Oracle® Communications Billing and

Revenue Management
Configuring and Running Billing

Release 15.0
F86248-01
February 2024

ORACLE"

Oracle Communications Billing and Revenue Management Configuring and Running Billing, Release 15.0
F86248-01
Copyright © 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation,” or “limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xii
Documentation Accessibility Xii
Diversity and Inclusion Xii

1 Running Billing Scripts

Running the Billing Scripts 1-1
Changing the Path in the Billing Scripts 1-3
Running the pin_bill_day Script for Bill Run Management 1-3
Handling Billing Failures 1-3

2 About the Billing Utilities

Billing Accounts By Using the pin_bill_accts Utility 2-1
When to Run the pin_bill_accts Utility 2-1
About Bill Unit States and the pin_bill_accts Utility 2-2

Prorating Cycle-Forward Fees and Canceling Charge Offers By Using the pin_cycle_fees

Utility 2-2
When to Run the pin_cycle_fees Utility 2-3
Improving Performance of the pin_cycle fees Ultility 2-3

3 Setting Default Billing Properties for Account Creation

Setting the Default Accounting Day of Month 3-1

Setting the Default Billing-Cycle Length 3-1

Specifying the Maximum Number of Months Allowed in Billing Cycles 3-2

Setting the Default Accounting Type 3-2

Setting the First Billing Cycle to the Day after Account Creation 3-3

4 Configuring Billing

Specifying the Minimum Payment to Collect 4-1

ORACLE iii

Setting the Minimum Amount to Charge 4-1

Customizing the Format of Bill and Invoice Numbers 4-2
Specifying When to Apply Custom Bill Numbers 4-2
Configuring Auto-Triggered Billing 4-2
Setting the Bill Unit Status When Billing Errors Occur 4-3

5 Managing Billing and Accounting Cycles

Specifying How to Handle Partial Accounting Cycles 5-1
Configuring Timestamp Rounding 5-3
Aligning Account and Cycle Start and End Times 5-3
Defining When Billing-Time Discounts Are Applied 5-5
Including Previous Balances in the Current Amount Due in Open Item Accounting 5-5
Specifying Which Billing Cycle to Assign to Deferred Purchase Fees 5-6
Calculating Cycle Fees for Backdating 5-6

6 Configuring Bill Now

About Bill Now 6-1
Providing Discounts to Closed Accounts When Using Bill Now 6-1
Prorating Cycle Arrears and Cycle Forward Arrears for Bill Now 6-2
Running Bill Now to Create Two Bills during the Delayed Billing Period 6-2
Customizing Bill Now 6-3

7 Setting Up Delayed Billing

About Delayed Billing 7-1
Delayed Billing and Rollovers 7-4
Changing the Billing DOM When Delayed Billing is Enabled 7-4
How BRM Assigns Delayed Events to Items 7-4

Configuring Delayed Billing 7-6

Configuring Auto-Triggered Billing for Delayed Billing 7-7

Configuring an Accounting Cycle Delay Period 7-8

Specifying When to Apply Cycle Forward Fees and Cycle Rollovers 7-10

Enforcing Partial Billing in the Billing Delay Interval 7-11

Setting Delayed Cycle Start Dates to the 29th, 30th, or 31st 7-11

Billing Cycle Override for Delayed Billing 7-12

8 Configuring 31-Day Billing

About Using 31-Day Billing 8-1
Enabling the 31-Day Billing Feature 8-1

ORACLE iv

Switching to 31-Day Billing During BRM Installation 8-1

Switching to 31-Day Billing After You Install BRM 8-2
Disabling the 31-Day Billing Feature 8-2
Setting the Forward and Back Billing Options 8-3

o Configuring the Billing Cutoff Time

About Configuring the BRM Cutoff Time 9-1
How Billing and Invoicing Are Affected by Changing the Cutoff Time 9-2
How Rating Is Affected by Changing the Cutoff Time 9-3
How General Ledger (G/L) Is Affected by Changing the Cutoff Time 9-3
How Timestamp Fields Are Affected by Changing the Cutoff Time 9-3

Configuring the Billing Cutoff Time 9-4

10 Configuring Billing for Groups and Hierarchies

Setting Up Billing for Charge and Discount Sharing Groups 10-1
Skipping Validation of Billing for Nonpaying Child Bill Units 10-2

11 Configuring Wholesale Billing

About Wholesale Billing 11-1
Setting Up Billing for Wholesale Account Hierarchies 11-1
Enabling Wholesale Billing for All Accounts 11-2
Creating Wholesale Accounts and Bill Unit Hierarchies 11-2

Configuring Wholesale Business Profile 11-3

Setting Up a Wholesale Parent 11-4

Rolling Charges Up to the Wholesale Parent 11-4

Rolling A/R Actions Up to the Wholesale Parent 11-4

Rolling Journals Up to the Wholesale Parent 11-5
Converting Existing Bill Unit Hierarchies to Wholesale Billing 11-6
Running Wholesale Billing 11-7
Configuring Billing Delay for Wholesale Hierarchies 11-8
Setting Up Billing-Time Discounts for Wholesale Hierarchies 11-8
Suppressing Bills for Wholesale Hierarchies 11-8
Trial Billing for Wholesale Hierarchies 11-9
Support for A/R Activities 11-9
Specifying Search Criteria for Retrieving Items, Events, and Bills 11-9
Moving Bill Units into or out of Wholesale Hierarchies 11-10
Specifying How to Calculate Deferred Taxes for Wholesale Billing 11-10

ORACLE Y

12 Load Balancing Billing Runs

About Managing Billing Cycles 12-1
Implementing Bill Cycle Management 12-2
Setting Up Billing Segments 12-3
Editing the Billing Segment Configuration File 12-4
Updating Billing Segments 12-8
Associating Bill Units with Billing Segments 12-10
Changing a Bill Unit's Billing Segment 12-10
Assigning Accounting Days of Month to Bill Units in Billing Segments 12-11
Manually Assigning a Billing DOM 12-11
Automatically Assigning a Billing DOM 12-11
Changing a Bill Unit's Billing DOM 12-12
13 About Proration
Calculating Prorated Cycle Fees 13-1
Calculating the Unit Interval 13-2
Calculating Unit Interval When use_number_of days_in_month Is Not Set or 0 13-2
Calculating Unit Interval When use_number_of days_in_month Is Set to 1 13-2
Calculating Unit Interval When Billing Day of Month Is 29, 30, or 31 13-2
Examples of Proration 13-3
Example 1: Use_number_of days_in_month Is Not Set or Set to 0 13-3
Example 2: Use_number_of days_in_month Is Setto 1 13-4
Examples Using the 29th, 30th, and 31st for Billing Day of Month 13-6
Example 3a: Use Forward Option with use_number_of days in_month Setto O 13-6
Example 3b: Use Forward Option with use_number_of days in_month Setto 1 13-7
Example 3c: Use Back Option with use_number_of days _in_month Setto 1 13-9
Example 3d: Use Back Option with use_number_of_days_in_month Set to 0 13-11
Proration for Special Cases 13-12
Special Cases 13-13
Addressing Special Cases 13-14
About 30-Day-Based Proration 13-14
Examples of 30-Day-Based Proration 13-15
Example 6: Prorated Purchase Fee with 31-day Billing Cycle 13-15
Example 7: Prorated Cancel Fee with 31-day Billing Cycle 13-16
Example 8: Prorated Purchase Fee with 28-Day Billing Cycle 13-16
Example 9: Prorated Cancel Fee with 28-Day Billing Cycle 13-17
Special Cases 13-18
Example 10: Full Purchase Fee Charged When Service Is Provided for 1 Day Less 13-18
Example 11: Full Cancel Fee Refunded When Service Has Been Used for 1 Day 13-18
Enabling 30-Day-Based Proration 13-19

ORACLE

Vi

Using Two Events to Prorate Charges for Charge Offers Whose Validity Ends in First Cycle 13-19

Prorating Cycle Fees after a Discount Purchase or Cancellation 13-20
Examples of Cycle Fee Proration 13-20
Example 12: Cycle Fee Is Refunded after a Discount Purchase 13-20
Example 13: Minutes Are Prorated after a Discount Cancellation 13-20
Example 14: Canceled Discount Proration Is Not Taken into Account When Charge
Offer Is Canceled 13-21
Prorating Cycle Fees When a Discount's Cycle Start or End Date Is Changed 13-21
Examples of Cycle Fee Proration 13-21
Example 15: Cycle Fee Is Refunded When a Discount's Cycle Start Date Is
Changed 13-21
Example 16: Cycle Fee Is Charged When a Discount's Cycle Start Date Is
Changed 13-22
Example 17: Cycle Fee Is Refunded When Discount's Cycle End Date Is Changed 13-22
Example 18: Cycle Fee Is Charged When Discount's Cycle End Date Is Changed 13-23

14 Managing Large Billing Runs

Billing Only Specified Accounts and Bill Units 14-1
Splitting a Billing Run into Multiple Runs 14-3
Configuring Auto-Triggered Billing for Bill Run Management 14-3
Configuring a Split Billing Run 14-4
About Sponsored Charges in Split Billing Runs 14-6
Including Only Specified Billing DOMs in Billing Runs 14-6
Including Only Specified Billing Segments in Billing Runs 14-7
Sample Billing Run Configuration File 14-7
Validating Your Billing Run Configuration File Edits 14-8
Managing Bill Due Dates 14-8
Managing Payment Terms 14-8
Editing the Payment Terms Configuration File 14-9
Loading Payment Terms 14-10
Updating the pin.conf File to Use Payment Terms 14-10
Assigning Payment Terms to Bill Units 14-11
Managing Billing Calendars 14-11
Setting Up Billing Calendars 14-12

Editing the Billing Calendar Configuration File 14-13
Updating Billing Calendars 14-16
Associating Billing Calendars with Payment Terms 14-16
Specifying Due Date Adjustments in a Billing Run 14-17
Editing the Billing Run Configuration File to Adjust Bill Due Dates 14-18
Sample Billing Run Configuration File 14-20

ORACLE vii

15

16

17

Validating Your Billing Run Configuration File Edits 14-20
About Bill Suppression
About Suppressing Bills 15-1
About Automatic Bill Suppression 15-1
About Manual Bill Suppression 15-2
About Manual Account Suppression 15-3
Suppressed Accounts versus Inactive Accounts 15-3
Exceptions to Bill Suppression 15-4
How Exceptions Affect Manual Bill and Account Suppression 15-5
Automatically Suppressing Bills 15-6
Editing the Bill Suppression Configuration File 15-6
Sample Bill Suppression Configuration File 15-7
Validating Your Bill Suppression Configuration File Edits 15-8
Associating Bill Suppression Information with Customer Segments 15-8
Creating Custom Bill ltems
About Custom Bill Items 16-1
About Defining Custom Bill Items 16-1
Tracking Charges in Bill Items 16-2
About Creating /item Objects 16-2
About Assigning Custom Bill Items to Events 16-3
About Using Event and Service Combinations to Assign Bill Items 16-3
About Using Event Attributes to Assign Bill Items 16-5
How BRM Assigns Custom Bill Items to Events 16-5
Cumulative Custom Item for Taxes 16-6
Setting Up BRM to Assign Custom Bill ltems to Events 16-6
Assigning Item Tags Based on Event and Service Combinations 16-6
Assigning Item Tags Based on Event Attributes 16-8
Setting Up Online Charging to Assign Items Based on Event Attributes 16-8
Mapping Item Tags to Item Types 16-8
Assigning Bill ltems to Event Balance Impacts 16-10
Creating Custom Sponsored Bill Items 16-11
Splitting Sponsored Charges into Multiple Items 16-12
Creating Corrective Bills
About Corrective Bills 17-1
Corrective Bills and Billing Cycles 17-3
Configuring Corrective Billing 17-3

ORACLE

viii

Enabling Corrective Billing 17-3

Configuring Accounts and Bills for Corrective Billing 17-4
Restricting Corrective Billing Permissions 17-4
Configuring Bill Numbers for Corrective Bills 17-4
Customizing Correction Reasons 17-5
Specifying the Minimum Threshold Amount for Corrective Bills 17-5
Rejecting Payments for Prior Bills 17-6
Enabling BRM to Create Corrective Bills for Partially or Fully Paid Bills 17-6
Customizing Corrective Bills 17-7
Billing Accounts By Using the pin_make_corrective_bill Utility 17-7
Post-Processing Actions for Corrective Bills 17-8
Corrective Billing for Disputes, Settlements and Write-offs 17-8
Disputes 17-9
Settlements 17-9
Write-Offs 17-9

18 Running Trial Billing

About Trial Billing 18-1
About Trial Billing for Bill Unit Hierarchies and Sharing Groups 18-2
About Trial Invoices 18-3
About Collecting Revenue Assurance Data from Trial Billing 18-3
Configuring Trial Billing 18-4
Specifying Accounts for Trial Billing 18-4
Specifying Bill Units, Billing Segments, and DOMs for Trial Billing 18-5
Specifying Bill Units for Trial Billing 18-6
Specifying Accounting DOMs for Trial Billing 18-7
Specifying Billing Segments for Trial Billing 18-7
Running Trial Billing 18-7
Running Trial Billing With Date Ranges 18-8
Running Trial Billing According to Payment Type 18-9
Creating Trial Bills without Generating Trial Invoices 18-10
Purging Trial Invoices 18-10
Exporting Trial Invoices 18-11

19 Suspending Billing

About Suspending Billing of Accounts and Bills 19-1
Suspending Billing of Closed Accounts 19-1
Suspending Billing of an Account's Bill 19-2

ORACLE iX

2(0 Setting Up Billing in a Multischema Environment

Setting Up Billing to Run in a Multischema Environment 20-1
Running Billing on One Schema at a Time 20-1
Running Billing on Multiple Schemas Simultaneously 20-2

21 Remitting Funds to Third Parties

About Remittance 21-1
About Remittance Products 21-2
About Defining Remittance Specifications 21-3

About Remittance Criteria 21-3
About Calculating Remittance 21-4

Setting Up Remittance 21-5
Creating a Remittance Product 21-5
Creating a Remittance Account 21-6
Loading the Remittance Fields File 21-6
Defining Remittance Specifications 21-7
Loading the Remittance Specifications 21-9

Loading Remittance Specifications on Single-Schema Systems 21-9
Loading Remittance Specifications on Multischema Systems 21-10

Running Remittance 21-10

Calculating Remittance 21-11
Running the Monthly Remittance Script 21-11
Running the Remittance Utility Separately 21-11

Creating Remittance Reports 21-12

Changing the Balance of a Remittance Account 21-13

Using Remittance with Multiple Database Schemas 21-13
Running Remittance on One Schema at a Time 21-13
Running Remittance on Multiple Schemas Simultaneously 21-14

Improving Remittance Performance 21-14

Using Remittance for Sales Commissions 21-15

Example of Setting Up a Remittance Specification 21-15

About Customizing Remittance 21-17
About Adding Custom Remittance Criteria 21-17

Defining Custom Remittance Fields 21-18
Specifying Custom Remittance Criteria 21-19
About Using Custom Ratable Usage Metrics to Calculate Remittance 21-21
Calculating Remittance Using Custom RUMs 21-21

How Remittance Works 21-21
Retrieving Remittance Accounts 21-21
Calculating the Remittance Amount 21-22

ORACLE X

Verifying the Remittance Specification File 21-22
Customizing Remittance 21-22

29 Billing Utilities

load_config_item_tags 22-1
load_config_item_types 22-2
load_pin_bill_suppression 22-3
load_pin_billing_segment 22-5
load_pin_calendar 22-6
load_pin_payment_term 22-7
load_pin_remittance_flds 22-8
load_pin_remittance_spec 22-10
pin_hill_accts 22-11
pin_cust_convert_wholesale_hierarchy 22-16
pin_cycle fees 22-17
pin_make_corrective_bills 22-19
pin_remittance 22-21
pin_rollover 22-23
pin_trial_bill_accts 22-24
pin_trial_bill_purge 22-26
pin_update_journals 22-29

ORACLE Xi

Preface

Preface

Audience

This guide describes how to configure and run billing in Oracle Communications Billing
and Revenue Management (BRM).

This guide is intended for operations personnel and system administrators.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion

ORACLE

Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Running Billing Scripts

Learn how to run the Oracle Communications Billing and Revenue Management (BRM)
billing utilities.

For an overview of the BRM billing process, see "Overview of Billing" in BRM Concepts.
Topics in this document:

* Running the Billing Scripts

* Changing the Path in the Billing Scripts

* Running the pin_bill_day Script for Bill Run Management

* Handling Billing Failures

Note:

Before running billing, you must set the billing configuration defaults, as described
in "Configuring Billing".

Running the Billing Scripts

ORACLE

Billing scripts run one or more billing utilities on a daily, weekly, or monthly basis. By default,
billing scripts are located in BRM_homelbin.

You can customize the scripts.
Note the following:

» Use billing scripts for regular bills only, not for corrective bills.

* Run billing as pin_user, not as root. Running billing as pin_user provides the read and
write permissions for billing.

» Since billing generates a lot of system activity, it's best to run billing scripts at night.
* Use a different time for all three scripts so you do not run billing utilities simultaneously.
» Check for billing errors daily. The log file for the billing utilities is pin_billd.pinlog.
To run the billing scripts, use a cron job with a crontab entry.
e The following crontab entry runs pin_bill_day at 1:00 a.m. daily:
0 1 * * * BRM home/bin/pin bill day &
e The following crontab entry runs pin_bill_week every Sunday at 12:05 a.m.

50 * * 0 BRM home/bin/pin bill week &

1-1

ORACLE

< Note:

Chapter 1
Running the Billing Scripts

By default, the pin_bill_week script runs the pin_collect utility with the
utility's end parameter set to 7. If you modify the script to run the utility
with the end parameter set to 1 or 0, do not run the script at the same
time that you run the pin_bill_day script. If you do, accounts whose
payment collection date is on the day or the day before the utility runs
may be double charged.

e The following crontab entry runs pin_bill_month at 12:05 a.m. on the first day of

the month:

50 1 * * BRM home/bin/pin_bill month &

Table 1-1 shows the billing utilities in each script.

Table 1-1 Utilities in Billing Scripts
|

Billing Script

Description

pin_bill_day

Run daily.

Runs the following billing utilities:

e pin_deferred_act: Runs deferred actions. See
"pin_deferred_act" in BRM Managing Customers.

* pin_bill_accts: Bills accounts. See "pin_bill_accts".

e pin_collect: Collects BRM-initiated payments. See
"pin_collect” in BRM Configuring and Collecting Payments.

e pin_refund: Grants refunds. See "pin_refund" in BRM
Managing Accounts Receivable.

e pin_inv_accts: Generates invoices. See "pin_inv_accts" in
BRM Designing and Generating Invoices.

e pin_deposit: Deposits pre-authorized credit card payments,
such as payments authorized when creating an account. See
"pin_deposit" in BRM Configuring and Collecting Payments.

e pin_cycle_fees: Prorates balance impacts for cycle forward
fees. See "pin_cycle_fees".

pin_bill_week

Run weekly.

Runs the pin_collect utility with the -rebill option on all active
accounts with a payment collection date of at least 8 days old.
Collects outstanding balances from active credit card or direct
debit accounts that could not be collected during regular daily
billing.

For example, a daily billing run might return a soft decline on a
BRM:-initiated payment. In that case, the payment is not collected,
but the bill is left open so that the pin_collect utility can attempt
to collect the payment again when you run the pin_bill_week
script.

pin_bill_month

Run monthly.

Runs the pin_collect utility with the -rebill option on all closed
and inactive accounts with a payment collection date that is at
least 31 days old. Collects outstanding balances from closed or
inactive accounts.

1-2

Chapter 1
Changing the Path in the Billing Scripts

Changing the Path in the Billing Scripts

You can change the path to the billing utilities in the billing scripts. For example, to change
the path for the pin_bill_day script, edit these lines:

PINDIR=/opt/portal/${VERSION}
CNFDIR=${PINDIR}/apps/pin billd
NVDIR=$ {PINDIR}/apps/pin_inv
OGDIR=/var/portal/${VERSION}/pin billd
PATH=/usr/bin:/bin:${PINDIR}/bin

cd ${CNFDIR}

Running the pin_bill_day Script for Bill Run Management

You must run the pin_bill_day script manually instead of automatically to do the following:

e Reduce the load and duration of a large daily billing run. See "Configuring a Split Billing
Run".

e Add days to the due dates of bills in a daily billing run at run-time. See "Specifying Due
Date Adjustments in a Billing Run".

When running pin_bill_day manually with bill run management, use this syntax:
pin bill day -file file name
Where file_name is the name and location of a billing run configuration file.

The -file parameter when used with pin_bill_day, affects only the pin_bill_accts utility.

" Note:

When you use a cron job to run pin_bill_day, do not include the configuration file
name. If you do, some bill units might never be billed.

Handling Billing Failures

ORACLE

Billing can fail in the following cases:

* When an internal BRM component, such as a CM or DM, goes offline.
* When the online payment processor goes offline.
* When a connection between BRM components is broken.

If the pin_collect utility or the pin_deposit utility is interrupted while it is in progress, you can
run it again. However, you might need to resolve failed BRM-initiated payment transactions.
See "Resolving Failed BRM-Initiated Payment Transactions" in BRM Configuring and
Collecting Payments.

All other billing utilities, pin_cycle_fees, pin_deferred_act, pin_inv_accts, and
pin_bill_accts, can be run again. You do not need to resolve failed transactions.

1-3

ORACLE

Chapter 1
Handling Billing Failures

If the billing utilities were not run at all, for example, if the database was offline, you
could run all of the billing utilities with no problems. The pin_bill_accts utility bills all
accounts that are due for billing, not just those that are due on the day that you run the
utility.

The pin_collect and pin_inv_accts utilities act on accounts that were billed by the
pin_bill_accts utility, so if you run the pin_bill_accts utility first, payments for all
accounts that are due are collected or invoiced.

1-4

About the Billing Utilities

Learn about the main billing utilities in Oracle Communications Billing and Revenue
Management (BRM), pin_bill_accts and pin_cycle_fees.

Topics in this document:
* Billing Accounts By Using the pin_bill_accts Utility

* Prorating Cycle-Forward Fees and Canceling Charge Offers By Using the pin_cycle_fees
Utility

For information about all billing utilities, see "Billing Utilities".

Billing Accounts By Using the pin_hill_accts Utility

Use the pin_bill_accts utility to generate regular bills (not corrective bills).

The pin_bill_accts utility calculates the balance due for each account bill unit, and creates a
bill for the balance due. It creates bills for accounts whose billing date is any day before
midnight of the day that you run the pin_bill_accts utility as shown in Figure 2-1.

Figure 2-1 Accounts Included when Running pin_bill_accts

Midnight Midnight Midnight

hd a1 bl 2
———
Funning pin_kill_accts any
time an May 2 bills accounts

with a billing date of May 1 or
earlier.

The balance due amount is requested as a payment by the pin_collect utility, and is shown
on the invoice.

The pin_bill_accts utility also performs the accounting cycle activity, such as creating new
bill items.

For information about the pin_bill_accts utility syntax, see "pin_bill_accts".

When to Run the pin_bill_accts Utility

ORACLE

Use the pin_bill_day script to run the pin_bill_accts utility daily.

If you use bill unit hierarchies, you must run the pin_bill_accts utility to bill nonpaying child
bill units before their paying parent bill units. The correct order is set in the pin_bill_day
script.

You must run the pin_bill_accts utility before you run pin_collect because pin_collect
needs the balance due amount collected by the pin_bill_accts utility.

2-1

Chapter 2
Prorating Cycle-Forward Fees and Canceling Charge Offers By Using the pin_cycle_fees Utility

About Bill Unit States and the pin_hill_accts Utility

The bill unit stores the state of a bill:

» 0 to indicate that the bill has been finalized.
» 1 to indicate that partial billing has been completed.

» 2 toindicate that all cycle charges and billing-time discounts have been applied at
the end of the billing period and the bill needs to be finalized. A bill advances to
this state only after billing is run for its account with the pin_bill_accts -
cycle_charge_only parameter.

Running the pin_bill_accts utility with the -cycle_charge_only parameter runs billing
on accounts with bill states 0 and 1. All cycle fees and billing-time discounts are
applied, but totals are not calculated, and the bill is not finalized. At the end of the
billing run, the bill state is set to 2.

To finalize a bill, run the pin_bill_accts utility with the -finalize_bill parameter. This
runs billing on accounts with bill state 2. Totals are calculated, and items, bills, and so
on are updated. At the end of the billing run, the bill state is set to 0.

¢ Note:

These bill unit states, stored in the /billinfo object, are different from the
informational bill states stored in the Ibill object. See "About Bill States" in
BRM Concepts for more information about bill-level states.

Prorating Cycle-Forward Fees and Canceling Charge Offers
By Using the pin_cycle fees Utility

ORACLE

The pin_cycle_fees utility performs two tasks:

» Use this utility to apply charges for cycle-forward fees that have reached the end
of free billing periods. For example, if a customer signs up for one month of free
service, the pin_cycle_fees utility finds when the free period is over, and applies
the cycle-forward fee balance impact to the customer's account balance group.

» Use this utility to cancel charge offers that have an expired pending cancellation.
For example, if a charge offer is set to cancel at a future date, the pin_cycle_fees
utility cancels the charge offer.

Note:

These two tasks are performed by running the pin_cycle_fees utility
twice with different parameters.

If a free period ends before the customer's billing date, the pin_cycle_fees utility
calculates the prorated fees for the time between the end of the free period and the
start of the customer's next accounting cycle.

2-2

Chapter 2
Prorating Cycle-Forward Fees and Canceling Charge Offers By Using the pin_cycle_fees Utility

For example, a customer opens an account on February 15 and is given one free month, but
the customer's billing date is on the 1st of the month. When you run pin_cycle_fees on
March 15, it finds that the customer's free time period has ended. The utility then assesses
the prorated fee due for March 15 through March 31 and impacts the customer's balance with
the prorated amount. The result is that the system makes no charges to the customer on
March 1, but charges the prorated fee and the cycle fee on April 1 as shown in Figure 2-2.

Figure 2-2 Proration of Cycle Forward Fees by pin_cycle_fees

Februarny 14 harch 1 March 14 April
I
Free maonth Frorated cycle fee
Account created Free maonth ends Billing date

For information about the pin_cycle_fees utility syntax, see "pin_cycle fees".

When to Run the pin_cycle fees Utility

Use the pin_bill_day script to run the pin_cycle_fees utility daily. This applies the prorated
balance impacts as soon as they are due. If you do not run the pin_cycle_fees utility daily,
the pin_bill_accts utility applies the balance impacts for the expired cycle forward fees. The
only difference is that the balance impacts are not calculated by the pin_cycle_fees utility on
the day that the cycle-forward fee expires.

Improving Performance of the pin_cycle fees Utility

ORACLE

If system performance slows unacceptably when running the pin_cycle_fees utility, edit the
pin_bill_day script and change the default start and end parameters for the pin_cycle_fees
utility to every other day or every third day.

2-3

Setting Default Billing Properties for Account
Creation

Learn how to set up system-wide billing defaults, such as the default billing-cycle length, in
Oracle Communications Billing and Revenue Management (BRM).

Topics in this document:

» Setting the Default Accounting Day of Month

» Setting the Default Billing-Cycle Length

* Specifying the Maximum Number of Months Allowed in Billing Cycles
» Setting the Default Accounting Type

» Setting the First Billing Cycle to the Day after Account Creation

Setting the Default Accounting Day of Month

Note:

It is a good idea to leave the accounting DOM set to the date the account was
created. This distributes the load for the billing utilities throughout the month.

To set the default accounting day of month (DOM):

1. Open the Connection Manager (CM) configuration file (BRM_homelsyslcmlpin.conf) in
a text editor. BRM_home is the directory where you installed BRM components.

2. Uncomment the following line and enter a value from 1 to 28.

- fm cust pol actg dom 28

< Note:

To use the day that the account was created as the default, comment out the
line by using the pound (#) symbol.

3. Save and close the file.

The new value becomes effective immediately and applies to the next account created. You
do not need to restart the CM to enable this entry.

Setting the Default Billing-Cycle Length

To set the default billing-cycle length:

ORACLE 3-1

Chapter 3
Specifying the Maximum Number of Months Allowed in Billing Cycles

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf) in a text editor.

2. Add the following line and enter the number of months in one billing cycle.

Note:

The default is 1, which is monthly billing.

- fm cust pol bill when 2
3. Save and close the file.

The new value becomes effective immediately and applies to the next account
created. You do not need to restart the CM to enable this entry.

Specifying the Maximum Number of Months Allowed in
Billing Cycles

A billing cycle defines the time period between bills, which corresponds to the billing
frequency (how often a bill is generated). For example, if the billing cycle is three
months, a bill is generated every three months.

The default maximum number of months allowed in billing cycles is 24.

To change the maximum number of months allowed in billing cycles, modify the value
of the bill_when field.

Setting the Default Accounting Type

You can set the default accounting type for all bill units (Ibillinfo objects) by using the
CM pin.conf file. BRM uses this setting during account creation only when an
accounting type is not passed in the input flist of the Customer FM standard opcode.

To set the default accounting type:

1. Open the CM configuration file (BRM_homelsyslcmlpin.conf) in a text editor.
2. Add the following line and enter the appropriate value.
* To set the default accounting type to open item accounting, enter 1.

* To set the default accounting type to balance forward accounting, enter 2. This
is the default.

- fm _cust pol actg_type 1
3. Save and close the file.

The new value becomes effective immediately and applies to the next account
created. You do not need to restart the CM to enable this entry.

ORACLE 3-2

Chapter 3
Setting the First Billing Cycle to the Day after Account Creation

Setting the First Billing Cycle to the Day after Account Creation

ORACLE

Normally, an account is billed after one month on the day on which the account is created.
For example, if an account is created on January 10, the account is billed on February 10,
then on March 10, April 10, and so on. However, you can set the first billing date to be the
day after account creation. For example, if an account is created on December 16, the
account is billed on December 17. After the first billing run, all remaining bills for the account
are generated normally. In this example, the account is billed on January 17, February 17,
and so on. This option is called advance billing cycle.

To set the first billing cycle to the day after account creation:

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf) in a text editor.
2. Add the following line and set the value to 1.

- fm bill advance bill cycle 1

¢ Note:

To set the first billing cycle to one month after the account is created, comment
out the line by using the pound (#) symbol.

3. Save and close the file.
4. Stop and restart the CM.

3-3

Configuring Billing

Learn how to configure Oracle Communications Billing and Revenue Management (BRM)
billing.

Topics in this document:

* Specifying the Minimum Payment to Collect

e Customizing the Format of Bill and Invoice Numbers
» Specifying When to Apply Custom Bill Numbers

* Configuring Auto-Triggered Billing

e Setting the Bill Unit Status When Billing Errors Occur

Specifying the Minimum Payment to Collect

You can specify the minimum payment for billing. The pin_collect billing utility retrieves only
those account bill units with an amount due greater than the minimum you specify. Charges
accrue in the account balances associated with the bill unit until they reach the minimum
amount, and then the amount due is collected.

The minimum value is expressed in terms of the account currency.
By default, the minimum amount is 2.

1. Open the billing utility configuration file (BRM_homelapps/pin_billd/pin.conf) in a text
editor.

2. Change the value of the minimum entry.

3. Save the file.

Setting the Minimum Amount to Charge

To set the default minimum amount to charge to a credit card:

e Customize the PCM_OP_PYMT_POL_PRE_COLLECT policy opcode. See "Customizing
the Minimum Amount to Charge" in BRM Opcode Guide.

* Specify the amount in the CM pin.conf file minimum_payment entry.

There is no BRM configuration entry to set the minimum charge for accounts that pay their
bills by using the invoice payment method.

Note:

Ensure that the minimum credit card charge does not conflict with the minimum
amount to collect.

ORACLE 4-1

Chapter 4
Customizing the Format of Bill and Invoice Numbers

Customizing the Format of Bill and Invoice Numbers

Bill numbering for regular bills is B1-1, B1-2, B1-3, and so on. For corrective bills, the
default numbering is CB1-1, CB1-2, CB1-3, and so on. The default numbering takes
the format:

PrefixDB_num-Seq_Number
where:

* Prefix represents the prefix to be used for the bill. B is used for regular bills, and C
is used for corrective bills.

* DB_num indicates the number of the database in which the original bill is stored.
For example, when DB_num is 1, 3, or 7, the prefixes for regular bills are B1, B3,
or B7.

* Seq_Number is the sequence number.

To customize how BRM formats bill numbers and invoice numbers, create a custom
application that calls the PCM_OP_BILL_POL_SPEC_BILLNO opcode. See
"Customizing the Format of Bill and Invoice Numbers" in BRM Opcode Guide.

Specifying When to Apply Custom Bill Numbers

For corrective bills, BRM assigns a new bill number when it generates the corrective
bill only. It does not support applying bill numbers at any other time in the corrective
billing process.

For regular bills, you can control when custom bill numbers must be assigned to
account bill units, which can be useful for revenue and expense accounting purposes.
Custom bill numbers can be applied at the beginning of the first accounting cycle or at
the end of the previous accounting cycle for multimonth billing cycles.

To specify when BRM assigns custom bill numbers:
1. Open the CM configuration file (BRM_home/syslcmlpin.conf) in a text editor.

2. Change the value of the custom_bill_no entry.

* 0 assigns custom bill numbers at the end of the previous accounting cycle.
This is the default.

* 1 assigns custom bill numbers at the beginning of the first accounting cycle.

3. Stop and restart the CM.

Configuring Auto-Triggered Billing

ORACLE

If you perform no offline usage charging, you might not need auto-triggered billing. You
can enable or disable auto-triggered billing by setting the following business
parameters:

» ConfigBillingDelay. By default, the ConfigBillingDelay parameter is set to 0. If
you are using delayed billing, you must set it to a value greater than 0.

When billing delay is specified, the system maintains an internal list of bill items for
both the previous billing cycle and the current billing cycle so that new events

4-2

Chapter 4
Setting the Bill Unit Status When Billing Errors Occur

impact bill items of the current billing cycle and old events impact bill items of the
previous billing cycle.

* AutoTriggeringLimit. By default, AutoTriggeringLimit is set to 2. For example, if billing
for the previous cycle has not occurred and the billing for the current cycle is due in the
next two days, then billing for the previous cycle is auto-triggered within these two days.

You set these parameters by running the pin_bus_params utility. For information on this
utility, see "pin_bus_params" in BRM Developer's Guide.

To set the ConfigBillingDelay parameter, see "Configuring Delayed Billing".

" Note:

If you do not use delayed billing but want to disable auto-triggered billing, set
ConfigBillingDelay to 0.

To set the AutoTriggeringLimit parameter:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the Iconfig/business_params object:
pin bus _params -r BusParamsBilling bus_params_billing.xml

3. Inthe XML file, enter a value greater than 0.

For example, if you change the value to 5, auto-triggered billing is enabled only for the
last 5 days of each billing cycle.

<AutoTriggeringLimit>5</AutoTriggeringLimit>
4. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml

5. Stop and restart the CM.

Setting the Bill Unit Status When Billing Errors Occur

ORACLE

When the billing utility (pin_bill_accts) encounters an error while generating a bill for a bill
unit, the utility sets the billing status of the bill unit to PIN_BILL_ERROR. Bill units with an
error status are not selected when billing is run.

Note:

When billing fails for a nonpaying child bill unit, the status of the nonpaying bill unit
and the paying parent bill unit are both set to PIN_BILL_ERROR. This ensures that
when billing fails for a nonpaying bill unit, the paying bill unit is also not billed.
Otherwise, the parent bill might not include charges from the nonpaying bill unit,
resulting in incorrect billing.

After you have resolved the billing errors, you can rerun billing for the failed bill units by
running the billing utility with the -retry option. See "pin_bill_accts".

To set the bill unit status when billing errors occur:

4-3

ORACLE

Chapter 4
Setting the Bill Unit Status When Billing Errors Occur

Open the billing utility configuration file (BRM_homelappsipin_billd/pin.conf) in a
text editor.

Add the following line and enter the appropriate value.

* 0 sets the billing status in the /billinfo object. This is the default.
* 1 does not set the billing status in the /billinfo object.

- pin_bill accts unset_error status 1

Save the file.

Run the billing utility.

4-4

Managing Billing and Accounting Cycles

Learn how to manage billing and accounting cycles in Oracle Communications Billing and
Revenue Management (BRM).

Topics in this document:

» Specifying How to Handle Partial Accounting Cycles

e Configuring Timestamp Rounding

e Aligning Account and Cycle Start and End Times

* Defining When Billing-Time Discounts Are Applied

e Including Previous Balances in the Current Amount Due in Open Item Accounting
» Specifying Which Billing Cycle to Assign to Deferred Purchase Fees

e Calculating Cycle Fees for Backdating

Specifying How to Handle Partial Accounting Cycles

When you change the accounting cycle date in the middle of an accounting cycle, the new
date does not take effect until after the current accounting cycle is over. This results in a gap
of time between the end of the old accounting cycle and the start of the new accounting
cycle.

For example, for a 30-day month, if the current accounting cycle ends on the 15th and the
new cycle starts on the 1st, there is a gap of 15 days between the end of the old cycle and
the start of the new cycle. By default, the BRM system treats those 15 days as a short, but
complete accounting cycle. At the end of that short cycle, the accounting cycle resumes its
normal monthly cycle. A timeline for this scenario is displayed in Figure 5-1.

Figure 5-1 Short Accounting Cycle

2ld accounting cycle Short cycle Mesw accounting cycle

B ™ ™
Ll Ll Ll

I I I I
fay 14 June 15 July 1 Algusti

If the short cycle is less than 15 days, a long cycle is created instead. In that case, the extra
days are added to the next one-month accounting cycle. This results in a long cycle with the
start date of the old cycle and the end date of the new cycle as seen in Figure 5-2.

ORACLE 5-1

Chapter 5
Specifying How to Handle Partial Accounting Cycles

Figure 5-2 Long Accounting Cycle

Old accounting cycle Long oy le Mlew accounting cycle
I I I
May 20 June 20 July 1 Algusti Septermber
"—\v—",
Short cycle less
than 14 days

ORACLE

Monthly charges are prorated for accounting cycles less than or greater than one
month.

A short or long cycle can also occur when a customer creates an account and the
billing DOM is different from the day of month when the the account is created. For
example, your company might require that all customers be billed on the first day of
the month. If a customer creates an account on January 26, by default the first bill is
created on March 1. To bill the customer on February 1, you must change the default
partial billing cycle to short.

By default, BRM creates a short cycle and a one-month cycle. You can configure BRM
to always create short cycles by setting the ShortCycle business parameter using the
pin_bus_params utility. By default, the ShortCycle parameter is disabled. When this
parameter is disabled, if the number of days in the current accounting cycle is less
than 15 days, BRM creates a long cycle and adds the remaining days to the next
month's accounting cycle. If the number of days in the current accounting cycle is
greater than 15 days, BRM creates a short cycle.

To create short cycles:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the Iconfig/business_params object:
pin_bus params -r BusParamsBilling bus_params billing.xml

3. Inthe XML file, set the value for the following entry to enabled:
<ShortCycle>enabled</ShortCycle>

4. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml

5. Stop and restart the CM.

You can also configure BRM to round up a long cycle so that the scale for the long
cycle equals 2. This enables you to charge your customers for two full cycles.

To round up long billing cycles:
1. Open the CM configuration file (BRM_homelsyslcmipin.conf) in a text editor.
2. Change the value of the following entry to 1:
- fm_rate rating longcycle roundup flag 1
3. Set the value of rounding precision to 0:

- fm rate rating quantity rounding scale 0

5-2

Chapter 5
Configuring Timestamp Rounding

4. Save the file.
5. Stop and restart the CM.

To change how BRM handles short and long cycles, customize the
PCM_OP_CUST_POL_PREP_BILLINFO policy opcode source code. See BRM Opcode
Guide.

Configuring Timestamp Rounding

By default, BRM rounds timestamps to midnight. You can configure BRM to use exact
timestamps by changing the timestamp_rounding entry in the CM configuration file
(BRM_homelsysicmlipin.conf) from 1 (enabled) to 0 (disabled). You might need to do that to
support a custom application.

The following features are affected by timestamp rounding. Before disabling timestamp
rounding, consider how that change might impact these features:

» Billing cutoff time. To use a billing cutoff time other than the default, timestamp rounding
must be enabled. Changing the cutoff time also changes the time to which timestamps
are rounded throughout BRM. See "Configuring the Billing Cutoff Time" and "How
Timestamp Fields Are Affected by Changing the Cutoff Time".

e Unit interval used to calculate prorated cycle fees. If timestamp rounding is enabled,
the unit interval is calculated in days because timestamps are rounded to midnight. If
timestamp rounding is disabled, the unit interval is calculated in seconds, and proration
begins from the time indicated by the timestamp. See "Calculating the Unit Interval".

» Validity period start time of resources granted by cycle events. Use the CM
timestamp rounding entry to specify whether this timestamp is rounded.

* Validity period start time of resources granted by purchase events. Use the CM
timestamp rounding entry and a business parameter to specify whether this timestamp is
rounded.

To set the timestamp rounding:
1. Open the CM configuration file (BRM_homelsyslcmipin.conf) in a text editor.
2. Set the timestamp_rounding entry to 1.

3. Save and close the file.

¢ Note:

When a charge offer's purchase, cycle, and usage start and end units are set to 1
(seconds), 2 (minutes), or 3 (hours), and the validity period is less than 24 hours,
timestamps are not rounded, regardless of your system configuration. If the validity
is greater than 24 hours, the cycle end timestamp is rounded for the purpose of
calculating the scale to determine the cycle fee amount to charge.

Aligning Account and Cycle Start and End Times

You can align purchase, cycle, and usage start and end times to the accounting cycle, but
only if the following are true:

ORACLE 5-3

Chapter 5
Aligning Account and Cycle Start and End Times

* You configure delayed purchase, cycle, or usage start and end times when you set
up your product offerings or when you create an account.

* The delayed start and end time is a whole number, not a fraction.
* The delay is measured in cycles.

* The purchase, cycle, or usage start and end times are not modified when a bundle
is purchased.

To align the purchase, cycle, and usage start and end times with the accounting cycle:
1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the Iconfig/business_params object:
pin bus params -r BusParamsBilling bus_params_billing.xml
3. Inthe XML file, set the following entry to enabled:

<CycleDelayAlign>enabled</CycleDelayAlign>

" Note:

If the entry is set to disabled or not set, the start and end times are not
aligned.

4. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml
5. Stop and restart the CM.

The delayed purchase, cycle, or usage start time is set to the accounting cycle start
date.

For example, if you create a customer account on May 5 and the accounting cycle is
monthly, the billing DOM is set to the 5th of each month by default. If you configured
the cycle start delay for 1 cycle, the customer purchases a bundle on May 20, and the
accounting cycle is short, the charges begin on June 5. If the accounting cycle is long,
the charges begin on July 5.

Figure 5-3 shows the cycle start time for the above example:

Figure 5-3 Alighing Account and Cycle Start and End Times

Accounting cycle = manthly
Billing day of month = 5

Account Bundle Start date for short Start date for long
created purchased accounting cycle accounting cycle
I I g

May 5 May 20 June 5 July 5

ORACLE 5-4

Chapter 5
Defining When Billing-Time Discounts Are Applied

Defining When Billing-Time Discounts Are Applied

BRM performs accounting operations, such as applying cycle fees, rollover, and billing-time
discounts, at the end of every accounting cycle. You can configure BRM to apply billing-time
discounts at the end of the billing cycle instead of the accounting cycle. You might do this, for
example, when the billing cycle spans multiple accounting cycles and a billing-time discount
is based on the aggregated usage for the billing cycle.

" Note:

This configuration applies only to regular billing, not to bill-now and on-purchase
billing.

To enable this feature, run the pin_bus_params utility to change the
BillTimeDiscountWhen business parameter. For information about this utility, see BRM
Developer's Guide.

To apply billing-time discounts at the end of the billing cycle:

1. Goto BRM_homelsysldatalconfig.

2. Create an XML file from the /config/business_params object:
pin_bus_params -r BusParamsSubscription bus_params_subscription.xml

3. Inthe XML file, change disabled to enabled:
<BillTimeDiscountWhen>enabled</BillTimeDiscountWhen>

4. Save the file as bus_params_billing.xml.

5. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the CM.

Including Previous Balances in the Current Amount Due in Open
ltem Accounting

When you set the accounting type to open item accounting, the total amount due on the bill is
reflected in the PIN_FLD_PENDING_RECYV field in the Ibillinfo object. It is calculated by
using the sum of the current balance and the current nonpaying child bill unit balances: the
previous balance of open items is not included. As a result, the customer's bill will not include
amounts from previous bills.

ORACLE 5-5

Chapter 5
Specifying Which Billing Cycle to Assign to Deferred Purchase Fees

< Note:

When you set the default accounting type to balance forward accounting, the
total amount due on the bill is reflected in the PIN_FLD_TOTAL_DUE field in
the Ibill object. It is calculated by using the sum of the previous balance, the
current balance, and the current nonpaying child bill unit balances.

You can configure BRM to include the previous total amount due
(PIN_FLD_PREVIOUS_ TOTAL field) in the total amount due of the current bill unit
during open item accounting. This will cause the current bill to reflect the total open
charges on an account.

1. Open the CM configuration file (BRM_homelsyslcmlpin.conf) in a text editor.
2. Change the value of the open_item_actg_include_prev_total entry.
The values are:

* 0: The previous total is not added to the pending amount due during open item
accounting.

* 1: The previous balance is added to the pending amount due during open item
accounting.

3. Save the file.
4. Stop and restart the CM.

Specifying Which Billing Cycle to Assign to Deferred
Purchase Fees

You can assign deferred purchase fees to the previous billing cycle or to the next
billing cycle. By default, the purchase fee is assigned to the next billing cycle.

1. Open the CM configuration file (BRM_homelsyslcmipin.conf) in a text editor.
2. Change the value of the purchase_fees_backcharge entry.
The values are:
e 0: The purchase fees apply to the next cycle.
« 1. The purchase fees apply to the previous cycle.
3. Save the file.
4. Stop and restart the CM.

Calculating Cycle Fees for Backdating

ORACLE

By default, cycle fees are calculated by using the date that the current accounting
cycle ends.

To handle cases where a charge offer's purchase date has been backdated, you can
use the CM configuration file calc_cycle_from_cycle_start_t entry to calculate fees
based on the charge offer's purchase date. This feature is useful when activating an

inactive charge offer.

5-6

ORACLE

Chapter 5
Calculating Cycle Fees for Backdating

< Note:

If the cycle start time is not aligned with the billing DOM, the cycle start time is first
aligned with the billing DOM before it is used to calculate the cycle charges for the
charge offer. However, the cycle start time is aligned only after short and long billing
cycle differences are considered.

To set the charge offer cycle start time:
1. Open the CM configuration file (BRM_home/syslcmlipin.conf) in a text editor.
2. Edit the calc_cycle_from_cycle_start_t entry:

- fm bill calc_cycle from cycle start t 1

* 0 retains the default BRM behavior to calculate cycle fees (based on the date
specified in the PIN_FLD_ACTG_NEXT_T field).

* 1 sets the charge offer cycle start time to consider the date specified in the
PIN_FLD_CYCLE_START_T field for calculating the cycle fees.

3. Save the file.

You do not need to restart the CM to enable this entry.

5-7

Configuring Bill Now

About Bill

Providing

ORACLE

Learn how to use Bill Now to create a bill at any time in Oracle Communications Billing and
Revenue Management (BRM).

Topics in this document:

* About Bill Now

* Providing Discounts to Closed Accounts When Using Bill Now

* Prorating Cycle Arrears and Cycle Forward Arrears for Bill Now

* Running Bill Now to Create Two Bills during the Delayed Billing Period

e Customizing Bill Now

Now

To create a bill at any time, use the Bill Now feature in Billing Care or Customer Center. Bill
Now generates a bill that includes all pending items for a bill unit. Bill Now adds the previous
total amount to the current total. For example, for an account that has a previous total of $20,
and a current total of $10, when Bill Now is run, the account is billed for $30. Bill Now works
with both open item and balance forward accounting types.

* When an account has multiple bill units, only one parent bill unit can be processed at a
time. If you run Bill Now on a parent bill unit, a bill is created that contains a total of the
items from both the parent and any nonpaying bill unit objects.

e If you run Bill Now on a nonpaying bill unit, a bill is created for the parent bill unit that
includes only the nonpaying bill unit items.

* You can choose to hill all pending items or select specific items. When a bill is generated
for specific items, it does not include the cycle arrears and cycle forward arrears fees.

* Bill Now ignores the cycle_tax_interval entry in the CM configuration file, which
specifies whether deferred taxes are calculated separately for the parent and each
nonpaying child bill unit or are consolidated into a single item for the parent. When you
run Bill Now on a parent bill unit that includes nonpaying child bill units, rolls activities for
each nonpaying child bill unit into the parent bill unit and calculates taxes for the parent
only. The single tax item for the parent includes taxes from both the parent and the
nonpaying child bill units.

Discounts to Closed Accounts When Using Bill Now

To apply discounts with Bill Now to closed accounts, you must ensure that BRM does not
delete canceled discounts. For information about deleting canceled discounts, see "Deleting
Canceled Discount Offers" in BRM Managing Customers.

1. Open the CM configuration file (BRM_homelsysicmlipin.conf) in a text editor.
2. Setthe keep_cancelled_products_or_discounts entry to 1.

- fm_subscription pol keep cancelled products or discounts 1

6-1

Chapter 6
Prorating Cycle Arrears and Cycle Forward Arrears for Bill Now

If this entry is not present, add it.
3. Save the file.
4. Stop and restart the CM.

Prorating Cycle Arrears and Cycle Forward Arrears for Bill

Now

By default, when you use Bill Now, cycle arrears charges and cycle forward arrears
charges are not prorated.

You can specify to prorate cycle arrears charges and cycle forward arrears charges for
Bill Now by running the pin_bus_params utility to change the
ApplyCycleFeeForBillNow business parameter. For information about this utility, see
BRM Developer's Guide.

" Note:

When you use Bill Now, you can enable proration for cycle arrears and cycle
forward arrears charges; however, cycle forward fees are not prorated.

To prorate cycle forward arrears charges when you use Bill Now:
1. Goto BRM_homelsysldatalconfig.
2. Create an XML file from the /config/business_params object:
pin_bus params -r BusParamsBilling bus_params billing.xml
3. Inthe XML file, change disabled to enabled:
<ApplyCycleFeeForBillNow>enabled</ApplyCycleFeeForBillNow>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml

6. Stop and restart the CM.

Running Bill Now to Create Two Bills during the Delayed
Billing Period

ORACLE

By default, generating two bills with Bill Now during the delayed billing period is
disabled in BRM.

To enable this feature, run the pin_bus_params utility to change the
CreateTwoBilINowBillsInDelay business parameter. For information about this utility,
see BRM Developer's Guide.

Delayed billing must already be set up before enabling this feature. If you have not
already set up delayed billing, see "Setting Up Delayed Billing".

6-2

Chapter 6
Customizing Bill Now

To enable Bill Now during the delayed period:

Go to BRM_homelsysldatalconfig.

Create an XML file from the Iconfig/business_params object:

pin bus params -r BusParamsBilling bus_params_billing.xml

In the XML file, change disabled to enabled:
<CreateTwoBillNowBillsInDelay>enabled</CreateTwoBillNowBillsInDelay>
Save the file as bus_params_billing.xml.

Load the XML file into the BRM database:

pin_bus_paramsbus params billing.xml

Stop and restart the CM.

Customizing Bill Now

You can customize the following:

ORACLE

The due date for a bill created with Bill Now is calculated as the billing cycle length minus
one day after Bill Now is run. To change the Bill Now due date, customize the
PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy opcode.

Bill Now generates a bill that includes all pending items. To change the default behavior,
edit the search criteria in the PCM_OP_BILL POL_GET_PENDING_ITEMS policy
opcode.

To apply discounts or folds when using Bill Now, use the
PCM_OP_BILL_MAKE_BILL_NOW opcode.

To generate a Bill Now type of bill for a specific service, use
PCM_OP_BILL_MAKE_BILL_NOW, PCM_OP_BILL_CREATE_SPONSORED_ITEMS,
and PCM_OP_BILL_POL_GET_PENDING_ITEMS.

See BRM Opcode Guide.

6-3

Setting Up Delayed Billing

Learn how to set up delayed billing in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

e About Delayed Billing

* Configuring Delayed Billing

* Configuring Auto-Triggered Billing for Delayed Billing

* Configuring an Accounting Cycle Delay Period

* Specifying When to Apply Cycle Forward Fees and Cycle Rollovers
» Enforcing Partial Billing in the Billing Delay Interval

» Setting Delayed Cycle Start Dates to the 29th, 30th, or 31st

* Billing Cycle Override for Delayed Billing

About Delayed Billing

ORACLE

You can set up BRM to delay billing for accounts after the end of a billing cycle. This is called
delayed billing. Delayed billing essentially extends a billing cycle by the delay interval. You
use delayed billing to bill for events that occur within a billing cycle but are not recorded
during that cycle.

For example, if a batch of events does not arrive until after the end of the billing cycle, you
delay billing until all events in the batch are recorded in the BRM database. When you use
delayed billing, billing for all the accounts in your BRM system is delayed for the same
amount of time; you cannot specify multiple billing delay periods.

Figure 7-1 shows that with delayed billing, the billing date occurs after the original billing date,
during the next accounting cycle.

7-1

ORACLE

Chapter 7
About Delayed Billing

Figure 7-1 Delayed Billing Timeline

Criginal
billing date Delayed
billing date

o

Length of
delay

Accounting cycle A1 Accounting cycle A3

Length of
delay

b\
Delayed

Original billing date
billing date

Accounting cycle A2

¢ Note:

The length of the delay interval must be shorter than one accounting cycle.

When your system is set up to use delayed billing, an account is created with two
pending bills, one for the current cycle and one for the next cycle, which are combined
in the balance seen in Billing Care or Customer Center. The combined pending bill
includes separate items for the previous accounting cycle and for the next accounting
cycle. When the bill for the current cycle is finalized at the end of the delay interval, the
system makes the bill for the next cycle to be the current bill and creates a new bill for
the next cycle.

The BRM system automatically triggers billing inside the delay interval when it detects
that a new event has occurred for the next billing cycle. When billing is triggered during
the delayed billing period, the bill for the previous cycle is partially processed (partial
billing), but the bill is not finalized.

BRM performs partial billing to enable the new event to be rated and applied to the
correct billing period. Partial billing ensures that new events impact bill items of the
next billing cycle and old events impact bill items of the previous billing cycle. BRM
maintains an internal list of bill items for the previous and next bill cycles. The bill for
the previous cycle is finalized (final billing) after the delay interval.

During partial billing, BRM does the following:

* Applies deferred cycle forward fees to the next billing cycle.
* Applies cycle arrears fees to the previous billing cycle.

* Applies cycle forward fees.

* Applies cycle rollovers.

During final billing, BRM does the following:

* Applies cycle discounts (billing time discounts).

7-2

Applies cycle folds.

Applies cycle taxes.

Chapter 7
About Delayed Billing

Calculates a Ibill object for the previous billing cycle.

Initializes the next billing cycle.

Creates a new empty /bill object for the next billing cycle with default and pre-created

items.

The following example is illustrated in Figure 7-2:

An account's billing date is January 1 and the billing delay interval is five days.

On January 2, a new usage event for the account occurs for the next billing cycle.

To ensure that the new usage event impacts items in the next billing period (B2), BRM

performs partial billing.

On January 6, final billing is run for the previous billing cycle (B1) by running the billing
utility; the status of all the bill items for the previous bill is changed to open so that they

stop accumulating charges.

Figure 7-2 Partial and Final Billing Timeline

Criginal

Partial Final
biling date billing for billing for
for B1

B1 on Jan 2 E1

l Jan B

Jan 1

Billing cycle B1

Length of
dalay

Billing cycle B3

Billing cycle B2

Length of
dalay

Jan 2

t

Event for B2 is
recorded inside
the delay interval

Feb 1 Feb &

Criginal Delayed

billing date billing date

for B2 for B2

When you use delayed billing, auto-triggered billing is disabled for all but the delay interval
and only the last two days of each bill unit's accounting cycle.

When a bill-triggering event occurs during the delayed billing period, BRM auto-triggers
partial billing and, if final billing has not occurred before the last two days of the next billing
cycle, BRM auto-triggers final billing. This ensures previous billing is run before the next
billing run occurs.

For example:

ORACLE

An event for the next billing cycle is recorded after the billing delay interval on January 7.

The BRM system detects that the delay period is over but final billing for the previous
billing cycle has not occurred yet.

7-3

Chapter 7
About Delayed Billing

— If auto-triggered billing is disabled (the default when delayed billing is
configured), BRM does not run final billing on January 7. In this case, the
delay interval is virtually extended until final billing is performed by running the
billing utility or auto-triggered during the last two days of the next accounting
cycle.

— If auto-triggered billing is enabled, BRM auto-triggers final billing for the
previous billing cycle on January 7.

" Note:

* You can change auto-triggered billing to be always enabled
when delayed billing is used by setting the
auto_triggering_limit parameter to 0.

* You can also change the number of days auto-triggered billing is
enabled at the end of each accounting cycle.

Delayed Billing and Rollovers

If you enable delayed billing, delayed events can borrow rollover from the current cycle
even if events from the current cycle have consumed the rollover. Unless you set up
rerating and rollover correction, current cycle events can remain rated as free even if
their rollover has been consumed by delayed events.

Changing the Billing DOM When Delayed Billing is Enabled

If you change a customer's billing DOM during the delayed billing period, BRM defers
the DOM change until after the delay interval ends. This ensures that the change to
the billing DOM occurs in the future billing cycle. For example, assume that a
customer's hilling DOM is 1 and the delay interval is 5, making the billing date for the
first three months of the year to be January 1, February 1, and March 1. If on January
3 the customer changes the billing DOM to 15, BRM defers making the change until
January 6 (January 1 plus 5 days). This changes the billing date for the first three
months to January 1, February 1, and March 15.

Note:

To have the billing DOM change deferred until after the delay interval, auto-
triggered billing must be disabled; otherwise, the billing DOM change occurs
immediately. For example, changing the billing DOM to 15 on January 3
would change the billing date to February 15.

How BRM Assigns Delayed Events to Items

ORACLE

In BRM, every event object is associated with a bill item. When delayed events are
rated by ECE, some of the events need to be assigned to the next accounting cycle.
BRM pre-creates items in the following cases:

« When an account is created.

7-4

Chapter 7
About Delayed Billing

* When you run billing.
* When a CSR uses Bill Now.
» Atthe end of the accounting cycle when you use delayed billing.

To choose the correct bill item, ECE can do one of the following:

* Assign the event to the current open bill item.
* Assign the event to the next open bill item.

To decide which item to apply the bill to, ECE takes into account the following dates:

* The date when the call occurred.
e The current system date.

e The date when the current accounting cycle ends. This is called the next accounting
cycle date.

e The number of days after the current accounting cycle ends when delayed billing runs.
This number is called the delayed billing offset.

To assign the event to an item:

* If the event date falls before the next accounting date, the event is assigned to the
current item.

» If the event date falls after the next accounting date, the event is assigned to the next
item. This can happen because the event might occur after the close of the accounting
cycle but before the delayed billing offset date.

Figure 7-3 shows how events are assigned:

Figure 7-3 Event Assignment

Event uses the Event uses the
currant item next item
May 15 i June 15 June 18
| | i ,
Accounting Usage Accounting Usage Accounting cycle
cycle start request date cycle end request date end plus delayed
billing offseat

¢ Note:

The customer billing date is not relevant when choosing which item to use for the
event. There might be multiple accounting cycles in one billing cycle. New items are
created for each accounting cycle.

If ECE needs to assign an event to the current item, but billing for that item has already
occurred, ECE includes the event and assigns it to the current item. For example, if the event

ORACLE 7-5

Chapter 7
Configuring Delayed Billing

is rated on May 20 and loaded after the account cycle ends, it is still included in the
current item as shown in Figure 7-4.

Figure 7-4 Current Event Assignment after Billing

Usage request
Event date processing date
May 15 l June 15 June 18
| i .
Accounting Accounting Accounting cycle
cycle start cycle end end plus delayed
billing offset

Configuring Delayed Billing

By default, delayed billing is enabled. You can configure delayed billing by setting the
ConfigBillingDelay parameter using the pin_bus_params utility. For information
about this utility, see "pin_bus_params" in BRM Developer's Guide.

ORACLE

To configure delayed billing:

1. Go to the BRM_homelsysldatalconfig directory.

2. Create an XML file from the Iconfig/business_params object:

pin_bus _params -r BusParamsBilling bus_params_billing.xml

3. Inthe XML file, enter a value greater than 0:

<ConfigBillingDelay>D[:H]</ConfigBillingDelay>

where D is the number of days and H is the number of hours. Leading zeros are
allowed when specifying the delay interval.

For example:

0:12 sets billing delay interval to 12 hours.

2 sets billing delay interval to 2 days.

1:3 sets billing delay interval to 1 day and 3 hours.

01:03 also sets billing delay interval to 1 day and 3 hours.

0 sets the billing delay interval to zero.

7-6

Chapter 7
Configuring Auto-Triggered Billing for Delayed Billing

< Note:

* To use delayed billing, set ConfigBillingDelay to a value ranging from 1 to
27. The length of the billing delay interval must be shorter than one
accounting cycle.

* If you do not want to use delayed billing, set ConfigBillingDelay to 0.

* To disable delayed billing, set this parameter to -1. This is supported for
backward compatibility.

Caution:

You can change the value of ConfigBillingDelay at any time. However, after
you begin rating events in a production database, do not reset this parameter.
Doing so might cause database errors.

4. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml

5. Stop and restart the CM.

Configuring Auto-Triggered Billing for Delayed Billing

ORACLE

When a systemwide billing delay is set in BRM, by default auto-triggered billing is disabled for
all but the delay period and only the last two days of each bill unit's accounting cycle.

You can specify auto-triggered billing to be enabled for more than two days at the end of each
accounting cycle, or you can specify that it is always enabled when delayed billing is used.

To change this feature, run the pin_bus_params utility to change the AutoTriggeringLimit
business parameter. For information about this utility, see BRM Developer's Guide.

Note:

This is a systemwide setting; it applies to the accounting cycle of every bill unit in
your BRM system.

Configure the auto-triggered billing period for delayed billing as follows:

1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the Iconfig/business_params object:
pin_bus _params -r BusParamsBilling bus_params billing.xml

3. Inthe XML file, change the number of days for which auto-triggered billing is enabled at
the end of each accounting cycle. For example, if you change the value to 10, auto-
triggered billing is enabled for the last 10 days of every accounting cycle and in the billing
delay interval.

7-7

Chapter 7
Configuring an Accounting Cycle Delay Period

To always enable auto-triggered billing when delayed billing is used, change 2 to
0. For example, if billing delay interval is five days and AutoTriggeringLimit is 0,
auto-triggered billing is enabled all the time.

<AutoTriggeringLimit>10</AutoTriggeringLimit>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_paramsbus_params billing.xml

6. Stop and restart the CM.

Configuring an Accounting Cycle Delay Period

In offline charging, the following scenario can occur:

1. The eventis rated by Offline Mediation Controller.
2. Before the event is loaded by Rated Event Loader (RE Loader), billing is run.

3. RE Loader must find the item that the event applies to and apply the balance
impact.

Delayed billing assigns delayed events to items of the billing cycle in which they
occurred. However, in the scenario described above, you might need to assign the
delayed events to the accounting cycle in which they occurred. To assign delayed
events to items of the accounting cycle in which they occurred, you configure an
accounting cycle delay period. You can do this to enable accurate general ledger
reporting.

When a billing cycle spans multiple accounting cycles, the items for those accounting
cycles are not closed until billing is run. If you run a general ledger (G/L) report at the
end of an accounting cycle for which billing has not yet been run, the status of the
revenue in the G/L can change if additional events are rated and loaded for that cycle
before the accounts are billed.

If you require that G/L data not change after the G/L report is run, you can configure
an accounting cycle delay period after which events are no longer assigned to items of
that accounting cycle, even if those items are not closed. You then run G/L reports
after the accounting cycle delay period has ended. This ensures that the revenue
reported in the G/L is accurately represented and that the state of the revenue
(earned, unearned, billed, and unbilled) does not change after the G/L report is run.

When you configure an accounting cycle delay period, BRM assigns delayed events to
items based on when the accounting cycle delay period ends. BRM assigns events to
items when RE Loader loads the events into the database:

e When delayed events (events that occurred in the previous cycle) are loaded after
the accounting day of month (DOM), but before the end of the accounting cycle
delay period, those events are posted to the item for which the DOM has just
passed as shown in Figure 7-5:

ORACLE 7-8

Figure 7-5

Chapter 7
Configuring an Accounting Cycle Delay Period

Delayed Events Arriving During Cycle Delay Period

Delaved events
[oaded on 213,
assigned to kem 1

Accounting oycle Dok

Accounting cycle
delay period = 5 days

1
11 21
. A

34
J

.
kem 1

for accounting

cycle 1/ to 24

.
ltem 2

for accounting

cycle 211 to 341

e When the billing cycle has ended and delayed events are loaded after the end of the
accounting cycle delay period, but before delayed billing is run, those events are posted
to the item for the next (current) accounting cycle, even though the previous cycle has not
been billed and its items are still pending. This is shown in Figure 7-6:

Figure 7-6 Delayed Events Arriving After Cycle Delay Period

Delaved events
[oaded an 213,
assioned to Kem 2

Accounting cycle
delay period = 5 days

Accounting cycle DO M
& end of hilling cycle

Delayed hilling
starts an 2110

I 1
11 21
' A

34

.
ltem 1

for accounting

cycle 1/ to 24

.
ltem 2

for accounting

cycle 2/1 to 341

« After the account is billed, items for the billed cycle are closed so delayed events are
posted to the item for the following (the current) cycle.

Note:

ORACLE

If the accounting cycle delay period is longer than the delayed billing period, the
accounting cycle delay period is ignored after billing is run. After billing is run, if
any remaining events that occurred in the previous cycle are rated and loaded
in the current cycle, they are assigned to the current cycle's item.

7-9

Chapter 7
Specifying When to Apply Cycle Forward Fees and Cycle Rollovers

You specify the accounting cycle delay period by running the pin_bus_params utility
to change the AcctCycleDelayPeriod business parameter. For information on this
utility, see BRM Developer's Guide.

To configure an accounting cycle delay period:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the /config/business_params object:
pin_bus _params -r BusParamsBilling bus_params billing.xml

3. Inthe XML file, change -1 to the number of days in the accounting cycle delay
period. The number of days must be a positive value. (A value of -1 indicates that
there is no accounting cycle delay period.):

<AcctCycleDelayPeriod>3</AcctCycleDelayPeriod>

< Note:

Do not set the accounting cycle delay period to be longer than the
delayed billing period.

4. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

5. Stop and restart the CM.

Specifying When to Apply Cycle Forward Fees and Cycle
Rollovers

Cycle forward fees and cycle rollovers are normally applied at the beginning of the
accounting cycle to charge for services provided during that cycle and to rollover
unused balances for use in subsequent cycles. However, when your system is set up
for delayed billing, cycle forward fees and cycle rollovers are applied during partial
billing by default.

When you use delayed billing, the BRM system provides the flexibility to specify when
to charge cycle forward fees and when to rollover balances. You can specify to charge
cycle forward fees and rollover balances during either partial billing or final billing by
setting the delay_cycle_fees entry in the CM configuration file (pin.conf).

" Note:

New events that occur inside the billing delay interval are rated and recorded
for the next billing cycle. If cycle forward fees and rollover balances are not
applied when new events occur in the delay interval, rating of the new events
might produce incorrect results. Oracle recommends applying cycle forward
fees and cycle rollovers during partial billing unless reasons exist not to do
so.

To specify when to apply cycle forward fees and cycle rollovers:

ORACLE 7-10

Chapter 7
Enforcing Partial Billing in the Billing Delay Interval

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf) in a text editor.
2. Add the - fm_bill delay_cycle_fees entry and set it to 0 or 1.
* 0 (the default) applies cycle forward fees and cycle rollover during partial billing.

» 1 applies cycle forward fees and cycle rollover during final billing.

Note:

You can change the setting for delay_cycle_fees either before partial
billing or after final billing. Do not change this setting between partial billing
and final billing.

3. Save thefile.
4. Stop and restart the CM.

Enforcing Partial Billing in the Billing Delay Interval

Partial billing is run only when your BRM system is set up for delayed billing. The BRM
system automatically triggers partial billing by default when it detects that a new event has
occurred for the next billing cycle inside the billing delay interval.

When there are no new events in the delay interval and partial billing has not occurred, you
can force the BRM system to run partial billing when the billing utility is run in the delay
interval. Later, if a new event occurs in the delay interval, the new event is processed
immediately, without waiting for the partial billing run to complete.

To force partial billing:

1. Open the billing utility configuration file (BRM_homelapps/pin_billd/pin.conf) in a text
editor.

2. Set the - pin_bill_accts enforce_billing entry to 0 or 1.
0 does not enforce partial billing.

1 enforces partial billing. This is the default.

" Note:

The enforce_billing entry is used by the BRM system to enforce partial billing
only if the ConfigBillingDelay business parameter is set to a number greater
than zero. See "Configuring Delayed Billing" for more information.

3. Save the file.

4. Run the billing utility.

Setting Delayed Cycle Start Dates to the 29th, 30th, or 31st

By default, when you delay a customer's cycle fees by one month: for example, to provide a
promotional month of free service: BRM sets the delayed cycle start date to any date from the
1st through the 28th of the month. Therefore, any delayed cycle fees due on the 29th, 30th,

ORACLE 7-11

Chapter 7
Billing Cycle Override for Delayed Billing

or 31st of the month are advanced to the first day of the following month. For example,
if you delay cycle fees by one month for a bundle purchased on October 29, BRM sets
the delayed cycle start date to December 1.

To configure BRM to enable delayed cycle start times on the 29th, 30th, or 31st of a
month:

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf) in a text editor.
2. Change the fm_bill cycle_delay_use_special_days entry:

e To set the delayed cycle start date to the 1st of the following month for all
bundles purchased on the 29th, 30th, or 31st, enter 0. This is the default
setting.

e To enable BRM to assign delayed cycle start dates to the 29th, 30th, or 31st of
the month, enter 1.

3. Save the file.
4. Stop and restart the CM.

Billing Cycle Override for Delayed Billing

You can override the billing cycle for events that occur during the delayed billing
interval. By default, events recorded during the delayed billing interval are billed in the
previous billing cycle when the event time precedes the previous billing cycle end date.
Otherwise, the event is billed in the current billing cycle. You can configure BRM to
specify whether such events are billed in the previous or current billing cycle. BRM
enables you to specify a configurable billing cycle interval. You can then choose which
events recorded during this interval are to be billed in the previous or current billing
cycle. Events that are not recorded during this interval are billed as usual, using the
default delayed billing implementation.

To configure the billing cycle for events that occur during the delayed billing interval:

1. Go to the BRM_homelsyslidatalconfig directory.

2. Create an XML file from the Iconfig/business_params object:
pin_bus_params -r BusParamsRerate bus_params billing.xml
This command creates an XML file named bus_params_billing.xml.out in your
working directory.

3. Open the bus_params_billing.xml.out file.

4. Set the ConfigBillingCycle parameter to the amount of time after a billing cycle
ends that new events are included in the previous month's bill:

<ConfigBillingCycle>days</ConfigBillingCycle>

where days represent the number of days after a billing cycle ends. For example,
enter 5 for 5 days.

ORACLE 7-12

ORACLE

Chapter 7
Billing Cycle Override for Delayed Billing

< Note:

e The ConfigBillingCycle value must be greater than zero and less than or
equal to the delayed billing interval value (set in the ConfigBillingDelay
business parameter). Otherwise, BRM reports an error and terminates the
CM. For information about setting the delayed billing interval, see
"Configuring Delayed Billing".

e Setting the configurable billing cycle to be the same as the delayed billing
interval will affect system performance because each event occurring within
the delayed billing interval is passed to the
PCM_OP_ACT_POL_CONFIG_BILLING_CYCLE policy opcode for
additional processing.

Save and rename the file as bus_params_billing.xml.

Load the XML file into the BRM database:

pin_bus_params bus_params_billing.xml

Stop and restart the CM.

Modify the PCM_OP_ACT_POL_CONFIG_BILLING_CYCLE policy opcode:

* To bill the event in the previous cycle, set the output flist field FLAGS to
BILL_IN_PREVIOUS_CYCLE.

* To bill the event in the current cycle, set the FLAGS field to
BILL_IN_CURRENT_CYCLE.

See "Customizing How to Bill Events That Occur between Billing Cycles" in BRM Opcode
Guide.

7-13

Configuring 31-Day Billing

Learn how to enable Oracle Communications Billing and Revenue Management (BRM) to
use all 31 days in a month as the billing day of month (DOM).

Topics in this document:

e About Using 31-Day Billing

e Enabling the 31-Day Billing Feature

* Setting the Forward and Back Billing Options

About Using 31-Day Billing

By default, you can set the billing day of month (DOM) to any day between 1 and 28. If your
customer signs up on the 29th, 30th, or 31st, the billing DOM is set to the 1st. This can result
in a large number of customers being billed on the 1st of the month.

You can change this setting to support billing on all days of the month. For example, if you
create a customer account on the 29th, the billing DOM is set to the 29th instead of the 1st.

If your customers' billing DOM is the 29th, 30th, or 31st, for the months that do not have
these days, you can configure whether billing should be run on the last day for the same
month (set to back option) or the first day of the next month (set to forward option). By
default, the billing DOM is set forward to the 1st of the next month.

For example, when the DOM is set to 31, because April has 30 days:

* The set to forward option sets the billing date to May 1.

* The set to back option sets the billing date to April 30.

Enabling the 31-Day Billing Feature

To use 31-day billing, you must either modify the init_objects.source file before loading it
into the database or set the 31DayBilling business parameter in the billing instance by
running the pin_bus_params utility. For information on this utility, see BRM Developer's
Guide. After BRM is configured to allow 31-day billing, you can specify to use the set to back
option or the set to forward option.

Switching to 31-Day Billing During BRM Installation

ORACLE

Before loading init_objects.source, change the value of the PIN_FLD_MAXIMUM field from
28 to 31 in the Iconfiglfld_validate object that has the Actg_cycle value in the
PIN_FLD_NAME field as follows:

/config/fld validate - Actg cycle validation
<PCM _OP $PINioPNAME=$PIN7CONF7INIT70PNAME; $PINioPFLAGS=$PIN7CONF7INIT70PFLAGS>

0 PIN FLD POID POID [0] $PIN CONF DB NO /config/fld validate 606 0
0 PIN FLD DESCR STR [0] "Field Validation"
0 PIN FLD HOSTNAME STR [0] "-"

8-1

Chapter 8
Disabling the 31-Day Billing Feature

0 PIN FLD NAME STR [0] "Actg_cycle"
0 PIN FLD PROGRAM NAME STR [0] "-"
0 PIN FLD VALIDATION SUBSTRUCT [0]
1 PIN FLD FIELD TYPE INT (0] 2
1 PIN FLD MAXIMUM NUM [0] 31
1 PIN FLD MINIMUM NUM [0] 31
</PCM_OP>
\J
Note:

When you upgrade to a new BRM release, ensure that you make this change
in the new init_objects.source file. The installation program overwrites the
init_objects.source file, and the changes you have made will be lost.

Switching to 31-Day Billing After You Install BRM

To switch to 31-day billing after you have installed BRM, set the 31DayBilling
business parameter in the billing instance by running the pin_bus_params utility.

To enable the 31-day billing feature:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the /config/business_params object:
pin bus _params -r BusParamsBilling bus_params_billing.xml

3. Inthe XML file, set the following entry to enabled:
<31DayBilling>enabled</31DayBilling>

4. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

5. Stop and restart the CM.

Disabling the 31-Day Billing Feature

ORACLE

To disable the 31-day billing feature:

1. Inthe init_objects.source file, change the value of the PIN_FLD_MAXIMUM field
from 31 to 28 in the Iconfig/fld_validate object that has the Actg_cycle value in
the PIN_FLD_NAME field as follows:

/config/fld validate - Actg cycle validation
<PCM_OP $PIN OPNAME=$PIN CONF INIT OPNAME; $PIN OPFLAGS=$PIN CONF INIT OPFLAG

s>
0 PIN FLD POID POID [0] $PIN CONF DB NO /config/fld validate
606 0

0 PIN FLD DESCR STR [0] "Field Validation"

0 PIN FLD HOSTNAME STR [0] "-"

0 PIN FLD NAME STR [0] "Actg cycle"

0 PIN FLD PROGRAM NAME STR [0] "-"

0 PIN FLD VALIDATION SUBSTRUCT [0]

1 PIN FLD FIELD TYPE INT [0] 2

1 PIN FLD MAXIMUM NUM [0] 28

8-2

Chapter 8
Setting the Forward and Back Billing Options

1 PIN FLD MINIMUM NUM [0] 31
</PCM_OP>

2. Go to BRM_homelsysldatalconfig.

3. Create an XML file from the /config/business_params object:
pin bus_params -r BusParamsBilling bus_params_billing.xml

4. Inthe bus_params_billing.xml XML file, set the following entry to disabled:
<31DayBilling>disabled</31DayBilling>

5. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the CM.

7. (Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see BRM System Administrator's Guide.

Setting the Forward and Back Billing Options

ORACLE

To set the forward and back billing options, run the pin_bus_params utility to change the
MoveDayForward business parameter. For information on this utility, see BRM Developer's
Guide.

To configure the billing DOM:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the /config/business_params object:
pin bus params -r BusParamsBilling bus params billing.xml

3. If you want to set the billing date to the first day of the month, set the value of
MoveDayForward to firstDay in the XML file. This is the default.

<MoveDayForward>firstDay</MoveDayForward>

4. If you want to set the billing date to the last day of the month, set the value of
MoveDayForward to lastDay in the XML file.

<MoveDayForward>lastDay</MoveDayForward>
5. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml

6. Stop and restart the CM.

8-3

Configuring the Billing Cutoff Time

Learn how to configure Oracle Communications Billing and Revenue Management (BRM) to
use a billing cutoff time other than midnight.

Topics in this document:

e About Configuring the BRM Cutoff Time
e Configuring the Billing Cutoff Time

About Configuring the BRM Cutoff Time

ORACLE

By default, BRM defines the business day as starting at 12:00:00 a.m. and ending at 11:59:59
p.m. For example, if you run billing at any time on December 5, billing is performed for all
activity that occurred until 11:59:59 p.m. on December 4 for the accounts to be billed.

You can change the cutoff time to start your billing activity at any time of the day. For
example, if you set the cutoff time to 10 a.m., activity for events that occurred before 10 a.m.
are billed.

Figure 9-1 shows how billing works for different cutoff times:

9-1

Chapter 9
About Configuring the BRM Cutoff Time

Figure 9-1 Billing Cutoff Time

Cutoff time at 12:00:00 AM

Activity
before this
time is hilled Billing run

| |

¥

| |

December & December &
12:00:00 Ak 11:00:00 A

Cutoff time at 10:00:00 AM

Activity
before this
tirne is billed Billing run

|

¥

December & December 5 Decermber &
12:00:00 Ar - 10:00:00 Ak 11:00:00 A

Changing the cutoff time does not just change how billing works; it changes how all
activities in BRM work, including accounting and billing cycles, usage rating, cycle
fees, proration, general ledger posting, and searches. The cutoff time is used for all
accounts.

How Billing and Invoicing Are Affected by Changing the Cutoff Time

e The start and end dates for accounting and billing cycles are based on the cutoff
time. For example, if the cutoff time is 10:00 a.m., a customer who creates an
account at 9:00 a.m. on December 5 has a billing date of December 4.

ORACLE

e The following utilities run by the pin_bill_day script use the cutoff time to calculate
the hilling periods:

pin_deferred_act
pin_bill_accts
pin_collect
pin_refund
pin_inv_accts
pin_deposit

pin_cycle_fees

9-2

Chapter 9
About Configuring the BRM Cutoff Time

When searching for accounts, the pin_inv_accts, pin_inv_send, and pin_inv_export
utilities use the cutoff time to calculate the start and end times for flagging accounts to be
invoiced.

How Rating Is Affected by Changing the Cutoff Time

When you define start and end times for any pricing component (for example, the start
and end times for a discount), BRM uses the cutoff time. For example, if you specify that
a discount is valid until December 5 and the cutoff time is 10:00 a.m., the discount is valid
until 10:00 a.m. on December 5.

You can set up special charges for events that occur on certain days. BRM uses the
cutoff time to determine which day an event is assigned to.

How General Ledger (G/L) Is Affected by Changing the Cutoff Time

When searching for events for collecting G/L information and generating G/L reports, the
pin_ledger_report utility uses the cutoff time to calculate the start and end times for the G/L
report.

How Timestamp Fields Are Affected by Changing the Cutoff Time

Many BRM features use timestamps to determine how to perform activities. Timestamps are
usually rounded to midnight. If you change the cutoff time, the timestamp is rounded to the
cutoff time instead.

ORACLE

" Note:

The cutoff time is also considered while setting the timestamp values for product
offering start and end dates.

These fields affect the accounting cycle dates:

PIN_FLD_ACTG_LAST_T
PIN_FLD_ACTG_NEXT_T
PIN_FLD_ACTG_FUTURE_T

These fields affect rating and proration:

PIN_FLD_PURCHASE_START T
PIN_FLD_PURCHASE_END_T
PIN_FLD_USAGE_START_T
PIN_FLD_USAGE_END_T
PIN_FLD_CYCLE_START_T
PIN_FLD_CYCLE_END_T

These fields affect billing cycle dates:

PIN_FLD_LAST BILL_T
PIN_FLD_NEXT BILL_T

9-3

Chapter 9
Configuring the Billing Cutoff Time

Configuring the Billing Cutoff Time

ORACLE

< Note:

After you set the cutoff time, you cannot change it in a production system.

To configure the billing cutoff time:

* Set the timestamp_rounding entry in the CM pin.conf file.

* Set the cutoff time by running the pin_bus_params utility to change the
BillingCycleOffset business parameter. For information about the utility, see
"pin_bus_params" in BRM Developer's Guide.

To configure timestamp rounding:

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf) in a text editor.
2. Set the timestamp_rounding entry to 1.

3. Save and close the file.

To set the cutoff time:

1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the /config/business_params object:
pin_bus params -r BusParamsBilling bus_params billing.xml

3. Inthe XML file, change 0 to the desired cutoff time. For example, to set the cutoff
time to 10:00 a.m., change 0 to 10. The default for this field is 0, which is
equivalent to 12:00 a.m.

<BillingCycleOffset>10</BillingCycleOffset>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus_params billing.xml

6. Stop and restart the CM.

9-4

Configuring Billing for Groups and Hierarchies

Learn how to configure the way Oracle Communications Billing and Revenue Management
(BRM) bills sharing groups and account hierarchies.

Topics in this document:

» Setting Up Billing for Charge and Discount Sharing Groups
e Skipping Validation of Billing for Nonpaying Child Bill Units

Setting Up Billing for Charge and Discount Sharing Groups

ORACLE

By default, when billing is run, bill units are billed in this order:

1. All nonpaying child bill units in all accounts.
2. All remaining bill units in all accounts.

If you have discount or charge sharing groups in your BRM system, you must reconfigure
your system to bill accounts in this order:

1. All nonpaying child bill units in all accounts.

2. All remaining discount group member bill units in all member accounts.

3. All remaining charge sharing group member bill units in all member accounts.
4. All remaining bill units in all accounts.

This ensures that billing is run for all member accounts before it is run for any discount or
charge sharing group owner account.

Note:

If you do not reconfigure your system, discount and charge sharing group owner
accounts might be billed before some of their member accounts. When this occurs,
the members' sponsored charges are not included in the owner's bill for the current
billing cycle. Instead, they are added to the owner's bill for the next billing cycle.

To enable this feature, run the pin_bus_params utility to change the
BillingFlowSponsorship business parameter. For information about this utility, see BRM
Developer's Guide.

The following setups ensure that two-level discount and charge sharing relationships are
correctly billed. For sharing relationships that exceed two levels, the billing sequence might
be incorrect, resulting in incorrect billing.

For example, suppose account A owns a sharing group to which account B belongs, and
account B owns a sharing group to which account C belongs. Owner account A and member
account B are billed in the correct order: member before owner. Owner account B and
member account C, however, might not be billed in the correct order. This happens because

10-1

Chapter 10
Skipping Validation of Billing for Nonpaying Child Bill Units

B is an owner of account C's group and a member of account A's group. As a member,
it is billed at the same time all other member accounts are billed and thus might be
billed before account C.

To set up billing for charge sharing groups:
1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the /config/lbusiness_params object:
pin_bus _params -r BusParamsBillingFlow bus params billing flow.xml
3. Inthe XML file, change undefined to one of the following:
e sponsorskFirst to bill group owner accounts before member accounts.
e sponsoreesFirst to bill member accounts before group owner accounts.

If the billing order of the owner and member accounts does not matter, keep the
original setting of undefined.

<BillingFlowSponsorship>undefined</BillingFlowSponsorship>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus params billing flow.xml
6. Stop and restart the CM.
To set up billing for discount sharing groups:
1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the /config/business_params object:
pin_bus params -r BusParamsBillingFlow bus params_billing flow.xml
3. Inthe XML file, change undefined to one of the following:
» discountParentsFirst to bill group owner accounts before member accounts.
* memberDiscountFirst to bill member accounts before owner accounts.

If the billing order of owner and member accounts does not matter, keep the
original setting of undefined.

<BillingFlowDiscount>undefined</BillingFlowDiscount>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus params_billing flow.xml

6. Stop and restart the CM.

Skipping Validation of Billing for Nonpaying Child Bill Units

ORACLE

If you use bill unit hierarchies, BRM validates that all nonpaying bill units have been
billed successfully before billing the paying parent bill unit. When billing fails for a
nonpaying child bill unit, the parent bill unit is not billed. In rare instances, however,
when billing for the nonpaying child bill unit continuously fails and you want to proceed
with billing the parent bill unit, you can skip validation of billing for the nonpaying child
bill unit.

10-2

ORACLE

Chapter 10
Skipping Validation of Billing for Nonpaying Child Bill Units

To enable this feature, run the pin_bus_params utility to change the
SkipCheckForSubordinatesBilled business parameter. For information about this utility, see
"pin_bus_params" in BRM Developer's Guide.

To skip validation of billing for nonpaying child bill units:

1
2.

Go to BRM_homelsysldatalconfig.

Create an XML file from the /config/business_params object:

pin_bus _params -r BusParamsBilling bus_params billing.xml

In the XML file, change disabled to enabled:

<SkipCheckForSubordinatesBilled>enabled</SkipCheckForSubordinatesBilled>

e disabled: BRM validates that all nonpaying child bill units have been billed
successfully before billing the parent bill unit. This is the default.

e enabled: BRM skips validation of billing for nonpaying child bill units and bills the
parent bill unit.

Save the file as bus_params_billing.xml.
Load the XML file into the BRM database:
pin bus_params bus_params billing.xml
Stop and restart the CM.

(Multischema systems only) Run the pin_multidb script with the -R CONFIG parameter.
For more information, see "pin_multidb" in BRM System Administrator's Guide.

10-3

Configuring Wholesale Billing

Learn how to configure Oracle Communications Billing and Revenue Management (BRM) to
perform wholesale billing for your large wholesale business accounts.

Topics in this document:

e About Wholesale Billing

» Setting Up Billing for Wholesale Account Hierarchies

* Enabling Wholesale Billing for All Accounts

e Creating Wholesale Accounts and Bill Unit Hierarchies

e Converting Existing Bill Unit Hierarchies to Wholesale Billing
* Running Wholesale Billing

» Configuring Billing Delay for Wholesale Hierarchies

e Setting Up Billing-Time Discounts for Wholesale Hierarchies
e Suppressing Bills for Wholesale Hierarchies

» Trial Billing for Wholesale Hierarchies

e Support for A/R Activities

» Specifying Search Criteria for Retrieving Items, Events, and Bills
e Moving Bill Units into or out of Wholesale Hierarchies

» Specifying How to Calculate Deferred Taxes for Wholesale Billing

About Wholesale Billing

Wholesale business accounts with large account hierarchies can have a large number of
services, each representing a subscription account. This can affect billing and invoicing
performance if your customers' accounts have a large number of billing items to process.

You can set up wholesale billing for handling large wholesale business accounts. In
wholesale billing, you set up a bill unit hierarchy for account receivable (A/R) operations. The
wholesale business account is the parent account with the paying parent bill unit and the
services (subscriptions) in this account are child accounts with nonpaying child bill units.

BRM consolidates the charges, discounts, A/R items, bill items, journals, and taxes across
the services under the wholesale business account and performs the A/R operations, billing,
and invoicing at the wholesale business account level.

Setting Up Billing for Wholesale Account Hierarchies

ORACLE

Wholesale business accounts with large account hierarchies can have a large number of
services each representing a subscription account. This can affect billing and invoicing
performance if your customers' accounts have a large number of billing items to process.

11-1

Chapter 11
Enabling Wholesale Billing for All Accounts

You can set up wholesale billing for handling large wholesale business accounts. In
wholesale billing, you set up a bill unit hierarchy for account receivable (A/R)
operations. The wholesale business account is the parent account with the paying
parent bill unit and the services (subscriptions) in this account are child accounts with
nonpaying child bill units.

BRM consolidates the charges, discounts, A/R items, bill items, journals, and taxes
across the services under the wholesale business account and performs the A/R
operations, billing, and invoicing at the wholesale business account level.

Set up wholesale hilling for the whole system by:

1. Enabling Wholesale Billing for All Accounts
2. Creating Wholesale Accounts and Bill Unit Hierarchies

To set up wholesale billing only for specific accounts, see "Creating Wholesale
Accounts and Bill Unit Hierarchies".

You can also convert existing account hierarchies to use wholesale billing. See
"Converting Existing Bill Unit Hierarchies to Wholesale Billing" for more information.

Enabling Wholesale Billing for All Accounts

When wholesale billing is enabled using the business parameter, BRM lets you create
only wholesale accounts and bill unit hierarchies.

To enable this feature, run the pin_bus_params utility to change the
WholesaleBillingSystem business parameter. See "pin_bus_params" in BRM
Developer's Guide for information about the utility's syntax and parameters.

To enable wholesale billing for all of your accounts:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the Iconfig/business_params object:
pin bus _params -r BusParamsBilling bus_params_billing.xml

3. Inthe XML file, set the following entry to enabled:
<WholesaleBillingSystem>enabled</WholesaleBillingSystem>

4. Save the file as bus_params_billing.xml.

5. Load the file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the Connection Manager (CM).

If you enable this parameter in a system with existing bill unit hierarchies, run the
pin_cust_convert_wholesale_hierarchy utility to convert the existing hierarchies to
use wholesale billing. See "pin_cust_convert_wholesale_hierarchy" for more
information about this utility.

Creating Wholesale Accounts and Bill Unit Hierarchies

You can create accounts and bill unit hierarchies for wholesale billing by using Billing
Care or by using custom applications that call BRM opcodes. You can also convert
existing bill unit hierarchies to wholesale billing.

ORACLE 11-2

Chapter 11
Creating Wholesale Accounts and Bill Unit Hierarchies

A wholesale parent account can have only one bill unit.

For more information about accounts and bill unit hierarchies, see "Managing Account and
Bill Unit Hierarchies" in BRM Managing Customers.

Create accounts and bill unit hierarchies and set up the wholesale parent account by:

1. Configuring Wholesale Business Profile
2. Setting Up a Wholesale Parent
3. Creating a bill unit hierarchy

You can add any existing bill unit to a wholesale bill unit hierarchy or set up a new wholesale
bill unit hierarchy by using the existing bill units in BRM. However, you must ensure the
following:

* There are no pending items or payments in the bill unit that you are adding to the
hierarchy.

* The parent bill unit is the paying bill unit and it is set as the wholesale parent for billing.

* The wholesale parent for the wholesale bill unit hierarchy is set before creating the
hierarchy.

This ensures that the charges and other billing-related items of the nonpaying child bill units
in the hierarchy are rolled up to the paying parent bill unit during billing.

Configuring Wholesale Business Profile

ORACLE

To configure the wholesale business profile:

1. Open the pin_business_profile.xml file in an XML editor or a text editor.
By default, this file is in the BRM_homelsyslidatalconfig directory.

2. Set the <WholesaleBilling> element to yes:
<WholesaleBilling>yes</WholesaleBilling>

3. Save and close the file.

4. Load the file into the database by running the following command:

load pin business profile pin business_profile.xml

Note:

* When you run the utility, the pin_business_profile.xml and
business_configuration.xsd files must be in the same directory. By
default, both files are in BRM_homelsysldatalconfig.

e This utility needs a configuration (pin.conf) file in the directory from which
you run the utility.

e If you do not run the utility from the directory in which
pin_business_profile.xml is located, include the complete path to the file.
For example:

load pin business profile BRM home/sys/data/config/
pin business profile.xml

11-3

Chapter 11
Creating Wholesale Accounts and Bill Unit Hierarchies

Setting Up a Wholesale Parent

To set up a wholesale parent, you assign the bill unit that you want to use as the
wholesale parent to the wholesale business profile (lconfig/business_profile object).

You can assign the bill unit during or after account creation:

* During account creation: Create an account by calling
PCM_OP_CUST_COMMIT_CUSTOMER. In the opcode's input flist, specify the |
config/business_profile object's POID in the
PIN_FLD_BUSINESS PROFILE_OBJ field of the appropriate BILLINFO array
element. See "Assigning Bill Units to Business Profiles" in BRM Opcode Guide.

e After account creation: Assign a bill unit for an existing account to a business
profile by calling PCM_OP_CUST_CHANGE_BUSINESS_PROFILE. See
"Changing a Bill Unit's Business Profile" in BRM Opcode Guide.

Rolling Charges Up to the Wholesale Parent

During final billing, all charges (such as recurring, purchase, and usage charges)
applied to the nonpaying child bill units (wholesale child accounts) are aggregated
based on the item-tag-to-item-type mapping (item configuration) and are rolled up to
the corresponding bill items of the paying parent bill unit (wholesale parent account).

If the bill item for any item type does not exist for the paying parent bill unit, the bill
item is created during billing and the charges are rolled up to that item. However,
Oracle recommends to pre-create the bill items for the different item types by setting
the precreate element to true in the BRM_homelsysldatalpricing/lexample/
config_item_types.xml file. For more information, see "Mapping Item Tags to Item
Types".

The total and due amounts of the paying parent bill unit are updated to reflect the roll-
up and the due amount of each nonpaying child bill unit is set to 0. Payments are
applied only to the paying parent bill unit.

If you want the charges for different services to be rolled up to different bill items, you
can assign different item types for different services. For example, for rolling up cycle
forward fees for IP and GSM services, you can configure and assign the following
items: litemliplcycle_forward for the IP service and litem/gsmicycle_forward for the
GSM service.

You can also assign a different item type (or a noncumulative bill item) to track charges
specific to the paying parent bill unit. For information about assigning items, see
"Assigning Item Tags Based on Event and Service Combinations".

Rolling A/R Actions Up to the Wholesale Parent

ORACLE

BRM manages the balances for A/R actions by using these A/R items: adjustment,
dispute, settlement, payment, refund, payment reversal, write-off, and write-off
reversal. See "About A/R Management" in BRM Concepts.

To roll up A/R actions for wholesale billing, you use the pin_roll_up_ar_items utility.
This utility processes all temporary A/R items (Itmp_ar_item_to_roll_up object) for
nonpaying child bill units, and rolls the balance impact up to the corresponding A/R

items of the paying parent bill unit. For example, it rolls the adjustments allocated to

11-4

Chapter 11
Creating Wholesale Accounts and Bill Unit Hierarchies

the nonpaying child bill unit's litem/cycle_forward item up to the adjustment item associated
with the litem/adjustment item of the paying parent bill unit.

You can run the pin_roll_up_ar_items utility on a daily basis to ensure that the A/R items of
the paying parent bill unit are kept up to date. However, you must run this utility once before
billing the paying parent bill unit. See "pin_roll_up_ar_items" in BRM Managing Accounts
Receivable.

In addition, you can use the pin_roll_up_ar_items utility to roll up the adjustment items that
are created as a result of rerating. During rerating, the temporary A/R items (/
tmp_ar_item_to_roll_up object) are created for the nonpaying child bill units if these
conditions are met:

* The event has already been billed.
* The event occurred prior to general ledger posting.
* The event is unbilled but the automatic allocation of rerating adjustments is disabled.

If the event is unbilled and the automatic allocation of rerating adjustments is enabled, the
rerating adjustment is allocated to the bill item of the nonpaying child bill unit.

¢ Note:

Rerating adjustments rolled up to the paying parent bill unit are allocated to the
corresponding A/R item only if it exists in the paying parent bill unit. If the A/R item
does not exist, the rerating adjustments remain unallocated at the parent level.

Rolling Journals Up to the Wholesale Parent

For nonpaying child bill units, the Itmp_journals_to_process objects are created instead of
the ljournal objects at the time of rating. The Itmp_journals_to_process objects are created
only if the cycle_tax_interval entry in the CM configuration file is set to billing. For more
information, see the discussion about tax calculation for account groups in BRM Calculating
Taxes.

The Itmp_journals_to_process objects contain revenue and tax data. For wholesale billing,
BRM uses these objects primarily to track and consolidate taxes for billing-time taxation. To
roll up journals for wholesale billing, you use the pin_update_journal utility.

Note:

To roll up journals for wholesale billing, you must ensure that the general ledger
reporting is enabled. For more information, see the discussion about general ledger
reporting in BRM Collecting General Ledger Data.

The pin_update_journal utility processes all tmp_journals_to_process objects of the
nonpaying child bill units and rolls them up to the corresponding /journal object of the paying
parent bill unit.

ORACLE 11-5

Chapter 11
Converting Existing Bill Unit Hierarchies to Wholesale Billing

You can run the pin_update_journal utility on a daily basis to ensure that the paying
parent bill unit is kept up to date. However, you must run this utility once before billing
the paying parent bill unit. For more information, see "pin_update_journals".

If deferred taxation is configured to:

e Consolidate taxes into a single item (if cycle_tax_interval is set to billing), the
pin_update_journal utility enables you to roll the taxes up into a single item for
both the paying parent and nonpaying child bill units. The total tax is calculated at
the paying parent level for the entire hierarchy using the aggregated total due as
the basis.

e Calculate taxes separately for the parent and each nonpaying child bill unit (if
cycle_tax_interval is set to accounting), the ljournal objects are created for the
nonpaying child bill units instead of Itmp_journals_to_process objects and the
taxes are not rolled up to the paying parent bill unit.

Converting Existing Bill Unit Hierarchies to Wholesale Billing

ORACLE

You can convert existing account hierarchies to use wholesale billing. The account
hierarchy must meet the qualifications for a wholesale hierarchy, so you cannot
convert a hierarchy where the parent account has multiple parent bill units.

The method you use to convert the account hierarchy depends on the method you
used to enable wholesale billing.

If you enabled wholesale billing only for specific accounts, use the
PCM_OP_CUST_CONVERT_WHOLESALE_HIERARCHY opcode to convert the
account hierarchy. See "Converting an Account Hierarchy to Wholesale Billing" in
Opcode Guide for more information about this opcode.

If you enabled wholesale billing for the whole system, as described in "Enabling
Wholesale Billing for All Accounts," use the pin_cust_convert_wholesale_hierarchy
utility. See "pin_cust_convert_wholesale_hierarchy" for more information about this
utility.

Create the input file for the utility using the following format:

<BusinessConfiguration
xmlns="http://www.portal.com/schemas/BusinessConfig"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.portal.com/schemas/BusinessConfig
BusinessConfiguration.xsd">

<ConvertWholesaleConfiguration>

<!-- List of Billinfos to be converted -->

<Billinfo>
<BillinfoId>311038</BillinfolId>
<Account>1210</Account>

</Billinfo>

<Billinfo>
<BillinfoId>304210</BillinfolId>
<Account>1423</Account>

</Billinfo>

<!-- List of Business profiles to be converted
<BusinessTypeArray>

11-6

Chapter 11
Running Wholesale Billing

<BusinessProfile>122816</BusinessProfile>
<BusinessProfileName>WholesaleBilling</BusinessProfileName>
</BusinessTypeArray>
<BusinessTypeArray>
<BusinessProfileName>WholesaleBilling</BusinessProfileName>
</BusinessTypeArray>
<BusinessTypeArray>
<BusinessProfile>311122</BusinessProfile>
</BusinessTypeArray>
-—>
</ConvertWholesaleConfiguration>

</BusinessConfiguration>

Running Wholesale Billing

ORACLE

¢ Note:
The following features are not supported for wholesale billing:
e Bill Now
e On-purchase (on-demand) billing
e Skipped billing

If you are using bill suppression for billing wholesale accounts, you must run
wholesale billing at the end of each accounting cycle.

To run wholesale billing:

1.

Roll up A/R actions from nonpaying child bill units to the paying parent bill unit by running
the pin_roll_up_ar_items utility:

pin_roll up ar items

See "pin_roll_up_ar_items" in BRM Managing Accounts Receivable for information about
the utility's syntax and parameters.

Roll up temporary journals from nonpaying child bill units to the paying parent bill unit by
running the pin_update_journals utility:

pin_update_ journals

See "pin_update_journals" for information about the utility's syntax and parameters.

Generate regular bills by running the pin_bill_accts utility:

pin bill accts -active

See "pin_bill_accts" for information about the utility's syntax and parameters.

11-7

Chapter 11
Configuring Billing Delay for Wholesale Hierarchies

< Note:

After the nonpaying child bill units are billed, you cannot perform A/R
activities (such as adjustments, disputes, and settlements) on the billed
events until the paying parent bill unit is billed.

4. Generate regular invoices for the wholesale parent account by running the
pin_inv_accts utility:

pin_inv_accts -reg bills

See "pin_inv_accts" in BRM Designing and Generating Invoices for more
information about the utility's syntax and parameters.

Configuring Billing Delay for Wholesale Hierarchies

Delayed billing is supported for wholesale hierarchies. You must specify the billing
delay even if it is not used. In this case, you can set the billing delay interval to 0. See
"Configuring Delayed Billing".

Setting Up Billing-Time Discounts for Wholesale Hierarchies

For wholesale bill unit hierarchies, you set up a billing-time discount as follows:

* Configure billing-time discount only for the paying parent bill unit in the hierarchy.

* Configure BRM to apply the billing-time discount at the end of the billing cycle
instead of the accounting cycle.

» Configure non-billing-time discounts (usage discounts) for the nonpaying child bill
units in the hierarchy. The usage discount increments the counter. For example, if
the billing-time discount for the paying parent bill unit is based on total monthly
charges, you can create a discount for a nonpaying child bill unit that increments
the counter when charges are applied.

For rolling the discounts up to the paying parent bill unit at the time of billing, you
customize the PCM_OP_SUBSCRIPTION_POL_PRE_CYCLE_DISCOUNT policy
opcode to return the list of balance element/resource IDs of the counters (in the
PIN_FLD_BALANCES output flist field) for which the balances to be rolled up to the
paying parent bill unit in the hierarchy.

For more information about billing-time discounts, see "Creating Discount Offers" in
BRM Creating Product Offerings.

Suppressing Bills for Wholesale Hierarchies

ORACLE

You can use bill suppression to postpone finalizing bills for wholesale accounts. When
bill suppression is enabled, the charges applied to the nonpaying child bill units are
rolled up to the paying parent bill unit at the end of the accounting cycle. Therefore,
you must run the pin_roll_up_ar_items, pin_update_journals, and pin_bill_accts
utilities in the same order at the end of each accounting cycle. See "Running
Wholesale Billing".

11-8

Chapter 11
Trial Billing for Wholesale Hierarchies

Trial Billing for Wholesale Hierarchies

When you perform trial billing for wholesale bill unit hierarchies, you must run the billing for
nonpaying child bill units (wholesale child accounts) before running the billing for the paying
parent bill unit (wholesale parent account). To do so, run the pin_trial_bill_accts utility with
the -pay_type parameter.

For more information, see "About Trial Billing for Bill Unit Hierarchies and Sharing Groups".

Support for A/R Activities

For wholesale bill unit hierarchies, the support for A/R activities varies from level to level:

e Account level. Adjustments, disputes, and settlements can be performed only at the
parent bill unit level after billing.

< Bill level. Adjustments, disputes, and settlements can be performed only after billing at
the parent bill unit level.

e Event level. Adjustments, disputes, and settlements can be performed at the child bill
unit level before and after billing.

e Item level. Adjustments and disputes can be performed at the child bill unit level only
before billing. After billing, adjustments and disputes are allowed only at the parent bill
unit level. However, settlements can be performed before and after billing at the child bill
unit level.

Write-offs can be performed only at the parent bill unit level after billing.

Specifying Search Criteria for Retrieving ltems, Events, and Bills

ORACLE

To retrieve a list of items, events, or bills, BRM uses the following A/R and payment opcodes:
« PCM_OP_AR_GET_ACTION_ITEMS

« PCM_OP_AR_GET_ACCT_ACTION_ITEMS
 PCM_OP_AR_GET_BAL_SUMMARY
 PCM_OP_AR_GET_ACCT_BAL_SUMMARY
« PCM_OP_AR_GET BILL_ITEMS

« PCM_OP_AR_GET BILLS

« PCM_OP_AR_GET_DISPUTE_DETAILS

« PCM_OP_AR_GET_DISPUTES

« PCM_OP_AR_GET_ACCT_BILLS

« PCM_OP_PYMT_ITEM_SEARCH

« PCM_OP_PYMT_MBI_ITEM_SEARCH

« PCM_OP_PYMT_SELECT_ITEMS

Based on the search criteria provided as input, these opcodes search through all bill units in
a hierarchy. This can impact wholesale billing performance if you have large wholesale bill
unit hierarchies. To improve performance, restrict your search to specific bill units.

11-9

Chapter 11
Moving Bill Units into or out of Wholesale Hierarchies

Similarly, BRM uses the PCM_OP_AR_GET_ITEM_DETAIL and
PCM_OP_AR_GET_ITEMS opcodes to retrieve details about a bill unit's A/R items or
bill items. These opcodes cannot retrieve all details about rolled-up items in a
wholesale hierarchy. For example, for the A/R items of the paying parent bill unit, these
opcodes cannot retrieve the corresponding transfer events for the rolled-up disputes
and settlements. Therefore, modify your search to retrieve only the details that are
available for wholesale hierarchies.

For information about the search criteria for these opcodes, see "Retrieving A/R
Information" in BRM Opcode Guide.

Moving Bill Units into or out of Wholesale Hierarchies

You can move nonpaying child bill units into or out of a wholesale bill unit hierarchy.
You can also move them between wholesale bill unit hierarchies. Before moving a bill
unit, ensure that there are no pending items or payments in that bill unit.

When you move a nonpaying child bill unit to another hierarchy, all items in that bill unit
are associated with the corresponding items of the new paying parent bill unit and the
new parent is billed for them. If a bill item does not exist in the new parent, it is created
and the charges are rolled up to that item.

Specifying How to Calculate Deferred Taxes for Wholesale

Billing

ORACLE

You specify how BRM calculates deferred taxes for wholesale billing by setting the
CycleTaxInterval business parameter to one of the following:

* Accounting: The tax for a child account is applied to its bill. BRM calculates taxes
for parent accounts and for all child accounts. This is the default.

» Billing: The tax is forwarded from the child account to the parent account. BRM
calculates taxes for the parent account only, but the single tax item on the parent
account includes taxes from both the parent and child accounts.

You set the CycleTaxInterval business parameter by using the pin_bus_params
utility. For information about the utility's syntax and parameters, see "pin_bus_params"
in BRM Developer's Guide.

To specify how to calculate deferred taxes for wholesale billing:

1. Go to the BRM_homelsysldatalconfig directory, where BRM_home is the
directory where you installed BRM components.

2. Create an XML file from the /config/business_params object:
pin_bus params -r BusParamsBilling bus_params billing.xml
This command creates the XML file named bus_params_billing.xml.out in your

working directory. To place this file in a different directory, specify the path as part
of the file name.

3. Open the bus_params_billing.xml.out file.
4. Set the <CycleTaxInterval> element:

<CycleTaxInterval>value</CycleTaxInterval>

11-10

Chapter 11
Specifying How to Calculate Deferred Taxes for Wholesale Billing

where value is either accounting (default) or billing.
5. Save this file as bus_params_billing.xml.
6. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

7. Stop and restart Connection Manager (CM).

ORACLE 11-11

Load Balancing Billing Runs

Learn how to apply load balancing to billing operations in Oracle Communications Billing and
Revenue Management (BRM) by running billing based on the customer's accounting day of
month (DOM).

Topics in this document:
e About Managing Billing Cycles

* Implementing Bill Cycle Management

< Note:

Implementing this feature requires using opcodes to create a custom application.

About Managing Billing Cycles

ORACLE

Accounting cycles and billing cycles begin on a bill unit's billing day of month (DOM). By
default, the DOM on which an account is created automatically becomes the billing DOM for
all the account's bill units. This can result in an uneven distribution of a system's billing
operations across each month.

To load-balance billing operations, you can use billing segments to assign accounts to billing
DOMs. A billing segment is a user-defined category, such as wholesale, retail, and senior
citizen. To implement bill cycle management, you create billing segments in your BRM
system and then assign bill units to them. The billing segment determines which DOMs are
available to the bill units.

A billing segment can be associated with any number of DOMs. For example, hilling segment
A might be associated with DOMs 1 through 31 and billing segment B might be associated
with DOMs 1, 15, and 31. For each DOM with which it is associated, a billing segment
contains the following information:

» A status (open, closed, or restricted) that determines whether the DOM can be assigned
to the bill units that belong to the segment.

* The maximum number of accounts that can be associated with the DOM-billing segment
pair.

* The maximum number of services that can be associated with the DOM-billing segment
pair.

* The following data, which you must use third-party data warehousing software to gather:
— The number of accounts currently associated with the DOM-billing segment pair.
— The number of services currently associated with the DOM-billing segment pair.

— The total amount of time that it took to process the bills associated with the DOM—
billing segment pair during the previous billing run.

12-1

Chapter 12
Implementing Bill Cycle Management

< Note:

To accommodate the frequent updates that such data may require,
BRM automatically refreshes cached billing segment data once a
day (see "Updating Billing Segments").

BRM uses billing segment information with new bill cycle management functions in the
PCM_OP_CUST_POL_PREP_BILLINFO policy opcode to determine the accounting
DOMs to which a bill unit can be assigned. For more information, see "Implementing
Bill Cycle Management" and BRM Opcode Guide.

The status of the accounting DOMs in each billing segment determines whether and
how a particular DOM can be assigned to the bill units associated with the billing
segment as shown in Table 12-1.

Table 12-1 DOM Status Assignments
. __________________________ |

DOM Status Manually Assignable? (1) Automatically Assignable?
(2
open Yes Yes
restricted Yes No
closed No No
Note:

1. See "Manually Assigning a Billing DOM".
2. See "Automatically Assigning a Billing DOM".

You specify the status of accounting DOMs in the pin_billing_segment.xml file. For
more information, see "Setting Up Billing Segments".

" Note:

e Accounting DOMs not explicitly associated with a billing segment are
considered closed for the segment. For example, if billing segment C is
associated only with DOMs 1 and 2, DOMs 3 through 31 are closed for
that segment and cannot be assigned to bill units that belong to the
segment.

< If a billing segment is not associated with any accounting DOMs, all
DOMs are open for the segment. In such cases, the default process, not
the bill cycle management process, is used to assign an accounting
DOM to the bill units that belong to the segment.

Implementing Bill Cycle Management

To implement bill cycle management:

1. Set up billing segments in your system. See "Setting Up Billing Segments".

ORACLE 12-2

Chapter 12
Implementing Bill Cycle Management

2. Perform the following tasks programmatically or through a custom user interface:

» Associate bill units with billing segments at account creation and account
maintenance time. See "Associating Bill Units with Billing Segments ".

* (Optional) Select a billing DOM for bill units. See "Assigning Accounting Days of
Month to Bill Units in Billing Segments".

3. (Optional) Customize the PCM_OP_CUST_POL_PREP_BILLINFO opcode to select the
DOM most likely to have the lightest billing load of all available DOMs. See the chapter
about billing in BRM Opcode Guide.

Setting Up Billing Segments

To set up billing segments in your system, edit the billing segment configuration file
BRM_homelsysldatalconfig/pin_billing_segment.xml, and load its contents into the /
config/billing_segment object in the BRM database.

" Note:

The utility that loads billing segments into the database overwrites existing billing
segments. When updating billing segments, you cannot load new segments only.
You must load the complete set of billing segments each time you run the utility.

1. Open the pin_billing_segment.xml file in an XML editor or a text editor.

2. Enter the appropriate information into the file. See "Editing the Billing Segment
Configuration File".

3. Save the file.

4. Use the following command to run the "load_pin_billing_segment" utility from the
directory in which the pin_billing_segment.xml file is located:

load pin billing segment pin billing segment.xml
If you do not run the utility from the directory in which pin_billing_segment.xml is
located, include the complete path to the file. For example:

load pin billing segment BRM home/sys/data/config/pin billing segment.xml

For more information, see "load_pin_billing_segment".

5. Activate the feature that automatically refreshes billing segment data in the Connection
Manager (CM) cache. See "Automatically Refreshing Billing Segment Data".

6. Stop and restart the CM.

ORACLE 12-3

Chapter 12
Implementing Bill Cycle Management

< Note:

e If the data does not need to be added to the CM cache until the next
time the cache is automatically refreshed, you do not have to do this.

e If an error occurs at CM startup, the space allocated to billing
segment data in the CM cache may not be sufficient to
accommodate the size of your billing segment data. See "Increasing
the Size of the CM Cache for Billing Segment Data".

7. To verify that the billing segment information was loaded, display the Iconfig/
billing_segment object by using one of the following features:

* Object Browser
* robj command with the testnap utility

For general instructions on using testnap, see "Using the testnap Ultility to Test
BRM" in BRM Developer's Guide. For information about reading an object and
writing its contents to a file, see "Reading an Object and Writing Its Contents to a
File" in BRM Developer's Guide.

Editing the Billing Segment Configuration File

ORACLE

You configure all the billing segments in your BRM system in the BRM_homelsysl
data/config/pin_billing_segment.xml file.

To edit this configuration file, open it in an XML editor or a text editor and then perform
these tasks:

e To add hilling segments to the file, see "Defining Billing Segments".

e To associate the hilling segments with billing DOMs. See "Associating Billing
Segments With Accounting Days of Month".

Defining Billing Segments

In the billing segment configuration file, billing segments are defined as
BillingSegment child elements of the BillingSegments parent element.

A BillingSegment child element consists of a billing segment ID and a description
(string):

<BillingSegmentConfiguration>
<BillingSegments>
<BillingSegment ID="int ">string</BillingSegment>
</BillingSegments>
</BillingSegmentConfiguration>

To create a billing segment, add a BillingSegment child element to the
BillingSegments parent element. In the child element, specify values for the items
listed in Table 12-2.

12-4

ORACLE

Chapter 12
Implementing Bill Cycle Management

Table 12-2 XML Elements in Billing Segment

XML Element or Description Possible Values

Attribute

ID A number that identifies the billing To use bill cycle management to
segment in the BRM database. assign billing DOMs to bill units in the
When a bill unit is linked to a billing segment, specify any integer greater
segment, this number is put in the than or equal to 101.
PIN_FLD_BILLING_SEGMENT field of | Note: ID 0 triggers BRM to use the
the /billinfo object. non-bill-cycle-management

An array of all the billing segment IDs | @signment process.
is stored in the /config/
billing_segment object.

string A character string that describes the Minimum length is 1 character.

type of accounts in the billing segment | Maximum length is 1023 characters.

(for example, wholesale or retail). Note: This string is mapped to the

PIN_FLD_DESCR field in the /config/
billing_segment object, which can be
used to populate a list of billing
segments in a user interface (Ul).
When creating the string, take any Ul

length restrictions into account.

Associating Billing Segments With Accounting Days of Month

In the billing segment configuration file, the DomAssighments parent element contains
DomAssignment child elements, each of which associates a billing segment with a DOM:

<BillingSegmentConfiguration>
<DomAssignments>
<DomAssignment billingSegmentRef="int" status=" status " dom=" ---gDay

maxAccounts="int" maxServices="int">
<NumAccounts>int</NumAccounts>
<NumServices>int</NumServices>
<TotalProcessTime>duration</TotalProcessTime>
</DomAssignment>
</DomAssignments>
</BillingSegmentConfiguration>

To create a billing segment—DOM association, add a DomAssignment child element to the
DomAssignments parent element. In the child element, specify values for the items listed in
Table 12-3.

12-5

ORACLE

< Note:

Table 12-3 DOM Assighments
. ________________________________ |

XML Element or
Attribute

Description

Chapter 12
Implementing Bill Cycle Management

* You must add one DomAssignment child element for every billing
segment—DOM association. For example, to associate billing segment
101 with DOMs 1 through 31, you must add 31 DomAssighment child
elements. The billingSegmentRef value of each child element will be
the same (101), but each child element will have a different dom value.

< If a billing segment is not explicitly associated with any accounting
DOMs, all DOMs are open for the segment.

e An array of all the billing segment and DOM pairs in a BRM system
(PIN_FLD_MAP) is stored in the Iconfig/billing_segment object.

Possible Values

billingSegmentRef

The billing segment ID value in the
ID attribute of a BillingSegment
child element in the
BillingSegments parent element.

See the billingSegmentid
entry in the table in "Defining
Billing Segments".

status The status of a DOM for the billing One of the following:
segment. - open
* restricted
e closed
Important: These values are
case sensitive.
dom A billing DOM. Any two-digit value from 01
through 31.
(Optional) Maximum number of accounts that | Any non-negative integer.
maxAccounts can be associated with the DOM—

billing segment pair.

(Optional) maxServices

Maximum number of services that
can be associated with the DOM-
billing segment pair.

Any non-negative integer.

(Optional)
NumAccounts

Number of accounts currently
associated with the DOM-billing
segment pair.

Any non-negative integer.

Note: This information is
generated by third-party data
warehousing software.

(Optional) NumServices

Number of services currently
associated with the DOM-billing
segment pair.

Any non-negative integer.

Note: This information is
generated by third-party data
warehousing software.

12-6

Chapter 12
Implementing Bill Cycle Management

Table 12-3 (Cont.) DOM Assignments

XML Element or Description Possible Values

Attribute

(Optional) Total amount of time (in seconds) Any duration type value. For

TotalProcessTime that it took to process the bills example,
associated with the DOM-billing P1Y3M2DT1H20M30S
segment pair during the previous (1 year, 3 months, 2 days,
billing run. 1 hour, 20 minutes, and

30 seconds). The
"load_pin_billing_segment"
utility converts this value into
seconds.

Note: This information is
generated by third-party data
warehousing software.

Sample Billing Segment Configuration File

The following is a sample pin_billing_segment.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<BusinessConfiguration xmlns="http://www.portal.com/schemas/BusinessConfig"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.portal.com/schemas/BusinessConfig
business confiquration.xsd">
<BillingSegmentConfiguration>
<BillingSegments>
<BillingSegment ID="101">First Billing Segment</BillingSegment>
<BillingSegment ID="102">Second Billing Segment</BillingSegment>
<BillingSegment ID="103">Third Billing Segment</BillingSegment>
</BillingSegments>
<DomAssignments>
<DomAssignment billingSegmentRef="101" status=" restricted " dom="

maxAccounts="7400" maxServices="70033">
<NumAccounts>4</NumAccounts>
<NumServices>5</NumServices>
<TotalProcessTime>PT20S</TotalProcessTime>
</DomAssignment>
<DomAssignment billingSegmentRef="102" status="open" dom="---07"
maxAccounts="7400"
maxServices="733">
<NumAccounts>76</NumAccounts>
<NumServices>5</NumServices>
<TotalProcessTime>P1D</TotalProcessTime>
</DomAssignment>
</DomAssignments>
</BillingSegmentConfiguration>
</BusinessConfiguration>

ORACLE 12-7

Chapter 12
Implementing Bill Cycle Management

Validating Your Billing Segment Configuration File Edits

After editing the contents of the XML file, you use the "load_pin_billing_segment" utility
to load the contents of the file into the Iconfig/billing_segment object in the
database. See "Setting Up Billing Segments".

Before loading the contents of the file, the utility validates the contents against the file's
schema definition. If the contents do not conform to the schema definition, the load
operation fails. By default, the schema definition is BRM_homelxsd/
pin_billing_segment.xsd.

The XML file is not directly linked to its schema definition file. Instead, it is linked to the
BRM_homelsysldatalconfig/business_configuration.xsd reference file.

Updating Billing Segments

To update billing segment data, re-edit the billing segment configuration file, and then
run the "load_pin_billing_segment" utility to load the updated contents of the file into
the Iconfiglbilling_segment object in the BRM database. See "Setting Up Billing
Segments".

< Note:

The utility that loads billing segments into the database overwrites existing
billing segments. When updating billing segments, you cannot load new
segments only. You must load the complete set of billing segments each time
you run the utility.

Adding Updated Billing Segment Data to the CM Cache
To add newly loaded billing segment data to the CM cache, do one of the following:

» Manually refresh the cache by stopping and restarting the CM after running the
load utility.

* Automatically refresh the cache. See "Automatically Refreshing Billing Segment
Data".

" Note:

If a re-edited billing segment configuration file is significantly larger than
the previous version of the file, you might have to increase the space
allocated to the data in your CM cache to prevent an error from occurring
at CM startup. See "Increasing the Size of the CM Cache for Billing
Segment Data".

Automatically Refreshing Billing Segment Data
To refresh billing segment data automatically:

1. Open the CM configuration file (BRM_homelsyslcmlpin.conf).

ORACLE 12-8

Chapter 12
Implementing Bill Cycle Management

2. Uncomment the fm_cust billing_segment_config_refresh_delay entry by deleting the
number sign (#) at the beginning of the entry.

3. (Optional) Change the refresh frequency.

By default, this entry is set to 86400 (24 hours, in seconds). This refreshes the cache
once a day. To change the frequency, replace this value with the appropriate number of
seconds.

For example, to refresh the data only once a week, change the value to 604800 (60
seconds x 60 minutes x 24 hours x 7 days).

4. Stop and restart the CM.

¢ Note:

To turn off the refresh feature, see "Preventing Automatic Updates of Billing
Segment Data".

Increasing the Size of the CM Cache for Billing Segment Data

If your billing segment configuration file contains a lot of data, you might need to increase the
space allocated to that data in the CM cache to prevent an error from occurring at CM
startup:

1. Open the CM configuration file (BRM_homelsyslcmlpin.conf).
2. Increase cache_size in the following entry:

- cm_cache fm cust billing segment number of entries, cache_size, hash_size

The default is 51200 bytes.
For example, change this:

- cm cache fm cust billing segment 1, 51200, 1

To this:
- cm cache fm cust billing segment 1, 102400, 1
3. Increase cache_size in the following entry:

- cm_cache fm cust _dom map number of entries, cache_size, hash size

The default is 102400 bytes.
For example, change this:

- cm cache fm cust dom map 1, 102400, 1

To this:
- cm cache fm cust dom map 1, 204800, 1
4. Stop and restart the CM.

Preventing Automatic Updates of Billing Segment Data
To prevent your system from automatically refreshing billing segment data in the CM cache:

1. Open the CM configuration file (BRM_homelsyslcmipin.conf).

ORACLE 12-9

Chapter 12
Implementing Bill Cycle Management

Comment out the fm_cust billing_segment_config_refresh_delay entry by
inserting a number sign (#) at the beginning of the entry.

Stop and restart the CM.

Note:

By default, this feature is turned off. To turn it on, see "Automatically
Refreshing Billing Segment Data".

Associating Bill Units with Billing Segments

All the billing segments in a BRM system are defined in the Iconfiglbilling_segment
object. Within that object, the PIN_FLD_BILLING_SEGMENTS array contains the ID
and description (PIN_FLD_DESCR) of each billing segment.

To link a bill unit to a billing segment, put the ID of the billing segment into the
PIN_FLD_BILLING_SEGMENT field of the /billinfo object.

< Note:

Every bill unit in an account and every nonpaying bill unit associated with the
account must belong to the same billing segment. If you try to associate the
bill units with different billing segments, BRM returns an error.

To change a bill unit's billing segment, you need to run the
PCM_OP_CUST_UPDATE_CUSTOMER opcode. See BRM Opcode Guide.

Changing a Bill Unit's Billing Segment

ORACLE

You can change a bill unit's billing segment in one of two ways:

Change the billing segment but not the billing DOM

To change a bill unit's billing segment but not its billing DOM, call the
PCM_OP_CUST_UPDATE_CUSTOMER opcode with the new billing segment ID
to put in the PIN_FLD_BILLING_SEGMENT field of the Ibillinfo object.

" Note:

The status of the DOM in the new billing segment must be open. If it is
not, an error is returned.

Change the billing segment and the billing DOM

To change both a bill unit's billing segment and its billing DOM, call
PCM_OP_CUST_UPDATE_CUSTOMER with the following /billinfo field values:

— A new billing segment ID to put in the PIN_FLD BILLING_SEGMENT field.

12-10

Chapter 12
Implementing Bill Cycle Management

— A new billing DOM to put in the PIN_FLD_ACTG_FUTURE_DOM field. The status of
the DOM must be open in the specified billing segment.

To change only a bill unit's billing DOM, see "Changing a Bill Unit's Billing DOM".

Assigning Accounting Days of Month to Bill Units in Billing Segments

When a bill unit is associated with a billing segment, one of the available billing DOMs in the
segment must be assigned to the bill unit. A DOM's availability depends in part on the status
of the DOM.

DOMs can be assigned in either of the following ways:

e Manually Assigning a Billing DOM
e Automatically Assigning a Billing DOM
To change a bill unit's billing DOM, see "Changing a Bill Unit's Billing DOM".

Manually Assigning a Billing DOM

To assign billing DOMs to new or existing bill units manually, create an application that
enables customer service representatives to select one of the open or restricted DOMs in the
billing segment with which a bill unit is associated.

< Note:
Essentially, the CSR is selecting the bill unit's billing DOM.

The PIN_FLD_MAP array in the Iconfig/billing_segment object contains all the billing
segment—DOM pairs configured in your system.

For each pair, the status of the DOM is stored in the PIN_FLD_STATUS field.

To validate the CSR's selection, the application should call
PCM_OP_CUST_UPDATE_CUSTOMER. That opcode calls the

PCM_OP_CUST_SET_ BILLINFO opcode, which calls the
PCM_OP_CUST_POL_PREP_BILLINFO and the PCM_OP_CUST_POL_VALID_BILLINFO
policy opcodes.

To link a bill unit to a billing DOM, put the DOM value (1-31) into the
PIN_FLD_ACTG_CYCLE_DOM field of the Ibillinfo object.

Automatically Assigning a Billing DOM

ORACLE

If a billing DOM is not manually selected for a bill unit after the unit is assigned to a billing
segment, the PCM_OP_CUST_POL_PREP_BILLINFO policy opcode automatically assigns
a DOM to the bill unit.

The policy opcode assigns DOMs whose status is open; it cannot assign DOMs whose
status is restricted.

12-11

Chapter 12
Implementing Bill Cycle Management

Changing a Bill Unit's Billing DOM

To change a bill unit's billing DOM, call PCM_OP_CUST_UPDATE_CUSTOMER with
the new DOM to put the PIN_FLD_ACTG_CYCLE_DOM field of the Ibillinfo object.

Note:

The status of the new DOM must be open in the bill unit's billing segment. If
it is not, an error is returned.

To change a bill unit's billing segment, see "Changing a Bill Unit's Billing Segment".

ORACLE 12-12

About Proration

Learn how proration works in Oracle Communications Billing and Revenue Management
(BRM).

Topics in this document:

e Calculating Prorated Cycle Fees
e Proration for Special Cases
* About 30-Day-Based Proration

* Using Two Events to Prorate Charges for Charge Offers Whose Validity Ends in First
Cycle

* Prorating Cycle Fees after a Discount Purchase or Cancellation

* Prorating Cycle Fees When a Discount's Cycle Start or End Date Is Changed

Calculating Prorated Cycle Fees

ORACLE

BRM calculates the prorated fee for a specified period by multiplying the cycle fee defined in
the applicable charge offer by a scale based on the amount of time the charge offer is valid
during the cycle. The scale for a whole cycle (unit interval, or usually an accounting cycle) is
equal to 1.

BRM calculates the scale for a partial cycle by dividing the number of days in the partial cycle
by the number of days in the unit interval within which it falls. The number of days in a unit
interval will vary depending on its start and end dates.

If the period for which the prorated fee is being calculated is greater than one unit interval, the
scale will be greater than 1. Likewise, if the period is less than one unit interval, the scale will
be less than 1. For example, if the cycle fee is $100, and the period being prorated is half a
unit interval, the scale for that interval will be 0.5. So the prorated cycle fee is 0.5 * $100

= $50.

BRM does the following to calculate the prorated fee for each charge offer that is valid during
the cycle:

1. Calculates the unit intervals. See "Calculating the Unit Interval”.

2. Calculates the scales for the part of the period to be prorated that falls into each unit
interval.

3. Sums up the scales for all the unit intervals to get the scale for the entire period to be
prorated.

4. Calculates the prorated amount by multiplying the scale for the entire period by the cycle
fee amount.

13-1

Chapter 13
Calculating Prorated Cycle Fees

Calculating the Unit Interval

BRM takes into account what the use_number_of_days_in_month entry in the
Connection Manager (CM) configuration (pin.conf) file is set to while calculating the
unit interval. Also, the use of special days (29th, 30th, and 31st of a month) for billing
is taken into account while calculating the unit interval.

Note:

If the timestamp_rounding entry in the CM pin.conf file is set to 0, the unit
interval is calculated in seconds because the timestamp will not be rounded
to midnight and the proration will begin from the time that is indicated by the
timestamp. If timestamp_rounding is set to 1, the unit interval will be
calculated in days because the timestamp will be rounded to midnight.

Calculating Unit Interval When use_number_of days_in_month Is Not Set or 0

If use_number_of_days_in_month is not set or is set to 0, the unit interval is
calculated based on the billing time. Assuming the billing time to be March 22, starting
from the billing time, BRM calculates the last unit interval by moving to the left (on the
time axis) one month at a time until the beginning of the period to be prorated is
covered. For example, while calculating the prorated fee for Mar 1-Mar 15, it takes the
unit interval as 28 (the number of days between February 22 and March 22) because
both March 1 and March 15 fall between February 22 and March 22. See "Example 1:
Use_number_of days_in_month Is Not Set or Set to 0".

Calculating Unit Interval When use_number_of days_in_month Is Set to 1

If use_number_of_days_in_month is set to 1 and the period to be prorated falls
within the same calendar month, the unit interval is the number of days in the whole
calendar month in which the period to be prorated falls. For example, while calculating
the prorated fee for Mar 1-Mar 15 (both dates fall in March), BRM calculates the unit
interval as 31, because March has 31 days. See "Example 2:

Use_number_of days_in_month Is Set to 1".

Note:

If the period for which BRM is prorating the fees is less than a month but
spans across multiple months (for example, Aug 19-Sep 15) or if the cycle
fee is for multimonth, use_number_of_days_in_month is ignored.

Calculating Unit Interval When Billing Day of Month Is 29, 30, or 31

ORACLE

When the billing day of month (DOM) is set to 29, 30, or 31, the unit interval
calculation is based on the option you set for this feature (the forward or back option
set in the /config/business_params object.) If the option is set to forward and the
month does not have the billing DOM, billing will run on the first day of the next month.
If the option is set to back and the month does not have the billing DOM, billing will run

13-2

Chapter 13
Calculating Prorated Cycle Fees

on the last day of the previous month. This causes the start date of the unit interval to shift
based on what option is set.

Examples of Proration

Following are some examples of proration. In each of these examples, the unit interval is
calculated differently. .

Example 1: Use_number_of days_in_month Is Not Set or Set to 0

In this example, illustrated in Figure 13-1, the prorated cycle fee is calculated for the interval
Feb 15—-Apr 13 with the billing time as April 22. To calculate the prorated fee for this period,
BRM does the following:

Calculates the Unit Intervals for the Period

Starting from the billing time (April 22), BRM calculates the last unit interval by moving to the
left one month at a time (on the time axis). Therefore, the last unit interval will be Mar 22—Apr
22. Similarly, it will continue to calculate unit intervals until the start time of the first unit
interval (January 22) will be equal to or before the start time of the given period to be prorated
(February 15). As a result, it gets the following unit intervals:

Mar 22—Apr 22 (last unit interval)
Feb 22—Mar 22 (second unit interval)

Jan 22—Feb 22 (first unit interval)

Figure 13-1 Example 1

Period for which to prorate cycle fees.
zcale =1.94

zcale = 23 zcale =1 zcale = 71

l—— 1=t unit i|‘neval > 2nd unit inteval ————wE——— Srd un'rt|ir|teval —

3

Jan 22 Feb 15 Fek 22 har 22 Apr 13 Apr 22

Calculates the Scale
To calculate the scale for the period Feb 15—-Apr 13, BRM does the following:

1. Calculates the scale for the period Feb 15-Feb 22 with the unit interval as Jan 22—Feb
22.

Scale =7/31=0.23

where 7 is the number of days between February 15 and February 22 and 31 is the
number of days between January 22 and February 22.

ORACLE 13-3

Chapter 13
Calculating Prorated Cycle Fees

2. Calculates the scale for the period Feb 22—Mar 22 with the unit interval as Feb 22—
Mar 22. This scale is 28/28 = 1 because the period to be prorated is the unit
interval.

3. Calculates the scale for the period Mar 22—Apr 13 with the unit interval as Mar 22—
Apr 22.

Scale = 22/31=0.71

where 22 is the number of days between March 22 and April 13 and 31 is the
number of days between March 22 and April 22.

4. Calculates the scale for the whole period Feb 15-Apr 13 as the sum of the scales
from steps 1, 2, and 3: 0.23 + 1.0 + 0.71 = 1.94.

Calculates the Prorated Amount

If the cycle fee amount is $100, BRM calculates the prorated amount for the period
Feb 15—-Apr 13 as follows:

1.94 * $100 = $194

Example 2: Use_number_of days in_month Is Set to 1

In this example, illustrated in Figure 13-2, the prorated cycle fee is calculated for the
interval Feb 15—Apr 13 with the billing time as April 22. Because

use_number_of _days_in_month is set to 1, BRM calculates the unit interval based
on calendar month for the part of the proration time that falls in the same calendar
month. To calculate the prorated fee for this period, it does the following:

Calculates the Unit Intervals for the Period

Starting from the billing time (April 22), BRM calculates the last unit interval by moving
to the left one month at a time (on the time axis). Therefore, the unit intervals will be as
follows:

Mar 22—Apr 22 (last unit interval)
Feb 22—Mar 22 (second unit interval)

Feb 1-Feb 28 (first unit interval)

" Note:

This unit interval is the number of days in February because the entire period
Feb 15-Feb 22 falls in February.

ORACLE 13-4

Chapter 13
Calculating Prorated Cycle Fees

Figure 13-2 Example 2

ORACLE

Period for which to prorate cycle fees.
zcale = 1.96

zcale = 25 zcale =1 zcale = 71
-+ 2 nd unit inteval ———wpE——— Srd un'rt|ir|teval —
e 12t unit intewval -
Feb 1 Feb 15 Febh 22 Feb 28 har 22 Apr 13 Apr 22

Calculates the Scale
To calculate the scale for the period Feb 15-Apr 13, BRM does the following:

1. Calculates the scale for the period Feb 15-Feb 22 with the unit interval as Feb 1-Feb 28.

Note:

If the part of the period to be prorated falls in the same calendar month, the unit
interval is the number of days in the month. In this example, because the entire
period Feb 15-Feb 22 falls in February, the unit interval is 28, the number of
days in February.

Scale = 7/28 = 0.25

where 7 is the number of days between February 15 and February 22 and 28 is the
number of days in February.

2. Calculates the scale for the period Feb 22—Mar 22 with the unit interval as Feb 22—Mar
22. This scale is 28/28 = 1 because the period to be prorated is the unit interval.

3. Calculates the scale for the period Mar 22—Apr 13 with the unit interval as Mar 22—Apr
22.

Scale = 22/31=0.71

where 22 is the number of days between March 22 and April 13 and 31 is the number of
days between March 22 and April 22.

4. Calculates the scale for the whole period Feb 15—Apr 13 as the sum of the scales from
steps 1, 2, and 3: 0.25 + 1.0 + 0.71 = 1.96.

Calculates the Prorated Amount

If the cycle fee amount is $100, BRM calculates the prorated amount for the period Feb 15—
Apr 13 as follows:

1.96 * $100 = $196

13-5

Chapter 13
Calculating Prorated Cycle Fees

Examples Using the 29th, 30th, and 31st for Billing Day of Month

The examples below show the use of special days (29th, 30th, 31st) as the billing
DOM because of which the unit interval calculation will be based on the option you set
for this feature (the forward or back option set in /config/business_params object). If
the option is set to forward and the month does not have the billing DOM, billing is run
on the first day of the next month. If the option is set to back and the month does not
have the billing DOM, billing is run on the last day of the previous month. This causes
the unit interval start date to shift based on the option set.

Example 3a: Use Forward Option with use_number_of days_in_month Setto 0

This example, illustrated in Figure 13-3, assumes the billing option to be set to forward
and use_number_of_days_in_month to be set to 0. To calculate the prorated cycle
fee for the period Feb 15-Apr 13 with the billing day of month as April 30, BRM does
the following:

Calculates the Unit Intervals for the Period

Starting from the billing time (April 30), BRM calculates the last unit interval by moving
to the left (on the time axis) one month at a time. Therefore, the last unit interval will be
Mar 30—Apr 30. Similarly, it continues to calculate unit intervals until the start time of
the first unit interval (January 30) will be equal to or before the start time of the given
period to be prorated (February 15). As a result, BRM gets the following unit intervals:

Mar 30—Apr 30 (last unit interval)

Mar 1-Mar 30 (second unit interval)

< Note:

Because February does not have 30 days, and because the billing option is
set to forward, BRM calculates this unit interval as beginning on the first day
of the next month, which is March 1.

Jan 30—Mar 1 (first unit interval)

< Note:

Because January does have 30 days, it calculates this unit interval as
beginning on January 30.

ORACLE 13-6

Chapter 13
Calculating Prorated Cycle Fees

Figure 13-3 Example 3a

Period for which to prorate cycle fees.
zcale = 1.92

zcale = 47 zcale =1 zcale = 45

3

l—— 1=t unit i|‘neval > 2 nd unit inteval ———wpE——— Srd un'rt|ir|teval —

Jan 30 Feb 15 har 1 har 30 Apr 13 Apr 30

Calculates the Scale
To calculate the scale for the period Feb 15-Apr 13, BRM does the following:

1. Calculates the scale for the period Feb 15-Mar 1 with the unit interval as Jan 30—Mar 1
as follows:

Scale = 14/30 = 0.47

where 14 is the number of days from February 15 and March 1 and 30 is the number of
days from January 30 and March 1.

2. Calculates the scale for the period Mar 1-Mar 30 with the unit interval as Mar 1-Mar 30.

The scale for this period is 29/29 = 1 because number of days to be prorated is equal to
number of days in the unit interval.

3. Calculates the scale for the period Mar 30—Apr 13 with the unit interval as Mar 30—-Apr 30
as follows:

Scale = 14/31 = .45

where 14 is the number of days from March 30 and April 13 and 31 is the number of days
from March 30 and April 30.

4. Adds the scales from the steps above to get the scale for the whole period:
Scale for the period Feb 15-Apr 13 = .47 + 1.0 + .45=1.92

Calculates the Prorated Cycle Fee Amount

If the cycle fee is $100, the prorated cycle fee for the period Feb 15—-Apr 13 will be:

1.92 * $100 = $192

Example 3b: Use Forward Option with use_number_of days_in_month Setto 1

This example, illustrated in Figure 13-4, assumes the billing option to be set to forward and
use_number_of _days_in_month to be set to 1. To calculate the prorated cycle fee for the
period Feb 15-Apr 13 with the billing DOM as April 30, BRM does the following:

ORACLE 13-7

Calculates the Unit Intervals for the Period

Chapter 13

Calculating Prorated Cycle Fees

Starting from the billing time (April 30), BRM calculates the last unit interval by moving
to the left one month at a time (on the time axis). Therefore, the last unit interval will be
Mar 30—Apr 30. Similarly, it continues to calculate unit intervals until the start time of

the first unit interval (January 30) is equal to or before the start time of the given period
to be prorated (February 15). As a result, BRM gets the following unit intervals:

Mar 30—Apr 30 (last unit interval)

Mar 1-Mar 31 (second unit interval)

Note:

Jan 30—Mar 1 (first unit interval)

< Note:

Because February does not have 30 days, and because the billing option is
set to forward, BRM calculates this unit interval as beginning on the first of
the next month, which is March 1. Also, use_number_of days_in_month is
set to 1, it calculates this unit interval to be 31, the number of days in March.

Because January does have 30 days, this unit interval will begin on Jan 30.

Figure 13-4 Example 3b

zcale =1.86

o

scale = 94

scale = 47

Period for which to prorate cycle fees,

j———— 1t unit i|‘|teval 1ot 2 nd unit inteval

Jan 30 Feb 15 flar 1

Calculates the Scale

Srd un'rt|inteval —_—

Apr 13 Apar 30

To calculate the scale for the period Feb 15-Apr 13, BRM does the following:

1. Calculates the scale for the period Feb 15-Mar 1 with the unit interval as Jan 30—

Mar 1 as follows:
Scale = 14/30 = 0.47

ORACLE

13-8

Chapter 13
Calculating Prorated Cycle Fees

where 14 is the number of days from February 15 and March 1 and 30 is the number of
days between January 30 and March 1.

2. Calculates the scale for the period Mar 1-Mar 30 with the unit interval as Mar 1-Mar 31.

Note:

Because March 1 and March 30 fall in the same calendar month, the unit
interval here will be the number of days in March, because
use_number_of _days_in_month is setto 1.

Scale =29/31 = .94

where 29 is the number of days between March 1 and March 30 and 31 is the number of
days in March.

3. Calculates the scale for the period Mar 30—Apr 13 with the unit interval as Mar 30—-Apr 30
as follows:

Scale = 14/31 = .45

where 14 is the number of days from March 30 and April 13 and 31 is the number of days
between March 30 and April 30.

4. Adds the scales in the steps above to get the scale for the whole period:
Scale for the period Feb 15-Apr 13 = .47 + .94 + .45 =1.86

Calculates the Prorated Cycle Fee Amount

If the cycle fee is $100, the prorated cycle fee for the period Feb 15-Apr 13 will be:
1.86 * $100 = $186

Example 3c: Use Back Option with use_number_of days_in_month Set to 1

This example, illustrated in Figure 13-5, assumes the billing option to be set to back and
use_number_of_days_in_month to be set to 1. To calculate the prorated cycle fee for the
period Feb 15—-Apr 13 with the billing DOM as April 30, BRM does the following:

Calculates the Unit Intervals for the Period

Starting from the billing time (April 30), BRM calculates the last unit interval by moving to the
left one month at a time (on the time axis). Therefore, the last unit interval will be Mar 30—-Apr
30. Similarly, it continues to calculate unit intervals until the start time of the first unit interval
is equal to or before the start time of the given period (February 15) to be prorated. As a
result, it gets the following unit intervals:

Mar 30—Apr 30 (last unit interval)

Feb 28—Mar 30 (second unit interval)

ORACLE 13-9

Chapter 13
Calculating Prorated Cycle Fees

< Note:

Because February does not have 30 days, and because the billing option is
set to back, BRM calculates this unit interval as beginning on the last day of
the previous month, which is February 28.

Feb 1-Feb 28 (first unit interval)

¢ Note:

In this example, the first unit interval would have started on January 30,
because January does have 30 days, but BRM ignores this and takes the
number of days in February as the unit interval because
use_number_of_days_in_month is set to 1.

Figure 13-5 Example 3c

Period for which to prorate cycle fees,
scale =1.91

scale = 46 zcale =1 scale = 45

f——— 1=t unit i|‘|teval ot 2 nd unit inteval —————we—— 3rd un'rt| inteval ——w

Feb 1 Feb 15 Fekb 25 War 30 Apr 13 Aar 30

Calculates the Scale
To calculate the scale for the period Feb 15-Apr 13, BRM does the following:

1. Calculates the scale for the period Feb 15—Feb 28 with the unit interval as Feb 1—
Feb 28 as follows:

Scale = 13/28 = 0.46

where 13 is the number of days from February 15 and February 28 and 28 is the
number of days in February.

Note:

Because February 15 and February 28 fall in the same calendar month,
the unit interval here will be the number of days in February because
use_number_of_days_in_month is set to 1.

ORACLE 13-10

Chapter 13
Calculating Prorated Cycle Fees

2. Calculates the scale for the period Feb 28—Mar 30 with the unit interval as Feb 28—Mar
30.

The scale for this period is 30/30 = 1 because the number of days to be prorated is equal
to number of days in the unit interval.

3. Calculates the scale for the period Mar 30—Apr 13 with the unit interval as Mar 30—-Apr 30
as follows:

Scale = 14/31 = .45

where 14 is the number of days from March 30 and April 13 and 31 is the number of days
between March 30 and April 30.

4. Adds the above three scales to get the scale for the whole period:

Scale for the period Feb 15-Apr 13 = .46 + 1.0 + .45=1.91

Calculates the Prorated Cycle Fee Amount
If the cycle fee is $100, the prorated cycle fee for the period Feb 15-Apr 13 will be:
1.91 *$100 = $191

Example 3d: Use Back Option with use_number_of days in_month Set to 0

This example, illustrated in Figure 13-6, assumes the billing option to be set to back and
use_number_of _days_in_month to be set to 0. To calculate the prorated fee for the period
Feb 15—-Apr 13 with the billing day of month as April 30, BRM does the following:

Calculates the Unit Intervals for the Period

Starting from the billing time (April 30), it calculates the last unit interval by moving to the left
one month at a time (on the time axis). Therefore, the last unit interval will be Mar 30-Apr 30.
Similarly, it continues to calculate unit intervals until the start time of the first unit interval is
equal to or before the start time of the given period to be prorated (February 15). As a result,
BRM gets the following unit intervals:

Mar 30—Apr 30 (last unit interval)

Feb 28—Mar 30 (second unit interval)

Note:

Because February does not have 30 days, and because the billing option is set to
back, BRM calculates this unit interval as beginning on the last day of the previous
month, which is February 28.

Jan 30-Feb 28 (first unit interval)

" Note:

Because January does have 30 days, BRM calculates this unit interval as beginning
on January 30.

ORACLE 13-11

Chapter 13
Proration for Special Cases

Figure 13-6 Example 3d

Petiod far which to prorate cycle fees,
scale =1.90

scale = 45 zcale =1 scale = 45

Jan 30

l———— 1t unit i|‘|teval oot 2 nd unit inteval —————pwte———— Srd un'rt|irdeval —_—

Feb1a Feb 28 Mar 30 Apr 13 Apar 30

Calculates the Scale
To calculate the scale for the period Feb 15—-Apr 13, BRM does the following:

1. Calculates the scale for the period Feb 15—Feb 28 with the unit interval Jan 30—
Feb 28:

Scale = 13/29 = 0.45

where 13 is the number of days from February 15 and February 28 and 29 is the
number of days from January 30 and February 28.

2. Calculates the scale for the period Feb 28—Mar 30 with the unit interval as Feb 28—
Mar 30.

The scale for this period is 30/30 = 1 because the number of days to be prorated is
equal to number of days in the unit interval.

3. Calculates the scale for the period Mar 30—Apr 13 with the unit interval as Mar 30—
Apr 30.

Scale = 14/31 = .45

where 14 is the number of days from March 30 and April 13 and 31 is the number
of days from March 30 and April 30.

4. Adds the scales for the above steps to get the scale for the whole period:

Scale for the period Feb 15-Apr 13 = .45+ 1.0 + .45=1.90

Calculates the Prorated Cycle Fee Amount
If the cycle fee is $100, the prorated cycle fee for the period Feb 15-Apr 13 will be:
1.90 * $100 = $190

Proration for Special Cases

ORACLE

BRM includes proration settings that address customers with cycle arrears fees who
purchase, inactivate, and reactivate charge offers within the first cycle.

You choose the rating behavior when such events occur by setting the
cycle_arrear_proration parameter in the CM configuration (pin.conf) file:

- fm rate cycle arrear proration = 0|1

13-12

Chapter 13
Proration for Special Cases

Note:

You must restart the CM after you change this parameter.

When you set up proration in a charge, you choose a proration setting for when the charge
offer is purchased and for when it is canceled:

To use the purchase-time proration setting to rate periods in which a customer both
purchases and inactivates a charge offer, set the cycle_arrear_proration parameter to
0.

To use the cancellation proration setting to rate periods in which a customer cancels a
charge offer, set the cycle_arrear_proration parameter to 1.

Special Cases

ORACLE

Some special proration cases may result in unexpected billing results:

A customer purchases, inactivates, and reactivates a charge offer with a cycle arrears fee
all in the same accounting cycle. The charge offer is set to prorate on purchase and to
charge full on cancellation, and the cycle_arrear_proration entry in the CM pin.conf is
setto 1.

In this case, instead of charging a prorated amount based on the total time the charge
offer is active during the first cycle, the full amount for the cycle is charged.

A customer purchases, inactivates, and reactivates a charge offer with a cycle arrears fee
all in the same accounting cycle. The charge offer is set to no charge on purchase and to
prorate on cancellation, and the cycle_arrear_proration entry in the CM pin.conf is set
to 1.

In this case, instead of being charged nothing for the first accounting cycle, the customer
is charged a prorated amount based on the time the charge offer is active.

For example, if the customer purchases a charge offer, inactivates it after 5 days,
reactivates it later for another 5 days before inactivating it, and then reactivates it later for
a total of 8 days before the cycle ends, you charge the customer for 5 + 5 + 8 or 18 days
of use.

A customer purchases, inactivates, and reactivates a charge offer with a cycle arrears fee
all in the same accounting cycle. The charge offer is set to charge full on purchase and to
prorate on cancellation, and the cycle_arrear_proration entry in the CM pin.conf is set
to 1.

In this case, instead of being charged for the whole accounting cycle, the customer is
charged a prorated amount based on the total time during the cycle that the charge offer
is active.

With a cycle arrears fee, the customer inactivates and reactivates a charge offer in a
cycle other than the cycle in which the charge offer is purchased. The charge offer has
proration settings of charge full, no charge, or prorate on purchase and charge full or no
charge on cancellation.

In this case, the customer is charged a prorated amount equal to the time the charge
offer is active during the accounting cycle from the last reactivation to the end of the
cycle. There is no charge for all other active time periods during the accounting cycle.

13-13

Chapter 13
About 30-Day-Based Proration

With cycle forward billing, the customer purchases, inactivates, and reactivates a
charge offer in the same period. The charge offer has proration settings of charge
full on purchase and prorate on cancellation.

In this case, instead of being charged for the whole accounting cycle, the customer
is charged for the whole cycle less the period of time that the charge offer is
inactivated.

Note:

— You can set your policy settings so that customers are not charged
for short usage periods. This establishes the possibility of long
cycles over 30 days for which a customer is not billed.

— For the proration settings Charge for the full cycle on purchase and
Don't charge this cycle on cancellation, a cycle is always “1" or
less, even if a customer purchases and cancels within a long cycle.

— The following proration settings determine what is refunded when a
charge offer for cycle forward billing is inactivated or canceled:

Charge for the full cycle: Nothing is refunded.
Don't charge this cycle: The total cycle fee is refunded.

Charge based on usage: The unused portion of the monthly usage
fee is refunded.

Addressing Special Cases

There are several techniques you can use to address any special cases that may
occur when customers inactivate and reactivate an account in the same accounting
cycle:

Inform your customers of the discrepancies.

Do not allow your customer service representatives (CSRs) to inactivate and
reactivate accounts frequently, especially during the first accounting cycle in which
a charge offer is purchased.

Because most special cases occur when you use cycle arrears fees, consider
using cycle forward fees instead.

About 30-Day-Based Proration

To work in parallel with older legacy billing systems, you can use 30-day-based
proration.

ORACLE

In older legacy billing systems, it is common to use 30 days for calculating proration,
irrespective of the actual number of days in the month or the billing cycle. By default,
BRM calculates proration based on the number of days in the billing cycle. You use 30-
day-based proration when you have BRM with an older billing system requiring 30-
day-based proration.

13-14

Chapter 13
About 30-Day-Based Proration

< Note:

Making 30-day-based proration work with a normal calendar year can cause
unexpected behavior. See "Special Cases".

" Note:

30-day-based proration cannot be used with multimonth billing cycles.

Examples of 30-Day-Based Proration

Based on your proration setting, BRM calculates the prorated cycle amount differently, which
may yield different results.

In the examples below, illustrated in Figure 13-7, Figure 13-8, Figure 13-9, and Figure 13-10,
February has 28 days and billing occurs on the second day of every month. The monthly
cycle forward fee is $30 and timestamp_rounding is set to 1 days in the CM pin.conf file.

Example 6: Prorated Purchase Fee with 31-day Billing Cycle

ORACLE

Figure 13-7 Example 6

Purchasea
Jan 2 Jan12

Scale =21/30

Feb 2

\ i ch.ﬁr;ge _,.l
v
Billing cycle = 31 days

In this example, BRM calculates the prorated cycle fee as follows:

Using 30-Day proration
1. Calculates the scale using 30 days as the base:

scale = 21/30 =.70

where 21 is the number of days from midnight January 12 to midnight February 2.
2. Calculates the prorated cycle fee:

cycle fee amount * scale = $30.00 * .70 = $21.00

Using 31 Days in the Billing Cycle
1. Calculates the scale using 31 days as the base:
scale = 21/31 = .68
where 21 is the number of days from midnight January 12 to midnight February 2.

13-15

Chapter 13
About 30-Day-Based Proration

2. Calculates the prorated cycle fee:
cycle fee amount * scale = $30.00 * .68 = $20.32

Example 7: Prorated Cancel Fee with 31-day Billing Cycle

Figure 13-8 Example 7

Purchase Cancel
Jan 2 Jan 18 Feh 2

Scale = 15/30

!_ : Hi—'-.-"\fj-r'r: _,.l
~
Billing cycle = 31 days

In this example, BRM calculates the cycle fee refund as follows:

Using 30-Day Proration
1. Calculates the scale using 30 days as the base:

scale = 15/30 = .50

where 15 is the number of days from midnight January 18 to midnight February 2.
2. Calculates the refund amount:

cycle fee amount * scale = $30.00 * .50 = $15.00

Using 31 Days in the Billing Cycle
1. Calculates the scale using 31 days as the base:

scale = 15/31 = .48

where 15 is the number of days from midnight January 18 to midnight February 2.
2. Calculates the refund amount:

cycle fee amount * scale = $30.00 * .48 = $14.52

Example 8: Prorated Purchase Fee with 28-Day Billing Cycle

Figure 13-9 Example 8

Purchase

Feb 2 Eah 15 Mar 2

Scale = 15/30

'1_) (_|.-._;"r}_],_,_ _)l
v
Billing cycle = 28 days

In this example, BRM calculates the prorated cycle fee as follows:

ORACLE 13-16

Chapter 13
About 30-Day-Based Proration

Using 30-Day Proration

1.

Calculates the scale using 30 days as the base:

scale = 15/30 = .50

where 15 is the number of days from midnight February 15 to midnight March 2.
Calculates the prorated cycle fee:

cycle fee amount * scale = $30.00 * .50 = $15.00

Using 28 Days in the Billing Cycle

1.

Calculates the scale using 28 days as the base:

scale = 15/28 = .54

where 15 is the number of days from midnight February 15 to midnight March 2.
Calculates the prorated cycle fee:

cycle fee amount * scale = $30.00 * .54 = $16.07

Example 9: Prorated Cancel Fee with 28-Day Billing Cycle

ORACLE

Figure 13-10 Example 9

Purchase Cancel

Fob 2 Feb 15 Mar 2

Scale = 15730

'-_) He-"\ﬂr'r: _)l
v
Billing cycle = 28 days

In this example, BRM calculates the cycle fee refund as follows:

Using 30-Day Proration

1.

Calculates the scale using 30 days as the base:

scale = 15/30 = .50

where 15 is the number of days from midnight January 18 to midnight February 2.
Calculates the refund amount:

cycle fee amount * scale = $30.00 * .50 = $15.00

Using 28 Days in the Billing Cycle

1.

Calculates the scale using 28 days as the base:

scale = 15/28 = .54

where 15 is the number of days from midnight January 18 to midnight February 2.
Calculates the refund amount:

cycle fee amount * scale = $30.00 * .54 = $16.07

13-17

Chapter 13
About 30-Day-Based Proration

Special Cases

When using 30-day proration, there can be unexpected results, as shown in the
following examples:

Example 10: Full Purchase Fee Charged When Service Is Provided for 1 Day
Less

In this example, illustrated in Figure 13-11, the billing cycle is 31 days. The customer
purchases the charge offer on January 3, so the scale is 1. The customer pays the
full $30 cycle fee even though the service is available for one day less.

Figure 13-11 Example 10

Purchase
Jan2 Jan3 Feb 2

| | Scale = 30/30=1

' i c.l':r.r-_rw-: _).l
v
Billing cycle = 31 days

The prorated cycle fee:

cycle fee * scale = $30.00 * 1 = $30.

Example 11: Full Cancel Fee Refunded When Service Has Been Used for 1
Day

In this example, illustrated in Figure 13-12, the billing cycle is 31 days and the monthly
service fee is $30. The customer purchases the charge offer on January 1 and cancels
the charge offer on January 2. The scale is 1. The customer gets a full $30 refund
even though the customer owned the charge offer for one day.

Figure 13-12 Example 11

Purchase Cancel
Jam 2 Jan 3 Feb 2

| | Seale = 30/30=1

Y

\ Reflind

\\|_'\-\.

Billing cycle = 31 days

The refund amount is:

cycle fee * scale = $30.00 * 1 = $30.

ORACLE 13-18

Chapter 13
Using Two Events to Prorate Charges for Charge Offers Whose Validity Ends in First Cycle

< Note:

To avoid such situations, use the number of days in the billing cycle or number of
days in the month proration settings, not the 30-day proration setting.

Enabling 30-Day-Based Proration

To enable 30-day-based proration:

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf). BRM_home is the
directory where you installed BRM components.

2. Edit the following entry:

-fm bill enable 30 day proration 0

where:

* 0 bases proration on the number of days in the billing cycle or number of days in the
month. This is the default.

* 1 bases proration on a 30-day month.

3. Save and close the file.

Using Two Events to Prorate Charges for Charge Offers Whose
Validity Ends in First Cycle

When prorating a cycle fee for a charge offer whose cycle validity period ends during the
same billing cycle in which it is purchased, BRM can generate one or two events:

e One event: By default, BRM generates a single event to charge for the used portion of
the cycle.

« Two events: BRM generates an event to charge for the entire cycle and then generates
an event to refund the charge for the unused portion of the cycle (charge offer cycle
validity end date through billing cycle end date).

For example, by default, if the charge offer is purchased on January 1 and its cycle validity
period ends on January 16, only one event is generated for a prorated cycle fee for the
number of days from midnight January 1 to midnight January 16. If you specify to create two
events, the first event is generated for a cycle fee for the number of days from midnight
January 1 to midnight February 1, and a second event is generated for a refund for the
number of days from midnight January 16 to midnight February 1.

To enable this feature, run the pin_bus_params utility to change the
CreateTwoEventsInFirstCycle business parameter. For information about this utility, see
BRM Developer's Guide.

To use two events to prorate a cycle fee for a charge offer whose cycle validity period ends in
the first cycle:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the Iconfig/business_params object:

ORACLE 13-19

Chapter 13
Prorating Cycle Fees after a Discount Purchase or Cancellation

pin bus params -r -c "Subscription" bus_params_subscription.xml

3. Inthe XML file, change disabled to enabled:
<CreateTwoEventsInFirstCycle>enabled</CreateTwoEventsInFirstCycle>

4. Save the file as bus_params_subscription.xml.

5. Load the XML file into the BRM database:
pin_bus_paramsbus_params_subscription.xml

6. Stop and restart the CM.

Prorating Cycle Fees after a Discount Purchase or
Cancellation

When an off-cycle discount is purchased or canceled and the discount is configured to
support any of the charge offer's cycle forward event types, the cycle fees are
discounted for the duration of the cycle for which the discount is valid.

Examples of Cycle Fee Proration

These examples show how cycle fee proration works.

Example 12: Cycle Fee Is Refunded after a Discount Purchase

In this example, illustrated in Figure 13-13, a $30 monthly cycle fee is charged on
January 1. An off-cycle discount is purchased on January 15 that discounts 10% of the
monthly fee. The 10% discount is applied to the prorated monthly charge of $15 from
Jan 15-Feb 1. A refund amount of $1.50 is credited to the account or service balance.

Figure 13-13 Example 12

Cycle fee is discounted and partially
refunded for this period

Jan 1 Jan 15 l Fab 1 Feb 15 Mar 1

Monthly cycle fea
charged with no discount Off-cycle monthly discount
purchased on 115

Example 13: Minutes Are Prorated after a Discount Cancellation

ORACLE

In this example, illustrated in Figure 13-14, a cycle forward monthly event grants 100
minutes. The discount is canceled on January 15. The account made 200 minutes of
calls between January 1 and January 15 at $0.10 per minute. The 100 minutes are
prorated between January 1 and January 15. The account is granted 50 minutes and
is charged $0.10 per minute for the remaining 150 minutes.

13-20

Chapter 13
Prorating Cycle Fees When a Discount's Cycle Start or End Date Is Changed

Figure 13-14 Example 13

Free minutes are prorated for the
pencd the discount was valid

Jan 1 l Jan 15 Feb 1 Feb 15 Mar 1
. | .
e I I
T Discount s canceled
Monthly cycle forward grant on 1115

for 100 free minutes

Example 14: Canceled Discount Proration Is Not Taken into Account When Charge
Offer Is Canceled

If you cancel a discount for a cycle fee and then you cancel the charge offer that owns that
cycle fee, the prorated cycle fee is refunded without considering any discount that was
applied. Therefore, the refunded amount might be more than the charged amount. However,
this can be corrected by rerating the cycle event.

In this example, an account owns a charge offer with a cycle fee of $60, cancellation
proration settings set to Do not charge for the cycle, and a discount of 10% on the cycle
fee. At the beginning of the cycle, $54 is charged ($60 cycle fee minus $6 discount). In the
middle of the cycle, if the discount is canceled, $3 is charged back. Later, if the charge offer is
canceled and $60 is refunded (because the cancellation proration setting is Do not charge
for the cycle). Therefore, the net charge for the cycle is a credit of $3. If you rerate the
events for the cycle, the expected charge of $60 will be applicable.

Prorating Cycle Fees When a Discount's Cycle Start or End
Date Is Changed

When a discount's cycle start or end dates are changed, cycle fees may be discounted and
refunded or charged depending on the new cycle start and end dates.

Examples of Cycle Fee Proration

These examples show how cycle fee proration works.

Example 15: Cycle Fee Is Refunded When a Discount's Cycle Start Date Is

Changed

ORACLE

In this example, illustrated in Figure 13-15, a monthly cycle fee is charged on January 1. The
monthly fee is discounted from Jan 20—Feb 1, and the discounted amount is credited to the
account balance. When the discount cycle start date is changed to January 10, the monthly
fee is discounted from Jan 10-Jan 20, and the discounted amount is credited to the account
balance.

13-21

Chapter 13
Prorating Cycle Fees When a Discount's Cycle Start or End Date Is Changed

Figure 13-15 Example 15

Mew discount cycle Ad discount
start date cycle start date
Jan 1 Jan 10 Jan 20 Feb 1
y »
Cycle fee is discounted for this I
ind and partially refunded
PEFIOE ARG parialy retun Cycle fee monthly charged and

discounted from 1720 to 21

Example 16: Cycle Fee Is Charged When a Discount's Cycle Start Date Is
Changed

In this example, illustrated in Figure 13-16, a monthly cycle fee is charged on
January 1. The monthly fee is discounted from Jan 10-Feb 1, and the discounted
amount is credited to the account balance. When the discount cycle start date is
changed to January 20, the discounted cycle fee amount is charged from Jan 10-Jan
20 because the discount is no longer valid during this period.

Figure 13-16 Example 16

CHd discount Mew discount
cycle start date cycle start date
Jan 1 Jan 10 Jan 20 Feb 1
¥ »>

Cycle fee maonthly charged and Cycle fea is prorated and charged
discounted from 1/10 to 24 for this period

Example 17: Cycle Fee Is Refunded When Discount's Cycle End Date Is
Changed

In this example, illustrated in Figure 13-17, a monthly cycle fee is charged on January
1. The monthly fee is discounted from Jan 1-Jan 10. When the discount cycle end
date is changed to January 20, the cycle fee is discounted from Jan 10-Jan 20, and
the discounted amount is credited to the account balance.

ORACLE 13-22

Chapter 13
Prorating Cycle Fees When a Discount's Cycle Start or End Date Is Changed

Figure 13-17 Example 17

CHd discount Mew discount
cycle end date cycle end date
Jan 1 Jan 10 Jan 20 Feb 1
r >
T Cydle fee is discounted and

partially refunded for this period
Cycle fee manthly charged and

discounted from 1/1 to 1110

Example 18: Cycle Fee Is Charged When Discount's Cycle End Date Is Changed

In this example, illustrated in Figure 13-18, a monthly cycle fee is charged on January 1. The
monthly fee is discounted from Jan 1-Jan 20. When the discount cycle end date is changed
to January 10, the discounted cycle fee amount is charged from Jan 10-Jan 20.

Figure 13-18 Example 18

Mew discount cycle (Hd discount
end date cycle end date
Jan 1 Jan 10 Jan 20 Feb1
| .
3 >
-

K
T ™,
Cycle fee is prorated and charged
Cycle fee monthly charged and for this period

discounted from 1/1 to 1/20

ORACLE 13-23

Managing Large Billing Runs

Learn how to manage large billing runs in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

* Billing Only Specified Accounts and Bill Units
» Splitting a Billing Run into Multiple Runs

e Managing Bill Due Dates

Implementing these features includes editing the billing run configuration file
(pin_bill_run_control.xml).

When splitting a billing run or using customized due dates, you must run the pin_bill_day
script manually. See "Running the pin_bill_day Script for Bill Run Management".

Billing Only Specified Accounts and Bill Units

ORACLE

To bill a single account or a limited set of accounts with the pin_bill_day script, you specify
the accounts and their bill units in a modified version of the billing run configuration file
(pin_bill_run_control.xml). In this case, BRM does not perform a database search but
retrieves the account and bill unit information directly.

" Note:

If you specify a paying bill unit that is part of a bill unit hierarchy, ensure that all
nonpaying bill units are billed first.

1. Open the BRM_homelappslpin_billd/pin_bill_run_control.xml file.
2. Edit the file to specify the accounts and their bill units to bill.

Add an Account and Billinfo child element to the BillingList parent element for each
account and bill unit to include. In the child element, specify the POID of the account and
bill unit.

" Note:

To bill specific accounts and bill units, you must include both the account POID
and bill unit POID. If only one is specified, the account or bill unit is not billed.

A BillingList parent element looks like this:

<BillingList>
<Account>Account_POID</Account>

14-1

ORACLE

Chapter 14
Billing Only Specified Accounts and Bill Units

<Billinfo>Bill unit POID</Billinfo>
</BillingList>

For example, the following BillingList parent element generates bills only for the
account with POID 55612 and its bill unit with POID 34589:

<BillingList>
<Account>55612</Account>
<Billinfo>34589</Billinfo>
</BillingList>

(Optional) Delete or comment out any billing DOM lists or billing segment lists
(specified by DOMList and BillSegmentList parent elements). If you include
accounts and bill units along with DOMs or billing segments, only the account's bill
units are processed.

Save the file under a different name and close it. For example, when billing a
single account, include the account POID in the file name (such as
pin_bill_run_account_8445.xml). If billing a group of accounts, include the
account range or reason for billing in the file name.

Note:

When you run pin_bill_day, the default BRM_homelappsipin_billd/
business_configuration.xsd file and filename must be in the same
directory.

Manually run the pin_bill_day script using this command:

pin bill day -file filename

where filename is the name and location of the modified version of the billing run
configuration file. If the file is in a different directory from which you run the
pin_bill_day script, you must also include the entire path for the file.

Note:

e The -file parameter when used with pin_bill_day, affects only the
pin_bill_accts utility; it does not apply to other billing utilities run by
the pin_bill_day script. For example, pin_cycle_fees which
performs a database search to find all accounts with cycle forward
fees that are due, does not use the accounts passed in with the -file
parameter.

* Ensure that the accounts specified in the billing run configuration file
reside on the same database schema where pin_bill_day is run. If
the file contains accounts from different database schemas,
pin_bill_day reports an error. See "Setting Up Billing in a
Multischema Environment".

* When you run pin_bill_day with the -file parameter, do not run it as
a cron job. If you do, depending on the restrictions in filename, some
bill units might never be billed.

14-2

Chapter 14
Splitting a Billing Run into Multiple Runs

Splitting a Billing Run into Multiple Runs

When you use the pin_bill_day script to run billing, the billing run includes all bill units whose
current accounting cycle end date is any day before midnight (12:00:00 a.m.) of the day on
which the billing run takes place.

To reduce the load and duration of billing runs triggered by the script, you can split large,
lengthy billing runs into smaller billing runs based on billing days of month (DOMs) and billing
segments. The smaller billing runs can overlap or occur at different times.

Splitting a billing run into multiple runs includes two steps:

1. Configure auto-triggered billing.
2. Configure the split billing run.

Configuring Auto-Triggered Billing for Bill Run Management

ORACLE

To split large billing runs into smaller billing runs, you first disable auto-triggered billing on the
days that you process the smaller billing runs. If auto-triggered billing is enabled on those
days, it reduces your ability to control the way your billing load is distributed.

For example, the billing cycle for two million customers ends on August 1. To reduce the
number of bills finalized on August 1, you split the billing run into four smaller runs, each of
which includes about 500,000 bill units. You process one smaller billing run per day from
August 1 through August 4. If auto-triggered billing is enabled on those days, bill-triggering
events might cause BRM to finalize some bills in the smaller billing runs before you process
the runs. For example, bill-triggering events might cause BRM to finalize 1,250,000 bills on
August 1 instead of only 500,000.

To configure auto-triggered billing for bill run management:

1. Set a system-wide billing delay. See "Setting Up Delayed Billing".

By default, auto-triggered billing is always enabled. To disable it, you must set a billing
delay in your BRM system.

¢ Note:

If you use delayed billing, skip this step. A billing delay is already set in your
system. For more information, see "Setting Up Delayed Billing".

By default, after you set a billing delay, auto-triggered billing is enabled for only the delay
period and the last two days of each bill unit's accounting cycle.

For example, if your delayed billing cycle is 7 days long, auto-triggered billing is disabled
during the following days in a 31-day accounting cycle as shown in Figure 14-1.

14-3

Chapter 14
Splitting a Billing Run into Multiple Runs

Figure 14-1 Auto-Triggered Billing Disabled in Accounting Cycle

Delayed-billing
periad

auto-triggered billing disabled

F
Y

T

31-day accounting cycle

" Note:

If a bill-triggering event occurs during the delayed-billing period, the bill is
only partially processed: rollovers and cycle fees are applied, but the bill
is not finalized. If a bill-triggering event occurs during the last two days of
the cycle, the bill is finalized.

2. (Optional) Change the number of days auto-triggered billing is enabled at the end
of each accounting cycle. See "Configuring Auto-Triggered Billing".

Configuring a Split Billing Run

To split a billing run into smaller billing runs, you configure the smaller billing runs in
multiple versions of the billing run configuration file (pin_bill_run_control.xml). Each
of the smaller billing runs is limited to bill units associated with one or both of the
following:

* Specified accounting days of month (DOMSs). Bill units associated with any
other billing DOM are excluded from the billing run.

» Specified billing segments. Bill units associated with any other billing segment
are excluded from the billing run.

To restrict the smaller billing runs to specified billing segments, you must first set
up billing segments in your system and then associate bill units with them. See
"Load Balancing Billing Runs".

ORACLE 14-4

Chapter 14
Splitting a Billing Run into Multiple Runs

< Note:

When you split a large billing run into smaller billing runs:

— Configure the smaller billing runs so that in total they include all due bill
units.

— To ensure that no bill unit remains unbilled, periodically run the
pin_bill_day script without the -file parameter.

— Do not include the same billing segment in multiple small billing runs. If you
do, your accounts receivable (A/R) data may become inaccurate.

To split a billing run into smaller billing runs:
1. Open the pin_bill_run_control.xml file in an XML editor or a text editor.

By default, the file is in the BRM_homelapps/pin_billd directory.

" Note:

You also edit this file to specify billing run-time due date adjustments. See
"Specifying Due Date Adjustments in a Billing Run".

2. Edit the file to restrict a billing run to bill units associated with one of the following:

* For specific billing DOMs, see "Including Only Specified Billing DOMs in Billing
Runs".

» For specific billing segments, see "Including Only Specified Billing Segments in
Billing Runs".

¢ Note:

Only one smaller billing run at a time can be configured in a billing run
configuration file.

3. Save the file.

" Note:

To create multiple versions of this file, save the file under a different name for
each of the smaller billing runs. For example, if a version of the file limits a
smaller billing run to billing segment 1001, save the file as
pin_bill_run_control_BS1001.xml. The pin_bill_day script can take any XML
file name as a parameter if the file's contents conform to the appropriate
schema definition. See "Validating Your Billing Run Configuration File Edits".

4. Repeat steps 1 through 3 as often as necessary to configure a set of smaller billing runs
that includes all due bill units in a daily billing run.

ORACLE 14-5

Chapter 14
Splitting a Billing Run into Multiple Runs

5. Manually run the pin_bill_day script with each version of the XML file by using
this command:

pin bill day -file filename

where filename is the name and location of a version of the billing run
configuration file. If you run the command in a different directory from where
filename is located, you must also include the entire path for the file.

In addition, filename must be in the same directory as the default BRM_homel
apps/pin_billd/business_configuration.xsd file.

¢ Note:

e The -file parameter when used with pin_bill_day, affects only the
pin_bill_accts utility; it does not apply to other billing utilities run by
the pin_bill_day script. For example, pin_cycle_fees which
performs a database search to find all accounts with cycle forward
fees that are due, does not use the accounts passed in with the -file
parameter.

e Ensure that the accounts specified in the billing run configuration file
reside on the same database schema where pin_bill_day is run. If
the file contains accounts from different database schemas,
pin_bill_day reports an error. See "Setting Up Billing in a
Multischema Environment".

* When you run pin_bill_day with a configuration file, do not run it as
a cron job. If you do, depending on the restrictions in configuration
file, some bill units might never be billed.

About Sponsored Charges in Split Billing Runs

If the following conditions occur when you split a billing run, sponsored cycle forward
charges might appear in the sharing group owner's bill one cycle late:

e Sharing group owner account and member account have the same billing DOM.

» Sharing group owner account and member account belong to different billing
segments.

Including Only Specified Billing DOMs in Billing Runs

ORACLE

To include bill units associated only with specified billing DOMs in a billing run, add a
DOM child element to the DOML.ist parent element in the billing run configuration file
for each day whose bill units you want to include.

A DOMList parent element looks like this:

<DOMList>
<DOM>---gDay1</DOM>
<DOM>---gDay2</DOM>
<DOM>---gDay3</DOM>
</DOMList>

where gDay is any two-digit value from 01 through 31.

14-6

Chapter 14
Splitting a Billing Run into Multiple Runs

For example, to include only bill units whose billing DOM is 1 or 15, add child elements:

<DOMList>
<DOM>---01</DOM>
<DOM>---15</DOM>

</DOMList>

If the DOMList parent element is omitted, bill units associated with any billing DOM can be
included in the billing run.

Including Only Specified Billing Segments in Billing Runs

To include bill units associated only with specified billing segments in a billing run, add a
BillSegment child element to the BillSegmentList parent element in the billing run
configuration file for each billing segment whose bill units you want to include.

A BillSegmentList parent element looks like this:

<BillSegmentList>
<BillSegment>ID</BillSegment>
<BillSegment>ID</BillSegment>
<BillSegment>ID</BillSegment>

</BillSegmentList>

where ID is the ID of any billing segment defined in the /config/billing_segment object in
your BRM system.

For example, to include only bill units associated with billing segments 101 or 102, add child
elements:

<BillSegmentList>
<BillSegment>101</BillSegment>
<BillSegment>102</BillSegment>

</BillSegmentList>

For information about billing segments, see "Load Balancing Billing Runs".

If the BillSegmentList parent element is omitted, bill units associated with any billing
segment can be included in the billing run.

Sample Billing Run Configuration File

The following is a sample pin_bill_run_control.xml file. Billing run loads are restricted to
billing DOMs and billing segments specified in the bold elements.

<DOMList>
<DOM>---03</DOM>
<DOM>---07</DOM>
<DOM>---15</DOM>

</DOMList>

<BillSegmentList>
<BillSegment>101</BillSegment>
<BillSegment>102</BillSegment>

</BillSegmentList>

<DueDateAdjustment Length=5 >
<PaymentTerm id = 1001 />
<PaymentTerm id = 1002 />

</DueDateAdjustment>

<DueDateAdjustment Length = 7/>

ORACLE 14-7

Chapter 14
Managing Bill Due Dates

For information about the DueDateAdjustment and PaymentTerm elements, see
"Specifying Due Date Adjustments in a Billing Run".

Validating Your Billing Run Configuration File Edits

After editing the XML file, you use the file name as a parameter when you run the
pin_bill_day script. The script passes the file name to the pin_bill_accts utility, which
validates the contents of the XML file against its schema definition. If the contents do
not conform to the schema definition, the utility returns an error. The schema definition
is BRM_homelxsdlpin_bill_run_control.xsd.

The XML file is not directly linked to its schema definition file. Instead, it is linked to the
BRM_homelsysldatalconfig/business_configuration.xsd reference file.

Managing Bill Due Dates

This section explains how to manage bill due dates by performing the following tasks:

e Managing Payment Terms. Payment terms enable you to use different methods to
calculate due dates for bills that have the same payment method.

e Managing Billing Calendars. Billing calendars enable BRM to implement payment
terms based on business days.

e Specifying Due Date Adjustments in a Billing Run. Billing run-time adjustments
enable you to accommodate operational delays in your billing process.

By default, the bill due date for any payment method is 30 days after the date the bill is
finalized. You can change default due dates only at the payment-type level.

The BRM delayed billing feature enables billing for all the bill units in your system to be
run a specified number of days after the end of their billing cycle. If you use delayed
billing, be careful to avoid configuring bill due dates that occur before bills are finalized.
For example, if your system has a 14-day billing delay and you configure a bill due
date that is fewer than 14 days after the end of a bill unit's billing cycle, the bill due
date will occur before the bill is finalized.

Managing Payment Terms

ORACLE

A payment term specifies how to calculate the due date of a bill. You use payment
terms to set due dates a specified number of days after the billing cycle end date or on
a specified day of the month. For example, payment terms can be linked to functions
that set bill due dates as follows:

e 21 days after the billing cycle end date
» 15 business days after the billing cycle end date
* The second Tuesday of the month

You can define as many payment terms as you need in your BRM system. Each
payment term can be associated with one or more Ipayinfo objects, but a Ipayinfo
object can be associated with only one payment term at a time. The /payinfo object's
payment term applies to all bills associated with the object.

Payment terms enable you to use different methods to calculate due dates for bills that
have the same payment method. For example, by default, all bills paid by direct debit
are due on the day the bill is finalized. Customer A pays a monthly bill by direct debit

14-8

Chapter 14
Managing Bill Due Dates

and has paychecks automatically deposited every two weeks. However, Customer A wants
the account debited on the third Tuesday of every month regardless of when the bill is
finalized. To do so without affecting other direct debit customers, you can create a third-
Tuesday-of-the-month payment term and associate it with the Ipayinfo object to which
customer A's bill is linked.

To manage payment terms, you perform these tasks:

e Editing the Payment Terms Configuration File
e Loading Payment Terms

e Assigning Payment Terms to Bill Units

Editing the Payment Terms Configuration File

ORACLE

You configure all the payment terms in your BRM system in the BRM_homelsysldatalconfig/
pin_payment_term.xml file.

In the file, the PaymentTerms parent element must contain a PaymentTerm child element
for each payment term in your system. A PaymentTerm child element looks like this:

<PaymentTerm ID="int">description</PaymentTerm>

where int is a payment term ID. For more information, see Table 14-1.

To create a payment term, add a PaymentTerm child element to the PaymentTerms parent
element. In the child element, specify values for the items listed in Table 14-1.

Table 14-1 Payment Term Elements

XML Element Description Possible Values
or Attribute

ID The ID of the payment | Any nonnegative integer.
term. Note
e Paymentterm ID O is the default payment term.

e Payment term IDs 1 through 1000 are reserved for
BRM use.

Important: In the

PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy

opcode, the ID number must be associated with a function

that calculates bill due dates. See the chapter about billing

in BRM Opcode Guide.

description An explanation of the | Any string.
payment term. For Note: This string is mapped to the PIN_FLD_DESCR field
example, 3rd Tuesday | ij the /config/payment_term object, which can be used
of the month. to populate a list of payment terms in a user interface (Ul).

When creating the string, take any Ul length restrictions
into account.

14-9

Chapter 14
Managing Bill Due Dates

Sample Payment Terms Configuration File

The following is a sample pin_payment_term.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<BusinessConfiguration xmlns="http://www.portal.com/schemas/
BusinessConfig" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.portal.com/schemas/BusinessConfig
business configuration.xsd">

<!-- Sample file. Modify according to guidelines -->

<PaymentTermConfiguration>
<PaymentTerms>
<PaymentTerm ID="1001">17 days</PaymentTerm>
<PaymentTerm ID="1002">14 business days</PaymentTerm>
<PaymentTerm ID="1003">3rd Tuesday of the month</PaymentTerm>
</PaymentTerms>
</PaymentTermConfiguration>

</BusinessConfiguration>

Loading Payment Terms

To set up payment terms in your system, edit the payment terms configuration file
(pin_payment_term.xml), and then load its contents into the Iconfig/lpayment_term
object in the BRM database.

1. Open the pin_payment_term.xml file in an XML editor or a text editor.
The file is in the BRM_homelsysldatalconfig directory.

2. Enter the appropriate information into the file. See "Editing the Payment Terms
Configuration File ".

3. Save the file.

4. Use the following command to run the "load_pin_payment_term" utility from the
directory in which the pin_payment_term.xml file is located:

load pin payment term pin_payment term.xml
If you do not run the utility from the directory in which pin_payment_term.xml is
located, include the complete path to the file; for example:
load pin payment term BRM home/sys/data/config/pin payment term.xml
5. Stop and restart the Connection Manager (CM).

6. For each payment term in your system, customize the
PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy opcode to specify the function
and parameters to use to calculate the due dates of bills associated with the
payment term. See BRM Opcode Guide.

Updating the pin.conf File to Use Payment Terms

To use configured payment terms, update the pin.conf file.

ORACLE 14-10

Chapter 14
Managing Bill Due Dates

1. Open the BRM_home/sys/cm/pin.conf file in a text editor.
2. Add the following line:

- cm_cache fm cust pol paymentterm cache 256, 40960, 64
3. Save and close the file.

4. Stop and restart the CM.

Assigning Payment Terms to Bill Units

To assign a payment term to a bill unit, you associate the payment term with the /payinfo
object to which the /billinfo object is linked.

To do this at account creation time, call the PCM_OP_CUST_COMMIT_CUSTOMER opcode
to put the ID of the payment term into the PIN_FLD_PAYMENT_TERM field of the
appropriate Ipayinfo object. (PCM_OP_CUST_COMMIT_CUSTOMER calls the
PCM_OP_CUST_SET_PAYINFO opcode to perform this task.)

" Note:

e All the payment terms in a BRM system are stored in the /config/
payment_term object. In the object, the PIN_FLD_PAYMENT_TERMS array
contains the ID and description (PIN_FLD_DESCR) of each payment term.

e If you do not assign a payment term to a Ipayinfo object at account creation
time, BRM automatically assigns the default payment term ID 0 to the Ipayinfo
object. This occurs even if there are no payment terms in your system.

To do this at account maintenance time, call the PCM_OP_CUST_UPDATE_CUSTOMER
opcode to perform the task described in the preceding paragraphs.

Note:

When assigning payment terms based on days of month (DOMSs), ensure the
payment term is compatible with the bill unit's billing DOM.

For example, account A's billing DOM is 20 and its payment term is “3rd Tuesday of
the month." When billing is run on August 20, 2004, the due date of account A's
August bill is set to September 21 because the third Tuesday of August (August 17)
has passed. When billing is run on September 20, the due date of account A's
September bill is also set to September 21. Thus, account A has two bills due on
the same day, which may be undesirable.

See BRM Opcode Guide.

Managing Billing Calendars

By default, a billing calendar contains a list of days on which bills cannot be due.

ORACLE 14-11

Chapter 14
Managing Bill Due Dates

Billing calendars enable BRM to implement payment terms based on business days.
To calculate due dates for bills associated with such payment terms, BRM must
determine which days of the year are considered business days and which are not. To
do so, it uses billing calendars to exclude days such as weekends, holidays, and other
user-specified nonbilling days from the calculation.

For example, if a billing cycle ends on December 10, 2016, and its payment term adds
15 business days to that date, a billing calendar can be used to prevent the bill's
payment being due on New Year's Eve.

You can add multiple billing calendars to your system to accommodate different
countries and customers. For example, a US billing calendar would include
Thanksgiving and Independence Day (July 4) as nonbilling days when they occur on
weekdays.

When calculating due dates for bills associated with payment terms based on business
days, the PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy opcode uses billing
calendars to exclude days such as weekends, holidays, and any other user-specified
nonbilling day from the calculation.

To manage billing calendars, you perform these tasks:

e Setting Up Billing Calendars
» Editing the Billing Calendar Configuration File
e Updating Billing Calendars

e Associating Billing Calendars with Payment Terms

Setting Up Billing Calendars

To set up billing calendars in your system, edit the billing calendar configuration file
(pin_calendar.xml) and then load its contents into /config/calendar objects in the
BRM database (each calendar is loaded into a separate object).

To set up billing calendars:

1. Open the pin_calendar.xml file.
By default, the file is in the BRM_homelsysldatalconfig directory.

2. Enter the appropriate information into the file. See "Editing the Billing Calendar
Configuration File ".

" Note:

e Bill run management includes a default billing calendar. Its case-
sensitive name is default. By default, the
PCM_OP_BILL POL_CALC_PYMT_DUE_T policy opcode uses this
calendar to calculate due dates for payment terms based on
business days.

« When you edit the configuration file, if you unintentionally change or
delete the calendar, due date calculations based on business days
may be incorrect.

3. Save the file.

ORACLE 14-12

Chapter 14
Managing Bill Due Dates

4. Use the following command to run the "load_pin_calendar" utility from the directory in
which the pin_calendar.xml file is located:

load pin calendar pin_calendar.xml

¢ Note:

e When you run the utility, the pin_calendar.xml and
business_configuration.xsd files must be in the same directory. By
default, both files are in BRM_homelsysldatalconfig.

e This utility needs a configuration (pin.conf) file in the directory from which
you run the utility. For information, see "Connecting BRM Utilities" in BRM
System Administrator's Guide.

If you do not run the utility from the directory in which pin_calendar.xml is located,
include the complete path to the file, for example:

load pin calendar BRM home/sys/data/config/pin_calendar.xml

5. Stop and restart the CM.

Editing the Billing Calendar Configuration File

You configure all the billing calendars in your BRM system in the BRM_homelsysldatal
config/pin_calendar.xml file.

¢ Note:

This configuration file contains one predefined billing calendar. Its case-sensitive
name is default. By default, the PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy
opcode uses this calendar to calculate due dates for payment terms based on
business days.

When you edit the configuration file, if you unintentionally change or delete the
calendar, due date calculations based on business days may be incorrect.

To edit this configuration file, open it in an XML editor or a text editor.

In the file, the CalendarConfiguration parent element must contain a Calendar child
element for each billing calendar in your system. A Calendar child element looks like this:

<Calendar name="calendar name">
<Date>
<!-- day description -->
<Day>---dd</Day>
<Month>--mm--</Month>
<Year>yyyy</Year>
</Date>
</Calendar>

ORACLE 14-13

ORACLE

Chapter 14
Managing Bill Due Dates

For an example, see "Sample Billing Calendar Configuration File".

To add a calendar to the file, see "Adding Calendars".

To add a day to a calendar, see "Adding Days to Calendars".

Adding Calendars

To create a billing calendar, add a Calendar child element to the
CalendarConfiguration parent element. In the child element, specify values for the
items listed in Table 14-2.

Table 14-2 Calendar Elements

XML Element or | Description Possible Values
Attribute
name The name of the billing calendar, Any string.
such as Gregorian, Maximum length is 255 characters.
European_Holidays, and Korean. Note
The name of the default billing . -,
- e The name is case sensitive.
calendar is default. . -
e This string is mapped to the
PIN_FLD_NAME field in the /
config/calendar object, which
can be used to populate a list of
billing calendars in a user
interface (Ul). When creating
the string, take any Ul length
restrictions into account.
Date A day on which you do not want bill | See "Adding Days to Calendars".

payments to be due.

A Calendar child element can have
multiple Date elements. For
example, in a US billing calendar,
you might include a Date element for
every US holiday (New Year's Day,
President's Day, Memorial Day, and
SO on).

Note: The default due date function
that uses billing calendars
(fm_bill_pol_add_n_bus_days)
automatically skips weekends, so
you do not need to create a Date
element for Sundays and Saturdays
in calendars used only by that
function. See the chapter about
billing in BRM Opcode Guide.

Adding Days to Calendars

In a Calendar child element, you must add a Date element for each day on which you
do not want bill payments to be due. A Date element looks like this:

<Date>

<!-- description of day -->
<Day>---dd</Day>
<Month>--mm--</Month>

14-14

ORACLE

Chapter 14
Managing Bill Due Dates

<Year>yyyy</Year>
</Date>

To add a day to a calendar, add a Date element to the Calendar element. In the Date
element, specify values for the items listed in Table 14-3.

Table 14-3 Date Element Entries

XML Element | Description Possible Values
or Attribute

Day A day of the month. 1 through 31.
Month A month of the year. 1 through 12.
Year The year in which the One of the following:

date is a nonbilling day. . 7o associate the date with one year only, specify the

appropriate year in yyyy format (for example, 2005).
» To associate the date with all years (arecurring
nonbilling day), use 0000.
e For example, to make December 25 (Christmas) a
recurring nonbilling day, use these values: Day 25,

Month 12, Year 0000.

Sample Billing Calendar Configuration File

The following is a sample pin_calendar.xml file;

<?xml version="1.0"?>

<BusinessConfiguration xmlns="http://www.portal.com/schemas/BusinessConfig"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.portal.com/schemas/BusinessConfig

business configuration.xsd">

<!-- Sample file. Modify according to guidelines -->

<CalendarConfiguration>
<Calendar name="default">
<!-- holiday specific to indicated year -->
<Date>
<!-- Thanksgiving -->
<Day>---25</Day>
<Month>--11--</Month>
<Year>2004</Year>
</Date>
</Calendar>
<Calendar name="Western Australia">
<!-- recurring holiday on same date. use 0 for year value -->
<Date>
<!-- Christmas -->
<Day>---25</Day>
<Month>--12--</Month>
<Year>0000</Year>
</Date>
<!-- holiday date specific to indicated year -->
<Date>
<!-- Anzac Day -->

14-15

Chapter 14
Managing Bill Due Dates

<Day>---26</Day>
<Month>--04--</Month>

<Year>2004</Year>
</Date>
<Date>

<!-- Australia Day -->

<Day>---26</Day>
<Month>--01--</Month>
<Year>2005</Year>
</Date>
</Calendar>
</CalendarConfiguration>
</BusinessConfiguration>

Validating Your Billing Calendar Configuration File Edits

After editing the contents of the XML file, you use the "load_pin_calendar" utility to
load the contents of the file into Iconfig/calendar objects in the BRM database. See
"Setting Up Billing Calendars".

Before loading the contents of the file, the utility validates the contents against the file's
schema definition. If the contents do not conform to the schema definition, the load
operation fails. The schema definition is in this file:

BRM_homelxsdlpin_calendar.xsd

The XML file is not directly linked to its schema definition file. Instead, it is linked to this
XSD reference file:

BRM_homelsysldatalconfig/business_configuration.xsd

Updating Billing Calendars

To update billing calendars, re-edit the bhilling calendar configuration file, and then run
the "load_pin_calendar" utility to load the updated contents of the file into /Iconfig/
calendar objects in the BRM database. See "Setting Up Billing Calendars" for the
complete procedure.

Note:

This utility overwrites existing billing calendars. When updating billing
calendars, you cannot load new calendars only. You must load the complete
set of billing calendars each time you run the utility.

To add the newly loaded data to the CM cache, stop and restart the CM.

Associating Billing Calendars with Payment Terms

ORACLE

When using payment terms based on business days to calculate bill due dates, the
PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy opcode uses billing calendars to
omit nonbilling days from the calculation.

14-16

Chapter 14
Managing Bill Due Dates

To associate a billing calendar with such payment terms, see the chapter about billing in BRM
Opcode Guide..

Specifying Due Date Adjustments in a Billing Run

You use billing run-time due date adjustments to add days to the due dates of bills in a billing
run. You can add the same number of days to all the bills in the billing run, or you can add
different numbers of days to bills whose accounts are associated with different payment
terms.

Billing run-time adjustments enable you to accommodate operational delays in your billing
process. For example, bills associated with payment term A are due on the third Thursday of
the month. On May 3, a problem in your system makes you unable to run billing. On May 10,
you fix the problem and run billing for accounts whose billing DOM is 3. As a result, DOM 3
bills are generated a week late. To make up for this delay, you add a due date adjustment of 7
days for payment term A to the billing run. This gives DOM 3 customers associated with
payment term A the usual time between receipt of their bill and its due date.

" Note:

To specify adjustments based on the payment term with which a bill is associated,
you must first set up payment terms in your system and associate accounts with
them. See "Loading Payment Terms".

To specify billing run-time due date adjustments:

1. Open the billing run configuration file (pin_bill_run_control.xml) in an XML editor or a
text editor.

By default, the file is in the BRM_homelapps/pin_billd directory.

< Note:

You also use this file to split your daily billing run into smaller billing runs. See
"Configuring a Split Billing Run".

2. Specify the appropriate due date adjustments in the file. See "Editing the Billing Run
Configuration File to Adjust Bill Due Dates ".

3. Save the file.

" Note:

If you want, you can save a copy of the file under a different name. The
pin_bill_day script can take any XML file name as a parameter if the file's
contents conform to the appropriate schema definition. See "Validating Your
Billing Run Configuration File Edits".

4. Manually run the pin_bill_day script, using this syntax:

ORACLE 14-17

Chapter 14
Managing Bill Due Dates

pin bill day -file filename

where filename is the name and location of the billing run configuration file. If you
run the command in a different directory from where the file is located, you must
also include the entire path for the file.

In addition, filename must be in the same directory as the default BRM_homel
apps/pin_billd/business_configuration.xsd file.

¢ Note:

e The -file parameter when used with pin_bill_day, affects only the
pin_bill_accts utility.

e Ensure that the accounts specified in the billing run configuration file
reside on the same database schema where pin_bill_day is run. If
the file contains accounts from different database schemas,
pin_bill_day reports an error. See "Setting Up Billing in a
Multischema Environment".

* When you run pin_bill_day with a configuration file, do not run it as
a cron job. If you do, depending on the restrictions in configuration
file, some bill units might never be billed.

Editing the Billing Run Configuration File to Adjust Bill Due Dates

ORACLE

By editing the BRM_homelapps/pin_billd/pin_bill_run_control.xml file and then
using it as a parameter for the pin_bill_day script, you can add days to the due dates
of bills in a billing run. The due date adjustment can apply to all bills in the billing run or
to bills associated only with specified payment terms.

To edit the file, open it in an XML editor or a text editor, and then perform one or both
of these tasks:

» Associating Due Date Adjustments with Payment Terms
» Specifying a Default Due Date Adjustment

By default, the added days include weekends and nonbusiness days. To add only
business days, change the following code in the
PCM_OP_BILL_POL_CALC_PYMT_DUE_T policy opcode from this:

if (due date adjust) {
fm utils add n days(due date adjust, &due t);
}

To this:

if (due date adjust) {
fm bill pol add n bus days(ctxp, n, "billing calendar name", &due t, ebufp);
}

For information about the fm_bill_pol_add_n_bus_days function, see the chapter
about billing in BRM Opcode Guide.

14-18

ORACLE

Chapter 14
Managing Bill Due Dates

Associating Due Date Adjustments with Payment Terms

To specify an adjustment for bills associated with a particular payment term, add the
appropriate Payment_Term id element to a Due_date_adjustment element in the billing run
configuration file:

<Due_date_adjustment length = n >
<Payment Term id = x />
</Due_date adjustment >

where:

* nis a positive integer that represents the number of days to add to the due date of a hill.

* Xis the ID of any payment term defined in the /config/lpayment_term object. See
"Managing Payment Terms".

You must specify both n and x. For example, the following 5-day adjustment applies only to
bills associated with payment terms 1001 and 1002:

<Due date adjustment length = 5 >
<Payment Term id = 1001 />
<Payment Term id = 1002 />

</Due_date adjustment >

Calculating Due Dates Based on Both Payment Terms and Adjustments

When due date adjustments are associated with payment terms, bill due dates are calculated
as follows:

* Payment terms that add days
billing cycle end date + payment term + adjustment = due date

For example, if the billing cycle end date is April 1, 2001, the payment term 1001 is “add
7 days to the billing cycle end date," and the due date adjustment is 5 days, this
calculation is used:

April 1 + 7 days + 5 days = April 13
* Payment terms that specify a particular day of month
payment term + adjustment = due date

For example, if payment term 1002 is “second Tuesday of the month," the due date
adjustment is 5 days, and billing is run on April 1, 2004, this calculation is used:

April 8 (second Tuesday of April 2004) + 5 days = April 13

Specifying a Default Due Date Adjustment

To specify a due date adjustment for bills in a billing run that are not associated with a
payment term or whose payment term is not associated with an adjustment, add a default
adjustment:

<Due date adjustment length = n />

where n is a positive integer that represents the number of days to add to the due date of a
bill.

For example, if the following adjustments are included in the same XML file, the 7-day
adjustment applies to bills associated with any payment term except payment terms 1001
and 1002:

14-19

Chapter 14
Managing Bill Due Dates

<Due_date_adjustment length = 5 >
<Payment Term id = 1001 />
<Payment Term id = 1002 />

</Due_date adjustment >

<Due_date adjustment length = 7 />

Sample Billing Run Configuration File

The following sample pin_bill_run_control.xml file contains these due date
adjustments:

* A b-day adjustment for bill units associated with payment terms 1001 and 1002
* A 7-day adjustment for all the other bill units in the billing run
Due date adjustments are configured in the bold elements.

<DOMList>
<DOM>---03</DOM>
<DOM>---07</DOM>
<DOM>---15</DOM>

</DOMList>

<BillSegmentList>
<BillSegment>101</BillSegment>
<BillSegment>102</BillSegment>

</BillSegmentList>

<DueDateAdjustment Length=5 >
<PaymentTerm id = 1001 />
<PaymentTerm id = 1002 />

</DueDateAdjustment >

<DueDateAdjustment Length=7/>

For information about the DOMList and BillSegmentList parent elements, see
"Including Only Specified Billing DOMs in Billing Runs" and "Including Only Specified
Billing Segments in Billing Runs".

Validating Your Billing Run Configuration File Edits

After editing the XML file, you use the file name as a parameter when you run the
pin_bill_day script. See "Specifying Due Date Adjustments in a Billing Run".

The script passes the file name to the pin_bill_accts utility, which validates the
contents of the file against its schema definition. If the contents do not conform to the
schema definition, the utility returns an error. The schema definition is in this file:

BRM_homelxsdlpin_bill_run_control.xsd

The XML file is not directly linked to its schema definition file. Instead, it is linked to this
XSD reference file:

BRM_homelappslpin_billd/business_configuration.xsd

ORACLE 14-20

About Bill Suppression

Learn how to implement bill suppression in Oracle Communications Billing and Revenue
Management (BRM), which allows you to postpone finalizing a bill until the end of a future
billing cycle.

Topics in this document:

e About Suppressing Bills

e Automatically Suppressing Bills

About Suppressing Bills

BRM finalizes a bill at the end of each billing cycle. When a bill is finalized, the status of its bill
items is changed from pending to open so that they stop accumulating charges and so that
payments can be applied to them. In addition, a due date is added to the bill. A new bill is
created to handle bill items for the next billing cycle.

Bill suppression, however, enables you to postpone finalizing a bill until the end of a future
billing cycle. When a bill is suppressed, it is extended to include bill items for the next cycle,
and the bill continues to accumulate charges until the end of that cycle.

Note:

Charges accrued during all cycles in which a bill is suppressed do not age, get
invoiced, go into collections, or have a due date set for them until suppression ends
and the bill is finalized.

You use bill suppression to avoid sending out unnecessary bills and incurring wasteful
expenses. For example, if the cost to create and mail a bill is greater than the balance due,
you can suppress the bill until its balance due is greater than its production costs.

Bills can be suppressed in several ways. See these topics:

e About Automatic Bill Suppression
e About Manual Bill Suppression
e About Manual Account Suppression

All types of bill suppression can be overridden by exceptions. See "Exceptions to Bill
Suppression”.

About Automatic Bill Suppression

At the end of a billing cycle, BRM can automatically suppress bills whose balance is less than
a user-specified minimum required to finalize a bill. Such bills are suppressed for one billing

ORACLE 15-1

Chapter 15
About Suppressing Bills

cycle. If their balance is still below the minimum at the end of that cycle, they are
suppressed for another billing cycle.

Note:

e Bills with negative balances are not suppressed.

e If both bill suppression and open item purging are enabled for a bill unit (/
billinfo object), the bills for the bill unit are always suppressed because
its bill total will always be 0. For more information about open item
purging, see "Enabling Open Items to Be Purged" in BRM System
Administrator's Guide.

If the number of consecutive billing cycles for which a bill is suppressed reaches your
specified maximum number of cycles, the bill is generated even if its balance is still
below the minimum. This ensures that an excessive amount of time does not pass
between customer bills.

To implement automatic bill suppression, you specify minimum balance amounts and
maximum cycle limits for each customer segment that includes accounts whose bills
you want to suppress automatically. A customer segment's specifications apply to all
the bill units in the accounts that belong to the segment.

For example, a customer segment for low-usage accounts with bad payment histories
might have a bill-generation threshold of only $5 and a limit of only three consecutively
suppressed cycles, whereas a customer segment for high-usage accounts with good
payment histories might have a bill-generation threshold of $15 and a limit of six
consecutively suppressed cycles.

Note:

If an account belongs to more than one customer segment, the lowest
minimum balance and the lowest maximum cycle settings associated with
the customer segments apply to the account. These settings can be from
different customer segments.

For example, account X belongs to customer segments A and B. Segment
A's minimum balance is $5 and its maximum cycle setting is 4. Segment B's
minimum balance is $10 and its maximum cycle setting is 2. Thus, account
X's minimum balance is $5 (from segment A) and its maximum cycle limit is
2 (from segment B).

For more information, see "Automatically Suppressing Bills".

About Manual Bill Suppression

ORACLE

Manual bill suppression enables you to suppress individual bills programmatically or
through a custom user interface on a case-by-case basis.

For example, if you use automatic bill suppression, you can use manual bill
suppression to suppress bills whose balance does not qualify for automatic

15-2

Chapter 15
About Suppressing Bills

suppression, as in this situation: Customer A's account belongs to customer segment X. The
minimum balance required to finalize bills associated with accounts in customer segment X
is $10. Midway through the current billing cycle, customer A's balance is $105, so his bill
does not qualify for automatic bill suppression and will be finalized at the end of the billing
cycle. Because customer A is having cash flow problems, however, he calls a customer
service representative (CSR) and asks her to suppress his bill for two billing cycles. Using an
interface that interacts with the manual bill suppression feature, she manually suppresses his
bill for the requested number of cycles.

Note:

Unlike automatic bill suppression, the default manual bill suppression feature does
not use customer segments.

For more information, see the chapter about billing in BRM Opcode Guide.

About Manual Account Suppression

Manual account suppression enables you to suppress accounts on request. With this feature,
customers who will not be using their account for an extended period of time can retain all
their services and connection IDs without accumulating any of the charges usually associated
with their account.

Optionally, charges associated with one account-level bundle can accumulate during account
suppression. You can use this bundle to handle any special fees you want to charge while an
account is suppressed. For example:

e Charge a purchase fee for suppressing an account.

e Charge a low monthly cycle fee for retaining a suppressed account's services and
connection IDs.

< Note:

Unlike automatic bill suppression, account suppression does not use customer
segments.

To prevent owner accounts from being suppressed, add the appropriate logic to the
PCM_OP_BILL_POL_CHECK_SUPPRESSION policy opcode. For more information, see the
chapter about billing in BRM Opcode Guide.

Suppressed Accounts versus Inactive Accounts

A suppressed account differs from an inactive account as shown in Table 15-1:

Table 15-1 Differences between Suppressed and Inactive Accounts

Condition Account Type Status
Is the account Suppressed account No.
inactive?

ORACLE 15-3

Chapter 15
About Suppressing Bills

Table 15-1 (Cont.) Differences between Suppressed and Inactive Accounts
|

Condition Account Type Status

Is the account Inactive account Yes.

inactive?

Are the account's Suppressed account Yes.

services inactive?

Are the account's Inactive account Yes.

services inactive?

Are the account's bills | Suppressed account No. Accrued charges do not age, get

finalized? invoiced, or go into collections.

Are the account's bills | Inactive account Yes. Charges accrued before the account

finalized? is inactivated age, get invoiced, and go
into collections.

Can new charges Suppressed account Yes. Optionally, charges associated with

accrue in the account? one account-level bundle can accrue.

Can new charges Inactive account No.

accrue in the account?

Does the status of the | Suppressed account No. Bills for any nonpaying child bill units

account's child of the parent account's paying parent bill

accounts change? units are finalized. Their charges

continue to accrue in the suppressed
parent account's bill that is not yet

finalized.
Does the status of the | Inactive account Yes. All child accounts that have
account's child nonpaying bill units are inactivated.
accounts change?
Is charge sharing Inactive account Yes. Charge sharing is suspended.
affected? Formerly sponsored charges accrue in

member account bills while the owner
account is inactive.

Is discount sharing Inactive account Yes. Member account events impact

affected? member accounts' balances, not the
inactive owner account's balance.

Is charge sharing Suppressed account No. Member accounts' sponsored

affected? charges continue to accrue in the
suppressed owner account's unfinalized
bill.

Is discount sharing Suppressed account No. Member account events continue to

affected? impact the balance of the suppressed
discount sharing group owner's
unfinalized bill.

Exceptions to Bill Suppression

All types of bill suppression can be overridden by exceptions. The default exceptions
are listed in Table 15-2:

ORACLE 15-4

Chapter 15
About Suppressing Bills

Table 15-2 Exceptions to Bill Suppression

- _____________________________________|
Exception Description

Payment received The receipt of a payment requires that a bill be finalized to
record the payment against the bill.

By default, this exception is disabled. To enable it, see the
chapter about billing in BRM Opcode Guide.

Adjustment or credit applied If an adjustment or a credit is made to an account, the bill
is finalized to notify the customer about the change in the
balance.

Maximum consecutive cycle The maximum number of consecutive billing cycles for

suppressions exceeded which a bill can be suppressed is specified for the

customer segment to which the bill's account belongs.

See "Associating Bill Suppression Information with

Customer Segments".

Note

» If the maximum number of consecutive cycles for the
customer segment is 0, the bill can never be
suppressed.

» If the maximum number of consecutive cycles for the
customer segment is missing, the bill is not
suppressed. It is considered as zero cycles.

First or last bill An account's first and last bills are always finalized at the
end of their billing cycles, even if their balance is below
the minimum balance required to finalize bills.

Account closed Bills associated with closed accounts cannot be

suppressed.

To add or delete exceptions, see the chapter about billing in BRM Opcode Guide.

Note:

The Bill Now functionality and on-purchase billing for bundles and packages do not
override bill suppression. Although they finalize a suppressed bill, they do not:

« Reset the counter in the /billinfo object that tracks consecutively suppressed
billing cycles (PIN_FLD_NUM_SUPPRESSED_CYCLES).

e End manual bill or manual account suppression.

How Exceptions Affect Manual Bill and Account Suppression

ORACLE

Exceptions do not end manual bill or manual account suppression. Rather, they cause the
PCM_OP_BILL_MAKE_BILL opcode to do the following:

e Finalize the manually suppressed hill at the end of its current billing cycle.

» Reset the counter in the Ibillinfo object that tracks the bill's consecutively suppressed
billing cycles (PIN_FLD NUM_SUPPRESSED_CYCLES) to 0.

» Decrement the counter in the /billinfo object that tracks the bill's remaining manually
suppressed cycles (PIN_FLD_SUPPRESSION_CYCLES_LEFT) by 1.

15-5

Chapter 15
Automatically Suppressing Bills

For example, a bill is manually suppressed for 10 billing cycles. At the end of the fifth
cycle, however, it is finalized because of an exception. At that time, the bill's
consecutively suppressed cycles counter is reset to 0, and its remaining manually
suppressed cycles counter is decremented by 1. Because the latter counter was also
decremented by 1 at the end of the four previous suppressed billing cycles, its value is
now 5, which indicates that the bill should be suppressed for 5 more cycles.

Automatically Suppressing Bills

To implement manual bill suppression and manual account suppression, see BRM
Opcode Guide.

To set up automatic bill suppression:

1. Set up customer segments in your system and add accounts to them. See
"Creating and Managing Customer Segments" in BRM Managing Customers.

< Note:

Whether or not you set up customer segments, all accounts belong to
customer segment 0. Thus, to implement automatic bill suppression
without creating customer segments, perform step 2 for customer
segment 0. The suppression specifications associated with customer
segment 0 apply to all the accounts in your system.

2. For each customer segment that includes accounts whose bills you want to
suppress automatically, specify the following information:

* Minimum balance required for a bill to be finalized.
e Maximum number of consecutive billing cycles that a bill can be suppressed.

See "Associating Bill Suppression Information with Customer Segments”.

Editing the Bill Suppression Configuration File

In the BRM_homelsysldatalconfiglpin_bill_suppression.xml file, you specify the
following information for each customer segment that includes accounts whose bills
you want to suppress automatically:

* Minimum balance required for a bill to be finalize.
* Maximum number of consecutive billing cycles that a bill can be suppressed.

To edit this configuration file, open it in an XML editor or a text editor.

In the file, the CustomerSegmentArray parent element must contain a
CustomerSegment child element for each customer segment to which you want to
add bill suppression information. A CustomerSegment child element looks like this:

<CustomerSegment ID="int">
<MinBillAmount>decimal</MinBillAmount>
<MaxSuppressionCycles>int</MaxSuppressionCycles>
</CustomerSegment>

ORACLE 15-6

Chapter 15
Automatically Suppressing Bills

To specify bill suppression information for a customer segment, add a CustomerSegment
child element to the CustomerSegmentArray parent element. In the child element, specify
values for the items listed in Table 15-3:

Table 15-3 Customer Segment Bill Suppression Elements
|

XML Element or Description Possible Values

Attribute

ID The ID of the customer segment. Any nonnegative integer.
Customer segments are defined in | Note:
an array in the /config/ + Suppression data associated with
customer_segment object. The nonexistent customer segment IDs
index of each array entry is the ID is ignored until the IDs are defined in
of a customer segment. the /config/customer_segment
The IDs of the customer segments object.
to which an account belongs are e Customer segment ID O is the
specified in the default customer segment. All
PIN_FLD_CUSTOMER_SEGMENT accounts belong to this customer
_LIST field of the /account object. segment.

MinBillAmount Minimum balance required to Any positive number with two decimal
finalize a bill. If the balance is less | places.
than this amount, the bill is Note: Although balances are stored in
automatically suppressed. account currency, this value is not

converted to a particular currency. For
example, if this value is 5.00, it
represents 5 US dollars, 5 Australian
dollars, 5 euros, and so on.

MaxSuppressionCy | Maximum number of consecutive Any integer greater than 0.
cles billing cycles for which a bill can be
suppressed.

Sample Bill Suppression Configuration File

ORACLE

The following is a sample pin_bill_suppression.xml file:
<?xml version="1.0" encoding="UTF-8"?>

<BusinessConfiguration
xmlns="http://www.portal.com/schemas/BusinessConfig"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.portal.com/schemas/BusinessConfig
business confiquration.xsd">

<!-- Sample file. Modify according to guidelines -->
<BillSuppressionConfiguration>
<CustomerSegmentList>
<CustomerSegment ID="1001">
<!-- Bad customer -->
<MinBillAmount>5.55</MinBillAmount>
<MaxSuppressionCycles>2</MaxSuppressionCycles>

</CustomerSegment>
<CustomerSegment ID="1002">
<!-- Good customer -->

<MinBillAmount>99.99</MinBillAmount>

15-7

Chapter 15
Automatically Suppressing Bills

<MaxSuppressionCycles>5</MaxSuppressionCycles>
</CustomerSegment>
</CustomerSegmentList>
</BillSuppressionConfiguration>

</BusinessConfiguration>

Validating Your Bill Suppression Configuration File Edits

After editing the contents of the XML file, you use the "load_pin_bill_suppression”
utility to load the contents of the file into the Iconfig/suppression object in the
database. See "Associating Bill Suppression Information with Customer Segments".

Before loading the contents of the file, the utility validates the contents against the file's
schema definition. If the contents do not conform to the schema definition, the load
operation fails. The schema definition is in this file:

BRM_homelxsdlpin_bill_suppression.xsd

The XML file is not directly linked to its schema definition file. Instead, it is linked to the
BRM_homelsysldatalconfig/business_configuration.xsd reference file.

Associating Bill Suppression Information with Customer Segments

ORACLE

To implement bill suppression, edit the bill suppression configuration file
(pin_bill_suppression.xml) and then load its contents into the /config/suppression
object in the BRM database.

1. Open the pin_bill_suppression.xml file in an XML editor or a text editor.

By default, the file is in the BRM_homelsysldatalconfig directory, where
BRM_home is the directory where you installed BRM components.

2. Inthe file, specify the following information for each customer segment that
contains accounts whose bills you want to suppress:

* Minimum balance required for a bill to be finalized.
e Maximum number of consecutive billing cycles that a bill can be suppressed.
See "Editing the Bill Suppression Configuration File".

3. Save the file.

4. Use the following command to run the "load_pin_bill_suppression" utility from the
directory in which the pin_bill_suppression.xml file is located:

load pin bill suppression pin bill suppression.xml

< Note:

When you run the utility, the pin_bill_suppression.xml and
business_configuration.xsd files must be in the same directory. By
default, both files are in BRM_homelsysldatalconfig. See "Validating
Your Bill Suppression Configuration File Edits".

15-8

ORACLE

Chapter 15
Automatically Suppressing Bills

If you do not run the utility from the directory in which pin_bill_suppression.xml is
located, include the complete path to the file, for example:

load pin bill suppression BRM home/sys/data/config/
pin bill suppression.xml

For more information, see "load_pin_bill_suppression".
Stop and restart the Connection Manager (CM).

To verify that the bill suppression information was loaded, display the Iconfig/
suppression object by using Object Browser or the robj command with the testnap
utility.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM" in
BRM Developer's Guide. For information about reading an object and writing its contents
to a file, see "Reading an Object and Writing Its Contents to a File" in BRM Developer's
Guide.

15-9

Creating Custom Bill Items

Learn how to create custom bill items and how Oracle Communications Billing and Revenue
Management (BRM) assigns custom bill items to events.

Topics in this document:

* About Custom Bill tems

e About Defining Custom Bill Items

* Tracking Charges in Bill Items

e About Creating /item Objects

* About Assigning Custom Bill Items to Events

* How BRM Assigns Custom Bill ltems to Events

e Setting Up BRM to Assign Custom Bill Items to Events
e Assigning Bill Items to Event Balance Impacts

* Creating Custom Sponsored Bill Items

About Custom Bill ltems

Bill items enable you to track a customer's balance for a type of event. For example, a bill
item tracks all charges for service usage or all charges for cycle fees during a billing cycle.

By default, BRM tracks balances in the following bill items: cycle arrears items, cycle forward
items, cycle forward arrears items, cycle tax items, cycle incentive items, and usage items.

You can create custom bill items to further aggregate charges and to provide more
descriptive information in your invoices, reports, and CSR applications. For example, if you
charge customers for password changes, you can track password changes separately and
list the charges on invoices under “password change" rather than “usage."

About Defining Custom Bill ltems

ORACLE

When you create a custom bill item, you define the following:

* The bill item name. This is the item name displayed on customer invoices, reports, and
CSR applications.

* How to track charges. You specify whether a bill item stores one charge only or
accumulates multiple charges. See "Tracking Charges in Bill Items".

* How to store the item in the database. You can either pre-create a custom J/item object
in the database or have BRM create one for you. See "About Creating /item Objects".

* The type of events you want the bill item to track. You do this by assigning bill items
either to an event and service combination or to event attributes. See "About Assigning
Custom Bill ltems to Events".

16-1

Chapter 16
Tracking Charges in Bill ltems

Tracking Charges in Bill Items

When you create a custom bill item, you specify whether the item accumulates
charges or tracks each charge separately.

Cumulative bill items accumulate charges throughout the billing cycle. All events of the
same type are consolidated into a single litem object. For example, if a customer has
three broadband sessions during a billing cycle, BRM stores all of the charges in one /

item object. The customer's invoice also lists one item with the total rolled-up charge
for all three sessions, as shown in Figure 16-1:

Figure 16-1 Rolled-Up Broadband Usage Charges on Invoice

ftermn Summary

tem Ho. Description % Total
AccountsHeceivable Hems
B-7.1 Internet usage

19.40

Individual bill items store a charge for a single event, such as purchasing a charge
offer. A separate /item object is created for each event of the same type. For example,
if a customer purchases three ringtones during a billing cycle, BRM stores the charges

in three separate litem objects. The customer's invoice also lists three separate bill
items and their charges, as shown in Figure 16-2:

Figure 16-2 Individual Bill Items

ftern Summary

tem Mo. Description % Total
AccountsReceifvable Hems

B-7.1 Rirw tone purchese 2.80
B-7,2 Ring tone purchaze 2.80
B-7.2 Ring tone purchasze 2.50

You specify whether a custom bill item is cumulative or individual in the
config_item_types.xml file. See "Mapping Item Tags to Iltem Types".

About Creating /item Objects

You create your custom bill items in the database by subclassing the litem object. For
example, you can create an litem/password object for storing password charges.

For usage events, you can specify whether BRM pre-creates the custom bill item
before any event occurs or creates it during the rating process. In this case, the item is
created when a service object is created for an account and when billing is run.

ORACLE

16-2

Chapter 16
About Assigning Custom Bill ltems to Events

About Assigning Custom Bill Items to Events

You assign custom bill items to events in either of two ways:

* Assign bill items to a specific event and service combination. See "About Using Event
and Service Combinations to Assign Bill ltems".

» Assign bill items to events based on event attributes. See "About Using Event Attributes
to Assign Bill ltems".

About Using Event and Service Combinations to Assign Bill ltems

ORACLE

You can assign a bill item to each event and service combination that you support. For
example, you can map the event and service combinations to a bill item object as shown in
Table 16-1:

Table 16-1 Event and Service Combinations for Bill tem Object
. __ |

Event and Service Combination Item Object
/event/session/telco/gsm /item/gsm_usage
/service/telco/gsm/*

levent/session/telco/gprs /item/gprs_usage

/serviceltelco/gprs/*

/event/session/email /item/email_usage
Iservice/email

In Table 16-1, BRM separates charges for GSM usage, GPRS usage, and email usage into
three litem objects and displays each item separately on customer invoices.

You can assign one bill item to one event and service combination or assign one bill item to
multiple event and service combinations. For example, you can assign litem/voice to any
event and service combination that provides voice service.

You can also create multiple item configurations (sets of item-to-event-and-service mappings)
to apply to different types of bill units. This enables you to avoid creating unnecessary bill
items in your BRM system. See "Improving Performance by Using Multiple Item
Configurations" in BRM System Administrator's Guide.

16-3

ORACLE

Chapter 16
About Assigning Custom Bill Items to Events

< Note:

A large number of items per account or bill unit (/billinfo object) can
decrease system performance. Additionally, account creation and billing
failures can occur when there are a large number of item types for an
account or service that results in the maximum lengths for
PIN_FLD_ITEM_POID_LIST and PIN_FLD_NEXT_ITEM_POID_LIST fields
to be exceeded. Item POIDs are appended to PIN_FLD _ITEM_POID_LIST
and PIN_FLD_NEXT_ITEM_POID_LIST in the laccount object when a new
item type is created for an account or service. The following options are
recommended when creating custom item types:

e Limit the number of item types such that if a customer uses all the event
and service combinations defined in the config_item_tags.xml and
config_item_types.xml, the number of item poids for an account or
service does not exceed 2000 bytes. See "Assigning Item Tags Based
on Event and Service Combinations".

e Create item types with PRECREATE set to FALSE. By setting
PRECREATE to FALSE, the items are created only when the particular
event occurs for the service. This enables minimal items to be created
during account creation or billing. See "Mapping Item Tags to Item
Types".

To assign event and service combinations to bill items, you perform these tasks:

Map event and service combinations to item tags by editing the
config_item_tags.xml file. See "Assigning Item Tags Based on Event and Service
Combinations".

Map item tags to item types by editing the config_item_types.xml file. See
"Mapping Item Tags to Item Types".

You can configure how BRM assigns event and service combinations to bill items by
adding the — fm_act attach_item_to_event n entry in the CM pin.conf file, where n
can be 0, 1, or 2. If the value of n is:

0: BRM does not assign events without balance impact to any item. The events
that have balance impact are assigned to items according to the event and service
combinations defined in the appropriate Iconfig/item_tags object. This is the
default value.

1: BRM assigns any event to items. This includes events without any balance
impact.

2: BRM assigns any event to items. If the event has a service and the event and
service combination is not defined in a Iconfiglitem_tags object, BRM assigns the
event to the default item (/item/misc) on the account and not on service.

To add the attach_item_to_event entry:

1.

Open the Connection Manager (CM) configuration file (BRM_homelsyslcml
pin.conf, where BRM_home is the directory in which you installed BRM
components).

Add the following entry:

16-4

About Us

Chapter 16
How BRM Assigns Custom Bill ltems to Events

- fm act attach_item to_event n

where ncan be 0, 1, or 2.
3. Save and close the file.

4. Stop and restart the CM.

For information about configuration files, see "Using Configuration Files" in BRM System
Administrator's Guide.

ing Event Attributes to Assign Bill ltems

You can provide even more granularity in your reports, invoices, and CSR applications by
assigning items by event attribute. This enables you to assign multiple items to the same
event and service combination.

For example, for the event and service combination of levent/sessionl/telco/lgsm and /
serviceltelcolgsm/*, you can separate events by the following:

Calls that originated in New York in a custom item object named litem/new_york.

Calls that originated in California in a custom item object named /item/california.

In the example shown in Figure 16-3, the customer's invoice displays an itemized list of GSM
usage:

Figure 16-3 Itemized List of GSM Usage

tem Summary

item No. Description % Total
AccountsReceivable ltems

B-71 Calls from Mewe York g.a0
B-7,2 Calls fram California B.00
B-7,3 Foaming calls 13.07

To assign items based on event attributes, you perform the following tasks:

Map event attributes to an item tag by customizing a policy opcode. See "Assigning Item
Tags Based on Event Attributes".

Map items tags to item types by editing the config_item_types.xml file. See "Mapping
Item Tags to Item Types".

How BRM Assigns Custom Bill ltems to Events

ORACLE

BRM assigns bill items to events during the rating process by performing the following tasks:
1. BRM assigns an item tag based on the event and service combination.

2. If customized to do so, the BRM custom API takes the assigned item tag as input and
then assigns a different item tag based on the event's attributes.

3. BRM assigns an item type based on the item tag.

16-5

Chapter 16
Setting Up BRM to Assign Custom Bill Items to Events

Cumulative Custom Item for Taxes

The following example shows a custom item that stores all taxes from all tax suppliers
in a single bill item for each billing cycle.

1.
2.

Open the BRM_homelsysldatalpricinglexample/config_item_tags.xml file.
Add the following entry:

<ItemTagElement>
<ItemTag>cycle tax</ItemTag> <EventType>/event/billing/cycle/tax</EventType>
<ServiceType>/account</ServiceType> </ItemTagElement>

Save and close the file.
Open the BRM_homelsysldatalpricinglexamplel/config_item_types.xml file.
Add the following entry:

<ItemTypeElement>

<ItemTag>cycle tax</ItemTag>

<ItemDescription>Cycle Tax</ItemDescription>

<ItemType precreate="false" type="cumulative">/item/cycle tax</ItemType>
</ItemTypeElement>

Save and close the file.

Setting Up BRM to Assign Custom Bill Items to Events

To assign items to events and to update the items in the BRM database for billing and
tracking:

1.

Create the custom bill item in the database by subclassing the litem storable
class. See "Creating Custom Fields and Storable Classes" in BRM Developer's
Guide.

< Note:

Before creating a bill item, you must know the event and service type
whose balance impacts you want stored with the new item.

Map event and service combinations to item tags in the appropriate item
configuration. See "Assigning Item Tags Based on Event and Service
Combinations".

Map event attributes to item tags. See "Assigning Item Tags Based on Event
Attributes".

Map item tags to item types in the appropriate item configuration. See "Mapping
Item Tags to Item Types".

Assigning Item Tags Based on Event and Service Combinations

You map event and service combinations to custom item tags by editing the
config_item_tags.xml file. You then load the item tags into a Iconfiglitem_tags
object by using the load_config_item_tags utility. See "load_config_item_tags".

ORACLE

16-6

ORACLE

Chapter 16
Setting Up BRM to Assign Custom Bill ltems to Events

Every item tag in the item tags file must have a corresponding item type defined in the
config_item_types.xml file. If you make changes to the config_item_tags.xml file after you
load it into the database, you must make corresponding changes to the item types and load
the config_item_types.xml file again. See "Mapping Item Tags to Item Types".

To assign item tags:

1.

Open the BRM_homelsysldatalpricing/lexamplel/config_item_tags.xml file in a text
editor.

Verify that the value of the following optional tag is correct:

<Name>Item Configuration Name</Name>

Where Item_Configuration_Name is the name of the item configuration to which the item
tags defined in this XML file belong.

The name of the BRM system's default item configuration is Default. If the value of this
tag is Default, or if this tag is not included in the file, your custom tags are added to the
default item configuration.

To add a new item configuration to your system, enter a unique item configuration name
in this XML file and in the corresponding config_item_types.xml file.

To modify an existing item configuration in your system, enter that configuration's name in
this XML file and in the corresponding config_item_types.xml file.

For more information about item configurations, see "Improving Performance by Using
Multiple Item Configurations" in BRM System Administrator's Guide.

Add custom tags to the file by following the instructions in the file.

Note:

Tag names must be unique.

For example, to store GSM calls in a custom bill item, add the following entry:

<ItemTagElement>
<ItemTag>GSM</ItemTag>
<EventType>/event/delayed/session/telco/GSM/*</EventType>
<ServiceType>/service/telco/GSM/*</ServiceType>
</ItemTagElement>

where:

* The ItemTag element specifies the unique name for the item tag.

* The EventType element specifies the parent levent storable class.

* The ServiceType element specifies the parent Iservice storable class.

Save the file. You can save the file with a different name and location or use the original
file.

Run the following command:

load config item tags config item tags file

where config_item_tags_file is the name and path of your config_item_tags.xml file.

16-7

Chapter 16
Setting Up BRM to Assign Custom Bill ltems to Events

< Note:

The load_config_item_tags utility replaces the entire contents of the /
configlitem_tags object whose PIN_FLD_NAME value matches the
Name value in the config_item_tags.xml file with the contents of that
file. If you are updating a set of item tags, you cannot load new items
only. You must load complete sets of items each time you run the
load_config_item_tags utility.

6. Stop and restart CM. See "Starting and Stopping the BRM System" in BRM
System Administrator's Guide.

To verify that the item tags were loaded, use Object Browser in Developer Center or
the testnap utility's robj command to display the specified Iconfiglitem_tags object.
See "Reading an Object and Writing Its Contents to a File" in BRM Developer's Guide.

Assigning Item Tags Based on Event Attributes

You assign item tags based on event attributes by customizing the BRM API.

Setting Up Online Charging to Assign Items Based on Event Attributes

You set up online charging to assign items to events based on event attributes by
using the PCM_OP_BILL_POL_GET_ITEM_TAG policy opcode. By default, this policy
opcode does nothing. However, you can customize it to find events with specific flist
fields, assign the appropriate item tag, and then return the item tag in the
PIN_FLD_ITEM_TAG output flist field. See BRM Opcode Guide.

Mapping Item Tags to ltem Types

You map the jitem tags that you defined in the config_item_tags.xml file or policy
opcode to item types by using the config_item_types.xml file. You then load the
mappings into the appropriate Iconfiglitem_types object by using the
load_config_item_types utility.

" Note:

e The load_config_item_types utility replaces the entire contents of the
specified Iconfiglitem_types object whose PIN_FLD_NAME value
matches the Name value in the config_item_types.xml file with the
contents of that file. If you are updating a set of mappings, you cannot
load new mappings only. You must load complete sets of mappings each
time you run the load_config_item_types utility.

e If the config_item_types.xml file does not contain a PIN_FLD NAME
value, the Iconfiglitem_types object whose PIN_FLD_NAME value is
Default is replaced.

To map item tags to item types:

ORACLE 16-8

Chapter 16
Setting Up BRM to Assign Custom Bill ltems to Events

1. Open the BRM_homelsysldatalpricing/lexample/config_item_types.xml file in an XML
editor or a text editor.

2. Verify that the value of the following tag is correct:

<Name>Item Configuration Name</Name>

where Item_Configuration_Name is the name of the item configuration to which the item
types defined in this XML file belong.

The name of the BRM system's default item configuration is Default. If the value of this
tag is Default, or if this tag is not included in the file, your custom mappings are added to
the default item configuration.

To add a new item configuration to your system, enter a unique item configuration name
in this XML file and in the corresponding config_item_tags.xml file.

To modify an existing item configuration in your system, enter that configuration's name in
this XML file and in the corresponding config_item_tags.xml file.

For more information about item configurations, see "Improving Performance by Using
Multiple Item Configurations" in BRM System Administrator's Guide.

3. Map the item tags you created to custom item types by following the instructions in the
file.

For example, to map the item tag new_york to the item type litem/new_york, add the
following entry:

<ItemTypeElement>
<ItemTag>new_york</ItemTag>
<ItemDescription>Calls from New York</ItemDescription>
<ItemType precreate="false" type="cumulative">/item/new_york</
ItemType>
</ItemTypeElement>

where:
* The ItemTag element specifies the name of the item tag.

e The ItemDescription element specifies the item name that is displayed in customer
invoices, reports, and CSR applications.

e The precreate element specifies whether BRM pre-creates the item for the service
type: true specifies to pre-create the item in the database, and false specifies to
create the item when the event occurs.

< Note:

BRM pre-creates items for usage events only. It does not pre-create items
for purchase or cycle fee events.

* The type element specifies whether to track balances separately or to consolidate
balances: cumulative specifies that this bill item stores charges for all events of the
same type in a billing cycle; individual specifies to create a separate item for each
event. See "Tracking Charges in Bill Items" for more information.

ORACLE 16-9

Chapter 16
Assigning Bill Items to Event Balance Impacts

< Note:

If you have set precreate to false for the usage or delayed events
that are rated using Pipeline Manager, do not set the type to
individual.

* The ItemType element specifies the name of the custom litem object. In this
example, BRM stores the item charges in the litem/new_york object.

4. Save the file. You can save the file with a different name and location or use the
original file.

5. Run the following command:

load config_item types config item types file

where config_item_types_file is the name and path of your
config_item_types.xml file.

Caution:

The load_config_item_types utility replaces the entire contents of the /
configlitem_types object whose PIN_FLD_NAME value matches the
Name value in the config_item_types.xml file with the contents of that
file. If you are updating a set of mappings, you cannot load new item
types only. You must load complete sets of mappings each time you run
the load_config_item_types utility.

6. Stop and restart the CM. See "Starting and Stopping the BRM System™ in BRM
System Administrator's Guide.

To verify that the item tags were loaded, use Object Browser in Developer Center or
the testnap utility's robj command to display the specified Iconfiglitem_types object.
See "Reading an Object and Writing Its Contents to a File" in BRM Developer's Guide.

Assigning Bill Items to Event Balance Impacts

ORACLE

All events contain, or can contain, a balance impact. You can use custom litem types
to separately track charges in individual balance impacts of an event. For example,
even though only one BRM event is recorded for a service, if you charge for both
connection time and the amount of bytes transferred during a session, the two charges
can be tracked separately.

PIN_FLD_ITEM_TAGS is an array in the output flist of the
PCM_OP_BILL_POL_GET_ITEM_TAG policy opcode. The PIN_FLD_ITEM_TAGS
enables you to create an item tag for one or more balance impacts. You choose from
an event, which balance impacts to use, and what item tags they are assigned to. The
item type is assigned using the matching element ID of the item tag and balance
impact.

The following example, lists the account POID and custom item tags in flist array
format. Balance impacts with element IDs 2 and 3 have item types assigned based on

16-10

Chapter 16
Creating Custom Sponsored Bill ltems

the item tags TransferVolume and ConnectionPeriod. All other balance impacts have an
item type assigned based on the item tag SessionUsage.

PIN FLD POID
PIN FLD ITEM TAG
PIN FLD ITEM TAGS
PIN FLD ITEM TAG
PIN FLD ITEM TAGS
PIN FLD ITEM TAG

_ O P O O O

" Note:

To assign bill items to event balance impacts:

POID
STR
ARRAY
STR
ARRAY
STR

(0]
(0]
(2]
(0]
(3]
(0]

0.0.0.1 /account 182477 0
SessionUsage

allocated 20, used 3
TransferVolume

allocated 20, used 3
ConnectionPeriod

If a PIN_FLD _ITEM_TAGS array element is not specified for a balance impact, the
balance impact will have an item assigned based on the PIN_FLD_ITEM_TAG
element at the top level of the policy opcode output.

1. Create your custom balance impact item tags and types. See "Setting Up BRM to Assign

Custom Bill Items to Events".

2. Map your custom balance impact item tags to your custom balance impact item types.
See "Mapping Item Tags to Item Types".

3. Customize the PCM_OP_BILL _POL_GET_ITEM_TAG policy opcode with the

appropriate business logic to:

a. Determine the element ID of the required balance impact of the event in the input flist
of the PCM_OP_BILL POL_GET_ITEM_TAG policy opcode.

b. Create a PIN_FLD_ITEM_TAGS array element in the output flist of the
PCM_OP_BILL_POL_GET_ITEM_TAG policy opcode with the element ID being the
same as the balance impact ID from step a.

c. Setthe field PIN_FLD ITEM_TAGS of the PIN_FLD_ITEM_TAGS array element to
the custom value of the item tag that you require for the balance impact.

For information about customizing policy opcodes, see Using the Policy Opcode
Source Files in BRM Developer's Guide.

4. Assign your custom items to event balance impacts during the rating process.

By default, any item tag specified for a sharing group owner's balance impact is ignored and
an item of type litem/sponsor is used. A custom item type can be assigned for a sharing
group owner's balance impact only in the following situations:

* The SplitSponsoritemByMember business parameter is enabled. See "Splitting
Sponsored Charges into Multiple Items".

* A custom item tag is specified for the sharing group owner's balance impact in the

PIN_FLD_ITEM_TAGS array.

Creating Custom Sponsored Bill ltems

By default, BRM accumulates the charges for all charge sharing member services and
accounts belonging to one owner in a single /item object.

ORACLE

16-11

Chapter 16
Creating Custom Sponsored Bill ltems

You can create custom sponsored bill items that divide the accumulated charges
across the members of the charge sharing group.

To create custom sponsored bill items:

1. Enable the SplitSponsorlitemByMember business parameter. See "Splitting
Sponsored Charges into Multiple Items".

The charges are broken down into:
* One litem/sponsor object for each charge sharing member service instance.
* One litem/sponsor object for account-level charges for all member accounts.

The sponsored items point to the owner account object and to the sharing member
service. If the shared charges are at the member account level, the service pointer
is NULL.

2. Create your custom balance impact litem/sponsor tags and types. See "Setting
Up BRM to Assign Custom Bill Items to Events" and "Assigning Bill Items to Event
Balance Impacts".

Note:

When configuring a custom item type for sharing group owner's balance
impacts, specify the base type without the component sponsor in the
item type string. For example, to use peak_usage for sponsored peak
usage charges, configure the tag as litem/peak usage. BRM
automatically uses the correct sponsor subtype litem/sponsor/
peak_usage at the time of rating.

3. Assign the custom sponsored items to event balance impacts during the rating
process.

Splitting Sponsored Charges into Multiple Items

ORACLE

By default, splitting sponsored charges into multiple sponsored items is disabled. You
can enable splitting sponsored charges for online charging, offline charging, or both.

If you split sponsored charges for offline charging, you do not have the option of
disabling the pre-updater step of the Rated Event (RE) Loader. This is because the
pre-updater stored procedure assigns sponsored items to events when the splitting
option is enabled.

To enable this feature, run the pin_bus_params utility to change the
SplitSponsoritemByMember business parameter. For information about this utility,
see BRM Developer's Guide.

To enable splitting sponsored charges into multiple items:

1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the Iconfig/business_params object:

pin_bus _params -r SplitSponsorItemByMember -bus_params billing.xml

3. Inthe XML file, change disabled to enabled:

16-12

ORACLE

Chapter 16
Creating Custom Sponsored Bill ltems

<SplitSponsorItemByMember>disabled</SplitSponsorItemByMember>

Do one of the following:

» To enable splitting of sponsored charges for both online charging and offline
charging, change disabled to enabled.

* To enable splitting of sponsored charges for only online charging, change disabled
to onlyRealTime.

* To enable splitting of sponsored charges for only offline charging, change disabled to
onlyBatch.

<SplitSponsorItemByMember>disabled</SplitSponsorItemByMember>

Save the file as bus_params_billing.xml.
Load the XML file into the BRM database:
pin_bus_paramsbus_params billing.xml

Stop and restart the CM.

16-13

Creating Corrective Bills

Learn how to update or correct a bill after it has been sent to a customer in Oracle
Communications Billing and Revenue Management (BRM).

Topics in this document:

* About Corrective Bills

* Corrective Bills and Billing Cycles

* Configuring Corrective Billing

» Billing Accounts By Using the pin_make_corrective_bill Utility

* Corrective Billing for Disputes, Settlements and Write-offs

About Corrective Bills

ORACLE

Correcting a bill is necessary when a bill or invoice sent to a customer requires an update.
Corrections can include:

» Corrections to a bill resulting from changes that do not affect the amount owed by the
customer. For example, a change to the invoice address on the customer's account or a
correction to the language on the customer's profile.

» Corrections to the charges on a bill resulting from adjustments, for example, settled
disputes that require some item adjustment, catalog corrections such as retroactive tariff
updates, and so on.

A corrective bill is a bill that is generated after corrections are made to a regular bill or a bill
that was previously corrected. You ensure that the adjustments are appropriately allocated
and then generate the corrective bill. When a corrective bill is generated, it is assigned a new
due date based on the current payment setup for the account.

You can create a series of corrective bills for a bill. For example, you can generate a
corrective bill for a regular bill, and then a corrective bill for the first corrective bill, and so on.

A corrected invoice is the invoice associated with a corrective bhill and, based on your billing
configuration, contains the entire bill information or only the corrections and adjustments. For
information on corrected invoices, see "Corrective Invoicing" in BRM Designing and
Generating Invoices.

You use Billing Care or Customer Center to generate corrective bills for an individual bill.
When you have corrections for a set of bills or accounts, you use the
pin_make_corrective_bills utility to create the corrective bills. See "Billing Accounts By
Using the pin_make_corrective_bill Utility".

Note:

You cannot use the BRM billing scripts to run corrective billing.

17-1

ORACLE

Chapter 17
About Corrective Bills

BRM can generate corrective bills for the following:

Original bills.

Bills created by using Bill Now

On-purchase billing.

Parent and nonpaying child bills in a bill unit (/billinfo object) hierarchy.

A prior corrective bill. That is, you can correct a subsequent corrective bill to
address the errors on a prior corrective bill.

After BRM generates a corrective bill for a prior bill, BRM accepts payments it receives
for the regular bill, the corrective bill, or both, but it applies the payments to the latest
(original or corrective) bill only. For example, BRM has a regular bill B1-124 for which it
generates two corrective bills (CB1-28 and CB1-30) in one bill period. For BRM,
CB1-30 is the Jast bill and B1-124 and CB1-28 are prior bills. By default, all payments
that BRM receives for B1-124 or CB1-28 or CB1-30 will be applied against CB1-30.

When configuring how to correct bills, note how corrective billing works with the
following features:

In-progress bills. BRM creates a corrective bill for a finalized bill only. If a bill is
currently in progress, BRM does not permit a corrective bill to be generated for
that bill.

Bill unit hierarchy. When charges are corrected for a bill in a bill unit hierarchy, a
corrective bill is made for parent and child bill units. A paying parent bill unit
includes the corrective bill for a nonpaying child bill unit. You cannot create a
corrective bill for only a nonpaying child bill unit.

Rerating accounts that use open item accounting. If you rerate events in billing
cycles other than the current billing cycle for accounts which have open item
accounting, you should generate corrective bills for those previous bills. In such a
scenario, it is recommended that you generate corrective bills and corrected
invoices for all the previous bills that were affected by the rerating. When you
generate corrected invoices for such corrective bills, the rerated events are
displayed in the corrected invoices. They will not be displayed in the regular bill for
the current cycle. If you do not create a corrective bill for the previous bill, these
rerated events are included in the regular bill for the current cycle.

Discount and charge sharing. You must rerate accounts following updates to the
discount and charge sharing for those accounts in a billed period. BRM includes
the resulting adjustments in the corrective bills you generate for the billed period.

Collections. BRM does not initiate payment collection actions for bills that have
been replaced by a corrective bill. See "Post-Processing Actions for Corrective
Bills" for more information.

AIR actions. Disputes, settlements, and write-offs impact the content of a
corrective bill. To prevent the generation of corrective bills for certain A/R actions,
set up a custom validation policy for BRM to use when you generate the corrective
bills. Such a validation could be used to prevent BRM from generating corrective
bills when the prior bill is in dispute and a settlement has not been reached.

Adjustments created by rerating. BRM creates unallocated items for any
adjustment items that are created as a result of rerating. If you require that
corrective bills should contain the aggregation and allocation of automatic
adjustments to the items on the original bill, you must enable the
AllocateReratingAdjustments business parameter before you rerate the original
bills.

17-2

Chapter 17
Corrective Bills and Billing Cycles

Corrective Bills and Billing Cycles

You can have multiple corrections for a single bill. BRM generates corrective bills differently
based on whether the corrections occur in the same cycle or in multiple cycles.

When there are multiple corrections in a single bill cycle, BRM corrects the most recent
corrective bill for the cycle. BRM includes first-time corrections on the most recent corrective
bill and also events or items that were previously corrected and billed on previous corrective
bills.

When corrections span multiple billed cycles, BRM uses the accounting method specified in
the account to determine the cycle for which to generate the corrective bill.

» Balance forward. For accounts using the balance forward accounting method, BRM
generates a single corrective bill for the last billed cycle.

* Open item. For accounts using the open item accounting method, BRM creates
corrective bills for each billed cycle which contains corrections.

For example, an account has corrections in the October bill and the November bill. BRM
generates two corrective bills, one for October and one for November. If the October bill
was already paid, BRM includes the corrections for the October cycle to the next open
bill, which in this case is the bill for December. The corrections for the November cycle
are included in the November bill because that bill is still pending payment.

Configuring Corrective Billing

Complete the following to set up the corrective billing process in BRM. Some steps are
optional.

* Enable corrective billing in BRM. See "Enabling Corrective Billing".
* Restrict CSR permissions, as necessary. See "Restricting Corrective Billing Permissions".

* Set up a numbering scheme for corrective bill numbers. See "Configuring Bill Numbers
for Corrective Bills".

» Create custom reasons for the correction. BRM provides default reasons, but you can
add to this list. See "Customizing Correction Reasons".

» Specify the threshold amount for corrective bills. See "Specifying the Minimum Threshold
Amount for Corrective Bills".

* Do not permit the processing of payment for prior bills. See "Rejecting Payments for Prior
Bills".

* Set up the handling of corrections for partially or fully-paid bills. See "Enabling BRM to
Create Corrective Bills for Partially or Fully Paid Bills".

Enabling Corrective Billing

ORACLE

To enable corrective billing, run the pin_bus_params utility to change the
EnableCorrectivelnvoices business parameter. For information on this utility, see
"pin_bus_params" in BRM Developer's Guide.

To enable corrective billing:

1. Go to BRM_homelsysldatalconfig.

17-3

Chapter 17
Configuring Corrective Billing

2. Create an XML file from the /config/business_params object:
pin_bus_params -r BusParamsBilling bus_params_billing.xml

3. Inthe XML file, change disabled to enabled:
<EnableCorrectiveInvoices>enabled</EnableCorrectivelInvoices>

4. Save the file as bus_params_billing.xml.

5. Load the file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the CM.

Configuring Accounts and Bills for Corrective Billing

When you run the pin_make_corrective_bills utility, you can use the command line to
specify the bill numbers and account numbers that need corrective bills. In addition,
you can include account numbers and bill numbers in a file that the
pin_make_corrective_bills utility reads.

The default file is pin_bill_run_control.xml in the BRM_homelapps/pin_billd
directory. See "Managing Large Billing Runs" for a sample billing run configuration file.

To verify that the selected accounts or bills are eligible for corrective billing, run the
following command:

pin _make corrective bills -validate_only

Restricting Corrective Billing Permissions

By default, BRM provides all CSRs with permission to create corrective bills.
To restrict the permission for CSR roles:

1. In Permissioning Center, restrict the permissions for the required CSR roles. For
more information on setting up permissions, see "Setting Up Permissions in BRM
Applications" in BRM System Administrator's Guide.

2. Stop and restart the CM.

Configuring Bill Numbers for Corrective Bills

ORACLE

Corrective billing uses a different bill number format. Regular bills use a bill number
such as B1-189, but a corrective bill uses a number such as CB1-15. A corrective bill
applied to a corrective hill uses the same prefix and the next available sequence; for
example, CB1-207.

However, you can configure BRM to apply the regular billing number format to
corrective bills. In this case, BRM retains the original bill's prefix and uses the next
available sequence number in BRM. For example, for bill number B1-189, the
corrective bill number could be B1-2007.

To apply the regular bill numbering format to corrective bills:

1. Go to BRM_homelsysldatalconfig.

2. Create an XML file from the Iconfig/business_params object:

17-4

Chapter 17
Configuring Corrective Billing

pin bus _params -r BusParamsBilling bus_params_billing.xml

3. Inthe file, set the <GenerateCorrectiveBillNo> element to disabled:
<GenerateCorrectiveBillNo>disabled<GenerateCorrectiveBillNo>

4. Save the file as bus_params_billing.xml.

5. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the CM.

Customizing Correction Reasons

You can specify correction reasons:

* When you create a corrective bill from Billing Care or Customer Center. You can select a
reason for the correction.

* When you run the pin_make_corrective_bills utility. You provide the correction reason.
BRM provides the following default reasons for correcting a bill:

e Update to the invoice address

e Manual adjustment

* Price correction

You can provide custom corrections reasons for bill correction by modifying an existing
reason code or adding a custom reason code to the reasons.en_US file. BRM assigns the
IDs of 1, 2, and 3 respectively to these reasons and uses 43 in the version field to specify the
domain of the reason.

Here is an example code sample to add a reason code:

DOMAIN = "Reason Codes-Bill Correction Reasons";
STR

ID = 25;

VERSION = 43;

STRING = "Corrective bill request for Error in Promotion ABC";
END

When you add or modify a reason code, ensure that ID is a number greater than 3 and the
value for version is 43 (see the preceding example). These values are reserved by BRM.

Use the load_localized_strings utility to load the modified reasons.en_US file. For
instructions on providing custom reason codes, see "String Manipulation Functions" in BRM
Developer's Reference. For instructions on the load_localized_strings utility, see
"load_localized_strings" in BRM Developer's Guide.

Specifying the Minimum Threshold Amount for Corrective Bills

ORACLE

You can specify a minimum amount that A/R actions for a bill should reach for BRM to
generate a corrective hill. If the bill to be corrected belongs to a bill unit hierarchy, BRM
checks that threshold against the sum of A/R actions for all bill units that had charges
contributing to that bill.

To specify the minimum threshold amount for corrective bills:

1. Go to BRM_homelsysldatalconfig.

17-5

Chapter 17
Configuring Corrective Billing

2. Create an XML file from the /config/business_params object:
pin bus params -r BusParamsBilling bus params billing.xm
3. Set the <CorrectiveBillThreshold> element to the required value. For example:

<CorrectiveBillThreshold>15</CorrectiveBillThreshold>

The default is 0.
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the CM.

Rejecting Payments for Prior Bills

Corrections to bill charges and payments may not always be synchronized operations.
That is, you may receive payments where the bill number associated with a payment
does not match the last bill, or you may have received a partial or full payment for that
original or corrective bill.

You can configure BRM to reject payments for prior bills, and thereby require them to
be specific to the bill. To enable this feature, run the pin_bus_params utility to change
the RejectPaymentsForPreviousBill business parameter. For information about this
utility, see "pin_bus_params" in BRM Developer's Guide.

To reject payments for prior bills and require them to be specific to the bill:
1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the /config/business_params object:
pin bus params -r BusParamsBilling bus params billing.xm
3. Inthe file, set the <RejectPaymentsForPreviousBill> element to enabled:
<RejectPaymentsForPreviousBill>enabled</RejectPaymentsForPreviousBill>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus_params _billing.xml

6. Stop and restart the CM.

Enabling BRM to Create Corrective Bills for Partially or Fully Paid Bills

ORACLE

If BRM receives a partial or full payment for a bill, it does not generate a corrective bill.
Instead, BRM assigns all payments for that bill period to the next open bill.

To enable BRM to generate a corrective bill for a bill that has a full or partial payment,
set the AllowCorrectivePaidBills parameter in the billing instance of the Iconfig/
business_params object to enabled. BRM then generates the corrective bill, and the
balance on the corrective bill reflects the payment that was received against the prior
bill. The corrective hill also displays the payment details for payments already
processed against the prior bill.

To enable BRM to generate corrective bills for fully paid or partially paid bills:

17-6

Chapter 17
Billing Accounts By Using the pin_make_corrective_bill Utility

1. Go to BRM_homelsysldatalconfig.
2. Create an XML file from the /config/business_params object:
pin bus params -r BusParamsBilling bus params billing.xm
3. Inthe file, set the <AllowCorrectivePaidBills> element to enabled:
<AllowCorrectivePaidBills>enabled</AllowCorrectivePaidBills>
4. Save the file as bus_params_billing.xml.
5. Load the XML file into the BRM database:
pin_bus_params bus_params_billing.xml

6. Stop and restart the CM.

Customizing Corrective Bills

You can customize corrective bills in the following ways:

e Customize due dates. You can apply different due dates to corrective bills by
customizing the bill due date calculations. Modify the
PCM_OP_BILL POL_CALC_PYMT_DUE_T policy opcode to retain the same due date
as in the prior bill, or add a specific number of offset days.

e Change the default invoice type. Use the PCM_OP_CUST_POL_PREP_PAYINFO
policy opcode to override the default value (detailed replacement invoice).

- Define custom validations. To define custom validations for corrective billing, modify the
existing validations in the PCM_OP_BILL_POL_VALID_CORRECTIVE_BILL policy
opcode or add custom validations.

For more information, see "Corrective Billing" in BRM Opcode Guide.

Billing Accounts By Using the pin_make_corrective_bill Utility

ORACLE

You can generate corrective bills in one of the following ways:

* Allocate adjustments to a selected bill in Billing Care or Customer Center, and then
submit the bill for corrective billing.

* Run the pin_make_corrective_bills utility which generates the corrective bill.

The pin_make_corrective_bills utility calculates the balance due after allocating the
adjustments and A/R actions for each account bill unit, and creates a corrective bill for the
balance due. It creates corrective bills for bill units whose bills have corrections that fall within
the period you specify.

The balance due amount is the amount requested as a payment by the pin_collect utility and
the amount that is shown on the corrective invoice.

For information about the pin_make_corrective_bills utility syntax, see
"pin_make_corrective_bhills".

Run the pin_make_corrective_bills utility when you have allocated all adjustments to prior
bills.

When you generate corrective bills for a bill unit hierarchy, you must run the
pin_make_corrective_bills utility for the top-most parent bill unit.

17-7

Chapter 17
Corrective Billing for Disputes, Settlements and Write-offs

You must run the pin_make_corrective_bills utility before you run pin_collect
because pin_collect needs the balance due amount collected by the
pin_make_corrective_bill utility.

After you begin the process of generating a corrective bill, you cannot cancel the
process.

To generate a corrective bill using pin_make_corrective_bills:

1. Go to BRM_homelappsl/pin_billd.
2. Run the pin_make_corrective_bills utility:

pin_make_ corrective bills

For example, you can:

* Use the -corrective_inv_type parameter to specify the invoice type
(replacement or invoice correction letter).

* Use the -threshold_amount parameter to override the threshold amount for
generating a corrective bill

* Use the -account_no parameter to specify the accounts to create corrective
bills for.

* Use the -create_if_no_corrections parameter to generate a corrective bill
when there are only simple changes such as invoice address changes. Use
this parameter with the -corrective_inv_type R parameters

See "pin_make_corrective_bhills".

3. Verify the contents of the corrective bills by using Billing Care or Customer Center.

Post-Processing Actions for Corrective Bills

After you generate corrective bills, you can do the following:

* Generate corrective invoices by running the pin_inv_accts utility. You can
generate summary or detailed corrective invoices for the corrective bills you
generated. See "pin_inv_accts" in BRM Designing and Generating Invoices.

» Export corrective invoices for use with custom programs, (such as DOC1) to
generate and publish the corrective invoice documents. Use the pin_inv_export
utility to export invoices to a format you can use with other programs, such as
DOCL1. See "pin_inv_export" in BRM Designing and Generating Invoices.

* Collect any balance due for accounts that use credit card and direct debit payment
methods by running the pin_collect utility. See "pin_collect" in BRM Configuring
and Collecting Payments.

* Check whether corrective billing affected the state of any prior bills that were in
collections by running the pin_collections_process utility. For more information,
see "pin_collections_process" in BRM Collections Manager.

Corrective Billing for Disputes, Settlements and Write-offs

Disputes, settlements, and write-offs impact the content of a corrective bill. If you must
prevent the generation of corrective bills for certain A/R actions, set up a custom
validation policy for BRM to use when you generate the corrective bills. Such a

ORACLE 17-8

Disputes

Chapter 17
Corrective Billing for Disputes, Settlements and Write-offs

validation could be used to prevent BRM from generating corrective bills when the prior bill is
in dispute and a settlement has not been reached.

Corrective bills can be generated for a dispute entered at the bill level, item level or event
level. When BRM generates the corrective bill for a prior bill in dispute, the corrective bill
contains the details of the dispute, the disputed bill item under the corrected items, and the
bill balance reduced by the disputed amount.

Settlements

Write-Offs

ORACLE

Corrective bills can be generated for a dispute settled at the bill level, item level or event
level. When BRM generates the corrective bill when a bill item on the prior bill is in
settlement, the corrective bill contains the details of the settlement, the settled bill item under
the corrected items, and the bill balance reduced or increased by the settlement.

A dispute may be settled for the full amount of the dispute in the customer's favor. If you
submitted a corrective bill at the time of such a dispute, the corrective bill at settlement time
may become a duplicate as there may not be any additional corrections to the second bill.

You perform write-offs after the account is past due and considered delinquent in collections.
When BRM generates the corrective bill for a write-off on a bill item on the prior bill, the
corrective bill contains the details of the write-off, the written-off bill item under the corrected
items, and the bill balance reduced by the write-off amount.

17-9

Running Trial Billing

Learn how to run trial billing to validate billing results in Oracle Communications Billing and
Revenue Management (BRM) without billing your customers.

Topics in this document:

e About Trial Billing

* About Trial Invoices

* About Collecting Revenue Assurance Data from Trial Billing
* Configuring Trial Billing

* Running Trial Billing

e Purging Trial Invoices

* Exporting Trial Invoices

About Trial Billing

Trial billing is a process that simulates BRM billing. You use trial billing to validate billing
results without billing customers.

The trial billing utility simulates the billing functions of the pin_bill_accts utility. It can
additionally create and store trial invoices in the BRM database.

You can also collect revenue assurance data for trial bills and display the data by generating
Revenue Assurance Billing reports.

In case of billing discrepancies, you can make corrections, such as adjustments or payment
allocations, or you can run rerating. When you are satisfied with the results from trial billing,
run actual billing to generate the final bills.

To perform trial billing, you run the "pin_trial_bill_accts" utility.

Table 18-1 summarizes the similarities and differences between regular billing and trial billing:

Table 18-1 Comparisons between Regular Billing and Trial Billing
|

Billing with pin_bill_accts Trial Billing with pin_trial_bill_accts

Performs billing on an account's billing day of | Performs trial billing before or after an account's
month. billing day of month.

Creates cycle forward, usage item, and bill Creates cycle forward and usage item objects, but
objects in the BRM database. the objects are not recorded in the BRM database.
Calculates and totals the balance impacts for | Calculates and totals the balance impacts for any
the previous billing cycle. billing cycle.

Calculates and updates account balances. Calculates but does not update account balances.
Does not create invoices. Creates and stores trial invoices in the BRM

database unless you specify not to.

ORACLE 18-1

Chapter 18
About Trial Billing

Table 18-1 (Cont.) Comparisons between Regular Billing and Trial Billing

- _______________________________|
Billing with pin_bill_accts Trial Billing with pin_trial_bill_accts

Balance due in the bill object shows the exact | Balance due in the trial invoices may not show the
amount that is due. exact amount due at time of actual billing. This is
because events that have a balance impact can
occur after you run trial billing.

¢ Note:

With regular billing, invoices are created separately by running the
pin_inv_accts utility. The trial billing utility simulates billing and additionally
creates and stores trial invoices. For this reason, a trial billing run that
generates invoices takes longer than actual billing. You have the option to
not generate trial invoices if you do not need them. See "Creating Trial Bills
without Generating Trial Invoices".

About Trial Billing for Bill Unit Hierarchies and Sharing Groups

Bill unit hierarchies and sharing groups enable customers to pay other customers' bills.
Bill unit hierarchies form a parent-child relationship; paying parent bill units and their
nonpaying child bill units are on the same billing cycle. Trial billing for bill unit
hierarchies is handled differently from regular billing.

In regular billing, charges for nonpaying child bill units are calculated first and then
rolled up to the paying parent bill unit. BRM creates a database lock for each
nonpaying bill unit, computes the balance impacts, and then releases the lock.

In trial billing, the paying parent and all its nonpaying child bill units are locked
simultaneously. The parent bill unit and the nonpaying child bill units remain locked
until the balance impacts of all nonpaying bill units are computed and rolled up to the
parent bill unit.

< Note:

e As with regular billing, BRM considers the invoicing threshold value for
bill unit hierarchies during trial billing. If it exceeds the threshold value
(the number of nonpaying bill units is greater than the threshold value), a
separate invoice is generated for each nonpaying bill unit by using
multiple threads.

* When hierarchical bill units are selected for trial billing, access to the
parent and child bill units is prevented, and system performance is
decreased due to the database locks.

With sharing groups, sharing occurs when an account is added to a sharing group and
a discount is added to that account. The sharing group owner account and member

ORACLE 18-2

Chapter 18
About Trial Invoices

account can have different billing cycles. When a sharing group owner is selected for trial
billing, the trial invoice might not contain all the fees from member accounts.

In regular billing, when a sharing group owner account is billed, BRM processes the member
accounts to determine the sponsored fees to apply to the owner account. The sponsored
cycle events of member accounts are accumulated in the litem/sponsor object of the owner
account and appear on the owner's bill.

In trial billing, when a sharing group owner account is selected, trial billing is not run for
member accounts. In this case, the owner's trial invoice might not contain the recurring
charges for the sponsored cycle events of the member accounts because such charges are
generated by running billing. The owner's trial invoice would, however, contain the members'
usage charges because those charges are not generated by billing.

About Trial Invoices

A trial invoice is a statement of charges and the balance that is due. You use trial invoices to
validate billing charges before creating final bills for your customers. Trial invoices are
generated when you run the trial billing utility (pin_trial_bill_accts). For information about
creating trial invoices, see "Running Trial Billing".

¢ Note:

e Trial invoices are created only for billing cycles that have not been billed yet.

e Trial invoices are optional. If you do not need trial invoices, you can specify not
to generate them: for example, when the revenue assurance data collected
from trial billing is sufficient for validating the billing results.

e Session or activity charges incurred between the dates of actual billing and trial
billing do not appear on trial invoices.

You can design your own invoice templates for displaying trial invoices, and you can
customize the information displayed on trial invoices in the same ways you do for regular
invoices.

You can also purge and export trial invoices. See "Purging Trial Invoices" and "Exporting Trial
Invoices".

Note:

Trial invoices are always stored in the primary BRM database schema. In a
multischema system, regular invoices can be stored in a separate schema.

About Collecting Revenue Assurance Data from Trial Billing

When you enable trial billing to generate revenue assurance data, the data is automatically
generated when you run the pin_trial_bill_accts utility. You can use this data to validate
overall billing results. To view the data, run a Revenue Assurance Billing Summary report.

ORACLE 18-3

Chapter 18
Configuring Trial Billing

You enabile trial billing to generate revenue assurance data by setting an entry in the
trial billing configuration file (BRM_homelappsl/pin_trial_bill/pin.conf). For more
information, see "Enabling Billing Utilities to Generate Revenue Assurance Data" in
BRM Collecting Revenue Assurance Data.

You can also split revenue assurance data collected from trial billing into more detailed
categories by running pin_trial_bill_accts with the -split parameter. The split data is
based on the type of billable item and its associated services. To view split revenue
assurance data, run a Revenue Assurance Billing Detail report.

You can customize how revenue assurance data is split by configuring item subtypes
for the type of revenue, such as one-time usage, recurring charges, adjustments, and
payments.

For information about revenue assurance data, see "About Collecting Revenue
Assurance Data from Billing" in BRM Collecting Revenue Assurance Data.

Configuring Trial Billing
You can configure the following options for trial billing:
» Specifying Accounts for Trial Billing

» Specifying Bill Units, Billing Segments, and DOMs for Trial Billing

* Creating Trial Bills without Generating Trial Invoices

Specifying Accounts for Trial Billing

To run trial billing for a small number of random accounts, set the pin_trial_bill_accts
flag in the Connection Manager (CM) configuration file (BRM_homelsysicmipin.conf)
to the maximum number of accounts to bill:

- pin_trial bill accts threshold numberOfAccounts

To specify a list of specific accounts to be trial billed, use the -f parameter:

pin_trial bill accts -end 4/1/2002 -f inputFile

¢ Note:

You can also use the -f_control parameter as an alternative way of
specifying accounts for trial billing. See "Specifying Bill Units, Billing
Segments, and DOMs for Trial Billing".

The input file lists the account POIDs and bill unit POIDs in flist array format. Each
array element corresponds to one account and bill unit.

ORACLE 18-4

Chapter 18
Configuring Trial Billing

< Note:

Trial billing stops and reports a warning message when it encounters an
account or bill unit with inactive status.

All accounts listed in the input file will be trial billed.

If a selected account has a nonpaying bill unit, pin_trial_bill_accts does not
create a trial bill for it. Nonpaying bill units are trial billed only when their parent
accounts are selected for trial billing.

If an account that has not been billed for some time is selected for trial billing, a
trial invoice is generated for each billing cycle that was skipped. The invoice
data is stored in shared memory until all the billing cycles have been
processed. If the account skipped many billing cycles, this could result in a
PIN_ERR_NO_MEM error, indicating that the system does not have enough
shared memory to process that account.

Specifying Bill Units, Billing Segments, and DOMSs for Trial Billing

You can run trial billing for bill units associated with specified accounting DOMs, specified
billing segments, or a combination of DOMs and segments. You list the DOMs and billing
segments in a trial-billing-run configuration file. You can also use this file to specify a list of
accounts and bill units for trial billing.

ORACLE

You create a trial-billing-run configuration file by copying and modifying the BRM billing run
configuration file (BRM_homelapps/pin_billd/pin_bill_run_control.xml). You then specify
this file when you run pin_trial_bill_accts with the -f_control parameter.

¢ Note:

Using a trial-billing-run configuration file to specify accounts for trial billing is an
alternative way of specifying accounts in flist format by using the -f parameter.
See "Specifying Accounts for Trial Billing".

The pin_bill_run_control.xml file is the same file used to split a regular billing
run into multiple runs. See "Configuring a Split Billing Run".

To specify accounts and bill units, DOMSs, or billing segments for trial billing:

1.

Open the pin_bill_run_control.xml file in an XML editor or a text editor.

By default, the file is in the BRM_homelapps/pin_billd directory.

Edit the file to specify the bill units to trial bill:

To specify accounts and their bill units, see "Specifying Bill Units for Trial Billing".
To specify accounting DOMs, see "Specifying Accounting DOMs for Trial Billing".
To specify billing segments, see "Specifying Billing Segments for Trial Billing".

18-5

Chapter 18
Configuring Trial Billing

3. Save the file under a different name and close it. Give the file a meaningful name:
for example, if trial billing a group of accounts, include the account range or reason
for billing in the file name; if trial billing specific DOMs, include the DOM range in
the file name.

Note:

When you run pin_trial_bill_accts, the configuration file you create and
the default BRM_homelapps/pin_billd/business_configuration.xsd
file must be in the same directory.

4. Run pin_trial_bill_accts with the -f_control parameter:
pin_trial bill accts -end 4/1/2002 -f control filename
where filename is the name of the trial-billing-run configuration file that you

created. If filename is in a different directory from which you run
pin_trial_bill_accts, you must also include the entire path for the file.

For more information, see "pin_trial_bill_accts".

Specifying Bill Units for Trial Billing

ORACLE

To generate trial bills for a set of accounts and bill units, add a BillingList parent
element in the trial-billing-run configuration file for each account and bill unit to include.
In the BillingList parent element, add an Account child element that specifies the
POID of the account, and add a Billinfo child element that specifies the POID of the
bill unit.

Note:

e Trial billing stops and reports a warning message when it encounters an
account or bill unit with inactive status.

e To trial bill specific accounts and bill units, you must include both the
account POID and bill unit POID. If only one is specified, the account or
bill unit is not trial billed.

For example, the following BillingList parent element generates trial bills only for the
bill unit with POID 64295 that belongs to the account with POID 17763:

<BillingList>
<Account>17763</Account>
<Billinfo>64295</Billinfo>
</BillingList>

To specify multiple accounts or multiple bill units from the same account, add a
BillingList parent element for each bill unit. For example, the following entries
generate two trial bills for the account with POID 17763 and one trial bill for the
account with POID 25147:

<BillingList>
<Account>17763</Account>

18-6

Chapter 18
Running Trial Billing

<Billinfo>64295</Billinfo>
</BillingList>
<BillingList>
<Account>17763</Account>
<Billinfo>68439</Billinfo>
</BillingList>
<BillingList>
<Account>25147</Account>
<Billinfo>314552</Billinfo>
</BillingList>

Specifying Accounting DOMs for Trial Billing

To generate trial bills for bill units associated with specified accounting DOMs, add a
DOMList parent element in the trial-billing-run configuration file. In the DOML.ist parent
element, add a DOM child element that specifies the accounting DOM for each day whose bill
units you want to include.

For example, the following DOMList parent element generates trial bills only for bill units
whose accounting DOM is 1 or 15:

<DOMList>
<DOM>---01</DOM>
<DOM>---15</DOM>

</DOMList>

If the DOMList parent element is omitted, bill units associated with any accounting DOM can
be included in the billing run.

Specifying Billing Segments for Trial Billing

To run trial billing for specified billing segments, you must first set up billing segments in your
system and then associate them with bill units. For more information, see "Load Balancing
Billing Runs".

To generate trial bills for bill units associated with specified billing segments, add a
BillSegmentList parent element in the trial-billing-run configuration file. In the
BillSegmentList parent element, add a BillSegment child element that specifies the billing
segment ID for each billing segment whose bill units you want to include. The segment ID is
the ID of any billing segment defined in the Iconfig/billing_segment object in your BRM
system.

For example, the following BillSegmentList parent element generates trial bills only for bill
units associated with billing segments 101, 102, and 103:

<BillSegmentList>
<BillSegment>101</BillSegment>
<BillSegment>102</BillSegment>
<BillSegment>103</BillSegment>

</BillSegmentList>

If the BillSegmentList parent element is omitted, bill units associated with any billing
segment can be included in the billing run.

Running Trial Billing

To run trial billing, use the "pin_trial_bill_accts" utility:

ORACLE 18-7

Chapter 18
Running Trial Billing

1. Go to BRM_homelappsl/pin_trial_bill.

2. Run the pin_trial_bill_accts utility:
pin_trial bill accts
Running the utility with no parameters runs trial billing for all accounts that are due
for billing. You can run trial billing for a subset of accounts. For example, you can:

* Use the -start and -end parameters to run trial billing for bills in a specified
date range. See "Running Trial Billing With Date Ranges".

* Use the -pay_type parameter to run trial billing for a specific payment type.

» Use the -bill_only to run trial billing without generating trial invoices and
collect revenue assurance data.

* Use the -split parameter to generate detailed revenue assurance data.

» Use the -active, -inactive, and -closed parameters to run trial billing for a
specific account status.

See "pin_trial_bill_accts".

Running Trial Billing With Date Ranges

ORACLE

The start and end dates determine which accounts are selected for trial billing and
which billing cycles for those accounts are trial billed.

The end date is used as the search criteria for retrieving accounts for trial billing. The
search selects all accounts with a billing date less than the end date. You can specify
either an absolute date, a number of days before or after the current date, or the
current date (by specifying 0).

" Note:

If you do not specify an end date, pin_trial_bill_accts uses the current date
for the end date.

The start date determines the billing cycles for which trial invoices are generated. You
can specify either an absolute date, a number of days before or after the current date,
or the current date (by specifying 0).

If you specify a start date, trial billing is run only when a billing cycle is completed
between the start date and the end date. Trial billing is not run on partial cycles.

< Note:

If you do not specify a start date or if you specify 0 for the current date,
pin_trial_bill_accts generates trial invoices for all billing cycles that were
completed between the current date and the end date and that have not
already been billed. More than one trial invoice might be generated for
accounts that have not been billed for one or more billing cycles.

18-8

Chapter 18
Running Trial Billing

Examples:

Create trial invoices for accounts whose billing date is on or before 4/1/12002 (current date
is 3/15/2002):

pin_trial bill accts -end 04/01/2002
pin_trial bill accts -end +17

Create trial invoices for accounts whose billing date is on or before 3/1/12002 (current date
is 3/15/2002)

pin_trial bill accts -end 03/01/2002
pin_trial bill accts -end -14

Create trial invoices for accounts whose billing date is on or before the current date:

pin_trial bill accts -end 0
pin_trial bill accts

Create trial invoices for accounts with complete billing cycles between 4/1/2002 and
5/15/2002 (current date is 5/15/2002):

pin_trial bill accts -start 04/01/2002 -end 5/15/2002
pin_trial bill accts -start -44 -end 0

Running Trial Billing According to Payment Type

Generates trial invoices for accounts with the specified payment method ID. If you do not
specify the payment method ID, the pin_trial_bill_accts utility generates trial invoices for all
payment methods.

The ID can be any payment method ID from Table 18-2.

Table 18-2 Payment Method ID
|

Payment Method ID
credit card 10003
debit card 10002
direct debit 10005
guest 10010
invoice 10001
prepaid 10000
SEPA 10018
subordinate 10007
undefined 0

For example, to generate trial invoices for all bills paid by the credit card payment method,

ORACLE

use the following syntax:

pin_trial bill accts -pay_type 10003

18-9

Chapter 18
Purging Trial Invoices

For hierarchical bill units, you must run nonpaying child bill units before running paying
parent bill units. For example, to generate trial invoices for hierarchical bill units whose
payment method is by check, use the following syntax:

pin_trial bill accts -pay_type 10007
pin_trial bill accts -pay_type 10012

Note these limitations:

e The -active, -closed, or -inactive parameters are not supported for nonpaying
child bill units when combined with the -pay_type parameter. These parameters
limit the number of nonpaying child bill units that are invoiced, which leads to
errors when their paying parent bill unit is trial billed.

e Do not set a threshold value. Setting a threshold value limits the number of
nonpaying child bill units that are invoiced, which leads to errors when their paying
parent bill unit is trial billed.

Note:

The threshold entry is located in the BRM_homelappsipin_trial_bill/
pin.conf file.

* The -f, -f_control, and -bill_only parameters are not supported for all bill units
when used with the -pay_type parameter.

Creating Trial Bills without Generating Trial Invoices

If the revenue assurance data collected from trial billing provides enough information
for you to validate your billing charges and you do not need the specific information
provided in invoices, you can run the trial billing utility with the -bill_only parameter.
This parameter suppresses the creation of trial invoices. Generating trial invoices
takes longer than regular billing; therefore, running trial billing without generating trial
invoices improves the performance of trial billing and is equivalent in performance to
running regular billing.

Purging Trial Invoices

ORACLE

To purge trial invoices, run the pin_trial_bill_purge utility.

By default, pin_trial_bill_purge purges invoices with the linvoiceltrial POID type. If a
custom linvoice subclass exists, invoices with linvoicelcustom_subclassitrial POID
type are purged.

Note:

If the linvoice class is partitioned, running the purge utility (partition_utils -
0) on linvoice purges both regular invoices and trial invoices.

For a description of the syntax and parameters of this utility, see "pin_trial_bill_purge".

18-10

Chapter 18
Exporting Trial Invoices

For more information about trial invoices, see "About Trial Invoices".

Exporting Trial Invoices

To export trial invoices, run the pin_inv_export utility and use the -trial parameter.

You can export trial invoices in the same formats that are supported for regular invoices. To
export trial invoices, follow the same procedures you use for exporting regular invoices. For
more information, see "Exporting Invoices" in BRM Designing and Generating Invoices.

For a description of the syntax and parameters of this utility, see "pin_inv_export" in BRM
Designing and Generating Invoices.

ORACLE 18-11

Suspending Billing

Learn how to suspend billing for a select number of accounts in Oracle Communications
Billing and Revenue Management (BRM).

Topics in this document:
e About Suspending Billing of Accounts and Bills

* Suspending Billing of Closed Accounts

e Suspending Billing of an Account's Bill

About Suspending Billing of Accounts and Bills

By default, BRM generates bills for all bill units in all accounts. When you run billing in BRM,
active accounts as well as inactive and closed accounts are billed. However, you may have
accounts or bill units that you do not want to bill. You can suspend billing for those accounts
and bill units. You can later resume spending on suspended accounts and bill units.

¢ Note:

e By excluding accounts or bill units that do not need to be billed, you can reduce
the time it takes to complete your billing run.

e If you suspend an account, all nonpaying child bill units of the suspended
account's paying parent bill units are also suspended.

e To suppress billing, see "About Suppressing Bills". Unlike bill and account
suspension, bill suppression does not inactivate bill units.

e For information about another way to reduce the duration of your billing run, see
"Splitting a Billing Run into Multiple Runs".

Suspending Billing of Closed Accounts

By default, you can configure BRM to enable or disable billing of closed accounts. When
billing of closed accounts is disabled, BRM excludes closed accounts from the billing run
when the following conditions are met:

e The account's total balance due for every bill unit is zero.

Note:

The total balance due includes the totals from the nonpaying child bill units of
an account's paying parent bill units.

ORACLE 19-1

Chapter 19
Suspending Billing of an Account's Bill

* The account has had no billable activity since the previous bill.

To configure billing of closed accounts:

1. Open the CM configuration file (BRM_homelsyslcmlpin.conf) in a text editor.
2. Do one of the following:

» To disable billing of closed accounts, set the value of
stop_bill_closed_accounts entry to 1:

- stop bill closed accounts 1

» To enable billing of closed accounts, set the value of
stop_bill_closed_accounts to 0.

By default, billing of closed accounts is enabled.
3. Save the file.
4. Stop and restart the CM.

Suspending Billing of an Account's Bill

If you have additional bill units in accounts that you do not want to bill, such as inactive
bill units, you can customize BRM to suspend billing of those bill units.

ORACLE 19-2

Setting Up Billing in a Multischema
Environment

Learn how to set up billing in an Oracle Communications Billing and Revenue Management
(BRM) multischema environment.

Topics in this document:

e Setting Up Billing to Run in a Multischema Environment
* Running Billing on One Schema at a Time

* Running Billing on Multiple Schemas Simultaneously

Setting Up Billing to Run in a Multischema Environment

You can run billing in a multischema BRM environment on one database schema at a time by
using one instance of the billing utilities or on multiple schemas simultaneously by using
multiple instances of the billing utilities. In other words, to bill accounts on a specific database
schema, you must run the billing utilities from that database schema.

For instance, to bill accounts that reside on the primary and secondary database schemas,
you can run the billing utilities from the primary schema to bill the accounts that reside on the
primary database schema and run another instance of the billing utilities from the secondary
schema to bill the accounts that reside on the secondary database schema.

Note:

When running the pin_bill_day script with the -file option, ensure that the accounts
specified in the billing run configuration file reside on the same database schema
where pin_bill_day is run. If the file contains accounts from different database
schemas, pin_bill_day reports an error.

Running Billing on One Schema at a Time

ORACLE

Running billing utilities on multiple database schemas one at a time requires that you edit the
billing utility configuration file before each time you run the billing utilities. Perform the
following steps before each time you run billing:

1. Open the billing utility configuration file (BRM_homelappsl/pin_billd/pin.conf) in a text
editor.

2. Change the value of the userid entry to the database schema against which you want to
run billing. For example, to run billing on the 0.0.0.2 schema, change the userid entry as
follows:

- - userid 0.0.0.2 /service/pcm client 1

20-1

Chapter 20
Running Billing on Multiple Schemas Simultaneously

Change the value of the login_name entry to an account that resides in the
schema against which you want to run billing. For example, to run billing using the
account ro0ot.0.0.0.2, change the login_name entry as follows:

- nap login name root.0.0.0.2
Save the file.

Run the billing utilities.

Running Billing on Multiple Schemas Simultaneously

Running billing on multiple database schemas simultaneously requires that you create
parallel instances of the billing utility configuration files, each of which is configured for
a particular schema. Then you run all instances of your billing utilities.

ORACLE

1

For each schema that you want to run billing on, create a subdirectory under
BRM_homelappsl/pin_billd.

For example, BRM_homelappsipin_billd/db1 for database 1, BRM_homelappsl/
pin_billd/db2 for database2, and so on.

Copy the BRM_homelappslpin_billd/pin.conf file into each new subdirectory.
In each billing subdirectory, do the following:
a. Open the pin.conf file.

b. Change the database number in the login_name entry to a database account
that resides in the schema against which you want to run billing. For example,
to run billing against schema 0.0.0.2, change the login_name entry as follows:

- nap login name root.0.0.0.2
c. Save the file.

Run the billing utilities from the new subdirectories.

20-2

Remitting Funds to Third Parties

Learn how to set up Oracle Communications Billing and Revenue Management (BRM) to
remit a share of revenues to third parties.

Topics in this document:

* About Remittance

* Setting Up Remittance

* Running Remittance

* Using Remittance with Multiple Database Schemas
e Improving Remittance Performance

* Using Remittance for Sales Commissions

* Example of Setting Up a Remittance Specification
* About Customizing Remittance

¢ How Remittance Works

About Remittance

Use the BRM remittance feature to share the revenue you receive with third parties, such as
resellers or service providers. You can direct BRM to calculate the amount of remittance in
various ways. For example, you can pay third parties a percentage of subscriber fees or a flat
amount per new subscriber.

¢ Note:

Settlements is a widely used industry term for remittance.

Table 21-1 lists some scenarios for using the BRM remittance feature:

Table 21-1 Remittance Scenarios

. ___|
Scenario Description

Service or Product Provider | An Internet service provider (ISP) offers a service or product from a
Payments different company and needs to remit part of the revenue from the
service or product to that company.

For example, an ISP offers online games to its subscribers for an extra
fee and pays a portion of those fees to the company that provides the
games.

ORACLE 21-1

Chapter 21
About Remittance

Table 21-1 (Cont.) Remittance Scenarios

- ___|
Scenario Description

Sales Commissions An ISP pays a commission for each subscriber its sales person signs up.

Note: Sales commissions are supported only if the profile of the
subscriber account contains information about a salesperson. See
"Using Remittance for Sales Commissions".

Telephony Settlements IP telephony calls connect with gateways and other telephony networks.

A portion of the revenues collected for these calls go to the other
carriers.

For example, you must pay a call termination fee to the carrier that
completes a call.

Note: Implementing this example in BRM requires customizing the
remittance fields file. See "Defining Custom Remittance Fields".

About Remittance Products

Using the remittance feature requires you to create special products as part of your
price list. BRM uses a remittance product as the basis for calculating the remittance
amount to be paid to a third party.

You use Pricing Center to create a remittance product and specify the following:

e The product applies to Account, instead of to a service.

* The event type is Remittance Event.

* The rate is measured by one of these metrics:

Number
Usage Time
Usage Size
Amount

A custom metric you create and load into BRM. For information, see
"Configuring Ratable Usage Metrics (RUMSs)" in PDC Creating Product
Offerings.

" Note:

* You cannot mix remittance and non-remittance products in a
deal or plan.

* You can include one or more remittance products in a deal.

For more information, see "Creating a Remittance Product ".

ORACLE

21-2

Chapter 21
About Remittance

About Defining Remittance Specifications

A remittance specification defines a single remittance arrangement that specifies which third
party receives remittance when particular events occur. A specification also includes the
product BRM uses to calculate remittance when the criteria are met.

You define specifications in the remittance specification file. Each specification includes the
following information:

Account number of the account that receives payment.

Status of the events that contribute to remittance. You can specify that you pay third
parties only when the events have been billed or paid, or you can specify that you pay
without reference to the billing status.

Name of the product that determines the rate that BRM uses to calculate remittance.

< Note:

Whenever a product name changes, you must update the remittance
specification and reload it into the database.

Remittance criteria that specify which events trigger payments to the remittance account.
See "About Remittance Criteria".

" Note:

— Remittance is not supported for pipeline-rated events.

— You cannot use the same combination of remittance account and
remittance product in more than one specification.

— You cannot see the balance owed to a remittance account until you run the
remittance utility.

About Remittance Criteria

ORACLE

You define a remittance criterion by assigning a value to a remittance field. Each field
represents an attribute of a storable class.

The following remittance fields are available by default:

service type
product name
event type

name of a profile associated with an account

For example, you can specify that all cycle forward events for the product Internet Access
and Iservicelip contribute to remittance.

21-3

Chapter 21
About Remittance

< Note:

You must define an event type as one of your remittance criteria.

These fields are defined in the remittance fields file and then loaded into the BRM
database.

A technical person can also create additional custom fields. Do this if you want
remittance to depend on criteria other than the defaults. For example, if you want
remittance to depend on a telephony gateway, define custom fields in this file.

Customizing the remittance fields file requires an understanding of BRM storable
classes. For more information, see "Defining Custom Remittance Fields".

About Calculating Remittance

ORACLE

You run the remittance utility, "pin_remittance", to calculate the amount you must pay
to third parties.

When an event occurs that meets the defined criteria, BRM stores the remittance
information about the event. BRM later uses the stored information to calculate
payments when you run the remittance utility.

When BRM rates an event, it runs an opcode to evaluate the criteria defined in your
remittance specification. If the event meets a set of criteria, BRM stores information
relevant to remittance, such as the remittance account and product.

The remittance utility uses that information to calculate the amount to pay each
remittance account.

The remittance utility does the following:

* Collects the remittance information that BRM previously stored in separate
objects.

» Creates a new event for each combination of remittance account and product.

e Calculates the amount to pay each account for each event by rating the event and
stores that data for reporting purposes.

Typically, you run the remittance utility monthly. You can run it separately or as part of
the monthly remittance script, pin_remit_month.

Before running the remittance utility, you should first run billing on all accounts except
remittance accounts. This is especially true if you defined your remittance
specifications so that events that contribute to remittance must be billed or paid before
you pay the third parties. For more information, see "Running Billing Scripts".

You then do the following, either by running pin_remit_month or as separate steps:

1. Run the remittance utility to calculate the amount owed to each remittance
account.

2. Run the billing utility on only the remittance accounts.
3. Run invoicing on only the remittance accounts.

For more information on how to calculate remittance, see "Calculating Remittance ".

21-4

Chapter 21
Setting Up Remittance

Setting Up Remittance

To set up remittance, use the following steps. Each step includes a link to a detailed

procedure.

1. Create one or more remittance products in Pricing Center, based on the remittance
event, and include them in a deal. See "Creating a Remittance Product ".

2. Create an account in Customer Center for each third party that you want to receive funds.
See "Creating a Remittance Account".

3. Load the remittance fields file into the BRM database. You do this whether or not you add

custom fields to the remittance fields file. This makes the fields available to the
remittance specification. See "Loading the Remittance Fields File".

4. Create your remittance specifications. Each specification matches a remittance product
and account with a set of remittance criteria. See "Defining Remittance Specifications ".

5. Load the remittance specification. This makes the specification available to BRM so it can
begin collecting remittance information. See "Loading the Remittance Specifications".

Creating a Remittance Product

To create a remittance product, follow the procedure in Pricing Center Help. The following
steps are specific to a remittance product:

ORACLE

1. Inthe Product Creation Wizard or in the General Product Info tab, select laccount
instead of a service in the Applies To field. This indicates that the remittance product is
not connected with a service.

2. In the Event Map, select Remittance Event for Event.

3. Inthe Event Map, select one of the following metrics for Measured By: Number, Usage
Time, Usage Size, and Amount. See Table 21-2.

Table 21-2 Examples of Metrics

Metric Use To Example
Number Calculate remittance for a given event | You want to remit $5 for each cycle
type based on a flat fee per forward event.
occurrence.
Usage Time Calculate remittance based on a flat | You want to remit $1 for each hour of
fee for the duration of an event. Internet usage.
Usage Size Calculate remittance based on the You want to remit $1 for each 5
size of the event. megabytes (MB) of storage space a
customer uses each month.
Amount Calculate remittance based on a You want to remit 25% of a customer's
percentage of the rated dollar amount. | total monthly fees for Internet usage to
the customer's service provider.

21-5

Chapter 21
Setting Up Remittance

< Note:

e Do not use the metric Occurrence. Pricing Center enables you to
use it in your remittance product, but this metric will not work with
remittance.

* You can also create custom metrics. See "Configuring Ratable
Usage Metrics (RUMSs)" in PDC Creating Product Offerings.

4. In Rate Plan Properties, specify the balance impact as follows:

* If Number, Usage Time, or Usage Size is the metric, specify a negative value.
For example, if the metric is Number, the balance impact might be -5 US
dollars.

The number is negative because you want BRM to credit the account that
owns this product.

* If Amount is the metric, specify a negative value that represents a percentage.
For example, -.05 represents -5%.

" Note:

e Pricing Center lets you use positive values in the product balance
impact. If you do this, BRM debits, rather than credits, the remittance
account.

e Pricing Center does not validate your remittance product to ensure that
you used a valid metric or entered a balance impact that makes sense.

Creating a Remittance Account

You create an account for each third party that you pay remittance. That account can
only purchase plans and deals that contain remittance products.

Follow the normal procedure for creating accounts in Customer Center. See the
discussion about creating a consumer or business account in Customer Center Help.

Use Invoice for the payment method. The invoices will show a negative balance due
for remittance accounts.

Most other payment methods do not make sense for remittance. In particular, using
credit card or direct debit as the payment method causes errors when you run the
remittance utility, pin_remittance.

Loading the Remittance Fields File

ORACLE

The remittance fields file makes fields from storable classes available for setting up
remittance criteria. You must load this file into BRM before you define your remittance
specifications.

This file contains default fields you can use to define specifications that cover many
common remittance scenarios. Custom fields can also be added. For more

21-6

Chapter 21
Setting Up Remittance

information, see "About Defining Remittance Specifications" or the description in the
remittance fields file, pin_remittance_flds.

To load the remittance fields file:

1. Go to a directory with a valid configuration file.

Typically, you go to the directory that contains the remittance fields file: Isysidata/
pricinglexample. The "load_pin_remittance_flds" utility uses the configuration file for
information on how to connect to the BRM database. See "Connecting BRM Utilities" in
BRM System Administrator's Guide.

2. Enter this command:
BRM home/bin/load pin remittance flds file name
where BRM_home is the directory where you installed BRM components, and file_name
is the name and path of the pin_remittance_flds file.

You do not need to specify a file name if you use the default pin_remittance_flds file
and you run the command from the same directory where the file resides.

To verify that the pin_remittance_flds file was loaded, you can display the Iconfig/
remittance_flds object by using the Object Browser, or use the robj command with the
testnap utility.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM" in BRM
Developer's Guide. For information about reading an object and writing its contents to a file,
see "Reading an Object and Writing Its Contents to a File" in BRM Developer's Guide.

Defining Remittance Specifications

ORACLE

You define the conditions that cause BRM to pay funds to a third party in a remittance
specification. For more information, see "About Defining Remittance Specifications".

To create a remittance specification:

1. Open the remittance specification file (BRM_homelsysldatalpricing/lexample/
pin_remittance_spec) in any text editor.

The next steps refer to the following example of a simple specification:

ACCOUNT BEGIN
remittance account number 0.0.0.1-9617
remittance type B

remittance product name Product 6a - Flat Fee Remittance

CRITERIA BEGIN

field service type = /service/ip
field product name = Product la - Internet Access
field event type = /event/session/dialup

CRITERIA END

ACCOUNT END

2. Enter ACCOUNT_BEGIN to start a new specification.

3. Enter the number of the account that receives the remittance. For example:
remittance account number 0.0.0.1-9617

4. Enter the remittance type, which is one of three values:

21-7

ORACLE

Chapter 21
Setting Up Remittance

« B: Billed. BRM does not credit the remittance account until the event that
triggers the remittance has been billed.

» P: Paid. BRM does not credit the remittance account until the event that
triggers the remittance has been paid and the corresponding bill item closed.

A bill item is closed for a BRM-initiated payment when you run pin_collect.
You can also close a bill item when you transfer amounts between bill items
through the Bill Details panel in Customer Center. See "pin_collect" in BRM
Configuring and Collecting Payments.

 U: Unbilled. BRM credits the remittance account whether or not the event that
triggers the remittance has been billed or paid.

For example:
remittance type B

Enter the remittance product name. BRM uses this product to determine the
remittance rate. The remittance account must own the product you specify. For
example:

remittance product name Product 6a - Flat Fee Remittance
Enter CRITERIA_BEGIN to start the criteria section of the specification.

Enter one or more remittance criteria. These criteria are a series of statements.
Each statement includes a field from the remittance fields file, an operator, and a
value. For example:

field event type = /event/session/dialup

In this statement:

» field identifies the item that follows (service_type) as a field from the
remittance fields file. It must start every line within the list of criteria.

* event_type is a field from the remittance fields file. Typically, you use at least
three default fields as criteria: event_type, service_type, and
product_name.

Note:

Whenever the product name changes, you must update the
pin_remittance_spec file and reload it into the database.

You can also use the default field profile_name or a custom field. For
information on using custom fields, see "About Adding Custom Remittance
Criteria".

You must include the event_type field as one of your criteria.

e = (equal sign) is the operator. This is the only valid operator for service_type,
product_name, event_type, and profile_name. For a list of operators you
can use with other fields, see the pin_remittance_spec file.

» Iservicelip is the value for service_type.
Enter CRITERIA_END at the end of the criteria.
Enter ACCOUNT_END at the end of the specification.

21-8

Chapter 21
Setting Up Remittance

< Note:

If you want the same remittance account to receive payment for additional
remittance products, then create a separate remittance specification for each
product. You cannot use the same combination of remittance account and
remittance product in more than one specification.

For more details on creating remittance specifications, see the instructions in the
pin_remittance_spec file.

Loading the Remittance Specifications

Load the remittance specifications into your database by following one of these procedures:

* For single-schema systems, see "Loading Remittance Specifications on Single-Schema
Systems".

e For multischema systems, see "Loading Remittance Specifications on Multischema
Systems".

Loading Remittance Specifications on Single-Schema Systems

Use the utility "load_pin_remittance_spec" to load the remittance specification file into BRM:

1. Go to a directory that contains a valid configuration file.

Typically, you go to the directory that contains the remittance criteria file:
BRM_homelsysldatalpricing/lexample. The load_pin_remittance_spec utility uses
information in the configuration file to connect to the BRM database. See "Connecting
BRM Utilities" in BRM System Administrator's Guide.

2. Enter this command:

BRM home/bin/load pin remittance spec file name

where file_name is the name and path of the pin_remittance_flds file.

You do not need to specify a file name if you use the default file name
pin_remittance_spec and you run the command from the directory in which the file
resides.

3. Stop and restart the Connection Manager (CM). See "Starting and Stopping the BRM
System" in BRM System Administrator's Guide.

< Note:

You must follow this procedure every time you change the remittance
specification file.

To verify that the pin_remittance_spec file was loaded, display the Iconfig/
remittance_spec object by using the Object Browser, or use the robj command with the
testnap utility.

ORACLE 21-9

Chapter 21
Running Remittance

For general instructions on using testnap, see "Using the testnap Utility to Test BRM"
in BRM Developer's Guide. For information about reading an object and writing its
contents to a file, see "Reading an Object and Writing Its Contents to a File" in BRM
Developer's Guide.

Loading Remittance Specifications on Multischema Systems

To load remittance specifications on a multischema system, perform the following
procedure on your primary BRM installation system:

Note:

You must follow this procedure every time you change the remittance
specification file.

1. Combine the remittance specifications for all database schemas into a
consolidated remittance specification file.

2. Goto a directory that contains a valid configuration file (pin.conf) for connecting to
your BRM database schemas. See "Connecting BRM Uitilities" in BRM System
Administrator's Guide.

3. Run the load_pin_remittance_spec utility by entering this command:

BRM home/bin/load pin remittance spec file name

where file_name is the name of your consolidated remittance specification file. For
information, see "load_pin_remittance_spec".

4. Stop and restart the CM. See "Starting and Stopping the BRM System" in BRM
System Administrator's Guide.

5. Stop and restart the CM and all primary and secondary Data Managers (DMs).
See "Starting and Stopping the BRM System" in BRM System Administrator’'s
Guide.

6. (Optional) To verify that the pin_remittance_spec file was properly loaded,
display the Iconfiglremittance_spec object by using the Object Browser or the
robj command with the testnap utility.

For general instructions on using testnap, see "Using the testnap Ultility to Test
BRM" in BRM Developer's Guide. For information about reading an object and
writing its contents to a file, see "Reading an Object and Writing Its Contents to a
File" in BRM Developer's Guide.

Running Remittance

ORACLE

Before running remittance, you should run billing for all non-remittance accounts. This
ensures that BRM will calculate all remittance that depends on events being billed or
paid. For more information, see "Running Billing Scripts".

Use the following steps each time you run remittance. Each step includes a link to a
detailed procedure:

1. Calculate remittance. Then run billing and invoicing for the remittance accounts.
See "Calculating Remittance ".

21-10

Chapter 21
Running Remittance

2. Run a BRM report that summarizes the amount due to each remittance account. See
"Creating Remittance Reports".

3. Change the balance of each remittance account to reflect payments you made. See
"Changing the Balance of a Remittance Account".

When you run remittance, you can use the pin_remittance utility -b parameter to choose
whether to trigger billing of remittance accounts before calculating remittance. By default, the
pin_remit_month script runs the pin_remittance utility with the -b parameter which ensures
that remittance is calculated before the remittance account is billed.

If you do not use the -b parameter, remittance owed to the account in the current billing cycle
is not credited to it until the next billing cycle.

Calculating Remittance

Use the pin_remittance utility to calculate the amount you must pay to each third party. You
can run remittance as part of a monthly remittance script or you can run it separately.

For information on how BRM calculates remittance, see "About Calculating Remittance".

Running the Monthly Remittance Script

To calculate remittance:

1. Run the daily, weekly, and monthly billing scripts.

By default, these scripts run billing on non-remittance accounts only. You should keep this
default. You want to bill remittance accounts after calculating remittance, so the bills and
invoices for these accounts are up-to-date.

For information on running these scripts, see "Running Billing Scripts".
2. Run the monthly remittance script:

pin_remit month

This script does the following:

* Runs the remittance utility, pin_remittance. For more information on this utility, see
"Running the Remittance Utility Separately".

* Runs billing for remittance accounts.

* Runs invoicing for remittance accounts.

Note:

You can run pin_remit_month at any time interval that is appropriate for
your business. Running it monthly is one common approach.

Running the Remittance Utility Separately

To run the utilities in pin_remit_month separately:

1. Change to a directory with a valid configuration file. See "Connecting BRM Utilities" in
BRM System Administrator's Guide.

ORACLE 21-11

Chapter 21
Running Remittance

2. Run the remittance utility:

pin_remittance

By default, pin_remittance does the following:
e Calculates remittance for all remittance accounts.

* Includes events that occurred up to midnight the previous day in its
calculations.

» Creates a remittance report in a text file. See "Creating Remittance Reports".

For information on changing these defaults and on the utility's syntax, see
"pin_remittance".

The remittance utility is located in BRM_homelbin.
3. Run the billing utility on inactive, closed, and active remittance accounts:

pin bill accts -inactive -remit only
pin bill accts -close -remit only
pin bill accts -active -remit only

For more information, see "Billing Accounts By Using the pin_bill_accts Utility" or
"pin_bill_accts".

4. Run the invoice utility:
pin_inv_accts -pay_type 10001

For more information, see "Generating Invoices" in BRM Designing and
Generating Invoices.

Creating Remittance Reports

You can get two reports for remittance:

* The pin_remittance utility creates a report that lists the amount remitted to each
account each time you run the utility. The report is in a text file named
rem_date.rep, where date is the end date for which remittance events are
included in the calculation. By default, the end date is the current date.

Table 21-3 contains an example of this report:

Table 21-3 Remittance Report Example
|

Acct No. Start Date End Date Amount Remitted
0.0.0.1-9929 06/07/2020 08/13/2020 -676.2
0.0.0.1-10057 06/07/2020 08/13/2020 -9382.25
0.0.0.1-10185 06/07/2020 08/13/2020 0
" Note:
The negative values in the report represent balances owed to third
parties.

ORACLE 21-12

Chapter 21
Using Remittance with Multiple Database Schemas

You use this report to review the amounts that pin_remittance calculated and to verify
that the information is correct.

* You can create a report that provides a summary of remittance due to each account for
your payables department. You can generate this report for different time periods,
account numbers, states, countries, and item types. For more information, see
"pin_remittance".

Note:

In a multischema system, the Remittance report is accurate only when each
service provider account's associated remittance objects, remittance events,
content connector events, and user accounts are in the same database
schema. If they are not all in the same schema, some data is not included in the
reports.

Changing the Balance of a Remittance Account

When you send funds to a remittance account, you use an adjustment in BRM to change the
account's balance. For example, if the account shows a balance of -50, and you pay $50 to
the third party, you must create an adjustment of $50 to change the balance to 0.

For information on adjustments, see "Making Adjustments " in BRM Managing Accounts
Receivable.

Using Remittance with Multiple Database Schemas

If you have multiple BRM database schemas, you must run the remittance utility
(pin_remittance) for each schema. You can do this in either of these ways:

* On one schema at a time, using one instance of the remittance utility. See "Running
Remittance on One Schema at a Time".

* On multiple schemas simultaneously, using multiple instances of the remittance utility.
See "Running Remittance on Multiple Schemas Simultaneously".

Depending on your setup, a single event can contribute remittance to more than one
remittance account. In a multischema environment, those remittance accounts can be in
different schemas. All remittance account balances are updated only when you run the
remittance utility for all schemas.

Running Remittance on One Schema at a Time

ORACLE

Running the remittance utility on multiple database schemas one at a time requires that you
edit the remittance utility configuration file every time you run the remittance utility. Perform
the following procedure before you run remittance:

1. Open the remittance utility configuration file (BRM_homelappsiIpin_remit/pin.conf).

2. Change the value of the userid entry to the schema against which you want to run
remittance.

For example, to run remittance on schema number 0.0.0.2, change the userid entry as
follows:

21-13

Chapter 21
Improving Remittance Performance

- - userid 0.0.0.2 /service/pcm client 1

3. Change the value of the login_name entry to an account that resides in the
schema against which you want to run remittance.

For example, to run remittance using the root.0.0.0.2 account, change the
login_name entry as follows:

- nap login name root.0.0.0.2
4. Save and close the file.

5. Run the remittance utility. See "Running Remittance”.

Running Remittance on Multiple Schemas Simultaneously

Running remittance on multiple database schemas simultaneously requires that you
create parallel instances of the remittance utility configuration file, each of which is
configured for a particular schema. Then, you run all instances of your remittance
utility.

1. For each schema you want to run remittance on, create a subdirectory in
BRM_homelapps/pin_remit.

For example, BRM_homelappsipin_remit/db1 for schema 1, BRM_homelapps/
pin_remit/db2 for schema 2, and so on.

2. Copy the BRM_homelappsl/pin_remit/pin.conf file into each new subdirectory.
3. In each subdirectory, do the following:
a. Open the pin.conf file.

b. Change the schema number in the login_name entry to an account that
resides in the schema against which you want to run remittance.

For example, to run remittance against schema number 0.0.0.2, change the
login_name entry as follows:

- nap login name root.0.0.0.2
c. Save and close the file.

4. Run the remittance utility from the new subdirectories. See "Running Remittance".

Improving Remittance Performance

ORACLE

If remittance-related events occur frequently in your BRM system, it can affect your
system's performance. You can improve performance by increasing the time interval
for refreshing the status of remittance accounts and products.

BRM caches remittance account-product status information and refreshes the
information based on the time interval specified in the CM configuration file.

By default, this interval is set to 300 seconds (five minutes). If the status of an account
or product changes, BRM does not get the status change for calculating remittance
until the next interval. For more information on what happens when BRM calculates
remittance, see "About Calculating Remittance".

To change the time interval for refreshing the status of remittance accounts and
products:

1. Open the CM configuration file (BRM_homelsyslcmlipin.conf).

21-14

Chapter 21
Using Remittance for Sales Commissions

Change the value of the remit_cache_refresh_interval entry:

- fm remit remit cache refresh interval 300

The interval value is in seconds, with a default of 300 seconds. You can change it as
follows:

» To improve remittance performance, increase the interval to refresh the status of
accounts and products less frequently. The longer the interval, the more you must
increase it to get equivalent performance improvements.

For example, increasing the interval from 5 to 10 gives you a much greater
performance improvement than increasing it from 300 to 305.

» To refresh account and product status information more frequently, reduce the
interval. This could affect your BRM system's performance.

« If you want BRM to be immediately aware of status changes, comment out this entry
by adding a # symbol at the beginning of the line. If you do this, BRM reads the
status information from the database each time an event matches your remittance
criteria.

Save and close the file.

Stop and restart the CM. See "Starting and Stopping the BRM System" in BRM System
Administrator's Guide.

Using Remittance for Sales Commissions

You can use the BRM remittance feature to pay commissions to salespeople, but this
requires customizing remittance. One approach is to do the following:

1.

For each new subscriber account, have a programmer create a customer profile and
include the name of the salesperson in that profile. For information on creating and using
profiles, see "About Storing Customer Profile Information" in BRM Developer's Guide.

Create a custom field in the remittance fields file, for example, profile_value. For more
information, see "Defining Custom Remittance Fields" or the description in the
pin_remittance_flds file.

Create a separate remittance specification for each salesperson. For each specification,
include the following criteria:

» profile_name: This is a default remittance field. Set it to the name of the profile that
contains the salesperson's name.

You must include profile_name as one of the criteria if you are also using an attribute
of a profile as one of your criteria.

« profile_value: Set the custom remittance field you created in step 2 to the
salesperson's name.

Example of Setting Up a Remittance Specification

This is an example of how to set up a simple remittance specification. In this example, the
remittance account receives 5% of purchase and cycle forward fees from subscribers to a
specific product.

ORACLE

1.

In Pricing Center, create a product with the settings shown in Table 21-4.

21-15

ORACLE

Chapter 21
Example of Setting Up a Remittance Specification

Table 21-4 Example Settings for a Remittance Product

Field Value
Name Remittance Product 1
Description Credit to remittance accounts 5% of the applicable rated

purchase and cycle forward events paid by subscribers to a
particular Internet access product.

Product Type Subscription
Applies To Account

Event Remittance Event
Measured By Amount

Rate Plan Structure Single Rate Plan

Balance Impact: None
Resource US Dollar
Scaled Amount -.05
Units None

In Pricing Center, create a deal and plan, as shown in Table 21-5.

Table 21-5 Example Deal and Plan

|
Field Deal Plan

Name Remittance Deal 1 Remittance Plan 1

Include Remittance Product 1 Remittance Deal 1

In Pricing Center, add Remittance Plan 1 to the CSR-new plan list and commit the
plan list to your BRM database.

In Customer Center, create an account that includes the settings shown in
Table 21-6.

Table 21-6 Settings for Account

Field Value
Plan Remittance Plan
Name Service Provider 1 (representing the name and contact information

for a service provider you are sharing revenues with)

Payment Method Invoice

This account will receive 5% of rated events as defined in the product Remittance
Product 1.

Load the default remittance field file into BRM. Go to BRM_homeldatalpricing/
examples and enter:

load pin remittance flds pin_remittance flds

In a text editor, open the remittance specification file, BRM_homelsysidatal
pricinglexample/pin_remittance_spec.

21-16

Chapter 21
About Customizing Remittance

7. Add the following to the end of the file:

ACCOUNT BEGIN

remittance account number 0.0.0.1-8422
remittance type B
remittance product name Remittance Product 1

CRITERIA BEGIN

field
field
field

/service/ip
Product la - Internet Access
/event/billing/product/fee/purchase

service type
product name
event type

CRITERIA END

CRITERIA BEGIN

field
field
field

/service/ip
Product la - Internet Access
/event/billing/product/fee/cycle/cycle forward monthly

service type
product name
event type

CRITERIA END

ACCOUNT END

8. Load the remittance specification file into BRM. Go to BRM_homeldatalpricing/
examples and enter:

load pin remittance spec pin remittance spec

9. Stop and restart the CM. See "Starting and Stopping the BRM System" in BRM System
Administrator's Guide.

You have now implemented this remittance specification. When you run pin_remittance,
BRM credits 5% of the purchase and cycle forward fees from the Internet Access product to
the remittance account you created.

About Customizing Remittance

BRM provides a default set of fields in storable classes mapped to remittance fields, which
you can use to specify remittance criteria.

You can customize remittances in the following ways:

e Define custom remittance criteria to specify how to remit funds to third parties. For more
information, see "About Adding Custom Remittance Criteria".

e Calculate remittance based on custom ratable usage metrics (RUMS).

For information on creating RUMs, see "Configuring Ratable Usage Metrics (RUMSs)" in
PDC Creating Product Offerings.

For information on using custom RUMs to calculate remittance, see "Calculating
Remittance Using Custom RUMs".

About Adding Custom Remittance Criteria

ORACLE

To add custom remittance criteria, you must specify the BRM fields used to define these
criteria, and map each BRM field to a corresponding remittance field in the
pin_remittance_flds file. BRM then validates each criterion based on the fields specified in
the pin_remittance_flds file.

To add custom remittance criteria, you must perform these tasks:

21-17

Chapter 21
About Customizing Remittance

1. Create a remittance product in Pricing Center. For more information, see "Creating
a Remittance Product ".

2. Create aremittance account in Customer Center. For more information, see
"Creating a Remittance Account".

3. Select the criteria for remittance. For example, you may want to add a new criteria
called company_name in addition to the criteria already provided.

4. Define the remittance field for every criterion selected, if a BRM field is not already
defined in the pin_remittance_flds file, and map each field to the corresponding
remittance criterion.

5. Inthe pin_remittance_spec file, specify the criteria that determine which third
party receives remittance and the product BRM uses to calculate remittance.

The pin_remittance utility calculates the remittance amount for all events that
meet the criteria you define in this file. See "pin_remittance".

Defining Custom Remittance Fields

ORACLE

The pin_remittance_flds file contains default fields that help you calculate remittance.
You must load this file into the BRM system to define remittance specifications. For
more information, see "Loading the Remittance Fields File".

You can add more fields to this file to define custom criteria in the
pin_remittance_spec file.

Each field in the remittance fields file makes an attribute of the BRM storable class
available for defining remittance criteria in the pin_remittance_spec file. To specify
custom fields in this file, you must know about BRM fields and storable classes. For
more information, see "About Storable Classes and Storable Objects" in BRM
Developer's Guide.

A custom remittance field definition contains four columns separated by one or more
spaces:

<remittance field name> <base class> <substruct> <BRM field>

Remittance Field Name

This name is the field identifier. Provide this name when you specify remittance criteria
in the remittance specification file.

Precede the name with the word “field" followed by a space. For example,
"field origination_gw".

Do not use blank spaces within the name itself. You cannot specify a name already in
use for one of the reserved attributes.

Base Class of the Attribute

BRM supports attributes for these base storable classes:

* EVENT
* ACCOUNT
* PROFILE

You must always specify the base class for an attribute.

21-18

Chapter 21
About Customizing Remittance

Substruct Name

The name of the substruct within which the field is located. This must be a valid substruct
name as specified in the BRM data dictionary. For example, for a telco call event, the
PIN_FLD_CALLING_FROM field is contained within the substruct PIN_FLD_TELCO_INFO. If
there are no substructs, specify NONE. You cannot use arrays or fields within arrays.

Attribute Name

The name of the attribute specified in the BRM data dictionary. For example, for the
origination gateway of a telco call event, specify the PIN_FLD_CALLING_FROM field.

This example shows the remittance field definition for other call origination:

field origination EVENT PIN FLD TELCO INFO PIN FLD CALLING FROM

* The first column is the remittance field name, which identifies the field defined in the
pin_remittance_spec file.

e The second column is the base class of the attribute. You can specify only EVENT,
ACCOUNT, or PROFILE.

The third column is the name of the substruct in the BRM database that contains the
field.

e If the attribute is contained within a substruct name, specify the BRM name of the
substruct; otherwise specify NONE.

e The fourth column is the BRM field name for the attribute.

To add a brand_name field to indicate the brand, add the following line beneath the reserved
fields:

field brand name ACCOUNT NONE PIN FLD GL SEGMENT

¢ Note:

Do not change or delete the reserved attributes in the remittance fields file.
However, you can edit this file to add fields.

This example shows you how to add custom remittance fields:

service type RESERVED

event type RESERVED

product name RESERVED

profile name RESERVED

field Origination EVENT PIN FLD TELCO_INFO PIN FLD CALLING FROM
field Destination EVENT PIN FLD TELCO_INFO PIN FLD CALLED TO
field Brand name ACCOUNT NONE PIN FLD GL SEGMENT

field Profile value PROFILE PIN FLD LDAP INFO PIN FLD DN

Specifying Custom Remittance Criteria

In the remittance specification file, specify the custom criteria you want to use in remittance
calculation and then define the corresponding fields in the remittance fields file.

ORACLE 21-19

ORACLE

Chapter 21
About Customizing Remittance

For syntax and instructions on specifying single and multiple sets of criteria for an
account, see the pin_remittance_spec file.

Specifying Remittance Criteria for Sales Commissions

Use multiple criteria specification to remit sales commissions to salespersons. For
example, to remit $1 to every salesperson for each cycle of the salesperson's IP
accounts, do the following:

1. For each salesperson, create a remittance account (remittance product and plan
can be shared).

2. When you create customer accounts, use the salesperson's name in the profile.
3. Create custom criteria for each salesperson.

This example shows how to use multiple criteria specification to remit sales
commissions:

ACCOUNT BEGIN
remittance account number0.0.0.1-10001

#sales person A's remittance account

remittance typeP

remittance product name SalesCommissionProduct
CRITERIA BEGIN

field service type=/service/ip

field event type =/event/billing/product/fee/cycle/cycleforward monthly
fieldprofile name= SalesA

CRITERIA END

ACCOUNT_END

ACCOUNT BEGIN
remittance account number0.0.0.1-10002
#salesperson B's remittance account

remittance typeP

remittance product name SalesCommissionProduct
CRITERIA BEGIN

fieldservice type=/service/ip

fieldevent type=/event/billing/product/fee/cycle/cycle forward
monthlyfieldprofile name= SalesB

CRITERIA END

ACCOUNT_END

ACCOUNT BEGIN
remittance account number0.0.0.1-10003
#salesperson C's remittance account

remittance typeP

remittance product name SalesCommissionProduct
CRITERIA BEGIN

fieldservice type =/service/ip

fieldevent type =/event/billing/product/fee/cycle/
cycle forward monthlyfieldprofile name = SalesC
CRITERIA END

ACCOUNT_END

For more information about using remittance for sales commissions, see "Using
Remittance for Sales Commissions".

21-20

Chapter 21
How Remittance Works

About Using Custom Ratable Usage Metrics to Calculate Remittance

Remittance products use the levent/billing/remittance event type. To calculate remittance
for an event type, set its ratable usage metric (RUM) to the appropriate name. For a list of
RUMSs you can use to create a remittance product, see "Creating a Remittance Product ".

BRM supplies a set of default ratable usage metrics (RUMSs) for remittance products, but you
can also calculate remittance based on custom RUMSs.

For information on how to create and load custom RUMS into the BRM database, see "About
Setting Up RUMs for Real-Time Rating" in BRM Setting Up Pricing and Rating.

Calculating Remittance Using Custom RUMs

The BRM system recognizes the ratable quantity only for default RUMs. To use a custom
RUM, modify the PCM_OP_REMIT_POL_SPEC_QTY policy opcode. See "Customizing
Remittance".

How Remittance Works

Use the following opcodes to manage remittance:

e PCM_OP_REMIT_GET_PROVIDER. See "Retrieving Remittance Accounts".
e PCM_OP_REMIT_REMIT_PROVIDER. See "Calculating the Remittance Amount".

e PCM_OP_REMIT_VALIDATE_SPEC_FLDS. See "Verifying the Remittance Specification
File".

« PCM_OP_REMIT_POL_SPEC_QTY. See "Customizing Remittance".

Retrieving Remittance Accounts

Use PCM_OP_REMIT_GET_PROVIDER to retrieve a list of remittance accounts that are
owed for a particular event.

PCM_OP_REMIT_GET_PROVIDER performs the following:

1. Determines whether an event meets any criteria that you specified in the
pin_remittance_spec file. See "Defining Remittance Specifications ".

2. Retrieves the following remittance information from the event itself and the Iconfig/
remittance_spec object:

e Event object POID

e Item object POID

e Remittance account object POID
e Remittance product object POID

e Quantity to rate for the remittance calculation

ORACLE 21-21

Chapter 21
How Remittance Works

< Note:

If the event uses a custom RUM,
PCM_OP_REMIT_GET_PROVIDER calls
PCM_OP_REMIT_POL_SPEC_QTY to retrieve the quantity. See
"Customizing Remittance".

3. Creates a Iremittance_info object.

4. Returns the POID of the Iremittance_info object.

Calculating the Remittance Amount

Use PCM_OP_REMIT_REMIT_PROVIDER to calculate the remittance amount owed
to third-party companies. This opcode retrieves remittance data from /remittance_info
objects and then calculates the total remittance amount owed to third parties.

This opcode is called directly by the pin_remittance utility. For more information, see
"pin_remittance".

Verifying the Remittance Specification File

Use PCM_OP_REMIT_VALIDATE_SPEC_FLDS to validate remittance criteria before
loading it into the BRM database. This opcode validates that the criteria fields you
specify in the pin_remittance_spec file are defined in the Iconfig/remittance_flds
object.

When the pin_remittance_spec file passes the validation,
PCM_OP_REMIT_VALIDATE_SPEC_FLDS returns the PIN_FLD_RESULT field set to
PIN_RESULT_PASS. This notifies the calling application to load the specification data
into the Iconfig/remittance_spec object.

When the file fails validation, PCM_OP_REMIT_VALIDATE_SPEC_FLDS returns the
PIN_FLD_RESULT field set to PIN_RESULT_FAIL. This notifies the calling application
to stop the loading process.

This opcode is called directly by the load_pin_remittance_spec utility. For more
information, see "load_pin_remittance_spec".

Customizing Remittance

Use the PCM_OP_REMIT_POL_SPEC_QTY policy opcode to retrieve the remittance
guantity to rate for a custom RUM. However, you can modify this policy opcode to
retrieve the remittance quantity for custom RUMs.

ORACLE 21-22

Billing Utilities

Learn about the syntax and commands for the Oracle Communications Billing and Revenue
Management (BRM) billing utilities.

Topics in this document:

* load_config_item_tags

* load_config_item_types

e load_pin_bill_suppression
e load_pin_billing_segment
e load_pin_calendar

* load_pin_payment_term

e load_pin_remittance_flds

e load_pin_remittance_spec
e pin_bill_accts

e pin_cust_convert_wholesale_hierarchy
e pin_cycle fees

e pin_make_corrective_bills
e pin_remittance

e pin_rollover

e pin_trial_bill_accts

e pin_trial_bill_purge

e pin_update_journals

load_config_item tags

Use this utility to load item tags into the BRM database when you create custom bill items.
See "Creating Custom Bill Items".

Location

BRM_homelbin

Syntax

load config item tags [-v] [-d] [-h] config item tags file

ORACLE 22-1

Chapter 22
load_config_item_types

Parameters

-v
Displays information about successful or failed processing as the utility runs.

Note:

This parameter is always used with other parameters and commands. It is
not position dependent. For example, you can enter -v at the beginning or
end of a command to initiate the verbose parameter. To redirect the output
to a log file, use the following syntax with the verbose parameter. Replace
filename.log with the name of the log file:

load_config_item_tags any_other_parameter —v > filename.log

-d

Creates a log file for debugging purposes. Use this parameter for debugging when the
utility appears to have run with no errors, but the data has not been loaded into the
database.

-h
Displays the syntax and parameters for this utility.

config_item_tags_file
The name and location of the file that contains your item tag definitions. The sample
config_item_tags.xml file is in the BRM_homelsysldatalpricing/lexample directory.

Results

The load_config_item_tags utility notifies you when it successfully creates the /
configlitem_tags object.

If the load_config_item_tags utility does not notify you that it was successful, look in
the utility log file (default.pinlog) to find any errors. The log file is either in the
directory from which the utility was started or in a directory specified in the
configuration file.

load_config_item_types

ORACLE

Use this utility to load bill item tag-to-bill item type mappings into the BRM database
when creating custom bill items. See "Creating Custom Bill ltems".

Location

BRM_homelbin

Syntax

load_config_item types [-v] [-d] [-h] config item types file
Parameters

-v
Displays information about successful or failed processing as the utility runs.

22-2

Chapter 22
load_pin_bill_suppression

< Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -v at the beginning or end of a
command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

load_config_item_types any_other_parameter —v > filename.log

-d
Creates a log file for debugging purposes. Use this parameter for debugging when the utility
appears to have run with no errors, but the data has not been loaded into the database.

-h
Displays the syntax and parameters for this utility.

config_item_types_file
The name and location of the file that contains your custom item definitions. You can use the
sample file, BRM_homelsysldatalpricing/lexamplel/config_item_types.xml.

Results

The load_config_item_types utility notifies you when it successfully creates the Iconfig/
item_types object.

If the load_config_item_types utility does not notify you that it was successful, look in the
utility log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

load_pin_bill_suppression

ORACLE

Use this utility to load bill suppression information for customer segments into the BRM
database. See the following topics:

» Associating Bill Suppression Information with Customer Segments
» Editing the Bill Suppression Configuration File

Location

BRM_homelbin

Syntax

load pin bill suppression [-t] [-v] [-d] [-h] filename

Parameters

-t

Runs the utility in test mode to validate the XML file against its schema definition (see

"Validating Your Bill Suppression Configuration File Edits"). This option does not load data
into the Iconfig/suppression object or overwrite any existing data in the object.

22-3

ORACLE

Chapter 22
load_pin_bill_suppression

< Note:

To avoid load errors based on XML content problems, run the utility with this
option before loading data into the object.

-v
Displays information about successful or failed processing as the utility runs.

" Note:

This parameter is always used with other parameters and commands. It is
not position dependent. For example, you can enter -v at the beginning or
end of a command to initiate the verbose parameter. To redirect the output
to a log file, use the following syntax with the verbose parameter. Replace
filename.log with the name of the log file:

load_pin_bill_suppression any_other_parameter —v > filename.log

-d

Creates a log file for debugging purposes. If no log file name is specified in the utility's
pin.conf file, name the file default.pinlog. Use this parameter for debugging when
the utility seems to have run with no errors but the data has not been loaded into the
database.

-h
Displays the syntax and parameters for this utility.

filename

The name and location of the bill suppression configuration file. The default file is
BRM_homelsysldatalconfig/pin_bill_suppression.xml, but the utility can take any
XML file name as a parameter if the file's contents conform to the appropriate schema
definition. See "Validating Your Bill Suppression Configuration File Edits".

If you run the command in a different directory from where filename is located, you
must include the entire path for the file. In addition, filename must be in the same
directory as the default BRM_homelsysldatalconfig/business_configuration.xsd
file.

Results

This utility notifies you only if it encounters errors. Look in the default.pinlog file for
errors. This file is either in the directory from which the utility was started or in a
directory specified in the utility configuration file.

To verify that the bill suppression information was loaded, display the Iconfigl/
suppression object by using one of the following features:

* Object Browser
* robj command with the testnap utility

For information about reading an object and writing its contents to a file, see "Reading
an Object and Writing Its Contents to a File” in BRM Developer's Guide.

22-4

Chapter 22
load_pin_billing_segment

< Note:

You must stop and restart the Connection Manager (CM) to make new bill
suppression data available.

load_pin_billing_segment

ORACLE

Use this utility to load billing segment definitions into the BRM database. See "Setting Up
Billing Segments".

Location

BRM_homelbin

Syntax

load pin billing segment [-t] [-v] [-d] [-h] filename
Parameters

-t

Runs the utility in test mode to validate the XML file against its schema definition (see
"Validating Your Billing Segment Configuration File Edits"). This option does not load data
into the Iconfig/billing_segment object or overwrite any existing data in the object.

Note:

To avoid load errors based on XML content problems, run the utility with this option
before loading data into the object.

-v
Displays information about successful or failed processing as the utility runs.

" Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -v at the beginning or end of a
command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

load_pin_billing_segment any other_parameter —v > filename.log

-d

Creates a log file for debugging purposes. If no log file name is specified in the utility's
pin.conf file, name the file default.pinlog. Use this parameter for debugging when the utility
seems to have run with no errors but the data has not been loaded into the database.

22-5

Chapter 22
load_pin_calendar

-h
Displays the syntax and parameters for this utility.

filename

The name and location of the billing segment configuration file. The default file is
BRM_homelsysldatalconfig/pin_billing_segment.xml, but the utility can take any
XML file name as a parameter if the file's contents conform to the appropriate schema
definition. See "Validating Your Billing Segment Configuration File Edits".

If you run the command in a different directory from where filename is located, you
must include the entire path for the file. In addition, filename must be in the same
directory as the default BRM_homelsysldatalconfig/business_configuration.xsd
file.

Results

This utility notifies you only if it encounters errors. Look in the default.pinlog file for
errors. This file is either in the directory from which the utility was started or in a
directory specified in the utility configuration file.

To verify that the billing segment definitions were loaded, display the Iconfig/
billing_segment object by using one of the following features:

» Object Browser
» robj command with the testnap utility

For information about reading an object and writing its contents to a file, see "Reading
an Object and Writing Its Contents to a File" in BRM Developer's Guide.

load_pin_calendar

ORACLE

Use this utility to load billing calendars into the BRM database. See "Editing the Billing
Calendar Configuration File ".

Location

BRM_homelbin

Syntax

load pin calendar [-t] [-d] [-v] [-h] filename

Parameters

-t

Runs the utility in test mode to validate the XML file against its schema definition (see

"Validating Your Billing Calendar Configuration File Edits"). This option does not load
data into Iconfig/calendar objects or overwrite any existing data in the objects.

¢ Note:

To avoid load errors based on XML content problems, run the utility with this
option before loading data into the object.

22-6

Chapter 22
load_pin_payment_term

-d
Creates a log file for debugging purposes. Use this parameter for debugging when the utility
seems to have run with no errors but the data has not been loaded into the database.

-v
Displays information about successful or failed processing as the utility runs.

< Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -v at the beginning or end of a
command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

load_pin_calendar any_other_parameter —v > filename.log

-h
Displays the syntax and parameters for this utility.

filename

The name and location of the billing calendar configuration file. The default file is
BRM_homelsysldatalconfig/pin_calendar.xml, but the utility can take any XML file name
as a parameter if the file's contents conform to the appropriate schema definition. See
"Validating Your Billing Calendar Configuration File Edits".

If you run the command in a different directory from where filename is located, you must
include the entire path for the file. In addition, filename must be in the same directory as the
default BRM_homelsysldatalconfig/business_configuration.xsd file.

Results

If the utility does not notify you that it was successful, look in the default.pinlog file to find
any errors. This file is either in the directory from which the utility was started or in a directory
specified in the utility configuration file.

load_pin_payment_term

ORACLE

Use this utility to load payment terms into the BRM database. See "Editing the Payment
Terms Configuration File ".

Location
BRM_homelbin

Syntax

load pin payment term [-t] [-h] [-v] [-d] filename

Parameters

-t

Runs the utility in test mode to validate the XML file against its schema definition. This option

does not load data into the /Iconfig/payment_term object or overwrite any existing data in
the object.

22-7

Chapter 22
load_pin_remittance_flds

< Note:

To avoid load errors based on XML content problems, run the utility with this
option before loading data into the object.

-h
Displays the syntax and parameters for this utility.

-d

Creates a log file for debugging purposes. Use this parameter for debugging when the
utility seems to have run with no errors but the data has not been loaded into the
database.

-v
Displays information about successful or failed processing as the utility runs.

Note:

This parameter is always used with other parameters and commands. It is
not position dependent. For example, you can enter -v at the beginning or
end of a command to initiate the verbose parameter. To redirect the output
to a log file, use the following syntax with the verbose parameter. Replace
filename.log with the name of the log file:

load_pin_payment_term any_other_parameter —v > filename.log

filename

The name and location of the payment terms configuration file. The default file is
BRM_homelsysldatalconfig/pin_payment_term.xml, but the utility can take any
XML file name as a parameter if the file's contents conform to the appropriate schema
definition.

If you run the command in a different directory from where filename is located, you
must include the entire path for the file. In addition, filename must be in the same
directory as the default BRM_homelsysldatalconfig/business_configuration.xsd
file.

Results

If the utility does not notify you that it was successful, look in the default.pinlog file to
find any errors. This file is either in the directory from which the utility was started or in
a directory specified in the utility configuration file.

load_pin_remittance_flds

Use this utility to load remittance field definitions into the BRM database. A remittance
field corresponds to an attribute of a storable class and is used to define criteria in
remittance profiles. Loading these field definitions is a prerequisite to using the BRM
remittance feature.

You define remittance fields in the BRM_homelsysldatalpricinglexample/
pin_remittance_flds file. Even if you do not modify the default version of this file, you
must load this file before you can define a remittance specification file.

ORACLE 22-8

Chapter 22
load _pin_remittance_flds

To connect to the BRM database, the load_pin_remittance_flds utility needs a configuration
file in the directory from which you run the utility. See "Connecting BRM Utilities".

Caution:

When you run load_pin_remittance_flds, it overwrites remittance fields currently
in the BRM database. If you are updating remittance fields, you cannot load only
new fields. Ensure that you load a complete remittance fields file, including fields
that have not changed.

Location

BRM_homelbin

Syntax

load pin remittance flds [-t] [-v] [-d] [-h] remittance flds

Parameters

-t
Runs the utility in test mode. This option does not save the field definitions to the BRM
database. You can use this parameter to verify if the file will load correctly.

-v
Displays information about successful or failed processing as the utility runs.

Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -v at the beginning or end of a
command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

load_pin_remittance_flds any_other_parameter —v > filename.log

-d

Creates a log file for debugging purposes. If no log file name is specified in the utility's
pin.conf file, the file is named default.pinlog. Use this parameter for debugging when the
utility seems to have run with no errors but the data has not been loaded into the database.

-h
Displays the syntax and parameters for this utility.

remittance_flds
The name and location of the remittance fields file. The default is BRM_homelsysldatal
pricinglexample/pin_remittance_flds.

ORACLE 22-9

Chapter 22
load_pin_remittance_spec

Results

This utility notifies you only if it encounters errors. Look in the default.pinlog file for
errors. This file is either in the directory from which the utility was started or in a
directory specified in the utility configuration file.

load_pin_remittance_spec

Use this utility to load remittance specifications into the BRM database. In a remittance
specification, you define the criteria that determine which third party receives
remittance and which product BRM uses to calculate remittance. You must load this
file to use the BRM remittance feature.

load_pin_remittance_spec checks the validity of products in the remittance
specification.

You define remittance specifications in the BRM_Homelsysldatalpricing/lexample/
pin_remittance_spec file, or another file that uses the same format.

Caution:

When you run load_pin_remittance_spec, it overwrites remittance
specifications currently in the BRM database. If you are updating remittance
information, you cannot load only new remittance specifications. Ensure that
you load your complete specification file, including specifications that have
not changed.

Location

BRM_homelbin

Syntax

load_pin remittance_spec [-t] [-v] [-d] [-h] filename

Parameters

-t

Runs the utility in test mode. This option does not save the specification file to the

BRM database. You can use this parameter to verify if the file will load correctly.

-v
Displays information about successful or failed processing as the utility runs.

ORACLE 22-10

Chapter 22
pin_hill_accts

< Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -v at the beginning or end of a
command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

load_pin_remittance_spec any_other_parameter —v > filename.log

-d

Creates a log file for debugging purposes. If no log file name is specified in the utility's
pin.conf file, name the file default.pinlog. Use this parameter for debugging when the utility
seems to have run with no errors but the data has not been loaded into the database.

-h
Displays the syntax and parameters for this utility.

filename
The name and location of the remittance specification file. The default is BRM_Homelsysl
data/pricing/example/pin_remittance_spec.

Results

This utility notifies you only if it encounters errors. Look in the default.pinlog file for errors.
This file is either in the directory from which the utility was started or in a directory specified in
the utility configuration file.

Note:

You must stop and restart the Connection Manager (CM) to make the new
specification available.

pin_bill_accts

ORACLE

Use this utility as part of your daily billing to calculate the balance due for each account and
to create a bill for the balance due. See "Billing Accounts By Using the pin_bill_accts Utility".

Location

BRM_homelbin

Syntax

-active|-inactive|-close]

-pay_type ID]
-end mm/dd/yy|numberOfDays]

pin bill accts

[
[
[
[-remit include|exclude|only]
[-sponsorship|-discount]

[-retry]

[-cycle_charge only] [-finalize bill]
[-check_for subords]

[-file billing run config file name]

22-11

Chapter 22
pin_bill_accts

-split]
-test]
-verbose]

[
[
[
[-help]

Parameters

-activel-inactive|-close
Specifies the status of the accounts to be billed.

-pay_type ID

Calculates the balance due for accounts with the specified payment method. You
specify the payment method by using the payment method 1D, such as 10007 for
nonpaying (subordinate) accounts, as shown in Table 22-1.

" Note:

If you use -pay_type 10007 Subordinate, you must run the pin_bill_accts
utility twice. The first time you run the utility with this parameter to calculate
the child account's balance, and the second time you run the utility without
the parameter to roll up the balance due to the parent account and then bill
the parent account.

This example creates bills by using -pay_type 10007 for nonpaying (subordinate)
accounts:

pin bill accts -active -pay_ type 10007
pin bill accts -active

Payment Method ID
credit card 10003
debit card 10002
direct debit 10005
guest 10010
invoice 10001
prepaid 10000
SEPA 10018
subordinate 10007
undefined 0

ORACLE

-end mm/dd/yy|numberOfDays

Specifies the due date for accounts to be billed. You can specify a specific due date
(for example, -end 01/31/01 includes accounts with a due date on or before January
31, 2001) or you can specify the due date as number of days from the current date
(for example, -end 5 includes accounts with a due date on or before 5 days from the
current date).

22-12

ORACLE

Chapter 22
pin_hill_accts

< Note:

The end time parameter cannot be greater than the system time. For example, if
the current system date is 1/15/2005 and the end time specified is 1/31/2005,
pin_bill_accts fails with “bad config:time" error message.

-sponsorship

Specifies how charge sharing groups are billed. When you specify this option, the
pin_bill_accts behavior is determined by the value of the BillingFlowSponsorship
parameter, which can be one of the following:

e 0: Bills owner and member accounts in any order.
» 1: Bills owner accounts before member accounts.
e 2: Bills member accounts before owner accounts.

Before using this option, ensure that BillingFlowSponsorship is set to the correct value.
See "Configuring Billing for Groups and Hierarchies".

" Note:

You cannot use this parameter with the -discount parameter.

-remit include|exclude|only
Specifies whether remittance accounts should be billed. Use one of these options with this
parameter:

e -remit include: Include remittance accounts in billing.
* -remit exclude: Exclude remittance accounts from billing.
* -remit only: Bill only remittance accounts.

If you do not specify this parameter, remittance accounts are excluded from billing. For
information on remittance, see "Remitting Funds to Third Parties".

-discount

Specifies how discount sharing groups are billed. When you specify this option,
pin_bill_accts behavior is determined by the value of the BillingFlowDiscount parameter,
which can be one of the following:

e 0: Bills owner and member accounts in any order.
e 1: Bills owner accounts before member accounts.
e 2: Bills member accounts before owner accounts.

Before using this option, ensure that BillingFlowDiscount is set to the correct value. See
"Configuring Billing for Groups and Hierarchies".

Note:

You cannot use this parameter with the -sponsorship parameter.

22-13

ORACLE

Chapter 22
pin_bill_accts

-cycle_charge_only

Runs billing on accounts with /billinfo bill states 0 and 1. All cycle fees and billing-
time discounts are applied, but totals are not calculated, and the bill is not finalized. At
the end of the billing run, the Ibillinfo bill state is set to 2. See "About Bill Unit States
and the pin_bill_accts Utility".

Note:

After running pin_bill_accts with this parameter, use the -finalize_bill
parameter to finalize the bill.

-finalize_bill

Runs billing on accounts with /billinfo bill state 2. Totals are calculated, and items,
bills, and so on are updated. At the end of the billing run, the Ibillinfo bill state is set
to 0. See "About Bill Unit States and the pin_bill_accts Utility".

Note:

e Use this parameter to finalize a bill after running the pin_bill_accts
utility with the -cycle_charge_only parameter.

-retry

Runs billing for accounts that were previously not billed by pin_bill_accts due to
some error. After the errors have been resolved, use this option to bill the failed
accounts.

Use pay_type 10007 with the -retry option to bill failed accounts that own nonpaying
bill units first, and then run it without the pay_type option to bill all other failed
accounts as follows:

pin_bill accts -active -retry -pay_type 10007
pin bill accts -active -retry

-file billing_run_config_file_name

Specifies the name and location of a billing run configuration file. The default file is
pin_bill_run_control.xml in the BRM_homelapps/pin_billd directory.

The billing run configuration file can contain either a list of account and bill unit POIDs
or a list of billing segments and accounting days of months (DOMSs).

22-14

Chapter 22
pin_hill_accts

< Note:

* When you run pin_bill_accts with a billing run configuration file, do not run it
as a cron job. If you do, depending on the restrictions in the configuration file,
some bill units might never be billed.

* When running pin_bill_accts with -file option, ensure that the accounts
specified in the billing run configuration file reside on the same database
schema where pin_bill_accts is run. If the file contains accounts from different
database schemas, pin_bill_accts reports an error. See "Setting Up Billing in
a Multischema Environment".

-split

Generates detail revenue assurance data if you have enabled its collection in the billing
utilities configuration file. (See "Enabling Billing Utilities to Generate Revenue Assurance
Data" in BRM Collecting Revenue Assurance Data.) You can view the detailed data by
generating Revenue Assurance Billing Detail report. The details are based on item types.

" Note:

If you specify both the -split and -file parameters and the input file for the -file
parameter includes a list of accounts and bill units, the Revenue Assurance Billing
Detail report does not segregate the data based on the billing segment and billing
day of month (DOM).

For more information, see "About Collecting Revenue Assurance Data from Billing" in BRM
Collecting Revenue Assurance Data.

-test
Tests the utility, but does not affect accounts. Use this parameter to see which accounts will
be billed, without actually creating bills for the balances due.

-verbose
Displays information about successful or failed processing as the utility runs.

" Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -verbose at the beginning or end
of a command to initiate the verbose parameter. To redirect the output to a log file,
use the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

pin_bill_accts any_other_parameter —verbose > filename.log

-help
Displays the syntax and parameters for this utility.

ORACLE 22-15

Chapter 22
pin_cust_convert_wholesale_hierarchy

Results

If the pin_bill_accts utility does not notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

When it is called internally by the pin_bill_day script, the pin_bill_accts utility logs
error information in the pin_mta.pinlog file.

Error Handling

When the pin_bill_accts utility detects that the cycle fee processing was not
completed for the /billinfo object, pin_bill_accts stops with an error and sets the
PIN_FLD_BILLING_STATUS field of the Ibillinfo object to PIN_BILL_ERROR. In
addition, it sets the PIN_FLD_BILLING_STATUS_FLAGS field of the /billinfo object to
PIN_BILL_FLAGS_CF_NOT_APPLIED (bit value 0x1000).

Note:

If any nonpaying child bill unit caused the failure, pin_bill_accts updates the
billing statuses set in the PIN_FLD_BILLING_STATUS and
PIN_FLD_BILLING_STATUS_FLAGS fields of the Ibillinfo object for both
child and parent bill units.

pin_cust_convert_wholesale_hierarchy

ORACLE

Use this utility to convert one or more hierarchies to wholesale billing. See "Converting
Existing Bill Unit Hierarchies to Wholesale Billing" for information about the
composition of the input file. See "Configuring Wholesale Billing" for more information
about wholesale billing.

Location

BRM_homelbin

Syntax

pin_cust_convert wholesale hierarchy -file convert wholesale input.xml

Parameters

-file convert_wholesale_input.xml

Specifies the name and location of an input file containing information about the
hierarchies to be converted.

The input file can contain either a list of /billinfo POIDs or a list of IBusinessProfile
POIDs for the hierarchies to be converted.

Results

Each thread of this application will call the
PCM_OP_CUST_CONVERT_WHOLESALE_HIERARCHY opcode to convert the
hierarchy for a parent account bill unit.

22-16

Chapter 22
pin_cycle_fees

Error Handling

This application checks for multiple bill units on a single parent account, and if found, does
not proceed for that account. Accounts with multiple parent bill units are not allowed in
wholesale billing.

pin_cycle fees

ORACLE

Use this utility to perform the following tasks:

e Charge cycle forward fees.

* Identify cycle forward fees that have reached the end of free billing periods. For example,
if a customer signs up for one month of free service, the pin_cycle_fees utility finds
when the free period is over and applies the cycle forward fee balance impact to the
customer's account.

« Cancel charge offers that have an expired pending cancellation date. For example, if a
charge offer is set to cancel at a future date, the pin_cycle_fees utility cancels the
charge offer.

- Bill charge offers with a delayed purchase start time.
See "Prorating Cycle-Forward Fees and Canceling Charge Offers By Using the
pin_cycle fees Utility".

Location

BRM_homelbin

Syntax

pin_cycle fees -reqgular cycle fees|-defer cycle fees|-defer cancel|-defer purchase
[-start mm/dd/yy|number of days]
[-end mm/dd/yy|number of days]
[-verbose] [-test] [-help]

Parameters

-regular_cycle_fees
Charges cycle forward fees.

¢ Note:
The -regular_cycle_fees parameter replaces the functionality of the
pin_cycle_forward utility.
-defer_cycle_fees

Identifies and applies cycle forward fees that have reached the end of free billing periods.

-defer_cancel
Cancels expired charge offers.

-defer_purchase
Bills charge offers with a delayed purchase start time.

22-17

ORACLE

Chapter 22
pin_cycle fees

-start [mm/dd/yy or yyyy|number_of days]

-end [mm/dd/yy or yyyy|number of days]

Start and end dates.

If a start date is specified, the entire day is included. The end date is automatically the
current date if you do not specify a value for the -end parameter.

If an end date is specified, that entire day is included, ending at, but not including, the
Oth (first) second of the next day (00:00:00 a.m.). The end date cannot be a future
date.

-test

Tests the utility, but does not affect accounts. Use this parameter to see which
accounts have reached the end of free billing without actually applying cycle forward
fees or canceling the expired charge offers.

-verbose
Displays information about successful or failed processing as the utility runs.

" Note:

This parameter is always used with other parameters and commands. It is
not position dependent. For example, you can enter -verbose at the
beginning or end of a command to initiate the verbose parameter. To
redirect the output to a log file, use the following syntax with the verbose
parameter. Replace filename.log with the name of the log file:
pin_cycle_fees any other_parameter —verbose > filename.log

-help
Displays the syntax and parameters for this utility.

Results

If the pin_cycle_fees utility does not notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

When it is called internally by the pin_bill_day script, the pin_cycle_fees utility logs
error information in the pin_mta.pinlog file.

Error Handling

When the pin_cycle_fees utility encounters an error in applying regular, deferred,
deferred purchase, or deferred cancellation cycle fees, it sets the
PIN_FLD_BILLING_STATUS billing status field of the Ibillinfo object to
PIN_BILL_ERROR. In addition, it sets the appropriate bit of the
PIN_FLD_BILLING_STATUS_FLAGS field of the Ibillinfo object as follows:

e For regular cycle fees: PIN_BILL_FLAGS_CF_ERROR (bit value 0x100)
» For deferred cycle fees: PIN_BILL_FLAGS DEF_CF_ERROR (bit value 0x200)

e For deferred purchase cycle fees: PIN_BILL_FLAGS DEF PURCHASE_ ERROR
(bit value 0x400)

» For deferred cancel cycle fees: PIN_BILL_FLAGS DEF CANCEL_ERROR (hit
value 0x800)

22-18

Chapter 22
pin_make_corrective_hills

< Note:

If any nonpaying child bill unit caused the failure, pin_cycle_fees updates the
billing statuses set in the PIN_FLD_BILLING_STATUS and
PIN_FLD_BILLING_STATUS_FLAGS fields of the Ibillinfo object for both child and
parent bill units.

When the status of the Ibillinfo object is set to PIN_BILL_ERROR, the pin_bill_accts utility,
which runs after pin_cycle_fees, does not select this Ibillinfo object for billing. If you rerun
pin_bill_accts with the -retry option, the billing opcode stops with an error because the cycle
fee processing failed for this Ibillinfo object.

Rerun pin_cycle_fees (directly or through the pin_bill_day script) before you can run billing
on this Ibillinfo object.

pin_make_corrective_bhills

ORACLE

Use the pin_make_corrective_bills utility to generate corrective bills for prior bills that have
corrections or to process corrections on prior corrective bills. See "Creating Corrective Bills".

This utility should be used for corrective billing only. For regular bills, use "pin_bill_accts".

Location

BRM_homelbin

Syntax

pin_make corrective bills [-bill no billl, billZ,...]
[-account_no acctl, acct2, acct3,...]
[-start mm/dd/yy|number of days]
[-end mm/dd/yy|number of days]
[-file file name]

[-item_type /item/A/R item]
[-adj_reason D id R id]
[-threshold amount min amt]
[-correction_reason D id R id]
[-corrective_inv_type R|L D|S]
[-no_adj_create [Y | NJ]]
[-validate_only]

[-help]

Parameters

-bill_no bill1, bill2...
Specifies the bill numbers for which corrective bills are required.

-account_no acctl, acct2, acct3...
Specifies the account numbers for which corrective bills are required.

-start mm/dd/yylnumber_of days

Specifies the start time to use in selecting the bills for corrective billing. When you specify the
start date as a specific date, for example -start 01/31/01, the utility attempts to create
corrective bills for all bills finalized on or before January 31, 2001. When you specify the start

22-19

ORACLE

Chapter 22
pin_make_corrective_hills

date as a number of days, for example -end 5, the utility attempts to create corrective
bills for all bills finalized on or in the 5 days before the current date).

If you omit this parameter, pin_make_corrective_bills sets the start date to 1 month
before the current date.

-end mm/dd/yy|number_of _days

Specifies the due date for accounts to be billed. You can specify a specific due date
(for example, -end 01/31/12 includes accounts with a due date on or before January
31, 2012) or you can specify the due date as number of days from the current date
(for example, -end 5 includes accounts with a due date on or 5 days before the
current date).

If you omit this parameter, pin_make_corrective_bill sets the end date for the
corrective billing for each selected bill to the end date on that bill.

Note:

The end time parameter cannot be greater than the system time. For
example, if the current system date is 1/15/2012 and the end time specified
is 1/31/2012, pin_make_corrective_bills fails with “bad config:time" error
message.

-file file_name
Specifies that the list of accounts or the list of bill numbers will be read from a file, and
provides the associated file name. The input file should be in XML format.

-item_typelitem/A/R _item

Specifies the A/R item allocated to a bill as the criteria for selecting bills to include in
the corrective billing. Enter the A/R item for example, litem/adjustment, /item/
disputed, /item/writeoff, litem/recvd. Use -item_type item/any to select all A/R
items. If you omit this parameter, pin_make_corrective_bills uses the default value, /
item/adjustment, to select only those bills with adjustments allocated to them.

-adj_reason D_id R_id

Specifies the event-adjustment reasons associated with a bill as the criteria for
selecting bills to include in the corrective billing. If you enter this parameter, you must
specify both D_id which is the event adjustment domain number and R_id the reason
number.

For example, -adj_reason D_id R_id

-threshold_amount min_amt

Specifies the minimum amount for A/R actions that should be reached in a bill to
generate a corrective bill. pin_make_corrective_bills uses the value you input with
the -threshold_amount parameter. If you omit this parameter,
pin_make_corrective_bills uses the value currently in the CorrectiveBillThreshold
business parameter.

-correction_reasonD_id R _id

Specifies the correction reason to associated with the corrective bills. You must
specify both D_id which is the event adjustment domain number and R_id the reason
number.

For example, -correction_reason D_id R_id.

22-20

Chapter 22
pin_remittance

-corrective_inv_type R|L D|S

Specify the type of corrective invoice to associate with each corrective bill. R indicates
Replacement Invoice and L indicates Invoice Correction Letter. S indicates Summary
and D indicates Detail.

Enter the two values separated by a blank. For example, to generate a detailed replacement
invoice, you specify -corrective_inv_type R D when you run the
pin_make_corrective_bills utility.

If you omit one of the entries (as in -corrective_inv_type R) or omit the blank between the
two entries (as in -corrective_inv_type RD), the pin_make_corrective_bills application will
fail to generate the corrective bill.

-create_if_no_corrections Y|N

Specifies whether to generate the corrective bill when there are no A/R charges for a bill.
The default value is N which results in pin_make_corrective_bills not generating the
corrective hill for any bill with no A/R charges.

If you enter Y as the value for -create_if _no_corrections, set the -corrective_inv_type
parameter to R (to indicate Replacement Invoice). pin_make_corrective_bills will not
create the corrective bill if you specify -corrective_inv_type as L when you enter Y as the
value for -create_if_no_corrections.

If you enter Y as the value for -create_if _no_corrections and you omit the -
corrective_inv_type parameter, pin_make_corrective_bills creates the corrective bill if
the Ipayinfo object for the account indicates a replacement invoice as the type of corrective
invoice. Otherwise, it fails to create the corrective bill.

-validate_only

Specifies that pin_make_corrective_bills should only validate the eligibility of the bills for
corrective billing. When you run pin_make_corrective_bills with the -validate_only
parameter, the utility only verifies that the selected accounts or bills are eligible for corrective
billing. It does not generate corrective bills.

When you use the -validate_only parameter, pin_make_corrective_bills lists the
information for each bill in the default.pinlog log file.

-help
Displays the syntax and parameters for this utility.

Results

The pin_make_corrective_bills utility creates an entry in the default.pinlog utility log file for
any errors it encounters in its process. The default.pinlog log file is either in the directory
from which the utility was started, or in a directory specified in the configuration file.

Error Handling

If billing fails due to errors in bill units, the pin_make_corrective_bills utility automatically
updates the billing status field in their Ibillinfo objects to error. If any nonpaying child bill
units caused the failure, the utility updates the billing status for both child and parent bill units.

pin_remittance

Use this utility to calculate the remittance you owe to third parties, such as service providers
and resellers. Typically, you run pin_remittance as part of the monthly remittance script,
pin_remit_month, but you can also run it apart from the script. You should run billing on non-
remittance accounts before calculating remittance.

ORACLE 22-21

ORACLE

Chapter 22
pin_remittance

< Note:

To connect to the BRM database, the pin_remittance utility needs a
configuration file in the directory from which you run the utility. See
"Connecting BRM Utilities".

Location

BRM_homelbin

Syntax

pin_remittance [-acct account number] [-end date] [-output file name]
[-calconly] [-verbose] [-billing cycle alignment]
[-help]

Parameters

-acct account_number

Calculates the remittance owed to an account. You can specify only one account
number. Ensure that the account owns a remittance product.

If you do not use this parameter, pin_remittance runs on all remittance accounts.

-end date

Specifies the end date for which events are part of the calculation. pin_remittance
calculates remittance for events that occurred before midnight of the day before the
end date. For example, if the end date is 02/13/2020, pin_remittance includes all
remittance events that took place through midnight of 02/12/2020.

If you do not specify this parameter, the end date is the current date. The start date is
always the date of the previous remittance calculation.

The date format is mm/dd/yyyy.

-output [file_name]

Creates a remittance report. If you do not specify a file name, the report's default
name is rem_date.rep, where date is the end date. To use a different name, specify
that name with this parameter. If a file already exists with the report name you specify,
pin_remittance overwrites the existing file.

-calconly
Calculates the remittance without writing the results to the BRM database. Use this
parameter for testing and verification.

-billing_cycle_alignment

When the utility is run with the -billing_cycle_alignment parameter, the opcode's
input PIN_FLD_FLAGS field is set to 1. This sets the opcode's current time and date
to whichever of the following is earliest:

* BRM's current time and date
» Value of the utility's optional -end date parameter
* One second before the account's next billing cycle begins

This ensures that billing is not triggered before remittance is calculated when the
utility is run after a remittance account's billing date.

22-22

Chapter 22
pin_rollover

< Note:

By default, the pin_remit_month script runs the pin_remittance utility with the -
billing_cycle_alignment parameter.

-verbose
Displays information about successful or failed processing as the utility runs.

" Note:

This parameter is always used with other parameters and commands. It is not
position dependent. For example, you can enter -v at the beginning or end of a
command to initiate the verbose parameter. To redirect the output to a log file, use
the following syntax with the verbose parameter. Replace filename.log with the
name of the log file:

pin_remittance any_other_parameter —v > filename.log

-help
Displays the syntax and parameters for this utility.

Results

If the pin_remittance utility does not notify you that it was successful, look in the utility log
file (default.pinlog) to find any errors. The log file is either in the directory from which the
utility was started or in a directory specified in the configuration file.

pin_rollover

ORACLE

The pin_bill_day script runs this Oracle Communications Billing and Revenue Management
(BRM) utility to roll over all expired sub-balances that have not been rolled over.

For more information, see "When Rollover Events Occur" in PDC Creating Product Offerings.
Location

BRM_homelbin

Syntax
pin_rollover [-verbose] [-test]
Parameters

-verbose
Displays information about successful or failed processing as the utility runs.

-test

Runs in test mode to find the accounts that meet the criteria for roll over, but does not
perform any rollover. The test does not affect the balances (currency and noncurrency) of the
accounts.

22-23

Chapter 22
pin_trial_bill_accts

Results

If the pin_rollover utility does not notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from
which the utility was started or in a directory specified in the configuration file.

pin_trial_bill_accts

ORACLE

Use this utility to calculate the balance due and create a trial invoice for each account.

" Note:

Trial billing stops and reports a warning message when it encounters an
account or bill unit with inactive status.

For information about trial billing, see "About Trial Billing".

Note:

e To connect to the BRM database, the pin_trial_bill_accts utility needs a
configuration file in the directory from which you run the utility. The
pin.conf file for this utility is in BRM_homelappslpin_trial_bill. See
"Connecting BRM Utilities" in BRM System Administrator's Guide.

e Trial billing may stop responding if the Data Manager has too few back
ends configured. You should change the default configuration settings for
Data Manager and increase the number of back ends. For more
information about setting the number of back ends, see "Improving Data
Manager and Queue Manager Performance" in BRM System
Administrator's Guide.

Location

BRM_homelbin

Syntax
pin_trial bill accts [-start mm/dd/yy|+/- numberOfDays|0]
-end mm/dd/yy|+/- numberOfDays|0]
-f inputFile|-f_control inputFile]
-active|-inactive|-closed]

-bill only]

-pay_type ID]

-retry]

-split]

-verbose]

[
[
[
[
[
[
[
[
[
[-help]

22-24

ORACLE

Chapter 22
pin_trial_bill_accts

Parameters

-start mm/dd/yy or yyyy|+I- numberOfDays|0

-end mm/dd/yy or yyyy|+I- numberOfDays|0

The start and end dates determine which accounts are selected for trial billing and which
billing cycles for those accounts are trial billed. See "Running Trial Billing With Date
Ranges".

-f inputFile

Specifies the text file that contains the list of account POIDs for trial billing.

Example:

Create trial invoices for accounts in inputFile whose billing date is less than 4/1/2002 (current
date is 3/15/2002):

pin_trial bill accts -end 04/01/2002 -f myListOfAccounts

-f_control inputFile

Specifies the name and location of a text file that contains additional criteria for selecting
accounts and bill units for trial billing. The default file is pin_bill_run_control.xml in the
BRM_homelappsl/pin_billd directory.

This file can contain a list of account and bill unit POIDs or a list of billing segments,
accounting days of month (DOMSs), or both.

For more information, see "Specifying Bill Units, Billing Segments, and DOMs for Trial
Billing".

Note:

You should not specify billing segments or accounting DOMs with bill unit POIDs in
the input file. If you do, the utility considers only the bill units for trial billing

The billing run configuration file can contain either a list of account and bill unit POIDs or a
list of billing segments and accounting days of months (DOMs)

-active|-inactive|-closed
Searches for accounts whose status is active, inactive, or closed. By default, all accounts are
searched.

¢ Note:

The active, inactive, or closed parameter does not apply when you use the -f
parameter.

-bill_only

Performs trial billing without generating trial invoices and collects revenue assurance data if
you have enabled its collection in the trial billing utility configuration file. For more
information, see "About Collecting Revenue Assurance Data from Trial Billing".

-pay_type ID

Generates trial invoices for accounts with the specified payment method ID. If you do not
specify the payment method ID, the pin_trial_bill_accts utility generates trial invoices for all
payment methods. See "Running Trial Billing According to Payment Type".

22-25

Chapter 22
pin_trial_bill_purge

-retry

Runs trial billing for hierarchical bill units that were previously not billed during a trial
invoicing run because of one or more errors. After the errors are resolved, use this
parameter to rebill the unbilled hierarchical bill units.

You must run nonpaying child bill units before running paying parent bill units. You
must also regenerate trial invoices on the parent bill units that did not contain an error.
For example, to run trial billing on bill units that contained an error and whose
payment method is by check, use the following syntax:

pin_trial bill accts -pay_type 10007 -retry
pin_trial bill accts -pay_type 10012 -retry
pin_trial bill accts -pay_type 10012

-split

Generates detail revenue assurance data if you have enabled its collection in the trial
billing utility configuration file. This parameter is valid only if Revenue Assurance
Manager is installed.

< Note:

If you use this parameter, trial invoices are generated unless you also
specify the -bill_only parameter.

You can view the detailed data by generating Revenue Assurance Billing Detail report.
The details are based on item types.

Note:

If you specify both the -split and -f_control parameters and the input file for
the -f_control parameter includes a list of accounts and bill units, the
Revenue Assurance Billing Detail report does not segregate the data based
on the billing segment and billing day of month (DOM).

For more information, see "About Collecting Revenue Assurance Data from Trial
Billing".

-verbose
Displays information about successful or failed processing as the utility runs.

-help
Displays the syntax and parameters for this utility.

Results

If the pin_trial_bill_accts utility does not notify you that it was successful, look in the
utility log file (default.pinlog) to find any errors. The log file is either in the directory
from which the utility was started or in a directory specified in the configuration file.

pin_trial_bill_purge

Use this utility to purge trial invoices created with the "pin_trial_bill_accts" utility. For
information about trial billing, see "Running Trial Billing".

ORACLE 22-26

ORACLE

Chapter 22
pin_trial_bill_purge

< Note:

To connect to the BRM database, the utility needs a configuration file in the
directory from which you run the utility. The pin.conf file for this utility is in
BRM_homelappsl/pin_trial_bill. See "Connecting BRM Utilities" in BRM System
Administrator's Guide.

Location

BRM_homelbin

Syntax

pin_trial bill purge [-start mm/dd/yy|+/- number of days|0]
[-end mm/dd/yy|+/- number of days|0]
[-active|-inactive|-closed]

[-f inputFile|-all]

(

-verbose] [-help]

Parameters

-start mm/dd/yy or yyyy|+I- number_of_days|0

The start and end dates determine the billing cycles for which trial invoices are purged.
Billing cycles must fall entirely within the range created by the start and end dates, except fall
between the start and end dates. You can specify an absolute date or number of days
before or after the current date.

Note:

If you do not specify a start date, pin_trial_bill_purge will purge trial invoices for
all billing cycles before the end date for the account. If end date is not specified, it
uses the current date.

-end mm/dd/yy or yyyy|+I- number_of_days|0

The end date is used as the search criteria for retrieving accounts for purging trial invoices. It
selects all accounts whose billing date is less than the end date. You can specify an absolute
date or number of days before or after the current date.

" Note:

If you do not specify an end date, pin_trial_bill_purge uses the current date for
the end date.

Examples:

Purge trial invoices for accounts whose billing date is on or before 4/1/2032 (current date is
3/15/2032):

pin_trial_bill_purge -end 4/1/2032

pin_trial_bill_purge -end +16

22-27

ORACLE

Chapter 22
pin_trial_bill_purge

Purge trial invoices for accounts whose billing date is on or before 3/1/2032 (current
date is 3/15/2032)

pin_trial_bill_purge -end 3/1/2032

pin_trial_bill_purge -end -14

Purge trial invoices for accounts whose billing date is on or before the current date:
pin_trial_bill_purge -end 0

pin_trial_bill_purge

Purge trial invoices for accounts with complete billing cycles between 2/1/2032 and
3/15/2032 (current date is 3/15/2032):

pin_trial_bill_purge -start 2/1/2032 -end 3/15/2032

pin_trial_bill_purge -start -45 -end O

-activel-inactive|-closed
Searches for accounts whose status is active, inactive, or closed. By default, all
accounts are searched.

< Note:

These parameters do not apply when you use the -f parameter.

-f inputFile

Specifies the text file that contains the list of account POIDs.

For example, to purge trial invoices for accounts in inputFile whose billing date is less
than 4/1/2032 (current date is 4/15/2032):

pin_trial_bill_purge -end 4/1/2032 -f myListOfAccounts

-all
Purges all trial invoices in the database.

-verbose
Displays information about successful or failed processing as the utility runs.

Note:

This parameter is always used with other parameters and commands. It is
not position dependent. For example, you can enter -verbose at the
beginning or end of a command to initiate the verbose parameter. To
redirect the output to a log file, use the following syntax with the verbose
parameter. Replace filename.log with the name of the log file:
pin_trial_bill_purge any other_parameter —v > filename.log

-help
Displays the syntax and parameters for this utility.

22-28

Chapter 22
pin_update_journals

< Note:

If you do not specify a start or end date or a file with list of accounts,
pin_trial_bill_purge selects all accounts whose billing date is on or before the
current date.

Results

If the pin_trial_bill_purge utility does not notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from which the
utility was started, or in a directory specified in the configuration file.

pin_update_journals

ORACLE

Use the pin_update_journals utility to process the temporary journals of nonpaying child bill
units and then roll them up to the paying parent bill unit. You must run this utility before billing
the paying parent bill unit. See "Rolling Journals Up to the Wholesale Parent".

< Note:

To connect to the BRM database, the pin_update_journals utility needs a
configuration file in the directory from which you run the utility. See "Connecting
BRM Utilities" in BRM System Administrator's Guide.

Location

BRM_homelbin

Syntax

pin_update_ journals [-verbose] [-help]
Parameters

-verbose
Displays information about successful or failed processing as the utility runs.

-help
Displays the syntax and parameters for this utility.

Results

If the pin_update_journals utility does not notify you that it was successful, look in the utility
log file (default.pinlog) to find any errors. The log file is either in the directory from which the
utility was started or in a directory specified in the configuration file.

Error Handling

When the pin_update_journals utility encounters an error while processing A/R items in the
temporary tables, it sets the PIN_FLD_BILLING_STATUS billing status field of the paying
parent bill unit (/billinfo object) to PIN_BILL_ERROR. In addition, it sets the appropriate bit of

22-29

ORACLE

Chapter 22
pin_update_journals

the PIN_FLD_BILLING_STATUS_FLAGS field of the Ibillinfo object as
PIN_BILL_FLAGS_UPDATE_JOURNALS_ ERROR (bit value 0x2000).

After you have resolved the processing errors, you can reprocess the A/R items by
running the pin_update_journals utility again.

22-30

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 Running Billing Scripts
	Running the Billing Scripts
	Changing the Path in the Billing Scripts
	Running the pin_bill_day Script for Bill Run Management
	Handling Billing Failures

	2 About the Billing Utilities
	Billing Accounts By Using the pin_bill_accts Utility
	When to Run the pin_bill_accts Utility
	About Bill Unit States and the pin_bill_accts Utility

	Prorating Cycle-Forward Fees and Canceling Charge Offers By Using the pin_cycle_fees Utility
	When to Run the pin_cycle_fees Utility
	Improving Performance of the pin_cycle_fees Utility

	3 Setting Default Billing Properties for Account Creation
	Setting the Default Accounting Day of Month
	Setting the Default Billing-Cycle Length
	Specifying the Maximum Number of Months Allowed in Billing Cycles
	Setting the Default Accounting Type
	Setting the First Billing Cycle to the Day after Account Creation

	4 Configuring Billing
	Specifying the Minimum Payment to Collect
	Setting the Minimum Amount to Charge

	Customizing the Format of Bill and Invoice Numbers
	Specifying When to Apply Custom Bill Numbers
	Configuring Auto-Triggered Billing
	Setting the Bill Unit Status When Billing Errors Occur

	5 Managing Billing and Accounting Cycles
	Specifying How to Handle Partial Accounting Cycles
	Configuring Timestamp Rounding
	Aligning Account and Cycle Start and End Times
	Defining When Billing-Time Discounts Are Applied
	Including Previous Balances in the Current Amount Due in Open Item Accounting
	Specifying Which Billing Cycle to Assign to Deferred Purchase Fees
	Calculating Cycle Fees for Backdating

	6 Configuring Bill Now
	About Bill Now
	Providing Discounts to Closed Accounts When Using Bill Now
	Prorating Cycle Arrears and Cycle Forward Arrears for Bill Now
	Running Bill Now to Create Two Bills during the Delayed Billing Period
	Customizing Bill Now

	7 Setting Up Delayed Billing
	About Delayed Billing
	Delayed Billing and Rollovers
	Changing the Billing DOM When Delayed Billing is Enabled
	How BRM Assigns Delayed Events to Items

	Configuring Delayed Billing
	Configuring Auto-Triggered Billing for Delayed Billing
	Configuring an Accounting Cycle Delay Period
	Specifying When to Apply Cycle Forward Fees and Cycle Rollovers
	Enforcing Partial Billing in the Billing Delay Interval
	Setting Delayed Cycle Start Dates to the 29th, 30th, or 31st
	Billing Cycle Override for Delayed Billing

	8 Configuring 31-Day Billing
	About Using 31-Day Billing
	Enabling the 31-Day Billing Feature
	Switching to 31-Day Billing During BRM Installation
	Switching to 31-Day Billing After You Install BRM

	Disabling the 31-Day Billing Feature
	Setting the Forward and Back Billing Options

	9 Configuring the Billing Cutoff Time
	About Configuring the BRM Cutoff Time
	How Billing and Invoicing Are Affected by Changing the Cutoff Time
	How Rating Is Affected by Changing the Cutoff Time
	How General Ledger (G/L) Is Affected by Changing the Cutoff Time
	How Timestamp Fields Are Affected by Changing the Cutoff Time

	Configuring the Billing Cutoff Time

	10 Configuring Billing for Groups and Hierarchies
	Setting Up Billing for Charge and Discount Sharing Groups
	Skipping Validation of Billing for Nonpaying Child Bill Units

	11 Configuring Wholesale Billing
	About Wholesale Billing
	Setting Up Billing for Wholesale Account Hierarchies
	Enabling Wholesale Billing for All Accounts
	Creating Wholesale Accounts and Bill Unit Hierarchies
	Configuring Wholesale Business Profile
	Setting Up a Wholesale Parent
	Rolling Charges Up to the Wholesale Parent
	Rolling A/R Actions Up to the Wholesale Parent
	Rolling Journals Up to the Wholesale Parent

	Converting Existing Bill Unit Hierarchies to Wholesale Billing
	Running Wholesale Billing
	Configuring Billing Delay for Wholesale Hierarchies
	Setting Up Billing-Time Discounts for Wholesale Hierarchies
	Suppressing Bills for Wholesale Hierarchies
	Trial Billing for Wholesale Hierarchies
	Support for A/R Activities
	Specifying Search Criteria for Retrieving Items, Events, and Bills
	Moving Bill Units into or out of Wholesale Hierarchies
	Specifying How to Calculate Deferred Taxes for Wholesale Billing

	12 Load Balancing Billing Runs
	About Managing Billing Cycles
	Implementing Bill Cycle Management
	Setting Up Billing Segments
	Editing the Billing Segment Configuration File
	Updating Billing Segments

	Associating Bill Units with Billing Segments
	Changing a Bill Unit's Billing Segment

	Assigning Accounting Days of Month to Bill Units in Billing Segments
	Manually Assigning a Billing DOM
	Automatically Assigning a Billing DOM
	Changing a Bill Unit's Billing DOM

	13 About Proration
	Calculating Prorated Cycle Fees
	Calculating the Unit Interval
	Calculating Unit Interval When use_number_of_days_in_month Is Not Set or 0
	Calculating Unit Interval When use_number_of_days_in_month Is Set to 1
	Calculating Unit Interval When Billing Day of Month Is 29, 30, or 31

	Examples of Proration
	Example 1: Use_number_of_days_in_month Is Not Set or Set to 0
	Example 2: Use_number_of_days_in_month Is Set to 1

	Examples Using the 29th, 30th, and 31st for Billing Day of Month
	Example 3a: Use Forward Option with use_number_of_days_in_month Set to 0
	Example 3b: Use Forward Option with use_number_of_days_in_month Set to 1
	Example 3c: Use Back Option with use_number_of_days_in_month Set to 1
	Example 3d: Use Back Option with use_number_of_days_in_month Set to 0

	Proration for Special Cases
	Special Cases
	Addressing Special Cases

	About 30-Day-Based Proration
	Examples of 30-Day-Based Proration
	Example 6: Prorated Purchase Fee with 31-day Billing Cycle
	Example 7: Prorated Cancel Fee with 31-day Billing Cycle
	Example 8: Prorated Purchase Fee with 28-Day Billing Cycle
	Example 9: Prorated Cancel Fee with 28-Day Billing Cycle

	Special Cases
	Example 10: Full Purchase Fee Charged When Service Is Provided for 1 Day Less
	Example 11: Full Cancel Fee Refunded When Service Has Been Used for 1 Day

	Enabling 30-Day-Based Proration

	Using Two Events to Prorate Charges for Charge Offers Whose Validity Ends in First Cycle
	Prorating Cycle Fees after a Discount Purchase or Cancellation
	Examples of Cycle Fee Proration
	Example 12: Cycle Fee Is Refunded after a Discount Purchase
	Example 13: Minutes Are Prorated after a Discount Cancellation
	Example 14: Canceled Discount Proration Is Not Taken into Account When Charge Offer Is Canceled

	Prorating Cycle Fees When a Discount's Cycle Start or End Date Is Changed
	Examples of Cycle Fee Proration
	Example 15: Cycle Fee Is Refunded When a Discount's Cycle Start Date Is Changed
	Example 16: Cycle Fee Is Charged When a Discount's Cycle Start Date Is Changed
	Example 17: Cycle Fee Is Refunded When Discount's Cycle End Date Is Changed
	Example 18: Cycle Fee Is Charged When Discount's Cycle End Date Is Changed

	14 Managing Large Billing Runs
	Billing Only Specified Accounts and Bill Units
	Splitting a Billing Run into Multiple Runs
	Configuring Auto-Triggered Billing for Bill Run Management
	Configuring a Split Billing Run
	About Sponsored Charges in Split Billing Runs
	Including Only Specified Billing DOMs in Billing Runs
	Including Only Specified Billing Segments in Billing Runs
	Sample Billing Run Configuration File
	Validating Your Billing Run Configuration File Edits

	Managing Bill Due Dates
	Managing Payment Terms
	Editing the Payment Terms Configuration File
	Loading Payment Terms
	Updating the pin.conf File to Use Payment Terms
	Assigning Payment Terms to Bill Units

	Managing Billing Calendars
	Setting Up Billing Calendars
	Editing the Billing Calendar Configuration File
	Updating Billing Calendars
	Associating Billing Calendars with Payment Terms

	Specifying Due Date Adjustments in a Billing Run
	Editing the Billing Run Configuration File to Adjust Bill Due Dates
	Sample Billing Run Configuration File
	Validating Your Billing Run Configuration File Edits

	15 About Bill Suppression
	About Suppressing Bills
	About Automatic Bill Suppression
	About Manual Bill Suppression
	About Manual Account Suppression
	Suppressed Accounts versus Inactive Accounts

	Exceptions to Bill Suppression
	How Exceptions Affect Manual Bill and Account Suppression

	Automatically Suppressing Bills
	Editing the Bill Suppression Configuration File
	Sample Bill Suppression Configuration File
	Validating Your Bill Suppression Configuration File Edits

	Associating Bill Suppression Information with Customer Segments

	16 Creating Custom Bill Items
	About Custom Bill Items
	About Defining Custom Bill Items
	Tracking Charges in Bill Items
	About Creating /item Objects
	About Assigning Custom Bill Items to Events
	About Using Event and Service Combinations to Assign Bill Items
	About Using Event Attributes to Assign Bill Items

	How BRM Assigns Custom Bill Items to Events
	Cumulative Custom Item for Taxes

	Setting Up BRM to Assign Custom Bill Items to Events
	Assigning Item Tags Based on Event and Service Combinations
	Assigning Item Tags Based on Event Attributes
	Setting Up Online Charging to Assign Items Based on Event Attributes

	Mapping Item Tags to Item Types

	Assigning Bill Items to Event Balance Impacts
	Creating Custom Sponsored Bill Items
	Splitting Sponsored Charges into Multiple Items

	17 Creating Corrective Bills
	About Corrective Bills
	Corrective Bills and Billing Cycles
	Configuring Corrective Billing
	Enabling Corrective Billing
	Configuring Accounts and Bills for Corrective Billing
	Restricting Corrective Billing Permissions
	Configuring Bill Numbers for Corrective Bills
	Customizing Correction Reasons
	Specifying the Minimum Threshold Amount for Corrective Bills
	Rejecting Payments for Prior Bills
	Enabling BRM to Create Corrective Bills for Partially or Fully Paid Bills
	Customizing Corrective Bills

	Billing Accounts By Using the pin_make_corrective_bill Utility
	Post-Processing Actions for Corrective Bills

	Corrective Billing for Disputes, Settlements and Write-offs
	Disputes
	Settlements
	Write-Offs

	18 Running Trial Billing
	About Trial Billing
	About Trial Billing for Bill Unit Hierarchies and Sharing Groups

	About Trial Invoices
	About Collecting Revenue Assurance Data from Trial Billing
	Configuring Trial Billing
	Specifying Accounts for Trial Billing
	Specifying Bill Units, Billing Segments, and DOMs for Trial Billing
	Specifying Bill Units for Trial Billing
	Specifying Accounting DOMs for Trial Billing
	Specifying Billing Segments for Trial Billing

	Running Trial Billing
	Running Trial Billing With Date Ranges
	Running Trial Billing According to Payment Type
	Creating Trial Bills without Generating Trial Invoices

	Purging Trial Invoices
	Exporting Trial Invoices

	19 Suspending Billing
	About Suspending Billing of Accounts and Bills
	Suspending Billing of Closed Accounts
	Suspending Billing of an Account's Bill

	20 Setting Up Billing in a Multischema Environment
	Setting Up Billing to Run in a Multischema Environment
	Running Billing on One Schema at a Time
	Running Billing on Multiple Schemas Simultaneously

	21 Remitting Funds to Third Parties
	About Remittance
	About Remittance Products
	About Defining Remittance Specifications
	About Remittance Criteria

	About Calculating Remittance

	Setting Up Remittance
	Creating a Remittance Product
	Creating a Remittance Account
	Loading the Remittance Fields File
	Defining Remittance Specifications
	Loading the Remittance Specifications
	Loading Remittance Specifications on Single-Schema Systems
	Loading Remittance Specifications on Multischema Systems

	Running Remittance
	Calculating Remittance
	Running the Monthly Remittance Script
	Running the Remittance Utility Separately

	Creating Remittance Reports
	Changing the Balance of a Remittance Account

	Using Remittance with Multiple Database Schemas
	Running Remittance on One Schema at a Time
	Running Remittance on Multiple Schemas Simultaneously

	Improving Remittance Performance
	Using Remittance for Sales Commissions
	Example of Setting Up a Remittance Specification
	About Customizing Remittance
	About Adding Custom Remittance Criteria
	Defining Custom Remittance Fields
	Specifying Custom Remittance Criteria

	About Using Custom Ratable Usage Metrics to Calculate Remittance
	Calculating Remittance Using Custom RUMs

	How Remittance Works
	Retrieving Remittance Accounts
	Calculating the Remittance Amount
	Verifying the Remittance Specification File
	Customizing Remittance

	22 Billing Utilities
	load_config_item_tags
	load_config_item_types
	load_pin_bill_suppression
	load_pin_billing_segment
	load_pin_calendar
	load_pin_payment_term
	load_pin_remittance_flds
	load_pin_remittance_spec
	pin_bill_accts
	pin_cust_convert_wholesale_hierarchy
	pin_cycle_fees
	pin_make_corrective_bills
	pin_remittance
	pin_rollover
	pin_trial_bill_accts
	pin_trial_bill_purge
	pin_update_journals

