.

• Retry—used when an activation request fails due to reasons other than data errors. For
example, if the NE is temporarily unavailable or too busy to handle the provisioning
request.

• Fail—used when the NE indicates that an order cannot be processed due to incorrect
parameter values

User defined exit types are most often configured without associated atomic actions (see
tbl_user_err), however on occasion when the same Java method is associated with two
different atomic actions it may be necessary to trigger different exit types. This is most often
done as project configuration work and is not typically part of the cartridge.

The following is the naming convention for user-defined exit type:

<Severity Level>_<Error Label>

The following is the mapping between severity level and base type

Chapter 13
Developing Return Parameters in Java Action Processors

13-7

Table 13-1 Severity Level Mapping to Base Type

Severity Level Base Type

SUCCEED (S) SUCCEED

CRITICAL (C) FAIL

WARNING (W) SOFT_FAIL

RETRY (R) RETRY_DIS

The following are the common labels used in user-defined exit types:

Table 13-2 Common User-Defined Exit Type Labels

User Exit Type Base Type Search Pattern Description

S_SUCCEED SUCCEED TBD Succeed.

C_FAIL FAIL TBD Fail.

C_INVALID-DATA-TYPE FAIL TBD Data is specified in wrong data type.

C_DATA-OUT-OF-RANGE FAIL TBD Data value is out of range.

C_INVALID-DATA-LNGTH FAIL TBD The length of the given data exceeds the
limit.

C_CMD-SYNTAX-ERR FAIL TBD Command syntax error.

C_MISSING-PARAM FAIL TBD Missing parameter in command (MML).

C_MISSING-DATA FAIL TBD Expected data is missing.

C_SRV-NOT-IMPLMNT FAIL TBD Service is not yet implemented.

C_FEAT-NOT-IMPLMNT FAIL TBD Feature is not yet implemented.

C_UNKNOWN-ERR FAIL TBD Unknown response from the NE.

C_MATCH-NOT-FND FAIL TBD No matching exit type is found.

S_DATA-NOT-FND SUCCEED TBD No data/object is found in query.

C_DATA-NOT-FND FAIL TBD No data/object is found in query.

W_DATA-NOT-FND SOFT_FAIL TBD No data/object is found in query.

S_DATA-EXISTS SUCCEED TBD Data/object already exists.

C_DATA-EXISTS FAIL TBD Data/object already exists.

W_DATA-EXISTS SOFT_FAIL TBD Data/object already exists.

S_WARNING SUCCEED TBD Warning Message.

W_WARNING SOFT_FAIL TBD Warning Message.

C_TIMEOUT FAIL TBD Time out.

R_BUSY RETRY_DI
S

TBD Network is busy.

R_CONNECTION-LOST RETRY_DI
S

((?s).)*Connection to
the NE lost((?s).)*

Connection to the NE is lost. You must define
this user exit type in your cartridge.

R_BROKEN-PIPE RETRY_DI
S

((?s).)*Broken
pipe((?s).)*

Broken Pipe. Connection to the NE is lost.
You must define this user exit type in your
cartridge.

Chapter 13
Developing Return Parameters in Java Action Processors

13-8

Table 13-2 (Cont.) Common User-Defined Exit Type Labels

User Exit Type Base Type Search Pattern Description

C_PROVCART-EXCEPTION FAIL ((?
s).)*ProvCartridgeEx
ception((?s).)*

Provisioning Cartridge Exception. You must
define this user exit type in your cartridge.

CL_EXCEPTION FAIL ((?s).)*Exception((?
s).)*

General Exception. You must define this user
exit type in your cartridge.

Chapter 13
Developing Return Parameters in Java Action Processors

13-9

14
Documenting ASAP Cartridges

This chapter describes how to use Oracle Communications Service Catalog and Design -
Design Studio to document Oracle Communications ASAP cartridges.

About Design Studio Cartridge Documentation
Design Studio provides a cartridge guide generation feature that simplifies the documentation
process. The feature becomes available whenever you create a network cartridge project.
Design Studio provides a template for the guide, and generates most of the cartridge
documentation with information added to entities modeled in the project and the information
entered in various editors during development process. An HTML version of the cartridge
documentation can be found in the doc/guide folder.

The following list describes the components required to ensure that the cartridge contains all
necessary information:

• Make sure all description fields for various entities, default values for parameters, and
data restrictions are completed.

• The Document Command Overview tab in Action Processor editor should describe the
MML command string that ASAP sends to the network element (NE). Whenever possible
(for example, with the TCP/IP NE interfaces) document the logic of the conditional
building of the MML command as pseudo-code, explaining the conventions/syntax used.
For example:

Router# configure terminal
if(INTERFACE_TYPE="optical"){
Router(config)# controller SONET {SLOT}/[MODULE]/{PORT}
Router(config-controller)# au-4 {AU4_NUMBER} tug-3 {TUG3_Number}
}else ………

When this is not possible (for example, in the case of CORBA or web service NE
interfaces), document the API calls and parameters and if the case provide the request
XML (web services). For example:

This is a sample of SOAP Activate service request:
<?xml version='1.0' encoding='UTF-8'?> <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <SOAP-ENV:Body>
<ns1:submitSync xmlns:ns1="urn:ProvisioningRequestServer" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <request
xmlns:ns2="java:provision.services.web.rpc.ejb" xsi:type="ns2:ProvisionRequest">
<body xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="ns3:Array"
ns3:arrayType="ns2:ProvisionReqEntity[1]"> <
xmlns:ns5="http://schemas.xmlsoap.org/soap/encoding/" </header>
</request> ……………….
………………………………….etc
</SOAP-ENV: Envelope>

• Document the output parameters, returned by the cartridge, under Action Processor
Output tab. Provide the label and the value format for returned data as Service Action or
INFO parameters. Such parameters are retrieved by the upstream system or can be used

14-1

in the service model for conditional executions of the next mapped atomic actions.
Make sure that returned labels are unique and easy to be identified. It is a good
practice to use as prefix the atomic action name. For example:

Return as Service Action parameter:
A_NT-DMS100_SN06_ADD_LINE_RETURNCODE=<user defined exit type>
Return as info parameter:
A_NT-DMS100_SN06_ADD_LINE_RETURNINFO=<NE error code>:<NE error description>

• Enter information under Development Notes tab. Describe the business logic,
triggered by the atomic action execution, as implemented in the Java action
processor class. For example:

Business Logic Flow:
- Get atomic action parameters from the work order
- Build the User object and set the content (parameters)
- Check if the system is in loopback or not
- If loopback, print the log the API call and parameters
- If not loopback send request to the NE by calling addSubscriber
- Set atomic action exit type by using user defined exit types
- Return out parameters (Service Action and INFO)

Chapter 14
About Design Studio Cartridge Documentation

14-2

15
Work Order Processing and Sample Work
Orders

This chapter describes how to create sample work orders for Oracle Communications ASAP
cartridges.

Work Order Processing Overview
At a high level, the process of configuring the interaction between provisioning and activation
includes the following steps.

1. Familiarize yourself with the order data definition that is associated with an automated
task in the predefined provisioning model (the ASAP cartridge). In this case, refer to the
Provisioning system's order schema.

2. If you are using an XML editor like Design Studio to view the schema, you can generate
sample XML order data (see "About JSRP Sample OSS/J Work Orders").

3. Based on the automated task in the provisioning system, determine the service actions
and atomic actions that are required to activate the service on the network elements
(NEs). Table 15-1 shows the C-ADD_LINE mappings table and displays a sample service
action with associated atomic actions.

4. Review the Activation schema ServiceModel.xsd file to review the components of a
service model. For more information, see "About Cartridge XML Schemas."

5. To handle the order data from the Provisioning system, define one or more atomic actions
and associated parameters of XML type (see "XML Parameters") so that the upstream
order data is available to the network implementation (provisioning method) at run time.
For an example of an atomic action parameter configuration, see Table 15-2 and
Table 15-3.

6. You can define additional atomic action parameter labels of XPath type (see "XPath
Parameters") using an XPath expression to control the spawning of ASDLs based on
data of the XML document, provided that the evaluation of XPath expression resulted in a
scalar value (see "About Atomic Action Spawning Logic"). You can also define atomic
action parameter labels of XPath type to pass information of the XML so that the system
integrators at the network element processor (NEP) level do not have to manipulate the
XML document. Regardless of whether the you define atomic action parameter labels of
XPath type, system integrators can retrieve information of the XML at the NEP level.

If you want to directly manipulate the XML at the NEP level, you can retrieve the raw XML
as a Document Object Model (DOM) object through Java-enabled NEP's public Java
APIs. Refer to the ASAP Online Reference.

You can use XPath technology to retrieve certain information of the XML document and
then marshal the information to activate the NE.

7. Save the changes made to the service actions and atomic actions and then package the
service model so that it can be deployed to the Activation system later through the SADT
command line interface.

15-1

General Work Order Processing
A work order that has been submitted for provisioning is processed as follows:

1. A work order enters the service request processor (SRP) or Java SRP (JSRP)
server, where it is initialized. Information such as the due date, order number, and
priority of the work order is fed into ASAP.

2. The SRP converts work order information such as universal service order codes
(USOCs) and service offerings (SOFFs) into service requests appropriate for the
Service Activation Request Manager (SARM). During this process, the SRP
translates work order components to their corresponding Common Service
Description Layer (CSDL) commands and parameters that are sent to the SARM.

3. After the work order enters the SARM, CSDL commands are mapped into a set of
corresponding Atomic Service Description Layer (ASDL) commands.

4. ASDL commands and parameters are translated to switch-specific commands for
execution on the network element (NE).

5. ASDL commands with their corresponding parameters are directed to the
appropriate switch (network) elements.

6. Execution on the NE results in various responses that are communicated back to
the SARM.

OSS/J or Web Service Work Order Processing with XML or XPath
Parameters

ASAP has the ability for structured XML order data to be passed from an upstream
system through the Activation system and to be flowed back to Provisioning or another
upstream system. Using this mechanism, the upstream system can include structured
XML data on an Activation order. The process is as follows:

1. The user enters multi-instance data in the Provisioning application or using the
XML API as part of a process flow.

2. The upstream system sends some or all of the order data. The upstream system
performs the following actions:

a. Creates an OSS/J XML or web service order request containing the order data
information. Instead of marshalling the multi-instance order data into name/
value pairs, the multi-instance XML order data is included as a parameter of
the provisioning work order. See "Sample OSS/J Work Order with Conditional
Logic Using XML Parameters" and "Sample OSS/J Work Order with
Conditional Logic using XPath Parameters" for a sample activation work order
with multi-instance XML order data.

b. Submits the OSS/J order request to the JSRP of the Activation system for
provisioning.

3. When the incoming order request comes into the JSRP, the JSRP determines
whether XML data is present as part of the request. The JSRP sends a commit
acknowledgement to the Provisioning system if the work order is accepted in the
Activation system.

Chapter 15
Work Order Processing Overview

15-2

Note:

If a work order already exists in the Activation system with the same work order
ID, the new work order is rejected.

Any work order data that exceeds allowed data sizes will cause the work order
to be rejected.

4. The JSRP saves the XML order data to the SARM database and updates the order
request with a reference ID that is returned by the database.

5. The SARM periodically picks up work orders and starts provisioning the work order.

6. When the work order is provisioned, the SARM loads the XML data from the database
table by using the reference ID. The work order can contain the following types of XML
parameters:

• XML – If passing complex structured data downstream.

• XPath – The SARM runs an XPath expression against the XML data in the following
cases:

– An XPath parameter is included in the CSDL spawning logic to determine
whether an ASDL should be spawned or not.

– An XPath parameter is used to spawn multiple instances of the same ASDLs
depending on how many instances of XML elements are present in the work
order.

If an XPath parameter is used as part of spawning logic, the evaluation of the XPath
expression must result in a scalar value. The XPath parameter can also be used to
conditionally run ASDLs multiple times depending on how many instances of XML
elements present in the XML document. See "Sample OSS/J Work Order with
Conditional Logic using XPath Parameters."

7. The SARM examines each ASDL and evaluates its corresponding spawning expression
based on the work order parameters and CSDL parameters. This examination
encompasses the data within the multi-instance XML order data from the Provisioning
system by referring to the CSDL label of an XPath type parameter. In the case of an
ASDL, if the spawning expression is evaluated to be true, the ASDL is scheduled for
provisioning with its mapped ASDL parameters. For indexed ASDL parameters, the
ASDL may be provisioned multiple times for multi-instance order data (see "Indexed
Parameters" for more information). If the ASDL spawning expression evaluates to false,
the ASDL is omitted from provisioning. See "About Atomic Action Spawning Logic."

Spawning can fail under the following circumstances:

• The XML parameter that the XPath evaluates on is missing from the work order

• The XML document that the XPath evaluates on is not well structured

• The work order contains an invalid XPath expression

• The evaluation of XPath expression results fails

• The evaluation of an XPath expression results in a non-scalar value

8. The SARM provisions the ASDL to the NEP.

9. The NEP sends all ASDL parameters to the Java-enabled NEP.

Chapter 15
Work Order Processing Overview

15-3

10. If the ASDL contains an XML parameter, the Java-enabled NEP loads the XML
data from the SARM database table and makes the raw XML available as the
value of the XML parameter.

11. If the ASDL contains an XPath parameter, the Java-enabled NEP evaluates the
associated XPath expression when the value of the XPath parameter is requested.

For more information on the XML and XPath parameter types, refer to the
ServiceModel schema reference material, accessible through the ASAP Online
Reference, "XML Parameters," and "XPath Parameters."

12. After the MML command is sent to the NE, custom provisioning code may
optionally update the XML data with the NE's response by calling the Java-
enabled NEP API (for example, returnXMLCSDLParm(name, value)) so that
subsequent ASDLs may make use of this information. For more information, refer
to the ASAP Online Reference.

13. If there is an update to the XML parameter, the Java-enabled NEP saves the
modified XML data to a SARM database table and updates the parameter value
with a new reference ID before returning the exit status of ASDL along with return
parameters. These parameters include updated global, CSDL, and information
parameters that are returned to the NEP (see "Return Parameter Types" for more
information).

14. The NEP sends the ASDL's exit value and all returned parameter values for each
returned parameter (see "Configuring Base Exit and User Exit Types ").

15. The SARM continues to provision the next ASDL until the work order completes
successfully or fails.

16. After the work order is finished provisioning, SARM publishes the work order event
to various SRP servers (such as the JSRP) to indicate whether the work order has
completed.

17. Upon receiving the work order event from the SARM server, the JSRP server
publishes appropriate events (such as orderCompleteEvent, orderFailEvent) so
that the automated task in the Provisioning system can update the state of the task
and transition to the next task in the process flow (see "Configuring Service Action
Fail and Complete Events").

About Testing Cartridge Elements with Sample Work Orders
Developer unit testing should occur as the cartridge is created so that all service
actions, atomic actions, and code are fully tested. When unit testing is complete, run
all of the sample work orders that have been created against the cartridge to ensure
that the desired outcome is achieved.

There are two ways to test a cartridge: using the SRP Emulator or the JSRP. Both of
these components are available with the ASAP installation.

About SRP Emulator Sample Work Orders
The SRP Emulator is an ASAP application server that fully emulates the complete
behavior of any SRP application. It is used to create and transmit work orders to the
SARM generally in the development and service modeling phases of project
implementation. The SRP Emulator has no external system interface. Instead of
externally generated work orders, the SRP Emulator employs user-defined test suites
of work order definitions created in the SRP Emulator database for execution by the

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-4

emulator. Orders in such test suites are created in Service Action format together with the
appropriate parameters.

The file format is described using the following symbols and is detailed below.

WO <WO_ID> [WO Description] [ORG_UNIT <WorkGroup>] [ORIGIN <Originator>] [SRP_STAT
<SRP Status>] [PRIORITY <Priority>] [SRQ_TYPE <Service Request Type>] [USERID
<Security Userid on WO>] [PASSWORD <Security Password on WO>] [ASDL_TIMEOUT <atomic
action Timeout Value>] [PARENT_WO <Parent WO (Related Order)>] [WO_TIMEOUT <WO
Timeout Value>] [ASDL_RETRY_NUM <Number of atomic action Retries on WO>]
[ASDL_RETRY_INT <Interval between atomic action Retries>] [WO_RBACK <Rollback WO upon
Failure>] [ASDL_DELAY_FAIL <Treat Failures as Delayed Failures>] [DELAY_THRESHOLD
<Delayed Failure Threshold>] [BATCH_GROUP <Batch group to which order belongs>]

 [WO_PARM <ParmLbl> <ParmVlu>]... [WO_PARM <ParmLbl> <ParmVlu>]

 [BATCH_WO_PARM <BatchNum> <ParmLbl> <ParmVlu>]... [BATCH_WO_PARM <BatchNum>
<ParmLbl> <ParmVlu>]

 [[Service Action <Service Action Command>] [PARM <ParmLbl> <ParmVlu>]...
[PARM <ParmLbl> <ParmVlu>] [BATCH_PARM <BatchNum> <ParmLbl> <ParmVlu>]...
[BATCH_PARM <BatchNum> <ParmLbl> <ParmVlu>]]... [[Service Action <Service Action
Command>] [PARM <ParmLbl> <ParmVlu>]... [PARM <ParmLbl> <ParmVlu>]
[BATCH_PARM <ParmLbl> <ParmVlu>]... [BATCH_PARM <ParmLbl> <ParmVlu>]][SUITE
<Suite Name> [Suite description] [[WO_ID <WO_ID> [WO Delay] [WO Operation] [WO
Due Date Offset] [Parent WO]
 [WO Batch Group]]... [[WO_ID <WO_ID> [WO Delay] [WO
Operation] [WO Due Date Offset] [Parent WO]
 [WO Batch Group]]]
\

where:

• <>: indicates a mandatory parameter

• []: indicated an optional parameter

• ...: indicates multiple occurrences of a parameter

SRP Emulator sample orders are created under a project test folder (Package Explorer view).
As the tokens from the test file are positional parsed during loading, a very strict format is
imposed (assuming space separation between tokens). To avoid mistakes, it is easier to build
a sample test file from an old template, replacing the tokens and values with the new ones.

For more information about running a work order through the SRP Emulator, see ASAP
Installation Guide.

About JSRP Sample OSS/J Work Orders
The ASAP Java SRP (JSRP) component supports upstream requests in XML format bound
by OSS/J standards. Using Design Studio, you can create activation OSS/J test cases, which
generate work orders targeting the JSRP. These sample work orders can be sent from
Design Studio, after connecting to an ASAP environment where the cartridge to be tested has
been deployed. For details on how to create and run test cases from the Activation Test
Cases editor, see the Design Studio Help.

Sample OSS/J Work Order with Conditional Logic Using XML Parameters
This section describes the structure of a work order that contains XML data.

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-5

Table 15-1 shows a CSDL (C-ADD_LINE) mapped to three ASDLs.

Table 15-1 C_ADD_LINE mappings

Seq ASDL Condition Condition
Label

Condition
Value

Expression

1 A-
ADD_POTS_L
INE

Always - - -

2 A-
ADD_CODES

Equals A1141 BD/U2B -

3 A-
ADD_OPTIO
NS

Equals A1141 BD/U2B -

ASDLs 2 and 3 have spawning logic associated with them. A-ADD_CODES and A-
ADD_OPTIONS are spawned only if A1141 is present in the upstream order with the
value of BD/U2B.

For A-ADD_CODES (see Table 15-2), in addition to the standard parameters (NE_ID
and DN), this ASDL expects the CSDL to contain parameters MY_OMS_DATA and
MY_XML_DATA. These two parameters are of XML type.

Table 15-2 A_ADD_CODES

CSDL Label ASDL Label Default1 Parameter Type Required

NE_ID MCLI NA Scalar Yes

MY_OMS_DATA OMS_DATA NA XML Yes

MY_XML_DATA XML_DATA NA XML No

DN DN NA Scalar Yes

1 The default is not applicable to XML and XPath

The CSDL parameter MY_OMS_DATA maps to the OMS_DATA ASDL parameter.

The following is a sample OSS/J XML work order createOrderByValueRequest that
shows the configuration described in Table 15-1 and Table 15-3:

<?xml version="1.0" encoding="UTF-8"?>
<createOrderByValueRequest xmlns="http://java.sun.com/products/oss/xml/
ServiceActivation" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mslv-sa="http://www.metasolv.com/oss/ServiceActivation/2003"
xmlns:co="http://java.sun.com/products/oss/xml/Common"
xsi:schemaLocation="http://java.sun.com/products/oss/xml/
ServiceActivation ../../xsd/XmlServiceActivationSchema.xsd http://
www.metasolv.com/oss/ServiceActivation/2003 ../../xsd/ASAPServiceActivation.xsd">
<orderValue xsi:type="mslv-sa:ASAPOrderValue">
<apiClientId>SRL</apiClientId>
<orderKey>
<co:applicationContext>
<co:factoryClass/>
<co:url/>
<co:systemProperties/>
</co:applicationContext>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-6

<co:type/>
<primaryKey>POTS-60</primaryKey>
</orderKey>
<priority>3</priority>
<requestedCompletionDate>2005-12-01T12:00:00</requestedCompletionDate>
<services>
<item xsi:type="mslv-sa:ASAPService">
<serviceKey xsi:type="mslv-sa:ASAPServiceKey">
<co:applicationContext>
<co:factoryClass/>
<co:url/>
<co:systemProperties/>
</co:applicationContext>
<co:applicationDN>System/DEV1/ApplicationType/ServiceActivation/Application/
1-0;5-0;ASAP/Comp/</co:applicationDN>
<co:type/>
<primaryKey>C-ADD_LINE</primaryKey>
</serviceKey>
<mslv-sa:asdlRoute>TO_BE_DETERMINED</mslv-sa:asdlRoute>
<mslv-sa:serviceValues>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>NE_ID</mslv-sa:name>
<mslv-sa:value>TOR_REM1</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue>
<!-- Xpath type parameter with CSDL parameter name "A1141"
 and value "/exchange/a1141" -->
<mslv-sa:name>A1141</mslv-sa:name>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">1

 <mslv-sa:name>MY_OMS_DATA</mslv-sa:name>
 <mslv-sa:xmlValue>
 <exchange xmlns="">
 <a1141>BD/U2B</a1141>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue>
<!-- Xml type parameter with CSDL parameter name "MY_OMS_DATA" and value of order data
from Provisioning -->
<mslv-sa:name>MY_OMS_DATA</mslv-sa:name>2

<mslv-sa:xmlValue>
<exchange>3

<a1141>BD/U2B</a1141>
<codes>
<code>4

<poe>984</poe>
<decode>01246811</decode>
<pds_list>
<pds>2134</pds>
<pds>3265</pds>
<pds>1234</pds>
<pds>2345</pds>
<pds>4321</pds>
</pds_list>
</code>
<code>

1 Identifies an XPATH, where the associated ASDL is spawned only if A1141 is present in the XML order data with the
value of BD/U2B.

2 A CSDL parameter on the order that references an ASDL parameter label. This ASDL parameter label of type X
(required XML parameter) is associated with.

3 Root element of the XML fragment.
4 The data from the XML order. In this example, found between <code> and </code>.

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-7

<poe>984</poe>
<decode>01246812</decode>
<pds_list>
<pds>6789</pds>
<pds>9876</pds>
<pds>5432</pds>
<pds>2345</pds>
<pds>2354</pds>
</pds_list>
</code>
<code>
<poe>984</poe>
<decode>01246813</decode>
<pds_list>
<pds>3421</pds>
<pds>5632</pds>
<pds>1020</pds>
</pds_list>
</code>
…
</codes>
<errors>
<error>
<error_priority>1</error_priority>
<error_name>BROKEN PIPE</error_name>
<error_description>Lost switch connection</error_description>
</error>
…
</errors>
</exchange>
</mslv-sa:xmlValue>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>DN</mslv-sa:name>
<mslv-sa:value>6742727</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LATA</mslv-sa:name>
<mslv-sa:value>236</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LCC</mslv-sa:name>
<mslv-sa:value>1</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LTG</mslv-sa:name>
<mslv-sa:value>1</mslv-sa:value>
</mslv-sa:serviceValue>
<mslv-sa:serviceValue xsi:type="mslv-sa:ASAPServiceValue">
<mslv-sa:name>LEN</mslv-sa:name>
<mslv-sa:value>1010101</mslv-sa:value>
</mslv-sa:serviceValue>
</mslv-sa:serviceValues>
</item>
</services>
<mslv-sa:parentKey>
<co:applicationContext>
<co:factoryClass/>
<co:url/>
<co:systemProperties/>
</co:applicationContext>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-8

<co:applicationDN/><co:applicationDN/>
<co:type/>
<primaryKey/>
</mslv-sa:parentKey>
<mslv-sa:origin>ASC Test Orders</mslv-sa:origin>
<mslv-sa:organizationUnit>POTS</mslv-sa:organizationUnit>
<mslv-sa:timeout>-1</mslv-sa:timeout><!-- Use Default -->
<mslv-sa:secureData>true</mslv-sa:secureData>
<mslv-sa:maximumDelayFail>0</mslv-sa:maximumDelayFail>
<mslv-sa:rollbackIfFail>false</mslv-sa:rollbackIfFail>
<mslv-sa:batchGroup/>
<mslv-sa:asdlTimeout>-1</mslv-sa:asdlTimeout> <!-- Use Default -->
<mslv-sa:asdlRetry>5</mslv-sa:asdlRetry>
<mslv-sa:asdlRetryInterval>120</mslv-sa:asdlRetryInterval>
<mslv-sa:asdlDelayFail>false</mslv-sa:asdlDelayFail>
<mslv-sa:externalSystemId/>
<mslv-sa:srqAction>ADD</mslv-sa:srqAction>
<mslv-sa:command>UPDATE</mslv-sa:command>
<mslv-sa:orderParameters>
<mslv-sa:orderParameter>
<mslv-sa:name>ACCT</mslv-sa:name>
<mslv-sa:value>1764571</mslv-sa:value>
</mslv-sa:orderParameter>
</mslv-sa:orderParameters>
<mslv-sa:infoParms/>
<mslv-sa:extendedWoProperties/>
</orderValue>
</createOrderByValueRequest>

After the MML command is sent to the NE, a system integrator can persist the response from
the NE in the Activation system so that the upstream system can retrieve information from the
NE's response. The response from the NE may also update the XML order data as part of
Activation work order. The response from the NE can be used by:

• Subsequent ASDLs

To send information between ASDLs, system integrators can call JNEP's API (such as
returnXMLCSDLParm(name, value), returnGlobalParam(name, value)) to return CSDL
parameters or global work order parameters.

Consider the sample work order: A-ADD_CODES can pass an XML document to
subsequent ASDL A-ADD_OPTION by calling returnXMLCSDLParm() function with the
MY_XML_DATA parameter, where the value of parameter is the XML document. For
example:

<switch>
<a1141>BD/U2B</a1141>
<options>
<feature>1100</feature>
<feature>3232</feature>
<feature>2000</feature>
</options>
</switch>

• The Provisioning system to update the order in Provisioning

• Any upstream system to update the NEs status

Sample OSS/J Work Order with Conditional Logic using XPath Parameters
This section describes the structure of a work order that contains XPath parameters.

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-9

Table 15-3 describes the same ASDL using XPath parameters.

Table 15-3 A_ADD_CODES Parameters

CSDL Label ASDL Label Default1 Parameter Type Required Dependent
ASDL Label2

NE_ID MCLI NA Scalar Yes -

MY_OMS_DATA OMS_DATA NA XML Yes -

MY_XML_DATA XML_DATA NA XML No -

A1141 A1141 NA XPath Yes OMS_DATA

CODE++ CODE NA XPath No OMS_DATA

DN DN NA Scalar Yes -

1 The default is not applicable to XML and XPath
2 Applies only to the XPath type

The following sample code illustrates how the service model for this ASDL may
appear. Note the parameter types.

<?xml version="1.0" encoding="UTF-8"?>
<serviceModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sam="http://www.metasolv.com/ServiceActivation/2003/ServiceModel"
xmlns="http://www.metasolv.com/ServiceActivation/2003/ServiceModel"
xmlns:fo="http://www.w3.org/1999/XSL/Format">
<description>Adds a line.</description>
<atomicService name="A_ADD_CODES" xsi:type="AtomicServiceType">
<description>Adds codes.</description>
<rollbackService enable="false">
</rollbackService>
<sendParameterCount>false</sendParameterCount>
<parameter name="MCLI" xsi:type="SimpleParameterType">
<description>Host NE identifier.</description>
<required>true</required>
<default/>
<parameterValueMap>NE_ID</parameterValueMap>
</parameter>
<parameter name="OMS_DATA" xsi:type="XMLParameterType">
<description>OMS data.</description>
<required>true</required>
<default/>
<parameterValueMap>MY_OMS_DATA</parameterValueMap>
</parameter>
<parameter name="XML_DATA" xsi:type="XMLParameterType">
<description>XMLDATA.</description>
<required>false</required>
<default/>
<parameterValueMap>MY_XML_DATA</parameterValueMap>
</parameter>
<parameter name="A1141" xsi:type="XPathParameterType">
<description>Description.</description>
<required>true</required>
<default/>
<parameterValueMap>A1141</parameterValueMap>
<dependentXMLParameter>OMS_DATA</dependentXMLParameter>
</parameter>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-10

<parameter name="CODE" xsi:type="XPathParameterType">
<description>Code.</description>
<required>false</required>
<default/>
<parameterValueMap>CODE#</parameterValueMap>
</parameter>
<parameter name="DN" xsi:type="SimpleParameterType">
<description>DN.</description>
<required>true</required>
<default/>
<parameterValueMap>DN</parameterValueMap>
</parameter>

In A_ADD_CODES Parameters table, OMS_DATA is an ASDL parameter that is associated
with two network action labels that invoke the evaluation of an XPath expression. As a result,
if the CSDL contains a parameter A1141, the SARM attempts to locate a set of data in the
order designated by <a1141>. The incoming XML must identify that specific CSDL parameter
name and its XPath value, an example of which follows:

<mslv-sa:serviceValue>
<!-- Xpath type parameter with CSDL parameter name "A1141" and value "/exchange/a1141"
-->
<mslv-sa:name>A1141</mslv-sa:name>
<mslv-sa:xpathValue>/exchange/a1141</mslv-sa:xpathValue>

The XML should have an XPath name and value declaration for each CSDL parameter that is
subject to an XPath expression.

If the A1141 parameter exists on the order, ASAP will apply the data at the specified location
in the file, in the <a1141> element:

<exchange>
<a1141>
...
</a1141>

The spawning logic for A-ADD_CODES (described in C-ADD_LINE mappings table) requires
that a condition value of BD/U2B be defined for parameter a1141 for that ASDL to be
spawned. For this ASDL to be spawned, the incoming XML must contain data formulated as
follows:

<exchange>
<a1141>BD/U2B</a1141>
<codes>
<code>
...
</code>
...
</codes>

For parameter CODE, the ++ at the end of service action label CODE++ indicates that at run
time, the current network action may be spawned multiple times depending on how many
instances of "exchange/codes/code" are present in the work order. In addition, the network
action label CODE for each A-ADD_CODE, execution will have a different value.

In the following example, the ASDL is spawned based on the evaluation of the XPath
expression, and the order data contained in the exchange/codes/code location is passed to
the NE.

<exchange>
<a1141>BD/U2B</a1141>

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-11

<codes>
<code>
<poe>984</poe>
<decode>01246811</decode>
<pds_list>
<pds>2134</pds>
<pds>3265</pds>
<pds>1234</pds>
<pds>2345</pds>
<pds>4321</pds>
</pds_list>
</code>
<code>
…

About Web Service Sample Work Orders
You can create web service work orders by taking the OSS/J work order information
generated using Design Studio and placing it within this web service sample wrapper:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<env:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd" env:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="unt_AF6po7ocfkMUDzde">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText">password</
wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </env:Header>
 <env:Body>
 <m:order_type xmlns:m="http://xmlns.oracle.com/communications/activation/
asap/webservices">

OSS/J_work_order

 </m:order_type>
 </env:Body>
</env:Envelope>

where:

• username is the user name for the web service user-defined in the ASAP
WebLogic Server instance.

• password is the password for the web service user-defined in the ASAP WebLogic
Server instance.

• order_type is the type of work order sent.

• OSS/J_work_order is the OSS/J work order information. When you add the work
order information, do not include the XML header information (<?xml
version="1.0" encoding="UTF-8"?>) because this has already been provided in
the sample. Ensure that there are no namespace conflicts.

Chapter 15
About Testing Cartridge Elements with Sample Work Orders

15-12

Guidelines for Creating Sample Work Orders
Always create sample work orders that test all of the service action and atomic actions in the
cartridge. This includes work orders that test for sunny day as well as rainy day scenarios.
Though it may not be possible to exercise all of the method logic (for example, all NE
response combinations), mainstream paths (both common success and failure paths) should
be invoked by the test suite.

Use consistent values for the parameters when creating sample work orders. This is useful
when using the OCA GUI to query on orders by the field names and distinguish other orders
from the sample cartridge orders.

ORG_UNIT MetaSolv
ORIGIN TEST

The value of the SRQ_TYPE variable should be appropriately set depending on the context
of the work order (A – add, R – remove, C – change/update, Q - query).

SRQ_TYPE = A/R/C/Q

Troubleshooting Atomic Actions
Each atomic action-command has associated parameters that are sent to the NEP by the
SARM when the ASAP is selected to provision.

Note:

An atomic action parameter value must be specified at the time of provisioning. If
the parameter is not supplied at the time of provisioning, a SARM translation error
results.

The following errors can occur during atomic-action-to-service-action translation:

• No service action configuration in database – The SARM receives a service action
whose configuration is unknown and rejects the work order.

• No service action To atomic action translation in database – The service action is
skipped because there is no work order to be done.

• No atomic action configuration in database – The SARM shuts down upon finding that
an atomic action configuration is missing while loading the atomic action configurations
associated with each service action. If all atomic action configurations are not defined,
the work order being provisioned is failed.

• Atomic action parameters not specified – The SARM treats mandatory and optional
parameters differently. If a mandatory atomic action parameter is not translated
successfully with a name-value pair in the work order (empty string for the value is
allowed), and no default value is available in the database, the work order is failed. The
reason can be the label is missing in the work order. If the parameter is optional, order
provisioning continues.

• No atomic action to State Table translation in database – If an entry for an atomic
action is missing in the atomic-action-to State-Table translation table, the NEP cannot
determine the State Table associated with the atomic action and fails the atomic action.

Chapter 15
Guidelines for Creating Sample Work Orders

15-13

• No State Table for atomic action defined in database – If the entries for a State
Table are missing in the atomic-action-To-State-Table translation table, the NEP
cannot run the State Table associated with the atomic action and fails the atomic
action.

On startup, the SARM ensures that the following tables exist and have been
populated:

• Service action configuration table

• Service-action-to-atomic-action translation table

• Atomic action configuration table

• Atomic action parameter table

If any of these tables is empty, the SARM shuts down.

Troubleshooting Service-Action-to-Atomic-Action Translation
Errors

The following errors can occur during atomic action to service action translation:

• No Service Action configuration in database – The SARM receives a service
action whose configuration is unknown and rejects the work order.

• No Service Action To Atomic Action translation in database – The service
action is skipped because there is no work order to be done.

• No Atomic Action configuration in database – The SARM shuts down upon
finding that an atomic action configuration is missing while loading the atomic
action configurations associated with each service action. If all atomic action
configurations are not defined, the work order being provisioned is failed.

• Atomic Action parameters not specified – The SARM treats mandatory and
optional parameters differently. If a mandatory atomic action parameter is not
translated successfully with a label-value pair in the work order (empty string for
the value is allowed), and no default value is available in the database, the work
order is failed. The reason can be the label is missing in the work order. If the
parameter is optional, order provisioning continues.

• No Atomic Action to State Table translation in database – If an entry for an
atomic action is missing in the atomic action to State Table Translation table, the
NEP cannot determine the State Table associated with the atomic action and fails
the atomic action.

• No State Table for Atomic Action defined in database – If the entries for a
State Table are missing in the atomic action To State Table Translation table, the
NEP cannot run the State Table associated with the atomic action and fails the
atomic action.

Chapter 15
Troubleshooting Service-Action-to-Atomic-Action Translation Errors

15-14

16
Creating and Deploying a SAR File (ASAP
Cartridge)

This chapter describes how to create and deploy a service activation archive (SAR) file
(Oracle Communications ASAP cartridge).

SAR File Creation and Deployment Options
ASAP provides the following SAR file creation tools:

• Design Studio: Design Studio automatically generates a SAR file when you build an
ASAP cartridge project without errors. Design Studio generates SAR files that support the
ASAP 4.7 folder structure (see "ASAP 4.7 SAR File Folder Structure").

• CreateSar: The ASAP_Home/programs/CreateSar script generates ASAP 4.6 SAR
files. This script generates SAR files that support the ASAP 4.6 folder structure (see
"ASAP 4.6 SAR File Folder Structure") and is included for backward compatibility. For
more information about the CreateSar script, see "Creating an ASAP 4.6 SAR File."

ASAP provides several SAR file deployment tools:

• The Service Activation Deployment Tool (SADT): This tool can be used to deploy the
ASAP service model contained in the SAR file. For more information, see "Deploying
Service Models with the Service Activation Deployment Tool."

• The Service Activation Configuration Tool (SACT): This tool is primarily used to configure
ASAP servers using XML; however, SACT can also be used to deploy server-specific
configuration changes within a SAR file contained in SarPatch_configure and
SarPatch_unconfigure files. Design Studio cannot be used to generate these files: You
must create them manually. For more information about this tool, see ASAP Server
Configuration Guide.

• The ASAP_Home/scripts/PostDeploySarFile: This tool can be used to deploy
SQL*Plus-specific configuration changes within a SAR file contained in SarPatch and
SarPatch_undeploy files. In addition, this tool searches SAR file directories for SQL files
with no undeploy_ prefix and work order TST files and commits them to the database.
Design Studio cannot be used to generate these files: You must create them manually.

• The ASAP_Home/samples/DIT/scripts/installCartridge file: This sample script
consolidates the SACT, SADT and PostDeploySarFile deployment options and should
be customized for cartridges deployed in production environments.

• Design Studio: Design Studio provides the same functionality as SADT, but does not
support PostDeploySarFile or SACT functionality. This tool should be used in
development environments. For more information about the Design Studio cartridge
deployment feature, see the Design Studio Help.

SAR File Folder Structure Options
ASAP supports the following SAR file folder structure options:

16-1

• ASAP 4.7 SAR File Folder Structure

• ASAP 4.6 SAR File Folder Structure

ASAP 4.7 SAR File Folder Structure
Table 16-1 lists and describes the ASAP 4.7 SAR file folder structure used by Design
Studio and supported for XML-based cartridges. You can enhance this directory
structure with additional directories based on your requirements and deliverables.

Table 16-1 Design Studio ASAP 4.7 Folder Structure

Directory Description

ActionProcessor This folder contains action processor XML information used by
Design Studio. This information is stored in the SAR file but is
not used by ASAP.

doc This folder contains Design Studio autogenerated cartridge
documentation. For more information about autogenerated
cartridge documentation, see "Documenting ASAP Cartridges ."

lib This folder contains a .jar that provides the Java classes
(autogenerated, or non-autogenerated) created to implement
connections, or send network element (NE) commands as MML
or API calls.

META-INF This folder contains the following files:

• activation-model.xml: For more information about this file,
see "SA_archive.xsd."

• cartridge.xml: This file defines the ASAP cartridge version,
target platform, and the packaged deployment list.

NetworkElements This folder contains NE XML information that ASAP uses to
make NE connections.

ServiceModel This folder contains service model XML information, such as
atomic actions, service actions, connection handlers, user-
defined exit types, and so on.

src This folder contains the source files for the Java classes
compiled in the .jar file.

stateTables This folder contains State Table files.

ASAP 4.6 SAR File Folder Structure
When creating an ASAP 4.6 SAR file, you must use a fixed directory structure. This
folder structure was developed in ASAP 4.6 and was replaced by the ASAP 4.7 folder
structure (see "ASAP 4.7 SAR File Folder Structure"). ASAP supports the ASAP 4.6
folder structure for backward compatibility.

Note:

Design Studio uses the ASAP 4.7 SAR file folder structure when generating
SAR files; however, you can import ASAP SAR files with the 4.6 folder
structure into Design Studio.

Chapter 16
SAR File Folder Structure Options

16-2

This section describes the minimum required structure; you can enhance this directory
structure with additional directories based on your requirements and deliverables.

META-INF/activation-model.xml
vendor/
 NE technology/
 service pack/
 sample_wo/
 sarm/
 ne_progs/
 PLSQL/
 control/
 PLSQL/
 nep/
 PLSQL/
 java/
 lib/
 cpp/
 lib/
 service_model/{at least one .xml file}
 application_config/ {optional}
 common/
 sarm/
 ne_progs/
 PLSQL/
 control/
 PLSQL/
 nep/
 PLSQL/
 java/
 lib/
 cpp/
 lib/
 service_model/ {optional}
 application_config/ {optional}
 scripts/ {optional}
vendor
…

The elements that uniquely identify an archive are a combination of the following:

• NE or EMS/NMS vendor name

• NE name and technology/software

• Service provided by the service model

The directory format of vendor/NE technology/service pack/ avoids collisions with other
activation model directory structures.

• vendor directory – All ASAP service activation models developed for the same
NE/EMS/NMS vendor reside in this directory.

• vendor/NE Technology – All ASAP service activation models for the same NE/EMS/NMS
vendor and the same software load reside in this directory.

• vendor/NE Technology/service pack – The base directory for a specific service activation
model. The following are examples of services: ADSL_ATM, SDSL_FR and Mail_Box.

An example of the directory format is Nortel/UEIMAS_5_2/ADSL_ATM.

Table 16-2 lists the directories supported for ASAP 4.6 SAR files.

Chapter 16
SAR File Folder Structure Options

16-3

Table 16-2 ASAP 4.6 SAR File Directory Structure

Directory Description

sample_wo Contains sample work order test files.

sarm Contains files specific to the current activation model and targeted for
service in the SARM database.

• PLSQL – Contains files with sample ASAP configuration data specific
to the SARM database.

• ne_progs – Contains source State Table files (.npg). Oracle
recommends that you maintain one file for each State Table or library.

control Contains files specific to the current activation model and targeted for
service in the CONTROL database.

• PLSQL – Contains files with sample ASAP configuration data specific
to the CONTROL database.

nep Contains files specific to the current activation model and targeted for
service in the NEP database.

• PLSQL – Contains files with sample ASAP configuration data specific
to the NEP database.

java Contains all implementation files for the JInterpreter.

• lib – Contains JAR files for JInterpreter provisioning implementations
and third-party libraries.

cpp Contains the same as the java/ directory but refers to C++ files.

• lib – Contains C++ files.

service_model Contains the XML documents that define the service models for this
activation model. There must be at least one XML file in this directory. All
documents in this service model directory must conform to the
ServiceModel schema (refer to the following section).

application_conf
ig

Contains the XML documents that define configurations other than the
service models for this activation model. There is no restriction on the
number of XML files in this directory. All XML documents in this directory
must conform to the activationConfig schema. The XML file in this directory
can be an alternative to the SQL file in PLSQL directories above. This
subdirectory is optional.

common/scripts Contains the user patch script file SarPatch that is invoked by other
utilities, such as PostDeploySarFile and asapConfig. These scripts
customize the content within the SAR file, such as replacing fixed strings in
the SQL or non-service-model XML files with relevant environment
variables. The creator of the SAR file is responsible for providing this
customization script file. The scripts and SarPatch are both optional.

SarPatch is invoked after a SAR file has been deployed. It seeks any SQL
file in PLSQL/ and WO test file in the sample_wo directory, and populates
data into the relevant ASAP databases. Before populating, the utility tries
to run SarPatch in the common/scripts directory, if it exists in the SAR file,
to make generic SQL data specific to the current activation model.

This utility is invoked as follows:

PostDeploySarFile [-b] sar_file_with_path

This directory also contains the SarPatch_configure and
SarPatch_unconfigure scripts. These scripts are invoked by the script
asapConfig to perform customizations or patching against the application
configuration within the SAR file.

Chapter 16
SAR File Folder Structure Options

16-4

The common directory has a directory structure similar to service pack, with one more scripts
subdirectory. The common directory contains all common files across different cartridges that
share the same vendor/NE technology/ but offer different services. These files can include
common definitions such as login/logout State Tables, connect/disconnect classes, and so
on. It also contains some supplementary files such as the SarPatch script.

The sarm, control, nep, java, and cpp directories under the common directory have a similar
structure and meaning as the directories located under the <service_pack> directory.

Creating an ASAP 4.6 SAR File
You can archive the directory using the assembly tool. The assembly tool:

• Validates the directory structure

• Ensures that an activation-model.xml file and at least one service model XML file exist

• Validates the activation-model.xml file and all service model xml files against their
respective schemas. This validation is performed using the Oracle9_0_2_0_0D XML
parsers.

• Picks up the activation model ID from the activation-model.xml file

You can also archive the directory using the jar command. Components other than service
model components can be packaged in an archive file; for example, Design guidelines, API
documentation, and source files.

After all validation is successfully completed, the assembly tool assembles the components to
generate an archive file with a base file name that is the same as the ID, and supplies the sar
extension. The assembly tool accepts the directory where the SAR file is to be placed as a
parameter.

To run the assembly tool, enter the following command:

CreateSar [-help] [-v] <sar_file_dir>

The current directory must be the base from which the SAR file is made and it is the parent
directory of the <vendor> directory. The <sar_file_dir> specifies where you want to put the
SAR file you have created. The -v parameter enables directory structure validation. If you
omit this parameter, no directory structure validation is performed. The SAR file name is
generated based on the name in activation-model.xml.

Deploying Service Models with the Service Activation
Deployment Tool

The SADT deploys the SAR file. The SADT has three interfaces:

• Using the SADT Command Line Interface

• Using the SADT Web Interface

• Using the SADT JMX Interface

You can use the SADT to assemble and deploy generic service models and cartridge-specific
service models.

Chapter 16
Creating an ASAP 4.6 SAR File

16-5

Using the SADT Command Line Interface
You can invoke the SADT using a command-line interface. The command-line
interface must be invoked by passing in the WebLogic Server URL, a user name and a
password.

The command-line interface supports two modes of invocation:

• Interactive – You can select options and enter data

• Script-based – You can start the SADT from within scripts by passing in all
parameters on the command-line.

Note:

A customizable script sadtclient is available in ASAP_Home/scripts.
This script enables you to pre-populate the information required in Step 2
for up to four working environments. The first time you use the script, you
will be prompted to modify the script.

You can choose from the following actions:

• List all deployed Service Activation Archive model

• Deploy a Service Activation Archive model

• Undeploy a Service Activation Archive model

• Query a Service Activation Archive model

Using the SADT Command Line Interface in Interactive Mode
To access the command-line utility in interactive mode, do the following.

1. From within a UNIX or Linux script, enter the following:

java -classpath $CLASSPATH
com.mslv.activation.management.application.sadtClient

Note:

If sadtClient.jar, asaplibcommon.jar or weblogic.jar are not
in $CLASSPATH, add them.

2. A login screen appears. Type the information that appears in italics.

Welcome to Service Activation Deployment Tool
Please enter WebLogic login information
WebLogic host:port -> myhost:1234
Username -> username
Password -> password
JNDI Context -> (long JNDI string)
Replace ('t' for true, else false) -> (t or others)
Connecting to WebLogic server...

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-6

An example of a long JNDI string is System/S123/ApplicationType/ServiceActivation/
Application/1-0;4-7;ASAP/Comp/

When you have defined your JNDI prefix, replace "S123" above with the
appropriate $ENV_ID value in your ASAP environment, for example, "TST1".

1. After you have logged in, the following menu appears. Select the option you require:

***** Service Activation Deployment Tool *****
1. Deploy an activation model
2. Undeploy an activation model
3. Query an activation model
4. List all deployed activation models
5. Export existing service model
Enter Choice, <Q - Quit): 1

Option 5 enables you to save the activation model to a SAR file.

Deploying a Service Activation Model Archive
This menu option prompts you to do one of the following:

• Type the absolute file path for a Service Activation Model Archive to be installed on the
ASAP instance

• Specify the SAR ID if the SAR already exists in ASAP but has not yet been deployed.

The status of deployment is displayed on screen and the menu option does not return until
the SAR is successfully or unsuccessfully deployed.

***** 1. Deploy an activation model *****
Enter the file path or ID of the SAR you want to deploy
-> /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar
Deploying model...
Activation model </sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar> has been
deployed
Press ENTER to continue ...

Undeploying a Service Activation Model Archive
This menu option prompts you to type the ID of an activation model to uninstall from an ASAP
instance. If you do not know the SAR ID, refer to "List All Deployed Activation Models."

*****2. Undeploy an activation model *****
Enter the ID of the model you want to undeploy
-> Nortel_DMS_POTS
Activation model Nortel_DMS_POTS has been undeployed

Querying an Activation Model
This menu option prompts you to type the ID of an activation model to query. It only queries
models that are deployed in ASAP. If the model is undeployed, it returns with a message
stating the requested model is not deployed.

If you select Query an Activation Model, the following appears:

***** 3. Query an Activation Model *****
Enter the ID of the activation model you want to query
-> Nortel_HLR_GEM14_MSP
Querying activation model <Nortel_HLR_GEM14_MSP> ...
id: Nortel_HLR_GEM14_MSP

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-7

deployed: Yes
description: Nortel 3G Wireless GEM14 Cartridge
vendor: Nortel
technology: HLR
softwareLoad: GEM14
version:
author: Nortel Networks
label: 1.2
majorVersion: 1
minorVersion: 2
createDate: Sun Aug 13 00:00:00 GMT-05:00 2000
validDuration: P1Y2M3DT10H30M

All information in the deployment descriptor is returned except for the icon and all
component elements.

List All Deployed Activation Models
This action lists IDs for all deployed models.

***** 4. List all deployed activation models *****
IDs of all deployed activation models are:
Nortel_HLR_GEM14_MSP
Nortel_PASSPORT_3_0_ATM_FR

Using the SADT Command Line Interface in Script Mode
You can access SADT using scripting through the command line interface. All
functions in the command line interface are accessible from a single invocation of the
tool. All parameters to a function can be passed on the command line.

Examples of invoking the command line tool for script-based usage:

• Deploying a service activation model

This function call deploys the activation model specified by the file name:

java sadtClient -url myhost:1234 -username system -password admin -
jndiContext "System/S123/ApplicationType/ServiceActivation/Application/
1-0;4- 6;ASAP/Comp/" deploy /sunenv123/samples/sadt/sar/
Nortel_HLR_GEM14_MSP.sar

This function call returns the same status as AMDT-450-1.2:

Activation model </sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar> has
been deployed

• Undeploying an activation model

java sadtClient -url myhost:1234 -username system -password admin -
jndiContext System/S123/ApplicationType/ServiceActivation/Application/
1-0;4-7;ASAP/Comp/ -replace false undeploy Nortel_HLR_GEM14_MSP

This function call returns the same status as AMDT-450-1.3:

Activation model <Nortel_HLR_GEM14_MSP> has been undeployed
• Querying for an activation model

java sadtClient -url myhost:1234 -username system -password admin -
jndiContext System/S123/ApplicationType/ServiceActivation/Application/
1-0;4-7;ASAP/Comp/ -replace false query Nortel_HLR_GEM14_MSP

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-8

This function call returns the information about the model, same as ADMT-450-1.4.

id: Nortel_HLR_GEM14_MSP
deployed: Yes
description: Nortel 3G Wireless GEM14 Cartridge
vendor: Nortel
technology: HLR
softwareLoad: GEM14
version:
author: Nortel Networks
label: 1.2
majorVersion: 1
minorVersion: 2
createDate: Sun Aug 13 00:00:00 EDT 2000
validDuration: P1Y2M3DT10H30M

• List all deployed activation models, by doing one of the following:

– Enter java sadtClient and follow the prompts

– Enter the following:

java sadtClient -url myhost:1234 -username system -password admin -jndiContext
System/S123/ApplicationType/ServiceActivation/Application/1-0;4-7;ASAP/Comp/ -
replace false list

This function call returns a list of all model IDs that are deployed, same as ADMT-450-1.1.

IDs of deployed activation models are:
Nortel_DMS_POTS Deployed
Nortel_HLR_GEM14_MSP Undeployed

The following is a sample script to invoke the commands:

#!/bin/ksh
if [-f /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar]; then
java sadtClient -url myhost:1234 -username system -password admin -jndiContext System/
S123/ApplicationType/ServiceActivation/Application/1-0;4-7;ASAP/Comp/ -replce true
deploy /sunenv123/samples/sadt/sar/Nortel_HLR_GEM14_MSP.sar
fi

Note:

In an actual script line, all the semicolons above must be preceded by an escape
character "\".

To simplify the use of the command scripts, ASAP includes scripts that prompt you to
personalize them when invoked. Edit this script and follow the instructions placed at the
beginning of the script to change required strings. After the script is personalized, you will not
have to type the host name, port number, long JNDI string, user name, and password, which
seldom need to be changed in a working environment.

For more information on personalized scripts, see ASAP Server Configuration Guide.

Using the SADT Web Interface
The web-based SADT GUI is a standalone client application. Using the SADT GUI, you can:

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-9

• Viewing Deployed Service Activation Models

Deploying a service activation archive file

• Undeploying a Service Activation Model

• Deploying Multiple Cartridges

Viewing Deployed Service Activation Models
To view deployed service activation models:

1. In the Address field of your web browser, type the login URL (for example, http://
<BEA_HOST>:<BEA_PORT>/<ENV_ID>/sadtConsole), and press Enter.

The Enter Network Password dialog box appears.

Note:

<ENV_ID> represents the environment ID chosen in the installer. See
the table of installation values in the ASAP Installation Guide.

2. In the User Name field, enter your user name.

3. In the Password field, enter your password, and then click OK.

4. Click OK. The Service Activation Deployment Tool view appears.

5. View the details of a service activation model, by clicking the appropriate service
activation label. The service activation model details are displayed in the lower
part of the window.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-10

Deploying a service activation archive file
To deploy a service activation archive file, select a service activation archive file and then
deploy the selected SAR file.

When deploying service models, you must pay special attention to dependencies (displayed
in the Dependent Service Models column of the SADT console). If service model B is
dependent on service model A, service model A must be deployed before service model B.

To deploy a service activation archive file:

1. In the Service Activation Deployment Tool view, do one of the following:

• If the service activation archive file already appears in the list, click Deploy.

The Deploy Service Activation Models view appears.

• If the service activation archive file that you want to deploy does not appear in the list,
click Browse and navigate to the location of the SAR files. The SAR file name
appears in the Select a model to deploy field.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-11

2. Depending on your action above, click Deploy either in the list or in the Deploy
New SADT section. All successfully deployed service activation models are
flagged with True in the Deployed column.

Note:

You can redeploy a service activation model that has already been
deployed. If you change the contents of the deployment descriptor
(activation-model.xml) of a SAR file, the modified SAR file is
considered as a different version of the service activation model. In this
case, you must undeploy the existing service activation model and then
deploy the modified SAR file.

Undeploying a Service Activation Model
You can undeploy one or more service activation models from an ASAP instance.

If you are undeploying a service model, you must undeploy the dependent service
model before undeploying its parent. The SADT console displays an error message if
you attempt to undeploy a service model that has dependent service models.

To undeploy a service activation model:

1. In the Service Activation Deployment Tool view, click Undeploy.

The screen refreshes and the Deployed column displays False.

Deploying Multiple Cartridges
You can deploy (and undeploy) SAR cartridge files without conflicts, even if multiple
cartridges with the same content are deployed. When a SAR file is deployed through
either the command line, GUI, or JMX-based interfaces, a target directory is created
using the cartridge ID as a component in the directory name. The Java provisioning
files are placed into this unique target directory where they will not be overwritten by
future deployments.

After the Java provisioning files are placed in the target directory, the CLASSPATH is
modified to contain references to the newly added Java JAR files.

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-12

Using the SADT JMX Interface
With the Java Management Extension based interface, you can access all deployment
functionality programmatically.

Figure 16-1 JMX-based Interface

The ServiceActivationMBean is the base interface for all MBeans in the system. Every
MBean is registered into the WebLogic Server (as MBeanServer) with an object name.
ApplicationMBean represents an ASAP instance. Currently, its interface only defines some
simple management functionality to retrieve and create new ActivationModelMBeans. An
ActivationModelMBean represents an activation model archive. To create a new
ActivationModelMBean, invoke the createActivationModelMBean method on an
ApplicationMBean. After an ActivationModelMBean has been created, the archive can be
deployed or undeployed.

Configuring JMX Interfaces to Validate XML Documents
You can configure JMX interfaces to validate all XML documents against their respective
schemas within the WebLogic server. To enable validation, you must change the VALIDATE
option to True in the web.xml deployment descriptor, through the WebLogic Administration
Console.

To enable the Validate option:

Chapter 16
Deploying Service Models with the Service Activation Deployment Tool

16-13

1. Navigate to ASAP domain name > Deployments > Web Applications, right-click
sadtConsole and choose Edit Web Application Deployment Descriptor. A new
browser window opens in which you can edit the deployment descriptors.

2. Navigate to Web Descriptor > Web App Descriptor. Right-click Env Entries and
choose Configure a new EnvEntry.

3. In the screen that appears, enter the following:

• Description – An optional description

• Env Entry Name – VALIDATE

• Env Entry Value – true

• Env Entry Type – java.lang.String

4. Click Create.

The EnvEntry portion of web.xml appears as follows:

<env-entry>
 <env-entry-name>ASAP_BASE</env-entry-name>
 <env-entry-value>ASAPDEV_ASAP_BASE</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

 <env-entry>
 <env-entry-name>SYBASE</env-entry-name>
 <env-entry-value>ASAPDEV_SYBASE</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

<env-entry>
 <env-entry-name>VALIDATE</env-entry-name>
 <env-entry-value>false</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

<env-entry>
 <env-entry-name>SA-jndi-context</env-entry-name>
 <env-entry-value>System/SAAS-1/ApplicationType/ServiceActivation/
Application/1-0;4-7
;ASAP/Comp/</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>

Loading ASAP Services Dynamically
When an ASAP server such as a SARM or NEP is initialized, configuration data
groups are loaded from the database into memory. These configuration data groups
are:

• ASAP service definitions – Includes all service-action and atomic-action related
configurations.

• ASAP network interface configurations – Includes hosts, NE resources.

In some cases, configuration data can be loaded into memory after initialization
(namely, State Table programs and NE communication parameters). For all other new
service definitions or network interface configurations to take effect, you must do one
of the following:

Chapter 16
Loading ASAP Services Dynamically

16-14

• Restart the SARM and NEP

• Dynamically add service definitions using asap_utils

For more information on asap_utils, see ASAP Server Configuration Guide

With asap_utils, you can dynamically add new items to the configuration without having to
restart the ASAP servers. You can dynamically add service actions, atomic actions, mapping
configuration, NEPs, hosts, routing, and NE resources by:

• Updating the ASAP databases through asap_utils

• Synchronizing the ASAP servers with the databases

Note:

Only new configuration entries are added to the in-memory caches. Any
updates and deletions of existing entries are ignored by the update procedure.
These still require a restart of the affected ASAP servers.

To dynamically configure service actions, atomic actions, mapping configuration, or NEPs,
you must set up the ASAP system and its components as follows.

1. Make the configuration addition in the ASAP database manually by scripting (SQL
inserts). You can add the configuration entries in Table 14-3 dynamically to ASAP. All
other changes are ignored by the sychronization process.

Table 16-3 Configuration Entries and Synchronization

Configuration Entry Description Synchronization Details

Service Definition Service actions, atomic actions,
service-action-TO-atomic
mappings, service action-to-atomic
action parameters, atomic action-
State Table mappings

Internal cache update with new
entries in SARM and NEP servers.

State Table Addition of new State Table Internal cache update in NEP server.
This is already supported in ASAP.

Network Element
Definition

NE definitions and associated NE
connection properties, including
primary and secondary devices,
and host-to-remote NE mappings

Internal cache and thread updates in
SARM (atomic action queues) and
NEP (session managers, command
processors) application servers.

NEP Entirely new NEP added to ASAP Internal cache and thread updates in
SARM (NEP drivers, atomic action
queues).

Secondary NE
Devices

Communication devices in the
auxiliary resource pool in existing
NEPs

Internal cache and thread updates in
NEP (command processors).

Chapter 16
Loading ASAP Services Dynamically

16-15

Note:

A service definition consists of a service action and all its associated
atomic actions and parameters. Adding a new atomic action to an
existing service action or adding a new service action to an existing
atomic action is considered a change to the service definition. The
SARM server must be restarted before the new service definition takes
effect.

2. You can request the SARM and NEP servers to refresh the configuration in
memory through the command options available in asap_utils. There are two
commands in the asap_utils client application for the addition of new configuration
entries. You use these commands to request that the ASAP servers synchronize
the in-memory configuration with the configuration of the databases. You are
responsible for ensuring that the database configurations have been applied (for
example, through database insert scripts).

By sending RPCs to notify ASAP servers of the additional configuration entries, a
synchronization process is performed in each of the ASAP servers to update the
in-memory caches with the latest data of the configurations in the database. The
synchronization reloads the relevant configuration information from the database
into the memory. With the synchronization, you can add new service actions,
atomic actions, mapping configurations, NEPs, host NEs, NE routings, and NE
resources dynamically.

Note:

You can only dynamically add new items, you cannot modify or delete
new configurations.

In asap_utils, the command choices for the newly added configuration are:

• 112. Load New Service Configuration into Cache

• 113. Load New NE Configuration into Cache

You are asked to provide the SARM and NEP names to which the updates apply.
The defaults are the $SARM and $NEP environment variables. If multiple NEPs
are to be updated, you can enter a list of NEP server names and the utility issues
the appropriate request to each listed NEP. You are notified whether each RPC
was successful or not. In all cases, the NEP update requests are issued.

3. After receiving the synchronization RPC, the ASAP server works with a specific
handler to reload the relevant configuration data from the ASAP database into
memory. The RPC returns a status to the client application, indicating whether
reloading was successful or not.

4. The synchronization sequence is the reverse of the normal processing flow; in
other words, the NEP is synchronized first, then the SARM.

You must ensure that the time interval between the database modification and the
memory flush is as short as possible.

Chapter 16
Loading ASAP Services Dynamically

16-16

Note:

Only SARM and NEP servers support the synchronization.

Chapter 16
Loading ASAP Services Dynamically

16-17

A
Configuring Services Using XML

This appendix describes how to configure Oracle Communications ASAP services using XML
schemas and deploy these services using the Service Activation Deployment Tool (SADT).

This service configuration method supersedes the use of stored procedures to configure
services.

Note:

Schema validation for XML data processed by the Service Activation Configuration
Tool (SACT) and the SADT is turned off by default. If you turn on schema validation
and use these tools to deploy ASAP configuration data and service models, and
you upgrade ASAP to version 7.2 or later, errors may be reported where previously
none were reported.

Configuration Restrictions and Limitations
You can add, update, or delete an entity within the provisioning translation configuration.
Before doing so, however, Oracle recommends that you review the structure of the existing
configuration to ensure that real-time translation is carried out accurately and successfully.

Specifically, consider the following when you configure provisioning translation:

• Constraint conditions, such as switch technology and software load (the software version
of the specific switch).

• Prerequisite information, such as translation mappings from service actions to atomic
actions, that cannot be defined unless the atomic action is already defined.

You can add configurations at run time without restarting the SARM or network element
processor. For more information, see "Loading ASAP Services Dynamically."

Configuring ASAP Services
This section describes the steps for configuring ASAP services.

The configuration of ASAP services using XML consists of the following steps:

• Planning

• Configuring Atomic Actions

• Adding Supporting Data

• Configuring Service Actions

• Mapping Atomic Actions to Service Actions

• Mapping User Exit Types to Base Exit Types

A-1

• Creating Activation-Model.xml

• Configuring Network Element Throughput Using XML

Planning
Based on the services and network elements to be supported, determine the NE-
specific commands used for identified service (API calls, MML commands).

Create the service model components and scripts to support the service requirements.
Specifically:

• Create a State Table or Java method for each NE-specific API call or MML
command.

• Identify an atomic action for each script (State Table or Java method).

• Identify the atomic action parameters and values for atomic action.

• Identify the mapping between each atomic action and State Table.

• Identify service action commands required for each supported service.

• Identify service-action-to-atomic-action mappings.

• Plan enhanced service-action-atomic-action translation.

Configuring Atomic Actions
A typical atomic action XML definition appears as follows:

<?xml version="1.0" encoding="UTF-8"?>
<serviceModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sam="http://www.metasolv.com/ServiceActivation/2003/ServiceModel"
xmlns="http://www.metasolv.com/ServiceActivation/2003/ServiceModel"
xmlns:fo="http://www.w3.org/1999/XSL/Format">
<description>Nortel NT-DMS10 atomic action Services</description>
<atomicService name="A_NT-DMS10_503-10_ADD_POTS-LINE"
xsi:type="AtomicServiceType">
<description>Adds a POTS line.</description>
<timeout>20</timeout>
<retryCount>3</retryCount>
<retryInterval>6</retryInterval>
<rollbackService enable="true">
<rollbackService>A_NT-DMS10_503-10_ADD_POTS-LINE-RB</rollbackService>
</rollbackService>
<sendParameterCount>false</sendParameterCount>
<parameter name="MCLI" xsi:type="SimpleParameterType">
<description>Host NE identifier.</description>
<required>true</required>
<default/>
<parameterValueMap>NE_ID_NT-DMS10</parameterValueMap>
</parameter>
<parameter name="NPA" xsi:type="SimpleParameterType">
<description>3 digit area code.</description>
<required>false</required>
<default/>
<parameterValueMap>NPA</parameterValueMap>
</parameter>
<parameter name="NXX" xsi:type="SimpleParameterType">
<description>First 3 digits of the line number.</description>
<required>true</required>

Appendix A
Configuring ASAP Services

A-2

<default/>
<parameterValueMap>NXX</parameterValueMap>
</parameter>
<parameter name="LINE" xsi:type="SimpleParameterType">
<description>4 digit line extension.</description>
<required>true</required>
<default/>
<parameterValueMap>LINE</parameterValueMap>
</parameter>
<parameter name="LEN" xsi:type="SimpleParameterType">
<description>Line equipment number.</description>
<required>true</required>
<default/>
<parameterValueMap>LEN</parameterValueMap>
</parameter>
<parameter name="LOC" xsi:type="SimpleParameterType">
<description>Equipment location.</description>
<required>false</required>
<default/>
<parameterValueMap>LOC</parameterValueMap>
</parameter>
<parameter name="LCC" xsi:type="SimpleParameterType">
<description>The line or agent class code. 1FR, 1MR, 2FR, 8FR, 10FR, 1MB, 2MR, 4MR.</
description>
<required>true</required>
<default/>
<parameterValueMap>LCC</parameterValueMap>
</parameter>
<parameter name="RINGCODE" xsi:type="SimpleParameterType">
<description>The ringing code input for two-party or multiparty services.</description>
<required>false</required>
<default/>
<parameterValueMap>RINGCODE</parameterValueMap>
</parameter>
<parameter name="ZONE" xsi:type="SimpleParameterType">
<description>The OUTWATS zone identification number.</description>
<required>false</required>
<default/>
<parameterValueMap>ZONE</parameterValueMap>
</parameter>
<parameter name="LTG" xsi:type="SimpleParameterType">
<description>Line treatment group.</description>
<required>false</required>
<default/>
<parameterValueMap>LTG</parameterValueMap>
</parameter>
<parameter name="OPT" xsi:type="CompoundParameterType">
<description>Options associated with a service to be established or deleted. A maximum
of 20 options can be specified in any single command.</description>
<required>false</required>
<default/>
<parameterValueMap>OPT</parameterValueMap>
</parameter>
<parameter name="IS_OPTIMIZED" xsi:type="SimpleParameterType">
<description>A flag to indicate MML optimization of the command. The values are false
and true.</description>
<required>false</required>
<default>true</default>
<parameterValueMap>IS_OPTIMIZED</parameterValueMap>
</parameter>
<parameter name="ACT_CFB" xsi:type="SimpleParameterType">

Appendix A
Configuring ASAP Services

A-3

<description>Conditional flag to activate the CFB feature.</description>
<required>false</required>
<default/>
<parameterValueMap>ACT_CFB</parameterValueMap>
</parameter>
<parameter name="ACT_CFD" xsi:type="SimpleParameterType">
<description>Conditional flag to activate the CFD feature.</description>
<required>false</required>
<default/>
<parameterValueMap>ACT_CFD</parameterValueMap>
</parameter>
<parameter name="ACT_CFDA" xsi:type="SimpleParameterType">
<description>Conditional flag to activate the CFD feature.</description>
<required>false</required>
<default/>
<parameterValueMap>ACT_CFDA</parameterValueMap>
</parameter>
<parameter name="CUSTOM" xsi:type="CompoundParameterType">
<description>Customer-specific parameter.</description>
<required>false</required>
<default/>
<parameterValueMap>CUSTOM</parameterValueMap>
</parameter>
</atomicService>
<atomicService name="A_NT-DMS10_503-10_DEL_POTS-LINE"
xsi:type="AtomicServiceType">
<description>Deletes a POTS line.</description>
<sendParameterCount>false</sendParameterCount>
<parameter name="MCLI" xsi:type="SimpleParameterType">
<description>Host NE identifier.</description>
<required>true</required>
<default/>
<parameterValueMap>NE_ID_NT-DMS10</parameterValueMap>
</parameter>
<parameter name="NPA" xsi:type="SimpleParameterType">
<description>3 digit area code.</description>
<required>false</required>
<default/>
<parameterValueMap>NPA</parameterValueMap>
</parameter>
<parameter name="NXX" xsi:type="SimpleParameterType">
<description>First 3 digits of the line number.</description>
<required>true</required>
<default/>
<parameterValueMap>NXX</parameterValueMap>
</parameter>
<parameter name="LINE" xsi:type="SimpleParameterType">
<description>4 digit line extension.</description>
<required>true</required>
<default/>
<parameterValueMap>LINE</parameterValueMap>
</parameter>
<parameter name="CUSTOM" xsi:type="CompoundParameterType">
<description>Customer-specific parameter.</description>
<required>false</required>
<default/>
<parameterValueMap>CUSTOM</parameterValueMap>
</parameter>
</atomicService>

Appendix A
Configuring ASAP Services

A-4

Adding Supporting Data
For atomic actions that map to the JInterpreter device type, the supporting data will consist of
Java classes. Java classes are placed in the ..\java\lib directory within a .jar file. The
deviceMap section of the atomic action definition appears as follows:

<atomicDeviceMap name="A_NT-DMS10_503-10_ADD_POTS-LINE">
<deviceMap>
<description>(user_msg_only)</description>
<type>NT-DMS10</type>
<version>503-10</version>
<implementation>com.metasolv.cartridge.oss.nt_dms10_503_10.
 DMS10PotsLineProv.addNewLine</implementation>
<interpreter>JINTERPRETER_PROGRAM</interpreter>
</deviceMap>
</atomicDeviceMap>
<atomicDeviceMap name="A_NT-DMS10_503-10_DEL_POTS-LINE">
<deviceMap>
<description>(user_msg_only)</description>
<type>NT-DMS10</type>
<version>503-10</version>
<implementation>com.metasolv.cartridge.oss.nt_dms10_503_10.
 DMS10PotsLineProv.delPotsLine</implementation>
<interpreter>JINTERPRETER_PROGRAM</interpreter>
</deviceMap>
</atomicDeviceMap>

For atomic actions that map C/C++ device types, the supporting data will be State Tables.
State Tables are placed in the ..sarm\ne_progs\ directory within an *.npg file. The
atomicdeviceMap section of the atomic action definition appears as follows:

<atomicDeviceMap name="A-ADD_OPTION">
<deviceMap>
<description>Adds an option to the POTS line.</description>
<vendor>Nortel</vendor>
<type>DMS</type>
<version>BCS36<</version>
<implementation>ADD_DMS_POT_OPT</implementation>
<interpreter>STATE_TABLE</interpreter>
</deviceMap>
</atomicDeviceMap>

Configuring Service Actions
A service action command (referred to as a CommonServiceType in the XML schema) is an
ASAP command that is associated with a particular work order. The service action command
is associated with one or more operations on one or more NEs.

Each service action command within the SARM has a configuration record that you can set
up. This record contains the following attributes:

A service action definition appears as follows:

<commonService name="C_NT-DMS10_503-10_ADD_POTS-LINE">
<description>Adds a POTS line.</description>
<rollbackOnFailure>false</rollbackOnFailure>
<priority>30</priority>
<failEvent>

Appendix A
Configuring ASAP Services

A-5

<customEvent/>
</failEvent>
<completeEvent>
<customEvent/>
</completeEvent>

Mapping Atomic Actions to Service Actions
Following the service action configuration parameters, add one or more atomic actions
within <serviceMap> element. Atomic-action-to-service-action mappings consist of the
<atomicService> identifier and one or more optional conditions.

• atomicService – The atomic action identified in the atomicService name.

• pointOfNoReturn – The 'point of no return' value for partial rollbacks. Values are:

– 0 (default) – This atomic action is not the 'point of no return' for rollback
purposes

– 1 – This atomic action is the 'point of no return' for partial rollback. If rollback
occurs, and execution has continued beyond this point, roll back to this atomic
action but no further.

– 2 – 'point of no return' for no rollback. After past this atomic action, no rollback
can occur.

For more information, see "About Configuring a Rollback Point (Point of No
Return)."

• description – You can optionally provide a description of the atomic action.

• condition – Can be one of four types "A" (AlwaysConditionType),"D"
(DefinedConditionType),"N" (NotDefinedConditionType) and "E"
(EqualConditionType).

– If the condition is A, the SARM always generates the network action for this
service action. For example:

...
<condition xsi:type="AlwaysConditionType">
<expression>true</expression>
</condition>

or

<condition xsi:type="AlwaysConditionType"/>

• If the condition is D, the SARM only generates a particular atomic action if the
stated service action parameter is defined on the current service action. For
example:

...
<condition xsi:type="DefinedConditionType">
<expression/>
<parameterLabel>CCC</parameterLabel>
</condition>

• If the condition is N, the SARM only generates a particular atomic action if the
stated service action parameter is not defined on the current service action. For
example:

...
<condition xsi:type="NotDefinedConditionType">

Appendix A
Configuring ASAP Services

A-6

<expression/>
<parameterLabel>DDD</parameterLabel>
</condition>

• If the condition is E, the SARM only generates a particular atomic action if the stated
service action parameter is defined on the current service action and has a particular
parameter value. For example:

...
<condition xsi:type="EqualConditionType">
<expression>ABC LIKE "BCS%"</expression>
<parameterLabel>AAA</parameterLabel>
<parameterValue>12345</parameterValue>
</condition>
...

A complete service action definition, with the atomic action mappings highlighted in bold,
appears as follows:

<commonService name="C_NT-DMS10_503-10_ADD_POTS-LINE">
<description>Adds a POTS line.</description>
<rollbackOnFailure>false</rollbackOnFailure>
<priority>30</priority>
<failEvent>
<customEvent/>
</failEvent>
<completeEvent>
<customEvent/>
</completeEvent>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ADD_POTS-LINE</atomicService>
</serviceMap>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ACT_CFB-OPT</atomicService>
<pointOfNoReturn>1</pointOfNoReturn>
<condition xsi:type="AlwaysConditionType">
<expression>(ACT_CFB LIKE "Y%")</expression>
</condition>
</serviceMap>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ACT_CFD-OPT</atomicService>
<condition xsi:type="AlwaysConditionType">
<expression>(ACT_CFD LIKE "Y%")</expression>
</condition>
</serviceMap>
<serviceMap>
<atomicService>A_NT-DMS10_503-10_ACT_CFDA-OPT</atomicService>
<condition xsi:type="AlwaysConditionType">
<expression>(ACT_CFDA LIKE "Y%")</expression>
</condition>
</serviceMap>
</commonService>

Mapping User Exit Types to Base Exit Types
The ServiceModel.xsd XML schema file contains the following definitions:

<xsd:simpleType name="RegexPattern">
<xsd:annotation>
<xsd:documentation>Simple data type for representing regular
expression search pattern</xsd:documentation>

Appendix A
Configuring ASAP Services

A-7

</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="255"/>
<xsd:minLength value="1"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="BaseType">
<xsd:annotation>
<xsd:documentation>Simple data type for representing base
atomic action exit types</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">1

<xsd:enumeration value="SUCCEED"/>
<xsd:enumeration value="FAIL"/>
<xsd:enumeration value="RETRY"/>
<xsd:enumeration value="RETRY_DIS"/>
<xsd:enumeration value="MAINTENANCE"/>
<xsd:enumeration value="SOFT_FAIL"/>
<xsd:enumeration value="DELAYED_FAIL"/>
<xsd:enumeration value="STOP"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="UserType">
<xsd:annotation>
<xsd:documentation>Simple data type for representing user
defined atomic action exit types</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="20"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="NEDescriptor">
<xsd:annotation>
<xsd:documentation>
Identifier used for representing network element software load
and technology software load. Put in place so that
this information is represented as one logical unit of data.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="softwareLoad" type="sam:SoftwareLoadType"
minOccurs="0"/>
<xsd:element name="technology" type="sam:TechnologyType"/>
<xsd:element name="neVendor" type="sam:VendorType"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="UserDefinedExitType">
<xsd:annotation>
<xsd:documentation>
A logical representation of a user defined exit type to base type
mapping.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

1 The base types supported by this service model

Appendix A
Configuring ASAP Services

A-8

<xsd:element name="CSDL" type="sam:CommandType" minOccurs="0"/>
<xsd:element name="ASDL" type="sam:CommandType" minOccurs="0"/>
<xsd:element name="neDescriptor" type="sam:NEDescriptor"
minOccurs="0"/>
<xsd:element name="searchPattern" type="sam:RegexPattern" 2minOccurs="0"/>
<xsd:element name="userType" type="sam:UserType"/>
<xsd:element name="baseType" type="sam:BaseType"/>
<xsd:element name="description" type="sam:DescriptionType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

A sample instance document is illustrated below:

<serviceModel xmlns=http://www.metasolv.com/ServiceActivation/2003/ServiceModel
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.metasolv.com/ServiceActivation/2003/
ServiceModel
X:\...\Program\ASAP\4.7.1\920_Analysis+Design\Schema\ServiceModel.xsd">
…
…
</commonService>
<userDefinedExitType>
<CSDL>C-ADD_POTS_LINE</CSDL>
<ASDL>A-ADD_POTS_LINE</ASDL>
<neDescriptor>
<softwareLoad>DYNAMIC_SL</softwareLoad>
<technology>DYNAMIC_VENDOR-DYNAMIC_TECH</technology>
</neDescriptor>
<searchPattern>SUCCESS.</searchPattern>3

<userType>U_SUCCEED</userType>4

<baseType>SUCCEED</baseType>5

<description>The Atomic Action provisioning was successful</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>90.</searchPattern>
<userType>U_FAIL</userType>
<baseType>FAIL</baseType>
<description>The Atomic Action failed - fail the current order
and stop processing.</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>101-110[201-215]</searchPattern>6

<userType>U_SOFT_FAIL</userType>
<baseType>SOFT_FAIL</baseType>
<description>The Atomic Action has encountered a soft failure. Processing will
continue.</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>801-850</searchPattern>7

2 The mapping between base and user types, with an optional search pattern and description.
3 Pattern searches accommodate situations in which responses from the device contain small variants that represent the

same meaning. The user type contains an associated search pattern that is applied at runtime. Using regular
expressions, you can default a series of responses. For example a regular expression "90." can specify a pattern where
any response with the character "90" followed by any character will translate to base type of FAIL. If the regular
expression is defined as "90*", then any response with the character "90" followed by any number of characters will
translate to base type of FAIL

4 The user type that the search pattern maps to.
5 The base type that maps to the user type.
6 101 to 110 and 201 to 215 will translate to a base type of SOFT_FAIL

Appendix A
Configuring ASAP Services

A-9

<userType>U_MINOR_ERROR</userType>
<baseType>SOFT_FAIL</baseType>
<description>The Atomic Action has encountered a soft failure. Processing will
continue.</description>
</userDefinedExitType>
<userDefinedExitType>
<searchPattern>251-275&&[ˆ261-265]</searchPattern>8

<userType>U_DELAYED_FAIL</userType>
<baseType>DELAYED_FAIL</baseType>
<description>The Atomic Action has failed during provisioning.</description>
</userDefinedExitType>
<userDefinedExitType>
<CSDL>C-DEL_POTS_LINE</CSDL>
<ASDL>A-DEL_POTS_LINE</ASDL>
<neDescriptor>
<softwareLoad>BCS36</softwareLoad>
<technology>NORTEL_DMS</technology>
<neVendor>Nortel</neVendor>
</neDescriptor>
<searchPattern>*.</searchPattern>
<userType>U_MAINTAIN</userType>
<baseType>MAINTENANCE</baseType>
<description>The Atomic Action will Wait until the NE comes out of
Maintenance Mode</description>
</userDefinedExitType>
</serviceModel>

The previous code sample shows some typical search pattern examples.

Creating Activation-Model.xml
The deployment descriptor must be named activation-model.xml and must reside in
the top level of the META-INF directory of the service activation archive (SAR) file. The
deployment descriptor must be a valid XML document according to the schema for an
activation model deployment descriptor XML document.

When you define an activation model, Oracle recommends that you define your own
unique namespace and corresponding namespace prefix for your names. For
example:

<activationModel targetNamespace="Nortel,UEIMAS,5.2,ADSL/ATM,DSL 2.0.7"
xmlns="http://www.metasolv.com/2003/ServiceActivation/ActivationModel"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:imas="Nortel,UEIMAS,5.2,ADSL/ATM,DSL 2.0.7"
xmlns:foo="foo,bar"
xsi:schemaLocation="http://www.metasolv.com/2003/ServiceActivation/
ActivationModel
D:\ccm_databases\ASAP~smith_windows\ASAP\jmx\xsd\SA_Archive.xsd">
 <vendor>String</vendor>
 <version/>
 <name>String</name>
 <components>
 <component>
 <serviceModel>my_service_model.xml</serviceModel>
 </component>
 </components>
</activationModel>

In this example, any new IDs (commonServices, atomicServices, etc.) defined in the
activation model are scoped by the target namespace. Any references to IDs in other7 801-850 will translate to a base type of SOFT_FAIL. Note that the user type differs from the previous range.

8 251 to 275 but not 261 to 265 will translate to a base type of DELAYED_FAILURE.

Appendix A
Configuring ASAP Services

A-10

activation models must be prefixed by the appropriate namespace (for example, foo:name).
Any references to IDs in the current activation model must also be prefixed because the
default namespace (xmlns=) refers to the activation model schema namespace. The
semantics for the XML schema are the same.

Any service models defined in this SAR must also define the IMAS namespace because any
common services, atomic services, and so forth, defined in the service model are scoped by
the target namespace. Any references to IDs in other cartridges must be prefixed by the
appropriate namespace.

Configuring Network Element Throughput Using XML
NE instance throughput (expressed as the number of milliseconds per transaction on an NE)
can be configured using XML through the SACT or using asap_utils. (See asap_utils option
18. Set NE instance throughput in the ASAP Server Configuration Guide for more
information).

For general information on NE throughput configuration, see the ASAP Server Configuration
Guide.

The Activation Configuration XML schema supports configuration of NE instance throughput
through the ElementType and DynamicRoutingTemplateType schema definitions, illustrated
below:

Figure A-1 ElementType Schema

Appendix A
Configuring ASAP Services

A-11

Figure A-2 DynamicRoutingTemplateType Schema

Appendix A
Configuring ASAP Services

A-12

B
Configuring Services Using Stored
Procedures

This appendix describes stored procedures used to create Oracle Communications ASAP
service models.

Note:

Stored procedures have been deprecated.

Configuring ASAP Services Using Stored Procedures
The configuration of ASAP services using stored procedures consists of the following steps:

• Configuring Service Actions

• Configuring Atomic Actions

• Configuring Atomic Action Parameters

• Configuring Service Action-to-Atomic Action Mappings

• Configuring Atomic Action-to-Program Mappings

Configuring Service Actions
Use the following stored procedures to define, list, and delete service action commands:

• SSP_new_csdl_defn – Defines a service action command in the SARM database.

• SSP_list_csdl_defn – Lists configuration information for the service action command
you specify from the SARM database. This information includes the rollback flag, service
action command service action level, fail and completion events, and a description of the
command. If you do not specify a service action command, the procedure returns
information on all service action commands currently defined in the SARM.

• SSP_del_csdl_defn – Deletes service action definitions from the SARM database.

For more information on these stored procedures and tbl_csdl_config, refer to the ASAP
Developer's Guide.

Configuring Atomic Actions
Use the following stored procedures to define, list, and delete atomic actions:

• SSP_new_asdl_defn – Defines an atomic action configuration record in the SARM
database.

B-1

• SSP_list_asdl_defn – Lists all or specific atomic action definitions from the SARM
database. You can use wildcards in this procedure. If you do not specify a
parameter, all atomic action definitions are listed.

• SSP_del_asdl_defn – Deletes atomic action definitions from the SARM database.

For more information on these stored procedures and tbl_asdl_config, refer to the
ASAP Developer's Guide.

Configuring Atomic Action Parameters
Use the following stored procedures to define, list, and delete atomic action
parameters:

• SSP_new_asdl_parm – This stored procedure defines up to nine atomic action
parameters in a single stored procedure call for the specified atomic action starting
at base_seq_no.

• SSP_list_asdl_parm – This stored procedure lists atomic action parameters from
the SARM database by atomic action name and/or atomic action parameter label.

• SSP_del_asdl_parm – This stored procedure deletes an atomic action parameter
from the specified atomic action.

These stored procedures populate tbl_asdl_parm. For more information, refer to the
ASAP Developer's Guide.

Configuring Service Action-to-Atomic Action Mappings
The following stored procedures update tbl_csdl_asdl. tbl_csdl_asdl is a static table
that is used by the SARM and contains the mapping between service action
commands and atomic actions. For each atomic action associated with a service
action, the SARM verifies whether the atomic action should be spawned for the
specified service action. The final determination of whether the atomic action is
spawned depends on the atomic action parameter translation process specified by
tbl_asdl_parm.

Use the following stored procedures to define, list, and delete service action to atomic
action mappings:

• SSP_new_csdl_asdl – This stored procedure defines up to nine service action-to-
atomic action mappings at a time from a service action command to one or more
atomic actions with consecutive numbers starting at base_seq_no=1 in the SARM
database.

• SSP_new_csdl_asdl_idx – This stored procedure allow multiple conditions to be
inserted into tbl_csdl_asdl_eval.

• SSP_list_csdl_asdl – This stored procedure lists service action-to-atomic action
mapping definitions.

• SSP_del_csdl_asdl – This stored procedure deletes service action-to-atomic
action mapping definitions from the SARM database.

These stored procedures populate tbl_csdl_asdl and tbl_csdl_asdl_eval. For more
information, refer to the ASAP Developer's Guide.

Appendix B
Configuring ASAP Services Using Stored Procedures

B-2

Configuring Atomic Action-to-Program Mappings
Use the following stored procedures to define, list, and delete atomic action-to-program
mappings:

• SSP_new_asdl_map – This stored procedure defines a mapping from an atomic action
to a program based on the technology and software load in the SARM database.

• SSP_list_asdl_map – This stored procedure lists atomic action-to-program mappings
according to various criteria.

• SSP_del_asdl_map – This stored procedure deletes atomic action-to-program
mappings. The mapping is based on the technology and software load.

For more information on these stored procedures and tbl_nep_asdl_prog, refer to the ASAP
Developer's Guide.

Configuring Network Elements Using Stored Procedures
The definition of host network elements (NEs) consists of the following procedures:

• Configuring Host Network Elements

• Configuring Host to Remote Network Element Mappings

• Configuring NEP-to-Host NE Mappings

• Configuring Resource Pools

• Configuring Communication Parameters

• Configuring Network Element Error Thresholds

• Configuring User Errors and Thresholds

• Configuring Static Routing

• Configuring Network Element Blackout Periods (optional)

Configuring Host Network Elements
tbl_host_clli is a static table that contains the host NE, the technology, and the software load
of each NE in the ASAP system. It also contains records for each host NE to which the NEPs
interface. You must populate this table to determine which NEs the NEP interfaces with.

Use the following stored procedures to define, list, and delete host NEs:

• SSP_new_ne_host – This stored procedure defines a host NE with its technology type,
software version, and inventory manager in the SARM database.

• SSP_list_ne_host – This stored procedure lists host NE definitions.

• SSP_list_host – This stored procedure retrieves host-related information from
tbl_resource_pool, tbl_ne_config, and tbl_clli_route.

• SSP_del_ne_host – This stored procedure deletes a host NE definition from the SARM
database.

Appendix B
Configuring Network Elements Using Stored Procedures

B-3

Note:

You cannot delete a host NE that has a mapping relationship with either
an NEP or a remote NE. Any mapping relationship must therefore be
deleted prior to deleting the host NE.

For more information on these stored procedures and tbl_host_clli, refer to the ASAP
Developer's Guide.

Configuring Host to Remote Network Element Mappings
tbl_clli_route is a static table that contains the mapping between a remote NE and its
host NE. You must populate this table to specify remote NE to host NE mappings.

Use the following stored procedures to define, list, and delete mappings from a remote
NE to a host NE:

• SSP_new_clli_map – This stored procedure defines a mapping from a remote
CLLI to a Host CLLI in the SARM database.

• SSP_list_clli_map – This stored procedure lists remote CLLI-to-Host CLLI
mapping definitions.

• SSP_del_clli_map – This stored procedure deletes a remote CLLI to host CLLI
mapping.

For more information on these stored procedures and tbl_clli_route, refer to the
ASAP Developer's Guide.

Any changes you make to the mapping relationships between host NEs to remote
NEs, only take effect at runtime. All other changes require that you restart the SARM.

Configuring NEP-to-Host NE Mappings
NEP to host NE mappings are defined in tbl_ne_config.

Use the following stored procedures to configure NEP to host NE mappings.

• SSP_new_net_elem – This stored procedure defines a host NE in the SARM
database and identifies the logical name of the NEP that connects to this host NE.
It also defines the loopback setting for the NE.

• SSP_list_net_elem – This stored procedure lists NE definitions based on the host
NE and/or NEP server you specify.

• SSP_del_net_elem – This stored procedure deletes an NE definition for an NEP
from the SARM database.

• SSP_set_ne_loopback – This stored function is called by NEP server to update
the table tbl_ne_config when the loop back state is set to ON, OFF, or GLOBAL
through the utility tool asap_utils.

For more information on these stored procedures and tbl_ne_config, refer to the
ASAP Developer's Guide.

Appendix B
Configuring Network Elements Using Stored Procedures

B-4

Configuring Resource Pools
tbl_resource_pool is a static table that defines the collection of command processors
(devices) that the NEP uses to establish connections to NEs. Groups of command
processors are called resource pools. Each NE configuration determines a primary resource
pool that defines one or more devices the NEP uses to connect to that NE. These devices
are not used to connect to other NEs. Each NEP has an auxiliary resource pool that contains
devices used by the NEP to establish connections to any NE managed by the NEP. These
primary and auxiliary resource pools are defined in this table. You must populate this table to
add command processors.

Use the following stored procedures to define, delete, and list command processors:

• SSP_new_resource – This stored procedure defines an NEP resource (“device") to be
used for NE access in the SARM database.

• SSP_del_resource – This stored procedure deletes an NEP resource record from the
SARM database.

• SSP_list_resource – This stored procedure lists NEP resource records.

For more information on these stored procedures and tbl_resource_pool, refer to the ASAP
Developer's Guide.

Configuring Communication Parameters
tbl_comm_param contains communication parameters required for the NEP to communicate
with various external systems. You must populate this table to configure communication
parameters.

For more information on tbl_comm_param, refer to the ASAP Developer's Guide.

Use the following stored procedures to define, list, and delete communication parameters:

• SSP_new_comm_param – This stored procedure defines a communication parameter
for a specified device type, host, and device into the SARM database.

• SSP_list_comm_param – This stored procedure lists communication parameter
information for dev_type, host, device, param_label, or for all of them.

• SSP_del_comm_param – This stored procedure deletes communication parameter
information from the SARM database.

Configuring Network Element Error Thresholds
Use the following stored procedures to define, list, and delete error thresholds.

• SSP_new_err_threshold – This stored procedure defines error thresholds for a specific
NE and atomic action.

• SSP_list_err_threshold – This stored procedure lists the error thresholds for a specific
NE and atomic action.

• SSP_del_err_threshold – This stored procedure deletes error thresholds for a specific
NE and atomic action.

For more information on these stored procedures, refer to ASAP Developer's Guide.

Appendix B
Configuring Network Elements Using Stored Procedures

B-5

Configuring User Errors and Thresholds
Use the following stored procedures to define, list, and delete user errors.

• SSP_new_err_type – This function configures the mapping between user-defined
error types and the base-error types.

• SSP_list_err_type – This function lists the mapping between user-defined error
types and the base-error types.

• SSP_del_err_type – This function deletes the mapping of user-defined error
types.

Use the following stored procedures to define, list, and delete user error thresholds.

• SSP_new_user_err_threshold – This stored procedure creates a new user-
defined error threshold in the system for the specified NE, atomic action, and the
user-defined error type.

• SSP_list_user_err_threshold – This stored procedure is used to list the user-
defined error thresholds for a specific NE, atomic action, and user error type.

• SSP_del_user_err_threshold – This stored procedure deletes a user-defined
error threshold or set of thresholds.

For more information on these stored procedures, refer to ASAP Developer's Guide.

Configuring Static Routing

Configuring Atomic Action Routings by ID_ROUTING Using Stored Procedures
The stored procedures that you can use as external interfaces are the following:

• SSP_list_id_routing (RC1, host_clli) – Lists the host NE and ID_ROUTING
mapping records in the SARM database.

• SSP_new_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) –
Defines the host NE and ID_ROUTING mapping records in the SARM database.

• SSP_del_id_routing (host_clli, asdl_cmd, id_routing_from, id_routing_to) –
Deletes the host NE and ID_ROUTING mapping records from the SARM
database.

For more information on these stored procedures, refer to the ASAP Developer's
Guide.

The following steps must be followed when routing by ID_ROUTING:

1. Populating the routing table (tbl_id_routing).

2. Defining the atomic action parameter. A sample is located
in ..\samples\ASDL_ROUTE\oraRoutingServices.

3. Defining the work order. A sample is located
in ..\samples\ASDL_ROUTE\RoutingSrpInput.

4. Starting ASAP and submitting the work order.

The following examples provide samples of how each step can be configured.

Appendix B
Configuring Network Elements Using Stored Procedures

B-6

The following example displays how to populate tbl_id_routing.

sqlplus -s $SARM_USER/$(GetPassword $SARM_USER 2)
<<HERE | grep -v "successfully completed"

set serveroutput on
var retval number

prompt Defining the ID_ROUTING Configurations

exec :retval := SSP_del_id_routing ;

exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'BAL', ‘CAL');
exec :retval := SSP_new_id_routing ('BALTIMORE', '', 'DEL', ‘FAL);
exec :retval := SSP_new_id_routing ('BOSTON', '', '120000', ‘220000');

HERE

You can add new records to the database dynamically without downtime on the server by
using the “Add new NE Configuration" command (113) of asap_utils. This command must be
used after loading the ASAP database.

For more information on asap_utils, see the ASAP Server Configuration Guide.

For more information on the tbl_id_routing table, see the ASAP Developer's Guide.

Configuring Atomic Action Routings by USER_ROUTING
You can perform atomic action routing by using a user-defined procedure. Routing by user-
defined procedure provides the following:

• Allows for custom provided logic for atomic action routing.

• Uses the atomic action parameter USER_ROUTING.

• Uses the external interface SSP_get_user_routing.

• Allows you to write your own routing logic using the predefined external user interface.

The USER_ROUTING parameter can be represented as any string of characters to a
maximum of 255 characters. You can define it as part of a work order, or as a service action
parameter.

If the atomic action parameter USER_ROUTING information is provided in the work order,
then the user-defined stored procedure is called. The user-defined procedure takes the
asdl_cmd and the value of USER_ROUTING as input arguments, and returns the host NE to
be routed.

You can use the following stored procedure as an external interface:

• SSP_get_user_routing (user_routing, asdl_cmd, host_clli, ret_val) – Returns a host NE
(host_clli) that is used to route the atomic action. You must provide your own routing logic
in the body of SSP_get_user_routing to find the host NE (CLLI) using the
USER_ROUTING atomic action parameters, and the asdl_cmd if required.

For more information on the above stored procedure, refer to the ASAP Developer's Guide.

To use USER_ROUTING, perform the following steps:

1. Write the stored procedure SSP_USER_ROUTING. A sample is located
in ..\samples\ASDL_ROUTE\user_routing_proc.sp.

Appendix B
Configuring Network Elements Using Stored Procedures

B-7

2. Define and populate the routing table, if required. A sample is located
in ..\samples\ASDL_ROUTE\user_routing_table.tbl
and ..\samples\ASDL_ROUTE\oraLoadRouting.

3. Define the atomic action parameter. A sample is located
in ..\samples\ASDL_ROUTE\oraRoutingServices.

4. Define the work order. A sample is located
in ..\samples\ASDL_ROUTE\RoutingSrpInput.

5. Run ASAP and submit the work order.

When you choose a user-defined procedure with a database table, the database must
be accessed every time the routing is requested. Consequently, there will be a slight
performance degradation.

Configuring Atomic Action Routings by Distinguished Name
You can edit routing definitions provided the new routing definition does not already
exist in ASAP.

• SSP_new_dn_map – This stored procedure defines atomic action routings by
directory number.

• SSP_list_dn_map – This stored procedure lists directory mappings for atomic
action, directory, exchange number, or for all of them.

• SSP_del_dn_map – This stored procedure deletes a directory number mapping
from the SARM database.

Configuring Network Element Blackout Periods (optional)
Use the following stored procedures to define, list, and delete blackout definitions.

• SSP_add_blackout – This procedure configures the static and dynamic blackout
periods for a specific NE host.

• SSP_list_blackout – This procedure lists blackout periods for a specific NE host.

• SSP_del_blackout – This procedure removes blackout periods for a specific NE
host.

For more information on these stored procedures, refer to ASAP Developer's Guide.

Checking Network Element Blackout Periods
The stored procedure SSP_check_blackout enables you to check whether or not the
specified NE is currently blacked out.

For more information on this stored procedures, refer to ASAP Developer's Guide.

Configuring External Device Drivers (Deprecated)
The NEP communicates directly with NEs. However, support for a communications
protocol may require a library that cannot co-exist with the libraries used by the NEP.
In this case the required library is embedded in an External Device Driver (EDD), and
the NEP communicates with the NEs through the EDD.

Appendix B
Configuring External Device Drivers (Deprecated)

B-8

ASAP provides an EDD for non-UNIX or non-Linux devices (X.25, X.29, and SNMP) that
communicate with NEs. The EDD acts as a gateway to transmit data between the NE and the
NEP. The EDD can be used for either terminal emulation-type and message-type
communication.

To configure an EDD, you must perform the following steps:

• Adding an EDD to ASAP Start-up Procedures

• Adding an EDD as an ASAP Component

• Setting EDD Communication Parameters

• Setting EDD Configuration Parameters

Refer also to the ASAP Developer's Guide.

Adding an EDD to ASAP Start-up Procedures
tbl_appl_proc is a static table that contains ASAP application information. ASAP uses this
table to determine which applications to start, and the startup sequence. You must populate
this table to add an EDD to the start-up procedure.

For more information on tbl_appl_proc, see tbl_appl_proc.

Use the following stored procedures to define, list, and delete EDDs:

• CSP_new_appl – This stored procedure defines a new ASAP client or server application.

• CSP_list_appl – This stored procedure lists ASAP application registration information for
the specified appl_cd or all applications from the Control database.

• CSP_del_appl – This stored procedure deletes ASAP application registration information
from the Control database.

For more information on these stored procedures, refer to the ASAP Developer's Guide.

Adding an EDD as an ASAP Component
tbl_component is a static table that contains a list of ASAP components for each ASAP
territory and system. You must populate this table to add an EDD as an ASAP component.

For more information on tbl_component, see tbl_component.

Use the following stored procedures to define, list, and delete EDDs in a territory are:

• CSP_new_component – This stored procedure defines an ASAP component in a
territory.

• CSP_list_component – This stored procedure lists ASAP components.

• CSP_del_component – This stored procedure deletes an ASAP component.

For more information on these stored procedures, refer to the ASAP Developer's Guide.

Setting EDD Communication Parameters
tbl_comm_param contains communication parameters required for the NEP to communicate
with various external systems. You must populate this table to configure communication
parameters.

Appendix B
Configuring External Device Drivers (Deprecated)

B-9

Each device (command processor) in the NEP must be instructed as to which EDD it
connects to. You must add the EDD IP address and port number to the
tbl_comm_param table. The following tables identify the optional parameters that
define the behavior of the EDD.

Device drivers for some device interfaces cannot exist within the NEP. To handle these
external device drivers, the NEP has a generic terminal-based device driver.

Table B-1 Generic Port Terminal-based Communication Parameters

Parameter Default Description

Mandatory Parameters N/A -

EDD_HOST_IPADDR N/A Network IP address for the machine on which the
external device driver runs.

EDD_PORT N/A EDD Listener Service port number.

Optional Parameters N/A -

OPEN_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits
to open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 10 The wait timeout period, in seconds, that ASAP waits
to write to the device.

READ_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits
to read from the device. Currently, this is only
applicable to the socket interface.

DISABLE_PORT_ON_L
OGIN

N/A Determines whether the port should be disabled if
login to the NE fails. If the parameter is equal to zero,
then the port is not disabled.

VS_WIDTH N/A Virtual Screen width.

VS_LENGTH N/A Virtual Screen length.

VS_CRLF_MAP N/A A boolean flag that you can set to map LF to CR_LF
automatically. The default is set not to map.

GR_WAIT_TIMEOUT N/A The wait timeout period, in seconds, that the thread
reading from the Virtual Screen waits for the thread
writing to the Virtual Screen to notify it of any new
data. Increase this value if the State Table processing
fails before data arrives from the NE.

SOCKET_CLIENT N/A Socket server or client. The only valid value is ‘C'
because the communication is a Telnet client. Not valid
for the Java Telnet Interface.

HOST_NAME N/A Machine name for the host NE.

HOST_IPADDR N/A Network IP address for the host NE.

PORT N/A Telnet service port.

EDD_SOCKET_CLIENT C Socket server or client. The only valid value is ‘C'
because the communication from the NEP to the EDD
is a socket client.

EDD_SA_FAMILY 2 The only valid value is ‘2' because only the Internet
address family is supported.

EDD_HOST_NAME "" Name of the machine on which the external device
driver runs.

Appendix B
Configuring External Device Drivers (Deprecated)

B-10

Device drivers for some device interfaces cannot exist within the NEP. To handle these
external device drivers, the NEP has a generic message-based device driver.

Table B-2 Generic Port Message-based Communication Parameters

Parameter Default Description

Mandatory Parameters N/A N/A

EDD_HOST_IPADDR N/A Network IP address for the machine on which the external
device driver runs.

EDD_PORT N/A EDD Listener Service port number.

Optional Parameters N/A N/A

OPEN_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to
open the device. The wait timeout parameter is only
applicable to the serial interface.

WRITE_TIMEOUT 10 The wait timeout period, in seconds, that ASAP waits to
write to the device.

READ_TIMEOUT N/A The wait timeout period, in seconds, that ASAP waits to
read from the device. Currently, this is only applicable to the
socket interface.

DISABLE_PORT_ON_LOG
IN

N/A Determines whether the port should be disabled if login to
the NE fails. If the parameter is equal to zero, then the port
is not disabled.

SOCKET_CLIENT N/A Socket server or client. The only valid value is ‘C' because
the communication is a Telnet client. Not valid for the Java
Telnet Interface.

EDD_SOCKET_CLIENT C Socket server or client. The only valid value is ‘C' because
the communication from the NEP to the EDD is a socket
client.

EDD_SA_FAMILY 2 The only valid value is ‘2' because only the Internet
address family is supported.

EDD_HOST_NAME "" Name of the machine on which the external device driver
runs.

Setting Communication Parameters for X.25 and X.29 Interfaces

You must ensure that all mandatory parameters are set in tbl_comm_param before starting
ASAP. The parameters must be set up properly in order for the NEP to establish a connection
to the X.2X EDD.

For more information on tbl_comm_param, see tbl_comm_param in the ASAP Developer's
Guide.

Table B-3 X. 25 and X.29 Interface Communication Parameters

Parameter Label Default Description

EDD_HOST_IPADDR None The IP address of X.2X EDD for the NEP to establish
connections.

EDD_PORT None The port number of X.2X EDD for the NEP to establish
connections.

Appendix B
Configuring External Device Drivers (Deprecated)

B-11

Table B-3 (Cont.) X. 25 and X.29 Interface Communication Parameters

Parameter Label Default Description

X25_VC_TYPE S The virtual circuit, either SVC or PVC.

Possible values:

• P - PVC (Permanent Virtual Circuit)
• S - SVC (Switched Virtual Circuit)

X25_CALLING_ADDR None The calling address on X.25.

X25_CALLED_ADDR None The called address on X.25.

X25_CUD NULL The call user data. The data should be hexadecimal
format. If the protocol for the connection is X.29, the first 8
characters must be '01000000'.

X25_LINK_ID 0xff The X.25 link ID number.

When this parameter is 0xff, SunLink X.25 attempts to
match the called address with an entry in a routing
configuration file. If it cannot find a match, it routes the call
over the lowest numbered WAN link.

X25_INTERFACE NULL The name of the X.25 interface set during the set up of
the X.25 configuration.

For HP, the “Programmatic Access Name" value is
equivalent to the X25_INTERFACE value.

yX25_LOG_CHANNEL_I
D

None The logical channel numbers on X.25.

X25_D_BIT 1 Boolean flag that enables D bit on X.25. Possible values:
'1' or '0'.

If the flag is '1', the NE always responds to the previous
data packet for the remote DTE.

EDD_CONNECTION_TI
ME

60 The connection timeout interval to retrieve EDD header
information.

The following table describes the SNMP State Table API communication parameters
for the EDD in the tbl_comm_param SARM database.

For more information on tbl_comm_param, see tbl_comm_param in the ASAP
Developer's Guide.

Table B-4 SNMP NE Interface Communication Parameters

Parameter Required Description

REMOTE_AGT_NAME Optional Specifies the name of the SNMP agent.

REMOTE_AGT_IP_ADDR Optional Specifies the IP address of the SNMP
agent.

REMOTE_AGT_PORT Optional Specifies the port number of the SNMP
agent.

REMOTE_MGR_NAME Optional Specifies the name of the SNMP Manager.

REMOTE_MGR_IP_ADDR Optional Specifies the IP address of the SNMP
Manager.

Appendix B
Configuring External Device Drivers (Deprecated)

B-12

Table B-4 (Cont.) SNMP NE Interface Communication Parameters

Parameter Required Description

REMOTE_MGR_PORT Optional Specifies the port number of the SNMP
Manager.

SNMP_V1_AUTH_INFO Mandatory for
SNMPv1

Specifies the community string for SNMP
version 1.

SNMP_V2C_AUTH_INFO Mandatory for
SNMPv2c

Specifies the community string for the
SNMP version 2C.

SNMPv3_AUTH_USER Mandatory for
SNMPv3

Specifies the authorized user for SNMP
version 3.

SNMP_TRAP_PORT Optional Specifies the port number which the SNMP
trap will be delivered. If it is not specified,
no trap message is delivered.

SNMP_NEED_INFORM Optional Specifies whether the EDD accepts the
SNMP Inform Request. Set this value to 1 if
Inform request is accepted.

WRITE_TIMEOUT Optional Specifies the maximum amount of time in
seconds that a State Table program waits
for the response to become available. The
default value is 5 seconds.

EDD_HOST_IP_ADDR Mandatory Network IP address for the machine on
which the EDD runs.

EDD_PORT Mandatory EDD Listener Service port number.

EDD_SA_FAMILY Mandatory Socket family. The only valid value is 2,
because only Internet Address Family is
supported.

Use the following stored procedures to define and delete communication parameters:

• SSP_new_comm_param – This stored procedure defines a communication parameter
for a specified device type, host, and device into the SARM database.

• SSP_del_comm_param – This stored procedure deletes communication parameter
information from the SARM database.

For more information on these stored procedures, see the ASAP Developer's Guide.

Setting EDD Configuration Parameters
The EDD determines its IP address and port number from the ASAP.cfg file. The IP address
is specified by the variable SERVER_IPADDR and the port number is specified by
SERVER_PORT.

For more information on configuration parameters for each optional NE interface, refer to the
appropriate NE Interface section of this chapter.

X.25 and X.29 Interface Configuration Parameters
The NEP supports the X.25 and X.29 protocols. The X.2X EDD is an external device driver
that allows the NEP to easily communicate with an NE through either the X.25 or X.29
protocol.

Appendix B
Configuring External Device Drivers (Deprecated)

B-13

The EDD acts as a gateway where each connection goes into the X.25 EDD and
comes out as one X.25 logical channel. Each command processor deals with one X.25
logical channel.

The X.2X EDD communicates with an NE through X.25 when the NE is in packet
mode. The X.2X EDD is also able to communicate with an NE through X.29 when the
NE is in non-packet mode DTE (Data Terminal Equipment), or start-stop mode DTE.

Figure B-1 X.2X EDD Interface

For more information, see the discussion on BX25_EDD configuration parameters in
the ASAP Server Configuration Guide.

SNMP Interface Configuration Parameters
ASAP includes NEP support for the SNMP NE Interface.

This section describes the configurable aspects of the SNMP NE interface and the
configuration process.

Appendix B
Configuring External Device Drivers (Deprecated)

B-14

Figure B-2 SNMP NE Interface

SNMP Research Toolkit Configuration

The SNMP Research BRASS (Bilingual Request and Security Subsystem) Server is used to
support the SNMP option. The BRASS Server is a management multiplexer that is used with
the ASAP SNMP NEP. The BRASS Server maintains information about MIB variables,
performs SNMP requests and filters incoming SNMP Trap messages. As a multiplexer, the
BRASS Server coordinates SNMP management operations for many connected instances of
ASAP SNMP NEP applications.

SNMP Research Asynchronous Request Library requires an environment variable named
SR_MGR_CONF_DIR to determine where the MIB compiler generated configuration files are
located.

The BRASS Server is bundled with ASAP, however, it must be started manually prior to
starting the SNMP NEP.

For more information, refer to SNMP Research documentation.

Appendix B
Configuring External Device Drivers (Deprecated)

B-15

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Overview
	About Cartridge Creation Options
	Design Studio for ASAP
	XML
	Stored Procedures

	About ASAP Cartridges
	ASAP Cartridge Contents
	Cartridge Creation Workflow

	About Cartridge XML Schemas
	ServiceModel.xsd
	SA_archive.xsd

	About Service Modeling

	2 Creating a Cartridge Project
	About Cartridge Types
	Defining Network Cartridge Project Parameters
	Defining Network Cartridge Identification Tokens
	Selecting the Vendor Token
	Selecting the Technology Token
	Selecting the Software Load Token

	Defining the Scope of the Network Cartridge
	Creating a Design Studio Project

	Defining Service Cartridge Project Parameters
	Importing and Extending Network Cartridges in Service Cartridges

	3 Configuring Network Element Connections
	About Network Element Configuration Components
	About Network Elements and Network Element Connections
	Network Elements and Network Element Connections
	Creating and Configuring Network Element and Network Element Connections

	Adding Target Network Elements
	Setting Network Element Throughput Control

	About Configuring a Java Network Connection Handler or State Table
	Creating an Network Element Connection Handler

	Mapping a Network Element to a Network Element Processor

	4 Mapping Network Element Commands to Actions, Entities, and Parameters
	About Identifying Network Element Commands and Parameters
	Defining Actions and Entities
	Selecting the Action Tokens
	Selecting Entity Tokens

	Generating a Cartridge Layout
	About Parameter Types
	Default Values Rules and Guidelines

	About Creating a Data Dictionary
	Creating an ASAP Cartridge Project Data Dictionary Using Design Studio
	Scalar Parameters
	Creating a Scalar Parameter using Design Studio

	Indexed Parameters
	Compound Parameters
	Creating a Compound Parameter using Design Studio
	Compound Indexed Parameters
	Compound Parameters Rules and Guidelines

	XML Parameters
	Creating an XML Parameter using Design Studio

	XPath Parameters
	Creating an XPATH Parameter using Design Studio

	Grouping Scalar Parameters using Design Studio Structured Elements

	5 Creating and Configuring Atomic Actions
	About Creating and Configuring Atomic Actions
	Creating and Configuring an Atomic Action

	About Retry Properties
	Example 1: Configuring Retry Properties at the Network Element Instance Level
	Example 2: Configuring Retry Properties at the Atomic Action Level

	About Delayed Failure Properties
	About Composite Priorities
	About Configuring a Rollback Atomic Action
	About Rollback Atomic Action Parameters
	About Atomic Action Rollback Functionality
	Rollback Order
	Rollback Failure
	Order Timeout
	Rollback Completion
	Rollback Upon Failure
	Rollback Upon Cancellation of an Order
	Rollback Upon Revision to an Order

	Configuring ignore_rollback

	6 Configuring Static Routing
	Configuring Static Network Element Routing
	Configuring Atomic Action Routings by Using a Network Element
	Configuring Atomic Action Routings by Using ID_ROUTING
	Routing by ID_ROUTING

	Configuring Atomic Action Routings by Using USER_ROUTING
	Configuring Atomic Action Routings by Using a Directory Number

	7 Configuring Dynamic Routing
	Configuring Dynamic Network Element Routing
	Enabling Dynamic Routing
	Network Template Configuration

	Dynamic Network Element Routing Scenarios
	Network Element Identification
	Scenario 1 – One Service Action to Multiple Atomic Actions Routed to One NE
	Scenario 2 – One Service Action to Multiple Atomic Actions Routed to Different NEs
	Scenario 3 – One Service Action to Multiple Atomic Actions Routed to Different NEs
	Scenario 4 – One Service Action to Multiple Atomic Actions Routed to Multiple NEs
	Scenario 5 – One Service Action to Multiple Atomic Actions Routed to Different NEs
	Scenario 6 – Common URL
	Dynamic Routing Configuration Errors
	Managing Communication and Order Parameters
	Backward Support for MPM Protocols
	Software Load and Technology Type
	NE Configuration Parameters

	8 Creating Service Actions
	About Creating and Configuring Service Actions
	Creating Service Actions
	Configuring Service Action Default Sequence
	Configuring Service Action Fail and Complete Events

	About Mapping a Service Action to Atomic Actions
	About Limiting Independent Network Element Commands to Optimizing the Network Element Interface
	Adding Atomic Actions to a Service Action

	About Atomic Action Spawning Logic
	Configuring Atomic Action Spawning Conditions
	Components of Service-Action-to-Atomic-Action Translation Expressions
	Supported Parameters for Translation Expressions
	Supported Operators for Translation Expressions
	Supported Values for Translation Expressions

	Defining Service Action-Atomic Action Translation Expressions
	Translation Function Conflicts

	About Service Actions and Rollback
	Enabling the CSDL Rollback Functionality
	Enabling Work Order Rollback Functionality for the Service Request Processor Emulator
	About Configuring a Rollback Point (Point of No Return)
	Configuring a Rollback Point

	9 Configuring Base Exit and User Exit Types
	About User Errors and Thresholds
	About Base Exit Types
	Behaviors of RETRY and RETRY_DIS

	About User Exit Types
	Using Regular Expression Search Patterns
	Using Search Patterns Against Long Switch Responses
	About User Exit Types for Unknown Errors
	About User Exit Types for Success Cases
	Mapping User Exit Types to Base Exit Types Based on Context
	Creating New User Exit Types
	Configuring User Exit Types

	Examples: User Exit Types
	Example: Unstable Network Element Connections
	Example: Configuration of Context Sensitive Exit Types
	Example: Exit Type Rationalization

	10 Configuring Dynamic and Static Event Templates for Return Parameters
	About Static and Dynamic Event Templates for Return Parameters
	Configuring a Dynamic Events Template
	JSRP (OSS/J) Work Order Event Information
	Extended Work Order Complete and Failure Schemas
	FailedServicesType Schema Type
	Services Schema Type
	Controlling the Return of Enhanced Event Information with includeServiceActionDetail
	JSRP Server Configuration Parameter INCLUDE_SERVICE_ACTION_DETAIL
	Additional Event Data
	OSS/J Support by Schema Parameters
	Work Order Property includeServiceActionDetail
	JSRP Server Configuration Parameter USE_ORIGINAL_INSTANCE_NUMBER

	11 Creating Java Connection Handlers
	About Java Network Element Connection Handlers
	Creating New Network Element Connection Handlers
	Generating a Telnet Network Element Connection Handler Implementation
	Generating a Custom NE Connection Handler Implementation
	About Communication Protocol Parameters
	Specifying Global or Local Communication Parameters
	User-defined Parameters
	Device-specific Interface Parameters
	CORBA Interface Communication Parameters
	Serial Port Hardwired Communication Parameters
	Serial Port Dialup Communication Parameters
	Telnet Port Communication Parameters
	SSH Telnet Communication Parameters
	Socket Port Communication Parameters
	FTP Port Communication Parameters
	LDAP Port Communication Parameters
	TL1 Port Communication Parameters
	SNMP Port Communication Parameters
	StreamConnection Interface

	Creating Connection Methods and Helper Classes
	Creating a Provisioning Prompt
	Enabling Loopback Mode
	Implementing Secure Login Functionality
	Connection Management Issues
	Creating a Java Telnet Connection Class

	12 Creating Action Processors and Programs for Processing Requests and Responses
	About Action Processors and Programs
	About the Ratio of Provisioning Commands to Atomic Actions

	About Creating and Configuring Action Processors
	Creating an Action Processor

	Understanding the Auto-Generated Java CLI Code
	About Configuring the CLI Command Structure
	About the CLI Command Structure Elements
	Configuring the CLI Command Structure

	About Parsing and Configuring CLI Command Requests
	Provided Methods for Manipulating Parameters
	Defining Custom Methods for Manipulating Parameters
	Configuring CLI Command Requests

	About Configuring CLI Command Responses
	Configuring CLI Command Responses

	Auto-Generating the Java CLI Files
	About Auto-Generated and Synchronized CLI Java Files
	Backing Up Files

	Understanding the Auto-Generated Java Code Stubs
	Auto-Generating the Java Stubs
	About Auto-Generated Java Files
	Understanding Generated Code for Compound Parameters

	Example: Typical Processor Call Sequence
	Writing Java Processor Execute Method Logic
	Example: Telnet Provisioning Class Flow

	About Writing Java Programs from Scratch and Naming Conventions
	Associating an Action Processors to the Java Code
	Java Package Naming Convention
	Java Class Naming Convention
	Java Helper and Utility Class Naming Convention
	Java Method Naming Convention
	Java Variables Naming Convention
	Java Constants Naming Convention

	Understanding Unit Testing
	Running Unit Test Cases
	Running Unit Tests with the JDT Debugger
	Understanding Unit Test Property Files
	Configuring a Unit Test

	Understanding Java Libraries in Design Studio
	Referenced Libraries
	Other Libraries

	Programming Best Practices
	Using Default Values
	Enabling Value and Range Checking
	Logging Diagnostic Messages
	TCP/IP Message Parsing Options
	Use of Journal Functionality

	13 Creating Java User Exit Types
	Developing Return Parameters in Java Action Processors
	About Return Parameters in Java Action Processors
	Configuring Java Methods for Return Parameters to SARM
	Return Parameter Types
	Global Returned Parameter
	Service Action Returned Parameter
	Atomic Action Returned Parameter
	Returned Information for Upstream Purposes
	Indexed Rollback Returned Parameter

	Use Cases for Returning Parameters
	Query for Rollback Information
	Error and Diagnostic Information

	Configuring Response Logging and Network Element History Capture
	User Defined Exit Types

	14 Documenting ASAP Cartridges
	About Design Studio Cartridge Documentation

	15 Work Order Processing and Sample Work Orders
	Work Order Processing Overview
	General Work Order Processing
	OSS/J or Web Service Work Order Processing with XML or XPath Parameters

	About Testing Cartridge Elements with Sample Work Orders
	About SRP Emulator Sample Work Orders
	About JSRP Sample OSS/J Work Orders
	Sample OSS/J Work Order with Conditional Logic Using XML Parameters
	Sample OSS/J Work Order with Conditional Logic using XPath Parameters

	About Web Service Sample Work Orders

	Guidelines for Creating Sample Work Orders
	Troubleshooting Atomic Actions
	Troubleshooting Service-Action-to-Atomic-Action Translation Errors

	16 Creating and Deploying a SAR File (ASAP Cartridge)
	SAR File Creation and Deployment Options
	SAR File Folder Structure Options
	ASAP 4.7 SAR File Folder Structure
	ASAP 4.6 SAR File Folder Structure

	Creating an ASAP 4.6 SAR File
	Deploying Service Models with the Service Activation Deployment Tool
	Using the SADT Command Line Interface
	Using the SADT Command Line Interface in Interactive Mode
	Deploying a Service Activation Model Archive
	Undeploying a Service Activation Model Archive
	Querying an Activation Model
	List All Deployed Activation Models

	Using the SADT Command Line Interface in Script Mode

	Using the SADT Web Interface
	Viewing Deployed Service Activation Models
	Deploying a service activation archive file
	Undeploying a Service Activation Model
	Deploying Multiple Cartridges

	Using the SADT JMX Interface
	Configuring JMX Interfaces to Validate XML Documents

	Loading ASAP Services Dynamically

	A Configuring Services Using XML
	Configuration Restrictions and Limitations
	Configuring ASAP Services
	Planning
	Configuring Atomic Actions
	Adding Supporting Data
	Configuring Service Actions
	Mapping Atomic Actions to Service Actions
	Mapping User Exit Types to Base Exit Types
	Creating Activation-Model.xml
	Configuring Network Element Throughput Using XML

	B Configuring Services Using Stored Procedures
	Configuring ASAP Services Using Stored Procedures
	Configuring Service Actions
	Configuring Atomic Actions
	Configuring Atomic Action Parameters
	Configuring Service Action-to-Atomic Action Mappings
	Configuring Atomic Action-to-Program Mappings

	Configuring Network Elements Using Stored Procedures
	Configuring Host Network Elements
	Configuring Host to Remote Network Element Mappings
	Configuring NEP-to-Host NE Mappings
	Configuring Resource Pools
	Configuring Communication Parameters
	Configuring Network Element Error Thresholds
	Configuring User Errors and Thresholds
	Configuring Static Routing
	Configuring Atomic Action Routings by ID_ROUTING Using Stored Procedures
	Configuring Atomic Action Routings by USER_ROUTING
	Configuring Atomic Action Routings by Distinguished Name

	Configuring Network Element Blackout Periods (optional)
	Checking Network Element Blackout Periods

	Configuring External Device Drivers (Deprecated)
	Adding an EDD to ASAP Start-up Procedures
	Adding an EDD as an ASAP Component
	Setting EDD Communication Parameters
	Setting EDD Configuration Parameters
	X.25 and X.29 Interface Configuration Parameters
	SNMP Interface Configuration Parameters

