
Oracle® Communications Billing and
Revenue Management
ECE Implementing Charging

Release 15.0
F86247-01
February 2024

Oracle Communications Billing and Revenue Management ECE Implementing Charging, Release 15.0

F86247-01

Copyright © 2019, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xiii

Documentation Accessibility xiii

Diversity and Inclusion xiii

1 About Configuring Charging in Elastic Charging Controller

About Usage Charging in ECE 1-1

About Configuring Usage Charging in ECE 1-2

About Balance Management in a Prepaid Session 1-2

Part I Using the ECE Java API

2 About the ECE API

About the ECE API 2-1

About the Charging API 2-1

About Charging Operation Types 2-2

About the Authentication API 2-3

About the Custom Plug-in APIs 2-3

3 Configuring Multiple Services Credit Control

About Multiple Services Credit Control 3-1

4 Advice of Charge and Advice of Promotion

About Advice of Charge 4-1

About Advice of Promotion 4-1

5 Configuring Top-Ups

Integrating Top-Up Clients 5-1

iii

Detecting Duplicate Top-Up Requests 5-1

Using the Top-Up API 5-2

6 Configuring Balance Queries

Integrating Balance Query Clients 6-1

About Sending Authentication Queries 6-1

About Sending Balance Queries 6-2

Configuring Debit Request History 6-2

About Balance Query Requests 6-2

Part II Working with BRM

7 Synchronizing Data Between ECE and the BRM Database

About Synchronizing Data Between BRM and ECE 7-1

Setting Up Synchronization between BRM and ECE 7-1

Enabling Real-Time Synchronization of BRM and ECE Customer Data Updates 7-2

Configuring the Connection Manager to Get Real-Time Balances for a Service from
ECE 7-3

How ECE Gets Historical Data From the BRM Database 7-3

8 Loading ECE Rated Events into BRM

About Sending Rated Events to the BRM Database 8-1

Adding a Rated Event Publisher Instance 8-1

Configuring Rated Event Publisher 8-2

Configuring Item Assignment for Rated Events 8-3

Configuring Life Cycle States in ECE for BRM 8-4

Including or Excluding a Customer’s Remaining Balance in Rated Events 8-5

Accessing ECE Configuration MBeans 8-5

9 Generating POIDs for Rated Events

About Generating POIDs in ECE 9-1

Configuring ECE to Generate POIDs for Prepaid Events 9-2

Enabling Prepaid Event Partitions in BRM 9-2

Configuring Cluster ID 9-4

Enabling POID Generation for Prepaid Events in ECE 9-4

iv

Part III Managing ECE Notifications

10

Configuring Notifications in ECE

About ECE Notifications 10-1

Enabling External Notifications in ECE 10-2

Enabling Specific Notification Types 10-2

Configuring ECE To Publish External Notifications to a Single Topic 10-4

Enabling In-Session Group Notifications in ECE 10-6

Including Rollover Balances in Notifications 10-7

Enriching Notifications Using ECE Extensions 10-7

Configuring BRM Gateway to Process ECE Notifications 10-7

Configuring the BRM Gateway 10-8

Configuring Multiple BRM Gateway for Multi-Schema Deployments 10-9

Connecting BRM Gateway to Kafka Topics and BRM 10-11

Configuring WebLogic Queues for BRM Gateway 10-13

WebLogic Server Configuration Settings for the connectionFactory 10-13

Considerations for Using a Non-WebLogic Server JMS Provider 10-13

Modifying JMS Credentials for Publishing External Notifications 10-14

11

Configuring Subscriber Preferences

Configuring Subscriber Preferences 11-1

Maintaining Subscriber Preferences with Customer Center 11-1

About Regulating Permissions to Update Subscriber Preferences 11-2

Configuring ECE to Enrich External Notifications with Subscriber Preference Information 11-2

Customizing Subscriber Preferences 11-3

Configuring Group Notifications 11-5

Part IV Managing Charging Sessions

12

Managing Midsession-Rated Events

Configuring ECE to Generate Midsession-Rated Events 12-1

Generating Midsession-Rated Events When USU Block Missing 12-3

Configuring Non-Linear Rating for Tariff Changes 12-3

Enabling Non-Linear Rating for Midsession-Rating Condition Changes 12-4

Configuring ECE to Support Tariff Time Change 12-5

Customizing the Worst-Case Charging Reservation 12-5

Sample Non-Linear Rating for Tariff Changes 12-6

v

Viewing Reason for Midsession-Rated Event 12-7

13

Managing Online Charging Sessions

Configuring ECE to Support Prepaid Usage Overage 13-1

Managing Dynamic Charging Overrides for Online Sessions 13-2

Processing Granted Allowances Before Applying Usage Charges 13-2

Enabling Server-Initiated Reauthorization Requests 13-3

Customizing Server-Initiated Reauthorization for Sharing Groups 13-4

Configuring ECE to Return Remaining-Balance Information in Usage Responses 13-4

Configuring Taxation in ECE 13-5

Managing Direct Debit Data in ECE Cache 13-6

Configuring How ECE Manages Active Sessions When Network Elements Fail 13-7

Configuring ECE to Redirect Subscriber Sessions to a Service Portal 13-7

Enabling Match Factor in ECE 13-11

Configuring Diameter Gateway to Bypass Rating During ECE Downtime 13-12

Managing the Persistence of Usage Requests During ECE Downtime 13-12

Replaying Persisted Requests into ECE 13-13

Accessing ECE Configuration MBeans 13-14

Customizing Consumption Order of Loan and Principal Balances 13-14

14

Managing Session Start and End Times

Using Session Connect Time for Charging 14-1

Optimizing Network Signaling 14-1

Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and
Charge Offers 14-2

15

Managing Reservations for Online Sessions

Configuring Reservation Expiration and Validity 15-1

Configuring a Minimum Quantity for Reservation 15-2

Configuring Reservation Quota for Services 15-3

Managing Dynamic Quotas for Online Sessions 15-4

Triggering RAR Notifications for Ongoing Sessions 15-4

16

Managing Rounding and Consumption Rules

Configuring Rounding for a Resource 16-1

Configuring Rounding for Reverse Rating on Multiple RUMs 16-2

Configuring Systemwide Consumption Rules for Balances 16-3

vi

Part V Integrating with External Systems

17

Connecting ECE to a 5G Client

About the HTTP Gateway 17-1

About Determining the Charging Type 17-2

About Sending Notifications to HTTP Gateway 17-2

Integrating HTTP Gateway with 5G Networks 17-2

Configuring Registration Details for the HTTP Gateway Server 17-3

Configuring Multiple Primary and Secondary NRF Registration Servers 17-7

Configuring NF Services 17-9

Configuring HTTP Gateway for Convergent Charging 17-12

Editing the HTTP Gateway Mediation Specification File 17-14

Connecting ECE to Kafka Topics 17-15

Configuring ECE to Send Notifications to HTTP Gateway 17-18

Recording Failed ECE Usage Requests 17-18

Configuring Communication through SCP 17-19

Starting the HTTP Gateway 17-20

Using the ECE REST API 17-20

18

Generating CDRs for External Systems

About Using the HTTP Gateway 18-1

About Generating CDRs 18-1

About Saving CDR Files to Disk 18-2

About the CDR Generation Process 18-2

Setting Up ECE to Generate CDRs 18-3

Accessing ECE Configuration MBeans 18-4

Configuring HTTP Gateway for CDR Generation 18-4

Configuring the CDR Gateway 18-5

Configuring the CDR Formatter 18-6

Configuring the CDR Formatter Plug-in 18-8

About Trigger Types 18-9

Triggers for Convergent Charging Events 18-9

Triggers for Roaming Events 18-10

19

Connecting ECE to a Diameter Client

Overview of Network Integration Using Diameter Gateway 19-1

Network Integration for Sp and Sy Interface (Policy) Requests 19-3

Network Integration for Gy Interface Requests 19-4

vii

How Diameter Gateway Creates Usage Requests 19-5

About Usage Request Fixed Attributes 19-5

Editing the Mediation Specification File 19-6

Network Integration for Gy Balance Query Requests 19-8

Network Integration for Gy Top-Up Requests 19-8

Sending Multiple-Service Credit Control (MSCC) Requests from Diameter Gateway 19-9

Configuring Subscriber ID Lookups 19-9

Adding Custom AVPs for Usage Requests 19-11

Using Incremental or Cumulative Accounting for Usage Requests 19-12

Configuring Accounting Mode for Diameter Gateway 19-12

Configuring WebLogic Queues for Notifications 19-14

Configuring Alternative Diameter Peers for Notifications 19-14

Viewing Active Diameter Peers 19-15

Configuring ECE for Apache Kafka 19-15

Handling Requests When Charging Servers Are Unavailable 19-18

Recording Failed ECE Usage Requests 19-18

Including Loan Sub-balance in Balance Queries 19-18

20

Connecting ECE to a RADIUS Client

Overview of Authentication and Accounting Using RADIUS Gateway 20-1

About RADIUS Gateway Authentication 20-2

Authenticating Access Requests by Using PAP 20-2

Authenticating Access Requests by Using CHAP 20-3

Authenticating Access Requests by Using EAP 20-5

Loading Data Keys Extracted from BRM into ECE 20-6

Customizing the RADIUS Data Dictionary 20-6

About the RADIUS Data Dictionary 20-6

Creating a Custom Data Dictionary 20-7

Selecting a RADIUS Data Dictionary When Using Different NAS Vendors 20-7

Adding Custom Vendor-Specific Attributes 20-7

Loading the RADIUS Mediation Specification Data 20-8

About Mapping RADIUS Network Attributes to Event Attributes 20-10

Mapping RADIUS Network Attributes to Event Attributes 20-10

About RADIUS Gateway Accounting 20-11

About Accounting-Start and Accounting-Stop Requests 20-12

About Accounting-On and Accounting-Off Requests 20-14

About Accounting-Interim-Update Requests 20-15

viii

21

Configuring Policy-Driven Charging

About Policy-Driven Charging 21-1

About Group-Based Policy-Driven Charging 21-3

Policy-Driven Charging Example 21-3

Configuring Policy-Driven Charging 21-4

About ECE and Policy Clients 21-4

How ECE Processes Policy Requests for Online Network Mediation System 21-5

Configuring Breach Tolerance for Policy-Tier Thresholds 21-7

About Integrating Policy Clients with ECE 21-9

About the ECE Sy and Sp Interface 21-9

About the ECE Sy Interface 21-9

About the ECE Sp Interface 21-10

Querying for Extended Subscriber Preference Information in Sp Query 21-10

About a Combined ECE Sy and Sp Interface 21-11

About Calculating Maximum Authorization for Policy-Driven Charging Sessions 21-11

Configuring ECE to Reject Spending Limit Requests Without Counters 21-12

About the Policy Management API 21-12

Part VI Customizing ECE

22

Customizing Rating

Operational Considerations 22-1

Configuring Extensions 22-1

About Performance with Extensions 22-2

About Logging in Extensions 22-2

About Extension Exceptions 22-2

About Extension Security 22-3

Extension Points 22-3

BRM Gateway Request Processing Extension Points 22-3

Diameter-Request Processing Extension Points 22-4

HTTP Gateway Request Processing Extension Points 22-5

RADIUS-Request Processing Extension Points 22-6

Authentication Extension Points 22-6

Accounting Extension Points 22-8

Update-Request Processing Extension Points 22-9

Usage-Request Processing Extension Points 22-9

Implementing the Extensions Logic 22-11

BRMCustomOpCodeCall Extension 22-19

CustomAuth Extension 22-19

ix

CustomEAPChallenge Extension 22-19

CustomEncode Extension 22-19

OCSBypass Extension 22-20

PreOCS Extension 22-20

PreProcessor Extension 22-20

PostOCS Extension 22-21

PostOCSBalanceQuery Extension 22-21

Pre-Rating Extension 22-21

Post-Rating Extension 22-22

Rating Extension 22-22

RequestReceived Extension 22-23

Post-Charging Extension 22-23

Post-Update Extension 22-24

Extensions Cache 22-24

Extensions Cache API 22-25

Sample Extensions 22-26

How To Use the Sample Extensions 22-26

Validating Sample Extensions 22-28

BRM Gateway Extension – Creating Opcode Flist 22-28

Diameter Gateway Extension – Gy Service 22-28

Diameter Gateway Extension – Sy Service 22-28

HTTP Gateway Extension – Service 22-29

OCSBypass Extension – Bypassing Rating 22-29

Pre-Rating Extension – Dynamic Quota Management 22-29

Dynamic Quota Management – Modifying Quota Based on Network Type 22-29

Dynamic Quota Management – Modifying Requested Quota 22-29

Dynamic Quota Management – Modifying Default Quota Configuration 22-30

Pre-Rating Extension – Retrieving Function Values for Discount Expressions 22-30

Pre-Rating Extension – Generating Midsession-Rated Event 22-30

Pre-Rating Extension – Overriding Price in Product Offerings 22-31

Post-Rating Extension – Complex Taxation 22-31

Post-Rating Extension – Generating Midsession-Rated Events 22-31

Post-Rating Extension – Adding or Deleting Rating Periods 22-32

Post-Charging Extension – Adding Custom Data to Usage Responses and Notifications 22-32

Post-Charging Extension – Overriding Dynamic Quota 22-32

Post-Charging Extension – Adding or Modifying Redirection Rules 22-32

Post-Charging Extension - Enriching Notifications 22-32

Post-Charging Extension – Creating Custom Notifications for Top Ups 22-33

Post-Update Extension – Enriching External Notifications 22-33

Rating/Charging Extension – Triggering RAR Notifications 22-33

Rating Extension – Custom Item Assignment 22-34

x

Extensions Data Load Sample 22-34

23

ECE Sample Programs

About the ECE Sample Programs 23-1

Finding the Sample Programs 23-1

Descriptions of the Sample Programs 23-2

Compiling and Running the Sample Programs 23-7

Example of SampleDebitRefundSession 23-8

Compiling and Deploying SampleRatedEventFormatterCustomPlugin 23-8

24

Testing ECE

About ECE Testing Utilities 24-1

About Loading Sample Data 24-2

About Performance MBean 24-2

Changing Time and Date to Test ECE 24-3

Using the query Utility to Test ECE 24-4

Example: Query the Subscriber Base Balance Summary 24-5

Example: Query a Customer Balance 24-5

Verifying that Usage Requests Can Be Processed 24-7

Starting ECE Nodes in the Cluster 24-7

Running the Simulator to Send Usage Requests 24-8

Verifying that Balances Are Impacted in ECE 24-8

Verifying That ECE Notifications Are Published to the JMS Topic 24-8

Disabling the Publishing of ECE Notifications to the JMS Topic 24-9

Verifying that Friends and Family Calls Are Processed 24-9

Verifying That Closed User Group Calls Are Processed 24-11

Verifying That Balance Impacts Are Assigned to Bill Items 24-12

Verifying That Payloads Are Correctly Formed 24-13

Part VII ECE Utilities

25

Charging Utilities

query 25-1

A Sample Notification Payloads

Aggregated Threshold Breach Event (Aggregated Based on Balance Element ID) A-1

Billing Event A-2

xi

Credit Ceiling Breach Event A-2

Credit Floor Breach Event A-2

Custom Notification for BRM Gateway A-3

External Top-up Event A-3

First Usage Validity A-4

Life-Cycle Transition A-4

Replenish POID ID Event A-5

Spending Limit A-5

Subscriber Preference Event A-5

Threshold Breach Event (Breach Direction Down) A-7

Threshold Breach Event (Breach Direction Up) A-7

Top-up Event A-8

Enriched Notification A-8

B Specifications and Standards Compliance in ECE

About Specifications and Standards Compliance B-1

xii

Preface

This guide describes how to implement charging in Oracle Communications Billing and
Revenue Management Elastic Charging Engine (ECE).

Audience
This guide is intended for application administrators and charging experts who customize and
administer ECE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About Configuring Charging in Elastic
Charging Controller

You can implement charging in Oracle Communications Elastic Charging Engine (ECE).

Topics in this document:

• About Usage Charging in ECE

• About Configuring Usage Charging in ECE

• About Balance Management in a Prepaid Session

For an overview of ECE, see "About Billing and Revenue Management" and "ECE System
Architecture" in BRM Concepts.

For information about administering ECE, see "ECE System Administration" in BRM System
Administrator's Guide.

About Usage Charging in ECE
You can use ECE to perform the following types of usage charging:

• Online charging rates events in real-time, such as during a prepaid call.

• Offline charging is used for batch rating of events, typically from post-paid telephone
usage.

For both online charging and offline charging, ECE receives events as usage requests.
Usage requests contain the event data that ECE needs for rating. For example, to rate a
phone call, ECE needs the number that made the call, the start time, and the end time.

When ECE receives a usage request, it uses the data in the usage request, typically the
phone number, to identify the customer, which in turn identifies the charge offer that they own
that is used to rate the event. In addition, the usage request includes the data needed for
rating, such as the start and end times of the event.

Each type of service and event needs to be rated differently. For example, some events are
rated by measuring duration, and some by measuring volume. When you configure events
and services, you create event definitions that specify the data needed for charging the
event. The event definitions are sent to ECE, and are stored in an ECE cache. For each
incoming event, ECE uses the event definition to choose a usage request builder that creates
the usage request.

A default set of event definition data is installed with ECE. If you create custom services and
events, you can enrich event definitions in Pricing Design Center (PDC) and create
customized event definitions.

Usage requests are created when network mediation clients submit data to the ECE Client:

• For online charging, a real-time online event, such as a prepaid call, is routed from the
network to the Diameter Gateway, which uses the ECE Client to create a usage request.
ECE processes the usage request, authorizes the call, and sends a usage response back

1-1

to the Diameter Gateway. As the call is in progress, ECE also manages the
interaction with the network for handling update requests, re-authorizations, and
top-ups. After the call has ended, ECE rates the call.

In addition to prepaid calls, online charging can be used for any service that the
subscriber connects to and uses in real time, such as broadband access, digital
content, streaming radio, and cable television.

• For offline charging, call detail records (CDRs) are processed by Offline Mediation
Controller, which handles mediation tasks and normalization. Offline Mediation
Controller acts as an ECE client application to create a usage request, which ECE
uses to rate the events.

Offline charging is used for batch rating of events, typically from post-paid
telephone usage. Offline Mediation Controller performs mediation and
normalization tasks, such as checking for duplicate calls and assembling calls that
arrive in multiple records.

After an event is rated, ECE sends the rated event data to the BRM database, and the
customer's balance is updated in both ECE and in the BRM database. The same
process is used for loading online charging events and offline charging events.

About Configuring Usage Charging in ECE
To configure usage charging in BRM, you configure ECE as follows:

• Configure ECE business rules that control aspects such as a default authorization
amount, a default flat tax rate, and so on. To do so, you use a JMX editor such as
JConsole to edit MBeans. See "Managing Online Charging Sessions".

• Configure how each subscriber prefers to receive notifications from the network.
See "Configuring Subscriber Preferences".

• Configure ECE notifications. See "About ECE Notifications".

• Configure how ECE integrates with the BRM server. See "Synchronizing Data
Between ECE and the BRM Database".

• Configure ECE to receive pricing data from PDC. See "Configuring Pricing
Updater" in BRM System Administrator's Guide.

You can customize ECE as follows:

• Use the ECE API to integrate client applications with ECE (for example, implement
a top-up client). For offline charging, ECE is preintegrated with Oracle
Communications Offline Mediation Controller. For online charging, ECE uses
Diameter Gateway for network integration (for creating ECE requests for all
supported request types). See "About the ECE API".

• Use ECE extensions to implement Diameter-request processing extensions or
rating extensions. For example, implement pre-rating and post-rating
customizations. See "Customizing Rating".

About Balance Management in a Prepaid Session
In prepaid sessions, ECE and Diameter Gateway work together with the network
system to manage an event as it occurs. When a subscriber starts a prepaid call, the
network collects information about the customer and sends authentication and
authorization requests to ECE. ECE processes the requests and returns the results

Chapter 1
About Configuring Usage Charging in ECE

1-2

immediately so the network can connect the call. While the session is in progress, ECE
tracks the subscriber's balance to ensure that it is sufficient to pay for the call.

ECE performs the following functions:

1. Authenticates customers by comparing the customer's ID with those stored in ECE.

• For telco services, the ID is typically the MSID.

• For broadband services, the ID is typically a login name and password.

2. Authorizes customers to use the service. ECE can perform these checks:

• Credit limit checking. Determines whether the customer's account balance exceeds
the temporary or permanent credit limit.

• Service status checking. Confirms that the requested service is active in the
customer's account.

• Duplicate session checking. Checks for duplicate sessions.

3. Reserves a balance amount for the session. For example, customers can be authorized
to download 100 bytes of data or to make a 30-minute telephone call.

To reserve an amount, ECE does the following:

• Receives the requested amount from the network and determines whether the user
has a sufficient amount in his balance, based on the charge offers and discount
offers that he owns and any amounts already reserved.

• If the balance amount is insufficient, ECE calculates the maximum authorization
based on the customer's credit limits. The effects of discounts, discount sharing, and
charge sharing are included in the calculation of the maximum amount to authorize.

ECE sends the validity time for the active reservation or reservation validity to the
network mediation client. Reservation validity specifies how long a session can
continue before the client must ask for a reauthorization.

ECE sends a reservation expiration to the network mediation client. Reservation
expiration specifies how long a session can continue before the client must report the
consumed usage to ECE.

When a prepaid session is authorized, BRM reserves a portion of the customer's balance
for the event. This prevents customers from using that balance amount for other services
while the session is in progress.

BRM authorizes a customer to use a service for the following:

• A specified duration or volume.

• (Volume-based authorizations only) A specified validity period.

4. When the session ends, ECE sends information about the rated event to the BRM
database and updates the subscriber's balance in the BRM database. ECE then returns
any unused reserved balance amounts to the customer's balance.

Active session and balance reservations are checked for expiration and are removed if
the object has expired. Usually, only the terminated or canceled charge offer is cleaned
up. However, other charge offers owned by the same customer and that share the
balance object with the original charge offer are also cleaned up.

During a session, ECE does the following:

• Reauthorizes customers for extended usage if necessary. Reauthorization for prepaid
services extends the following:

Chapter 1
About Balance Management in a Prepaid Session

1-3

– Authorized duration or volume

– Validity period

• Alerts the network that a change that might require reauthorization occurs in a
customer's account. For example, the customer is granted a balance amount that
might apply to the current session. This is called server-initiation reauthorization.

• Cancels authorization for failed connections. After a session is authorized, the
external network can sometimes not connect to the service. This can occur for the
following reasons:

– The call's destination was unavailable.

– The validity period expired before the service was connected.

– The customer terminated the session before the service was connected.

In this situation, ECE can cancel the authorization and return any reserved
balances to the customer's account.

• Updates balances in the customer's account.

• If your system is configured to receive in-session notifications from BRM (that is,
when the piggyback business parameter is enabled), it appends specific in-
session notifications to the responses it provides for authorization and
reauthorization requests sent by a supported network connectivity application. You
can configure customer preferences for sending notifications (for example, by
SMS in a specific language). See "Configuring Subscriber Preferences".

• If the session uses policy-driven charging, it tracks the balance thresholds that
trigger credit-limit notifications to the policy controller. Both in-session and out-of-
session notifications are supported.

Chapter 1
About Balance Management in a Prepaid Session

1-4

Part I
Using the ECE Java API

This part provides information about using the Oracle Communications Elastic Charging
Engine (ECE) Java API. It contains the following chapters:

• About the ECE API

• Configuring Multiple Services Credit Control

• Advice of Charge and Advice of Promotion

• Configuring Top-Ups

• Configuring Balance Queries

2
About the ECE API

You use the Oracle Communications Elastic Charging Engine (ECE) API to integrate ECE
with third-party clients, such as top-up systems.

Topics in this document:

• About the ECE API

• About the Charging API

• About the Authentication API

• About the Custom Plug-in APIs

About the ECE API
ECE is preintegrated with Oracle Communications Offline Mediation Controller. To integrate
other clients, such as top-up systems, you use the ECE SDK and ECE API. See Elastic
Charging Engine Java API Reference for information.

The ECE SDK includes:

• Client libraries that enable your applications to connect to ECE and build usage requests.

• Sample programs that demonstrate how to use the ECE APIs.

ECE SDK includes a set of sample programs. You use these sample programs in the
following ways:

• Use the sample programs as code samples for writing custom applications.

• Run sample programs to send requests to ECE and receive responses.

• Use the sample program scripts as a guide for integration of the ECE client into your
build system (Maven, Ant and so on).

For information about how to use the sample programs, see "ECE Sample Programs ".

The ECE SDK is installed in ECE_home/ocecesdk.

About the Charging API
The ECE charging API supports the following operation types:

• Initiate

• Update

• Terminate

• Cancel

• Debit_Unit

• Debit_Amount

2-1

• Refund_Unit

• Refund_Amount

• PriceEnquiry

• StartAccounting

• UpdateAccounting

• AccountingOn

• AccountingOff

To send usage requests to ECE, client applications can call the ECE charging APIs
according to the usage request builder defined by the ECE event definition.

For details about the charging API, see oracle.communication.brm.charging.brs
and oracle.communication.brm.charging.messages in Elastic Charging Engine
Java API Reference.

About Charging Operation Types
The ECE API is designed to receive usage requests and send usage responses for
common operation types in the charging industry.

ECE usage charging supports the operation types shown in Table 2-1.

Table 2-1 Charging Operation Types Supported by ECE

Operation Type Description

Initiate Commencement of a session-based charging operation.

Update Continuation of a session-based charging operation.

Terminate Conclusion of a single non-session based charging operation.

Cancel Complete cancellation of a session-based charging operation.

Refund_Amount Refund a specific amount to a specific balance resource.

Refund_Unit Refund a calculated amount, based on units consumed, to the
impacted resource(s).

Debit_Amount Debit a specific amount to a specific balance resource.

Debit_Unit Debit a calculated amount, based on Units consumed, to the
impacted resource(s).

Price_Enquiry Generate a price estimation without any balance reservations
occurring. It is used when there isn't a high probability of
receiving a charging request. For example, Price_Enquiry might
be called to get the price of an event charge to display in a
content portal.

Start_Accounting Begin tracking usage without incurring balance impacts.

Update_Accounting Continue tracking usage without incurring balance impacts.

Balance_Query Return the user balance.

Accounting_On_Off Clean left open session and reservation for a specific network
element.

Each charging operation type requires an input payload that supplies fields which are
relevant to the charging operation.

Chapter 2
About the Charging API

2-2

The BALANCE_QUERY operation type is used for query requests. The query request is built
using the Query Request Builder.

The ACCOUNTING_ON and ACCOUNTING_OFF operation types are used for management
requests. Management requests are built using the Management Request Builder.

For offline charging, requests are typically submitted for a single event that represents the
entire charge (using the Terminate operation type). Session-based operations such as Initiate
and Update are not as common for offline charging; however, these operation types are used
when using a stream protocol like Radius or Rf in which ECE is used to record the
consumption of resources (quantity consumption) as the session continues.

ECE processes charging operations by forwarding usage requests to the applicable
combinations of charge, alteration and distribution rate plans. ECE creates the rate plan
expressions required for usage charging by using fields which are supplied in the request
specification payloads.

The sample request specification files demonstrate the data ECE requires to support the
charging operation types.

About the Authentication API
Use the authentication API to query the login and password of subscribers.

Use the login and password information to do the following:

• Implement authentication methods outside of the ECE charging server

• Enable subscribers to validate their login and password credentials against a charge offer
to which they are subscribed

For details about the authentication API, see
oracle.communication.brm.charging.messages.query in Elastic Charging Engine Java
API Reference.

About the Custom Plug-in APIs
You can use the custom plug-in APIs to:

• Format rated events into the format required by an external system. To do so, use the
SampleRatedEventFormatterCustomPlugin.java sample custom plug-in in the ECE
SDK package.

• Write rated events in JSON format to the Kafka Server. To do so, use the
SampleRatedEventFormatterKafkaCustomPlugin.java sample plug-in in the ECE
SDK package.

For more information, see
oracle.communication.brm.charging.ratedevent.custom.CustomPlugin in Elastic
Charging Engine Java API Reference.

Chapter 2
About the Authentication API

2-3

3
Configuring Multiple Services Credit Control

You can configure Multiple Services Credit Control in Oracle Communications Elastic
Charging Engine (ECE).

Topics in this document:

• About Multiple Services Credit Control

About Multiple Services Credit Control
ECE supports Multiple-Service Credit Control (MSCC) requests in which a Diameter
application performs credit control for multiples services within the same session.

An MSCC request is a list of subrequests targeted to the same customer that share the same
operation type and session ID but that individually apply to different charge offers.

When ECE receives MSCC requests, it assigns a different session ID to each of its
subrequests. Doing this enables ECE to distinguish one subrequest from another when
looking up the active session associated with each subrequest. An MSCC request results in
an MSCC response containing a subresponse for each subrequest. Each subresponse
contains a status indicating whether the subrequest succeeded or failed.

If you configured ECE to save the rated event information for MSCC requests in the Oracle
NoSQL database, note the following:

• Rated event information is saved for each subrequest.

• The NoSQL key for the rated event is based on the session ID that ECE assigned (not on
the original MSCC request session ID).

• The ECE session ID in the Oracle NoSQL database is a composite of the original usage
request's session ID, the service, and the user identity, separated by underscore
characters. For example:

Original MSCC request ID: 1313b2ab-d51e-4545-8bba-25c731daf10b

Usage request's service: VOICE

Usage request's user ID: 650123555

ECE session ID: 1313b2ab-d51e-4545-8bba-25c731daf10b_VOICE_650123555

MSCC support applies to usage requests and query requests.

MSCC support does not include support for credit pools (G-S-U-Pool-Reference AVP where
units of the service are pooled in a credit pool) and credit control (as described in section
5.1.2 of IETF RFC 4006).

MSCC AVPs are part of the CCR, and Diameter Gateway expects each Gy interface request
type to be included in the MSCC group even if the request contains only a single service.
When a CCR is sent without MSCC AVPs, Diameter Gateway validates only the subscriber
ID in the CCR and authenticates the subscriber.

3-1

See the SampleMultipleServicesLauncher sample program in the ECE SDK for an
example of how to send MSCC requests to ECE. For more information, see "ECE
Sample Programs ".

Chapter 3
About Multiple Services Credit Control

3-2

4
Advice of Charge and Advice of Promotion

You can configure Advice of Charge (AOC) and Advice of Promotion (AOP) in Oracle
Communications Elastic Charging Engine (ECE).

Topics in this document:

• About Advice of Charge

• About Advice of Promotion

About Advice of Charge
ECE supports the 3GPP Advice of Charge (AoC) supplementary service by which customers
can be informed about the cost for a requested service either in monetary format or
nonmonetary format. AoC may be provided at the beginning of a session, during a session or
at the end of a session.

To support AoC, ECE calculates the cost of using a service and relays that information to the
network mediation software program, which can then pass the message to the customer.

About Advice of Promotion
ECE enables you to provide Advice of Promotion (AoP) information to customers to notify
them that a better price can be obtained for a service they are about to use. For example, a
network operator can send the AoP information in an IVR pre-call announcement for a Voice
service.

To support AoP, ECE determines whether better pricing for a service is available near the
time the customer's usage request is received. ECE sends that information to the network
mediation software program, which sends a message to the customer.

ECE implements AoP as follows:

1. A customer makes a request to initiate a session, to debit a specific or calculated amount
of a balance, or to generate a price estimation for using a balance.

2. The ECE charging server calculates the charge for the request.

3. If AoP is enabled, ECE adds a time offset to the start and end time of the request and
recalculates the charge using the offset time period (the new start and end time).

4. If the recalculated charge is less expensive for the customer, ECE sends the information
about potential savings to the network mediation software program in the usage
response.

ECE applies AoP when AoP is configured at the ECE system level. Configure AoP at the
system level by using the configuration service.

Note the following details about AoP:

• AoP is not configurable in PDC.

• AoP is a systemwide configuration (it is not configured on a per charge offer basis).

4-1

• The ready-to-use configuration of AoP gives advice based on time.

• When applying AoP, ECE uses the charge offers and discount offers eligible when
the request is received to recompute the charge for the offset time period. If a
different charge offer or a different discount offer applies to the future offset time
period, AoP may advise a promotion when none exists or may not advise a
promotion when a promotion is available.

When using AoP, ensure that your charge offers have tiered consumption configured
accurately to prevent a credit breach of noncurrency balances.

To configure Advice of Promotion:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Specify values for the following attributes:

• aopEnabled: Enter true to enable AoP or false to disable AoP.

• aopVariance: Enter an amount of time in the ISO 8601 duration format (for
example, PT10M, which specifies ten minutes).

ECE uses the time you specify to offset the start and end times of the request
and recalculate the charge for the offset period.

For more information about the duration format, see the ISO 8601
documentation.

Chapter 4
About Advice of Promotion

4-2

5
Configuring Top-Ups

You can configure top-ups in Oracle Communications Elastic Charging Engine (ECE).

Topics in this document:

• Integrating Top-Up Clients

• Detecting Duplicate Top-Up Requests

• Using the Top-Up API

Integrating Top-Up Clients
ECE interfaces directly with top-up systems to manage balances. The top-up systems send
the top-up amount to ECE, and then ECE updates the customer balance and sends the
update to the BRM server.

ECE does not manage top-up authentication, authorization, or accounting operations.

For information about running sample programs that demonstrate how to use the ECE top-up
API, see "ECE Sample Programs ".

To configure top-up notifications, see "About ECE Notifications".

Detecting Duplicate Top-Up Requests
Duplicate top-up requests might occur within ECE as a result of node failures (for example, if
an ECE server unexpectedly shuts down, ECE might internally resubmit a top-up request
when restarted). To detect and eliminate these internal duplicate top-up requests, ECE
maintains a top-up history cache.

Note:

Third-party top-up systems, such as voucher management systems, are expected
to eliminate duplicate top-up requests coming from the network.

The ECE top-up history cache maintains a specified number of top-up message IDs for each
customer. If the message ID of an incoming top-up request is already in the history, ECE
considers the request to be a duplicate.

If ECE detects a duplicate top-up request, the following occurs:

• ECE does not apply the top up

• ECE includes the following in the top-up response message:

– The reason code DUPLICATE_REQUEST

– The current customer balance

5-1

If you do not retain a sufficient number of top-up request message IDs in your top-up
history cache, ECE may not detect internal duplicate top-up requests. If ECE cannot
detect an internal duplicate top-up request, the following occurs:

• ECE applies the top-up balance to the customer balance as though it were a new
request and sends the top-up balance to the BRM server.

• The BRM server, which stores all top-up message IDs in the BRM database,
detects the top-up request as a duplicate and does not apply the top up to the
customer balance in the BRM database.

• BRM adds the Error from BRM: ERR_DUPLICATE error to the BRM Gateway log
file.

You must manually track such errors in the BRM Gateway log file and correct the
customer balance in ECE because the ECE customer balance is no longer
synchronized with the customer balance in the BRM database.

To configure the number of top-up request message IDs in your top-up history cache:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.externalTopUpConfig.

4. Expand Attributes.

5. Set the topUpHistoryCount attribute to the number of top-up request message
IDs to store for each customer.

The default value is 3.

If you change the value of this attribute (for example, from 10 to 4) and the top-up
history cache already contains 10 message IDs, ECE eliminates the message IDs
of the oldest 6 top ups when the next top up arrives so that only the message IDs
of the 4 most recent top-up requests are stored.

Using the Top-Up API
To validate top-up requests, clients call the submitUpdate API with
ExternalTopupUpdateRequest.

Consider the following points for how the ECE top-up API validates top-up requests:

• For a currency balance, validity should not be passed as part of the request; if it is
passed, it fails with an error. The customer's balance is expected to have one valid
currency balance item/bucket with infinite validity. If no balance item/bucket is
present, a new one is created with infinite validity.

• Validity extend (ValidityExtend) is only for noncurrency balances (given that
currency balances do not have a validity).

• Whenever validity must be set for a balance, both validity start and validity end
must be sent as part of the request.

To create bucket with infinite validity, set both validityStart and validityEnd to -1.

• If the request is to extend validity and the customer balance has multiple valid
balance items/buckets, then an error response is sent.

Chapter 5
Using the Top-Up API

5-2

• If the request is to create a firstUsage bucket, then validity start and validity end should
not be set in the request, except for the FirstUsageValidityUnit.ABSOLUTE mode.

• ValidityExtend is not allowed on a first-usage bucket.

• If both the validity and first-usage information (such as offset and unit) are specified as
part of the request, then the top-up request fails with an error.

• Top-ups from Third-party top-up systems are not allowed when ECE is in a short-lived
phase of the rerating process called the CATCH_UP phase.

If top-up requests are sent during the CATCH_UP phase of rerating, ECE sends a
response that includes the reason code for the failure. If that occurs, you can resend the
top-up, and ECE will process it.

• During testing, if a top-up request is sent to ECE with an event time that is earlier than
the account creation time of the account to which the top-up applies, the balance is
updated with the top-up in ECE but the balance is not updated in BRM. When you set
event time stamps during testing, ensure the event time of the top-up request is later than
the applicable account creation time.

For details about the top-up API, see the documentation for
oracle.communication.brm.charging.brs and
oracle.communication.brm.charging.messages.update in Elastic Charging Engine Java
API Reference.

Chapter 5
Using the Top-Up API

5-3

6
Configuring Balance Queries

You can configure third-party clients to query Oracle Communications Elastic Charging
Engine (ECE) for balance information.

Topics in this document:

• Integrating Balance Query Clients

• About Sending Authentication Queries

• About Sending Balance Queries

• Configuring Debit Request History

• About Balance Query Requests

Integrating Balance Query Clients
You can write client applications to query data in ECE, such as query the login and password
information of a customer, or query the customer's account balance.

ECE returns the balance element ID of each balance in the ECE balance query response.
ECE returns the balance element ID of balances for SUMMARY, DETAILED, ALL, and
TURBO balance query modes. Client applications could use this information, for example,
when customer balances are stored in multiple subscriber profile repositories and it is
required to map the balances between the repositories.

To use the query APIs:

• For the ECE authentication and query API:
oracle.communication.brm.charging.messages.query

• For the ECE PriceEnquiry of the charging API:
oracle.communication.brm.charging.brs and
oracle.communication.brm.charging.messages

For information about running sample programs that demonstrate how to use the ECE query
APIs, see "ECE Sample Programs ".

About Sending Authentication Queries
Use the authentication API to query the login and password of subscribers.

Use the login and password information for:

• Implementing authentication methods outside of the ECE charging server

• Enabling subscribers to validate their login and password credentials against a charge
offer to which they are subscribed

6-1

About Sending Balance Queries
Use the Balance API to query balances for one or more subscribers.

Use the subscriber balance for:

• Making policy decisions

• Sending the balance information to subscribers so they can monitor their network-
usage expenses, validate their credit limit, or monitor their active reservation

ECE returns the balance element numeric ID of each balance in the ECE balance
query response. Client applications could use this information, for example, when
customer balances are stored in multiple subscriber profile repositories and it is
required to map the balances between the repositories.

Configuring Debit Request History
For a debit request, ECE returns a correlation ID in the usage response and stores the
correlation ID in a debit map for each charge offer. If a refund request is later received
for the debit request, ECE uses the correlation ID to validate the refund request
(refund requests are valid only when they are associated with a debit request
correlation ID).

The debit request information in the debit map is transient data and you can configure
the number of debit requests to be retained per charge offer. By default, debit request
information is stored for ten debit request operations (for each charge offer) at any
given time. For example, if the debit map contains ten entries and a new debit request
is received, the entry for the oldest debit request is deleted from the debit map, and an
entry for the new debit request is added.

To configure the debit request history:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the debitRefundSessionEvictionSize attribute to the maximum number of
debit requests to log in the debit map at one time.

This is the number of debit requests to keep in history so that refunds can be
made against them.

About Balance Query Requests
When building a balance query request, you have the option to use the following
balance query modes to restrict the contents of the balance query response that ECE
returns:

• SUMMARY: The balance query response contains the balance element ID and the
total balance at the balance element level.

Chapter 6
About Sending Balance Queries

6-2

• DETAILED: The balance query response contains the balance element ID and the
detailed balance for each balance element. This includes balance element specification
information (such as credit limits), grantor information (such as grantor ID and grantor
type), reservation information (such as the active and consumed reservation), and
rollover balance information (such as the rollover balance and the number of times the
balance has been rolled over).

• ALL: The balance query mode specifies to return all the sub-balances after a particular
timestamp. It is in the EM Gateway response.

• TURBO: The balance query mode specifies to return information about the balance
element level, the current principal balance, and the loan balance. It is in the Diameter
Gateway response.

The balance query response mode you use may impact the overall performance of your
system.

For details about the balance API, see the documentation for
oracle.communication.brm.charging.messages.query in Elastic Charging Engine Java
API Reference.

Chapter 6
About Balance Query Requests

6-3

Part II
Working with BRM

This part provides information about how Oracle Communications Billing and Revenue
Management (BRM) and Oracle Communications Elastic Charging Engine (ECE) work
together. It contains the following chapters:

• Synchronizing Data Between ECE and the BRM Database

• Loading ECE Rated Events into BRM

• Generating POIDs for Rated Events

7
Synchronizing Data Between ECE and the
BRM Database

You synchronize data with the Oracle Communications Billing and Revenue Management
(BRM) database to ensure that Oracle Communications Elastic Charging Engine (ECE) is
rating service usage events with the most current pricing data.

Topics in this document:

• About Synchronizing Data Between BRM and ECE

• Setting Up Synchronization between BRM and ECE

• How ECE Gets Historical Data From the BRM Database

About Synchronizing Data Between BRM and ECE
When customer data is updated in the BRM database, the updates must be applied
synchronously (in real time) to ECE. For example, when a CSR adds, cancels, or modifies an
account or when an adjustment such as a cycle fee is applied to an account balance, that
information must be updated in ECE so that ECE can rate service usage events properly.

Customer data is synchronized between BRM and ECE by the Oracle Data Manager (DM).
The Oracle DM sends customer data in a business event to an Advanced Queuing (AQ)
database queue, where ECE Customer Updater retrieves the business event and updates
the information in ECE cache, allowing ECE to rate events using the latest customer
information. For more information, see "Synchronizing Account Data between BRM and ECE"
in BRM System Administrator's Guide.

You can view or modify the list of BRM business events that are sent to ECE by using the
ECE_home/brm_config/payloadconfig_ece_sync.xml file.

Setting Up Synchronization between BRM and ECE
To set up your system to synchronize customer data between BRM and ECE:

1. Create and configure your AQ database queues. See "Configuring Your AQ Database
Queues" in BRM System Administrator's Guide.

2. Configure BRM to send account data updates to ECE in real time. See "Enabling Real-
Time Synchronization of BRM and ECE Customer Data Updates".

3. Configure BRM to retrieve real-time balances for a service from ECE. See "Configuring
the Connection Manager to Get Real-Time Balances for a Service from ECE".

7-1

Enabling Real-Time Synchronization of BRM and ECE Customer Data
Updates

When customer data is updated in the BRM database, the updates must be applied
synchronously (in real time).

To enable real-time synchronization of BRM and ECE customer data updates:

1. Open the BRM_home/sys/cm/pin.conf file in a text editor.

2. Add the following entries to the end of the file:

-cm ece_real_time_sync_db_no 0.0.0.0
-cm em_group ece PCM_OP_ECE_PUBLISH_EVENT
-cm em_pointer ece ip emGateway_host emGateway_port

where:

• emGateway_host is the name or IP address of the server on which External
Manager (EM) Gateway is running.

• emGateway_port is the number of the port through which EM Gateway
connects to the host.

Note:

By default, the publisher database number for EM Gateway is 0.0.9.8.

3. If the publisher database number of EM Gateway in your system is not 0.0.0.0,
replace it with the correct publisher database number in the following entry:

-cm ece_real_time_sync_db_no 0.0.9.8
4. Save and close the file.

5. If you changed the EM Gateway publisher database number in your CM pin.conf
file, do the following:

a. Open the BRM_home/sys/eai_js/payloadconfig_ifw_sync.xml file in a text
editor (or the merged file if you merged payload configuration files).

b. Locate the PublisherDefs section.

c. In the Publisher DB="DB_number" entry, replace DB_number with the
publisher database number of your EM Gateway.

6. Save and close the file.

7. If you changed the EM Gateway publisher database number, restart the Payload
Generator External Module (also called the Enterprise Application Integration (EAI)
Java Server or eai_js).

8. Restart the CM.

Chapter 7
Setting Up Synchronization between BRM and ECE

7-2

Configuring the Connection Manager to Get Real-Time Balances for a
Service from ECE

The CM connects to ECE through EM Gateway.

To configure the CM to get real-time balances for a service from ECE:

1. Open the BRM_home/sys/cm/pin.conf file in a text editor.

2. Add the following entry:

- cm em_group ece_bal PCM_OP_BAL_GET_ECE_BALANCES
3. Set the following entry to match your environment:

- cm em_pointer ece_bal ip emGateway_host emGateway_port
4. Save and close the file.

5. Stop and restart the CM.

How ECE Gets Historical Data From the BRM Database
Because there is a gap of time between when a call occurs and when it is rated, information
about the customer can change during that time. For example, a customer might change the
phone number before a call is rated. ECE must look up account data based on the old
number.

To retrieve historical information, ECE gets data from audited objects. By default, auditing in
BRM is turned off for most objects. After you install the account synchronization components,
you must run the object_auditing.pl script to turn on auditing for the objects and fields that
ECE needs data about. See "object_auditing" in BRM Installation Guide.

Chapter 7
How ECE Gets Historical Data From the BRM Database

7-3

8
Loading ECE Rated Events into BRM

You load rated events from Oracle Communications Elastic Charging Engine (ECE) into the
Oracle Communications Billing and Revenue Management (BRM) database by using Rated
Event Loader.

Topics in this document:

• About Sending Rated Events to the BRM Database

• Adding a Rated Event Publisher Instance

• Configuring Rated Event Publisher

• Configuring Item Assignment for Rated Events

• Configuring Life Cycle States in ECE for BRM

• Including or Excluding a Customer’s Remaining Balance in Rated Events

• Accessing ECE Configuration MBeans

About Sending Rated Events to the BRM Database
After usage events are rated, ECE sends the rated event data to the BRM database by using
Rated Event Loader and updates the customer's balance in both ECE and in the BRM
database. The same process is used for loading online charging events and offline charging
events.

For more information, see "About Loading Rated Events into the BRM Database" in BRM
Loading Rated Events.

Adding a Rated Event Publisher Instance
If you are using Oracle NoSQL Database to store rated events, you must configure Rated
Event Publisher. Rated Event Publisher publishes ECE-generated rated events to the Oracle
NoSQL database data store.

To add a Rated Event Publisher instance:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.ratedEventPublishers.

4. Expand Operations.

5. Select addRatedEventPublisherConfiguration.

6. Enter a value for the instance name parameter.

7. Click addRatedEventPublisherConfiguration.

8. Use Elastic Charging Controller (ECC) to start the RE Publisher instance.

8-1

Configuring Rated Event Publisher
To configure Rated Event Publisher:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.connectionConfiguratons.instance_name.

4. Specify values for the fields in Table 8-1.

Table 8-1 Fields for Configuring Rated Event Publisher Connection

Name Default Description and Guideline

dataStoreConnection localhost:5000 This parameter configures Rated Event
Publisher to connect to the Oracle NoSQL
database; it configures the data store
connection to the Oracle NoSQL database
system.

The Oracle NoSQL database connection
string uses the format hostname:port for
connecting to a preconfigured Oracle
NoSQL database system.

The default is localhost:5000 for
connecting to a standalone Oracle NoSQL
database system (KV-Lite).

dataStoreName kvstore This parameter configures the data store
name to an Oracle NoSQL database
system.

The data store name is for using a
preconfigured data store in an Oracle
NoSQL database system.

The default is kvstore for using a
standalone Oracle NoSQL database
system (KV-Lite).

name noSQLConnectio
n1

This parameter should match the
noSQLConnectionName parameter in
the
charging.ratedEventPublishers.instance
_name configuration.

5. Expand the charging.ratedEventPublishers.instance_name node.

6. Expand Attributes.

7. Specify values for the fields in Table 8-2.

Chapter 8
Configuring Rated Event Publisher

8-2

Table 8-2 Fields for Configuring Rated Event Publisher

Name Default Description and Guideline

noSQLConnectionName noSQLConnection
1

This parameter should match the name
parameter in the
charging.ratedEventPublishers.instance_n
ame configuration for the correct connection
configuration to the Oracle NoSQL database.

threadPoolSize 4 This parameter configures the number of
threads in the thread pool.

Multiple threads can be used in a
RatedEventPublisher module where each
thread can publish rated events to an Oracle
NoSQL database system independently.

The valid number is greater than zero. For
best performance, Oracle recommends that
you set this parameter to the number of
Oracle NoSQL database partitions. Setting
the number of threads higher than the number
of partitions does not increase performance.
Threads that you configure higher than the
number of partitions are not used.

8. Use ECC to stop and restart Rated Event Publisher.

Configuring Item Assignment for Rated Events
You configure item assignments in ECE so that customer balance impacts can be tracked
appropriately. Typically, the default configuration is sufficient. If you have custom item
assignments, you might need to change the configuration for item assignments.

The item-type field maps to BRM items; this mapping is required for loading rated events
from ECE to the BRM database. Each rated event record has an item_type field derived
from the mapping specified in the itemType MBean attribute. The itemType MBean attribute
lists the ECE service/event combinations used in event definitions.

For example, usage events are typically applied to the /item/misc object, also known as the
misc item type. To map voice and data events to the misc item, ECE maps itemType="misc"
to itemTag="VOICE_DATA_misc". The XML file that stores this configuration shows how the
mapping works.

<itemTypeDetail itemType="misc" itemTag="VOICE_DATA_misc">
 <itemTagDetail
 productType="VOICE"
 eventType="USAGE">
 </itemTagDetail>
 <itemTagDetail
 productType="DATA"
 eventType="DATA_USAGE">
 </itemTagDetail>
</itemTypeDetail>

In this example, the VOICE_DATA_misc item tag includes two ECE service/event mappings:
VOICE/USAGE and DATA/DATA_USAGE. When a usage request is created, the item
mapping specifies that the misc item type will be assigned to the events.

Chapter 8
Configuring Item Assignment for Rated Events

8-3

If you configured delayed billing in BRM, you must configure item assignment in ECE
to process delayed usage requests in the appropriate accounting cycle.

To configure item assignment for rated events:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.itemAssignmentConfig.

4. Expand Attributes.

5. Review the following attributes:

• itemAssignmentEnabled: Enter true to turn on item assignment or false to
turn it off.

• poidQuantityPerSchema: Double-click the Value field. A list of schemas and
the quantity of POID IDs reserved at ECE startup for each schema appears.

• delayToleranceIntervalInDays: Enter the number of days during which
delayed usage requests are processed for the current accounting cycle. This
interval must be less than the delayed billing interval.

The delayed billing interval is set in the ConfigBillingDelay business
parameter. See "Configuring Delayed Billing" in BRM Configuring and Running
Billing.

6. To add a schema to the poidQuantityPerSchema list or to change the quantity of
POID IDs for a schema in the list:

a. Expand Operations.

b. Select setPoidQuantity.

c. Specify values for the following parameters:

• schema: Enter the BRM schema number for which the POID IDs must be
reserved. For example, in a multischema environment, enter 1 for the
primary schema, 2 for the secondary schema, and so on.

• quantity: Enter the number of POID IDs reserved at ECE startup for the
specified schema.

d. Click the setPoidQuantity button.

Configuring Life Cycle States in ECE for BRM
ECE supports the BRM subscriber life cycle state feature. If the subscriber life cycle
state feature is disabled in BRM, ECE supports only the default subscriber life cycle,
which has the following states: Active, Inactive, and Closed. If the subscriber life cycle
state feature is enabled in BRM, ECE supports custom subscriber life cycles, which
has the following states: Preactive, Active, Recharge Only, Credit Expired, Fraud
Investigated, Dormant, Suspended, and Closed. See "Creating Custom Service Life
Cycles" in BRM Managing Customers for more information.

You must configure the life cycle states in ECE, so they stay synchronized with life
cycle states you add in BRM.

To configure life cycle states in ECE for BRM:

Chapter 8
Configuring Life Cycle States in ECE for BRM

8-4

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.lifecycleConfiguration.

4. For each subscriber life cycle state, configure the rules and transitions defined for each
state for each service.

Including or Excluding a Customer’s Remaining Balance in
Rated Events

ECE can send the current balance and loan balance information with rated events. This
allows your custom client application to display balance data with rated events. These
balances can be either currency or non-currency, depending on the type of resource the
transaction impacts.

By default, this value is set to true to send the balances with events. You can change the
value to false if you want to retain the older event format.

To configure whether ECE sends balance data on rated events:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Set the populateCurrentLoanAmountsOnRef attribute to either true or false as
desired.

Accessing ECE Configuration MBeans
For all configurations, start by accessing the ECE configuration MBeans:

1. Log on to the driver machine.

2. Start the ECE charging servers (if they are not started).

3. Connect to the ECE charging server node enabled for JMX management.
This is the charging server node set to start CohMgt = true in the ECE_home/config/
eceTopology.conf file, where ECE_home is the directory in which ECE is installed.

4. Start a JMX editor that enables you to edit MBean attributes, such as JConsole.

5. In the editor's MBean hierarchy, find the ECE configuration MBeans.

Chapter 8
Including or Excluding a Customer’s Remaining Balance in Rated Events

8-5

9
Generating POIDs for Rated Events

You can configure Oracle Communications Elastic Charging Engine (ECE) to generate
POIDs for events that are created in ECE.

Topics in this document:

• About Generating POIDs in ECE

• Configuring ECE to Generate POIDs for Prepaid Events

About Generating POIDs in ECE
You use portal object IDs (POIDs) to track rated events and bill items. For tracking events
created in ECE, POIDs are generated as follows:

• For delayed events, ECE generates the POIDs by default.

• For prepaid events, BRM generates the POIDs and sends them to ECE by default. You
can configure ECE to generate the POIDs. See "Configuring ECE to Generate POIDs for
Prepaid Events".

• For non-usage events, such as subscription events, BRM generates the POIDs and
sends them to ECE.

ECE uses Rated Event Formatter to generate the POIDs and persists the last allocated POID
ID in the database. This ensures that the POIDs are generated without any duplication even if
the ECE system is restarted.

The POID generated in ECE contains the following information:

event_type date cluster_id BRM_schema_id unique_id

See Table 9-1 for the description of each entry in the POID.

Table 9-1 POID Entries in ECE

Entry Description

event_type A unique 4-bit number assigned to each event type.

For example, 0 is assigned to subscription events, 1 is assigned to
postpaid events (USAGE_POSTPAID), and 2 to 7 is assigned to
prepaid events (USAGE_PREPAID) depending on the
prepaidParttitionSet value specified in BRM.

The default value for event_type is 0.

date The 16-bit date on which the POID is generated. The date is
determined based on ECE virtualTime if it is enabled.

For more information on virtualTime, see "Changing Time and Date to
Test ECE".

9-1

Table 9-1 (Cont.) POID Entries in ECE

Entry Description

cluster_id A unique 4-bit number assigned to the Coherence cluster to identify
ECE in the cluster. The cluster_id is limited to 0 to 15 and the
maximum number of ECE clusters allowed in a deployment is 16. The
default value for cluster_id is 0.

If ECE is configured for disaster recovery, you must specify the cluster
ID for each cluster used in the Active-hot standby or Active-cold
standby systems.

BRM_schema_id A unique 6-bit number assigned to the BRM schema. The
BRM_schema_id is limited to 0 to 31.

unique_id A unique 34-bit number assigned to each POID.

You can configure multiple instances of Rated Event Formatter for uninterrupted POID
allocation. If the primary Rated Event Formatter instance fails, the secondary Rated
Event Formatter instance ensures that the POIDs are generated and allocated without
any interruption. In a disaster recovery deployment, if the Rated Event Formatter
instance in the primary site fails, the Rated Event Formatter instance in the backup site
continues the POID allocation for the events.

For tracking the bill items and non-usage events created in ECE, ECE uses the POIDs
received from BRM. ECE persists the POID pool received from BRM in the database.
This ensures that the reserved POID pool is retained in ECE even after the ECE
restart. It allows ECE to continue the POID allocation using the existing POID pool.

Configuring ECE to Generate POIDs for Prepaid Events
To configure ECE to generate POIDs for prepaid events, you must perform the
following:

1. Enable prepaid-event partitions in BRM. See "Enabling Prepaid Event Partitions in
BRM".

2. Ensure that the cluster ID is configured for ECE clusters. The cluster ID must be
specified if you have ECE configured for disaster recovery. See "Configuring
Cluster ID".

3. Ensure that the name of the primary Rated Event Formatter instance is specified
in each Rated Event Formatter instance. See the primaryInstanceName MBean
attribute in "Configuring RE Formatter" in Loading Rated Events.

The primary Rated Event Formatter instance must be specified if you have ECE
configured for disaster recovery.

4. Enable POID generation for prepaid events in ECE. See "Enabling POID
Generation for Prepaid Events in ECE".

Enabling Prepaid Event Partitions in BRM
To enable prepaid-event partitioning in BRM:

Chapter 9
Configuring ECE to Generate POIDs for Prepaid Events

9-2

Note:

In multischema systems, perform this task first on the primary BRM installation
machine and then on the secondary BRM installation machines.

1. Open the BRM_home/sys/dm_oracle/pin.conf file in a text editor.

2. Set the prepaid_partition_set entry to a numerical value only between 2 and 7. For
example:

- dm prepaid_partition_set 2
3. Set the prepaid_partition_transition_mode entry to 1:

Note:

Setting this entry to 1 enables Data Manager to retrieve the partitions for the
existing events. After retrieving all the partitions for the existing events (for
example, after 90 days), set this entry to 0 to disable this mode.

 - dm prepaid_partition_transition_mode 1
4. Save and close the file.

5. Create an editable XML file from the system instance of the /config/business_params
object:

pin_bus_params -r BusParamsSystem bus_params_system.xml
6. Set the prepaidPartitionSet parameter to the value you specified in step 2. For example:

<prepaidPartitionSet>2</prepaidPartitionSet>
7. Save the file as bus_params_system.xml.

8. Load the XML file into the BRM database:

pin_bus_params bus_params_system.xml
9. Stop and restart the CM.

10. Go to the BRM_home/apps/partition_utils directory.

11. Enable prepaid-event partitions by running the following command:

partition_utils -o enable -t prepaid
12. Add prepaid-event partitions by running the following command:

partition_utils -o add -t prepaid -s start_date -u month|week|day -q quantity

where:

• start_date specifies the starting date for the new partitions. The format is
MMDDYYYY.

• quantity specifies the number of partitions to add. Enter an integer greater than 0.

For more information on enabling and adding partitions, see "Partitioning and Managing
BRM Database Tables" in BRM System Administrator's Guide.

Chapter 9
Configuring ECE to Generate POIDs for Prepaid Events

9-3

Configuring Cluster ID
To configure the cluster ID for ECE clusters:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.clusters.Cluster_Name, where Cluster_Name is the name of
the ECE cluster that you are configuring.

4. Expand Attributes.

5. Set the id attribute to a unique number that indicates the ID of the cluster in the
POID generated in ECE.

Rated Event Formatter uses the cluster ID in the POID to identify the ECE
clusters. The cluster ID must be unique for each cluster.

Enabling POID Generation for Prepaid Events in ECE
To enable POID generation for prepaid events in ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.brmCdrPlugins.Instance_Name, where Instance_Name is the
name of the BrmCdrPluginDirect Plug-in instance you are configuring.

4. Expand Attributes.

5. Set the prepaidPartitionSet attribute to the value that you specified in the
prepaid_partition_set entry in the BRM_home/sys/dm_oracle/pin.conf file.

Note:

To enable POID generation in ECE, you must set this attribute to a
number between 2 and 7. If this attribute is set to 0, ECE uses the
POIDs received from BRM for tracking events.

Chapter 9
Configuring ECE to Generate POIDs for Prepaid Events

9-4

Part III
Managing ECE Notifications

This part provides information about generating notifications for your customers or external
systems from Oracle Communications Elastic Charging Engine (ECE). It contains the
following chapters:

• Configuring Notifications in ECE

• Configuring Subscriber Preferences

10
Configuring Notifications in ECE

You can configure Oracle Communications Elastic Charging Engine (ECE) to publish in-
session notifications to subscribers and system notifications to external applications.

Topics in this document:

• About ECE Notifications

• Enabling External Notifications in ECE

• Enabling Specific Notification Types

• Configuring ECE To Publish External Notifications to a Single Topic

• Enabling In-Session Group Notifications in ECE

• Enriching Notifications Using ECE Extensions

• Configuring BRM Gateway to Process ECE Notifications

• Modifying JMS Credentials for Publishing External Notifications

About ECE Notifications
ECE supports these types of notifications:

• In-session notifications for your subscribers: These notifications are sent to
customers during online charging. For example, notifying customers about their reserved
balance amounts.

You can configure in-session notifications for individual subscribers by using subscriber
preferences. See "Configuring Subscriber Preferences".

• Notifications for external applications: These notifications contain information that
external applications need. For example:

– The network mediation system can use data in the external notification in conjunction
with customer policy data for implementing network policy control.

ECE sends notifications for external applications to the ECE Notification queue. You
must configure your external application to retrieve and process notifications from the
ECE Notification queue.

– BRM can use data in the external notification for running billing for a specific
customer.

ECE sends notifications for BRM to the ECE Notification queue. You can configure
BRM to retrieve the notification from the queue and send it to the BRM Server for
processing.

All notifications are disabled by default. You can configure ECE to do the following:

• Publish in-session notifications to your subscribers

• Publish notifications to external applications, such as BRM

• Publish specific notification types to a dedicated Kafka topic

10-1

• Specify the type of notifications that are supported

• Send notifications to everyone in a sharing group when one of its members
triggers a notification

• Configure BRM Gateway to retrieve notifications from the ECE Notification queue

Enabling External Notifications in ECE
To enable ECE to publish notifications to external applications such as BRM, do the
following:

1. Open the ECE_home/config/charging-cache-config.xml file.

2. Under the ServiceContext module, set cache-store to
oracle.communication.brm.charging.notification.internal.coherence.Asynchr
onousNotificationPublisher:

<init-param>
 <param-name>cache-store</param-name>
 <param-
value>oracle.communication.brm.charging.notification.internal.coherence.Async
hronousNotificationPublisher</param-value>

3. Save the file.

Enabling Specific Notification Types
You can enable ECE to generate notifications for specific types of events, such as a
credit limit being exceeded.

You specify whether a specific notification type is enabled and whether it can be sent
to an external application, a subscriber, or both by setting its attribute to one of the
values in Table 10-1.

Table 10-1 Notification Attribute Values

Attribute Value Description

NONE This notification type is disabled.

ASYNCHRONOUS Send asynchronous notifications to external
applications.

PIGGYBACK Send in-session notifications to subscribers through the
usage response message.

ASYNC_PIGGYBACK Send both asynchronous notifications to external
applications, and in-session notifications to subscribers
through the usage response message.

To enable ECE to generate specific types of notifications:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.notification.

4. Expand Attributes.

Chapter 10
Enabling External Notifications in ECE

10-2

5. Specify which type of notifications can be sent to your customers, external applications,
or both by setting the attributes in Table 10-2 to NONE, ASYNCHRONOUS,
PIGGYBACK, or PIGGYBACK.

Note:

An asterisk (*) appears next to the default attribute value.

Table 10-2 Notification Types

Attribute Name Description Supported Values

creditCeilingBreachN
otificationMode

Sends notifications when a customer's balance
has breached a credit ceiling.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

creditFloorBreachNot
ificationMode

Sends notifications when a customer's balance
has breached a credit floor.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

thresholdBreachNotif
icationMode

Sends notifications when a customer's balance
has breached a credit threshold.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

topUpNotificationMo
de

Sends notifications when a customer's balance
is topped up.

NONE*
ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

rarNotificationMode Sends notifications when an ongoing session
requires a reauthorization request.

See "Enabling Server-Initiated Reauthorization
Requests".

NONE*

ASYNCHRONOUS

externalTopUpNotific
ationMode

Sends notifications when a customer's balance
is topped up through an external application.

NONE*

ASYNCHRONOUS

billingNotificationMo
de

Sends notifications when a subscriber starts a
charging session near the time billing is set to
run in BRM. This ensures that billing generates
new recurring grants and charges on time.

NONE*
ASYNCHRONOUS

adviceOfChargeNotifi
cationMode

Sends notifications to support the Advice of
Charge (AoC) supplementary service.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

replenishPoidIdNotifi
cationMode

Sends notifications when ECE needs to obtain
POID IDs from BRM.

NONE
ASYNCHRONOUS*

lifeCycleTransitionNo
tificationMode

Sends notifications when a customer's life-cycle
state has changed.

NONE*
ASYNCHRONOUS

Chapter 10
Enabling Specific Notification Types

10-3

Table 10-2 (Cont.) Notification Types

Attribute Name Description Supported Values

firstUsageValidityInit
NotificationMode

Sends notifications to synchronize validity of
first usage balance elements from ECE to
external applications.

NONE*
ASYNCHRONOUS

offeringUsageValidity
InitNotificationMode

Sends notifications to synchronize validity of
offer usage balance elements from ECE to
external applications.

NONE
ASYNCHRONOUS*

spendingLimitNotific
ationMode

Sends notifications when a threshold for a
policy-driven charging rule has been reached.

NONE*
ASYNCHRONOUS

aggregatedSpending
LimitNotificationMod
e

Sends aggregated notifications when a
threshold for a policy-driven charging rule has
been reached.

NONE*
ASYNCHRONOUS

loanGrantNotification
Mode

Sends notifications when a customer is granted
a loan.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

automaticTopUpTrigg
erNotificationMode

Sends notifications when a customer's balance
requires an automatic top up.

NONE*

ASYNCHRONOUS
PIGGYBACK
ASYNC_PIGGYBACK

Configuring ECE To Publish External Notifications to a
Single Topic

You can configure ECE to publish some or all notifications for external applications to a
single unique Kafka topic. Having a separate notification topic allows you to manage
the notifications effectively.

Additionally, you can replicate the external topic across sites to increase resiliency.

To configure ECE to publish external notifications to a single topic:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.kafkaConfigurations.BRM.

4. Expand Attributes.

5. Enable the external Kafka topic and specify the configuration values for the Kafka
topic:

• externalTopicEnabled: Set this to true.

• externalTopicName: Set this to the name of the external Kafka topic, such as
EceExtNotifications.

• externalPartitions: Set this to the total number of Kafka partitions in the
external topic. The default is 15.

6. Under the ECE Configuration node, expand charging.notification.

Chapter 10
Configuring ECE To Publish External Notifications to a Single Topic

10-4

7. Expand Attributes.

8. In the eventListForInternalExternalPublish attribute, enter the list of notification types
to publish to the external Kafka topic separated by a comma. Table 10-3 lists the valid
notification types.

The default is
OFFERING_VALIDITY_INITIALIZATION_EVENT,EXTERNAL_TOP_UP_NOTIFICATIO
N_EVENT.

Table 10-3 Notification Types

Notification Type Description

SPENDING_LIMIT_NOTIFICATION_TY
PE

Generated when a threshold for a policy-driven charging rule
has been reached.

SUBSCRIBER_PREFERENCE_TYPE Generated when a subscriber preference has been created,
modified, and deleted.

CREDIT_FLOOR_BREACH_EVENT_T
YPE

Generated when a customer's balance has breached a
credit floor.

CREDIT_CEILING_BREACH_EVENT_
TYPE

Generated when a customer's balance has breached a
credit ceiling.

ADVICE_OF_CHARGE_NOTIFICATIO
N_EVENT_TYPE

Generated when an Advice of Charge (AoC) event occurs.

THRESHOLD_BREACH_EVENT_TYP
E

Generated when a customer's balance has breached a
credit threshold.

AGGREGATED_THRESHOLD_BREAC
H_EVENT_TYPE

Aggregated notifications are generated when a threshold for
a policy-driven charging rule has been reached.

RAR_NOTIFICATION_TYPE Generated when an ongoing session requires a
reauthorization request.

CUSTOM_EVENT_TYPE Generated when a custom event occurs.

BILLING_NOTIFICATION_EVENT_TYP
E

Generated when a subscriber starts a charging session near
the time billing is set to run in BRM. This ensures that billing
generates new recurring grants and charges on time.

REPLENISH_POID_EVENT_TYPE Generated when ECE needs to obtain POID IDs from BRM.

EXTERNAL_TOP_UP_EVENT_TYPE Generated when a customer's balance is topped up through
an external application.

LIFE_CYCLE_TRANSISTION_EVENT_
TYPE

Generated when a service's life cycle transitions to a new
state.

FIRST_USAGE_VALIDITY_EVENT_TY
PE

Generated to synchronize validity of first usage balance
elements from ECE to external applications.

RERATE_CREATE_JOB_EVENT_TYP
E

Generated when a rerate job is created.

OFFERING_VALIDITY_INITIALIZATIO
N_EVENT_TYPE

Generated to synchronize validity of offer usage balance
elements from ECE to external applications.

AUTOMATIC_TOP_UP_TRIGGER_EV
ENT_TYPE

Generated when a customer's balance requires an
automatic top-up.

CUSTOMER_REMOVAL_NOTIFICATIO
N_EVENT_TYPE

Generated when a customer is removed from the system.

Chapter 10
Configuring ECE To Publish External Notifications to a Single Topic

10-5

Enabling In-Session Group Notifications in ECE
You can configure ECE to send notifications to everyone in a sharing group when one
of its members triggers a notification. For example, when a member breaches a credit
limit or credit threshold, a notification is sent to all members in the sharing group.

When group notifications are disabled, ECE sends notifications only to the member
that triggered the notification.

To enable group notifications:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the groupNotificationEnabled attribute to True.

6. Configure the NotificationEnabledAgreements subscriber preference:

a. Add a string for NotificationEnabledAgreements in the BRM_home/sys/
msgs/active_mediation/active_mediation.en_US file. For example:

STR
 ID = string_id;
 Version = 1;
 STRING = "NotificationEnabledAgreements";
END

where string_id is a unique numerical ID for the string. See "Creating New
Strings and Customizing Existing Strings" in BRM Developer's Guide for
information about adding strings.

b. Add NotificationEnabledAgreements to the BRM_home/sys/data/config/
config_subscriber_preferences_map.xml file. For example:

<SUBSCRIBER_PREFERENCES elem="preference_id">
 <NAME>NotificationEnabledAgreements</NAME>
 <SUBSCRIBER_PREFERENCE_ID>preference_id</SUBSCRIBER_PREFERENCE_ID>
 <STRING_ID>string_id</STRING_ID>
 <STR_VERSION>1</STR_VERSION>
 <DEFAULT></DEFAULT>
 <TYPE>1</TYPE>
 </SUBSCRIBER_PREFERENCES>

where:

• preference_id is a unique numerical ID for the preference.

• string_id is the same value as you used for ID in the
active_mediation.en_US file.

Chapter 10
Enabling In-Session Group Notifications in ECE

10-6

Note:

Leave the <DEFAULT> element blank to ensure that only subscribers who
opt in will receive notifications.

When group notifications are enabled, you set subscriber preferences at the profile level to
enable notifications for the individual subscribers who want to receive them. See "Configuring
Group Notifications" for more information.

Including Rollover Balances in Notifications
Rollover data is included in the balance data synchronized from BRM to ECE using the
PIN_FLD_ROLLOVER_DATA field. You can customize notifications sent by ECE to include
this data using the ECE SDK. To do so, extend ECE at the post-charging extension point to
call the getRolloverData() method.

Enriching Notifications Using ECE Extensions
You can customize the information included in notifications sent by ECE using the ECE SDK.
Enriching the notifications payload can help you provide subscribers with relevant data like
their initial granted balance, current balance, session-id and the notification Type.

To enrich notifications, extend ECE at the post-charging extension point and use the
SamplePostChargingExtension program. See "Post-Charging Extension - Enriching
Notifications" for more information.

Configuring BRM Gateway to Process ECE Notifications
ECE publishes notifications intended for external applications to the ECE notification queue.
If the notifications are targeted for BRM, BRM Gateway retrieves the notifications from the
queue and then calls the appropriate BRM opcode.

To configure BRM Gateway to process ECE notifications, you must connect BRM Gateway to
both BRM and the ECE notification queue:

1. When you install ECE, do this:

• Add details for connecting the BRM Gateway to the BRM Connection Manager (CM).

• If you are using Oracle WebLogic for notification handling, specify to create
WebLogic queues and enter the details for your ECE Notification queue and
Suspense queue.

• If you are using Apache Kafka for notification handling, specify to create Kafka topics
and enter the details for your ECE Notification topic and Suspense topic.

Note:

Systems that support 5G networks must use Apache Kafka for notification
handling.

Chapter 10
Including Rollover Balances in Notifications

10-7

For more information, see "Installing an ECE Integrated System" in Elastic
Charging Engine Installation Guide.

2. During the ECE postinstallation process, do this:

• If you are using Oracle WebLogic for notification handling, run the
post_Install.pl script to create your ECE Notification queue, Suspense queue,
and Acknowledgment queue. See "Creating WebLogic JMS Queues for BRM"
in Elastic Charging Engine Installation Guide.

• If you are using Apache Kafka for notification handling, run the
kafka_post_install.sh script to create your ECE Notification topic and
Suspense topic. Then, run the post_Install.pl script and choose to create only
the Acknowledgment queue. See "Creating Kafka Topics for ECE" and
"Creating WebLogic JMS Queues for BRM" in Elastic Charging Engine
Installation Guide.

3. Configure your BRM Gateway instances:

• If you want to configure a single BRM Gateway instance, see "Configuring the
BRM Gateway".

• If you want to configure multiple BRM Gateway instances, see "Configuring
Multiple BRM Gateway for Multi-Schema Deployments".

4. Configure the BRM Gateway queues or topics:

• If you are using WebLogic queues, see "Configuring WebLogic Queues for
BRM Gateway".

• If you are using Kafka topics, see "Connecting BRM Gateway to Kafka Topics
and BRM".

• If you are using queues from an external application, see "Considerations for
Using a Non-WebLogic Server JMS Provider".

Configuring the BRM Gateway
You must configure a BRM Gateway instance for each schema in your BRM database.
To configure a single BRM Gateway instance:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.brmGatewayConfiguration.

4. Expand Attributes.

5. Use the following attributes to configure BRM Gateway:

• name: The name of this BRM Gateway instance.

• schemaNumber: The number of the database schema BRM Gateway
connects to in the BRM database.

• emptyQueueThreadSleepInterval: Specifies the interval, in milliseconds, in
which the gateway thread pings the ECE Notification queue to check if a
connection is available when the queue is empty.

• jmsReceiveSleepInterval: Specifies the interval, in milliseconds, where the
BRM Gateway will wait and continue if there are no messages from the Kafka
or WebLogic queue.

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-8

• brmResponseTimeOutInterval: Specifies the interval, in milliseconds, where BRM
opcode service will wait for all responses from CM.

• gatewaySleepInterval: Specifies the number of milliseconds between connection
retry attempts for the Notification queue.

• jmsBatchSize: Specifies the maximum number of failed update requests BRM
Gateway can retrieve from the Suspense queue in a batch.

• jmsReceiveTimeout: Specifies the timeout in milliseconds for Kafka/JMS to receive
messages from the queue.

• brmWorkerThreads: Specifies the number of gateway threads, which, as part of the
charging settings configuration, is 10 but should not be less than 1.

• brmSchedulerThreadInitialDelay: Specifies the initial delay in milliseconds before
the BRM opcode service task is executed.

• brmSchedulerThreadDelayPeriod: Specify the interval, in milliseconds, at which the
BRM opcode service starts executing continuously with the given period.

• brmSuspenseQueuePeriod: Specifies the maximum amount of time, in
milliseconds, BRM Gateway has to retrieve a batch from the Suspense queue.

• connectionRetryCount: Specifies the number of times BRM Gateway can retry a
connection to the BRM CM after it fails.

• connectionRetryInterval: The amount of time, in milliseconds, between
reconnection attempts to the CM.

Configuring Multiple BRM Gateway for Multi-Schema Deployments
You must configure a BRM Gateway instance for each schema in your BRM database, i.e.,
you cannot have a single BRM Gateway in multi-schema. For example, in a system with
three schemas, you must have BRM Gateway 1 connected to Schema 1, BRM Gateway 2
connected to Schema 2, and BRM Gateway 3 connected to Schema 3.

In on-premises systems, you can optionally define more than one BRM Gateway instance for
each schema. In this case, ECE automatically makes one of the BRM Gateways active while
the other instances are inactive. One of the inactive instances comes online only if the active
instance goes down. For example, assume BRM Gateway 1 and 2 are connected to Schema
1. When BRM Gateway 1 is active, it remains active and continues processing ECE
notifications until the instance goes down. Then, BRM Gateway 2 becomes active and starts
processing notifications.

To configure multiple BRM Gateway instances:

1. Open the ECE_home/config/management/charging-settings.xml file.

2. Delete the existing charging.brmGatewayConfiguration section:

<brmGatewayConfiguration
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BRMGatew
ayConfiguration"
 name="brmGatewayConfiguration"
 emptyQueueThreadSleepInterval="50"
 jmsReceiveSleepInterval="100"
 brmResponseTimeOutInterval="600000"
 gatewaySleepInterval="2000"
 jmsBatchSize="10"
 jmsReceiveTimeout="2000"

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-9

 brmWorkerThreads="10"
 brmSchedulerThreadInitialDelay="10"
 brmSchedulerThreadDelayPeriod="3"
 brmSuspenseQueuePeriod="1800000"
 connectionRetryCount="10"
 connectionRetryInterval="10000">
</brmGatewayConfiguration>

3. Copy the following charging.brmGatewayConfigurations section into the file:

<brmGatewayConfigurations
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BR
MGatewayConfigurations">
 <brmGatewayConfigurationList config-class="java.util.ArrayList">
 <brmGatewayConfiguration
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BR
MGatewayConfiguration"
 name="brmGatewayN"
 clusterName="@CLUSTER_NAME@"
 emptyQueueThreadSleepInterval="50"
 jmsReceiveSleepInterval="100"
 brmResponseTimeOutInterval="600000"
 gatewaySleepInterval="2000"
 jmsBatchSize="10"
 jmsReceiveTimeout="2000"
 brmWorkerThreads="10"
 brmSchedulerThreadInitialDelay="10"
 brmSchedulerThreadDelayPeriod="3"
 brmSuspenseQueuePeriod="1800000"
 connectionRetryCount="10"
 connectionRetryInterval="10000"
 schemaNumber="N"/>
</brmGatewayConfigurationList>

4. Under brmGatewayConfigurationList, add this section for each additional BRM
Gateway instance that you want to create:

<brmGatewayConfiguration
 config-
class="oracle.communication.brm.charging.appconfiguration.beans.connection.BR
MGatewayConfiguration"
 name="brmGateway"
 clusterName="@CLUSTER_NAME@"
 emptyQueueThreadSleepInterval="50"
 jmsReceiveSleepInterval="100"
 brmResponseTimeOutInterval="600000"
 gatewaySleepInterval="2000"
 jmsBatchSize="10"
 jmsReceiveTimeout="2000"
 brmWorkerThreads="10"
 brmSchedulerThreadInitialDelay="10"
 brmSchedulerThreadDelayPeriod="3"
 brmSuspenseQueuePeriod="1800000"
 connectionRetryCount="10"
 connectionRetryInterval="10000"
 schemaNumber="1"/>
</brmGatewayConfigurationList>

5. Edit these properties for each BRM Gateway instance:

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-10

• name: Set this to the name of your BRM Gateway instance in this format:
brmGatewayN. For example, name the first instance brmGateway1, the second
instance brmGateway2, and so on.

• schemaNumber: Set this to the schema number that the BRM Gateway instance
connects to in the BRM database. Enter 1 to connect to the first schema, 2 to enter
the second schema, and so on.

6. Save and close the charging-settings.xml file.

7. Stop BRM Gateway:

stop brmGateway
8. Open the ECE_home/config/eceTopology.conf file.

9. Add a row to the file for each BRM Gateway instance.

For example, to configure three BRM Gateway instances, add three rows in which the
node name value is brmGateway1, brmGateway2, and brmGateway3, and the role value
for all three rows is brmGateway:

#node-name |role |host name (no spaces!) |host ip |JMX
port |start CohMgt |JVM Tuning File
brmGateway1 |brmGateway |localhost | |
9994 |false |defaultTuningProfile
brmGateway2 |brmGateway |localhost | |
9994 |false |defaultTuningProfile
brmGateway3 |brmGateway |localhost | |
9994 |false |defaultTuningProfile

10. Save and close the eceTopology.conf file.

11. From the ECE_home/bin directory, start Elastic Charging Controller (ECC):

./ecc
12. Start all BRM Gateway instances:

start brmGateway

Connecting BRM Gateway to Kafka Topics and BRM
To connect BRM Gateway to the ECE Notification Kafka topic and BRM:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the kafkaEnabledForNotifications property to true.

6. Expand charging.kafkaConfigurations.

7. Expand Attributes.

8. Specify the Kafka configuration values for the attributes in Table 10-4.

Verify that the name, hostname, and topic names that you provide match the settings
entered when installing ECE.

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-11

Table 10-4 Settings for Connecting BRM Gateway to Kafka Topics

Property Name Description

name The name of your ECE cluster.

hostname The host name and port number of the
machine in which Apache Kafka is up and
running.

If it contains multiple Kafka brokers, create a
comma-separated list.

topicName The name of the Kafka topic in which BRM
Gateway retrieves notifications from ECE.

partitions The total number of Kafka partitions in your
topics.

The recommended number to create is
calculated as follows: [(Max Diameter
Gateways * Max Peers Per Gateway) + (1
for BRM Gateway) + Internal Notifications]

kafkaBRMReconnectionInterval The amount of time, in milliseconds, BRM
Gateway waits before attempting to
reconnect to the Kafka topic.

kafkaBRMReconnectionMax The maximum amount of time, in
milliseconds, BRM Gateway waits before
attempting to reconnect to a broker that has
repeatedly failed to connect.

The kafkaBRMReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

9. Expand charging.connectionConfigurations.brmConnection.

10. Expand Attributes.

11. Specify the configuration values for connecting BRM Gateway to the BRM
Connection Manager (CM):

• hostName: Enter the host name of the server in which the CM is running. For
example: abc01.example.com.

• loginName: Enter the user name for logging in to BRM. The default is
root.0.0.0.1.

• cmPort: Enter the port number for the BRM CM.

About BRM Gateway Error Handling

When BRM Gateway calls an opcode, it checks whether the opcode ran successfully.
If it did not, the exception from the opcode is checked and, if the exception is one of
the following, it retries the opcode call.

• ERR_TIMEOUT

• ERR_DEADLOCK

• ERR_STREAM_EOF

• ERR_IM_CONNECT_FAILED

• ERR_EM_CONNECT_FAILED

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-12

• ERR_NAP_CONNECT_FAILED

If the opcode continues to fail after all of the configured retry attempts, the notification is
moved to the Suspense topic.

If the exception is due to a duplicate message (ERR_DUPLICATE), the opcode call is not
retried and the message is not moved to the Suspense topic.

Configuring WebLogic Queues for BRM Gateway
To configure WebLogic queues for BRM Gateway:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.connectionConfigurations.brmConnection.

4. Expand Attributes.

5. Use the following attributes to specify connection values to the BRM Connection
Manager (CM):

• loginName: Enter the user name for logging in to BRM. The default is root.0.0.0.1.

• hostName: Enter the IP address or the host name of the computer on which BRM is
configured.

• cmPort: Enter the port number for the BRM CM.

WebLogic Server Configuration Settings for the connectionFactory
For the connectionFactory created within the WebLogic server for creating connections to the
JMS topic, do the following:

1. Log on to the WebLogic Server on which the JMS topic resides.

2. In the WebLogic Server Administration Console, from the JMS modules list, select the
ConnectionFactory that applies to the JMS topic used for ECE notifications.

3. Do the following:

a. In the Client tab, set the Reconnect Policy to All.

b. In the Transactions tab, set the Transaction Timeout to 2147483647.

Refer to the Oracle WebLogic Server documentation for information about setting up a JMS
topic on WebLogic Server.

Considerations for Using a Non-WebLogic Server JMS Provider
If you choose to use a JMS provider other than WebLogic Server for publishing ECE
notification events, you must do the following on the driver machine:

• Copy the other JMS provider's client JARs to the ECE_home/lib directory.

• Rename the other JMS provider JAR file to wlthint3client.jar.

• Update the ECE_home/config/JMSConfiguration.xml file to specify the
InitialContextFactory and protocol information of the other JMS provider.

Chapter 10
Configuring BRM Gateway to Process ECE Notifications

10-13

Modifying JMS Credentials for Publishing External
Notifications

When you install ECE, you can specify to publish notifications to a WebLogic JMS
queue (named ECE Notification queue) as well as how to connect to the queue.

If you need to change the connection information after ECE is installed, you can edit
the parameters in the JMSConfiguration.xml file.

To modify the JMS credentials in ECE, do the following:

1. Open the ECE_home/config/JMSConfiguration.xml file.

2. Locate the <MessagesConfigurations> section.

3. Specify the values for the parameters in the NotificationQueue section:

Note:

Do not change the value of the JMSDestination name parameter.

a. For the HostName parameter, specify the host name of the WebLogic server
on which the JMS topic resides.

b. For the Port parameter, specify the port number on which the WebLogic
server resides.

c. For the UserName parameter, specify the user for logging in to the WebLogic
server.

This user must have write privileges on the JMS topic created.

d. For the Password parameter, specify the password for logging in to the
WebLogic server.

When you install ECE, the password you enter is encrypted and stored in the
KeyStore. If you change the password, you must first run a utility to encrypt
the new password before entering it here.

e. For the ConnectionFactory parameter, specify the connectionFactory created
within the WebLogic server for creating connections to it.

You must also configure settings in WebLogic server for the
connectionFactory. See "WebLogic Server Configuration Settings for the
connectionFactory" for information.

f. For the QueueName parameter, specify the JMS topic.

This is the JMS topic which holds the published external notification
messages.

g. For the Protocol parameter, specify the wire protocol used. For WebLogic
server, set this to t3://.

4. Save and close the file.

Chapter 10
Modifying JMS Credentials for Publishing External Notifications

10-14

11
Configuring Subscriber Preferences

You can configure subscriber preferences such as how they want to receive notifications from
the network in Oracle Communications Elastic Charging Engine (ECE).

Topics in this document:

• Configuring Subscriber Preferences

• Maintaining Subscriber Preferences with Customer Center

• Configuring ECE to Enrich External Notifications with Subscriber Preference Information

• Customizing Subscriber Preferences

• Configuring Group Notifications

Configuring Subscriber Preferences
BRM enables you to manage how each subscriber prefers to receive notifications from the
network. For example, you can specify that a subscriber wants to receive notifications in
French via SMS text messages.

By default, BRM enables you to manage the following subscriber preferences:

• Preferred channel of communication: IVR, SMS, e-mail, and so on

• Preferred language of communication: English, French, and so on

• Number of days prior to which customer wishes to receive the notification

• Interval between two successive notifications

• Timestamp of the last notification sent to the subscriber

BRM stores information about each subscriber's preferences in a subscriber profile
repository. BRM stores the types of preferences that you track and their default values in the /
config/subscriber_preferences object. BRM stores each subscriber's preferences at the
account level and the service level in individual /profile/subscriber_preferences objects.

For more information on the /config/subscriber_preferences and /profile/
subscriber_preferences objects, see BRM Storable Class Reference.

Maintaining Subscriber Preferences with Customer Center
When in-session notifications are enabled, you can configure and maintain subscriber
preferences by using Customer Center. During the account creation and modification
process, you specify the subscriber preferences in the Customer Center Subscriber
Preferences page.

Customer Center uses the configurations in the /config/subscriber_preferences_map
object to dynamically list the preferences that a subscriber can configure. You can customize
the information as necessary.

11-1

About Regulating Permissions to Update Subscriber Preferences
By default, all customer service representatives (CSRs) can access and update
subscriber preferences. You can restrict a CSR's permissions to view and update a
subscriber's preferences for services and accounts.

Configuring ECE to Enrich External Notifications with
Subscriber Preference Information

You can configure ECE to enrich external notifications with subscriber preference
information.

BRM enables you to manage how each subscriber prefers to receive notifications from
the network. For example, you can specify that a subscriber wants to receive
notifications in French (Language preference) via SMS text messages (Channel
preference). All subscriber preferences set for customers in BRM are also stored in
ECE.

You can configure ECE to enrich the following types of ECE external notifications with
subscriber preference information:

• Threshold breach notifications

• Aggregated threshold breach notifications

• Advice of Charge notifications

• Credit limit ceiling breach notifications

• Credit limit floor breach notifications

• Subscriber life cycle state transition notifications

• First usage validity initialization notifications

You can configure ECE to enrich each of the preceding external notifications with all
subscriber preferences or with a subset of subscriber preferences.

If the same subscriber preference is defined as a customer preference and as a
service preference, ECE uses the service preference. If a subscriber preference is not
specified for the service but is specified for the customer, ECE uses the customer
subscriber preference.

To configure ECE to enrich external notifications with subscriber preference
information:

1. If you do not have it, obtain the list of subscriber preference names you have set in
your BRM system.

When configuring ECE to enrich the external notifications with a subset of
subscriber preferences, you must enter the name of the subscriber preferences as
you previously set it in your BRM system.

2. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

3. Expand the ECE Configuration node.

4. Expand charging.notification.

Chapter 11
Configuring ECE to Enrich External Notifications with Subscriber Preference Information

11-2

5. Expand Attributes.

6. Set the subscriberPreferenceUpdateNotificationMode attribute to ASYNCHRONOUS.

7. Select a notification type for which notification messages are to be enriched with
subscriber preference information.

8. Specify values for the following attributes:

• enrichName: Enter subscriberPreferences.

• enrichValue: Enter one of the following values:

– No value: (Default) External notifications are not enriched with subscriber
preferences.

– Individual subscriber preferences: External notifications are enriched with a
subset of subscriber preferences. Enter the name of each preference, separated
by commas. The names must match the preference names set in your BRM
system.

– ALL: External notifications are enriched with all the customer's subscriber
preferences.

For each notification type enabled to be enriched with subscriber preference information,
ECE publishes subscriber preference information in the SubscriberPreferences block of the
external notification messages.

The following is an example of the SubscriberPreferences block for a threshold breach
notification enriched with the language subscriber preference of the customer.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
<NotificationType>THRESHOLD_BREACH_EVENT</NotificationType>
<PublicUserIdentities>
<PublicUserIdentity>6500000001</PublicUserIdentity>
</PublicUserIdentities>
<BalanceElementId>840</BalanceElementId>
<BalanceElementCode>USD</BalanceElementCode>
<CurrentBalance>-3.00</CurrentBalance>
<ThresholdAmount>-4</ThresholdAmount>
<ThresholdPercent>98.0</ThresholdPercent>
<BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
<DuplicateEvent>False</DuplicateEvent>
<SubscriberPreferences>
<SubscriberPreference PublicUserIdentity="6500000001:VOICE">
<SubscriberPreferencesInfo>
<PreferenceName>Language</PreferenceName>
<PreferenceValue>French</PreferenceValue>
</SubscriberPreferencesInfo>
</SubscriberPreference>
</SubscriberPreferences>
</Notification>

Customizing Subscriber Preferences
To customize the subscriber profile data configuration by using
config_subscriber_preferences_map.xml file:

1. Open the BRM_home/sys/data/config/config_subscriber_preferences_map.xml file.

Chapter 11
Customizing Subscriber Preferences

11-3

2. Edit the file, which includes examples and instructions. Table 11-1 describes the
parameters in the file.

Table 11-1 Elements That Store Subscriber Preferences

Element Description

Name Name of the preference

ID The ID associated with the preference

Type The type of value that the preference can be assigned, from
one of the following types:

• 1: STR (alphanumeric)
• 2: INT (integer)
• 3: ENUM (indicating that the preference is one of an

ordered list of possible values. An array of values must be
provided for this selection.) See the Values element in this
table.

• 4: DECIMAL
• 5: TSTAMP (timestamp)
For example, to provide a set of possible values, you set Type
to 3, and enter an array of values for this preference in Values.

String ID Used for Localization. The ID in the /string storable class that
would be associated with the localized string associated with
the preference. Customer Center uses this information to
display the preference name in a localized string form.

Default The field containing the default value the preference is to be
assigned.

Values An array list of values that the preference can assume. The
Values array list is present only if the selection for Type is
ENUM.

3. For example, the following entry defines a new preference type called Subscription
Level as the tenth preference for subscribers:

<SUBSCRIBER_PREFERENCES elem="10">
 <NAME>Subscription Level</NAME>
 <SUBSCRIBER_PREFERENCE_ID>10</SUBSCRIBER_PREFERENCE_ID>
 <STRING_ID>10</STRING_ID>
 <DEFAULT>Silver</DEFAULT>
 <TYPE>3</TYPE>
 <VALUES elem="0">
 <VALUE>Silver</VALUE>
 </VALUES>
 <VALUES elem="1">
 <VALUE>Gold</VALUE>
 </VALUES>
 <VALUES elem="2">
 <VALUE>Platinum</VALUE>
 </VALUES>
</SUBSCRIBER_PREFERENCES>

In this example:

• The Name of the preference is Subscription Level.

• The subscriber preference ID for the language preference is 10.

• The string ID for the localizing string is 10.

Chapter 11
Customizing Subscriber Preferences

11-4

• The default value for the language preference is Silver.

• The type of value is 3 (which is ENUM, and so an array of values follows).

• The Values array lists the 3 possible subscription level selections: Silver, Gold, and
Platinum.

4. Save the config_subscriber_preferences_map.xml file.

5. Open the BRM_home/apps/load_config/pin.conf file in a text editor.

6. Add the following as the last entry:

- load_config validation_module libLoadValidTCFAAA LoadValidTelcoAAA_init
7. Save the pin.conf file.

8. Load the updated file by running the load_config utility:

load_config config_subscriber_preferences_map.xml

Note:

• The load_config utility requires a configuration (pin.conf) file.

• If you do not run the utility from the directory in which the configuration file
is located, include the complete path to the file. For example:

load_config BRM_home/sys/data/config/
config_subscriber_preferences_map.xml

For more information on the load_config utility, see "load_config" in BRM
Developer's Guide.

9. Stop and restart the Connection Manager (CM).

To verify that the updated preference configurations were loaded, you can display the /
config/subscriber_preferences_map object by using the Object Browser, or use the
robj command with the testnap utility.

For more information on the /config/subscriber_preferences_map object, see BRM
Storable Class Reference.

Configuring Group Notifications
You can configure ECE to send credit limit and threshold breach notifications to multiple
members of a sharing group. By default, only the member who triggered the breach is
notified.

To configure group notifications:

1. Confirm that group notifications are enabled as described in "Enabling In-Session Group
Notifications in ECE".

2. For group owners, set the ResourcesForSendingNotification subscriber preference at
the account level to a comma-separated list of resource balance element IDs that the
owner wants to send notifications for.

3. For group members:

Chapter 11
Configuring Group Notifications

11-5

a. Set ResourcesForReceivingNotification at the account level to a comma-
separated list of resource balance element IDs that the member wants to
receive notifications for. Values included in this list must also be listed in
ResourcesForSendingNotification for the group owner.

b. Set NotificationEnabledAgreements at the account or service level as a
comma-separated list of sharing group names that the subscriber wants
notifications for. For example:

SharingAgreement12, Charge_Sharing14, DataSharing_143

These sharing groups must contain the resources specified in
ResourcesForReceivingNotification.

c. Set OfflineNotificationEnabled at the account or service level to true if the
group member wants to receive notifications when they are offline for
breaches caused by other group members. The setting at the service level
overrides the setting at the account level.

Note:

Because group owners can also be group members, an individual
subscriber might have all of these preferences set in their subscriber
profile.

You can set the values in Customer Center or by using the
PCM_OP_CUST_SET_SUBSCRIBER_PREFERENCES opcode. See "Maintaining
Subscriber's Charging Preferences Data" in BRM Opcode Guide for more information.

Chapter 11
Configuring Group Notifications

11-6

Part IV
Managing Charging Sessions

This part provides information about managing online and offline charging sessions in Oracle
Communications Elastic Charging Engine (ECE). It contains the following chapters:

• Managing Midsession-Rated Events

• Managing Online Charging Sessions

• Managing Session Start and End Times

• Managing Reservations for Online Sessions

• Managing Rounding and Consumption Rules

12
Managing Midsession-Rated Events

You can configure Oracle Communications Elastic Charging Engine (ECE) to generate a
rated event during the middle of a network session based on trigger criteria that you specify.

Topics in this document:

• Configuring ECE to Generate Midsession-Rated Events

• Generating Midsession-Rated Events When USU Block Missing

• Configuring Non-Linear Rating for Tariff Changes

• Viewing Reason for Midsession-Rated Event

Configuring ECE to Generate Midsession-Rated Events
By default, ECE generates a rated event for a network session when a session ends. You can
configure ECE to also generate rated events when an update operation occurs during the
session. Such events are called midsession-rated events.

To generate midsession-rated events, you enable the feature and then define conditions,
called triggers, that initiate the generation of these events. Triggers are based on one or more
of the following criteria:

• Duration (for example, every 4 hours that a session is active)

• Quantity (for example, whenever downloaded data totals 70 MB or more)

• Time of day (for example, daily at 23:00:00 during the life of the session)

• Custom criteria, such as network condition changes or spans from one offer to another
due to balance exhaustion

Note:

To trigger a midsession-rated event based on custom criteria, you must extend
ECE at the pre-rating or post-rating extension points. See "Pre-Rating
Extension – Generating Midsession-Rated Event" and "Post-Rating Extension –
Generating Midsession-Rated Events" for more information.

Each trigger is associated with a service-event pair. If an ongoing session meets the trigger
conditions when an update operation occurs, a midsession-rated event for the specified
service is generated.

12-1

Note:

ECE checks for trigger conditions only during update operations. For
example, if a trigger condition is "every 200 MB" but an update operation
does not occur until the total is 288 MB, the rated event is for 288 MB, not
200 MB.

To configure ECE to generate midsession-rated events:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.midSessionCdrConfiguration.

4. Expand Attributes.

5. Set the MidSessionCdrEnabled attribute to true.

6. Define trigger conditions for one or more service-event pairs:

a. Expand Operations.

b. Click addOrUpdateMidSessionCdrTriggerDetails.

c. Specify values for the fields listed in Table 12-1.

Table 12-1 Fields for Defining Midsession-Rated Event Triggers

Field Description

productType Name of the service for which you are creating the trigger
(for example, "DATA").

eventType Name of the event for which you are creating the trigger (for
example, "DATA_USAGE").

triggerName Name of the trigger you are defining.

qtyFields Name of one or more event fields to which a quantity
condition applies (for example, "input_volume;
output_volume"). Use a semicolon (;) to separate field
names. Values in the fields are summed.

qtyUnit Unit of measure for conditions based on quantity (for
example, "MEGABYTES").

qtyValue Total quantity of the unit that triggers event generation (for
example, "70").

durationUnit Unit of measure for conditions based on duration (for
example, "HOURS").

durationValue Amount of the unit that triggers event generation (for
example, "70").

timeOfDay A particular time of day in a 24-hour clock at which to
generate the event (for example, "23:00:00", which
indicates 11 p.m.). Use the hh:mm:ss format.

midSessionForNonCo
unterGrants

Whether to generate an event based on the consumed unit.

Chapter 12
Configuring ECE to Generate Midsession-Rated Events

12-2

A trigger with one TriggerConfiguration block is created for the specified service-
event pair. All conditions in the block (quantity, duration, time of day) must be met to
generate a midsession-rated event.

d. (Optional) Do one of the following:

• To define another trigger, click the plus sign in the panel's upper right corner, and
repeat step 4 for a different service-event pair.

• To add a TriggerConfiguration block to the current trigger, click the plus sign in
the panel's upper right corner, and repeat step 4 for the same service-event pair.

Note:

• All conditions in a TriggerConfiguration block must be met (criteria are
assumed to be joined by AND).

• If a trigger contains multiple TriggerConfiguration blocks, the conditions in
only one block must be met (blocks are assumed to be joined by OR).

Generating Midsession-Rated Events When USU Block Missing
When the network sends a Final Unit Indicator (FUI) followed by a top up, ECE generates a
reauthorization request (RAR). The network then sends an update request, sometimes not
including the Used Service Units (USU) block for the ongoing session. When this occurs,
ECE generates a midsession-rated event. This ensures that any part of the reservation
consumed by the account is reported, preventing revenue loss.

Configuring Non-Linear Rating for Tariff Changes
By default, ECE performs an incremental rating of an active network session based on the
tariff changes during a session. You can configure ECE to generate a midsession-rated event
whenever a tariff change occurs during a network session. The tariff change can include peak
and off-peak rate changes in offers, availability or expiration of charge offers, alteration offers
(discount offers) or distribution offers (charge sharing offers), and availability or expiration of
customer balances.

Non-linear rating for tariff changes enables ECE to rate long network sessions incrementally
based on the exact data consumed between tariff changes. It also lets operators show
subscribers the running balance based on the data consumption after each tariff change.

When this feature is enabled, ECE determines if there is a tariff change when authorizing and
reserving a balance for a session request from the network. ECE bases the reservation on
the requested service units of the session request and sends the Tariff-Time-Change AVP in
the usage response to the network to record the exact data consumed before and after the
tariff change. ECE also performs reverse rating to calculate the amount of usage the
subscriber can afford and reserves the balance for the requested service units based on the
worst-case charging condition (the maximum charge that can be applied for the requested
service units). This ensures that the overall usage does not exceed the customer's credit limit
and that there is no revenue leakage whether the balance is consumed before or after the
tariff change.

For non-linear rating, ECE supports only one tariff change for a session request. If more than
one tariff change is determined during authorization, ECE considers the tariff change that

Chapter 12
Generating Midsession-Rated Events When USU Block Missing

12-3

occurs first for balance reservation and adjusts the validity time to expire at the next
tariff change. This ensures that only one tariff change occurs before the session
expires. ECE then rates the exact balance consumed based on the rating condition
changes before and after the tariff change and generates rated events each time a
tariff change occurs in an ongoing session.

To enable incremental rating for tariff changes:

1. Enabling Non-Linear Rating for Midsession-Rating Condition Changes

2. Configuring ECE to Support Tariff Time Change

You can optionally customize how ECE calculates the maximum charge to apply for
the requested service units. See "Customizing the Worst-Case Charging Reservation".

Enabling Non-Linear Rating for Midsession-Rating Condition Changes
When changes in charging occur during an ongoing data session, they trigger a
reauthorization request (RAR). For example, when a usage charge transitions from $1
per minute to $1.50 per minute at 12:00:00, ECE sends an RAR notification to the
network.

You can configure ECE to generate a midsession-rated event when these charging
changes are triggered during an ongoing session. That is, ECE creates one rated
event for usage prior to an RAR and another rated event for usage after an RAR.

You can configure ECE to generate rated events for midsession-rating changes based
on the following:

• Product type

• Product type and event combination

Note:

Non-linear rating for midsession-rating condition changes is supported only
for those sessions that generate an RAR.

To configure ECE to use non-linear rating for midsession-rating condition changes:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. For each product that supports generating rated events for midsession-rating
changes, select enabledOrDisableNonLinear and then specify values for these
parameters:

• productType: Specify the name of the product defined in the ECE request
specification data (for example, DATA).

• enableOrDisable: Set to true to enable non-linear rating.

Chapter 12
Configuring Non-Linear Rating for Tariff Changes

12-4

6. For each product and event combination that supports generating rated events for
midsession-rating changes, select
enabledOrDisableNonLinearBasedOnProductTypeAndEventType and then specify
values for these parameters:

• enableOrDisableNonLinear: Set this to true.

• productType: Enter the name of the product defined in the ECE request specification
data. For example: TelcoGprs.

• eventType: Enter the name of one or more events separated by a comma. For
example: EventDelayedSessionTelcoGsm,EventDelayedSessionTelcoGprs.

Configuring ECE to Support Tariff Time Change

Note:

Configuring ECE to support tariff time change is a systemwide setting, and it is
applied irrespective of the product type. When configured, the tariff time change is
considered for all products for which incremental rating is enabled.

To configure ECE to support tariff time change:

1. Ensure that nonlinear rating is enabled for one or more product types, or product and
event combinations. See "Enabling Non-Linear Rating for Midsession-Rating Condition
Changes".

Caution:

Nonlinear rating must be enabled. The tariff time change functionality is
dependent on nonlinear rating.

2. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

3. Expand the ECE Configuration node.

4. Expand charging.server.

5. Expand Attributes.

6. Select the tariffTimeChangeSupported attribute and set the value to true.

Customizing the Worst-Case Charging Reservation
When resources are requested around tariff-time changes, ECE performs reverse rating to
calculate the usage the subscriber can afford and reserves the balance for the requested
service units based on the worst-case charging condition.

You can customize how ECE performs the worst-case charging reservation by using the ECE
SDK. To do so, extend ECE at the post-rating or post-charging extension point to do the
following in ExtensionRatingPeriod:

Chapter 12
Configuring Non-Linear Rating for Tariff Changes

12-5

• Invoke the isAdjustedForWorstCost method, which determines whether worst-
case charging was applied when calculating the reservation amount. The method
returns a Boolean value.

• Add customizations to perform if isAdjustedForWorstCose is true.

For example:

Collection<ExtensionRatingPeriod> ratingPeriodCollection =
extensionContext.getRatingPeriods();

for (ExtensionRatingPeriod ratingPeriod : ratingPeriodCollection) {
 if(ratingPeriod.isAdjustedForWorstCost()){
 //your customizations
 }
}

Sample Non-Linear Rating for Tariff Changes
The following section describes a scenario of tariff change during a data session and
the balances and charges applied during and at the end of the session.

Scenario: Offer Becomes Valid and Consumed in a Session

Given a subscriber with:

• A charge offer named CO Data Standard with a Standard Bytes (Chargeable
Balance) followed by Free Use Data (Counter)

• A starting balance of 50 megabyte (MB) Standard Bytes and 0 Bytes Free Use
Data

• A discount offer named Data Boost is valid from 1:30 PM the same day (100 MB
Standard Bytes valid from 1:30 PM for 30 minutes from the first use)

The usage charging flow is as follows:

• When the subscriber starts a data session at 1.00 PM

• Consumes 50 MB over 20 minutes at high QoS

• Consumes 2 MB over 10 minutes at low QoS

• The purchased Data Boost discount offer becomes valid at 1:30 PM

• Consumes 100 MB over 20 minutes at high QoS

• Consumes 5 MB over 15 min at low QoS before terminating the session

Table 12-2 shows how subscriber balances and charges are calculated.

Table 12-2 Subscriber Balance and Charge Details

Balance Name Balance Value Units Charged

Data Standard 0 MB 150 MB

Free Use Data 7 MB 7 MB

Chapter 12
Configuring Non-Linear Rating for Tariff Changes

12-6

Scenario: Noncurrency Voucher Top-up During a Session

The following describes a scenario of a non-predictable rating condition change during a data
session and the balances and charges during and at the end of the session.

Given a subscriber with:

• A charge offer named CO Usage Data

• A charge of $1 per 1 megabyte (MB) of usage

• A discount offer that consumes from available free MB

• An initial balance of 0 MB of Free Data and 0 USD

• Non-linear rating enabled for product type TelcoGPRS

• Eligible offers selected based on duration

The usage charging flow is as follows:

1. A subscriber starts a data session at 23:50:00 on April 1 with an INITIATE request for 30
MB.

2. ECE grants the subscriber 40 MB with a validity of 1 hour, and reserves a balance of 30
USD.

3. The subscriber does a noncurrency voucher top-up at 00:00:00, which grants 10 MB of
data with a validity of 5 days.

4. ECE sends an RAR notification.

5. At 00:02:00 on April 2, the network sends an UPDATE request with requested units as 40
MB and used units as 12 MB (10 MB before midnight and 2 MB after midnight).

6. ECE does the following:

• Generates a CDR for 12 MB

• Grants the subscriber 40 MB with a validity of 1 hour

The subscriber's balance is now:

• Current balance: 10 USD (Before midnight, ECE charges for 10 MB @ $1 per MB)

• Free data = 8 MB (After midnight, ECE subtracts the 2 MB of used data from the 10
MB voucher top up)

7. At 01:30:00 on April 2, the network sends a TERMINATE request with used units of 20
MB.

8. ECE generates a CDR for 20 MB.

The subscriber's balance is now:

• Current balance: 22 USD (After subtracting the free data, ECE charges an additional
12 USD for 12 MB @ $1 per MB)

• Free data: 0 (ECE uses the remaining 8 MB of free data)

Viewing Reason for Midsession-Rated Event
When ECE generates a midsession-rated event, it automatically records why the event was
split in the event's midSessionCDRSplitReason field. ECE sets the field to one of the
preconfigured reason codes in Table 12-3.

Chapter 12
Viewing Reason for Midsession-Rated Event

12-7

Table 12-3 Reasons for Creating Midsession-Rated Event

Reason Code Description Enum Value

CONFIGURED_VOLUME_RE
ACHED

The event exceeded a configured
volume, such as 100 MB.

1

CONFIGURED_DURATION_
REACHED

The event exceeded a configured
amount of time, such as 2 hours.

2

RATING_CONDITION_CHAN
GE

The trigger was caused by a change in
tariffs.

3

CONFIGURED_TIME_OF_TH
E_DAY_CROSSED

The event crossed a configured time of
day, such as midnight.

4

INTERNAL_TRIGGER The trigger was caused by a context
change.

5

EXTERNAL_TRIGGER The midsession trigger condition was
met.

6

MULTIPLE_USU The event contained multiple Used
Service Units (USUs).

ECE generates a midsession-rated event
for each USU.

7

MULTIPLE_USU_AND_EXTE
RNAL_TRIGGER_OR_INTER
NAL_TRIGGER

The event was caused by any of the
above triggers.

8

PRE_MIDSESSION_CONDIT
ION

The event reached a custom trigger at
the prerating extension point.

9

POST_MIDSESSION_CONDI
TION

The event reached a custom trigger at
the post-rating extension point.

10

ZONE_CHANGE The trigger was caused by a change in
zone.

11

BALANCE_EXHAUST The event was triggered after the
complete exhaustion of an existing
balance.

12

The following shows a sample snippet of a midsession-rated event with the
reasonForMidSessionCDRSplit field set:

balanceOutputMap = {BALANCE=BalanceOutputImpl{ customerId=39384585,
balanceId='BALANCE', status='SUCCESS', firstUsageValidityMap{},
impacts{840=[OutImpactImpl{ balanceItemId=1, impact=UnitValue{quantity=60.00,
unit=Money{curr=USD}}, validityRule=null,
firstUsageCreatedTime=null, type=0}]},
grantValidityMap={840={1=[Pair{first=null},{second=null}]}},
recurringImpactMap=null,
firstUsageValidityRuleMap={}, firstUsageCreatedTimeMap={},
currentAndLoanAmounts={840=[Pair{first=60.00}, {second=0}]}}}}'}}
{reasonForMidSessionCDRSplit=[CONFIGURED_DURATION_REACHED]}]

You can also extend ECE to add these preconfigured reason codes to midsession-
rated events generated by custom criteria. To do so, you extend ECE at the pre-rating
and post-rating midsession extension points.

For more information, see these ECE SDK sample programs:

Chapter 12
Viewing Reason for Midsession-Rated Event

12-8

• SamplePreRatingMidSessionExtension. See "Pre-Rating Extension – Generating
Midsession-Rated Event".

• SamplePostRatingMidSessionExtension. See "Post-Rating Extension – Generating
Midsession-Rated Events".

Chapter 12
Viewing Reason for Midsession-Rated Event

12-9

13
Managing Online Charging Sessions

You can learn how to configure online charging sessions in Oracle Communications Elastic
Charging Engine (ECE).

Topics in this document:

• Configuring ECE to Support Prepaid Usage Overage

• Managing Dynamic Charging Overrides for Online Sessions

• Processing Granted Allowances Before Applying Usage Charges

• Enabling Server-Initiated Reauthorization Requests

• Configuring ECE to Return Remaining-Balance Information in Usage Responses

• Configuring Taxation in ECE

• Managing Direct Debit Data in ECE Cache

• Configuring How ECE Manages Active Sessions When Network Elements Fail

• Configuring ECE to Redirect Subscriber Sessions to a Service Portal

• Enabling Match Factor in ECE

• Configuring Diameter Gateway to Bypass Rating During ECE Downtime

• Accessing ECE Configuration MBeans

• Customizing Consumption Order of Loan and Principal Balances

Configuring ECE to Support Prepaid Usage Overage
You can configure ECE to capture any overage amounts by prepaid customers during an
active session, which can help you prevent revenue leakage. If the network reports that the
number of used units during a session is greater than a customer's available allowance and
credit limit, ECE charges the customer up to the available allowance. It then creates an
overage record with information about the overage amount and sends it to the ECE Overage
topic. You can create a custom solution for reprocessing the overage amount later on.

Note:

Prepaid usage overage is supported on Kafka Server only. It is not supported on
WebLogic Server.

For example, assume a customer has a prepaid balance of 100 minutes, but uses 130
minutes during a session. ECE would charge the customer for 100 minutes, create an
overage record for the remaining 30 minutes of usage, and write the overage record to the
ECE Overage topic.

To configure ECE to support prepaid usage overage, do the following:

13-1

1. Ensure that you created an ECE Overage topic and connected ECE to your Kafka
Server. See "Connecting ECE to Kafka Topics".

2. Enable ECE to check for and capture any usage overage:

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole.
See "Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.server.

d. Expand Attributes.

e. Set the checkReservationOverImpact attribute to true. (The default is false.)

You can also customize ECE to include any existing unrated quantity in a CDR or
notification using the ECE SDK post charging extension (postCharagingExtension).
This can be done using the OverageDetailsImpl class. The unrated quantity can be
then captured by the getOverageDetailsMap() method that is available in the
extension.

Managing Dynamic Charging Overrides for Online Sessions
Dynamic charging allows you to override an offer's default rate on a per customer
basis based on the date. For example, you could create a dynamic override that
charges new customers $0.04 per MB for the first six months, $0.05 per MB for the
next four months, and then the default rate for all subsequent months.

You define dynamic charging overrides by creating a pricing tag and associating it with
an event type, date ranges, and an amount. For example, you could create a pricing
tag named MyPrice associated with a $0.05 per MB charge for /event/session/
telco/gsm events from June through September. You could then add the pricing tag to
your offers' balance impacts.

You configure dynamic charging overrides using PDC or the ImportExportPricing
utility. See "Configuring Dynamic Pricing for Usage Events" in PDC Creating Product
Offerings.

BRM stores information about dynamic charging overrides in the /
offering_override_values object.

During rating, ECE determines whether a pricing tag in a balance impact matches a
pricing tag and date range combination in the /offering_override_values object. If it
finds a match, ECE charges the amount associated with the pricing tag. If it does not
find a match, ECE charges the default amount.

Processing Granted Allowances Before Applying Usage
Charges

ECE processes a customer's granted allowances and usage charges in the order in
which they appear in the product offerings you define in PDC. For example, assume
you configure a product offering in PDC that grants 5 GB of free data per month and
then charges $10 per additional GB of data. If a customer purchases the product
offering and uses 8 GB of data in a month, ECE would first consume the 5 GB of free
data and then apply a $30 charge for the remaining 3 GB of data usage.

Chapter 13
Managing Dynamic Charging Overrides for Online Sessions

13-2

To configure charges in PDC to process granted allowances before applying usage charges,
see "Configuring Pricing to Consume Granted Allowances Before Charging" in PDC Creating
Product Offerings.

Enabling Server-Initiated Reauthorization Requests
ECE can perform server-initiated reauthorization requests (RAR) during an ongoing session.
This enables you to update a session in response to changes that occur to a customer's
product offerings or balance (for example, a change to a charge offer or to a Friends and
Family promotion). When ECE notifies the network, the network sends a reauthorization
request and, if there is a change in the charge, ECE can base the reauthorization on the new
charge.

A server-initiated reauthorization can be triggered from the following conditions:

• Changes to offers, such as the creation, modification, or deletion of a subscriber's charge
offer or alteration offer.

• Changes to balances that affect rating (for example, a balance that expires mid-session,
a balance that becomes available from a top-up, or changes to the customer balance due
to an accounts receivable action).

• Changes to promotions, such as changes to Friends and Family or a Special Day offer.

• Changes to charge sharing or alteration sharing groups. For example, a new member is
added to the group or a member is removed mid-session.

For example:

1. A subscriber is in a call session. The subscriber adds the called number of that session to
a Friends and Family list.

2. Because a Friends and Family discount might change the charge amount, ECE sends a
request to the network.

3. In response, the network sends a reauthorization request.

4. ECE sends a reauthorization, using the Friends and Family charge amount.

Note:

A reauthorization request is not triggered by a top-up or by rerating when balances
are added to a sharing group owner's account.

To enable server-initiated reauthorization requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.notification.

4. Expand Attributes.

5. Set the rarNotificationMode attribute to ASYNCHRONOUS.

This enables RAR notifications, which are required for server-initiated reauthorization
requests. ECE generates an external notification and sends it to a notification queue

Chapter 13
Enabling Server-Initiated Reauthorization Requests

13-3

(JMS topic) when the RAR_NOTIFICATION_EVENT service event is created.
When specific condition changes occur during a session, ECE generates a RAR
notification to inform the network to request a reauthorization.

6. Under the ECE Configuration node, expand charging.server.

7. Expand Attributes.

8. Set the offerEligibilitySelectionMode attribute to PERIOD.

• In PERIOD mode, ECE selects applicable charge offers valid any time
between the start and end time of the session to determine charges for events.
You use this mode when implementing server-initiated reauthorization
requests so that ECE can rate based on changes to a customer's subscription,
such as the purchase of a promotional offer, during the session.

• In END_TIME mode, ECE selects charge offers valid at the end time of the
session to determine charges for events. END_TIME mode must be used
when using a version of BRM that does not support PERIOD mode. This is the
default.

Note:

Events rated in PERIOD mode might result in a different charge from the
charge calculated when the event is rerated. This happens because the
event is rerated using only the pricing applicable at the event end time.

Customizing Server-Initiated Reauthorization for Sharing Groups
By default, when ECE performs a server-initiated RAR during a customer's ongoing
session, it generates RAR notifications for all of the customer's ongoing sessions.

You can customize ECE to support server-initiated RARs for sharing group members.
In this case, ECE initiates RAR notifications for all ongoing sessions of the customer
responsible for triggering the RAR along with all ongoing sessions of the sharing group
members. For example, assume a sharing group includes accounts A, B, C, and D,
and accounts A and C have ongoing sessions using the sharing group balance. If an
RAR is triggered for account C, ECE sends RAR notifications for account A's and C's
ongoing sessions.

To do so, extend ECE at the prerating, post-charging, and post-rating extension points
and use these ECE SDK sample programs: SampleRarPostChargingExtension,
SampleRarPostRatingExtension, and SampleRarPreRatingExtension. See
"Rating/Charging Extension – Triggering RAR Notifications" for more information.

Configuring ECE to Return Remaining-Balance Information
in Usage Responses

You can configure ECE to return a customer's remaining-balance information in the
usage response (as an in-session notification). For example, you could use the
information to send customers a low-balance notification when they are about to use
up all of their available balance for a service or they reach a balance amount set in
your system to trigger such notifications.

Chapter 13
Configuring ECE to Return Remaining-Balance Information in Usage Responses

13-4

ECE sends remaining-balance information for initiate and update usage requests.

The remaining-balance information that ECE returns pertains to all balances impacted by the
session (that is, the balances to which the session applied balance impacts).

For charge distribution scenarios (charge sharing), ECE returns the remaining-balance
information for the balances impacted by the sharer's usage.

To configure ECE to return remaining-balance information in usage responses:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the remainingBalanceCalcMode attribute to one of the following values:

• NONE: (Default) Sends no remaining-balance information in usage responses.

ECE does not calculate the remaining balance.

• CURRENT_BALANCE: Sends remaining-balance information for the current
balance, excluding the credit limit, in the usage response. Use this option to notify
your customers of their plain vanilla remaining balance.

ECE calculates the remaining balance by adding all sub-balances valid for the
session, including the consumed reserved amount of ongoing sessions. The
remaining balance is calculated as follows:

remaining balance = sum of for valid sub-balances of (current balance +
consumed reserved amount)

• UPTO_CREDIT_LIMIT: Sends remaining-balance information capped at the credit
limit in the usage response. Use this option to notify your customers of the credit limit
up to which you allow them to use the balance.

ECE calculates the remaining balance by adding all sub-balances valid for the
session, including the consumed reserved amount of ongoing sessions (the
consumed reservation of the balances ECE reserved for ongoing sessions) and
subtracts that value from the credit limit.

ECE calculates the remaining balance as follows:

remaining balance = {credit limit - sum of for valid sub-balances of (current
balance + consumed reserved amount)}

Configuring Taxation in ECE
By default, you configure taxation in Pricing Design Center (PDC) and the information is
published to BRM and ECE. ECE then applies taxes during rating using the following:

• Tax codes, which apply simple flat taxes.

• Tax selectors, which apply tax codes based on account, service, event, and profile
attributes.

• Tax exemption selectors, which reduce or eliminate the amount of tax your customers
pay based on account, service, event, and profile attributes.

See "About Calculating Taxes" in BRM Calculating Taxes for more information.

Chapter 13
Configuring Taxation in ECE

13-5

You can also configure simple, fixed-rate tax, such as GST or VAT, for both charges
and alterations (discounts) directly in ECE.

To configure taxation in an ECE runtime environment:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.taxation.

4. Expand Operations.

5. Click addTaxDetails.

6. Specify values for the following parameters:

Note:

These parameters are mandatory. You must set all of them when
configuring taxation.

• taxCode: Enter the tax code used by the charge offer or discount offer to
which the tax applies.

The tax code is used by charge offers and discount offers to point to the tax
rate that must be applied when a usage request is processed for the charge
offer or discount offer.

Enter the same tax code entered in PDC when the taxation section of the
charge offer and discount offer was defined.

• taxRate: Enter the tax rate to apply.

For example, entering 0.20 applies a 20% tax on the total usage impact.

• taxGlId: Enter the General Ledger ID used for the tax impact.

7. Specify an additional taxCode, taxRate, and taxGlId value for each charge offer
or discount offer to which a tax applies.

Managing Direct Debit Data in ECE Cache
By default, ECE stores information about all direct debit events in its cache so it can
validate any refund requests against one of the events.

However, some event types may not be eligible for refunds, so storing the direct debit
information in the cache is unnecessary. To save space and improve performance, you
can configure ECE not to store direct debit information in its cache for specific event
types.

To prevent ECE from storing direct debit information in its cache for specific event
types:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

Chapter 13
Managing Direct Debit Data in ECE Cache

13-6

3. Expand charging.server.

4. Expand Attributes.

5. In the excludedEventsForDebitRefundSessions attribute, list the event types
separated by a comma. For example, enter EventDelayedSessionTelcoGsm,
EventDelayedSessionTelcoGprs.

Configuring How ECE Manages Active Sessions When Network
Elements Fail

When a network element associated with active sessions in ECE fails, ECE receives an
accounting on/off request from the network element. You can configure ECE to cancel or
terminate active sessions when processing accounting on/off requests.

To configure how ECE manages active sessions when network elements fail:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the accountingOnOffMode attribute to one of the following values:

• TERMINATE: Active sessions that have a state of Initiated are terminated when an
accounting on/off request is processed.

• CANCEL: Active sessions in ECE that have a state of Initiated are canceled when an
accounting on/off request is processed.

Configuring ECE to Redirect Subscriber Sessions to a Service
Portal

Service providers can redirect a subscriber session to a service portal, which is a server
outside of the online charging system where specific services can be offered to the
subscriber. During an online charging session, if a subscriber is about to deplete funds for the
use of a service, the subscriber can be redirected to a website to top up the account. You can
configure ECE to send service portal addresses back to credit-control clients. Credit-control
clients use the information for redirecting a subscriber session to the service portal applicable
to the business scenario.

ECE derives the service portal address (to send back to credit-control clients) based on
configurable instructions that you define in redirection rules. Your redirection rules can be
based on any of the following customer conditions (typically based on a combination of
them):

• Whether the customer has insufficient funds

• Whether the customer has an inactive account

• Whether the customer is roaming or not roaming

Chapter 13
Configuring How ECE Manages Active Sessions When Network Elements Fail

13-7

• Whether the customer belongs to a specific customer segment (for example,
customer accounts associated with a BRM business profile for which the payment
type is Prepaid or Postpaid or the subscription type is Voice or Data).

Each redirection rule can send the session to a different service portal. For example,
you might configure two redirection rules for the following business scenarios:

• Given a customer with an account using a prepaid payment type who is roaming,
redirect the subscriber to http://myPrePaidRoamingRedirect.com.

• Given a customer with an account using a prepaid payment type who is not
roaming, redirect the subscriber to the http://
myPrePaidHomeNetworkRedirect.com URL address.

After ECE derives the service portal addresses and address types based on your
redirection rules, ECE sends the address back to the credit-control client.

When the credit-control client receives the Final-Unit-Indication in the answer from
ECE, the credit-control client behavior depends on the value, TERMINATE or
REDIRECT, indicated in the Final-Unit-Action AVP. If you do not configure redirection
rules, ECE indicates a Final-Unit-Action of TERMINATE in the usage response.

To configure ECE to redirect subscriber sessions to a service portal:

1. Create your redirection rules in a text editor and save the file.

If you have multiple redirection rules, separate them by semicolons and save them
as a single line. The single-lined redirection configuration should contain all of the
redirection rules for the business scenarios that require redirecting subscriber
sessions to applicable service portals.

See "Creating Redirection Rules".

2. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

3. Expand the ECE Configuration node.

4. Expand charging.redirectionConfiguration.

5. Expand Attributes.

6. Set the redirectionRule attribute to a copy of your redirection-rule configuration.

The default value is an empty string.

If no rule is provided, no redirection is done. ECE terminates the session.

ECE begins using the redirection-rule configuration at runtime.

If your redirection rule uses incorrect syntax, ECE logs the Rule Evaluation
Failed error at runtime in the charging-server node log files (ecs log files) and
leaves the redirection rule field in the usage response empty.

Note:

Modifying a redirection-rule configuration in JConsole may be error
prone because you cannot see the entire rule. Modifying a redirection-
rule configuration in the file where you created it is recommended.
Pressing Ctrl + A in the Value column of the redirectionRule variable
selects all contents.

Chapter 13
Configuring ECE to Redirect Subscriber Sessions to a Service Portal

13-8

Creating Redirection Rules

A redirection rule contains conditions that must be met for the subscriber session to be
redirected to a service portal.

Your redirection configuration might contain a Voice redirection rule and a Data redirection
rule for redirecting subscribers to service portals relevant to those services.

You must use allowed redirection-rule conditions.

For example, the following redirection rule specifies that when a customer is roaming, the
redirect address is http://RedirectRoaming.com and the redirect address type is URL:

"((@fui AND @roamingRequest) => [redirect_type:"URL",redirect_address:
"http://RedirectRoaming.com"];

This redirection rule specifies that when a customer is both postpaid and roaming, the
redirect address is http://RedirectRoaming.com, the redirect address type is URL, and the
maximum redirection time is 900 seconds:

"((@fui AND ({business_profile([name:"POSTPAID"])} == "true")) AND
@roamingRequest) => [redirect_type:"URL",redirect_address:
"http://RedirectRoaming.com",redirect_validity:"900"]"

Table 13-1 shows redirection-rule conditions that you can use to create redirection rules.

Table 13-1 ECE Redirection-Rule Conditions

ECE Redirection-Rule
Conditions

Description

@fui Checks in the charging result if the customer has insufficient funds (finds the
Final Unit Indicator in the service context).

@fui is required.

{business_profile([name:"Busine
ssProfileName"])} == "true")

Accesses a business profile by looking up a business profile name and
comparing its value to true.

Valid values for BusinessProfileName are names of attributes you defined in the
attribute-value pairs of your BRM business profiles.

For example:

{business_profile([name:"POSTPAID"])} == "true")

@roamingRequest Checks if the request is for a customer who is roaming.

@roamingRequest denotes roaming.

!@roamingRequest denotes not roaming.

The check is done on the value of the following Diameter credit-control-request
fields:

• GGSN-MCC-MNC-3GPP
• IMSI-MCC-MNC-3GPP
Note: These fields are not provisioned in ready-to-use event definitions. You
must provision these network fields when you enrich your event definitions in
PDC.

Chapter 13
Configuring ECE to Redirect Subscriber Sessions to a Service Portal

13-9

Table 13-1 (Cont.) ECE Redirection-Rule Conditions

ECE Redirection-Rule
Conditions

Description

{request_attribute([name:"FieldN
ame"])}

Reads a payload field from a usage request.

For example, the following condition reads the simple attribute 3GPP-IMSI-
MCC-MNC from the payload of the usage request:

{request_attribute([name:"3GPP-IMSI-MCC-MNC"])}

Use this construct to use any request attribute field as a condition in your
redirection rule. For example, if you want subscribers to be directed to a
different URL if they have a 1234 cell phone ID, you might use the condition:

{request_attribute([name:"CELL_ID"])} == "1234")

@productType Retrieves the service.

For example, a redirection rule using this condition:

 (
 (@productType == 'DATA')
 AND
 ({request_attribute(name:"GGSN-MCC-MNC-
 3GPP"])} == "1234")
) =>
[redirect_type:"URL",redirect_address:"myDataTopUpRedirect.com"]

Redirection-Rule-Configuration Syntax

You configure one or multiple redirection rules in a single-lined redirection
configuration with each redirection rule separated by semicolons.

The syntax for a redirection rule is the following:

((redirection_condition AND redirection_condition) AND redirection_condition) =>
[redirect_type:"redirect_type",redirect_address:"redirect_address",redirect_valid
ity:"redirect_validity"];

where:

• redirection_condition is a condition that must be met for ECE to send the specified
redirect type, redirect address, and redirect validity in the ECE usage response.
See Table 13-1 for accepted redirection-rule conditions.

• redirect_type is the type of the service portal address (for example, URL)

• redirect_address is the service portal address (for example, a website address)

• redirect_validity is the time, in seconds, that the subscriber being redirected has to
complete the task that must be done at the service portal. The value you enter
here overrides the default reservation validity time of ECE. If you do not specify a
redirect validity in your reservation rule, then the default reservation validity time of
ECE is sent back to the credit-control client.

When you design your redirection rules, it can be helpful to create a user scenario for
each and show the translation in a table, as shown in the following examples.

Chapter 13
Configuring ECE to Redirect Subscriber Sessions to a Service Portal

13-10

Example Redirection Rules

The following is an example of redirection rules.

Tip:

For visual clarity, this example shows a carriage return after each redirection rule.
Your redirection-rule configuration would be one line comprised of these four
redirection rules separated only by semicolons.

"((@fui AND ({business_profile([name:"POSTPAID"])} == "true")) AND
@roamingRequest) => [redirect_type:"URL",redirect_address:"http://
myPostPaidRoamingRedirect.com",redirect_validity:"900"];

((@fui AND ({business_profile([name:"POSTPAID"])} == "true")) AND !
@roamingRequest) => [redirect_type:"URL",redirect_address:"http://
myPostPaidHomeNetworkRedirect.com",redirect_validity:"900"];

((@fui AND ({business_profile([name:"PREPAID"])} == "true")) AND @roamingRequest)
=> [redirect_type:"URL",redirect_address:"http://myPrePaidRoamingRedirect.com"];

((@fui AND ({business_profile([name:"PREPAID"])} == "true")) AND !@roamingRequest)
=> [redirect_type:"URL",redirect_address:"http://myPrePaidHomeNetworkRedirect.com"]"

The four redirection rules support redirecting subscribers who have depleted funds in their
account to a service portal for these scenarios:

• Given a subscriber with an account using a postpaid payment type who is roaming,
redirect the subscriber to the http://myPostPaidRoamingRedirect.com URL address
and allow the subscriber to use network resources for 900 seconds.

• Given a subscriber with an account using a postpaid payment type who is not roaming,
redirect the subscriber to the http://myPostPaidHomeNetworkRedirect.com URL
address and allow the subscriber to use network resources for 900 seconds.

• Given a subscriber with an account using a prepaid payment type who is roaming,
redirect the subscriber to the http://myPrePaidRoamingRedirect.com URL address.

• Given a subscriber with an account using a prepaid payment type who is not roaming,
redirect the subscriber to the http://myPrePaidHomeNetworkRedirect.com URL
address.

Enabling Match Factor in ECE
ECE supports the match factor in discounting.

To enable the match factor in ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

Chapter 13
Enabling Match Factor in ECE

13-11

5. Set the matchFactorEnabled attribute to true.

Configuring Diameter Gateway to Bypass Rating During
ECE Downtime

During a planned maintenance activity or in an unplanned downtime of an ECE node,
you can configure Diameter Gateway to continue receiving the CCRs and responding
to the service network without rating the CCRs in real-time.

When Diameter Gateway is configured to bypass rating, it persists the Diameter CCRs
to the Oracle NoSQL database. Later, when ECE nodes are restored, you can replay
the persisted CCRs to the ECE charging servers for rating and updating balance
impacts. With this functionality, services can be delivered to your subscribers without
any interruption.

To configure Diameter Gateway to bypass rating, perform the following procedures:

1. Enable the ocsBypassExtension charging extension.

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole.
See "Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.extensions.

d. Expand Attributes.

e. Specify the fully qualified class name of the extension for the
ocsBypassExtension attribute.

2. Start the persistence of the diameter messages. See "Managing the Persistence of
Usage Requests During ECE Downtime".

3. After the ECE nodes are restored, use Diameter Replayer to replay the CCRs to
ECE for rating and updating balance impacts. See "Replaying Persisted Requests
into ECE".

Managing the Persistence of Usage Requests During ECE Downtime
When Diameter Gateway is configured to bypass rating during a planned maintenance
activity or in an unplanned downtime of ECE, Diameter Gateway receives CCRs and
persists them to Oracle NoSQL Database. Later, when the ECE nodes are restarted,
you stop the bypass rating extension and replay the persisted messages to the ECE
charging servers for rating and updating balance impacts.

Managing persistence of diameter requests involves starting and stopping the
persistence of the requests. Before persisting the incoming diameter requests, ensure
that the ocsBypassExtension charging extension is enabled. See "Configuring
Diameter Gateway to Bypass Rating During ECE Downtime" for information on
configuring Diameter Gateway to bypass rating.

For planned maintenance activities, you start the persistence of usage requests before
the ECE nodes become unavailable. During an outage, persistence of diameter
requests starts only if the ocsBypassExtension charging extension is enabled. If only
the extension is enabled and bypass rating is not started, the usage requests do not
flow to the ECE Charging Server nodes. In such a scenario, Diameter Gateway returns
Error 5012 for the requests.

Chapter 13
Configuring Diameter Gateway to Bypass Rating During ECE Downtime

13-12

Note:

The bypass rating functionality is supported for Gy diameter messages only.

To persist incoming diameter requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the DiameterGateway node.

3. Expand BFTTask.

4. Expand Operations.

5. Click startByPass.

The Diameter Gateway starts persisting the incoming requests.

In planned maintenance activities or in unplanned downtime, once the ECE nodes become
available and start running, you must stop the persistence of the requests. Otherwise,
messages are persisted even after the ECE nodes are up and running, which results in a
large volume of requests that need to be replayed.

To stop persisting the requests, click stopByPass. Before doing this, you can check if
persistence of requests is running by clicking BFTRunning. If bypassing rating is enabled,
this field shows True. Otherwise, it shows False.

Replaying Persisted Requests into ECE
When Diameter Gateway is configured to bypass rating during a planned maintenance or
unplanned downtime of ECE, Diameter Gateway persists the incoming CCRs to the Oracle
NoSQL Database. Later, during a non-peak period, you replay the persisted CCRs to the
ECE charging server when the ECE server is restored and is ready to process real-time
requests. When you replay the persisted CCRs, the requests are passed to the ECE charging
server, which then rates the CCRs and updates the balance impacts. You can plan for when
to start replaying the persisted messages, considering replaying the persisted messages can
have performance impacts while real-time requests are also processed. Before replaying the
persisted requests, ensure that bypass rating extension is disabled and the ECE nodes are
up and running. To check if bypass rating is stopped, click BFTRunning in ECE MBeans.

To replay the persisted requests into ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the DiameterGateway node.

3. Expand BFTTask.

4. Expand Operations.

5. Click persistedMessageCount to view the number of requests that have been persisted
and are ready for replay.

6. Click startBFTReplayer.

The replayer starts replaying the persisted messages to the ECE charging servers. As
messages are replayed to the servers, the number of persistedMessageCount keeps
decreasing until it becomes 0.

Chapter 13
Configuring Diameter Gateway to Bypass Rating During ECE Downtime

13-13

The replayedMessageCount field shows the number of requests that are being
replayed. As requests are replayed, the number of replayedMessageCount
keeps increasing until it matches the initial count of persistedMessageCount.

You stop replaying the messages once all the persisted messages are replayed into
the ECE charging servers.

To stop replaying the persisted messages:

1. Check the status of the replayer by clicking BFTReplayerRunning. Ensure that
this field shows Running.

2. Check the status of the replayedMessageCount field. Ensure that this field shows
0, which indicates that all the persisted messages are replayed into the ECE
charging servers.

• replayedMessageCount shows the number of Diameter messages that are
replayed to the ECE charging server by the current instance of Diameter
Replayer.

• persistedMessageCount shows the number of Diameter messages that have
been persisted to Oracle NoSQL database, but are yet to be replayed.

3. Click stopBFTReplayer.

Replaying of messages is stopped.

Accessing ECE Configuration MBeans
For all configurations, start by accessing the ECE configuration MBeans:

1. Log on to the driver machine.

2. Start the ECE charging servers (if they are not started).

3. Connect to the ECE charging server node enabled for JMX management.
This is the charging server node set to start CohMgt = true in the ECE_home/
config/eceTopology.conf file, where ECE_home is the directory in which ECE is
installed.

4. Start a JMX editor that enables you to edit MBean attributes, such as JConsole.

5. In the editor's MBean hierarchy, find the ECE configuration MBeans.

Customizing Consumption Order of Loan and Principal
Balances

By default, ECE consumes the customers' loan balance before consuming their
principal balance. However, you can configure ECE to consume the main balance first
at the service type level as well as the event type level. This customization allows you
to prevent fraud where the customer might use the loan balance and leave without
settling the loan.

Chapter 13
Accessing ECE Configuration MBeans

13-14

You customize ECE to consume the principal balance first by extending ECE at the prerating
extension point. Add the following lines to your prerating extension Java class:

void setUseLoanBalanceItem(Boolean useLoanBalanceItem);
 }

For more information, see "Customizing Rating"

Chapter 13
Customizing Consumption Order of Loan and Principal Balances

13-15

14
Managing Session Start and End Times

You can configure how Oracle Communications Elastic Charging Engine (ECE) sets the start
and stop times for your customers' sessions.

Topics in this document:

• Using Session Connect Time for Charging

• Optimizing Network Signaling

• Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and
Charge Offers

Using Session Connect Time for Charging
ECE uses the session attempt time, which is the time a session is initiated, as the session
start time for calculating usage charges. For example, when a customer initiates a call at
10:00:00 and the call actually gets connected at 10:00:30, 10:00:00 is considered as the call
start time.

You can configure ECE to instead use the session connect time, which is the time the session
actually begins, as the session start time for calculating usage charges. You can do this by
setting the connectionTimeEnabled entry in the ECE_home/config/management/
charging-settings.xml file to true.

To use the session connect time for calculating usage charges:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. For each product that you offer, do the following:

a. Select enabledOrDisableConnectionTime.

b. Specify values for the following parameters:

• productType: Enter the name of the product defined in the ECE request
specification data (for example, VOICE or SMS).

• enableOrDisable: Enter true to use the session connect time.

c. Click the enabledOrDisableConnectionTime button.

Optimizing Network Signaling
Many times, bundles expire at midnight on a particular day. If your customers are using
bundles at that time, the renewal and request messages that are transmitted at midnight can

14-1

cause an undue network load. To prevent this, you can configure ECE to randomize
the validity times for a service so that renewal requests do not occur simultaneously.

To optimize network signaling by randomizing validity times:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.notification.

4. Expand Attributes.

5. Set subscriptionCycleForwardMode to true.

Configuring ECE to Align Validity Start and End of
Conditional Balance Impacts and Charge Offers

When you design your pricing components in Pricing Design Center, you can create
charges for which conditional balance impacts are configured.

You can configure a runtime option in ECE that aligns the validity start of a conditional
balance impact with the validity start of the associated purchased charge offer and
aligns the validity end of a conditional balance impact with the validity end of the
associated purchased charge offer. For example, if a customer activates a conditional
balance impact valid for three days and the charge offer with which it was purchased is
not valid after one day, this configuration specifies whether the conditional balance
impact can still be used after the charge offer validity has ended. If ECE does not align
the validity end of the conditional balance impact with the validity end of the charge
offer the customer purchased, the balance can be used by another charge offer.

To configure ECE to align validity start and end of conditional balance impacts and
charge offers:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the alignRecurringImpactsToOffer attribute to true.

At run time, if this is set to true and ECE receives a usage request for which a
conditional balance impact applies, ECE compares the validity start and end of the
conditional balance impact with the usage validity start and end of the associated
charge offer that the customer purchased. If the validity start or end of the
conditional balance impact breaches the validity start or end of the associated
purchased charge offer, ECE aligns both the validity start and end of the
conditional balance impact with those of the charge offer.

Chapter 14
Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and Charge Offers

14-2

15
Managing Reservations for Online Sessions

You can configure how Oracle Communications Elastic Charging Engine (ECE) reserves your
customers' resources for online sessions.

Topics in this document:

• Configuring Reservation Expiration and Validity

• Configuring a Minimum Quantity for Reservation

• Configuring Reservation Quota for Services

• Managing Dynamic Quotas for Online Sessions

Configuring Reservation Expiration and Validity
In an online session, the network sends the following to ECE:

• Usage updates: Keeps ECE informed about the balance impact of an event. In
response, ECE tells the network if the balance is sufficient to continue the session, or if
reauthorization is needed.

• Reauthorization requests: Requests an extension of the session. In response, ECE
determines whether the customer's balance is sufficient and, if so, reauthorizes the call.

ECE determines how many resources to reserve for a usage session and when the usage
session expires by using the following information passed in the requests:

• Reservation duration: This amount is used to calculate the amount of resources to
reserve for the usage session. For example, if the duration is 20 minutes and the rate
is $2 per minute, ECE reserves $40 for the usage session. At the end of the duration, the
client must ask for a reauthorization to extend the usage session.

You do not want the duration to be too low because it takes network activity to report
usage. You also do not want the value to be too high because that increases the risk of
revenue leakage if the customer uses up his balance before the reservation expires.

• Validity time: This specifies how long the reservation is valid. When the validity time
ends, the client must send a usage report to ECE. If the network mediation client does
not communicate the used service units (USU) within the validity time, ECE considers the
reserved balances to be available for subsequent session requests. The available
reserved balances are cleaned up by housekeeping processes when the session
terminates.

The validity time is set for each session and is reset whenever an interim request is
received for the session. After the validity time for a session expires, any reserved
balances are released and become available to other active sessions for the same
charge offer.

ECE calculates when the reservation expires by adding together the reservation duration and
validity time. For example, if the usage request specifies a reservation duration of 240
seconds and a validity time of 600 seconds, the reservation expires in 840 seconds.

15-1

When ECE receives a usage request that does not specify a validity time or
reservation duration, ECE uses the default values specified.

To configure the default values for reservation expiration and validity:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Attributes.

5. Specify the defaults for the following attributes:

• validityTime (Long data type): Enter the amount of time, in seconds, that a
reservation remains valid. The default is one hour.

• reservationDuration (Long data type): Enter the amount of time, in seconds,
that is used to calculate the amount of resources to reserve. The default is one
hour.

For detailed information, see ReservationConfigMBean in the
BizParamConfigMBean package of Elastic Charging Engine Java API Reference.

Configuring a Minimum Quantity for Reservation
You can configure a minimum reservation quantity for charging events. If the customer
does not have enough balance to reserve the minimum quantity of the charging event,
ECE tells the network that there is not enough in the balance to fulfill the request.

Note:

Some charging events cannot be charged in fragments. For example, you
cannot charge for half of an SMS message. In this case, you would set a
minimum quantity reservation of 1 for charging an SMS event.

To configure the minimum quantity for reservation:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. Select setMinAuthorizedQuota.

6. Specify values for the following parameters:

• productType: Enter the name of the product for which you are setting a
minimum quantity reservation. Enter the name as it is defined in the ECE
request specification data (for example, VOICE or SMS).

• rum: Enter the name of the attribute defined in the ECE request specification
data.

Chapter 15
Configuring a Minimum Quantity for Reservation

15-2

Note:

Though the parameter name is rum, its value must be the attribute name
specified in the REQUESTED_UNITS block of the request specification
data, not the rateable usage metric (RUM) name. For example, if you send
attribute INPUT_VOLUME in the usage request, enter INPUT_VOLUME as
the rum attribute's value.

• minAuthorizeQuota: Enter the minimum amount of the specified unit that can be
reserved for this product-RUM combination.

• unit: Enter the unit of measurement for the quota, such as seconds, minutes, events,
or megabytes.

7. Click the setMinAuthorizedQuota button.

Configuring Reservation Quota for Services
When ECE receives a usage request that does not specify a requested amount, ECE uses a
default usage amount. You configure a systemwide initial quota and a systemwide
incremental quota for each combination of service and RUM. When initiating a call, ECE
applies the initial quota for the reservation. For update requests, ECE applies the incremental
quota for the reservation.

To configure the reservation quota for services:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.reservationConfig.

4. Expand Operations.

5. For each service that you offer, do the following:

a. Select setDefaultReservationQuota.

b. Specify values for the following parameters:

productType: Enter the name of the product defined in the ECE request specification
data (for example, VOICE or SMS).

rum: Enter the name of the attribute defined in the ECE request specification data.

Note:

Though the parameter name is rum, its value must be the attribute name
specified in the REQUESTED_UNITS block of the request specification
data, not the RUM name. For example, if you send attribute
INPUT_VOLUME in the usage request, enter INPUT_VOLUME as the rum
attribute's value.

initialQuota: Enter the initial quota for this service-RUM combination. The value
must be decimal-compliant (Java BigDecimal). ECE uses this value to populate the

Chapter 15
Configuring Reservation Quota for Services

15-3

REQUESTED_UNITS blocks of all Initiate-type usage requests whose
Requested-Service-Units AVP value is missing.

incrementalQuota: Enter the incremental quota for this service-RUM
combination. The value must be decimal-compliant (Java BigDecimal). ECE
uses this value to populate the REQUESTED_UNITS blocks of all Update-type
usage requests whose Requested-Service-Units AVP value is missing.

unit: Enter the unit of measurement for the quota, such as seconds, minutes,
events, or megabytes.

c. Click the setDefaultReservationQuota button.

Managing Dynamic Quotas for Online Sessions
Dynamic quota allows you to allocate the quota dynamically for each parallel session
of a subscriber based on the rules you configure in Pricing Design Center (PDC). For
configuring dynamic quota selectors, see "Configuring Dynamic Quota" in PDC
Creating Product Offerings.

If dynamic quota selector rules are configured for a service-event combination, ECE
does one of the following depending on whether the network passes a requested
service unit (RSU) in a usage request:

• An RSU is passed in the usage request: ECE evaluates and applies the
dynamic quota selector rules to the usage request to derive the allocated quota.
ECE returns the derived quota (in the GSU) and the following quota attributes in
the usage response to the network:

– Quota holding time. Specifies how long a granted quota can be idle before
releasing the reservation.

– Volume quota threshold. Specifies how much of the granted quota must be
consumed before a subscriber can request additional quota. This attribute is
configured per service, event, and number of granted units.

– Validity time. Specifies whether validity time can be set to a fixed value per
service-event combination at runtime. This attribute is independent of the
number of units in the granted quota.

• An RSU is not passed in the usage request: ECE does not return a quota in its
response to the network.

If dynamic quota selector rules are not configured for a service-event combination,
ECE uses the default quota configuration for deriving the quota and quota attributes.

Note:

You can customize the dynamic quota allocation to suit your business
requirements. For more information, see "Sample Extensions".

Triggering RAR Notifications for Ongoing Sessions
When you use dynamic quotas for long running sessions to reduce network signaling,
you can trigger server-initiated reauthorization requests to get the exact reservation
balance before performing other business operations.

Chapter 15
Managing Dynamic Quotas for Online Sessions

15-4

To generate server-initiated reauthorization requests, you must generate RAR notifications.
To generate these notifications, you can implement custom logic by using the following ECE
extensions in the rating/charging flow:

• Pre-rating extension

• Post-rating extension

• Post-charging extension

For more information, see "Rating/Charging Extension – Triggering RAR Notifications".

Chapter 15
Managing Dynamic Quotas for Online Sessions

15-5

16
Managing Rounding and Consumption Rules

You can configure how Oracle Communications Elastic Charging Engine (ECE) rounds
balance impacts and the order in which it consumes sub-balances.

Topics in this document:

• Configuring Rounding for a Resource

• Configuring Rounding for Reverse Rating on Multiple RUMs

• Configuring Systemwide Consumption Rules for Balances

Configuring Rounding for a Resource
By default, ECE uses the rounding rules configured in Pricing Design Center (PDC) for a
currency or noncurrency resource to round the balance impact amount for processing stages
like charging, discounting, and taxation. These rules can be different for each processing
stage. For information on configuring the rounding rules, see "Adding Rounding Rules for
Specific Events" in PDC Online Help.

However, you can configure system-wide rounding in ECE for currency and noncurrency
resources to apply the rule across all processing stages.

Example of Currency Rounding for a Charge

If you allow two digits to the right of the decimal point and you round down towards zero
(DOWN rounding mode), ECE takes a calculated charge of 0.509 USD and rounds it to 0.50
USD.

Example of Noncurrency Rounding for a Charge

If you allow zero digits to the right of the decimal point and you round towards positive infinity
(UP rounding mode), ECE takes a charge of 0.509 bonus point and rounds the value to 1
bonus point.

Examples of Currency Rounding for Discounts

If you allow zero digits to the right of the decimal point and you round down towards zero
(DOWN rounding mode), ECE takes a discount of -2.5 USD and rounds the value to -2 USD.

If you allow zero digits to the right of the decimal point and you round towards negative
infinity (FLOOR rounding mode), ECE takes a discount of -2.5 USD and rounds the value to
-3 USD.

If you allow two digits to the right of the decimal point and you round down towards zero
(DOWN rounding mode), ECE takes a discount of -0.075 USD and rounds the value to -0.07
USD.

To configure rounding for a resource:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

16-1

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Specify values for the following currency and noncurrency resource attributes as
appropriate:

• currencyScale or nonCurrencyScale: Enter the number of digits you allow to
the right of the decimal point for a calculated impact amount.

For example, enter 2 if you allow two digits to the right of the decimal point.

The default is 2.

• currencyRoundingMode or nonCurrencyRoundingMode: Enter the
rounding mode that determines the rounding behavior by entering the string
representation of the Java math rounding enum.

For more information, see the Java SE technical documentation website:

https://docs.oracle.com/javase/8/docs/api/java/math/
RoundingMode.html
For example, enter UP to round up away from zero or DOWN to round down
towards zero.

The default value is HALF_UP.

Configuring Rounding for Reverse Rating on Multiple RUMs
When ECE performs the reverse rating service in which events are rated by using
multiple RUMs, fractional values may result for the authorized resource. You can
configure a systemwide rounding rule to round up the fractional value of the authorized
resource.

Rounding up the authorized resource quantity may result in customers exceeding their
credit limits. Configure this only if your business requires that your customers must be
able to use all of their balances.

To configure whether to round up the fractional value of the authorized resource
quantity by authorizing an additional RUM unit:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the reverseRateUseAllBalances attribute to one of the following values:

• To round up the fractional value of the authorized balance quantity, enter true.

This option allows customers to use all balances even if they might exceed
their credit limits by a small amount.

• To disallow the fractional value of the authorized balance quantity to be
rounded up, enter false.

This option does not allow customers to exceed their credit limits.

Chapter 16
Configuring Rounding for Reverse Rating on Multiple RUMs

16-2

https://docs.oracle.com/javase/8/docs/api/java/math/RoundingMode.html
https://docs.oracle.com/javase/8/docs/api/java/math/RoundingMode.html

The default is false.

Configuring Systemwide Consumption Rules for Balances
When more than one validity-based sub-balance is available for a usage request,
consumption rules determine from which balance bucket ECE is to consume first. For
example, if a customer has several groups of free minutes that expire at different times, you
use consumption rules to indicate which minutes to use first, based on the validity period start
time and end time. Consumption rules are typically configured at the balance element level
when you define pricing in the pricing application such as PDC. Consumption rules can also
be configured at the customer balance level by the customer and subscription management
components of the BRM system. For information about:

• Configuring consumption rules in PDC, see "Specifying the Order in Which Sub-Balances
Are Consumed" in PDC Creating Product Offerings.

• Configuring consumption rules in BRM, see "Specifying the Order in Which Resource
Sub-Balances Are Consumed" in BRM Configuring Pipeline Rating and Discounting.

When ECE receives a usage request for which no consumption rules are configured, ECE
applies its own systemwide consumption rules for processing the usage request.

To configure ECE systemwide consumption rules:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the systemConsumptionRule attribute to one of the following systemwide
consumption rules:

• EARLIEST_START

• LATEST_START

• EARLIEST_EXPIRATION

• LATEST_EXPIRATION

• EARLIEST_START_LATEST_EXPIRATION

• EARLIEST_START_EARLIEST_EXPIRATION

• LATEST_START_LATEST_EXPIRATION

• LATEST_START_EARLIEST_EXPIRATION

• EARLIEST_EXPIRATION_EARLIEST_START

• EARLIEST_EXPIRATION_LATEST_START

• LATEST_EXPIRATION_EARLIEST_START

• LATEST_EXPIRATION_LATEST_START

• NONE: When the attribute is set to NONE, the default consumption rule is not
configured, and the order for consuming balances is undefined.

By default, this attribute is set to EARLIEST_START_EARLIEST_EXPIRATION.

Chapter 16
Configuring Systemwide Consumption Rules for Balances

16-3

Part V
Integrating with External Systems

This part provides information about integrating external applications with Oracle
Communications Elastic Charging Engine (ECE). It contains the following chapters:

• Connecting ECE to a 5G Client

• Generating CDRs for External Systems

• Connecting ECE to a Diameter Client

• Connecting ECE to a RADIUS Client

• Configuring Policy-Driven Charging

17
Connecting ECE to a 5G Client

You can set up 5G network integration for online and offline charging by using the Oracle
Communications Elastic Charging Engine (ECE) HTTP Gateway.

Caution:

Deploying charging for 5G with HTTP Gateway (5G CHF) requires a cloud native
deployment of ECE and BRM components. The HTTP Gateway can be used only
on an ECE cloud native system.

Topics in this document:

• About the HTTP Gateway

• Integrating HTTP Gateway with 5G Networks

• Using the ECE REST API

About the HTTP Gateway
You integrate 5G clients with ECE by using the HTTP Gateway. The HTTP Gateway sends
usage requests to ECE for online and offline charging and then sends responses to the 5G
network.

The HTTP Gateway supports the 5G service-based architecture and does the following:

• Receives ECE REST API requests from 5G clients and then translates them into batch
request server (BRS) requests.

• Determines whether a usage request requires online or offline charging. See "About
Determining the Charging Type" for details.

• Submits BRS requests to the ECE server.

• Receives responses from the ECE server and then translates them into REST API
responses.

• Responds to the 5G clients.

• Consumes notifications from the ECE notification topic and then notifies the 5G clients by
making a REST call to the URL stored in the system.

• Publishes details about ECE REST API requests that failed to the ECE failure Kafka
topic.

When configured to do so, the HTTP Gateway can also send ECE REST API requests from
5G clients to the CDR Gateway for generating CDRs. For more information, see "Generating
CDRs for External Systems".

17-1

About Determining the Charging Type
HTTP Gateway determines whether a usage request requires online charging or offline
charging as follows:

• For INITIATE requests, based on the multipleUnitUsage block. If the block is
present, the request needs online charging. If the block is missing, the request
needs offline charging.

• For UPDATE requests, based on the value of the quotaManagementIndicator
field in the request. If the value is set to ONLINE_CHARGING, the request needs
online charging. If the field is missing or the value is set to OFFLINE_CHARGING,
the request needs offline charging.

• For TERMINATE requests, based on the value of the
quotaManagementIndicator field in the request. If the value is set to
ONLINE_CHARGING, the request needs online charging. If the field is missing or
the value is set to OFFLINE_CHARGING, the request needs offline charging.

For more information about these properties, see the Nchf Converged Charging
endpoints and Nchf Offline-Only Charging endpoints in REST API for Elastic Charging
Engine.

About Sending Notifications to HTTP Gateway
You can configure ECE to send the following notifications to the ECE Notification topic,
where they are retrieved by the HTTP Gateway:

• Spending Limit Notification (SNR): Specifies that a subscriber has reached a
spending threshold or limit.

• Reauthorization Request (RAR): Specifies that a reauthorization request is
needed.

Configure HTTP Gateway to consume SNR and RAR notifications from the ECE
Notification topic. When configured to do so, HTTP Gateway listens on the ECE
Notification topic and filters notifications based on the notification type in the header.
Depending on the notification type, HTTP Gateway does the following:

• Retrieves SNR notifications from the Kafka topic and makes a REST API call to
notifUri to post the notification.

• Retrieves RAR notifications from the Kafka topic and makes a REST API call to
post the notification to notifUri in the usage request.

Integrating HTTP Gateway with 5G Networks
For information about conformance with industry standards, see ECE 5G CHF
Protocol Implementation Conformance Statement.

To integrate HTTP Gateway with your 5G network:

1. When you install ECE, do this:

• Specify to use Apache Kafka topics and enter the details for your ECE
notification topic, Suspense topic, ECE failure topic, and ECE overage topic.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-2

• Enable Network Repository Function (NRF) registration in one of your HTTP
Gateway servers.

• Specify the details for connecting to the BRM Gateway.

For more information, see "Installing Elastic Charging Engine" in ECE Installation Guide.

2. During the ECE postinstallation process, do this:

• Run the kafka_post_install.sh script to create your ECE notification topic, Suspense
topic, ECE failure topic, and ECE overage topic. See "Creating Kafka Topics for ECE"
in ECE Installation Guide.

• Run the post_Install.sh script and choose to create only the Acknowledgment
queue. See "Creating WebLogic JMS Queues for BRM" in ECE Installation Guide.

3. Configure the NRF registration details for each HTTP Gateway instance in your system.
See "Configuring Registration Details for the HTTP Gateway Server".

4. Configure one or more NF services. See "Configuring NF Services".

5. Configure the HTTP Gateway to send usage requests to ECE Server for convergent
charging. See "Configuring HTTP Gateway for Convergent Charging".

6. Define any custom service-event mappings in Pricing Design Center. See "Enabling
Charging for Custom Events" in PDC Creating Product Offerings.

7. Edit your mediation specification file and load it into ECE. The mediation specification
enables the HTTP Gateway to associate each HTTP request with its respective usage-
request builder. See "Editing the HTTP Gateway Mediation Specification File".

8. Connect ECE to your Kafka Server topics. See "Connecting ECE to Kafka Topics".

9. Configure ECE to send notifications to HTTP Gateway through the ECE notification topic.
See "Configuring ECE to Send Notifications to HTTP Gateway".

10. (Optional) Configure ECE to send information about failed usage requests to the ECE
failure topic. See "Recording Failed ECE Usage Requests".

11. (Optional) Configure ECE to generate CDRs for any prepaid usage overage and send
them to the ECE overage topic. See "Configuring ECE to Support Prepaid Usage
Overage".

12. (Optional) Configure your charging function (CHF) operations to route communication
through a Services Communication Proxy (SCP). See "Configuring Communication
through SCP".

13. Start your HTTP Gateway. See "Starting the HTTP Gateway".

After the HTTP Gateway is set up, your 5G clients can start:

• Submitting ECE REST API requests to HTTP Gateway for online or offline charging by
ECE. See "Using the ECE REST API".

• Sending unrated 5G usage events to HTTP Gateway so they can be converted into
CDRs and sent to roaming partners, data warehousing system, and legacy billing
systems. See "Generating CDRs for External Systems".

Configuring Registration Details for the HTTP Gateway Server
You can register:

• One or more HTTP Gateway server instances with an NRF registration server.

• One HTTP Gateway server instance with multiple NRF registration servers.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-3

• One HTTP Gateway server instance with both primary and secondary NRF
registration servers. In this case, when a primary NRF server goes down, the
HTTP Gateway server registers with the secondary NRF server. See "Configuring
Multiple Primary and Secondary NRF Registration Servers" for more information.

You do so by configuring the registration details in JConsole and then starting the
HTTP Gateway instance.

To build an NRF registration request for an HTTP Gateway server instance:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.nfProfileConfigurations.

4. Expand Attributes.

5. Specify the registration values for the fields in Table 17-1.

Table 17-1 Fields for Configuring NRF Registration

Attribute Name Mandato
ry

Description

name Yes The name of the HTTP Gateway instance.

clusterName Yes The name of the cluster that the HTTP Gateway belongs to.

allowedNfDomains No The network function (NF) domains that are allowed to access the
HTTP Gateway server. Enter a regular expression for the domains
according to the ECMA-262 dialect [8].

If not provided, any NF domain is allowed to access the HTTP
Gateway server.

allowedNfTypes No The type of NFs that are allowed to access the HTTP Gateway
server, such as AMF or SMF.

If not provided, any NF type is allowed to access the HTTP Gateway
server.

allowedNssaisSd No The S-NSSAI Slice Differentiator (SD) ID of the network slices that
are allowed to access the HTTP Gateway server.

If not provided, any slice is allowed to access the HTTP Gateway
server.

allowedNssaisSst No The S-NSSAI Slice/Service Type (SST) ID of the network slices that
are allowed to access the HTTP Gateway server.

If not provided, any slice is allowed to access the HTTP Gateway
server.

allowedPlmnsMcc No The Mobile Country Code (MCC) of the PLMNs that are allowed to
access the HTTP Gateway server.

If not provided, any PLMN is allowed to access the HTTP Gateway
server.

allowedPlmnsMnc No The Mobile Network Code (MNC) of the PLMNs that are allowed to
access the HTTP Gateway server.

If not provided, any PLMN is allowed to access the HTTP Gateway
server.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-4

Table 17-1 (Cont.) Fields for Configuring NRF Registration

Attribute Name Mandato
ry

Description

capacity No The static capacity information in the range of 0-65535, expressed
as a weight relative to other NF instances of the same type. The
default is 0.

If the capacity is also present in the nfServiceList parameters,
those will have precedence over this value.

customInfo No The specific data for custom NFs.

defaultNotificationSubscriptio
nsCallbackUri

No The callback URI for the default notification type.

defaultNotificationSubscriptio
nsN1MessageClass

No The information element (IE) that is used to identify the class of the
N1 message type.

defaultNotificationSubscriptio
nsN2InformationClass

No The information element (IE) that is used to identify the class of the
N2 message type.

defaultNotificationSubscriptio
nsNotificationType

No The type of notification for the corresponding callback URI.

fqdn Yes The FQDN of the HTTP Gateway server.

For AMF, the FQDN registered with the NRF is the AMF name. For
example: chf-demo.novalocal.

gpsiRangeListEnd No The ending range for the list of GPSIs that can be served by the
CHF instance. The default is 100008.

If not provided, the CHF can serve any GPSI.

gpsiRangeListPattern No The pattern for the list of GPSI ranges that can be served by the
CHF instance. The default is ^extid-.+@oracle1.com$.

If not provided, the CHF can serve any GPSI.

gpsiRangeListStart No The starting range for the list of GPSIs that can be served by the
CHF instance. The default is 10000.

If not provided, the CHF can serve any GPSI.

heartBeatTimer No The time, in seconds, between two consecutive heartbeat
messages from an NF Instance to the NRF.

httpGatewayName Yes The name of the HTTP Gateway that this property configuration
belongs to.

interPlmnFqdn No The FQDN that is used for inter-PLMN routing as specified in 3GPP
23.003 [12]. This is required if the HTTP Gateway needs to be
discoverable by other NFs in a different PLMN.

ipv4Addresses No The IPv4 addresses of the HTTP Gateway.

ipv6Addresses No The IPv6 addresses of the HTTP Gateway.

load No The current load percentage of the HTTP Gateway, ranging from 0
to 100.

locality No Operator-defined information about the location of the HTTP
Gateway instance, such as the geographic location.

nfProfileChangesInd No Whether the IE is absent in the request to the NRF and may be
included by the NRF in the NFRegister or NFUpdate response:

• true: The NF Profile contains changes.
• false: The complete NF Profile. This is the default.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-5

Table 17-1 (Cont.) Fields for Configuring NRF Registration

Attribute Name Mandato
ry

Description

nfProfileChangesSupportInd No Whether the IE may be present in the NFRegister or NFUpdate
request and will be absent in the response:

• true: The NF Service Consumer supports receiving NF Profile
Changes in the response.

• false: The NF Service Consumer does not support receiving
NF Profile Changes in the response. This is the default.

nfServicePersistence No If present, and set to true, it indicates that the different instances of
an NF Service in this NF instance, supporting the same API
version, can persist their resource state in shared storage. Thus,
these resources are available after a new NF service instance
supporting the same API version is selected by a NF Service
Consumer (see 3GPP 23.527 [27]).

Otherwise, it indicates that the NF Service Instances of a same NF
Service cannot share a resource state inside the NF Instance.

Possible values are true or false.

nfStatus Yes The status of the HTTP Gateway server:

• REGISTERED
• SUSPENDED
• UNDISCOVERABLE
The default is REGISTERED.

nfType Yes The type of NF. Set this to CHF.

Note: ECE supports only CHF.

nrfHttp2Enable No Whether the endpoint URL of the NRF registration server
(nrfRestEndPointUrl) uses the HTTP/2 protocol:

• true: The HTTP/2 protocol is used. This is the default.
• false: The HTTP/1 protocol is used.

nrfRestEndPointUrl Yes The endpoint URL of the NRF registration server. To register this
HTTP Gateway instance with multiple NRF registration servers, list
the endpoint URLs separated by a comma. For example: http://
localhost:8080,http://localhost:8081.

If this field is missing, NRF URL registration will not occur.

nrfSecondarySiteRestEndPoin
tUrls

No The endpoint URL of one or more secondary NRF servers. The list
can include NRF servers on the same site and on different sites.

See "Configuring Multiple Primary and Secondary NRF Registration
Servers" for more information.

nsiList No The list of Network Slice Instances (NSIs) of the HTTP Gateway.

If not provided, the HTTP Gateway can serve any NSI.

perPlmnSnssaiListPlmnIdMcc No The Mobile Country Code (MCC) value for plmnSnssai.

perPlmnSnssaiListPlmnIdMnc No The Mobile Network Code (MNC) value for plmnSnssai.

perPlmnSnssaiListSd No The Slice Differentiator (SD) value for plmnSnssai.

perPlmnSnssaiListSst No The Slice/Service Type (SST) value for plmnSnssai.

plmnListMcc No The MCC value for plmnList.

plmnListMnc No The MNC value for plmnList.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-6

Table 17-1 (Cont.) Fields for Configuring NRF Registration

Attribute Name Mandato
ry

Description

plmnRangeListEnd No The ending range for the list of PLMNs (including the PLMN IDs of
the CHF instance) that can be served by the CHF instance. The
default is 333333.

If not provided, the CHF can serve any PLMN.

plmnRangeListPattern No The pattern for the list of PLMNs (including the PLMN IDs of the
CHF instance) that can be served by the CHF instance.

If not provided, the CHF can serve any PLMN.

plmnRangeListStart No The starting range for the list of PLMNs that can be served by the
CHF instance. The default is 100000.

priority No The priority of this NF service relative to other services of the same
type, where lower values indicate higher priority. The value must be
in the range of 0-65535. The default is 1.

Note: The NRF may overwrite the received priority value when
exposing an NFProfile.

recoveryTime No The timestamp for when the NF was started or restarted, in
DateTime format.

snssaisSdl No The S-NSSAIs of the NF. When present, this IE represents the list
of S-NSSAIs supported in all the PLMNs listed in the plmnList IE.

If not provided, the NF can serve any S-NSSAI.

snssaisSst No The S-NSSAIs of the NF. When present, this IE represents the list
of S-NSSAIs supported in all the PLMNs listed in the plmnList IE.

If not provided, the CHF can serve any S-NSSAI.

supiRangeListEnd No The end of a list of GPSI ranges that can be served by the CHF
instance, such as 1009. The default is 10008.

If not provided, the CHF can serve any GPSI.

supiRangeListPattern No The pattern for a list of GPSI ranges that can be served by the CHF
instance. The default is ^nai-450081.+@.+org$.

If not provided, the CHF can serve any GPSI.

supiRangeListStart No The start of a list of GPSI ranges that can be served by the CHF
instance. The default is 10000.

If not provided, the CHF can serve any GPSI.

Configuring Multiple Primary and Secondary NRF Registration Servers
You can configure an HTTP Gateway server instance to register with multiple primary and
secondary NRF registration servers. In this case, when the heartbeat to a primary NRF
server fails, HTTP Gateway retries the heartbeat for a configurable number of times. If all
retries fail, HTTP Gateway initiates a registration request on the secondary NRF server. If all
retries fail on the secondary NRF server, HTTP Gateway initiates a registration request on
the next secondary NRF server.

If, later on, the primary NRF server comes back online, HTTP Gateway re-registers with the
primary NRF server, starts the heartbeat in the primary NRF server, and then deregisters
from the secondary NRF server.

To configure an HTTP Gateway instance to register with both primary and secondary NRF
registration servers:

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-7

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.nfProfileConfigurations.

4. Expand Attributes.

5. Specify the value for the following attributes:

• nrfRestEndPointUrl: Set this to the endpoint URL of the primary NRF server.

To configure multiple primary NRF servers, list the endpoint URLs separated
by a comma (,).

• nrfSecondarySiteRestEndPointUrls: Set this to the endpoint URL of the
secondary NRF server.

– To configure multiple secondary NRF servers for one primary NRF server,
list the endpoint URLs, in order, separated by a semicolon (;). HTTP
Gateway uses the secondary NRF servers in the order listed.

– If you have multiple primary NRF servers and want to map each to a
different secondary NRF server, separate the secondary endpoint URLs
by a comma (,).

– If a secondary NRF server is not available for one of the primary NRF
servers, enter NA or None.

Example: Configure One Primary with No Secondaries

This example specifies to configure a primary NRF server (primaryNRF_1) with no
secondary NRF servers.

nrfRestEndPointUrl="www.primaryNRF_1.com"
secondaryNrfEndpointUrl=""

Example: Configure One Primary with Two Secondaries

This example specifies to configure a primary NRF server (primaryNRF_1) with two
secondary NRF servers (secondaryNRF_A and secondaryNRF_B).

nrfRestEndPointUrl="www.primaryNRF_1.com"
secondaryNrfEndpointUrl="www.secondaryNRF_A.com;www.secondaryNRF_B.com"

Example: Configure One Primary with Two Secondaries, and Another Primary
with One Secondary

This example specifies to configure:

• A primary NRF server (primaryNRF_1) with two secondary NRF servers
(secondaryNRF_A and secondaryNRF_B)

• A primary NRF Server (primaryNRF_2) with one secondary NRF server
(secondaryNRF_C)

nrfRestEndPointUrl="www.primaryNRF_1.com,www.primaryNRF_2.com"
secondaryNrfEndpointUrl="www.secondaryNRF_A.com;www.secondaryNRF_B.com,www.second
aryNRF_C.com"

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-8

Example: Configure Three Primaries, Two with a Secondary and One with No
Secondary

This example specifies to configure:

• A primary NRF server (primaryNRF_1) with one secondary NRF server
(secondaryNRF_A)

• A primary NRF server (primaryNRF_2) with no secondary NRF server (None)

• A primary NRF Server (primaryNRF_3) with one secondary NRF server
(secondaryNRF_B)

nrfRestEndPointUrl="www.primaryNRF_1.com,www.primaryNRF_2.com,www.primaryNRF_3.com"
secondaryNrfEndpointUrl="www.secondaryNRF_A.com,None,www.secondaryNRF_B.com"

Configuring NF Services
You must configure at least one NF service for HTTP Gateway. By default, HTTP Gateway
includes one, but you can add more.

To add or remove an NF service configuration, do this:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

3. Expand charging.nfServiceConfigurations.

4. Expand Operations.

5. Do one of the following:

• To add an NF service configuration, enter its name and then click
addNfServiceConfiguration.

• To remove an NF service configuration, enter its name and then click
removeNfServiceConfiguration.

To configure an NF service, do this:

1. Access the ECE configuration MBeans.

2. Expand the ECE Configuration node.

3. Expand charging.nfServiceConfigurations.Instance_Name.

4. Expand Attributes.

5. Specify the NF service configuration values for the attributes in Table 17-2.

Table 17-2 NF Service Configuration Attributes

Attribute Name Mandato
ry

Description

allowedNfDomains No The network function (NF) domains that are allowed to access the
service instance. Enter a regular expression for the domains
according to the ECMA-262 dialect.

If not provided, any NF domain is allowed to access the service
instance.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-9

Table 17-2 (Cont.) NF Service Configuration Attributes

Attribute Name Mandato
ry

Description

allowedNfTypes No The type of NFs that are allowed to access the service instance.

If not provided, any NF type can access the service instance.

allowedNssaisSd No The S-NSSAI Slice Differentiator (SD) ID of the network slices that
are allowed to access the service instance.

If not provided, any slice can access the service instance.

allowedNssaisSst No The S-NSSAI Slice/Service Type (SST) ID of the network slices that
are allowed to access the service instance.

If not provided, any slice can access the service instance.

allowedPlmnsMcc No The Mobile Country Code (MCC) of the PLMNs that are allowed to
access the service instance.

If not provided, any PLMN can access the service instance.

When included, the allowedPlmns attribute does not need to
include the PLMN IDs registered in the plmnList attribute of the NF
Profile.

allowedPlmnsMnc No The Mobile Network Code (MNC) of the PLMNs that are allowed to
access the service instance.

apiFullVersion Yes The full version number of the API as specified in 3GPP 29.501.

apiPrefix No The optional path segments used to construct the {apiRoot} variable
of the different API URIs.

apiVersionInUri Yes The version of the service instance to be used in the URI for
accessing the API.

capacity No The static capacity information in the range of 0-65535, expressed
as a weight relative to other services of the same type. The default
is 50.

The capacity and priority parameters, if present, are used for NF
selection and load balancing.

defaultNotificationSubscriptio
nsCallbackUri

No The callback URI for the default notification type.

defaultNotificationSubscriptio
nsN1MessageClass

No The information element (IE) that is used to identify the class of the
N1 message type.

defaultNotificationSubscriptio
nsN2InformationClass

No The information element (IE) that is used to identify the class of the
N2 message type.

defaultNotificationSubscriptio
nsNotificationType

No The type of notification for the corresponding callback URI.

expiry No The expiration date and time of the NF service. The default is
2020-12-01T18:55:08.871Z.

fqdn No The FQDN of the NF service instance.

interPlmnFqdn No The FQDN that is used for inter-PLMN routing as specified in 3GPP
23.003. This is required if the service instance needs to be
discoverable by other NFs in a different PLMN.

ipv4Address No The IPv4 address.

ipv6Address No The IPv6 address.

load No The current load percentage of the NF service, ranging from 1
through 100. The default is 5.

name Yes The name of the NF service.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-10

Table 17-2 (Cont.) NF Service Configuration Attributes

Attribute Name Mandato
ry

Description

nfServiceStatus Yes The status of the NF service instance:

• REGISTERED
• SUSPENDED
• UNDISCOVERABLE
The default is REGISTERED.

port No The port number. The default is 0.

primaryChfServiceInstance No The specific data for a CHF service instance.

Include this IE if the CHF service instance serves as a secondary
CHF instance of another primary CHF. When present, set it to the
serviceInstanceId of the primary CHF service instance.

priority No The priority used for service selection (relative to other services of
the same type), ranging from 0 through 65535. Lower values
indicate a higher priority. The default is 1.

The NRF may overwrite the received priority value when exposing
an NFProfile with the Nnrf_NFDiscovery service.

recoveryTime No The timestamp when the NF service was started or restarted. For
example, 2019-08-03T18:55:08.871Z.
The format should be of type DateTime.

scheme Yes The URI scheme, such as http or https. The default is http.

secondaryChfServiceInstance No Include this IE if the CHF service instance serves as a primary CHF
instance of another secondary CHF.

When present, set it to the serviceInstanceId of the secondary
CHF service instance.

Do not set this IE when primaryChfServiceInstance is present.

serviceInstanceId Yes The unique ID of the service instance within a given NF instance.
The default is chf1.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-11

Table 17-2 (Cont.) NF Service Configuration Attributes

Attribute Name Mandato
ry

Description

serviceName Yes The name of the service instance:

• nnrf-nfm
• nnrf-disc
• nudm-sdm
• nudm-uecm
• nudm-ueau
• nudm-ee
• nudm-pp
• namf-comm
• namf-evts
• namf-mt
• namf-loc
• nsmf-pdusession
• nsmf-event-exposure
• nausf-auth
• nausf-sorprotection
• nausf-upuprotection
• nnef-pfdmanagement
• npcf-am-policy-control
• npcf-smpolicycontrol
• npcf-policyauthorization
• npcf-bdtpolicycontrol
• npcf-eventexposure
• npcf-ue-policy-control
• nsmsf-sms
• nnssf-nsselection
• nnssf-nssaiavailability
• nudr-dr
• nlmf-loc
• n5g-eir-eic
• nbsf-management
• nchf-spendinglimitcontrol
• nchf-convergedcharging
• nnwdaf-eventssubscription
• nnwdaf-analyticsinfo
The default is nchf-convergedcharging.

supportedFeatures No The supported features of the NF Service instance.

transport No The transport protocol. The default is TCP.

httpGatewayName Yes The name of the HTTP Gateway that this property configuration
belongs to.

clusterName Yes The name of the cluster that the HTTP Gateway belongs to.

Configuring HTTP Gateway for Convergent Charging
Configure the HTTP Gateway to send usage requests to ECE Server for convergent
charging, and to consume SNR and RAR notifications from the ECE notification topic.

To configure the HTTP Gateway for convergent charging:

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-12

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

3. Expand charging.httpGatewayConfigurations.

4. Expand Attributes.

5. Specify values for the fields in Table 17-3.

Table 17-3 Fields for Converged Charging

Name Default Description

serverSslKeyStore "httpGatewayServer.j
ks"

The name of the KeyStore file for ECE server.

serverSslKeyStoreType "@ECE_HTTPGATE
WAY_KEYSTORE_T
YPE@"

The SSL KeyStore type for ECE server, such as JKS or
pkcs12.

serverSslKeyStoreAlias "@ECE_HTTPGATE
WAY_KEYSTORE_A
LIAS@"

The alias name for the ECE server SSL KeyStore.

walletLocation "@ECE_WALLET_L
OCATION@"

The path to the ECE wallet.

snrHttp2Enable "true" Whether HTTP Gateway uses the HTTP/2 protocol:

• true: The HTTP/2 protocol is used.
• false: The HTTP/1 protocol is used.

retryIntervalInMillis "5000" The amount of time, in milliseconds, between reconnection
attempts to ECE server.

notificationListenerConn
ectionPoolSize

"10" The number of threads used by the HTTP Gateway instance
for retrieving notifications from the ECE Notification topic.

6. Expand charging.HttpGatewayConfigurations.name, where name is the name of the
HTTP Gateway instance.

7. Expand Attributes.

8. Specify values for the fields in Table 17-4.

Table 17-4 Fields for an HTTP Gateway Instance

Name Default Description

name "@HTTPGATEWAY_
NAME@"

The name of the HTTP Gateway instance.

clusterName "@CLUSTER_NAME
@"

The name of the cluster that the HTTP Gateway belongs to.

serverHttp2Enabled "@HTTPGATEWAY_
HTTP2_ENABLED@
"

Whether ECE Server uses the HTTP/2 protocol:

• true: The HTTP/2 protocol is used.
• false: The HTTP/1 protocol is used.

serverPort "@HTTPGATEWAY_
SERVER_PORT@"

The HTTPS port number of the server on which HTTP
Gateway resides.

serverHttpPort "@HTTPGATEWAY_
SERVER_HTTP_PO
RT@"

The HTTP port number of the server on which HTTP Gateway
resides.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-13

Table 17-4 (Cont.) Fields for an HTTP Gateway Instance

Name Default Description

nrfHeartBeatRetryCount "4" The number of times the heartbeat retries if it fails during
registration.

serverSslEnabled "@HTTPGATEWAY_
SERVER_SSL_ENA
BLED@"

Whether SSL communication is enabled between your HTTP
client and the HTTP Server (true) or not (false).

processingThreadPoolSi
ze

"200" The number of threads used by the HTTP Gateway instance
to process a set of incoming usage requests.

processingQueueSize "32768" The number of incoming usage requests that can be
processed simultaneously by the HTTP Gateway.

kafkaBatchSize "10" The size of the Kafka batch.

externalTrafficInfo "" The location of the header URL information.

nrfRetryIntervalInSecond "60" The amount of time to wait before retrying a connection to an
NRF instance.

nrfRetryCount "3" The number of retry attempts for each NRF instance before
attempting to register on a new NRF site.

Editing the HTTP Gateway Mediation Specification File
The mediation specification file enables HTTP Gateway to associate each ECE REST
API request with its respective usage-request builder. HTTP Gateway uses the
mediation specification to determine which service and event combination applies to
an incoming ECE REST API request, enabling it to select the event definition that
applies to the event to be rated.

You configure HTTP Gateway to base its selection of event definitions on any
combination of the following in the request:

• Service-Context-Id

• Service-Identifier

• Rating-Group

• Event-Timestamp

From the preceding values, HTTP Gateway derives the following fields, which uniquely
identify the event definition to use for building the BRS request for ECE:

• ProductType (service)

• EventType

• Version

To edit the mediation specification:

1. Create a mediation specification file or edit an existing one.

A sample mediation specification file is available at ECE_home/sample_data/
config_data/specifications/ece_end2end/http_mediation.spec.

It is recommended to create only one mediation specification file. You can have
only one mediation specification loaded in the ECE cluster and the last one loaded
takes precedence.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-14

2. In the mediation specification file, add a row (in the table) for each event to be rated that
specifies the following information:

• Service-Identifier: The Service-Identifier is a placeholder.

• Rating-Group: The Rating-Group value sent in the ECE REST API request.

• ProductType: The service you have defined for the event.

• EventType: The event definition you have defined for the event.

• Version: The version number of the event definition object that you want to apply to
the event.

Define this information for each event definition object defined in the mediation table.

For each received request, HTTP Gateway correlates the Rating-Group, and Event-
Timestamp values (that you defined in the mediation specification) to the usage-request
builder that applies to the event to be rated (for the applicable version, service, and
event).

3. (Optional) In the ValidFrom field of the table, set a future date and time when you want
HTTP Gateway to recognize a newly deployed event definition object.

For example, to have requests processed according to a new specification on December
16, 2020, you would enter:

| ValidFrom
 | "2020-12-16T12:01:01"

You can also specify a time zone. For example,

| ValidFrom
 | "2020-12-16T12:01:01 PST"

If a time zone is not sent, the ValidFrom field is set to UTC.

4. Save the http_mediation.spec file in the directory where you save your configuration
data.

5. Verify that the directory specified in the ECE_home/config/management/migration-
configuration.xml file is the directory where you save your configuration data.

6. Run the configLoader utility:

start configLoader

The utility deploys your mediation specification to the ECE cluster. Any earlier mediation
specification that was in the ECE cluster is overwritten.

Any time you deploy a new version of a mediation specification into the repository, HTTP
Gateway re-creates its in-memory usage-request builder map and begins using the
mapping definitions (to send requests that adhere to the specifications) provided that the
validFrom date is reached.

7. Restart the HTTP Gateway.

8. Load the mediation specification file into the ECE server by using the configLoader
utility.

Connecting ECE to Kafka Topics
You can connect ECE to the following ECE Kafka topics so that ECE can publish
notifications, failed usage requests, and CDRs with usage overage information to them:

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-15

• ECE notification topic: Stores notifications from ECE.

• Suspense topic: Stores failed notifications from ECE.

• ECE failure topic: Stores details about failed ECE usage requests, such as the
user ID and request payload. See "Recording Failed ECE Usage Requests" for
more information.

• ECE overage topic: Stores overage records, which contain details about usage
overage amounts for prepaid customers. See "Configuring ECE to Support
Prepaid Usage Overage" for more information.

To connect ECE to your Kafka topics:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.kafkaConfigurations.

4. Expand Attributes.

5. Specify the Kafka configuration values for the attributes in Table 17-5.

Table 17-5 kafkaConfiguration Properties

Property Name Description

name The name of your ECE cluster.

hostname The host name and port number of the
machine in which Apache Kafka is installed.

If it contains multiple Kafka brokers, create a
comma-separated list.

topicName The name of the Kafka topic where ECE will
publish notifications.

suspenseTopicName The name of the Kafka topic where failed
notifications are published.

failureTopicName The name of the Kafka topic where ECE will
publish details about failed usage requests.

overageTopicName The name of the Kafka topic where ECE will
publish overage records with information
about your prepaid customer's usage
overage during online sessions.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-16

Table 17-5 (Cont.) kafkaConfiguration Properties

Property Name Description

partitions The number of Kafka partitions in your
topics.

The recommended number to create is
calculated as follows:

[(Max HTTP Gateway Nodes) + (Max
Diameter Gateway Nodes * Max Diameter
Clients) + (1 for BRM Gateway) + (1 for
Internal Notifications)]

For example, if you have 2 HTTP Gateway
nodes, 4 Diameter Gateway nodes, 10
Diameter Gateway clients, and a BRM
Gateway, you would need [(2 + (4 * 10) + 1
+ 1) = 44 Kafka partitions.

Arbitrarily, you can set this to a maximum
value.

failurePartitions The number of Kafka partitions in your ECE
failure topic.

kafkaProducerReconnectionInterval The amount of time, in milliseconds, the
Notification Publisher waits before
attempting to reconnect to the Kafka topic.

kafkaProducerReconnectionMax The maximum amount of time, in
milliseconds, the Notification Publisher waits
before attempting to reconnect to a broker
that has repeatedly failed to connect.

The kafkaProducerReconnectionInterval
will increase exponentially for each
consecutive connection failure, up to this
maximum.

kafkaDGWReconnectionInterval The amount of time, in milliseconds,
Diameter Gateway waits before attempting
to reconnect to the Kafka topic.

kafkaDGWReconnectionMax The maximum amount of time, in
milliseconds, Diameter Gateway waits
before attempting to reconnect to a broker
that has repeatedly failed to connect.

The kafkaDGWReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

kafkaBRMReconnectionInterval The amount of time, in milliseconds, BRM
Gateway waits before attempting to
reconnect to the Kafka topic.

kafkaBRMReconnectionMax The maximum amount of time, in
milliseconds, BRM Gateway waits before
attempting to reconnect to a broker that has
repeatedly failed to connect.

The kafkaBRMReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-17

Table 17-5 (Cont.) kafkaConfiguration Properties

Property Name Description

kafkaHTTPReconnectionInterval The amount of time, in milliseconds, HTTP
Gateway waits before attempting to
reconnect to the Kafka topic.

kafkaHTTPReconnectionMax The maximum amount of time, in
milliseconds, HTTP Gateway waits before
attempting to reconnect to a broker that has
repeatedly failed to connect.

The kafkaHTTPReconnectionInterval will
increase exponentially for each consecutive
connection failure, up to this maximum.

Configuring ECE to Send Notifications to HTTP Gateway
You can enable ECE to send SNR and RAR notifications to the ECE Notification topic,
where they will be retrieved by the HTTP Gateway.

To configure

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Set the kafkaEnabledForNotifications property to true.

6. Expand charging.notification.

7. Expand Attributes.

8. Set the rarNotificationMode and spendingLimitNotificationMode properties to
one of the following:

• NONE: ECE does not send this notification type.

• ASYNCHRONOUS: ECE sends an asynchronous notification to the ECE
Notification topic.

If configured to do so, the HTTP Gateway will consume the notification from
the Kafka topic and dispatch it through a REST API call.

Recording Failed ECE Usage Requests
ECE may occasionally fail to process usage requests. For example, a data usage
request could fail because a customer has insufficient funds. You can configure ECE
to publish details about failed usage requests, such as the user ID and request
payload, to the ECE failure topic in your Kafka server. Later on, you can reprocess the
usage requests or view the failure details for analysis and reporting.

To enable the recording of failed ECE usage requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-18

3. Expand charging.kafkaConfigurations.

4. Expand Attributes.

5. Set the persistFailedRequestsToKafkaTopic property to true.

Note:

You can also examine the HTTP Gateway log files to determine why a usage
request failed. See "Troubleshooting Failed Usage Requests" in BRM System
Administrator's Guide for more information.

Configuring Communication through SCP
HTTP Gateway supports the communication models shown in Figure 17-1 for the charging
function (CHF) operations.

Figure 17-1 Supported Communication Models for CHF Operations

If your system routes communication between the charging functions (CHF) and other
network functions through an Oracle Services Communications Proxy (SCP), perform these
steps:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole.

2. Expand the ECE Configuration node.

3. Expand charging.HttpGatewayConfigurations.

4. Expand Attributes.

5. Select scpAuthorities and enter the URL of the primary and secondary SCP authority,
delimited by commas. For example:
scpAuthorities="scp1.example.com,scp2.example.com".

6. Expand charging.HttpGatewayConfigurations.name, where name is the name of the
HTTP Gateway instance.

7. Expand Attributes.

8. Select nrfHeartBeatRetryCount and enter the maximum number of tries for a heartbeat
call. If all retries have been exhausted, HTTP Gateway starts registering with a new NRF.

9. Select nrfRetryCount and enter the number of retries for NRF registration.

Chapter 17
Integrating HTTP Gateway with 5G Networks

17-19

Starting the HTTP Gateway
When the HTTP Gateway starts, it automatically joins the Coherence cluster and gains
access to ECE caches and invocation services that it uses to send requests to ECE.
At start up, the HTTP Gateway checks for notifications in the ECE Notification topic.

To start the HTTP Gateway:

1. Ensure that the HTTP Gateway server and other components are started.

2. Start ECC:

./ecc
3. Start the HTTP Gateway:

ecc:000> start httpGateway

Using the ECE REST API
After you set up the HTTP Gateway on your system, your 5G clients can submit
requests to the ECE REST API.

The ECE REST API supports the following CHF operation types:

• Creating an initial quota reservation for a converged charging session. For
example, initially reserving 500 MBytes for a data session.

• Updating the quota reservation for a converged charging session. For example,
reserving an additional 100 MBytes for a data session that is in progress.

• Releasing the quota reservation when the converged charging session ends.

• Creating an initial request for an offline-only charging session.

• Updating a request for an offline-only charging session.

• Ending an offline-only charging session.

• Subscribing a customer to spending limit notifications.

• Updating a customer's spending limit subscription.

• Unsubscribing a customer from spending limit notifications.

• Creating a usage consumption resource.

• Deleting a usage consumption resource.

• Retrieving a subscriber's current usage consumption.

• Retrieving the current usage consumption for all subscribers.

For more information about these operation types, see REST API for Elastic Charging
Engine.

You make calls to the ECE REST API through Swagger at this URL:

https://hostname:serverhttpsPort/openapi-ui/index.html

where hostname is the host name of the machine on which HTTP Gateway is running,
and serverhttpsPort is the port number on the HTTP Gateway server.

Chapter 17
Using the ECE REST API

17-20

Note:

If your system's communication model includes an SCP, include the Authority
header in all HTTP requests to the CHF operations. Set the Authority header to the
host name and port number of the SCP Authority Server. For example:

Authority: example.com:1534

Chapter 17
Using the ECE REST API

17-21

18
Generating CDRs for External Systems

You can configure Oracle Communications Elastic Charging Engine (ECE) to generate call
detail records (CDRs) for unrated 5G usage events. ECE does not use CDRs for convergent
charging, so it does not generate them by default. You might want CDRs for roaming
partners, data warehousing, and legacy billing systems.

Caution:

Generating CDRs for unrated 5G events requires a cloud native deployment of ECE
and BRM components. The HTTP Gateway and CDR Gateway can be used only on
an ECE cloud native system.

Topics in this document:

• About Using the HTTP Gateway

• About Generating CDRs

• About Saving CDR Files to Disk

• About the CDR Generation Process

• Setting Up ECE to Generate CDRs

• About Trigger Types

About Using the HTTP Gateway
By default, HTTP Gateway sends all 5G usage requests to ECE Server for online and offline
charging.

You can configure HTTP Gateway to convert some of the usage requests into CDRs based
on the charging type by enabling CDR generation. You can then send the CDRs to roaming
partners, a data warehousing system, or legacy billing systems for rating.

When CDR generation is enabled, HTTP Gateway routes usage requests to one of the
following, depending on your configurations and the charging type:

• ECE Server for charging. See "Using the ECE REST API".

• The CDR Gateway for generating CDRs. See "About Generating CDRs".

You specify where to route online charging requests and offline charging requests when you
configure the HTTP Gateway. See "Configuring HTTP Gateway for CDR Generation".

About Generating CDRs
You can configure ECE to generate CDR files for unrated 5G usage events. You might want
CDR files for roaming partners, data warehousing, and legacy billing systems. ECE can

18-1

publish CDR files to your file system or a Kafka messaging service. In both cases, the
files are in JSON format. For details about the CDR format, see "CHF-CDR Format" in
ECE 5G CHF Protocol Implementation Conformance Statement.

When configuring ECE to generate CDRs, you can specify whether to:

• Generate CDRs for online charging requests, offline charging requests, or both.

• Generate individual CDRs or aggregate multiple CDRs together according to the
trigger criteria you specify.

• Purge completed CDRs from the CDR store that are older than a specified number
of days.

• Purge orphaned CDRs from the store that are older than a specified number of
seconds.

If you set up your ECE system for disaster recovery, you can also specify to:

• Mark partially processed CDRs in the CDR Store as incomplete.

• Mark when a duplicate usage update occurs in a CDR.

• Support a custom value for why a CDR session was closed.

For more information, see "About CDR Generator in an Active-Active System" in BRM
System Administrator's Guide.

About Saving CDR Files to Disk
If you configure CDR Gateway to save JSON-formatted CDR files to disk, it stores the
files to the directory you specify using the following file naming format:

ClusterName_StartTimeStamp_EndTimeStamp_SequenceNumber.Extension

For example: BRM_1654514133000_1654514134000_1.out

You set the file name extension, the maximum number of CDRs that can be written to
a CDR output file, and the directory in which to store CDR files when you configure the
CDR Formatter Plug-In. See "Configuring the CDR Formatter Plug-in".

About the CDR Generation Process
ECE generates CDR files in the Charging Function component (CHF) using this
process:

1. The HTTP Gateway sends a request to the CDR Gateway. The requests can be
for online charging, offline charging, or both.

2. The CDR Gateway does the following:

a. Generates individual CDR records for each request or aggregates multiple
requests into a CDR record according to the trigger criteria you specify.

b. Stores CDR records in the CDR database. You can use either Oracle NoSQL
Database or Oracle Database.

3. The CDR Formatter does the following:

a. Extracts CDR records from the database and passes them to the CDR
Formatter plug-in module for processing. You can use the default plug-in
included with ECE or create a custom plug-in.

Chapter 18
About Saving CDR Files to Disk

18-2

b. Purges CDR records from the database after a specified amount of time. You can
purge both processed and incomplete CDR records based on your configuration.

4. The CDR Formatter plug-in module generates CDR files. Depending on your
configuration, it stores them on the disk or sends them to the Kafka messaging service.

Figure 18-1 shows the process flow for generating CDRs.

Figure 18-1 CDR Process Flow

Setting Up ECE to Generate CDRs
To set up ECE to generate CDRs:

1. Connect your 5G client to HTTP Gateway. See "Connecting ECE to a 5G Client".

2. Configure HTTP Gateway to route usage requests to the CDR Gateway. See
"Configuring HTTP Gateway for CDR Generation".

3. Configure the CDR Gateway to generate CDRs and store them in the database. See
"Configuring the CDR Gateway".

4. Configure the CDR Formatter to extract unrated CDRs from the database. See
"Configuring the CDR Formatter".

5. Specify the plug-in to use for creating JSON formatted CDR files. See "Configuring the
CDR Formatter Plug-in".

Chapter 18
Setting Up ECE to Generate CDRs

18-3

Accessing ECE Configuration MBeans
For all configurations, start by accessing the ECE configuration MBeans:

1. Log on to the driver machine.

2. Start the ECE charging servers (if they are not started).

3. Connect to the ECE charging server node enabled for JMX management.
This is the charging server node set to start CohMgt = true in the ECE_home/
config/eceTopology.conf file, where ECE_home is the directory in which ECE is
installed.

4. Start a JMX editor that enables you to edit MBean attributes, such as JConsole.

5. In the editor's MBean hierarchy, find the ECE configuration MBeans.

Configuring HTTP Gateway for CDR Generation
You can configure HTTP Gateway to send usage requests to the CDR Gateway by
enabling CDR generation.

You can also configure HTTP Gateway to route usage requests to ECE Server for
rating or the CDR Gateway based on the type of charging request:

• Offline Charging Requests: To send offline charging requests to ECE Server, set
the rateOfflineCDRinRealtime attribute to true. To send them to the CDR
Gateway, set the attribute to false.

• Online Charging Requests: To send online charging requests to ECE Server, set
the generateCDRsForOnlineRequests attribute to false. To send them to the
CDR Gateway, set the attribute to true.

To configure the HTTP Gateway:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.httpGatewayConfigurations.

4. Expand Attributes.

5. Specify values for the fields in Table 18-1.

Table 18-1 Fields for Configuring CDR Generation

Name Default Description

cdrGenerationEnabled "false" If set to true, ECE generates CDRs according to your
configuration.

If set to false, ECE uses convergent charging for all charging
requests. If set to false, no other settings in this area are
relevant.

cdrGenerationStandalon
eMode

"false" If set to true, HTTP Gateway doesn't send any requests to
ECE, but it still generates CDRs.

cdrGatewayList "localhost:8084" Specifies one or more servers for the CDR Gateway. Use a
comma-separated list for multiple servers.

Chapter 18
Setting Up ECE to Generate CDRs

18-4

Table 18-1 (Cont.) Fields for Configuring CDR Generation

Name Default Description

cdrGatewayRetry "3" The number of attempts for sending requests to CDR
Gateway before giving up.

rateOfflineCDRinRealtim
e

"false" If set to true, HTTP Gateway sends offline charging requests
to ECE for rating.

generateCDRsForOnline
Requests

"true" If set to true, HTTP Gateway generates CDRs for all online
charging requests.

Configuring the CDR Gateway
You configure the CDR Gateway to connect to your CDR storage database. You can also
configure the CDR Gateway to generate either individual CDRs or aggregate multiple CDRs
together according to trigger criteria that you specify.

To configure the CDR Gateway:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.cdrGatewayConfigurations.

4. Expand Attributes.

5. Specify values for the fields in Table 18-2.

Table 18-2 Fields for Configuring CDR Gateway

Name Default Description

name "cdrGateway1" The name of this CDR Gateway instance.

You can specify multiple CDR Gateways when configuring the
HTTP Gateway.

primaryInstanceName "cdrGateway1" The name of the primary CDR Gateway instance.

schemaNumber "1" The number of the database schema used to store CDRs.
Different CDR Gateways can write to different schemas.

isNoSQLConnection "true" The type of database used for storing CDRs:

• true: Oracle NoSQL Database
• false: Oracle Database

noSQLConnectionName "@NO_SQL_CONNE
CTION@"

The connection name for the NoSQL database. This attribute
applies only if you are using Oracle NoSQL Database for
storing CDRs.

connectionName "@ORACLE_PERSI
STENCE_CONNECT
ION_NAME@"

The connection name of the Oracle database.

This attribute applies only if you are using Oracle Database for
storing CDRs.

cdrPort "8084" The port number for the CDR Gateway server.

cdrHost "localhost" The IP address, host name, or fully qualified domain name
(FQDN) for the CDR Gateway server.

cdrHost and cdrPort are also included in the
cdrGatewayList field for the HTTP Gateway.

Chapter 18
Setting Up ECE to Generate CDRs

18-5

Table 18-2 (Cont.) Fields for Configuring CDR Gateway

Name Default Description

individualCdr "false" The type of CDR generation:

• true: ECE generates an individual CDR for each event.
• false: ECE aggregates requests until a trigger takes

effect to write out the partial CDR or terminate the
request.

For more information, see "About Trigger Types".

cdrServerCorePoolSize "32" The number of threads in the CDR server pool.

cdrServerMaxPoolSize "256" The maximum number of threads allowed in the CDR server
pool.

enableIncompleteCdrDet
ection

"false" Whether to mark partially processed CDRs in the CDR Store
as incomplete:

• true: The CDR Formatter marks partially processed
CDRs as incomplete.

• false: Partially processed CDRs are not marked.

retransmissionDuplicate
DetectionEnabled

"false" Whether to detect and mark when CDRs contain duplicate
usage updates.

• true: The CDR Formatter marks when a CDR contains
duplicate usage updates.

• false: The CDR Formatter does not search for duplicate
usage updates.

Configuring the CDR Formatter
You can configure the CDR Formatter to do the following:

• Retrieve completed CDRs from the CDR Store and pass them to a specified plug-
in module for processing.

• Purge completed CDRs from the CDR Store that are older than a specified
number of days.

• Purge orphan CDRs from the CDR Store. Orphan CDRs are incomplete CDRs
that are older than a specified number of seconds. The CDR Gateway can create
orphan CDRs if your ECE system goes down due to maintenance or failure.

For example, if it is 12:00:00 and the configurable duration is 200 seconds, the
CDR Formatter would purge from the CDR Store all incomplete CDRs that were
last updated today at 11:56:40 or earlier.

• Mark partially processed CDRs as incomplete. This can occur in active-active
disaster recovery systems when a site goes down while processing CDR sessions.
See "About CDR Generator in an Active-Active System" in BRM System
Administrator's Guide for more information.

To configure the CDR Formatter:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand cdrFormatters.

4. Expand Attributes.

Chapter 18
Setting Up ECE to Generate CDRs

18-6

5. Specify values for the fields in Table 18-3.

Table 18-3 Fields for Configuring the CDR Formatter

Name Default Description

name "cdrFormatter1" The name of a CDR Formatter instance.

You should name CDR Formatter instances consistently and
uniquely (for example, cdrFormatter1, cdrFormatter2, and so
on).

primaryInstanceName "cdrFormatter1" The name of the primary CDR Formatter instance.

schemaNumber "1" The number of the database schema for processing CDRs.

isNoSQLConnection "true" The type of database used for storing CDRs:

• true: Oracle NoSQL Database
• false: Oracle Database

noSQLConnectionName "@NO_SQL_CONNE
CTION@"

The connection name for the NoSQL database. This attribute
applies only if you are using Oracle NoSQL Database for
storing CDRs.

This is the same connection you use for CDR Gateway.

connectionName "@ORACLE_PERSI
STENCE_CONNECT
ION_NAME@"

The connection name of the Oracle database. This attribute
applies only if you are using Oracle Database for storing
CDRs.

This is the same connection you use for CDR Gateway.

threadPoolSize "6" The number of threads used by the CDR Formatter instance
to process a set of CDRs for each time range defined by
checkPointInterval.

Valid values are greater than zero and up to any number the
system resources allow. Tune this value to the expected
workload in the deployed environment.

retainDuration "0" The duration in seconds that processed CDRs are retained in
the CDR Store before they can be purged.

The default is 0, which means that CDRs are purged
immediately after being processed.

ripeDuration "60" The duration in seconds that CDRs must be stored in the
CDR Store before the CDR Formatter can read them.

Delaying the processing of CDRs up to the ripeDuration time
allows time for resolving any duplicate CDRs that may have
been persisted to the CDR Store.

checkPointInterval "6" The time interval in seconds that the CDR Formatter instance
waits before reading a batch of CDR information.

This value must be:

• Less than or equal to the value of ripeDuration
• Evenly divisible by the number of threads configured for

threadPoolSize
The CDR Formatter doesn't read CDR information when the
time interval is less than the ripeDuration interval.

pluginPath "ece-cdrformatter.jar" The path to the JAR library that contains the reader plug-in
implementation.

A custom plug-in has a modified path to the JAR library.

Chapter 18
Setting Up ECE to Generate CDRs

18-7

Table 18-3 (Cont.) Fields for Configuring the CDR Formatter

Name Default Description

pluginType "oracle.communicatio
n.brm.charging.cdr.fo
rmatterplugin.internal
.SampleCdrFormatte
rCustomPlugin"

The type of plug-in used to format CDRs.

pluginName "cdrFormatterPlugin1
"

The class name with the package path for the formatter plug-
in object to be called by the CDR formatter.

You can write a custom plug-in and specify it here.

noSQLBatchSize "25" The number of CDR records to be read from the NoSQL
Database in a single read operation.

cdrStoreFetchSize "2500" The number of CDR records to retrieve from the CDR Store
and hold in memory at a time.

cdrOrphanRecordCleanu
pAgeInSec

"200" The amount of time, in seconds, at which an incomplete
record in the CDR Store is considered an orphan.

The CDR Formatter purges orphan records from the CDR
Store that are this age or older.

cdrOrphanRecordCleanu
pSleepIntervalInSec

"200" The sleep interval, in seconds, between each call to purge
orphan CDRs from the CDR Store.

enableIncompleteCdrDet
ection

"false" Whether to mark partially processed CDRs in the database as
incomplete:

• true: The CDR Formatter marks partially processed
CDRs in the database as incomplete.

• false: Partially processed CDRs are not marked.

Configuring the CDR Formatter Plug-in
You can configure the CDR Formatter plug-in to create JSON-formatted CDR files and
then store them in your file system or send them to your Kafka messaging service.

To configure the CDR Formatter plug-in:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand cdrFormatterPlugins.

4. Expand Attributes.

5. Specify values for the fields in Table 18-4.

Table 18-4 Fields for Configuring the CDR Formatter Plug-in

Name Default Description

name "cdrFormatterPlugin1
"

Name of the formatting plug-in. cdrFormatterPlugin1 is the
default plug-in that comes with ECE, but you can also specify
a custom plug-in.

tempDirectoryPath "/tmp/tmp" Path for CDR files being formatted.

doneDirectoryPath "/tmp/done" Path for formatted CDR files.

Chapter 18
Setting Up ECE to Generate CDRs

18-8

Table 18-4 (Cont.) Fields for Configuring the CDR Formatter Plug-in

Name Default Description

doneFileExtension ".out" Extension for CDR files.

enableKafkaIntegration "false" Whether to send records to Kafka. Because ECE uses Kafka
for notifications, you set it up during installation and configure
the HTTP Gateway to use it.

See "Creating Kafka Topics for ECE" in ECE Installation
Guide and "Connecting ECE to Kafka Topics".

enableDiskPersistence "true" Whether to save records as JSON files in the path specified
for doneDirectoryPath.

maxCdrCount "20000" The maximum number of CDRs that can be written to a CDR
output file.

enableStaleSessionClean
upCustomField

"false" Whether to allow the plug-in to add a custom reason value to
a CDR's causeForRecordClosing field. This field specifies
why a CDR session was closed.

• true: The custom value is allowed.
• false: The custom value is not supported.

staleSessionCauseForRe
cordClosingString

"PARTIAL_RECORD
"

The name of the custom reason for closing a CDR session.
This value will be added to the CDR's
causeForRecordClosing field.

About Trigger Types
If you configured ECE to aggregate events in the same CDR, triggers determine when a CDR
remains open and when it closes. See:

• Triggers for Convergent Charging Events

• Triggers for Roaming Events

Triggers for Convergent Charging Events
When an event meets any of the trigger conditions in Table 18-5, the event is added to the
open CDR. The CDR remains open with the same sequence number.

Table 18-5 Triggers for Adding to an Open CDR

Category Trigger

Change of Charging Conditions • QoS change
• User Location change
• Serving Node change
• Change of UE presence in Presence

Reporting Area(s)
• Change of 3GPP PS Data off Status
• Handover cancel
• Handover start

Limit per Rating Group • Expiry of data time limit per RG
• Expiry of data volume limit per RG
• Expiry of data event limit per RG

Chapter 18
About Trigger Types

18-9

Table 18-5 (Cont.) Triggers for Adding to an Open CDR

Category Trigger

Quota Management Triggers • Time threshold reached
• Volume threshold reached
• Unit threshold reached
• Time quota exhausted
• Volume quota exhausted
• Unit quota exhausted
• Expiry of quota validity time
• Re-authorization request by CHF

When an event meets any of the trigger conditions in Table 18-6, it is added to the
open CDR and then the CDR is closed.

Table 18-6 Triggers for Closing a CDR

Category Trigger

Change of Charging Conditions • UE time zone change
• PLMN change
• RAT type change
• DNN-AMBR change
• Removal of UPF
• Management intervention
• Addition of access

Limit per PDU Session • Expiry of data time limit per PDU session
• Expiry of data volume limit per PDU

session
• Expiry of data event limit per PDU session
• Expiry of limit of number of charging

condition changes

Note:

If the request type is TERMINATE, the CDR is closed regardless of the
trigger type.

Triggers for Roaming Events
When a roaming event meets any of the trigger conditions in Table 18-7, it is added to
the open CDR.

Chapter 18
About Trigger Types

18-10

Table 18-7 Triggers for Adding to an Open CDR (Roaming Event)

Category Trigger

Change of Charging conditions • QoS change
• User Location change
• Serving Node change
• Change of UE presence in Presence

Reporting Area(s)
• Change of 3GPP PS Data off Status

Limit per QoS Flow • Expiry of data time limit per QoS Flow
• Expiry of data volume limit per QoS Flow

Others • Expiry of data time limit per QoS Flow
• Expiry of data volume limit per QoS Flow

When a roaming event meets any of the trigger conditions in Table 18-8, it is added to the
open CDR, and the CDR is then closed.

Table 18-8 Triggers for Closing a CDR (Roaming Event)

Category Trigger

Change of Charging conditions • UE time zone change
• PLMN change
• RAT type change
• DNN-AMBR change
• Removal of UPF
• Management intervention

Limit per PDU session • Expiry of data time limit per PDU session
• Expiry of data volume limit per PDU session
• Expiry of data event limit per PDU session
• Expiry of limit of number of charging condition

changes

Chapter 18
About Trigger Types

18-11

19
Connecting ECE to a Diameter Client

You can set up network integration for online charging by using the Oracle Communications
Elastic Charging Engine (ECE) Diameter Gateway.

Topics in this document:

• Overview of Network Integration Using Diameter Gateway

• Network Integration for Sp and Sy Interface (Policy) Requests

• Network Integration for Gy Interface Requests

• Adding Custom AVPs for Usage Requests

• Using Incremental or Cumulative Accounting for Usage Requests

• Configuring WebLogic Queues for Notifications

• Configuring ECE for Apache Kafka

• Handling Requests When Charging Servers Are Unavailable

• Recording Failed ECE Usage Requests

• Including Loan Sub-balance in Balance Queries

Overview of Network Integration Using Diameter Gateway
The following steps summarize how to set up network integration for online charging using
Diameter Gateway, which enables Diameter Gateway to do the following:

• Receive Gy, Sp, and Sy Diameter requests from Diameter clients and translate them into
ECE requests.

• Submit ECE requests to ECE charging servers for credit-control processing.

• Receive ECE request responses and translate them into respective Gy, Sp, and Sy
Diameter message responses.

• Send Diameter message responses to Diameter clients.

• Consume notifications from the ECE Notification queue or topic, create Diameter
notification messages from them, and send the notification messages to the appropriate
Diameter clients.

For information about conformance with industry standards, see ECE Diameter Gateway
Protocol Implementation Conformance Statement.

To implement Diameter Gateway:

1. When you install ECE, do this:

• Add Diameter Gateway node instances required for your topology and configure
each instance.

19-1

• If you are using Oracle WebLogic for notification handling, specify to create
WebLogic queues and enter the details for your ECE Notification queue and
Suspense queue.

• If you are using Apache Kafka for notification handling, specify to create Kafka
topics and enter the details for your ECE Notification topic, Suspense topic,
ECE failure topic, and ECE overage topic.

Note:

Systems that support 5G networks must use Apache Kafka for
notification handling.

For more information, see "Installing Elastic Charging Engine" in Elastic Charging
Engine Installation Guide.

2. During the ECE postinstallation process, do this:

• If you are using Oracle WebLogic for notification handling, run the
post_Install.pl script to create your ECE Notification queue and Suspense
queue. See "Creating WebLogic JMS Queues for BRM" in Elastic Charging
Engine Installation Guide.

• If you are using Apache Kafka for notification handling, run the
kafka_post_install.sh script to create your ECE Notification topic and
Suspense topic. Then, run the post_Install.sh script and choose to create
only the Acknowledgment queue. See "Creating Kafka Topics for ECE" and
"Creating WebLogic JMS Queues for BRM" in Elastic Charging Engine
Installation Guide.

3. For all of the request types you receive from the network, ensure that your credit
control request (CCR) message formats adhere to the attribute value pair (AVP)
fields that Diameter Gateway supports and requires.

4. For Gy interface Diameter requests, ensure that you have done the following:

• Defined any custom service/event mappings in PDC.

• Edited your mediation specification file and loaded it into ECE.

The mediation specification enables Diameter Gateway to associate each Gy
interface Diameter request with its respective usage-request builder.

See "Network Integration for Gy Interface Requests".

5. Configure notifications for Diameter Gateway. You can set up Diameter Gateway
to consume notifications from either:

• Oracle WebLogic queues. To use WebLogic queues, see "Configuring
WebLogic Queues for Notifications".

• Apache Kafka topics. To use Kafka topics, see "Configuring ECE for Apache
Kafka".

6. (Optional) Configure ECE to send information about failed usage requests to the
ECE failure topic. See "Recording Failed ECE Usage Requests".

7. (Optional) Configure ECE to generate CDRs for any prepaid usage overage and
send them to the ECE overage topic. See "Configuring ECE to Support Prepaid
Usage Overage".

Chapter 19
Overview of Network Integration Using Diameter Gateway

19-2

8. Start the Diameter Gateway nodes.

When the Diameter Gateway nodes start, they automatically join the Coherence cluster
gaining access to ECE caches and invocation services that it uses to send requests to
ECE. At start up, the Diameter Gateway instances read from the ECE Notification queue
or topic for notifications.

Network Integration for Sp and Sy Interface (Policy) Requests
This section provides information about network integration for policy requests using
Diameter Gateway.

Given that the technical implementation of Sp has not been defined by the 3GPP standards
body, Diameter Gateway uses the Sh interface as the implementation to request and
subscribe to policy-related information in the ECE server.

Diameter Gateway retrieves Sp and Sy information from ECE charging servers and sends the
information to the Policy and Charging Rule Function (PCRF).

The following Sp (implemented as Sh) and Sy interface policy request types are processed
by Diameter Gateway (using the ECE policy-request builders).

Sy:

• Spending Limit Report Request (SLR/SLA)

• Subscribe Notification Request

Sp/Sh:

• User-Data-Request (UDR)

• Subscribe-Notifications-Request (SNR)

• Push-Notification-Request (PNR)

Diameter Gateway manages notification subscriptions (when the PCRF subscribes and
unsubscribes) for notifications due to Sy and Sp related updates.

Diameter Gateway listens for notifications on the ECE (JSM) notification queue (for push
notifications from the Elastic Charging Server). For policy-driven charging, when changes
occur to policy counters (balances) or to policy-related subscriber preferences associated
with charge offers that have an active policy session, ECE charging servers publish
asynchronous notifications to the JMS notification queue. Diameter Gateway receives the
policy notifications at startup and processes them as follows:

• From spending-limit JMS notifications, Diameter Gateway creates Sy (Spending-Status-
Notification-Request (SNR)) messages for all subscribed sessions and routes them to the
appropriate Diameter clients.

• From subscriber-preferences JMS notifications, Diameter Gateway creates Sp/Sh (Push-
Notification-Request (PNR)) messages for all subscribed sessions and routes them to the
appropriate Diameter clients.

For information about how Diameter Gateway uses the ECE policy management APIs to
retrieve Sy-interface and Sp-interface data from the ECE server, see "Configuring Policy-
Driven Charging".

To enable Diameter Gateway to create ECE requests for policy-driven charging, you must
configure notifications for Diameter Gateway. See "Configuring WebLogic Queues for
Notifications". You can configure alternative Diameter peers for each peer to which a

Chapter 19
Network Integration for Sp and Sy Interface (Policy) Requests

19-3

Diameter Gateway instance connects for routing notifications. See "Configuring
Alternative Diameter Peers for Notifications".

Ensure that your policy CCR message formats adhere to the well-known AVP fields of
the 3GPP standard for Sh and Sy policy requests.

Network Integration for Gy Interface Requests
This section provides information about network integration for Gy interface online
charging requests using Diameter Gateway.

The following Gy interface credit-control request types are processed by Diameter
Gateway (using ECE usage-request builders):

• Session-based requests

– Initiate

– Update

– Terminate

– Cancel

• Price enquiry

• Direct debit

• Refund

For Gy interface credit-control requests, you must do the following for Diameter
Gateway to process the requests successfully:

• Present Gy interface request types inside of a Multiple-Service Credit Control
(MSCC) group.

MSCC AVPs are part of the CCR and Diameter Gateway expects each Gy
interface request type to be included in the MSCC group even if the request
contains only a single service. Contain the following Gy interface request types in
a MSCC group:

– Initiate

– Update

– Terminate

– Cancel

– Price enquiry

– Direct debit

– Refund

For more information about MSCC requests and ECE, see "Configuring Multiple
Services Credit Control".

• Add network attributes for all event attributes in the event definition that apply to
usage-request charging operations.

Diameter Gateway uses the network specification and corresponding network
attributes to dynamically populate the event attributes of ECE requests with the
CCR AVP data of your incoming Diameter request.

See "How Diameter Gateway Creates Usage Requests".

Chapter 19
Network Integration for Gy Interface Requests

19-4

• Edit your mediation specification file and load your mediation specification into ECE.

The mediation specification enables Diameter Gateway to associate each Gy interface
Diameter request with its respective usage-request builder.

See "Editing the Mediation Specification File".

Diameter Gateway uses incremental based accounting behavior when processing usage
requests.

Diameter Gateway listens for notifications on the ECE (JSM) notification queue (for push
notifications from the Elastic Charging Server). From the ECE reauthorization-request JMS
notifications it receives, Diameter Gateway creates Gy RAR messages and sends them to
Diameter clients running the applicable active Gy sessions.

The Diameter Gateway uses ECE usage-request builders to create request and response
messages for Gy interface request types.

How Diameter Gateway Creates Usage Requests
Diameter Gateway creates usage requests based on the event definitions sent from PDC to
ECE. Diameter Gateway includes a usage-request builder for creating usage requests (as
well as different builders for building other requests ECE supports, such as balance query
requests, and top-up requests, and so on). When you start Diameter Gateway nodes, the
usage-request builder reads the event definition data and sends requests that adhere to the
specifications. See "About Usage Request Fixed Attributes" for more information on the
attributes.

When you perform network enrichment of the event definition for your events in PDC, you
add network attributes for all event attributes in the event definition that apply to usage-
request charging operations. Diameter Gateway uses the network specification and
corresponding network attributes to dynamically populate the event attributes of ECE
requests with the CCR AVP data of your incoming Diameter request.

You can have Diameter Gateway dynamically populate some fields using the event-attribute
to network-attribute you map in PDC and you can have Diameter Gateway explicitly populate
other fields using your own custom extension code (for example, when using the Pre-OCS
extension, you can explicitly populate the ECE payload for fields using your Pre-OCS
extension mechanism).

About Usage Request Fixed Attributes
Usage requests contain a set of well known or fixed attributes that must be provided. Fixed
attributes are required fields directly exposed by the UsageRequest interface. Fixed attributes
are applicable for all the events in ECE.

You cannot pass in null for any of the fixed attributes. For non-duration requests, you can
pass the same timestamp for both requestStart and requestEnd.

Fixed attributes within a usage request include the following:

• userIdentity

The userIdentity attribute is the fixed attribute name representing the public user identity
of the person or entity using the product (phone number, email address and so on). It is a
generic way of identifying who is being charged for the usage.

• requestId

Chapter 19
Network Integration for Gy Interface Requests

19-5

The requestId is an identifier that uniquely identifies the usage interaction. If the
usage is session based, the requestId must be the same across different operation
types (Initiate, Update and Terminate). The requestId is used to locate the active
session associated with the charging customer.

• requestStart

The requestStart is the time at which the usage started.

For session-based usage requests, ECE observes the requestStart value for
Initiate operation-type usage requests.

• requestEnd

The requestEnd is the time at which the usage ended.

If the usage interaction has no duration, such as for event-based charging, the
requestStart is equal to the requestEnd.

Note:

If the payload contains a non-null "DURATION" attribute (either as a top-
level attribute or under a Requested Service Units (RSU) and Used
Service Units (USU) block, its value will override the value of the
requestEnd attribute.

• requestMode

The requestMode defines the mode of the usage request. Valid values are
OFFLINE and ONLINE. For backward compatibility, the default value is ONLINE.

• sequenceNumber

The sequenceNumber is the sequential session-centric attribute and is a type of
subID you can apply for different types of charging within a session.

You cannot change the name of the fixed attributes.

Usage requests also contain configurable (dynamic) attributes. Configurable
attributes are defined in the payload blocks of the event definition (request
specification data defined in PDC when you enrich event definitions).

Editing the Mediation Specification File
The mediation specification enables Diameter Gateway to associate each Diameter
request with its respective usage-request builder. Diameter Gateway uses the
mediation specification to determine which service and event combination applies to
an incoming Diameter request, enabling it to select the event definition that applies to
the event to be rated.

You configure Diameter Gateway to base its selection of event definitions on any
combination of the following AVPs in the request:

• Service-Context-Id

• Service-Identifier

• Rating-Group

• Event-Timestamp

Chapter 19
Network Integration for Gy Interface Requests

19-6

From the preceding AVP values, Diameter Gateway derives the following fields, which
uniquely identify the event definition to use for building the ECE request:

• ProductType (service)

• EventType

• Version

You can configure Diameter Gateway to base its event definition on a custom AVP by using
the Diameter Gateway Request-Received extension. You use that extension to modify one of
the AVP values in the request so that a different Diameter mediation mapping is produced for
a service, event, and version.

To edit the mediation specification:

1. Create a mediation specification file or edit an existing one.

A sample mediation specification file is available at ECE_home/sample_data/
config_data/specifications/ece_end2end/diameter_mediation.spec.

It is recommended to create only one mediation specification file to represent your
mediation specification. You can have only one mediation specification loaded in the ECE
cluster and the last one loaded takes precedence.

2. In the mediation specification file, add a row (in the table) for each event to be rated that
specifies the following information:

• Rating-Group AVP

The Rating-Group AVP value sent in the Diameter message.

Null is an acceptable value if the field is not expected to be present on the CCR.

• Service-Context-Id AVP

The Service-Context-Id AVP value sent in the Diameter message.

Null is an acceptable value if the field is not expected to be present on the CCR.

• Service-Identifier AVP

The Service-Identifier AVP value sent in the Diameter message.

Null is an acceptable value if the field is not expected to be present on the CCR.

• ProductType

The service you have defined for the event.

• EventType

The event definition you have defined for the event.

• Version

The version number of the event definition object that you want to apply to the event.

Define the Service-Identifier, Rating-Group, and Service-Context-Id for each event
definition object defined in the mediation table.

For each received Diameter request, Diameter Gateway correlates the Service-Context-
Id, Service-Identifier, Rating-Group, and Event-Timestamp AVP values (that you defined
in the mediation specification) to the usage-request builder that applies to the event to be
rated (for the applicable version, service, and event).

3. (Optional) In the ValidFrom field of the table, set a future date and time when you want
Diameter Gateway to recognize a newly deployed event definition object.

Chapter 19
Network Integration for Gy Interface Requests

19-7

For example, to have requests processed according to a new specification on April
16, 2015, you would enter:

| ValidFrom
 | "2015-04-16T12:01:01"

You can also specify a time zone. For example,

| ValidFrom
 | "2015-04-16T12:01:01 PST"

If a time zone is not sent, then the ValidFrom field is assumed as UTC.

4. Save the mediation specification file with a .spec suffix (for example,
diameter_mediation.spec) into the directory where you save your configuration
data.

5. Verify that the directory specified in the ECE_home/config/management/
migration-configuration.xml file is the directory where you save your
configuration data.

6. Run the configLoader utility:

start configLoader

The utility deploys your mediation specification to the ECE cluster. Any earlier
mediation specification that was in the ECE cluster is overwritten.

Any time you deploy a new version of a mediation specification into the repository,
Diameter Gateway recreates its in-memory usage-request builder map and begins
using the mapping definitions (to send requests that adhere to the specifications)
provided that the validFrom date is reached.

7. Perform a rolling restart of Diameter Gateway node instances.

8. Load the mediation specification file into the ECE server by using the
configLoader utility.

Network Integration for Gy Balance Query Requests
This section provides information about network integration for balance query requests
using Diameter Gateway.

Diameter Gateway uses custom AVPs for querying for remaining-balance customer
data; these Oracle AVPs have an ORA- prefix.

For a balance query, the CC-Request-Type AVP in the CCR must be set to 4
(EVENT_REQUEST) and the Requested-Action AVP must be set to 5 (which is an
undefined value in the 3GPP standard specification).

For information about the data types for custom balance-query AVP fields, see the
ECE_home/config/diameter/dictionary_main.xml file.

Network Integration for Gy Top-Up Requests
This section provides information about network integration for top-up requests using
Diameter Gateway.

Diameter Gateway exposes a custom event request for top-up operations that does
the following:

Chapter 19
Network Integration for Gy Interface Requests

19-8

• Credits the specified balances, optionally setting valid-from and valid-to dates

• Optionally extends the validity of existing balances credited by the top-up

• Return that the top-up succeeded or failed

• Return updated balance information in the top-up response

Diameter Gateway uses custom AVPs for processing top-up requests; these Oracle AVPs
have an ORA- prefix.

For a top-up, the CC-Request-Type AVP in the CCR must be set to 4 (EVENT_REQUEST)
and the Requested-Action AVP must be set to 4 (which is an undefined value in the 3GPP
standard specification).

Diameter Gateway uses custom AVPs for processing top-up requests; these Oracle AVPs
have an ORA- prefix.

For information about the data types for custom top-up-request AVP fields, see the
ECE_home/config/diameter/dictionary_main.xml file.

Sending Multiple-Service Credit Control (MSCC) Requests from Diameter
Gateway

Diameter Gateway supports MSCC requests in which a Diameter application performs credit
control for multiple services within the same session.

Diameter Gateway only supports Multiple-Service Credit Control (MSCC) requests for usage
request processing (all usage-request charging operations must be contained in an MSCC
group even if the request contains only a single service).

Configuring Subscriber ID Lookups
When multiple subscriber ID types come in on the CCR message, not all subscription
identifiers may be provisioned for your ECE system. For example, you might have separate
online charging systems for handling different subscription services. You can configure
Diameter Gateway to look up customer public user identity information based only on the
subscription identifier types for which you have provisioned your ECE system.

The possible customer subscription IDs that pertain to various customer services are defined
by the Subscription-Id grouped AVP in the CCR message. Multiple subscription identifier
types can be provided in the group's Subscription-Id-Type AVP field. The customer may have
all of the following subscription identifiers for various networks on which the customer uses
services: MSISDN, IMSI, SIP, NAI, PRIVATE.

For Diameter Gateway to look up customer public user identity information based on your
subscription-identifier-type configuration, do the following:

1. Open your mediation specification file, diameter_mediation.spec.

The file is in the directory specified by the configObjectsDataDirectory parameter in the
ECE_home/config/management/migration-configuration.xml file.

2. Where multiple subscription types are expected in the CCR for the event to be rated,
locate the row that specifies the rating group, service identifier, and service context ID for
the event.

Chapter 19
Network Integration for Gy Interface Requests

19-9

Your subscription-identifier-type configuration is relevant for the combination of the
given Service-Context-Id, Service-Identifier, and Rating-Group AVP values
specified in the row for the event to be rated.

3. In the Subscription-Id-Type column for that row, enter the subscription-identifier-
type configuration of your choice.

For each received CCR Diameter message that includes multiple subscriber ID
types, Diameter Gateway uses your subscription-identifier-type configuration for
looking up the public user identity.

The subscription-identifier-type configuration options are as follows:

• For Diameter Gateway to perform a customer lookup by using only one
subscription ID type, enter the full string name of that Subscription-Id-Type.

Enter the name exactly as it is defined in the RFC specification (in capitals)
and enclose it with quotation marks.

The possible values you can enter in the Subscription-Id-Type column for the
Subscription-Id-Type are as follows (values in bold):

– "END_USER_E164"

The identifier is in international E.164 format (for example, MSISDN),
according to the ITU-T E.164 numbering plan defined in [E164] and
[CE164].

– "END_USER_IMSI"

The identifier is in international IMSI format, according to the ITU-T E.212
numbering plan as defined in [E212] and [CE212].

– "END_USER_SIP_URI"

The identifier is in the form of a SIP URI, as defined in [SIP].

– "END_USER_NAI"

The identifier is in the form of a Network Access Identifier, as defined in
[NAI].

For example, if you enter "END_USER_NAI" in the Subscription-Id-Type
column for that event, Diameter Gateway uses only the subscription identifier
type END_USER_NAI to perform a customer public user identity lookup for
those events and ignores all other subscription identifier types that may be
included in the CCR for those events.

DiameterMediationTable {
 Service-Context-Id | Service-Identifier | Rating-Group | ProductType
| EventType | Version | Subscription-Id-Type | ValidFrom |
 "gy.service@example.com" | "1" | "10" | "VOICE" | "V_USAGE" | 1.0 |
"END_USER_NAI" | "2012-12-31T12:01:01 PST" |
 "gy.service@example.com" | "1" | "11" | "DATA" | "D_USAGE" | 1.0 |
"END_USER_IMSI" | "2012-12-31T12:01:01 PST" |
}

• For Diameter Gateway to perform a customer lookup by using a subscription
ID type determined by the order that you list subscription ID types in the
mediation specification, enter a comma-delimited list in the order that Diameter
Gateway is to resolve the subscription ID type.

The following example shows a comma-delimited list for which Diameter
Gateway first looks up the public user identity of the customer based on the
SIP URI subscription identifier, and secondly based on the IMSI. In this case

Chapter 19
Network Integration for Gy Interface Requests

19-10

Diameter Gateway ignores all other subscription ID types that may be included in the
CCR.

DiameterMediationTable {
 Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
 "gy.service@example.com" | "1" | "12" | "DATA" | "D_USAGE" | 1.0 |
"END_USER_SIP_URI, END_USER_IMSI" | "2012-12-31T12:01:01 PST" |
}

• For Diameter Gateway to perform a customer lookup by using the first subscription ID
type that is read in the CCR (all other subscription ID types that may be included in
the CCR are ignored), leave the Subscription-Id-Type column blank. This type of
configuration is shown in the fourth row of the sample mediation specification.

DiameterMediationTable {
 Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
 "gy.service@example.com" | "1" | "13" | "SMS" | "S_USAGE" | 1.0 | "" |
"2012-12-31T12:01:01 PST" |
}

4. Save the mediation specification file.

5. Run the configLoader utility to load your mediation specification in the ECE cluster:

start configLoader

When your mediation specification is loaded, the earlier version of your mediation
specification (that was in the ECE cluster) is overwritten and Diameter Gateway uses the
configuration of the newly loaded mediation specification.

Your subscription-identifier-type configuration is used by Diameter Gateway for all usage-
charging operation types: Initiate, Update, Terminate, PriceEnquiry, BalanceQuery, TopUp,
Debit, and Refund.

To troubleshoot issues that may occur with your subscription-identifier-type configuration,
note the following points:

• If the subscription IDs cannot be resolved correctly with the values supplied in the
diameter_mediation.spec file, errors are logged in the Diameter Gateway log files.

• In a DEBUGGING environment, you can enable DEBUG messages in the
log4j.properties file as shown here:

log4j.logger.oracle.communication.brm.charging.ecegateway.diameter.framework=DEBUG
log4j.logger.oracle.communication.brm.charging.ecegateway.diameter.gy=DEBUG

• If the subscription IDs cannot be found as configured in the diameter_mediation.spec
file, you can expect an Errant result-code of DIAMETER_MISSING_AVP (5005) or
DIAMETER_INVALID_AVP_VALUE (5004).

Adding Custom AVPs for Usage Requests
If you introduce custom AVPs (to introduce new ways for charging for your services), you
define your custom AVPs in the ECE_home/config/diameter/dictionary_custom.xml file to
define their data types.

After modifying the dictionary_custom.xml file, perform a rolling restart of Diameter
Gateway nodes in your topology.

Chapter 19
Adding Custom AVPs for Usage Requests

19-11

For AVPs that apply to usage-request processing, you add network attributes for all
event attributes in the event definition so that they can be dynamically mapped to ECE
payload fields by Diameter Gateway. You also put a path to your AVP field to an MSCC
group block.

Using Incremental or Cumulative Accounting for Usage
Requests

ECE supports incremental and cumulative-based accounting behavior when
processing usage requests.

• Incremental accounting logic is used by the Diameter standard, which supports
Requested Service Units (RSU) and Used Service Units (USU) concepts.
Incremental accounting logic indicates that the creator of the usage request
enables the rating engine (ECE) to calculate the active session duration based on
the units used since the previous session update.

• Cumulative accounting logic is used by the Radius standard, which indicates that
the creator of the usage request always supplies the full quantity (for example
duration, volume, meters, miles, and so on) inclusive of all previous session
requests.

When creating your usage request builder, specify the accounting behavior using the
UnitReportingMode ECE Java enum. When the usage request builder is instantiated,
the enum indicates to ECE whether to use incremental or cumulative accounting
behavior.

Note:

When there are multiple RUMs and attributes ROUND_UP and
ROUND_DOWN of quantity in the rate plan, Granted Service Units that are
reported on all attributes may be rounded up or down based on the rate plan
configuration.

For both incremental and cumulative accounting, you must set attributes for the
Requested_Units and Used_Units blocks in the payloads of applicable operation
types. For example, the Requested_Units block is defined for the payloads of Initiate
and Update operation types, and the Used_Units block is defined for the payloads of
Update, Update Accounting, and Terminate operation types.

When configuring incremental or cumulative quota for usage requests, the metric
name (RUMs) must be the same as the attribute name. For example, when sending
the attribute INPUT_VOLUME on the usage request, the RUMs must be defined with
the same name.

Configuring Accounting Mode for Diameter Gateway
You can configure Diameter Gateway to use both incremental-based and cumulative-
based accounting logic when processing usage requests. You can perform this by
specifying the accounting mode in the mediation specification file. The accounting
mode indicates to Diameter Gateway whether to use incremental-based or cumulative-
based accounting logic.

Chapter 19
Using Incremental or Cumulative Accounting for Usage Requests

19-12

To configure the accounting mode for Diameter Gateway:

1. Open the Diameter mediation specification file, diameter_mediation.spec.

For the location of the diameter_mediation.spec file, see the
configObjectsDataDirectory parameter in the ECE_home/config/management/
migration-configuration.xml file.

2. For each event to be rated (in each row), specify the accounting mode in the
UnitReportingMode column. Valid values are:

• INCREMENTAL

• CUMULATIVE

For example:

Service-Context-Id | Service-Identifier | Rating-Group | ProductType |
EventType | Version | Subscription-Id-Type | ValidFrom |
UnitReportingMode |
"gy.service@example.com" | "1" | "10" | "VOICE" |
"V_USAGE" | 1.0 | "" | "2024-3-31T12:01:01 PST" |
"INCREMENTAL" |
"gy.service@example.com" | "1" | "11" | "DATA" |
"D_USAGE" | 1.0 | "" | "2024-3-31T12:01:01 PST" |
"CUMULATIVE" |

The default accounting mode is Incremental. If you specify null or if you do not specify a
mode in the UnitReportingMode column, Diameter Gateway uses the default accounting
mode when processing usage requests. This supports backward compatibility.

Your accounting mode configuration is applicable for the combination of the given values
specified in the row for the event to be rated. You can also configure different accounting
modes for the same product and event type combination.

3. Save and close the file.

4. Run the configLoader utility to load your mediation specification in the ECE cluster:

start configLoader

When the mediation specification is loaded, the earlier version of your mediation
specification (that was in the ECE cluster) is overwritten and Diameter Gateway uses the
configuration of the newly loaded mediation specification.

5. Change directory to the ECE_home/bin directory.

6. Start ECC:

./ecc
7. Do one of the following:

• If the Diameter Gateway instance is not running, start it.

The instance reads its configuration information by name at startup.

• If the Diameter Gateway instance is running, stop and restart it.

For information about stopping and starting Diameter Gateway instances, see "Starting
and Stopping ECE" in BRM System Administrator's Guide.

Chapter 19
Using Incremental or Cumulative Accounting for Usage Requests

19-13

Configuring WebLogic Queues for Notifications
To configure Diameter Gateway to listen for notifications from ECE, you must specify
the types of notifications that ECE generates.

If a Diameter client fails or becomes unavailable before receiving a notification
message from a Diameter Gateway instance, Diameter Gateway can route the
notification message to another available Diameter peer. For information, see
"Configuring Alternative Diameter Peers for Notifications".

To enable Diameter Gateway to consume notifications from an ECE notification queue
set up in WebLogic:

Note:

The following steps assume that ECE is installed and that required ECE
postinstallation tasks are completed.

1. On the Oracle WebLogic server, verify that the ECE notification queue (a JMS
topic) was created.

2. In ECE, verify that JMS credentials were configured correctly so that ECE can
publish notifications to the ECE notification queue.

See "About ECE Notifications" for information.

3. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

4. Expand the ECE Configuration node.

5. Expand charging.notification.

6. Expand Attributes.

7. Set the appropriate type of notification (such as top-up or advice of charge) to the
appropriate value. See "About ECE Notifications" for information.

Configuring Alternative Diameter Peers for Notifications
Peer details are configured in Diameter Gateway to filter and route the notifications for
the peers to which Diameter Gateway connects. Each Diameter Gateway instance
listens to a registered peer. The connection is initiated from the peer to send the
respective notifications. If a Diameter Gateway instance sends a notification message
to its peer and the peer is unavailable or the peer fails after receiving the notification
message, the Diameter Gateway instance retains the notification messages and sends
them to another available peer based on your alternative-peer configuration.

To configure alternative Diameter peers for notifications:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.diameterGatewayPeerConfigurations.

Chapter 19
Configuring WebLogic Queues for Notifications

19-14

4. Expand Attributes.

5. For each peer connected to the Diameter Gateway, configure alternative peers by
specifying values for the following attributes:

• peerName: Enter the name of the Diameter peer.

• alternatePeerName: Enter the name of the alternative peer for the specified
Diameter peer. You can specify two alternative peers for each Diameter peer.

6. Change directory to the ECE_home/bin directory.

7. Start the Elastic Charging Controller:

./ecc
8. Do one of the following:

• If the Diameter Gateway instance is not running, start it.

• If the Diameter Gateway instance is running, stop and restart it.

Viewing Active Diameter Peers
To view all the active diameter peers:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the DiameterGateway node.

3. Expand PeerConnectionsTracker.

4. Expand Attributes.

5. Click the peerConnections value.

The diameter peers that are active (which are currently connected to the specific
Diameter Gateway instance) are displayed.

Configuring ECE for Apache Kafka
You can connect ECE to the following ECE Kafka topics so that ECE can publish
notifications, failed usage requests, and CDRs with usage overage information to them:

• ECE notification topic: Stores notifications from ECE.

• Suspense topic: Stores failed notifications from ECE.

• ECE failure topic: Stores details about failed ECE usage requests, such as the user ID
and request payload. See "Recording Failed ECE Usage Requests" for more information.

• ECE overage topic: Stores overage records, which contain details about usage overage
amounts for prepaid customers. See "Configuring ECE to Support Prepaid Usage
Overage".

To configure ECE to work with Apache Kafka:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Enable ECE to send notifications to Kafka topics:

Chapter 19
Configuring ECE for Apache Kafka

19-15

a. Expand charging.server.

b. Expand Attributes.

c. Set the kafkaEnabledForNotifications property to true.

4. Connect ECE to your Kafka Server and Kafka topics:

a. Expand charging.kafkaConfigurations.

b. Expand Attributes.

c. Specify the Kafka configuration values for the attributes in Table 19-1.

Table 19-1 kafkaConfiguration Properties

Property Name Description

name The name of your ECE cluster.

hostname The host name and port number of the
machine in which Apache Kafka is
installed.

If it contains multiple Kafka brokers,
create a comma-separated list.

topicName The name of the Kafka topic where ECE
will publish notifications.

suspenseTopicName The name of the Kafka topic where failed
notifications are published.

failureTopicName The name of the Kafka topic where ECE
will publish details about failed usage
requests. See "Recording Failed ECE
Usage Requests".

overageTopicName The name of the Kafka topic where ECE
will publish overage records with
information about your prepaid customer's
usage overage during online sessions.
See "Configuring ECE to Support Prepaid
Usage Overage".

partitions The number of Kafka partitions in your
topics.

The recommended number to create is
calculated as follows:

[(Max HTTP Gateway Nodes) + (Max
Diameter Gateway Nodes * Max Diameter
Clients) + (1 for BRM Gateway) + (1 for
Internal Notifications)]

For example, if you have 2 HTTP
Gateway nodes, 4 Diameter Gateway
nodes, 10 Diameter Gateway clients, and
a BRM Gateway, you would need [(2 + (4
* 10) + 1 + 1) = 44 Kafka partitions.

Arbitrarily, you can set this to a maximum
value.

failurePartitions The number of Kafka partitions in your
ECE failure topic.

Chapter 19
Configuring ECE for Apache Kafka

19-16

Table 19-1 (Cont.) kafkaConfiguration Properties

Property Name Description

kafkaProducerReconnectionInterval The amount of time, in milliseconds, the
Notification Publisher waits before
attempting to reconnect to the Kafka
topic.

kafkaProducerReconnectionMax The maximum amount of time, in
milliseconds, the Notification Publisher
waits before attempting to reconnect to a
broker that has repeatedly failed to
connect.

The
kafkaProducerReconnectionInterval
will increase exponentially for each
consecutive connection failure, up to this
maximum.

kafkaDGWReconnectionInterval The amount of time, in milliseconds,
Diameter Gateway waits before
attempting to reconnect to the Kafka
topic.

kafkaDGWReconnectionMax The maximum amount of time, in
milliseconds, Diameter Gateway waits
before attempting to reconnect to a broker
that has repeatedly failed to connect.

The kafkaDGWReconnectionInterval
will increase exponentially for each
consecutive connection failure, up to this
maximum.

kafkaBRMReconnectionInterval The amount of time, in milliseconds, BRM
Gateway waits before attempting to
reconnect to the Kafka topic.

kafkaBRMReconnectionMax The maximum amount of time, in
milliseconds, BRM Gateway waits before
attempting to reconnect to a broker that
has repeatedly failed to connect.

The kafkaBRMReconnectionInterval will
increase exponentially for each
consecutive connection failure, up to this
maximum.

kafkaHTTPReconnectionInterval The amount of time, in milliseconds,
HTTP Gateway waits before attempting to
reconnect to the Kafka topic.

kafkaHTTPReconnectionMax The maximum amount of time, in
milliseconds, HTTP Gateway waits before
attempting to reconnect to a broker that
has repeatedly failed to connect.

The kafkaHTTPReconnectionInterval
will increase exponentially for each
consecutive connection failure, up to this
maximum.

5. Configure ECE to generate your desired notification types:

a. Expand charging.notification.

Chapter 19
Configuring ECE for Apache Kafka

19-17

b. Expand Attributes.

c. Specify which type of notifications to send to your ECE Notification topic. For
example, to send asynchronous notifications when an ongoing session
requires a reauthorization request, set rarNotificationMode to
ASYNCHRONOUS. See "Enabling Specific Notification Types".

Handling Requests When Charging Servers Are Unavailable
Diameter Gateway can be configured to use a degraded mode operating mode if the
Elastic Charging Server (charging server nodes) become unavailable.

Diameter Gateway actively monitors the health of the Elastic Charging Server. If the
Elastic Charging Server becomes unavailable (such as going below the charging-
server health threshold), Diameter Gateway sends the DIAMETER_TOO_BUSY result
code response to network requests.

Recording Failed ECE Usage Requests
ECE may occasionally fail to process usage requests. For example, a data usage
request could fail because a customer has insufficient funds. You can configure ECE
to publish details about failed usage requests, such as the user ID and request
payload, to the ECE failure topic in your Kafka server. Later on, you can reprocess the
usage requests or view the failure details for analysis and reporting.

To enable the recording of failed ECE usage requests:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.kafkaConfigurations.

4. Expand Attributes.

5. Set the persistFailedRequestsToKafkaTopic property to true.

Including Loan Sub-balance in Balance Queries
By default, Diameter Gateway includes information about the main currency balance in
balance query responses. You can configure Diameter Gateway to include both the
main and loan balance information in balance query responses. To configure it to do
so, in the ECE Balance Java API, set the balancequerymode to TURBO. For
example:

ORA-Balance-Query-Mode (248,VM,v=3512,I=16) = TURBO_MODE (4)

For more information about balancequerymode, see the documentation for
oracle.communication.brm.charging.messages.query in Elastic Charging Engine
Java API Reference.

Chapter 19
Handling Requests When Charging Servers Are Unavailable

19-18

https://docs.oracle.com/pls/topic/lookup?ctx=en/industries/communications/billing-revenue/15.0/charging&id=ece-java-api
https://docs.oracle.com/pls/topic/lookup?ctx=en/industries/communications/billing-revenue/15.0/charging&id=ece-java-api

20
Connecting ECE to a RADIUS Client

You can use Oracle Communications Elastic Charging Engine (ECE) RADIUS Gateway for
authenticating access requests, processing accounting requests from RADIUS clients, such
as terminal servers or network access servers (NAS), and processing disconnect requests
from the RADIUS server to RADIUS clients.

For information about conformance with industry standards, see ECE RADIUS Gateway
Protocol Implementation Conformance Statement.

Topics in this document:

• Overview of Authentication and Accounting Using RADIUS Gateway

• About RADIUS Gateway Authentication

• Authenticating Access Requests by Using PAP

• Authenticating Access Requests by Using CHAP

• Authenticating Access Requests by Using EAP

• Loading Data Keys Extracted from BRM into ECE

• Customizing the RADIUS Data Dictionary

• Loading the RADIUS Mediation Specification Data

• About Mapping RADIUS Network Attributes to Event Attributes

• About RADIUS Gateway Accounting

• About Accounting-Start and Accounting-Stop Requests

• About Accounting-On and Accounting-Off Requests

• About Accounting-Interim-Update Requests

Overview of Authentication and Accounting Using RADIUS
Gateway

You use RADIUS Gateway for authenticating access requests and processing accounting
requests for online charging when your customers use your terminal server or NAS to
connect to ECE. RADIUS Gateway does the following when it receives a request from the
RADIUS client:

1. Translates the request into an ECE request.

2. Submits the ECE request to the ECE server.

3. Receives the ECE response from the ECE server and translates it into a RADIUS
message response.

4. Sends the RADIUS message response to the RADIUS client.

The following steps summarize how to set up ECE for authentication and accounting using
RADIUS Gateway:

20-1

1. Add additional RADIUS Gateway nodes required for your topology and configure
each instance.

2. (Optional) Customize the RADIUS data dictionary to include custom vendor-
specific attributes.

3. Load your event definitions from PDC into ECE.

4. Load customer data and data keys from BRM into ECE.

5. Load the RADIUS mediation specification data.

6. Map RADIUS network attributes to event attributes.

7. Start the RADIUS Gateway nodes.

When the RADIUS Gateway nodes start, they automatically join the Coherence
cluster gaining access to ECE caches and invocation services that it uses to send
requests to ECE.

About RADIUS Gateway Authentication
RADIUS Gateway supports the following authentication mechanisms for querying the
ECE server and authenticating access requests:

• Password Authentication Protocol (PAP). An authentication protocol that uses
the user name and password to validate users. See "Authenticating Access
Requests by Using PAP" for more information on how RADIUS Gateway performs
the PAP authentication.

• Challenge Handshake Authentication Protocol (CHAP). An authentication
protocol that authenticates a user to a network entity; for example, the Web. This
protocol ensures that the server sends a challenge to the RADIUS client after the
RADIUS client establishes a network connection to access the Web server. See
"Authenticating Access Requests by Using CHAP" for more information on how
RADIUS Gateway performs the CHAP authentication.

• Extensible Authentication Protocol (EAP). An authentication protocol that
supports multiple authentication mechanisms for authenticating network access;
for example, EAP-Message Digest 5 (MD5). See "Authenticating Access Requests
by Using EAP" for more information on how RADIUS Gateway performs the EAP
authentication.

Authenticating Access Requests by Using PAP
You use PAP to authenticate access requests based on the clear-text user name and
user password. Only Access-Request requests are considered for PAP authentication:
other messages are ignored. The PAP authentication is performed based on the User-
Name and User-Password AVP values in the Access-Request request.

The PAP authentication process is as follows:

1. RADIUS Gateway receives the Access-Request request from the RADIUS client.

2. RADIUS Gateway authenticates the RADIUS client using the sharedsecret
password that you provided during installation.

Chapter 20
About RADIUS Gateway Authentication

20-2

Note:

If RADIUS clients are represented by using an IP address range, ensure that all
the RADIUS clients within the IP address range use the same sharedsecret
password.

3. RADIUS Gateway translates the Access-Request request into an ECE query.

4. RADIUS Gateway sends the query with the User-Name AVP value to the ECE server to
validate the user name.

5. If the user name is not found in the ECE server, the ECE server returns a failed
response. RADIUS Gateway translates the failed response into the Access-Reject
message and returns it to the RADIUS client.

6. If a match for the user name is found, RADIUS Gateway sends a query with the User-
Password AVP value in the request to the ECE server to validate the user password.

7. The ECE server returns a password. If the password is encrypted, RADIUS Gateway
decrypts the password using a data key loaded from BRM before validating the user
password. The data key to be used is identified using the key ID in the password returned
by the ECE server.

8. If the user password in the ECE server matches the User-Password AVP value in the
query, the ECE server returns a success response. RADIUS Gateway translates the
success response into the Access-Accept message and returns it to the RADIUS client.

9. If the user password does not match, the ECE server returns a failed response. RADIUS
Gateway translates the failed response into the Access-Reject message and returns it to
the RADIUS client.

Sample Access-Request Request for PAP Authentication

 Code: Access-Request(1)
 Identifier: 0
 Length: 120
 Authenticator: 0x7D564C041FD183A4DBA037E03E3244F3
 User-Name: alias#1006
 User-Password: 0x41FD183A4335037E03E3244F3123123
 NAS-IP-Address: 128.1.2.3
 NAS-Port-Type: 1034
 Service-Type: 2

Authenticating Access Requests by Using CHAP
You use CHAP to authenticate access requests by validating the identity of the RADIUS client
using Access-Challenge messages. The CHAP authentication is performed based on the
CHAP-Password and CHAP-Challenge AVP values in the Access-Request request. RADIUS
Gateway uses the State AVP value in the Access-Request request or the noOfChallenges
value that you configured in ECE to carry out the number of Access-Challenge messages for
a given authentication session.

At any time in a given authentication session, RADIUS Gateway can also request the
RADIUS client to send an Access-Challenge message. The CHAP authentication uses
encrypted passwords for authentication and the Access-Challenge message can be
requested for authentication by RADIUS Gateway at any time. Therefore, the CHAP
authentication process is considered more secure than the PAP authentication process.

Chapter 20
Authenticating Access Requests by Using CHAP

20-3

The CHAP authentication process is as follows:

1. The RADIUS client encrypts a clear-text user password by using the CHAP
identifier and CHAP-Challenge AVP value and sends it in the CHAP-Password
AVP in an Access-Request request.

2. RADIUS Gateway authenticates the RADIUS client using the sharedsecret
password that you provided during installation.

Note:

If RADIUS clients are represented by using an IP address range, ensure
that all the RADIUS clients within the IP address range use the same
sharedsecret password.

3. RADIUS Gateway translates the Access-Request request into an ECE query.

4. RADIUS Gateway sends the query with the User-Name AVP value to the ECE
server to validate the user name.

5. If the user name is not found in the ECE server, the ECE server returns a failed
response. RADIUS Gateway translates the failed response into the Access-
Reject message and returns it to the RADIUS client.

6. If a match for the user name is found, the ECE server returns the password
associated with the user name. If the password is encrypted, RADIUS Gateway
decrypts the password into a clear-text password using the data key loaded from
BRM before validating the password. The data key to be used is identified using
the key ID in the password returned by the ECE server.

7. RADIUS Gateway generates an MD5 hash value using the password, CHAP-
Challenge AVP, and CHAP identifier (which is the first byte of the CHAP-Password
AVP), and compares it with the CHAP-Password AVP value in the Access-Request
request.

8. If the values do not match, RADIUS Gateway returns a failed response. RADIUS
Gateway returns an Access-Reject message to the RADIUS client.

9. If the MD5 hash value and the CHAP-Password AVP value match, RADIUS
Gateway returns a success response.

10. RADIUS Gateway sends an Access-Challenge message to the RADIUS client.

RADIUS Gateway uses the State AVP value in the Access-Request request to
determine the number of Access-Challenge messages to be sent to the RADIUS
client. For example, if the State AVP value is 0, RADIUS Gateway directly returns
the Access-Accept message. If the State AVP value is 1, RADIUS Gateway sends
only one Access-Challenge message to the RADIUS client.

11. If the State AVP value is null or if the value is not set, RADIUS Gateway calculates
a random number between one and the maximum number of challenges
configured in ECE and sends the Access-Challenge messages to the RADIUS
client.

12. The RADIUS client responds with a value calculated through the MD5 hash
function.

13. RADIUS Gateway checks the response against its calculation of the expected
hash value.

Chapter 20
Authenticating Access Requests by Using CHAP

20-4

14. If the values match, RADIUS Gateway repeats the Access-Challenge messages based
on the State AVP value or the number calculated by RADIUS Gateway.

15. If the values do not match, RADIUS Gateway returns an Access-Reject message to the
RADIUS client.

Sample Access-Request Request for CHAP Authentication

 Code: Access-Request(1)
 Identifier: 0
 Length: 144
 Authenticator: 0x7D564C041FD183A4DBA037E03E3244F3
 CHAP-Password: 0x423423432412ADA123CC1123124123
 Chap-Challenge="0xFBFCE5676F94433682718EF97F8AB24900"
 NAS-IP-Address: 127.0.0.8
 State: 0
 NAS-Port-Type: 1816
 Service-Type: 2

Authenticating Access Requests by Using EAP
You use EAP to authenticate users using different authentication mechanisms. EAP includes
password-based authentication methods and secure certificate-based authentication
methods. The EAP authentication is performed based on the EAP-Message AVP value in the
Access-Request request. RADIUS Gateway supports the following EAP authentication
methods:

• EAP-Tunneled Transport Layer Security (TTLS). Authentication between RADIUS
Gateway and the RADIUS client uses a secured connection in two phases. In the first
phase, RADIUS Gateway and the RADIUS client exchange authentication certificates for
establishing the secured connection. In the second phase, RADIUS Gateway
authenticates the RADIUS client by using different authentication mechanisms, such as
EAP-PAP, EAP-CHAP, and EAP-MD5. These authentication mechanisms use the
attributes in the Access-Request request to perform the authentication. You can also
configure a custom EAP authentication mechanism by using the RADIUS Gateway
extension points.

• EAP-Non-TTLS. Authentication between RADIUS Gateway and the RADIUS client uses
a configured list of EAP authentication mechanisms. The EAP-Non-TTLS authentication
process is as follows:

1. RADIUS Gateway performs a standard check on the Access-Request request
received from the RADIUS client.

2. RADIUS Gateway sends the EAP-Type AVP in the Access-Challenge message that
contains the value corresponding to the first EAP type configured.

3. If the RADIUS client returns NAK, RADIUS Gateway sends the next EAP type in the
configured list in the Access-Challenge message. RADIUS Gateway continues this
process until the RADIUS client responds with an Access-Accept message or until
the end of the configured list is reached. In that case, RADIUS Gateway sends an
Access-Reject message.

RADIUS Gateway, by default, supports only the EAP-MD5 authentication mechanism in
the EAP-Non-TTLS method. To use a different authentication method, use the
CustomAuth and CustomEAPChallenge extension points. The CustomEAPChallenge
extension point sends the initial EAP challenge to the RADIUS client. The CustomAuth
extension point performs the authentication and returns the authentication result. Based

Chapter 20
Authenticating Access Requests by Using EAP

20-5

on the result received, RADIUS Gateway sends the appropriate RADIUS response
to the RADIUS client.

Sample Access-Request Request for EAP-MD5 Authentication

 Code: Access-Request(1)
 Identifier: 0
 Length: 120
 Authenticator: 0x7D564C041FD183A4DBA037E03E3244F3
 User-Name: BOB
 NAS-IP-Address: 127.0.0.1
 Calling-Station-Id: 02-00-00-00-00-01
 Framed-MTU: 1400
 NAS-Port-Type: 19
 Connect-Info: CONNECT 11Mbps 802.11b
 Service-Type: 2
 EAP-Message: 0x0200000801424F42
 Message-Authenticator: 0x4FB1186DDA9643CED0CD13D59ECD9D4E

Loading Data Keys Extracted from BRM into ECE
As part of the initial load of customer data into ECE, Customer Updater loads data
keys into ECE. When RADIUS Gateway is started, the data keys are decrypted using
the BRM root key in the Oracle wallet file and stored in the memory with a data key ID
for each data key. These data keys are used for decrypting the passwords in
authentication responses from ECE.

When you add or modify a data key in BRM, you must load the newly added or
modified data key extracted from BRM into ECE.

To load data keys extracted from BRM into ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the UpdateEventhandler node.

3. Expand Update.

4. Expand Operations.

5. Select updateDataKeys.

6. Click the updateDataKeys button.

The newly added or modified data keys extracted from BRM are loaded into ECE.

Customizing the RADIUS Data Dictionary
This section covers customizing the RADIUS data dictionary.

About the RADIUS Data Dictionary
The data dictionary includes a list of AVPs that are used by RADIUS Gateway to
perform authentication and accounting operations. The RADIUS data dictionary
contains the standard AVPs that are prescribed in RADIUS Request for Comments
(RFC) 2865, 2866, and 2869, and also some sample vendor-specific attributes. You
can use the sample vendor-specific attributes as a template for adding custom vendor-

Chapter 20
Loading Data Keys Extracted from BRM into ECE

20-6

specific attributes. The default location of the RADIUS data dictionary file is ECE_home/
config/radius/radiusDictionary.xml.

Note:

Do not remove, rename, or move the RADIUS data dictionary file to a different
location.

Creating a Custom Data Dictionary
You can create a custom data dictionary file by using the ECE_home/config/radius/
radiusDictionary.xml file as a template. The default location for your custom data dictionary
file is ECE_home/config/radius/custom/dictionary_file, where dictionary_file is the name of
your custom data dictionary file. You can add new vendor-specific attributes to your custom
data dictionary file. See "Adding Custom Vendor-Specific Attributes".

Selecting a RADIUS Data Dictionary When Using Different NAS Vendors
If you must use NAS servers from multiple vendors, you have the following options:

• If your NAS is RFC 2865 compliant, you can use the RFC2865 data dictionary. This is the
preferred solution. Update the dictionary file with any vendor-specific attributes
associated with the NAS.

• If your NAS is not RFC 2865 compliant, you can use the RADIUS data dictionary files for
adding vendor-specific attributes. See "Adding Custom Vendor-Specific Attributes" for
more information.

Adding Custom Vendor-Specific Attributes
In special cases, where you are using NAS servers from multiple vendors, you must add the
vendor attribute and code in your custom data dictionary file.

The syntax for adding a vendor-specific attribute is:

<?xml version="1.0" encoding="UTF-8"?>
 <dictionary schemaLocation= "radiusDictionary.xsd"
 <vendor value="vendor_ID"name="vendor_name"/>
 </attribute name="attribute_name" vendor="vendor_name" syntax="data_type"
code="attribute_ID"/>
 </dictionary>

Table 20-1 lists the vendor-specific attribute values and descriptions.

Chapter 20
Customizing the RADIUS Data Dictionary

20-7

Table 20-1 Vendor-specific Attribute Values

Parameters Description

vendor_ID Number used to identify the NAS or gateway vendor. These
numbers are assigned by the Internet Advisory Board (IAB). See
your vendor's documentation for details.

Some common vendor identification numbers are:

• 9 (Cisco)
• 10415 (3GPP)
• 2636 (Juniper)

vendor_name Name of the vendor.

attribute_name Name of the attribute. This must be unique.

Important: Do not use the same attribute name as used in the
default RADIUS data dictionary file. Using the same attribute name
in the custom data dictionary file overrides the attribute values in
the default RADIUS data dictionary file.

attribute_ID Identification number assigned to the attribute in the dictionary.

data_type Any one of the following data types:

• UnsignedInt
32-bit unsigned value in big endian order (high byte first).

• Integer
32-bit value in big endian order (high octet first).

• String
0-253 octets

• Ipaddr
4 octets in network octet order

• Binary
0-254 octets

• Password
(n * 16) (>= 16) octets. This field is encrypted according to the
User-Password AVP in RFC 2865.

• Short
16-bit value

• Octet
8-bit value

• ifid
IPv6 interface ID

• ipv6addr
IPv6 address

• date
Linux timestamp in seconds (since January 1, 1970 GMT)

Loading the RADIUS Mediation Specification Data
RADIUS Gateway uses the RADIUS mediation specification data to determine which
product and event type combination and network mapping applies to an incoming
request from the RADIUS client.

To load the RADIUS mediation specification data:

Chapter 20
Loading the RADIUS Mediation Specification Data

20-8

1. Create a mediation specification file or open the sample RADIUS mediation specification
file.

A sample mediation specification file (ECE_home/sample_data/config_data/
specifications/ece_simple) is available.

Note:

Create only one RADIUS mediation specification file to represent the mediation
specification for RADIUS Gateway.

2. Load the pricing data from PDC into ECE.

For every event definition, which contains charging operation types (for example, Initiate)
loaded into ECE from PDC, ECE generates network mapping files.

3. Add a row (in the table) for each new product to be rated that specifies the following
information:

• Service-Identifier AVP

A unique identifier of the service. The Service-Identifier AVP value is sent by the
RADIUS request. “null" is valid if the field is not expected to be present in the
request.

• ProductType

The product type that you have defined for the event in its associated request
specification.

• EventType

The event type that you have defined for the event in its associated request
specification.

• Version

The version number of the request specification that you want to apply to the event.

• ValidFrom

A future date and time when you want RADIUS Gateway to recognize a newly
deployed request specification.

To have requests processed according to a new specification, you would enter:

yyyy-mm-ddThh:mm:ss [timezone]

If timezone is not specified, it defaults to UTC.

• Network-Mapping-FileName

The name of the network mapping file generated for the product and event
combination.

4. Open the ECE_home/config/management/migration-configuration.xml file.

5. Search the configObjectsDataDirectory parameter and copy the value. For example:

configObjectsDataDirectory = ECE_home/sample_data/config_data
6. Save the mediation specification file to that same directory.

7. Load the file into the ECE server by running the following command:

Chapter 20
Loading the RADIUS Mediation Specification Data

20-9

start configLoader

The utility loads the RADIUS mediation specification data to the ECE cluster. The
configLoader utility uses the location in the configdata parameter for loading the
data. As mediation specification files have same names, so any existing RADIUS
mediation specification data in the ECE cluster is overwritten.

Example 20-1 Sample RADIUS Mediation Specification Entry

RadiusMediationTable {
Service-Identifier| ProductType | EventType | Version | ValidFrom | Network-
Mapping-FileName|
 "1" | "TelcoGprs" | "EventDelayedSessionTelcoGprs" | 2.0 | "2010-12-31T12:01:01
PST" | "EventDelayedSessionTelcoGprs_TelcoGprs.xml" |
}

When you load the RADIUS mediation specification data into the ECE cluster,
RADIUS Gateway re-creates its in-memory usage-request builder map and uses the
mapping definitions to send requests to ECE.

About Mapping RADIUS Network Attributes to Event
Attributes

To process requests from RADIUS clients, you map network attributes from RADIUS
clients to the corresponding event attributes in ECE. You do this by editing the network
mapping file. When you load the pricing data from PDC into ECE, ECE generates the
network mapping file for each product and event combination. Some default network
mappings are already pre-configured in the files generated by ECE. You can update
the default values in these files.

RADIUS Gateway uses this mapping in ECE to process requests by dynamically
mapping the values of the network attributes in the RADIUS request to the
corresponding event attributes in ECE.

Mapping RADIUS Network Attributes to Event Attributes
If you add or remove an event attribute from the event definition in PDC, you have to
add or remove the corresponding network attributes in ECE. You do this by editing the
network mapping file in ECE.

Before you map the attributes, load the RADIUS mediation specification file. See
"Loading the RADIUS Mediation Specification Data" for more information.

To map network attributes to event attributes:

1. Load the pricing data from PDC into ECE.

Mapping files will be automatically generated when the pricing data is published
from PDC to ECE.

For every event definition, which contains charging operation types (for example,
Initiate) loaded into ECE from PDC, ECE generates the network mapping files.
The network mapping files are stored in the directory specified by the
configObjectsDataDirectory parameter in the ECE_home/config/management/
migration-configuration.xml file

Chapter 20
About Mapping RADIUS Network Attributes to Event Attributes

20-10

A sample network mapping file is available in the (ECE_home/sample_data/
config_data/specifications/ece_end2end/network_mapping) directory. You can use
this as a reference for mapping the attributes.

2. Open a network mapping file in a text editor.

3. Ensure that the ORIGIN_NETWORK event attribute is added as a top-level attribute in
the network mapping file.

4. Map the network attributes to the event attributes by doing the following:

a. Search for the event attribute that you want to map to the network attribute.

b. Add the following entry:

<networkField>NetworkAttribute</networkField>

where NetworkAttribute is the attribute of the requests received from RADIUS clients.

For example:

<attributeMapping type="RadiusMediationEntries">
 <attribute>
 <name>TERMINATE_CAUSE</name>
 <networkField>Acct-Terminate-Cause</networkField>
 </attribute>
 </attributeMapping>

5. Save and close the file.

Note:

Verify that the name of this network mapping file is specified in the RADIUS
mediation specification file.

6. Load the network mapping data by doing one of the following:

• If RADIUS Gateway is running, run the following command:

start configLoader loadNetworkMapping
• If RADIUS Gateway is not running, run the following commands:

start customerUpdater
start radiusGateway

The network mapping data is loaded into the ECE cluster. Any existing network
mapping data available for the product and event specification in the ECE cluster is
overwritten. ECE is now in a usage-processing state, where it can accept requests
from RADIUS Gateway.

When you load the network mapping into the ECE cluster, RADIUS Gateway re-creates its in-
memory usage-request builder map and begins using the latest mapping definitions to send
requests to ECE.

About RADIUS Gateway Accounting
RADIUS Gateway processes the accounting requests to track information about customer
usage. For example, RADIUS Gateway tracks when customers log in to a network for using
the services and when customers log out of the network. The information tracked by RADIUS

Chapter 20
About RADIUS Gateway Accounting

20-11

Gateway is used for statistical purposes, network monitoring, and billing the customers
based on the duration of the sessions or the type of services used.

To track customer usage information, RADIUS Gateway uses the network mapping
definitions in ECE and maps the accounting requests received from the RADIUS
clients to the usage requests with the corresponding operation types configured in
ECE.

See the following topics for information on the different types of accounting requests
received from the RADIUS clients:

• About Accounting-Start and Accounting-Stop Requests

• About Accounting-On and Accounting-Off Requests

• About Accounting-Interim-Update Requests

The RADIUS Gateway accounting process is as follows:

1. At the start of accounting or the start of a user session, the RADIUS client sends
an accounting request to RADIUS Gateway. The Acct-Status-Type AVP value in
the request indicates the start of accounting or start of a session for the user.

2. RADIUS Gateway processes the request and records the information as either an
accounting-on record or an accounting-start record in ECE, based on the
accounting request received.

3. RADIUS Gateway returns an Accounting-Response message to the RADIUS
client to acknowledge the accounting-start or accounting-on request.

4. While the session is active, the RADIUS client sends periodic updates on the data
usage to RADIUS Gateway through accounting requests with the Acct-Status-
Type AVP set to Interim-Update.

5. RADIUS Gateway processes the requests and records the information as
accounting-interim-update records in ECE.

6. RADIUS Gateway returns Accounting-Response messages to the RADIUS client
to acknowledge the interim-update requests.

7. At the end of accounting or the end of the user session, the RADIUS client sends
an accounting request that contains the Acct-Status-Type AVP value indicating the
end of accounting or the end of the user session.

8. RADIUS Gateway processes the request and records the information as either an
accounting-off record or an accounting-stop record in ECE, based on the
accounting request received.

9. RADIUS Gateway returns an Accounting-Response message to the RADIUS
client to acknowledge the accounting-off or accounting-stop request. At any time, if
the RADIUS client does not receive an Accounting-Response message, it
continues to send accounting requests until it receives a response.

About Accounting-Start and Accounting-Stop Requests
When a client is configured to use RADIUS accounting, the RADIUS client sends an
Accounting-Start request, which specifies the start of a session for delivering a service,
and an Accounting-Stop request, which specifies the end of the session that was
started for delivering a service, to RADIUS Gateway. The Accounting-Start request
describes the type of service being delivered and the user who is using that service.
The Accounting-Stop request describes the type of service that was delivered. The

Chapter 20
About Accounting-Start and Accounting-Stop Requests

20-12

Accounting-Stop request might also contain statistics, such as elapsed time, input and output
octets, or input and output messages. The RADIUS client uses the Acct-Status-Type AVP to
specify the start of a session and to specify the end of a session.

The following AVPs must be present in an Accounting-Start or Accounting-Stop request:

• Acct-Session-Id

Note:

The Accounting-Start and Accounting-Stop requests for a given session must
have the same Acct-Session-Id AVP.

• Acct-Status-Type

• NAS-IP-Address or NAS-Identifier

• User-Name

• The AVP that you configured to derive the service in ECE by using the avpName and
vendorId parameters.

For an Accounting-Start request, the Acct-Status-Type AVP must be set to 1. When a
RADIUS client sends the Accounting-Start request, the RADIUS client indicates that the user
service session has started. When RADIUS Gateway receives the Accounting-Start request,
RADIUS Gateway records the information contained in the request for billing purpose and
returns the Accounting-Response message to the RADIUS client.

For an Accounting-Stop request, the Acct-Status-Type AVP must be set to 2. When a
RADIUS client sends the Accounting-Stop request, the RADIUS client indicates that the user
service session has ended. When RADIUS Gateway receives the Accounting-Stop request,
RADIUS Gateway records the information contained in the request for billing purposes and
returns the Accounting-Response message to the RADIUS client.

The RADIUS client continues to send the Accounting-Start or Accounting-Stop requests until
it receives the Accounting-Response message.

Sample Accounting-Start Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 0
 Length: 94
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 123456
 Acct-Status-Type: 1
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1]
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 0
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

Sample Accounting-Stop Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 1
 Length: 87

Chapter 20
About Accounting-Start and Accounting-Stop Requests

20-13

 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 123456
 Acct-Status-Type: 2
 Acct-Input-Octets: 10
 Acct-Output-Octets: 18
 Acct-Session-Time: 200
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1]
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 1
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

About Accounting-On and Accounting-Off Requests
When a client is configured to use RADIUS accounting, the RADIUS client sends an
Accounting-On request, which specifies the start of accounting, and an Accounting-Off
request, which specifies the end of accounting, to RADIUS Gateway. The RADIUS
client uses the Acct-Status-Type AVP to specify the start of accounting and to specify
the end of accounting.

The following AVPs must be present in an Accounting-On or Accounting-Off request:

• Acct-Status-Type

• NAS-IP-Address or NAS-Identifier

• The AVP that you configured to derive the service in ECE by using the avpName
and vendorId parameters.

For an Accounting-On request, the Acct-Status-Type AVP must be set to 7. When a
RADIUS client sends the Accounting-On request, the RADIUS client indicates that it is
ready for service. When RADIUS Gateway receives the Accounting-On request,
RADIUS Gateway closes or terminates any open accounting session associated with
that RADIUS client before the RADIUS client indicates that it is ready for service.

For an Accounting-Off request, the Acct-Status-Type AVP must be set to 8. When a
RADIUS client sends the Accounting-Off request, the RADIUS client indicates that it is
going out of service. When RADIUS Gateway receives the Accounting-Off request,
RADIUS Gateway closes or terminates all the open accounting sessions associated
with that RADIUS client.

Sample Accounting-On Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 4
 Length: 68
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 131
 Acct-Status-Type: 7
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1
[Code: Accounting-Response(5)
 Identifier: 4
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

Chapter 20
About Accounting-On and Accounting-Off Requests

20-14

Sample Accounting-Off Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 5
 Length: 68
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 131
 Acct-Status-Type: 8
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 5
 Length: 20
 Authenticator: 0x00000000000000000000000000000000]

About Accounting-Interim-Update Requests
During a session, the RADIUS client periodically sends Accounting-Interim-Update requests,
which specify the current session duration and current data usage, to RADIUS Gateway. The
RADIUS client uses the Acct-Status-Type AVP to specify the interim update.

The following AVPs must be present in an Accounting-Interim-Update request:

• Acct-Session-Id

Note:

The Accounting-Interim-Update requests for a given session must have the
same Acct-Session-Id AVP.

• Acct-Status-Type

• NAS-IP-Address or NAS-Identifier

• User-Name

• The AVP that you configured to derive the service in ECE by using the avpName and
vendorId parameters.

When periodic Accounting-Interim-Update requests are sent for the same active session, the
identifier in each Accounting-Interim-Update request must be unique. If the identifier is the
same, RADIUS Gateway considers only the first request received with that identifier and
ignores other requests.

For an Accounting-Interim-Update request, the Acct-Status-Type AVP must be set to 3. When
a RADIUS client sends the Accounting-Interim-Update request, the RADIUS client indicates
that the session is active. When RADIUS Gateway receives the Accounting-Interim-Update
request, RADIUS Gateway records the information contained in the request for billing
purposes and returns the Accounting-Response message to the RADIUS client.

The RADIUS client continues to send Accounting-Interim-Update requests until it receives the
Accounting-Response message.

Chapter 20
About Accounting-Interim-Update Requests

20-15

Sample Accounting-Interim-Update Request for Accounting

[Code: Accounting-Request(4)
 Identifier: 0
 Length: 95
 Authenticator: 0x30303030303030303030303030303030
 Acct-Session-Id: 123456
 Acct-Status-Type: 3
 Acct-Input-Octets: 6
 Acct-Output-Octets: 10
 NAS-Identifier: telco.org
 User-Name: alias#5000
 Service-Type: 1]
Radius Response Packet
[Code: Accounting-Response(5)
 Identifier: 0
 Length: 20
 Authenticator:0x00000000000000000000000000000000]

Chapter 20
About Accounting-Interim-Update Requests

20-16

21
Configuring Policy-Driven Charging

You can implement policy-driven charging in Oracle Communications Elastic Charging
Engine (ECE).

Caution:

Deploying policy-driven charging for 5G events requires a cloud native deployment
of ECE and BRM components. 5G PCF can be used only on an ECE cloud native
system.

Topics in this document:

• About Policy-Driven Charging

• Configuring Policy-Driven Charging

• Configuring Breach Tolerance for Policy-Tier Thresholds

• About Integrating Policy Clients with ECE

• About the ECE Sy and Sp Interface

• About Calculating Maximum Authorization for Policy-Driven Charging Sessions

• Configuring ECE to Reject Spending Limit Requests Without Counters

• About the Policy Management API

About Policy-Driven Charging
Policy-driven charging enables you to track a subscriber's service usage and, based on that
usage, change the customer's quality of service (QoS) during online charging.

For example, a subscriber purchases a package for a specific QoS to download video
content. The subscriber chooses from one of many packages that you have configured with
gradations in the QoS based on usage amounts in MBs, such as 100-150, 150-200, and
200-250 MBs. When the subscriber starts downloading video content from the network, you
can track the number of MBs the subscriber downloads during the session. When the
downloaded quantity crosses the upper threshold set for the selected QoS (for example, 150
MBs), you can use BRM's policy-driven charging to make a seamless change in the policy set
for the subscriber's (video downloading) session on the network and allow a shift in the QoS
from the current to the next level.

ECE supports policy-driven charging. Policy-driven charging implements network, customer,
and service policies that service providers can use to improve customer experience and
efficiently use network resources. Service providers can use policies for various reasons,
such as controlling data usage, setting QoS, allocating bandwidth to each service, enforcing
parental controls, implementing charging rules, and so on.

21-1

When you integrate Policy and Charging Rules Function (PCRF) policy clients with
ECE, ECE acts as the Subscriber Profile Repository (SPR) because it stores the
customer profile information used by the PCRF. ECE offers a combined Sp and Sy
interface, which the PCRF uses to retrieve customer preferences and policy counter
information.

Policies can be service and network aware. You can create network-aware policies for
specific access technologies where the network condition can dynamically alter prices.
You can develop service-aware policies to control how a customer consumes network
resources.

ECE exposes the following information in its in-memory data grid to policy clients
(such as Diameter Gateway or your third-party network mediation software for online
charging) to support policy-driven charging. Policy clients use the ECE policy
management APIs to retrieve the information and send it to the PCRF:

• Policy label information

Policy enforcement programs on the PCRF use policy labels such as status labels.
For example, a QoS label might be defined as normal-QoS or low-QoS, as
shown below:

<policy_label>
 <label>Basic Subscription</label>
 <resource_code>MBU</resource_name>
 <resource_id>100012</resource_id>
 <unit>megabyte</unit>
 <tiers>
 <tier>
 <range_start>0</range_start>
 <range_end>300</range_end>
 <status_label>normal-QoS</status_label>
 </tier>
 <tier> <range_start>301</range_start>
 <status_label>low-QoS</status_label>
 </tiers>
</policy_label>
</policy_labels>

Policy label information is stored in the policy specification (offer profiles in BRM)
in PDC. ECE loads this information into its data grid when it loads pricing data
from PDC.

• Policy counter information

The Sy interface of the ECE Java policy API transfers policy counter information
from ECE to the policy client. It provides policy counter status reporting and policy
counter status change notifications.

Policy counters track a customer's usage of a service. For example, ECE tracks
how many megabytes a subscriber downloads. The policy client retrieves the
policy counters from ECE and sends them to the PCRF for evaluation.

• Subscriber preferences information

ECE stores subscriber preferences associated with how the customer would like to
receive policy notifications. Policy clients can retrieve this data from ECE using the
Sp interface of the ECE Java policy API. For example, they could retrieve:

– A customer's charging-related information (for example, if the customer
purchased a Gold, Platinum, or Bronze package)

Chapter 21
About Policy-Driven Charging

21-2

– A customer's preferred channel for receiving notifications (for example, email or
SMS)

– A customer's language

To support policy-driven charging, ECE publishes policy notifications. Policy specifications
can store threshold definitions for specific balances. ECE can use the threshold definitions to
post notifications when thresholds are breached (SpendingLimit notifications). When a
subscriber's preferences change, ECE publishes notifications with the new or altered
preference information (SubscriberPreference notifications). ECE sends notifications to the
JMS notification queue. The policy client listens on the queue and uses the data in the
notifications to send Sy and Sp messages to the PCRF.

ECE publishes policy notifications only for charge offers that have active policy sessions.
When the policy client (such as Diameter Gateway) initiates policy sessions, it subscribes to
receive the policy notifications on behalf of the PCRF.

When a customer purchases a new charge offer, the PCRF re-queries the policy label and
policy counter (Sy data) to subscribe to the additional counters associated with the new
charge offer.

About Group-Based Policy-Driven Charging
ECE supports group-based policy-driven charging where a policy counter is shared by a
group of users, enabling the PCRF to define rules for a group of users.

Group-based policy-driven charging in ECE works as follows:

• The owner of a discount sharing group shares a policy counter.

• A shared discount offer is used to impact the shared policy counter.

• The shared discount is associated with a policy specification that defines policy counter
thresholds.

• When a policy threshold is breached, ECE generates a notification for all users in the
group.

Policy-Driven Charging Example
The following is an example of how ECE supports policy-driven charging:

• A service provider allows a customer to download 300 MBs of data per month at a normal
QoS.

• The customer's counter for data downloaded resets at the beginning of each month.

• The service provider defines policy thresholds in a policy specification in PDC with the
label names normal-QoS and low-QoS. These policy threshold labels are also stored in
ECE.

• The service provider configures the PCRF with a policy rule that defines what action to
take based on the labels defined in the policy specification. The rule determines what
action to take when the customer reaches 300 MBs of data before the end of the month.

• The PCRF rule uses the label names normal-QoS and low-QoS as follows:

If (status_label=normal-QoS) (Bandwidth=10 Mbps)
If (status_label=low-QoS) (Bandwidth=128 kbps)

Chapter 21
About Policy-Driven Charging

21-3

When the customer reaches the 300 MB data quota, the PCRF makes a policy
decision to configure the Policy and Charging Enforcement Function (PCEF) so that
the data transfer speed is set to 128 kilobits per second, downgraded from 10
megabits per second. The PCEF enforces this decision by changing the data transfer
speed on the network switch.

Configuring Policy-Driven Charging
ECE supports in-session notifications for policy-driven charging by publishing
asynchronous external notifications during a policy session. Policy clients, such as
Diameter Gateway or HTTP Gateway, consume the data in these notifications for
sending in-session notifications to the PCRF.

About ECE and Policy Clients
To support policy-driven charging, ECE offers a policy management API. Policy clients
can use the API to retrieve data relevant to policy enforcement from its data grid.

Policy-driven charging in ECE is based on the PCRF, defined in the 3GPP TS 23.203
v9.9.0 specification. The PCRF integrates with ECE through your online network
mediation software.

ECE exposes its in-memory cache so that your online network mediation software can
retrieve policy counter information and policy-related subscriber preference
information. ECE publishes notifications containing the policy information, and your
online network mediation software uses the notifications to send the information to the
PCRF for evaluation.

Figure 21-1 illustrates how ECE fits into a charging system that implements policy-
driven charging.

Chapter 21
Configuring Policy-Driven Charging

21-4

Figure 21-1 ECE and Policy Client Integration

How ECE Processes Policy Requests for Online Network Mediation
System

The following procedure describes how ECE processes requests for policy-driven charging
from your online network mediation software (or from Diameter Gateway).

1. A customer starts to use a service, which initiates a network session.

For example, the customer turns on a mobile phone that connects to a wireless network.

2. At the start of the network session, the PCEF obtains a policy configuration from the
PCRF.

The PCEF uses the Gx interface to get the policy configuration for the network session.

3. The PCRF requests policy counters and subscriber preferences from your online network
mediation software (or Diameter Gateway).

The PCRF uses the Diameter Sy/Sp interface.

4. Your online network mediation software (or Diameter Gateway) initiates a policy session
with ECE that does the following:

• Requests policy counter and status label information.

Chapter 21
Configuring Policy-Driven Charging

21-5

Requests the policy counters for a specific charge offer and subscribes to
receive notifications when the values of the policy counter information change.

• Requests policy-related subscriber preferences by doing one of the following:

– Retrieves the value for a specified set of subscriber preferences and
subscribes to receive notifications when the values of the preferences
change during the policy session.

– Retrieves only the values for a specified set of subscriber preferences and
does not subscribe to receive notifications when the values of the
preferences change during the policy session.

Your online network mediation software (or Diameter Gateway) uses the
PolicySessionRequest ECE Java combined Sy/Sp (implemented as Sh) interface,
which uses the SubscribeNotificationRequest procedure and the
UserDataRequest procedure.

5. ECE sends a policy response to your online network mediation software (or to
Diameter Gateway), which does the following:

• Indicates whether the request succeeded or failed and provides a list of
reasons supporting the response.

• Sends the status of the policy counters for the specified service. If the service
is not specified, returns the information for all services:

– Sends the policy specification (offer profile) name configured for the
service.

– Sends the status label associated with the policy counter.

– Sends an effective time for the values of the policy counters. After the
effective time expires, the PCRF is expected to send another request for
policy counter and status label information (send another
SpendingLimitReportRequest).

– Sends the label name of the next probable status that applies after the
effective time expires. For example, Medium_QoS.

– Sends the delay interval. The PCRF can use the delay interval and the
effective time to determine when to query for the policy counters again.

ECE uses the SpendingLimitReportResponse procedure of the ECE Java Sy
interface.

• Sends the subscriber preferences.

ECE uses the SubscribeNotificationResponse procedure of the ECE Java Sp
interface.

6. The PCRF rules engine interprets the information and installs a policy on the
PCEF, which the PCEF enforces.

7. A charging session is established, and the PCEF sends a Ro message to your
online network mediation software (or Diameter Gateway).

8. Your online network mediation software (or Diameter Gateway) initiates a charging
session with ECE.

9. ECE publishes policy notifications for the following:

• Changes to the policy counter status for the policy counters the PCRF
subscribed for (Sy data) at the beginning of the policy session.

Chapter 21
Configuring Policy-Driven Charging

21-6

• Changes to the subscriber preferences the PCRF subscribed for (Sp data), if any, at
the beginning of the policy session.

10. Your online network mediation software (or Diameter Gateway) consumes the policy
notifications and sends the data to the PCRF.

11. As the charging session continues, ECE performs credit control functions: rates events,
authorizes usage events only if adequate balance is available, administers threshold
checks based on the current balance and consumed reservation of the customer
balance.

12. When ECE detects a policy threshold breach during the charging session, it publishes a
policy notification to the JMS notification queue containing the policy counter's new
status. Your online network mediation software (or Diameter Gateway) sends the data to
the PCRF.

The customer balance change that causes the policy threshold breach could occur as a
result of any of the following:

• Usage requests coming from the network mediation system

• Update requests coming from BRM (a subscription activity in the customer
management system)

• Top-ups coming from top-up systems

Note:

If ECE detects multiple breaches during a session, it sends notifications
sequentially. That is, it sends a notification for the first breach. Then, ECE waits
for an acknowledgment from PCRF that it has received the notification before
sending the subsequent breach notification.

13. The PCRF evaluates the new policy counter values and the associated policy status
labels and installs a new policy configuration on the PCEF.

The new policy is established dynamically during the charging session.

14. The customer stops using his service, which ends the network session.

15. Your online network mediation software (or Diameter Gateway) terminates the charging
session with ECE.

16. Your online network mediation software (or Diameter Gateway) terminates the policy
session with ECE.

Configuring Breach Tolerance for Policy-Tier Thresholds
In policy-driven charging, policy-tier thresholds must be crossed to trigger the implementation
of business rules, such as reduced QoS for subscribers who download excessive data.

For policy tier thresholds, BRM cannot authorize an amount above the threshold, even if the
subscriber's credit balances are sufficient to cover the charges. Instead, BRM authorizes the
remaining balance up to the policy threshold but does not send an FUI. Therefore, only about
80 percent of the remaining balance is available. The session ends when the remaining
balance becomes so small that the service can no longer be supported.

Chapter 21
Configuring Breach Tolerance for Policy-Tier Thresholds

21-7

To enable subscribers to continue using a service as they near a policy tier threshold,
you must configure a breach tolerance for the threshold. When the threshold is
crossed, the service continues under a new business rule, such as lower QoS for
larger download totals.

For example, suppose the network sends a usage request for 200 MB, but adding that
to a subscriber's current 1.9 GB policy counter balance will cause the balance to
breach a 2 GB policy tier threshold. In this case, BRM does one of the following:

• Without Breach Tolerance: If a breach tolerance is not configured, BRM makes
only about 80 MB available to prevent the usage from exceeding the policy tier
threshold. The session ends when usage reduces the 80 MB balance to the point
that the remaining balance cannot support the service.

• With Breach Tolerance: If a breach tolerance of 100 or more MB is configured,
BRM authorizes the entire 200 MB request. This enables the subscriber's usage to
cross the 2 GB policy tier threshold by 100 MB. As soon as the policy tier
threshold is crossed, a change in the quality of service is triggered, and the service
continues under the new policy.

You can set a breach tolerance for each balance element used in a policy counter. You
decide what tolerance value is appropriate for your business needs.

To configure a tolerance for policy-tier threshold breaches:

1. Before charging servers are started, open ECE_home/config/management/
charging-settings.xml and uncomment the following lines:

<toleranceConfigMappingGroup config-class="java.util.ArrayList">
 <toleranceConfig
 config-class="oracle.communication.brm.charging.appconfiguration.
 beans.policy.ToleranceConfig"
 balanceElementId="12345" tolerance="1.25"/>

 <toleranceConfig
 config-class="oracle.communication.brm.charging.appconfiguration.
 beans.policy.ToleranceConfig"
 balanceElementId="34567" tolerance="3"/>
 </toleranceConfigMappingGroup>

2. Save the file.

3. On the driver machine, change directory to the ECE_home/bin directory.

4. Start Elastic Charging Controller (ECC):

./ecc
5. Start your charging servers:

start server
6. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See

"Accessing ECE Configuration MBeans".

7. Expand the ECE Configuration node.

8. Expand charging.policyConfig.

9. Expand Operations.

10. Select setPolicyTolerance.

11. For each balance element (policy counter) to which policy specifications apply in
your system, do the following:

Chapter 21
Configuring Breach Tolerance for Policy-Tier Thresholds

21-8

a. Specify values for the following parameters:

• beid: Enter the balance element ID of the balance element.

• tolerance: Enter the RUM units allowed to exceed the authorized usage quantity
that ECE returns to the network for a specified charging session. The value must
be greater than 0. Base it on your business needs.

Your customers can use all balances and exceed their policy-tier threshold limits
by the specified number of RUM units.

b. Click the setPolicyTolerance button.

About Integrating Policy Clients with ECE
Policy clients such as Diameter Gateway integrate with ECE by using the ECE policy APIs.

The policy client uses the ECE policy Sy interface to retrieve policy counter information from
ECE. The policy client, in turn, sends the policy counter information to the PCRF using its
Diameter Sy interface. As part of initiating a policy Sy session with ECE, the policy client
subscribes for receiving notifications that contain the policy counter information.

The policy client uses the ECE policy Sp interface to retrieve customer preferences
information from ECE. The policy client, in turn, sends the customer preferences information
to the PCRF using its Diameter Sp interface. As part of initiating a policy Sp session with
ECE, the policy client subscribes for receiving notifications that contain the customer
preferences information.

About the ECE Sy and Sp Interface
To support policy-driven charging, ECE offers policy management APIs. The ECE Sy
interface enables policy clients to subscribe for and retrieve spending limit information about
policy counters from ECE. The ECE Sp interface enables policy clients to subscribe for and
retrieve customer preference information relevant to policy enforcement from ECE.

The following sections describe each interface:

• About the ECE Sy Interface

• About the ECE Sp Interface

ECE also supports a combined ECE Sy and Sp interface that enables policy clients to
retrieve and subscribe for both types of information in one policy session. A combined ECE
Sy and Sp interface reduces the number of messages between ECE and policy clients. See
"About a Combined ECE Sy and Sp Interface " for information.

About the ECE Sy Interface
ECE supports the Sy interface which is used by the PCRF to retrieve policy counter
information. To support the Sy interface, ECE offers the following ECE Sy procedure and
notification:

• Spending Limit Report Request

Policy clients such as Diameter Gateway use this procedure to request the status of
policy counters available in ECE and to subscribe and unsubscribe (for the PCRF) to
updates of ECE policy counters.

• SpendingLimit Notification

Chapter 21
About Integrating Policy Clients with ECE

21-9

ECE uses this notification to report statuses of requested policy counters for one
or more services and also report the results of request processing.

The policy client transfers the status information to the PCRF.

About the ECE Sp Interface
ECE supports the Sp interface which is used by the PCRF to query customer
preferences. To support the Sp interface, ECE offers the following ECE Sp procedures:

• Subscribe Notification Request

Policy clients such as Diameter Gateway use this procedure to retrieve customer
preferences and to subscribe and unsubscribe (for the PCRF) to updates of
customer preference data changes.

The customer preferences can include the following:

– Customer's allowed services

– Customer's allowed Quality of Service (QoS)

– Customer's preferred channel for receiving notifications (such as receiving an
SMS or email)

– Customer's preferred language

• Subscribe Notification Response

ECE uses this procedure to report customer-preference data updates to the policy
client subscribed for the notification.

• User Data Request

Policy clients use the User Data Request procedure only to retrieve subscriber
preferences without subscribing for receiving notifications when the preferences
change.

• User Data Response

ECE uses this procedure to send subscriber-preference data to the policy client.

The policy client transfers customer preference data to the PCRF.

Querying for Extended Subscriber Preference Information in Sp Query
The PCRF can also query extended information about customers and services. The
policy client, such as Diameter Gateway, uses the ECE policy Sp query procedure to
retrieve extended customer and service information.

To retrieve extended information from ECE using the policy Sp query request, you
must configure the extended service and customer information in ECE.

To configure the query for extended service and customer information:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.policyConfig.

4. Expand Operations.

5. Select setDsl.

Chapter 21
About the ECE Sy and Sp Interface

21-10

6. Do the following for each type of service or customer you want the policy client to query:

a. For the alias parameter, replace String with the alias for the extended information to
use in the policy query request.

Configured aliases are included in the policy query request.

b. For the dsl parameter, replace String with the DSL to use to retrieve the information
from ECE in the following format:

gettype([product|customer]/attribute with arguments)

For example:

getObject(product/lifeCycleStateName)

c. Click the setDsl button.

This creates a mapping between the extended information alias with the DSL used to
retrieve the extended information from customers and services.

About a Combined ECE Sy and Sp Interface
ECE supports combining its ECE Sp and Sy interfaces by offering the following procedures:

• Policy Session Request

Policy clients, such as Diameter Gateway, use this procedure for retrieving Sp and Sy
information and subscribing or unsubscribing (for the PCRF) to receiving updates to Sp
and Sy data. This request is a combination of the Spending Limit Report Request and the
Subscribe Notification Request.

• Policy Session Response

ECE uses this procedure to report the information requested by the Policy Session
Request and provide results of request processing.

The policy client transfers the information to the PCRF.

About Calculating Maximum Authorization for Policy-Driven
Charging Sessions

For policy-driven charging sessions, ECE readjusts the requested quota based on the
following data:

• Current balance

• Used reservation across all parallel sessions

• Nearest threshold in the policy specification

For example, consider this situation:

• Current balance: 80 MB

• Used reservation across all parallel sessions (iPhone, video, computer): 35 MB

• Nearest threshold in the policy specification: 140 MB

Under those conditions, if ECE receives an authorization request for an additional 30 MB,
that request exceeds the 140 MB threshold by 5 MB (80 MB + 35 MB + 30 MB = 145 MB).
Therefore, unless a breach tolerance of 5 MB or more is configured, ECE authorizes only 25
MG.

Chapter 21
About Calculating Maximum Authorization for Policy-Driven Charging Sessions

21-11

Configuring ECE to Reject Spending Limit Requests Without
Counters

For Sy subscriptions, you can configure ECE to reject a Spending Limit Request (SLR)
if there are no policy counters available for the subscriber.

To configure ECE to reject SLRs when no policy counters are available:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.policyConfig.

4. Expand Attributes.

5. Set the syRejectNoCounters attribute to true.

About the Policy Management API
To use the policy management API, clients call the submitPolicy API with
PolicyRequest.

For details about the policy management API, see the documentation for
oracle.communication.brm.charging.brs,
oracle.communication.brm.charging.messages.policy, and
oracle.communication.brm.charging.messages.query (for user data request/
response information) in Elastic Charging Engine Java API Reference.

Chapter 21
Configuring ECE to Reject Spending Limit Requests Without Counters

21-12

Part VI
Customizing ECE

This part provides information about customizing charging in Oracle Communications Elastic
Charging Engine (ECE). It contains the following chapters:

• Customizing Rating

• ECE Sample Programs

• Testing ECE

22
Customizing Rating

You can use the Oracle Communications Elastic Charging Engine (ECE) extensions to
customize BRM Gateway, Diameter Gateway, HTTP Gateway, RADIUS Gateway, pre-rating,
post-rating, post-charging, and post-update processes. ECE extensions include sample
implementations that guide you in implementing your custom business logic.

Caution:

Deploying charging for 5G with HTTP Gateway (5G CHF) requires a cloud native
deployment of ECE and BRM components. The HTTP Gateway can be used only
on an ECE cloud native system.

Topics in this document:

• Operational Considerations

• Extension Points

• Implementing the Extensions Logic

• Sample Extensions

Operational Considerations
All pre-rating, post-rating, post-charging, and post-update extensions must be implemented in
a single class respectively. This class can delegate to additional implementations if multiple
extensions are being implemented.

Extensions data is loaded into a replicate cache in Coherence and the amount of data loaded
into the cache must be taken into consideration when sizing for Java.

Configuring Extensions
You configure implementation classes for the diameter-request processing, HTTP-request
processing, and usage-request processing extension points through JMX management by
using a JMX editor.

To configure the implementation classes for the diameter-request processing, HTTP-request
processing, and usage-request processing extension points:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand charging.extensions.

4. Expand Attributes.

22-1

5. Specify values for the following attributes as needed:

• brmGwExtension

• diameterGyExtension

• diameterSyExtension

• httpExtension

• ocsBypassExtension

• postChargingExtension

• postRatingExtension

• postRatingMidSessionExtension

• postUpdateExtension

• preRatingExtension

• preRatingMidSessionExtension

• radiusAccountingExtension

• radiusAuthExtension

• ratingExtension

About Performance with Extensions
If extensions are activated, they are called for during every usage request. Always
consider performance for the code you run in the extensions.

The extensions framework provides an extensions cache mechanism that provides the
lowest latency access to the extensions data. It is recommended that you use the
extensions cache mechanism rather than external data sources.

You can use the PerformanceMonitor MBean to monitor CPU usage of server nodes
and client nodes. When building your charging extensions, the methods of the
PerformanceMonitor MBean enable you to monitor the performance impacts of your
extensions. For example, you can run ECE without your extensions and use the
methods to see how much CPU time is used. You can then run ECE with your
extensions, and use the methods again to see how much CPU time is used. By
comparing the CPU times, you can derive the additional time spent by your extension.

About Logging in Extensions
Logging is available in your extensions. You use the Log4j logger to write messages to
the server node log file. For example:

extensionContext.getLogger().debug("Hello World!" + extensionContext);

About Extension Exceptions
If ECE needs to reject a usage request, an ExtensionsException error can be thrown
to reject the usage request and report a "CUSTOM_EXTENSION_ERROR" reason
code in the response.

For details about ExtensionsException, see Elastic Charging Engine Java API
Reference.

Chapter 22
Operational Considerations

22-2

About Extension Security
To ensure security for the extension, follow these best practices:

• Enable JMX security

• Enable ECE cluster node security

• Ensure strict governance of OS accounts

• Follow secure Java coding practices

• Implement string code review processes

• Run latency-sensitive performance tests on the extensions hooks

• Use JAR signing

Extension Points
You customize BRM Gateway, Diameter Gateway, HTTP Gateway, RADIUS Gateway, pre-
rating, rating, post-rating, post-charging, and post-update processes with these extension
points:

• BRM Gateway Request Processing Extension Points

• Diameter-Request Processing Extension Points

• HTTP Gateway Request Processing Extension Points

• RADIUS-Request Processing Extension Points

• Update-Request Processing Extension Points

• Usage-Request Processing Extension Points

BRM Gateway Request Processing Extension Points
You use BRM Gateway request processing extension points to update an external notification
that is bound for the BRM Gateway. It adds data for calling a specific BRM opcode. This
allows you to update attributes in the ECE cache through the BRM-ECE synchronization
process. See "About Synchronizing Data Between BRM and ECE".

ECE publishes the external notification to the ECE Notification topic, where it is retrieved by
BRM Gateway. BRM Gateway uses the information in the notification to call the specified
opcode, which in turn updates customer data in the BRM database. BRM then
resynchronizes the customer data with the ECE cache.

BRM Gateway provides these extension points for external notification flows that are targeted
for the BRM Gateway:

• PostCharging extension. The role of the PostCharging extension is to retrieve data for
a specific opcode.

• BRMCustomOpCodeCall extension. The role of the BRMCustomOpCodeCall
extension is to enrich external notifications with an input flist for a specific BRM opcode.
This extension is called before the external notification is published to the ECE
Notification topic.

Chapter 22
Extension Points

22-3

Diameter-Request Processing Extension Points
Diameter Gateway provides extension points for Credit Control Request (CCR) and
Credit Control Answer (CCA) flows:

• RequestReceived extension. The role of the RequestReceived extension is to
manipulate the CCR attribute-value pair (AVP) before the usage request is
processed by Diameter Gateway and to provide an immediate response that
bypasses the online charging system (OCS) completely.

• PreProcessor extension. The role of the PreProcessor extension is to add or
remove any AVP in the custom response before the usage request is processed
by Diameter Gateway and to provide an immediate response that bypasses the
OCS completely.

• PreOCS extension. The role of the PreOCS extension is to manipulate the
mapped ECE usage request payload and perform enrichment that is not possible
in the RequestReceived extension.

• PostOCS extension. The role of the PostOCS extension is to manipulate the
CCA AVPs before the diameter response is returned to the diameter client.

• OCSBypass extension. The role of the OCSBypass extension is to bypass the
rating of Diameter CCRs received during a planned maintenance or an unplanned
downtime of ECE and persist them to Oracle NoSQL.

Figure 22-1 shows the diameter-request processing extension points.

Chapter 22
Extension Points

22-4

Figure 22-1 Diameter-Request Processing Extension Points

HTTP Gateway Request Processing Extension Points
HTTP Gateway provides extension points for 5G flows:

• RequestReceived extension. The role of the RequestReceived extension is to
manipulate the charging data before the usage request is processed by HTTP Gateway
and to provide an immediate response that bypasses the online charging system (OCS)
completely.

• PreOCS extension. The role of the PreOCS extension is to manipulate the mapped ECE
usage request payload to perform enrichments that are not possible in the
RequestReceived extension.

• PostOCS extension. The role of the PostOCS extension is to manipulate the ECE usage
request before the HTTP Gateway response is returned to the 5G client.

Chapter 22
Extension Points

22-5

• PostOCSBalanceQuery extension. The role of the PostOCSBalanceQuery
extension is to manipulate the ECE usage response before the HTTP Gateway
response is returned to the 5G client.

Figure 22-2 shows the HTTP Gateway request processing extension points.

Figure 22-2 HTTP Gateway Processing Extension Points

RADIUS-Request Processing Extension Points
RADIUS Gateway provides extension points for authentication and accounting flows.

Authentication Extension Points
RADIUS Gateway provides extension points for the authentication flow:

• RequestReceived extension. The role of the RequestReceived extension is to
add or update a custom AVP before the authentication request is processed by
RADIUS Gateway and to provide an immediate response that bypasses the OCS
completely.

Chapter 22
Extension Points

22-6

• CustomEAPChallenge extension. The role of the CustomEAPChallenge extension is to
send custom access-challenge request to the RADIUS client when the Extensible
Authentication Protocol (EAP) is used for authentication.

• PreOCS extension. The role of the PreOCS extension is to perform any actions related
to authentication that are required before the RADIUS request is sent to ECE.

• CustomAuth extension. The role of the CustomAuth extension is to implement the
custom EAP authentication methods.

• CustomEncode extension. The role of the CustomEncode extension is to implement
the custom hashing algorithm that is used on passwords during authentication when the
Password Authentication Protocol (PAP) is used for authentication.

• PostOCS extension. The role of the PostOCS extension is to add or update a custom
AVP before the authentication response is returned to the RADIUS client.

Figure 22-3 shows the RADIUS-request processing extension points for EAP authentication.

Figure 22-3 Extension Points for EAP Authentication

Chapter 22
Extension Points

22-7

Figure 22-4 shows the RADIUS-request processing extension points for PAP and
Challenge-Handshake Authentication Protocol (CHAP) authentication. The solid line
depicts PAP authentication and the dotted line depicts CHAP authentication in this
figure.

Figure 22-4 Extension Points for PAP and CHAP Authentication

Accounting Extension Points
RADIUS Gateway provides extension points for accounting flow:

Chapter 22
Extension Points

22-8

• RequestReceived extension. The role of the RequestReceived extension is to add or
update a custom AVP before the accounting request is processed by RADIUS Gateway
and to provide an immediate response that bypasses the OCS completely.

• PreOCS extension. The role of the PreOCS extension is to enrich the usage request
before the usage request is sent to ECE for accounting purposes.

• PostOCS extension. The role of the PostOCS extension is to add or update a custom
AVP before the accounting response is returned to the RADIUS client.

Figure 22-5 shows the RADIUS-request processing extension points for accounting.

Figure 22-5 Extension Points for Accounting

Update-Request Processing Extension Points
ECE provides an extension point for post-update extensions in the updates-processing flow.
The role of the post-update extension is to enrich and filter external notifications. This
extension is called after receiving update requests and before publishing the external
notifications.

Usage-Request Processing Extension Points
ECE provides extension points in the rating flow: before charge calculation, after charge
calculation (prior to making a balance impact), and after charging (after applying a balance
impact).

Table 22-1 describes the role of each extension point in the rating flow.

Chapter 22
Extension Points

22-9

Table 22-1 Rating Flow Extension Roles

Extension Point Role

Pre-Rating Extension Alter the usage request

Post Rating Extension Alter the rated result

Rating Extension Alter rated results after each of the following processes:
rating, alteration, sharing, and taxation

Post-Charging Extension Enrich the usage response

You cannot customize rating during the rating, alteration, and tax calculation
processes, only before and after. Access is provided to a custom data store that
provides low-latency access to data required for the extensions; for example, customer
data and balance data.

Figure 22-6 shows the usage-request processing extension points.

Chapter 22
Extension Points

22-10

Figure 22-6 Usage-Request Processing Extension Points

Implementing the Extensions Logic
The BRMCustomOpCodeCallExtension, DiameterGyExtension, DiameterSyExtension,
HTTPExtension, PreRatingExtension, PostRatingExtension, PostChargingExtension,
RadiusRequest, and RadiusResponse interfaces expose initialize() and shutdown()
methods that are called by the hook framework when the server starts up and when it shuts
down. Use these methods to configure your own internal data structures related to the
extensions business logic.

For diameter-request processing extension points, a different method is called for each
extension point.

Chapter 22
Implementing the Extensions Logic

22-11

• handleRequestReceived(). Called for every CCR that is processed by the
charging flow.

• handlePreOCS(). Called for every CCR and usage request that is processed by
the charging flow.

• handlePostOCS(). Called for every CCA and usage response that is processed
by the charging flow.

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related
contexts.

Figure 22-7 shows the data used in the diameter-request processing extension points.

Figure 22-7 Data Used in Diameter-Request Processing Extension Points

For HTTP-request processing extension points, a different method is called for each
extension point.

• handleRequestReceived(). Called for every charging data request that is
processed by the charging flow.

• handlePreOCS(). Called for every usage request that is processed by the
charging flow.

• handlePostOCS(). Called for every usage response that is processed by the
charging flow.

• handlePostOCSBalanceQuery(). Called for every usage response that is
processed by the charging flow.

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related
contexts.

Chapter 22
Implementing the Extensions Logic

22-12

Figure 22-8 shows the data used in the HTTP-request processing extension points.

Figure 22-8 Data Used in HTTP-Request Processing Extension Points

For extension points that process requests from RADIUS clients, the RadiusRequest and
RadiusReply interfaces are exposed to the extension points through the ExtensionContext
methods.

For authentication-related extension points, the following methods are called by the
authentication flow:

• handleRequestReceived(). Called for every authentication request that is processed by
the authentication flow.

• handlePreOCS(). Called to perform any actions related to authentication that are
required in the authentication flow.

• handlePostOCS(). Called for each authentication response that is processed by the
authentication flow.

Chapter 22
Implementing the Extensions Logic

22-13

• handleCustomEAPChallenge(). Called to send custom access-challenge
requests to the RADIUS client in the EAP authentication flow.

• handleCustomAuth(). Called to implement a custom EAP authentication method
in the authentication flow.

• handleCustomEncode(). Called to implement the custom hashing algorithm that
is used on passwords in the PAP authentication flow.

Figure 22-9 shows the data used in the RADIUS-request processing extension points
for authentication.

Figure 22-9 Data Used in RADIUS-Request Processing Extension Points for
Authentication

For accounting-related extension points, the following methods are called by the
accounting flow:

Chapter 22
Implementing the Extensions Logic

22-14

• handleRequestReceived(). Called for every accounting request that is processed by the
accounting flow.

• handlePreOCS(). Called for every accounting request and usage request that is
processed by the accounting flow.

• handlePostOCS(). Called for every accounting response and usage response that is
processed by the accounting flow.

Figure 22-10 shows the data used in the RADIUS-request processing extension points for
accounting.

Figure 22-10 Data Used in RADIUS-Request Processing Extension Points for
Accounting

For usage-request processing extension points, the execute() method is called for every
usage request, rated result, usage response, and notification that is processed by the
charging flow.

For the rating extension point, the following methods are called by the charging flow:

• handlePostApplyCharge(). Called to alter rated results after calculating charges
(rating).

• handlePostApplyAlteration(). Called to alter rated results after calculating discounts
(alteration).

• handlePostApplyDistribution(). Called to alter rated results after calculating charge
distribution (sharing).

• handlePostApplyTaxation(). Called to alter rated results after calculating taxes
(taxation).

All methods expose relevant ExtensionContext data for accessing the
ExtensionsDataRepository, AppConfigRepository, and other extensions-related contexts.

Chapter 22
Implementing the Extensions Logic

22-15

Figure 22-11 shows the data used in the pre-rating extension point.

Figure 22-11 Data Used in Pre-Rating Extension Point

Figure 22-12 shows the data used in the rating extension point.

Chapter 22
Implementing the Extensions Logic

22-16

Figure 22-12 Data Used in Rating Extension Point

Figure 22-13 shows the data used in the post-rating extension point.

Chapter 22
Implementing the Extensions Logic

22-17

Figure 22-13 Data Used in Post-Rating Extension Point

Figure 22-14 shows the data used in the post-charging extension point.

Figure 22-14 Data Used in Post-Charging Extension Point

ECE provides build and deployment capabilities in the form of shell scripts. If any third-
party libraries need to be used inside the custom extensions logic, copy the third-party
JAR files to the ECE_home/lib directory, where ECE_home is the directory in which
ECE is installed. After the JAR files have been copied, they need to synchronize
across to the other servers in the cluster. Synchronization is done by running the sync
command in Elastic Charging Controller (ECC).

Chapter 22
Implementing the Extensions Logic

22-18

Custom extensions logic implementation classes that implement the GyExtension,
PreRatingExtension, RatingExtension, PostRatingExtension, PostChargingExtension,
RadiusRequest, and RadiusResponse interfaces and their dependencies must be
packaged in JAR format. Ensure the packaged extensions JAR files are available to the ECE
runtime environment in the ECE_home/lib directory.

BRMCustomOpCodeCall Extension
The BRMCustomOpCodeCall extension enriches external notifications with an input flist for a
BRM opcode. The extension is called before publishing the external notification to the ECE
Notification topic, where it will be retrieved by the BRM Gateway.

You can modify the external notifications to include an input flist for a different BRM opcode.

CustomAuth Extension
The CustomAuth extension implements custom EAP authentication methods; for example,
EAP-POTP, EAP-PSK etc.

The extension can access this data:

• EAP-Authentication-Request

• System configuration

You can use a custom EAP authentication method if the RADIUS client does not support
EAP-TTLS or EAP-MD5.

CustomEAPChallenge Extension
The CustomEAPChallenge extension sends a custom access-challenge request to the
RADIUS client when custom EAP authentication mechanisms are used for authentication.

The extension can access this data:

• Access-Challenge-Request

• System configuration

• Extensions data

You can use the extension point to send the custom access-challenge request to the RADIUS
client when EAP is used for authentication.

CustomEncode Extension
The CustomEncode extension implements the custom hashing algorithm that is used on
passwords for authentication.

The extension can access this data:

• Encoded Password

• System configuration

• Extensions data

You can use the custom hashing algorithm on passwords for authentication. For example,
typically the password from the RADIUS client is hashed (stored in the hash format) for PAP

Chapter 22
Implementing the Extensions Logic

22-19

authentication. However, if the password is hashed in any other format, you implement
the CustomEncode extension point to hash the incoming password.

OCSBypass Extension
The OCSBypass extension bypasses rating of CCRs received during ECE downtime
or a planned maintenance activity. The CCRs are persisted to Oracle NoSql. When
ECE is restored, the persisted requests are replayed to the ECE charging server for
rating and updating balance impacts along with the real-time requests. The entire
diameter request is accessible and modifiable and the entire request information is
passed to the custom extension. When rating bypass is enabled and the custom
extension is run, Diameter Gateway returns responses that you configured in the
custom extension. If the extension is not enabled but bypassing of rating is enabled,
ECE returns Diameter Result Code 5012 for the described conditions, which must be
handled in your custom extension implementation.

PreOCS Extension
The PreOCS extension manipulates usage request payloads before the usage request
is sent to ECE, so that the request can match the business requirement. In addition,
the PreOCS extension performs any actions related to authentication that are required
before the request is sent to ECE. This extension is called before any rating,
discounting, or alteration logic has been invoked.

The extension can access this data:

• Credit Control Request

• Authentication Request

• Accounting Request

• ECE Usage Request

• System configuration

• Extensions data

You can modify the ECE usage request payload. For example, certain usage request
manipulations can be made only when the ECE usage request payload is accessible.
The usage request manipulations are done in this extension.

PreProcessor Extension
The PreProcessor extension manipulates CCR requests before the usage request is
created, so that the request can match the business requirement. The PreProcessor
extension can bypass charging or mutate the contents of the Sy message. This
extension is called before any rating, discounting, or alteration logic has been invoked.

The extension can access this data:

• Credit Control Request

• Request AVPs

• ECE payload

• System configuration

• Extensions data

Chapter 22
Implementing the Extensions Logic

22-20

PostOCS Extension
The PostOCS extension manipulates CCA, accounting, usage, or authentication responses
to match the business requirement before returning the response to the client. This extension
is called after charging, authentication, and accounting has been completed and recorded.

The extension can access this data:

• Credit Control Request

• Accounting Response

• Authentication Response

• ECE Usage Response

• Diameter Credit Control Answer

• System configuration

• Extensions data

You can modify the CCA, accounting response, and authentication response. For example,
you can manipulate AVPs to adapt to non-standard diameter and RADIUS implementations.

PostOCSBalanceQuery Extension
The PostOCSBalanceQuery extension manipulates ECE usage responses to match the
business requirement before returning the response to the HTTP client. This extension is
called after a balance query has been completed and recorded.

Pre-Rating Extension
The pre-rating extension enhances the usage request based on customer, service, balance,
product, and system data so that the usage request can match the business requirement.
This extension is called before any rating, discounting, or alteration logic has been invoked.

The extension can access this data:

• ECE usage request information

• Customer data (including profile data)

• Service data (including profile data)

• Balance information

• Product information

• System configuration

• Extensions data

You can modify usage requests. For example, you modify usage requests to:

• Alter the requested quota. This is implemented in the sample extensions provided.

• Apply special rates or discounts (such as birthday discounts) for calls based on the
extended rating attributes of both calling customers and called customers.

• Generate a midsession-rated event when an update operation occurs. This is
implemented in the sample extensions provided.

Chapter 22
Implementing the Extensions Logic

22-21

You can also modify the values of the pricing attributes with custom logic. This enables
you to override a product price.

Post-Rating Extension
The post-rating extension modifies the rated event based on customer, service,
balance, product, and system data. This extension is called after any rating,
discounting, or alteration logic has been invoked.

The extension can access this data:

• Balance information

• Customer data (including profile data)

• ECE usage request information

• Product information

• Shared customers (if part of a sharing relationship)

• Service data (including profile data)

• System configuration

• Extensions data

• Rated result

You can modify rated events in the following ways:

• You can modify the balance impact amount, GL code, tax code, balance element
or invoice data for rating impacts generated from ECE.

• Generate a midsession-rated event when an update operation occurs. This is
implemented in the sample extensions provided.

You can also create new tax rating impacts, such as implementing a tax on tax.

Rating Extension
The rating extension modifies the rated results after each of the following processes:
rating, alteration, sharing, and taxation.

The extension can access this data:

• Customer (including profile)

• Shared customer (if part of a sharing relationship)

• Product (including profile)

• Balance information

• System configuration

• Extensions

• Rated result

You can alter rated results to modify charges, discounts, charge sharing, taxes, and
item assignments. For example:

• After rating, you can alter charges based on the zones, such as standard and
geographic zones.

Chapter 22
Implementing the Extensions Logic

22-22

• After taxation, you can alter custom item types for the rating impacts generated from
ECE, such as charge, alteration, and distribution rating impacts.

RequestReceived Extension
The RequestReceived extension manipulates the CCR, charging data request, authentication
request, or accounting request so that the request can match the business requirement and
provides an immediate response that bypasses the OCS completely. This extension is called
before any rating, discounting, or alteration logic has been invoked.

The extension can access this data:

• Credit Control Request

• Authentication Request

• Accounting Request

• System configuration

• Extensions data

You can modify the CCR, authentication, or accounting request. For example, you can
manipulate AVPs to adapt to non-standard diameter implementations. Certain CCR,
authentication, and accounting request types may not be supported by ECE, Diameter
Gateway, or RADIUS Gateway, so a response can be created in this extension and returned
immediately, bypassing the OCS.

Post-Charging Extension
The post-charging extension enriches usage responses and external notifications, excluding
Advice of Charge (AOC) notifications. This extension is called after charging is completed but
before the usage response is generated.

The extension can access this data:

• Customer (including profile data and subscriber preferences)

• Shared customers (if part of a sharing relationship, subscriber preferences)

• Service (including profile data, subscriber preferences, life cycle state)

• Balance information (including current request impacts)

• Business profile

• System configuration

• Extension data

• Rated result

You can modify the usage responses and external notifications. You can use the post-
charging extension point to:

• Enrich usage responses and external notifications. You can add custom data as AVPs to
the response and notification. For example, you can add a custom language preference
to a customer's subscriber preferences. The custom values will be available as diameter
hooks for further propagation.

• Filter out external notifications that you do not want to be published to external systems.

Chapter 22
Implementing the Extensions Logic

22-23

Post-Update Extension
The post-update extension enriches the external notifications; excluding the AoC
notifications. This extension is called after receiving update requests and before
publishing the external notifications.

The extension can access this data:

• Customer (including profile data and subscriber preferences)

• Shared customers (if part of a sharing relationship, subscriber preferences)

• Service (including profile data, subscriber preferences, life cycle state)

• Balance information (including current request impacts)

• Business profile

• System configuration

• Extension data

• Rated result

You can modify the external notifications with custom logic. You can use the post-
update extension to:

• Enrich external notifications. For example, you can add custom data to any
external notification that is generated to provide additional data, such as spending
limit notifications.

• Filter out external notifications that you do not want to be published to external
systems. For example, when billing is run, ECE generates subscribe-notification-
request (SNR) notifications for all impacted resources. You can filter out unneeded
SNR notifications and publish only required notifications to external systems.

To use the post-update extension, you must define the post-update extension's fully
qualified class name in the ECE_home/config/management/charging-settings.xml
file.

Extensions Cache
The extensions framework provides a generic repository from which data required for
the pre-rating, post-rating, and post-charging extensions can be uploaded and used.
The data format is described in a specifications file that describes the format of the
data. The extensions specification allows a DataLoader to load the data into the ECE
extensions cache. Example 22-1 is an example of a specifications file for the post-
rating extension:

Example 22-1 Sample Tax Table

/*
 * Sample tax table
 */
ExtensionDataSpecification
 Info {
 Name "tax_table_0001"
 }
 Payload {
 Block "TAX_ROW" {
 String "TAXCODE"

Chapter 22
Implementing the Extensions Logic

22-24

 String "PKG"
 Decimal "RATE"
 DateTime "START"
 DateTime "END"
 String "LEVEL"
 String "LIST"
 String "DESCRIPTION"
 String "RULE"
 }
 }
}

Example 22-2 shows the associated data to load into the cache using the specification file
above:

Example 22-2 Example Data File

This is a sample csv file containing typical tax configuration data.
#
#TaxCode |Pkg |Rate |Start |End |Level |List |Description |Rule
 usage |U |0.05 |01/01/2013 |12/31/2014 |Fed |US |USF |Std
 usage |U |0.08 |01/01/2013 |12/31/2014 |Sta |CA |USTA |Std
 usage |U |0.06 |01/01/2013 |12/31/2014 |Fed |US |USF |Std
 usage |U |0.085 |01/01/2013 |12/31/2014 |Sta |CA,AZ |USTA |Std
 purchase|V |0.08525 |01/01/2013 |12/31/2014 |Sales |CA |PSLS |Std

Extensions Cache API
The extensions repository provides the following APIs for managing extensions data:

• putExtensionsData(). Takes a single key-value pair of string as a key and value being
an ExtensionsData object.

• putExtensionsDataCollection(). Takes a map of key-value pairs of string keys and
value being ExtensionsData objects.

• findExtensionsData(). Returns an ExtensionsData object for a given key.

• getAllExtensionsData(). Returns a read-only collection of all extensions data from the
repository.

The extension includes these repository constraints:

• You must generate a unique key as a string for one ExtensionsData object (entry in the
extensions cache) at the time of retrieval of the extensions data from the cache.

• Because the extensions data is replicated across the whole cluster, the amount and size
of data is limited to what a given Java heap can manage. You can also adjust the Java
heap size. Refer to the Java provisioning guidelines.

• Changes made to the extensions data after it is loaded are expensive to make due to its
cache topology. Avoid frequent updates to the extensions data, especially in a larger
cluster.

• The framework does not dictate the type of data source that extensions data are loaded
from. The provided SampleExtensionsDataLoader SDK demonstrates loading the data
from a comma-separated-value (CSV) file using extensions domain-specific language
APIs. This sample is a recommended design, but it should not be used as a reference
about how to store data.

Chapter 22
Implementing the Extensions Logic

22-25

Sample Extensions
The BRM SDK includes sample extensions. For information about how to use the
samples, see "How To Use the Sample Extensions" and "Validating Sample
Extensions".

For information about each sample extension, see the following:

• BRM Gateway Extension – Creating Opcode Flist

• Diameter Gateway Extension – Gy Service

• Diameter Gateway Extension – Sy Service

• HTTP Gateway Extension – Service

• OCSBypass Extension – Bypassing Rating

• Pre-Rating Extension – Dynamic Quota Management

• Pre-Rating Extension – Retrieving Function Values for Discount Expressions

• Pre-Rating Extension – Generating Midsession-Rated Event

• Pre-Rating Extension – Overriding Price in Product Offerings

• Post-Rating Extension – Complex Taxation

• Post-Rating Extension – Generating Midsession-Rated Events

• Post-Rating Extension – Adding or Deleting Rating Periods

• Post-Charging Extension – Adding Custom Data to Usage Responses and
Notifications

• Post-Charging Extension – Overriding Dynamic Quota

• Post-Charging Extension – Adding or Modifying Redirection Rules

• Post-Charging Extension – Creating Custom Notifications for Top Ups

• Post-Update Extension – Enriching External Notifications

• Rating/Charging Extension – Triggering RAR Notifications

• Rating Extension – Custom Item Assignment

• Extensions Data Load Sample

How To Use the Sample Extensions
To use the sample extensions:

1. ECE SDK is installed under $SDK_HOME. The directory listing is shown below:

$ ls -l
total 124
drwxr-xr-x 2 ecsuser ecsuser 4096 Jun 21 10:47 bin
drwxr-xr-x 2 ecsuser ecsuser 4096 Jun 21 10:47 bin
drwxr-xr-x 3 ecsuser ecsuser 4096 Jun 21 10:47 config
-rw-r--r-- 1 ecsuser ecsuser 5 Jun 21 10:47 VERSION

2. Under the source directory, create a pre-extensions or post-extensions Java Class
using the Extensions API and other libraries (samples are provided as a part of the
ECE SDK.)

Chapter 22
Sample Extensions

22-26

$ cd source
$ cd oracle/communication/brm/charging/sdk/extensions
$ ls -l
total 28
-rw-r--r-- 1 ecsuser ecsuser 6427 Jun 21 10:47 SampleExtensionsDataLoader.java
-rw-r--r-- 1 ecsuser ecsuser XXXXX Jun 21 10:47 SampleOCSByPassExtension.java
-rw-r--r-- 1 ecsuser ecsuser 12194 Jun 21 10:47 SamplePostRatingComplexTaxation
-rw-r--r-- 1 ecsuser ecsuser 6066 Jun 21 10:47 SamplePreRatingExtension.java
-rw-r--r-- 1 ecsuser ecsuser XXXXX Jun 21 10:47 SamplePostChargingExtension.java

3. Write custom logic in Java and copy it under the directory. The Java source is under the
package oracle.communication.brm.charging.sdk.extensions:

$SDK_HOME/source/oracle/communication/brm/charging/sdk/extensions
4. Change ECE_HOME in the script build_deploy_extension.sh file

under $SDK_HOME/bin/extensions:

configuration begin
ECE_HOME=$ECE_HOME
configuration end

5. Compile the extensions class using the shell script: build_deploy_extension.sh.

a. Each extensions file has to be compiled individually (similar to SDK programs).

b. Any additional ECE or third-party library required for the extensions needs to be
added to the CLASSPATH in the build_deploy_extension.sh. script

$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SampleDiameterGyExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePostRatingComplexTaxationExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePreRatingExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SamplePostChargingExtension
$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh build
SampleOCSByPassExtension

Do the following optional step if external data needs to be loaded. To compile the
sample extensions loader use the sample_extensions_loader.sh shell script:

$sh $SDK_HOME/bin/extensions/sample_extensions_loader.sh build
SampleExtensionsDataLoader
$sh $SDK_HOME/bin/extensions/sample_extensions_loader.sh run

6. Deploy creates a single JAR file (ece.extensions-VERSION-SNAPSHOT.jar) with all the
extensions classes and copies the JAR file under $ECE_HOME/lib. The JAR file is
copied only to the driver node. It has to be propagated to other ECE nodes in the grid
manually or use a rolling upgrade.

$sh $SDK_HOME/bin/extensions/build_deploy_extension.sh deploy
7. Define the fully-qualified class names of the pre-rating, bypass rating, rating, post-rating,

post-charging, and post-update extensions by configuring the charging.extensions
MBean in the ECE Configuration node using a JMX editor. For instructions, see
"Configuring Extensions".

preRatingExtension="oracle.communication.brm.charging.sdk.extensions.
SamplePreRatingExtension"
RatingExtension="oracle.communication.brm.charging.sdk.extensions.
SampleRatingExtension"
postRatingExtension="oracle.communication.brm.charging.sdk.extensions.

Chapter 22
Sample Extensions

22-27

SamplePostRatingComplexTaxationExtension"
postChargingExtension="oracle.communication.brm.charging.sdk.extensions.Sampl
ePostChargingExtension"
diameterGyExtension="oracle.communication.brm.charging.sdk.extensions.
SampleDiameterGyExtension"
postUpdateExtension="oracle.communication.brm.charging.sdk.extensions.SampleP
ostUpdateExtension"
ocsBypassExtension="oracle.communication.brm.charging.sdk.extensions.SampleOC
SByPassExtension"

8. Start or restart the ECE server nodes and enable logging for the extensions by
setting oracle.communication.brm.charging.extensions.client to DEBUG via
JMX and verify that the custom extensions are run as a part of rating logic. You
can also turn on debug logging for the RATING module using the JMX console.

Validating Sample Extensions
After the server nodes are bought up initially or by using a rolling upgrade, send a
sample SDK usage request. Enable debug for the RATING module and verify the
server log contains these messages:

SamplePreRatingExtension invoked
PostRatingComplexTaxationSampleExtension executed

BRM Gateway Extension – Creating Opcode Flist
The sample program SampleBRMGwCustomOpCodeExtension shows how to use
the ECE Extensions API to enrich an external notification with an input flist for a
specified opcode.

The sample program builds an input flist for the PCM_OP_BILL_DEBIT opcode.

Diameter Gateway Extension – Gy Service
The sample program SampleDiameterGyExtension shows how to use the
immediate-response feature based on an incoming AVP value.

The logic: If Service-Context-Id is OFFLINE, respond with Diameter Code
DIAMETER_REDIRECT_INDICATION and set the Redirect-Host AVP value

Diameter Gateway Extension – Sy Service
The sample program SampleDiameterSyExtension shows how to use the ECE
extensions API to suspend the Sy interface when a subscriber is suspended. The
sample program does the following:

• Bypasses rating by calling the setBypassOCS() method and setting the
DiameterResultCode to DIAMETER_REDIRECT_INDICATION.

Note:

To skip the bypass, comment or remove the setBypassOCS() method
invocation under the handleRequestReceived() method.

Chapter 22
Sample Extensions

22-28

• Adds or removes AVPs in the Custom Sy Response.

• Modifies the request data time and product type in the policy request.

• Modifies the status and reason codes in the policy response.

HTTP Gateway Extension – Service
The sample program SampleHTTPExtension shows how to use the ECE Extensions API to
override the requested number of units and perform call screening.

• The handleRequestReceived() method overrides the requested units for a call.

• The handlePreOCS() method sets the timestamp of when the call originally occurred.

• The handlePostOCS() method logs a message when call screening is done and returns
a response to the 5G client.

• The handlePostOCSBalanceQuery() method logs a message when a balance query
occurs and returns a response to the 5G client.

OCSBypass Extension – Bypassing Rating
The sample program SampleOCSByPassExtension shows how to use the ECE extensions
API to bypass rating during ECE downtime. When bypass rating is enabled, the CCRs are
persisted to Oracle NoSQL. When ECE is restored, the persisted requests are replayed to
the ECE charging server for rating and updating balance impacts along with the real-time
requests. Using this extension, you can write your own logic for modifying the AVP of
incoming diameter messages and for creating the diameter responses.

Pre-Rating Extension – Dynamic Quota Management
The sample program SamplePreRatingExtension shows pre-rating custom logic. It
illustrates sample logic for the pre-rating scenarios.

Dynamic Quota Management – Modifying Quota Based on Network Type
The SamplePreRatingExtension program shows how to use the ECE extensions API to
modify the input request quantity based on the input network type where the customer
balance is greater than a predefined amount.

Logic: If the ORIGIN_NETWORK network field is:

"3G_UTRAN" and USD balance greater than 50 then set quota to 10 MB

or

"4G_UTRAN" and USD balance greater than 50 then set quota to 100 MB

Dynamic Quota Management – Modifying Requested Quota
The SamplePreRatingExtension program shows how to use the ECE extensions API to
update the input request to modify the requested quota. You can use this sample program to
access the ECE cache to derive a quota and then update the requested quota in the input
request. ECE then uses the derived quota for allocation.

Chapter 22
Sample Extensions

22-29

Dynamic Quota Management – Modifying Default Quota Configuration
The SampleDynamicQuotaExtension program shows how to use the ECE
extensions API to update the following attributes in the input request to modify the
quota configuration based on your requirements:

• Quota holding time. Specifies how long a granted quota can be idle before the
reservation is released.

• Volume quota threshold. Specifies how much of the granted quota must be
consumed before a subscriber can request additional quota. This attribute is
configured per service, event, and number of granted units.

• Validity time. Specifies whether the validity time can be set to a fixed value per
service-event combination at runtime. This attribute is independent of the number
of units in the granted quota.

Pre-Rating Extension – Retrieving Function Values for Discount
Expressions

The SamplePreRatingExtension program shows how to use the ECE extensions API
to retrieve the value referenced by the function in a discount expression. You create a
custom function in ECE that defines an event profile attribute. You can use the
SamplePreRatingExtension program to call the custom function. ECE then adds the
defined event profile attribute and its value to the usage request.

If the PDC pricing specifies a 10% discount for all accounts active less than 12
months, the logic is the following:

If customerActiveMonths value is:

• < 12 then apply a discount of 10%

• > 12 then apply a discount of 0%

Pre-Rating Extension – Generating Midsession-Rated Event
The SamplePreRatingMidSessionExtension program shows how to use the ECE
extensions API to generate a midsession-rated event when an update request
contains the following:

• A specified balance, such as greater than or equal to $500

• A changed field in a usage request

• A specified account field

• A specified product type, such as TelcoGsmTelephony

When an update request matches the criteria, the extension generates a midsession-
rated event and adds the reason why it was created. It adds these reason codes to the
event's midSessionCDRSplitReason field: CONFIGURED_DURATION_REACHED
and RATING_CONDITION_CHANGE.

Chapter 22
Sample Extensions

22-30

Pre-Rating Extension – Overriding Price in Product Offerings
The SamplePreRatingExtension program shows how to use the ECE extensions API to
override the price specified in product offerings. You create a custom function in ECE that
overrides the default value of the pricing attributes in dynamic tags, which are the XML
elements configured in PDC. You can use the SamplePreRatingExtension program to call
the custom function. The overridden values are then populated in the event profile map in the
request specification data. ECE uses the overridden values to determine the price when
processing usage requests.

Post-Rating Extension – Complex Taxation
The sample program SamplePostRatingComplexTaxationExtension shows how to use the
ECE extensions API to override or augment post-rating results using complex taxation as an
example. The program iterates over the tax rating periods and overrides tax impacts by
modifying the rating periods for federal tax and then generates new tax periods for the state
tax.

It applies the tax rate based on the pre-loaded tax configuration data in the extensions cache.
The tax rate is determined based on tax code, tax time, and validity, which are all based on
the request start time. The default configuration for the tax code used in the extension must
exist in the ECE configuration.

The extension uses the following logic:

1. Determines the federal tax rate from the tax configuration table using the tax code,
request start time.

2. Calculates the federal tax based on this tax rate.

3. Modifies the original impact in the tax rating period based on the taxable impact from the
linked charge, alteration, or distribution rating period.

4. Determines the state tax rate from the tax configuration table using the tax code, request
start time.

5. Calculates state tax based on this tax rate.

6. Creates new tax rating period for the state tax and link it to the original charge/alteration/
distribution rating period.

This program also shows how to use the extensions API to override the invoice data in the
rating result. The overridden value is persisted into the CDR output file.

Post-Rating Extension – Generating Midsession-Rated Events
The SamplePostRatingMidSessionExtension.java sample program shows how to use the
ECE extensions API to generate a midsession-rated event when a rated event contains the
following:

• A balance granted by an offer is exhausted

• A balance bucket is expired

• The charge offer used during rating is different from that of the ongoing session

When an event matches the criteria, the extension generates a midsession-rated event and
adds the reason why it was created. It adds these reason codes to the event's

Chapter 22
Sample Extensions

22-31

midSessionCDRSplitReason field: CONFIGURED_VOLUME_REACHED and
CONFIGURED_TIME_OF_THE_DAY_CROSSED.

Post-Rating Extension – Adding or Deleting Rating Periods
The PostRatingConsolidateRatingPeriods sample program shows how to use the
ECE extensions API to:

• Add a single rating period with the consolidated charge for all the rating periods of
type CHARGE.

• Delete all the existing rating periods of type CHARGE.

You can use this sample program to access the ECE cache and override the rating
periods in the final rated results by adding or deleting rating periods.

Post-Charging Extension – Adding Custom Data to Usage Responses
and Notifications

The sample program SamplePostChargingExtension shows how to use the ECE
extensions API to add custom data to the following:

• Usage responses. You add the data as AVPs. For example, you can add a custom
language preference to a customer's subscriber preferences. The custom values
are available as diameter hooks for further propagation.

• External notifications. You add the data as key-value pairs. For example, you can
add information such as calling number, called number, event type, and balance
group to these notifications, such as credit threshold notifications.

Post-Charging Extension – Overriding Dynamic Quota
The SamplePostChargingExtension program shows how to use the ECE extensions
API to override the quota attributes, such as quota holding time and volume quota
threshold, in the usage response. You provide the data as name-value pairs. ECE then
accesses the data and updates the usage response.

Post-Charging Extension – Adding or Modifying Redirection Rules
The SamplePostChargingExtension program shows how to use the ECE extensions
API to add or modify rules for redirecting a subscriber session to a service portal
applicable to the business scenario. You can add or modify them based on the
customer conditions, such as whether the customer has insufficient funds or whether
the customer has an inactive account.

Post-Charging Extension - Enriching Notifications
The SamplePostChargingExtension program shows how to enrich the notification.
You can use this sample program and update the payload with the following data:

• Session ID

• Notification event type

• Even timestamp

Chapter 22
Sample Extensions

22-32

• Original balance

• Current balance

The sample program uses the getCustomDataMap() method to retrieve custom data and put
it in the Notification's Payload. CustomDataMap is a map of String-String, where our custom
name-value pair is included in the response.

Post-Charging Extension – Creating Custom Notifications for Top Ups
The sample program SamplePostChargingExtension shows how to use the ECE
extensions API to create a custom notification for topping up a customer's balance element
through the BRM PCM_OP_BILL_DEBIT opcode.

The sample program retrieves data and for a specified service type, request type, and
balance element combination. It also specifies the BRM opcode to call. The sample program
includes the following:

• The getUsageRequest() method, which fetches the input service usage request.

• The getBalance() method, which specifies that the logic applies to the USD balance
element.

• The getCustomDataMap() method, which fetches the customDataMap for the custom
data set by the user.

• The addCustomServiceEventWithOpCode() method, which specifies to call the
PCM_OP_BILL_DEBIT opcode.

• The getOriginalBalance() method, which calculates and returns the original balance
valid at the start time of the current usage session.

• The getCurrentBalance() method, which returns the current balance for the given
resource considering the balance items valid during the specified validity range.

• The getServiceEventType() method, which retrieves the ServiceEventType associated
with a service event.

Post-Update Extension – Enriching External Notifications
The sample program SamplePostChargingExtension shows how to use the ECE
extensions API to add custom data to external notifications that are generated to provide
additional data. You add the data as name-value pairs. ECE then accesses the data and
updates the external notifications. For example:

s.getCustomDataMap().put("NotificationType",
 String.valueOf(s.getServiceEventType()));

In the above code snippet, we fetch the notification type from the Service Event and store its
value in the customDataMap. This will subsequently be populated in the Notification
Payload.

Rating/Charging Extension – Triggering RAR Notifications
The following sample programs show how to use the ECE extensions API to trigger server-
initiated reauthorization request (RAR) notifications in the rating and charging flow:

• SampleRarPreRatingExtension

Chapter 22
Sample Extensions

22-33

• SampleRarPostRatingExtension

• SampleRarPostChargingExtension

These programs access the ECE cache data and trigger RAR notifications to retrieve
the exact reservation balance for performing any business operation.

In the custom logic, if the sendGenericRARNotification is set to true, ECE generates
generic RAR notifications for all Diameter sessions for the client. The Rating-Group
and Service-Identifier are not set in those notifications. If
sendGenericRARNotification is set to false, ECE generates service-specific RAR
notifications with Rating-Group and Service-Identifier set in the notifications.

If sendRarForSharedBalances is set to true, ECE generates RAR notifications for all
active sessions using a sharing group balance. For example, assume accounts A, B,
C, and D and in a sharing group, and accounts A and C have active sessions using
the sharing group balance. If an RAR is triggered for account C, ECE sends RAR
notifications for accounts A's and C's active sessions. If sendRarForSharedBalances
is false, ECE generates RAR notifications for all active sessions initiated by the
subscriber. Using the previous example, ECE would generate RAR notifications for
account C's active sessions only.

Rating Extension – Custom Item Assignment
The sample program SampleRatingExtension shows how to use the ECE extensions
API to alter the custom item type for rating impacts.

It alters custom item types for the rated results based on the data accessible through
the rating extension. The default configuration for the custom item type used in the
extension must exist in the ECE configuration.

The extension uses the following logic:

1. After taxation, determines the custom item type to be used based on the data
accessible through the rating extension.

2. Assigns the rating impacts to the custom bill items based on the new custom item
type.

Extensions Data Load Sample
The sample program SampleExtensionsDataLoader demonstrates how the
extensions data repository can be used and how to load data into the repository.

The data loader used for extensions is located at ECE_home/ocecesdk/source/
oracle/communication/brm/charging/sdk/extensions.

The following SDK artifacts are provided:

• tax_configuration.spec

– This is a specification for tax codes. The specification expects a single block
with a cardinality of 1 per ExtensionsData.

– Contains the following attributes:

* Tax code (String)

* Pkg (String)

* Rate (Decimal)

Chapter 22
Sample Extensions

22-34

* Start (DateTime)

* End (DateTime)

* Level (String)

* List (String) Description (String)

* Description (String)

* Rule (String)

• tax_configuration_data.csv

– A pipe-delimited CSV file. This file acts as a data source for tax codes.

• SampleExtensionsDataLoader

– A class that reads the CSV file, prepares the payload as per tax specification, and
uses the extensions repository to put a collection of ExtensionsData.

– Also asserts if the number of ExtensionsData put in the Repository are the same as
the total being read.

Chapter 22
Sample Extensions

22-35

23
ECE Sample Programs

You use the sample programs included in the Oracle Communications Elastic Charging
Engine (ECE) SDK to learn how to call the ECE APIs.

See Elastic Charging Engine Java API Reference for more information about the ECE SDK.

Topics in this document:

• About the ECE Sample Programs

• Finding the Sample Programs

• Descriptions of the Sample Programs

• Compiling and Running the Sample Programs

• Example of SampleDebitRefundSession

• Compiling and Deploying SampleRatedEventFormatterCustomPlugin

About the ECE Sample Programs
The ECE SDK includes sample programs that demonstrate how to use the ECE API for
sending requests to ECE.

You can use these sample programs in the following ways:

• Use the sample programs as code samples for calling the ECE APIs.

• Use the sample programs as code samples for writing custom applications.

• Run sample programs to send requests to ECE and receive responses.

The sample programs print information about the messages exchanged.

• Use the sample program scripts to get an idea of the configuration and dependencies
that are required for integrating the ECE client into your build system (Maven, Ant, and so
on).

You can also look at the sample program source code to see how it works. For example, if
you want to write a program that sends a unit-based debit request to ECE, examine
SampleDebitRefund to:

• View the methods to use in your code.

• How to use the libraries and calls.

Finding the Sample Programs
Table 23-1 shows the ECE SDK software directory structure, where ECE_home is the
directory in which the ECE Server software is installed.

23-1

https://docs.oracle.com/en/industries/communications/billing-revenue/12.0/ece-java-api/index.html

Table 23-1 Elastic Charging Engine Sample Program Directories

Directory Description

ECE_home/ocecesdk/bin Directories that contain shell scripts for
compiling and running various types of sample
programs.

ECE_home/ocecesdk/bin/extensions Shell scripts for extension-implementation
sample programs.

ECE_home/ocecesdk/bin/notification Shell scripts for notification sample programs.

ECE_home/ocecesdk/bin/plugin Shell scripts for the custom plug-in sample
programs.

ECE_home/ocecesdk/bin/policy Shell scripts for policy sample programs.

ECE_home/ocecesdk/bin/query Shell scripts for query sample programs.

ECE_home/ocecesdk/bin/update Shell scripts for update sample programs.

ECE_home/ocecesdk/bin/usage Shell scripts for usage sample programs.

ECE_home/ocecesdk/config Configuration files common to all sample
programs.

ECE_home/ocecesdk/config/extensions Configuration files for extension-
implementation sample programs.

ECE_home/ocecesdk/source All Java sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/
extensions

Source files for extension-implementation
sample programs (for pre-request-processing
and post-request-processing).

Includes the data loader used for extensions.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/
notification

Source files for notification sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/plugin

Source files for custom plug-in sample
programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/policy

Source files for policy sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/query

Source files for query sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/update

Source files for update sample programs.

ECE_home/ocecesdk/source/oracle/
communication/brm/charging/sdk/usage

Source files for usage sample programs.

Descriptions of the Sample Programs
All of the sample programs can work with the ready-to-use sample data included with
the ECE Server software installation. The sample programs are supported on the
Linux platform.

Each sample program includes these supporting files:

• Source files to view or modify for your own applications

• Shell scripts to compile and run the sample programs

Chapter 23
Descriptions of the Sample Programs

23-2

The sample programs use the generic .ecc script sdk_production_loader.ecc.

Note:

The ECE sample programs do not work well with data you load using the simulator
loader utility.

For a list of each sample program, their descriptions, the shell scripts used to compile and
run them, and the applicable .ecc script, see:

• Usage Request Sample Programs

• Update Request Sample Programs

• Policy Request Sample Programs

• Query Request Sample Programs

• Extension Implementation Sample Programs

• Notification Sample Programs

• Custom Plug-In Sample Programs

To determine which parameter values you must use for running a sample program, you can
use the sample script's help option. For descriptions of the methods the sample programs
use, see oracle.communication.brm.charging.sdk in Elastic Charging Engine Java API
Reference.

Usage Request Sample Programs

Table 23-2 lists the usage sample programs, their descriptions, the shell scripts used to
compile and run them, and the applicable .ecc script.

Table 23-2 ECE Sample Programs for Usage Requests

Sample Program ECC Script Shell Script Description

SampleAccountingOnOff sdk_production_lo
ader.ecc

sample_accounting_on_o
ff.sh

Simulates an accounting on/off
request being sent from the
mediation client.

SampleDataSession sdk_production_lo
ader.ecc

sample_data_session.sh Simulates a simple data
session, including an INITIATE,
an UPDATE and a TERMINATE
request.

SampleDebitRefundSession - sample_debit_refund_ses
sion.sh

Shows how to send debit and
refund requests with multiple
values in unit-based and
amount-based mode.

See "Example of
SampleDebitRefundSession".

SampleGenericSession - sample_generic_session.
sh

Simulates any kind of voice or
data session.

SampleGprsSession - sample_gprs_session.sh Simulates a GPRS session.

Chapter 23
Descriptions of the Sample Programs

23-3

Table 23-2 (Cont.) ECE Sample Programs for Usage Requests

Sample Program ECC Script Shell Script Description

SampleIncrementalUsageR
equestLauncher

sdk_production_lo
ader.ecc

sample_incremental_usa
ge_request.sh

Simulates a voice session with
incremental mode.

SampleMultipleServicestLau
ncher

sdk_production_lo
ader.ecc

sample_multiple_service.
sh

Shows how to send usage
requests for the Multiple
Services Credit Control (MSCC)
case (multiple subrequests are
sent in a single usage request).

SamplePriceEnquiry sdk_production_lo
ader.ecc

sample_price_enquiry.sh Sends a price enquiry request.

SampleReAuthRequest sdk_production_lo
ader.ecc

sample_RAR.sh Sample program that shows the
generation of a reauthorization
request (RAR) message.

Also shows how to consume
notification messages. This
portion of the code is for
illustration only and is disabled.

SampleStartUpdateAccounti
ngRequestLauncher

- sample_start_update_acc
ounting_request.sh

Simulates a sample usage
session including a
START_ACCOUNTING,
UPDATE_ACCOUNTING, and
TERMINATE request. For
example, a usage session for a
DSL data download in a
postpaid scenario.

SampleUsageRequestLaun
cher

sdk_production_lo
ader.ecc

sample_usage_request.s
h

Enables you to send custom
voice usage requests.

Customer ID, number of
requests to send, request type
(INITIATE/UPDATE...) and
duration must be given as
arguments (e.g.
sample_usage_request.sh run
6500000000 2 TERMINATE
120).

SampleVoiceSession sdk_production_lo
ader.ecc

sample_voice_session.sh Simulates a simple voice
session, including an INITIATE,
an UPDATE and a TERMINATE
request.

Update Request Sample Programs

Table 23-3 lists the update sample program.

Table 23-3 ECE Sample Programs for Update Requests

Sample Program ECC Script Shell Script Description

SampleExternalTopUpRequ
estLauncher

- sample_external_topup_
notification_request.sh

Shows how third party systems
can perform direct top ups in
ECE.

Chapter 23
Descriptions of the Sample Programs

23-4

Policy Request Sample Programs

Table 23-4 lists the policy sample programs.

Table 23-4 ECE Sample Programs for Policy Requests

Sample Program ECC Script Shell Script Description

SamplePolicySessionRequ
estLauncher

- sample_policy_session_r
equest.sh

Simulates a policy session.

Shows how to send a policy
request to ECE that requests
both Sp and Sy information.

SampleSpendingLimitRepo
rtRequestLauncher

- sample_spending_limit_r
eport_request.sh

Simulates a policy Sy query
request.

Shows how to send a request to
retrieve policy counter status
information.

SampleSubscribeNotificatio
nRequestLauncher

- sample_subscribe_notifi
cation_request.sh

Simulates a policy Sp query
request.

Shows how to send a request to
retrieve the value for a specified
set of subscriber preferences
and subscribe for receiving
notifications when the values of
the preferences change. For
example, shows how to retrieve
the channel a subscriber prefers
for receiving policy-related
notifications (SMS or email) or
the language in which the
subscriber prefers the
notification to be written (French,
English).

SampleSubscriberPreferen
ceUpdateRequestLauncher

- sample_subscriber_prefe
rence_update_request.sh

Simulates a policy-related
update request.

Shows how to update the
subscriber preferences in ECE.

SampleUserDataRequestL
auncher

- sample_user_data_reque
st.sh

Simulates a policy Sp query
request without subscription.

Shows how to send a request to
retrieve the values for subscriber
preferences configured for a
customer's service.

Query Request Sample Programs

Table 23-5 lists the query sample programs.

Table 23-5 ECE Sample Programs for Query Requests

Sample Program ECC Script Shell Script Description

SampleAuthenticationQuer
y

sdk_production_loa
der.ecc

sample_auth_query_requ
est.sh

Sends an authentication query
request.

Chapter 23
Descriptions of the Sample Programs

23-5

Table 23-5 (Cont.) ECE Sample Programs for Query Requests

Sample Program ECC Script Shell Script Description

SampleBalanceQueryRequ
estLauncher

sdk_production_loa
der.ecc

sample_balance_query_r
equest.sh

Sends a balance query request.

Extension Implementation Sample Programs

Table 23-6 lists the extension sample programs.

Table 23-6 ECE Sample Programs for Extension Implementations

Sample Program ECC Script Shell Script Description

- - sample_extensions_loade
r

Data loader for extension
implementations.

- - build_deploy_extension Sample extension
implementation.

- - tax_configuration.spec Sample extension
implementation.

- - tax_configuration_data.cs
v

Sample extension
implementation.

Notification Sample Programs

Table 23-7 lists the notifications sample programs.

Table 23-7 ECE Sample Programs for Notifications

Sample Program ECC Script Shell Script Description

SampleDurableJmsClient - sample_durable_jms_clie
nt.sh

Simulates a durable JMS client.

SampleJmsClient - sample_jms_client.sh Simulates a JMS client.

SampleJmsServer - sample_jms_server.sh Simulates a JMS server.

Custom Plug-In Sample Programs

Table 23-8 lists the custom plug-in sample programs.

Table 23-8 ECE Sample Programs for Custom Plug-In

Sample Program ECC Script Shell Script Description

SampleRatedEventFo
rmatterCustomPlugin

- build_deploy_plugin.
sh

Writes rated events
into CDR records.

SampleRatedEventFo
rmatterKafkaCustomP
lugin

- build_deploy_plugin.
sh

Writes fully rated
events into a JSON
file that is published to
Kafka topics.

Chapter 23
Descriptions of the Sample Programs

23-6

Compiling and Running the Sample Programs
You compile and run a sample program with the shell script provided for that sample
program.

To compile and run a sample program:

1. Open the ECE_home/config/eceTopology.conf file.

2. Uncomment the line where the sdkCustomerLoader node is defined.

You are required to uncomment this line to be able to run the SDK sample programs.

Caution:

Do not run the customerLoader utility without the -incremental parameter in a
production environment.

3. Go to the ECE server bin directory:

cd ECE_home/bin
4. Load the ECE runtime environment:

./ecc 'load sdk_production_loader.ecc'
5. Go to the ECE SDK bin subdirectory that contains the shell script for compiling and

running the sample program you want to run:

cd ECE_home/ocecesdk/bin/sample_program_directory

where sample_program_directory is extensions, notification, plugin, policy, query,
update, or usage. See Table 23-1 for more information.

For example, to compile and run the sample_voice_session.sh sample program (the
sample program for sending a voice session usage request to ECE), you must be in the
ECE_home/ocecesdk/bin/usage directory.

6. Compile the sample program:

sh ./scriptname.sh build

You must compile the sample program once.

For example, to compile the sample_voice_session.sh sample program, enter:

sh ./sample_voice_session.sh build
7. Run the sample program.

sh. /scriptname.sh run

Some programs require that you enter parameters. The run command output gives you
information about what parameters are required. You can also run the command with no
parameters to use default parameter values from the SDK scripts.

8. When you are done with the sample program, shut down the ECE runtime environment:

ecc stop server

Chapter 23
Compiling and Running the Sample Programs

23-7

Example of SampleDebitRefundSession
The following shows an example of how to run the SampleDebitRefundSession
sample program.

sample_debit_refund_session.sh build | run | defaultrun userId
requestType correlationId [BALANCE_ELEMENT_ID,AMOUNT
BALANCE_ELEMENT_ID,AMOUNT ...] [TOTAL,IN,OUT TOTAL,IN,OUT ...]

where:

• build compiles the related SDK source files.

• run runs the SDK program (debit refund) according to the parameters you provide.
You can supply the parameters in the command line or provide no parameters to
run the program with default parameter values.

• defaultrun builds and runs the SDK program. No parameters are required. The
program uses the default parameter specified inside the shell script.

• The order of parameters are fixed and if one optional parameter is provided then
all values of other optional parameters must be supplied.

• requestType is either DEBIT_AMOUNT, REFUND_AMOUNT, DEBIT_UNIT, or
REFUND_UNIT.

• DEBIT_AMOUNT or REFUND_AMOUNT, BALANCE_ELEMENT_ID is the well-
known ISO code for balance elements, such as 840 for US Dollars or 95 for
Included Minutes.

• DEBIT_UNIT or REFUND_UNIT, TOTAL, IN, and OUT must be specified with
numbers in MB (megabytes).

For example, the following command debits 10 USD and 25 Included Minutes:

sample_debit_refund_session.sh run 650999777 DEBIT_AMOUNT CORR_ID 840,10 95,25

This example command refunds 50 USD and 5 Included Minutes:

sample_debit_refund_session.sh run 650999777 REFUND_AMOUNT CORR_ID 840,50 95,5

Compiling and Deploying
SampleRatedEventFormatterCustomPlugin

To compile and deploy the SampleRatedEventFormatterCustomPlugin sample
program:

1. Configure Rated Event Formatter by doing the following:

a. Access the ECE configuration MBeans in a JMX editor, such as JConsole.
See "Accessing ECE Configuration MBeans".

b. Expand the ECE Configuration node.

c. Expand charging.ratedEventFormatters.Instance_Name, where
Instance_Name is the name of the instance you want to configure such as
ratedEventFormatter1.

Chapter 23
Example of SampleDebitRefundSession

23-8

d. Expand Attributes.

e. Set the pluginType attribute to
oracle.communication.brm.charging.sdk.plugin.SampleRatedEventFormatterK
afkaCustomPlugin.

2. Go to the ECE_home/ocecesdk/bin/plugin directory and then build the sample program:

sh ./build_deploy_plugin.sh build SampleRatedEventFormatterKafkaCustomPlugin
3. Deploy the sample program:

sh ./build_deploy_plugin.sh deploy SampleRatedEventFormatterKafkaCustomPlugin
4. Ensure that your Kafka Server is up and running.

5. Create a topic in your Kafka Server for the rated events.

For example, this command creates a Kafka topic named RatedEvent:

bin/kafka-topics.sh --create --bootstrap-server kafkaHost:port --replication-
factor 1 --partitions 1 --topic RatedEvents

where kafkaHost and port are the host and port that the Kafka client will connect to in a
bootstrap Kafka cluster the first time it starts.

6. Wait until the entire configuration is ready and all components are up and running.

7. Perform usage, such as initiate, update, or terminate, for one of your customers.

Rated events will be published to the Kafka topic in JSON format. Also, JSON information
will be added to the ratedEventFormatter1.log file under the ECE_home/log directory.

8. Confirm that the event was published to the Kafka topic by running the Kafka console
consumer:

bin/kafka-console-consumer.sh --bootstrap-server kafkaHost:port --topic RatedEvents
9. When you are done with the sample program, shut down the ECE runtime environment:

ecc stop server

Chapter 23
Compiling and Deploying SampleRatedEventFormatterCustomPlugin

23-9

24
Testing ECE

You learn how to test your implementation of Oracle Communications Elastic Charging
Engine (ECE).

Topics in this document:

• About ECE Testing Utilities

• About Loading Sample Data

• About Performance MBean

• Changing Time and Date to Test ECE

• Using the query Utility to Test ECE

• Verifying that Usage Requests Can Be Processed

• Verifying That ECE Notifications Are Published to the JMS Topic

• Verifying that Friends and Family Calls Are Processed

• Verifying That Closed User Group Calls Are Processed

• Verifying That Balance Impacts Are Assigned to Bill Items

• Verifying That Payloads Are Correctly Formed

About ECE Testing Utilities
ECE offers the testing utilities in Table 24-1 that you can use when implementing ECE in a
charging system.

Table 24-1 ECE Testing Utilities

Utility Description

Simulator Emulates the role of a client application sending requests to ECE. The
simulator enables you to send usage requests, query requests, update
requests, or policy requests to ECE for processing. You can run sample
workloads for testing latency and throughput of your system.

See "Running the Simulator to Send Usage Requests".

query Enables you to run queries on ECE data for development or debugging
purposes.

See "Using the query Utility to Test ECE".

Note: The ECE data model within the Coherence cache is subject to
change. Oracle does not recommend that client applications directly use the
Coherence API or the query utility for accessing ECE cache data. For
querying ECE cache data, write your client applications to use the ECE APIs
such as the balance query and authentication query APIs.

24-1

Table 24-1 (Cont.) ECE Testing Utilities

Utility Description

customerGenerator Creates XML files that represent sample customer data, which can then be
loaded into ECE.

Note: The ECE customer XML data file must conform to the format of the
ECE customer XML schema file (ECE_home/odi_transformation/
ECE_Schema.xsd).

customerLoader Loads customer data from BRM incrementally, in batches or in bulk. In
addition to using this utility in a development system, you can use it in a
production system to correct data migration errors. To do so, run the utility
with the -incremental parameter. Caution! Do not run the customerLoader
utility without the -incremental parameter in a production environment.

PerformanceMonitor
MBean

Monitors the performance of your ECE deployment during testing. See
"About Performance MBean".

About Loading Sample Data
After installing ECE, you can load sample data. Sample data is in the ECE_home/
sample_data directory which includes:

• Sample data for integrating with BRM

• Sample data for integrating with PDC

• Sample data for integrating with clients that send policy requests (used for policy
testing)

Sample data includes sample event definitions, sample configuration data, sample
product offering cross-reference data, and sample customer data. Subsets of sample
data geared for ECE implementations for policy-related charging is also available.

To use sample data, you configure your data-loading utilities to load data from sample
data directories.

About Performance MBean
You can use the PerformanceMonitor MBean to monitor the performance of your
ECE deployment. You can monitor the CPU usage of server nodes and client nodes,
such as the simulator, during your testing.

For example, when building charging extensions, you can run ECE without your
extensions and use the methods to see how much CPU time is used. You can then run
ECE with your extensions, and use the methods again to see how much CPU time is
used. By comparing the CPU times, you can derive the additional time spent by your
extension.

The following PerformanceMonitor MBean methods are available:

• startTrackingCPU()

The startTrackingCPU() method starts tracking CPU usage for the running
process.

• stopTrackingCPU()

Chapter 24
About Loading Sample Data

24-2

Use the stopTrackingCPU() method to stop tracking CPU usage for the running process.
This method returns CPU utilization between 0 and 1 where 0 means 0% CPU usage and
1 means 100% CPU usage.

• getTrackedCPU()

Use the getTrackedCPU() method to get the last tracked CPU usage between [0, 1] if a
previously tracked CPU usage is available. If a previously tracked CPU usage is not
available, -1 is returned.

The simulator MBean exposes the throughput information through the getLastThroughput()
method. The getLastThroughput() method gets the throughput number from the last
successfully completed simulation run. If completed simulation runs do not exist or if a
simulation run is in-progress, -1 is returned.

Changing Time and Date to Test ECE
You can change ECE's current time and date, without affecting the operating system time and
date, to test time-sensitive functions associated with Rated Event Formatter and Diameter
Gateway in ECE.

Note:

Changing the time and date introduces the possibility of corrupting data. Do not
change the time and date in a production database.

For example, you can change ECE's current time and date to test the following:

• Whether accounts are billed correctly. If you advance the date in BRM to the next billing
cycle to test if the accounts are billed correctly, you must advance the date in ECE to the
same date as set in BRM. This ensures that the events rated by ECE on that day are
sent to BRM with the same date as set in BRM so that the events can be billed for the
next billing cycle.

• Whether customer's spending limit is reported correctly. If a charge offer includes a
conditional balance impact and the conditional balance impact is valid only for a day, you
can advance the date by a day to ensure that when the Spending-Limit-Report-Request
(SLR/SLA) request is received, the spending limit for the next day is reported.

• Whether events are rerated correctly. You can advance the date in ECE to store rated
events in the Oracle NoSQL database data store with the future date to ensure that they
are rerated when rerating is run in BRM for the future date.

To change the time and date to test ECE:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE configuration node.

3. Expand charging.server.

4. Expand Attributes.

5. Specify the values for the following attributes:

• virtualTimeMode. Enter one of the following values:

Chapter 24
Changing Time and Date to Test ECE

24-3

– 0. Use this to reset the time to ECE's current time. Time is changed to the
operating system time.

– 1. Use this to set the time as a constant time. Time is frozen at the
specified time until this value or the time you set is changed.

– 2. Use this to set the time to change every second. Time is changed to the
time specified, and then advances one second every second.

• virtualTime. Enter the time and date in the following format: YYYY-MM-
DDTHH:mm:ss.SSS. For example, to set the time and date to 11:30:02:600 on
September 03, 2016, enter 2016-09-03T11:30:02.600.

After you change the time and date, perform testing as needed. You can also change
the time and date between testing stages. After completing testing, reset the time to
ECE's current time and perform database cleanup if needed.

Using the query Utility to Test ECE
The query utility provides access to ECE cache content, enabling you to run queries
on ECE Coherence caches. The query utility is meant to be used for debugging
purposes only.

You can use the query utility to write scripts that interact with the ECE domain objects,
creating CohQL queries. The query utility supports all ECE caches and objects.

Note:

Oracle recommends that you not query the cache for the entire list of
customer information. Filtered/ selected query is recommended because the
complete customer list would cause ECE to crash.

The query utility is included with the ECE Server software in ECE_home/bin.

To learn about query utility options, use the help command:

$./query.sh -h

The following shows non-interactive use of the query utility:

$./query.sh -s -c -l "select
sum(getAvailableBalance(\'USD\',null).getQuantity()) from Balance"

The following shows interactive use of the query utility:

$./query.sh
Coherence Command Line Tool
CohQl> select count () from Customer;
Results
1000
CohQL> select key(), value().getCode().toString() from BalanceElement
Results
840, "USD"

The query utility log file is ECE_home/logs/query_out.log.

Chapter 24
Using the query Utility to Test ECE

24-4

The query statement history is contained in ECE_home/bin/.cohql-history. You can use the
up and down arrows to move through the command history.

Note:

Oracle does not recommend that client applications directly use the Coherence API
or the query utility for accessing ECE cache data. For querying ECE cache data,
write your client applications to use the ECE APIs such as the balance query and
authentication query APIs.

Example: Query the Subscriber Base Balance Summary
Here is an example of how to summarize balance amounts across the entire subscriber base
(total balance) in the grid:

$./query.sh -s -c -l "select sum(getAvailableBalance(\'USD\',null).getQuantity())
from Balance"

Example: Query a Customer Balance
Following is an example of how to query a customer's balance. You first query a specific
customer to find the balance ID, and then you query a specific balance to find the balance
element and balance amount.

Tip:

You can use the same model for querying a customer's active session object.

Step 1: Query the customer to find the balance ID

To query the customer and find the balance ID:

$./query.sh
Coherence Command Line Tool
CohQl> select key(), value() from Customer where key() = "Cust#6500000001"
Results
"Cust#6500000001",
 ####################################### Customer Begin
##
CustomerImpl
{ customerId='Cust#6500000001
, inTransaction='null
, defaultBalanceId='Bal#6500000001
, externalReference='1
, version=0
, profiles={Birthday=[RatingProfileValueImpl{name=NUMBER, value=2013-08-21,
 validFrom=1970-01-01T00:00:00.000Z, validTo='292278994-08-17T07:12:55.807Z}]}
, subscriberPreferences={}
, subscribedPreferences=null
, AlterationSharingAgreements ={}
, DistributionSharingAgreements ={}
, productMap={Pro#6500000001=ProductImpl{

Chapter 24
Using the query Utility to Test ECE

24-5

...
, balanceId = 'Bal#6500000001'
, profiles = {FriendsAndFamily=[RatingProfileValueImpl{name=NUMBER,
 value=6501234567, validFrom=1970-01-01T00:00:00.000Z,
 validTo='292278994-08-17T07:12:55.807Z}]}
, subscriberPreferences = {}
, subscribedSpendingLimitCounters = {}
, Life cycle state = 102
, Life cycle Expiration time = 0
, activeSessions = {}
, debitRefundSessions = {}
, audited purchased charge offerings = {}
, audited purchased alteration offerings = {}
, audited profiles={}
, audited UsedAlterationSharingAgreements={}
, audited UsedDistributionSharingAgreements={}
 balance=null
}}
, balances={}
,
 billingUnits={BillingUnit#6500000001=[BillingUnitImpl
{billingUnitId=BillingUnit#6500000001},
{accountingCycle=[Triple{first=2013-08-21T11:10:16.224-07:00},
{second=2013-09-21T11:10:16.224-07:00},{third=2013-10-21T11:10:16.224-07:00},]},
{billingCycle=[Triple{first=2013-08-21T11:10:16.224-07:00},
{second=2013-09-21T11:10:16.224-07:00},{third=2013-10-21T11:10:16.224-07:00},]},
{billingFrequency=1},]}
, auditedProducts={}
, auditedProfiles={}
, audited AlterationSharingAgreements={}
, audited DistributionSharingAgreements={}
, customerRerateProcessingInfo=CustomerRerateProcessingInfoImpl
{ RerateProcessingStatus='NOT_IN_RERATING, ReratingJobId='null}
 #####################Customer End ###

Step 2: Query the balance to find the balance element

To query the balance to find the balance element, you specify two components of the
associated key (composite key) that links the customer to the balance.

$./query.sh
Coherence Command Line Tool
CohQl> select value() from Balance where key().getId() = "Bal#6500000001" and
 key().getAssociatedKey() = "Cust#6500000001"
Results
[BalanceImpl{BalanceId=Bal#6500000001}
{externalRevision=0}{OwnerId=1}
{BillingUnitId=BillingUnit#6500000001}
{BillingUnit=null}ActiveReservationMap{}}
balanceItemSpecs{{USD=BalanceItemSpecImpl{beCode='USD', unit=Money{cur=USD}
, creditProfile=oracle.communication.brm.charging.config.creditprofile.internal.
CreditProfileReference@1dc79d4
, consumptionRule=EARLIEST_START}}}
balanceItems{([BalanceItemImpl{balanceItemId=0}{currentBalance=-10000}
{balanceItemSpec=BalanceItemSpecImpl{beCode='USD', unit=Money{cur=USD}
, creditProfile=oracle.communication.brm.charging.config.creditprofile.internal.
CreditProfileReference@1dc79d4
, consumptionRule=EARLIEST_START}{validity=null}{validityRule=null}]),]

Chapter 24
Using the query Utility to Test ECE

24-6

Verifying that Usage Requests Can Be Processed
You use the ECE simulator to send requests to ECE for processing. The simulator emulates
network traffic coming from a network mediation system. You use the ECE query utility to
verify that the usage has impacted the customer balance.

Note:

If you installed online or offline network mediation software, you can use that
software instead of the ECE simulator to send usage requests for online or offline
charging. This section describes how to use the simulator only.

The simulator enables you to control the types of usage requests sent and the number and
type of subscribers sending the usage requests.

To verify that usage requests can be processed, perform the steps described in these
sections:

• Starting ECE Nodes in the Cluster

• Running the Simulator to Send Usage Requests

• Verifying that Balances Are Impacted in ECE

Starting ECE Nodes in the Cluster
To start all ECE nodes in the cluster:

1. Log on to the driver machine.

2. Go to the ECE_home/bin directory:

3. Start the Elastic Charging Controller:

./ecc
4. Start the ECE nodes:

start
To verify that the ECE nodes are running:

1. Access the ECE configuration MBeans in a JMX editor, such as JConsole. See
"Accessing ECE Configuration MBeans".

2. Expand the ECE Configuration node.

3. Expand ECE State Machine.

4. Expand StateManager.

5. Expand Attributes.

6. Verify that the stateName attribute is set to UsageProcessing.

This means the ECE nodes are running.

Chapter 24
Verifying that Usage Requests Can Be Processed

24-7

Running the Simulator to Send Usage Requests
To run the simulator and send usage requests:

1. Start the ECE simulator:

start simulator
2. Initialize the simulator:

init simulator
3. Run the sample workload:

simulate simulator

The simulator takes a few seconds to finish processing the workload.

4. Open the invocation.log file located in ECE_home/logs. You should see statistics
for the sample workload.

Verifying that Balances Are Impacted in ECE
To verify that the usage requests impacted customer's balances, use the ECE query
utility.

Query for customer balances in the Customer cache

Here are two examples of how to query the customer cache to return the customer
balances:

$./query.sh
Coherence Command Line Tool
CohQl> "select value() from Balance where ownerId='cccc'"

$./query.sh
Coherence Command Line Tool
CohQl> "select value() from Balance where balanceId='xxxx'"

In the results of the query returned, locate the following string:

{currentBalance=UnitValue{quantity=amount, unit=Money{cur=USD}

where amount is the quantity amount of the balance impact.

Verifying That ECE Notifications Are Published to the JMS
Topic

To verify that ECE external asynchronous notifications are being published to the JMS
topic, you can use the following sample SDK notification programs:

• sample_jms_client.sh

• sample_jms_server.sh

Use these sample programs to check the correctness of the JMS topic.

Chapter 24
Verifying That ECE Notifications Are Published to the JMS Topic

24-8

You can also use the sample_jms_client.sh sample program to check the messages
produced from the ECE side to the JMS topic.

Disabling the Publishing of ECE Notifications to the JMS Topic
Some types of testing may not require publishing ECE external notifications to the JMS topic.

To disable external notifications:

1. Open the ECE_home/config/charging-cache-config.xml file.

2. For the ServiceContext module, change the cache-store configuration entry by replacing
the following:

<init-param>
 <param-name>cache-store</param-name>
 <param-
value>oracle.communication.brm.charging.notification.internal.coherence.Asynchronou
sNotificationPublisher</param-value>

with this:

<init-param>
 <param-name>cache-store</param-name>
 <param-
value>oracle.communication.brm.charging.util.coherence.internal.NoPersistenceCacheS
tore</param-value>

ECE external notifications are disabled.

3. Save the file.

Verifying that Friends and Family Calls Are Processed
To verify that your ECE deployment is processing friends and family calls, perform
prerequisite tasks in BRM and PDC and then generate usage for the friends and family call
for the customer.

To verify that friends and family calls are processed:

1. Ensure the appropriate provisioning tag is available in BRM as follows:

a. Ensure you define a provisioning tag that includes the Friends&Family extended
rating attribute (ERA).

b. Ensure the provisioning tag in BRM contains the same profile specification labels
provided in PDC.

The profile specification labels that come ready-to-use in the PDC installation are
MYFRIENDS and MYFAMILY. Specify these labels in the provisioning tag when
using the ready-to-use profile specification labels in PDC.

c. (Optional) If you create a new provisioning tag in BRM, rather than using the ready-
to-use sample provisioning tag, run the SyncPDC utility to synchronize the
provisioning tag name to PDC.

2. If not already loaded, load the sample profile attribute specification for friends and family
into PDC.

Chapter 24
Verifying that Friends and Family Calls Are Processed

24-9

The sample XML file is available at PDC_home/apps/Samples/Examples/
PDCSampleProfileSpec.xml where PDC_home is the directory in which you
installed PDC.

Use the PDC ImportExportPricing utility to load the XML file into the PDC
database.

3. If not already loaded, load the sample custom analyzer rule for friends and family
into PDC.

The sample XML file is available at PDC_home/apps/Samples/Examples/
PDCSampleCAR.xml.

PDCSampleCAR.xml contains two custom rules: Friends&Family and
SpecialDay. These custom rules are designed to be used specifically with generic
selectors.

Use the PDC ImportExportPricing utility to load the XML file into the PDC
database.

4. In PDC, configure the charge offer for friends and family calls as follows:

a. Create a generic selector with the Friends&Family custom analyzer rule.

b. Create the charge offer for the friends and family calling service.

c. For the charge offer, select the provisioning tag that specifies
Friends&Family.

d. Create the charge for the charge offer.

e. For the charge, include the generic selector with the Friends&Family rule.

Tip:

You associate the friends and family rule in the generic selector with
a result: a string value that maps to the rule, such as
Friends&Family. At run time, ECE uses this result in the charge to
apply different rates for calls to friends and family.

5. Verify that the ECE Pricing Updater is started.

6. Publish the PDC pricing data to ECE.

The Pricing Updater synchronizes the pricing data to ECE.

7. Verify that EM Gateway is started.

8. In BRM, create the customer account, purchase the charge offer, and configure
the friends and family phone numbers.

The BRM customer data updates are incorporated into the ECE cache in real time
through EM Gateway.

9. Generate usage for a friends and family call for the customer.

Use the ECE SDK sample programs to generate usage.

10. Verify that balances are impacted as expected.

After you verify that friends and family calls are processed as expected using the
ready-to-use friends and family sample data in PDC and BRM, create your own friends
and family configurations.

Chapter 24
Verifying that Friends and Family Calls Are Processed

24-10

Verifying That Closed User Group Calls Are Processed
To verify that closed user group calls are processed:

1. Ensure the appropriate provisioning tag is available in BRM by doing the following:

a. Ensure you define a provisioning tag that includes the ClosedUserGroup extended
rating attribute (ERA).

b. Ensure the provisioning tag in BRM contains the same profile specification labels that
are provided in PDC.

The profile specification label that comes in the PDC installation is
CLOSEDUSERGROUP. Specify this label in the provisioning tag when using the
profile specification labels in PDC.

c. (Optional) If you create a new provisioning tag in BRM, rather than using the sample
provisioning tag, run the SyncPDC utility to synchronize the provisioning tag name to
PDC.

2. If not already loaded, load the sample profile attribute specification for closed user group
into PDC.

The sample XML file is available at the following:

• For service-based closed user group samples:

PDC_home/apps/Samples/Examples/
Sample_ServiceCUG_ProfileSpecification.xml

• For customer-based closed user groups that work with sample data:

PDC_home/apps/Samples/Examples/OOB_ProfileSpecifications.xml

Use the PDC ImportExportPricing utility to load the XML file into the PDC database.

Tip:

Closed user group profiles are rating profiles (known as extended rating
attributes in BRM) that have a closed-user-group affiliation. The closed-user-
group affiliation is enabled by setting the useDynamicIdentifier field to true in
the PDC profile attribute specification.

3. If not already loaded, load the sample custom analyzer rule for closed user group into
PDC.

The sample XML file is available at the following:

• For service-based closed user group samples:

PDC_home/apps/Samples/Examples/Sample_ServiceCUG_CR.xml

• For customer-based closed user groups that work with sample data:

PDC_home/apps/Samples/Examples/OOB_CRs.xml

OOB_CRs.xml contains three custom rules: Friends&Family and
ClosedUserGroup and SpecialDay. These custom rules are designed to be used
specifically with generic selectors.

Use the PDC ImportExportPricing utility to load the XML file into the PDC database.

Chapter 24
Verifying That Closed User Group Calls Are Processed

24-11

4. In PDC, configure the charge offer for closed user group calls by doing the
following:

a. Create a generic selector with the ClosedUserGroup custom analyzer rule.

b. Create the charge offer for the closed user group calling service.

c. For the charge offer, select the provisioning tag that specifies
ClosedUserGroup.

d. Create the charge for the charge offer.

e. For the charge, include the generic selector with the ClosedUserGroup rule.

Tip:

You associate the closed user group rule in the generic selector with
a result: a string value that maps to the rule, such as
ClosedUserGroup. At runtime, ECE uses this result in the charge to
apply different rates for calls to the closed user group.

5. Verify that Pricing Updater is started.

6. Publish the PDC pricing data to the ECE rating engine.

Pricing Updater synchronizes the pricing data to ECE.

7. Verify that EM Gateway is started.

8. In BRM, for both the calling customer and the called customer, create the
customer account, purchase the charge offer, and configure the required closed-
user-group-profile information for the customer.

For example, if the closed user group profile is at the customer level, specify the
closed user group phone number. If the closed user group profile is at the service
level, specify the closed user group name.

The BRM customer data updates are incorporated into the ECE cache in real time
through EM Gateway.

9. Generate usage for a closed user group call for the calling customer.

Use the ECE SDK sample programs to generate usage.

10. Verify that balances are impacted as expected.

Once you verify that closed user group calls are processed as expected using the
closed user group sample data in PDC and BRM, create your own closed user group
configurations.

Verifying That Balance Impacts Are Assigned to Bill Items
To verify that balance impacts are assigned to bill items according to your business
rules:

Chapter 24
Verifying That Balance Impacts Are Assigned to Bill Items

24-12

Note:

Before loading item type selectors into PDC, make a backup copy of the
customized config_item_tags.xml and config_item_types.xml files in BRM.

1. Ensure that a storable class for each bill item type is available in BRM.

If you are verifying that ECE can apply balance impacts to a custom bill item, ensure the
custom storable class is available in BRM. For example, /item/custom.

2. If not already loaded, load the item type selector into PDC.

The item type selector contains item specifications and item type selector rules.

You associate item type selector rules with an item tag: a string value that maps to the
item type. At runtime, ECE evaluates your item-type-selector rule. The result of the rule
evaluation is a unique item type. ECE assigns balance impacts to the bill item associated
to the item type.

Item-type-selector XML files are available at PDC_home/apps/Samples/Examples.

Use the PDC ImportExportPricing utility to load the item-type-selector XML file into the
PDC database.

3. Verify that Pricing Updater is started.

4. Verify that EM Gateway is started.

5. In BRM, create the customer account and purchase the charge offer for the service
associated with the bill items for which you are verifying bill-item assignment.

The BRM customer data updates are incorporated into the ECE cache in real time
through EM Gateway.

6. Generate usage for the customer that impacts the bill items for which you are verifying
bill-item assignment.

Use the ECE SDK sample programs to generate usage.

7. Run billing.

8. Verify that balance impacts are assigned to bill items as expected.

Verifying That Payloads Are Correctly Formed
To debug rating errors, you may need to verify that payloads in usage requests are correctly
formed. You can view payloads in the RequestSpecification cache by using the following
CohQL command and piping the contents to a file:

select toSpecFormat() from RequestSpecification

The RequestSpecification cache contains read-only information.

If you identify an issue with a payload, correct the issue in PDC as follows:

1. Export the event object.

2. Update the XML with the corrections.

3. Re-import the event object.

Chapter 24
Verifying That Payloads Are Correctly Formed

24-13

After the event object is re-imported, PDC re-publishes the event object, and
Pricing Updater updates the event definition in ECE in the RequestSpecification
cache accordingly.

Chapter 24
Verifying That Payloads Are Correctly Formed

24-14

Part VII
ECE Utilities

This part provides information about the utilities provided with Oracle Communications Elastic
Charging Engine (ECE). It contains the following chapters:

• Charging Utilities

25
Charging Utilities

You learn about syntax and parameters used by the Oracle Communications Elastic Charging
Engine (ECE) charging utilities.

Topics in this document:

• query

query
Use the query utility to launch the Oracle Coherence query client and run queries against the
ECE Coherence cache. You can use the utility to write scripts that interact with the ECE
domain objects, creating CohQL queries. The utility supports all ECE caches and objects. For
more information, see "Using the query Utility to Test ECE".

You can run this utility in interactive mode or non-interactive mode.

Location

ECE_home/bin

Syntax: Interactive Mode

./query.sh
Coherence Command Line Tool
CohQl>

Syntax: Non-Interactive Mode

./query.sh [-t] [-c] [-s] [-e] [-l "statement"] [-f filename] [-h]
 [-P "CohQLquery"]

Parameters: Non-Interactive Mode

-t
Enables trace mode for printing debugging information.

-c
Specifies to exit the utility after processing all command-line arguments.

Note:

Do not use this argument when redirecting from standard input, because the utility
exits as soon as the command-line arguments have been processed and the
redirected input will never be read.

25-1

-s
Runs the utility in silent mode. This allows the utility to be used in pipes or filters by
redirecting to standard input and standard output.

-e
Runs the utility in extended language mode. This mode allows object literals in update
and insert commands.

-l "statement"
Runs the specified CohQL statement. Enclose your CohQL statements in single or
double quotes.
For more information about CohQL statements, see "Using Coherence Query
Language" in Oracle Fusion Middleware Developing Applications with Oracle
Coherence.

-f filename
Processes the CohQL statements in the specified file. The statements in the file must
be separated by a semicolon (;). The file is an operating system-dependent path and
must be enclosed in single or double quotes.

-P "CohQLquery"
Runs the specified CohQL SELECT query against the database. You can run the
select Count() and select Value() queries. If you include a WHERE clause, it
supports the condition Customer_id = 'value'. For example:

./query.sh -P "select value() from Customer where Customer_id =
'Cust#6500000242'"

For more information about CohQL queries, see "Using Coherence Query Language"
in Oracle Fusion Middleware Developing Applications with Oracle Coherence.

-h
Displays the syntax for this utility.

Results

Look in the ECE_home/logs/query_out.log file for errors.

Note:

Oracle recommends that you not query the cache for the entire list of
customer information. Filtered/ selected query is recommended because the
complete customer list would cause ECE to crash.

Chapter 25
query

25-2

A
Sample Notification Payloads

You can use the sample notification payloads to view the format of notifications that Oracle
Communications Elastic Charging Engine (ECE) publishes into the JSM notification queue.

Topics in this document:

• Aggregated Threshold Breach Event (Aggregated Based on Balance Element ID)

• Billing Event

• Credit Ceiling Breach Event

• Credit Floor Breach Event

• Custom Notification for BRM Gateway

• External Top-up Event

• First Usage Validity

• Life-Cycle Transition

• Replenish POID ID Event

• Spending Limit

• Subscriber Preference Event

• Threshold Breach Event (Breach Direction Down)

• Threshold Breach Event (Breach Direction Up)

• Top-up Event

Aggregated Threshold Breach Event (Aggregated Based on
Balance Element ID)

The payload published for an aggregated threshold breach (aggregated based on Balance
Element ID) uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <AggregatedCreditThresholdBreachNotification>
 <NotificationType>AGGREGATED_THRESHOLD_BREACH_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>123</PublicUserIdentity>
 </PublicUserIdentities>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-3.00</CurrentBalance>
 <ThresholdAmount>[-4.5, -3.5]</ThresholdAmount>
 <ThresholdPercent>[55.0, 65.0]</ThresholdPercent>
 <BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>

A-1

 </AggregatedCreditThresholdBreachNotification>
</Notification>

Billing Event
The payload published for a billing notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <BillingNotification>
 <NotificationType>BILLING_NOTIFICATION_EVENT</NotificationType>
 <CustomerId>12345</CustomerId>
 <BillingUnitId>2345</BillingUnitId>
 <ExternalReference>1</ExternalReference>
 </BillingNotification>
</Notification>

Credit Ceiling Breach Event
The payload published for a credit limit ceiling breach uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditCeilingBreachNotification>
 <NotificationType>CREDIT_CEILING_BREACH_EVENT</NotificationType>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>1.00</CurrentBalance>
 <CreditCeiling>0</CreditCeiling>
 <AlertType>2</AlertType>
 <Reason>0x01</Reason>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </CreditCeilingBreachNotification>
</Notification>

Credit Floor Breach Event
The payload published for a credit limit floor breach uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditFloorBreachNotification>
 <NotificationType>CREDIT_FLOOR_BREACH_EVENT</NotificationType>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-1.00</CurrentBalance>
 <CreditFloor>0</CreditFloor>
 <AlertType>2</AlertType>
 <Reason>0x01</Reason>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </CreditFloorBreachNotification>
</Notification>

Appendix A
Billing Event

A-2

Custom Notification for BRM Gateway
The payload published for a custom notification that is targeted for BRM Gateway uses the
following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification version="3.0.0.0.0">
<CustomNotification>
 <NotificationType>CUSTOM_EVENT_NOTIFICATION_EVENT</NotificationType>
 <OpCode>CUST_MODIFY_CUSTOMER<OpCode>
 <CustomDataMap>
 <CustomDataKey>CustomerId</CustomDataKey>
 <CustomDataValue>123</CustomDataValue>
 </CustomDataMap>
 <CustomDataMap>
 <CustomDataKey>BalanceId</CustomDataKey>
 <CustomDataValue>456</CustomDataValue>
 </CustomDataMap>
 <CustomDataMap>
 <CustomDataKey>CustomerId</CustomDataKey>
 <CustomDataValue>123</CustomDataValue>
 </CustomDataMap>
 <CustomDataMap>
 <CustomDataKey>BalanceId</CustomDataKey>
 <CustomDataValue>456</CustomDataValue>
 </CustomDataMap>
</Notification>

External Top-up Event
The payload published for a external top-up notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <ExternalTopUpNotification>
 <NotificationType>EXTERNAL_TOP_UP_NOTIFICATION_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>1000000</PublicUserIdentity>
 </PublicUserIdentities>
 <CustomerId>137826171</CustomerId>
 <ExternalReference>1</ExternalReference>
 <RequestTime>1325269800000</RequestTime>
 <Id>RECHARGE_ID1</Id>
 <BalanceImpact>
 <ProductId>137826171</ProductId>
 <ProductType>VOICE</ProductType>
 <BalanceItemImpact>
 <BalanceItemId>1</BalanceItemId>
 <BalanceElementCode>FSEC</BalanceElementCode>
 <Quantity>-10</Quantity>
 <ExtendValidityFlag>false</ExtendValidityFlag>
 <ValidFrom>1325269800000</ValidFrom>
 <ValidTo>1388514600000</ValidTo>
 </BalanceItemImpact

Appendix A
Custom Notification for BRM Gateway

A-3

 </BalanceImpact>
 <SubscriberPreferences>
 <SubscriberPreference PublicUserIdentity="1000001:VOICE,
1000000:VOICE">
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>French</PreferenceValue>
 </SubscriberPreferencesInfo>
 </SubscriberPreference>
 </SubscriberPreferences>
 </ExternalTopUpNotification>>
</Notification>

First Usage Validity
The payload published for a first usage validity notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <FirstUsageValidityNotification>
 <NotificationType>FIRST_USAGE_VALIDITY_INIT_NOTIFICATION_EVENT</
NotificationType>
 <CustomerId>12345</CustomerId>
 <ExternalReference>1</ExternalReference>
 <BalanceId>12345</BalanceId>
 <validity>
 <BalanceElementId>100025</BalanceElementId>
 <BalanceItemId>1</BalanceItemId>
 <ValidFrom>1325269800000</ValidFrom>
 <ValidTo>1388514600000</ValidTo>
 </validity>
 <SubscriberPreferences>
 <SubscriberPreference PublicUserIdentity="1000001:VOICE,
1000000:VOICE">
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>French</PreferenceValue>
 </SubscriberPreferencesInfo>
 </SubscriberPreference>
 </SubscriberPreferences>
 </FirstUsageValidityNotification>
</Notification>

Life-Cycle Transition
The payload published for a life cycle transition notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <LifeCycleTransitionNotification>
 <NotificationType>LIFECYCLE_TRANSITION_NOTIFICATION_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>0049100120</PublicUserIdentity>
 </PublicUserIdentities>
 <CustomerId>3135579</CustomerId>
 <ExternalReference>1</ExternalReference>
 <ProductId>3134811</ProductId>
 <ProductType>TelcoGsmTelephony</ProductType>
 <LifecycleState>103</LifecycleState>

Appendix A
First Usage Validity

A-4

 <ExpirationTime>1439653419867</ExpirationTime>
 <SubscriberPreferences>
 <SubscriberPreference PublicUserIdentity="316-20150813-143831-0-21484--153892112-
slc06bui:TelcoGsmTelephony, 0049100120:TelcoGsmTelephony">
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>French</PreferenceValue>
 </SubscriberPreferencesInfo>
 </SubscriberPreference>
 </SubscriberPreferences>
 </LifeCycleTransitionNotification>
</Notification>

Replenish POID ID Event
The payload published for a replenish POID ID notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <ReplenishPoidIdNotification>
 <NotificationType>REPLENISH_POID_ID_NOTIFICATION_EVENT</NotificationType>
 <SchemaName>1</SchemaName>
 <Quantity>10000</Quantity>
 </ReplenishPoidIdNotification>
</Notification>

Spending Limit
The payload published for a spending limit notification uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <SpendingLimitNotification>
 <NotificationType>SPENDING_LIMIT_NOTIFICATION</NotificationType>
 <CustomerId>340876</CustomerId>
 <PublicUserIdentities>
 <PublicUserIdentity>9986068473</PublicUserIdentity>
 <PublicUserIdentity>login123</PublicUserIdentity>
 </PublicUserIdentities>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>2</CurrentBalance>
 <ConsumedReservation>3</ConsumedReservation>
 <Unit>MegaBytes</Unit>
 <Breaches>
 <OfferProfileName>Offer1</OfferProfileName>
 <LabelName>Fair Usage</LabelName>
 <StatusLabel>low qos</StatusLabel>
 <DeltaToNextThreshold>8</DeltaToNextThreshold>
 </Breaches>
 <DuplicateEvent>True</DuplicateEvent>
 </SpendingLimitNotification>
</Notification>

Subscriber Preference Event
The payload published for creating a subscriber preference notification uses the following
format:

Appendix A
Replenish POID ID Event

A-5

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreateSubscriberPreference>
 <NotificationType>SUBSCRIBER_PREFERENCE_NOTIFICATION_EVENT</
NotificationType>
 <CustomerId>340876</CustomerId>
 <ProductInfo>
 <ProductId>12345</ProductId>
 <PublicUserIdentities>
 <PublicUserIdentity>9886753556</PublicUserIdentity>
 <PublicUserIdentity>login</PublicUserIdentity>
 </PublicUserIdentities>
 </ProductInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>English</PreferenceValue>
 </SubscriberPreferencesInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Channel</PreferenceName>
 <PreferenceValue>Email</PreferenceValue>
 </SubscriberPreferencesInfo>
 </CreateSubscriberPreference>
</Notification>

The payload published for modifying a subscriber preference notification uses the
following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <ModifySubscriberPreference>
 <NotificationType>SUBSCRIBER_PREFERENCE_NOTIFICATION_EVENT</
NotificationType>
 <CustomerId>customer1</CustomerId>
 <ProductInfo>
 <ProductId>12345</ProductId>
 <PublicUserIdentities>
 <PublicUserIdentity>9886753556</PublicUserIdentity>
 <PublicUserIdentity>login</PublicUserIdentity>
 </PublicUserIdentities>
 </ProductInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>English</PreferenceValue>
 </SubscriberPreferencesInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Channel</PreferenceName>
 <PreferenceValue>Email</PreferenceValue>
 </SubscriberPreferencesInfo>
 </ModifySubscriberPreference>
</Notification>

The payload published for deleting a subscriber preference notification uses the
following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <DeleteSubscriberPreference>
 <NotificationType>SUBSCRIBER_PREFERENCE_NOTIFICATION_EVENT</
NotificationType>
 <CustomerId>customer1</CustomerId>
 <ProductInfo>

Appendix A
Subscriber Preference Event

A-6

 <ProductId>12345</ProductId>
 <PublicUserIdentities>
 <PublicUserIdentity>9886753556</PublicUserIdentity>
 <PublicUserIdentity>login</PublicUserIdentity>
 </PublicUserIdentities>
 </ProductInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Language</PreferenceName>
 <PreferenceValue>English</PreferenceValue>
 </SubscriberPreferencesInfo>
 <SubscriberPreferencesInfo>
 <PreferenceName>Channel</PreferenceName>
 <PreferenceValue>Email</PreferenceValue>
 </SubscriberPreferencesInfo>
 </DeleteSubscriberPreference>
</Notification>

Threshold Breach Event (Breach Direction Down)
The payload published for a threshold breach (breach direction up) uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditThresholdBreachNotification>
 <NotificationType>THRESHOLD_BREACH_EVENT</NotificationType>
<PublicUserIdentities>
 <PublicUserIdentity>123</PublicUserIdentity></PublicUserIdentities>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-4.00</CurrentBalance>
 <ThresholdAmount>-4.5</ThresholdAmount>
 <ThresholdPercent>55.0</ThresholdPercent>
 <BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
 <AlertType>2</AlertType>
 <Reason>0x01</Reason>
 <OperationType>USAGE</OperationType>
 <SubOperationType>INITIATE</SubOperationType>
 </CreditThresholdBreachNotification>
</Notification>

Threshold Breach Event (Breach Direction Up)
The payload published for a threshold breach (breach direction up) uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <CreditThresholdBreachNotification>
 <NotificationType>THRESHOLD_BREACH_EVENT</NotificationType>
 <BalanceElementId>840</BalanceElementId>
 <BalanceElementCode>USD</BalanceElementCode>
 <CurrentBalance>-4.00</CurrentBalance>
 <ThresholdAmount>-4.5</ThresholdAmount>
 <ThresholdPercent>55.0</ThresholdPercent>
 <BreachDirection>THRESHOLD_BREACH_UP</BreachDirection>
 </CreditThresholdBreachNotification>
</Notification>

Appendix A
Threshold Breach Event (Breach Direction Down)

A-7

Top-up Event
The payload published for a top-up uses the following format:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Notification>
 <RARNotification>
 <NotificationType>TOP_UP_NOTIFICATION_EVENT</NotificationType>
 <PublicUserIdentities>
 <PublicUserIdentity>123</PublicUserIdentity>
 <PublicUserIdentity>456</PublicUserIdentity>
 </PublicUserIdentities>
 <ActiveSessions>
 <ActiveSessionId>SESSION1</ActiveSessionId>
 <ActiveSessionId>SESSION2</ActiveSessionId>
 </ActiveSessions>
 <ProductType>VOICE</ProductType>
 <ProductId>test</ProductId>
 <CustomerId>12345</CustomerId>
 <DuplicateEvent>True</DuplicateEvent>
 </RARNotification>
</Notification>

Enriched Notification
The payload published for a custom enriched notification with the customDataMap
populated with attributes like original balance, current balance, event timestamp, etc:

[ThresholdBreachServiceEventImpl{ balanceId='BALANCE', beCode='USD', beId=840,
 currentBalance=-179.00, thresholdAmount=-180,
publicUserIdentities='[6500000001]',
 thresholdPercentage=10.0, breachDirection='THRESHOLD_BREACH_UP',
alertType='2', reason='0x01',
 validityUpdateOnly='false', customerId='CUSTOMER',
eventTimeStamp='2024-01-17T08:50:17.096Z',
 operationType='USAGE',

subOperationType='UPDATE'[ExternalNotifiableServiceEventImpl{sessionId='null',
 clientRoutingData=null[ThresholdBreachServiceEventImpl{serviceEventId=null,
 serviceEventType=THRESHOLD_BREACH_EVENT, notificationVersion=7.0.0.0.0,
 customDataMap={OriginalBalance=UnitValue{quantity=0, unit=Occ},
CalledNumber=650000002,
 NotificationType=THRESHOLD_BREACH_EVENT,
CurrentBalance=UnitValue{quantity=-50.0, unit=Occ},
 EventTimeStamp=2024-01-17T08:50:17.096Z,
ExtensionThresholdKey1=ExtensionThresholdValue1,
 CustomerId=CUSTOMER, SessionId=SESSION ID, BalanceId=BALANCE,
CallingNumber=6500000001},
 puidPrefMap={}}]'}]'}]

Appendix A
Top-up Event

A-8

B
Specifications and Standards Compliance in
ECE

Learn about the specifications and standards used in Oracle Communications Elastic
Charging Engine (ECE).

Topics in this document:

• About Specifications and Standards Compliance

About Specifications and Standards Compliance
The ECE charging API aligns with the Remote Authentication Dial In User Service (RADIUS)
Accounting Request for Comments (RFC) specifications and with the standards described in
the 3rd Generation Partnership Project (3GPP) Technical Specifications (TS). ECE charging
supports any 3GPP sub-domain; some are listed here as examples:

• PS (Packet Switched) connections

• CS (Circuit Switched) connections

• WLAN (Wireless Local Area Network)

• IMS (IP-Multimedia Subsystem)

• PCRF (Policy and Charging Rules Function) and Sy/Sp (Sh) interfaces

The ECE charging API is extensible; it can accommodate proprietary extensions of the
standards.

The ECE Java API aligns with the Diameter Ro, Diameter CCA, Diameter Rf, and RADIUS
message formats. Network mediation software programs (client applications) that support
these protocols can send usage requests to ECE.

The following 3GPP Technical Specifications (TS) relate to ECE charging functionality.

• "3GPP TS 32.240 Telecommunication management; Charging management; Charging
architecture and principles"

For online charging, ECE exposes a Java API based on Diameter Ro, which is extensible
for supporting any extension or variation.

ECE implements the following functionality for online charging:

– Online Charging Function modules:

* Session Based Charging Function (SBCF)

* Event Based Charging Function (EBCF)

– Rating Function (RF)

– Account Balance Management Function (ABMF)

• "3GPP TS 32.260 Telecommunication management; Charging management; IP
Multimedia Subsystem (IMS) charging"

B-1

• "3GPP TS 32.290 Telecommunication management; Charging management; 5G
system; Services, operations and procedures of charging using Service Based
Interface (SBI)

• "3GPP TS 32.299 Telecommunication management; Charging management;
Diameter charging applications"

For offline charging, ECE exposes a Java API based on DIAMETER Rf, which can
be called from the offline mediation system. The Java interface has functionality
close to that of the Rf interface described in 3GPP 32.299 and is extensible for
supporting any extension or variation.

Oracle Communications Offline Mediation Controller uses this interface to load
CDRs into ECE for charging.

• GB922 TM Forum Information Framework (SID).

The following RADIUS RFCs relate to ECE charging functionality.

• RFC 2865, "Remote Authentication Dial In User Service (RADIUS)," June 2000,
RADIUS. Updated by: RFC 2868, RFC 3575, RFC 5080.

• RFC 2866, RFC 2867, RFC 2868, RFC 2869, RFC 3579

ECE aligns with the Diameter Credit-Control Application charging functionality
described in Internet Engineering Task Force (IETF) Network Working Group RFC
4006.

The following 3GPP Technical Specifications (TS) relate to the Policy and Charging
Rules Function (PCRF) and ECE:

• "3GPP TS 29.219 Policy and charging control: Spending limit reporting over Sy
reference point"

The Sy interface is located between the PCRF and Online Network Mediation
Controller. It enables the transfer of customer spending information.

• "3GPP TS 29.329 Sh interface based on the Diameter protocol"

The Sp (implemented as Sh) interface is located between the SPR (Subscription
Profile Repository) and PCRF. It enables the retrieval of customer identities and
profile information.

Appendix B
About Specifications and Standards Compliance

B-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 About Configuring Charging in Elastic Charging Controller
	About Usage Charging in ECE
	About Configuring Usage Charging in ECE
	About Balance Management in a Prepaid Session

	Part I Using the ECE Java API
	2 About the ECE API
	About the ECE API
	About the Charging API
	About Charging Operation Types

	About the Authentication API
	About the Custom Plug-in APIs

	3 Configuring Multiple Services Credit Control
	About Multiple Services Credit Control

	4 Advice of Charge and Advice of Promotion
	About Advice of Charge
	About Advice of Promotion

	5 Configuring Top-Ups
	Integrating Top-Up Clients
	Detecting Duplicate Top-Up Requests
	Using the Top-Up API

	6 Configuring Balance Queries
	Integrating Balance Query Clients
	About Sending Authentication Queries
	About Sending Balance Queries
	Configuring Debit Request History
	About Balance Query Requests

	Part II Working with BRM
	7 Synchronizing Data Between ECE and the BRM Database
	About Synchronizing Data Between BRM and ECE
	Setting Up Synchronization between BRM and ECE
	Enabling Real-Time Synchronization of BRM and ECE Customer Data Updates
	Configuring the Connection Manager to Get Real-Time Balances for a Service from ECE

	How ECE Gets Historical Data From the BRM Database

	8 Loading ECE Rated Events into BRM
	About Sending Rated Events to the BRM Database
	Adding a Rated Event Publisher Instance
	Configuring Rated Event Publisher
	Configuring Item Assignment for Rated Events
	Configuring Life Cycle States in ECE for BRM
	Including or Excluding a Customer’s Remaining Balance in Rated Events
	Accessing ECE Configuration MBeans

	9 Generating POIDs for Rated Events
	About Generating POIDs in ECE
	Configuring ECE to Generate POIDs for Prepaid Events
	Enabling Prepaid Event Partitions in BRM
	Configuring Cluster ID
	Enabling POID Generation for Prepaid Events in ECE

	Part III Managing ECE Notifications
	10 Configuring Notifications in ECE
	About ECE Notifications
	Enabling External Notifications in ECE
	Enabling Specific Notification Types
	Configuring ECE To Publish External Notifications to a Single Topic
	Enabling In-Session Group Notifications in ECE
	Including Rollover Balances in Notifications
	Enriching Notifications Using ECE Extensions
	Configuring BRM Gateway to Process ECE Notifications
	Configuring the BRM Gateway
	Configuring Multiple BRM Gateway for Multi-Schema Deployments
	Connecting BRM Gateway to Kafka Topics and BRM
	Configuring WebLogic Queues for BRM Gateway
	WebLogic Server Configuration Settings for the connectionFactory

	Considerations for Using a Non-WebLogic Server JMS Provider

	Modifying JMS Credentials for Publishing External Notifications

	11 Configuring Subscriber Preferences
	Configuring Subscriber Preferences
	Maintaining Subscriber Preferences with Customer Center
	About Regulating Permissions to Update Subscriber Preferences

	Configuring ECE to Enrich External Notifications with Subscriber Preference Information
	Customizing Subscriber Preferences
	Configuring Group Notifications

	Part IV Managing Charging Sessions
	12 Managing Midsession-Rated Events
	Configuring ECE to Generate Midsession-Rated Events
	Generating Midsession-Rated Events When USU Block Missing
	Configuring Non-Linear Rating for Tariff Changes
	Enabling Non-Linear Rating for Midsession-Rating Condition Changes
	Configuring ECE to Support Tariff Time Change
	Customizing the Worst-Case Charging Reservation
	Sample Non-Linear Rating for Tariff Changes

	Viewing Reason for Midsession-Rated Event

	13 Managing Online Charging Sessions
	Configuring ECE to Support Prepaid Usage Overage
	Managing Dynamic Charging Overrides for Online Sessions
	Processing Granted Allowances Before Applying Usage Charges
	Enabling Server-Initiated Reauthorization Requests
	Customizing Server-Initiated Reauthorization for Sharing Groups

	Configuring ECE to Return Remaining-Balance Information in Usage Responses
	Configuring Taxation in ECE
	Managing Direct Debit Data in ECE Cache
	Configuring How ECE Manages Active Sessions When Network Elements Fail
	Configuring ECE to Redirect Subscriber Sessions to a Service Portal
	Enabling Match Factor in ECE
	Configuring Diameter Gateway to Bypass Rating During ECE Downtime
	Managing the Persistence of Usage Requests During ECE Downtime
	Replaying Persisted Requests into ECE

	Accessing ECE Configuration MBeans
	Customizing Consumption Order of Loan and Principal Balances

	14 Managing Session Start and End Times
	Using Session Connect Time for Charging
	Optimizing Network Signaling
	Configuring ECE to Align Validity Start and End of Conditional Balance Impacts and Charge Offers

	15 Managing Reservations for Online Sessions
	Configuring Reservation Expiration and Validity
	Configuring a Minimum Quantity for Reservation
	Configuring Reservation Quota for Services
	Managing Dynamic Quotas for Online Sessions
	Triggering RAR Notifications for Ongoing Sessions

	16 Managing Rounding and Consumption Rules
	Configuring Rounding for a Resource
	Configuring Rounding for Reverse Rating on Multiple RUMs
	Configuring Systemwide Consumption Rules for Balances

	Part V Integrating with External Systems
	17 Connecting ECE to a 5G Client
	About the HTTP Gateway
	About Determining the Charging Type
	About Sending Notifications to HTTP Gateway

	Integrating HTTP Gateway with 5G Networks
	Configuring Registration Details for the HTTP Gateway Server
	Configuring Multiple Primary and Secondary NRF Registration Servers

	Configuring NF Services
	Configuring HTTP Gateway for Convergent Charging
	Editing the HTTP Gateway Mediation Specification File
	Connecting ECE to Kafka Topics
	Configuring ECE to Send Notifications to HTTP Gateway
	Recording Failed ECE Usage Requests
	Configuring Communication through SCP
	Starting the HTTP Gateway

	Using the ECE REST API

	18 Generating CDRs for External Systems
	About Using the HTTP Gateway
	About Generating CDRs
	About Saving CDR Files to Disk
	About the CDR Generation Process
	Setting Up ECE to Generate CDRs
	Accessing ECE Configuration MBeans
	Configuring HTTP Gateway for CDR Generation
	Configuring the CDR Gateway
	Configuring the CDR Formatter
	Configuring the CDR Formatter Plug-in

	About Trigger Types
	Triggers for Convergent Charging Events
	Triggers for Roaming Events

	19 Connecting ECE to a Diameter Client
	Overview of Network Integration Using Diameter Gateway
	Network Integration for Sp and Sy Interface (Policy) Requests
	Network Integration for Gy Interface Requests
	How Diameter Gateway Creates Usage Requests
	About Usage Request Fixed Attributes

	Editing the Mediation Specification File
	Network Integration for Gy Balance Query Requests
	Network Integration for Gy Top-Up Requests
	Sending Multiple-Service Credit Control (MSCC) Requests from Diameter Gateway
	Configuring Subscriber ID Lookups

	Adding Custom AVPs for Usage Requests
	Using Incremental or Cumulative Accounting for Usage Requests
	Configuring Accounting Mode for Diameter Gateway

	Configuring WebLogic Queues for Notifications
	Configuring Alternative Diameter Peers for Notifications
	Viewing Active Diameter Peers

	Configuring ECE for Apache Kafka
	Handling Requests When Charging Servers Are Unavailable
	Recording Failed ECE Usage Requests
	Including Loan Sub-balance in Balance Queries

	20 Connecting ECE to a RADIUS Client
	Overview of Authentication and Accounting Using RADIUS Gateway
	About RADIUS Gateway Authentication
	Authenticating Access Requests by Using PAP
	Authenticating Access Requests by Using CHAP
	Authenticating Access Requests by Using EAP
	Loading Data Keys Extracted from BRM into ECE
	Customizing the RADIUS Data Dictionary
	About the RADIUS Data Dictionary
	Creating a Custom Data Dictionary
	Selecting a RADIUS Data Dictionary When Using Different NAS Vendors
	Adding Custom Vendor-Specific Attributes

	Loading the RADIUS Mediation Specification Data
	About Mapping RADIUS Network Attributes to Event Attributes
	Mapping RADIUS Network Attributes to Event Attributes

	About RADIUS Gateway Accounting
	About Accounting-Start and Accounting-Stop Requests
	About Accounting-On and Accounting-Off Requests
	About Accounting-Interim-Update Requests

	21 Configuring Policy-Driven Charging
	About Policy-Driven Charging
	About Group-Based Policy-Driven Charging
	Policy-Driven Charging Example

	Configuring Policy-Driven Charging
	About ECE and Policy Clients
	How ECE Processes Policy Requests for Online Network Mediation System

	Configuring Breach Tolerance for Policy-Tier Thresholds
	About Integrating Policy Clients with ECE
	About the ECE Sy and Sp Interface
	About the ECE Sy Interface
	About the ECE Sp Interface
	Querying for Extended Subscriber Preference Information in Sp Query

	About a Combined ECE Sy and Sp Interface

	About Calculating Maximum Authorization for Policy-Driven Charging Sessions
	Configuring ECE to Reject Spending Limit Requests Without Counters
	About the Policy Management API

	Part VI Customizing ECE
	22 Customizing Rating
	Operational Considerations
	Configuring Extensions
	About Performance with Extensions
	About Logging in Extensions
	About Extension Exceptions
	About Extension Security

	Extension Points
	BRM Gateway Request Processing Extension Points
	Diameter-Request Processing Extension Points
	HTTP Gateway Request Processing Extension Points
	RADIUS-Request Processing Extension Points
	Authentication Extension Points
	Accounting Extension Points

	Update-Request Processing Extension Points
	Usage-Request Processing Extension Points

	Implementing the Extensions Logic
	BRMCustomOpCodeCall Extension
	CustomAuth Extension
	CustomEAPChallenge Extension
	CustomEncode Extension
	OCSBypass Extension
	PreOCS Extension
	PreProcessor Extension
	PostOCS Extension
	PostOCSBalanceQuery Extension
	Pre-Rating Extension
	Post-Rating Extension
	Rating Extension
	RequestReceived Extension
	Post-Charging Extension
	Post-Update Extension
	Extensions Cache
	Extensions Cache API

	Sample Extensions
	How To Use the Sample Extensions
	Validating Sample Extensions
	BRM Gateway Extension – Creating Opcode Flist
	Diameter Gateway Extension – Gy Service
	Diameter Gateway Extension – Sy Service
	HTTP Gateway Extension – Service
	OCSBypass Extension – Bypassing Rating
	Pre-Rating Extension – Dynamic Quota Management
	Dynamic Quota Management – Modifying Quota Based on Network Type
	Dynamic Quota Management – Modifying Requested Quota
	Dynamic Quota Management – Modifying Default Quota Configuration

	Pre-Rating Extension – Retrieving Function Values for Discount Expressions
	Pre-Rating Extension – Generating Midsession-Rated Event
	Pre-Rating Extension – Overriding Price in Product Offerings
	Post-Rating Extension – Complex Taxation
	Post-Rating Extension – Generating Midsession-Rated Events
	Post-Rating Extension – Adding or Deleting Rating Periods
	Post-Charging Extension – Adding Custom Data to Usage Responses and Notifications
	Post-Charging Extension – Overriding Dynamic Quota
	Post-Charging Extension – Adding or Modifying Redirection Rules
	Post-Charging Extension - Enriching Notifications
	Post-Charging Extension – Creating Custom Notifications for Top Ups
	Post-Update Extension – Enriching External Notifications
	Rating/Charging Extension – Triggering RAR Notifications
	Rating Extension – Custom Item Assignment
	Extensions Data Load Sample

	23 ECE Sample Programs
	About the ECE Sample Programs
	Finding the Sample Programs
	Descriptions of the Sample Programs
	Compiling and Running the Sample Programs
	Example of SampleDebitRefundSession
	Compiling and Deploying SampleRatedEventFormatterCustomPlugin

	24 Testing ECE
	About ECE Testing Utilities
	About Loading Sample Data
	About Performance MBean
	Changing Time and Date to Test ECE
	Using the query Utility to Test ECE
	Example: Query the Subscriber Base Balance Summary
	Example: Query a Customer Balance

	Verifying that Usage Requests Can Be Processed
	Starting ECE Nodes in the Cluster
	Running the Simulator to Send Usage Requests
	Verifying that Balances Are Impacted in ECE

	Verifying That ECE Notifications Are Published to the JMS Topic
	Disabling the Publishing of ECE Notifications to the JMS Topic

	Verifying that Friends and Family Calls Are Processed
	Verifying That Closed User Group Calls Are Processed
	Verifying That Balance Impacts Are Assigned to Bill Items
	Verifying That Payloads Are Correctly Formed

	Part VII ECE Utilities
	25 Charging Utilities
	query

	A Sample Notification Payloads
	Aggregated Threshold Breach Event (Aggregated Based on Balance Element ID)
	Billing Event
	Credit Ceiling Breach Event
	Credit Floor Breach Event
	Custom Notification for BRM Gateway
	External Top-up Event
	First Usage Validity
	Life-Cycle Transition
	Replenish POID ID Event
	Spending Limit
	Subscriber Preference Event
	Threshold Breach Event (Breach Direction Down)
	Threshold Breach Event (Breach Direction Up)
	Top-up Event
	Enriched Notification

	B Specifications and Standards Compliance in ECE
	About Specifications and Standards Compliance

