
Oracle® Communications Billing and
Revenue Management
Developer's Guide

Release 15.0
F86242-02
June 2024

Oracle Communications Billing and Revenue Management Developer's Guide, Release 15.0

F86242-02

Copyright © 2017, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxi

Documentation Accessibility xxxi

Diversity and Inclusion xxxi

Part I Introduction to Customizing BRM

1 About Customizing BRM

About Customizing BRM 1-1

Planning Your Customization 1-2

Guidelines for Customizing BRM 1-3

About the BRM Client Access Libraries 1-3

BRM Programming Tools 1-4

2 Implementation Defaults

Defaults for Offering Packages and Bundles to Customers 2-1

Defaults for Creating Customer Accounts 2-2

Defaults for Login Names and Passwords 2-3

Defaults for Validating Customer Account Creation Information 2-3

Defaults for Validating Payment Information 2-4

Defaults for Displaying and Sending Introductory Messages 2-6

Defaults for Billing 2-6

Defaults for Tax Calculation 2-8

Defaults for Payments and A/R 2-9

Defaults for Maintaining an Audit Trail of BRM Activity 2-11

3 Understanding Flists

About Flists 3-1

Opcode Input and Output Specifications 3-2

About Creating and Using an Flist 3-3

iii

Adding Information to Flists 3-3

Removing Data (Pointers) from an Flist 3-4

Copying Data from an Flist 3-4

Destroying Flists 3-5

Flist Creation Samples 3-5

Using Compile-Time Flags to Avoid Errors in Flists (Release 15.0.1 or later) 3-5

Flist Management Rules 3-7

Flist Field Memory Management Guidelines 3-8

Handling Errors 3-10

4 Understanding Storable Classes

About Storable Classes and Objects 4-1

Storable Class Naming and Formatting Conventions 4-2

Subclassing 4-2

About Defining Storable Classes 4-2

Fields Common to All Storable Classes 4-3

Defining New Fields for Storable Classes 4-3

Reading Objects 4-4

Locking Objects when Reading them 4-4

Reading an Entire Object 4-4

Reading Fields in an Object 4-5

Creating Objects 4-6

PCM_OP_CREATE_OBJ Opcode Flags 4-6

Writing Fields in Objects 4-7

PCM_OP_WRITE_FLDS Opcode Flags 4-8

Incrementing Fields in Objects 4-8

Updating Decimal Data Types 4-9

Updating Integer Data Types 4-9

PCM_OP_INC_FLDS Opcode Flags 4-10

Deleting Objects 4-10

Deleting Fields in Objects 4-10

Managing a Large Number of Objects 4-11

Creating a Large Number of Objects 4-11

Editing a Large Number of Objects 4-11

Deleting a Large Number of Objects 4-12

Locking Objects when Editing or Deleting a Large Number of Objects 4-12

Improving Performance when Working with Objects 4-13

Locking Specific Objects 4-13

Disabling Granular Object Locking 4-16

iv

5 Understanding the PCM API

About the PCM API 5-1

Context Management Opcodes 5-2

Base Opcodes 5-2

Search and Global Search Opcodes 5-2

FM Opcodes 5-3

About the PREP and VALID Opcodes 5-4

Validating Fields by Using Field Validation Editor 5-4

Header Files 5-4

About Opcode Usage 5-5

About Transaction Usage 5-5

Transaction Handling: Required 5-5

Transaction Handling: Requires New 5-5

Transaction Handling: Supports 5-6

Calling PCM Opcodes 5-6

Manipulating Objects in Custom Applications 5-7

Supporting an Older Version of BRM 5-7

6 Accessing Configuration Files and Objects in Custom Code

Accessing pin.conf Files in Custom Code 6-1

Using /config/business_params Objects 6-2

Adding and Loading New Parameters 6-2

Adding and Loading New Parameter Classes 6-3

Examples of Accessing Business Parameters in Custom Code 6-7

Calling Business Parameters from PCM_OP_PYMT_POL_VALIDATE_PAYMENT 6-8

Calling Business Parameters from PCM_OP_BILL_POL_REVERSE_PAYMENT 6-8

7 Understanding the BRM Data Types

About the BRM Data Types 7-1

Simple Data Types 7-2

Portal Object ID (POID) 7-2

Decimal Data Type 7-3

Arrays 7-4

Substructure 7-4

Buffer Data 7-5

Setting Buffer Data Fields in an Flist 7-5

Getting Buffer Fields From an Flist 7-6

Specifying Buffer Data Fields in Flist Converted to Strings 7-6

v

Error Buffer 7-7

8 Using BRM SDK

About BRM SDK 8-1

About PCM SDK 8-1

BRM SDK Directory Contents 8-1

Deploying New and Customized Components 8-2

Deploying Applications 8-2

Deploying FMs 8-2

Deploying DMs 8-3

Compiling CMs for Purify 8-3

9 Finding Errors in Your Code

Detecting Errors in Your Code 9-1

Individual-Style ebuf 9-1

Series-Style ebuf 9-2

Error Handling Flow 9-2

Logging Errors and Messages 9-3

Diagnosing Application Problems 9-4

Detecting CM and DM Errors 9-4

10

Testing Custom Applications

Testing New or Customized Components 10-1

Testing Custom Applications 10-1

Testing New or Customized Policy FMs 10-1

Testing New or Customized DMs 10-2

Changing the Virtual System Time to Test BRM 10-2

11

Using the testnap Utility to Test BRM

About testnap 11-1

About Buffer Numbers 11-2

Executing Opcodes 11-2

Reading an Object and Fields 11-2

Reading Fields in an Object 11-2

Reading an Object and Writing Its Contents to a File 11-3

Retrieving Objects 11-3

Retrieving the Contents of the First Object Found 11-3

Retrieving the POID Field of the Objects Found 11-4

vi

Creating a New Search Object 11-4

Retrieving Objects One at a Time 11-5

Retrieving a Specific Number of Objects at a Time 11-6

Creating Objects 11-7

Using a Text File to Create an Object 11-7

Using a Here Document to Create an Object 11-7

Manipulating External Buffer Fields 11-8

Reading Data in a Buffer to a File 11-8

Using Buffers to Concatenate Flists 11-9

Setting up Buffers and Displaying the List of Buffers 11-10

Creating and Displaying the Contents of a Buffer 11-10

Sorting an Flist 11-10

Invoking Shell Commands 11-11

Troubleshooting testnap 11-11

Error 27: Connection Error 11-12

Error 4: Login Failure 11-12

Incorrect Database Number 11-13

Error 26: DM Not Running 11-13

Invalid Buffer Index 11-14

Error 56: Failed to Connect 11-14

Part II Customizing BRM Server Components

12

About System and Policy Opcodes

Understanding System and Policy Facilities Modules 12-1

System FM Functions 12-1

Policy FM Functions 12-2

Policy Opcodes 12-2

Using the Policy Opcode Source Files 12-3

Using the Default Implementation with Your Custom Implementation 12-4

Adding a New Policy FM 12-4

13

Writing a Custom Facilities Module

About Implementing Custom FMs 13-1

Creating a New FM 13-1

Defining New Opcodes 13-2

Defining Input and Output Flist Specifications 13-3

Defining New Storable Class and Field Definitions 13-3

Writing a Function to Implement a New Opcode 13-3

Using the fm_post_init Function to Call Nonbase Opcodes at CM Initialization 13-4

vii

Creating an Opcode-to-Function Mapping File 13-4

Creating a Shared Library for a New FM 13-5

About Configuring a New FM into a CM 13-5

Adding a New FM Module to the CM Configuration File 13-6

Initializing Objects for Multiple Processes 13-6

Handling Transactions in Custom FMs 13-6

Managing Memory in Custom FMs 13-7

Opening a New Context in an FM 13-7

Compiling and Linking a Custom FM 13-8

Configuring Your New Policy FM 13-9

Debugging FMs 13-9

14

Writing a Custom Data Manager

About Adding a Custom Data Manager 14-1

About Mapping Objects to Alternate Storage Mechanisms 14-1

About Adding Interfaces to Legacy Systems 14-1

Understanding the Data Manager Interface 14-2

Calling Conventions 14-2

Data Manager Memory Model 14-2

Function Entry Points 14-2

Argument Descriptions 14-3

Creating a Custom Data Manager 14-4

Creating a New Data Manager 14-4

Writing, Compiling, and Linking a Custom DM 14-5

Configuring Your Custom DM 14-5

Starting and Stopping Your Custom DM 14-5

Managing Memory 14-6

Handling Errors 14-6

Configuring Your CM to Use the Custom DM 14-6

Editing Your Custom Opcodes to Access the Custom DM 14-7

15

Creating Custom Fields and Storable Classes

Creating, Editing, and Deleting Fields and Storable Classes 15-1

Modifying the pin.conf File to Enable Changes 15-1

Increasing the Size of the CM Cache for the Data Dictionary 15-2

Using DDL when Updating the Data Dictionary Tables 15-2

Creating Custom Fields 15-2

Creating Custom Storable Classes 15-3

Making Custom Fields Available to Your Applications 15-4

About BRM SDK Opcodes 15-5

viii

Using BRM SDK Opcodes to Manage Storable Classes 15-5

Creating and Modifying Storable Classes 15-6

Retrieving Storable Class Specifications 15-6

Deleting Storable Class Specifications 15-7

Using BRM SDK Opcodes to Manage Field Specifications 15-7

Creating and Modifying Field Specifications 15-8

Retrieving Field Specifications 15-8

Deleting Field Specifications 15-8

Converting Storable Class Files from Previous Versions 15-9

Deploying Custom Fields and Storable Class Definitions 15-9

Extracting Field and Storable Class Definitions with pin_deploy 15-10

Importing Storable Class Definitions with pin_deploy 15-10

Adding Fields to /config Objects 15-11

Using Developer Center to Modify /config Objects 15-11

Using testnap to Modify /config Objects 15-12

16

Storing Customer Profile Information

About Storing Customer Profile Information 16-1

Using Profile Objects to Collect Customer Profiles 16-1

Defining a Profile Subclass 16-1

Creating a Profile Object 16-1

Modifying a Profile Object 16-2

Deleting a Profile Object 16-2

Validating Profile Objects 16-2

17

Auditing Customer Data

Audit Trail Architecture 17-1

About Shadow Objects 17-2

Fields Marked for Auditing by Default 17-3

Enabling Auditing for a Field 17-3

Accessing Audit Trail Information 17-4

Using testnap to Retrieve Shadow Objects 17-5

Purging Archived Audit Data 17-5

18

Encrypting Data

About Encrypting Data 18-1

About AES Encryption 18-1

About Masking Data in Log Files 18-4

Encrypting Fields 18-4

ix

Defining Masked Fields 18-4

About Encrypting Passwords 18-5

About the encryptpassword.pl Script 18-5

Encrypting Passwords Automatically for BRM Base Components 18-6

Encrypting Passwords Manually with OZT 18-7

Encrypting Passwords Manually with AES 18-7

Configuring the Data Manager for AES Encryption 18-8

Configuring the Data Manager for Oracle ZT PKI Encryption 18-8

Generating a Root Encryption Key 18-9

Modifying a Root Encryption Key 18-10

19

Searching for Objects in the BRM Database

About Searching for Objects 19-1

About the Search Input Flist 19-2

Search POID 19-3

Argument List 19-3

Results Array 19-3

Search Query 19-4

Flags 19-4

Search Query Syntax 19-5

About Searching for Objects by Their POID Subcomponent 19-6

Searching for Objects by the POID Database Number 19-7

Searching for Objects by the POID Type 19-7

Searching for Objects by the POID Object ID 19-7

Searching for Objects by the POID Revision Number 19-7

Search Query Syntax for Count-Only Searches 19-8

Search Query Syntax for Calculate-Only Searches 19-8

Using the PIN_FLD_PARAMETERS Field 19-9

Limiting Search Results by Using Row Numbers 19-10

Using the "in" Operator 19-10

Searching Subclasses 19-11

Returning Specific Storable Classes 19-12

Returning Entire Arrays 19-12

Search Template Examples 19-13

Using a Predefined Template 19-13

Defining the Search Template at Runtime 19-15

About Single-Schema Searches 19-16

Performing a Search on a Single Schema 19-17

Performing a Step Search on a Single Schema 19-18

Getting the Next Set of Search Results from a Step Search 19-19

Ending a Step Search 19-20

x

Simple Search Example 19-20

Step Search Example 19-21

Performing Exact Searches 19-24

Using "like" with Exact Searches 19-26

Exact Search Limitations 19-26

Complex Searches 19-27

Complex Search Example 19-28

About Performing Distinct Searches with Ordering and Pagination 19-28

Creating Storable Classes and Database Views for Distinct Searches 19-29

Performing Distinct Searches with Ordering and Pagination 19-29

Modifying Storable Classes for Distinct Searches 19-30

Search without POID 19-30

About Multischema (Global) Searches 19-31

Performing a Global Search 19-32

Performing a Global Step Search 19-33

Getting the Next Set of Search Results from a Global Step Search 19-34

Ending a Global Step Search 19-35

Global Search Example 19-35

Building the POID for the Input Flist 19-36

Building POID for the Input Flist in C 19-36

Building POID for the Input Flist in Java 19-36

The Impact of Searches on Shared Memory Allocation 19-37

Improving Search Performance 19-37

Removing Redundant Distinct Searches 19-37

Step Search Limits 19-38

Transaction Caching 19-38

20

Adding Support for a New Service

About Adding Support for a New Service 20-1

About BRM Services 20-1

About Supporting a New Service 20-1

Creating Service and Event Storable Classes 20-2

Setting Up Rating for a New Service 20-3

Setting Up Pricing Data for Online Rating 20-3

Mapping Event Types to a New Service Storable Class 20-3

Defining RUMs for New Service Usage Events 20-3

Setting Up Provisioning Tags for a New Service 20-3

Defining Impact Categories for a New Service 20-3

Defining Custom Balance Elements for a New Service 20-3

Specifying How to Round Balance Impacts for New Service Usage Events 20-4

Adding a New Service to Your Product Offerings 20-4

xi

Configuring Sub-Balances to Track Specific Types of Usage for a New Service 20-5

Adding Database Partitions for New Service Usage Events 20-5

Loading Rated Events for a New Service into the Database 20-5

Setting Up Billing for a New Service 20-5

Setting Up Account Creation for a New Service 20-5

Setting Up Business Profiles for a New Service 20-5

Optional Support for a New Service 20-5

Synchronizing Data for a New Service with External Applications 20-6

Mapping Devices to a New Service 20-6

Providing Access to a New Service on the Web 20-6

Generating Usage Reports for a New Service 20-6

21

Using BRM Messaging Services

About the UMS Framework 21-1

Enabling Messaging 21-2

Creating and Loading Message Templates 21-3

Generating Messages in the Producer Application 21-3

Retrieving Message Templates 21-3

Retrieving Message Templates from /strings Objects 21-4

Creating Message Objects 21-4

Retrieving Message Objects in the Consumer Application 21-5

22

Using BRM with Oracle Application Integration Architecture

About Oracle Application Integration Architecture 22-1

Installing and Configuring the Required BRM Components 22-1

Integrating BRM Features with External CRM Applications 22-2

Integrating Collections with External CRM Applications 22-2

Integrating Friends and Family Promotions with External CRM Applications 22-3

Displaying Siebel CRM Promotion Names on Invoices 22-3

Integrating BRM Features with External CRM Applications in a Multischema System 22-3

Integrating Account Migrations with External Applications in a Multischema System 22-4

Integrating Collections with External Applications in a Multischema System 22-5

Creating Charge Offers and Discount Offers for an External CRM 22-5

Creating Charge Offers with Different Prices for Multiple Price Lists 22-5

Validating Customer Contact Information 22-5

23

Using Event Notification

About Event Notification 23-1

About the Event Notification List 23-1

xii

Implementing Event Notification 23-2

Merging Event Notification Lists 23-2

Editing the Event Notification List 23-3

Triggering Multiple Opcodes with One Event 23-4

Triggering Custom Operations 23-4

Loading the Event Notification List 23-5

About Notification Events 23-6

24

Writing Custom Batch Handlers

About Batch Handlers 24-1

Configuration Parameters 24-1

Batch Handler Work Flow 24-1

25

Managing Devices with BRM

About the Device Management Framework 25-1

Implementing Device Management 25-1

Creating Devices 25-2

Managing the Device Life Cycle 25-2

Managing Device Attributes 25-3

Associating Devices and Services 25-3

Deleting Devices 25-3

Tracking Device History 25-4

Device Management and Multischema Environments 25-4

Configuring Event Notification for Device Management 25-4

Defining the Device Life Cycle 25-5

Localizing Device State Names 25-6

Customizing Device State Changes 25-7

Defining Device-to-Service Associations 25-7

Creating Custom Device Management Systems 25-8

26

Managing Orders

About Order Manager 26-1

Implementing Order Manager 26-1

Creating Orders 26-2

Processing Order Response Files 26-2

Managing the Order Life Cycle 26-2

Associating or Disassociating Orders with Master Orders 26-3

Managing Order Attributes 26-3

Deleting Orders 26-3

xiii

Tracking Order History 26-4

Managing the Order History Log 26-4

Installing Order Manager 26-4

Uninstalling Order Manager 26-5

Order Management and Multischema Environments 26-5

About Defining the Order Life Cycle 26-5

Creating Custom Order Management Systems 26-7

About the Order Management Opcodes 26-7

Creating /order Objects 26-8

Customizing Order Creation 26-8

Processing Order Response Files 26-9

Customizing Order Processing 26-9

Associating and Disassociating /order Objects 26-9

Customize How to Validate Association and Disassociation 26-10

Updating /order Objects 26-10

Setting the State in /order Objects 26-10

Changing /order Object Attributes 26-11

Deleting /order Objects 26-12

Customizing How to Delete Orders 26-12

Part III Integrating BRM with Enterprise Applications

27

About Enterprise Application Integration (EAI) Manager

About Integrating BRM with Enterprise Applications 27-1

28

Installing EAI Manager

About Installing EAI Manager 28-1

Software Requirements 28-1

Installing EAI Manager 28-1

Increasing Heap Size to Avoid "Out of Memory" Error Messages 28-2

Configuring Event Notification for EAI Manager 28-3

29

Payload Configuration File Syntax

About the Payload Configuration File Syntax 29-1

Publisher Definitions 29-2

Event Definitions 29-3

Element Definitions 29-4

Syntax of Elements and Attributes 29-5

Source 29-5

xiv

Tag 29-6

StartEvent 29-6

EndEvent 29-6

DataFrom 29-6

UseOnlyElement 29-7

UseElementId 29-7

Attribute 29-7

DTD 29-8

PinFld 29-8

Field 29-8

ExtendedInfo 29-9

Search 29-9

SubElement 29-10

Event Flist, Event Definition, and XML Output Example 29-10

30

Filtering which Business Events Are Published

Filtering which Business Events Are Published 30-1

About the Condition Attribute 30-1

About the Condition Definition 30-2

31

Building a Connector Application

Building a Connector Application 31-1

32

Configuring EAI Manager

Configuring the Connection Manager for EAI 32-1

Configuring the EAI DM 32-2

Configuring the Payload Generator EM 32-3

Specifying the Date and Time Format for Business Events 32-4

Defining Infinite Start Date and End Date Values 32-4

Configuring EAI Manager to Publish to an HTTP Port 32-5

33

Configuring Business Events

About BRM Business Events 33-1

About Publishing Additional Business Events 33-2

Setting Up Multiple Publishers and Events 33-2

Defining Business Events 33-2

Removing Events That You Do Not Want to Publish 33-4

Returning Identifiers from Enterprise Applications 33-4

xv

Changing the Format of Published Events 33-4

Validating Your Changes to the Payload Configuration File 33-5

34

EAI DM Functions

AbortTransaction 34-1

CommitTransaction 34-1

FreeGlobalContext 34-2

GetGlobalContext 34-2

Initialize 34-3

OpenTransaction 34-3

PrepareCommit 34-4

PublishEvent 34-4

SetIdentifier 34-5

Shutdown 34-5

Part IV Integrating BRM with an Apache Kafka Server

35

About Integrating BRM with an Apache Kafka Server

About Integrating BRM with Kafka Servers 35-1

About the EAI Framework for the Kafka DM 35-3

About the CM and Notification Events 35-3

About the Kafka DM 35-4

36

Configuring BRM to Publish Notifications to Kafka Servers

Overview of BRM Configuration Tasks for Kafka Servers 36-1

Installing the BRM Kafka DM 36-2

Configuring Thread Pooling for the Kafka DM 36-2

Enabling SSL between Kafka DM and Kafka Server 36-3

Configuring Event Notification for Kafka Servers 36-4

Defining Business Events for Your Kafka Server 36-5

Mapping Business Events to Kafka Topics 36-6

About Setting Topic and Payload Keys 36-6

Adding Headers to Messages 36-7

Adding Separate Payload Settings 36-8

Mapping Flist Fields to Payload Tags 36-9

Editing the dm_kafka_config.xml File 36-11

Configuring the Dynamic Key Value 36-13

Configuring Where to Record Failed Events 36-14

xvi

Customizing Notification Enrichment 36-15

Part V Creating and Customizing Client Applications

37

Adding New Client Applications

About Adding New Client Applications 37-1

Using Existing System Opcodes 37-1

Using Custom Opcodes 37-2

Using a Custom Data Manager (DM) 37-2

Implementing Timeout for Requests in Your Application 37-3

Configuring Your Custom Application 37-3

Creating a Client Application in C 37-4

Compiling and Linking Your Programs 37-5

Guidelines for Developing Applications in C on Linux Platforms 37-5

Using the Sample Applications 37-5

Sample Applications 37-5

Policy FM Source Files 37-6

About Adding Virtual Column Support to Your Applications 37-6

38

Using Transactions in Your Client Application

Using Transactions 38-1

Types of Transactions 38-2

Read-Only Transactions 38-2

Read-Write Transactions 38-2

Transaction with a Locked Objects 38-2

Transaction with a Locked Default Balance Group 38-3

About Committing Transactions 38-3

About Cancelling Transactions 38-4

About the Transaction Base Opcodes 38-4

Customizing How to Open Transactions 38-4

Customizing the Verification Process for Committing a Transaction Opcode 38-4

Customizing How to Commit a Transaction 38-5

Customizing How to Cancel Transactions 38-5

39

Adding or Changing Login Options

About Customizing the Login Account for Your Application 39-1

Creating an Account for Your Application 39-1

Providing Login and Password to Your Custom Application 39-1

Configuring System Passwords 39-2

xvii

Creating Several admin_client Services with Different Permissions 39-2

40

Creating Applications that Run on Multischema Systems

About Working with Multiple Schemas 40-1

Creating Accounts in a Multischema System 40-1

Maintaining Transactional Integrity 40-2

Searching for Accounts across Database Schemas 40-2

Finding How Many Database Schemas You Have 40-3

Bill Numbering 40-3

41

Creating BRM Client Applications by Using the MTA Framework

About the BRM MTA Framework 41-1

BRM MTA Framework Layers 41-2

MTA Stages 41-3

MTA_CONFIG Execution Stage 41-4

MTA_INIT_APP Execution Stage 41-4

MTA_INIT_SEARCH Execution Stage 41-4

Search Execution 41-4

MTA_TUNE Execution Stage 41-5

Job Distribution 41-5

MTA_JOB_DONE Execution Stage 41-5

MTA_EXIT Execution Stage 41-5

MTA_WORKER_INIT Execution Stage 41-5

MTA_WORKER_JOB Execution Stage 41-6

Worker Thread Job Execution 41-6

MTA_WORKER_JOB_DONE Execution Stage 41-6

MTA_WORKER_EXIT Execution Stage 41-6

MTA Global Flist Structure 41-6

Using the BRM MTA Framework 41-8

MTA Callback Functions 41-9

MTA Helper Functions 41-10

MTA Policy Opcode Hooks 41-11

Creating a Multithreaded BRM Client Application 41-12

Searching Different Data Sources 41-12

Displaying Application Help Information 41-13

Error Notifications 41-15

Customizing BRM Multithreaded Client Applications 41-15

Implementing the MTA Policy Opcodes 41-16

Configuring the MTA Policy Opcodes 41-16

Configuring your Multithreaded Application 41-17

xviii

Applying Configuration Entries to Specific Utilities 41-18

Using Multithreaded Applications with Multiple Database Schemas 41-18

MTA Policy Opcode Hooks 41-18

MTA_CONFIG 41-18

MTA_ERROR 41-19

MTA_EXIT 41-19

MTA_INIT_APP 41-19

MTA_INIT_SEARCH 41-20

MTA_JOB_DONE 41-20

MTA_TUNE 41-21

MTA_USAGE 41-21

MTA_WORKER_EXIT 41-21

MTA_WORKER_INIT 41-22

MTA_WORKER_JOB 41-22

MTA_WORKER_JOB_DONE 41-22

MTA Callback and Helper Functions 41-23

pin_mta_config 41-23

pin_mta_exit 41-24

pin_mta_get_decimal_from_pinconf 41-24

pin_mta_get_int_from_pinconf 41-25

pin_mta_get_str_from_pinconf 41-26

pin_mta_global_flist_node_get_no_lock 41-26

pin_mta_global_flist_node_get_with_lock 41-27

pin_mta_global_flist_node_put 41-27

pin_mta_global_flist_node_release 41-28

pin_mta_global_flist_node_set 41-28

pin_mta_init_app 41-29

pin_mta_init_search 41-29

pin_mta_job_done 41-30

pin_mta_main_thread_pcm_context_get 41-31

pin_mta_post_config 41-31

pin_mta_post_exit 41-32

pin_mta_post_init_app 41-32

pin_mta_post_init_search 41-32

pin_mta_post_job_done 41-33

pin_mta_post_tune 41-33

pin_mta_post_usage 41-34

pin_mta_post_worker_exit 41-34

pin_mta_post_worker_init 41-35

pin_mta_post_worker_job 41-35

pin_mta_post_worker_job_done 41-36

pin_mta_tune 41-37

xix

pin_mta_usage 41-37

pin_mta_worker_exit 41-38

pin_mta_worker_init 41-38

pin_mta_worker_job 41-38

pin_mta_worker_job_done 41-39

pin_mta_worker_opcode 41-40

42

Creating Client Applications by Using Java PCM

About Using the Java PCM API 42-1

Software Requirements 42-2

About the Java PCM API and the C API 42-2

Using the Java PCM API 42-2

About Creating Client Applications by Using the Java PCM API 42-3

About Synchronous and Asynchronous Modes 42-3

Actions Performed by BRM Java Client Applications 42-3

Opening a PCM connection 42-3

Using Custom Fields in Java Applications 42-4

Creating Custom Storable Classes 42-4

Calling Custom Opcodes 42-5

Using Synchronous Mode for Opcode Processing 42-5

Getting a Text Format of an Flist 42-5

Handling Exceptions 42-5

Logging Errors and Messages 42-6

Specifying a Timeout Value for Requests 42-6

Using the Asynchronous PCP Mode in Java PCM Client Libraries 42-7

About PCPSelector 42-7

About PortalContextListener 42-8

How Asynchronous Mode for Opcode Processing Works 42-8

Creating Client Applications for Asynchronous Mode of Opcode Processing 42-9

Setting Global Options 42-10

Default Entries in the Infranet.properties File 42-10

Optional Entries in the Infranet.properties File 42-11

Example Infranet.properties File 42-13

Controlling Opcode Logging from a Client Application 42-13

Running the jnap Utility 42-14

Getting Help with jnap 42-14

Example of Using jnap 42-15

About the Sample Program 42-15

xx

43

Creating Client Applications by Using Perl PCM

About the Perl API 43-1

Differences between the Perl API and the C API 43-1

Guidelines for Using the Pcmif Module 43-2

Performing PCM Operations 43-2

44

Creating Client Applications by Using PCM C++

About PCM C++ 44-1

Skills Required 44-1

Installation 44-2

Comparison of the PCM C++ and PCM C APIs 44-2

Understanding PCM C++ Concepts 44-5

Passing Arguments 44-5

Using Arrays 44-6

Using Smart Pointers to Manage Memory 44-6

Construction and Destruction 44-7

Copying and Assignment 44-7

Using Field Value Ownership 44-8

Using PinBigDecimal 44-9

Field Value Ownership 44-9

Using PinBigDecimal with Flists 44-9

Using the toString() Method 44-10

Using the Divide Method 44-10

Using a Null Pointer 44-11

Handling Exceptions 44-11

Logging to pinlog 44-13

Accessing Configuration Values by Using pin.conf 44-13

Using PCM C++ with PCM C 44-14

Using the PCM C++ API 44-14

Opening a PCM Connection 44-14

Closing a PCM Connection 44-16

Creating Custom Fields 44-16

Creating an Flist 44-17

Getting an Flist in Text Format 44-17

Debugging PCM C++ Programs 44-17

Troubleshooting 44-18

Part VI Customizing Customer Center and Self-Care Manager

xxi

45

Using Customer Center SDK

About Customer Center SDK 45-1

About Using Customer Center SDK to Customize Customer Center 45-1

About Using Customer Center SDK to Customize Self-Care Manager 45-2

Contents of Customer Center SDK 45-2

Customer Care API Reference 45-3

Coding Your Customizations 45-3

About Compiling and Packaging Your Customizations 45-3

Coding, Building, and Deploying Customizations 45-5

Syntax for the buildAll Script 45-5

Syntax 45-5

File Location 45-5

Parameters 45-5

Testing Your Customizations for Customer Center 45-5

Understanding the BRM Business Application SDK Framework 45-6

The Model-View-Controller Architecture 45-6

How the Controllers Work 45-7

Example Data Flow between a Simple Field and BRM 45-7

About Field Components 45-7

Displaying Versus Saving Data in Fields 45-8

Display Fields and Controllers 45-9

About PModelHandle 45-9

About Lightweight Components (Self-Care Manager Only) 45-10

Source Code Examples 45-10

46

Customizing the Self-Care Manager Interface

About Customizing Self-Care Manager 46-1

Hardware and Software 46-1

Understanding Self-Care Manager Components 46-1

About PInfranetServlet 46-2

Using PInfranetServlet to Process Requests 46-2

Example Data Flow Designs 46-3

Design 1 46-4

Design 2 46-5

Design 3 46-6

Extending the Functionality of Self-Care Manager 46-7

Adding Fields 46-8

Removing Fields 46-9

Creating a New Component 46-9

Creating a Link for the JSP Pages for a Get Request 46-10

xxii

Creating a Link for the JSP Pages for a Post Request 46-10

Designing a Component 46-10

Developing the Customizable Component 46-11

Developing a Noncustomizable Component 46-15

Error Handling 46-16

Formatting Your Data 46-17

Method 1: Add Java Code to Your JSP Pages 46-17

Method 2: Use a Formatting Bean that Contains the Presentation Logic for the Data. 46-17

Building the Self-Care Manager Components 46-18

Self-Care Manager Customization Examples 46-18

47

Customizing the Customer Center Interface

Customizing and Configuring Customer Center 47-1

Tools and Techniques for Customizing Customer Center 47-2

Customization Procedure Overview 47-2

Coding Your Customizations 47-2

Building and Deploying Your Customizations 47-3

Modifying the Customer Center Properties Files 47-3

About the Default Customer Center properties Files 47-3

Modifying Behaviors Defined by the Default Properties Files 47-3

Displaying Event Timestamps with Seconds Precision 47-4

Adding Inactive Product Status Indicators 47-5

Changing the List of Services Available in the Search Panel 47-5

Improving Account Search Performance 47-5

Changing Number Searches for GSM Services 47-6

Modifying the Shortcut Key Sequences 47-6

Specifying the Number of Bills Displayed in the Balances Tab 47-7

Suppressing the "Missing Login/ID" Message for Custom Service Panels 47-7

Changing the Maximum Number of Security Code Characters 47-7

Updating Notes Before Saving 47-8

Reminding CSRs to Customize Deals Before Completing a Purchase 47-8

Identifying Services by Device ID Rather than Login ID 47-8

Adding a Tax Exemption Type 47-9

Customizing Event Searches 47-9

Customizing the Case Sensitivity of Event Searches 47-9

Customizing the Selections for Service Type in Event Searches 47-10

Customizing the Selections for Service Status in Event Searches 47-10

Customizing the Selections for Device Type in Event Searches 47-11

Customizing Balance Group Searches 47-11

Customizing the Case Sensitivity of Balance Group Searches 47-12

Customizing the Selections for Service Type in Balance Group Searches 47-12

xxiii

Customizing the Selections for Service Status in Balance Group Searches 47-13

Customizing the Selections for Device Type in Balance Group Searches 47-13

Customizing Product/Discount Searches 47-14

Customizing the Case Sensitivity of Product/Discount Searches 47-14

Customizing the Selections for Service Type in Product/Discount Searches 47-15

Customizing the Selections for Service Status in Product/Discount Searches 47-15

Customizing the Selections for Device Type in Product/Discount Searches 47-16

Customizing Service Searches 47-17

Customizing the Case Sensitivity of Service Searches 47-17

Customizing the Step Search Size 47-17

Customizing the Selections for Service Type in Service Searches 47-18

Customizing the Selections for Service Status in Service Searches 47-18

Customizing the Selections for Device Type in Service Searches 47-19

Hiding the Password Fields in Customer Center 47-19

Disabling the Child Amounts Check Box 47-20

Adding a Custom Service as a Login to Customer Center 47-20

Using Customer Center SDK Scripts for Customer Center 47-20

Adding New Pages to the Customer Center Interface 47-21

About Portal Infranet Aware Widgets 47-22

Adding Account Maintenance Pages 47-22

Overview of Account Maintenance Components 47-22

Saving Changes 47-23

Refreshing Data in the UI 47-24

Currency Toggling 47-25

Drill-Down Links 47-26

Advanced Drill-Down Techniques 47-28

Modifying the Customer Center Permissions 47-29

Adding Your Page to the Customer Center Toolbar 47-29

Adding New Account Wizard Pages 47-29

Understanding the New Accounts Wizard 47-30

Base Storable Classes for Account Creation Pages 47-31

Methods Used in New Account Creation Pages 47-31

Removing a Payment Method from Customer Center 47-32

Advanced Customer Center Concepts 47-34

Components Used in Customer Center 47-35

Portal Infranet-Aware Components 47-35

Graphical Components 47-35

Nongraphical Components 47-37

Data Manager Components 47-38

About the BAS Data Flow with a Swing-Compatible UI 47-39

About Field Specifications 47-39

About Controller Processing 47-40

xxiv

Building Your Customer Center Customizations 47-40

Creating a Self-Signed Java Security Certificate 47-40

Modifying the signjar Script 47-41

Building Your Customization Files 47-41

Requirements 47-41

Using the buildAll Script 47-41

Testing Your Customizations 47-42

Deploying Your Customer Center Customizations 47-43

Deploying Customer Center Customizations on Linux 47-43

About the Customer Center Properties Files 47-43

Default Properties Files 47-44

Configurator Properties Files 47-44

Customized Properties Files 47-45

Other Properties Files 47-45

Deploying Customer Center Customizations on Windows 47-46

Customer Center Customization Examples 47-46

48

Using Configurator to Configure Customer Center

About Configurator 48-1

Using Configurator 48-1

What's Next? 48-2

Configuring Customer Center Account Maintenance Pages 48-2

Using the Account Maintenance Configurator Tabs 48-3

Summary Configurator 48-3

Modifying the Customer Type List 48-4

Contacts Configurator 48-5

Balance Configurator 48-6

Payment Configurator 48-7

Plan Configurator 48-8

Service Configurator 48-8

Hierarchy Configurator 48-9

Sponsorship Configurator 48-11

Sharing Configurator 48-11

Other Settings 48-12

Account Search Results Configurator 48-13

Starting Account Search Configurator 48-13

Adding a New Search Criteria field 48-14

Modifying a Search Criteria Field 48-17

Deleting a Custom Search Criteria Field 48-17

Tab Options 48-17

Reordering Pages 48-18

xxv

Modifying Attributes of an Existing Page 48-18

Hiding an Existing Page 48-18

Adding a New Page 48-18

Removing a Custom Page 48-18

Configuring the Customer Center New Accounts Wizard 48-19

Contacts Panel 48-19

General Panel 48-20

Payment Panel 48-21

Billing Panel 48-22

New Account Page Options 48-22

Reordering New Account Pages 48-22

Modifying an Existing Page 48-23

Hiding an Existing Page 48-23

Adding a New Page 48-23

Removing a Custom Page 48-23

Using the Configurator Resource String Editor 48-24

Starting the Resource String Editor 48-24

Searching for Labels to Replace 48-24

Resource String Editor String Search Rules 48-24

Replacing Labels with New Strings 48-24

Undoing Label Changes 48-25

Additional Configured Profile Panel Examples 48-25

49

Adding Custom Fields to Customer Center

Coding and Deploying Custom Fields for Customer Center 49-1

Adding Custom Fields to Infranet.properties 49-1

Generating Your Custom Field Java Source Code 49-2

Compiling and Signing Your Custom Fields Java Source Code 49-3

What's Next 49-4

Configuring JBuilder to Add Custom Fields to Customer Center 49-4

What's Next 49-7

Building and Deploying Your New Profile Panel 49-7

50

Setting Up JBuilder to Customize the Customer Center Interface

About Using JBuilder to Customize the Customer Center Interface 50-1

Adding PIA Widgets to the JBuilder Palette 50-1

Creating a JBuilder Project for Customer Center SDK 50-1

xxvi

51

Creating a New Customer Center Service Panel

Creating a New Service Panel 51-1

Correcting Field Alignment 51-8

What's Next 51-9

52

Creating a New Customer Center Profile Panel

Creating a New Profile Panel 52-1

What's Next 52-8

53

Sample Customer Center Customizations

Building and Deploying Customizations 53-1

Customizing Contact Fields 53-1

Customizing Contact Fields 53-1

Adding Drop-Down Lists to the Contact Type and Salutation Fields 53-1

Populating Drop-Down List Values from a Properties File 53-2

Adding Drop-Down Lists to Address Panel Fields 53-2

Adding and Removing Item Listeners to Address Field Drop-Down Lists 53-3

Modifying Multiple Contact Behavior 53-4

Specifying the Contact Type for Each Consecutive Contact 53-4

Disabling Changes to the Contact Type for the First Contact 53-4

Configuring Duplicate Checking for the Contact Type Field 53-5

Using Custom Address Panel and Contact Page 53-5

Replacing the Address Panel with a Custom Panel 53-6

Replacing the Contact Page with a Custom Page 53-6

Customizing Fields in the Balance Tab 53-6

Setting the Correct JRadioButtonMenuItem Button 53-6

Customizing Fields in the Payments Tab 53-7

Disabling the Billing Cycle & Tax Setup Link in the Payments tab 53-7

Configuring Values in the Billing Day of Month Combo Box 53-7

Setting the Next Billing Cycle Field to Visible or Not Visible 53-8

Customizing the Expiration Date Fields in the Credit Card Panel 53-8

Creating a Custom Payment Method 53-9

Customizing Fields in the Services Tab 53-10

Adding Charges for SIM and MSISDN Changes 53-11

Adding a Secondary MSISDN for Supplementary Services 53-11

Customizing Fields in the Hierarchy Tab 53-12

Adding a Custom Popup Component to the No Hierarchy Page 53-12

Adding a Custom NoHierarchy Page 53-12

Creating Customized Search Dialogs and Disabling the To Field 53-13

xxvii

Adding Custom Options to the Actions Drop-Down Lists 53-13

Customizing Fields in the Sharing Tab 53-14

Adding a New Sharing Type to the View Drop-Down List 53-14

Configuring Dynamic Drop-Down Lists 53-15

Part VII Localizing BRM

54

Using BRM in International Markets

Supporting Multiple Currencies 54-1

Accepting Credit Card Payments in Multiple Currencies 54-1

Supporting Multiple Languages 54-2

Using Localized Client Applications 54-2

Localizing BRM 54-2

55

BRM Internationalization and Localization

About Localizing and Internationalizing 55-1

About Internationalization of BRM Client Applications 55-1

Writing Localized MFC Client Applications 55-2

About Internationalized Development on BRM 55-2

56

Creating a Localized Version of BRM

About the Localization SDK 56-1

Localization SDK Contents 56-2

Java Client Applications 56-2

Self-Care Manager Server Application 56-2

BRM Server Files 56-2

Localizations Supported 56-3

System Requirements for the Localization SDK 56-3

Building the Clients 56-4

Building Java Applications 56-4

Building Properties Files 56-4

Preparing Customer Center 56-5

Packaging Your BRM Client Localizations 56-6

Modifying Localized Versions of Customer Center 56-7

About Simple Customization 56-7

About Advanced Customization 56-7

Before You Begin 56-7

Simple Customization for Localized Versions of Customer Center 56-8

Deploying a Simple Customization of Customer Center 56-8

xxviii

Advanced Customization for Localized Versions of Customer Center 56-9

Deploying an Advanced Customization of Customer Center 56-10

When to Use the Localization SDK for Advanced Customization 56-11

Localizing Self-Care Manager 56-12

Translating the Self-Care Manager Localized Strings File 56-13

Creating a Localized Self-Care Manager Installation for Linux 56-13

Localizing and Customizing Strings 56-14

Creating New Strings and Customizing Existing Strings 56-15

Localizing Existing Strings 56-16

Loading Localized or Customized Strings 56-16

Localizing BRM Reports 56-17

About Customizing Server Software 56-17

Setting the Default Language for Customer Accounts 56-17

Customizing Canonicalization 56-17

Exporting Data to an LDAP Server 56-18

Locale Names 56-18

57

Handling Non-ASCII Code on the BRM Server

About Character-Encoding Conversion 57-1

About Converting Multibyte or Unicode to and from UTF8 57-1

Direct Conversion Macros 57-2

Supporting Functions and Macros 57-3

Universal Macros 57-3

PIN_CONVERT_MBCS_TO_UTF8 57-3

PIN_CONVERT_STR_TO_UTF8 57-5

PIN_CONVERT_UNICODE_TO_UTF8 57-5

PIN_CONVERT_UTF8_TO_MBCS 57-6

PIN_CONVERT_UTF8_TO_STR 57-8

PIN_CONVERT_UTF8_TO_UNICODE 57-9

pin_IsValidUtf8 57-10

PIN_MBSLEN 57-11

PIN_SETLOCALE 57-12

Conversion Code Example 57-13

Part VIII Programming Utilities

58

Developer Utilities

load_config 58-1

load_config_provisioning_tags 58-4

load_localized_strings 58-6

xxix

load_pin_config_business_type 58-7

load_pin_device_permit_map 58-9

load_pin_device_state 58-10

load_pin_excluded_logins 58-13

load_pin_order_state 58-14

parse_custom_ops_fields 58-16

pin_adu_validate 58-17

pin_bus_params 58-19

pin_cfg_bpdump 58-21

pin_crypt_app 58-22

pin_deploy 58-24

pin_uei_deploy 58-27

pin_virtual_time 58-29

testnap 58-32

pin_config_editor 58-36

xxx

Preface

This guide describes how to extend and customize Oracle Communications Billing and
Revenue Management (BRM).

This guide has been updated to include changes and new feature content added for release
15.0.1.

Audience
This guide is intended for developers.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

xxxi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Introduction to Customizing BRM

This part provides an overview of customizing Oracle Communications Billing and Revenue
Management (BRM). It contains the following chapters:

• About Customizing BRM

• Implementation Defaults

• Understanding Flists

• Understanding Storable Classes

• Understanding the PCM API

• Accessing Configuration Files and Objects in Custom Code

• Understanding the BRM Data Types

• Using BRM SDK

• Finding Errors in Your Code

• Testing Custom Applications

• Using the testnap Utility to Test BRM

1
About Customizing BRM

Learn about customizing Oracle Communications Billing and Revenue Management (BRM) by
using customized BRM code and by creating custom applications.

Topics in this document:

• About Customizing BRM

• Planning Your Customization

• Guidelines for Customizing BRM

• About the BRM Client Access Libraries

• BRM Programming Tools

Before customizing BRM, read BRM Concepts.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

About Customizing BRM
There are different levels at which you can customize BRM:

• You can write custom client applications.

• You can change the default policy opcodes or write new policy opcodes.

• You can create a new storable class to hold information needed for your business. For
example, if you provide a new type of service, such as online gaming, you must create a
storable subclass of type /service to hold gaming-related information.

• You can write a new DM to access data in a storage system.

When you integrate your services, you can:

• Create new services. BRM already supports a basic set of services, but you can integrate
your own services such as fax, disk storage, voice mail, and different types of broadband
access such as DSL.

• Customize existing services to capture additional data. For example, you can extend the
existing broadband service to charge different amounts for different types of access.

• Customize how you charge for services (for example, by time or quantity).

For more information, see "Adding Support for a New Service".

Figure 1-1 shows the different types of customization.

1-1

Figure 1-1 Types of Customization

Planning Your Customization
Before you change the default BRM implementation or add new features and functionality to
BRM, you must plan your customization. For your customization to work properly, changes you
make to one component might require changes to other components. For example, to support
a new service such as online gaming, you must consider making the following additions or
changes to BRM:

• Create a service class to define the service and to define events associated with the
service that you want to rate.

• Develop product offerings to define charges for the service.

• Define balance elements for events generated by the service, and include them in your
product offerings.

• Map attributes of the events to charges and impact categories by using the charge selector
in PDC.

• Define different configurations for the service and rate each configuration by using charge-
offer provisioning.

Chapter 1
Planning Your Customization

1-2

• Set up authentication and authorization for users to log in to the service.

• Extend client applications, such as Billing Care, and the account creation interface to
process information specific to the service and to display information related to the service.

• Customize the default policy FMs to process information specific to the service, or write
new system FMs and policy FMs if necessary.

In addition, depending on the level of customization, you must determine whether you can
implement your changes by using a client tool, by using a configuration file, or by
programming.

Guidelines for Customizing BRM
Here are some general guidelines that you should follow when customizing BRM:

• Performance: Assess how the proposed solution will impact the performance of the
system. Review the sizing of the system to comply with existing performance
requirements. The proposed solution should limit the number of charge offers, balance
elements, and extended rating attributes (ERAs) affected during the customization.

• Manageability: Verify that the proposed solution is easy to maintain. Minimize
customizations for the following reasons:

– Incompatibilities might arise between customizations and product upgrades, making
the move to a newer version difficult.

– Incompatibilities might arise between customizations and patches, leading to side
effects or the need to check and possibly change the customization whenever a new
patch is released.

Before implementing the customization, save the copies of unedited configuration files,
properties files, policy code, or any other files changed in the customization. Include
comments explaining the customizations in the policy code or configuration file.

• Resource utilization: Review how the proposed solution will impact the resource
utilization and sizing of the system.

• Cross-feature impact: Plan for the impact of the proposed solution on other features. For
example, when customizing Accounts Receivable (A/R), consider how General Ledger
(G/L) is affected. When creating your product offerings, consider how charge offers are
purchased and how they are managed after being purchased.

About the BRM Client Access Libraries
BRM client applications communicate with Connection Manager (CM) by using any of the
following client libraries:

• PCM C API. Use this API (Application Programming Interface) to build any C client
application.

See "Understanding the PCM API" and "Adding New Client Applications".

• PCM C++ API. Use this API to build any C++ client application.

See "Creating Client Applications by Using PCM C++".

• PIN library. Use this library to manipulate data in any C or C++ applications. This library
includes functions for creating and manipulating input data for the PCM API calls and
functions for manipulating strings and decimal data.

See "PIN Libraries" in BRM Developer's Reference.

Chapter 1
Guidelines for Customizing BRM

1-3

• Java PCM API. Use this API to write client applications in Java that communicate with
BRM.

See "Creating Client Applications by Using Java PCM".

• Customer Center SDK. Use this SDK (Software Development Kit) to customize Self-Care
Manager.

See "Customizing the Self-Care Manager Interface".

• PCMIF. Use this Perl extension to the PCM (Portal Communication Module) library in your
Perl scripts to interact with the BRM database.

For the documentation, see "Perl Extensions to the PCM Libraries" in BRM Developer's
Reference.

All of the client libraries are included in the BRM SDK. See "About BRM SDK" for more
information.

Table 1-1 shows the APIs you can use to customize the BRM components.

Table 1-1 APIs Used to Customize BRM Components

BRM Component PCM C PCM C++ Java PCM Customer Center
SDK

Perl

Client applications Yes Yes Yes N/A Yes

Self-Care Manager N/A N/A N/A Yes N/A

BRM client tools Yes N/A N/A N/A N/A

Policy Facility Modules Yes N/A N/A N/A N/A

Facility Modules Yes N/A N/A N/A N/A

Data Manager Yes N/A N/A N/A N/A

BRM Programming Tools
You can use the following tools and utilities for customizing BRM:

• BRM SDK, which contains the APIs and libraries you need to write BRM applications, to
write and customize BRM components such as FMs and DMs, and to customize BRM
applications. It also includes sample applications and sample code that you can use as
examples for your own work.

• Developer Center, which includes developer applications that you use to create and modify
storable classes and fields, test opcodes, view objects in the database, view opcode
specifications, test opcodes, and create templates that control how event data is imported
into the BRM database.

Chapter 1
BRM Programming Tools

1-4

2
Implementation Defaults

Learn about the default implementation of Oracle Communications Billing and Revenue
Management (BRM) for business policies, such as those used for account creation and billing.

Caution:

Do not use or modify this product except as explicitly instructed in this
documentation. Assumptions should not be made about functionality that is not
documented or use of functionality in a manner that is not documented. Use or
modification of this software product in any manner or for any purpose other than as
expressly set forth in this documentation may result in voidance or forfeiture of your
warranties and support services rights. Please consult your software license
agreement for more details. If you have any questions regarding an intended use or
modification of this product, please contact your BRM account executive.

Topics in this document:

• Defaults for Offering Packages and Bundles to Customers

• Defaults for Creating Customer Accounts

• Defaults for Login Names and Passwords

• Defaults for Validating Customer Account Creation Information

• Defaults for Validating Payment Information

• Defaults for Displaying and Sending Introductory Messages

• Defaults for Billing

• Defaults for Tax Calculation

• Defaults for Payments and A/R

• Defaults for Maintaining an Audit Trail of BRM Activity

Defaults for Offering Packages and Bundles to Customers
Table 2-1 lists the default settings for packages and bundles provided by BRM:

2-1

Table 2-1 BRM Default Settings

Business Decision Default Behavior How to Customize

Control which packages a customer can
create an account with on the Web.

Customers can create accounts with
packages in the default package list.

When implementing Web-based
account creation, write a script that
presents packages based on user input.
See "Getting Data about Bundles,
Charge Offers, Discount Offers, and
Services" in BRM Opcode Guide.

To customize the source code, see
PCM_OP_CUST_POL_GET_PLANS.

Control which bundles are available to
customers.

The customer can purchase all bundles. When implementing Web-based
account creation, write a script that
presents bundles based on user input.
See "Getting Data about Bundles,
Charge Offers, Discount Offers, and
Services" in BRM Opcode Guide.

To customize the source code, see
PCM_OP_CUST_POL_GET_DEALS.

Change the amount of time during
which you can cancel a charge offer
without charging a cancel fee.

Cancel fees are applied. Change the cancel_tolerance entry in
the Connection Manager (CM)
configuration file.

See "Canceling Charge Offers without
Charging a Cancel Fee" in BRM
Managing Customers.

Set a credit limit in a package. Credit limits are set to 0. Change the credit limit in PDC.

See "Applying Credit Limits to
Balances" in BRM Creating Product
Offerings.

To customize the source code, see
PCM_OP_CUST_POL_PREP_LIMIT.

Defaults for Creating Customer Accounts
Table 2-2 lists the default settings for customer accounts:

Table 2-2 Default Settings for Customer Accounts

Business Decision Default Behavior How to Customize

Specify the default country, in case the
customer doesn't enter a country name.

USA. Change the country entry in the CM
configuration file.

To customize the source code, see
PCM_OP_CUST_POL_PREP_NAMEIN
FO.

Specify how to assign the merchant to
each account. See "Setting Up
Merchant Accounts" in BRM
Configuring and Collecting Payments.

Use the merchant name from the /
config/ach object.

To use multiple merchant names,
customize the
PCM_OP_CUST_POL_PREP_BILLINF
O source code.

Specify the numbering scheme for
account numbers.

Account numbers are created by
combining the database number with
the object ID from the account POID, for
example, 0.0.0.1-1482.

To change how account numbers are
generated, customize the
PCM_OP_CUST_POL_PREP_ACCTIN
FO source code.

Chapter 2
Defaults for Creating Customer Accounts

2-2

Table 2-2 (Cont.) Default Settings for Customer Accounts

Business Decision Default Behavior How to Customize

Standardize data for account names.
For example, to ensure consistent
display and formatting of account
names, you can capitalize the first and
last name, regardless of how the
customer entered the information.

The name is formatted exactly how the
customer entered it.

Customize the
PCM_OP_CUST_POL_PREP_NAMEIN
FO source code.

Defaults for Login Names and Passwords
Table 2-3 lists the default settings for login names and passwords.

Table 2-3 Default Settings for Login Names and Passwords

Business Decision Default Behavior How to Customize

Specify the characteristics of a valid
login name and password.

At least 1 character but no more than
255 characters.

To specify login requirements, including
a list of "naughty words", use the Field
Validation Editor.

To edit the source code, see
PCM_OP_CUST_POL_VALID_LOGIN
and
PCM_OP_CUST_POL_VALID_PASSW
D.

Specify how to encrypt passwords. Passwords for broadband services are
not encrypted. AES encryption is used
for nonservice passwords.

Customize the
PCM_OP_CUST_POL_ENCRYPT_PAS
SWD source code.

Specify requirements for email login
names.

Customers must use all lowercase
characters for email logins.

The login name must include the
domain name.

Customize the
PCM_OP_CUST_POL_PREP_LOGIN
source code.

Specify whether the customer or the
system picks the password.

Customer must specify a password. To supply an algorithm for generating
passwords, customize the
PCM_OP_CUST_POL_PREP_PASSW
D source code.

Specify the number of days before a
CSR password must be changed.

CSR passwords expire after 90 days. Edit the passwd_age entry in the CM
configuration file.

See "Setting the Default Password
Expiry Duration" in BRM System
Administrator's Guide.

Defaults for Validating Customer Account Creation Information
Table 2-4 lists the default settings for validating customer account creation information:

Chapter 2
Defaults for Login Names and Passwords

2-3

Table 2-4 Default Settings for Customer Account Creation Validation

Business Decision Default Behavior How to Customize

Specify the minimal information a CSR
or customer must enter to create an
account.

Customer must enter:

• Last name
• Address
• City
• State
• ZIP code
• Country
• Service logins and passwords

To change which entries are required,
use the Field Validation Editor.

To customize the source code, see
PCM_OP_CUST_POL_VALID_NAMEI
NFO.

Specify the formats a CSR or customer
must use when entering state, phone
number, and postal code.

• State: two uppercase letters, for
example, CA.

• Phone number: either a TAPI-
compliant number or (xxx) xxx-xxxx

• Postal code: (USA only); 5 digits, or
5 digits followed by a hyphen and 4
digits.

To change the required format, use the
Field Validation Editor.

To customize the source code, see
PCM_OP_CUST_POL_VALID_NAMEI
NFO.

Validate state and ZIP code for tax
calculation.

Do not validate state and ZIP code. Edit the tax_valid entry in the CM
configuration file.

See BRM Calculating Taxes.

To customize the source code, see
PCM_OP_CUST_POL_VALID_NAMEI
NFO.

Defaults for Validating Payment Information
Table 2-5 lists for validating payment information:

Table 2-5 Defaults to Validate Payment Information

Business Decision Default Behavior How to Customize

Specify what information to validate
when creating an account.

BRM validates the credit card only. An
error in the street address is allowed.
The following errors are not allowed:

• Wrong postal code
• Bad credit card number
• Failed credit check

Customize the
PCM_OP_PYMT_POL_VALIDATE
source code.

Chapter 2
Defaults for Validating Payment Information

2-4

Table 2-5 (Cont.) Defaults to Validate Payment Information

Business Decision Default Behavior How to Customize

Specify how to validate payment
information, such as credit card type,
expiration date, and debit account
information.

For credit cards, verifies the type as:

• Amex
• Carte Blanche
• Diners
• Discover
• JBC
• Mastercard
• Optima
• VISA
Validates that the credit card number
has the required number of digits, and
verifies the expiration date.

For direct debit, validates the number of
digits in bank, branch, and account
numbers.

Customize the
PCM_OP_CUST_POL_VALID_PAYINF
O source code.

Specify whether to validate the
customer's billing information during
account creation.

Validates credit card information. Change the cc_validate entry in the
CM configuration file. See "Specifying
How to Validate Customer Contact
Information " in BRM Managing
Customers.

To customize the source code, see
PCM_OP_PYMT_POL_SPEC_VALIDA
TE.

Specify whether to validate direct debit
information during account creation.

Validates direct debit information. Change the dd_validate entry in the
CM configuration file. See "Enabling
Paymentech Direct Debit Processing" in
BRM Configuring and Collecting
Payments.

Specify the time between validations of
the same credit card. For example, you
can allow two members of the same
family to create an account for the same
service without validating the credit card
the second time.

Does not validate a credit card that has
been validated within the last hour.

Edit the cc_revalidation_interval entry
in the CM configuration file. See
"Avoiding Credit Card Revalidation" in
BRM Managing Customers.

To customize the source code, see
PCM_OP_PYMT_POL_SPEC_VALIDA
TE.

Specify the valid format for entering a
credit card or debit number.

Strips spaces between groups of digits. Customize the
PCM_OP_CUST_POL_PREP_PAYINF
O source code. See "Customizing
Payment Method Data Preparation" in
BRM Opcode Guide.

Specify the valid date format for credit
card or debit card expiration.

BRM stores expiration dates as 4-
character strings in the format MMYY.
BRM is Y2K compliant, for example, 02
is the same as 2002.

Valid formats are:

• MMYY
• MM/YY
• M/YY
• MM/YYYY
All formats are converted to MMYY.

Customize the
PCM_OP_CUST_POL_PREP_PAYINF
O source code. See "Customizing
Payment Method Data Preparation" in
BRM Opcode Guide.

Chapter 2
Defaults for Validating Payment Information

2-5

Table 2-5 (Cont.) Defaults to Validate Payment Information

Business Decision Default Behavior How to Customize

Run a checksum validation on the
customer's credit card during validation.

Use a checksum to validate the credit
card during account creation.

Change the checksum entry in the CM
configuration file.

See "Disabling the Credit Card
Checksum" in BRM Opcode Guide.

Defaults for Displaying and Sending Introductory Messages
Table 2-6 lists the default settings used to display and send introductory messages:

Table 2-6 Default Settings for Introductory Messages

Business Decision Default Behavior How to Customize

Specify whether to display an HTML
introductory message to customers
during account creation.

The introductory message is disabled
by default.

Customize the default introductory
message and configure your Web-
based account creation to display it.
See "Customizing the Introductory
Message" in BRM Opcode Guide.

To enable the introductory message,
customize the
PCM_OP_CUST_POL_GET_INTRO_M
SG source code.

Specify whether to send a welcome
email message to customers after they
create an account.

The welcome email message is enabled
by default.

Customize the welcome message. See
"Setting up Welcome Messages to
Customers" in BRM Managing
Customers. To customize the source
code, see
PCM_OP_CUST_POL_POST_COMMI
T.

Defaults for Billing
Table 2-7 lists the default settings for billing.

Table 2-7 Billing Defaults

Business Decision Default Behavior How to Customize

Set the default accounting type to open
item accounting or balance forward
accounting.

Balance forward accounting. Change the actg_type entry in the CM
configuration file. See "Setting the
Default Accounting Type" in BRM
Configuring and Running Billing.

To customize the source code, see
PCM_OP_CUST_POL_PREP_BILLINF
O.

Chapter 2
Defaults for Displaying and Sending Introductory Messages

2-6

Table 2-7 (Cont.) Billing Defaults

Business Decision Default Behavior How to Customize

For open item accounting, set whether
to include or exclude the previous total
(PIN_FLD_PREVIOUS_TOTAL) of the
bill from the pending amount due
(PENDING_RECV) of the current bill
unit (/billinfo object).

The previous total is not included. Change the
open_item_actg_include_prev_total
entry in the CM configuration file.

Set the default accounting day to a
specific day of the month, or to the day
that the account was created.

The day that the account was created.
For example, if a customer creates an
account on the 15th, the accounting for
that customer is done on the 15th.

By default, if the account was created
on day 29 - 31, the accounting day is
the 1st of the next month. You can
change this to be able to use any day of
the month.

To set the default accounting day of
month, change the actg_dom entry in
the CM configuration file. See "Setting
the Default Accounting Day of Month" in
BRM Configuring and Running Billing.
To customize the source code, see
PCM_OP_CUST_POL_PREP_BILLINF
O.

To use 31-day billing, see "About Using
31-Day Billing" in BRM Configuring and
Running Billing.

Set the default number of accounting
cycles in a billing cycle.

The billing cycle must be a whole-
number multiple of accounting cycles.
See "About Accounting and Billing
Cycles" in BRM Concepts.

Monthly billing (one accounting cycle
per billing cycle).

Change the bill_when entry in the CM
configuration file. See "Setting the
Default Billing-Cycle Length" in BRM
Configuring and Running Billing.

To edit the source code, see
PCM_OP_CUST_POL_PREP_BILLINF
O.

Specify the system currency. US dollars. You must set the system currency when
you install BRM. See "Setting the
System Currency" in BRM Managing
Customers.

Specify the default account currency for
new accounts.

US dollars. Change the currency entry in the CM
configuration file. See "Setting the
Default Account Currency" in BRM
Managing Customers.

To edit the source code, see
PCM_OP_CUST_POL_PREP_BILLINF
O.

Specify whether to create a long cycle
or a short cycle when creating an
account or changing the billing date.
See "Specifying How to Handle Partial
Accounting Cycles" in BRM Configuring
and Running Billing.

If the short accounting cycle is 15 days
or greater, create a short cycle. If the
short accounting cycle is less than 15
days, create a long cycle.

Customize the
PCM_OP_CUST_POL_PREP_BILLINF
O source code.

Specify a numbering scheme for bills. Creates the bill number B-sequence
number, for example, "B-81".

Customize the
PCM_OP_BILL_POL_SPEC_BILLNO
source code.

Change the cutoff time for billing,
accounting, and promotion start times.

For example, if your cutoff time is
10:00:00 a.m., any events that occur
after 10:00:00 a.m. on that date are
included in the next billing run.

The cutoff time is midnight. Change the BillingCycleOffset
business parameter. See "Configuring
the Billing Cutoff Time" in BRM
Configuring and Running Billing.

Chapter 2
Defaults for Billing

2-7

Table 2-7 (Cont.) Billing Defaults

Business Decision Default Behavior How to Customize

Bill sponsor group member accounts. Sponsor group member accounts are
not billed.

Change the BillingFlowSponsorship
and BillingFlowDiscount business
parameters.

See "Setting Up Billing for Charge and
Discount Sharing Groups" in BRM
Configuring and Running Billing.

Change the number of days to delay
billing.

Billing is not delayed. Change the ConfigBillingDelay
business parameter.

See "Configuring Delayed Billing" in
BRM Configuring and Running Billing.

Change how proration is calculated:

• The number of days in the cycle.
• The number of days in the month.

Number of days in the cycle. Change the
use_number_of_days_in_month
entry in the CM configuration file.

See "Calculating Prorated Cycle Fees"
in BRM Configuring and Running
Billing.

Apply cycle fees in parallel for multiple
services in an account.

Cycle fees is applied sequentially for
each of the services in an account.

Change the
StagedBillingFeeProcessing business
parameter.

See "Applying Cycle Forward Fees in
Parallel" in BRM PDC Creating Product
Offerings.

Align the purchase, cycle, and usage
start and end times with the accounting
cycle if you set up charge offers with
delayed fees.

Start and end times are not aligned. Change the cycle_delay_align entry in
the CM configuration file.

See "Aligning Account and Cycle Start
and End Times" in BRM Configuring
and Running Billing.

Defaults for Tax Calculation
Table 2-8 lists the default settings for tax calculations:

Table 2-8 Tax Calculation Settings

Business Decision Default Behavior How to Customize

Enable or disable tax calculation. Both real-time and deferred taxation are
enabled.

Change the taxation_switch entry in
the CM configuration file.

See BRM Calculating Taxes.

Specify whether deferred taxes are
calculated separately for a paying
parent bill unit and its nonpaying child
bill units or consolidated into a single
tax item for both the parent and child bill
units.

Taxes are calculated separately. Change the cycle_tax_interval entry in
the CM configuration file.

See BRM Calculating Taxes.

Change the default ship-from locale for
tax calculation.

No default: must be set, or disabled. Change the provider_loc entry in the
CM configuration file.

See BRM Calculating Taxes.

Chapter 2
Defaults for Tax Calculation

2-8

Table 2-8 (Cont.) Tax Calculation Settings

Business Decision Default Behavior How to Customize

Defer tax calculation for all adjustments
that occur at account level until the end
of the billing cycle.

Tax calculation is deferred. Change the tax_now entry in the CM
configuration file.

See "Configuring the Default Tax
Method for Account Adjustments" in
BRM Calculating Taxes.

Perform tax reversals for adjustments,
disputes, and settlements that occur at
the bill and account level.

Taxes are not reversed. Change the tax_reversal_with_tax
entry in the CM configuration file. This
entry is used if the opcode does not
explicitly specify the tax behavior.

See "Configuring the Default Tax
Method for Account Adjustments" in
BRM Calculating Taxes.

Report zero tax amounts. Zero tax amounts are not reported. Change the include_zero_tax entry in
the CM configuration file.

See BRM Calculating Taxes.

Summarize or itemize taxes by
jurisdiction.

Summarize taxes by jurisdiction. Change the tax_return_juris entry in
the CM configuration file.

See BRM Calculating Taxes.

Defaults for Payments and A/R
Table 2-9 lists the default settings for payments and A/R.

Table 2-9 Payment and A/R Defaults

Business Decision Default Behavior How to Customize

Specify the minimum due amount that
the pin_collect utility searches for
when collecting online payments.

2.00 (expressed in the account
currency).

Change the minimum entry in the
configuration file (BRM_home/apps/
pin_billd/pin.conf).

See "Specifying the Minimum Payment
to Collect" in BRM Configuring and
Running Billing.

Specify the minimum due amount that
custom billing utilities search for.

2.00 (expressed in the account
currency).

Change the minimum_payment entry
in the CM configuration file.

Specify the minimum credit card
charge.

2.00 (expressed in the account
currency).

Edit the
PCM_OP_PYMT_POL_PRE_COLLEC
T source code.

Specify the minimum refund amount. 2.00 (expressed in the account
currency).

Change the minimum_refund entry in
the CM configuration file.

Use CVV fraud protection for
Paymentech transactions. See
"Requiring Additional Protection against
Credit Card Fraud" in BRM Configuring
and Collecting Payments.

Disabled. Change the cvv2_required entry in the
CM configuration file.

Chapter 2
Defaults for Payments and A/R

2-9

Table 2-9 (Cont.) Payment and A/R Defaults

Business Decision Default Behavior How to Customize

Use card identification data (CID), a
method of fraud prevention for
American Express card transactions.
See "Requiring Additional Protection
against Credit Card Fraud" in BRM
Configuring and Collecting Payments.

Disabled. Change the cid_required entry in the
CM configuration file.

Specify whether to collect cycle forward
and purchase fees when the customer
creates an account.

Collects cycle-forward and purchase
fees on account creation only for credit
card customers.

Change the cc_collect entry in the CM
configuration file. See "Charging
Customers at Account Creation" in
BRM Managing Customers.

To customize the source code, see
PCM_OP_PYMT_POL_SPEC_COLLE
CT.

Specify the payment methods your
customers can use. If you use a
payment method that is not included in
the defaults, you must create a new
payment method.

Accepts these payment methods:

• Credit card
• Invoice
• Nonpaying child
• Undefined
• Prepaid
• Debit card
• Direct debit
• Smart card
• Beta

To create a new payment method,
customize the
PCM_OP_CUST_POL_PREP_PAYINF
O source code.

To validate payment methods, use the
Field Validation Editor.

Set the payment due date for invoice
payments.

30 days. Customize the
PCM_OP_CUST_POL_PREP_PAYINF
O source code.

Set the default invoice type to summary
invoice.

Detailed invoices are generated. Change the value of the
PIN_FLD_INV_TYPE field in the /
payinfo object to 1.

• When creating a customer account,
pass it in the input flist of
PCM_OP_CUST_COMMIT_CUST
OMER.

• When adding or changing a
payment method, pass it in the
input flist of
PCM_OP_CUST_SET_PAYINFO.

Specify how to handle underpayments.
See "Processing Overpayments and
Underpayments" in BRM Configuring
and Collecting Payments.

For balance forward accounting, BRM
applies the payment to the oldest items
first. If the remainder doesn't match the
amount due for any one item, BRM
requires that the remainder must be
allocated manually.

For open item accounting, BRM
requires that the payment must be
allocated manually.

Customize the
PCM_OP_PYMT_POL_UNDER_PAYM
ENT source code.

Chapter 2
Defaults for Payments and A/R

2-10

Table 2-9 (Cont.) Payment and A/R Defaults

Business Decision Default Behavior How to Customize

Specify how to handle overpayments.
See "Processing Overpayments and
Underpayments" in BRM Configuring
and Collecting Payments.

For balance forward accounting, BRM
closes all open items and applies the
overpayment as a credit balance. By
default, you must allocate the resulting
credit balance to future open items
manually.

For open item accounting, BRM
requires that the payment must be
allocated manually.

Customize the
PCM_OP_PYMT_POL_OVER_PAYME
NT source code.

Specify what to do if a credit card
customer doesn't pay. See "Processing
Late or Missed Payments" in BRM
Configuring and Collecting Payments.

Inactivates the account if the account
has an item more than 30 days past
due and a credit card transaction
receives one of these failures:

• Soft decline
• Wrong address
• Wrong ZIP code
• No connection
Inactivates the account immediately if a
credit card transaction receives one of
these failures:

• Bad card
• Hard decline

Customize the
PCM_OP_PYMT_POL_COLLECT
source code.

Change the euro conversion error
tolerance.

When the conversion result is less than
the amount due: Apply tolerance values
only if the amount applied to the item is
in secondary currency.

When the conversion result is more
than the amount due: Do not apply
tolerance values defined for balance
elements.

Change the overdue_tolerance and
underdue_tolerance entries in the CM
configuration file.

See "Handling Euro Conversion
Rounding Errors" in BRM Managing
Customers.

Collect the current direct debit balance
of each account during account
creation.

Collect the balance. Change the dd_collect entry in the CM
configuration file.

See "Enabling Paymentech Direct Debit
Processing" in BRM Configuring and
Collecting Payments.

Specify how to handle write-off
reversals.

Apply write-off reversals at the account
level.

Edit the AutoWriteOffReversal
business parameter. See "Enabling
Automatic Write-Off Reversals during
Payment Collection" in BRM Managing
Accounts Receivable.

You can also modify the
PCM_OP_AR_POL_REVERSE_WRIT
EOFF opcode. See BRM Opcode
Guide.

Defaults for Maintaining an Audit Trail of BRM Activity
Table 2-10 lists the defaults for maintaining an audit trail of BRM activity.

Chapter 2
Defaults for Maintaining an Audit Trail of BRM Activity

2-11

Table 2-10 Maintaining Audit Trail of BRM Activity

Business Decision Default Behavior How to Customize

Specify the BRM activity for which you
want to keep an audit trail.

Keeps an audit trail of changes to
customer credit card numbers and
credit card expiration dates, and
changes to BRM pricing components.
See "Fields Marked for Auditing by
Default".

Enable or disable BRM object fields for
auditing by using BRM Storable Class
Editor. See "Enabling Auditing for a
Field".

Chapter 2
Defaults for Maintaining an Audit Trail of BRM Activity

2-12

3
Understanding Flists

Learn about flists (field lists), which pass data between Oracle Communications Billing and
Revenue Management (BRM) processes.

Topics in this document:

• About Flists

• Opcode Input and Output Specifications

• About Creating and Using an Flist

• Flist Management Rules

• Flist Field Memory Management Guidelines

• Handling Errors

About Flists
The flist is the primary data structure used in BRM. Flists are containers that hold fields, each
consisting of a data field name and value. Flists do not contain actual data but instead provide
links to the data's location. The only exceptions are integers and strings, which are stored in
flists.

Here is a simple flist example:

0 PIN_FLD_LAST_NAME STR [0] "Smith"
0 PIN_FLD_FIRST_NAME STR [0] "Joe"
0 PIN_FLD_COMPANY STR [0] "XYZ Corporation"
0 PIN_FLD_CURRENCY INT [0] 840

Many BRM processes interpret data in flist format. For example, the storage manager in the
Data Manager (DM) translates flists to a format that the database can process and then
translates the data from the database into an flist before passing it to the Connection Manager
(CM).

BRM uses flists in these ways:

• Objects are passed as flists between opcodes or programs that manipulate the objects.

• Opcodes use flists to pass data between BRM applications and the database. For each
opcode, an input flist is passed to PCM_OP, and the return flist is passed back from this
routine.

In an flist, you can use any data type such as decimals, buffers, arrays, and substructures.
Flists can contain any number of fields. You can place flists within other flists. Remember,
though, that except for integers, data is not stored in the flist; it just links to where the data is
located.

For a description of the BRM data types you can use in an flist, see "Understanding the BRM
Data Types ".

3-1

Note:

[0] after the field type represents the element ID. The numbers 0, 1, 2, and so on at
the beginning of each line indicate the field's nesting level, and 0 indicates the top
level.

When you include a field in an flist, you must also include an abbreviation of the field's data
type. Table 3-1 lists the valid BRM field types and their abbreviations.

Table 3-1 Flist Field Types

Field Type Abbreviation

PIN_FLDT_ARRAY ARRAY

PIN_FLDT_BINSTR BINSTR

PIN_FLDT_BUF BUF

PIN_FLDT_DECIMAL DECIMAL

PIN_FLDT_ENUM ENUM

PIN_FLDT_ERRBUF ERR

PIN_FLDT_INT INT

PIN_FLDT_POID POID

PIN_FLDT_STR STR

PIN_FLDT_SUBSTRUCT SUBSTRUCT

PIN_FLDT_TSTAMP TSTAMP

Opcode Input and Output Specifications
Each PCM opcode requires specific data to perform its operation. The opcodes take input and
output data as field lists (flists), which are lists of field name and value pairs. For more
information about flists, see "About Flists".

Each opcode requires its input flist to contain specific fields for operation. For example, to
create an object, the PCM_OP_CREATE_OBJECT() opcode requires an input flist that
includes all the fields that an object of that storable class requires.

The Opcode Flist Reference contains the input and output flist specifications for each opcode,
defining the following parameters for each field in the flist:

• The mnemonic field names used by applications to reference the field

• The data type and size for the field

• The permissions, which specify if a field is mandatory (M) or optional (O)

The flist specifications use the following syntax to define each field in an flist:

class depth field (
 type = data_type
 perms = permission permission ...,
);

where:

Chapter 3
Opcode Input and Output Specifications

3-2

• class specifies whether it is a field, array, or a substruct.

• depth contains an asterisk for each nesting level of the field.

• field specifies the name of the field.

Examples:

field PIN_FLD_NAME (
 type = PIN_FLDT_STR(255),
 perms = M,
);
array * PIN_FLD_INHERITED_INFO (
 type = PIN_FLDT_ARRAY,
 perms = O,
);

The flist specifications specify whether a field is mandatory or optional.

About Creating and Using an Flist
You create and manipulate flists with the flist manipulation macros in the Portal Information
Network (PIN) library. You can add, remove, and modify fields using the flist field-handling
macros. For more information, see "Flist Management Macros" and "Flist Field-Handling
Macros" in BRM Developer's Reference.

Each opcode has an input and output flist specification. Create an flist for each opcode you call
for the data you want to pass in. When you create an input or an output flist for an opcode,
follow the flist specifications. See the flist specifications in the individual opcode descriptions.

Flists are dynamically allocated data structures. When a field is added to an flist, the value is
either already dynamically allocated in memory or copied into dynamic memory as it is added.

Note:

Destroy the flist you create in your programs to reclaim the memory that the flist
occupies. For details, see "Destroying Flists".

Adding Information to Flists
You add data to flists by replacing pointers to data using these flist management macros:

• PIN_FLIST_ELEM_PUT

• PIN_FLIST_FLD_PUT

• PIN_FLIST_SUBSTR_PUT

Note:

(Release 15.0.1 or later) You can pass a compilation switch from your custom source
code's build scripts, which causes pointers to objects that are PUT to flists to be set
to NULL, preventing them from accidentally being destroyed (causing a double-free
error) in later code.

Chapter 3
About Creating and Using an Flist

3-3

For details on these macros, see "Flist Management Macros" in BRM Developer's Reference.

You add data to flists by replacing the data itself using these flist management macros:

• PIN_FLIST_ELEM_SET

• PIN_FLIST_FLD_SET

• PIN_FLIST_SUBSTR_SET

For details on these macros, see "Flist Management Macros" in BRM Developer's Reference.

Removing Data (Pointers) from an Flist
You remove a pointer to data from an flist and add it to another flist by using these flist
management macros:

• PIN_FLIST_ELEM_TAKE

• PIN_FLIST_FLD_TAKE

• PIN_FLIST_SUBSTR_TAKE

Note:

These macros overwrite existing pointers to data, not the data itself. To free the
memory used by the old data, destroy the memory location using
PIN_FLIST_DESTROY_EX. Otherwise, a memory leak may occur.

You usually use the TAKE macros when you want to take data from an flist and change it.

Note:

When you use a TAKE macro to remove a pointer to data, you must free the memory
when finished. If the memory is not freed, memory leaks may occur.

For details on these macros, see "Flist Management Macros" in BRM Developer's Reference.

Copying Data from an Flist
You copy a pointer to data from one flist to another by using these flist management macros:

• PIN_FLIST_ELEM_GET

• PIN_FLIST_FLD_GET

• PIN_FLIST_SUBSTR_GET

You usually use the GET macros when you want to copy data but not change it.

Chapter 3
About Creating and Using an Flist

3-4

Note:

You should treat any data that you GET using these macros as read-only because
the original program may also need it.

For details on these macros, see "Flist Management Macros" in BRM Developer's Reference.

Destroying Flists
You destroy an flist and free its memory by using these flist management macros in BRM
Developer's Reference:

• PIN_FLIST_DESTROY

• PIN_FLIST_DESTROY_EX

Flists use dynamically allocated memory and must be destroyed to free that memory and
prevent memory leaks. These macros first determine whether the flist has a NULL value. If so,
they do nothing. If the flist exists, these macros destroy its entire contents, including all fields.

PIN_FLIST_DESTROY_EX sets the reference to the flist to a NULL value after it destroys the
flist.

PIN_FLIST_DESTROY frees the memory for the flist field-value pairs, but does not set a
reference to that flist to NULL. If another program subsequently attempts to destroy this flist
(with freed memory but a valid flist pointer), unexpected behavior and core dumps can result.

For details on these macros, see "Flist Management Macros" in BRM Developer's Reference.

Flist Creation Samples
BRM SDK includes flist creation samples in C, C++, Java, and Perl. Three samples are
provided for each language: one to create a simple flist, another to create an flist with a nested
array, and a third to create an flist with a substructure. For information about installing and
using BRM SDK, see "About BRM SDK".

You can view the following sample programs in BRM Developer's Reference:

• About Using the PCM C Sample Programs

• About Using the PCM C++ Sample Programs

• About Using the PCM Java Sample Programs

• About Using the PCM Perl Sample Programs

These documents also include information about compiling and running the programs.

Using Compile-Time Flags to Avoid Errors in Flists (Release 15.0.1 or later)
The PUT family of flist macros effectively transfers ownership of an object to the target flist.
The object could be a decimal object, another flist, a POID, or so on. During this process, the
source pointer may no longer contain a reliable reference to the original object that was PUT.
For example, the target flist may subsequently be destroyed so that the pointer now refers to
an area of memory that has been freed and contains garbage. Using that pointer after the PUT

Chapter 3
About Creating and Using an Flist

3-5

may result in a crash or other undefined behavior. This is a common source of defects in
programs, which can be resolved by the following idiomatic coding style:

PIN_FLIST_ELEM_PUT(target_flistp, source_elemp, PIN_FLD_PRODUCTS, elemid,
ebufp);
source_elemp = NULL;

This idiom helps avoid cases where source_elemp is used after the PUT where it may no
longer be a valid pointer.

To reduce program errors and the burden on programmers to remember to set the source
pointer variable to NULL, you can configure the BRM flist API to update the source pointer to
NULL directly. This avoids errors where programmers forget to reset a pointer to NULL and
simplifies the code, reducing verbosity.

To permit BRM to automatically set the source pointer to NULL during PUT operations in
custom application code, set the compile-time flags in Table 3-2 in your custom code's
Makefile.

Table 3-2 Compile-Time Flags for Each Flist Macro

Flist Macro Compile-Time Flag

PIN_FLIST_SUBSTR_PUT -DASSIGN_NULL_AFTER_SUBSTR_PUT

PIN_FLIST_ELEM_PUT -DASSIGN_NULL_AFTER_ELEM_PUT

PIN_FLIST_FLD_PUT -DASSIGN_NULL_AFTER_FLD_PUT

Note:

After enabling this feature, existing code may crash if it unsafely uses the original
object pointer. However, this is not a cause for alarm. It simply means that the feature
has exposed a potential code defect. To fix this, you can modify the code to remove
the unsafe access, such as by deferring the PUT until later or reorganizing the logic
to be safe with appropriate checks for a NULL pointer.

The following shows a sample error you could encounter after enabling one of the compile-time
flags in your new or existing custom code and attempting to compile:

In file included from fm_ar_event_utils.c:31:0:
fm_ar_event_utils.c: In function 'fm_bill_adjust_event_find_adjustments':
/scratch/temp/portalbase/publish_linux_vob/publish_linux/include/pcm.h:2211:42: error:
value required as left operand of assignment
 #define SET_NULL_TO_FLD_VALUE(valp) valp = NULL;
/scratch/temp/portalbase/publish_linux_vob/publish_linux/include/pcm.h:2228:9: note: in
expansion of macro 'SET_NULL_TO_FLD_VALUE'
 SET_NULL_TO_FLD_VALUE(valp);
fm_ar_event_utils.c:1400:4: note: in expansion of macro 'PIN_FLIST_FLD_PUT'
 PIN_FLIST_FLD_PUT(read_flistp, PIN_FLD_POID, (void *)rerate_obj, ebufp);

Table 3-3 shows how to fix possible compilation error types in sample code using the
PIN_FLIST_FLD_PUT macro.

Chapter 3
About Creating and Using an Flist

3-6

Table 3-3 Fixing Sample Code with Compile Errors

Compilation Error Type Problematic Code Fixed Code

Type casting PIN_FLIST_FLD_PUT(srch_args_flistp,

PIN_FLD_POID, (void *)s_pdp,
ebufp);

PIN_FLIST_FLD_PUT(srch_args_flistp,

PIN_FLD_POID, s_pdp, ebufp);

Putting an object that results from a
function call

PIN_FLIST_FLD_PUT(flistp,
PIN_FLD_PERCENT,
(void *)pbo_decimal_round(pct,
precision, ROUND_HALF_UP, ebufp);

pin_decimal_t *tmp_rounded_val =
pbo_decimal_round(pct, precision,
ROUND_HALF_UP, ebufp);
PIN_FLIST_FLD_PUT(flistp,
PIN_FLD_PERCENT, tmp_rounded_val,
ebufp);

Putting stack-allocated memory on
an flist

char str_msg[50];
PIN_FLIST_FLD_PUT(out_flistp,
PIN_FLD_NAME, str_msg, ebufp);

PIN_FLIST_FLD_SET(out_flistp,
PIN_FLD_NAME, str_msg, ebufp);

Note: Use PIN_FLST_FLD_SET to copy
the string onto the flist as heap-allocated
memory since str_msg is allocated on
the stack, not the heap, and therefore
becomes invalid when exiting the current
lexical scope.

Putting NULL PIN_FLIST_FLD_PUT(flistp,
PIN_FLD_STATUS, NULL, ebufp);

PIN_FLIST_FLD_SET(flistp,
PIN_FLD_STATUS, NULL, ebufp);

Note: Use PIN_FLIST_FLD_SET, since
NULL is not dynamically allocated
memory.

Flist Management Rules
Follow these rules when creating programs that manipulate flists:

• The calling applications are responsible for allocating memory for input flists. This includes
cases where you use a wrapper opcode to call another opcode.

• The opcode being called is responsible for allocating memory for output flists. For more
information, see "About Creating and Using an Flist".

• The calling applications are responsible for destroying both input and output flists.

• The opcode being called is responsible for destroying both input and output flists if the
opcode utilizes a wrapper opcode to call another opcode. For more information, see
"Destroying Flists".

• You should never destroy an input flist within an opcode, because a calling application may
need it.

• These flist management macros in BRM Developer's Reference allocate new memory:

– PIN_FLIST_CREATE

– PIN_FLIST_COPY

Chapter 3
Flist Management Rules

3-7

You must explicitly free a newly created flist using the PIN_FLIST_DESTROY_EX macro
unless that flist will be used for the opcode output.

Example

You use the following syntax to copy an flist:

*out_flistpp = PIN_FLIST_COPY(in_flistp, ebufp);

Flist Field Memory Management Guidelines
You use the following guidelines when creating your programs to avoid memory problems:

• The following macros in BRM Developer's Reference allocate new memory for a passed
value before putting it in an flist:

– PIN_FLIST_CONCAT

– PIN_FLIST_ELEM_ADD

– PIN_POID_LIST_ADD_POID

– PIN_FLIST_ELEM_COPY

– PIN_FLIST_FLD_COPY

– PIN_FLIST_SUBSTR_ADD

– PIN_FLIST_ELEM_SET

– PIN_FLIST_FLD_SET

– PIN_FLIST_SUBSTR_SET

These macros add or replace items in an flist by copying them; no memory ownership is
transferred. When you use the SET macros, memory is allocated to copy the values and is
owned by the flist. Do not explicitly free this memory.

• The following macros do not allocate new memory for a value before putting that value in
an flist:

– PIN_FLIST_FLD_PUT

– PIN_FLIST_SUBSTR_PUT

– PIN_FLIST_ELEM_PUT

These macros add or replace items in the flist, storing the data previously owned by the
caller. The allocation memory is transferred to the flist. These macros link the memory
occupied by the value to the named flist. You cannot apply these for local scope (auto)
variables if you want to put them into the return flist.

• The following macros take ownership of the memory owned by the flist for a retrieved
value:

– PIN_FLIST_FLD_TAKE

– PIN_FLIST_SUBSTR_TAKE

– PIN_FLIST_ELEM_TAKE

– PIN_FLIST_ELEM_TAKE_NEXT

– PIN_POID_LIST_TAKE_NEXT_POID

– PIN_POID_LIST_REMOVE_POID

Chapter 3
Flist Field Memory Management Guidelines

3-8

These macros remove items from the flist, return pointers, and turn ownership of the
allocated memory over to the caller.

• The following macros do not allocate new memory for a retrieved value:

– PIN_FLIST_ELEM_DROP

– PIN_FLIST_FLD_DROP

– PIN_FLIST_SUBSTR_DROP

– PIN_FLIST_ANY_GET_NEXT

– PIN_FLIST_FLD_GET

– PIN_FLIST_ELEM_GET

– PIN_FLIST_ELEM_GET_NEXT

– PIN_FLIST_SUBSTR_GET

A pointer to the allocated segment of memory that belongs to the flist returns. To maintain
the integrity of the flist, you should never apply the PIN_FLIST_DESTROY macro to an flist
pointer returned by these macros. The flist retains ownership of its allocated memory.

• The following macros move fields from one flist to another:

– PIN_FLIST_FLD_MOVE

– PIN_FLIST_ELEM_MOVE

Memory ownership of the field changes from the source flist to the destination flist.

• The following field management macros allocate new memory:

– pbo_decimal_abs

– pbo_decimal_add

– pbo_decimal_copy

– pbo_decimal_divide

– pbo_decimal_from_double

– pbo_decimal_from_str

– pbo_decimal_multiply

– pbo_decimal_negate

– pbo_decimal_round

– pbo_decimal_subtract

– pbo_decimal_to_str

– PIN_POID_COPY

– PIN_POID_CREATE

– PIN_POID_DESTROY

– PIN_POID_LIST_COPY

– PIN_POID_LIST_COPY_NEXT_POID

– PIN_POID_LIST_COPY_POID

– PIN_POID_LIST_CREATE

– PIN_POID_LIST_DESTROY

All of the preceding macros return the memory owned to the caller.

Chapter 3
Flist Field Memory Management Guidelines

3-9

• The memory allocated by the macros in these guidelines is owned by the flist. Typically, all
flists created by code must be destroyed using PIN_FLIST_DESTROY or
PIN_FLIST_DESTROY_EX.

• Any memory allocated using pin_malloc must be freed unless it is added to an flist using a
PUT macro.

• All flists must be destroyed eventually, either directly or by nesting them in another flist as
a child and giving memory ownership to that flist.

• In Facilities Modules (FMs), the output flist is the only flist that does not need to be
explicitly destroyed by the FM, because the Connection Manager (CM) framework destroys
it after use.

For details on these macros, see "Flist Management Macros" in BRM Developer's Reference.

Handling Errors
All flist routines take a pointer to pin_ebuf_t as the final argument. This pointer, called ebufp,
must point to a preallocated pin_ebuf_t into which error information is written.

The BRM APIs use the pin_ebuf_t structure to pass back detailed information about the error.
BRM includes standard logging routines that print formatted log messages using the date in
pin_ebuf_t. You can use these log messages to determine where the error occurred.

See "Finding Errors in Your Code" for more information on how BRM handles error messages.

Chapter 3
Handling Errors

3-10

4
Understanding Storable Classes

Learn about storable classes, which define the storable objects that store data in the Oracle
Communications Billing and Revenue Management (BRM) database.

Topics in this document:

• About Storable Classes and Objects

• Reading Objects

• Creating Objects

• Writing Fields in Objects

• Incrementing Fields in Objects

• Deleting Objects

• Deleting Fields in Objects

• Managing a Large Number of Objects

• Improving Performance when Working with Objects

• Locking Specific Objects

• Disabling Granular Object Locking

About Storable Classes and Objects
Storable classes define the storable objects that store data in the BRM database. A storable
class is a template consisting of a collection of fields in the BRM database. Objects are
instances of storable classes.

Objects are stored persistently in SQL tables in the BRM database. To understand how objects
are mapped to SQL tables, see "Storable Class-to-SQL Mapping" in BRM Developer's
Reference.

Objects are passed in the form of flists between opcodes or programs that use the objects. For
detailed information about flists, see "Understanding Flists".

You manipulate the objects by using opcodes in the Portal Communication Module Application
Programming Interface (PCM API). For more information about the PCM API, see
"Understanding the PCM API".

Each object has a unique Portal object ID (POID). The POID identifies the object in the BRM
database.

The POID contains the following information:

database_number object_type object_id object_revision_level

Example:

0.0.0.1 /account 1234 0

4-1

Storable Class Naming and Formatting Conventions
BRM uses the following conventions for storable class names and definitions:

• A storable class name begins with a forward slash (/). For example: /config.

• Each slash in a storable class name represents a level of class inheritance. For example /
config/adjustment is a subclass of /config and /config/adjustment/event is a subclass
of /config/adjustment.

Subclassing
You can subclass a storable class to extend its functionality. When you subclass a storable
class, the subclass inherits all the fields defined in the parent class and can have additional
fields specific to the subclass. For example, the /service/email storable class contains all the
information in the /service storable class plus additional information, such as login name and
email address, specific to the email service.

Base storable classes are parent classes predefined in BRM from which you can create
subclasses to add new functionality. Subclasses of storable classes can be extended or
unextended:

• An extended subclass inherits all the fields defined in its base storable class and contains
new fields that add functionality specific to the subclass, as illustrated by the /service/
email subclass.

You can create a subclass of an extended subclass to add functionality to an extended
subclass. An example of this type of subclass is /config/adjustment/event.

• An unextended subclass inherits all the fields defined in its base storable class but does
not contain any new fields for additional functionality. The only difference between an
unextended subclass and its base storable class is the storable class type.

The unextended subclasses are primarily used for tracking and for grouping subclasses
with similar functionality. For example, /event/billing is a subclass of /event, but it does
not contain any additional fields. It is primarily used to group different BRM billing events,
such as charge, debit, and payment.

When you subclass a predefined base storable class or a subclass by adding new fields, your
new storable class has the following characteristics:

• The same fields as its original base storable class with the attributes of that class.

• Any new fields you add.

• The common defined behavior and functionality of storable classes in BRM.

About Defining Storable Classes
You use fields to define storable classes. Fields in storable classes have corresponding fields
in opcode input flists. The fields in the objects receive specific instructions and behavior from
the corresponding fields in the opcode that manipulates the object.

Each field has the following parts:

• A mnemonic name that describes its function. For example, PIN_FLD_LOGIN. Field
names are unique within an flist. Applications must use this name to refer to the field.

The default fields used in BRM start with PIN_FLD_. You can use a different prefix for your
custom fields to distinguish them from the default fields.

Chapter 4
About Storable Classes and Objects

4-2

• A type that specifies its data type and defines the range of values it can accept. For
example, PIN_FLDT_STR for string type.

For information on the BRM data types, see "Understanding the BRM Data Types ".

• Permission, which specifies if the field is optional, mandatory, writable, and so on.

• An ID number that establishes it in the data dictionary. When you define a new field, the
field is added to the data dictionary and is assigned the next consecutive ID number in the
ranges reserved for customer use. For example, if the ID of the last field you created is
10,500, your new field's ID number is 10,501.

Table 4-1 lists the field ID ranges for Oracle-only use and customer use.

Table 4-1 BRM Field ID Restrictions

Field ID Range Reserved For

0 through 9999 Oracle use only

10,000 through 999,999 Customer use

1,000,000 through 9,999,999 Oracle use only

Over 10,000,000 Customer use

Fields Common to All Storable Classes
Every BRM storable class requires the following fields for its object to be created in the system:

• PIN_FLD_POID, which contains the POID. See "Portal Object ID (POID)" for more
information.

• PIN_FLD_NAME, which contains the name of the storable class.

• PIN_FLD_CREATED_T, which contains the date the object was created.

• PIN_FLD_MOD_T, which contains the date the object was modified.

• PIN_FLD_READ_ACCESS, which specifies the read permissions for the object.

• PIN_FLD_WRITE_ACCESS, which specifies the write permissions for the object.

These fields are available to the BRM applications and Facilities Modules (FMs), but you
cannot write to them. They can be manipulated only by a Data Manager (DM).

Defining New Fields for Storable Classes
You define new fields and add them to the data dictionary by using the Storable Class Editor.
After you define a field, you use the PIN_FLD_MAKE macro to create an encoded number for
the field. You use this number to build flists for opcode and object manipulation in C code. The
PIN_FLD_MAKE macro is defined in BRM_home/include/pcm.h, where BRM_home is the
directory in which the BRM server software is installed.

For more information on creating custom fields and storable classes, see "Creating Custom
Fields".

For information on defining new fields in C++, see "Creating Custom Fields".

For information on defining new fields in Java, see "Using Custom Fields in Java Applications".

Chapter 4
About Storable Classes and Objects

4-3

Reading Objects
There are two ways to read the contents of objects in a BRM database:

• Use Object Browser, part of Developer Center, to view objects in the BRM database. You
can see a list of all the objects in a storable class and the contents of objects that you
select. You can also save and print object contents.

• You can run opcodes either programmatically or in a test application such as testnap.

You can use opcodes to read objects in the database by using the read operations included in
BRM. These opcodes are optimized for the most frequently used operations in BRM. You can
read only a portion of the fields in an object instead of the complete object.

Use one of these opcodes to read objects:

• PCM_OP_READ_OBJ loads and returns the entire object, no matter how many rows and
tables the object spans. See "Reading an Entire Object".

• PCM_OP_READ_FLDS loads only the fields requested. It accesses fewer tables than
when an entire object is read. See "Reading Fields in an Object".

Locking Objects when Reading them
You can lock an object to avoid an extra round trip to the database. To lock an object while the
PCM_OP_READ_OBJ or PCM_OP_READ_FLDS opcode reads it, use the
PCM_OPFLG_LOCK_OBJ flag. The query is turned into the equivalent of a select for update,
which places an exclusive lock on the rows in the database.

When using the PCM_OPFLG_LOCK_OBJ flag during an opcode process, the flag works as
follows:

• If the Facilities Module (FM) opcode opens a read/write transaction, the
PCM_OPFLG_LOCK_OBJ flag locks the object for a PCM_OP_READ_OBJ or
PCM_OP_READ_FLDS operation.

• If the FM opcode opens a read-only transaction and then tries to use
PCM_OPFLG_LOCK_OBJ in any subsequent read calls, the DM returns an error.

• If the FM opcode does not open a transaction and then tries to use
PCM_OPFLG_LOCK_OBJ in any subsequent read calls, the DM returns an error.

Most opcode operations lock the account when they begin processing. Though this provides
reliable data consistency, locking an account locks all of its associated objects and can prevent
other opcodes from operating on them. This can decrease the throughput of the system. To
alleviate this problem in affected systems, you may choose to lock the specific objects an
opcode will change instead of the whole account; the objects an opcode does not change can
still be accessed by other opcodes. See "Locking Specific Objects".

Reading an Entire Object
To read an entire object from the database, use the PCM_OP_READ_OBJ opcode. Specify the
POID of the object to read in the input flist. The POID of the object and all fields in the object
return, including array elements and substructures.

Audit trail information

Chapter 4
Reading Objects

4-4

PCM_OP_READ_OBJ checks for an audit flag to see whether the read request is for an
audited object. If an audit flag is set in the call to this opcode, a search for the audit trail is
performed.

For information about accessing audit trails, see "Accessing Audit Trail Information".

When a field is marked for auditing, a shadow object is created every time the field is modified.
A shadow object is a replica of the original object that contains the POID revision number of
the object before it was modified.

For more information about shadow objects, see "About Shadow Objects".

To retrieve audit-trail revisions from the database, use these flags in the call to this opcode to
send a request to the database DM:

• PCM_OPFLG_USE_POID_GIVEN

Runs a search-and-read operation for the POID you specify, which is the POID of the
shadow object in the audit trail.

• PCM_OPFLG_USE_POID_NEAREST

Runs a search-and-read operation for the audit-trail revision number that you specify (the
POID of the shadow object). If the exact POID is not found, it finds the POID with the
revision number immediately preceding the revision number of the POID you specify.

• PCM_OPFLG_USE_POID_NEXT

Runs a search-and-read operation for the shadow object POID that contains the revision
number next higher than the revision number in the POID you specify.

• PCM_OPFLG_USE_POID_PREV

Runs a search-and-read operation for the shadow object POID that contains the revision
number immediately preceding the revision number in the POID you specify.

Reading Fields in an Object
To read one or more fields in an object, use the PCM_OP_READ_FLDS opcode. This opcode
returns the POID of the object from which the fields were read, along with the specified fields
and their values.

This opcode returns the POID of the object from which the fields were read, along with the
specified fields and their values.

PCM_OP_READ_FLDS allows a client application to read specified fields in an object. Specify
the POID of the object along with the list of fields to be read in the input flist. The POID is
mandatory; the fields are optional. If there are no fields present, only the POID is read and
returned.

To read an array element, specify the element in the input flist. If the array element contains a
substructure that contains fields you want to read, you must also specify the substruct
elements in the input flist.

Note:

To improve performance, some object arrays are stored in a special serialized format.
When a client application requests fields from a serialized array,
PCM_OP_READ_FLDS returns the entire array rather than just the specified fields.

Chapter 4
Reading Objects

4-5

You can read all the fields of a substructure or array in the following ways:

• To read an entire substruct, put the substruct field in the input flist with a NULL value.

• To read all the fields in an array element, put the array element in the input flist with a
NULL value. This returns all fields, including those from substructs.

• To read all the elements of an array, put the array element in the input flist with an element
ID of PIN_ELEMID_ANY.

Examples

• This opcode can be used with a read-only transaction to obtain a frozen view of an object.
When a read-only transaction is open, all reads are performed on fields in the state they
are in when the transaction is opened. This is an important consideration when you
perform multiple reads and must ensure that the data does not change between reads,
such as when adding up fields for a balance.

For information about opening a read-only transaction, see "Using Transactions in Your
Client Application".

• You can use this opcode to find the value of a flag. This example shows the input and
output flists for reading the value of the PIN_FLD_FLAGS field in the
PIN_FLD_BALANCES array element in a /balance_group object:

CM input flist: op PCM_OP_READ_FLDS, flags 0x0
number of field entries allocated 20, used 2
0 PIN_FLD_POID POID [0] 0.0.0.1 /balance_group 685398 3
0 PIN_FLD_BALANCES ARRAY [840] allocated 20, used 1
1 PIN_FLD_CREDIT_PROFILE INT [0] 0

CM output flist: op PCM_OP_READ_FLDS
number of field entries allocated 20, used 2
0 PIN_FLD_POID POID [0] 0.0.0.1 /balance_group 685398 1
0 PIN_FLD_BALANCES ARRAY [840] allocated 20, used 1
1 PIN_FLD_CREDIT_PROFILE INT [0] 22

Creating Objects
To create an object, use the PCM_OP_CREATE_OBJ opcode. This opcode creates a new
object of the type specified in the input flist. You must specify the database type and storable
class type subfields of the object POID on the input flist. The POID ID is ignored unless you
use the PCM_OPFLG_USE_POID_GIVEN flag.

The PCM_OP_CREATE_OBJ input flist must include all fields the object requires. The fields
required in the input flist depend on the object type. For example, an /account object requires
the security code, account number, account type, balances, and credit fields.

This opcode returns the POID of the object created. If you use the
PCM_OPFLG_READ_RESULT flag, it also returns all fields from the created object, including
array elements and substructures.

PCM_OP_CREATE_OBJ Opcode Flags
Use these flags when creating objects:

• PCM_OPFLG_USE_POID_GIVEN

Uses the POID ID you specify in the input flist. If the ID is a duplicate, a new POID ID is
assigned. Not all object POID IDs can be assigned by a user. For information on which

Chapter 4
Creating Objects

4-6

object POID IDs can be assigned, see the object specifications in "Storable Class
Definitions" in BRM Developer's Reference.

When this flag is not passed, the opcode assigns a new POID ID.

• PCM_OPFLG_READ_RESULT

Returns all fields from the created object, including array elements and substructures.

• PCM_OPFLG_CACHEABLE

Enables caching each transaction's objects in the Connection Manager (CM) instead of
writing them immediately to the database. See "Improving Performance when Working with
Objects".

If the flag is not passed, the opcode writes the input flist to the database immediately and
writes it to the cache for future use.

• PCM_OPFLG_ADD_MESSAGE

Performs enqueuing operations to the Oracle Advanced Queuing (AQ) database queues
rather than writing objects to the database. See "Configuring Your AQ Database Queues"
in BRM System Administrator's Guide.

Writing Fields in Objects
To write fields in an object, use the PCM_OP_WRITE_FLDS opcode. This opcode returns the
POID of the object whose fields were written, including the new revision number. This opcode
allows a client application to set the values of fields in an object. Specify the fields and values
to set, along with the POID of the object, on the input flist. You must update at least one field.

The field values are absolutely set to the values you provide. To make a relative change to a
numeric field value, use the PCM_OP_INC_FLDS opcode.

Update array element fields by specifying the array element ID and the field element ID in the
input flist. If there is no array element for the fields you want to update, you must create the
element by using the PCM_OPFLG_ADD_ENTRY flag.

Note:

This flag is required because BRM allocates space for array elements only when they
are created and assigned a value. If you do not use the PCM_OPFLG_ADD_ENTRY
flag, you receive an error when you try to update array fields in an element that
doesn't exist.

The PCM_OPFLG_ADD_ENTRY flag is required only for array fields. Fields that are not part of
an array element must already exist (assuming the object exists) so they are updated as
requested.

If you set an array element in the input flist and use the element ID PIN_ELEMID_ASSIGN, the
element is created with an element ID numbered next higher than the highest existing element
ID for that array.

Not all fields in each object are writable by the application. For details on which fields are
writable, see "Storable Class Definitions" in BRM Developer's Reference.

Chapter 4
Writing Fields in Objects

4-7

PCM_OP_WRITE_FLDS Opcode Flags
Use these flags:

• PCM_OPFLG_ADD_ENTRY

Creates an array element and updates fields as requested. If the array element already
exists, this flag is ignored. PCM_OPFLG_ADD_ENTRY cannot be used to create ordinary
fields.

• PCM_OPFLG_READ_RESULT

Returns all fields from the created object, including array elements and substructures.

• PCM_OPFLG_NO_RESULTS

Although this flag can be included, the PCM_OP_WRITE_FLDS opcode ignores it and
returns the POID.

• PCM_OPFLG_CACHEABLE

Enables caching each transaction's objects in the CM instead of writing them immediately
to the database. See "Improving Performance when Working with Objects".

If the PCM_OPFLG_CACHEABLE flag is not set, the opcode writes the input flist to the
database immediately and writes it to the cache for future use.

If an array element in the input flist has an element ID of PIN_ELEM_ID_ASSIGN, the
element is not cached, even if the PCM_OPFLG_CACHEABLE flag is set.

If neither PCM_OPFLG_CACHEABLE nor PCM_OPFLG_ADD_ENTRY is set, and the
array entry does not exist, the opcode fails. If PCM_OPFLG_CACHEABLE is set but
PCM_OPFLG_ADD_ENTRY is not set, and the array entry does not exist, the opcode also
fails, but it does not return the error immediately. The delayed error appears when the
fields are actually written to the database.

Incrementing Fields in Objects
To increment fields in an object, use the PCM_OP_INC_FLDS opcode. This opcode returns
the POID of the object whose fields were updated, including the new revision number. It also
returns the revised values of the selected fields unless the PCM_OPFLG_NO_RESULTS flag
is used.

This opcode increments or decrements fields specified in the input flist. Only fields of type
PIN_FLDT_INT and PIN_FLDT_DECIMAL can be incremented or decremented, and both
types must be signed in the input flist. The signed value of the field in the input flist determines
whether the field is incremented or decremented.

You must update at least one field. Specify the POID of the object that contains the fields to
update, along with at least one field, in the input flist.

Update array element fields by specifying the array element ID along with the field element ID
in the input flist. If there is no array element for the fields you want to update, you must create
the element by using the PCM_OPFLG_ADD_ENTRY flag.

Chapter 4
Incrementing Fields in Objects

4-8

Note:

This flag is required because BRM allocates space for array elements only when they
are created and assigned a value. If you do not use the PCM_OPFLG_ADD_ENTRY
flag, you receive an error when you try to update array fields in an element that
doesn't exist. An error also occurs if the array contains any nonincremental fields or
mandatory fields of a nonincremental type.

The PCM_OPFLG_ADD_ENTRY flag is required only for array fields. Fields that are not part of
an array element must already exist (assuming the object exists) so they are updated as
requested.

If you set an array element on the input flist and assign the element ID a value of
PIN_ELEMID_ASSIGN, the element is created with an element ID that is numbered next
higher than the highest existing element ID for that array.

Updating Decimal Data Types
When you increment or decrement fields of decimal data type, the result depends on the value
of the field both in the database and in the input flist. If the value of the field in the database is
NULL, BRM converts that value to 0 before updating. If the value of the field in the input flist is
NULL or 0, no action is taken on the value in the database. This prevents a non-NULL value in
the database from being converted to NULL.

Table 4-2 shows the three possible results of an increment (0, NULL, or non-NULL) for all
possible field value combinations. These results apply only to decimal data types:

Table 4-2 Incrementing Database Field Values

Database Field Value Flist Increment Value Result of Increment

NULL NULL or 0 NULL

NULL Non-NULL Non-NULL

0 NULL or 0 0

0 Non-NULL Non-NULL

Non-NULL NULL or 0 or non-NULL Non-NULL

If you want a field value to remain open (such as a credit limit), you should increment the field
by a value of either 0 or NULL.

You can prevent the conversion of the field value in the database from NULL to 0 by using the
PCM_OPFLG_USE_NULL flag. This flag assigns a NULL value to the field in the input flist,
which prevents a change to the database value.

Updating Integer Data Types
You cannot assign a NULL value to fields of type INT in the input flist. If you update an INT
data type, the PCM_OPFLG_USE_NULL flag is ignored. To maintain a NULL value in the
database for a field of type INT, you must increment with 0. If the increment value is nonzero in
the input flist, the result is always nonzero.

Chapter 4
Incrementing Fields in Objects

4-9

Not all fields in each object can be incremented by an application. For information on which
fields can be incremented, see "Storable Class Definitions" in BRM Developer's Reference.

PCM_OP_INC_FLDS Opcode Flags
Use these flags:

• PCM_OPFLG_ADD_ENTRY

Creates an array element, if it doesn't already exist, and updates the specified fields as
requested. It cannot be used to create nonarray fields. If the array element already exists,
this flag is ignored.

• PCM_OPFLG_READ_RESULT

Returns all fields from the created object, including array elements and substructures.

• PCM_OPFLG_USE_NULL

Prevents a NULL field value in the database from being converted to 0 and updated.

• PCM_OPFLG_NO_RESULTS

Returns only the POID, without the updated data. This flag provides higher performance by
skipping the extra processing of returning updated data.

Deleting Objects
To delete an object, use the PCM_OP_DELETE_OBJ opcode. Specify the POID of the object
to delete in the input flist. This opcode ignores the field values of the object to be deleted.
When an object is deleted, its POID ID cannot be reused.

This opcode deletes only the object passed in. No integrity checks are performed to ensure
that the object is not referenced in any way.

Note:

To maintain database consistency, you must make sure that your application deletes
any other objects that reference or are referenced by the object you delete.

This opcode returns the POID of the deleted object.

Deleting Fields in Objects
To delete fields in an object, use the PCM_OP_DELETE_FLDS opcode. This opcode returns
the POID of the object from which an element was deleted, including the new revision number.

You must delete at least one array element. Specify the POID of the object from which to
delete elements in the input flist. Also specify the array element ID for each element to be
deleted. To delete an entire array, put the array in the input flist and use the element ID
PCM_RECID_ALL.

The value for each array element to be deleted must be NULL. The value of fields within an
array element to be deleted are ignored. You cannot delete fields within an array element
without deleting the array element.

Chapter 4
Deleting Objects

4-10

Only optional arrays and array elements can be deleted. Attempting to delete a mandatory
element will return an error. You cannot delete fields that are not part of an array element, and
you cannot delete arrays or array elements within a substructure.

Managing a Large Number of Objects
In addition to working with individual objects, you can use base opcodes to perform the
following operations on a large number of objects in one database operation instead of
accessing the database for every object:

• Create a large number of objects of the same type. See "Creating a Large Number of
Objects".

• Update fields in a large number of objects. See "Editing a Large Number of Objects".

• Delete a large number of objects of the same type. See "Deleting a Large Number of
Objects".

Creating a Large Number of Objects
To create a large number of objects of the same type, use the PCM_OP_BULK_CREATE_OBJ
opcode.

The PCM_OP_BULK_CREATE_OBJ input flist must include all the fields that the objects of the
storable class requires. The required input flist fields depend on the type of objects that you are
creating; for example, an /account object includes security code, account number, account
type, balances, and credit fields. You can use the PIN_FLD_COMMON_VALUES array in the
input flist for fields that have common values for all objects being created.

Note:

You cannot use this opcode to create a new storable class. You can use it only to
create objects in an existing storable class.

You can use the same flags with this opcode as you can with the PCM_OP_CREATE_OBJ
opcode, except that the following flags are not supported:

• PCM_OPFLG_USE_POID_GIVEN

• PCM_OPFLG_READ_RESULT

This opcode returns the type-only POID of the objects created, but it does not return the full
POIDs of the individual objects created.

Editing a Large Number of Objects
To update fields in a large number of objects of the same type, use the
PCM_OP_BULK_WRITE_FLDS opcode.

This opcode updates the values of the fields or adds new fields in the objects that meet the
conditions you specify in the input flist. It returns the POID type and count of the objects.

To update array element fields, specify the array element ID and the field element ID in the
input flist. You can update first- and second-level array fields. If there is no array element for

Chapter 4
Managing a Large Number of Objects

4-11

the fields you want to update, you must create the element by using the
PCM_OPFLG_ADD_ENTRY flag.

Note:

This flag is required only for array elements because BRM allocates space for array
elements only when they are created and assigned a value. If you do not use the
PCM_OPFLG_ADD_ENTRY flag, you receive an error when you try to update array
fields in an element that doesn't exist.

Fields that are not part of an array element must already exist for an object, and they
are updated.

If you set an array element in the input flist and use the element ID PIN_ELEMID_ASSIGN, the
element is created with an element ID higher than the highest existing element ID for that
array.

Deleting a Large Number of Objects
To delete a large number of objects of the same type, use the PCM_OP_BULK_DELETE_OBJ
opcode. This opcode deletes the objects of the type that meet the conditions you specify in the
where clause of the query. It returns the POID type and the count of the objects deleted.

Note:

• You cannot use the opcode to delete specific fields in an object, only to delete
complete objects.

• You cannot use the opcode to delete an entire storable class, only to delete
objects in that class.

Locking Objects when Editing or Deleting a Large Number of Objects
To enforce the data integrity of bulk operations (the PCM_OP_BULK_WRITE_FLDS and
PCM_OP_BULK_DELETE_OBJ opcodes), specify the PCM_OPFLG_LOCK_OBJ flag for the
opcodes.

Note:

The PCM_OP_LOCK_DEFAULT flag is ignored by the bulk opcodes.

When the PCM_OPFLG_LOCK_OBJ flag is specified, the balance groups of the known
objects or the unknown objects will be locked. The rules for identifying which balance groups
are locked are identical to the rules used in "Locking Specific Objects".

Chapter 4
Managing a Large Number of Objects

4-12

Improving Performance when Working with Objects
Some opcodes used for searching and manipulating objects use the
PCM_OPFLG_CACHEABLE flag. This flag enables caching each transaction's objects in the
Connection Manager (CM) instead of writing them immediately to the database. Caching
makes the CM and the DM more efficient because the CM doesn't request the DM to write the
same object to the database multiple times.

Objects are cached at the end of a transaction unless they must be written to the database
earlier. For example, a search causes immediate execution of all pending writes so that the
search can work on the most current data.

If the PCM_OPFLG_CACHEABLE flag is not set, the opcode immediately writes the input flist
to the database and then to the cache for future use.

The CM writes flist fields to the database when the application does the following:

• Runs one of the following opcodes:

– PCM_OP_CREATE_OBJ

– PCM_OP_SEARCH

– PCM_OP_STEP_SEARCH

– PCM_OP_STEP_NEXT

– PCM_OP_GLOBAL_SEARCH

– PCM_OP_GLOBAL_STEP_SEARCH

– PCM_OP_GLOBAL_STEP_NEXT

– PCM_OP_READ_OBJ

– PCM_OP_READ_FLDS

– PCM_OP_WRITE_FLDS

• Runs PCM_OP_INC_FLDS, and the fields are part of the object in the writable cache.

Sometimes, the object can be partially available in the cache due to previous executions of
PCM_OP_READ_FLDS or PCM_OP_WRITE_FLDS. If the partial object is in the read-only
cache, the CM destroys it and reads a complete object from the database through the DM. The
CM caches that object before returning it to the application. If the partial object has been
updated and therefore is in the writable cache, the CM writes it to the database before reading
and caching the complete object.

The scope of a transaction cache is one transaction.

Note:

Transaction caching is not always beneficial. For example, if a transaction reads a
given object only once, it should not use the PCM_OPFLG_CACHEABLE flag.

Locking Specific Objects
Locking on an account level (higher object hierarchy) can cause contention between opcodes
and therefore create a bottleneck, reducing the throughput of the BRM system. Because the

Chapter 4
Improving Performance when Working with Objects

4-13

default locking process locks at the account level, performance can be improved by locking
only the working objects rather than the account.

You can lock balance groups for the specific operations that are impacting performance. If you
do not specify a more granular locking procedure, transactions lock account objects; no code
change is required.

There are some frequently used operations that can take advantage of granular locking on
balance group objects. They may lock the object's default or associated balance group to
improve performance.

Note:

Exercise caution when customizing locking strategies. Changes to lower-level locking
on balance group objects may cause a deadlock if you are not familiar with the
execution paths of the Facilities Module (FM) utility subroutines.

BRM supports balance group locking for transactions and opcodes that open the following
known objects:

• A given account

• A given service

• A given group

• A given bill unit (/billinfo object)

• A given bill

• A given balance group

• A given profile

• A purchased charge offer

• A purchased discount offer

• An event

• A journal

You use the following flags to lock balance groups:

• Use the PCM_TRANS_OPEN_LOCK_OBJ flag to lock all the associated balance groups
(multiple balance groups) during the opening of a transaction. The equivalent flag for use
with the other base opcodes is PCM_OPFLG_LOCK_OBJ.

For example:

fm_utils_trans_open(ctxp, opflags|PCM_TRANS_OPEN_LOCK_OBJ, pdp, ebufp);

• Use the PCM_TRANS_OPEN_LOCK_DEFAULT flag to lock the default balance group
during the opening of a transaction. The equivalent flag for use with the base opcode is
PCM_OPFLG_LOCK_DEFAULT.

For example:

PCM_OP(ctxp, PCM_OP_READ_FLDS, PCM_OPFLG_LOCK_OBJ, s_flistp, &o_flistp, ebufp);

Chapter 4
Locking Specific Objects

4-14

Using these flags can improve your system's performance if many balance groups are
associated with the object you are targeting with the lock request. Each flag locks balance
groups according to the object type opened by the opcode or utility as shown in Table 4-3:

Table 4-3 Balance Locking Flags

Object Types PCM_TRANS_OPEN_LOCK_OBJ PCM_TRANS_OPEN_LOCK_DEFAULT

Account Generate a SQL template to do bulk locking on
all the account's balance groups.

Lock the account's default balance group.

BillInfo Generate a SQL template to do bulk locking on
all the bill unit's balance groups.

Lock the bill unit's default balance group.

Balance Group Lock the balance group.

Note: This rule is identical to that of
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock the balance group.

Service Lock the service's default balance group.

Note: This rule is identical to that of
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock the service's default balance group.

Profile Lock all the parent account's balance groups
(alternatively).

Note: There may be some ambiguity in this rule.

Lock the parent's default balance group.

Group Lock all the owner account's balance groups. Lock the owner account's default balance
group.

Bill Lock all bill unit's balance groups. Lock the bill unit's default balance group.

Item Lock the item's default balance group.

Note: This rule is identical to that of
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock the item's default balance group.

Journal Lock the journal object as is by returning its
POID.

Note: This rule is identical to that of the
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock the journal object as is by returning its
POID.

Event Lock the event object as is by returning its POID.

Note: This rule is identical to that of
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock the event object as is by returning its
POID.

Purchased Charge
Offer

Lock all of the service's default balance groups (if
any) or parent account's default balance groups
(alternatively).

Note: This rule is identical to that of
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock all the service's default balance groups
(if any) or parent account's default balance
groups (alternatively).

Purchased Discount
Offer

Lock all of the service's default balance groups (if
any) or parent account's default balance groups
(alternatively).

Note: This rule is identical to that of
PCM_TRANS_OPEN_LOCK_DEFAULT.

Lock the all the service's default balance
groups (if any) or parent account's default
balance groups (alternatively).

Others Lock all the balance groups of the parent
account, provided the account is not the root or
the PCM login account. Otherwise, lock the
object as is.

Note: BRM assumes that the login user ID is an
account POID.

Lock the default balance group of the parent
account provided that the account must not be
the root or the PCM login account. Otherwise,
lock the object as is.

Chapter 4
Locking Specific Objects

4-15

Note:

When using either flag, be aware of what is locked and what is not locked. A
deadlock can occur when two different transaction contexts lock on a common set of
objects and the lock sequences are not synchronized.

Oracle can detect the database-level deadlocks and throws an error to the DM. Users may
also dump the CM lock map to determine the object that caused the deadlock. The technique
is as follows:

1. Obtain the lock map flist using PCP_GET_TRANS_FLIST.

2. Use PIN_ERR_LOG_FLIST to display the lock map flist.

There are many opcodes that can lock based on the objects in the list. In some cases, it should
be okay to leave things as they are. If you decide not to change anything, things should still
work as before and performance should not degrade.

Some sample strategies that may be employed to assist performance are:

• Change PCM_OPFLG_LOCK_OBJ to PCM_OPFLG_LOCK_ DEFAULT in an operation
you already use. This may change its locking behavior but typically if you were not
experiencing deadlocks with this operation before, it can be changed safely.

• Change the object to lock. If an opcode works on only the /service object, try using the
PCM_OPFLG_LOCK_DEFAULT flag on the /service object if it is provided in the input flist.
In this way, objects that are not changed are not locked and therefore a given opcode will
not interfere with objects that it does not change.

You can lock only when you are in a read-write transaction. Otherwise, your lock flags will be
ignored or may result in a fatal PCM error.

Disabling Granular Object Locking
By default, granular object locking is enabled in BRM. Performance is better when you use
granular object locking.

To disable granular locking, run the pin_bus_params utility to change the LockConcurrency
business parameter. For information about this utility, see "pin_bus_params".

The default behavior, which corresponds to the LockConcurrency value of high, allows you to
call opcodes with the PCM_OPFLG_LOCK_OBJ and PCM_OPFLG_LOCK_DEFAULT flags to
determine the locking procedure. See "Locking Specific Objects".

When you disable granular locking, the following rules apply:

• There is no differentiation of the PCM_OPFLG_LOCK_OBJ and
PCM_OPFLG_LOCK_DEFAULT flags.

• A given balance group object is locked as is.

• All other objects are translated to lock its associated account (if any).

• The root login account will be ignored.

• The object that has no account association will be locked as is.

To disable granular object locking:

1. Go to BRM_home/sys/data/config.

Chapter 4
Disabling Granular Object Locking

4-16

2. Create an XML file from the /config/business_params object:

pin_bus_params -r multi_bal financial/config/xml_utils/bus_params_multi_bal.xml
3. In the file, change high to normal:

<LockConcurrency>high</LockConcurrency>
4. Save the file as financial/config/xml_utils/bus_params_multi_bal.xml..

5. Load the XML file into the BRM database:

pin_bus_params financial/config/xml_utils/bus_params_multi_bal.xml
6. Stop and restart the CM.

Chapter 4
Disabling Granular Object Locking

4-17

5
Understanding the PCM API

Learn about the Oracle Communications Billing and Revenue Management (BRM) Portal
Communication Module (PCM) Application Programming Interface (API), which you use to
interact with the BRM database.

Topics in this document:

• About the PCM API

• Header Files

• About Opcode Usage

• About Transaction Usage

• Calling PCM Opcodes

• Manipulating Objects in Custom Applications

• Supporting an Older Version of BRM

For information about the PIN (Portal Information Network) libraries, which you use to handle
errors and to manipulate flists, POIDs, fields, strings, and decimal data types, see "PIN
Libraries Reference" in BRM Developer's Reference.

About the PCM API
All access to the data in the BRM database is through the PCM API. Client applications and
custom Facilities Modules (FMs) use this library to manipulate objects in the database.

The API consists of three classes of functions:

• Context management. You use context management opcodes to control communication
channels to the database.

• Basic object manipulation. You use base opcodes to create, search for, delete, and modify
objects in the database.

• FM object manipulation. You use FM opcodes to implement business policies and
processes

You make BRM API calls by using a macro interface instead of directly through functions.
When an API macro is called, the macro records the file name and line number of the source
code where the API was called. If an error occurs, the macro logs a message including the file
name and source code line number, making it easy to locate and correct the error.

For details on the return status of PCM functions and the error messages returned, see
"Finding Errors in Your Code".

The API definitions are independent of the underlying storage model. The C data structures
are opaque, and the opcodes are designed to appear much like object methods.

5-1

Context Management Opcodes
The context management opcodes open and close a communication channel to the BRM
database by opening and closing a context to the Connection Manager (CM). The context
structure is opaque to the application. It contains state data used by the PCM library to
manage the communication channel.

The context management opcodes include functions for synchronous and asynchronous
transactions. All transactions must follow these rules:

• Each application can connect to only one CM at a time.

• Only one connection can be open to a DM at a time.

• All object manipulation functions performed within a transaction must apply to the same
BRM database schema.

When a context is opened, you can call additional functions to open, close, and commit or
cancel transactions within the open context.

When you open a PCM context, a connection is established between your application and the
BRM server. This connection adds significant overhead to the system because of the security
and auditing checks performed by BRM. Therefore, to maximize performance, make sure your
application keeps the context open until all the operations are performed. If your application
opens and closes contexts frequently, performance will be affected.

If you are writing applications, such as Web-based Active Server Pages or CGI scripts, that
cannot maintain an open context for a long time, use CM Proxy. CM Proxy allows your
application to access the database with a pre-authorized connection and avoid the system
overhead of a login for each connection.

For more information on CM Proxy, see "Using CM Proxy to Allow Unauthenticated Log On" in
BRM System Administrator's Guide.

For more information on context management opcodes, see "Context Management Opcodes"
in BRM Opcode Guide.

Base Opcodes
You use base opcodes to perform operations such as creating and manipulating objects,
searching, and transaction handling. Base opcodes are implemented in the Data Manager,
unlike the other opcodes, which are implemented in the Connection Manager.

Base opcodes require an open communication context and an input flist as parameters. The
input flist specifies the input field arguments, and is not modified during execution.

You call the object manipulation opcodes with PCM_OP. The opcode you want to call is an
input parameter.

Base opcodes pass back a return flist as a parameter. The return flist contains the result field
arguments. The memory for the return flist is dynamically allocated.

You can run basic object manipulation macros in any combination within a transaction,
depending on the resources available.

Search and Global Search Opcodes
Some base opcodes are used for searching in BRM. "Searching" in this context means looking
in your BRM database for objects that meet a criteria that you specify. That is, you want the

Chapter 5
About the PCM API

5-2

POIDs of all the objects that share certain characteristics. The PCM_OP_SEARCH_* and
PCM_OP_GLOBAL_SEARCH_* opcodes are designed for this purpose. They search single or
multiple database schemas for accounts that match the criteria you specify and return the
POIDs of those accounts.

After you know the POIDs of accounts, you can call other base opcodes designed to read or
change data, such as PCM_OP_READ_OBJ, PCM_OP_WRITE_OBJ, or
PCM_OP_DELETE_OBJ.

See "Searching for Objects in the BRM Database" for a discussion of searching and a list of
the SEARCH opcodes. This document explains the BRM searching strategy, including the
types of searching that BRM does by default and what you must know to write custom
applications to use on the BRM database.

When you write a custom DM, depending on your needs, you implement opcodes from the
following set:

• Base opcodes for LDAP DM. See "LDAP Base Opcodes" in BRM Opcode Guide.

• Base opcodes for Email DM. See "Email Data Manager Opcodes" in BRM Opcode Guide.

FM Opcodes
FMs (Facilities Modules) are shared libraries that implement higher-level opcodes. Each FM
implements a set of opcodes to perform operations specific to that module. FMs create online
accounts, manage customer-related information, charge customers for usage, and allow third-
party systems to be integrated with BRM. In the billing FM, for example, opcodes perform
advanced billing-related operations on user accounts.

You call the FM opcodes using PCM_OP, with the FM opcode you are calling as the input
parameter.

FM opcodes are divided into the following types:

• Standard FM opcodes perform specific BRM operations. You cannot change the standard
opcodes. However, to add new functionality, you can write new opcodes.

For more information, see "Writing a Custom Facilities Module".

• Policy FM opcodes contain the BRM business logic. You can modify the default behavior
of policy opcodes to suit your business needs. BRM includes the source code for all the
policy opcodes.

For example, you can bill customers on their anniversary date or on the first day of each
month by modifying the default implementation of the
PCM_OP_CUST_POL_PREP_ACTINFO policy opcode.

For more information on customizing policy opcodes, see "About System and Policy
Opcodes".

BRM includes a set of policy opcodes, including source code, as hooks for you to add your
code. These opcodes do not have a default implementation.

Standard FMs that use business logic to process requests have policy FMs associated with
them. A few FMs, such as the SDK FM and the Group FM, which are internal to BRM and do
not need business logic for processing data, do not have associated policy FMs.

Each of the BRM optional managers has its own FM. See the appropriate optional manager
documentation for more information.

Chapter 5
About the PCM API

5-3

About the PREP and VALID Opcodes
Many opcodes, for example, PCM_OP_CUST_SET_LOGIN and
PCM_OP_CUST_PREP_CUSTOMER, call policy PREP and VALID opcodes, such as
PCM_OP_CUST_POL_PREP_PASSWD and PCM_OP_CUST_POL_VALID_PASSWD. You
can use PREP and VALID opcodes to customize how data is processed.

• Use the PREP opcodes to process data before it is validated. Typical processing includes
adding missing fields whose values are derived or generated by the PREP operation, and
forcing fields to predefined values independent of what the customer specified. PREP
opcodes are given a set of customer-specified fields on the input flist, and return the
processed version of the same data on the output flist.

If a PREP opcode cannot derive all the necessary fields because the customer-specified
values used in the derivation are incorrect, no error is returned. Instead, the derived fields
are put on the output flist with a default value, and the corresponding VALID call detects
the incorrect data and returns the validation error to the calling application. This approach
allows the calling application to see the details of the validation error rather than receiving
a less precise ebuf error passed up from the PREP opcode.

If a PREP opcode cannot generate a necessary field or some other internal problem is
encountered, an ebuf error is returned.

• Use the VALID opcodes to validate field values. Typical checks include formatting tests for
data integrity, tests for illegal values and tests for required information that is missing.
VALID opcodes are given a set of related fields and values on the input flist, and return a
list of fields that failed the validation tests on the output flist. The VALID opcodes cannot
alter the value of a field that is not suitable, that is the purpose of the PREP opcodes.

If one or more fields fail the validation tests, they are returned using the PIN_FLD_FIELDS
array on the output flist. This array is structured to allow fields nested within arrays or
substructs to be accurately represented. All fields that failed validation are returned by the
operation, so the caller can correct all errors at once and retry the operation.

Validating Fields by Using Field Validation Editor
To validate the fields that you specify in the Field Validation Editor, use
PCM_OP_CUST_VALID_FLD.

Header Files
Each set of related opcodes has a corresponding header file. Your custom code and
applications must include the header files that correspond to the opcodes you use.

Context management opcodes use the pcm.h header file. Always include this file in your
applications.

Header files for base opcodes and Facilities Module (FM) opcodes are located in the
include/ops directory. To include one of these header files, use this syntax:

#include "ops/file.h"

Where file is the name of the header file.

For example, if your application calls PCM_OP_CUST_COMMMIT_CUSTOMER, you must
include the ops/cust.h header file.

Chapter 5
Header Files

5-4

About Opcode Usage
Recommended: opcodes are designed specifically for you to call from your custom
applications. They are not expected to change from release to release.

Limited: opcodes should only be called in special cases. They may change from release to
release.

Last Resort: opcodes should only be called if absolutely necessary. Calling these opcodes
means that you are either on the wrong track or rewriting major portions of code. BRM will
change these opcodes as necessary.

About Transaction Usage
A transaction is a connection that requires that the data being read or written must not change
during the connection. A transaction adheres to the “ACID" properties, which means the
transaction is:

• Atomic: Either the entire transaction completes successfully, or none of it does.

• Consistent: The transaction takes the database from one consistent state to another.

• Isolated: Only the process that opened the transaction can see the intermediate results of
the transaction.

• Durable: After the transaction is committed to the database, the changes are permanent
and cannot be changed except by another transaction.

Each opcode uses one of the following types of transaction handling:

• Transaction Handling: Required

• Transaction Handling: Requires New

• Transaction Handling: Supports

Transaction Handling: Required
The transaction for this opcode can be wrapped in a transaction opened by another opcode.

If a read-write transaction is already open when this opcode is run, all data modifications take
place within the open transaction. The modifications are committed or cancelled along with all
other changes when the transaction is committed or cancelled.

If no transaction is open when the opcode is called, a read-write transaction is opened. All
actions are performed within this transaction, ensuring that the entire operation is performed
atomically. If an error occurs during the execution of the opcode, all changes are cancelled
when the transaction is cancelled. If no error occurs, the transaction is committed at the end of
the operation.

This opcode requires a read-write transaction. It is therefore an error to have a read-only
transaction open when this opcode is called.

Transaction Handling: Requires New
This opcode manages transactions internally to ensure absolute integrity of the database. A
transaction for this opcode cannot be wrapped in another transaction.

Chapter 5
About Opcode Usage

5-5

If no transaction is open when the opcode is called, a read-write transaction is automatically
opened and all actions are performed within this transaction.

If a transaction is already open when the opcode is called, an error occurs.

Transaction Handling: Supports
This opcode does not modify object data. If it is called while a transaction is not already open,
the operation is run without transactional control.

If a read-write or read-only transaction is already open when this opcode is called, the opcode
is run as part of the transaction and reads the in-process state of the data.

If the opcode is called when a separate, unrelated transaction is taking place, it reads the last
saved state of the database.

Calling PCM Opcodes
You call the base and FM opcodes by using PCM_OP(). You pass the opcode you want to call
as one of the input parameters. PCM_OP() runs the opcode in its input parameters list in an
open communication channel or a context.

You use the following parameters and flags with PCM_OP():

pcm_ctxp

• Pointer to an open PCM context.

opcode

• Name of the opcode you want to call.

flags

• (int32)NULL

No flags specified. Use only when there are no flags defined for this operation.

• PCM_OPFLG_READ_RESULT

Returns all the fields in the object from the output flist, not just the POID. Valid only for
opcodes that create objects.

• PCM_OPFLG_CALC_ONLY

Calculate only. Valid only for opcodes that create objects. No fields in the database are
changed and the object is not actually created. Instead, fields that would have been used
to create the object are returned to the caller on the output flist.

in_flistp

• An input flist specification for the opcode defining the required and optional input fields for
the opcode to function properly. Each opcode has an input flist specification that you must
use to create the input. See the input flist specification in an individual opcode description
for details.

ret_flistpp

• An output flist specification defining what you expect the opcode to return. Each opcode
has an output flist specification that you must use to create the input. You must explicitly
destroy the return flist to free memory. See the output flist specification in an individual
opcode description for details.

Chapter 5
Calling PCM Opcodes

5-6

ebufp

• Pointer to an error buffer. Used to pass status information back to the caller.

The following example shows how to call the policy opcode
PCM_OP_CUST_POL_GET_PLANS to get packages:

/*Declarations*/
pin_errbuf_t *ebufp
input_flistp = PIN_FLIST_CREATE(ebufp);
return_flistp = PIN_FLIST_CREATE(ebufp);

PCM_OP(ctxp, PCM_OP_CUST_POL_GET_PLANS, 0, input_flistp, &return_flistp, ebufp);

Manipulating Objects in Custom Applications
There are three basic steps to manipulating objects in a custom application or module:

1. Open a context by calling PCM_CONTEXT_OPEN or PCM_CONNECT in an application.

2. Call opcodes with PCM_OP.

3. Close the context by using PCM_CONTEXT_CLOSE.

Supporting an Older Version of BRM
The PIN_FLD_VERSION flag on the PCM_OP_CUST_COMMIT_CUSTOMER input flist
specifies whether the flist complies with the current version of BRM. If it doesn't, new BRM
objects are created. This supports backward compatibility. The current version is this version of
BRM.

Possible flag values are:

• PIN_PORTAL_VERSION_CURRENT (a value of 0) specifies this version of BRM.

• PIN_PORTAL_VERSION_LEGACY (a value of 1) specifies a legacy version of BRM. This
is the default. If PIN_PORTAL_VERSION_LEGACY is specified, the input flist is converted
to the current version and all necessary objects, including the /billinfo, /balance_group,
and /payinfo objects are created for the account.

Chapter 5
Manipulating Objects in Custom Applications

5-7

6
Accessing Configuration Files and Objects in
Custom Code

Learn how to access pin.conf files and /config/business_params objects in your custom
Oracle Communications Billing and Revenue Management (BRM) code.

Topics in this document:

• Accessing pin.conf Files in Custom Code

• Using /config/business_params Objects

Accessing pin.conf Files in Custom Code
You can use the PCM C++ PinConf class to enable your code to read values from a pin.conf
file. For example, this code is from the policy source file fm_rate_pol_tax_loc.c. This code
gets the value of the customer's tax locale from the Connection Manager (CM) pin.conf file:

/***
 * Look up the ISP city from pin.conf
 ***/

pin_conf("fm_rate_pol", "provider_loc", PIN_FLDT_STR,
(caddr_t *)&locale, &perr);

The entry in the pin.conf file looks like this:

#==
provider_loc
#
City, state, ZIP code, and country where you provide services to
your customers.
#
This information is used to determine tax rates.
#==
- fm_rate_pol provider_loc Cupertino, CA 95014 USA

In the following example, this code in the fm_subscription_pol_spec_cancel.c policy source
code file gets a value (0 or 1) from an entry in the CM pin.conf file:

/* Find all charge offers without a provisioning tag; cancel and
 * delete charge offer from table.
 */

if (pin_conf_keep_cancelled_products_or_discounts == 0){
 PIN_FLIST_FLD_SET(p_arrayp, PIN_FLD_ACTION,
 PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_DELETE, ebufp);
} else {
 PIN_FLIST_FLD_SET(p_arrayp, PIN_FLD_ACTION,
 PIN_BILL_CANCEL_PRODUCT_ACTION_CANCEL_ONLY, ebufp);
}

The following example shows the entry in the pin.conf file.

6-1

#==
keep_cancelled_products_or_discounts
#
Specifies whether to keep canceled charge offers and discount offers
associated with a specified account.
#
The value for this entry can be one of the following:
#
1 = (Default) Deletes the canceled charge offer (/purchased_product [# object) or
discount offer (/purchased_discount object) by using
PCM_OP_DELETE_OBJ.
#
0 = Keeps the canceled /purchased_product or /purchased_discount object
and sets its STATUS field to PIN_PRODUCT_STATUS_CANCELLED or
PIN_DISCOUNT_STATUS_CANCELLED respectively.
#
#==
- fm_subscription_pol keep_cancelled_products_or_discounts 1

In addition to retrieving a value from a pin.conf file, you can hard code a default value that is
used if the pin.conf entry is not present.

For information about the PinConf class, see "Accessing Configuration Values by Using
pin.conf".

Using /config/business_params Objects
You can customize BRM by adding new business parameters to control various aspects of
BRM operations and calling these business parameters from policy opcodes. You can also add
completely new business parameter classes to BRM.

Adding and Loading New Parameters
Adding parameters is useful if you are customizing existing functionality; for example, to
expand the criteria used to determine whether a payment should be suspended. To do this,
you customize PCM_OP_PYMT_POL_VALIDATE_PAYMENT, the policy opcode that validates
payments, to filter any payments below a specified amount.

For added flexibility, you may also want the ability to turn off this filter at certain times. One way
to do this is to add a parameter to the /config/business_params object for the ar parameter
class and have PYMT_POL_VALIDATE_PAYMENT check that parameter.

To implement the /config/business_params part of this process, you create a new parameter
that you enable or disable depending on whether you want to filter payments below a specified
amount so that these payments do not get suspended. This parameter will be called
payment_suspense_amount_filter in the /config/business_params object and
PaymentSuspenseAmntFilter in the supporting XML file set. You add the parameter as
follows:

1. Modify the bus_params_AR.xsd file in the BRM_home/sys/data/config/ directory to add
the new parameter. (BRM_home is the directory in which the BRM server software is
installed.)

<xs:element name="PaymentSuspenseAmntFilter" type="switch">
 <xs:annotation>
 <xs:documentation xml:lang="en">Enable/Disable filtering
 of payment suspense based on payment amount. The parameter
 values can be 0 (disabled) or 1 (enabled). The default is 0
 (disabled).</xs:documentation>

Chapter 6
Using /config/business_params Objects

6-2

 </xs:annotation>
</xs:element>

2. Modify the bus_params_AR.xsl file in the BRM_home/sys/data/config/ directory to add
the new parameter:

<xsl:template match="bc:PaymentSuspenseAmntFilter">
 <xsl:element name="Param">
 <xsl:element name="Name">
 <xsl:text>payment_suspense_amount_filter</xsl:text>
 </xsl:element>
 <xsl:element name="Desc">
 Enable/Disable filtering of payment suspense based on
 payment amount. The parameter values can be 0 (disabled)
 or 1 (enabled). The default is 0(disabled).
 </xsl:element>
 <xsl:element name="Type">INT</xsl:element>
 <xsl:element name="Value">
 <xsl:choose>
 <xsl:when test="text() = 'enabled'">
 <xsl:text>1</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>0</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:element>
</xsl:template>

3. Modify the bus_params_to_AR.xsl file in the BRM_home/sys/data/config/ directory to
add the new parameter:

<xsl:when test="$name = 'payment_suspense_amount_filter'">
 <xsl:element name="PaymentSuspenseAmntFilter">
 <xsl:choose>
 <xsl:when test="$value = '1'">
 <xsl:text>enabled</xsl:text>
 </xsl:when>
 <xsl:when test="$value = '0'">
 <xsl:text>disabled</xsl:text>
 </xsl:when>
 </xsl:choose>
 </xsl:element>
</xsl:when>

4. Use the pin_bus_params utility to retrieve the ar instance of the /config/
business_params object:

pin_bus_params -r BusParamsAR bus_params_AR.xml
5. Modify the resulting XML file to add the new parameter:

<PaymentSuspenseAmntFilter>disabled</PaymentSuspenseAmntFilter>
6. Use the pin_bus_params utility to load the object from the modified XML file:

pin_bus_params bus_params_AR.xml
For information on using the pin_bus_params utility, see "pin_bus_params".

Adding and Loading New Parameter Classes
You might need to add parameter classes when you create BRM features or customize existing
functionality that has no associated parameter class.

Chapter 6
Using /config/business_params Objects

6-3

Note:

You can determine if BRM has a parameter class for a certain functionality by looking
at the support files. For example, bus_params_AR.xml and
bus_params_billing.xml indicate that there are parameter classes for accounts
receivable and billing. Support files for parameter classes are located in BRM_home/
xsd.

To create a parameter class, you create the following files:

• XML file: bus_params_parameter_class_name.xml: Contains the parameter settings from
the /config/business_params object for the parameter class. Parameter settings in this
file are loaded into the object by using the pin_bus_params utility. This file is located in
BRM_home/sys/data/config.

• XSD file: bus_params_parameter_class_name.xsd: Validates the contents of the
bus_params_parameter_class_name.xml file when loading the object. This file is located
in BRM_home/xsd.

• XSL file: bus_params_parameter_class_name.xsl: Translates the contents of the
bus_params_parameter_class_name.xml file into the correct format for the /config/
business_params object. The pin_bus_params utility calls this file when loading the
object. This file is located in BRM_home/xsd.

• XML translation file: bus_params_to_parameter_class_name.xsl: Translates the contents
of the /config/business_params object into XML format during object retrieval. This file is
located in BRM_home/xsd.

For example, if you used custom policy opcodes to create a rewards tracking application, you
could use a business parameter to switch between tracking frequent flier miles and tracking
minutes. To do so, you would create the following:

• A parameter class. In the /config/business_params object, the class would be named
rewards. In the XML files, the class would be named BusParamsRewards.

• A business parameter named RewardsTracking.To track miles, the option would be set to
0, to track minutes, it would be set to 1.

This business parameter would be named rewards-tracking in the /config/
business_params object. The policy opcode would use the value of rewards-tracking.

To support the new parameter class and business parameter, you would create these files:

• bus_params_rewards.xml

• bus_params_rewards.xsd

• bus_params_rewards.xsl

• bus_params_to_rewards.xsl

To create these files:

1. Copy one of the bus_params_parameter_class_name.xsd sample files in
BRM_home/xsd and save it as bus_params_rewards.xsd. Modify the file as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema targetNamespace="http://www.portal.com/schemas/BusinessConfig"
 xmlns:businessConfig="http://www.portal.com/schemas/
 BusinessConfig"

Chapter 6
Using /config/business_params Objects

6-4

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:annotation>
 <xs:documentation xml:lang="en"
 </xs:documentation>
 </xs:annotation>

 <xs:complexType name="BusParamsRewardsType">
 <xs:sequence>
 <xs:element name="RewardsTracking" type="switch">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 The reward to track. The parameter values can be
 0 (Miles) or 1 (Minutes). The default is
 1 (Minutes).
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="rewardtrack">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Miles" />
 <xs:enumeration value="Minutes" />
 <xs:whiteSpace value="collapse" />
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

</xs:schema>
2. Copy one of the bus_params_parameter_class_name.xsl sample files in BRM_home/xsd

and save it as bus_params_rewards.xsl. Modify the file as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet
 version="1.0" xmlns="http://www.portal.com/schemas/BusinessConfig"
 xmlns:bc="http://www.portal.com/schemas/BusinessConfig" xmlns:xsl="http://
www.w3.org/1999/XSL/Transform" exclude-result-prefixes="bc">

 <xsl:output method="xml" indent="yes" />

 <xsl:template match="/">
 <BusinessConfiguration xmlns="http://www.portal.com/schemas/
BusinessConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.portal.com/schemas/
 BusinessConfig business_configuration.xsd">
 <BusParamConfiguration>
 <BusParamConfigurationList>
 <ParamClass desc="Business logic parameters for Reward Tracking"
name="rewards-tracking">
 <xsl:apply-templates select="/bc:BusinessConfiguration/
 bc:BusParamConfigurationClass/
 bc:BusParamsRewardsType/bc:*" />
 </ParamClass>
 </BusParamConfigurationList>
 </BusParamConfiguration>
 </BusinessConfiguration>
 </xsl:template>

 <xsl:template match="bc:RewardsTracking">

Chapter 6
Using /config/business_params Objects

6-5

 <xsl:element name="Param">
 <xsl:element name="Name">
 <xsl:text>rewards-tracking</xsl:text>
 </xsl:element>
 <xsl:element name="Desc">
 The reward to track. The parameter values can be
 0 (Miles) or 1 (Minutes). The default is
 1 (Minutes).
 </xsl:element>
 <xsl:element name="Type">INT</xsl:element>
 <xsl:element name="Value">
 <xsl:choose>
 <xsl:when test="text() = 'Minutes'">
 <xsl:text>1</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>0</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

3. Copy one of the bus_params_to_parameter_class_name.xsl sample files in
BRM_home/xsd and save it as bus_params_to_rewards.xsl. Modify the file as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet
 version="1.0" xmlns="http://www.portal.com/schemas/BusinessConfig"
 xmlns:bc="http://www.portal.com/schemas/BusinessConfig" xmlns:xsl="http://
www.w3.org/1999/XSL/Transform" exclude-result-prefixes="bc">

 <xsl:output method="xml" indent="yes" />

 <xsl:template match="/">
 <BusinessConfiguration xmlns="http://www.portal.com/schemas/
BusinessConfig" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.portal.com/schemas/
 BusinessConfig business_configuration.xsd">
 <BusParamConfigurationClass>
 <BusParamsRewards>
 <xsl:apply-templates select="/bc:BusinessConfiguration/
 bc:BusParamConfiguration/bc:BusParamConfigurationList/
 bc:ParamClass/bc:Param" />
 </BusParamsRewards>
 </BusParamConfigurationClass>
 </BusinessConfiguration>
 </xsl:template>

 <xsl:template match="//bc:Param">
 <xsl:variable name="name">
 <xsl:value-of select="bc:Name/text()" />
 </xsl:variable>
 <xsl:variable name="value">
 <xsl:value-of select="bc:Value/text()" />
 </xsl:variable>
 <xsl:choose>
 <xsl:when test="$name = 'rewards-tracking'">
 <xsl:element name="RewardsTracking">
 <xsl:choose>

Chapter 6
Using /config/business_params Objects

6-6

 <xsl:when test="$value = '1'">
 <xsl:text>Minutes</xsl:text>
 </xsl:when>
 <xsl:when test="$value = '0'">
 <xsl:text>Miles</xsl:text>
 </xsl:when>
 </xsl:choose>
 </xsl:element>
 </xsl:when>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

4. Copy one of the bus_params_parameter_class_name.xml sample files in
BRM_home/sys/data/config and save it as bus_params_rewards.xml. Modify the file as
follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<BusinessConfiguration xmlns="http://www.portal.com/schemas/BusinessConfig"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http:2www.portal.com/schemas/Business
 Config business_configuration.xsd">

 <BusParamConfigurationClass>
 <BusParamsRewards>
 <RewardsTracking>
 Minutes
 </RewardsTracking>
 </BusParamsRewards>
 </BusParamConfigurationClass>

</BusinessConfiguration>

5. Modify the bus_params_conf.xsd file in the BRM_home/xsd directory to add the new
parameter class.

a. Add the following line to the schema location segment of the file:

<xs:include schemaLocation="bus_params_rewards.xsd"/>
b. Add the following line to the parameter class selection segment of the file:

<xs:element name="BusParamsRewards" type="BusParamsRewardsType"/>
6. Use the pin_bus_params utility to load the bus_params_rewards.xml file:

pin_bus_params bus_params_rewards.xml
When the new parameter class is created, and the business parameter is loaded, you can
modify the custom policy opcode to look for the rewards-tracking value in the /config/
business_params object.

Examples of Accessing Business Parameters in Custom Code
Opcodes read configuration values from /config/business_params objects to determine
whether to run various functions. The following examples show how several BRM policy
opcodes call values from /config/business_params objects.

Chapter 6
Using /config/business_params Objects

6-7

Calling Business Parameters from PCM_OP_PYMT_POL_VALIDATE_PAYMENT
In its default implementation, the PCM_OP_PYMT_POL_VALIDATE_PAYMENT policy opcode
checks whether payment suspense management is enabled. If so, it places payments that
could not be validated into suspense.

This code in the fm_pymt_pol_validate_payment.c policy source file determines whether to
suspend payments that can't be validated. To make this determination, BRM calls the
psiu_bparams_get_int() function and uses the psiu_business_params.h header file to
retrieve specific parameters from the appropriate /config/business_params object. This
information is used to determine whether payment suspense management is enabled
(PSIU_BPARAMS_AR_PYMT_SUSPENSE_ENABLED):

/***
* Check if Payment Suspense Management feature is enabled
***/
pymt_suspense_flag = psiu_bparams_get_int(ctxp, PSIU_BPARAMS_AR_PARAMS,
 PSIU_BPARAMS_AR_PYMT_SUSPENSE_ENABLE, ebufp);
if ((pymt_suspense_flag != PSIU_BPARAMS_AR_PYMT_SUSPENSE_ENABLED)&&
 (pymt_suspense_flag != PSIU_BPARAMS_AR_PYMT_SUSPENSE_DISABLED))
 {
 pin_set_err(ebufp, PIN_ERRLOC_FM,
 PIN_ERRCLASS_SYSTEM_DETERMINATE,
 PIN_ERR_INVALID_CONF, 0, 0, 0);
 PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_ERROR,
 "bad param value for \"payment_suspense_enable\" in /config/business_params",
 ebufp);
 }

The segment that enables payment suspense management in the /config/business_params
object looks like this:

0 PIN_FLD_PARAMS ARRAY [2] allocated 4, used 4
1 PIN_FLD_DESCR STR [0] "Enable/Disable payment suspense management.
 The parameter values can be 0 (disabled),
 1 (enabled). Default is 0 (disabled)."
1 PIN_FLD_PARAM_NAME STR [0] "payment_suspense_enable"
1 PIN_FLD_PARAM_TYPE INT [0] 1
1 PIN_FLD_PARAM_VALUE STR [0] "1"

Calling Business Parameters from PCM_OP_BILL_POL_REVERSE_PAYMENT
In its default implementation, the PCM_OP_BILL_POL_REVERSE_PAYMENT policy opcode
reverses payments applied to accounts that were written off; it does not reverse the payment if
the write-off reversal was anything other than an account-level write-off.

This code in the fm_bill_pol_reverse_payment.c policy source code determines whether the
write-off was at the account level. To make this determination, BRM calls the
psiu_bparams_get_str() function and uses the psiu_business_params.h header file to
retrieve specific parameters from the appropriate /config/business_params object. This
information is used to determine whether write-off level is
PSIU_BPARAMS_AR_PYMT_SUSPENSE_ENABLED. If so, it reverses the payment, again
writing off the account:

/**
* Verify if write off level set to "a" (account) in
* /config/business_params and Call PCM_OP_AR_ACCOUNT_WRITEOFF
**/

Chapter 6
Using /config/business_params Objects

6-8

psiu_bparams_get_str(ctxp, PSIU_BPARAMS_AR_PARAMS,
PSIU_BPARAMS_AR_WRITEOFF_LEVEL, writeoff_rev_level, 2, ebufp);

if (status_flag && (*status_flag == PIN_PYMT_WRITEOFF_SUCCESS) &&
 writeoff_rev_level &&
 !strcmp(writeoff_rev_level, PIN_WRITEOFF_REV_LEVEL_ACCOUNT))
 {
 i_flistp = PIN_FLIST_CREATE(ebufp);

 vp = PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_POID, 0, ebufp);
 PIN_FLIST_FLD_SET(i_flistp, PIN_FLD_POID, vp, ebufp);

 vp = PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_PROGRAM_NAME, 0, ebufp);
 PIN_FLIST_FLD_SET(i_flistp, PIN_FLD_PROGRAM_NAME, vp, ebufp);
 vp = PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_START_T, 1, ebufp);
 if (vp)
 {
 PIN_FLIST_FLD_SET(i_flistp, PIN_FLD_START_T,
 (void *) vp, ebufp);
 }

The segment that determines the write-off level in the /config/business_params object looks
like this:

0 PIN_FLD_PARAMS ARRAY [2] allocated 4, used 4
1 PIN_FLD_DESCR STR [0] "Selection of level of writeoff to be tracked for the
 purpose of writeoff reversal. Values can be
a(Account),
 b(Bill), i(Item), *(Any)."
1 PIN_FLD_PARAM_NAME STR [0] "writeoff_level"
1 PIN_FLD_PARAM_TYPE INT [0] 5
1 PIN_FLD_PARAM_VALUE STR [0] "a"

Chapter 6
Using /config/business_params Objects

6-9

7
Understanding the BRM Data Types

Learn about the data types that Oracle Communications Billing and Revenue Management
(BRM) supports. The data types described here are defined in the pcm.h file.

Topics in this document:

• About the BRM Data Types

• Simple Data Types

• Portal Object ID (POID)

• Decimal Data Type

• Arrays

• Substructure

• Buffer Data

• Error Buffer

About the BRM Data Types
BRM supports a set of data types that you use to define fields in a storable class or in field lists
(flists). For information on flists and storable classes, see "Understanding Flists".

Table 7-1 lists the data types that BRM supports. Some of the BRM data types are simple data
types, which map to data types in programming languages such as C and C++. The others
hold more complex data and point to C structures as their value. The complex data types that
are specific to BRM or used in a special way in BRM, such as the Portal object ID (POID),
arrays, and substructs, are explained in detail in the following sections.

Table 7-1 BRM Supported Data Types

Data Type Description C Value

PIN_FLDT_INT Signed 32-bit integer.

Contains four bytes of data represented by a number.

BRM considers an integer value that begins with 0 as
octal, and an integer value that begins with 0x as
hexadecimal and converts the value into decimal.

int32

PIN_FLDT_ENUM Enumerated value. Contains a list of well-known
values.

enum

PIN_FLDT_DECIMAL Decimal data type, number of decimal places
determined by MAX.

pin_decimal_t

PIN_FLDT_STR(len) ASCII character string terminated with a \0 (NULL). len
= max length in bytes, not including \0.

It uses UTF-8 encoding.

char *

PIN_FLDT_BINSTR(len) A string of binary data. len = max length in bytes. pin_binstr_t

7-1

Table 7-1 (Cont.) BRM Supported Data Types

Data Type Description C Value

PIN_FLDT_TSTAMP Linux timestamp with one second accuracy. Contains
integer data. This number is interpreted as the number
of seconds past January 1, 1970.

time_t

PIN_FLDT_POID Portal object identifier. See "Portal Object ID (POID)". poid_t *

PIN_FLDT_ARRAY Array element. See "Arrays". pin_flist_t *

PIN_FLDT_SUBSTRUCT Embedded substructure. See "Substructure". pin_flist_t *

PIN_FLDT_BUF Buffer with an arbitrary size of any large data such as
text, image, or any other kind of data.

pin_buf_t

PIN_FLDT_ERRBUF Structure for error holding error information. pin_errbuf_t

Simple Data Types
BRM supports the following simple data types that map to data types in the C programming
language:

• PIN_FLDT_INT

• PIN_FLDT_ENUM

• PIN_FLDT_DECIMAL

• PIN_FLDT_STR(len)

• PIN_FLDT_BINSTR(len)

• PIN_FLDT_TSTAMP

See Table 7-1 for the C values.

Portal Object ID (POID)
The POID data type identifies an object in the BRM database. Each object has a unique POID
in BRM. You use the POID to locate an object in the database.

Use the POID management macros in the PIN Library to manipulate the POIDs.

The POID contains the following information:

database_number object_type object_id object_revision_level

Example:

0.0.0.1 /account 1234 0

You can specify a type-only POID to perform an action on all objects of a particular type. For
example, to search for all /device/sim objects, the input flist for the search opcode would
contain the following field:

1 PIN_FLD_POID POID [0] 0.0.0.1 /device/sim -1 0

Table 7-2 describes each entry in the POID:

Chapter 7
Simple Data Types

7-2

Table 7-2 POID Entries

Entry Description

database number An arbitrary 64-bit number assigned to a particular BRM database by
the BRM system administrator. Each database has a unique database
number that is stored in each object in that database. This number
must be used by all programs, CMs, and DMs accessing that
database.

Decimal dotted notation is used for the database number: 0.0.0.x,
where x is the database number, such as 1057. See the dm_pointer
entry in the CM pin.conf file for an example.

object type The storable class to which the object belongs, for example, /event
and /service. Null poid has only /.

object id A unique 64-bit number assigned to each object. Once assigned, the
ID is never changed or re-used. The ID is a 64-bit number to
accommodate the large number of objects that can exist within a single
database. The ID is guaranteed to be unique within a given database,
not across databases.

The maximum value allowed for the ID in a nonpartitioned table is 264

and in a partitioned table is 244.

object revision level Revision number. This value is incremented automatically each time
the object is updated. You cannot change this value directly.

Decimal Data Type
The decimal data type, PIN_FLDT_DECIMAL is an opaque data type that you use to represent
values precisely to a specified number of decimal places.

You cannot perform arithmetic operations on a void pointer and C has no operator overloading.
Therefore, the API provides a set of functions to perform arithmetic operations on
pin_decimal_t.

The BRM C API uses pin_decimal_t, and it is defined in BRM_home/include/pin.h file, where
BRM_home is the directory in which the BRM server software is installed.

You manipulate the decimal data type, by using the decimal functions in the PIN libraries. You
can perform the following arithmetic operations by using the decimal data type functions:

• Convert string to decimal and decimal to string

• Add, subtract, multiply, and divide two decimals

• Compare two decimals

• Scale or round a number

• Negate a decimal

• Output to a string

• Output to a double

For detailed descriptions of the functions, see "Decimal Data Type Manipulation Functions" in
BRM Developer's Reference.

Chapter 7
Decimal Data Type

7-3

Note:

PIN_FLDT_DECIMAL replaces the data type PIN_FLDT_NUM from earlier releases.

Arrays
Use the array data type PIN_FLDT_ARRAY to store a defined structure of information. An
array contains a recurring set of data structures called elements. Each element in an array can
contain multiple fields, including other nested arrays. Each element in an array must contain
the same number and type of fields as all the other elements in the array.

For example, the /account storable class contains an array called PIN_FLD_NAMEINFO.
Each element in this array has fields for first name, last name, street address, and other
address information. There can be any number of elements in the array to describe the
different types of account addresses.

Each field in an array element has an element ID, which specifies the element of the array to
which the field belongs. This element ID, in addition to the field name of the array, uniquely
identifies the field in an object.

Arrays in BRM are sparse arrays and not C language style arrays. The elements in the array
are not in any sequential order. Unlike C, the array element a[24] does not mean that there are
23 elements preceding it.You can add an element in any order with an arbitrary element ID.

The elements of a BRM array are not pre-allocated; they are assigned by applications as
needed. Therefore, the missing elements in the sequence of element IDs do not use any
memory or disk space.

You can add and delete elements from an array using the flist field manipulation macros. When
you add an element to an array by using PIN_FLIST_ELEM_ADD, an array is automatically
created. You do not have to create an array before adding elements to it.

For information on how to use the macros, see "Flist Field-Handling Macros" in BRM
Developer's Reference.

Substructure
Use the substruct data type PIN_FLDT_SUBSTRUCT to group several data types. You use
substructs to define a field that contains several fields of different data types. Substructs can
contain any of the BRM supported data types, including arrays, and they can be nested to any
level.

Note:

Use substructs to create subclasses of the default storable classes included with
BRM.

Because there is only one element, substructs are fully identified by the field name in the
storable class. Unlike the arrays, they do not require element IDs.

Use the Flist field-handling macros to create and manipulate substructs.

Chapter 7
Arrays

7-4

Buffer Data
The buffer type flist field (PIN_FLDT_BUF) is used for large text files or binary data as an array
of bytes.

xbuf stands for external buffer. The buf data is not in memory but is written directly from a file
to the wire or from the wire to a file. The most common use for xbufs are for systems with
limited or slow virtual memory. xbufs can only be used from an application.

A buffer (buf) field represented by the pin_buf_t has the following structure:

/*
 * data buffer.
 */
 typedef struct pin_buf {
 int32 flag; /* if XBUF, ... */
 int32 size; /* size of data */
 int32 offset; /* offset (for read) */
 caddr_t data; /* pointer to data (BUF) */
 char *xbuf_file; /* ptr to filename for XBUF */
 } pin_buf_t;

xbuf values are defined for the flag field. These can be bit-wise-ORed together.

/* users want data from/to a file...*/

#define PCM_BUF_FLAG_XBUF 0x0001

/* if XBUF, encode filename, not data*/

#define PCM_BUF_FLAG_XBUF_READ 0x0002

Table 7-3 describes the pin_buf_t.flag values.

Table 7-3 Values for pin_buf_t.flag

Flag Description

pin_buf_t.flag = 0x0 Buffer data is assumed to be available in pin_buf_t.data
field in memory. The pin_buf_t.xbuf_file field is ignored.

pin_buf_t.flag = 0x1
(PCM_BUF_FLAG_XBUF)

Use this to write data to a buf field in an object. The buffer
data is assumed to be available in the file pointed to by the
pin_buf_t.xbuf_file field. The data is read from the file only
when the flist is shipped on the wire.

pin_buf_t.flag = 0x3
(PCM_BUF_FLAG_XBUF |
PCM_BUF_FLAG_XBUF_READ)

Use this to read data from a buf field in an object. The buffer
data is written directly to the file pointed to by the
pin_buf_t.xbuf_file field.

Setting Buffer Data Fields in an Flist
The following example shows how to set a buffer field in an flist:

pin_buf_t buft;
buft.flag = 0;
buft.size = 26;
buft.offset = 0; /* not used */
buft.data = "abcdefghijklmnopqrstuvwxyz";
buft.xbuf_file = NULL; /* not used */

Chapter 7
Buffer Data

7-5

PIN_FLIST_FLD_SET(flistp, PIN_FLD_BUFFER, &buft, &ebuf);

To avoid reallocating memory and copying the buffers in large buffers, use
PIN_FLIST_FLD_PUT.

Note:

When you use PUT instead of SET, allocate memory on the heap for both the
pin_buf_t data structure and the buffer data.

Getting Buffer Fields From an Flist
When accessing buffer fields from an flist, you set a pointer to a pin_buf_t data structure.

If you use TAKE() instead of GET(), make sure you free up the pin_buf_t structure, the data
pointer, and the xbuf_file members in it.

Specifying Buffer Data Fields in Flist Converted to Strings
You can specify buffer fields in flist. For example, you might want to load an flist with a buf field
into testnap. The following example provides the buffer data in place:

0 PIN_FLD_POID POID [0] $DB /xx 1
0 PIN_FLD_BUFFER BUF [0] flag/size/offset 0x2 26 0 data:
 0x000000 6162636465666768696a6b6c6d6e6f70
 0x000010 7172737475767778797a

You can specify xbuf data as in the following example, where the file ./xxx is read and the
contents sent to the wire:

>testnap
 ===> database 0.0.0.1 from pin.conf "userid"
> r xxx 1
> d 1
0 PIN_FLD_POID POID [0] $DB /xx 1
0 PIN_FLD_BUFFER BUF [0] flag/size/offset/xbuf_file 0x1 26 0 ./xxx

To read buffer data into a file (for example, ./yyy from an /account object
PIN_FLD_INTERNAL_NOTES field), do the following. The flist is stored in the rd.flist file:

>testnap
 ===> database 0.0.0.1 from pin.conf "userid"
> r rd.flist 1
> d 1
0 PIN_FLD_POID POID [0] $DB /account 1
0 PIN_FLD_INTERNAL_NOTES BUF [0] flag/size/offset/xbuf_file 0x3 26 0 ./yyy
>r flds 1

The contents of the PIN_FLD_INTERNAL_NOTES field is put into the file ./yyy.

Note:

You cannot specify file offsets when reading from or writing to files.

Chapter 7
Buffer Data

7-6

Error Buffer
The PIN_FLDT_ERRBUF data type is used to record errors by the Portal Communication
Module (PCM) opcodes and Portal Information Network (PIN) library macros. You call the
error- or message-logging macros in the PIN library to detect the errors and to record the
details of the error in a standard format.

For information on error handling in BRM, see "Finding Errors in Your Code". For descriptions
of all the macros available for logging messages and errors, see "Error-Handling Macros" in
BRM Developer's Reference.

For a complete list of the errors and values discussed in this section, see BRM_home/include/
pin.errs.h.

pin_errbuf_t has the following structure:

typedef struct {
 int32 location;
 int32 pin_errclass;
 int32 pin_err;
 pin_fld_num_t field;
 int32 rec_id;
 int32 reserved;
 int32 line_no;
 char *filename;
 int facility;
 int msg_id;
 int err_time_sec;
 int err_time_usec;
 int version;
 pin_flist_t *argsp;
 pin_errbuf_t *nextp;
 int reserved2
} pin_errbuf_t;

Table 7-4 contains the definitions of each field in the pin_errbuf structure.

Chapter 7
Error Buffer

7-7

Table 7-4 Field Definitions in pin_errbuf

Field Possible Values

location Specifies the BRM module that encountered the error. Possible values are:

• PIN_ERRLOC_APP

The error occurred within an application. Use this value to specify that the problem
originated in your application as opposed to a part of BRM.

• PIN_ERRLOC_FLIST

The error occurred within an flist manipulation routine local to the application.
Common causes include illegal parameters and low system memory.

• PIN_ERRLOC_POID

The error occurred within a POID manipulation routine local to the application.
Common causes include illegal parameters and low system memory.

• PIN_ERRLOC_PCM

The error occurred within a PCM routine local to the application. Common causes
include illegal parameters.

• PIN_ERRLOC_PCP

The error occurred within the internal PCP library. This library provides communication
support between the modules of the BRM. Common causes include network
connection failures. This value indicates a system problem that requires immediate
attention.

• PIN_ERRLOC_CM

The error occurred within the Connection Manager. Common causes include an
unknown opcode or an input flist missing the required POID field.

• PIN_ERRLOC_FM

The error occurred within a Facilities Module. Common causes include an input flist
that does not conform to the required specification.

• PIN_ERRLOC_DM

The error occurred within a Data Manager. Common causes include an input flist that
does not meet the required specifications or a problem communicating with the BRM
database.

Chapter 7
Error Buffer

7-8

Table 7-4 (Cont.) Field Definitions in pin_errbuf

Field Possible Values

pin_errclass Describes the class of error that occurred. Error class is used by an application to
determine the appropriate type of error recovery. Possible values are:

• PIN_ERRCLASS_APPLICATION

The error was caused by the application passing illegal data or a system failure within
the client application. The error was detected before the requested operation was
performed, so no data in the database has changed. After the error is fixed, you can
retry the operation.

• PIN_ERRCLASS_SYSTEM_RETRYABLE

The error was probably caused by a transient condition. You can try the operation
again. Common causes include a possibly temporary shortage of system resources or
failure of a network connection that you can route around. The error was detected
before any data was committed to the database; no data has changed.

• PIN_ERRCLASS_SYSTEM_DETERMINATE

The error was caused by a system failure during the operation. Retrying the operation
is unlikely to succeed, and the system failure should be investigated immediately. The
error was detected before any data was committed to the database; no data has
changed. After the error is fixed, you can retry the operation.

• PIN_ERRCLASS_SYSTEM_INDETERMINATE

The error was caused by a system failure during the commit phase of an operation.
There is a small window during the commit where a network failure can leave the
system unsure of whether the commit occurred or not. This means it is up to the
application to determine whether system data has been changed. This class of error
is extremely rare, but you must handle it carefully to avoid corrupting the data in the
database. If you determine that no changes were made, you can resolve the system
failure problem and then retry the operation.

pin_err Describes the exact error that was encountered. If an API call is successful, pin_err is set
to PIN_ERR_NONE and all other fields in the ebuf are left undefined. If an API call results
in an error, one or more of the fields are defined with error information.

field Identifies the field number of the input parameter that caused the error.

rec_id Specifies the element ID of an array element that caused the error.

reserved Designates an internal system state used by Oracle Technical Support for debugging.
Contains no useful information for the application developer.

line_no Specifies the line number within the application source file where the error was detected.
The logging routines print the filename and line number from the ebuf, which you can use
to locate the exact call to the BRM API that caused the error.

Contains no useful information for the application developer except when working with
Oracle Technical Support

filename Specifies the name of the application source file where the error was detected. This can be
used in conjunction with the line_no to quickly locate the source of an error.

This information is useful for application developers only when they work with Oracle
Technical Support.

facility Specifies the code of a facility associated with BRM internationalization (I18N) features.

Used with the msg_id value to create a localized error message.

msg_id Specifies a unique ID number for each message within the facility identified by the facility
code.

Used with the facility value to create a localized error message.

err_time_sec Outputs time in seconds when the error occurred.

err_time_usec Outputs time in microseconds when the error occurred.

Chapter 7
Error Buffer

7-9

Table 7-4 (Cont.) Field Definitions in pin_errbuf

Field Possible Values

version Designates the version of the arguments.

pin_flist_t | *argsp Used as an optional arguments flist.

pin_errbuf_t *nextp Used one or more optional chained errbufs.

reserved2 Reserved for internal use

Chapter 7
Error Buffer

7-10

8
Using BRM SDK

Learn how to use the Oracle Communications Billing and Revenue Management (BRM) SDK
to customize BRM or client applications.

In addition to the BRM SDK, you can use the Developer Center application to create storable
classes and test applications.

Topics in this document:

• About BRM SDK

• BRM SDK Directory Contents

• Deploying New and Customized Components

• Compiling CMs for Purify

About BRM SDK
BRM Software Development Kit (SDK) provides the APIs, libraries, and other resources you
need to perform the following tasks:

• Write client applications in C, C++, Java, and Perl.

• Write and customize policy Facilities Modules (FMs) in C.

• Write custom standard FMs in C.

• Write custom Data Managers (DMs) in C.

• Use sample applications and code as examples for your own work.

• Use debug versions of libraries, FMs, the DM, and the Connection Manager (CM).

• Develop multithreaded applications for BRM.

BRM SDK includes a common core library (libportal.so) that combines the previously
separate PCM, PCP, and PIN libraries. (The separate libraries are also included for backward
compatibility.) Other libraries, including standard and policy FMs and support for C, C++, Java,
and Perl, are located in the same directory.

About PCM SDK
PCM SDK contains 64-bit PCM libraries that you require to create 64-bit client applications.
PCM SDK is a part of BRM SDK and is installed along with the BRM server.

BRM SDK Directory Contents
When you install BRM SDK, the following subdirectories are included. The default installation
directory for BRM SDK is BRM_home/PortalDevKit, where BRM_home is the directory in
which the BRM server software is installed. To make it easier to find files, the BRM SDK
directory structure is similar to the directory structure on BRM servers as shown in Table 8-1.

8-1

Table 8-1 SDK Directory Structure

Directory Contents

lib Core and FM libraries, including libportal.so on Linux.

bin CM and DM executables, testnap, perl.exe.

include Base BRM header files, including pin_os_dynload.h.

sys Server system files.

sys/lib CM source library files.

source Top-level directory for source code.

source/sys Policy FM source code.

source/sys/cm CM source file and Makefile for use in building Purify
versions of the CM.

source/templates FM and DM templates.

source/samples Top-level directory for sample code and applications.

source/samples/context Context management code samples in C, C++, Java, and
Perl.

source/samples/callopcode Opcode-related code samples in C, C++, Java, and Perl.

source/samples/flists Flist-related code samples in C, C++, Java, and Perl.

source/samples/apps Sample applications in C, C++, and Java.

source/samples/apps/c/mta_samples Sample files for creating multithreaded applications.

jars pcm.jar, pcmext.jar, and other Java PCM files.

Deploying New and Customized Components
After you successfully test an application, FM, or DM, you can deploy it to your production
BRM installation.

Because BRM SDK includes the same libraries as BRM itself, dynamic links work without
modification when you deploy new or customized server components to default locations.

Deploying Applications
To deploy a new application, you move the executable itself plus any necessary support
libraries to the desired location. The libraries you must include depend on the language you
used to write the application. For example, applications written in C need the libportal.so file,
while applications written in Java need pcm.jar and pcmext.jar files. Depending on how your
application is written, you might also need to include a configuration file (pin.conf for C/C++
applications or Infranet.properties for Java applications) for storing login information.

For more information about the files required, see the sections about writing client applications
in the supported languages.

In most cases, you should package your application and its support files so that the files can
be installed conveniently.

Deploying FMs
To deploy a new or customized FM:

Chapter 8
Deploying New and Customized Components

8-2

1. Compile the FM into a shared library (.so for Linux).

2. For each CM server in the BRM installation:

a. Stop the CM.

b. Move the new shared library to BRM_home/lib.

c. If this is a new FM, modify the CM pin.conf file to include the FM.

d. Restart the CM.

Deploying DMs
The files you must deploy with a DM depend on whether the destination server is already in
use as a DM server.

• If you are deploying a new or customized DM to an existing DM server, you must move
only the compiled .so file and the associated pin.conf file.

• If you are deploying to a server that has not previously been used for DMs, you need the
compiled .so, .a, or .so file, the DM pin.conf file, all the libraries linked to the DM, and a
dm.exe file.

In either case, you must modify the pin.conf file of all CMs that will use this DM. See
"Configuring Your CM to Use the Custom DM".

You should also modify the BRM start and stop scripts to include the new DM. See "Starting
and Stopping Your Custom DM".

Compiling CMs for Purify
To enable customers to build versions of the CM for use with Rational Purify, BRM SDK
includes a C++ source file along with related library and include files. To build a Purify version,
you modify the source file to include your custom FMs and then compile.

Table 8-2 lists the CM build files for use with Purify:

Table 8-2 CM Build Files for Purify

File Location

cm.cpp
makefile

BRM_SDK_home/source/sys/cm

libcm_main.so (Linux) BRM_SDK_home/sys/lib

Also in:

BRM_home/sys/lib

pin_os_dynload.h BRM_SDK_home/include

When you compile a CM, you must specify options that point to the /include and /lib
directories that contain the pin_os_dynload and libcm_main files. You must also specify the
use of multithreaded components and dynamically loaded libraries. (The makefile in
BRM_SDK_home/source/sys/cm includes these options.)

To reduce thread contention on malloc calls, CMs include a memory pool mechanism for
processing flists and POIDs. When flists and POIDs are allocated memory from a pool,
problems with memory leaks are hidden. To detect memory leaks in your CM, before you run
Purify or any other diagnostic utilities to test memory usage, disable the memory pool by

Chapter 8
Compiling CMs for Purify

8-3

adding the following entry in the CM pin.conf file so that memory is allocated from the system
heap:

- - disable_pcm_mempool 1

You can use the following commands as examples for compiling a Purify version of the CM.
Depending on your operating system and the compiler you use, your syntax may be somewhat
different.

Linux:

purify gcc -o cm cm.cpp -g -Bdymanic -Wl,--export-dynamic -ldl -lpthread -I $
{INFRANET_SDK_home} -L ${INFRANET_SDK_home}-lpinsys -lcm_main

Chapter 8
Compiling CMs for Purify

8-4

9
Finding Errors in Your Code

Learn about the Oracle Communications Billing and Revenue Management (BRM) error
logging and handling routines and how to use them in your custom applications.

The BRM APIs include a set of routines to handle and log errors. BRM uses these routines for
internal error handling. You must use these routines in your custom applications to allow
seamless detection and reporting of errors between your applications and the BRM
applications.

Topics in this document:

• Detecting Errors in Your Code

• Error Handling Flow

• Logging Errors and Messages

• Diagnosing Application Problems

• Detecting CM and DM Errors

For information on the log file locations, syntax of error messages, and descriptions of error
codes, see "Reference Guide to BRM Error Codes" in BRM System Administrator's Guide.

For additional information on error handling in C++, see "Handling Exceptions".

Detecting Errors in Your Code
The error buffer, pin_errbuf_t, is the basic structure for receiving error status from calls to the
BRM Application Programming Interface (API). A pointer to an error buffer, ebufp, is passed
into each API call and is filled in by the routine with information about any error condition that
occurred.

For details on the structure and fields in an ebufp, see "Error Buffer".

You use the PIN_ERRBUF_IS_ERR macro in your code to test the ebufp for an error
condition. This macro returns zero if no error exists in the ebufp and nonzero if an error is
recorded.

All higher-level BRM API routines use the ebufp for error detection. These routines check for
errors in the following ways:

• Check for errors after each API call. See "Individual-Style ebuf".

• Check for errors at the end of a series of API calls. See "Series-Style ebuf".

Individual-Style ebuf
PCM_*() routines log error information in the ebufp after each API call. Since the Portal
Communication Module (PCM) API routines affect data, you must detect the errors
immediately and test the status of the ebufp after each call to a PCM_*() routine. If you do not
detect errors after each call, any error recorded in the ebufp will be overwritten by another API
call, and you will lose information about the errors.

9-1

For sample code on checking the ebufp for errors after each PCM_*() call, see sample_app.c
located in BRM_SDK_home/source/samples/apps/c.

Series-Style ebuf
PIN_*() routines update the error status in the ebufp after each API call. With the series ebufp
style, you can perform a series of related API calls, such as creating and populating an flist,
and check for errors at the end of the series. The first error is recorded in the ebufp and all
subsequent calls are treated as no-ops so that the first error remains recorded in the ebufp.
When you check for errors after a series of API calls, you can fix the errors that have been
detected as necessary.

Using series ebufp style makes manipulating flists and Portal object IDs (POIDs) much more
efficient, since the entire logical operation can be completed, then tested once for any errors.

Note:

You can check for errors any time using series-style error detection, but series-style
ebuf has been designed to reduce the number of error checks required.

For sample code on checking the ebufp for errors after a series of PIN_*() routines, see
sample_app.c.

Error Handling Flow
Applications that call BRM API routines must follow this general flow for error handling:

1. Declare an error buffer.

2. Call PIN_ERRBUF_CLEAR to initialize the error buffer.

3. Call PIN Library routines to create an input flist.

4. Check for errors by calling the PIN_ERRBUF_IS_ERR.

5. Call a PCM API routine.

6. Check for errors by calling PIN_ERRBUF_IS_ERR().

7. Call PIN_ERRBUF_RESET to reset the errbuf and cleans up the memory pointed to by
the argsp and nextp pointers.

Note:

Previous versions of BRM used the PIN_ERR_CLEAR_ERR macro to initialize
the error buffer and to reset its contents to 0. This macro still appears in some
BRM code to support backward compatibility. In new code that you write, use
PIN_ERRBUF_CLEAR and PIN_ERRBUF_RESET to initialize and reset the
error buffer.

The following example shows this flow. For a complete sample, see sample_app.c.

...
/** Declare error buffer */
pin_errbuf_tebuf;

Chapter 9
Error Handling Flow

9-2

/** Clear the error buffer */
PIN_ERRBUF_RESET(&ebuf);

/** PIN Library routines.
 */
vp = (void *)"test";
PIN_FLIST_FLD_SET(a_flistp, PIN_FLD_BILL_MODE, vp, &ebuf);
/* Force CURRENCY to DOLLARS */
dummy = PIN_CURRENCY_DOLLARS;
PIN_FLIST_FLD_SET(a_flistp, PIN_FLD_CURRENCY, (void *)&dummy, &ebuf);
/* Set BILL_TYPE to internal (no charges). */
btype = PIN_BILL_TYPE_INTERNAL;
PIN_FLIST_FLD_SET(a_flistp, PIN_FLD_BILL_TYPE, (void*)&btype, &ebuf);
/* Add a nameaddr array element to the flist. */
a_flistp = PIN_FLIST_ELEM_ADD(flistp, PIN_FLD_NAMEINFO,
PIN_NAMEINFO_BILLING, &ebuf);
vp = (void *)"Doe";
PIN_FLIST_FLD_SET(a_flistp, PIN_FLD_LAST_NAME, vp, &ebuf);
vp = (void *)"John";
PIN_FLIST_FLD_SET(a_flistp, PIN_FLD_FIRST_NAME, vp, &ebuf);
vp = (void *)"1234 Main Street";
PIN_FLIST_FLD_SET(a_flistp, PIN_FLD_ADDRESS, vp, &ebuf);

 /* Add more PIN library routines to gather all the information needed to register
 a customer */

/* Check for errors */
if (PIN_ERRBUF_IS_ERR(&ebuf)) {
PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_ERROR,
"sample_init_input error", &ebuf);
PIN_ERRBUF_RESET(&ebuf);
return;
 }
/** Clear the error buffer */
PIN_ERRBUF_RESET(&ebuf);

/* PCM operations */
/* Call the COMMIT CUSTOMER opcode */

 PCM_OP(ctxp, PCM_OP_CUST_COMMIT_CUSTOMER, 0, flistp, &r_flistp, &ebuf);

/* Check for errors */
if (PIN_ERRBUF_IS_ERR(&ebuf)) {
PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_ERROR,
 "create_customer error"", &ebuf);
PIN_ERRBUF_RESET(&ebuf);

return;
 }

Logging Errors and Messages
When detecting errors using PIN_ERRBUF_IS_ERR, you can call the error- or message-
logging macros to record the details of the error in a standard format. For example, you can
use the PIN_ERR_LOG_EBUF macro to print the contents of an ebufp along with a custom
message to your application's logfile.

To log any messages, including errors unrelated to ebufs and the BRM API, use the
PIN_ERR_LOG_MSG macro at any point in your application.

Chapter 9
Logging Errors and Messages

9-3

Table 9-1 lists the routines you can use in your application to log status information:

Table 9-1 Routines Used to Log Status Information

Action Routine

Specify the path and name of the log file for your
application. The default log file is default_pin.log in the
application directory.

PIN_ERR_SET_LOGFILE

Specify your application's name in the log entries to
identify the program in which the error occurred.

PIN_ERR_SET_PROGRAM

Specify what types of messages to log and what to
discard. You can enable debugging messages during
development and then turn them off by changing the
log level setting.

PIN_ERR_SET_LEVEL

Print the contents of an flist to the error log. PIN_ERR_LOG_FLIST

Print the contents of a POID to the error log. PIN_ERR_LOG_POID

For a list and description of all the macros available for logging messages and errors, see
"Error-Handling Macros" in BRM Developer's Reference.

For an explanation of the standard log entry format, see "Reference Guide to BRM Error
Codes" in BRM System Administrator's Guide.

Diagnosing Application Problems
To diagnose application problems:

1. Check the information in the ebuf for the exact source location of the API call that
generated the error. If the error is caused by an incorrect or missing field on the input flist,
the ebuf provides the field name.

For details about the error buffer format and contents, see "Error Buffer".

2. If you cannot diagnose an error with the information in the ebuf, use
PIN_ERR_SET_LEVEL to enable the application libraries to log debug messages. Errors
that occur in the application libraries are printed in detail to the logfile. This helps you
locate errors like illegal NULL pointers.

Detecting CM and DM Errors
Enable the CMs and DMs to log debug messages to be printed when an operation fails
because of bad input. These messages are printed to the CM and DM log files, not to the
application's log file. Normally this type of error is not logged because it is not caused by a
failure in the BRM system. You can enable and disable debug messages by editing the CM
and DM configuration files.

For information on enabling error logging in the CM and DM configuration files, see the
configuration files in the CM and DM directories.

Chapter 9
Diagnosing Application Problems

9-4

10
Testing Custom Applications

Learn how to test custom applications in Oracle Communications Billing and Revenue
Management (BRM).

Topics in this document:

• Testing New or Customized Components

• Changing the Virtual System Time to Test BRM

Testing New or Customized Components
The BRM architecture makes it possible to test new or customized components without having
to physically move files. For example, to test a new policy FM, you can include it in a CM that
you run locally on your development machine.

For testing, you need access to a test installation of BRM. For best results, the test installation
should resemble very closely your production BRM environment.

The following sections provide basic instructions for common testing scenarios. Depending on
the nature of your customizations and the architecture of your BRM system, these instructions
might not fully describe your situation.

Testing Custom Applications
To test an application, connect it to a BRM system via its CM, in the same way you would
under production conditions. To establish a connection, the application must specify a valid
user name, password, port number, and database number. Depending on how the application
is designed, this information can be included in a configuration file (pin.conf for C/C++
applications or Infranet.properties for Java applications) or specified by the user.

Testing New or Customized Policy FMs
To test a new or customized policy FM, you must add it to a CM that you then use with a BRM
test installation.

1. Add the FM to the CM in BRM SDK. See "Adding a New FM Module to the CM
Configuration File".

2. Use that CM in place of the default CM in a test installation of BRM. See "Configuring Your
CM to Use the Custom DM".

3. Use Opcode Workbench or testnap to run the opcodes in the new or customized FM. See
"Using the testnap Utility to Test BRM".

Keep in mind that if the opcodes in the FM require the use of new storable classes or
fields, you must add those storable classes or fields to the database of the test BRM
installation. See "Creating Custom Fields and Storable Classes".

See "Debugging FMs" for information about debugging new or customized policy FMs.

10-1

Testing New or Customized DMs
To test a new or customized DM, run a CM locally on your development machine. The CM
should connect to the DM that you are testing and to any other DMs included in the BRM
installation. For information about including the new or customized DM in the CM, see
"Configuring Your CM to Use the Custom DM".

Changing the Virtual System Time to Test BRM
You can test some BRM functionality by using the pin_virtual_time utility. For example, you
can test the billing impact of recurring charges by advancing the date within the BRM system
and then running billing.

Caution:

Always use a test database when you test BRM functionality.

To test some aspects of billing, you must simulate the passage of time. The pin_virtual_time
utility enables you to simulate changes in the BRM system time.

Note:

The pin_virtual_time utility works only on a single computer. Typically, you set up a
test BRM system on just one computer. If you run pin_virtual_time on a system that
is distributed across multiple computers, you must carefully coordinate time changes
on all the computers.

To set up the pin_virtual_time utility:

1. Go to the BRM_home/sys/test directory.

2. Run this command to create a file that pin_virtual_time requires, called
pin_virtual_time_file:

pin_virtual_time -m 0 -f BRM_home/bin/pin_virtual_time_file

Note:

BRM_home/lib/pin_virtual_time_file is the standard path and file name, but you
can change it.

3. Add the following entry to the configuration file in the BRM_home/sys/test directory:

- - pin_virtual_time pin_virtual_time_file

Replace pin_virtual_time_file with the path and name of the mapped file created in the
previous step.

Chapter 10
Changing the Virtual System Time to Test BRM

10-2

Adding the entry to the configuration file in sys/test enables you to run pin_virtual_time
from that directory. The directory from which you run pin_virtual_time must contain a
configuration file with the pin_virtual_time entry.

4. Add the entry in step 3 to the configuration file for each program you want to respond to an
altered time.

To test your price list, edit the configuration files for at least the applications listed in
Table 10-1:

Table 10-1 Configuration Files for Testing Applications

Application Configuration File Location

CM sys/cm/

Oracle DM sys/dm_oracle/

Billing and invoice utilities apps/pin_billd/

To ensure that all applications respond to pin_virtual_time changes, add the entry to all
the configuration files in your test BRM system.

Entry example:

- - pin_virtual_time BRM_home/bin/pin_virtual_time_file
After you set up the pin_virtual_time utility, run pin_virtual_time to advance the BRM date
and time.

To run pin_virtual_time, use the following syntax:

pin_virtual_time -m 2 MMDDHHMM[CC]YY.[SS]

For the string MMDDHHMM[CC]YY.[SS], enter the date and time you want BRM to use in this
format: month, date, hour, minute, year, and seconds. You must enter at least two digits for the
year, but you can enter four. Seconds are optional.

For example, to set the date and time to 9/3/99 and 11:30, respectively:

% pin_virtual_time -m 2 090311301999.00

The command displays this message at the command prompt:

filename BRM_home/lib/pin_virtual_time_file, mode 2, time: Fri Sept 03 11:30:00 1999

The time then advances normally from the new reset time.

After you run pin_virtual_time, you must stop and restart BRM to read in the new time.

Chapter 10
Changing the Virtual System Time to Test BRM

10-3

11
Using the testnap Utility to Test BRM

Learn how to use the testnap utility to test your Oracle Communications Billing and Revenue
Management (BRM) applications and custom code.

Note:

Only the most common testnap functions are covered here. For a complete
description, see "testnap".

Topics in this document:

• About testnap

• Executing Opcodes

• Reading an Object and Fields

• Retrieving Objects

• Creating Objects

• Manipulating External Buffer Fields

• Sorting an Flist

• Invoking Shell Commands

• Troubleshooting testnap

See also:

• Using testnap to Modify /config Objects

• Using BRM SDK

• Finding Errors in Your Code

• Testing Custom Applications

About testnap
The testnap utility enables a developer to manually interact with the BRM server by
establishing a PCM connection with the Connection Manager (CM) and then executing PCM
operations by using that connection. Using testnap, a developer can perform the following
tasks:

• Create input flists

• Save input and output flists

• Send opcodes

• View return (output) flists

• Create, view, modify, and delete objects and their fields

11-1

• Open, commit, and cancel transactions

Opcode Workbench, part of the Developer Center offers similar functionality in a GUI-based
application.

About Buffer Numbers
The testnap utility allocates numerous internal buffers, which are used to store object or flist
fields. Buffers are referenced by integers of the user's choice. Every time a new buffer is
referenced, testnap allocates that new buffer.

• If you do not specify a buffer number for a command that expects one, you will be
prompted for a buffer number.

• The meta keyword causes testnap to display the size of external buffer fields. By default,
the contents of external buffer fields are displayed.

Executing Opcodes
To run opcodes using testnap, use the xop command.

xop opcode number flag buffer number

The input flist is read from a file into buffer 1, which is passed to xop, on the xop command
line. See "About Buffer Numbers".

For opcode numbers, see the opcode header files in BRM_home/include/ops.

Reading an Object and Fields
You can use testnap to read objects or fields in an object and write its contents to a file.

See the following:

• Reading Fields in an Object

• Reading an Object and Writing Its Contents to a File

Reading Fields in an Object
To read fields from an object, each field or row in the field list must be in valid flist format, but
the actual values for the last two fields need not be valid.

For example, you have to include " " for STR fields and some number for the TSTAMP field. If
a field is blank, the system returns an error. Be sure to include the header line in all flists.

1. Print the flist to ensure that the format is correct and all the fields are filled.

2. Start testnap.

testnap
3. Read the fields.

r fldlist 1
rflds 1

Chapter 11
Executing Opcodes

11-2

Reading an Object and Writing Its Contents to a File
This example reads the contents of the /account object and writes it in to a file called
root.account.

1. Start testnap.

testnap
===> database 0.0.0.1 from pin.conf "userid"

2. Read the object you want.

This example reads the /account object.

testnap

robj - $DB /account 1
3. Save output in buffer 1.

s 1
4. Write the contents on buffer 1 into a file, and quit.

This example writes the contents into a file called root.account.

w 1 root.account
q

5. Print the contents of the file (root.account in the example) to verify that the file contains
the contents of the /account object.

cat root.account

Retrieving Objects
You can use testnap to search for objects and retrieve the contents of the objects, of specific
objects, or the Portal object IDs (POIDs) of the objects.

See the following:

• Retrieving the Contents of the First Object Found

• Retrieving the POID Field of the Objects Found

• Creating a New Search Object

• Retrieving Objects One at a Time

• Retrieving a Specific Number of Objects at a Time

Retrieving the Contents of the First Object Found
This example shows how to perform a search and retrieve the contents of the first object found
by that search.

cat search

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 201
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 1
0 PIN_FLD_RESULTS ARRAY [0]

Chapter 11
Retrieving Objects

11-3

testnap

r search 1

Retrieving the POID Field of the Objects Found
This example shows how to search for objects and retrieve only the POID field of each object
found.

cat search.all_acct

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 201
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_POID POID [0] 0.0.0.1 /account -1 1
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 0 0

testnap

r search.all_acct 2

Creating a New Search Object
You can create a new search object, load it in the database, and use it as a template for your
searches.

The following example shows you how to create a new search template.This template can be
used in programs to search for search objects in the database.

1. Read an existing search object and save it as a template:

testnap

robj - $DB /search 222

number of field entries allocated 6, used 6
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 222 1
0 PIN_FLD_NAME STR [0] "1 result: sum, 6 arg =, >=, <, =, like, >
special search in /event/usage"
0 PIN_FLD_CREATED_T TSTAMP [0] (857152638) Fri Feb 28 09:57:18 1997
0 PIN_FLD_MOD_T TSTAMP [0] (857152638) Fri Feb 28 09:57:18 1997
0 PIN_FLD_FLAGS INT [0] 1
0 PIN_FLD_TEMPLATE STR [0] "select sum(F1) from /event/usage where
 event_total_t.rec_id = 1
 and F2 = V2 and F3 >= V3 and F4 < V4
 and F5 = V5 and F6 like V6 and F7 > V7"
s 1

saved input in buffer 1

w 1 search.template
q

2. Edit the template file to suit your needs.

3. Start testnap.

4. Create the new search template, that is, a new search object with the number 977, as
shown in the following example:

cat search.template

Chapter 11
Retrieving Objects

11-4

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 977
0 PIN_FLD_NAME STR [0] "1 arg = search for /search/$1"
0 PIN_FLD_FLAGS INT [0] 1
0 PIN_FLD_TEMPLATE STR [0] "select X from /search/$1 where F1 = V1 "

testnap

Read the search template in to buffer 1

r search.template 1

Create an object using the contents of buffer 1

create 1 poid
 poid created was: 0.0.0.1 /search 977 0

Verify that the search object was created

robj - $DB /search 977

number of field entries allocated 6, used 6
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 977 0
0 PIN_FLD_NAME STR [0] "1 arg = search for /search/$1"
0 PIN_FLD_CREATED_T TSTAMP [0] (857521039) Tue Mar 4 16:17:19 1997
0 PIN_FLD_MOD_T TSTAMP [0] (857521039) Tue Mar 4 16:17:19 1997
0 PIN_FLD_FLAGS INT [0] 1
0 PIN_FLD_TEMPLATE STR [0] "select X from /search/$1 where F1 = V1 "

testnap displays /search object 977 from the database.

Retrieving Objects One at a Time
You can use testnap to do a step search. This example shows how to retrieve objects found in
a step search one at a time:

t_flist2

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 236 0
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_PASSWD STR [0] "ozt|%"
0 PIN_FLD_RESULTS ARRAY [1]
1 PIN_FLD_POID POID [0] 0.0.0.0 / 0 0
1 PIN_FLD_LOGIN STR [0] ""
1 PIN_FLD_PASSWD STR [0] ""

testnap

r t_flist2 1
ssrch 1

number of field entries allocated 2, used 2
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 236 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 3, used 3
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/pcm_client 1 1
1 PIN_FLD_LOGIN STR [0] "root.0.0.0.1"
1 PIN_FLD_PASSWD STR [0] "ozt|5f4dcc3b5aa765d61d8327deb882cf99"

snext

buffer: 1
number of field entries allocated 2, used 2
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 236 0

Chapter 11
Retrieving Objects

11-5

0 PIN_FLD_RESULTS ARRAY [0] allocated 3, used 3
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/admin_client 2 1
1 PIN_FLD_LOGIN STR [0] "root.0.0.0.1"
1 PIN_FLD_PASSWD STR [0] "ozt|5f4dcc3b5aa765d61d8327deb882cf99"

send

buffer: 1
number of field entries allocated 3, used 3
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 236 0
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_PASSWD STR [0] "ozt|%"
0 PIN_FLD_RESULTS ARRAY [1] allocated 3, used 3
1 PIN_FLD_POID POID [0] 0.0.0.0 / 0 0
1 PIN_FLD_LOGIN STR [0] ""
1 PIN_FLD_PASSWD STR [0] ""

Retrieving a Specific Number of Objects at a Time
You can change the number of elements in the PIN_FLD_RESULTS ARRAY specification to
specify the number of objects you want to retrieve at a time.

This example shows retrieving three objects each time:

cat t_flist_arr

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 236 0
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_PASSWD STR [0] "ozt|%"
0 PIN_FLD_RESULTS ARRAY [3]
1 PIN_FLD_POID POID [0] 0.0.0.0 / 0 0
1 PIN_FLD_LOGIN STR [0] ""
1 PIN_FLD_PASSWD STR [0] ""

testnap
===> database 0.0.0.1 from pin.conf "userid"

r t_flist_arr 1
ssrch 1

number of field entries allocated 4, used 4
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 236 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 3, used 3
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/pcm_client 1 1
1 PIN_FLD_LOGIN STR [0] "root.0.0.0.1"
1 PIN_FLD_PASSWD STR [0] "ozt|5f4dcc3b5aa765d61d8327deb882cf99"
0 PIN_FLD_RESULTS ARRAY [1] allocated 3, used 3
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/admin_client 2 1
1 PIN_FLD_LOGIN STR [0] "root.0.0.0.1"
1 PIN_FLD_PASSWD STR [0] "ozt|5f4dcc3b5aa765d61d8327deb882cf99"
0 PIN_FLD_RESULTS ARRAY [2] allocated 3, used 3
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/email 1061 3
1 PIN_FLD_LOGIN STR [0] "kim@csi.com"
1 PIN_FLD_PASSWD STR [0] "ozt|ae2b1fca515949e5d54fb22b8ed95575"

q

Chapter 11
Retrieving Objects

11-6

Creating Objects
To create an object, you must create an flist in a text file or as a here document in a testnap
script. The following procedures show two ways to create an object using testnap.

See the following:

• Using a Text File to Create an Object

• Using a Here Document to Create an Object

Using a Text File to Create an Object
To use a text file to create an object:

1. Create an flist using a text editor with at least the required fields of the object by using the
following example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /data 0 0
0 PIN_FLD_NAME STR [0] "example new data object creation"
0 PIN_FLD_BUFFER BUF [0] flag/size/offset 0x0 0 0 NULL data ptr
0 PIN_FLD_HEADER_NUM INT [0] 1234
0 PIN_FLD_HEADER_STR STR [0] "Some sample info in the example"
0 PIN_FLD_PARENT POID [0] 0.0.0.0 0 0

2. Save the file.

In this example, the file is called new_data_flist

3. Start testnap.

pin@demo5-661> testnap
===> database 0.0.0.1 from pin.conf "userid"

4. Read the file into a buffer.

r new_data_flist 1
5. Create an object using that buffer.

create 1
poid created was: 0.0.0.1 /data 8830 0

The POID of the object created is returned.

Using a Here Document to Create an Object
This procedure enables you to combine data and commands in one file:

1. Create a testnap script to read an object from a here document:

#
A testnap script to create a new data object
#
Read an flist into buffer 1 using a "here" document
Note the space between "<<" and the "here" token.
Note use of $DB_NO in poid database - takes current database number.
r << XXX 1
0 PIN_FLD_POID POID [0] $DB_NO /data 0 0
0 PIN_FLD_NAME STR [0] "example new data object creation"
0 PIN_FLD_BUFFER BUF [0] flag/size/offset 0x0 0 0 NULL data ptr
0 PIN_FLD_HEADER_NUM INT [0] 1234

Chapter 11
Creating Objects

11-7

0 PIN_FLD_HEADER_STR STR [0] "Some sample info in the example"
0 PIN_FLD_PARENT POID [0] 0.0.0.0 0 0 XXX
#
Create the object
#
 create 1 poid
#
Write the new poid id (from the "in" buffer)
into a file "new_data_poid.<pid_of_this_process>"
#
w in new_data_poid.$$
#

2. Save the script.

In this example the script is saved as new_data_script.

3. Run the script.

You can either run testnap with the script name as the argument, as shown in this
example, or use the < command in testnap.

See testnap for details.

./testnap new_data_script

poid created was: 0.0.0.1 /data 9854 0

ls new_data_poid*

new_data_poid.3881
4. Display the contents of the file to verify that the output file is created.

cat new_data_poid.3881

number of field entries allocated 1, used 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /data 9854 0

Manipulating External Buffer Fields
You can use testnap to manipulate the external buffer fields, for example, to read data in a
buffer to a file.

See the following:

• Reading Data in a Buffer to a File

• Using Buffers to Concatenate Flists

• Setting up Buffers and Displaying the List of Buffers

• Creating and Displaying the Contents of a Buffer

Reading Data in a Buffer to a File
The procedure in this section shows how to set the root account object's (/account 1)
PIN_FLD_INTERNAL_NOTES field, which is an external buffer field in the /account storable
class.

In the input flist in the example, the 0x1 flag indicates that the contents of the file are to be
written to the object. The size parameter (37), which is required, is the number of bytes in the
file. The contents of this file is to be read into the external buffer field.

Chapter 11
Manipulating External Buffer Fields

11-8

The offset field, if nonzero, indicates the number of bytes to be skipped in the file before
reading size bytes from the file and placing them in the INTERNAL_NOTES field.

1. Set up an input flist that specifies that the contents of the file xbuf.out be placed into the
INTERNAL_NOTES field of the root account object when the Write Fields opcode is run.

2. Setup an input flist that will read the INTERNAL_NOTES field of the root account object
when the Read Fields opcode is run. The 0x3 flag indicates that the contents of the file are
to be read from the object.

3. Perform the Read Fields opcode. The contents of the INTERNAL_NOTES field are written
to the newly created file xbuf.in.

Example:

file xbuf.out

this is test of xbuf to account 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_INTERNAL_NOTES BUF [0] flag/size/offset/xbuf_file 0x1 37 0 xbuf.out

xbuf.write

number of field entries allocated 45, used 45
0 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_INTERNAL_NOTES BUF [0] flag/size/offset/xbuf_file 0x1 37 0 xbuf.out

buf.tst
number of field entries allocated 45, used 45
0 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_INTERNAL_NOTES BUF [0] flag/size/offset/xbuf_file 0x3 0 0 xbuf.in

testnap
r xbuf.write 1
wflds 1
r xbuf.tst 2
rflds 2
q

Using Buffers to Concatenate Flists
You can use testnap to concatenate flists. For example:

1. Read the contents of two different files into two different buffers (buffer 1 and buffer 2).

2. Write the contents of buffer 1 to a file.

3. Append the contents of buffer 2 to the same file.

Example:

cat bill

0 PIN_FLD_POID POID [0] 0.0.0.1 /bill 1451 0

cat bundle
0 PIN_FLD_POID POID [0] 0.0.0.1 /deal 1123 0

testnap

r bill 1
r bundle 2
w 1 billbundle
w+ 2 billbundle

Chapter 11
Manipulating External Buffer Fields

11-9

q
cat billbundle

number of field entries allocated 20, used 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /bill 1451 0
number of field entries allocated 20, used 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /deal 1123 0

Setting up Buffers and Displaying the List of Buffers
You can use testnap to display a list of all the buffers on your system.

In this example, the flists in two different files (bill and bundle) are read into two different
buffers. Then the list of all objects in all the buffers are displayed:

cat bill

0 PIN_FLD_POID POID [0] 0.0.0.1 /bill 1451 0

cat bundle

0 PIN_FLD_POID POID [0] 0.0.0.1 /deal 1123 0
pin@demo5-511> testnap
===> database 0.0.0.1 from pin.conf "userid"

r bill 1
r bundle 2
l

[1] type /bill, poid 1451
[2] type /deal, poid 1123

Creating and Displaying the Contents of a Buffer
To create and display the contents of a buffer:

1. Read the contents of the file called bill into buffer 1.

r bill 1
2. Display the contents of buffer 1.

d 1

number of field entries allocated 20, used 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /bill 1451 0

Sorting an Flist
On Linux, by using the sort option in testnap, you can sort the contents of a buffer.

This example shows how to read an flist into the buffer and sort it:

cat products

cat products.sort

0 PIN_FLD_PRODUCTS ARRAY [0] allocated 20, used 1
1 PIN_FLD_QUANTITY NUM [0] 1.000000

testnap

Chapter 11
Sorting an Flist

11-10

===> database 0.0.0.1 from pin.conf "userid"

r products 2
r products.sort 1
sort 2 1

Invoking Shell Commands
On Linux, you can invoke shell commands from testnap.

This procedure shows how the results of a grep invocation are used to determine what exit
code to use.

1. Search the database to see if /service/ip testterm01 is already created.

r << XXX 1

0 PIN_FLD_POID POID [0] $DB_NO /search 236 0
0 PIN_FLD_PARAMETERS STR [0] "ip"
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_LOGIN STR [0] "testterm01"
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_POID POID [0] 0.0.0.0 0 0
1 PIN_FLD_LOGIN STR [0] ""
XXX

search 1

2. Write the results to a file.

w in out.setup.fm_term.$$/exist.testterm01

Note:

$$ is substituted for the current process id on Linux, file names in the r, r+, w,
w+, and < commands, and in the arguments to the ! command.

3. Use a Linux shell to perform an if-test on the results of a grep invocation, and then set the
exit code accordingly.

! if grep "testterm01" out.setup.fm_term.$$/exist.testterm01 ; then exit 1; else
exit 0 ; fi

Troubleshooting testnap
When testnap doesn't run successfully, you see an error message or the nap prompt doesn't
appear. Also, you see error messages in the testnap log file located by default in the
BRM_home/sys/test directory. The error messages include an error number and the location
of where the error occurred.

Check the testnap log file and the cm.log, cm.pinlog, dm_oracle.log, and dm_oracle.pinlog
files for details.

Most problems with starting or running testnap involve incorrect parameters in the testnap
configuration file.

If testnap doesn't start, you see the following message:

Chapter 11
Invoking Shell Commands

11-11

E Thu May B 13:16:31 1999 db2.corp :6029 pcm.c(1.40):90
 Connect open failed (4/100) in pcm context open
E Thu May B 13:22:07 1999 db2.corp :6033 pcm.c(1.40):90
 Connect open failed (4/101) in pcm context open

See the following:

• Error 27: Connection Error

• Error 4: Login Failure

• Incorrect Database Number

• Error 26: DM Not Running

• Invalid Buffer Index

• Error 56: Failed to Connect

Error 27: Connection Error
This error is caused by one of the following situations:

• The maximum number of connections have been exceeded. This is indicated by the
following message:

(10567): pcp_open, bad connect: Connection refused
(10567): login failed 27
ERROR: testnap: pcm_context_open():: err 27,
 loc 0, pin_errclass 0, field 0/0, rec_id 0, resvd 5

You can resolve the problem by increasing the number of connections in the CM pin.conf
file and reconfiguring the CM, or by connecting to a different CM.

• The DM processes did not start when you tried to start testnap, caused by the following
sequence of commands:

pin@demo5-86> pin_ctl start dm_oracle
pin@demo5-87> pin_ctl start cm
pin@demo5-88> testnap
ERROR: testnap: pcm_connect():: err 27,
loc 2, pin_errclass 1, field 0/0, rec_id 0, resvd 7

Wait a few seconds for the DM processes to start after typing pin_ctl start cm before
starting testnap.

Error 4: Login Failure
Error 4 in the message indicates that login failed because of an incorrect port or host number
or incorrect user ID.

Incorrect port number

A message such as the following indicates that the port number specified by the cm_ports
entry in the testnap pin.conf file is incorrect:

testnap
(8488): bad receive of login response, err 4
(8488): login failed 4
ERROR: testnap: pcm_context_open():: err 4,
 loc 0, pin_errclass 0, field 0/0, rec_id 0, resvd 5

Chapter 11
Troubleshooting testnap

11-12

To resolve the problem, make sure that the port number in the cm_ports entry in the testnap
pin.conf file matches the cm_ports entry in the CM pin.conf file.

Incorrect user ID

The following message indicates that the database number (db_no) in the userid entry of the
testnap pin.conf file is incorrect:

testnap
bad/no "userid" from pin.conf file
ERROR: testnap: pcm context open():: err 4,
 loc 0, pin errclass 0, field 0/0, rec_id 0, resvd 3

To resolve the problem, enter the correct database number in the pin.conf file.

Connection refused

The following message indicates that either the testnap pin.conf file has an incorrect port
number or hostname in the cm_ports entry or there is no CM running.

testnap
(1215): pcp_open, bad connect: Connection refused
ERROR: testnap: pcm context open():: err 4,
 loc 0, pin_errclass 0, field 0/0, rec_id 0, resvd 4

To resolve the problem, make sure that the hostname and port number are correct and that the
CM is running.

Incorrect hostname

The following message indicates that the hostname in the testnap pin.conf file is incorrect:

testnap
(6044): pcp_open(), bad gethostbyname("XXX_HOSTNAME"): Error 0
ERROR: testnap: pcm_context_open():: err 4,
 loc 0, pin errclass 0, field 0/0, rec_id 0, resvd 3

To resolve the problem, enter the correct hostname.

Incorrect Database Number
The following message indicates that testnap could connect to the DM through the CM, but
couldn't access the database, since the database number was incorrect:

testnap
XXX: database 23 from pin.conf "userid"
ERROR: dd vrfy(): pcm read_flds(): 23

Even though the CMs and DMs successfully came up, this is the first point at which the validity
of the database number is checked.

To resolve the problem, correct the database number (db_no) in the userid in testnap
pin.conf file. Also, ensure that the testnap, CM, and DM pin.conf files have the same
database numbers.

Error 26: DM Not Running
The following messages indicate that there is no DM running:

testnap

Chapter 11
Troubleshooting testnap

11-13

XXX: database 2 from pin.conf "userid"
ERROR: dd vrfy(): pcm read_flds(): 26

robj - 0.0.0.2 /account 1

PCM_OP_READ_OBJ failed: err 26,
 loc 3, pin_errclass I, field 0/16, rec_id 0, resvd 3

To resolve this, start a DM.

Invalid Buffer Index
The following message indicates that there is a parameter missing in the testnap command:

testnap

XXX: database 2 from pin.conf "userid"

robj /account 1

ERROR: invalid buffer index "2"
no object to use for robj

robj

To resolve the problem, be sure to include the "-" in front of the number 0.0.0.2:

robj - 0.0.0.2 /account 1

Error 56: Failed to Connect
If some older DMs started using a different database number are still running and accepting
connections from your application, which is trying to use a different database, testnap returns
error 56.

In addition, the testnap pinlog file contains the following message:

E Fri May 7 16:14:11 1999 demo5 <no name>:2025 pcm.c(1.46):101
 Connect open failed (56/7) in pcm_context_open
E Fri May 7 16:14:11 1999 demo5 <no name>:2025 pcm_conn.c(1.3):158
 pcm_connect: bad pcm_context_open, err 56

The CM pinlog file contains the following message:

E Fri May 7 16:35:46 1999 demo5 cm:2125 fm_utils_trans.c:114
 fm_utils_trans_open error [location=<PIN_ERRLOC_DM:4>
class=<PIN_ERRCLASS_APPLICATION:4> errno=<PIN_ERR_WRONG_DATABASE:31> field
num=<PIN_FLD_POID:7,16> recid=<0> reserved=<0>]

To resolve the problem, stop all the DMs and restart them.

Use ps -ef | grep dm to find and stop all DMs.

Note:

testnap also returns error 56 when you re-create the database but do not commit
your changes in SQL or in init_tables.sql.hostname.

Chapter 11
Troubleshooting testnap

11-14

Part II
Customizing BRM Server Components

This part describes how to customize Oracle Communications Billing and Revenue
Management (BRM) server components. It contains the following chapters:

• About System and Policy Opcodes

• Writing a Custom Facilities Module

• Writing a Custom Data Manager

• Creating Custom Fields and Storable Classes

• Storing Customer Profile Information

• Auditing Customer Data

• Encrypting Data

• Searching for Objects in the BRM Database

• Adding Support for a New Service

• Using BRM Messaging Services

• Using BRM with Oracle Application Integration Architecture

• Using Event Notification

• Writing Custom Batch Handlers

• Managing Devices with BRM

• Managing Orders

12
About System and Policy Opcodes

Learn how to use policy opcodes to change default Oracle Communications Billing and
Revenue Management (BRM) policies and implement new business policies.

Topics in this document:

• Understanding System and Policy Facilities Modules

• Using the Policy Opcode Source Files

• Adding a New Policy FM

For a complete list of business policies implemented by default in BRM and how to change
them, see "Implementation Defaults".

Understanding System and Policy Facilities Modules
BRM functionality, such as billing and rating, is implemented by using FMs and a set of
applications that rely on them. The FMs implement opcodes, each of which performs a specific
function related to the business processes of its manager. See "FM Opcodes" for more
information.

BRM uses two types of opcodes:

• System opcodes

• Policy opcodes

Many system opcodes have a corresponding policy opcode that allows you to customize
functionality. For example, the PCM_OP_AR_REVERSE_WRITEOFF standard opcode calls
the PCM_OP_AR_POL_REVERSE_WRITEOFF policy opcode, which you can customize.

From a technical perspective, System FMs and Policy FMs follow the same rules and are built
with the same Application Programming Interfaces (APIs). However, they differ significantly in
the types of functions they implement. Each System and Policy FM set has a corresponding
header file, which must be included in applications that use an opcode from that FM set.

System FM Functions
System FMs:

• Define and implement the basic functionality.

• Guarantee the integrity of all operations performed.

For example, the customer system FM includes the PCM_OP_COMMIT_CUSTOMER opcode,
which takes customer account creation information and creates an account object in the
database. A formal set of steps is followed, including preparing and validating all the fields,
creating and initializing the account and service objects, purchasing the appropriate packages
and bundles, validating the credit card, and so on. These steps are carried out within a well-
defined transactional model that guarantees the integrity of the resulting objects.

You cannot modify the default System FMs, but you can create new ones and configure them
into BRM.

12-1

For information on creating a custom FM, see "Writing a Custom Facilities Module".

Policy FM Functions
You use Policy FMs to implement your business policy decisions. System FMs use these
policies to choose among a set of reasonable behaviors under a specific set of circumstances.

For example, the payment module includes an opcode in its Policy FM called
PCM_OP_PYMT_POL_SPEC_VALIDATE, which determines whether a customer's payment
information needs to be validated after events such as a new account creation or a change to
the customer's payment details. This policy opcode doesn't perform any of the actual work. It
takes a description of the situation, makes the decision based on your business policy, and
returns that decision to the System FM for execution.

Every policy opcode includes a default implementation already configured into BRM. If your
business policies differ from the default implementation, you can implement custom policies
and configure them into BRM. Because the business policies are separated into their own
opcodes, you can easily customize the policies without affecting the underlying functionality of
BRM.

Policy FMs consist of a number of opcodes that are implemented by using C functions, and
these opcodes enable you to change the default behavior of BRM. For example, you can
substitute customized opcodes for existing policy opcodes to validate Automatic Account
Creation (AAC) information, create and check customer passwords, validate login names, and
assign dynamic IP addresses.

Policy Opcodes
Policy FM opcodes receive a set of situational details as input and return a business policy
decision as output. In general, this decision is based on the input parameters, and the policy
opcode does not call any additional opcodes or access the database. However, if the business
behavior of your custom policy opcode requires executing other opcodes that access data in
the database, you can implement them.

Policy FM opcodes can perform any of the actions supported by FMs while deriving the data
the FMs return as input. For example, in addition to the parameters passed as input, customer
information can be read from the database to drive the business decision. Or an external
system, such as a credit rating bureau, can be accessed to provide additional validation of a
new customer during account creation.

Policy FM opcodes must conform to the standard BRM calling conventions. They receive
parameters according to the input flist specification and are expected to return parameters
according to the return flist specification. For detailed descriptions of the Policy FM opcodes,
see the individual opcode descriptions.

Each policy opcode description explains the calling conventions and includes links to its input
and output flist specifications, a detailed description of the functionality of the default
implementation, and pointers to any configuration files that it uses.

Each opcode description also contains a link to the .c file that implements its behavior.

Chapter 12
Understanding System and Policy Facilities Modules

12-2

Note:

When you modify policy opcodes at the source code level, observe the transactional
rules around the policy call. Because the System FMs that call the Policy FMs are
responsible for the transactional integrity of BRM, they impose restrictions on certain
policy opcodes. See the Transaction Handling section of the individual opcodes for
details.

Using the Policy Opcode Source Files
You can change the default behavior of many BRM operations by using customized policy
opcodes. You make your changes to the policy's .c file. Then, you compile and link this file with
an updated Policy FM, which can be dynamically linked to any CM.

Policy opcodes are installed as executable binary files. In addition, most policy opcodes
include source files that you can customize and compile. As of release 7.3, some policy
opcodes do not include source files. In that case, you can create your own version of those
policy opcodes.

Note:

In some cases, some opcodes in a single Policy FM include source code and some
do not.

To create a custom version of an opcode:

1. Create a custom version of the opcode. Use the same name as the opcode supplied by
BRM. For example, to create a customer version of the
PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL opcode, create an opcode named
PCM_OP_SUBSCRIPTION_POL_SPEC_CANCEL.

See the opcode flist spec documentation for guidance on optional and required fields. Flist
specifications are provided for all policy opcodes, including opcodes that do not have
source code.

2. Edit the fm_name_pol_config.c file.

For example, fm_subscription_pol_config.c.

3. Comment out the opcodes that you do not want to customize. If you comment out an
opcode, the default functionality is used.

4. Run the Makefile provided with the opcode source. The Makefile creates a new policy
library file called fm_name_pol_custom.so, which contains the custom policy and
override policy. The entry of the custom source code must be made in the Makefile.

5. Open the CM pin.conf file and add an entry for the custom executable file. The entry must
follow the entry for the default implementation. The CM reads the entries and implements
the last entry it finds.

- cm fm_module fm_subscription_pol.so fm_subscription_pol_config - pin
- cm fm_module fm_subscription_pol_custom.so
fm_cust_subscription_custom_config - pin

Chapter 12
Using the Policy Opcode Source Files

12-3

Using the Default Implementation with Your Custom Implementation
To use the default implementation with your custom implementation:

1. Include multiple entries for the same opcode in the CM file.

a. Open CM pin.conf file and add the below CM pin.conf entry in the last line.

- cm fm_module ${PIN_HOME}/lib/fm_name_pol_custom${LIBRARYEXTENSION}
fm_name_pol_custom_config - pin

where fm_name_pol_custom${LIBRARYEXTENSION} denotes the custom policy
library name, and fm_name_pol_custom_config denotes the custom policy
configuration structure name.

b. Save the CM pin.conf file, and restart the CM process.

The CM loads both implementations of the policy code, the default implementation and the
custom implementation. However, by default, CM runs the implementation that is
configured last in the CM pin.conf file.

2. Use the custom opcode to call the default implementation of the policy opcode by including
the CM_FM_OP_PREV_IMPL or CM_FM_OP_PREV_IMPL_BY_REF macro in your
custom opcode source code.

To add some customization to the implementations and to call the default implementation
from the custom implementation, use one of the preceding functions to call the previous
(default) implementation of the same policy opcode.

3. Run your custom implementation first, and then the default implementation, using the CM.

Note:

• In case of the CM_FM_OP_PREV_IMPL macro, a local copy of the input flist
is created to call the opcode. The local copy is destroyed after the called
opcode is returned.

• In case of the CM_FM_OP_PREV_IMPL_BY_REF macro, a copy of input
flist is not created. The given input flist is passed to the opcode so that the
called opcode uses the input flist as a reference only and does not alter the
data.

For information about the CM_FM_OP_PREV_IMPL and CM_FM_OP_PREV_IMPL_BY_REF
macro, see the cm_fm.h file in the BRM_home/include directory, where BRM_home is the
directory in which the BRM server software is installed.

Adding a New Policy FM
A Policy FM consists of a set of opcodes and functions. The functions implement the opcodes.
The functions are compiled and then linked into a shared library (the Policy FM).

For examples, see the .c source files for each opcode in BRM_SDK_home/source/sys/
fm_category_pol, where category is the name of the opcode category.

To create a new Policy FM:

1. Define the input and output flist specifications.

Chapter 12
Adding a New Policy FM

12-4

This is already done for you. Each policy opcode must conform to the input and output flist
specifications referenced in the opcode reference document.

2. Write a function to implement your custom opcode.

To do this, modify a copy of the .c source file provided for the corresponding default policy
opcode.

For example, to change the default behavior of the
PCM_OP_CUST_POL_PREP_BILLINFO policy opcode, change the
op_cust_pol_prep_billinfo function, which is contained in the
fm_cust_pol_prep_billinfo.c file.

3. Create an entry in the configuration file to map the function to an opcode or if it is a new
policy FM, create a configuration file to specify the opcode-to-function mapping.

For information on creating the file, see "Creating an Opcode-to-Function Mapping File".

Chapter 12
Adding a New Policy FM

12-5

13
Writing a Custom Facilities Module

Learn how to add new features and functionality to Oracle Communications Billing and
Revenue Management (BRM) by writing custom Facilities Modules (FMs).

Topics in this document:

• About Implementing Custom FMs

• Creating a New FM

• About Configuring a New FM into a CM

• Handling Transactions in Custom FMs

• Managing Memory in Custom FMs

• Opening a New Context in an FM

• Compiling and Linking a Custom FM

• Configuring Your New Policy FM

• Debugging FMs

For information about creating or modifying policy FMs, see "About System and Policy
Opcodes".

About Implementing Custom FMs
You implement a custom FM the same way you add a custom client application in C to BRM:

• You use the same standard client libraries you use to write a custom application. These
libraries are included in the BRM SDK (BRM_SDK_home\lib).

• You use the same coding conventions in an FM and in custom applications.

• An FM can call system opcodes and use PCM Library macros just like a client application.

• You can easily implement new features at the client application level and then migrate
them into an FM after debugging.

For information on creating client applications, see "Adding New Client Applications".

FMs are configured into CMs at CM execution time as dynamically loaded libraries. When a
new operation is implemented with an FM and the FM becomes part of a CM, it appears to all
client applications as a fully integrated BRM operation. The custom FMs can perform checks,
write log records, call functions in other FMs, call the default DMs, or call custom DMs.

Creating a New FM
Follow these procedures to create a new FM in a CM:

1. Define new opcodes. See "Defining New Opcodes".

2. Define input and output specifications for the new opcodes. See "Defining Input and
Output Flist Specifications".

13-1

3. If necessary, define new storable classes and fields. See "Defining New Storable Class
and Field Definitions".

4. Write a function to implement the new opcode. See "Writing a Function to Implement a
New Opcode".

5. Use the fm_post_init function to call nonbase opcodes at CM initialization. See "Using the
fm_post_init Function to Call Nonbase Opcodes at CM Initialization".

6. Write a program to map opcodes to functions. See "Creating an Opcode-to-Function
Mapping File".

7. Create a shared library for the new FM. See "Creating a Shared Library for a New FM".

8. Configure the new FM as part of the CM. See "About Configuring a New FM into a CM".

Defining New Opcodes
You must define your custom opcodes, with their numbers, in a header file and run the
parse_custom_ops_fields script on the file.

For more information on the parse_custom_ops_fields script, see
"parse_custom_ops_fields".

BRM opcodes and their numbers are defined in the ops/*.h files in the BRM_home/include
directory, where BRM_home is the directory in which the BRM server software is installed.

To pass new opcodes from a client application to a new FM, you use the PCM_OP macro.

To define a new opcode:

1. Create a header file and define your new opcodes by using this format:

#define opcode_name_1 opcode_number_1

For example, you might create a header file named my_opcodes.h with these definitions:

#define MY_OP_SET_AGE 100001
#define MY_OP_SET_LANGUAGE 100002

Note:

Numbers up to 10000 are reserved for internal use.

2. Run the parse_custom_ops_fields Perl script by using this syntax:

parse_custom_ops_fields -L language -I input -O output -P java_package

For information on the parse_custom_ops_fields parameters and their valid values, see
"parse_custom_ops_fields".

3. For applications written with PCM C (including all MTA applications), in the pin.conf file for
each application, create an entry using this format:

- - ops_fields_extension_file ops_flds_ext

Where ops_flds_ext is the file name and location of the memory-mapped extension file that
the parse_custom_ops_fields script created.

4. For applications written using Java PCM, add the location of the compiled Java classes
that the script generated to the CLASSPATH.

Chapter 13
Creating a New FM

13-2

5. Make sure you include your header file both in the application that is calling the opcode
and in the custom FM.

Defining Input and Output Flist Specifications
Flists are passed uninterpreted between the client application and the new FM by the
PCM_OP opcode.

Follow these rules when you define flist specifications for your custom opcode:

• Your flists must conform to the BRM flist specifications.

• Both the input and output flist specifications must contain the PIN_FLD_POID field to
identify the object being manipulated.

For an example, see the input or output flist specifications for any of the opcode
descriptions.

• The client, the custom FM, and the custom Data Manager must agree on the flist format
and content, especially if you are defining new fields.

Defining New Storable Class and Field Definitions
You may have to create custom fields and storable classes for your FM. As with new opcodes
and flists, the custom FM and the client application must agree on the semantics of the new
fields.

If you define new storable classes, you must create a new opcode to manipulate the data
stored in the new objects. Pass the new opcode to your custom FM with an flist containing the
POID of the object. The FM then sends a series of basic opcodes to the DM, depending on the
operation.

See "Creating, Editing, and Deleting Fields and Storable Classes" for information on defining
new storable classes and fields.

You also can implement custom functionality by using /data objects, which contain generic
fields and can be used for BLOB (Binary Large Object) processing.

Writing a Function to Implement a New Opcode
To implement a new opcode, you write a new function that calls the base system opcodes to
access the DM. The new function then becomes part of a new FM shared library.

The new function you write must conform to the PCM_OP calling convention.

Use the PCM_OP_* reference pages as checklists and templates to determine what your
custom function must implement. Pay particular attention to the input and output flists.

Note:

If you are adding a new function in the fm_utils module that can be called outside
the module add a prototype of that function in the fm_utils.h.

Chapter 13
Creating a New FM

13-3

Using the fm_post_init Function to Call Nonbase Opcodes at CM
Initialization

Using the fm_post_init function, custom FMs can call nonbase opcodes at CM initialization.
To implement this, ensure that the fm_post_init function is a part of the FM shared library.

For example:

void
fm_post_init(int *err)
{
* errp = 0;
.
.
.
.
}

The CM initialization takes place in two phases:

• In the first phase, the fm_post_init functions are called for all the FM modules specified in
the CMs pin.conf file. At this time, it is not possible to call nonbase opcodes from the
fm_post_init functions.

• In the second phase, all the fm_post_init methods implemented by all the FM modules
are called. At this time, it is possible to call nonbase opcodes from the fm_post_init
functions.

Creating an Opcode-to-Function Mapping File
You create a configuration program, fm_*_config.c, to map an opcode to the function that
implements it. This configuration file is read when a dynamic library is created, and the
mapping information is stored in it. When a parent CM is initialized, it configures the opcode-
function pairs into itself, and each child CM inherits the same configuration as its parent.

The configuration program contains an array of struct cm_fm_config for each opcode and its
corresponding function and the config function at the end.

For a definition of this struct, see the cm_fm.h file in the BRM_SDK_home/Include directory.

The following example shows an opcode-to-function configuration file.

Note:

Include your .h file with your new custom opcodes.

 /** fm_cust_config.c 1.8 99/02/11
 *

 #ifndef lint
 static char Sccs_id[] = "@(#)fm_cust_config.c 1.8 11 Feb 1999 ";
 #endif

 #include /* for FILE * in pcm.h */
 #include "pcm.h"

Chapter 13
Creating a New FM

13-4

 #include "ops/cust.h"
 #include "pcp.h"
 #include "cm_fm.h"

/***
 PIN_EXPORT void * fm_cust_config_func();

struct cm_fm_config fm_cust_config[] = {
 /* opcode as a int32, function name (as a string) */
 { PCM_OP_CUST_BILLINFO, "op_cust_billinfo" },
 { PCM_OP_CUST_CREATE_SERVICE, "op_cust_create_service" },
 { PCM_OP_CUST_DELETE_ACCT, "op_cust_delete_acct" },
 { PCM_OP_CUST_INIT_SERVICE, "op_cust_init_service" },
 { PCM_OP_CUST_NAMEINFO, "op_cust_nameinfo" },
 { PCM_OP_CUST_STATUS, "op_cust_status" },
 { PCM_OP_CUST_VERIFY, "op_cust_verify" },
 { PCM_OP_CUST_FINDSERV_VERIFY, "op_cust_findserv" },
 { 0, (char *)0 }
void *
fm_cust_config_func()
{
return ((void *) (fm_cust_config));
}

For example, when the CM gets a PCM_OP_CUST_BILLINFO() opcode through the
PCM_OP() call from a client application, the CM looks up this table and calls the
op_cust_billinfo() function.

Note:

The CM gets the name of this configuration file from its own configuration file.

Creating a Shared Library for a New FM
Each custom FM must be created as a shared library. BRM code is multi-thread (MT) safe. If
you require your custom FM to be MT safe, you must make your custom FM code MT safe.

Linux: See the Linux documentation for more information on shared libraries (LD(1)) and
making your code MT safe (threads(3T)).

About Configuring a New FM into a CM
New FMs are implemented as shared libraries and are dynamically linked to CMs at runtime.
You add new FMs to the CM configuration file. When a new CM is started or restarted, it reads
its configuration file and loads the listed FMs dynamically.

Child CM processes inherit the configuration information read by their parent CM process.
Child CM processes do not read the configuration file when they are forced. You can limit the
number of CMs that implement the new opcode by leaving the new opcode out of the parent
CM configuration file.

You must also make sure that you use the same database number in the configuration files for
your client applications, custom FM, and the DMs.

Chapter 13
About Configuring a New FM into a CM

13-5

Adding a New FM Module to the CM Configuration File
The configuration file contains the names of the shared libraries that implement the base and
custom opcodes. It also contains the names of the corresponding configuration files that
contain the opcode-to-function mappings.

The custom shared library (.so on Linux) contains the functions that implement the new
opcodes and the opcode-to-function mapping table struct. No opcode-to-function mapping files
must be present when the CMs with the custom FMs are started because this information is
already stored in the shared library. However, the name of the shared library and the mapping
struct still have to be in the configuration file so that the CM can find and configure them.

For the format and description of the entries for an FM, see "Syntax for Facilities Module
Entries" in BRM System Administrator's Guide.

Use the entries for the system FMs in the default CM configuration file in
BRM_SDK_home/sys/cm as an example to add your custom FM entries.

Initializing Objects for Multiple Processes
In the CM configuration file, you can specify an initialization function that is called when the CM
loads an FM or Policy FM. This function initializes objects that are called in multiple processes
or threads.

1. Create a new file named *_init.c (for example, fm_term_pol_init.c) in the appropriate FM
or Policy FM directory (for example, fm_term_pol directory).

2. Add the new file to the Makefile.user file.

3. Implement an initialization function in the *_init.c file.

Example pseudo code:

pin_flist_t *global_flistp = NULL;
extern void
fm_term_pol_init(int32 *errp)
{
 global_flistp = read from custom objects;
 *errp = PIN_ERR_NONE;
}

Note:

In the example above, global_flistp is allocated in the CM master process or
thread. When a child process is created, global_flistp is duplicated and still
available on the child process.

4. Add the initialization function to the CM configuration file, using the following example:

- cm fm_term_pol ../../lib/fm_term_pol.lib fm_term_pol_config_func
fm_term_pol_init pin

Handling Transactions in Custom FMs
All policy operations conform to the rules for application-level transactions.

Chapter 13
Handling Transactions in Custom FMs

13-6

See the Transaction Handling section of the individual opcodes for details.

If a read-write or read-only transaction is open when a policy operation is performed, all data
read as part of the operation will be consistent with the state of the database when the
transaction is opened. This guarantees that the data used by this operation is consistent with
related data used by other operations in the transaction.

If this operation is called when a transaction is not already open, the operation is performed
without transactional control.

Caution:

Policy operations must not modify object data.

Custom FM code is responsible for starting, stopping, and committing transactions as required
depending on the semantics of the opcode. Each base opcode must be surrounded by
transactions, unless a transaction is already open when the opcode is called.

All other system opcodes, except for PCM_OP_PYMT_CHARGE and the password opcodes,
start transactions if none are open when they are called.

Custom FM transactions must conform to the transaction specifications of the PCM context
management functions. See "Context Management Opcodes" for the rules to follow.

For information on system transaction handling, see the Transaction Handling sections of each
opcode description.

In your custom FM, you can check for open transactions. See the fm_generic_opcode.c file in
BRM_SDK_home/templates/fm_template for sample code to use.

A custom FM can call other FMs by using the Portal Communications Module (PCM) API. Also,
custom FMs use the same PCM API used to call other FMs and Data Managers.

Note:

Calls to the Data Manager are made with base opcodes.

Managing Memory in Custom FMs
To manage memory in your custom FMs, follow these rules:

• Always use pin_malloc(), pin_free(), pin_realloc(), and pin_strdup() for the get(), set(),
take(), and put() operations on flists.

• Use the standard routines-malloc(3C), free(3C), realloc(3C), and strdup(3C)-for other
memory operations.

Opening a New Context in an FM
To open a new context in an FM, use (pin_flist_t)NULL for in_flistp in the
PCM_CONTEXT_OPEN call.

See the sample_app.c and sample_search.c code examples for more information.

Chapter 13
Managing Memory in Custom FMs

13-7

Compiling and Linking a Custom FM
After you define or modify the policy opcodes, create a shared library for the new Policy FM by
using the Makefile included in each Policy FM source directory.

Enter make to create the .so or .a file.

Use the libraries in BRM_SDK_home/lib for linking.

See the sample Makefile for BRM_SDK_home/source/templates/fm_temp/
fm_generic_opcode.c. The main routine for a custom opcode should look similar to the
op_generic function in the fm_generic_opcode.c file. The calling parameters and their types
are required.

The following example shows the list of include files required. Make sure you include your own
header file containing your new opcodes (custom_opcodes.h in the following example). This
example also shows skeleton code for the new opcode, the cm_fm_config struct, and the new
function:

#define PCM_OP_FM_SAMPLE_LOOPBACK 999999

struct cm_fm_config fm_bill_config[] = {
 { PCM_OP_FM_SAMPLE_LOOPBACK, "op_fm_sample_loopback" },
 { 0, (char *)0 }
};

#include "pcm.h"
#include "cm_fm.h"
#include "pin_errs.h"
#include "pinlog.h"
#include "custom_opcodes.h"

op_fm_sample_loopback(connp, opcode, flags, i_flistp, r_flistpp, ebufp)
 cm_nap_connection_t *connp;
 int32 opcode;
 int32 flags;
 pin_flist_t *i_flistp;
 pin_flist_t **r_flistpp;
 pin_errbuf_t *ebufp;
{
 PIN_ERR_CLEAR_ERR(ebufp);

 /***
 * Check for errors.
 ***/
 if (opcode != PCM_OP_FM_SAMPLE_LOOPBACK) {
 pin_set_err(ebufp, PIN_ERRLOC_FM,
 PIN_ERRCLASS_SYSTEM_DETERMINATE,
 PIN_ERR_BAD_OPCODE, 0, 0, opcode);
 PIN_ERR_LOG_EBUF (PIN_ERR_LEVEL_ERROR,
 "op_fm_sample_loopback", ebufp);
 return;
 }

 /***
 * Return a copy of our input flist.
 ***/
 *out_flistpp = PIN_FLIST_COPY(in_flistp, ebufp);

Chapter 13
Compiling and Linking a Custom FM

13-8

 return;
}

Configuring Your New Policy FM
The shared library (.so on Linux) for the Policy FM must be included in each CM where its
functionality is needed. Whenever a new CM is started or restarted, the CM reads its
configuration file and loads the listed System FMs and Policy FMs dynamically. For more
information, see "Writing a Custom Facilities Module".

Configure the new FM as part of the applicable CMs by adding the new Policy FMs to the CM
configuration file.

For information on the format of the configuration file entries, see the CM configuration file.

Debugging FMs
You can debug custom and policy FMs using BRM SDK and standard programming tools.

To debug FMs and policy opcodes, you need BRM SDK, access to a functioning BRM server,
and the programming tools supported by BRM SDK on your platform. See "About BRM SDK"
for installation instructions and other information about BRM SDK.

For an overview of the connections required to test an FM, see "Testing New or Customized
Policy FMs".

The primary way of debugging an FM is attaching to a running CM.

Various debugging tools are available on the supported operating systems:

• On Linux, you can use the gdb debugger.

Chapter 13
Configuring Your New Policy FM

13-9

14
Writing a Custom Data Manager

Learn how to access data in a custom data storage or legacy storage system by creating a
new Oracle Communications Billing and Revenue Management (BRM) Data Manager (DM).

You must create your custom objects before creating a new Data Manager.

Topics in this document:

• About Adding a Custom Data Manager

• Understanding the Data Manager Interface

• Creating a Custom Data Manager

For more information, see "Creating Custom Fields and Storable Classes".

About Adding a Custom Data Manager
DMs provide an object model on top of different underlying storage models. There is a
standard interface, Storage Manager (SM), between the generic DM code and the various
underlying storage access codes. This section describes the SM interface, which you
customize to create a custom Data Manager (DM).

You can add a new DM to the BRM system for the following reasons:

• To map object operations to a different storage paradigm. See "About Mapping Objects to
Alternate Storage Mechanisms".

• To interface to legacy systems. Object operations can be mapped to online protocols or
other methods of interfacing to the legacy systems. See "About Adding Interfaces to
Legacy Systems".

• To automatically manage queues and avoid starvation for operations. This works well with
legacy systems where high latency may occur.

About Mapping Objects to Alternate Storage Mechanisms
BRM is shipped with a standard SM, which provides an interface for mapping object operations
to any storage paradigm that you require. BRM views the data at the object operation level, so
there is no effect on the rest of the system when a data set is managed by a custom SM. This
flexibility lets you use highly specialized storage paradigms, such as an indexed file system.

About Adding Interfaces to Legacy Systems
BRM allows transparent integration with legacy systems. Operations that are routed to a
legacy system for execution appear as object manipulations within the BRM system. The
interface to the legacy system is written with the same client APIs you use to create custom
applications. Only the custom SM, which is the legacy translation module, is aware that the
object operations are being translated. The fact that the operations are not performed within
the BRM system is transparent to all other modules in the system.

14-1

You can integrate any type of legacy storage system with BRM. Any type of object operation
can be defined and sent to the custom SM for translation to the legacy system.

Understanding the Data Manager Interface
To build a new DM, you must understand the following:

• Calling Conventions

• Data Manager Memory Model

• Function Entry Points

Calling Conventions
Your custom DMs can be called only from the base opcodes. The FM opcodes call other
underlying opcodes, which in turn call base opcodes which are run by the DMs. The ops/
base.h header file must be included in your application unless the application uses an FM
opcode. FM opcodes already include the base opcode header file.

When you create a custom DM, you must implement the base opcodes or a subset of the base
opcodes that your DM requires to provide the functionality you want. Each of the DMs included
with BRM uses a different Implementation of a base opcode depending on the DM and the
storage system it interacts with. For example, the base opcode PCM_OP_SEARCH is
implemented differently for dm_oracle and dm_ldap.

For details, see the descriptions of the PCM_OP_SEARCH opcodes in "Base Opcodes" in
BRM Opcode Guide.

Data Manager Memory Model
The DM uses shared memory to pass data back and forth between the BRM front-end and
back-end (Storage Manager) processes. The DM uses a queuing-based memory management
model. For more information about queuing based memory management, see "About Queuing-
Based Processes" in BRM System Administrator's Guide.

The DM and QM are separate processes, so external libraries do not have to be multi-thread
safe.

For an example of queuing-based processes, see "Example of Queuing in a Client-to-CM
Connection" in BRM System Administrator's Guide.

Function Entry Points
The routines described in this section provide the entry points for your custom DM. You must
name and define the entry points exactly as shown in the following list. Different underlying
storage modules are dynamically linked when you use the dm_sm_obj keyword in the DM
configuration file. If this dynamic linking does not work, link the DMs directly using a DM-
specific makefile.

dm_if_init_process()

This routine sets up the initial process. It is called when a child DM is started, for example, to
connect to a database. It reads in the configuration information from the DM configuration file.
This routine uses the following syntax:

void
dm_if_init_process(struct dm_sm_config *confp, int32 *errp)

Chapter 14
Understanding the Data Manager Interface

14-2

dm_if_process_op()

This routine processes an operation that comes from the CM. This is implemented in the
backend. This routine uses the following syntax:

void
dm_if_process_op(
 struct dm_sm_info *dsip,
 int32pcm_op,
 int32pcm_flags,
 pin_flist_t*in_flistp,
 pin_flist_t**out_flistpp,
 pin_errbuf_t*ebufp)

dm_if _terminate_connect()

When the CM or the DM is disconnected, this routine is called to clean up the CM connection,
for example to rollback a transaction in progress. It is called only when a SIGQUIT signal is
sent to the DM main process.

This routine uses the following syntax:

void
dm_if_terminate_connect(
 struct dm_sm_info *dsip,
 int32 *errp)

dm_if_terminate_process()

If a custom DM is stopped with a SIGQUIT signal resulting from a kill -QUIT pid' command in
the stop script, this routine is called when the DM process is terminated. This routine uses the
following syntax:

void
dm_if_terminate_process(int32 *errp)

Argument Descriptions
Table 14-1 describes the arguments used in the DM entry-point routines:

Table 14-1 Arguments Used in DM Entry-Point Routines

Argument Description

confp Pointer to the structure that contains the information about the DM to SM
configuration. It is passed in to dm_if_init_process().

The structure contains the following elements:

• be_id: ID number of the SM starting from 0.
• sm_shm_size: Size of the shared memory allocated to this SM. A value of 0

means there is no shared memory allocated to the SM.
• sm_shm_base: Base shared memory allocated if the sm_shm_size is not 0.
See dm_sm.h for more information.

Chapter 14
Understanding the Data Manager Interface

14-3

Table 14-1 (Cont.) Arguments Used in DM Entry-Point Routines

Argument Description

dsip Pointer to the structure that contains the information about the DM to SM
connection such as the connection state. The structure contains two sets of
information, public and private, relevant to the underlying code.

Public information:

• poidp: Pointer to the POID of the input flist.
• who: Pointer to the ID of the sender.
• trans_flag: contains the transaction flags
Private information:

• pvti: An int for private use.
• pvtp: Pointer to the SM private area.
See dm_sm.h for more information.

pcm_op A base PCM opcode. Only the opcodes PCM_OP_CREATE_OBJ through
PCM_OP_TRANS_COMMIT defined in the BRM_home\include\ops\base.h are
supported in the DM. BRM_home is the directory in which the BRM server
software is installed.

pcm_flags Bit-mask flags that you can set for operations. For information on different flags,
see BRM_home\include\pcm.h.

in_flistp Input flist pointer. It can be used as it is in pin_flist_xxx functions.

out_flistpp Output flist pointer. It can be used as it is in pin_flist_xxx functions.

ebufp Pointer to an error buffer structure. For a definition of the structure, see pcm.h.

ebufp pointing to a pin_err will be PIN_ERR_NONE on entry. Use a different
value to indicate an error. Also, if there is an error, specify the rest of the values or
clear them.

Creating a Custom Data Manager
Use the BRM_SDK_home/source/templates/dm_temp/dm_generic.c program as a template
for your new DM. The dm_generic.c program just echoes any flist sent into it, but it contains
all the elements needed for a new DM.

Follow these programming guidelines when writing a new DM.

• Creating a New Data Manager

• Managing Memory

• Handling Errors

• Configuring Your CM to Use the Custom DM

• Editing Your Custom Opcodes to Access the Custom DM

Creating a New Data Manager
To create a new DM, perform the following tasks:

1. Writing, Compiling, and Linking a Custom DM

2. Configuring Your Custom DM

3. Starting and Stopping Your Custom DM

Chapter 14
Creating a Custom Data Manager

14-4

Writing, Compiling, and Linking a Custom DM
1. Write the new DM code, using BRM_SDK_home/source/templates/dm_template/

dm_generic.c as a template.

2. Run the make file that accompanies dm_generic.c to compile the custom DM. Edit the
make file to refer to the new source file.

Configuring Your Custom DM
1. Create a directory for your custom DM and copy the compiled .so file to that directory.

2. Copy the configuration file (pin.conf) from BRM_SDK_home/sys/dm to the new directory.

3. Edit the pin.conf file to refer to the new custom DM.

The file includes information about changing its entries.

Starting and Stopping Your Custom DM
This section provides the steps for creating Start and Stop scripts. In this example, the custom
DM is called dm_new.

1. Go to the BRM_home/bin directory:

cd BRM_home/bin
2. Copy the DM start and stop scripts to the BRM_home/bin/ directory. For example, if BRM

is using the Oracle DM:

cp start_dm_oracle start_dm_new
cp stop_dm_oracle stop_dm_new

3. Create a symbolic link from dm to the dm_new to distinguish custom DM processes from
other DM processes:

ln -s dm dm_new
4. Edit the following entries in the start script to reference your custom DM and save it:

start dm_new

DM=BRM_home/bin/dm_new

DMDIR=BRM_home/sys/dm_new

LOGDIR=BRM_home/var/dm_new

DMLOG=${LOGDIR}/dm_new.log

DMPID=${LOGDIR}/dm_new.pid
5. Edit the stop script.

a. Change the following entries to reference your custom DM:

stop dm_new

DM=dm_new

LOGDIR=BRM_home/var/dm_new

DMPID=${LOGDIR}/dm_new.pid

Chapter 14
Creating a Custom Data Manager

14-5

b. Change the kill entry to include the QUIT signal:

kill -QUIT `cat ${DMPID}`
c. Save the stop script.

6. Start your custom DM and verify that the scripts are working:

start_dm_new

ps -ef | grep new

...
cd BRM_home/var/dm_new

more dm_new.pinlog
D Thu Mar 12 15:43:51 1999 trainsun10 dm:8241 dm_main.c(1.82):1508

DM dm_name set to "-"

Managing Memory
To allocate storage from the shared memory segment instead of the stack, use pin_malloc(),
pin_strdup(), pin_free(), and pin_realloc() routines in each custom DM. This allows the front-
end and back-end processes to pass data between them, since the only common portion of
their address spaces is the shared memory segment.

Use these routines to manage flists and to do GET/SET or PUT/TAKE flist operations.

For managing memory that is not related to flists, use the standard Linux versions of the
memory-management routines: malloc(3C), strdup(3C), free(3C), and realloc(3C).

To allocate memory in the shared memory area:

1. Use the Linux pin_malloc(), pin_strdup(), or pin_realloc() routine.

2. Use the pin_free() routine.

Handling Errors
You can use one or a combination of the following ways to return failure status to the
application.

• You can set an error condition in the ebuf, which is passed back as the ebuf to the
application that calls pcm_op().

• You can use PIN_ERR_NONE in the ebuf and use a field on the return flist to identify the
reason for failure.

When writing a custom DM, follow the BRM conventions for error handling:

• Set errors in ebuf.

• Set errors in fields on the return flist so that applications or code that calls it can read the
error.

Configuring Your CM to Use the Custom DM
In your CM configuration file, add the following entries:

• dm_pointer, which specifies where to find your DM. Each pointer has three values:

– Database number, such as 0.0.0.4

Chapter 14
Creating a Custom Data Manager

14-6

– IP address or host name of the computer running your custom DM

– Port number of the DM service

- cm dm_pointer 0.0.0.1 test_machine 11950
• The database number for the custom FM to access. The entry has the name of the FM

accessing the custom DM, the name of the configuration entry, and the following values for
the database number, which must have the same format as the POID:

– The database number, such as 0.0.0.2 in the example below. This value is required
and must be the same as that of the dm_db_no in the configuration file of the custom
DM.

– The service type such as /cc_db for the credit card processing service. This can be
any meaningful text string to identify the custom database and is a placeholder for the
POID format.

– The ID of 0, which is an arbitrary value needed as a placeholder for the POID format.

An example of these entries in the configuration file is as follows:

- fm_bill cc_db 0.0.0.2 /_cc_db 0

Editing Your Custom Opcodes to Access the Custom DM
If you have written custom opcodes, you must edit them to access your custom DMs.

For information on editing your custom opcodes, see "About System and Policy Opcodes".

Chapter 14
Creating a Custom Data Manager

14-7

15
Creating Custom Fields and Storable Classes

Learn how to create custom fields and storable classes using the Oracle Communications
Billing and Revenue Management (BRM) Software Development Kit (SDK) opcodes, Storable
Class Editor (part of Developer Center), and utilities.

Topics in this document:

• Creating, Editing, and Deleting Fields and Storable Classes

• About BRM SDK Opcodes

• Converting Storable Class Files from Previous Versions

• Deploying Custom Fields and Storable Class Definitions

• Adding Fields to /config Objects

For a description of the storable class structure and a list of predefined storable classes, see
"Understanding Flists".

Creating, Editing, and Deleting Fields and Storable Classes
To create, edit, and delete fields and custom storable classes, first determine the data that you
want them to contain. You then enter the information into Storable Class Editor, using BRM
conventions for naming and formatting.

To manage field and storable class specifications in Storable Class Editor:

1. Enable changes to the data dictionary. See "Modifying the pin.conf File to Enable
Changes".

2. Create your custom fields. See "Creating Custom Fields".

3. Create your custom storable classes. See "Creating Custom Storable Classes".

4. Make your custom fields and storable classes available to BRM by generating source and
header files. See "Making Custom Fields Available to Your Applications".

For more information, see "About Defining Storable Classes" and "Storable Class Naming and
Formatting Conventions".

Modifying the pin.conf File to Enable Changes
Before you can add or change fields and storable classes, you must make the data dictionary
writable by editing the Data Manager (DM) configuration (pin.conf) file.

To make the data dictionary writable, perform the following for each database in your system:

1. Open the Oracle DM configuration file (BRM_home/sys/dm_oracle/pin.conf) in a text
editor. (BRM_home is the directory in which the BRM server software is installed.)

2. To enable field creation in the data dictionary, set the following entry to 1:

- dm dd_write_enable_fields 1

15-1

3. To enable the creation, editing, or deletion of custom storable classes in the data
dictionary, set the following entry to 1:

- dm dd_write_enable_objects 1

Increasing the Size of the CM Cache for the Data Dictionary
If your data dictionary contains a lot of data, you might need to increase the space allocated to
it in the CM cache.

To increase the size of the CM cache for the data dictionary:

1. Open the Connection Manager (CM) configuration file (BRM_home/sys/cm/pin.conf).

2. Increase the cache_size in the following entries:

- cm_cache cm_data_dictionary_cache number_of_entries, cache_size, hash_size

- cm_cache fm_utils_data_dictionary_cache number_of_entries, cache_size, hash_size
3. Save the file.

4. Stop and restart the CM.

Using DDL when Updating the Data Dictionary Tables
You can configure the DM to run Data Definition Language (DDL) when updating object types
in the data dictionary tables. This ensures that database objects are mapped to the correct
tables.

To specify whether DDL is used when updating the data dictionary tables:

1. Open the Oracle DM configuration file (BRM_home/sys/dm_oracle/pin.conf) in a text
editor.

2. Set the sm_oracle_ddl entry to one of the following:

• 0 to not run DDLs when updating object types in the data dictionary.

• 1 to run DDLs when updating object types in the data dictionary.

- dm sm_oracle_ddl 1
3. Save and close the file.

Creating Custom Fields
When you create a new field in Storable Class Editor, it is committed to the data dictionary
when you click OK in the New Field dialog box. You can't delete a field after it has been
committed.

1. In Storable Class Editor, choose File - New - Field.

2. In the Field Name box, enter a unique name for the new field.

3. In the Type list, choose a field type in the list.

4. (Optional) In the Description box, enter text to define the purpose of the field.

5. (Optional) In the Field ID field, change the automatically assigned ID number.

Table 15-1 lists the field ID ranges for Oracle-only use and customer use.

Chapter 15
Creating, Editing, and Deleting Fields and Storable Classes

15-2

Table 15-1 BRM Field ID Restrictions

Field ID Range Reserved For

0 through 9999 Oracle use only

10,000 through 999,999 Customer use

1,000,000 through 9,999,999 Oracle use only

Over 10,000,000 Customer use

6. Click OK to add the field to the data dictionary.

Creating Custom Storable Classes
You can create custom base classes and subclasses. Classes are not saved to the data
dictionary until you commit them.

Caution:

When you create a subclass, the total number of tables for the parent class and its
subclasses cannot be greater than 64. For example, if you create tables for storable
class /a and its subclasses /a/b and /a/b/c, the total number of tables for all three
storable classes must be less than or equal to 64:

/a tables + /a/b tables + /a/b/c tables <= 64 tables

1. In Storable Class Editor, choose File - New - Class.

2. In the Class Name field, enter the class name in the format /classname for base classes
and /classname/subclass for subclasses.

3. (Optional) In the Label field, enter a name for the storable class.

4. (Optional) In the Description field, enter text to define the purpose of the storable class.

5. (Optional; base classes only) In the Sequence Start field, enter a number to designate
how objects in this class should be numbered.

6. (Optional; base classes only) In the Table Name field, optionally change the default SQL
table name suggested by Storable Class Editor. You should accept the default table name
unless your business logic requires you to change it.

7. (Optional; base classes only) In the Storage Specifications field, enter storage
specifications for the database you are using.

For Oracle databases, parameters include tablespace, and initial extent size. See
"Database Configuration and Tuning" in BRM Installation Guide.

8. Click OK.

The storable class opens in a Class Definition window. The class name appears in the title
bar.

9. Select the root icon of the new class.

10. In the Properties window, choose values for the Read Access and Write Access
properties.

11. Add fields to the class by dragging field icons from the Class Browser or Field Browser.

Chapter 15
Creating, Editing, and Deleting Fields and Storable Classes

15-3

Note:

• Each class must have the PIN_FLD_ACCOUNT_OBJ field. If you do not
include this field, it is automatically inserted when the class is created.

• The maximum allowed number of fields/columns for a BRM class is 128. If a
class exceeds this limit, PCM_OP_CREATE_OBJ will fail and throw an error.

12. Choose File - Commit New Class to commit the class to the data dictionary.

13. If you created a new subclass and if the base class is partitioned, you must run the
partition_utils script with the -n parameter to ensure that the new subclass uses the same
partitioning layout as its base class.

See "Partitioning Database Tables" in BRM System Administrator's Guide.

Making Custom Fields Available to Your Applications
After you create custom fields and classes, you must make them available to applications. The
first step is to use Storable Class Editor to create Java source files and a C header file. The
steps that follow depend on whether your applications are written in C or Java. For more
information about using custom fields in Java applications, see "Using Custom Fields in Java
Applications".

Note:

Developer Center is a Java application. To ensure that custom fields are displayed
properly in flists in Object Browser and Opcode Workbench, you must follow the
procedures for making fields available to Java applications.

1. In Storable Class Editor, choose File - Generate Custom Fields Source to create source
files for your custom fields.

Storable Class Editor creates a C header file called cust_flds.h, a Java properties file
called InfranetPropertiesAdditions.properties, and a Java source file for each custom
field.

2. For applications written in PCM C or PCM C++, perform these steps:

a. Run the parse_custom_ops_fields.pl Perl script on the cust_flds.h file created by
Storable Class Editor. Use this syntax:

parse_custom_ops_fields -L language -I input -O output

For information on the parameters of parse_custom_ops_fields and their valid
values, see "parse_custom_ops_fields".

b. In the pin.conf file for applications that must access these fields, including testnap
and other utilities, create an entry using the format shown below. Replace cust_flds
with the file name and location of the memory-mapped extension file that the
parse_custom_ops_fields script created.

- - ops_fields_extension_file cust_flds

Chapter 15
Creating, Editing, and Deleting Fields and Storable Classes

15-4

Note:

Do not add more than one ops_fields_extension_file entry. The custom
fields source file and the extension file that results from it contain information
about all the custom fields in the data dictionary, so a single reference to that
file is sufficient.

c. Include the cust_flds.h header file in the applications and in the FMs that use the
fields.

Note:

Default BRM fields are defined with their numbers in the pin_flds.h file in the
BRM_home/include directory. While it is possible to add custom fields
directly to pin_flds.h, you should not do so. Placing custom field definitions
in the separate cust_flds.h file allows you to upgrade to new releases
without having to edit pin_flds.h.

3. For applications written using Java PCM, including Developer Center, perform these steps:

a. Copy the contents of the InfranetPropertiesAdditions.properties file and paste it into
the Infranet.properties file for your application.

b. Compile the source files you created in step 1.

c. (Optional) Jar the compiled classes.

d. In the CLASSPATH, add the location of the JAR files or compiled Java classes.

About BRM SDK Opcodes
The BRM SDK opcodes allows you to create, modify, delete, or retrieve storable class and field
specifications without the use of BRM Storable Class Editor.

For information about BRM SDK, see "About BRM SDK".

To manage field and storable class specifications with BRM SDK opcodes:

1. Enable changes to the data dictionary. See "Modifying the pin.conf File to Enable
Changes".

2. Create, edit, or delete your custom fields. See "Using BRM SDK Opcodes to Manage
Storable Classes".

3. Create, edit, or delete your custom storable classes. See "Using BRM SDK Opcodes to
Manage Field Specifications".

4. Make your custom fields and storable classes available to BRM by generating source and
header files. See "Making Custom Fields Available to Your Applications".

Using BRM SDK Opcodes to Manage Storable Classes
Use the following BRM SDK opcodes to manage storable class specifications:

• To create or modify a storable class specification, use PCM_OP_SDK_SET_OBJ_SPECS.
See "Creating and Modifying Storable Classes".

Chapter 15
About BRM SDK Opcodes

15-5

• To retrieve a storable class specification, use PCM_OP_SDK_GET_OBJ_SPECS. See
"Retrieving Storable Class Specifications".

• To delete a storable class specification, use PCM_OP_SDK_DEL_OBJ_SPECS. See
"Deleting Storable Class Specifications".

Creating and Modifying Storable Classes
Use the PCM_OP_SDK_SET_OBJ_SPECS opcode to create or modify a storable class. This
opcode creates or modifies storable classes in the data dictionary of all databases in your BRM
system.

Caution:

If you change a storable class after it has been instanced and populated with data,
you will corrupt your database.

Note:

Instead of using this opcode, it's safer and more reliable to create or modify storable
class specifications by using the Storable Class Editor in Developer Center.

PCM_OP_SDK_SET_OBJ_SPECS takes the following as input:

• POID

• Storable class name

• Storable class type

Note:

The Portal object ID (POID) is the only mandatory field on the input flist.
However, to create a storable class specification, you must at least specify the
storable class name and type. To specify fields for the storable class, add a
PIN_FLD_OBJ_ELEM array for each field.

If the transaction is successful, PCM_OP_SDK_SET_OBJ_SPECS returns these values:

• The POID of the newly created or modified storable class.

• A results array containing an SQL description of any table changes, with one array for
each change.

Retrieving Storable Class Specifications
Use the PCM_OP_SDK_GET_OBJ_SPECS opcode to retrieve one or more storable class
specifications. This opcode retrieves all storable class specifications specified on the input flist.
When no storable classes are specified, this opcode returns all storable class specifications in
the BRM database.

Chapter 15
About BRM SDK Opcodes

15-6

Note:

You can retrieve specific levels or types of objects by using the * wildcard character.

PCM_OP_SDK_GET_OBJ_SPECS returns the following, depending on the success of the
transaction:

• When successful, this opcode returns specifications for the specified storable classes, or
all storable class specifications if the input flist does not specify a storable class.

• When the opcode doesn't exist in the database, the opcode returns PIN_ERR_BAD_ARG.

Deleting Storable Class Specifications
Use the PCM_OP_SDK_DEL_OBJ_SPECS opcode to delete storable class specifications
from the data dictionary of all databases in your BRM system.

Note:

The opcode deletes data from the data dictionary only. To drop the actual table that
was created by PCM_OP_SDK_SET_OBJ_SPECS, you must drop it manually.

Caution:

If you delete a storable class that has already been instantiated, you will corrupt your
database. For example, never delete the /account object. Because of this danger,
we recommend that you do not use this opcode on a production system.

PCM_OP_SDK_DEL_OBJ_SPECS returns the following, depending on the success of the
transaction:

• When the storable class does not exist, the opcode returns PIN_ERR_BAD_ARG_EBUF.

• When successful, the opcode returns these values:

– The POID of the deleted object.

– A results array containing an SQL description of any table changes; one array for each
change.

Using BRM SDK Opcodes to Manage Field Specifications
Use the following BRM SDK opcodes to manage field specifications:

• To create or modify a field specification, use PCM_OP_SDK_SET_FLD_SPECS. See
"Creating and Modifying Field Specifications".

• To retrieve a field specification, use PCM_OP_SDK_GET_FLD_SPECS. See "Retrieving
Field Specifications".

• To delete a field specification, use PCM_OP_SDK_DEL_FLD_SPECS. See "Deleting Field
Specifications".

Chapter 15
About BRM SDK Opcodes

15-7

Creating and Modifying Field Specifications
Use the PCM_OP_SDK_SET_FLD_SPECS opcode to create or modify field specifications.
This opcode creates or modifies the specified field specifications in the data dictionary of all
databases in your BRM system.

Caution:

If you change specifications for fields that have already been instantiated, you will
corrupt your database.

PCM_OP_SDK_SET_FLD_SPECS takes the following as input:

• Partial POID (database number plus /dd/fields)

• Field name

• Field type

Note:

The POID is the only mandatory field on the input flist. However, to implement
the field, you must at least specify the field name and type.

PCM_OP_SDK_SET_FLD_SPECS returns the following, depending on the success of the
transaction:

• If successful, the opcode returns the POID of the created or modified data dictionary field.

• If the opcode cannot create or modify the field, the opcode returns the field's POID, along
with the PIN_FLD_ACTION field set to NOOP.

Retrieving Field Specifications
Use the PCM_OP_SDK_GET_FLD_SPECS opcode to retrieve one or more field
specifications. This opcode retrieves all field specifications specified on the input flist. When no
fields are specified, this opcode returns all field specifications in the BRM database.

Note:

Returning all field specifications can take a long time.

Deleting Field Specifications
Use the PCM_OP_SDK_DEL_FLD_SPECS opcode to delete field specifications. This opcode
deletes the specified field specification from the data dictionary of all databases in your BRM
system.

Chapter 15
About BRM SDK Opcodes

15-8

Caution:

If you delete specifications for fields that have already been instantiated, you will
corrupt your database. For example, never delete PIN_FLD_POID from a base BRM
system. Because of this danger, we recommend that you do not use this opcode on a
production system.

PCM_OP_SDK_DEL_FLD_SPECS takes the following as input:

• Partial POID (database number plus /dd/fields)

• Name of the field to delete

If successful, this opcode returns the POID of the deleted field specification.

Converting Storable Class Files from Previous Versions
If you used Developer Workshop in the past to create storable classes, you may have saved
storable class definitions as files in .PSC format. To use these files in Storable Class Editor,
you must convert them to .SCE format before you can open them.

You use the PSC Converter application to convert files. This application is installed along with
the rest of Developer Center.

1. From the start options, choose PSC to SCE Converter, which is under Portal.

2. Click the Select File button and navigate to the .PSC file you want to convert.

The Save As field automatically fills in the with the same path. The filename is changed to
include the .SCE extension. (If a .SCE file of that name already exists, the Save As field is
left blank. Enter a different path and filename or click New File to choose an existing file to
overwrite.)

3. Click Convert.

A dialog box confirms the creation of the new .SCE file.

Deploying Custom Fields and Storable Class Definitions
You deploy your custom fields and storable classes by using the pin_deploy command-line
utility. The pin_deploy utility exports and imports field and storable class definitions from one
BRM database to another, such as from your development environment to your production
environment.

The pin_deploy utility is available on all BRM platforms, can be scripted, and can use stdin
and stdout. It has several modes of operation to ensure atomic operations and consistency.
pin_deploy provides the following advantages:

• Streamlines the process of putting all storable class and field definitions into source code
management

• Enables you to print out a storable class or field definition for review

• Reduces the possibility of damaging the BRM production database data dictionary

The pin_deploy utility uses PODL (Portal Object Definition Language) to export and import
field and storable class definitions. PODL is a text-based definition language that represents
fields and storable classes. Using this language, pin_deploy can:

Chapter 15
Converting Storable Class Files from Previous Versions

15-9

• Extract storable class and field definitions from any BRM database on any platform and
produce a human-readable PODL file.

• Read PODL files and use the files to load storable class and field definitions into any BRM
server on any platform.

You can use the following command-line options in pin_deploy:

• field extracts field definitions.

• class extracts storable class definitions.

• verify connects to BRM database, accepts PODL commands, determines what changes
would be made, and reports back any conflicts.

• create connects to a BRM database, attempts to create storable classes and fields
according to PODL, succeeds if there are no conflicts, or reports conflicts.

• replace connects to a BRM server; attempts to create storable classes and fields
according to PODL, and succeeds even if there are conflicts. It overwrites and replaces
any storable classes that are already present.

In all cases, the entire PODL file is imported. If the entire file cannot be loaded correctly,
nothing from the file is loaded. For example, if a storable class is loaded that includes custom
fields, those custom fields must exist in the data dictionary or in the PODL file for the storable
class to load.

Note:

Before you deploy your custom storable classes and fields, verify that you have
enough space in the BRM database for the new storable classes. If you run out of
space during deployment, the new storable classes might be in an inconsistent state.

See "pin_deploy" for more information and a complete list of options.

Extracting Field and Storable Class Definitions with pin_deploy
To extract field definitions, enter a command with the following syntax:

% pin_deploy field [-cp] [field_name1] [field_name2]

To extract storable class definitions, use the following syntax:

% pin_deploy class [-smncp] [class_name1] [class_name2]

Importing Storable Class Definitions with pin_deploy
To import storable class definitions into a BRM database, you must use PODL files that include
the interface and corresponding implementation definitions.

Note:

The pin_deploy utility cannot determine the space requirement in the BRM
database. If you run out of disk space before the deployment is complete, you must
manually drop the tables that were created, make more space, and try again.

Chapter 15
Deploying Custom Fields and Storable Class Definitions

15-10

1. Add up the implementation definitions (for example, initial clause) of the PODL files you
want to import to verify that you have enough disk space.

These lines start with this text:

SQL_STORAGE =
2. Run pin_deploy in the verify mode to determine the changes that will be caused by

importing new field and storable class definitions and to verify that there are no conflicts.

% pin_deploy verify [file_name1] [file_name2]
3. To commit new definitions to BRM, run pin_deploy in one of the following modes.

• create – preserves old storable class and field definitions that conflict with new ones

• replace – copies all storable class and field definitions, including those that conflict
with old definitions

% pin_deploy replace [file_name1][file_name2]

Adding Fields to /config Objects
Many BRM features use /config objects to store business configuration information in the
database.

In some cases, you may to need to add or replace fields in /config objects.

You can use either Developer Center or testnap to make changes to /config objects. The
general procedure is to display the current contents of the object, write an flist that contains the
fields to add, and then write the flist to the object.

The following two sections provide examples for both Developer Center and testnap.
Depending on the nature of the /config object, the exact procedure you use may be different
from the examples.

Using Developer Center to Modify /config Objects
This example demonstrates adding a new event field to /config/adjustment/event using
Developer Center.

1. Start Developer Center.

2. Open the Object Browser.

3. Enter or choose /config/adjustment/event in the Objects field, then click Browse.

The /config/adjustment/event object is displayed in the Objects area and the contents of
the object are displayed in the Output Flist area.

4. Select and copy the last element in the PIN_FLD_EVENTS array, located at the end of the
output flist. It should be similar to the following:

0 PIN_FLD_EVENTS ARRAY [9] allocated 20, used 1
1 PIN_FLD_TYPE_STR STR [0] "/event/session"

5. Switch to Opcode Workbench.

6. Enter or choose PCM_OP_WRITE_FIELDS in the Opcode field.

7. Enter 32 in the Flags field to specify the PCM_OPFLG_ADD_ENTRY flag. This flag makes
it possible to add a new element to the array.

8. In the Input Flist area, enter the first line of the input flist as shown below. If necessary,
modify the database number.

Chapter 15
Adding Fields to /config Objects

15-11

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/adjustment/event 301
9. Paste the text you copied in Object Browser onto the next line. The result should be similar

to the following:

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/adjustment/event 301
0 PIN_FLD_EVENTS ARRAY [9] allocated 20, used 1
1 PIN_FLD_TYPE_STR STR [0] "/event/session"

10. Increment the element number by one. For example, if the element number you pasted is
[9], change it to [10].

11. Change the event storable class name in the PIN_FLD_TYPE_STR field to that of the
event type you are adding. For example, if the event type you pasted was /event/session,
you could change it to /event/session/call/telephony.

12. Click Run.

The Output Flist area displays the object POID to confirm that the opcode ran
successfully.

13. Switch to Object Browser, then repeat step 3 to confirm that the new event type has been
added.

14. Stop and restart the CM.

Using testnap to Modify /config Objects
This example demonstrates replacing an event field in /config/adjust/event using testnap.
See "Using the testnap Utility to Test BRM" for general instructions and examples for testnap.

1. Start testnap.

% testnap
2. Use the robj command to view the contents of the /config object to modify.

This robj command reads the contents of the /config/adjust/event object.

robj - 0.0.0.1 /config/adjustment/event 301
3. When the object is displayed, note the element ID of the field to replace in the

PIN_FLD_EVENTS array.

4. Create a text file that contains an flist with the field to add. The field must contain the
complete POID of the /config object and the element you are adding. Set the element ID
to the number of the element you are replacing.

For example, this flist replaces element [5] in the PIN_FLD_EVENTS array in /config/
adjustment/event.

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/adjustment/event 301 0
0 PIN_FLD_EVENTS ARRAY [5] allocated 20, used 1
1 PIN_FLD_TYPE_STR STR [0] "/event/session"

5. Save this file.

6. Read the file into buffer 1. In this example, the file is called config.

r config1 1
7. Display the contents of the buffer to verify that it is correct.

d 1
8. Write the contents of the buffer to the /config object.

wflds 1

Chapter 15
Adding Fields to /config Objects

15-12

9. Read the object again to verify that your change was made.

robj - 0.0.0.1 /config/adjustment/event 301
10. Stop and restart the CM.

Chapter 15
Adding Fields to /config Objects

15-13

16
Storing Customer Profile Information

Learn how to customize information stored in the Oracle Communications Billing and Revenue
Management (BRM) database.

Topics in this document:

• About Storing Customer Profile Information

• Using Profile Objects to Collect Customer Profiles

About Storing Customer Profile Information
You can collect information about your customers and store them in the database in the /
profile objects. In the profile object, you store marketing or other information relevant to your
company, but not necessarily used for accounting. A /profile storable class is a top-level class
in BRM, which you subclass to define /profile storable classes for your specific needs. It
contains the standard top-level object fields and a field which is a pointer to the POID of the /
account object with which it is associated.

The /account object is not used to store this marketing information because inheriting the /
account object to store these fields would cause object-type collisions if a variety of enhanced
services were installed on the same BRM installation.

Because /profile objects are linked to specific /account objects, any number of different /
profile objects can be linked to the same /account object. However, each /profile object can
be linked to only one /account object.

After you define a /profile storable class, you use the Customer FM standard opcodes and
Customer FM policy opcodes to create, delete, modify, and validate profile objects.

Using Profile Objects to Collect Customer Profiles
This section describes how to use profile objects to collect customer profiles.

Defining a Profile Subclass
Use the Storable Class Editor to create /profile storable subclasses.

See "Creating Custom Fields and Storable Classes" for details on adding storable subclasses
and fields to the database.

Creating a Profile Object
To create a profile object:

1. Create an flist with a PIN_FLD_INHERITED field containing your specific profile
information.

2. Pass this flist into PCM_OP_CUST_CREATE_PROFILE.

16-1

Modifying a Profile Object
To modify a profile object:

1. Modify the /profile object flist.

2. Pass this flist into PCM_OP_CUST_MODIFY_PROFILE.

Deleting a Profile Object
To delete a /profile object, use PCM_OP_CUST_DELETE_PROFILE.

Validating Profile Objects
To validate /profile objects, you customize the following customer FM policy opcodes:

• PCM_OP_CUST_POL_PREP_PROFILE

• PCM_OP_CUST_POL_VALID_PROFILE

For more information on customizing policy opcodes, see "About System and Policy Opcodes".

Chapter 16
Using Profile Objects to Collect Customer Profiles

16-2

17
Auditing Customer Data

Learn how to customize audited data in the Oracle Communications Billing and Revenue
Management (BRM) database.

Topics in this document:

• Audit Trail Architecture

• About Shadow Objects

• Fields Marked for Auditing by Default

• Enabling Auditing for a Field

• Accessing Audit Trail Information

• Purging Archived Audit Data

You can enable fields in objects to trigger an audit trail when they are modified. This allows you
to track many changes to the BRM system. For information on why you enable an audit trail,
see "About Maintaining an Audit Trail of BRM Activity" in BRM Managing Customers.

Audit Trail Architecture
You enable audit trails for an individual field, but the entire object that contains the field is
versioned and stored to ensure consistency with other members of the storable class. When
fields marked for auditing are created or modified, copies are made of the top-level storable
class to which the field belongs and of that object's subclasses. The audit trail is composed of
the versioned and stored object copies, which are called shadow objects. It is created at the
end of a transaction, prior to transaction commit.

For example, if a field marked for auditing in the /payinfo/cc object is modified in the first, fifth,
seventh, and eighth revision of the original object, the shadow objects shown in Figure 17-1
are created in the audit trail:

Figure 17-1 /payinfo/cc Shadow Objects

The revision number is the revision number of the object's Portal object ID (POID).

17-1

When you mark a field for auditing, the Storable Class Editor calls the
PCM_OP_SDK_SET_DD opcode. This opcode creates a shadow class for the top-level
storable class in which the auditable field is modified and for all of that storable class's
subclasses.

The auditability of a field is specified in the PIN_FLD_AUDITABLE meta-level field in the data
dictionary. The value 1 (AUDIT_ENABLED) indicates the field is marked for auditing, and the
value 0 (AUDIT_DISABLED) indicates the field is not marked for auditing.

The following example shows the input flist of the PCM_OP_SDK_SET_DD opcode after the
PIN_FLD_DEBIT_NUM field is marked for auditing in the /payinfo/cc storable class. The
PIN_FLD_AUDITABLE meta-level field is set to 1, which indicates that the
PIN_FLD_DEBIT_NUM field is marked for auditing.

0 PIN_FLD_OBJ_DESC ARRAY [133] allocated 20, used 4
1 PIN_FLD_NAME STR [0] "/payinfo/cc"
1 PIN_FLD_DESCR STR [0] "Credit Card payment
 information class."
1 PIN_FLD_OBJ_ELEM ARRAY [0] allocated 20, used 14
2 PIN_FLD_FIELD_TYPE INT [0] 9
2 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_CC_INFO"
2 PIN_FLD_DESCR STR [0] "Array to hold the
 credit card specific
 information. There
 can be only one
 array element. The
 array element id is not
 significant."
2 PIN_FLD_ORDER NUM [0] 0.000000
2 PIN_FLD_OBJ_ELEM ARRAY [0] allocated 20, used 8
3 PIN_FLD_FIELD_TYPE INT [0] 5
3 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_ADDRESS"
...
...
2 PIN_FLD_OBJ_ELEM ARRAY [4] allocated 20, used 8
3 PIN_FLD_FIELD_TYPE INT [0] 5
3 PIN_FLD_FIELD_NAME STR [0] "PIN_FLD_DEBIT_NUM"
3 PIN_FLD_DESCR STR [0] "Credit card
 number."
3 PIN_FLD_ORDER NUM [0] 0.000000
3 PIN_FLD_LENGTH INT [0] 30
3 PIN_FLD_AUDITABLE INT [0] 1
3 PIN_FLD_CREATE_PERMISSION STR [0] "Required"
3 PIN_FLD_MOD_PERMISSION STR [0] "Writeable"
3 PIN_FLD_SM_ITEM_NAME STR [0] "debit_num"
...
...

After a shadow class is created, it is not deleted even if auditing is later disabled. For example,
if you disable auditing for the PIN_FLD_DEBIT_NUM field in the /payinfo/cc object, the
existing audit trail for that field is retained and accessible to you if you need it.

About Shadow Objects
Shadow objects use an au prefix. For example, a change to a field marked for auditing in the /
payinfo/cc object results in the following shadow objects: /au_payinfo, /au_payinfo/cc, /
au_payinfo/inv, /au_payinfo/subord, and so on. The shadow object is a replica of the original
object, so it stores the POID the object had when auditing occurred. The unique revision
number of the POID is used to extract audit trail information from the database.

Chapter 17
About Shadow Objects

17-2

The shadow object contains the same fields as the original object plus the
PIN_FLD_AU_PARENT_OBJ field that captures information about the audited storable class.
The PIN_FLD_AU_PARENT_OBJ field is a pointer to the revision of the original object copied
to the audit trail; its value is derived from the original object field.

You specify the tablespace for the audit trail schema when you install BRM. The default
tablespace for a shadow object is the same as that of its original object.

The tablespace name for a shadow object is the same as that of its original object with the
addition of an au prefix. There is a 32-character limit on tablespace names. If the addition of
the au prefix exceeds the 32-character limit, the shadow object tablespace name is truncated,
causing its tablespace name to be different than that of the original object.

Fields Marked for Auditing by Default
Table 17-1 shows the fields that are marked for auditing by default in BRM, the top-level
storable class associated with those fields, the event objects created when those fields are
modified, and the BRM activity being audited:

Table 17-1 Fields Marked by Default for Auditing

Top-Level
Storable Class

Audited Fields Event Object Created BRM Activity Audited

/deal All fields /event/audit/price/deal Changes to internal BRM
pricing components

/payinfo PIN_FLD_DEBIT_NUM and
PIN_FLD_DEBIT_EXP

/event/audit/customer/payinfo/cc Changes to customer credit
card numbers and
expiration dates

/plan All fields /event/audit/price/plan Changes to internal BRM
pricing components

/product All fields /event/audit/price/product Changes to internal BRM
pricing components

/rate All fields /event/audit/price/rate Changes to internal BRM
pricing components

/rate_plan All fields /event/audit/price/rate_plan Changes to internal BRM
pricing components

/
rate_plan_selecto
r

All fields /event/audit/price/
rate_plan_selector

Changes to internal BRM
pricing components

Enabling Auditing for a Field
You enable and disable auditing for fields using the Storable Class Editor.

Performance tips:

• Keep an audit trail only for the BRM activity that is absolutely necessary for your business.
Enabling an audit trail decreases system performance significantly.

• Do not mark fields in the /account object for auditing. Because the /account object is
large and is modified by many types of system activity, it is not recommended for auditing.
Mark the /purchased_product and /purchased_discount objects for auditing to audit
charge offers and discount offers for an account.

Chapter 17
Fields Marked for Auditing by Default

17-3

• If you mark an array or substruct for auditing, changes to any field in that array or substruct
trigger auditing. To track changes to only one field in an array or substruct, mark only that
field for auditing and not the entire array or substruct.

Accessing Audit Trail Information
You can access audit trail information manually by using the testnap utility to retrieve specific
revisions of an object given the object's POID. You can also write your own application to
access audit trail changes in the database.

To access audit trail data, you must:

• Obtain the account number of the customer for whom you need audit trail data (as shown
in Billing Care).

• Obtain the general time period in which the event that was audited occurred. For example,
the date or month the customer changed his credit card number.

• Know the name of the event object BRM generates for each type of auditing. For example,
when a customer changes the credit card number on his account, BRM generates the
event object /event/audit/customer/payinfo/cc.

For the names of the event objects generated for default auditing, see "Fields Marked for
Auditing by Default".

1. Use the customer's account number to obtain the /account object associated with the
account number.

2. Browse the event objects for the /account object in the general time period to locate the
event. For example, to find a changed credit card number, browse the events to locate
the /event/audit/customer/payinfo/cc event created at the time the customer changed his
credit card number.

3. Use the event object to obtain the POID of the original object that was audited. For
example, the /event/audit/customer/payinfo/cc event contains the POID of the /
payinfo/cc object that was audited when the customer's credit card number was changed.
The POID provides the revision number of the object when it was audited. This number is
stored in the shadow object.

4. Retrieve the shadow objects by calling the PCM_OP_READ_OBJ opcode with one of the
following flags. (For examples of how to do this by using the testnap utility, see "Using
testnap to Retrieve Shadow Objects".)

• Use the PCM_OPFLG_USE_POID_GIVEN flag to send a request to the BRM
database Data Manager (DM) to run a search-and-read operation for the exact POID
you specify (the POID of the shadow object in the audit trail).

• Use the PCM_OPFLG_USE_POID_PREV flag to send a request to the BRM database
DM to run a search-and-read operation for the shadow object POID that contains a
revision number preceding the revision number you specify in your POID.

• Use the PCM_OPFLG_USE_POID_NEXT flag to send a request to the BRM database
DM to run a search-and-read operation for the shadow object POID that contains a
revision number that is one or more numbers higher than the revision number you
specify in your POID.

• Use the PCM_OPFLG_USE_POID_NEAREST flag to send a request to the BRM
database DM to run a search-and-read operation for the exact audit trail revision
number that you specify (the POID of the shadow object), and if the exact POID is not
found, to obtain the POID with a revision number that precedes the revision number
you specify in your POID.

Chapter 17
Accessing Audit Trail Information

17-4

Using testnap to Retrieve Shadow Objects
The following code samples show how to retrieve shadow objects by using testnap. This
example accesses the audit trail of the /payinfo/cc object given the object's POID near the
time auditing occurred.

Flists and opcode for testnap to access the audit-trail
of the /payinfo/cc object.
#
Syntax: xop PCM_OP_READ_OBJ flags buffer
#
where the buffer contains the following flist with the
flags as described below:

0 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo 10001 0

NOTE: Replace the database number, the POID_ID, and
the version as required.

#Use the following flags:

PCM_OPFLG_USE_POID_GIVEN (0x0040): To access the exact revision.
e.g. "xop PCM_OP_READ_OBJ 0x0040 1" on the buffer flist
0 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo 10001 3
This retrieves audit trail with revision 3, or NOT_FOUND.

PCM_OPFLG_USE_POID_PREV (0x2000): To access the
previous revision.
e.g. "xop PCM_OP_READ_OBJ 0x2000 1" on the buffer flist
0 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo 10001 3
This retrieves audit trail with revision 2, assuming revision
2 is the previous revision to 3 in the audit-trail. Otherwise,
the next revision lower than revision 3 is retrieved.

PCM_OPFLG_USE_POID_NEXT (0x4000+): To access the next revision.
e.g. "xop PCM_OP_READ_OBJ 0x4000 1" on the buffer flist
0 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo 10001 3
This retrieves audit trail with revision 4, assuming revision
4 is the next revision to 3 in the audit trail. Otherwise, the
next revision higher than revision 3 is retrieved.

PCM_OPFLG_USE_POID_NEAREST (0x8000): To access the nearest
revision.
e.g. "xop PCM_OP_READ_OBJ 0x8000 1" on the buffer flist
0 PIN_FLD_POID POID [0] 0.0.0.1 /payinfo 10001 3
This retrieves audit trail with revision 3, if the revision 3
exists; otherwise, it retrieves a revision preceding
revision 3.

Purging Archived Audit Data
Use the purge_audit_tables.pl Perl script to remove unwanted audit data from your audit
tables by moving older rows to history (archive) tables. Purging the audit tables improves
system performance and reduces memory usage,

Chapter 17
Purging Archived Audit Data

17-5

Note:

The purge_audit_tables.pl script does not delete objects from the database; it only
purges the object rows stored in a table.

To purge objects from audit tables:

1. Open the BRM_home/sys/archive/oracle/purge_audit_tables.conf file.

a. In the storage_clause entry, specify the tablespace for the history tables.

b. In the time entry, specify the column name to be used for comparing the cutoff date
specified in the purge_audit_tables.pl script's -d parameter.

c. In the cutoff_for_purge entry, specify the percentage based on which it will invoke the
archiveindirect mode rather than the archivedirect method to archive the tables.

For example, if the cutoff_for_purge value is 70, and a table contains more then 70%
data that must be archived, temporary tables are used to transfer the data efficiently
(archiveindirect mode). If the table contains less then 70% data that must be
archived, the data is transferred directly to the history tables (archivedirect mode).

For more information about the configuration entries, see the purge_audit_tables.conf file
in the BRM_home/sys/archive/oracle directory.

2. With a text editor, open the purge_audit_tables.pl script.

3. In the first line of the script, replace __PERL__ with the location of the Perl executable.

4. Run the purge_audit_tables.pl script. See "purge_audit_tables.pl" in BRM System
Administrator's Guide for more information.

Note:

To run in debug mode, set the environment variable ARCHIVE_DEBUG at the
system prompt before you run the script. As the script runs, processing data,
including the functions that are called, is printed to the screen.

Chapter 17
Purging Archived Audit Data

17-6

18
Encrypting Data

Learn how to encrypt data in the Oracle Communications Billing and Revenue Management
(BRM) database.

Topics in this document:

• About Encrypting Data

• About AES Encryption

• About Masking Data in Log Files

• Encrypting Fields

• Defining Masked Fields

• About Encrypting Passwords

• Configuring the Data Manager for Oracle ZT PKI Encryption

• Configuring the Data Manager for AES Encryption

• Generating a Root Encryption Key

• Modifying a Root Encryption Key

About Encrypting Data
You can encrypt fields that contain sensitive customer information, such as credit card
numbers, to guarantee privacy and prevent unauthorized use. The fields to be encrypted must
be in string format. You set up encryption with the Storable Class Editor, which will add a flag
attribute in the metadata defining the field in the data dictionary (PIN_FLD_ENCRYPTABLE).

BRM encrypts the fields marked for encryption when storing them in the database and
automatically decrypts the fields when retrieving them from the database. For information on
how to encrypt fields, see "Encrypting Fields".

You can also encrypt passwords, including the database password and passwords for servers
and client applications that connect to the Connection Manager (CM) to access the database.
For information, see "About Encrypting Passwords".

About AES Encryption
AES uses a 256-bit encrypted key to protect field data. To set up the database for AES
encryption, you:

• Generate an encrypted AES key and add it to the Data Manager (DM) pin.conf file with
other encryption configuration information. You can have only one encrypted AES key per
Oracle DM.

The encrypted AES key gets stored in the database.

• Define which fields should be encrypted by setting their PIN_FLD_ENCRYPTABLE flag in
Storable Class Editor.

18-1

When the Oracle DM starts, it uses the encrypted AES key to transform the fields marked as
encryptable from plaintext into ciphertext and from ciphertext into plaintext.

In addition to encrypting data fields, you can use AES to encrypt passwords for these features:

• BRM Data Managers

• Pipeline database

• Optional managers, such as Account Synchronization Manager

• Client applications

About AES Data Encryption Length

The length of AES-encrypted data is different depending on whether the data is stored in the
database or not. In both cases, encrypting a field increases its length.

Note:

The maximum length of an encrypted field in the Oracle database is 1,992 bytes,
which is 975 bytes in plaintext.

Encryption Length for Fields Stored in the Database

When the AES encryption scheme is used to store database fields, the generated ciphertext is
in this format:

&aes|Encrypted_AES_key_index|Ciphertext

where:

• aes identifies the encryption scheme used by the database.

• Encrypted_AES_key_index is a unique 4-digit ID associated with the encrypted AES key.

• Ciphertext is the encrypted data generated from the plaintext data by using the AES key.

The length of the generated ciphertext data is:

(Plaintext_data_length + 16) * 2 + 5 + 5

Two hexadecimal numbers represent each byte in the ciphertext, &aes | is equal to 5 bytes,
and Encrypted_AES_key_index is equal to 5 bytes. For example, if Plaintext_data_length is
25, the length of the generated ciphertext data is 92:

(25+16)*2+5+5 = 92

Note:

If Plaintext_data_length is less than 17, the length of the generated ciphertext data is
always 79.

Encryption Length for Fields Not Stored in the Database

When the AES encryption scheme is used to encrypt data that is not stored in the database,
such as passwords, the generated ciphertext is in this format:

&aes|Ciphertext

Chapter 18
About AES Encryption

18-2

where:

• aes identifies the encryption scheme used by the database.

• Ciphertext is the encrypted data generated from the plaintext data by using the AES key.

The length of the generated ciphertext data is:

(Plaintext_data_length + 16) * 2 + 5

A hexadecimal number represents each byte in the ciphertext, and &aes | is equal to 5 bytes.
For example, if Plaintext_data_length is 25, the generated ciphertext data is 87:

(25+16)*2+5 = 87

Note:

If Plaintext_data_length is less than 17, the length of the generated ciphertext data is
always 74.

Generating an Encrypted AES Key

An encrypted AES key is used by the DM to encrypt the database fields that are marked as
encryptable.

To generate an encrypted AES key:

1. Run the pin_crypt_app utility:

pin_crypt_app -genkey -key AES_key

If you do not have an AES key, run the utility with only the -genkey parameter. This
generates a random AES key internally and then encrypts it with a hidden key to create the
encrypted AES key. The key length must be 64 and can contain only hexadecimal
numbers.

The output states whether the key was generated successfully, and if so, provides the
encrypted AES key.

2. Write down the encrypted AES key value or copy it to a text editor. Include the &aes|
because it is part of the encrypted key.

3. Add the encrypted AES key value to the crypt entry in the DM pin.conf file.

You can have only one encrypted AES key per Oracle DM.

Replacing an Encrypted AES Key

You can replace an encrypted AES key with a new key at any time. This does not affect how
data is decrypted; the DM can decrypt data encrypted with a previous key.

This procedure assumes you have already configured the DM for AES encryption. See
"Configuring the Data Manager for AES Encryption".

To replace an encrypted AES key:

1. Generate a new encrypted AES key. See "Generating an Encrypted AES Key".

2. Open the DM pin.conf file.

Chapter 18
About AES Encryption

18-3

3. In the crypt aes entry, replace the existing encrypted AES key with the new encrypted
AES key:

- crypt aes|BRM_home/lib/libpin_crypt_aes4dm.so "&aes|New_encrypted_aes_key"
4. Save the file.

5. Stop and restart the DM.

About Masking Data in Log Files
Currently, fields defined as encryptable are encrypted by the DM when they are stored in the
database and decrypted when they are retrieved. Data passed through the CM by opcodes
and data in the client applications is in plaintext. Therefore, when BRM opcodes are called and
high log levels are set on flist operations, the contents of the encryptable fields are saved to a
log file. The fields may contain sensitive data that is defined as encryptable but still appears in
plaintext. To hide this information, you can define a field as masked. The masked data will be
displayed as "XXXX" in the log files rather than as plaintext.

For information on how to mask encrypted fields during flist logging, see "Defining Masked
Fields".

Encrypting Fields
You mark fields for encryption by using the Storable Class Editor. You can enable new or
existing object fields for encryption at any time.

Note:

• You can disable encryption for a field at any time; however, it is recommended
that you only do so during upgrades.

• Make sure the field is in string format. Only strings may be encrypted.

Defining Masked Fields
You can mask BRM fields and custom fields.

To define masked fields:

1. Create a custom file for your masked fields, and define the fields in this file. Use the
following syntax:

Custom_field_name masked

For example, you might create a file named custom_field_attributes that contains the
following mask definitions:

CUST_FLD_CC_NUMBER masked
CUST_FLD_EXPIRY_DATE masked

2. Generate the source file for your custom fields. By default, this file is called
custom_fields.h.

3. Copy the contents of both files (the custom masked file and the source file) to a new file.
For example, name the new file custom_masked_fields.

Chapter 18
About Masking Data in Log Files

18-4

4. Run the parse_custom_ops_fields Perl script, and use the custom masked fields file as
the input:

parse_custom_ops_fields -L language -I input -O output -P java_package
5. For applications written with PCM C, add the following entry to the pin.conf file for each

PCM C application:

- - ops_fields_extension_file ops_flds_ext
6. For applications written using Java PCM, including Developer Center, copy the contents of

the InfranetPropertiesAdditions.properties file and paste it into the Infranet.properties
files for each Java application.

For more information about field masking, see "About Masking Data in Log Files".

About Encrypting Passwords
You can encrypt passwords for the BRM database, optional managers such as GSM Manager,
server applications, and client applications that use a password to connect to the CM.

These passwords can be encrypted manually (one at a time) by running the pin_crypt_app
utility or automatically (all at one time) by running the encryptpassword.pl script.

Note:

You must use the pin_crypt_app utility to encrypt client application passwords or
passwords associated with customizations (for example, custom passwords in BRM-
provided configuration files or passwords in non-BRM configuration files that support
custom applications).

For information on the encryptpassword.pl script, see "About the encryptpassword.pl Script".

For information about configuring client applications to connect to the CM without a password,
see "Using CM Proxy to Allow Unauthenticated Log On" in BRM System Administrator's Guide.

To customize password encryption, use the PCM_OP_CUST_POL_ENCRYPT_PASSWD,
PCM_OP_CUST_POL_COMPARE_PASSWD, and
PCM_OP_CUST_POL_DECRYPT_PASSWD opcodes. See BRM Opcode Guide.

Note:

When you change a password, it is not automatically encrypted. You must encrypt
the new password and update the entry in the appropriate configuration file.

About the encryptpassword.pl Script
You run the encryptpassword.pl script to encrypt the passwords for all BRM components at
one time, including the Oracle DM password. BRM authenticates these passwords before
connecting to the CM or the BRM database.

Chapter 18
About Encrypting Passwords

18-5

Note:

This script does not encrypt passwords for client applications or optional managers
that are not part of base BRM. In addition, it does not encrypt passwords associated
with customizations; for example, custom passwords in BRM-provided configuration
files or passwords in non-BRM configuration files that support custom applications.
To encrypt such passwords, run the pin_crypt_app utility.

The encryptpassword.pl script has no parameters. You run it from the Linux prompt on the
system running the BRM database by entering the following command:

perl encryptpassword.pl

This script performs the following tasks on the machine on which it runs:

1. Creates a backup copy of all pin.conf and Infranet.properties configuration files in which
it finds a password.

2. Replaces the plaintext password in each configuration file with an encrypted password.

3. Adds all encrypted passwords to the pin_setup.values file.

4. Adds the ENABLE_ENCRYPTION entry with a YES value to the pin_setup.values file.
This field enables password encryption.

Encrypting Passwords Automatically for BRM Base Components
To encrypt passwords for all BRM base components at one time:

1. Log into the system running the BRM database.

2. Go to the BRM_home/setup/scripts directory.

3. Run the encryptpassword.pl script:

perl encryptpassword.pl
4. Follow the instructions at each prompt.

Passwords are encrypted in the OZT format.

Note:

• If you are running optional managers or server applications on a system that
does not contain the BRM database, run the encryptpassword.pl script on each
applicable system.

• If you change an encrypted password, you must update the entry in the
configuration file and the pin_setup.values file.

For more information on the encryptpassword.pl script, see "About the encryptpassword.pl
Script".

Chapter 18
About Encrypting Passwords

18-6

Encrypting Passwords Manually with OZT
To encrypt passwords manually with OZT:

1. Log in to the system running the BRM manager.

Note:

For data managers, this is generally the system running the BRM database; for
client applications, it is the application host system.

2. Run the pin_crypt_app utility with the -useZT parameter:

pin_crypt_app -useZT -enc
3. At the prompt, enter the plaintext password to encrypt and then re-enter it again.

The output is the OZT-encrypted password.

4. Write down the encrypted password or copy it to a text editor.

Note:

When you change a password, it is not automatically encrypted. You must encrypt
the new password and update the entry in the appropriate configuration file.

To set this password as the Oracle DM password or an optional manager password, add the
password to the manager's pin.conf file. See "Configuring the Data Manager for Oracle ZT
PKI Encryption".

To set this password as the CM password for a client application, add the password to the
application's pin.conf file and the Infranet.properties file. By default, the Infranet.properties
file is located in C:\Program Files\Common Files\Portal Software.

Encrypting Passwords Manually with AES
To encrypt passwords manually with AES:

1. Log in to the system running the BRM manager.

Note:

For data managers, this is generally the system running the BRM database. For
client applications, it is the application host system.

2. Run this command to transform a plaintext password into ciphertext:

pin_crypt_app -enc
3. At the Enter the plaintext to encrypt prompt, enter your plaintext password.

4. Re-enter your plaintext password.

Chapter 18
About Encrypting Passwords

18-7

The output is the AES-encrypted password.

5. Write down the encrypted password or copy it to a text editor.

To set this password as the Oracle DM password or an optional manager password, add the
password to the manager's pin.conf file. See "Configuring the Data Manager for AES
Encryption".

To set this password as the Pipeline Manager password, add the password to the DataPool
section of the Pipeline startup registry file.

To set this password as the CM password for a client application, add the password to the
application's pin.conf file and the Infranet.properties file.

Configuring the Data Manager for AES Encryption
The Oracle DM configuration file (pin.conf) specifies the user name and password needed to
log in to the BRM database as well as the encryption method to use for data stored in the BRM
database.

To configure the Oracle DM for AES encryption:

1. If necessary, generate an encrypted AES key and an AES encrypted password. See
"Generating an Encrypted AES Key" and "Encrypting Passwords Manually with AES".

2. Open the BRM_home/sys/dm_oracle/pin.conf file in a text editor.

3. Add the AES encrypted password for logging in to your BRM database to the sm_pw
entry:

- dm sm_pw Encrypted_password

The password can use any character from the US7ASCII character set except for the hash
character (#). BRM interprets the hash character as a comment and will ignore any
subsequent characters in the password.

4. Set AES as the encryption method for your data by using the crypt entry:

- crypt aes|Encryption_library "&aes|Encrypted_aes_key"

where:

• Encryption_library is the path and filename of the AES encryption library
(pin_crypt_aes4dm). The prefix for the library is lib for Linux, or null "" for Windows.
The extension for the library is .so for Linux, and .dll for Windows.

• Encrypted_aes_key is your encrypted AES key. See "Generating an Encrypted AES
Key".

5. Save the file.

6. Stop and restart the DM.

Configuring the Data Manager for Oracle ZT PKI Encryption
The Oracle ZT public key infrastructure (PKI) encryption algorithm uses the pin_crypt_app
and pin_config_editor utilities to encrypt files, plain text, passwords, and root keys.

The Oracle DM configuration file (pin.conf) specifies encryption settings for the database.

To configure the Oracle DM to use OZT encryption:

Chapter 18
Configuring the Data Manager for AES Encryption

18-8

1. If necessary, generate an OZT encrypted password. See "Encrypting Passwords Manually
with OZT".

2. Run the following command to generate an encrypted Oracle ZT PKI key:

pin_crypt_app -useZT genkey [-key Key]

where Key is a 256-bit key in hexadecimal notation.

3. Write down the encrypted Oracle ZT PKI key value, or copy it to a text editor.

Note:

Include &ozt| because it is part of the encrypted Oracle ZT PKI key value.

4. Go to BRM_home/sys/dm_oracle.

5. Open the Oracle DM pin.conf file in a text editor.

6. Enable the Oracle ZT PKI encryption algorithm by adding the following entry:

- crypt ozt|Encryption_library "&ozt|Encrypted_key"

where

• Encryption_library is the path and filename of the OZT encryption library
(pin_crypt_ozt4dm64). The prefix for the library is lib for Linux, or null "" for
Windows. The extension for the library is .so for Linux, and .dll for Windows.

• Encrypted_key is the OZT encrypted key that you generated in step 2.

7. Save the file.

8. Stop and restart the Oracle DM.

Generating a Root Encryption Key
The root encryption key is used for encrypting the data and password using the Oracle ZT
PKI–approved encryption algorithm.

To generate a root encryption key:

1. Go to BRM_home/bin.

2. Run the following command, which creates a root key wallet:

orapki wallet create -wallet wallet_location -pwd password

where:

• wallet_location is the directory in which the root key wallet is to be created.

• password is the password used to make changes to the root key wallet.

3. Run the following command:

pin_crypt_app -genrootkey

A root encryption key is generated and is stored in the root key wallet.

Chapter 18
Generating a Root Encryption Key

18-9

Note:

The root key wallet is generated at only one location. You can copy the root key
wallet to the other locations.

Modifying a Root Encryption Key
To enhance security, you should modify the root encryption key on a regular basis. For detailed
instructions, see "Modifying the Root Encryption Key" in BRM Installation Guide.

Chapter 18
Modifying a Root Encryption Key

18-10

19
Searching for Objects in the BRM Database

Learn about the Oracle Communications Billing and Revenue Management (BRM) object
search strategy, including the types of searching that BRM performs by default and what you
must know about searching if you are writing custom applications to use with BRM.

Topics in this document:

• About Searching for Objects

• About the Search Input Flist

• Search Query Syntax

• Searching Subclasses

• Returning Specific Storable Classes

• Returning Entire Arrays

• Search Template Examples

• About Single-Schema Searches

• Performing Exact Searches

• Complex Searches

• Search without POID

• About Multischema (Global) Searches

• The Impact of Searches on Shared Memory Allocation

• Improving Search Performance

About Searching for Objects
Searching in this context means looking in the BRM database for objects that meet your
specified criteria. You search for the Portal object IDs (POIDs) of all the storable classes with
specific characteristics.

Note:

If you know the POID of the storable class you are searching for, you can use
PCM_OP_READ_OBJ and PCM_OP_WRITE_OBJ to read and change data.

There are two main types of searching:

• Simple searching on a single storable class and its inherited classes. This usually means
searching for a specific account.

• Complex searching across multiple storable classes at the same time. For example,
searching for all accounts in a specific city that used a particular service includes both the /
account and /service storable classes.

19-1

Depending on your implementation, these searches can be performed on one or more
database schemas.

There are two other options for the SEARCH opcodes:

• Count-only searches count and return the number of POIDS that match your search
criteria. They do not return POIDs. Use the PCM_OPFLG_COUNT_ONLY parameter to
perform a count-only search.

• Calculate-only searches return a single calculated value, such as a sum or average. Use
the PCM_OP_CALC_ONLY_1 parameter to perform a calculate-only search.

To search for objects in the database, you use a search template. The template can be
predefined and stored in a /search object or defined at runtime when a search opcode is
called. When you define the template at runtime, you include the search query on the search
opcode input flist. The advantage of defining the template at runtime is that you do not have to
create and store it in the database first.

BRM includes predefined /search objects in BRM_home/sys/dd/data/init_objects.source
that you can use as templates. (BRM_home is the directory in which you installed the BRM
server software.) The predefined search templates are stored in the SEARCH_T database
table. Each template has a predefined ID, such as 230 or 231.

You can also create your own search objects. Before defining a search, look in the
init_objects.source file to see whether a template for your search exists. If not, create one
and load it into the database. Your /search object can then be used in a call to the search
opcode.

If you create a predefined search template, add a copy of it to init_objects.source. Adding the
template has the following advantages:

• You avoid assigning duplicate search template IDs.

• All search templates are in a single location, making them easy to find.

• In the testing mode, you can automatically load the new search templates if you must re-
create the database.

Note:

When upgrading to a new BRM release, ensure you copy your custom templates
to the new init_objects.source file.

About the Search Input Flist
You specify the search criteria and the results you want to be returned from the search on the
input flist of the search opcode.

The input flist requires three fields:

• Search POID: Specifies a search object. See "Search POID".

• PIN_FLD_ARGS array: Specifies the arguments in the search criteria. See "Argument
List".

• PIN_FLD_RESULTS array: Specifies which fields to return from the search. See "Results
Array".

Chapter 19
About the Search Input Flist

19-2

When you define a search template at runtime (when the search is run), two more fields are
required:

• PIN_FLD_TEMPLATE: Specifies the search query in the form of a string. See "Search
Query".

• PIN_FLD_FLAGS: Specifies the type of search to perform. See "Flags".

An optional PIN_FLD_PARAMETERS field can be included in the flist when you use a
predefined search template. This field specifies a subclass that contains the search arguments.
See "Using the PIN_FLD_PARAMETERS Field".

You can use the optional PIN_FLD_MIN_ROW and PIN_FLD_MAX_ROW input flist fields to
specify the start and end rows of the search result to retrieve from the search result set. See
"Limiting Search Results by Using Row Numbers".

Search POID
The search POID identifies the search template to use for the search.

• If you predefine a search template and store it in a search object, add the POID of the /
search object to the input flist. The POID specifies which predefined search template to
use:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 301 0
• If you define the search template at runtime, add the search object POID to the input flist

with an object ID of 0 or -1, and define the search query in a PIN_FLD_TEMPLATE field on
the input flist:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /account where F1 like V1"

Argument List
You specify the arguments for the search query in the PIN_FLD_ARGS array. Each array
element contains one argument. You must provide at least one argument.

Always include the POID of the storable class type you want to be returned in the
PIN_FLD_ARGS array. If you do not, the search returns an error.

The maximum number of search arguments is 32. The array element ID specifies which
argument is contained in the array element. For example, element-ID 1 corresponds to
argument 1.

The arguments in the PIN_FLD_ARGS array are referenced in the where clause of the search
query. If the search criteria specified in the where clause exists in a storable class other than
the one specified in the search query, an attempt is made to convert the POID type of the
unspecified storable class to the specified storable class, which causes an error.

Results Array
You specify in the opcode's PIN_FLD_RESULTS array which fields to return from the objects
you're searching. The opcode returns one element for each matching object.

Chapter 19
About the Search Input Flist

19-3

Note:

You specify the objects themselves in the PIN_FLD_ARGS array.

The search can return results in these ways:

• To return all fields from a matched object, set the PIN_FLD_RESULTS input flist element to
NULL.

• To return only a count of matching objects, set the PIN_FLD_RESULTS input flist element
to NULL and pass the PCM_OPFLG_COUNT_ONLY flag in the opcode call. The opcode
returns the number of matching results as the element ID of the PIN_FLD_RESULTS
output flist array.

• To return a specified list of fields, set the PIN_FLD_RESULTS input flist element with the
list of fields to return.

• To return a single value that is calculated from the matched objects, put the
PIN_FLD_RESULTS element that includes a single PIN_FLD_AMOUNT field on the input
flist. Also, set the search flag to SRCH_CALC_ONLY.

To indicate the maximum number of records to return, specify that number as the element ID of
the PIN_FLD_RESULTS element. To return all records, use zero. For count-only or calculate-
only searches, only one value is returned.

If you call for a calculate-only search using the PIN_FLD_CALC_ONLY_1 flag, the
PIN_FLD_RESULTS array must contain only one PIN_FLD_AMOUNT field with an element ID
of 1.

Search Query
When defining a search template at runtime, specify the search query in the
PIN_FLD_TEMPLATE field. The template is in the form of an SQL-like search string. For
example, "select X from <object> where <expression>". For more information, see "Search
Query Syntax".

Flags
You can specify the following searches using the PIN_FLD_FLAGS field on the input flist:

• 256: SRCH_DISTINCT
This search type returns only unique data. Use this option when searches join to other
objects or access arrays within a single object such that a query might return multiple
copies of the same object. To skip this feature, set the value to 0.

When there is no possibility of returning multiple copies of the same object, using the
SRCH_DISTINCT flag becomes redundant and can degrade search performance. To
prevent this from happening, see "Removing Redundant Distinct Searches".

Chapter 19
About the Search Input Flist

19-4

Note:

This flag performs distinct operations on POIDs only. If any other data type is
used in the input query, SRCH_DISTINCT does not return distinct results. This
flag cannot be used with an order by clause while performing a complex search.
In this case, set the flag value to 0. Alternatively, see "About Performing Distinct
Searches with Ordering and Pagination" for another way to perform these
searches.

• 512: SRCH_EXACT
Use this flag to search arrays. This flag applies the where clause in the search string to
arrays. If this flag is not used, the search opcode might return array elements that do not
match the search criteria. For more information, see "Performing Exact Searches".

Tip:

To specify both SRCH_EXACT and SRCH_DISTINCT flags, add their values
(512 and 256) and enter 768 in the PIN_FLD_FLAGS field.

• 1024: SRCH_WITHOUT_POID
This search type returns data without POIDs for each result. For more information, see
"Search without POID".

There are also two flags that you can use in the call to a search opcode:

• PCM_OPFLG_COUNT_ONLY
This search type returns only the number of POIDs that match the search criteria. The
value of the PIN_FLD_RESULTS element on the input flist must be NULL.

• A calculate-only flag
This search type returns a value, such as a sum or average. There are two forms of the
calculate-only flag:

– SRCH_CALC_ONLY_1
Use this flag to return a single value.

– SRCH_CALC_ONLY
Use this flag to return one or more values.

For more information, see "Search Query Syntax for Calculate-Only Searches".

Search Query Syntax
The search query is part of the search template. You include it in the predefined template
before storing it in the database or the opcode's PIN_FLD_TEMPLATE input flist field at
runtime.

Note:

SQL queries must adhere to the limitations imposed by the database. For
information, see your database documentation.

Chapter 19
Search Query Syntax

19-5

Use the following syntax for search queries:

"select X from object_name where expression"

where:

• X is a placeholder for the field(s) being requested, which are specified in the
PIN_FLD_RESULTS array on the input flist.

• object_name is the type name of the object that contains the argument(s).

The name can be fully specified; that is, it can include the specific subclass, or it can take
an optional parameter (for example, /event/$1). The $1 parameter is substituted with the
value of the PIN_FLD_PARAMETERS field on the search flist. If PIN_FLD_PARAMETERS
is not included on the flist, the $1 is null. See "Using the PIN_FLD_PARAMETERS Field".

Note:

The storable class type you specify in the search query tells BRM where to find
the arguments in the where clause. It does not indicate the storable class type to
return.

• expression is an SQL expression such as "where F1 = V1 and F2 = V2".

The column names and literal values (Fn and Vn) are replaced by the field names and field
values specified in the PIN_FLD_ARGS array on the input flist. The column name and
value indexes must be contiguous and correspond with the elements in the arguments
array starting with element ID 1. That is, F1 and V1 correspond to the field name and value
in PIN_FLD_ARGS[1], F2 and V2 to the field name and value in PIN_FLD_ARGS[2], and
so on.

About Searching for Objects by Their POID Subcomponent
You can search for objects by specifying any of the following POID subcomponents in the
search expression:

• Database number

• Storable class type

• Object ID

• Revision number

In addition to the Fn = Vn expression, you can use any one of the following expressions in the
where clause of the search query template:

• Fn.db =Vn to search by the POID database number. See "Searching for Objects by the
POID Database Number".

• Fn.type = Vn to search by the POID type. See "Searching for Objects by the POID Type".

• Fn.id = Vn to search by the POID object ID. See "Searching for Objects by the POID
Object ID".

• Fn.rev = Vn to search by the POID revision number. See "Searching for Objects by the
POID Revision Number".

Chapter 19
Search Query Syntax

19-6

Tip:

SQL expressions for searching Oracle databases can include optimizer hints.
You can use any hint supported by Oracle. See the Oracle documentation for
complete information.

Searching for Objects by the POID Database Number
This example shows the PCM_OP_SEARCH input flist with the POID database number
specified in the search query:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /service where F1.db = V1 "
0 PIN_FLD_RESULTS ARRAY [*] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/ip -1 0
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/% 1 0

Searching for Objects by the POID Type
This example shows the PCM_OP_SEARCH input flist with the POID type specified in the
search query:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /service where F1.type like V1 "
0 PIN_FLD_RESULTS ARRAY [3] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/ip -1 0
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/IP 1 0

Searching for Objects by the POID Object ID
This example shows the PCM_OP_SEARCH input flist with the POID object ID specified in the
search query:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /service/ip where F1 like V1 AND F2.id
= V2"
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/ip -1 0
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account -1 0
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/ip -1 0
0 PIN_FLD_ARGS ARRAY [2] allocated 1, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 24295 1 0

Searching for Objects by the POID Revision Number
This example shows the PCM_OP_SEARCH input flist with the POID revision number
specified in the search query:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /account where F1.rev = 10 "

Chapter 19
Search Query Syntax

19-7

0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /account -1 0
1 PIN_FLD_NAMEINFO ARRAY [*] allocated 0, used 0
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 1897978 0

Search Query Syntax for Count-Only Searches
You can search using the following syntax:

"select result from object_name where expression"

where result is a count value returned when a search is performed using the
PCM_OPFLG_COUNT_ONLY flag. This flag returns only the number of matches found by the
search.

The following example shows the PCM_OP_SEARCH input flist for counting the total journal
objects:

...
0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /journal where F1 = V1 "
0 PIN_FLD_FLAGS INT [0] 0
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_POID POID [0] 0.0.0.1 /journal -1 0
0 PIN_FLD_RESULTS ARRAY [*] NULL
...

To run opcodes using testnap, use the xop command:

xop PCM_OP_SEARCH 0x10 1

where 0x10 is a PCM_OPFLG_COUNT_ONLY flag and 1 is the buffer.

The opcode returns the count as the index of the PIN_FLD_RESULTS array. For example:

...
0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_RESULTS ARRAY [7] NULL array ptr
...

where 7 is the total journal count.

Search Query Syntax for Calculate-Only Searches
You can also search using this syntax:

"select result from object_name where expression"

where result is a calculated value returned when a search is performed by using the calculate-
only flag. There are two forms of the calculate-only flag:

• SRCH_CALC_ONLY_1

Chapter 19
Search Query Syntax

19-8

This flag returns a single value. You specify one calculation in the search query. For
example:

"select sum(F1) from object_name where expression"

Note:

You must include spaces around F1.

F1 references the field value of PIN_FLD_ARGS array element 1 on the input flist. You
must include the PIN_FLD_AMOUNT field with an element ID of 1 as the only field in the
PIN_FLD_RESULTS array.

• SRCH_CALC_ONLY

This flag can return one or more values. You specify each calculation in the search query.
For example:

"select sum(F1), avg(F2) from object_name where expression"

For multiple results, you must include a PIN_FLD_AMOUNT field in the
PIN_FLD_RESULTS array for each result to return.

If you use SRCH_CALC_ONLY with the PCM_OPFLG_SRCH_CALC_RESULTS flag not
set (which is the default), all PN_FLD_AMOUNT values are returned in the
PIN_FLD_RESULTS array. For example:

...
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_AMOUNT DECIMAL [1]
1 PIN_FLD_AMOUNT DECIMAL [2]
...

If you use SRCH_CALC_ONLY with the PCM_OPFLG_SRCH_CALC_RESULTS flag set,
each PIN_FLD_AMOUNT value is returned in its own PIN_FLD_RESULTS array. For
example:

0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_AMOUNT DECIMAL [0]
0 PIN_FLD_RESULTS ARRAY [1]
1 PIN_FLD_AMOUNT DECIMAL [0]
....

Using the PIN_FLD_PARAMETERS Field
When you use a predefined search template, you can use an optional $1 object type
parameter in the from clause of the search query. This parameter specifies a subclass and
allows you to specialize the search without having to modify the stored template.

You use a PIN_FLD_PARAMETERS field when you use the $1 optional parameter. The $1
parameter in the search template is replaced by the value of the PIN_FLD_PARAMETERS
field on the input flist.

For example, if your template search query is this:

"select X from /device/$1 where F1 = V1 "

and your input flist contains this:

Chapter 19
Search Query Syntax

19-9

...
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /device/sim -1 0
0 PIN_FLD_PARAMETERS STR [0] "sim"
...

The string "sim" is substituted for the $1 parameter in the search template and the search
looks for the arguments in the /device/sim storable class.

Note:

• Using this field does not restrict the search to objects of the type it specifies. To
restrict the search, specify the storable class type POID(s) in a PIN_FLD_ARGS
array.

• Be sure to format the value of PIN_FLD_PARAMETERS on the input flist
correctly. For example, a value of portal\user_info\ on the input flist does not
work, and the search fails without returning an error message. However, when
using portal\user_info without the trailing '\', the search succeeds.

Limiting Search Results by Using Row Numbers
You use the PIN_FLD_MIN_ROW and PIN_FLD_MAX_ROW fields in the input flist of the
PCM_OP_SEARCH opcode to retrieve the records from the search result set using the start
row and end row numbers. For example, if the PCM_OP_SEARCH opcode returns 1000
records in the search result set, and PIN_FLD_MIN_ROW is set to 200 and
PIN_FLD_MAX_ROW is set to 300, the records from row number 200 to 300 are retrieved.You
can navigate through the search result set both in forward and backward directions. For
example, after retrieving the records from 200 to 300, you can step backward through the
search result set to retrieve the records from 100 to 200.After you run the PCM_OP_SEARCH
opcode, any modified records in the database are retrieved from the search result set the next
time you run the PCM_OP_SEARCH opcode.

Note:

Opcodes that support multiple database schemas (for example,
PCM_OP_GLOBAL_SEARCH and PCM_OP_GLOBAL_STEP_SEARCH) do not
support retrieving the search results using row numbers.

Using the "in" Operator
Using the SQL in operator in your query is another way of simplifying your search criteria. If
you use in, you must use the BRM syntax requirements for this operator:

Note:

When using the in operator, only POIDs and strings can be searched and POIDs
must be type only.

Chapter 19
Search Query Syntax

19-10

For example, "select X from /config where F1 in (V1 , '/config/locales_map') "

The where clause syntax must be entered exactly as shown and follow these requirements:

• There must be one space before in.

• There must be one space after in and also after the parenthesis following in.

• There must be one space between V1 and the following comma.

Note:

The space between V1 and the comma is only required when using the in
operator.

• All values in the query using an in operator must be inside parenthesis.

For example:

...where F1 in (V1 , '/config/locales_map') and F2 in (V2) "
A search using the following input flist will return the entire contents of /config/notify and /
config/locales_map:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /config where F1 in (V1 , '/config/
locales_map')"
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /config/notify -1 0
0 PIN_FLD_RESULTS ARRAY [*] NULL array ptr

Searching Subclasses
Because a subclass inherits the attributes of its parent storable class, a simple search includes
results from all subclasses of the storable class specified in the arguments array, provided they
match the search criteria. You must specify only the most derived class which has a referenced
argument in the where clause.

To constrain your search to criteria that only exist in a subclass, you must use this subclass on
the query itself.

For example, the /config/notify object contains a PIN_FLD_EVENTS array, but its parent
storable class, /config, does not. If your search argument is contained in the
PIN_FLD_EVENTS array of the /config/notify object, but you specify the /config object, the
search will fail.

The faulty flist looks like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /config where F1 = V1 "
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_EVENTS ARRAY [0] allocated 20, used 1
2 PIN_FLD_TYPE_STR STR [0] "/event/session"
0 PIN_FLD_RESULTS ARRAY [*] NULL array ptr

The correct flist specifies the subclass containing the argument:

Chapter 19
Searching Subclasses

19-11

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /config/notify where F1 = V1 "
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_EVENTS ARRAY [0] allocated 20, used 1
2 PIN_FLD_TYPE_STR STR [0] "/event/session"
0 PIN_FLD_RESULTS ARRAY [*] NULL array ptr

Returning Specific Storable Classes
You must specify the objects you want returned in the PIN_FLD_ARGS array in the search
input flist. A search will return objects of the superclass or any other derived class. To return
only objects from the specified storable class, the POID of the storable class type must be -1.

To return only one specified storable class, include it in the arguments array:

0 PIN_FLD_TEMPLATE STR [0] "select X from /device/sim where F1 = V1 "
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /device/sim -1 0
...

To return more than one storable class type, but restrict the results to only those types
specified, add the storable class type POID for each type to return to the PIN_FLD_ARGS
array and set each POID to -1:

0 PIN_FLD_TEMPLATE STR [0] "select X from /device/sim where F1 = V1 "
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /device/sim -1 0
0 PIN_FLD_ARGS ARRAY [2] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /device/num -1 0
...

To return only a specific storable class and all its subclasses, add the POID of the parent
storable class type to the argument list, set the POID to -1, use a like operator in the where
clause, and add a percent sign (%) at the end of the storable class type:

Note:

The like operator is only used when searching for strings.

0 PIN_FLD_TEMPLATE STR [0] "select X from /device/sim where F1 like V1 "
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /device/sim% -1 0
...

Returning Entire Arrays
Because arrays are fields in storable classes, to return an array you must add it to the
PIN_FLD_RESULTS array in the search opcode input flist. To return the entire contents of an
array, you specify the array and give it a NULL value. Note that a NULL array is different from
an empty array in which elements are allocated but not used.

For example, to retrieve the entire contents of the PIN_FLD_NAMEINFO array from the /
account object, use the following input flist:

Chapter 19
Returning Specific Storable Classes

19-12

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /account where F1 = V1 "
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12345 0
0 PIN_FLD_RESULTS ARRAY [*] NULL array ptr
1 PIN_FLD_NAMEINFO ARRAY [*] NULL (instead of: ALLOCATED 20, USED 0)NULL

When constructing this flist in your application, to add a NULL array you must use
PIN_FLIST_ELEM_SET instead of PIN_FLIST_ELEM_ADD.

For example:

PIN_FLIST_ELEM_SET(flistp, NULL, PIN_FLD_NAMEINFO, PCM_RECID_ALL, ebufp);

This entry is incorrect as it adds an empty array instead of a NULL array:

PIN_FLIST_ELEM_ADD(flistp, PIN_FLD_NAMEINFO, PCM_RECID_ALL, ebufp);

Search Template Examples
You must provide all arguments for each search template. The following logic is used when a
search is performed:

If the results flist is a NULL flist {
 if CM_OPFLG_COUNT_ONLY is set {
 return the count of matched objects (search count)
 } else {
 return each of the entire objects that matches
 (search robj)
 }
} else {
 If this is a calculated search {
 return the result of the calculation
 } else {
 for each object matched, return just those fields
 specified on the RESULTS flist
 }
}

Using a Predefined Template
The following example is a predefined search template that you store in the database as a /
search object. The search query placeholders are replaced by the values specified in the
arguments array in the input flist, which determine the objects you search for.

-- 301 -- 2 arg = search in /pop
insert into search_t (
 poid_db, poid_type, poid_id0, poid_rev,
 name,
 created_t, mod_t,
 --
 flags,
 template
) values (
 DB_NO, '/search', 301, 1,
 '2 arg = search in /pop',
 DATE, DATE,
 --
 SRCH_DISTINCT,

Chapter 19
Search Template Examples

19-13

 'select X from /pop where F1 = V1 and F2 = V2 '
);

The template ID is 301 and the where clause has 2 arguments. You must enter the search
template in the database with the valid date values and database number. Your search
template will not work unless it is in the database. When your application performs a search, it
calls ID #301 and your flist must contain the two arguments.

To create a predefined search template:

1. Create a search flist that specifies the template. This example shows how to create a
search flist that specifies the above template:

/***
 * Allocate the flist for searching.
***/
flistp = PIN_FLIST_CREATE(ebufp);

/***
 * Get the database number.
***/
poidp = (poid_t *)PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_POID,0, ebufp);
database = PIN_POID_GET_DB(poidp);

/***
* Use 301, the 2 arg search for pop objects.
***/
vp = PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_ANI, 1, ebufp);
id = (u_int64)301;
objp = PIN_POID_CREATE(database, "/search", id, ebufp);
PIN_FLIST_FLD_PUT(flistp, PIN_FLD_POID, (void *)objp, ebufp);

/***
* Return pop that matches ani and is a primary pop.
***/
a_flistp = PIN_FLIST_ELEM_ADD(flistp, PIN_FLD_ARGS, 1, ebufp);
aniarray_flistp = PIN_FLIST_CREATE(ebufp);
/*
** PIN_FLD_ANI for our first arg.
*/
PIN_FLIST_FLD_SET(aniarray_flistp, PIN_FLD_ANI, vp, ebufp);
PIN_FLIST_ELEM_SET(a_flistp, aniarray_flistp, PIN_FLD_ANIS, 0,ebufp);
/*
** PIN_FLD_TYPE for our second arg.
*/
a_flistp = PIN_FLIST_ELEM_ADD(flistp, PIN_FLD_ARGS, 2, ebufp);
aniarray_flistp = PIN_FLIST_CREATE(ebufp);
PIN_FLIST_FLD_SET(aniarray_flistp, PIN_FLD_TYPE, (void *)&type,ebufp);
PIN_FLIST_ELEM_SET(a_flistp, aniarray_flistp,PIN_FLD_ANIS, 0, ebufp);
PIN_DESTROY_FLIST(aniarray_flistp,ebufp);

/***
* Put on the PIN_FLD_RESULTS array for our results.
***/
PIN_FLIST_ELEM_SET(flistp, (void *)NULL, PIN_FLD_RESULTS, -1, ebufp);

/***
* Call the DM to do the search.
***/
PCM_OP(ctxp, PCM_OP_SEARCH, 0, flistp, &r_flistp, ebufp);

Chapter 19
Search Template Examples

19-14

The search flist fields passed in might look like this:

0 PIN_FLD_POID POID [0] 0.0.0.2 /search 301 0
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_ANIS ARRAY [0] allocated 20, used 1
2 PIN_FLD_ANI STR [0] "408343"
0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_ANIS ARRAY [0] allocated 20, used 1
2 PIN_FLD_TYPE INT [0] 4
0 PIN_FLD_RESULTS ARRAY [*] Null pointer

2. Load the search template into the database. You can use testnap to load the search
template into the database. For more information, see "Creating a New Search Object".

3. Add a copy of the new search template to the init_objects.source file.

When the Storage Manager receives the flist, it first queries the database to find the template
with poid_id 301. When it has the template, it looks for the PIN_FLD_ARGS array on your
input flist and substitutes field numbers with field names and values with the values passed in.
It then performs the search and returns the matching objects from the database.

In this example, no specific fields were specified to be returned, so the entire object that
matches the search criteria is returned.

Defining the Search Template at Runtime
You can perform a search without using a predefined, stored template by including a template
field in the search flist.

This example shows how to create a search flist that specifies a runtime search template:

/***
 * Allocate the flist for searching.
***/
flistp = PIN_FLIST_CREATE(ebufp);
char * template = "select X from /pop where F1 = V1 and F2 = V2 "

/***
 * Get the database number.
***/
poidp = (poid_t *)PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_POID,0, ebufp);
database = PIN_POID_GET_DB(poidp);

/***
* Use -1, the 2 arg search for pop objects.
***/
vp = PIN_FLIST_FLD_GET(in_flistp, PIN_FLD_ANI, 1, ebufp);
id = -1;
objp = PIN_POID_CREATE(database, "/search", id, ebufp);
PIN_FLIST_FLD_PUT(flistp, PIN_FLD_POID, (void *)objp, ebufp);
PIN_FLIST_FLD_SET (in_flistp, PIN_FLD_TEMPLATE, template, ebufp)

/***
* Return pop that matches ani and is a primary pop.
***/
a_flistp = PIN_FLIST_ELEM_ADD(flistp, PIN_FLD_ARGS, 1, ebufp);
aniarray_flistp = PIN_FLIST_CREATE(ebufp);
/*
** PIN_FLD_ANI for our first arg.
*/
PIN_FLIST_FLD_SET(aniarray_flistp, PIN_FLD_ANI, vp, ebufp);
PIN_FLIST_ELEM_SET(a_flistp, aniarray_flistp, PIN_FLD_ANIS, 0,ebufp);
/*

Chapter 19
Search Template Examples

19-15

** PIN_FLD_TYPE for our second arg.
*/
a_flistp = PIN_FLIST_ELEM_ADD(flistp, PIN_FLD_ARGS, 2, ebufp);
aniarray_flistp = PIN_FLIST_CREATE(ebufp);
PIN_FLIST_FLD_SET(aniarray_flistp, PIN_FLD_TYPE, (void *)&type,ebufp);
PIN_FLIST_ELEM_SET(a_flistp, aniarray_flistp,PIN_FLD_ANIS, 0, ebufp);
PIN_DESTROY_FLIST(aniarray_flistp,ebufp);

/***
* Put on the PIN_FLD_RESULTS array for our results.
***/
PIN_FLIST_ELEM_SET(flistp, (void *)NULL, PIN_FLD_RESULTS, -1, ebufp);

/***
* Call the DM to do the search.
***/
PCM_OP(ctxp, PCM_OP_SEARCH, 0, flistp, &r_flistp, ebufp);

The search flist fields passed in might look like this:

0 PIN_FLD_POID POID [0] 0.0.0.2 /search/pop -1 0
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_ANIS ARRAY[0] allocated 20, used 1
2 PIN_FLD_ANI STR [0] "408343"
0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_ANIS ARRAY[0] allocated 20, used 1
2 PIN_FLD_TYPE INT [0] 4
0 PIN_FLD_RESULTS ARRAY [*] Null pointer
0 PIN_FLD_TEMPLATE STR [0] select X from /pop where F1 = V1 and F2 = V2

With the template field in the flist, the Storage Manager looks for the PIN_FLD_ARGS array on
your input flist and substitutes field numbers with field names and values with the values
passed in. It then performs the search and returns the matching objects from the database.
Note that the arguments in the PIN_FLD_ARGS array must be the specified storable classes
and not the superclass.

In this example, no specific fields were specified to be returned, so the entire object that
matches the search criteria is returned.

About Single-Schema Searches
There are two basic ways to search for information in a single database schema:

• Search the schema and return all of the results at once by calling PCM_OP_SEARCH.

• Search the schema with PCM_OP_STEP_SEARCH, which uses PCM_OP_STEP_NEXT
and PCM_OP_STEP_END to display the results as smaller sets of accounts.

The searches performed by PCM_OP_SEARCH and PCM_OP_STEP_SEARCH are identical;
they take the same input flist and return the same results. The results of PCM_OP_SEARCH,
however, can be very large—large enough to use all the DM shared memory. If you expect the
size of your search results to be very large, use the PCM_OP_STEP_SEARCH opcode for the
search. Step searching has the following advantages:

• Speed: The search results come back much faster in smaller pieces.
PCM_OP_STEP_SEARCH returns the first set of results immediately; it does not wait for
the entire result set to be built.

Chapter 19
About Single-Schema Searches

19-16

• System Resources: PCM_OP_STEP_SEARCH allocates just enough shared memory in
the DM for a single set of results at a time. PCM_OP_SEARCH results use enough shared
memory for the entire result set all at once.

The disadvantage to step searching is that you must call all three step search opcodes for
each search: PCM_OP_STEP_SEARCH, PCM_OP_STEP_NEXT, and PCM_OP_STEP_END.

Performing a Search on a Single Schema
To perform a search on a single database schema, use the PCM_OP_SEARCH opcode.

This opcode enables a client application to search for objects that meet a set of criteria defined
by the client application.

If two objects have an encrypted field that contains the same data encrypted with different
keys, a PCM_OP_SEARCH for that value returns only one object.

Note:

Use this opcode only to search a single, known schema. If your BRM implementation
uses multiple schemas and you must search more than one, use the
PCM_OP_GLOBAL_SEARCH opcode.

When using the PCM_OP_SEARCH opcode, you can apply the order by clause only to the
top-level arrays. The order by clause cannot be applied to subarrays.

For information about required fields in the input flist, see "About the Search Input Flist".

This opcode performs a search by creating a search template at runtime. To use a stored
template instead, the POID must specify a template /search object. If it is specified, this
opcode searches for a stored template in the database schema and uses that template for the
search.

Note:

Performing a search using a /search object template stored in the database is
supported but not recommended.

Search results can be manipulated by using the flist field handling macros. For a list of
opcodes, see "Flist Field-Handling Macros" in BRM Developer's Reference.

Flags

These flags are used in the call to the PCM_OP_SEARCH opcode:

• To return only the number of matching results, use PCM_OPFLG_COUNT_ONLY. See
"Flags".

• To increase performance when reading fields and objects, use
PCM_OPFLG_CACHEABLE. See "Improving Performance when Working with Objects".

Chapter 19
About Single-Schema Searches

19-17

Note:

When this flag is set, PCM_OP_SEARCH caches data, which improves
performance when that data is read by PCM_OP_READ_FLDS or
PCM_OP_READ_OBJ. However, PCM_OP_SEARCH always reads from the
database, not from the cache.

Memory Management

If your search returns a large amount of data, you must make sure sufficient memory is
available to hold that data. To control the size of the data returned, use the
PCM_OP_STEP_SEARCH opcode.

For a discussion of when to use searching and step searching, see "About Single-Schema
Searches".

For a discussion of the memory implications of searching, see "The Impact of Searches on
Shared Memory Allocation".

Examples

For an example of a simple search, see "Simple Search Example".

For examples of input flists for complex searches, see "Complex Searches".

For a sample search program that searches for a single and multiple results, see BRM_home/
apps/sample/sample_search.c.

Performing a Step Search on a Single Schema
To perform a step search on a single database schema, use the PCM_OP_STEP_SEARCH
opcode.

Note:

Use this opcode only to search a single, known schema. If your BRM implementation
uses multiple schemas and you must search more than one, use the opcode
PCM_OP_GLOBAL_SEARCH.

This opcode enables a client application to define search criteria, search for objects using
those criteria, and receive a specified number of result sets. The advantage of using this
opcode instead of PCM_OP_SEARCH is that the results are returned in discrete chunks,
which enables you to control resource usage in both the DM and the application.

For information on when to use PCM_OP_SEARCH and PCM_OP_STEP_SEARCH, see
"About Single-Schema Searches".

This opcode must be used in combination with the PCM_OP_STEP_NEXT and
PCM_OP_STEP_END opcodes to complete a search cycle. The cycle must start with
PCM_OP_STEP_SEARCH, which initiates a step search and gets the first set of
PIN_FLD_RESULT elements. One or more PCM_OP_STEP_NEXT opcodes follow, each
retrieving the next specified number of result sets. PCM_OP_STEP_END must come last to
end the step search.

Chapter 19
About Single-Schema Searches

19-18

Note:

Stepping backward through the result set is not supported.

When a step search is initiated, no other functions can be performed, including another step
search, until the search cycle is completed. If a second PCM_OP_STEP_SEARCH opcode is
sent to the database before a first has finished its search cycle, an error is returned to the
client.

The search criteria are passed in by the client application on the input flist. The input flist must
contain a POID, and its type must be /search. The POID is ignored. You must also include a
PIN_FLD_RESULTS array that indicates which fields and how many matching results to return
for this opcode.

In the PIN_FLD_RESULTS_LIMIT field, specify the maximum number of results to be returned
from all steps of the search. The information from this field is conveyed to the database so that
the search is run more efficiently. If this field is not specified, all matching results are cached,
even if they are not returned.

Note:

If the search uses an order by clause, the PIN_FLD_RESULTS_LIMIT field causes
incorrect sorting. Do not use the PIN_FLD_RESULTS_LIMIT field if the search
includes an order by clause.

Specify search arguments in the PIN_FLD_ARGS array on the input flist. Each element of the
array contains one argument for the search. You must provide at least one argument. The
maximum number of search arguments is 32. Indicate which argument is contained in an array
element sub-flist by specifying the element ID. For example, element-ID 1 corresponds to
argument 1.

Search results can be manipulated by using the flist field handling macros. For a list of
opcodes, see "Flist Field-Handling Macros" in BRM Developer's Reference.

To increase performance, use PCM_OPFLG_CACHEABLE. See "Improving Performance
when Working with Objects".

Examples

For an example of input and return flists for step searching, see "Step Search Example".

For examples of input flists for complex searches, see "Complex Searches".

For a sample search program that searches for a single and multiple results, see BRM_home/
apps/sample/sample_search.c.

Getting the Next Set of Search Results from a Step Search
This opcode enables a client application to receive the next set of results from a search
initiated by PCM_OP_STEP_SEARCH. Results of the search are returned in discrete chunks.

This opcode must be used in combination with the PCM_OP_STEP_SEARCH and
PCM_OP_STEP_END opcodes to complete the step search cycle. PCM_OP_STEP_SEARCH

Chapter 19
About Single-Schema Searches

19-19

initiates step searching and gets the first set of PIN_FLD_RESULT elements.
PCM_OP_STEP_NEXT goes to the Data Manager and gets the next set of PIN_FLD_RESULT
elements. PCM_OP_STEP_END ends the step search.

Use this opcode for each set of results to be returned. Specify the maximum number of records
to return as the element-ID of the PIN_FLD_RESULTS element. To return no records, use
zero. PCM_OP_STEP_END can be called at any time to end the search.

This opcode uses the same input flist as PCM_OP_STEP_SEARCH.

To increase performance, use the PCM_OPFLG_CACHEABLE flag. See "Improving
Performance when Working with Objects".

Ending a Step Search
To end a search result that has been initiated by PCM_OP_STEP_SEARCH, use the
PCM_OP_STEP_END opcode.

This opcode must be used in combination with the PCM_OP_STEP_SEARCH and
PCM_OP_STEP_NEXT opcodes to complete the step search cycle.
PCM_OP_STEP_SEARCH initiates step searching and gets the first set of PIN_FLD_RESULT
elements. PCM_OP_STEP_NEXT retrieves the next specified number of results.
PCM_OP_STEP_END ends the step search.

Simple Search Example
This example of a simple PCM_OP_SEARCH searches for each account whose status is
active and retrieves all corresponding events created in the last week:

elem_id = 0;
cookie = (pin_cookie_t)NULL;
while ((acct_flistp = PIN_FLIST_ELEM_GET_NEXT(flistp,
 PIN_FLD_RESULTS, &elem_id, 1, &cookie, ebufp))
 != (pin_flist_t *)NULL) {

/* get the status of the current account */
status = PIN_FLIST_FLD_GET(acct_flist, PIN_FLD_STATUS, 0, ebufp);

/* process accordingly, based on status */
switch (status) {
case PIN_STATUS_ACTIVE:
/* fetch events created in the last week */
fetch_last_weeks_events(cur_flist, ebufp);
break;
case PIN_STATUS_INACTIVE:
/* do something */
break;
default:
/* log an error */
break;
}
}

fetch_last_weeks_events(acct_flist, ebufp)
{
 /*
 * Create the search flist.
 */
 s_flistp = PIN_FLIST_CREATE(ebufp);

Chapter 19
About Single-Schema Searches

19-20

 /*
 * Create and add the search poid.
 */
 search_poidp = PIN_POID_CREATE((int64)0, "/search", (int64)-1, ebufp);
 PIN_FLIST_FLD_PUT(s_flistp, PIN_FLD_POID, (void *)search_poidp, ebufp);

 /*
 * Add the search template.
 */
 PIN_FLIST_FLD_PUT(s_flistp, PIN_FLD_TEMPLATE,
 (void *)"select X from /event where F1 = V1 and F2 > V2 ", ebufp);

 /*
 * Add the search arguments.
 */
 arg_flistp = PIN_FLIST_ELEM_ADD(s_flistp, PIN_FLD_ARGS, 1, ebufp);
 acct_poidp = PIN_FLIST_FLD_TAKE(acct_flist, PIN_FLD_POID, 0, ebufp);
 PIN_FLIST_FLD_PUT(arg_flistp, PIN_FLD_ACCOUNT_OBJ, acct_poidp, ebufp);

 arg_flistp = PIN_FLIST_ELEM_ADD(s_flistp, PIN_FLD_ARGS, 2, ebufp);
 one_week_ago = <timestamp corresponding to 1 week ago>;
 PIN_FLIST_FLD_PUT(arg_flistp, PIN_FLD_CREATED_T, &one_week_ago, ebufp);

 /*
 * Fetch everything.
 */
 PIN_FLIST_FLD_PUT(s_flistp, PIN_FLD_RESULT, (void *)NULL, ebufp);

 /*
 * Do the search.
 */
 PCM_OP(pcm_ctxp, PCM_OP_SEARCH, PCM_OPFLG_READ_UNCOMMITTED,
 s_flistp, &r_flistp, ebufp);

/*
 * do something with the events we just fetched
 */
}

Step Search Example
This example shows the results of a call to PCM_OP_STEP_SEARCH. This step search has
four steps.

Note:

At the end of a step search, you do not receive a results array. You receive only your
search POID, as shown at the end of this example.

Input flist:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /account where F1 like V1 "
0 PIN_FLD_FLAGS INT [0] 0
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_NAMEINFO ARRAY [*]
2 PIN_FLD_FIRST_CANON STR [0] "%"

Chapter 19
About Single-Schema Searches

19-21

0 PIN_FLD_RESULTS ARRAY [4]
1 PIN_FLD_ACCOUNT_NO STR [0] ""

Search results:

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "ROOT.0.0.1"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 1
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-8759"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 8759 133
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-9267"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 9267 122
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-9961"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 9961 128

Results of the calls to PCM_OP_STEP_NEXT:

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-10709"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 10709 53
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-10721"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 10721 98
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-10881"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 10881 134
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-11057"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 11057 122

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12047"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12047 75
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12213"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12213 123
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12241"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12241 122
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12356"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12356 39

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12484"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12484 45
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12569"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12569 8
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12590"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12590 19

Chapter 19
About Single-Schema Searches

19-22

0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12612"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12612 12

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12697"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12697 8
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12705"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12705 14
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-12740"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12740 54
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-13090"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 13090 38

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-13346"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 13346 45
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-13476"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 13476 48
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-13732"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 13732 66
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-13956"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 13956 84

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-14313"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 14313 8
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-14825"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 14825 8
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-14896"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 14896 70
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-15069"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 15069 12

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-15129"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 15129 8
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-15257"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 15257 8
0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-15385"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 15385 8
0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2

Chapter 19
About Single-Schema Searches

19-23

1 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1-15824"
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 15824 68

Final set of search results:

number of field entries allocated 1, used 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0

Note:

You do not receive a results array with the last call to PCM_OP_STEP_NEXT
because there are no more search results. You call PCM_OP_STEP_END to finish
the search.

Results of the call to PCM_OP_STEP_END:

number of field entries allocated 3, used 3
0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_ARGS ARRAY [1] allocated 1, used 1
1 PIN_FLD_NAMEINFO ARRAY [0] allocated 1, used 1
2 PIN_FLD_FIRST_CANON STR [0] "%"
0 PIN_FLD_RESULTS ARRAY [4] allocated 1, used 1
1 PIN_FLD_ACCOUNT_NO STR [0] ""

Performing Exact Searches
To search and return array elements, you use an exact search. Exact searches enable you to
limit results to only the array elements that match the search criteria.

If your search includes a where clause and you want that clause to be applied to array
elements, use the SRCH_EXACT (512) flag with the PCM_OP_SEARCH and
PCM_OP_STEP_SEARCH opcodes. If you do not use the SRCH_EXACT flag, the where
clause is applied to the object and not limited to array elements that match the search criteria
within that object. The results, therefore, include all items in the object instead of only those
items in the array that match your search criteria.

For example, suppose you want to search for all /rate objects with general ledger IDs greater
than 0 and element IDs less than 1001. Without the SRCH_EXACT flag, the input flist looks
like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /rate where F1 > V1 and F2 <
V2 "
0 PIN_FLD_FLAGS INT [0] 256

0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 20, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 20, used 1
3 PIN_FLD_GL_ID INT [0] 0

0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 20, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 20, used 1
3 PIN_FLD_ELEMENT_ID INT [0] 1001

0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 20, used 1

Chapter 19
Performing Exact Searches

19-24

2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 20, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 0
3 PIN_FLD_GL_ID INT [0] 0

The output flist might look like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0

0 PIN_FLD_RESULTS ARRAY [0]allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate 8257 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 978
3 PIN_FLD_GL_ID INT [0] 13000001

0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate 8321 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 978
3 PIN_FLD_GL_ID INT [0] 12000065

0 PIN_FLD_RESULTS ARRAY [3] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate 8702 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 978
3 PIN_FLD_GL_ID INT [0] 1000001

0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate8446 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 1000006
3 PIN_FLD_GL_ID INT [0] 51000001

Note:

The last result is incorrect; the element ID is greater than 1001. Incorrect results such
as this occur because the search finds all the objects that match the condition in the
where clause but does not apply that clause to the array elements.

If you use SRCH_EXACT by entering a flag value of 512, the input flist looks like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0

0 PIN_FLD_TEMPLATE STR [0] "select X from /rate where F1 > V1 and F2 <
V2 "

0 PIN_FLD_FLAGS INT [0] 512

0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 20, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 20, used 1
3 PIN_FLD_GL_ID INT [0] 0

0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 20, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 20, used 1

Chapter 19
Performing Exact Searches

19-25

3 PIN_FLD_ELEMENT_ID INT [0] 1001

0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 20, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 20, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 0
3 PIN_FLD_GL_ID INT [0] 0

The output flist might look like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search 0 0

0 PIN_FLD_RESULTS ARRAY [0]allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate 8257 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 978
3 PIN_FLD_GL_ID INT [0] 13000001

0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate 8321 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 978
3 PIN_FLD_GL_ID INT [0] 12000065

0 PIN_FLD_RESULTS ARRAY [2] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /rate 8702 1
1 PIN_FLD_QUANTITY_TIERS ARRAY [0] allocated 1, used 1
2 PIN_FLD_BAL_IMPACTS ARRAY [0] allocated 2, used 2
3 PIN_FLD_ELEMENT_ID INT [0] 978
3 PIN_FLD_GL_ID INT [0] 1000001

Note:

This search returns only objects that satisfy both parts of the where clause. Spurious
results are eliminated.

Using "like" with Exact Searches
You use a like operator with an exact search to return all elements of an array that match the
search criteria.

The following example returns all arrays from /account that contain any string in the
PIN_FLD_FIRST_CANNON field:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /account where F1 like V1 "
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_NAMEINFO ARRAY [*]
2 PIN_FLD_FIRST_CANON STR [0] "%"
0 PIN_FLD_RESULTS ARRAY [*] NULL array ptr

Exact Search Limitations
When performing a complex search (searching across multiple objects), using an array
element as a join column is not supported with exact searches. In the where clause, trying to

Chapter 19
Performing Exact Searches

19-26

match a value in one table with a value in another table can return results that do not match
your search criteria.

For example, to find all charge offers in an account with a charge offer name that begins with
the string "Pr", you might use the following query:

"select X from /account 1, /product 2 where 1.F1 = V1 and 1.F2 = 2.F3 and 2.F4 like V4 "

Where the arguments array is:

0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /account 12345
0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_PRODUCTS ARRAY [0]
2 PIN_FLD_PRODUCT_OBJ POID [0] NULL
0 PIN_FLD_ARGS ARRAY [3] allocated 20, used 1
1 PIN_FLD_POID POID [0] NULL
0 PIN_FLD_ARGS ARRAY [4] allocated 20, used 1
1 PIN_FLD_NAME STR [0] "Pr%"

However, with an exact search, "1.F2 = 2.F3" in the where clause causes the search to return
all charge offers in the account if at least one charge offer name starts with the string "Pr".

An alternative to using an array element as a join column with exact searches is to perform two
separate searches and then compare the search results for matching data. In the preceding
example, you search /product for charge offers that begin with "Pr" and then perform the
preceding search as shown to return all charge offers for the /account. Then, for each POID in
the /product list, iterate through the /account charge offers list to find the matching charge
offers.

Complex Searches
You can perform a complex search across multiple objects by including each object in the
object_name section of the PIN_FLD_TEMPLATE string.

In a simple search, when a client wants a list of all events pertaining to bundle purchases, the
client must perform two searches:

• Get all /deal object POIDs (with the bundle names).

• Search the event storable class (and subclasses) with each of the /deal object POIDs
obtained from the previous search for the required event fields.

A complex search eliminates the need for cascading searches and enables the client to issue
one complex search instead of multiple simple searches.

Note:

The search results include only the fields from the first storable class in the query.

Use the following rules when creating a complex search template:

• When connecting separate objects types (1.F3 = 2.F4), explicitly specify the join clause as
part of the template by using the form X.Fm = Y.Fn.

• Fm and Fn must have a value specified as a NULL pointer in the PIN_FLD_ARGS array.

• When you use an order by clause (which can be included when you have a where
clause), set the SRCH_DISTINCT flag to 0.

Chapter 19
Complex Searches

19-27

Tip:

If you want to regularly perform distinct searches while using an order by clause,
you can create a storable class and database view specifically for searching. See
"About Performing Distinct Searches with Ordering and Pagination".

• A maximum of six separate objects is allowed in a complex search template.

The following example shows the template syntax to retrieve all bundle purchase events:

"select X from /event/billing/deal 1, /deal 2 where (2.F1 Like V1 and 2.F2 != V2 and 1.F3 =
2.F4) order by 3.F5"

Note:

There are no stored templates available for complex searches.

Complex Search Example
The following example searches for all bundle purchase events.

Input flist:

number of field entries allocated 5, used 5
0 PIN_FLD_RESULTS ARRAY [10]
1 PIN_FLD_SYS_DESCR STR [0] NULL str ptr
1 PIN_FLD_ACCOUNT_OBJ POID [0] NULL poid pointer
1 PIN_FLD_POID POID [0] NULL poid pointer
1 PIN_FLD_END_T TSTAMP [0] (0) <null>
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_NAME STR [0] "%"
0 PIN_FLD_ARGS ARRAY [2]
1 PIN_FLD_POID POID [0] 0.0.0.1 /deal 0 0
0 PIN_FLD_ARGS ARRAY [3]
1 PIN_FLD_DEAL_INFO SUBSTRUCT [0]
2 PIN_FLD_DEAL_OBJ POID [0] NULL poid pointer
0 PIN_FLD_ARGS ARRAY [4]
1 PIN_FLD_POID POID [0] NULL poid pointer
0 PIN_FLD_TEMPLATE STR [0] "select X from /event/billing/deal 1, /deal 2
where (2.F1 Like V1 and 2.F2 != V2 and 1.F3 = 2.F4) "
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0

About Performing Distinct Searches with Ordering and
Pagination

Because of the way row numbers are generated for complex searches, you cannot use
ordering or pagination when PIN_FLD_FLAGS is set to perform a distinct search (256 or 768).

If you need to make this kind of search frequently, you can create storable classes with a
residency type of 9 specifically for searching. Because storable classes of this type are added
to the data dictionary without creating any database tables, you can add nested fields from
multiple storable classes into a single class with only the required data, without adding more
tables to the database. You can then create views for these classes, which have a flat structure

Chapter 19
About Performing Distinct Searches with Ordering and Pagination

19-28

rather than multiple levels of nesting, and perform simple searches on them, rather than relying
on complex searches and joins across multiple tables in BRM.

See the following topics:

• Creating Storable Classes and Database Views for Distinct Searches

• Performing Distinct Searches with Ordering and Pagination

• Modifying Storable Classes for Distinct Searches

Creating Storable Classes and Database Views for Distinct Searches
To create the custom storable classes with residency type 9 and database views to perform
distinct searches with ordering and pagination:

1. Create a custom storable class using Portal Object Definition Language (PODL) files:

a. Run the following command for each class that contains the fields you want to use in
your new class:

pin_deploy class [-smncp] /existing_class

where /existing_class is the existing class, such as /account or /service.

This exports the PODL file for the specified class.

b. Combine the exported PODL files into one, keeping any fields you want in the new
class, and giving the file a unique name.

c. Add the RESIDENCY_TYPE attribute, set to 9 (GLOBAL_DB_VIEW).

d. Run the following command to import the new PODL file into the BRM database:

pin_deploy create new_class.podl

where new_class is the name of your new class.

See "Deploying Custom Fields and Storable Class Definitions" and "pin_deploy" for
more information about using pin_deploy.

2. Create a database view that includes the new storable class and any relevant fields from
the base class tables.
See "CREATE VIEW" in Oracle Database SQL Language Reference for more information.

Performing Distinct Searches with Ordering and Pagination
When performing searches in BRM with ordering and pagination on storable classes of
residency type 9 and the views created for them:

• Use your new storable class for the object_name search element.

• Use your new view in the where clause.

• Use the ROWNUM pseudo column to assign row numbers to the search results and use
them to paginate the results. See "ROWNUM Pseudocolumn" in Oracle Database SQL
Language Reference.

• Use the order by clause with columns from the new view.

Chapter 19
About Performing Distinct Searches with Ordering and Pagination

19-29

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-VIEW.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/ROWNUM-Pseudocolumn.html

For example, to show results 1-10 in descending order of time created, you would use the
following in the PIN_FLD_TEMPLATE field of the search input flist:

select X from /new_storable_class where column in (select column from
(select rownum rid,
column from new_view_t where F1 like V1 and F2 != V2)a where a.rid >= 1 and
a.rid<= 10)
order by new_view_t.created_t desc"

where:

• /new_storable_class is the new storable class you created with residency type 9.

• column is the column you want to select, usually containing a POID.

• new_view_t is the new database view you created for the new storable class.

Modifying Storable Classes for Distinct Searches
To modify the custom storable classes with residency type 9:

1. Run the following command to export the PODL file for your custom storable class:

pin_deploy class [-smncp] /custom_class

where /custom_class is the name of your custom class.

2. Add, remove, or modify the fields in the class.

3. Run the following command to import the modified PODL file and replace the existing
version in the BRM database:

pin_deploy replace custom_class.podl

where custom_class is the name of your new class.

4. Recreate the database view for the class. See "CREATE VIEW" in Oracle Database SQL
Language Reference for more information about these statements.

Search without POID
Use the SEARCH_WITHOUT_POID (1024) flag to return data without the POID for each
result. To do this, set the value to 1024.

Without the SRCH_WITHOUT_POID flag set, the input flist looks like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /event where F1 like V1 "
0 PIN_FL0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1D_FLAGS INT [0] 0
1 PIN_FLD_POID POID [0] 0.0.0.1 /event/session -1 0
0 PIN_FLD_RESULTS ARRAY [4] allocated 20, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0

The output flist might look like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 2
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0

Chapter 19
Search without POID

19-30

https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/CREATE-VIEW.html

1 PIN_FLD_POID POID [0] 0.0.0.1 /event/session 252887674388488909 1
0 PIN_FLD_RESULTS ARRAY [1] allocated 20, used 2
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
1 PIN_FLD_POID POID [0] 0.0.0.1 /event/session 252887674388490957 1
0 PIN_FLD_RESULTS ARRAY [2] allocated 20, used 2
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
1 PIN_FLD_POID POID [0] 0.0.0.1 /event/session 252887674388489103 1
0 PIN_FLD_RESULTS ARRAY [3] allocated 20, used 2
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
1 PIN_FLD_POID POID [0] 0.0.0.1 /event/session 252887674388491981 1

With the SRCH_WITHOUT_POID flag set, the input flist looks like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /event where F1 like V1 "
0 PIN_FLD_FLAGS INT [0] 1024
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_POID POID [0] 0.0.0.1 /event/session -1 0
0 PIN_FLD_RESULTS ARRAY [4] allocated 20, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0

The output flist might look like this:

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_RESULTS ARRAY [1] allocated 20, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_RESULTS ARRAY [2] allocated 20, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_RESULTS ARRAY [3] allocated 20, used 1
1 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0

About Multischema (Global) Searches
BRM includes an alternative set of opcodes designed for use with multiple database schemas.
Global searches on multiple schemas are similar to searches on a single schema with two
main differences:

• No database number is specified in the search POID.

• The PCM_OP_GLOBAL_SEARCH opcode is called instead of the PCM_OP_SEARCH
opcode.

PCM_OP_GLOBAL_SEARCH enables a client application to search for objects that meet a set
of criteria defined by the client application. Use this opcode when you do not know enough
about the target object to specify its database schema. If you know the specific schema to
search, use PCM_OP_SEARCH instead.

Use PCM_OP_SEARCH and the other single-schema search opcodes whenever you can
because single-schema searches are the most efficient. A global search is expensive because
it is performed synchronously. It opens a context to each schema and waits for all results to be
returned before merging the results.

Chapter 19
About Multischema (Global) Searches

19-31

Note:

• Avoid using global searches when transactions are open because they can
cause the database to be locked.

• Single-schema searches are useful only when you know the database number of
the schema. If you do not know the specific schema to search, you must use a
global search.

For more information, see the following opcodes:

• To perform a global search, use the PCM_OP_GLOBAL_SEARCH opcode. See
"Performing a Global Search".

• To perform a global step search, use the following opcodes:

– PCM_OP_GLOBAL_STEP_SEARCH

– PCM_OP_GLOBAL_STEP_NEXT

– PCM_OP_GLOBAL_STEP_END

See "Performing a Global Step Search".

Performing a Global Search
To perform a global search, use the PCM_OP_GLOBAL_SEARCH opcode. This opcode
searches for objects across multiple database schemas.

This opcode enables a client application to search for objects that meet a set of criteria defined
by the client application. Use this opcode when you do not know enough about the target
object to specify its database schema. If you do know the specific schema to search, use
PCM_OP_SEARCH instead.

The input flist contains a search template for an object in the database. The element ID of the
PIN_FLD_ARGS element on the input flist specifies which argument is contained on its sub-
flist. The maximum number of search arguments is 32.

The output flist is a list of objects that meet the search criteria. An array of PIN_FLD_RESULTS
elements is returned, one for each object that was matched.

If one or more schemas are returning errors, those schemas are excluded from the search,
and this opcode continues the search across the rest of the schemas. Errors that cause this
exclusion include the following:

• A PCP context cannot be opened.

• A socket cannot be opened to a DM.

• A DM connection cannot be set to asynchronous mode.

• A send operation to the DM fails.

• A receive operation from the DM fails.

If the value of the PIN_FLD_RESULTS element on the input flist is NULL, each element of the
returned array contains all the fields from the matched object.

If the PIN_FLD_RESULTS element on the input flist contains a sub-flist with fields, only those
fields specified are returned for each of the matched objects.

Chapter 19
About Multischema (Global) Searches

19-32

You can manipulate the search results using the Flist Field Handling Macros. See "Flist Field-
Handling Macros" in BRM Developer's Reference.

Limitations

The PCM_OP_GLOBAL_SEARCH opcodes cannot do the following:

• Perform ORDER-BY searches

• Use the PCM_OPFLG_CALC_ONLY parameter

Transaction Cache

To improve performance, set the PCM_OPFLG_CACHEABLE flag.

Before the start of any search opcode, the Connection Manager (CM) writes into the database
all objects that are in writable cache, have changed during the transaction, and are the same
object type as the expected results of the search.

See "Improving Performance when Working with Objects".

Examples

See the sample test program sample_search.c in BRM_home/apps/sample. This program
includes examples of the following:

• A read object search with a single result expected

• A read fields search with multiple results expected

Performing a Global Step Search
To perform a global step search, use the PCM_OP_GLOBAL_STEP_SEARCH opcode. This
opcode step searches for objects across multiple BRM database schemas. This opcode
enables a client application to define search criteria, search for objects using that criteria, and
receive a specified number of result sets.

Note:

• If you are searching for an object in a known database schema, use
PCM_OP_STEP_SEARCH instead.

• When you perform a global step search, follow best practices and call
PCM_OP_GLOBAL_STEP_SEARCH before you call
PCM_OP_GLOBAL_STEP_END. Calling PCM_OP_GLOBAL_STEP_END in the
incorrect sequence might cause the CM to crash.

The search criteria are passed in by the client application in the form of a
PCM_OP_GLOBAL_SEARCH input flist. The input flist contains a search template for an
object in the database. The element ID of the PIN_FLD_ARGS element on the input flist
specifies which argument is contained on its sub-flist. The maximum number of search
arguments is 32.

Be careful when you pass in the search criteria.

• If you have n schemas and ask for m results, (n x m) results are fetched. Any extra results
are cached in memory in the CM.

Chapter 19
About Multischema (Global) Searches

19-33

• A global search on n schemas opens n sockets, which could adversely affect performance.

PCM_OP_GLOBAL_STEP_SEARCH only initiates step searching and gets the first set of
PIN_FLD_RESULT elements. PCM_OP_STEP_NEXT retrieves the next specified number of
results. The PCM_OP_GLOBAL_STEP_NEXT opcode only receives results; it does not do a
search. PCM_OP_GLOBAL_STEP_END ends the step search, freeing the database cursor
and returning any shared memory allocated for the results by the DM.

Stepping backward through the result set is not supported.

No shared memory is allocated in the DM for the results until
PCM_OP_GLOBAL_STEP_NEXT gets a part of the result set. When PCM_OP_STEP_END
ends the search, the shared memory is freed. An array of PIN_FLD_RESULTS elements is
returned, one for each object that was matched.

If the value of the PIN_FLD_RESULTS element on the input flist is NULL, each element of the
returned array contains all the fields from the matched object.

If the PIN_FLD_RESULTS element on the input flist contains a sub-flist with fields, only the
specified fields are returned for each of the matched objects.

The array size of PIN_FLD_RESULTS determines the number of PIN_FLD_RESULT elements
to return to the client.

An error is returned to the client if two PCM_OP_GLOBAL_STEP_SEARCH opcodes are sent
to the server. If the client is in the middle of a step search, the first search must be ended
before another is initiated.

This opcode uses the same input and output flists as PCM_OP_GLOBAL_SEARCH.

Transaction Cache

To improve performance, set the PCM_OPFLG_CACHEABLE flag.

Before the start of any search opcode, the CM writes into the database all objects that are in
writable cache, have changed during the transaction, and are the same object type as the
expected results of the search.

See "Improving Performance when Working with Objects".

Examples

The BRM_home/apps/sample/sample_search.c file contains example step searching code.

Getting the Next Set of Search Results from a Global Step Search
To get the next set of search results, use the PCM_OP_GLOBAL_STEP_NEXT opcode.

This opcode enables a client application to receive the next set of results from a search
initiated by PCM_OP_GLOBAL_STEP_SEARCH.

The PCM_OP_GLOBAL_STEP_SEARCH opcode determines the criteria for the search, sets
the size of the results, and initiates the search. See that opcode for details. This opcode only
receives results; it does not perform the search. PCM_OP_GLOBAL_STEP_END ends the
step search, freeing the database cursor and returning any shared memory allocated for the
results by the DM.

This opcode returns the results of the search in discrete chunks. That is, it goes to the DM and
gets the next set of PIN_FLD_RESULT elements. You determine the size of this result set by
using the PIN_FLD_RESULTS field on the input flist.

Chapter 19
About Multischema (Global) Searches

19-34

You can manipulate the search results by using the flist field handling macros. See "Flist Field-
Handling Macros" in BRM Developer's Reference.

This opcode uses the same input and output flists as PCM_OP_GLOBAL_SEARCH.

Transaction Cache

To improve performance, set the PCM_OPFLG_CACHEABLE flag.

Before the start of any search opcode, the CM writes into the database all objects that are in
writable cache, have changed during the transaction, and are the same object type as the
expected results of the search.

See "Improving Performance when Working with Objects".

Example

The BRM_home/apps/sample/sample_search.c file contains example step searching code.

Ending a Global Step Search
To end a global step search, use the PCM_OP_GLOBAL_STEP_END opcode. This opcode
ends global step searching that has been initiated by PCM_OP_GLOBAL_STEP_SEARCH.

PCM_OP_GLOBAL_STEP_SEARCH sets the criteria for a step search, sets the size of the
results, and initiates the search. See that opcode for details. PCM_OP_GLOBAL_STEP_NEXT
only receives results; it does not do a search. This opcode ends the step search, freeing the
database cursor and returning any shared memory allocated for the results by the DM.

This opcode uses the same input and output flists as PCM_OP_GLOBAL_SEARCH.

The BRM_home/apps/sample/sample_search.c file contains example step-searching code.

Global Search Example
This example searches for all accounts with a billing cycle of 6 months:

/*
* Create the search flist.
*/
s_flistp = PIN_FLIST_CREATE(ebufp);

/*
* Create and add the search poid.
*/
search_poidp = PIN_POID_CREATE((int64)0, "/search", (int64)-1, ebufp);
PIN_FLIST_FLD_PUT(s_flistp, PIN_FLD_POID, (void *)search_poidp, ebufp);

/*
* Add the search template.
*/
PIN_FLIST_FLD_PUT(s_flistp, PIN_FLD_TEMPLATE,
 (void *)"select X from /account where F1 = V1 ", ebufp);

/*
* Add the search argument.
*/
arg_flistp = PIN_FLIST_ELEM_ADD(s_flistp, PIN_FLD_ARGS, 1, ebufp);
num_monthly_cycles = 6;
PIN_FLIST_FLD_PUT(arg_flistp, PIN_FLD_BILL_WHEN,
 (void *)&num_monthly_cycles, ebufp);

Chapter 19
About Multischema (Global) Searches

19-35

/*
* Add the results we want to fetch.
*/
rslt_flistp = PIN_FLIST_ELEM_ADD(s_flistp, PIN_FLD_RESULTS, 0, ebufp);
PIN_FLIST_FLD_PUT(rslt_flistp, PIN_FLD_POID, (void *)NULL, ebufp);
PIN_FLIST_FLD_PUT(rslt_flistp, PIN_FLD_ACCOUNT_NO, (void *)NULL, ebufp);
PIN_FLIST_FLD_PUT(rslt_flistp, PIN_FLD_STATUS, (void *)NULL, ebufp);

/*
* Do the search.
*/
PCM_OP(ctxp->pcm_ctxp, PCM_OP_GLOBAL_SEARCH, PCM_OPFLG_READ_UNCOMMITTED,
 s_flistp, &r_flistp, ebufp);

Building the POID for the Input Flist
With multiple database schemas, all billing information, such as bill items and events for an
account, must be in the same schema where the account is located. A common algorithm
includes finding the POID for a BRM account object and then searching for additional data that
is directly related to that account, such as bill items and events.

When building the PIN_FLD_POID (FldPoid.getInst() in Java) for the opcode input flist, it is
common to use the database number of the login context. This does not work for multiple
schemas. Instead, build the PIN_FLD_POID for the search input flist by using the database
number from the account POID.

Building POID for the Input Flist in C
void FindBillItemsForAnAccount(pcm_context_t* pContext, poid_t* pAcctPoid)
{
// Start building the search input FList.

// Obsolete way:
int64 ContextDB = pin_poid_get_db(pcm_get_userid(pContext));
poid_t* pSearchPoid = PINApp::PoidCreate(ContextDB, _T("/search"), 0, &ebufp);

// Right way:
poid_t* pSearchPoid = PINApp::PoidCreate(pin_poid_get_db(pAcctPoid), _T("/search"), 0,
&ebufp);
.
.
}

Building POID for the Input Flist in Java
void FindBillItemsForAnAccount(PortalContext connection, Poid acctPoid)
{
// Start building the search input FList.

// Obsolete way:
Poid searchPoid = new Poid(connection.getCurrentDB(), 0, "/search");

// Right way:
Poid searchPoid = new Poid(acctPoid.getDb(), 0, "/search");
.
.
}

Chapter 19
About Multischema (Global) Searches

19-36

The Impact of Searches on Shared Memory Allocation
For information about the shared memory implications of searching using PCM_OP_SEARCH
or PCM_OP_GLOBAL_SEARCH, see "How BRM Allocates Shared Memory for Searches" in
BRM System Administrator's Guide.

Improving Search Performance
Search operations often constitute most of the activity in the BRM database. When
appropriate, it is a good idea to use the following techniques to improve search performance.

Removing Redundant Distinct Searches
Using a distinct search (SRCH_DISTINCT flag) is helpful when a query might return multiple
copies of the same object, but it can decrease performance when used unnecessarily. To
improve search performance, you can prevent the Oracle DM from using a distinct search
when it is redundant.

For example, the following flist search returns /account POIDs, which are always unique and
cannot contain multiple copies of the same object. Including a distinct search with this example
would be redundant.

0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_RESULTS ARRAY [*] allocated 20, used 2
1 PIN_FLD_POID POID [0] NULL poid pointer
1 PIN_FLD_ACCOUNT_NO STR [0] NULL str ptr
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_ACCOUNT_NO STR [0] "%"
0 PIN_FLD_TEMPLATE STR[0] "select X from /account 1 where lower
(1.F1) like V1"
0 PIN_FLD_FLAGS INT [0] 256

You can configure the Oracle DM to remove or log unnecessary instances of the
SRCH_DISTINCT flag when performing searches by setting the following flag in your Oracle
DM configuration file (BRM_home/sys/dm_oracle/pin.conf):

-dm audit_search_distinct_flag value

where value is one of these:

• NO_FLAG (0): Do not perform removal and logging. This is the default.

• AUDIT_DISTINCT_WARN_ONLY (1): Only log a warning for each unnecessary use of the
distinct flag during searches. Removal is not performed.

• AUDIT_DITINCT_WARN_AND_RESOLVE (2): Removes any unnecessary use of the
distinct flag during searches. It also logs a warning before each removal.

• AUDIT_DISTINCT_RESOLVE_SILENTLY (3): Silently removes unnecessary use of the
distinct flag during searches without logging any warnings.

Chapter 19
The Impact of Searches on Shared Memory Allocation

19-37

For example, this configures the Oracle DM to remove any use of unnecessary distinct flags
during searches without logging any warnings:

-dm audit_search_distinct_flag 3

Step Search Limits
You can improve search performance by limiting the size of search results.

You can specify the maximum number of objects to be returned for the entire step search (that
is, for all steps of the search) by specifying the optional PIN_FLD_RESULTS_LIMIT field in the
input flist of the following opcodes:

• PCM_OP_SEARCH

• PCM_OP_GLOBAL_SEARCH

• PCM_OP_STEP_SEARCH

• PCM_OP_GLOBAL_STEP_SEARCH

In the PCM_OP_SEARCH and PCM_OP_GLOBAL_SEARCH opcodes,
PIN_FLD_RESULTS_LIMIT 100 has the same effect as PIN_FLD_RESULTS [100].

This information helps the RDBMS run the search more efficiently.

Note:

This limit does not apply to any search that uses an order by clause. It also does not
apply to the PCM_OP_STEP_NEXT or PCM_OP_GLOBAL_STEP_NEXT opcodes.

Limiting the size of search results helps the database to process the query more efficiently
because it can stop processing as soon as it has fetched the required number of results. For
example, if a search yields 4,000,000 qualifying results, PIN_FLD_RESULTS_LIMIT 100 stops
the processing after 100 matching results are found, so only a small subset of the data is
scanned.

Transaction Caching
You can improve performance by caching transactions. Without caching, search operations
can repeatedly search the same data object within one transaction. By letting the CM cache
transactions, you eliminate this redundancy and speed up transaction processing. See
"Improving Performance when Working with Objects".

Chapter 19
Improving Search Performance

19-38

20
Adding Support for a New Service

Learn how to add a custom service to your Oracle Communications Billing and Revenue
Management (BRM) system.

Topics in this document:

• About Adding Support for a New Service

• About BRM Services

• Creating Service and Event Storable Classes

• Setting Up Rating for a New Service

• Setting Up Billing for a New Service

• Setting Up Account Creation for a New Service

• Optional Support for a New Service

About Adding Support for a New Service
This document provides an overview of adding a custom service to your BRM system. It
provides an end-to-end survey of the tasks you must perform from creating service and event
storable classes to setting up rating and billing for a new service. Each task provides a cross-
reference to the document that contains more detailed information.

You may need to perform additional tasks not described in this document, depending on your
business needs and the type of service you add.

Creating BRM services requires the following:

• Knowledge of programming in C or C++.

• A good understanding of the following BRM components:

– BRM system architecture.

– Storable classes and flists (field lists).

– Opcodes and the Portal Information Network (PIN) library routines.

– BRM error handling.

About BRM Services
A service is a capability that you provide to customers, such as telephony, broadband access,
and email. BRM comes ready to use with a set of preconfigured services, and you can create
your own custom services.

About Supporting a New Service
Before adding a new BRM service, you must understand the details of the service and how it
will be implemented. For example, if you offer a wireless telephony service, you might want to

20-1

track customer logins and provide optional support for add-on services such as text
messaging.

To offer a service that is not supported by default in BRM, you may need to perform some of
the following tasks to implement the new service:

• Create the storable classes and any custom fields the service requires. See "Creating
Service and Event Storable Classes".

• Set up pricing data for the new service. See "Setting Up Rating for a New Service".

• Set up bill items to bill for usage of a new service. See "Setting Up Billing for a New
Service".

• Enable accounts to use the new service. See "Setting Up Account Creation for a New
Service".

Creating Service and Event Storable Classes
To add a new service, first define your service by determining which information you must track
and rate. Then use Storable Class Editor in Developer Center to create new storable classes
and any custom fields required to store custom service attributes.

You can add a new service to BRM by creating a subclass of an existing BRM service storable
class (for example, /service/telco/gsm/service_subclass) or by creating a new base storable
class (/service/service_type).

You may also need to create other storable classes and custom fields to store information
about the new service. For example:

• To capture rating information for the service, you might need to create a new /event
subclass (for example, /event/session/telco/service).

• For offline charging, you must create a corresponding delayed event storable class for any
new /event storable class you added (for example, /event/delayed/session/telco/
service).

• To store custom configurations for a new service, you might need to add fields to or create
a subclass of a /config storable class. For example:

– To set up provisioning tags for a new Global System for Mobile Communications
(GSM) service, create a new /config/telco/gsm/service storable class.

– To store service-order state changes for devices associated with a new service, create
a /config/telco/service_order_state/service storable class.

– To allow CSRs to adjust events for a new service, add the event type to the /config/
adjustment/event object.

• To collect custom profile information for a new service, create a new /profile subclass.

• To store failed call records for a new service whose events are suspended by Suspense
Manager, you might need to create a /suspended_usage/service storable class. You must
create this new subclass only when the fields unique to the new service type are among
the queryable or editable fields in suspense.

To create storable classes and custom fields for a new service, perform the tasks in "Creating
Custom Fields and Storable Classes".

Use Opcode Workbench to create test instances of your new storable classes.

Chapter 20
Creating Service and Event Storable Classes

20-2

Setting Up Rating for a New Service
To enable BRM to rate a new service, you must set up pricing data for the new service and
configure Rated Event Loader to load rated event data into the database.

Setting Up Pricing Data for Online Rating
You set up service-specific pricing data for online rating by using configuration files. You then
add the service to your product offerings by creating charge offers for the new service and
adding those charge offers to bundles.

Mapping Event Types to a New Service Storable Class
You map a new service to the events used to rate the service, including any new events you
add for the service.

Defining RUMs for New Service Usage Events
You define ratable usage metrics (RUMs) to charge for events. If a new service requires RUMs
that are not yet defined, you can define new RUMs.

Setting Up Provisioning Tags for a New Service
You use charge-offer provisioning to rate a service differently based on charge offer attributes.
You implement charge-offer provisioning by defining provisioning tags.

You can use provisioning tags to define any kind of attribute. For example, provisioning tags for
prepaid services define the following service attributes:

• Extended rating attributes (ERAs)

• Supplementary services for a GSM service

• Bearer services or other service extensions for a telco service

How you define provisioning tags depends on various factors, such as the type of service,
whether you must create new ERAs, and whether you must use the provisioning tag with
discounts.

Defining Impact Categories for a New Service
You use impact categories to apply different balance impacts for the same charge based on
event attributes, such as call origin and destination.

You assign charges to impact categories when you create your pricing components in PDC.

Defining Custom Balance Elements for a New Service
If a new service requires a balance element (such as an aggregation counter balance element)
that is not already defined, define the balance element so that BRM can create a balance for it.

You define balance elements in PDC.

Chapter 20
Setting Up Rating for a New Service

20-3

Specifying How to Round Balance Impacts for New Service Usage Events
You can configure balance impact rounding for specific types of events. For example, you can
round balance impacts of session events differently than you round balance impacts of
purchase events. If you do not specify a rounding rule for an event type, BRM uses the default
rounding rule.

To specify a rounding rule for an event type you added for a new service, use PDC.

Adding a New Service to Your Product Offerings
After setting up pricing data for a new service, you can create charge offers and add them to
your product offerings.

You specify the new service type and event types for the new service when defining various
pricing components, such as the following:

• Charge offers:

– When creating a charge offer.

– When defining rollover properties if you added a custom noncurrency balance element
and you want to enable rollover for that balance element.

• Discounts:

– When creating a discount.

– When defining discount exclusion rules.

– When mapping events to a discount.

• Bundles:

– When creating a bundle.

– When making bundles mutually exclusive.

• Packages:

– When creating a package.

– When adding bundles to a package.

– When defining how a package is upgraded or downgraded to another package.

– When creating a service group.

– When setting credit limits and thresholds for a subscription service.

– When setting sub-balance consumption rules for a subscription service.

– When creating service-level balance groups.

• Charges:

– When defining a charge.

• Charge selectors:

– When specifying the service or event fields that determine which charge is selected.

Use PDC to create pricing components that define pricing information for the new service.

Chapter 20
Setting Up Rating for a New Service

20-4

Configuring Sub-Balances to Track Specific Types of Usage for a New Service
You can configure BRM keep separate balances for specific types of service usage, such as
frequent flyer miles per service instance or minutes per call session.

To keep separate sub-balances for a new service, configure sub-balances for the service's
events in the pin_sub_bal_contributor file and load the contents of the file into the /config/
sub_bal_contributor object by running the load_pin_sub_bal_contributor utility.

Adding Database Partitions for New Service Usage Events
If you use a partitioned database and you created a new service usage event, add database
partitions for the event.

Loading Rated Events for a New Service into the Database
If you rate usage for a new service, you must load rated usage events into the database.

Use Rated Event (RE) Loader to load events for a new service into the BRM database. Set up
a processing directory for the new events and configure RE Loader and the RE Loader batch
handler to load the events from that directory.

If a new service object includes new fields, you might also need to modify the RE Loader pre-
processing script and create new control files.

Setting Up Billing for a New Service
To bill for service usage, configure BRM to pre-create service-level bill items.

To set up service-level bill items, associate the new service type and its usage events with an /
item/misc object by modifying the config_item_tags and config_item_types files. Load the
contents of these files into the /config/item_tags and /config/item_types objects by running
the load_config_item_tags and load_config_item_types utilities.

Setting Up Account Creation for a New Service
To successfully create accounts for your new service, you may need to first customize the
PCM_OP_CUST_POL_PREP_INHERITED policy opcode to prepare the inherited information
for an extended subclass.

You can also write a new policy to implement custom functionality. See "About System and
Policy Opcodes".

Setting Up Business Profiles for a New Service
If you use business profiles and you want to specify rules that determine whether a new
service meets the requirements of a business profile, modify the pin_business_profile.xml
file to configure a validation template for the new service type. Load the contents of the file into
the /config/business_profile object by running the load_pin_business_profile utility.

Optional Support for a New Service
This section describes some optional ways you can configure BRM to support a new service.

Chapter 20
Setting Up Billing for a New Service

20-5

Synchronizing Data for a New Service with External Applications
Business events capture information needed by external applications or internal BRM
components. Business events are used by BRM EAI Manager to ensure data synchronization
across applications.

You can add events for a new service to a business event to synchronize any data that the
service's event might change. To add an event to a business event, modify the Payload
Generator EM configuration file (payloadconfig.xml). See "About Publishing Additional
Business Events".

For information about EAI Manager, see "About Enterprise Application Integration (EAI)
Manager".

Mapping Devices to a New Service
Perform this task if the new service requires a device such as a SIM card or phone number.

To associate a new service with a device, add the service type to your device permit map file
(such as pin_device_permit_map_num) and load the file into the /config/
device_permit_map object by running the load_pin_device_permit_map utility. See
"Defining Device-to-Service Associations".

You can associate services to the following types of devices or to custom device types that you
create:

• APNs (access point names)

• IP addresses

• Telephone numbers

• SIM cards

• Vouchers

For information about managing devices and creating new device types, see "Managing
Devices with BRM".

Providing Access to a New Service on the Web
Perform this task if you use Self-Care Manager to provide customers with self-care access to
services on the Web.

To provide access to information about a new service on the Self-Care Manager home page,
customize the Self-Care Manager interface by using the Customer Center SDK. See
"Customizing the Self-Care Manager Interface".

Generating Usage Reports for a New Service
If you create a subclass of an existing BRM service storable class, you can run and analyze
usage reports for the new service.

Chapter 20
Optional Support for a New Service

20-6

21
Using BRM Messaging Services

Learn about the Oracle Communications Billing and Revenue Management (BRM) Universal
Message Store (UMS) framework and how to use its components to provide messages on
invoices or other documents.

Topics in this document:

• About the UMS Framework

• Enabling Messaging

• Creating and Loading Message Templates

• Generating Messages in the Producer Application

• Retrieving Message Objects in the Consumer Application

About the UMS Framework
The UMS framework enables you to include system-generated messages in customer
documents such as invoices. You can use these messages to market new services or deliver
reminders of overdue balances, for example.

UMS works by providing a middle layer between producers of messages, such as Collections
Manager and third-party customer relationship management (CRM) applications, that generate
invoice reminders, and consumers of message, such as the invoicing system. This middle
layer includes storable classes to store messages and message templates and opcodes that
process the messages.

Figure 21-1 illustrates the relationships among the components of UMS. These components
are discussed in subsequent sections.

21-1

Figure 21-1 UMS Framework Components

To set up messaging, perform these tasks:

• Enabling Messaging

• Generating Messages in the Producer Application

• Retrieving Message Objects in the Consumer Application

Enabling Messaging
To enable messaging, you must modify the PCM_OP_INV_POL_PREP_INVOICE policy
opcode. See "About System and Policy Opcodes" for general information about modifying
policy opcodes.

To enable messaging:

1. Open fm_inv_pol_prep_invoice.c, the source file for PCM_OP_POL_PREP_INVOICE.
This file is located in BRM_SDK_home/source/sys/fm_inv_pol.

2. Delete or comment out the following line:

#ifdef UMS_MESSAGE_FEATURE
3. Delete or comment out the #endif line following the block of code after the #ifdef line.

4. Compile and link fm_inv_pol_prep_invoice.c to create a new shared library.

5. Replace the existing shared library on your production system with the new one.

6. Add the following entry as a single line in your CM pin.conf to load the required
messaging library:

- cm fm_module ${PIN_HOME}/lib/fm_ums/${LIBRARYEXTENSION} fm_ums_config -
pin

7. Stop and restart the CM.

Chapter 21
Enabling Messaging

21-2

Creating and Loading Message Templates
Message templates are localizable /strings objects in the BRM database. They contain the
basic text of a message along with placeholders for specific data such as names, balances,
and dates.

You create message templates by writing a localized string file. Each file contains messages
for one combination of locale (U.S. English, for example) and domain (invoice reminder
messages, for example). The file also contains the text, optionally including placeholders, for
one or more message strings. Each string requires a version and ID number.

The name of the template is entered in the HELPSTR field. This name can be displayed in
client applications such as Collections Configuration.

The combination of locale, domain, ID, and version must uniquely define each string within
the /strings storable class.

When you create a message string file, you can include placeholders that are filled with data
when the complete /message object is created. The placeholder character is a percent sign
(%) followed by a number that is incremented for each placeholder. In this example, there are
two placeholders:

LOCALE = "en_US" ;

DOMAIN = "Messages - invoice reminder" ;
STR
 ID = 0 ;
 VERSION = 1 ;
 STRING = "Your account is now past due in the amount of %1 which was
due on %2. Please send in your payment promptly." ;
 HELPSTR = "First Reminder";
END

The placeholders are replaced with data supplied as elements in the PIN_FLD_ARGS array in
the input flist of PCM_OP_UMS_SET_MESSAGE. Element numbers must correspond to
placeholder numbers; element 1 replaces %1, element 2 replaces %2, and so on.

You can include HTML tags in the message string. This is useful when the string will be
displayed in an HTML document such as an email or Web page.

You load message templates into the BRM database by running the load_localized_strings
utility. To overwrite strings with the same version and ID, specify the -f option when you run the
utility.

Generating Messages in the Producer Application
As their name implies, producer applications supply the messages to the UMS framework. In
most cases, a complete message is assembled from a message template that is filled in with
data supplied by the producer application.

Retrieving Message Templates
To create a complete /message object, the producer application requires the POID of the
template on which the message will be based. The first step is gathering a list of available
templates. From this list you can extract the POID of the template you want to use.

Chapter 21
Creating and Loading Message Templates

21-3

The producer application calls PCM_OP_UMS_GET_MESSAGE_TEMPLATES to return a list
of the POIDs of all message templates for a domain and locale that you specify. For example, if
you have stored a number of different marketing message templates for the same locale and
domain, the opcode returns a list of the POIDs and template names.

If the producer application includes a graphic user interface (GUI), you can display the
available template names for selection by the user. Otherwise, you can select the template
Portal object ID (POID) programmatically.

You can also search for the /strings object that contains the message you want. This option is
particularly useful if you aren't using a GUI and therefore do not need to display the list of
available templates. See "Searching for Objects in the BRM Database" for information about
searching.

If successful, PCM_OP_UMS_GET_MESSAGE_TEMPLATES returns an array containing the
POID and name of each template that matches the locale and domain specified in the input
flist.

PCM_OP_UMS_GET_MESSAGE_TEMPLATES stops processing if no templates are available
for the specified combination of locale and domain.

Retrieving Message Templates from /strings Objects
To display a full message template in an application, call
PCM_OP_UMS_GET_MESSAGE_TEMPLATE. This opcode retrieves the full contents of the
template.

If successful, PCM_OP_UMS_GET_MESSAGE_TEMPLATE returns the contents of the
specified message template /strings object, including the POID, domain, locale, template
name, and template string.

PCM_OP_UMS_GET_MESSAGE_TEMPLATE stops processing if the POID of the requested
template is incorrect or missing.

You can skip this step if you do not need to display the template contents. The opcode that
creates /message objects automatically calls PCM_OP_UMS_GET_MESSAGE_TEMPLATE
to retrieve the template it needs.

Creating Message Objects
The producer application creates the /message object by calling
PCM_OP_UMS_SET_MESSAGE_TEMPLATE. The input flist must include the POID of the
message template that will be used for this message.

If the template contains placeholders, the input flist must also contain an array whose elements
supply data for the placeholder. The data in element 1 replaces placeholder %1, the data in
element 2 replaces %2, and so on.

You also set the scope of the message; whether it applies to a particular bill, or to an account
when you create the /message object. You define the scope by supplying the POID of the
account or bill to which the message applies.

If the message scope is the account, you can also supply an effective date in the input flist.

PCM_OP_UMS_SET_MESSAGE stops processing under these circumstances:

• The POID of the template is missing or incorrect.

• No locale is specified.

Chapter 21
Generating Messages in the Producer Application

21-4

• No scoping information (account or bill) is specified.

• No effective date is included for account-scoped messages.

Retrieving Message Objects in the Consumer Application
The consumer application retrieves /message objects by calling
PCM_OP_UMS_GET_MESSAGE.

The opcode retrieves /message objects based on scoping information that you provide. You
specify the scope by including the account or bill object POID associated with the messages
you want.

By default, PCM_OP_UMS_GET_MESSAGE retrieves all messages that apply at the scoping
level you specify. For example, if you specify a /bill object, the opcode retrieves all messages
that are scoped to that bill and the bill's account with which it is associated. Similarly, if you
specify an /account object, the opcode retrieves messages scoped to the account.

You can modify the default scoping behavior by including the PIN_FLD_SCOPE field in the
input flist with a value of 1. With this option, PCM_OP_UMS_GET_MESSAGE finds only
messages scoped narrowly to the bill or account you specify. For example, including a /bill
object in the input flist returns only messages specifically scoped to that bill.

You can also include a locale and effective date in the input flist to further narrow the list of
messages that is returned.

For each message that matches the scope, PCM_OP_UMS_GET_MESSAGE returns an array
that contains the text of the message, the message template name, and the message domain.
The consumer application can then select the individual message programmatically or via a
GUI.

PCM_OP_UMS_GET_MESSAGE stops processing under these circumstances:

• No scoping information is included in the input flist.

• No /message objects exist that meet the scope defined in the input flist.

Chapter 21
Retrieving Message Objects in the Consumer Application

21-5

22
Using BRM with Oracle Application Integration
Architecture

Learn how to integrate your Oracle Communications Billing and Revenue Management (BRM)
system with external applications, such as financial management software, by using Oracle
Application Integration Architecture (Oracle AIA).

Topics in this document:

• About Oracle Application Integration Architecture

• Installing and Configuring the Required BRM Components

• Integrating BRM Features with External CRM Applications

• Integrating BRM Features with External CRM Applications in a Multischema System

• Creating Charge Offers and Discount Offers for an External CRM

• Creating Charge Offers with Different Prices for Multiple Price Lists

• Validating Customer Contact Information

About Oracle Application Integration Architecture
Oracle AIA enables you to set up and orchestrate cross-application business processes so that
multiple applications can work together. Oracle AIA runs on top of Oracle Fusion Middleware.

Oracle AIA for Communications pre-built integrations are pre-built packaged process
integrations between specific Oracle applications, including Siebel CRM and BRM, based on
Oracle AIA. For example, you can use the pre-built integrations to do the following:

• Create charge offers and discount offers in BRM and synchronize them with Siebel CRM,
where they can be packaged and purchased by customers.

• Create BRM accounts from accounts created in Siebel CRM.

• Access billing information from BRM to display in Siebel CRM.

• Export general ledger (G/L) data from BRM for import into Oracle Financials.

For more information, see the Application Integration Architecture documentation on Oracle
Help Center.

To set up BRM to work with Oracle AIA:

• Install and configure the required BRM components. See "Installing and Configuring the
Required BRM Components".

• Integrate BRM features with your external CRM application. See "Integrating BRM
Features with External CRM Applications".

Installing and Configuring the Required BRM Components
To integrate BRM with Oracle AIA:

22-1

• Install, deploy, and configure JCA Resource Adapter in a J2EE application server. The
adapter is the point of connection between BRM and external applications. Requests for
information come to the adapter, which then calls BRM opcodes and returns data to the
external application.

• Run the pin_ledger_report utility to export G/L data to XML files. This data can then be
imported into financial management software such as Oracle Financials.

Integrating BRM Features with External CRM Applications
You can integrate the following BRM features with your external CRM applications:

• Collections. See "Integrating Collections with External CRM Applications".

• Friends and family promotions. See "Integrating Friends and Family Promotions with
External CRM Applications".

• Invoicing. See "Displaying Siebel CRM Promotion Names on Invoices".

Integrating Collections with External CRM Applications
External CRM applications can track and manage collections activities, such as sending
dunning letters, in BRM through the Oracle AIA architecture. Collections data is synchronized
between the external CRM application and BRM as follows:

• The external CRM application updates the status of a collections action in BRM by calling
the Collections Manager API through Oracle AIA and JCA Resource Adapter.

• Collections Manager notifies the external CRM application when a collections activity
occurs, such as an account entering collections, by using the event notification system.

• Oracle AIA retrieves data from Collections Manager by reading views on the BRM
collections tables.

To integrate collections with your external CRM:

1. Install the Agent-Assisted Billing Care Process Integration Pack.

2. Configure your external CRM application to send the status of collections actions to the
PCM_OP_COLLECTIONS_SET_ACTION_STATUS opcode. The external CRM
application sends information to the opcode through Oracle AIA and JCA Resource
Adapter.

The attributes required to call the opcode are listed in the BRM_home/apps/
brm_integrations/wsdls/BRMCollectionsServices.wsdl file.

3. Configure BRM to publish CollectionsAction business events to the AQ database queue.
See "Synchronizing Pricing Data between the BRM Database and External CRMs" in BRM
System Administrator's Guide.

4. Configure your external CRM application to retrieve the CollectionsAction business event
from the AQ database queue. See "Synchronizing Pricing Data between the BRM
Database and External CRMs" in BRM System Administrator's Guide.

5. Configure the BRM pin_collections_process utility to publish CollectionsInfoChange
business events to the AQ database queue:

a. Open the pin_collections_process configuration file (BRM_home/apps/
pin_collections/pin.conf) in a text editor.

b. Add the following entry to the file:

- pin_collections_process publish_run_details 1

Chapter 22
Integrating BRM Features with External CRM Applications

22-2

c. Save and close the file.

See "Understanding Collections Manager" in BRM Collections Manager for more
information.

Integrating Friends and Family Promotions with External CRM Applications
External CRM applications can track and manage friends and family promotions in BRM
through the Oracle AIA architecture.

When customers order a friends and family promotion, BRM stores information about the
promotion in a provisioning tag. During the pricing data synchronization process, the Oracle
DM publishes the provisioning tag and its associated charge offer in a ProductInfoChange
business event to the AQ database queue. The external CRM application can then retrieve the
ProductInfoChange business event from the AQ queue and update the information in its
system.

To integrate friends and family promotions with your external CRM application:

• Configure BRM to publish ProductInfoChange business events to the AQ queue.

• Configure your external CRM application to retrieve the ProductInfoChange business
event from the AQ queue.

For more information, see "Synchronizing Pricing Data between the BRM Database and
External CRMs" in BRM System Administrator's Guide.

Displaying Siebel CRM Promotion Names on Invoices
You can set up your system to display Siebel CRM promotion names on customer invoices.

To include Siebel CRM promotion names on BRM invoices:

• Ensure that BRM is configured to display promotion details on invoices.

• Configure Siebel CRM to send information about the promotion to the
PCM_OP_SUBSCRIPTION_SET_BUNDLE opcode. The application sends information to
the BRM opcode through Oracle AIA and JCA Resource Adapter.

The attributes required to call the opcode are listed in the BRM_home/apps/
brm_integrations/wsdls/BRMSubscriptionServices.wsdl file.

• Use an invoice template that displays promotion names and details.

For more information, see "Adding Siebel CRM Promotion Names to Invoices" in BRM
Designing and Generating Invoices.

Integrating BRM Features with External CRM Applications in a
Multischema System

You can integrate the following BRM features with your external CRM application in a
multischema system:

• Account Migration Manager (AMM). See "Integrating Account Migrations with External
Applications in a Multischema System" for more information.

• Collections. See "Integrating Collections with External Applications in a Multischema
System" for more information.

Chapter 22
Integrating BRM Features with External CRM Applications in a Multischema System

22-3

Integrating Account Migrations with External Applications in a Multischema
System

Account migration is synchronized between the external CRM application and BRM in a
multischema system as follows:

1. AMM populates the MIGRATED_OBJECTS_T cross-reference table in the primary BRM
database with the batch ID and old and new POID values of all the objects that have
successfully been migrated.

2. After successfully migrating a group of accounts from one schema to another, BRM
generates AccountInfoChange business events. These events are sent to the Enterprise
Application Integration Data Manager (EAI DM) using an event notification message.

3. The EAI DM publishes the AccountInfoChange business events to the Oracle advanced
queuing (AQ) database queue.

4. Oracle AIA retrieves the AccountInfoChange business events from the AQ database
queue and updates the information in the AIA database.

5. Oracle AIA updates the AIA cross-reference table in the AIA database.

6. Oracle AIA deletes the entries in the MIGRATED_OBJECTS_T cross-reference table in the
primary BRM database after reading the entries for a particular batch.

To integrate account migration with the external application in a multischema environment:

Note:

Before running AMM, verify that all the collections related Oracle Data Integrator jobs
have been completed successfully. For more information on the Oracle Data
Integrator jobs, see the Oracle Data Integrator documentation.

1. Install the Oracle AIA for Communications pre-built integration that integrates BRM with
your external application. For more information on the Oracle AIA for Communications pre-
built integrations, see the Oracle AIA documentation.

2. Add the publish_migrated_objects entry to the AMM Infranet.properties file by doing
the following:

a. Open the BRM_home/sys/amt/Infranet.properties file in a text editor.

b. Add the following entry:

publish_migrated_objects = value [, value2 ...]

where value is a comma-separated list of storable classes whose objects are stored in
the MIGRATED_OBJECTS_T cross-reference table.

Note:

If you do not set this entry, AMM will not integrate with an external application
in a multischema environment.

Chapter 22
Integrating BRM Features with External CRM Applications in a Multischema System

22-4

c. Save and close the file.

3. Configure BRM to publish AccountInfoChange business events to the AQ database
queue. See "Configuring the EAI Payload to Synchronize Data" in BRM System
Administrator's Guide.

4. Configure your external application to retrieve the AccountInfoChange business event
from the AQ database queue. See "About Retrieving Specific Events from the AQ
Database Queue" in BRM System Administrator's Guide.

Integrating Collections with External Applications in a Multischema System
To integrate collections with your external application using Oracle AIA in a multischema
system, BRM populates the custom views in BRM collections tables with the /
collection_actions POID schema number, hard-coded as 0.0.0.1 regardless of the schema
where the account resides. For /account and /billinfo (bill unit) objects, the external
application reads the schema where the account is residing, whether it is a single-schema or a
multischema environment.

See "Integrating Collections with External CRM Applications" for information on integrating
collections with your external application.

Creating Charge Offers and Discount Offers for an External CRM
When you create charge offers and discount offers to use in an external CRM, do not add them
to bundles and packages. External CRMs, such as Siebel CRM, do not use BRM bundles and
packages. They create their own bundles with the BRM charge offers and discount offers.

You use the pin_export_price utility to export charge offers and discount offers from BRM to
external CRMs.

Creating Charge Offers with Different Prices for Multiple Price
Lists

When you use Oracle AIA to integrate BRM with an external application, such as a CRM
application, you can configure prices in BRM charge offers to vary based on the price list used
by the external application. To do this, when you configure a charge offer in PDC, you create
charge selector rules that associate the external application's price list names with the
appropriate charges.

When the charge offer is purchased, the price list name is saved with the purchased offer
information in BRM. Before the BRM rating engine calculates each charge, the price list name
is added to the event being rated, and the rating engine uses that name and the charge
selector rules to determine the price.

For information about Siebel CRM price lists, see the following:

https://docs.oracle.com/cd/E58077_01/doc.116/e55959/
chap3_mdmsiebelcrm.htm#CHDJHDID

Validating Customer Contact Information
During account creation, BRM validates the format of customer contact information, such as
phone numbers, before creating the account in the BRM database. For example, when a
customer or customer service representative enters a phone number, BRM validates that the

Chapter 22
Creating Charge Offers and Discount Offers for an External CRM

22-5

https://docs.oracle.com/cd/E58077_01/doc.116/e55959/chap3_mdmsiebelcrm.htm#CHDJHDID
https://docs.oracle.com/cd/E58077_01/doc.116/e55959/chap3_mdmsiebelcrm.htm#CHDJHDID

phone number includes the correct number of digits or contains parentheses around area
codes.

By default, BRM accepts nine different telephone number formats. If your external CRM does
not use one of the default formats, you must either:

• Add your telephone number format to the list of acceptable formats.

• Configure BRM to accept any telephone number format.

Note:

BRM stores customer contact data in the format passed in by the external CRM.
BRM also uses this same format when creating customer invoices. You must
configure your external application to pass in phone numbers in the format you
would like displayed on customer invoices.

For information about setting the valid telephone number formats, see "Customizing Account
Creation" in BRM Managing Customers.

Chapter 22
Validating Customer Contact Information

22-6

23
Using Event Notification

Learn how to enable and use the event notification feature in Oracle Communications Billing
and Revenue Management (BRM).

Topics in this document:

• About Event Notification

• Implementing Event Notification

• About Notification Events

About Event Notification
Event notification automatically triggers BRM operations when specified events occur.

The triggering events are mapped to one or more opcodes in a configuration object (/config/
notify) stored in the BRM database. When any event occurs, BRM checks whether the event
is listed as a triggering event in the configuration object. If it is, BRM calls the opcode or
opcodes mapped to the event. The information in the event is passed to the opcodes in their
input flists. Optionally, a flag can also be passed to the opcodes.

By default, event notification is not enabled. To enable and customize this feature, see
"Implementing Event Notification".

About the Event Notification List
The event notification list contains all the events that trigger event notification in your BRM
system. Each event in the list is mapped to the opcode or opcodes that are run when the event
occurs. The event notification list is stored in the /config/notify object in your BRM database.

By default, the event notification list is not loaded into the database. To load the list into the
database, you must first set up the list in a configuration file. Depending on which BRM
features you use, your system may contain one or more of the following configuration files for
event notification. Each file contains default event-to-opcode mapping that supports event
notification for one or more BRM features. All of the event notification configuration files
available in your system are in the BRM_home/sys/data/config directory, where BRM_home
is the directory in which the BRM server software is installed.

• pin_notify: Supports the following features:

– Automated Monitor Setup (AMS)

– Device management

– Discounting

– Email notification

– Event rerating

– Midcycle charge offer charge-change calculations

– Balance reservation for disputes and settlements

23-1

• pin_notify_eai: Supports Enterprise Application Integration (EAI) Manager.

• pin_notify_ifw_sync: Supports account synchronization and Suspense Manager.

• pin_notify_ipc: Supports policy-driven charging.

• pin_notify_kafka_sync: Supports the Kafka DM.

• pin_notify_ldap: Supports Lightweight Directory Access Protocol (LDAP) Manager.

• pin_notify_plugin_http: Supports the EAI Manager dm_http plug-in. See "Configuring
EAI Manager to Publish to an HTTP Port".

• pin_notify_ra: Supports Revenue Assurance Manager and Suspense Manager.

• pin_notify_telco: Supports Global System for Mobile Communications (GSM) Manager.

To modify the content of one of these files, see "Editing the Event Notification List".

If your system contains more than one of these files, you must merge their contents into a
single file. See "Merging Event Notification Lists".

To load the content of one of these files into the BRM database, see "Loading the Event
Notification List".

Note:

Configuring notification thresholds that result in large number of subscriber breaches
can impact call detail record (CDR) throughput.

Implementing Event Notification
By default, event notification is not enabled in BRM because the /config/notify object is not
created during installation. To implement event notification:

1. If your system has multiple configuration files for event notification, merge them. See
"Merging Event Notification Lists".

2. (Optional) To accommodate your business needs, add events to or comment them out of
the configuration file that contains the final event notification list you want to load into the
BRM database. See "Editing the Event Notification List".

3. (Optional) If necessary to accommodate your business needs, create custom code for
event notification to trigger. See "Triggering Custom Operations".

4. Load your final event notification list into the BRM database. See "Loading the Event
Notification List".

You can customize event notification by using the PCM_OP_ACT_POL_EVENT_NOTIFY
opcode. This opcode is called by various event notification processes and by the
PCM_OP_ACT_POL_EVENT_LIMIT policy opcode. This opcode processes events for LDAP
integration and email notification when invoked by event notification.

Merging Event Notification Lists
To enable event notification, you run the load_pin_notify utility to load the configuration file
containing your event notification list into the BRM database. Before running the utility,
however, you must merge configuration files for event notification if either of the following is
true:

Chapter 23
Implementing Event Notification

23-2

• You are enabling event notification for the first time, and your system has multiple
configuration files for event notification.

• Your BRM database already contains an event notification list, and you want to add an
event notification list for another feature to the database.

Caution:

If you load the new feature's list before merging it with your system's current list,
you will disable event notification for the features supported by the current list.

To merge event notification lists:

1. In a text editor, open all the event notification configuration files that you want to merge. By
default, the files are in the BRM_home/sys/data/config directory.

2. Copy all the entries from the open files into one of the default files or into a new file.

Tip:

Save a copy of the default files before merging them.

3. Save and close the merged file.

Tip:

You can give the merged file any name you want, and you can store it in any
location.

To edit the merged file, see "Editing the Event Notification List".

To load the merged file, see "Loading the Event Notification List".

Editing the Event Notification List
Your system's event notification list is set up in a configuration file (see "About the Event
Notification List"). To modify the event notification list:

1. In a text editor, open the configuration file that contains the list. By default, the file is in the
BRM_home/sys/data/config directory.

2. To add an entry to the list, use this syntax:

opcode_number flag event

where:

• opcode_number is the number associated with the opcode run when the event occurs.
Opcode numbers are defined in header (*.h) files in the BRM_home/include/ops
directory.

• flag is the name of the flag to pass to the opcode when it is called by the event
notification feature. 0 means no flag is passed.

Chapter 23
Implementing Event Notification

23-3

• event is the name of the event that triggers the execution of the opcode. You can use
any BRM default or custom event defined in your system. Triggering events do not
have to be persistent. For example, you can use notification events (see "About
Notification Events") and events that you have excluded from the BRM database (see
"Managing Database Usage" in BRM System Administrator's Guide).

For example:

301 0 /event/session

This example specifies that when an /event/session event occurs, the event notification
feature calls opcode number 301, which is the PCM_OP_ACT_POL_EVENT_NOTIFY
policy opcode, passing it the contents of the event but not passing it any flag.

To run multiple opcodes when an event occurs, see "Triggering Multiple Opcodes with One
Event".

3. To disable an entry in the list, insert a number sign (#) at the beginning of the entry. For
example:

301 0 /event/session
4. Close and save the edited file.

Tip:

You can give the file any name you want, and you can store it in any location.

5. Load the edited list into the BRM database. See "Loading the Event Notification List".

Triggering Multiple Opcodes with One Event
If an event is mapped to more than one opcode in the event notification list, BRM runs the
opcodes in the order they are listed whenever the event is generated.

The following example specifies that when an /event/provisioning/service_order/telco/gsm
event is generated, BRM first runs PCM_OP_TCF_PROV_HANDLE_SVC_ORDER (opcode
number 4017), then runs PCM_OP_TCF_PROV_UPDATE_PROV_OBJECT (opcode number
4019).

4017 0 /event/provisioning/service_order/telco/gsm
4019 0 /event/provisioning/service_order/telco/gsm

Triggering Custom Operations
To use event notification to trigger custom operations not included in an existing policy opcode:

1. Add the operation to the PCM_OP_ACT_POL_EVENT_NOTIFY policy opcode.

2. Add the following entry to your system's event notification list:

301 flag event

For more information, see "Editing the Event Notification List".

Chapter 23
Implementing Event Notification

23-4

Note:

301 is the number of PCM_OP_ACT_POL_EVENT_NOTIFY.

Loading the Event Notification List
To add your event notification list to the BRM database, run the load_pin_notify utility. The
utility loads the list into the /config/notify object.

Caution:

This utility replaces the current list in the /config/notify object with the list in the
configuration file that you load. If you use event notification for multiple features, you
must merge the old list with the new list before running this utility. Otherwise, you will
lose existing event notification functionality. See "Merging Event Notification Lists".

Note:

To connect to the BRM database, this utility needs a configuration (pin.conf) file in
the directory from which you run the utility. For information about creating
configuration files for BRM utilities, see "Creating Configuration Files for BRM
Utilities" in BRM System Administrator's Guide.

To load the event notification list:

1. Go to the directory that contains the list you want to load. By default, configuration files
containing event notification lists are in the BRM_home/sys/data/config directory.

2. If necessary, do one or both of the following:

• Edit the list. See "Editing the Event Notification List".

• Merge the list with other event notification lists. See "Merging Event Notification Lists".

Caution:

This utility overwrites all existing data in your system's /config/notify object.
If you are updating the event notification list, you cannot load new or
changed entries only. You must load the entire list each time you run the
utility.

3. If you edited or merged the list, save the configuration file that contains the final list.

Chapter 23
Implementing Event Notification

23-5

Note:

You can give the file any name you want, and you can place the file anywhere
you want.

4. Use the following command to run the load_pin_notify utility:

load_pin_notify event_notification_configuration_file_name

If you do not run the utility from the directory in which the configuration file is located,
include the complete path to the file. For example:

load_pin_notify BRM_home/sys/data/config/event_notification_configuration_file_name
5. Stop and restart the Connection Manager (CM).

6. (EAI Manager only) Stop and restart the EAI Data Manager (DM):

cd BRM_home/bin
stop_dm_eai
start_dm_eai

7. (EAI Manager only) Stop and restart the Payload Generator External Module (EM):

cd BRM_home/bin
stop_eai_js
start_eai_js

8. (GSM Manager only) Start the Provisioning DM:

start dm_prov_telco
9. To verify that the event notification list was loaded, use one of these features to display the

config/notify object:

• Object Browser

• robj command with the testnap utility

Note:

By default, the BRM database does not contain the /config/notify object.
The object is created when you run the load_pin_notify utility.

For information about reading an object and writing its contents to a file, see "Reading an
Object and Writing Its Contents to a File".

About Notification Events
Any subclass of the /event storable class can be used to trigger event notification. When
standard /event subclasses are used to trigger event notification, the information their
instances contain is handled as follows:

• It is added to the input flist of the opcode or opcodes that are run.

• It is stored in the BRM database.

For more information about standard /event subclasses, see BRM Storable Class Reference.

Chapter 23
About Notification Events

23-6

Unlike instances of standard events, instances of /event/notification subclasses (notification
events) are not persistent. Hence, the information they contain is not stored in any database.
Instead, it is used only to populate the input flists of opcodes run by the event notification
feature.

Chapter 23
About Notification Events

23-7

24
Writing Custom Batch Handlers

Learn about the batch handler feature in Oracle Communications Billing and Revenue
Management (BRM) and how to write custom batch handlers.

Topics in this document:

• About Batch Handlers

• Configuration Parameters

• Batch Handler Work Flow

About Batch Handlers
Batch handlers are typically used to launch specific applications on a timed or occurrence-
driven basis. Each batch handler can be any executable program or script that can be run from
a command line. It can be written in Perl, shell script, C, Java, or any other language, so long
as it can call an application and update the status and other fields in the BRM database.

Batch handlers run under the control of the Batch Controller. The Batch Controller lets you
specify when to run programs or scripts automatically, either at timed intervals or upon creation
of certain files, such as log files. For more information about the Batch Controller, see
"Controlling Batch Operations" in BRM System Administrator's Guide.

Configuration Parameters
For BRM-related parameters, each batch handler must use a standard pin.conf or
Infranet.properties configuration file. For any other parameters, it can also use its own,
separate, configuration file.

You can configure the Batch Controller's handler_name.start.string parameter to pass
parameters to your batch handler, using any options except –p and –d. The command that the
Batch Controller issues is actually:

handler_name.start.string –p handler_poid –d failed_handler_poid

Therefore, the –p and –d options are reserved.

For more about configuration, see "Controlling Batch Operations" in BRM System
Administrator's Guide.

Batch Handler Work Flow
The Batch Controller uses status values, in the BRM database, to monitor the operation status
of batch handlers. Handlers must be carefully coded to set this status to the right values at the
right times.

As the handler proceeds, the BRM database keeps track of its status, according to Table 24-1:

24-1

Table 24-1 Status Values

Status Keyword Value

NOT_STARTED –1

STARTING 0

STARTED 1

INTERRUPTED 2

COMPLETED 19

FAILED_TO_START 50

FAILED_TO_COMPLETE 51

You can define other status values for the handler to set, for tracking its own internal status, but
these custom status values must be 100 or greater.

Note:

All values 99 and lower are reserved for BRM.

All values in this table, other than STARTED and COMPLETED, are set by the Batch
Controller. A handler must never set the status of its handler object to any value other than
STARTED, COMPLETED, or a value greater than 99. The controller relies on this value.

When the Batch Controller detects a file or a time that is to trigger a batch handler, it creates a
new object in the BRM database to record that occurrence. It then creates new handler objects
in the database, with their status set to NOT_STARTED.

The Batch Controller then checks to see if it can run a handler. Its configuration specifies a
maximum number of handler instances for high-load times and a different maximum for low-
load times.

If the applicable maximum has not been reached, the Batch Controller:

1. Sets the handler's status to STARTING.

2. Extracts the Portal object ID (POID) of the related handler object.

3. Issues this command:

handler_name.start.string –p handler_poid

to start the handler. The start string can include parameter options other than –p and –d.

Once the batch handler has started, it must:

1. Read its configuration file or files and configure itself.

2. Connect to the BRM database.

3. Find the corresponding handler object in the BRM database, using the POID that was
passed with the ‐p option when the Batch Controller started the handler.

4. Set the status field to STARTED. The Batch Controller uses this field to monitor the status
of running handlers.

Chapter 24
Batch Handler Work Flow

24-2

If a handler object continues to show STARTING status after a waiting time specified in the
Batch Controller's Infranet.properties file, the Batch Controller changes the status to
FAILED_TO_START, and then issues this command to start a replacement copy of the
handler:

handler_name.start.string –p handler_poid –d failed_handler_poid

The replacement handler gets its own POID in the –p option. It also gets the POID of the
failed handler, in the –d option.

5. Perform its designed activity, which typically includes starting a BRM feature or other
application.

6. Collect the return value of the application that the handler called, and change the status
field accordingly:

a. If the activity has completed satisfactorily, set the status field to COMPLETED.

b. If the return value indicates that the activity was not successful, the handler must set
the status field a value greater than 99. After the configured waiting time, if the related
handler object does not show status either COMPLETED or greater than 99, the Batch
Controller changes the status to FAILED_TO_COMPLETE. It does not, however, start
a replacement copy of the handler.

Note:

It is up to you to monitor the BRM database and the Batch Controller's log
file, to see if any handler has failed to complete. If a handler does take longer
than the timeout period to complete, for any reason, it can still update the
status of its handler object to a value greater than 99; to satisfy the Batch
Controller's timeout watcher.

7. End the handler's event session.

8. Exit.

When the Batch Controller detects the COMPLETED status, it decrements its count of
currently running handlers.

Chapter 24
Batch Handler Work Flow

24-3

25
Managing Devices with BRM

Learn about the Device Management framework in Oracle Communications Billing and
Revenue Management (BRM) and how to use its components to build custom device
management systems.

Topics in this document:

• About the Device Management Framework

• Implementing Device Management

• Device Management and Multischema Environments

• Configuring Event Notification for Device Management

• Defining the Device Life Cycle

• Defining Device-to-Service Associations

• Creating Custom Device Management Systems

About the Device Management Framework
The Device Management framework enables you to write applications to manage devices in
BRM or to connect an existing device management system to BRM. The Device Management
framework is used by BRM optional components such as SIM (Subscriber Identity Module)
Manager and Number Manager to facilitate their device management features.

The Device Management framework is part of Inventory Manager, which is an optional,
separately purchased feature.

In BRM, a device can be physical, such as a set-top box, or "virtual," such as a phone number.
Both types of devices are represented in BRM as objects.

The Device Management framework provides a storable class, /device, which can be
subclassed to accommodate specific device types. Each /device or its /device subclass
represents an individual device.

Device management involves creating device objects, associating them with services and
accounts, controlling their life cycles, and removing them when they are no longer needed. The
framework provides storable classes, standard and policy opcodes, and utilities for these
purposes.

Implementing Device Management
The Device Management framework includes opcodes and objects that are used to store and
manage devices. It provides the following functionality:

• Creating Devices

• Managing the Device Life Cycle

• Managing Device Attributes

• Associating Devices and Services

25-1

• Deleting Devices

• Tracking Device History

Creating Devices
Each device that you track in BRM is represented by a /device object. The way these objects
are created depends on your business. For example, if you supply the devices yourself, you
might create /device objects in bulk with a custom-designed application. When a customer is
assigned a device, you would use one of the already existing /device objects.

On the other hand, if your business works with devices such as SIM cards that customers
supply themselves, you might use a custom graphic user interface (GUI) tool to create /device
objects at the same time that you set up customer accounts.

While there are many scenarios for device creation, the actual process used is always the
same: all device-creation applications call PCM_OP_DEVICE_CREATE. This opcode creates /
device objects using the device type, initial state, and attributes specified in the input flist. See
"Managing the Device Life Cycle" for more information about device states and "Managing
Device Attributes" for more information about device attributes.

Because your business may need to manage several types of devices, the /device storable
class can be subclassed to represent device types. Each device type is a group of devices that
have similar characteristics. For example, the BRM Number Manager creates /device/num
objects while the SIM Manager creates /device/sim objects.

You use Storable Class Editor, part of Developer Center, to create new subclasses. See
"Creating Custom Fields and Storable Classes".

A policy opcode, PCM_OP_DEVICE_POL_CREATE, enables you to customize the device
creation process. For example, you can customize the policy to ensure that all devices have
unique numbers.

Managing the Device Life Cycle
Devices pass through various stages in their life cycle. For example, a set-top box moves from
manufacturing to a service provider's inventory, where it might be pre-provisioned. From there
it is assigned to a retailer or perhaps directly to a subscriber. After it reaches the end-user, it
could be returned for repair, obsoleted, or stolen.

A device management system must keep track of these stages or device states. In BRM, the
device state is represented by the PIN_FLD_DEVICE_STATE field in a /device object. The
value of this field represents the current state of the device. The set of possible device states
and state transitions defines the life cycle of a /device object.

Device life cycles are regulated by /config/device_state objects in the database. You define
device states and state changes in a configuration file and load it into the database by using
the load_pin_device_state utility. See "Defining the Device Life Cycle" for more information.

Device management applications call the PCM_OP_DEVICE_UPDATE opcode to change
device states (or PCM_OP_DEVICE_SET_STATE for state changes only). The opcode
validates the change specified in the opcode against the /config/device_state object for that
device type.

There are two ways to add validation checks or other business logic to a device state change.
One way is to modify the PCM_OP_DEVICE_POL_SET_STATE policy opcode. This opcode is
called automatically by PCM_OP_DEVICE_SET_STATE before changing the device state.
Another way is to add additional validation checks to the policy opcode of your choice or a
custom policy opcode, and reference the opcode in the /config/device_state object. You do

Chapter 25
Implementing Device Management

25-2

this by adding opcode numbers to the configuration file that you create for each device, and
loading the data in the file into /config/device_state by using the load_pin_device_state
utility. BRM invokes the opcodes specified for each device type. For more information, see
"Customizing Device State Changes" and "load_pin_device_state".

Managing Device Attributes
Devices have attributes such as descriptions, serial numbers, and manufacturer names that a
device management system needs to track the devices. These attributes can be used to
identify devices in GUI device management applications.

Device attributes are stored in /device object fields. Attributes applicable to all devices (device
ID, description, manufacturer, and model) appear in the base /device storable class. You can
add fields to /device subclasses for attributes specific to particular device types. For example, /
device/sim contains attributes specific to SIM cards.

Applications call PCM_OP_DEVICE_UPDATE (or PCM_OP_DEVICE_SET_ATTR individually)
to set device attributes. This opcode can be used to change the common attributes mentioned
above and the attributes introduced in subclasses. It cannot be used to change the device
state or service association.

Use the PCM_OP_DEVICE_POL_SET_ATTR opcode to customize setting device attributes.
See BRM Opcode Guide.

Associating Devices and Services
Devices are associated with services. For example, a set-top box requires movies or other
content to be useful. The reverse is also true; a video-on-demand service requires a device to
display it.

In BRM, these device-to-service associations are represented by the association of /device
objects with /service objects. For example, when a CSR provisions an account with a service
that requires a device, the POID of the /service object is added to the PIN_FLD_SERVICES
array in the /device object. The /account object POID associated with the service is also
added to the /device object.

These device-to-service associations can take place on a many-to-many basis. One device
may require multiple services and one service may require multiple devices. For example, a
SIM card can be provisioned with several different wireless services.

The /config/device_permit_map object determine which service types can be associated with
which device types. You define the valid device-to-service mappings in a configuration file and
load it into the /config/device_permit_map object by running the
load_pin_device_permit_map utility. See "Defining Device-to-Service Associations".

Applications call PCM_OP_DEVICE_ASSOCIATE to associate and disassociate devices and
services for a particular account or at the account level. A flag in the input flist determines
whether the services and devices are associated or disassociated. This opcode validates the
associations against the /config/device_permit_map object for the device type specified in
the input flist. Invalid associations cause the opcode to fail.

Deleting Devices
Devices can be removed from service for a variety of reasons. They might be returned by the
customer, lost, stolen, or become obsolete. You can call PCM_OP_DEVICE_DELETE to
remove the device object from the database when it is no longer needed.

Chapter 25
Implementing Device Management

25-3

Before you delete a device object, you should disassociate services from the device. During
device deletion, the PCM_OP_DEVICE_POL_DELETE opcode checks for services associated
with the device. If associations are found, the opcode generates an error and cancels the
transaction. If desired, you can modify the policy to prevent the association check or to
automatically remove associations before the device object is deleted.

In some cases you may want to replace a device object while keeping service associations
intact. In this case, disassociate the services from the old device object and reassociate them
with the new device in the same transaction. After the services are reassociated, you can
delete the original device object.

See "Associating Devices and Services" for more information about device-to-service
associations.

Tracking Device History
All operations to a /device object, such as device creation, state transitions, and changes to
attributes, are recorded in the database as events. Recording events allows you to track the
history of a device.

You can turn off event recording and turn on auditing to maintain a device history without
storing details. For information about choosing which events to record, see "Managing
Database Usage" in BRM System Administrator's Guide. For an introduction to auditing and
links to more detailed information, see "About Maintaining an Audit Trail of BRM Activity" in
BRM Managing Customers.

Two BRM reports enable you to monitor the status and device history of devices. See "About
BRM Reports" in BRM Reports.

Device Management and Multischema Environments
The Device Management framework supports multischema environments, with some
restrictions:

• A /device object can be associated only with /account and /service objects located in the
same database schema as the /device object.

• /device objects are not available across schemas. Device management /config objects (/
config/device_state and /config/device_permit_map) are available, however.

• You cannot move /device objects from one schema to another. You can delete the objects
and re-create them in another schema, but service and account associations are lost.

• You can enforce device number uniqueness across schemas, but this requires the use of
global search opcodes and may result in slow performance.

Configuring Event Notification for Device Management
When a device state changes, Device Management uses event notification to call opcodes that
perform the appropriate follow-up operations.

Although any subclass of the /event storable class can be used to trigger event notification
(see "About Notification Events"), Device Management generates /event/notification/device/
state specifically to use for event notification.

Before you can use Device Management, you must configure the event notification feature as
follows:

Chapter 25
Device Management and Multischema Environments

25-4

1. If your system has multiple configuration files for event notification, merge them. See
"Merging Event Notification Lists".

2. Ensure that the merged file includes the following information from the BRM_home/sys/
data/config/pin_notify file, where BRM_home is the directory in which the BRM server
software is installed:

Device Management Framework related event notification
2706 0 /event/notification/device/state

3. (Optional) If necessary to accommodate your business needs, add, modify, or delete
entries in your final event notification list. See "Editing the Event Notification List".

4. (Optional) If necessary to accommodate your business needs, create custom code for
event notification to trigger. See "Triggering Custom Operations".

5. Load your final event notification list into the BRM database. See "Loading the Event
Notification List".

For more information, see "Using Event Notification".

Defining the Device Life Cycle
You define the life cycle for device objects in BRM by editing or creating a configuration file and
then loading the data into a /config/device_state object in the database.

Each /config/device_state object contains definitions of the possible device states and state
changes for one device type. /config/device_state objects also contain information about
which policy opcodes to call during state changes.

See "load_pin_device_state" for detailed information about the syntax of the configuration file
and running the load utility. See "Customizing Device State Changes" for information about
calling policy opcodes.

Note:

You must load the life cycle definitions into the database before using any device
management features. Because device management configuration data is always
customized, no default values are loaded during BRM installation.

While the life cycle for every /device object is unique, the general pattern for all /device
objects is the same:

• During device creation, a /device object moves from Raw state (state 0) to an initial state
that is defined for that device type. /device objects cannot be saved in Raw state.

• During the life of the /device object, it moves from state to state in ways that are defined in
a /config/device_state object. For example, a device might be able to move from a Pre-
provisioned state to an Assigned to Dealer state, but not directly from Assigned to
Subscriber state. Each device type has its own /config/device_state object, so you can
define different life cycles to meet your business needs.

• At the end of the working life of the /device object, it moves into a final state such as
Stolen or Obsolete. Depending on business needs, the object could then be deleted to
save space.

Chapter 25
Defining the Device Life Cycle

25-5

There can be any number of device states, each of which is assigned a number in the device
state configuration file. State 0 is reserved for Raw state, but other numbers can be freely
assigned.

There are four state types that correspond to the stages in the general pattern described
above. These state types are defined in the pin_device.h header file and cannot be changed.

When you define device states, they must be assigned to one of these types:

• Raw: There can be only one device state of this type for each device type. /device objects
are in raw state only during the creation process. They can never be saved in a raw state.
Raw states can transition only to Init states.

• Init: This state type is for states in which the object can first be saved to the database.
There can be more than one initial state for a particular device type. For example, you
might want the device to be initialized to one state when created by a batch device creation
tool and to another state when created by a CSR using a GUI tool. Init states can transition
to Init, Normal, or End states.

• Normal: Normal device states are all those that occur between the object's initial state and
its end state. You can think of these as the "working" states for the device. There can be
any number of Normal device states. Normal states can transition to Init states, other
Normal states, and End states.

• End: Devices cannot transition from End states. Because there are many possible end-of-
life scenarios, you can include any number of End states.

When you define a device life cycle, be sure to consider all the stages in the life cycle of the
actual device and all the possible relationships between them. You should also consider the
level of detail that is useful to track in your device management system.

Figure 25-1 shows a relatively simple device life cycle for wireless phone SIM cards. The life
cycles for your devices may be more complex depending on the characteristics of the devices
and your business needs.

Figure 25-1 Wireless Phone SIM Card Life Cycle

Localizing Device State Names
The names you use for device states can be localized for display in a GUI application. You
must define the state names as text strings and load the definitions into the database. To
localize the device state names, you edit a copy of the device_states.en_US sample file in the
BRM_home/sys/msgs/devicestates directory and save the edited version with the correct

Chapter 25
Defining the Device Life Cycle

25-6

locale file extension. You then use the load_localized_strings utility to load the contents of
the file into the /strings objects.

When you run the load_localized_strings utility, use this command:

load_localized_strings device_states.locale

Note:

If you're loading a localized version of this file, use the correct file extension for your
locale. For a list of file extensions, see "Locale Names".

For information on loading the device_states.locale file, see "Loading Localized or
Customized Strings". For information on creating new strings for this file, see "Creating New
Strings and Customizing Existing Strings".

Customizing Device State Changes
PCM_OP_DEVICE_UPDATE is used to change device states. It calls
PCM_OP_DEVICE_SET_STATE to actually make the change. During the processing of
PCM_OP_DEVICE_SET_STATE opcode, there are two opportunities to call policy opcodes:

• The first policy call takes place during the state change itself, just before the transaction is
committed to the database.

• The second occurs just after the transaction that changes the device state.

You can use these two policy calls for different purposes. For example, you might want to
customize the process for assigning a SIM card to a customer, which involves a state change.
During the first policy call by PCM_OP_DEVICE_SET_STATE, the policy opcode could check
the customer's handset to ensure compatibility with the SIM card. If the two devices are
compatible, the state change takes place. In the second policy call, after the state change
transaction is complete, the policy opcode could provision the SIM card by calling
PCM_OP_DEVICE_ASSOCIATE.

PCM_OP_DEVICE_POL_SET_STATE is the default policy opcode for device state changes.
You can create any number of custom policy opcodes to replace or supplement it. You can also
specify additional policy opcodes to call for each state change in the device-specific
configuration file that defines the device life cycle. For each state change, you can specify an
opcode for one, both, or neither of the two potential policy calls.

For information on naming and setting up this configuration file, see load_pin_device_state.
For information about the state change opcodes, see:

• PCM_OP_DEVICE_UPDATE

• PCM_OP_DEVICE_SET_STATE

• PCM_OP_DEVICE_POL_SET_STATE

Defining Device-to-Service Associations
You define which device and service types can be associated by editing or creating a
configuration file and then loading the data into a /config/device_permit_map object in the
database.

Chapter 25
Defining Device-to-Service Associations

25-7

See load_pin_device_permit_map for detailed information about running the load utility and
about the syntax of the configuration file. See PCM_OP_DEVICE_ASSOCIATE and
PCM_OP_DEVICE_POL_ASSOCIATE for more information about the device-to-service
mapping opcodes.

Note:

You must load the mapping information into the database before using any device
management features. Because device management configuration data is always
customized, default values are not loaded during BRM installation.

Use the PCM_OP_DEVICE_POL_ASSOCIATE opcode to customize device association.

Device and service types can be associated in any combination. One device can have any
number of associated services. Likewise, one service may require multiple devices.

Creating Custom Device Management Systems
You can create custom device management systems using the Device Management
framework. A device management system could be a separate, stand-alone application that
performs all necessary tasks, or it could be an enabling application that connects an existing
device management system.

A device management application is no different from any other BRM application except that it
makes use of the opcodes and storable classes provided by the framework.

"Adding New Client Applications" provides a general overview and information about writing
applications in C. Other chapters provide information about additional programming languages.

You will need to complete some or all of the following tasks to implement a device
management system:

1. Create a subclass of the /device storable class for every new device type. Each subclass
should include fields for the unique attributes of the device type.

You use Storable Class Editor to create fields and storable classes. See "Creating Custom
Fields and Storable Classes".

2. If necessary, write a new FM for any unique functionality required by your device
management system.

See "Writing a Custom Facilities Module".

3. If necessary, modify the Device FM policy opcodes to customize the default device
management functionality.

See "About System and Policy Opcodes" for general information and "Device FM Policy
Opcodes" in BRM Opcode Guide for specific information about the Device policy opcodes.

4. Write a custom application that calls the Device standard and policy opcodes and any
custom opcodes you have created.

See "Adding New Client Applications" for general information and information about writing
applications in C.

5. Define the life cycles and device-to-service mappings for your devices.

See "Defining the Device Life Cycle" and "Defining Device-to-Service Associations".

Chapter 25
Creating Custom Device Management Systems

25-8

26
Managing Orders

Learn how to use Oracle Communications Billing and Revenue Management (BRM) Order
Manager and its components to build custom order management systems.

Topics in this document:

• About Order Manager

• Implementing Order Manager

• Installing Order Manager

• Order Management and Multischema Environments

• About Defining the Order Life Cycle

• Creating Custom Order Management Systems

• About the Order Management Opcodes

About Order Manager
Order Manager enables you to write applications to manage orders and sub-orders in BRM or
to connect an existing order management system to BRM.

Order Manager is part of Inventory Manager, which is an optional, separately purchased
feature.

In BRM, an order is a request for a physical or virtual object such as a SIM card. An order is
represented in BRM as an object. You use Order Manager to create orders for device inventory
such as SIM cards. Order Manager provides the /order storable class, which you can subclass
to represent specific order types. Each object in /order or its subclasses represents an
individual order.

Order management includes creating the order objects, controlling their life cycles and their
attributes, processing orders, tracking their history, and removing orders when they are no
longer needed. The framework provides storable classes, standard and policy events, and
utilities for these purposes.

Implementing Order Manager
Order Manager provides the following functionality:

• Creating Orders

• Processing Order Response Files

• Managing the Order Life Cycle

• Associating or Disassociating Orders with Master Orders

• Managing Order Attributes

• Deleting Orders

• Tracking Order History

26-1

• Managing the Order History Log

Creating Orders
Each order that you track in BRM is represented by an /order object. The way these objects
are created depends on your business. You can create orders and sub-orders, and you can
associate sub-orders with master orders.

While there are many scenarios for order creation, the actual process used is always the
same: all order-creation applications call PCM_OP_ORDER_CREATE. This opcode creates
BRM /order objects that use the order type, initial state, and attributes specified in the input
flist. See "Creating /order Objects".

A policy opcode, PCM_OP_ORDER_POL_CREATE, enables you to customize the order
creation process.

Because your business may need to manage several types of orders, the /order storable class
can be subclassed to represent different order types.

You use Storable Class Editor, an application in Developer Center, to create new subclasses.
See "Creating Custom Fields and Storable Classes".

Processing Order Response Files
After you create an order, you send it to the vendor or manufacturer and request an order
response file. The manufacturer returns an order response file that lists the set of devices that
are created. You then process this response file to store the data in the BRM database.

A policy opcode, PCM_OP_ORDER_POL_PROCESS, enables you to customize the /order
object when you process an order.

Processing order response files includes creating devices in the database and updating the
status of the requested order to either Received or Partially Received.

Managing the Order Life Cycle
Real-world orders pass through various stages. For example, an order can be new, received,
or canceled. An order management system must keep track of these stages, or order states. In
BRM, the order state is represented by the PIN_FLD_STATUS field in the /order object. The
value of this field represents the current state of the order. The set of possible order states and
state transitions defines the life cycle of an /order object.

Order life cycles are regulated by /config/order_state objects in the database. You define
order states and state changes in a configuration file and load it into the database by using the
load_pin_order_state utility. See "About Defining the Order Life Cycle" for more information.

Order management applications call PCM_OP_ORDER_UPDATE. This opcode is a wrapper
opcode that calls one of the following opcodes to change order states, depending on the input
flist provided for this opcode:

• PCM_OP_ORDER_SET_STATE

• PCM_OP_ORDER_SET_ATTR

PCM_OP_ORDER_UPDATE also validates the change specified in the opcode against the /
config/order_state object for that order type. Invalid order states or state changes cause the
opcode to fail.

Chapter 26
Implementing Order Manager

26-2

Associating or Disassociating Orders with Master Orders
You can associate or disassociate orders with other orders. You can create orders and make
them master orders by including or associating sub-orders with them. You can do this while
creating the orders, or you can create orders and later associate them with other orders.

Applications call PCM_OP_ORDER_ASSOCIATE and the
PCM_OP_ORDER_POL_ASSOCIATE policy opcode to associate and disassociate orders and
create orders in different levels. A flag in the input flist determines whether the order is
associated or disassociated. PCM_OP_ORDER_ASSOCIATE validates the associations
against the order types, master orders, and sub-orders in question. Invalid associations cause
the opcode to fail. PCM_OP_ORDER_ASSOCIATE updates the order array to include or
exclude sub-orders. See "Associating and Disassociating /order Objects".

Managing Order Attributes
Each order has a unique ID, the order ID, that identifies the order for tracking by the order
management system. This order ID is used to identify orders, search for orders, create a
request file, modify orders, and delete orders.

Note:

To modify or delete an order, the state of the order must be New.

You can add fields to /order objects for attributes specific to particular order types.

Applications call PCM_OP_ORDER_SET_ATTR and the
PCM_OP_ORDER_POL_SET_STATE policy opcode to set order attributes and order state.
PCM_OP_ORDER_SET_ATTR can be used to change the common attributes mentioned
above and the attributes introduced in subclasses. It cannot be used to change the order state
or to cancel an order.

Deleting Orders
Orders can be deleted for a variety of reasons. You can call PCM_OP_ORDER_DELETE to
remove the order object from the database when it is no longer needed.

During order deletion, the PCM_OP_ORDER_POL_DELETE policy opcode searches for the
order by using the order ID. If the order ID is not found, the opcode generates an error. You
can modify the policy to bypass the check and automatically remove the order object to be
deleted.

Note:

If you delete a master order, the sub-orders associated with it are automatically
deleted as well.

See "Associating or Disassociating Orders with Master Orders" for more information about
master order–to–sub-order associations.

Chapter 26
Implementing Order Manager

26-3

Tracking Order History
All order operations, such as order creation, state transitions, and changes to attributes, are
recorded in the database as events. Recording events enables you to track the history of an
order.

You can turn off event recording and turn on auditing to maintain order history without storing
details. For information about choosing which events to record, see "Managing Database
Usage" in BRM System Administrator's Guide. For an introduction to auditing and links to more
detailed information, see "About Maintaining an Audit Trail of BRM Activity" in BRM Managing
Customers.

Two BRM reports enable you to monitor the status and history of orders. See "About BRM
Reports" in BRM Reports.

Managing the Order History Log
All operations related to the /order object, including order creation, setting order states, setting
order attributes, and deleting orders, are logged in the database.

Customers can search the logging history for any /order object in the database.

Installing Order Manager
Order Manager is included in the Inventory Manager installation package.

To install Order Manager:

1. Follow the instructions in "Installing BRM" in BRM Installation Guide to install the full build
package (brmserver_15.0.0.x.0_linux_generic_full.jar).

2. When the Installation Type screen appears during the installation process, do one of the
following:

• To install all BRM components, including the EAI Manager, select the Complete
installation option.

• To install the EAI Manager, along with other individual BRM components, select the
Custom installation option, select EAI Manager 15.0.0.x.0, and then select any other
optional managers you want to install.

3. Follow the instructions displayed during installation.

Note:

The installation program does not prompt you for the installation directory if BRM
or Inventory Manager is already installed on the machine and automatically
installs the package at the BRM_home location, where BRM_home is the
directory in which the BRM server software is installed.

4. Go to the directory where you installed the Inventory Manager package and source the
source.me file:

Bash shell:

source source.me.sh

Chapter 26
Installing Order Manager

26-4

https://docs.oracle.com/pls/topic/lookup?ctx=en/industries/communications/billing-revenue/15.0/dev-guide&id=BRMIG-GUID-C1490DB0-156A-4A0C-AB09-91D9B9F51143

C shell:

source source.me.csh
5. Go to the BRM_home/setup directory and run the pin_setup script.

Note:

The pin_setup script starts all required BRM processes.

Uninstalling Order Manager
To uninstall Order Manager, run the BRM_home/uninstaller/InventoryMgr/uninstaller.bin.

Order Management and Multischema Environments
Order Manager supports multischema environments, with some restrictions:

• An /order object and the corresponding /event/order objects are stored in the specified
database schema when an order is created.

• The master order object cannot be linked to sub-orders that reside in other schemas.

• You cannot move /order objects from one schema to another. You can delete the objects
and re-create them in another schema, but master order and sub-order associations are
lost.

About Defining the Order Life Cycle
You define the life cycle for order objects in BRM by editing or creating a configuration file and
then loading the data into a /config/order_state object in the database.

Each /config/order_state object contains definitions of the possible order states and state
changes for one order type. /config/order_state objects also contain information about which
policy opcodes to call during state changes.

For detailed information about the syntax of the configuration file and running the load utility,
see "load_pin_order_state".

Note:

You must load the life cycle definitions into the database before using any order
management features. Because order management configuration data is always
customized, no default values are loaded during BRM installation.

While the life cycle for every /order object is unique, the general pattern for all /order objects is
the same:

• During order creation, an /order object moves from state 0 to an initial state that is defined
for that order type.

• During the life of the /order object, it moves from state to state in the manner defined in a /
config/order_state object. For example, an order might be able to move from the New

Chapter 26
Order Management and Multischema Environments

26-5

state to the Request state, but not directly from the New state to the Received state. Each
order type has its own /config/order_state object, so you can define different life cycles to
meet your business needs.

• At the end of the working life of the /order object, it moves into a final state such as
Received or Cancelled. Depending on your business needs, the object could also be
deleted to save space.

Note:

You can delete an order only when its order state is New.

There can be any number of order states, each of which is assigned a number in the order
state configuration file. State 0 is reserved for the Raw state, but other numbers can be freely
assigned.

There are four state types that correspond to the stages in the general pattern described
above. These state types are defined in the pin_order.h header file and cannot be changed.

• State 0 indicates that the order is in Raw state.

• State 1 indicates that the order is in Init state.

• State 2 indicates that the order is in Normal state.

• State 3 indicates that the order is in End state.

When you define order states, they must be assigned to one of these types:

• Raw: There can be only one order state of this type for each order type. /order objects are
in raw state only during the creation process. They can never be saved in the raw state.
Raw states can transition only to Init states.

• Init: This state type is for states in which the object is first saved to the database. There
can be more than one initial state for a particular order type. For example, you might want
the order to be initialized to one state when created by a batch order creation tool and to
another state when created by a CSR using a GUI tool. Init states can transition to Init,
Normal, or End states. The order state New uses the Init state type.

• Normal: Normal order states are those that occur between the object's initial state and its
end state. You can think of these as the working states for the order. There can be any
number of Normal order states. Normal states can transition to Init states, other Normal
states, and End states. The order states Request and Partially Received use the Normal
state type.

• End: Orders cannot transition from End states. Because there are many possible end-of-
life scenarios, you can include any number of End states. The order states Received and
Cancelled use the End state type.

A typical order moves through the following states:

• New: The /order objects have this state when the order is created.

• Request: The /order objects have this state when an order is sent to the manufacturer for
order creation.

• Partially Received: The /order objects have this state when the order is partially received.

• Received: The /order objects have this state when the order is completely received.

• Cancelled: The /order objects have this state when the order is canceled.

Chapter 26
About Defining the Order Life Cycle

26-6

Note:

Only orders that have the order state New can be canceled.

When you define an order life cycle, be sure to consider all the stages in the life cycle of the
order and all the possible relationships between them. You should also consider the level of
detail that is useful to track in your order management system.

The names you use for order states can be localized for display in GUI applications. You must
define the state names as text strings and load the definitions into the database by using the
load_localized_strings utility.

Creating Custom Order Management Systems
You can create custom order management systems by using Order Manager. An order
management system can be a separate, standalone application that performs all necessary
tasks, or it can be an enabling application that connects BRM to an existing order management
system.

"Adding New Client Applications" provides a general overview and information about writing
applications in C. Other sections provide information about additional programming languages.

You need to complete some or all of the following tasks to implement an order management
system:

1. Create a subclass of the /order storable class for every new order type. Each subclass
should include fields for the unique attributes of the order type.

You use Storable Class Editor to create fields and storable classes. See "Creating Custom
Fields and Storable Classes".

2. If necessary, write a new Facility Module (FM) for any unique functionality required by your
order management system.

See "Writing a Custom Facilities Module".

3. If necessary, modify the Order FM policy opcodes to customize the default order
management functionality.

See "About System and Policy Opcodes" for general information and "Order FM Policy
Opcodes" in BRM Opcode Guide for specific information about the Order Manager policy
opcodes.

4. Write a custom application that calls the Order Manager standard and policy opcodes and
any custom opcodes you created.

See "Adding New Client Applications" for general information and information about writing
applications in C.

5. Define the life cycles and order associations for your orders.

See "About Defining the Order Life Cycle" and "Associating or Disassociating Orders with
Master Orders".

About the Order Management Opcodes
Use the following opcodes to manage orders:

• To create an order, use PCM_OP_ORDER_CREATE. See "Creating /order Objects".

Chapter 26
Creating Custom Order Management Systems

26-7

• To process an order request from a vendor or manufacturer, use
PCM_OP_ORDER_PROCESS. See "Processing Order Response Files".

• To associate an order with a master order or a sub-order, use
PCM_OP_ORDER_ASSOCIATE. See "Associating and Disassociating /order Objects".

• To update the state or attributes of an existing order, use PCM_OP_ORDER_UPDATE.
See "Updating /order Objects".

• To delete an existing order, use PCM_OP_ORDER_DELETE. See "Deleting /order
Objects".

Note:

These standard opcodes call Order FM policy opcodes prior to committing
changes to the database. You can customize the Order FM policy opcodes to
perform additional validation. See BRM Opcode Guide.

Creating /order Objects
Use PCM_OP_ORDER_CREATE to create an /order object. See "Creating Orders".

This opcode takes a type-only POID as input, which specifies the order type and the target
database. PCM_OP_ORDER_CREATE performs these operations:

1. Calls the PCM_OP_ORDER_POL_CREATE policy opcode for validation. This opcode
checks the POID type and calls other related Facilities Modules (FMs) and policy FMs to
perform any validation checks those opcodes require.

2. Creates an /order object of the type specified in the input flist. This object includes all
mandatory attributes for the order type.

3. Calls PCM_OP_ORDER_SET_STATE to set the initial order state. See "Setting the State
in /order Objects".

4. If events are being recorded, generates an /event/order/create object.

5. If necessary, calls PCM_OP_ORDER_ASSOCIATE to associate the order with any master
orders or sub-orders. See "Associating and Disassociating /order Objects".

6. Returns the POID of the /order object.

PCM_OP_ORDER_CREATE stops processing under these circumstances:

• When the PCM_OP_ORDER_POL_CREATE policy opcode fails.

• When PCM_OP_ORDER_SET_STATE fails.

If PCM_OP_ORDER_CREATE is not successful, it logs an error in the CM pinlog file,
indicating the reason for the failure. The transaction is rolled back and no /order object is
created.

Customizing Order Creation
Use the PCM_OP_ORDER_POL_CREATE policy opcode to customize any validation or
checks to be performed before the actual processing starts.

For example, if orders of a particular type require an order ID with certain characteristics, you
can validate the ID supplied by the input flist. Similarly, you can use the opcode to ensure that
all mandatory attributes of a particular order type are included in the new object.

Chapter 26
About the Order Management Opcodes

26-8

Processing Order Response Files
Use PCM_OP_ORDER_PROCESS to process order response files from the vendor or
manufacturer. This opcode creates the devices in the BRM database and then updates the
order status. See "Processing Order Response Files".

PCM_OP_ORDER_PROCESS performs these operations:

1. Retrieves data about the order from the /order object.

2. Calls the PCM_OP_ORDER_POL_PROCESS policy opcode for validation. This policy
opcode calls other FMs and Policy FMs depending on the POID type passed in.

3. Calls PCM_OP_DEVICE_CREATE to create the specified devices in the BRM database.
See "Managing Devices with BRM".

4. Calls PCM_OP_ORDER_UPDATE to update the status of the /order object.

5. If events are being processed, generates an /event/order/process object.

6. Returns the POID of the /order object.

PCM_OP_ORDER_PROCESS stops processing under these circumstances:

• When a /config/order_state object cannot be found for this order type.

• When the order state change is invalid based on the /config/order_state object for this
order type.

Customizing Order Processing
The PCM_OP_ORDER_POL_PROCESS policy opcode allows you to customize any validation
or checks to be performed before the actual processing starts.

You can use this opcode to perform validation of /order objects when you process the order.

Associating and Disassociating /order Objects
Use PCM_OP_ORDER_ASSOCIATE to associate or disassociate a sub-order with a master
order. For information, see "Associating or Disassociating Orders with Master Orders".

You can associate or disassociate orders during account creation or when required. When
associating sub-orders with master orders, it contains the POID of the master order.

PCM_OP_ORDER_ASSOCIATE performs these operations:

1. Determines whether to associate or disassociate by checking the PIN_FLD_FLAGS field:

• When the flag is set to 1, the opcode associates the specified objects.

• When the flag is set to 0, the opcode disassociates the specified objects.

2. For association only, validates the order–to–sub-order association.

3. Calls the PCM_OP_ORDER_POL_ASSOCIATE policy opcode for validation. This policy
opcode calls other FMs and policy FMs depending on the POID type passed in.

4. Associates or disassociates the objects.

5. If events are being recorded, generates an /event/order/associate or /event/order/
disassociate object.

6. Returns the POID of the /order object.

Chapter 26
About the Order Management Opcodes

26-9

PCM_OP_ORDER_ASSOCIATE stops processing if an order listed in the input flist already
exists in the /order object.

Customize How to Validate Association and Disassociation
Use the PCM_OP_ORDER_POL_ASSOCIATE policy opcode to customize any validation, in
addition to the standard validation, or any checks to be performed before the actual order
association or disassociation starts.

For example, you could limit the number of associations for particular order types or trigger a
state change after certain associations or disassociations.

Updating /order Objects
Use PCM_OP_ORDER_UPDATE to update the state or attributes of an existing /order object.

This opcode takes as input the POID of the /order object to change, the program that is calling
the opcode, and the fields to change, along with their new values. If the opcode is changing the
attributes of an /order subclass, it can include fields introduced in the subclass.

PCM_OP_ORDER_UPDATE is a wrapper opcode that calls other opcodes to perform the
actual modification to the order. The opcode determines whether to update the order state or
order attributes by checking the fields passed in on the input flist:

• When the PIN_FLD_STATUS field is passed in, PCM_OP_ORDER_UPDATE changes the
order state by calling PCM_OP_ORDER_SET_STATE. See "Setting the State in /order
Objects".

• When the PIN_FLD_EXTENDED_INFO array is passed in, the opcode changes the order
attributes by calling PCM_OP_ORDER_SET_ATTR. See "Changing /order Object
Attributes".

PCM_OP_ORDER_UPDATE stops processing under these circumstances:

• When the PCM_OP_ORDER_POL_SET_ATTR or PCM_OP_ORDER_POL_SET_STATE
policy opcode fails.

• When an attribute to change doesn't exist in the /order object.

Setting the State in /order Objects
Use PCM_OP_ORDER_SET_STATE to set or change the state of an /order object. During the
processing of this opcode, there are two opportunities to call policy opcodes for validation:

• The first policy call takes place during the state change itself, just before the transaction is
committed to the database.

• The second occurs just after the transaction that changes the order state.

You specify which policy opcodes to call for each state change in the same configuration file
where you define the order life cycle. For each state change, you can specify an opcode for
one, both, or neither of the two potential policy calls.

The PCM_OP_ORDER_POL_SET_STATE policy opcode is supplied as the default policy
opcode for order state changes. You can create any number of custom policy opcodes to
replace or supplement it. You enter the numbers of the policy opcodes in the configuration file.

For more information, see "Managing the Order Life Cycle".

PCM_OP_ORDER_SET_STATE takes as input the POID of the /order object, the calling
program, the old state ID, and the new state ID. It then performs these operations:

Chapter 26
About the Order Management Opcodes

26-10

1. Checks the validity of the state change based on the /config/order_state object for this
order type. If the state change is not allowed, this opcode stops processing.

2. Calls the policy opcode specified in /config/order_state for the in-transition event.

3. Changes the PIN_FLD_STATUS field in the /order object to the new state.

4. Calls the policy opcode specified in /config/order_state for the post-transition event.

5. If events are being recorded, generates an /event/order/state object.

6. Returns the POID of the /order object.

PCM_OP_ORDER_SET_STATE stops processing under these circumstances:

• When the order state change is not valid based on the /config/order_state object for this
order type.

• When a /config/order_state object cannot be found for this order type.

• When the input flist attempts to change the order from a Raw state type to any state type
other than Init or attempts to change the order from an End state type to any other state.

Customizing How to Validate State Changes

The PCM_OP_ORDER_POL_SET_STATE policy opcode allows you to customize any
validation or checks to be performed before the actual processing starts.

You can customize this policy opcode to provide additional validation or functionality during
order state changes.

Changing /order Object Attributes
Use PCM_OP_ORDER_SET_ATTR to change the attributes for an existing /order object. This
opcode is called by PCM_OP_ORDER_UPDATE to update the object's attributes. See
"Managing Order Attributes".

Different order types can have different attributes. The attributes common to all orders, such as
the text description stored in the PIN_FLD_DESCR field, are contained in the main /order
object. Attributes specific to particular order types are stored in their subclasses.

Note:

You cannot use PCM_OP_ORDER_SET_ATTR to change the order state or order
association. If the input flist includes these fields, they are ignored.

PCM_OP_ORDER_SET_ATTR performs these operations:

1. Calls the PCM_OP_ORDER_POL_SET_ATTR policy opcode for validation. This policy
opcode calls other FMs and policy FMs based on the POID type passed in.

2. Updates the /order object to include the new attribute values.

3. If events are being recorded, generates an /event/order/attribute object.

4. Returns the POID of the /order object.

PCM_OP_ORDER_SET_ATTR stops processing under these circumstances:

• When the PCM_OP_ORDER_POL_SET_ATTR policy opcode fails.

• When an attribute to change doesn't exist in the /order object.

Chapter 26
About the Order Management Opcodes

26-11

Customizing the opcode

The PCM_OP_ORDER_POL_SET_ATTR policy opcode allows you to customize any
validation or checks to be performed before the actual processing starts.

You can use this opcode to perform validations or to set the attributes for the order object. For
example, you can write code to validate the order ID in the input flist to conform to the pattern
for a particular order type.

Deleting /order Objects
Use PCM_OP_ORDER_DELETE to delete an /order object. See "Deleting Orders".

PCM_OP_ORDER_DELETE performs these operations:

1. Calls the PCM_OP_ORDER_POL_DELETE policy opcode for validation. This policy
opcode calls other FMs and policy FMs based on the POID type.

2. If the specified object is a sub-order, calls PCM_OP_ORDER_ASSOCIATE to disassociate
the object from the master order.

3. Deletes the specified /order object from the BRM database.

4. If events are being recorded, generates an /event/order/delete object.

5. Returns the POID of the /order object.

PCM_OP_ORDER_DELETE stops processing if the PCM_OP_ORDER_POL_DELETE policy
opcode fails.

Customizing How to Delete Orders
The PCM_OP_ORDER_POL_DELETE policy opcode allows you to customize any validation
or checks to be performed before the actual processing starts.

You can use this policy opcode to customize the order-deletion process. For example, you can
disable the service association check that is performed by default.

Chapter 26
About the Order Management Opcodes

26-12

Part III
Integrating BRM with Enterprise Applications

This part describes the Oracle Communications Billing and Revenue Management (BRM)
Enterprise Application Integration (EAI) Manager framework and explains how to build a
connector application to integrate BRM with other enterprise applications.

It contains the following chapters:

• About Enterprise Application Integration (EAI) Manager

• Installing EAI Manager

• Payload Configuration File Syntax

• Filtering which Business Events Are Published

• Building a Connector Application

• Configuring EAI Manager

• Configuring Business Events

• EAI DM Functions

27
About Enterprise Application Integration (EAI)
Manager

Learn how to integrate Oracle Communications Billing and Revenue Management (BRM) with
other enterprise applications by using the Enterprise Application Integration (EAI) Manager
framework.

Topics in this document:

• About Integrating BRM with Enterprise Applications

About Integrating BRM with Enterprise Applications
You can integrate BRM with other applications in your enterprise by using EAI Manager.
Integrating BRM with enterprise applications ensures data synchronization across applications
in your enterprise and avoids data duplication among applications.

EAI Manager integrates BRM with enterprise applications by publishing business events. EAI
Manager includes a default set of business events to be published. You can add additional
events or remove unnecessary events by modifying a configuration file. A connector
application built by you or a middleware vendor provides access to these events. The EAI
Manager framework includes a set of functions that you implement in the connector
application.

By default, EAI Manager publishes events in XML format. You can publish events in BRM flist
format by specifying that format in the configuration file.

To collect and publish BRM events, EAI Manager performs these tasks:

1. EAI Manager uses event notification to cache events in the Payload Generator.

2. When the cached events form a complete business event as defined in the
payloadconfig.xml configuration file, the Payload Generator generates the data (payload)
to be published.

The payload is generated in one of two ways, depending on the option you choose in the
configuration file:

• By reading the fields in the incoming flists for the event

• By accessing the BRM database

The Payload Generator generates the payload in XML or flist format as specified in the
configuration file and sends it to the EAI Data Managers (DMs) through the Connection
Manager (CM).

3. The EAI DM publishes the payload as a business event to external systems.

Figure 27-1 shows the EAI Manager architecture and data flow:

27-1

Figure 27-1 EAI Manager Architecture and Data Flow

To integrate BRM with enterprise applications, you need to perform the following tasks:

1. Install EAI Manager. See "Installing EAI Manager".

2. (Optional) Edit the configuration file to publish additional business events or change the
data for default events. See "Configuring Business Events".

3. Build your connector application. See "Building a Connector Application".

4. Configure BRM to connect to EAI Manager and your connector application. See
"Configuring EAI Manager".

Chapter 27
About Integrating BRM with Enterprise Applications

27-2

28
Installing EAI Manager

Learn how to install the Oracle Communications Billing and Revenue Management (BRM)
Enterprise Application Integration (EAI) Manager.

Topics in this document:

• About Installing EAI Manager

• Software Requirements

• Installing EAI Manager

• Configuring Event Notification for EAI Manager

About Installing EAI Manager
You can install EAI Manager on Linux operating systems. The EAI Manager includes these
three EAI features:

• EAI Connection Manager (CM) module

• EAI Data Manager

• Payload Generator External Module (EM) (also called the EAI Java Server or eai_js)

When you install EAI Manager, the installation program assigns default values in the CM and
EAI DM configuration (pin.conf) files and the Payload Generator properties
(Infranet.properties) file. For information about changing the entries in the pin.conf and
properties files, see "Configuring EAI Manager".

Software Requirements
Before installing EAI Manager, you must install:

• Third-Party software, which includes the Perl libraries and JRE required for installing BRM
components. See "Preparing for BRM Installation" in BRM Installation Guide.

• BRM. See "BRM Installation Overview" in BRM Installation Guide.

Installing EAI Manager
To install EAI Manager:

1. Go to the directory where you installed the Third-Party package and source the source.me
file.

Caution:

You must source the source.me file to proceed with installation, otherwise
"suitable JVM not found" and other error messages appear.

28-1

Bash shell:

source source.me.sh

C shell:

source source.me.csh
2. Follow the instructions in "Installing BRM" in BRM Installation Guide to install the full build

package (brmserver_15.0.0.x.0_linux_generic_full.jar).

3. When the Installation Type screen appears during the installation process, do one of the
following:

• To install all BRM components, including the EAI Manager, select the Complete
installation option.

• To install the EAI Manager, along with other individual BRM components, select the
Custom installation option, select EAI Manager 15.0.0.x.0, and then select any other
optional managers you want to install.

4. Follow the instructions displayed during installation.

Note:

The installation program does not prompt you for the installation directory if BRM
or EAI Manager is already installed on the machine and automatically installs the
package at the BRM_home location, where BRM_home is the directory in which
the BRM server software is installed.

5. Go to the directory where you installed the EAI Manager package and source the
source.me file:

Bash shell:

source source.me.sh

C shell:

source source.me.csh
6. Go to the BRM_home/setup directory and run the pin_setup script.

7. Open the BRM_home/sys/cm/pin.conf file in a text editor, change the value of the
enable_publish entry to 1, and then save and close the file.

8. Load information for EAI Manager into your system's event notification list.

See "Configuring Event Notification for EAI Manager".

9. Stop and restart all BRM processes.

Increasing Heap Size to Avoid "Out of Memory" Error Messages
To avoid "Out of Memory" error messages, increase the maximum heap size used by the Java
Virtual Machine (JVM). The exact amount varies greatly with your needs and system
resources. By default, the JVM used has a maximum heap size of 60 MB. Increase the
maximum heap size to 120 MB by entering the following sample code in a text editor:

%IF_EXISTS%("INIT_JAVA_HEAP", "@INIT_JAVA_HEAP@20m") %IF_EXISTS%
("MAX_JAVA_HEAP", "@MAX_JAVA_HEAP@120m")

Chapter 28
Installing EAI Manager

28-2

https://docs.oracle.com/pls/topic/lookup?ctx=en/industries/communications/billing-revenue/15.0/dev-guide&id=BRMIG-GUID-C1490DB0-156A-4A0C-AB09-91D9B9F51143

where 20m and 120m indicate the minimum and maximum heap sizes respectively.

Save the file as Packagename.ja in the temporary directory to which you downloaded the
installation software. Packagename indicates the name of the installation software.

Configuring Event Notification for EAI Manager
When a BRM event that is included in a business event occurs, EAI Manager uses event
notification to call the opcode that caches the BRM event in the Payload Generator.

Before you can use EAI Manager, you must configure the event notification feature as follows:

1. If your system has multiple configuration files for event notification, merge them. See
"Merging Event Notification Lists".

2. Ensure that the merged file includes the entire event notification list in the BRM_home/sys/
data/config/pin_notify_eai file.

Note:

The BRM events listed in the pin_notify_eai file are not business events. A
business event comprises one or more BRM events. You define business events
in the payloadconfig.xml file. See "Configuring Business Events".

3. If you configured EAI Manager to publish to an HTTP port, ensure that the merged file also
includes the entire event notification list in the BRM_home/sys/data/config/
pin_notify_plugin_http file.

See "Configuring EAI Manager to Publish to an HTTP Port".

4. (Optional) If necessary, add, modify, or delete entries in your final event notification list.
See "Editing the Event Notification List".

Note:

If you changed the default set of BRM events to be published by adding business
events or by modifying the existing business events, you must edit your final
event notification list to include all the BRM events in the new or modified
business events.

5. Load your final event notification list into the BRM database. See "Loading the Event
Notification List".

For more information, see "Using Event Notification".

Chapter 28
Configuring Event Notification for EAI Manager

28-3

29
Payload Configuration File Syntax

Learn about the payload configuration file syntax for Oracle Communications Billing and
Revenue Management (BRM) Enterprise Application Integration (EAI) Manager.

Topics in this document:

• About the Payload Configuration File Syntax

• Publisher Definitions

• Event Definitions

• Element Definitions

• Syntax of Elements and Attributes

• Event Flist, Event Definition, and XML Output Example

About the Payload Configuration File Syntax
This section describes the syntax of the configuration file used to define the business events.

The configuration file has three sections:

• "Publisher Definitions" (<PublisherDefs>) lists the publisher and the events to publish.
Each event in the list is defined in the event definition section.

• "Event Definitions " (<EventDefs>) defines the contents, source, and format of the events
to publish. Each sub-element in the event definition is defined in the element definition
section.

• "Element Definitions" (<ElementDefs>) defines the sub-elements specified in the event
definitions.

Figure 29-1 shows the relationship between the elements in the different sections of the
configuration file:

29-1

Figure 29-1 Sample Payload Configuration File

Publisher Definitions
You specify each business event that needs to be published, such as customer account
creation, in the <PublisherDefs> section between the <Publisher> tags. The publisher
definition is a list of all the business events to publish.

The <PublisherDefs> section defines the publisher to which the events are sent. You can
include multiple publishers. You define each publisher as an element with the tag <Publisher>.

The publisher definition includes the following elements:

• The mandatory attribute, DB, which specifies the database number of the EAI DM.

Chapter 29
Publisher Definitions

29-2

Note:

The database number must match the database number in the dm_pointer entry
of the CM pin.conf file and the dm_db_no entry of the EAI DM pin.conf file.

• An optional attribute, Format, which specifies the format for the published output. Possible
values are XML, which is the default, and FLIST.

• A list of events to publish. Each event is listed in a separate tag. If an event triggers an
identifier to be returned from a third-party application, the tag must include attributes
specifying where the identifier will be stored in BRM. These attributes are required only for
events that trigger identifiers.

This example includes one event (CustCreate) that triggers an identifier:

<PublisherDefs>
<Publisher DB="0.0.9.1" Format="XML">
<CustCreate ObjectPoid="PIN_FLD_POID" IdentifierFld="PIN_FLD_ACCOUNT_NO"/>
<NameInfoUpdate/>
<BillInfoUpdate/>
...
</Publisher>
</PublisherDefs>

Note:

In previous versions of EAI Manager, a different syntax was used for event
definitions. The events were defined in a comma-separated list, not as tags. This
syntax is still supported when no events trigger an identifier. If any of the defined
events returns an identifier, all of the events must be defined with tags.

Event Definitions
Each event listed in the publisher definition is defined in the event definition between the
<EventDefs> and </EventDefs> tags. The event definition contains a list of events to publish,
each of which contains elements and attributes that specify the following information:

• Where to get the fields and the data for the event

• The sub-elements that make up the event

• The start and end event for the business event if multiple events are generated for the
business event

• How the elements should be presented in the final XML output

Note:

If only one BRM event is generated during a business event, you need to specify
only the start event.

The <EventDefs> tag defines a business event. Event definitions must have the following
attributes:

Chapter 29
Event Definitions

29-3

• Source

• Tag

• StartEvent

Optionally, the event definition can include the following elements and attributes:

• EndEvent

• DTD

• Attribute

• PinFld

• Search

• SubElement

This example shows the definition of the customer creation business event in the default
configuration file:

<EventDefs>
 <CustCreate Source="/account"
 Tag="Portal.Infranet.Events.CustCreate"
 StartEvent="/event/notification/account/create"
 EndEvent="/event/notification/customer/reg_complete"
 DTD="custcreate.dtd">
 <Attribute Tag="Version" Value="1.0"/>
 <Search SearchFld="PIN_FLD_POID"
 SearchVal="PIN_FLD_ACCOUNT_OBJ"/>
 <Field PinFld="PIN_FLD_POID" Tag="AccountObj"/>
 <Field PinFld="PIN_FLD_STATUS" Tag="Status"/>
 <Field PinFld="PIN_FLD_STATUS_FLAGS" Tag="StatusFlags"/>
 <SubElement Name="BillInfo"
 OnEvent="/event/customer/billinfo"/>
 <SubElement Name="PayInfo"
 OnEvent="/event/notification/customer/reg_complete"/>
 <SubElement Name="NameInfo"
 OnEvent="/event/customer/nameinfo"/>
 <SubElement Name="DealInfo"
 OnEvent="/event/billing/deal/purchase"/>
 <SubElement Name="ProductInfo"
 OnEvent="/event/billing/product/action/purchase"/>
 <SubElement Name="ProductDetail"
 OnEvent="/event/billing/product/action/purchase"/>
 <SubElement Name="Service"
 OnEvent="/event/notification/customer/reg_complete"/>
 <SubElement Name="Profile"/>
 </CustCreate>
</EventDefs>

Element Definitions
Each sub-element in the event definition must be defined as an element in the element
definition (<ElementDefs>). An array or substructure (at element level 0) in the BRM event flist
or the object flist is defined in the element definition.

Each element definition specifies the following information:

• Where to get the data for the element

• The BRM field name for the data

Chapter 29
Element Definitions

29-4

• How to present the data in the final XML output

The <ElementDefs> tag is used to define elements. The element definition includes the
following elements and attributes:

• The mandatory attributes, "Source" and "Tag"

• The optional attributes, "PinFld " and "UseOnlyElement"

Note:

If the output format for the payload is FLIST, PinField is mandatory.

• The elements "Field" and "ExtendedInfo"

This example shows the definition of the sub-element NameInfo in the default configuration
file:

<ElementDefs>
 <NameInfo Source="EVENT" PinFld="PIN_FLD_NAMEINFO"
 DataFrom="PIN_FLD_NAMEINFO" Tag="NameInfo" UseOnlyElement="1" >
 <Field PinFld="PIN_FLD_ELEMENT_ID" Tag="ElementId"/>
 <Field PinFld="PIN_FLD_FIRST_NAME" Tag="FirstName"/>
 <Field PinFld="PIN_FLD_MIDDLE_NAME" Tag="MiddleName"/>
 <Field PinFld="PIN_FLD_LAST_NAME" Tag="LastName"/>
 <Field PinFld="PIN_FLD_ADDRESS" Tag="Address"/>
 <Field PinFld="PIN_FLD_CITY" Tag="City"/>
 <Field PinFld="PIN_FLD_STATE" Tag="State"/>
 <Field PinFld="PIN_FLD_ZIP" Tag="Zip"/>
 <ExtendedInfo PinFld="PIN_FLD_PHONES" Tag="Phones">
 <Field PinFld="PIN_FLD_PHONE" Tag="Phone"/>
 <Field PinFld="PIN_FLD_TYPE" Tag="Type"/>
 </ExtendedInfo>
 </NameInfo>
</ElementDefs>

Syntax of Elements and Attributes
This section describes the attributes and elements you use to define events and elements.

For an example of the relationship between the events, elements, and the flist data, see "Event
Flist, Event Definition, and XML Output Example".

Source
Specifies where to get the data for fields specified in the event or element definitions.

Source can be a BRM storable class name or EVENT. If you set the Source attribute to
EVENT, the Payload Generator EM reads the fields for the element from the incoming flist of
the event. If you specify a storable class name, the Payload Generator EM reads the fields
from the BRM database.

If all the data for the fields you need to publish is present in the event flist, specify EVENT for
the source. If the event flist has a pointer to data through a POID (Portal object ID), specify
Source to be a storable class.

For example:

Chapter 29
Syntax of Elements and Attributes

29-5

<!-- Source is a Portal class name-->
PayInfo Source="/payinfo"

<!-- Source is the Event flist -->
NameInfo Source="EVENT"

Tag
Specifies the XML tag to be associated with the event, element, or field in the final XML output
file.

For example, this entry in the configuration file appears as <FirstName>Name</FirstName>
in the XML output:

<Field PinFld="PIN_FLD_FIRST_NAME" Tag="FirstName"/>

StartEvent
Specifies the BRM event that triggers the beginning of the business event. The Payload
Generator EM starts caching event data when the event specified in the StartEvent attribute
occurs. This element is mandatory in event definitions. If there is only one BRM event
generated for the business event, the Payload Generator generates and publishes the
business event as soon as it receives the event specified in StartEvent. If more than one BRM
event is generated for a business event, the Payload Generator caches all the events starting
with this event up to the event specified in EndEvent, and then generates and publishes the
business event.

For example:

<-- StartEvent for customer creation business event -->
StartEvent="/event/notification/account/create"

EndEvent
Specifies the BRM event that marks the end of the business event. When the Payload
Generator has cached all the events from the event specified in the StartEvent attribute to the
event specified in the EndEvent attribute, the Payload Generator generates and sends the
payload to the EAI DM.

When this attribute isn't present, the business event begins and ends with the BRM event
specified in StartEvent.

For example:

<!-- EndEvent for customer creation business event -->
EndEvent="/event/notification/customer/reg_complete"

DataFrom
Specifies the array or substructure field in an flist from which to retrieve data for the event or
the element.

If the source for the element data is specified as EVENT, the array or substructure is read from
the incoming flist for the event. If the source for the element data is specified as a storable
class, the array or substructure is read from the storable class in the BRM database.

For example:

Chapter 29
Syntax of Elements and Attributes

29-6

<!-- Data to be read from PIN_FLD_NAMEINFO array for the NameInfo element -->

DataFrom="PIN_FLD_NAMEINFO"

UseOnlyElement
Specifies an element of an array to publish. Use this tag when you want to publish only one of
the elements of the array in the flist.

For example, suppose the BillInfo element of a business event is constructed when an /event/
customer/billinfo event occurs. To publish only element 1, specify UseOnlyElement="1".

UseElementId
Determines whether element IDs are retained with array fields. If you set UseElementId to 1,
element IDs are retained with array elements. If you set UseElementId to 0, array elements
are published in sequential order without their original element IDs.

Note:

If the data is published in flist format with UseElementID set to 0, elements are
numbered sequentially starting from 0. These numbers do not correspond to the
original element IDs. They are included only to ensure that the flist is in a valid
format.

For example:

<!-- This tag will cause element IDs to be retained for elements in this array -->

<NameInfo Source="EVENT" PinFld="PIN_FLD_NAMEINFO"
DataFrom="PIN_FLD_NAMEINFO" Tag="NameInfo" UseElementId="1" >

Attribute
Adds an attribute to the XML output of the events.

Note:

Attribute is used only in event definitions.

You must specify two entries for the Attribute field:

• Tag to specify the name of the attribute to add.

• Value to specify the value of the attribute.

For example:

<!-- This Attribute adds the version number to a customer creation business event
definition -->
<CustCreate ... Tag="Portal.Infranet.Events.CustCreate"
<Attribute Tag="Version" Value="1.0"/>

Chapter 29
Syntax of Elements and Attributes

29-7

The XML output for this business event includes a Version attribute:

<Portal.Infranet.Events.CustCreate Version="1.0">

DTD
Specifies the data type definition (DTD) used for the XML output for this business event.

Note:

You need to specify a DTD only if you publish valid XML documents.

You must use the Name attribute to specify the name of the DTD file.

This example specifies that the custcreate.dtd file be used for the output:

<!-- Specifies the custcreate.dtd as the file to use for the XML output -->

<DTD Name="custcreate.dtd">

The XML output for that example includes the DTD file in its DOCTYPE tag:

<!DOCTYPE Portal.Infranet.Events.CustCreate SYSTEM "custcreate.dtd">

PinFld
Specifies the BRM field name.

For element and ExtendedInfo definitions, the data type of the BRM field must be an array or
substructure.

Note:

This field is mandatory if you specify FLIST as the output format for the published
event.

<--! Specifies that the data for the NameInfo element is from the PIN_FLD_NAMEINFO field
of the event flist-->

<NameInfo Source="EVENT" PinFld="PIN_FLD_NAMEINFO"

Field
Specifies the BRM field to include in the definition of an event, element, or ExtendedInfo.

You must specify two attributes:

• PinFld to specify the name of the field in BRM.

• Tag to specify the XML tag to use for the value in the XML file generated for this business
event.

This example specifies that the data is retrieved from the PIN_FLD_FIRST_NAME field and
assigned to the <FirstName> tag in the XML output:

Chapter 29
Syntax of Elements and Attributes

29-8

<Field PinFld="PIN_FLD_FIRST_NAME" Tag="FirstName"/>

The XML output:

<FirstName> Name </FirstName>

ExtendedInfo
Specifies an array or substruct field within an element definition.

For example, if the array that defines the element contains a nested array that you want to
include in your element definition, use ExtendedInfo.

You must use the following attributes:

• PinFld to specify the BRM field name. The data type must be an array or substruct.

• Tag to specify the XML tag used for the value in the XML file generated for this business
event.

You can optionally specify the "UseOnlyElement" attribute to read only the element specified
from the array.

Search
Specifies the search criteria to read data from a storable class when Source is specified as a
storable class.

Note:

You can specify Search only in event and element definitions.

EAI Manager searches the database by creating an SQL query using the attributes specified:

• SearchFld specifies the field to search in the database.

• SearchVal specifies the value in the input flist to be used in the search arguments.

• SearchValFrom specifies that the value for the search needs to be read from an array or
substruct element in the input flist.

For example, when this Search field is specified:

<PayInfo Source="/payinfo" PinFld="PIN_FLD_PAYINFO"
 Tag="PayInfo" >
 <Search SearchFld="PIN_FLD_ACCOUNT_OBJ"
 SearchVal="PIN_FLD_ACCOUNT_OBJ"/>
...

EAI Manager creates this query:

Select from /payinfo where PIN_FLD_ACCOUNT_OBJ equals the value of the field
PIN_FLD_ACCOUNT_OBJ in the event flist.

When this Search field is specified:

<ProductDetail Source="/product" PinFld="PIN_FLD_PRODUCT"
 Tag="ProductDetail">
 <Search SearchFld="PIN_FLD_POID"

Chapter 29
Syntax of Elements and Attributes

29-9

 SearchVal="PIN_FLD_PRODUCT_OBJ"
 SearchValFrom="PIN_FLD_PRODUCT"/>
....

EAI Manager creates this query:

Select from /product where PIN_FLD_POID equals the value of the field
PIN_FLD_PRODUCT_OBJ in the PIN_FLD_PRODUCT array of the event flist.

SubElement
Specifies the element to add to an event in the event definition.

You must specify the Name attribute, which must match the tag of the element in the
<ElementDefs> section. If you have an element called NameInfo in the <ElementDefs> tag:

<ElementDefs>
<NameInfo Source="EVENT"...>

the Name attribute in the SubElement must be:

<SubElement Name="NameInfo">

You can optionally include the OnEvent attribute if the Source for the sub-element is "Event".
If you specify OnEvent, the data for the sub-element is generated when the event occurs.

If the Source for the data is a storable class, the data is read from the database before the
business event is published.

For example, this entry specifies that the data for the NameInfo Sub-element is read when the
nameinfo event occurs in BRM:

<SubElement Name="NameInfo"
OnEvent="/event/customer/nameinfo"/>

Event Flist, Event Definition, and XML Output Example
The following figures show the NameInfoUpdate business event definition, how the data in the
event flist is used to construct the business event, and the published XML document.

Note:

These examples show only a few of the fields in the event flist and event definition.

Figure 29-2 shows a partial NameInfoUpdate event flist and the NameInfoUpdate definition:

Chapter 29
Event Flist, Event Definition, and XML Output Example

29-10

Figure 29-2 NameInfoUpdate Event Flist and Event Definition

Figure 29-3 shows the published XML output of the NameInfoUpdate event in the previous
example:

Chapter 29
Event Flist, Event Definition, and XML Output Example

29-11

Figure 29-3 NameInfoUpdate XML Output

Chapter 29
Event Flist, Event Definition, and XML Output Example

29-12

30
Filtering which Business Events Are Published

Learn how to filter business events for Oracle Communications Billing and Revenue
Management (BRM) Enterprise Application Integration (EAI) Manager.

Topics in this document:

• Filtering which Business Events Are Published

• About the Condition Attribute

• About the Condition Definition

Filtering which Business Events Are Published
You can configure EAI Manager to filter which business events are published or not published
based on business event attributes. You define the criteria a business event must meet, and
only business events meeting the criteria are published.

You filter which business events are published and not published by creating a condition, which
consists of the following:

• The Condition attribute. See "About the Condition Attribute".

• The criteria that the business event must meet to be published. See "About the Condition
Definition".

About the Condition Attribute
The Condition attribute specifies the name of your condition. You can use any name, such as
MyCondition. You specify the condition name in the <PublisherDefs> section of the
payloadconfig.xml file using the following format:

Condition=ConditionName

You indicate whether to apply the condition to a specific business event or all business events
in the publisher through the placement of the Condition attribute:

• For a specific business event, you add the Condition attribute after the appropriate
business event. For example, to apply the condition to BillInfoUpdate business events:

<PublisherDefs>
 <Publisher DB="0.0.0.0" Format="FLIST">
 CustCreate,
 CustDelete,
 BillInfoUpdate Condition=MyCondition
 </Publisher>
</PublisherDefs>

In this example, only the BillInfoUpdate business event will be filtered by MyCondition.

• For all business events in the publisher, you add the Condition attribute, surrounded by
quotes, to the <Publisher> tag. For example:

30-1

<PublisherDefs>
 <Publisher DB="0.0.0.0" Condition="MyCondition" Format="FLIST"/>
 CustCreate,
 CustDelete,
 BillInfoUpdate
 </Publisher>
</PublisherDefs>

In this example, the CustCreate, CustDelete, and BillInfoUpdate business events will be
filtered by MyCondition.

About the Condition Definition
The condition definition defines the criteria that a business event must meet to be published.
The condition definition must appear at the end of the payloadconfig.xml file in its own
<ConditionDefs> section and follow this format:

<ConditionDefs>
 <ConditionName>
 <BooleanOperator>
 <BooleanExpression PinFld="FieldName" Value="FieldValue" Operator="OpValue"/>
 </BooleanOperator>
 </ConditionName>
</ConditionDefs>

Table 30-1 lists the elements in the <ConditionDefs> section.

Table 30-1 Elements in ConditionDefs

Element Syntax Description

ConditionName <MyCondition> Opens the condition definition. ConditionName must match the
name you defined in the Condition attribute. See "About the
Condition Attribute".

BooleanOperator <AndExpression> The Boolean operator to apply. Possible values are:

• AndExpression is the Boolean AND.
• OrExpression is the Boolean OR.
• NotExpression is the Boolean NOT.

Chapter 30
About the Condition Definition

30-2

Table 30-1 (Cont.) Elements in ConditionDefs

Element Syntax Description

BooleanExpression <BooleanExpression
PinFld="PIN_FLD_FLAGS"
Value="128" Operator="GT"/>

Contains the definition for the Boolean expression, including the
field name, field value, and operator.

PinFld specifies the business event flist field name. You can also
use OP_FLAGS, which is the flag with which the business event
was generated.

Value specifies the value of the business event flist field.

Operator can be one of the following:

• EQ is equal to.
• NE is not equal to.
• LT is less than.
• GT is greater than.
• LE is less than.
• GE is greater than or equal to.
• CHECK-BITS checks the specified bits for Integers.
• CHECK-DB checks the database specified in the POID field.
• CHECK-ID checks the ID of the POID field.
• CHECK-TYPE checks the type of the POID field.
Note: The operators that can be used with each field depend on
the field's data type:

– INT and ENUM data types support EQ, NE, GT, LT, GE, LE,
and CHECK-BITS operators.

– POID data types support EQ, NE, CHECK-DB, CHECK-ID, and
CHECK-TYPE operators.

– STR data types support EQ and NE operators.

– DECIMAL and TSTAMP data types support EQ, NE, GT, LT,
GE, LE operators.

Chapter 30
About the Condition Definition

30-3

31
Building a Connector Application

Learn how to set up enterprise applications to access Oracle Communications Billing and
Revenue Management (BRM) event data by using a connector application for Enterprise
Application Integration (EAI) Manager.

Topics in this document:

• Building a Connector Application

Building a Connector Application
To provide access to BRM event data for enterprise applications, you need to build a module
connector application that handles transaction management and transformation schemes
specific to your environment.

The EAI DM calls the functions listed in Table 31-1 when it starts, processes event data, and
shuts down. You must implement these functions in your connector application.

Table 31-1 Functions Called by EAI Data Manager

Function Description

AbortTransaction Called by the EAI DM after the transaction is cancelled in BRM.

CommitTransaction Called by the EAI DM after BRM commits the transaction to its database.

FreeGlobalContext Called when the EAI DM process is shutting down.

GetGlobalContext Called from a connector application to access the context initialized with
InitializeGlobalContext.

Initialize Called by the EAI DM when it starts.

OpenTransaction Called by the EAI DM before it calls PublishEvent.

PrepareCommit Called by the EAI DM when BRM is about to commit the transaction to the
database.

PublishEvent Called by the EAI DM when there is a business event to be published.

SetIdentifier Called from the connector application to set a return identifier for a
published business event.

Shutdown Called by the EAI DM when it shuts down.

The plugin_flist.c and plugin_xml.c files in the BRM_home/sys/dm_eai directory provide
sample implementations of the EAI functions in flist and XML format.

After you build your connector application, configure EAI Manager. See "Configuring EAI
Manager".

31-1

32
Configuring EAI Manager

Learn how to configure Oracle Communications Billing and Revenue Management (BRM)
Enterprise Application Integration (EAI) Manager.

Topics in this document:

• Configuring the Connection Manager for EAI

• Configuring the EAI DM

• Configuring the Payload Generator EM

• Specifying the Date and Time Format for Business Events

• Defining Infinite Start Date and End Date Values

• Configuring EAI Manager to Publish to an HTTP Port

When you install EAI Manager, the installation program adds entries to the EAI DM and the CM
pin.conf files and to the Infranet.properties file. After you build the connector application, you
need to enable EAI by editing the pin.conf and Infranet.properties files to specify values for
the entries relevant to EAI Manager.

Configuring the Connection Manager for EAI
After you build the connector application, you need to configure the CM for EAI.

1. In a text editor, open the CM configuration file (BRM_home\sys\cm\pin.conf).

This pin.conf file contains descriptions of all the entries and instructions for editing the
entries.

2. In the EAI_CM section of the file, assign values to the entries shown in Table 32-1:

Table 32-1 EAI CM Entries

Entry Description Example

- fm_publish enable_publish Specifies whether to publish events.

To publish events, specify 1. To not
publish events, specify 0.

- fm_publish enable_publish 1

32-1

Table 32-1 (Cont.) EAI CM Entries

Entry Description Example

- cm em_pointer Specifies the host name and port
number of the computer on which the
Payload Generator EM runs.

The em_pointer entry includes the
following values:

• Tag that refers to the EM type; for
example, publish for the EAI EM.

• The address type tag, ip.
• IP address or host name of the

computer where the Payload
Generator EM runs.

• Port number of the computer where
the Payload Generator EM runs.

Important: The port number must
match the port number in the
Infranet.properties file in the
BRM_home\sys\eai_js directory.

- cm em_pointer publish ip 127.0.0.1
11930

- cm em_group Specifies a member opcode in a group
of opcodes provided by the Payload
Generator EM.

Note: This entry is automatically
inserted in the configuration file by the
installation program.

The em_group entry includes the
following values:

• Tag that refers to the EM type; for
example, publish for the EAI EM.

• The opcode name or number.

- cm em_group publish 1301

- cm dm_pointer Specifies the database number, the IP
address or host name, and port number
of the computer where the EAI DM runs.

Important: The database number must
match the DB entry of the publisher
definition in the payloadconfig.xml file.
The database number and port number
must match the dm_db_no and
dm_port entries in the EAI DM pin.conf
file.

- cm dm_pointer 0.0.9.1 ip 127.0.0.1
11970

3. Save and close the file.

4. Stop and restart the CM:

cd BRM_home/bin
pin_ctl bounce cm

Configuring the EAI DM
After you build the connector application, you need to configure the EAI DM.

1. In a text editor, open the EAI DM configuration file (BRM_home\sys\dm_eai\pin.conf).

2. In the EAI_PINCONF entries section, assign values to the entries shown in Table 32-2:

Chapter 32
Configuring the EAI DM

32-2

Table 32-2 EAI_PINCONF Entries

Entry Description Example

- dm plugin_name Specifies the name of the module connector
application that you implemented.

- dm plugin_name ./dm_eai_plugin.so

- dm dm_db_no Specifies the database number assigned to
the EAI DM.

The format of the entry is 0.0.0.n. 0, where n
is your database number.

Important: This number must match the DB
entry for the publisher definition in the
payloadconfig.xml file and the dm_pointer
entry in the CM pin.conf file.

- dm dm_db_no 0.0.9.1 0

- dm dm_port Specifies the port number of the computer
where the EAI DM runs.

Important: This number must match the port
number in the dm_pointer entry in the CM
pin.conf file.

- dm dm_port 11970

- dm loglevel Specifies the log level of the EAI DM:

0 = no logging

1 = log only error messages (default)

2 = log error messages and warnings

3 = log error messages, warnings, and
debugging messages

- dm loglevel 1

3. Save and close the file.

4. Stop and restart the EAI DM:

cd BRM_home/bin
pin_ctl bounce dm_eai

Configuring the Payload Generator EM
The Payload Generator has an Infranet.properties file that specifies the location of the
payloadconfig.xml file:

To configure the Payload Generator:

1. In a text editor, open the Payload Generator configuration file
(BRM_home\sys\eai_js\Infranet.properties).

2. Specify the name and location of the payloadconfig.xml file:

• If you are not using the plugin_http module, verify that the infranet.eai.configFile
entry points to the location of the payloadconfig.xml file.

Note:

If you edited the payloadconfig.xml file and saved it with a different name,
make sure you also change the name in this entry.

• If you are using the plugin_http module, change the infranet.eai.configFile entry to
point to the location of the payloadconfig_plugin_http.xml file.

Chapter 32
Configuring the Payload Generator EM

32-3

3. Verify that the file contains the following entry:

infranet.opcode.handler.PUBLISH_GEN_PAYLOAD=com.portal.eai.PublishHandler
4. Verify that the port number specified in the infranet.server.portNR entry matches the port

number in the em_pointer publish entry in the CM pin.conf file.

5. Save and close the file.

6. Stop and restart the Payload Generator EM:

cd BRM_home/bin
pin_ctl bounce ePai_js

Specifying the Date and Time Format for Business Events
In business events, the date field value uses the default EAI Manager format in the server's
local time zone. You can configure the date field to use a different date and time format by
using the following entry in the Payload Generator Infranet.properties file:

infranet.eai.date_pattern: Specifies the date and time format based on the ISO-8601
standard. For example, you can set this entry to any of the following formats:

• infranet.eai.date_pattern=dd/MMM/yyyy:hh:mm:ss

• infranet.eai.date_pattern=yyyy-MM-dd'T'hh:mm:ss. Use this format if EAI Manager
uses Oracle AIA to exchange data with external applications.

To specify the date and time format in business events:

1. In a text editor, open the Payload Generator configuration file
(BRM_home\sys\eai_js\Infranet.properties).

2. Specify the date format in the infranet.eai.date_pattern entry:

infranet.eai.date_pattern = Format
3. Save and close the file.

4. Stop and restart the Payload Generator EM:

cd BRM_home/bin
pin_ctl bounce eai_js

Defining Infinite Start Date and End Date Values
In some external applications, the infinite date value is represented as a NULL (empty XML
element) value and in other external applications as the epoch time (01-01-1970 1200 AM
UTC).

By default, when EAI Manager sends data to your external application, the infinite date value is
the start of the epoch time.

You can define how EAI Manager sets infinite date values by using the
infranet.eai.xml_zero_epoch_as_null entry in the Payload Configurator Infranet.properties
file.

Note:

The infranet.eai.xml_zero_epoch_as_null entry does not affect the flist payload.

Chapter 32
Specifying the Date and Time Format for Business Events

32-4

To configure how EAI Manager sets infinite date values:

1. Open the BRM_home/sys/eai_js/Infranet.properties file in a text editor.

2. Add the following entry:

infranet.eai.xml_zero_epoch_as_null = value

where value is:

• TRUE to use NULL to represent an infinite start or end date.

• FALSE to use the epoch time to represent an infinite start or end date. This is the
default.

3. Save and close the file.

4. Stop and restart the Payload Generator EM:

cd BRM_home/bin
pin_ctl bounce eai_js

Configuring EAI Manager to Publish to an HTTP Port
You can use EAI Manager to publish information from your BRM database to an HTTP port for
use by a third-party application. For example, you can send charge offer information to a
customer relationship manager (CRM), such as Siebel Communications. Information about the
new charge offers is posted to a specific HTTP port to enable the CRM to create charge offer
information.

To configure EAI Manager to publish to an HTTP port:

1. Configure Connection Manager for EAI. See "Configuring the Connection Manager for
EAI".

2. Open the dm_eai configuration file (BRM_home\sys\dm_eai\pin.conf) with a text editor
such as vi.

3. Add the following line to specify the name of the dm_http module:

- dm plugin_name plugin_http.extension

where extension is the library extension for your operating system: so for Linux.

4. Add the following line to configure the header delimiter:

- dm dm_http_delim_crlf value

where value is:

• 0 to specify the delimiter \n

• 1 to specify the delimiter \r\n

The default is 0.

5. Specify the HTTP host name and port number of the server to which the data should be
sent:

- dm dm_http_agent_ip host_name port_number
6. If required, specify the URL for the HTTP server; for example:

- dm dm_http_url http://10.1.6.78/HTTP_Infranet/BTSHTTPRECEIVE.so

Chapter 32
Configuring EAI Manager to Publish to an HTTP Port

32-5

Note:

The URL might be required; for example, when you deploy EAI Manager in an IIS
environment.

7. If your HTTP server requires the host name in the header, add this line to the pin.conf file:

- dm dm_http_header_send_host_name value

where value is:

• 0 to indicate that the host name won't be included in the header.

• 1 to indicate that the host name will be included in the header.

• 2 to indicate that both the host name and the port number will be included in the
header.

The default is 0.

8. If your HTTP server sends a 100-Continue status code to clients that do not send a 100-
Continue expectation, add this line to the pin.conf file:

- dm dm_http_100_continue value

where value is:

• 0 to indicate that a 100-Continue status is not expected.

• 1 to indicate that a 100-Continue status is expected.

Note:

Set value to 1 only if your server sends the 100-Continue status code to
clients that do not send an expectation for it. Most servers do not send
unexpected 100-Continue codes, but some do.

The default is 0.

9. Specify whether or not dm_http should read the response codes sent by the HTTP server:

- dm dm_http_read_success value

where value is:

• 0 to indicate that the module should not wait for a response code from HTTP receiver.

• 1 to indicate that the module should wait for a response code to be read from HTTP
receiver.

The dm_http module supports the success response codes 200 (OK) and 202 (request
accepted for asynchronous processing).

The default is 0.

10. Save and close the file.

11. Configure the payload generator. See "Configuring the Payload Generator EM".

12. Load information for the dm_http module into your system's event notification list.

See "Configuring Event Notification for EAI Manager".

Chapter 32
Configuring EAI Manager to Publish to an HTTP Port

32-6

13. Stop and restart BRM.

Chapter 32
Configuring EAI Manager to Publish to an HTTP Port

32-7

33
Configuring Business Events

Learn how to configure business events for Oracle Communications Billing and Revenue
Management (BRM) Enterprise Application Integration (EAI) Manager.

Topics in this document:

• About BRM Business Events

• About Publishing Additional Business Events

• Setting Up Multiple Publishers and Events

• Defining Business Events

• Removing Events That You Do Not Want to Publish

• Returning Identifiers from Enterprise Applications

• Changing the Format of Published Events

• Validating Your Changes to the Payload Configuration File

About BRM Business Events
A business event is a BRM operation that you define in the Payload Generator EM
configuration file (payloadconfig.xml). A number of business events are defined by default;
for example, one of the default business events is ProductPurchase, which is created when a
customer buys a charge offer.

A business event is created only after EAI Manager has been notified that a qualifying BRM
event has occurred. For example, several BRM events, including /event/customer/billinfo, /
event/billing/product/action/purchase, and /event/customer/nameinfo, must occur before
the CustCreate business event is created.

BRM uses event notification to cache the events that make up a business event in the Payload
Generator. See "Configuring Event Notification for EAI Manager".

Business event definitions include data or pointers to data from the flists of events included in
the definition. For an example of the relationship between the event flist and the definition of
the business event to publish, see "Event Flist, Event Definition, and XML Output Example".

The default set of business events that BRM publishes is defined in the Payload Generator EM
configuration file, payloadconfig.xml. You can edit the configuration file to:

• Add events that you want to publish.

• Remove events that you do not want to publish.

• Specify whether you want the events to be published in XML or flist format.

For the definitions of the default set of business events, see the payload configuration file
(BRM_home/sys/eai_js/payloadconfig.xml).

33-1

About Publishing Additional Business Events
To publish additional business events, you include definitions of the events in the
payloadconfig.xml configuration file. For information on the syntax of the entries, see "About
the Payload Configuration File Syntax".

You use the fields in the event flist or storable class to define the business event. You need to
specify the BRM events to publish, the data to publish, where to get the values for the fields,
and how to present the data in the XML output.

For information on how to define events, see "Defining Business Events".

For an example of the relationship between the flist, event definition, and XML output, see
"Event Flist, Event Definition, and XML Output Example".

If you need to publish valid XML documents for events, you must create data type definitions
(DTDs) for the events. For a sample, see the DTDs for the default events in the
BRM_home/sys/eai-js/dtds directory.

Setting Up Multiple Publishers and Events
You can define multiple publishers in EAI Manager to publish separate sets of business events.
You define a publisher by including a <PublisherDefs> tag for it in the payloadconfig.xml file.
See "Publisher Definitions" for more information.

Using multiple publishers, you can ensure that applications receive only the events they need.
For example, one publisher could publish the customer creation event to one application, while
another publisher publishes the service creation event to another application.

Events can be published separately even if one event is part of another. For example, service
creation can take place during customer creation, but the subscriber interested in service
creation receives only that event, not the larger customer creation event.

Defining Business Events
To define business events:

1. In a text editor, open the payload configuration file (BRM_home/sys/eai_js/
payloadconfig.xml).

2. In the <Publisher> section, specify the business events you want to publish.

For information on the syntax, see "Publisher Definitions".

3. (Optional) In the <Publisher> section, specify attributes for business events that will cause
identifiers to be returned.

See "Returning Identifiers from Enterprise Applications".

4. For each business event you specified, define the following attributes in the <EventDefs>
section:

• Source

• Tag

• StartEvent

• (Optional) EndEvent

Chapter 33
About Publishing Additional Business Events

33-2

• (Optional) DataFrom

• (Optional) UseOnlyElement

5. (Optional) Include the following elements in the <EventDefs> section:

• DTD

• Attribute

• Field

• Search

• SubElement

6. For each SubElement in the <ElementDefs> section, include the following attributes to
define the sub-element:

• Source

• (Optional) DataFrom

• Tag

7. (Optional) Include the following attributes:

• UseOnlyElement

• UseElementId

• PinFld

Note:

If you are using the flist (field list) output format, you must specify PinFld.

8. Include the following elements in the element definition:

• Field

• ExtendedInfo

9. (Optional) To check the configuration file for errors, run the ValidateConfig program.

For more information, see "Validating Your Changes to the Payload Configuration File".

10. Save and close the file.

11. Ensure that the BRM events included in each newly defined business event are in your
system's event notification list.

See "Configuring EAI Manager".

12. Stop and restart the Payload Generator External Module (EM):

cd BRM_home/bin
pin_ctl bounce eai_js

Note:

If you rename the file, make sure you also change the file name in the Payload
Generator EM Infranet.properties file. For more information, see "Configuring
EAI Manager".

Chapter 33
Defining Business Events

33-3

Removing Events That You Do Not Want to Publish
To remove events you do not want to publish:

1. In a text editor, open the payload configuration file (BRM_home/sys/eai_js/
payloadconfig.xml).

2. Remove the events that you do not want to publish from the event list in the <Publisher>
section.

3. (Optional) To check the configuration file for errors, run the ValidateConfig program.

For more information, see "Validating Your Changes to the Payload Configuration File".

4. Save and close the file.

5. Stop and restart the Payload Generator EM:

cd BRM_home/bin
pin_ctl bounce eai_js

Returning Identifiers from Enterprise Applications
You can configure EAI Manager to receive identifiers returned from enterprise applications. For
example, if data is published to a contact management application, that application may return
user IDs. You can store those IDs in the BRM database.

You specify additional attributes in the payloadconfig.xml file when you define a business
event that returns an identifier. These attributes are necessary only for business events that
return an identifier.

See "Publisher Definitions" for more detailed information about the syntax.

In addition to including information about identifiers in the <Publisher> section of the
payloadconfig.xml file, you must implement the SetIdentifier function in your connector
application. See "SetIdentifier" for more information.

Changing the Format of Published Events
By default, EAI Manager publishes business events in XML format. You can publish events in
flist format by editing the configuration file.

1. In a text editor, open the payload configuration file (BRM_home/sys/eai_js/
payloadconfig.xml).

2. In the <PublisherDefs> section, change the value of Format from XML to FLIST:

<PublisherDefs>
 <Publisher DB="0.0.9.1" Format="FLIST">

3. (Optional) To check the configuration file for errors, run the ValidateConfig program.

For more information, see "Validating Your Changes to the Payload Configuration File".

4. Save and close the file.

5. Stop and restart the Payload Generator EM:

cd BRM_home/bin
pin_ctl bounce eai_js

Chapter 33
Removing Events That You Do Not Want to Publish

33-4

Validating Your Changes to the Payload Configuration File
After you edit the payloadconfig.xml configuration file, you can check the validity of the file by
using the ValidateConfig program. This program checks the configuration file for errors and
displays the list of events to be published along with a message that the file is valid. If there are
errors, the ValidateConfig program specifies them.

To validate your changes to the configuration file, run the ValidateConfig program using the
following syntax:

java com.portal.eai.ValidateConfig [config_file_name]

For example:

java com.portal.eai.ValidateConfig BRM_home/sys/eai_js/payloadconfig.xml

Note:

If the configuration file name is not specified, the ValidateConfig program uses the
configuration file specified in the Infranet.properties file.

Chapter 33
Validating Your Changes to the Payload Configuration File

33-5

34
EAI DM Functions

Learn about the functions used by Oracle Communications Billing and Revenue Management
(BRM) Enterprise Application Integration (EAI) Manager.

Topics in this document:

• AbortTransaction

• CommitTransaction

• FreeGlobalContext

• GetGlobalContext

• Initialize

• OpenTransaction

• PrepareCommit

• PublishEvent

• SetIdentifier

• Shutdown

AbortTransaction
This function is called by the EAI DM after the transaction is cancelled in BRM. For
transactional systems, the transaction started with the OpenTransaction function needs to be
rolled back with this function.

Syntax

int
AbortTransaction(
 void *context);

Parameters

*context
A pointer to the context returned by the Initialize function.

Return Values

Returns PIN_RESULT_PASS if the operation is successful. Returns PIN_RESULT_FAIL if the
operation fails.

CommitTransaction
This function is called by the EAI DM after BRM commits the transaction to its database. You
commit the transaction opened to your system with this function.

34-1

Syntax

int
CommitTransaction(
 void *context);

Parameters

*context
A pointer to the context returned by the Initialize function.

Return Values

Returns PIN_RESULT_PASS if the operation is successful. Returns PIN_RESULT_FAIL if the
operation fails.

Note:

Failure to commit to your system does not cancel the transaction within BRM.

FreeGlobalContext
This function is called when the EAI DM process is shutting down. All resources allocated by
the InitializeGlobalContext function are freed with this function.

Syntax

void
FreeGlobalContext(
 void *gblContext);

Parameters

*gblContext
A pointer to the global context initialized by InitializeGlobalContext.

Return Values

This function returns nothing.

GetGlobalContext
This function is called from a connector application to access the context initialized with
InitializeGlobalContext.

Syntax

void
GetGlobalContext();

Parameters

This function has no parameters.

Chapter 34
FreeGlobalContext

34-2

Return Values

This function returns nothing.

Initialize
This function is called by the EAI DM when it starts. This function performs all the initialization
tasks such as resource allocations in this function implementation.

Note:

Initialize is called once for each EAI DM back end. The number of back ends is
specified in the EAI DM pin.conf file.

Syntax

int
Initialize(
 void **context,
 int *output_type);

Parameters

**context
A pointer to an open context. context is a transparent Binary Large Object (BLOB) or cookie
that is passed to the connector application during subsequent calls. You need to manage
memory in your application for the context.

*output_type
Specifies the output format type: TYPE_XML or TYPE_FLIST. The format must match the
value of the Format entry in the payloadconfig.xml file.

Return Values

Returns PIN_RESULT_PASS if the operation is successful. Returns PIN_RESULT_FAIL if the
operation fails.

OpenTransaction
This function is called by the EAI DM before it calls the PublishEvent function. Open a
transaction to your system during this call.

Syntax

int
OpenTransaction(
 void *context);

Parameters

*context
A pointer to the context returned by the Initialize function. You can save any transaction-
specific information in the context.

Chapter 34
Initialize

34-3

Return Values

Returns PIN_RESULT_PASS if the operation is successful. Returns PIN_RESULT_FAIL if the
operation fails.

PrepareCommit
This function is called by the EAI DM when BRM is about to commit the transaction to its
database. If this function returns an error, the transaction within BRM is cancelled.

Syntax

int
PrepareCommit(
 void *context);

Parameters

*context
A pointer to the context returned by the Initialize function.

Return Values

Returns PIN_RESULT_PASS if the operation is successful. Returns PIN_RESULT_FAIL if the
operation fails.

PublishEvent
This function is called by the EAI DM when there is a business event to be published. There
could be more than one PublishEvent call during a single transaction.

Syntax

int
PublishEvent(
 void *context,
 void *payload,
 char *servicep);

Parameters

*context
A pointer to the context returned by the Initialize function.

*payload
A pointer to the event payload.

*servicep
A pointer to the service that was used to log in when this business event was generated. You
can use this parameter to identify duplicate logins.

Return Values

Returns PIN_RESULT_PASS if the operation is successful. Returns PIN_RESULT_FAIL if the
operation fails.

Chapter 34
PrepareCommit

34-4

SetIdentifier
This function is called from the connector application to set a return identifier for a published
business event. If an identifier is set when the event is published, the DM returns the identifier
when it sends a response flist.

Syntax

void
SetIdentifier(
 void *identifier,
 int idLen);

Parameters

*identifier
A pointer to the identifier.

idLen
The length of the identifier.

Return Values

This function returns nothing.

Shutdown
This function is called by the EAI DM when it shuts down. You free all the resources allocated
during initialization with this function.

Note:

To ensure an orderly shutdown and make sure that resources are reallocated, the
connector application should send a SIGQUIT signal to the EAI_DM main process.

Syntax

void
Shutdown(
 void *context);

Parameters

*context
A pointer to the context returned by the Initialize function.

Return Values

This function returns nothing.

Chapter 34
SetIdentifier

34-5

Part IV
Integrating BRM with an Apache Kafka Server

This part describes how to integrate and synchronize data between Oracle Communications
Billing and Revenue Management (BRM) and an Apache Kafka server. It contains the following
chapters:

• About Integrating BRM with an Apache Kafka Server

• Configuring BRM to Publish Notifications to Kafka Servers

35
About Integrating BRM with an Apache Kafka
Server

Learn how to integrate Oracle Communications Billing and Revenue Management (BRM) and
Apache Kafka servers by using the Kafka Data Manager (DM).

Topics in this document:

• About Integrating BRM with Kafka Servers

• About the EAI Framework for the Kafka DM

• About the CM and Notification Events

• About the Kafka DM

About Integrating BRM with Kafka Servers
Integrating BRM with a Kafka server allows you to keep data synchronized between BRM and
your external applications connected to the Kafka server. To synchronize data, BRM takes data
from internal notification events and constructs a business event that is published to a topic in
your Kafka server. Your external applications can then retrieve and process the data from the
Kafka topic.

You integrate BRM with a Kafka server and configure it to publish data to a Kafka server by
using the following BRM components:

• Connection Manager (CM)

• Enterprise Application Integration (EAI) framework, which consists of the event notification
system and the Payload Generator External Module (EM).

• Kafka Data Manager (DM)

Figure 35-1 shows the BRM to Kafka server architecture and data flow.

35-1

Figure 35-1 BRM and Kafka Server Architecture

The data flow from BRM to your Kafka topics works as follows:

1. A notification event is generated in BRM when:

• A customer's account is created or changed in a client application. For example, when
a customer purchases a product.

• The pin_gen_notifications utility runs. This utility creates notification events before or
after a customer's balance expires, product expires, subscription is due for renewal, or
bill is due. See "About Generating Notifications In Advance" and "About Generating
Notifications After an Event Occurs" in BRM Managing Customers for more
information.

2. The CM sends the event to the BRM event notification system.

3. The BRM event notification system sends the event to the Payload Generator EM.

4. The Payload Generator EM collects events in its cache until they compose a whole
business event.

5. The Payload Generator EM generates the business event payload in flist format and then
sends it to the CM.

6. Internally, the CM sends the business event to the PCM_OP_PUBLISH_EVENT opcode to
enrich business events with subscriber preferences.

7. Internally, the CM sends the business event to the
PCM_OP_PUBLISH_POL_PREP_EVENT policy opcode to perform any customizations on
the event. By default, the policy opcode does not manipulate the data and returns the
original input as output.

8. The CM sends the business event payload to the Kafka DM.

9. The Kafka DM transforms the business event payload from flist format into XML or JSON
format. It then publishes the payload into one or more topics in your Kafka server.

Depending on the configuration, if the payload fails to publish successfully to the Kafka server,
the Kafka DM either rolls back the transaction and returns an error to BRM or records the failed
business event to a log file.

Chapter 35
About Integrating BRM with Kafka Servers

35-2

About the EAI Framework for the Kafka DM
You use the EAI framework to define business events for the Kafka server, to capture the BRM
events that make up the business events, and to send completed business events to the Kafka
DM.

The Kafka DM EAI framework consists of the following components:

• BRM event notification

BRM event notification listens for events and, when they occur, calls the appropriate
opcode. You specify the list of events that trigger an opcode call by editing an event
notification file.

The default Kafka DM event notification file specifies that when one of the events in
pin_notify_kafka_sync.xml occurs to call an internal EAI framework publisher opcode
(PCM_OP_PUBLISH_GEN_PAYLOAD) which, in turn, publishes the event to the Payload
Generator EM.

You can add or remove events from pin_notify_kafka_sync.xml file. See "Configuring
Event Notification for Kafka Servers".

• Payload Generator EM

The Payload Generator EM is responsible for collecting notification events until they form a
complete business event, generating the business event, and then publishing it to the
Kafka DM.

You define which notification events the Payload Generator EM uses to form a complete
business event for your Kafka server by using the Kafka DM payload file
(payloadconfig_kafka_sync.xml). For example, the payload file specifies to collect the /
event/notification/rerating/start and /event/notification/rerating/end events to form a
complete Rerating business event. The default file includes definitions for business events
such as AccountStatusUpdate, BillInfoUpdate, BillNow, CustCreate, ModifyBalanceGroup,
and UpdateServices. You can modify the file by adding business events to it, removing
default business events from it, or modifying the format in which the business events are
published. For information about editing this file, see "Defining Business Events for Your
Kafka Server".

Although the Kafka DM relies on the EAI framework, you do not need to install EAI Manager
separately. All necessary EAI files are included with the Kafka DM components installed with
BRM.

About the CM and Notification Events
When integrated with the Kafka DM, the CM is responsible for:

• Sending notification events to the EAI Framework.

• Enriching outgoing notification events with subscriber preferences or system preferences
before they are sent to the Kafka DM. If configured to do so, the CM adds information such
as the account's preferred language, delivery method, and time.

The CM retrieves subscriber preferences from an account's /profile/
subscriber_preferences object. If the object is missing or does not contain any
preferences, it looks it up in the /config/notification_spec object.

For more information, see "About Enriching Notifications with Additional Information" in
BRM Managing Customers.

Chapter 35
About the EAI Framework for the Kafka DM

35-3

About the Kafka DM
The Kafka DM is responsible for sending BRM-generated business events to one or more
topics in your Kafka server.

You can run the Kafka DM in one of these modes:

• Asynchronous mode: The Kafka DM records in a log file all business events that fail to
publish to the Kafka server. You configure the name and location of the log file using the
<KafkaAsyncMode> element in the BRM_home/sys/dm_kafka/log4j2.xml file.
Asynchronous mode is the default.

• Synchronous mode: When a business event fails to publish to the Kafka server, the
Kafka DM rolls back the transaction and returns an error to BRM.

You define how the Kafka DM connects to your Kafka server and topics, the Kafka DM mode to
use, which business events to publish to each Kafka topic, and the format and style of the
payload by using the BRM_home/sys/dm_kafka/dm_kafka_config.xml file. To configure the
file, see "Mapping Business Events to Kafka Topics".

The default file creates a default Kafka topic named BrmTopic that accepts payloads in the
XML format and ShortName style, but you can add topics, remove topics, modify the topic
names, or modify the format and style accepted by the topics.

When the Kafka DM receives a business event payload from the Payload Generator EM, the
Kafka DM converts the payload from flist format into XML or JSON format. It then determines
whether the payload should be published to a Kafka topic by checking the
dm_kafka_config.xml file. The entire contents of the business event are published to one or
more Kafka topics.

Chapter 35
About the Kafka DM

35-4

36
Configuring BRM to Publish Notifications to
Kafka Servers

Learn how to configure Oracle Communications Billing and Revenue Management (BRM) to
publish notification events and messages to your Kafka server.

Topics in this document:

• Overview of BRM Configuration Tasks for Kafka Servers

• Installing the BRM Kafka DM

• Configuring Thread Pooling for the Kafka DM

• Enabling SSL between Kafka DM and Kafka Server

• Configuring Event Notification for Kafka Servers

• Defining Business Events for Your Kafka Server

• Mapping Business Events to Kafka Topics

• Configuring the Dynamic Key Value

• Configuring Where to Record Failed Events

• Customizing Notification Enrichment

Overview of BRM Configuration Tasks for Kafka Servers
The high-level tasks for configuring BRM to send notifications and messages to your Kafka
server include:

1. Installing and setting up Apache Kafka and Apache ZooKeeper.

For more information, see "Apache Kafka Quickstart" on the Apache Kafka web site.

2. Installing the BRM Kafka Data Manager (DM).

See "Installing the BRM Kafka DM".

3. Setting up thread pooling for the Kafka DM by editing the Kafka DM's Infranet.properties
file.

See "Configuring Thread Pooling for the Kafka DM".

4. Enabling SSL between the Kafka DM and your Kafka Server.

For more information, see "Enabling SSL between Kafka DM and Kafka Server".

5. Modifying the list of notification events to send to the Payload Generator External Module
(EM) by editing the pin_notify_kafka_sync file.

See "Configuring Event Notification for Kafka Servers".

6. Defining how the Payload Generator EM builds business events for your Kafka server by
editing the payloadconfig_kafka_sync.xml file.

See "Defining Business Events for Your Kafka Server".

36-1

https://kafka.apache.org/quickstart

7. Mapping business events to topics in your Kafka server by editing the
dm_kafka_config.xml file.

See "Mapping Business Events to Kafka Topics".

8. (Optional) Configuring BRM to replace the dynamic key in message payloads with the
Kafka database number.

See "Configuring the Dynamic Key Value".

9. (Optional) Setting the name and location of the file for logging failed business events.

See "Configuring Where to Record Failed Events".

10. (Optional) Customizing the PCM_OP_PUBLISH_POL_PREP_EVENT policy opcode to
modify notification events before they are sent to a Data Manager (DM).

See "Customizing Notification Enrichment".

Installing the BRM Kafka DM
If you are installing BRM for the first time, you can install the Kafka DM by following these
instructions:

1. Install the latest version of Apache Kafka. For instructions on downloading and installing
Kafka, see "Apache Kafka Quickstart" on the Apache Kafka website.

For the latest compatible software version, see "BRM Software Compatibility" in BRM
Compatibility Matrix.

2. Set the Kafka environment variables:

setenv KAFKA_HOME Kafka_path
setenv KAFKA_BOOTSTRAP_SERVER_LIST KafkaHost1:port1,KafkaHost2:port2

where:

• Kafka_path is the path to the directory in which the Kafka library JARs are installed.

• KafkaHost1:port1,KafkaHost2:port2 are the hosts and ports that the Kafka client will
connect to in a bootstrap Kafka cluster the first time it starts. You can specify any
number of hosts and ports in this list.

You can alternatively set this list in the dm_kafka_config.xml. See "Mapping Business
Events to Kafka Topics".

3. Follow the instructions in "Installing BRM" in BRM Installation Guide to install the full build
package. When the Installation Type screen appears during the installation process, do
one of the following:

• To install all BRM components, including the Kafka DM, select the Complete
installation option.

• To install the Kafka DM along with other individual BRM components, select the
Custom installation option, select Kafka Data Manager 15.0.0.x.0, and then select
any other optional managers that you want to install.

Configuring Thread Pooling for the Kafka DM
You configure how many parallel requests that the Kafka DM can receive from the CM by
editing the BRM_home/sys/dm_kafka/Infranet.properties file. Under the file's DM EAI
Configuration section, configure the entries listed in Table 36-1.

Chapter 36
Installing the BRM Kafka DM

36-2

https://kafka.apache.org/quickstart

Table 36-1 Kafka DM Infranet.properties Entries

Entry Description

infranet.dm.name The name of the Kafka DM. If there are multiple
Kafka DMs, each one must have a unique name.

The default is DM-KAFKA-1.

infranet.server.enabletimeinfo Whether to log the timing information for each
opcode that is run within the Kafka DM. The valid
values are yes and no.

Note: Disable this entry for production systems.

infranet.connection.pool.enable Whether to enable thread pooling for the Kafka
DM:

• true: Thread pooling is enabled. This is the
default.

• false: Thread pooling is disabled. In this case,
a thread is spawned for each CM request.

infranet.connection.pool.size The number of threads that can run in the JS
server to accept requests from the CM.

Enter a number from 1 through 2000. The default is
64.

Enabling SSL between Kafka DM and Kafka Server
Apache Kafka allows Kafka clients, such as the Kafka DM, to use SSL for encrypting traffic and
for authentication. By default, SSL is disabled between Kafka clients and the Kafka Server. To
secure communications between them, you must enable SSL in both the Kafka Server and
Kafka DM.

Enabling SSL in Kafka Server

To enable SSL in the Kafka Server:

1. Create a Kafka Server certificate, KeyStore, and TrustStore by following the instructions in
"Encryption and Authentication using SSL" in the Apache Kafka documentation.

2. Update your Kafka server.properties file with the SSL parameters.

3. Verify that SSL is set up properly in the Kafka Server. To do so:

a. Create a test Kafka client certificate, KeyStore, and TrustStore by following the
instructions in "Encryption and Authentication using SSL" in the Apache Kafka
documentation.

b. Create a client producer.properties file for kafka-console-producer and then add
the client SSL properties to it.

c. Create a client consumer.properties file for kafka-console-consumer and then add
the client SSL properties to it.

d. In Terminal-1, run the Kafka Producer Console:

kafka-console-producer.sh --broker-list domainName:portNumber --topic
topicName --producer.config config/producer.properties

where:

Chapter 36
Enabling SSL between Kafka DM and Kafka Server

36-3

https://kafka.apache.org/documentation/#security_ssl
https://kafka.apache.org/documentation/#security_ssl

• domainName and portNumber are the domain name and port number for the
system running the Kafka Server.

• topicName is the name of the topic in which to send messages.

e. In Terminal-2, run the Kafka Consumer Console:

kafka-console-consumer.sh --bootstrap-server domainName:portNumber --
topic topicName --from-beginning --consumer.config config/
consumer.properties

where:

• domainName and portNumber are the domain name and port number for the
system running the Kafka Server Consumer.

• topicName is the name of the topic in which to retrieve messages.

f. Send sample messages from the Kafka Producer Console, and then verify that the
messages are received in the Kafka Consumer Console.

Enabling SSL in Kafka DM

To enable SSL in the Kafka DM:

1. Create a Kafka client certificate, KeyStore, and TrustStore by following the instructions in
"Encryption and Authentication using SSL" in the Apache Kafka documentation.

2. Verify that the client KeyStore and TrustStore are set up properly by running the following
command:

openssl s_client -debug -connect domainName:portNumber -tls1_2

where domainName and portNumber are the domain name and port number for the
system running the Kafka client.

If the command's output does not display the certificate or if there are other error
messages, the KeyStore is not set up properly.

3. Add all of the sensitive data, such as the KeyStore password and TrustStore password, as
a key-value pair in the BRM wallet. To do so, use the Oracle mkstore utility.

For example, to set the password for the TrustStore password, you could run this
command:

mkstore -wrl "/home/myuser/wallet" -createCredential "TrustStorePassword" "password"
4. Update the Kafka DM configuration file (dm_kafka_config.xml) with the SSL details. See

"Mapping Business Events to Kafka Topics" for more information.

Configuring Event Notification for Kafka Servers
You define which notification events are sent to the Payload Generator EM by using the event
notification file. The default Kafka DM event notification file (pin_notify_kafka_sync) specifies
to send all account and pricing events to the Payload Generator EM, but you can add or
exclude notification events from this file to accommodate your business needs.

To configure event notification for Kafka servers:

1. Open the BRM_home/sys/data/config/pin_notify_kafka_sync file in an XML editor.

Chapter 36
Configuring Event Notification for Kafka Servers

36-4

https://kafka.apache.org/documentation/#security_ssl

2. To add a notification event, use this syntax:

opcode_number flag event

where:

• opcode_number is the number associated with the opcode to run when the event
occurs. Opcode numbers are defined in header (*.h) files in the BRM_home/
include/ops directory. To send the notification event to the Payload Generator EM,
enter 1301 for the opcode number.

• flag is the name of the flag to pass to the opcode when it is called by the event
notification feature. 0 means no flag is passed.

• event is the name of the event that triggers the execution of the opcode. You can use
any BRM default or custom event defined in your system. Triggering events do not
have to be persistent. For example, you can use notification events (see "About
Notification Events") and events that you have excluded from the BRM database (see
"Managing Database Usage" in BRM System Administrator's Guide).

For example:

1301 0 /event/session

This example specifies that when an /event/session event occurs, BRM event notification
calls opcode number 1301, which is the EAI framework publishing opcode
(PCM_OP_PUBLISH_GEN_PAYLOAD). In this case, the contents of the event are passed
to the opcode without any flags.

3. To exclude a notification event, comment it out by inserting a number sign (#) at the
beginning of the entry. For example:

1301 0 /event/session

4. Close and save the edited file.

5. If your system has multiple configuration files for event notification, merge them.

Ensure that the merged file includes the contents from your BRM_home/sys/data/config/
pin_notify_kafka_sync file.

6. Load your final event notification list into the BRM database by using the load_pin_notify
utility:

load_pin_notify -v event_notification_file

where event_notification_file is the path and name of the BRM event notification file.

Defining Business Events for Your Kafka Server
You define which notification events the Payload Generator EM uses to form a complete
business event for your Kafka server by using the Kafka DM payload file
(payloadconfig_kafka_sync.xml). You can add or remove business events from the file to
accommodate your business needs.

For information, see "Defining Business Events".

Chapter 36
Defining Business Events for Your Kafka Server

36-5

Mapping Business Events to Kafka Topics
You specify how to connect the Kafka DM to your Kafka brokers, the Kafka DM mode to use,
the authentication method for communication, and the Kafka topics to create by using the
Kafka DM configuration file (BRM_home/sys/dm_kafka/dm_kafka_config.xml).

For each Kafka topic that you create, you specify:

• The name of the Kafka topic, which must be unique.

• The business events to include in the payload published to the Kafka topic.

• The payload format: XML or JSON. The Kafka DM converts the flists for each business
event into the specified format.

• For the XML payload format, the style of all field names in the XML payload:

– ShortName: The XML field names are in all capitals, such as <POID>,
<ACCOUNT_OBJ>, and <SUBSCRIBER_PREFERENCES_INFO>. This is the default.

– CamelCase: The XML field names are in CamelCase, such as <Poid>, <AccountObj>,
and <SubscriberPreferencesInfo>.

– NewShortName: The XML field names are in CamelCase and are prefixed with fld,
such as <fldPoid>, <fldAccountObj>, and <fldString>.

– OC3CNotification: The input is transformed to match the field and formatting
requirements of Oracle Communications Convergent Charging Controller. Use this
style if Convergent Charging Controller is your external notification application.

• (Optional) The key setting. See "About Setting Topic and Payload Keys".

• (Optional) The headers to add to each message sent to the topic. See "Adding Headers to
Messages".

• (Optional) The payload settings. See "Adding Separate Payload Settings".

• (Optional) The mapping of BRM flist fields to XML or JSON elements. See "Mapping Flist
Fields to Payload Tags".

For information about how to edit the dm_kafka_config.xml file, see "Editing the
dm_kafka_config.xml File".

About Setting Topic and Payload Keys

Note:

Only XML version 2.0 of the dm_kafka_config.xml file supports topic and payload
keys.

By default, each message or payload sent to a Kafka topic has its key set to the payload name,
such as CustCreate. You can optionally change the key to another value by setting the key
attribute.

The key attribute can be added to the <DefaultTopicDefinition>, <TopicDefinition>, and
<Payload> elements, and it can be set to the following:

Chapter 36
Mapping Business Events to Kafka Topics

36-6

• {PayloadName}: This variable is replaced with the message payload name, such as
CustDelete or CustCreate. This is the default.

• {Random}: This variable is replaced with a random number, such as 1644450215456.

• {Dynamic}: This variable is replaced with the value passed in the
PCM_OP_PUBLISH_POL_PREP_EVENT output flist. See "Configuring the Dynamic Key
Value" for more information.

• Static Value: The characters or numbers you enter will be passed literally. For example, if
you enter 1.0.0.0, the key will be set to 1.0.0.0.

You can also combine attribute values, such as {PayloadName}_1.0.0.

The following shows sample entries for setting a key in the default BrmTopic topic and the
NotificationTopic topic:

<DefaultTopicDefinition name="BrmTopic" format="XML" style="OC3CNotification"
key="A1"/>
<TopicDefinition name="NotificationTopic" format="XML"
style="OC3CNotification" key="{PayloadName}-1234">

In this example, messages sent to BrmTopic would have their key set to A1. Messages sent to
NotificationTopic would have their key set to CustDelete-1234, CustCreate-1234, and so on.

For more information about adding keys to payloads, see "Adding Separate Payload Settings".

Adding Headers to Messages

Note:

Only XML version 2.0 of the dm_kafka_config.xml file supports adding headers to
messages.

You can configure the Kafka DM to add one or more headers to each message sent to a
specified Kafka topic. By default, headers are not added to messages, except when a topic's
format is XML and style is OC3CNotification. For these topics, the default header is:

NOTIFICATION_TYPE=PayloadName, NOTIFICATION_VERSION="1.0.0.0.0"

Headers can be added under the <DefaultTopicDefinition> or <TopicDefinition> sections. To
do so, add a <Headers> section. Under it, add a <Header> element for each header that you
want to add:

<TopicDefinition name="MessageTopic" format="XML">
 <Headers>
 <Header key="key" value="value" style="style"/>
 <Header key="key" value="value" style="style"/>
 </Headers>

Table 36-2 describes the attributes in the <Header> element.

Chapter 36
Mapping Business Events to Kafka Topics

36-7

Table 36-2 Header Attributes

Attribute Name Description

key The header key, such as NOTIFICATION_TAG or
NOTIFICATION_VERSION.

Value The value for the header key, which can be the following:

• {PayloadName}: This variable is replaced with the message
payload name, such as CustDelete or CustCreate.

• Static value: The characters or numbers you enter will be passed
literally. For example, if you enter 1.0.0.0, the header key value for
all messages will be 1.0.0.0.

You can also combine both values, such as {PayloadName}_2A.

style The style to use for {PayloadName} values:

• CamelCase: The payload name is written in CamelCase, such as
CustCreate or WelcomeMsg.

• UpperCaseUnderscore: The payload name is written in all capitals
with an underscore between each word, such as CUST_CREATE or
WELCOME_MSG.

The following shows sample header entries for a topic where the header key is
NOTIFICATION_TAG, the key value is {PayloadName}_EVENT, and the style is
UpperCaseUnderscore:

<TopicDefinition name="MessageTopic" format="XML">
 <Headers>
 <Header key="NOTIFICATION_TAG" value="{PayloadName}_EVENT"
style="UpperCaseUnderscore"/>
 </Headers>

In this case, if the payload name is BalanceExpiry, the following header would be added to
the message:

NOTIFICATION_TAG=BALANCE_EXPIRY_EVENT

Adding Separate Payload Settings

Note:

Only XML version 2.0 of the dm_kafka_config.xml file supports adding separate
payloads.

For each topic, you can configure the Kafka DM to write business events in a separate
message payload. To do so, you add a <Payloads> section under the
<DefaultTopicDefinition> or <TopicDefinition> sections. Under <Payloads>, add a
<Payload> element for each business event you want written to a separate message payload:

<Payloads>
 <Payload name="name" key="key" partition="partition">

Chapter 36
Mapping Business Events to Kafka Topics

36-8

 </Payload>
</Payloads>

Table 36-3 describes the attributes in the <Payload> element.

Table 36-3 Payload Attributes

Attribute Name Description

name The name of the business event to write to a separate payload.

key The payload key setting:

• {PayloadName}: This variable is replaced with the message
payload name, such as CustDelete or CustCreate. This is the
default.

• {Random}: This variable is replaced with a random number, such
as 1644450215456.

• {Dynamic}: This variable is replaced with the value passed in the
PCM_OP_PUBLISH_POL_PREP_EVENT output flist. See
"Configuring the Dynamic Key Value" for more information.

• Static Value: The characters or numbers you enter will be passed
literally. For example, if you enter 1.0.0.0, the key will be set to
1.0.0.0.

Note: Keys set at the payload level override the keys set at the topic
level.

See "About Setting Topic and Payload Keys" for more information

partition The partition in which to write the message and topic.

By default, the Kafka DM assigns messages to a random partition in the
Kafka topic.

The following shows sample entries for the BalanceExpiry payload:

<Payloads>
 <Payload name="BalanceExpiry" key="ABCD" partition="1">
 </Payload>
</Payloads>

In this example, a BalanceExpiry business event would have its key set to ABCD, and would
be loaded into partition 1 of the Kafka topic.

Mapping Flist Fields to Payload Tags

Note:

Only XML version 2.0 of the dm_kafka_config.xml file supports the mapping of flist
fields.

The Kafka DM provides default mappings between a business event's flist fields and the XML
or JSON elements in the payload sent to Kafka topics. You can override how the Kafka DM
transforms one or more business event flist fields to XML or JSON elements at the topic level
and the payload level.

Chapter 36
Mapping Business Events to Kafka Topics

36-9

Note:

If mappings for the same flist field are defined at both the topic level and the payload
level, the mapping in the payload takes precedence.

Field mappings can be added under the <DefaultTopicDefinition>, <TopicDefinition>, and
<Payload> sections. To do so, add a <FieldMaps> section. Under it, add a <FieldMap>
element for each field that you want to override:

<TopicDefinition name="MessageTopic" format="XML">
 <FieldMaps>
 <FieldMap pinfld="field" tag="tag"/>
 <FieldMap pinfld="field" value="tag"/>
 </FieldMaps>

Table 36-4 describes the attributes in the <FieldMap> element.

Table 36-4 FieldMap Attributes

Attribute Name Description

pinfld The name of the flist field in the BRM business event payload.

tag The name of the XML or JSON element in the payload published to the
Kafka DM.

The following shows sample field mapping entries:

<TopicDefinition name="NotificationTopic" format="XML"
style="Notification">
 <FieldMaps>
 <FieldMap pinfld="PIN_FLD_ACCOUNT_OBJ" tag="AccountObjId1"/>
 <FieldMap pinfld="PIN_FLD_BAL_GRP_OBJ" tag="BalGrpPoidId1"/>
 </FieldMaps>
 <Payloads>
 <Payload name="BalanceExpiry">
 <FieldMaps>
 <FieldMap pinfld="PIN_FLD_ACCOUNT_OBJ" tag="AccountPoidId2"/>
 </FieldMaps>
 </Payload>
 </Payloads>
</TopicDefinition>

In this example, fields would be mapped as follows:

• For the BalanceExpiry payload name: PIN_FLD_ACCOUNT_OBJ is mapped to
AccountPoidId2, PIN_FLD_BAL_GRP_OBJ is mapped to BalGrpPoidId1, and all other flist
fields use the default mappings.

• All other payload names: PIN_FLD_ACCOUNT_OBJ is mapped to AccountObjId1,
PIN_FLD_BAL_GRP_OBJ is mapped to BalGrpPoidId1, and all other flist fields use the
default mappings.

Chapter 36
Mapping Business Events to Kafka Topics

36-10

Editing the dm_kafka_config.xml File
To map business events to Kafka topics:

1. Open the BRM_home/sys/dm_kafka/dm_kafka_config.xml file in an XML editor.

2. In the <KafkaAsyncMode> XML element, specify the Kafka DM mode to use:

<KafkaAsyncMode>value</KafkaAsyncMode>

where value is true for asynchronous mode, and false for synchronous mode. In
asynchronous mode, the Kafka DM records in a log file all business events that fail to
publish to the Kafka server. In synchronous mode, the Kafka DM returns errors to BRM
when a business event fails to publish to the Kafka server.

3. In the following XML element, set the amount of time, in milliseconds, the Kafka DM waits
for the Kafka server to respond:

<ProducerConfig>max.block.ms=timeout</ProducerConfig>

where timeout specifies the amount of time. If <KafkaAsyncMode> is set to false, set
timeout to 3000 or higher. If <KafkaAsyncMode> is set to true, set timeout to 500 or less.

4. In the <BootstrapServerList> XML element, enter a comma-separated list of addresses
for the Kafka brokers in this format:

<BootstrapServerList>hostname1:port1,hostname2:port2</BootstrapServerList>

You can alternatively leave the default value in the XML entry and set the list in the
environment variable, as shown in "Installing the BRM Kafka DM."

5. To enable SSL or authentication between the Kafka DM and your Kafka server, do the
following:

a. Under the <ProducerConfigs> section, add <ProducerConfig> XML elements for
your authentication protocol and mechanism. For information about the possible
entries, see "Security" in the Apache Kafka documentation.

b. For sensitive information such as passwords, create a token for the password value.
For example:

<ProducerConfig>ssl.truststore.password={TokenName}</ProducerConfig>

(For XML version 2.0) Ensure that TokenName matches the key value stored in the
Oracle wallet. See "Enabling SSL in Kafka DM".

c. (For XML version 1.0 only) For each token, add an <EncryptedVariable> element that
contains: the token name and the encrypted password.

Use the pin_crypt_app utility to encrypt the password. See "pin_crypt_app" for more
information.

<EncryptedVariable>TokenName=&ozt|MyEncryptedPassword</
EncryptedVariable>

Chapter 36
Mapping Business Events to Kafka Topics

36-11

https://kafka.apache.org/27/documentation.html#security

This shows sample <ProducerConfigs> entries for authentication using the SASL_SSL
protocol and SASL/PLAIN mechanism:

<ProducerConfigs>
 <ProducerConfig>ssl.truststore.location=${HOME}/kafka/keystores/
client.truststore.jks</ProducerConfig>
 <ProducerConfig>ssl.truststore.password={TrustStorePassword}</
ProducerConfig>
 <ProducerConfig>ssl.keystore.location=${HOME}/kafka/store/server/
server</ProducerConfig>
 <ProducerConfig>ssl.keystore.password={KeyStorePassword}</
ProducerConfig>
 <ProducerConfig>ssl.key.password={KeyPassword}</ProducerConfig>
 <ProducerConfig>security.protocol=SASL_SSL</ProducerConfig>
 <ProducerConfig>sasl.mechanism=PLAIN</ProducerConfig>

<ProducerConfig>sasl.jaas.config=org.apache.kafka.common.security.plain.Pla
inLoginModule required username="dmkafka" password="{Password}";</
ProducerConfig>
</ProducerConfigs>

6. In the <DefaultTopicDefinition> XML element, set the following:

• name attribute: The name of the default Kafka topic.

• format attribute: The payload format: XML or JSON.

• style attribute: The style of XML payloads: ShortName, CamelCase,
NewShortName, or OC3CNotification.

• key attribute: The key to add to each message: {PayloadName}, {Random},
{Dynamic}, or a static value. This attribute is optional.

• <Headers> element: Information about any headers to add to messages sent to this
topic. This element is optional.

• <Payloads> element: Information about any separate payloads to create in messages
sent to this topic. This element is optional.

• <FieldsMaps> element: Information about how to map specific flist fields to the target
format. This element is optional.

This example creates a default topic named BrmTopic that converts flists into XML
payloads in the CamelCase style, adds a random key, adds the header NOTIFICATION
VERSION=1.0.0.0.0 to all messages sent to it, routes BalanceExpiry business events to
partition 1, and maps the PIN_FLD_ACCOUNT_OBJ flist field.

<DefaultTopicDefinition name="BrmTopic" format="XML" style="CamelCase"
key="{Random}">
 <Headers>
 <Header key="NOTIFICATION_VERSION" value="1.0.0.0.0"/>
 </Headers>
 <Payloads>
 <Payload name="BalanceExpiry" key="ABCD" partition="1">
 <FieldMaps>
 <FieldMap pinfld="PIN_FLD_ACCOUNT_OBJ"
tag="AccountPoidId2"/>
 </FieldMaps>
 </Payload>

Chapter 36
Mapping Business Events to Kafka Topics

36-12

 </Payloads>
</DefaultTopicDefinition>

7. For each Kafka topic that you want to create, add a <TopicDefinition> XML element and
set the following:

• name attribute: The name of the Kafka topic

• format attribute: The payload format: XML or JSON

• style attribute: The style of XML payloads: ShortName, CamelCase,
NewShortName, or OC3CNotification

• key attribute: The key to add to each message: {PayloadName}, {Random},
{Dynamic}, or a static value. This attribute is optional.

• <Headers> element: Information about any headers to add to messages sent to this
topic. This element is optional.

• <Payloads> element: Information about any separate payloads to create in messages
sent to this topic. This element is optional.

• <FieldsMaps> element: Information about how to map specific flist fields to the target
format. This element is optional.

For example:

<TopicDefinition name="NotificationTopic" format="XML"
style="OC3CNotification" key="{Dynamic}">
 <Headers>
 <Header key="NOTIFICATION_TAG" value="{PayloadName}Event"
style="CamelCase"/>
 <Header key="NOTIFICATION_VERSION" value="1.0.0.0.0"/>
 </Headers>
 <Payload name="BillDue" key="{PayloadName}"
partition="2">
 <FieldMaps>
 <FieldMap pinfld="PIN_FLD_ACCOUNT_OBJ"
tag="AccountPoidId1"/>
 </FieldMaps>
 </Payload>
</TopicDefinition>

8. Save and close the file.

9. Restart the Kafka DM for the changes to take effect.

Configuring the Dynamic Key Value
You can configure BRM to replace dynamic keys in message payloads with a value you specify
in the PCM_OP_PUBLISH_POL_PREP_EVENT policy opcode.

To configure BRM to replace the dynamic key value:

1. Configure the KafkaDBNumber business parameter in the notification instance of the /
config/business_params object:

a. Use the following command to create an editable XML file from the notification
instance of the /config/business_params object:

pin_bus_params -r BusParamsNotification bus_params_notification.xml

Chapter 36
Configuring the Dynamic Key Value

36-13

This command creates the XML file named bus_params_notification.xml.out in your
working directory. If you do not want this file in your working directory, specify the path
as part of the file name.

b. Set KafkaDBNumber to the Kafka database number:

<KafkaDBNumber>databaseNumber</KafkaDBNumber>

where databaseNumber is the number for the Kafka database. The default is 0.0.9.6 /
0.

c. Save the file and change its name to bus_params_notification.xml.

d. Use the following command to load this change into the /config/business_params
object:

pin_bus_params bus_params_notification.xml

You should run this command from the BRM_home/sys/data/config directory, which
includes support files used by the utility. To run it from a different directory, see
"pin_bus_params".

e. Read the object with the testnap utility or the Object Browser to verify that all fields are
correct.

For general instructions on using testnap, see "Using the testnap Utility to Test BRM".
For information on how to use Object Browser, see "Reading Objects".

f. Stop and restart the CM.

For more information, see "Starting and Stopping the BRM System".

2. Customize the PCM_OP_PUBLISH_POL_PREP_EVENT policy opcode to compare the
value of the PIN_FLD_POID input flist field to that of the KafkaDBNumber business
parameter.

If they match, the policy opcode must pass the following output flist fields in the
PIN_FLD_NOTIFICATION_KEY_INFO substruct:

• PIN_FLD_NOTIFICATION_KEY: Set this to your desired dynamic key value.

• PIN_FLD_STATUS: Set this to 1.

For example, the following output flist settings specify to replace the dynamic key value
with ServiceLifeStateChangeExpiry:

1 PIN_FLD_NOTIFICATION_KEY_INFO SUBSTRUCT [0] allocated 20, used 5
2 PIN_FLD_NOTIFICATION_KEY STR [0] "ServiceLifeStateChangeExpiry"
2 PIN_FLD_STATUS ENUM [0] 1

3. Set the message payload key attribute to {Dynamic}. See "About Setting Topic and
Payload Keys".

Configuring Where to Record Failed Events
If you configure the Kafka DM to operate in Asynchronous mode, it records to a log file
information about business events that fail to publish successfully to the Kafka server.
Publishing might fail, for example, because the Kafka server is down or the connection fails.

Chapter 36
Configuring Where to Record Failed Events

36-14

Note:

Failed business events are written to a log file only in Asynchronous mode. When a
business event fails to publish in Synchronous mode, the Kafka DM rolls back the
transaction and returns an error to BRM.

By default, the Kafka DM records failed business events to the BRM_log_file_home/dm_kafka/
kafka_failed_message.log file, but you can change the name and location of the file.

To configure where the Kafka DM records failed business events, set the filename entry in the
BRM_home/sys/dm_kafka/log4j2.xml file:

<RollingFile name="KAFKA" fileName="${env:PIN_LOG}/dm_kafka/kafka_failed_message.log"
filePattern="${env:PIN_LOG}/dm_kafka/kafka_failed_message.log.%i">

The following shows a sample flist for a failed business event that could be recorded in the
kafka_failed_message.log file:

0 PIN_FLD_EXTENDED_INFO SUBSTRUCT [0] allocated 3, used 3
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 161798 0
0 PIN_FLD_LOGINS ARRAY [0] allocated 2, used 2
1 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.1 /service/ip 162950 0
1 PIN_FLD_LOGIN STR [0] "user738"
0 PIN_FLD_LOGINS ARRAY [1] allocated 1, used 1
1 PIN_FLD_LOGIN STR [0] ""
0 PIN_FLD_LOGINS ARRAY [2] allocated 2, used 2
1 PIN_FLD_SERVICE_OBJ POID [0] 0.0.0.1 /service/email 160518 0
1 PIN_FLD_LOGIN STR [0] "user738@portal.com"
0 PIN_FLD_LOGINS ARRAY [3] allocated 1, used 1
1 PIN_FLD_LOGIN STR [0] ""
0 PIN_FLD_STRING STR [0] "CustCreate"
0 PIN_FLD_END_T TSTAMP [0] (1669908080) 01/12/2022 07:21:20:000 AM
0 PIN_FLD_BAL_INFO ARRAY [0] allocated 3, used 3
1 PIN_FLD_OBJECT_CACHE_TYPE ENUM [0] 0
1 PIN_FLD_BAL_GRP_OBJ POID [0] 0.0.0.1 /balance_group 160006 1
1 PIN_FLD_BALANCES ARRAY [840] allocated 1, used 1
2 PIN_FLD_CREDIT_PROFILE INT [0] 3
0 PIN_FLD_CREATED_T TSTAMP [0] (1672646104) 01/01/2023 23:55:04:692 PM

Customizing Notification Enrichment
By default, the PCM_OP_PUBLISH_EVENT opcode retrieves the delivery identifier for a
delivery method, such as the email address for an email delivery method, by reading the /
profile/subscriber_preferences object. If one or more delivery identifiers are not present in
the object, the opcode includes in its output flist the PIN_FLD_NOTIFICATION_STATUS_INFO
substruct indicating the list of missing delivery identifier tags. For example, this
PIN_FLD_NOTIFICATION_STATUS_INFO substruct indicates that the Twitter handle and
email address were not found in the /profile/subscriber_preferences object:

1 PIN_FLD_NOTIFICATION_STATUS_INFO SUBSTRUCT [0] allocated 20, used 2
2 PIN_FLD_STATUS ENUM [0] 1
2 PIN_FLD_STATUSES ARRAY [0] allocated 20, used 2
3 PIN_FLD_NAME STR [0] "TwitterHandle"
2 PIN_FLD_STATUSES ARRAY [1] allocated 20, used 2
3 PIN_FLD_NAME STR [0] "Email"

Chapter 36
Customizing Notification Enrichment

36-15

You can customize the PCM_OP_PUBLISH_POL_PREP_EVENT policy opcode to look up or
provide the missing delivery identifiers. The policy opcode can return a delivery identifier value
in the PIN_FLD_VALUE output flist field of the PIN_FLD_NOTIFICATION_STATUS_INFO
substruct. For example, this PIN_FLD_NOTIFICATION_STATUS_INFO substruct provides the
@SampleName Twitter handle and abcd@sample.com email address:

1 PIN_FLD_NOTIFICATION_STATUS_INFO SUBSTRUCT [0] allocated 20, used 2
2 PIN_FLD_STATUS ENUM [0] 1
2 PIN_FLD_STATUSES ARRAY [0] allocated 20, used 2
3 PIN_FLD_NAME STR [0] "TwitterHandle"
3 PIN_FLD_VALUE STR [0] "@SampleName"
2 PIN_FLD_STATUSES ARRAY [1] allocated 20, used 2
3 PIN_FLD_NAME STR [0] "Email"
3 PIN_FLD_VALUE STR [0] "abcd@sample.com"

If the policy opcode does not return a value in the PIN_FLD_VALUE field, the
PCM_OP_PUBLISH_EVENT opcode returns an error and rolls back the entire transaction.

You can also customize the PCM_OP_PUBLISH_POL_PREP_EVENT policy opcode to not
publish specific messages for specific publishers without having to roll back the entire
transaction. To do so, customize the policy opcode to return in the
PIN_FLD_NOTIFICATION_STATUS_INFO substruct, the PIN_FLD_STATUS output flist field
set to one of the following:

• 0: Indicates to not publish the message to this publisher. In this case,
PCM_OP_PUBLISH_EVENT does not publish the event.

• 1: Indicates that the message needs to be published to this publisher. In this case,
PCM_OP_PUBLISH_EVENT returns an error and rolls back the entire transaction.

For example, this specifies to not publish the message to this publisher:

1 PIN_FLD_NOTIFICATION_STATUS_INFO SUBSTRUCT [0] allocated 20, used 2
2 PIN_FLD_STATUS ENUM [0] 0

Chapter 36
Customizing Notification Enrichment

36-16

Part V
Creating and Customizing Client Applications

This part describes how to create and customize Oracle Communications Billing and Revenue
Management (BRM) client applications. It contains the following chapters:

• Adding New Client Applications

• Using Transactions in Your Client Application

• Adding or Changing Login Options

• Creating Applications that Run on Multischema Systems

• Creating BRM Client Applications by Using the MTA Framework

• Creating Client Applications by Using Java PCM

• Creating Client Applications by Using Perl PCM

• Creating Client Applications by Using PCM C++

37
Adding New Client Applications

Learn how to add new client applications and how those applications function within the Oracle
Communications Billing and Revenue Management (BRM) system.

Topics in this document:

• About Adding New Client Applications

• Implementing Timeout for Requests in Your Application

• Configuring Your Custom Application

• Creating a Client Application in C

• Using the Sample Applications

• About Adding Virtual Column Support to Your Applications

About Adding New Client Applications
Client applications can be virtually any type of program, including GUI-based tools, Web-based
tools, network-enabled applications, batch jobs, cron jobs, and so on. You can write custom
application programs to create, manipulate, delete, and display custom objects, which in turn
implement a business policy.

The most common custom application captures external events of some type; for example,
number of bytes downloaded from a web page. These events are then submitted to BRM,
details of the event stored, and the event charges assessed if necessary.

BRM includes a set of client libraries that make it easier to create custom applications. Existing
BRM applications use these client libraries. For more information about the libraries, see
"About the BRM Client Access Libraries".

You can use the following options when you add custom applications to BRM:

• Using Existing System Opcodes

• Using Custom Opcodes

• Using a Custom Data Manager (DM)

Using Existing System Opcodes
You use the base opcodes to create, read, write, delete, and search objects. The base
opcodes also provide programmatic access to transaction commands. More complex opcodes
are implemented by the Facilities Modules (FMs). You use the policy opcodes to implement
business decisions. These higher-level opcodes are translated by the FMs to base opcodes
and sent to Data Managers (DMs) for processing.

In a client application, you use opcodes to record events such as purchasing a charge offer,
changing a credit limit, creating an account or service, changing customer information,
verifying a password, and looking up names and addresses.

37-1

In your application, you can call any of the BRM opcodes without changing the BRM system.
You need to determine when to use a particular system opcode, what constitutes an event, and
then call the appropriate opcode in your application.

Your application must include the header files corresponding to the opcodes you use. All FM
opcodes include the header file for base opcodes, so you do not need to include it unless your
application uses only base opcodes.

Using Custom Opcodes
If the system opcodes do not provide the required functionality, you can create custom
opcodes. However, you must implement your new opcodes in a custom FM and configure the
custom FM with each Connection Manager (CM).

For the application to communicate with the custom FM, the application and the FM have to
agree on the opcodes to pass and the contents of their input and output flists, error buffers,
and flags. The custom FM translates the new opcodes into base opcodes. Then, it can send
the opcodes directly to a DM, or it can call other opcodes implemented by the standard FMs.

You call the custom opcodes in the same way with the same API by using PCM_OP() as the
system opcode. Therefore, you must supply all the parameters, just as in the case of a system
opcode.

Create a header file in which you define your custom opcodes. Include the header file in both
the application and the custom FM source files. Compile the application and the custom FM
with the new header file.

For examples of including opcodes in the header file, see the header files (.h) in the
BRM_home/include directory, where BRM_home is the directory in which the BRM server
software is installed.

Tip:

Defining your custom opcodes in a separate .h file helps you avoid updating FM
header files when you upgrade to a new release of BRM.

Using a Custom Data Manager (DM)
Your application can communicate with a custom DM if the custom DM and the application
agree on the semantics of the input and return flists.

You attach fields to the input flist that have meaning to the custom DM. These new fields act as
opcodes to the custom DM. The return flist is the mirror image of the input flist in the sense that
the application and custom storage manager agree on the meaning of the field-value pairs
returned by the storage manager. The storage manager is responsible for setting error buffer
values.

You create new fields with the PIN_MAKE_FLD macro. For information on the
PIN_MAKE_FLD macro, see pcm.h in the BRM_home/include directory for field value ranges
and examples of PIN_MAKE_FLD.

Chapter 37
About Adding New Client Applications

37-2

Tip:

To avoid updating the Portal .h files every time you upgrade BRM, define your
custom fields in a separate header file and include that file in your application.

Implementing Timeout for Requests in Your Application
You can specify a timeout value for each connection to the CM. This enables you to set
different timeout values for different operations. For example, you can set different timeout
values for authorization and stop-accounting requests, or you can dynamically increase or
decrease the timeout value for different operations based on the system load.

To specify a timeout value in milliseconds for a connection, pass the
PIN_FLD_TIMEOUT_IN_MS field in the input flist to the PCM_CONTEXT_OPEN function. The
PIN_FLD_TIMEOUT_IN_MS value is applicable after the client connects to the server. Before
the connection occurs, this setting is not effective. It does not report a timeout if the client
cannot connect to the server at all.

The timeout value you specify applies to all the opcodes called during that open session and
overrides the value in the client configuration file. You must ensure that your client application
handles the timeout, closes its connection to the CM by calling PCM_CONTEXT_CLOSE, and
cleans up the transaction context.

Note:

When the timeout occurs, the CM does not provide any feedback about the success
or failure of the request it received. When the CM detects the closed connection, it
rolls back the ongoing transaction and shuts down.

Configuring Your Custom Application
You must set up the following applications to access the same database schema:

• The client application

• At least one CM

• At least one DM

The client application makes the connection by using the BRM database number in all three
configuration files: the application's, the CM's, and the DM's. The database number is arbitrary,
but it is determined before the system is installed. After the system is installed, you cannot
change this number because it is encoded in every object in the database schema.

The client application must use POIDs with the correct database number. The system routes
object requests on the basis of POIDs, which include the database number.

In your custom application, use the database number returned by PCM_CONNECT(). If you
are using PCM_CONTEXT_OPEN(), call PCM_GET_USERID() and then
PIN_POID_GET_DB() on the POID.

Chapter 37
Implementing Timeout for Requests in Your Application

37-3

Caution:

Do not get the database number or the userid POID from the configuration file by
calling pin_conf() in your application.

Creating a Client Application in C
You write client applications by using the PCM opcodes, which send and receive flists to the
BRM database. Each opcode has a corresponding input and return flist.

Flists are used to hold return values for two important reasons:

• The macro call itself does not return a value.

• An flist can contain an arbitrary number of fields and values that is frequently not known in
advance.

Your custom applications must include the header files that correspond to the FM opcodes you
use. Which file to include depends on which opcodes you use. The header file for base
opcodes needs to be included if you are using only base opcodes, which is unlikely.

You use the PCM_OP() macro to pass PCM opcodes and flists to BRM. The system returns an
flist. You create input flists for the call to PCM_OP() and routine returns the results in an flist.
You use the return flists and then destroy them.

The following pseudo-code shows the format of most client programs:

#include "pcm.h"
/* header file corresponding to the FM opcode you're using */
#include "ops/file.h"
#include "pin_errs.h"
 main()
 .
 .
 .
 /* open a database context */
 PCM_CONTEXT_OPEN()

 /* clear error buffer */
 PIN_ERRBUF_CLEAR(&ebuf);

 /* send opcode to system, based on user activity or application
 function. */

PCM_OP(input_flist, opcode, return_flist, &ebuf)

 /* check for errors */
 if (PIN_ERRBUF_IS_ERR(&ebuf)) {
 /* handle error */
 } else {
 /* ok - no errors */
 }
 .
 .
 .

 /* close database context */
 PCM_CONTEXT_CLOSE()
 .

Chapter 37
Creating a Client Application in C

37-4

 .
 .
 exit(0);

Compiling and Linking Your Programs
You do not have to follow any special precompilation or other steps to compile and link
applications. Both static and dynamic versions of BRM libraries are provided.

Linux client libraries are multi-thread safe.

To compile and link your application:

1. Compile using the include files in the BRM_SDK_home/include directory.

2. Link to the libraries in BRM_SDK_home/lib.

See the sample applications and their make files for more information.

Table 37-1 lists the supported compilers:

Table 37-1 Supported Compilers

Operating System Compiler

Linux gcc compiler

Guidelines for Developing Applications in C on Linux Platforms
Follow these guidelines to develop custom applications in C on Linux:

• Include the appropriate library file at link time: libportal.so for Linux

• Add BRM_SDK_home/include to the list of include file directories to search.

• In the preprocessor directives, be sure to include the following symbol:

PIN_USE_ANSI_HDRS.

Using the Sample Applications
BRM SDK includes sample applications and code and source code for policy FMs that you can
refer to for coding examples.

Sample Applications
BRM SDK includes sample applications and code in C, C++, Java, and Perl. For a complete
list of the sample applications, see "Sample Applications" in BRM Developer's Reference.

Before you write your program, try compiling and linking copies of these programs to
familiarize yourself with the system. These programs are located in BRM_SDK_home/source/
samples. This directory also includes a sample application configuration file.

Chapter 37
Using the Sample Applications

37-5

Caution:

Do not run the sample programs on a production system. Some programs fill the
database with test objects. Remove the test objects before building your production
system.

Policy FM Source Files
BRM SDK includes the source code for all the policy opcodes. You can refer to them for BRM
coding examples. You can find the Customer Policy FM opcode source files in
BRM_SDK_home/source/sys. Each policy FM has its own directory containing the source files
for the included opcodes and a make file and other support files.

About Adding Virtual Column Support to Your Applications
This section explains the programming considerations of creating an application to work with
BRM virtual columns and applies to custom applications that interact with the BRM database
directly. For information about using virtual columns in the BRM database, see the discussion
on generating virtual columns in BRM System Administrator's Guide.

Caution:

• Always use the BRM API to manipulate data. Changing data in the database
without using the API can corrupt the data.

• Do not use SQL commands to change data in the database. Always use the API.

Custom applications can perform read operations on virtual columns but cannot perform
update or insert operations. The values of virtual columns are computed dynamically, and
attempts to modify them directly result in an error.

BRM creates virtual columns for the POID field_name_type columns on event tables in the
BRM database. If your custom applications must update or insert data in these physical
columns after they have been converted to virtual columns, you must make your applications
interact with the virtual columns' respective supporting column.

Each BRM virtual column is associated with a supporting column that stores the storable class
ID. The supporting columns can be modified and use the suffix field_name_type_id (the virtual
columns use the suffix field_name_type).

The following examples demonstrate how custom applications can perform update and insert
operations on the supporting columns of physical columns that have become virtual-column
enabled.

Note:

The get_object_id function shown in the examples is available in the
PIN_VIRTUAL_COLUMNS package.

Chapter 37
About Adding Virtual Column Support to Your Applications

37-6

Consider a table event_t with virtual column session_obj_type. The virtual column has a
session_obj_type_id supporting column, which stores the ID corresponding to the type value
of the virtual column.

• Update operation example

Any custom application/PL/SQL updating the column session_obj_type using SQL

update event_t set session_obj_type = ‘/service/telco';

will have to be modified to

update event_t set session_obj_type_id = pin_virtual_column.get_object_id(‘/service/
telco');

• Insert operation example

Any custom application/PL/SQL inserting values into column session_obj_type with SQL

insert into event_t (poid_type) values (pin_virtual_columns.get_object_id('/event'));

will have to be modified to

insert into event_t (poid_type_id) values (pin_virtual_columns.get_object_id('/
event'));

Chapter 37
About Adding Virtual Column Support to Your Applications

37-7

38
Using Transactions in Your Client Application

Learn how to manage transactions in custom Oracle Communications Billing and Revenue
Management (BRM) client applications.

Topics in this document:

• Using Transactions

• Types of Transactions

• About Committing Transactions

• About Cancelling Transactions

• About the Transaction Base Opcodes

Using Transactions
Transactions enable an application to perform operations on multiple objects as if they were
run simultaneously. This guarantees the integrity of the data when related changes need to be
made to a set of objects.

In your application, you can call PCM_OP_TRANS_OPEN before calling an opcode and
PCM_OP_TRANS_ABORT or PCM_OP_TRANS_COMMIT after the opcode calls.

Only one transaction at a time can be opened on a PCM context. A transaction is opened on a
specific database schema specified by the POID database number in the input flist. All
operations performed in an open transaction must manipulate data within the same database.

Any changes made within an open transaction can be cancelled at any time and all changes
are completely erased. These actions cancel an open transaction:

• You use the PCM_OP_TRANS_ABORT opcode.

• The application exits or closes the PCM context.

• A system error occurs and connectivity is lost between the application and the database.

The system tracks the transaction along with the context argument used by most of the PCM
Library macros. If the context pointer passed has an outstanding transaction, it is used
automatically.

Keeping a transaction open for a long time can affect performance because the system
maintains a frozen view of the data while changes are made by other applications. It is not
recommended that you leave transactions open while long-latency tasks, such as prompting a
user for input, are performed.

In general, any PCM opcode can be run within an open transaction, and its effect follows the
transactional rules. However, some Facilities Module opcodes that interface to legacy systems
or external systems do not follow the transactional rules (that is, they can't be undone).
Opcodes with this limitation must check for an open transaction and return an error if an
application attempts to run the opcode within the open transaction.

38-1

Types of Transactions
When you use the PCM_OP_TRANS_OPEN opcode to open a transaction, you can use the
following flags to open different types of transactions:

• PCM_TRANS_OPEN_READONLY. See "Read-Only Transactions".

• PCM_TRANS_OPEN_READWRITE. See "Read-Write Transactions".

• PCM_TRANS_OPEN_LOCK_OBJ. See "Transaction with a Locked Objects".

• PCM_TRANS_OPEN_LOCK_DEFAULT. See "Transaction with a Locked Default Balance
Group".

Note:

For J2EE-compliant applications, use JCA Resource Adapter to open extended
architecture (XA) transactions through the XAResource interface. For more
information, see "About BRM JCA Resource Adapter Transaction Management" see
in BRM JCA Resource Adapter.

Read-Only Transactions
Use the PCM_TRANS_OPEN_READONLY flag to open a read-only transaction.

Use this type if operations will not change any data in the transaction.

From the application's point of view, a read-only transaction freezes the data in the database.
The application does not see any changes to data made by other applications while the
transaction is open. This allows data to be examined in a series of operations without being
changed in mid-process.

Read-only transactions are more efficient and should be used when possible. Any number of
read-only transactions can be open against a database at once.

Read-Write Transactions
Use the PCM_TRANS_OPEN_READWRITE flag to open a read-write transaction.

A read-write transaction freezes the data in the database from the application's point of view,
and allows changes to be made to the data set. These changes are not seen by any other
application until the transaction is committed. This allows the effects of a series of operations
performed on objects to occur simultaneously when the transaction is committed.

Any number of read-write transactions can be open against a database at once.

Transaction with a Locked Objects
Use the PCM_TRANS_OPEN_LOCK_OBJ flag to open a transaction and lock an object as
part of the transaction.

A lock-object transaction is useful when two applications must synchronize the operations they
perform on the same object. Lock-object transactions are the same as read-write transactions,

Chapter 38
Types of Transactions

38-2

with the addition of the object lock. If you use a lock-object transaction, you must specify the
PCM_TRANS_OPEN_READWRITE flag.

If an application tries to open a lock-object transaction on an object that is already locked by
another application, it will be held off until the application that currently holds the object finishes
its transaction and unlocks the object.

Transaction with a Locked Default Balance Group
Use the PCM_TRANS_OPEN_LOCK_DEFAULT flag to open a transaction and lock the default
balance group object only as part of the transaction.

Most opcode transactions lock the account object, if used, at the beginning of a transaction.
This provides reliable data consistency but in systems that use account hierarchies, it can also
cause a lot of serialization which decreases the throughput of the system. You can use the
PCM_TRANS_OPEN_LOCK_DEFAULT flag to open a transaction that locks only the default
balance group for the account instead of the sum of all the account objects in the hierarchy.
See "Locking Specific Objects".

If you use a lock default balance group transaction, you must specify the
PCM_TRANS_OPEN_READWRITE flag and not specify the
PCM_TRANS_OPEN_LOCK_OBJ flag.

If an application tries to open a transaction on a balance group that is already locked by
another application, it will be held off until the application that currently holds the object finishes
its transaction and unlocks the object.

About Committing Transactions
Changes made within an open transaction are not permanent or visible to other applications
until the transaction has been successfully committed.

Committing a transaction has these effects:

• The transaction is closed and all data changes made within the open transaction take
effect in the data set. The changes become visible to all other applications (subject to their
open transactions).

• The application's view of the data set is no longer frozen in time, so changes made by
other applications are now visible to the application.

• If an object was locked, it is unlocked.

• The application is free to open another transaction. Subsequent operations on the PCM
context are unrelated to the closed transaction.

Note:

For J2EE-compliant applications, use JCA Resource Adapter to commit XA
transactions through the XAResource interface. The adapter supports both single-
phase and two-phase commits. For more information, see "About BRM JCA
Resource Adapter Transaction Management" in BRM JCA Resource Adapter.

Chapter 38
About Committing Transactions

38-3

About Cancelling Transactions
Cancelling a transaction has the following effects:

• All data changes made within the open transaction are discarded, so no data is changed
by operations related to the transaction.

• If an object was locked, it is unlocked.

• The transaction is closed, and subsequent operations on the PCM context are unrelated to
the closed transaction. The application is free to open another transaction.

• The application's view of the data set is no longer frozen in time, so changes made by
other applications are visible to the application.

Note:

For J2EE-compliant applications, use JCA Resource Adapter to roll back XA
transactions through the XAResource interface. For more information, see "About
BRM JCA Resource Adapter Transaction Management" in BRM JCA Resource
Adapter.

About the Transaction Base Opcodes
Use the following opcodes to manage transactions:

• To open transactions, use PCM_OP_TRANS_OPEN.

• To commit transaction, use PCM_OP_TRANS_COMMIT.

• To cancel transactions, use PCM_OP_TRANS_ABORT.

Customizing How to Open Transactions
To customize how to open transactions, use PCM_OP_TRANS_POL_OPEN.

This opcode gets the same flist that PCM_OP_TRANS_OPEN does. The return flist then
becomes the transaction ID flist; it can contain whatever you want to put in it. That flist then
becomes the input to PCM_OP_TRANS_POL_COMMIT and PCM_OP_TRANS_POL_ABORT.
The return flists from those opcodes are ignored.

Customizing the Verification Process for Committing a Transaction Opcode
To customize how to verify the readiness of an external system to commit a transaction
opcode, use PCM_OP_TRANS_POL_PREP_COMMIT.

This opcode provides BRM with preparatory notice of a pending commit process for
transaction policies working with an external system. This is its overall process:

1. Open a transaction in each system.

2. Do the work authorized by the transaction.

3. Verify that the external system will be able to commit the transaction.

4. Commit the transaction in BRM.

Chapter 38
About Cancelling Transactions

38-4

5. Commit the transaction in the external system.

PCM_OP_TRANS_POL_PREP_COMMIT verifies that the external system will be able to
commit the transaction. If the transaction is successfully committed, the CM calls
PCM_OP_TRANS_COMMIT, and upon a successful commit transaction of that opcode it calls
PCM_OP_TRANS_POL_COMMIT.

If PCM_OP_TRANS_POL_PREP_COMMIT fails, the CM automatically cancels the transaction
using PCM_OP_TRANS_ABORT and PCM_OP_TRANS_POL_ABORT.

Customizing How to Commit a Transaction
To customize how to commit a transaction, use PCM_OP_TRANS_POL_COMMIT.

The return flist from PCM_OP_TRANS_POL_OPEN becomes the transaction ID flist; it can
contain whatever you want to put in it. That flist then becomes the input to
PCM_OP_TRANS_POL_COMMIT. The return flist from this opcode is ignored.

Customizing How to Cancel Transactions
To customize how to cancel transactions, use PCM_OP_TRANS_POL_ABORT.

The return flist from PCM_OP_TRANS_POL_OPEN becomes the transaction ID flist; it can
contain whatever you want to put in it. That flist then becomes the input to
PCM_OP_TRANS_POL_ABORT. The return flist from this opcode is ignored.

Chapter 38
About the Transaction Base Opcodes

38-5

39
Adding or Changing Login Options

Learn how to create a login and password for custom applications to access Oracle
Communications Billing and Revenue Management (BRM).

Topics in this document:

• About Customizing the Login Account for Your Application

• Creating Several admin_client Services with Different Permissions

About Customizing the Login Account for Your Application
You can use the default root account to log in. However, to properly manage access and
permissions to BRM, you must create a BRM account for each custom application that you
create.

To change the default login for your application, perform the following tasks:

1. Use Billing Care to create a BRM account with pcm_client service for your application.

See "Creating an Account for Your Application".

You can create an account for each instance of the application to manage permissions to a
fine detail of control.

2. Provide the login and password to the application at runtime. See "Providing Login and
Password to Your Custom Application" for instructions.

Creating an Account for Your Application
To prevent unwanted billing, the account that owns your custom /service/pcm_client and /
service/admin_client services must be nonbilling. You create a nonbilling account by
specifying the accounting type to PIN_BILL_TYPE_UNDEFINED.

To set up a nonbilling account:

1. Create an /account object.

For information on creating objects, see "Creating Custom Fields and Storable Classes".

2. Change its PIN_FLD_BILL_TYPE value to PIN_BILL_TYPE_UNDEFINED.

3. Use Billing Care to create an account with service/pcm_client for your custom
application.

Providing Login and Password to Your Custom Application
You can use one of the following methods to pass the login and password to your application:

• You can have the application user enter the login and password at runtime. This is the
most secure way because there are no configuration files to be read.

To use this method, call PCM_CONTEXT_OPEN in your application and build a login flist.

39-1

• You can get the login name and password from the application configuration file. This
method allows the application to start automatically and reconnect. However, you must
secure the configuration file to prevent unauthorized access.

To use this method, call PCM_CONNECT in your application to open a PCM context.

This routine reads the login type, name and password entries from your application
configuration file. It then calls PCM_CONTEXT_OPEN with an input flist containing values
for login type, name, and password from the configuration file.

For an example of how to use this routine, see sample_app.c located in
BRM_SDK_home/source/samples/apps/c.

Configuring System Passwords
After you create the new service and account for your application, edit the userid entry in your
application configuration file to point to your new service.

You can specify that your application requires a login name and password to connect to BRM
by setting login_type to 1 in the login information section of your application's configuration
file.

In your application's configuration file, include entries for login type, name, and password using
this syntax:

- nap login_type login_type
- nap login_name login_name
- nap login_pw password

For example:

- nap login_type 1
- nap login_name Portal_user
- nap login_pw password

Creating Several admin_client Services with Different
Permissions

You can create several admin_client services with different permissions to manage access and
permissions to BRM components. Permissions are stored in the /service/admin_client object
in the PIN_FLD_PERMITTEDS array.

1. Create the /service/admin_client objects that are owned by several accounts.

For information on creating objects, see "Creating Custom Fields and Storable Classes".

2. Add as many permissions to the service permissions array (PIN_FLD_PERMITTEDS) as
you want.

For information about the array's format, see the /service/admin_client storable class
specification.

Chapter 39
Creating Several admin_client Services with Different Permissions

39-2

40
Creating Applications that Run on
Multischema Systems

Learn how to create custom applications that run on an Oracle Communications Billing and
Revenue Management (BRM) multischema system.

Topics in this document:

• About Working with Multiple Schemas

• Creating Accounts in a Multischema System

• Maintaining Transactional Integrity

• Searching for Accounts across Database Schemas

• Finding How Many Database Schemas You Have

• Bill Numbering

About Working with Multiple Schemas
Generally, making applications work with multiple database schemas is not all that different
from making them work with a single schema.

Accounts are distributed across schemas, but applications log in to the correct schema for an
account based on the login name and service type. When an application logs in to BRM, it gets
the schema context for the account it logged in as. An event for the login session for that
application is created in the schema that hosts the account.

After the application has logged in, it has access to the entire BRM database for reads and
writes on all storable classes that are modifiable. In most cases, after an account context is
established, all subsequent operations for the account are performed in the single schema
where the context was opened.

Creating Accounts in a Multischema System
Use the PCM_OP_CUST_COMMIT_CUSTOMER opcode to create accounts just as you would
for a single-schema system. The opcode uses the /config/distribution object created by using
the load_config_dist utility to determine which schema your account is created in.

You can specify which schema new accounts should be created in by editing the
config_dist.conf configuration file. For more information, see "Setting Database Priorities" in
BRM System Administrator's Guide.

Note:

Billing groups must reside in the same schema.

40-1

Maintaining Transactional Integrity

Note:

Remember, after you find an account to modify data in, confine all operations
possible to that schema.

Although an application can connect to multiple database schemas and manipulate data in any
schema, a transaction can only manipulate data in a single schema. To perform a transaction
on more than one schema, you must close the existing transaction, open a context to the other
schema, and open another transaction. An application that needs to perform the same
operation on all accounts (such as billing or invoicing) should be run as a separate instance in
each schema.

You must use the database number returned by PCM_CONNECT or PCM_CONTEXT_OPEN
for all transactions within the context you open. These opcodes pass in an account's user
name and return the database number for that account. To prevent losing transactional
integrity, avoid opening contexts to multiple schemas whenever possible.

The exception to this rule is the rare occasion when you need to access information in any of
the pricing storable classes. Embedded in these storable classes is the account information
(including database number) of the person who changed that information. All account
references are exact references. Managing this information can require you to switch contexts
to another schema with a new call to PCM_CONNECT or PCM_CONTEXT_OPEN.

Searching for Accounts across Database Schemas
This section describes how to search for accounts across database schemas.

You can use the following opcodes to find a single account:

• Use the PCM_OP_ACT_FIND opcode to find an account based on the login and service
type. This opcode finds and returns the account POID (including the correct database
number) of a single account.

• Use the PCM_OP_GLOBAL_SEARCH opcode to find an account based on other account
attributes. This opcode returns any fields that you specify on the input flist.

To find POIDS of multiple accounts across multiple database schemas, use the
PCM_OP_GLOBAL_SEARCH opcodes. The global search opcodes can also be used to
search for a set of objects that reside in multiple database schemas (for example, all events
from a particular day). See "Searching for Objects in the BRM Database" for a complete
discussion of searching for accounts across multiple database schemas.

Note:

Remember to use nonglobal searches for better performance whenever possible.
After you get the results of a global search, you can improve your application's
overall performance by dividing the database read and write operations among
database schemas.

Chapter 40
Maintaining Transactional Integrity

40-2

Finding How Many Database Schemas You Have
Use the testnap utility to find the number of database schemas connected to your BRM
system. The following example shows testnap being started and then displays the contents of
an flist named 1. This flist is designed to match all root accounts. In the next step, this flist is
passed to PCM_OP_GLOBAL_SEARCH (opcode number 25), which searches all database
schemas. In the final step, testnap searches all database schemas for their root accounts.
Each database schema has only one root account (in the /service storable class), so the
result of this search is a listing of all the database schemas currently connected to your BRM
system. In this example, there are two: 0.0.0.1 and 0.0.0.2.

testnap
input flist:

d 1
0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_FLAGS INT [0] 0
0 PIN_FLD_TEMPLATE STR [0] "select X from /service
where F1 like V1 and F2 = V2 "
0 PIN_FLD_ARGS ARRAY [1]
1 PIN_FLD_LOGIN STR [0] "root.0.0.0%"
0 PIN_FLD_ARGS ARRAY [2]
1 PIN_FLD_POID POID [0] 0.0.0.0 /service/pcm_client -1 0
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_POID POID [0] NULL
1 PIN_FLD_LOGIN STR [0] ""

result:

XOP PCM_OP_GLOBAL_SEARCH 0 1
XOP: opcode 25, flags 0
number of field entries allocated 3, used 3
0 PIN_FLD_POID POID [0] 0.0.0.1 /search -1 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.2 /service/pcm_client 1 1
1 PIN_FLD_LOGIN STR [0] "root.0.0.0.2"
0 PIN_FLD_RESULTS ARRAY [1] allocated 2, used 2
1 PIN_FLD_POID POID [0] 0.0.0.1 /service/pcm_client 1 1
1 PIN_FLD_LOGIN STR [0] "root.0.0.0.1"

Bill Numbering
Applications must avoid hard-coding bill numbers. Bill numbers are coded to the database
schema they were created in, and BRM relies on the numbering scheme. The /data/sequence
storable class tracks bill numbers to ensure that they are unique. This storable class makes
sure that bill numbers are unique across database schemas.

Chapter 40
Finding How Many Database Schemas You Have

40-3

41
Creating BRM Client Applications by Using the
MTA Framework

Learn about the multithreaded application (MTA) framework in Oracle Communications Billing
and Revenue Management (BRM) and how to use it to create BRM multithreaded client
applications.

Topics in this document:

• About the BRM MTA Framework

• Using the BRM MTA Framework

• Creating a Multithreaded BRM Client Application

• Customizing BRM Multithreaded Client Applications

• Configuring your Multithreaded Application

• Using Multithreaded Applications with Multiple Database Schemas

• MTA Policy Opcode Hooks

• MTA Callback and Helper Functions

See also:

• Using Transactions in Your Client Application

• Creating Applications that Run on Multischema Systems

About the BRM MTA Framework
You use BRM multithreaded application (MTA) framework to create customizable multithreaded
BRM client applications. A multithreaded application uses multiple threads that run in parallel
to process a single task. By using multiple worker threads, BRM MTAs are able to process jobs
more quickly.

BRM MTAs use a standard program structure, making it easier to code and maintain. In each
application, one main thread is responsible for getting data from the BRM database, and a
number of worker threads process the job in parallel. The BRM MTA framework manages all
thread handling seamlessly, allowing your application to ignore thread management.

Typically, you use a multithreaded BRM client application when you have a large job that can
be grouped into batches and processed concurrently. For example, BRM's pin_deferred_act,
pin_bill_accts, pin_collect, and pin_cycle_fees billing utilities use the MTA framework to
retrieve information from the BRM database for the accounts that they process.

The BRM MTA framework is based on a multi-layered architecture that allows you to create
customizable BRM MTAs. For information about this architecture, see "BRM MTA Framework
Layers".

The BRM MTA framework provides function and opcode hooks that you implement to create
customizable multithreaded applications. Each callback function and policy opcode is called at
fixed places during application execution. For information about these execution stages, see
"MTA Stages".

41-1

Information about the application, such as configuration settings and search flists are stored in
a global flist. The global flist makes application information available to all three layers:
Framework, Application, and Customization. For information about the global flist structure,
see "MTA Global Flist Structure".

Function hooks are provided as MTA callback functions, which you use to implement your
application's business logic in the Application layer. See "Creating a Multithreaded BRM Client
Application".

Opcode hooks are custom policy opcodes that you write to customize the business logic in the
Customization layer. See "Customizing BRM Multithreaded Client Applications".

Each callback function and policy opcode provides a specific functionality. For details, see
"Using the BRM MTA Framework".

BRM MTA Framework Layers
The BRM MTA framework has three layers:

• Framework layer

This layer is implemented at the application tier in the BRM four-tier architecture. This layer
implements the main thread that controls application workflow. The main thread performs
database searches, distributes jobs to worker threads, and calls the callback functions in
the Application layer and the custom policy opcodes in the Customization layer.

• Application layer

This layer is implemented at the application tier. This layer consists of the MTA callback
functions. You use callback functions to implement your application business logic, such as
calling billing opcodes to perform billing or generate invoices.

• Customization layer

This layer is implemented at the Connection Manager (CM) tier. This layer consists of
custom policy opcodes. You use policy opcodes to customize the application business
logic implemented in the Application layer.

Figure 41-1 shows the architecture of the BRM MTA framework layers:

Figure 41-1 BRM MTA Framework Architecture

Chapter 41
About the BRM MTA Framework

41-2

MTA Stages
Each BRM multithreaded application has a standard program structure and standard execution
stages. The main thread manages the application workflow by calling the MTA functions and
policy opcodes in a set order at each execution stage.

Figure 41-2 shows the BRM MTA execution stages and workflow.

Figure 41-2 BRM MTA Execution Stages and Workflow

Chapter 41
About the BRM MTA Framework

41-3

MTA_CONFIG Execution Stage
Each BRM multithreaded client application requires a configuration file (pin.conf) and can
have command-line parameters. The MTA framework performs default application
configuration based on the information in the pin.conf file and command-line parameters. You
can write custom policy opcodes to provide custom configurations.

The main thread calls the following MTA callback functions and the custom policy opcode hook
in this order:

1. pin_mta_config

2. MTA_CONFIG

3. pin_mta_post_config

MTA_INIT_APP Execution Stage
Application initialization occurs after the application has been configured successfully. The
main thread spawns a number of worker threads, and the application completes all tasks that
are required before the main search execution is performed.

The main thread calls the following MTA callback functions and the custom policy opcode hook
in this order:

1. pin_mta_init_app

2. MTA_INIT_APP

3. pin_mta_post_init_app

MTA_INIT_SEARCH Execution Stage
During search initialization, the search flist is prepared. This flist is provided as the input to the
search opcodes. You can write custom policy opcodes to modify the search flist.

The main thread calls the following MTA callback functions and the custom policy opcode hook
in this order:

1. pin_mta_init_search

2. MTA_INIT_SEARCH

3. pin_mta_post_init_search

Search Execution
At the search execution stage, the main thread calls the search opcodes (PCM_OP_SEARCH,
PCM_OP_STEP_SEARCH, and PCM_OP_STEP_NEXT) to find the objects or search results.

Note:

The search results are sent to the client a block at a time. The block size is equal to
the fetch size specified in the application's pin.conf file. The search opcodes are
called as many times as needed until all the search results are received. For more
information, see "Configuring your Multithreaded Application".

Chapter 41
About the BRM MTA Framework

41-4

MTA_TUNE Execution Stage
After a block of search results is passed to the application, the results can be tuned or modified
before they are distributed in batches to the worker threads for processing.

The main thread calls the following MTA callback functions and the custom policy opcode hook
in this order:

1. pin_mta_tune

2. MTA_TUNE

3. pin_mta_post_tune

Job Distribution
The basic purpose of a BRM multithreaded client application is to manage the distribution of a
job to worker threads. After search execution and search results tuning, the main thread adds
the search results to the job pool and notifies worker threads to begin processing.

MTA_JOB_DONE Execution Stage
After worker threads have been notified of an available job in the job pool, the main thread
waits for notification back from the worker threads that their assigned jobs are completed.
When all results from the main search have been processed and the job pool is empty, the next
search cycle is run until there are no more search results remaining in the database.

The main thread calls the following MTA callback functions and the custom policy opcode hook
in this order:

1. pin_mta_job_done

2. MTA_JOB_DONE

3. pin_mta_post_job_done

MTA_EXIT Execution Stage
When there are no more jobs to process, the application terminates all threads, closes the
database connection, and exits.

The main thread calls the following MTA callback functions and the custom policy opcode hook
in this order:

1. pin_mta_exit

2. MTA_EXIT

3. pin_mta_post_exit

MTA_WORKER_INIT Execution Stage
Worker threads are spawned at the application initialization stage. After initialization, the
worker threads remain in wait mode until they are notified by the main thread of an available
job in the job pool.

The following MTA callback functions and the policy opcode hook are called in this order by
each worker thread:

1. pin_mta_worker_init

Chapter 41
About the BRM MTA Framework

41-5

2. MTA_WORKER_INIT

3. pin_mta_post_worker_init

MTA_WORKER_JOB Execution Stage
After worker threads have been notified of an available job in the job pool, they receive their
assigned batch of search results and then call the main opcode to process the work. The input
flist for the main opcode is prepared here prior to the opcode call.

The following MTA callback functions and the policy opcode hook are called by each worker
thread in this order:

1. pin_mta_worker_job

2. MTA_WORKER_JOB

3. pin_mta_post_worker_job

Worker Thread Job Execution
Each worker thread calls the "pin_mta_worker_opcode" callback function and passes the
search results for processing.

MTA_WORKER_JOB_DONE Execution Stage
When worker threads have completed their assigned job, they notify the main thread and
return to wait mode until more work becomes available.

After a worker thread has completed its job, it calls the following callback functions and policy
opcode hook to perform any required tasks:

1. pin_mta_worker_job_done

2. MTA_WORKER_JOB_DONE

3. pin_mta_post_worker_job_done

MTA_WORKER_EXIT Execution Stage
Worker threads are terminated when there are no more jobs for the application to process.

The following MTA callback functions and the custom policy opcode hook are called in this
order by each worker thread to perform any tasks before the thread exits:

1. pin_mta_worker_exit

2. MTA_WORKER_EXIT

3. pin_mta_post_worker_exit

MTA Global Flist Structure
The BRM MTA framework includes a global flist that stores information specific to the
application, such as configuration settings, search flists, and search results. Information stored
in the global flist is accessed by the MTA callback functions and custom policy opcodes.

The global flist contains the following fields:

0 PIN_FLD_CONFIG_OBJ SUBSTRUCT [0]
0 PIN_FLD_APPLICATION_INFO SUBSTRUCT [0]

Chapter 41
About the BRM MTA Framework

41-6

0 PIN_FLD_SEARCH_FLIST SUBSTRUCT [0]
0 PIN_FLD_SEARCH_RESULTS SUBSTRUCT [0]
0 PIN_FLD_EXTENDED_INFO SUBSTRUCT [0]
0 PIN_FLD_OPERATION_INFO SUBSTRUCT [0]

The PIN_FLD_CONFIG_OBJ substruct is populated with information from the /config/mta
object. This information is used by the BRM MTA framework to determine which custom policy
opcodes to call during application execution. For more information about the fields in the
PIN_FLD_CONFIG_OBJ substruct, see "Configuring the MTA Policy Opcodes".

The PIN_FLD_APPLICATION_INFO substruct contains the application's configuration settings.

This substruct includes the following fields:

0 PIN_FLD_APPLICATION_INFO SUBSTRUCT [0]
1 PIN_FLD_NAME STR [0]
1 PIN_FLD_CHILDREN INT [0]
1 PIN_FLD_STEP_SIZE INT [0]
1 PIN_FLD_BATCH_SIZE INT [0]
1 PIN_FLD_FETCH_SIZE INT [0]
1 PIN_FLD_NUM_RETRIES INT [0]
1 PIN_FLD_FLAGS INT [0]
1 PIN_FLD_MAX_ERROR INT [0]
1 PIN_FLD_MAX_TIME INT [0]
1 PIN_FLD_HOTLIST_FILENAME STR [0]
1 PIN_FLD_MONITOR_FILENAME STR [0]
1 PIN_FLD_LOGFILE STR [0]
1 PIN_FLD_LOGLEVEL INT [0]
1 PIN_FLD_POID_VAL POID [0]/*Specifies the DB no.

where:

• PIN_FLD_NAME is the application name.

• PIN_FLD_FLAGS contains application bit flags. Flags can be added by Application layer
and Customization layer developers. See pin_mta.h for the default MTA flags.

For details about all other PIN_FLD_APPLICATION_INFO substruct fields, see "Configuring
your Multithreaded Application".

The PIN_FLD_SEARCH_FLIST substruct contains the search flist that is passed to the search
opcodes.

This substruct includes the following fields:

0 PIN_FLD_SEARCH_FLIST SUBSTRUCT [0]
1 PIN_FLD_POID POID [0]
1 PIN_FLD_FLAGS INT [0]
1 PIN_FLD_TEMPLATE STR [0]
1 PIN_FLD_ARGS ARRAY [1]
2 PIN_FLD_XXX STR [0]
1 PIN_FLD_RESULTS ARRAY [0]
2 PIN_FLD_XXX POID [0]
1 PIN_FLD_FILENAME STR [0]
1 PIN_FLD_COUNT INT [0]

For details about these fields, see "Configuring your Multithreaded Application".

The PIN_FLD_SEARCH_RESULTS substruct contains the search flist that is passed to the
search opcodes.

This substruct includes the following fields:

Chapter 41
About the BRM MTA Framework

41-7

0 PIN_FLD_SEARCH_RESULTS ARRAY [0]
1 PIN_FLD_MULTI_RESULTS ARRAY [0]
2 PIN_FLD_RESULTS ARRAY [0]
3 PIN_FLD_XXX POID [0]

where:

• PIN_FLD_MULTI_RESULTS is an array containing the search results. The number of
results is equal to the step size specified in the pin.conf file.

• PIN_FLD_RESULTS is an array that specifies the objects received from the database.

The PIN_FLD_EXTENDED_INFO substruct is reserved for the Customization layer.

The PIN_FLD_OPERATION_INFO substruct contains statistics and audit-related information.

This substruct includes the following fields:

1 PIN_FLD_PID INT [0]
1 PIN_FLD_HOSTNAME STR [0]
1 PIN_FLD_START_T TSTAMP [0]
1 PIN_FLD_THREAD_INFO ARRAY [0]
2 PIN_FLD_START_T TSTAMP [0]
2 PIN_FLD_END_T TSTAMP [0]
2 PIN_FLD_ERROR_INFO ARRAY [0]
3 PIN_FLD_ERROR_NUM INT [0]
3 PIN_FLD_SYS_ERROR_NUM INT [0]
3 PIN_FLD_ERROR_CODE STR [0]
3 PIN_FLD_ERROR_DESCR STR [0]
3 PIN_FLD_TRACKING_ID STR [0]

where:

• PIN_FLD_PID specifies the process ID number.

• PIN_FLD_HOSTNAME specifies the host where the application runs.

• PIN_FLD_START_T specifies the process or main thread start time.

• PIN_FLD_END_T specifies the process end time.

• PIN_FLD_ERROR_NUM specifies the total number of errors for all threads.

• PIN_FLD_SYSTEM_ERROR_NUM specifies the total number of system errors.

• PIN_FLD_ERROR_CODE specifies the error code from the application pinlog file.

• PIN_FLD_ERROR_DESCRIPTION is the description of the error from the application
pinlog file.

• PIN_FLD_TRACKING_ID specifies the correlation ID from the application pinlog file.

Using the BRM MTA Framework
The BRM MTA framework is compiled as a static library. It provides a set of callback functions
as hooks that you implement to develop multithreaded client applications for BRM.

The MTA framework is included in the BRM SDK. For installation instructions and an overview,
see "About BRM SDK".

The MTA framework includes the files listed in Table 41-1, in the BRM_SDK_home directory:

Chapter 41
Using the BRM MTA Framework

41-8

Table 41-1 Files Included in MTA Framework

File Description

/include/pin_mta.h MTA header file

/lib/libmta.a MTA library file

/bin/pin_mta_monitor Sample monitoring utility

/source/apps/mta_sample/pin_mta_test.c Sample application using the MTA framework

/source/apps/mta_sample/Makefile Makefile to build the sample application,
pin_mta_test.c

/source/apps/mta_sample/pin.conf Sample configuration file

MTA Callback Functions
The BRM MTA callback functions (see Table 41-2) are hooks. You implement the functions in
your application by providing application-specific contents.

Note:

You do not have to implement all of the callback functions; however, you must
implement pin_mta_config to process application command-line parameters,
pin_mta_init_search to specify search criteria, and pin_mta_worker_opcode to
specify the main opcode call. You implement other functions as needed.

Table 41-2 MTA Callback Functions

Function Description

pin_mta_config Can be used for default application configuration.

pin_mta_exit Can be used for any tasks that are required before the
application exits.

pin_mta_init_app Can be used for application initialization and all required tasks
before execution of main search.

pin_mta_init_search Can be used for preparation of the search flist.

pin_mta_job_done Can be used for any tasks that are required after search results
have been processed, such as validation and logging.

pin_mta_post_config Can be used for post-configuration tasks such as configuration
validation and logging.

pin_mta_post_exit Can be used for any tasks that are required before the
application exits, such as validation and logging.

pin_mta_post_init_app Can be used for any post-initialization tasks such as initialization
validation and logging.

pin_mta_post_init_search Can be used for any tasks that are required after search
initialization, such as validation and logging.

pin_mta_post_job_done Can be used for any tasks that are required after search results
have been processed, such as validation and logging.

Chapter 41
Using the BRM MTA Framework

41-9

Table 41-2 (Cont.) MTA Callback Functions

Function Description

pin_mta_post_tune Can be used for any tasks that are required after search results
have been tuned, such as validation and logging.

pin_mta_post_usage Can be used to display application help information.

pin_mta_post_worker_exit Performs any cleanup tasks and logging after a worker thread
exits.

pin_mta_post_worker_init Can be used for any tasks that are required after worker threads
are initialized, such as validation and logging.

pin_mta_post_worker_job Can be used for any validation of the search results received by
worker threads and any logging that is required.

pin_mta_post_worker_job_done Performs any cleanup tasks and logging that are required after a
worker thread completes its assigned job.

pin_mta_tune Can be used for any filtration and tuning of the search results
before the results are distributed to worker threads.

pin_mta_usage Can be used to prepare application help information for display.

pin_mta_worker_exit Performs cleanup tasks and other functions required before a
worker thread exits.

pin_mta_worker_init Can be used for initialization of the worker thread.

pin_mta_worker_job Can be used to prepare the main opcode input flist.

pin_mta_worker_job_done Can be used for any functions that are required after a worker
thread completes its assigned job.

pin_mta_worker_opcode Runs the main opcode to process the job.

MTA Helper Functions
Table 41-3 lists the MTA helper functions used to manipulate data in global flist data structures.

Table 41-3 MTA Helper Functions

Function Description

pin_mta_get_decimal_from_pinconf Loads decimal fields from the pin.conf file.

pin_mta_get_int_from_pinconf Loads integer fields from the pin.conf file.

pin_mta_get_str_from_pinconf Loads string fields from the pin.conf file.

pin_mta_global_flist_node_get_no_lock Gets the global flist field; does not set the lock on
the field; multithread unsafe.

pin_mta_global_flist_node_get_with_lock Gets the global flist field; sets the lock on the field
to prevent access; multithread safe.

pin_mta_global_flist_node_put Puts the global flist field to the flist specified;
multithread safe.

pin_mta_global_flist_node_release Releases the lock from the global flist field;
multithread safe.

pin_mta_global_flist_node_set Sets the global flist field to the flist specified;
multithread safe.

pin_mta_main_thread_pcm_context_get Gets the main thread context.

Chapter 41
Using the BRM MTA Framework

41-10

MTA Policy Opcode Hooks
This section lists MTA policy opcode hooks.

All MTA policy opcodes use Transition: supports.

For information about the flist specification, see Opcode Flist Reference.

To customize your BRM multithreaded client application, you implement the MTA policy opcode
hooks (listed in Table 41-4) in your application by providing application-specific contents.

Note:

You do not have to implement all of the policy opcodes. You specify your own policy
opcode names. For example, for MTA_CONFIG policy opcode, you might use
PCM_OP_MTA_POL_CONFIG.

Table 41-4 MTA Policy Opcode Hooks

Policy opcode Description

MTA_CONFIG Called at MTA_CONFIG execution stage. Allows customization
of the default application configuration.

MTA_ERROR Allows processing of error notifications.

MTA_EXIT Called at MTA_EXIT execution stage. Allows any processing that
may be required before the application exits.

MTA_INIT_APP Called at MTA_INIT_APP execution stage. Allows customization
of the default application initialization.

MTA_INIT_SEARCH Called at MTA_INIT_SEARCH execution stage. Allows
customization of the search flist.

MTA_JOB_DONE Called at MTA_JOB_DONE execution stage. Allows any
processing that may be required at the completion of search
results processing.

MTA_TUNE Called at MTA_TUNE execution stage. Allows modification of the
search results.

MTA_USAGE Allows display of application help information.

MTA_WORKER_EXIT Called at MTA_WORKER_EXIT execution stage. Allows any
processing that may be required before the worker thread exits.

MTA_WORKER_INIT Called at MTA_WORKER_INIT execution stage. Allows
customization of worker thread initialization.

MTA_WORKER_JOB Called at MTA_WORKER_JOB execution stage. Allows
modification of search results received by the worker thread and
preparation of the input flist passed to the main opcode.

MTA_WORKER_JOB_DONE Called at MTA_WORKER_JOB_DONE execution stage. Allows
any processing that may be required at completion of the worker
thread job assignment.

Chapter 41
Using the BRM MTA Framework

41-11

Creating a Multithreaded BRM Client Application
Before you create a multithreaded BRM client application, you should have a good
understanding of the BRM MTA execution flow and the global flist structure. See "About the
BRM MTA Framework".

You create a multithreaded BRM client application by implementing the MTA callback functions
in your application and by providing application-specific content.

These callback functions are called by the MTA framework at fixed execution points to
configure, initialize, search, process data, and exit the application. For information about the
syntax and description of these functions, see "MTA Callback Functions".

The BRM MTA framework supports three search options; see "Searching Different Data
Sources".

For information about displaying usage information, see "Displaying Application Help
Information".

For processing errors that occur during application execution, see "Error Notifications".

The sample file BRM_SDK_home/source/samples/apps/c/mta_sample/pin_mta_test.c
provides sample implementations of MTA callback functions. Use this as a code sample to
build your own multithreaded application. For information on how to compile and run the
sample application, see "About Using the PCM C Sample Programs" in BRM Developer's
Reference.

For general information on creating new client applications, see "Adding New Client
Applications".

Each BRM client application has its own configuration file (pin.conf). After you build your
application, you need to create a configuration file. See "Configuring your Multithreaded
Application".

To customize your multithreaded application, you implement the MTA policy opcode hooks.
See "Customizing BRM Multithreaded Client Applications".

Searching Different Data Sources
The BRM MTA framework supports three search options: search for objects stored in the BRM
database, search for objects stored in a file, and passing objects directly to the search opcode.
You specify the search option in the PIN_FLD_SEARCH_FLIST substruct in the global flist.

To search for objects in the BRM database, you specify the POID of the /search object that
defines the search template.

For example:

0 PIN_FLD_SEARCH_FLIST SUBSTRUCT [0]
1 PIN_FLD_POID POID [0] "/search/pin" –1 0
1 PIN_FLD_FLAGS INT [0] 0
1 PIN_FLD_TEMPLATE STR [0] "select X from /account where F1 = V1"
1 PIN_FLD_ARGS ARRAY [1]
2 PIN_FLD_FIRST_NAME STR [0] "name"
1 PIN_FLD_RESULTS ARRAY [0]
2 PIN_FLD_POID POID [0]

To search for objects in a file, you specify the name of the file where the objects are stored.

Chapter 41
Creating a Multithreaded BRM Client Application

41-12

For example:

0 PIN_FLD_SEARCH_FLIST SUBSTRUCT [0]
1 PIN_FLD_FILENAME STR [0] "file name"
1 PIN_FLD_COUNT INT [0] 2

Note:

The file specified in PIN_FLD_FILENAME must be a text file and must have the
same format as the search results flist.

The following is an example of the text file:

0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_ACCOUNT_OBJ POID [0] "/account" 123 0
0 PIN_FLD_RESULTS ARRAY [1]
1 PIN_FLD_ACCOUNT_OBJ POID [0] "/account" 345 0

To pass objects directly in the search flist, you specify the POIDs of the objects.

For example:

0 PIN_FLD_POID POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_RESULTS ARRAY [0]
1 PIN_FLD_ACCOUNT_OBJ POID [0] "/account" 123 0
0 PIN_FLD_RESULTS ARRAY [1]
1 PIN_FLD_ACCOUNT_OBJ POID [0] "/account" 345 0

Note:

When objects are provided in the search template, the data is taken from
PIN_FLD_SEARCH_FLIST and put into PIN_FLD_SEARCH_RESULTS. Do not free
memory from PIN_FLD_SEARCH_FLIST, otherwise the application will error out. If
your application performs the search operation in a loop, add new data to
PIN_FLD_SEARCH_FLIST node by preparing the flist in the pin_mta_init_search
function. The application will exit as soon as no new data is provided in
PIN_FLD_SEARCH_FLIST node.

For information about the search flist and search results flist, see "MTA Global Flist Structure".

Displaying Application Help Information
The BRM MTA framework provides callback functions that you can implement in your
application to display application help information. The usage callback function is called by
specifying the -help parameter in the command line or when the application fails to configure
or initialize because the command-line options specified were invalid or incomplete. When an
error occurs during application configuration, the MTA framework sets the PIN_FLD_FLAGS
field in the PIN_FLD_APPLICATION_INFO substruct in the global flist. For a list of all
predefined flags, see pin_mta.h.

Chapter 41
Creating a Multithreaded BRM Client Application

41-13

Note:

The command-line parameters -help, -verbose, and -test are processed by the MTA
framework layer. When these parameters are specified with additional parameters
(for example, -verbose xyz), the framework layer processes the -verbose parameter
and ignores xyz. In this case, you might want to display a usage error message in
your custom application. To do this, set the MTA flag in the pin_mta_config callback
function as follows:

mta_flags = mta_flags | MTA_FLAG_VERSION_NEW

When this flag is set, the MTA framework generates a usage error when the -help, -
verbose, or -test parameter is specified with additional parameters.

To display application help information, the main thread calls the following callback functions
and the policy opcode hook in this order for the -help, -verbose, or -test parameters:

1. pin_mta_usage

2. MTA_USAGE

3. pin_mta_post_usage

You implement pin_mta_usage to prepare the help text message, and you implement
pin_mta_post_usage to display the message. You can customize the help text by
implementing the usage policy opcode hook.

Note:

You must set the PIN_FLD_DESCR field in the PIN_FLD_EXTENDED_INFO
substruct in the global flist to the help text, so that it can be accessed by the usage
policy opcode and pin_mta_post_usage.

Depending on the parameter specified in the command line, the framework layer processes the
parameters as follows:

• -help: Sets the PIN_FLD_FLAGS field in the PIN_FLD_APPLICATION_INFO substruct in
the global flist to MTA_FLAG_USAGE_MSG, calls pin_mta_usage and then
pin_mta_exit, and displays the valid command line options on the standard output.

• -verbose: Sets the PIN_FLD_FLAGS field in the PIN_FLD_APPLICATION_INFO substruct
in the global flist to MTA_FLAG_VERBOSE_MODE; flushes the stdout buffer; and
displays the number of data errors encountered, the total number of errors encountered,
and the additional output for threads information on the standard output.

• -test: Sets the PIN_FLD_FLAGS field in the PIN_FLD_APPLICATION_INFO substruct in
the global flist to MTA_FLAG_TEST_MODE, and displays the total number of prepared job
units for batch processing and the total number of spawned worker threads on the
standard output.

For information about the global flist, see "MTA Global Flist Structure".

The application usage policy opcode is called only if it's configured in /config/mta. See
"Configuring the MTA Policy Opcodes".

Chapter 41
Creating a Multithreaded BRM Client Application

41-14

Error Notifications
In a multithreaded application, errors can occur in the main thread or the worker threads. In
BRM MTA, errors that occur in the main thread are handled differently than errors in the worker
threads.

Generally, an error in the main thread is an indication of a serious problem that prevents the
application from continuing its normal execution. When an error occurs in the main thread, the
BRM MTA framework exits the application immediately.

Errors that occur in the worker threads are not as severe and therefore it is not necessary for
the application to exit immediately. When an error occurs in a worker thread, the MTA
framework checks to see if the maximum error threshold has been reached. The MTA
framework exits the application when the number of errors in the worker threads exceeds the
threshold.

When the application exits due to error conditions, the MTA framework calls the error
notification policy opcode to allow exit processing that may be required at the Customization
layer.

Note:

The error notification policy opcode is called by the BRM MTA framework only if it is
configured in /config/mta. See "Configuring the MTA Policy Opcodes".

You can implement the error notification policy opcode in your application to process errors.
For information about the input and output flist, see "MTA_ERROR".

Customizing BRM Multithreaded Client Applications
Before you customize a multithreaded BRM client application, you should have a good
understanding of the BRM MTA execution flow and the global flist structure. See "About the
BRM MTA Framework".

The BRM MTA framework provides policy opcode hooks for customization of BRM MTAs. For
example, you can create a custom billing utility by customizing BRM's pin_bill_accts MTA.
You implement these policy opcode hooks by providing your business-specific contents.

For more information on how to define and configure a new opcode, see Defining New
Opcodes. The pin.conf entry for ops_fields_extension_file must be defined to permit the
MTA applications to recognize custom opcodes.

These policy opcode hooks are called by the BRM MTA framework at fixed places during the
application execution. Unlike the MTA callback functions, the MTA policy opcode hooks must
be configured using the /config/mta object.

To customize a BRM MTA, you need to do the following:

1. About Shadow Objects

2. Configuring the MTA Policy Opcodes

Chapter 41
Customizing BRM Multithreaded Client Applications

41-15

Implementing the MTA Policy Opcodes
You use the MTA policy opcode hooks to customize multithreaded BRM client applications.
They do not have default implementations; therefore, they aren't in the BRM System Facilities
Modules (FM). You need to write a custom policy FM to include your custom policy opcodes.

The policy opcode hooks do not have predefined opcode names; you create your own. For
example, you could name the MTA_CONFIG policy opcode PCM_OP_MTA_POL_CONFIG.

For more information about writing a custom FM, see "Writing a Custom Facilities Module".

Note:

The MTA policy opcode hooks have predefined input and output specifications. You
must write your custom policy opcodes based on these specifications.

For a list of all the policy opcodes and details about the input and output specifications, see
"MTA Policy Opcode Hooks".

Configuring the MTA Policy Opcodes
The MTA policy opcodes are called by the main thread at specific execution stages in the
application workflow. At application startup, the MTA framework reads the /config/mta object
to determine if custom policy opcodes are implemented at the Customization layer.

You use testnap or Developer Center to populate the PIN_FLD_OPCODE_MAP array in the /
config/mta object to specify the policy opcode names and the execution stages that these
opcodes are called from.

For information about the fields and field types in /config/mta, see /config/mta.

Note:

The execution stage names are predefined. You must use these names when
populating the PIN_FLD_FUNCTION field in the /config/mta object. Otherwise, the
application will not load the object at startup and it will exit instead. For details about
the policy opcode and its execution stage names, see "MTA Policy Opcode Hooks".

In this example, the MTA application pin_mta_test calls custom policy opcodes at the
MTA_CONFIG, MTA_INIT_ERROR, and MTA_USAGE execution stages:

0 PIN_FLD_CONFIG_MTA ARRAY [0]
1 PIN_FLD_NAME STR [0] "pin_mta_test"
1 PIN_FLD_OPCODE_MAP ARRAY [0]
2 PIN_FLD_FUNCTION STR [0] "MTA_CONFIG"
2 PIN_FLD_NAME STR [0] "PCM_OP_MTA_POL_CONFIG"
1 PIN_FLD_OPCODE_MAP ARRAY [1]
2 PIN_FLD_FUNCTION STR [0] "MTA_ERROR"
2 PIN_FLD_NAME STR [0] "PCM_OP_MTA_POL_ERROR"
1 PIN_FLD_OPCODE_MAP ARRAY [2]
2 PIN_FLD_FUNCTION STR [0] "MTA_USAGE"
2 PIN_FLD_NAME STR [0] "PCM_OP_MTA_POL_USAGE"

Chapter 41
Customizing BRM Multithreaded Client Applications

41-16

In this example, the MTA application pin_mta_test calls custom policy opcodes at the
MTA_INIT_SEARCH, MTA_TUNE, and MTA_WORKER_JOB_DONE execution stages:

0 PIN_FLD_CONFIG_MTA ARRAY [0]
1 PIN_FLD_NAME STR [0] "pin_mta_test"
1 PIN_FLD_OPCODE_MAP ARRAY [0]
2 PIN_FLD_FUNCTION STR [0] "MTA_INIT_SEARCH"
2 PIN_FLD_NAME STR [0] "PCM_OP_MTA_POL_INIT_SEARCH"
1 PIN_FLD_OPCODE_MAP ARRAY [1]
2 PIN_FLD_FUNCTION STR [0] "MTA_TUNE"
2 PIN_FLD_NAME STR [0] "PCM_OP_MTA_POL_TUNE"
1 PIN_FLD_OPCODE_MAP ARRAY [2]
2 PIN_FLD_FUNCTION STR [0] "MTA_WORKER_JOB_DONE"
2 PIN_FLD_NAME STR [0] "PCM_OP_MTA_POL_WORKER_JOB_DONE"

In extremely rare cases, you might create a dynamic library to implement custom MTA callback
functions that is not feasible by using the MTA policy opcodes.

You can use the /config/mta object to specify custom callback functions. In this case, you
must populate the PIN_FLD_FUNCTION_MAP array to map the custom function name to the
MTA callback function name. The function names specified in PIN_FLD_FUNCTION must
match the default MTA callback function names. The MTA framework will call the custom
callback function instead of the default callback function. For a list of all MTA callback
functions, see "MTA Callback Functions".

Note:

If custom functions are configured, the MTA framework calls the custom function in
place of the default MTA callback function. In this case, the default functionality is
lost.

0 PIN_FLD_CONFIG_MTA ARRAY [0]
1 PIN_FLD_LIBRARY STR [0] "libpin_mta_test_lib.so"
1 PIN_FLD_NAME STR [0] "pin_mta_test"
1 PIN_FLD_FUNCTION_MAP ARRAY [0]
2 PIN_FLD_FUNCTION STR [0] "pin_mta_post_init_app"
2 PIN_FLD_NAME STR [0] "pin_mta_post_init_app_lib"
1 PIN_FLD_FUNCTION_MAP ARRAY [1]
2 PIN_FLD_FUNCTION STR [0] "pin_mta_post_tune"
2 PIN_FLD_NAME STR [0] "pin_mta_post_tune_lib"
1 PIN_FLD_FUNCTION_MAP ARRAY [2]
2 PIN_FLD_FUNCTION STR [0] "pin_mta_config"
2 PIN_FLD_NAME STR [0] "pin_mta_config_lib"
1 PIN_FLD_FUNCTION_MAP ARRAY [3]
2 PIN_FLD_FUNCTION STR [0] "pin_mta_init_search"
2 PIN_FLD_NAME STR [0] "pin_mta_init_search_lib"
1 PIN_FLD_FUNCTION_MAP ARRAY [4]
2 PIN_FLD_FUNCTION STR [0] "pin_mta_tune"
2 PIN_FLD_NAME STR [0] "pin_mta_tune_lib"

Configuring your Multithreaded Application
The sample configuration file in the BRM_home/source/samples/apps/C/mta_sample/
pin.conf directory specifies the configuration information for a multithreaded application to
connect to the BRM database and process data. (BRM_home is the directory in which the
BRM server software is installed.)

Chapter 41
Configuring your Multithreaded Application

41-17

For each multithreaded application that you create, you need to include a similar configuration
file in your application's directory with entries specific to the application.

For a list of configuration file entries, see "Creating Configuration Files for BRM Utilities" in
BRM System Administrator's Guide.

Note:

You can create additional configuration entries that are required for your MTA
application.

Applying Configuration Entries to Specific Utilities
To apply an entry to all the MTA applications, use pin_mta. For example:

• pin_mta children 5

• pin_mta fetch_size 10000

• pin_mta per_batch 100

To apply an entry only to a particular MTA, use pin_application_name. For example,
pin_bill_accts:

• pin_bill_accts children 5

• pin_bill_accts fetch_size 10000

• pin_bill_accts per_batch 100

Using Multithreaded Applications with Multiple Database
Schemas

To use a multithreaded application with a multischema BRM installation, you must change the
multi_db entry in the application pin.conf file. For example, to use the global search feature to
search across schemas, you must enable multischema support. Set the multi_db entry to 1 to
enable multischema support.

MTA Policy Opcode Hooks
This section lists MTA policy opcode hooks.

MTA_CONFIG
This policy opcode allows customization of the default application configuration.

This policy opcode is called by the MTA framework at the MTA_CONFIG execution stage. It is
called after pin_mta_config. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to perform custom
application configuration. For example, you can write code to retrieve configuration parameters
from a database object.

Chapter 41
Using Multithreaded Applications with Multiple Database Schemas

41-18

Note:

This policy opcode is called only if it is configured in the /config/mta object. See
"Configuring the MTA Policy Opcodes".

MTA_ERROR
This policy opcode allows processing of error notifications.

This policy opcode is called by the MTA framework when an error occurs in the main thread or
when the maximum error threshold has been reached for the worker threads. You set the
maximum error limit in the application's pin.conf file. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to process error
notifications at the Customization layer.

For example, you can write code to log appropriate error messages in the application's log file.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_EXIT
This policy opcode allows any processing required before the application exits.

This policy opcode is called by the MTA framework at the MTA_EXIT execution stage. This is
when there are no more jobs to be processed. This policy opcode can also be called when an
error occurs during application execution. This policy opcode is called after pin_mta_exit. See
BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to process errors,
perform logging, clean up procedures, or other functionality.

For example, you can write code to process errors and log appropriate error messages in the
application's log file.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_INIT_APP
This policy opcode allows customization of the default application initialization.

This policy opcode is called by the MTA framework at the MTA_INIT_APP execution stage. It is
called after pin_mta_init. See BRM Developer's Reference.

Chapter 41
MTA Policy Opcode Hooks

41-19

By default, this policy opcode is an empty hook that you can implement to perform custom
application initialization.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_INIT_SEARCH
This policy opcode enables customization of the search flist.

This policy opcode is called by the MTA framework at the MTA_INIT_SEARCH execution
stage. It is called after pin_mta_init_search. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to modify the search
flist that is passed to the search opcodes PCM_OP_SEARCH, PCM_OP_STEP_SEARCH,
and PCM_OP_STEP_NEXT. In a multischema search, the search flist is passed to
PCM_OP_GLOBAL_SEARCH, PCM_OP_GLOBAL_STEP_SEARCH, and
PCM_OP_GLOBAL_STEP_NEXT.

For example, you can use this opcode to customize information in the search template.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_JOB_DONE
This policy opcode allows any processing required at completion of search results processing.

This policy opcode is called by the MTA framework at the MTA_JOB_DONE execution stage.
This is after the worker threads have completed their assigned jobs, there are no more search
results to process, and the job pool is empty. This policy opcode is called after
pin_mta_job_done. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to perform validation,
logging, or other functionality that may be required.

For example, you can write code to analyze the percentage of a job that was processed
successfully and to create a log of those threads that failed.

If another search is required, you can write code to loop through the search cycle again.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

Chapter 41
MTA Policy Opcode Hooks

41-20

MTA_TUNE
This policy opcode allows modification of the search results.

This policy opcode is called by the MTA framework at the MTA_TUNE execution stage. This
opcode is called after pin_mta_tune. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to preprocess the
search results before they are distributed to the worker threads for processing.

For example, you can write code to perform validation of the search results and to modify or
filter the results.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_USAGE
This policy opcode allows display of application help information.

This policy opcode is called when the user explicitly requests the application's usage
information by specifying the -help parameter at the command line. This policy opcode is also
called by the MTA framework during application configuration when it fails to configure the
application using the command-line parameters specified. This policy opcode is called after
pin_mta_usage. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to customize help
information.

For example, you can write code to display a custom help message for custom command-line
options.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_WORKER_EXIT
This policy opcode allows any processing required before the worker thread exits.

This policy opcode is called by the MTA framework at the MTA_WORKER_EXIT execution
stage. This is when the worker thread is notified that the application is about to exit. This policy
opcode is called after pin_mta_worker_exit. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to perform any cleanup
procedures or other functionality before the worker thread is terminated.

Chapter 41
MTA Policy Opcode Hooks

41-21

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_WORKER_INIT
This policy opcode allows customization of worker thread initialization.

This policy opcode is called by the MTA framework at the MTA_WORKER_INIT execution
stage. It is called after pin_mta_worker_init. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement for customization of
worker thread initialization.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_WORKER_JOB
This policy opcode allows modification of search results received by worker threads and
preparation of the input flist passed to the main opcode.

This policy opcode is called by the MTA framework at the MTA_WORKER_JOB execution
stage. This is when the worker thread has received a batch of search results to be processed
and the worker thread prepares the input flist that is passed to the main opcode responsible for
processing the search results in the batch. This policy opcode is called after
pin_mta_worker_job. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you implement to perform any processing
required before the main opcode is run.

For example, you can write code to modify the main opcode input flist or to modify the search
results in the batch.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA_WORKER_JOB_DONE
This policy opcode allows processing required after worker thread job completion.

This policy opcode is called by the MTA framework at the MTA_WORKER_JOB_DONE
execution stage. This is when the worker thread notifies the main thread that it has completed

Chapter 41
MTA Policy Opcode Hooks

41-22

processing the batch of search results and is waiting for the next batch. This policy opcode is
called after pin_mta_worker_job_done. See BRM Developer's Reference.

By default, this policy opcode is an empty hook that you can implement to perform any
processing that may be required after the worker thread has completed the assigned job.

For example, you can write code to validate or analyze the output flist from the main opcode
call.

Note:

This policy opcode is called only if it is configured in the /config/mta. See
"Configuring the MTA Policy Opcodes".

MTA Callback and Helper Functions
The MTA callback and helper functions are listed here, in alphabetical order.

The MTA helper functions can be used to manipulate data in global flist data structures.

Note:

Multithread-safe helper functions can be used with all MTA callback functions.
Multithread-unsafe functions cannot be used with pin_mta_worker thread functions.

pin_mta_config
This function processes command-line arguments.

This function is called at application configuration for processing application-specific command-
line arguments, configuration settings in the application's pin.conf file, or objects. It also sets
the usage flag when there is an error during configuration, to halt application execution and
display a help message.

Syntax

void
pin_mta_config(
 pin_flist_t *param_flistp,
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

param_flistp
A pointer to the flist containing information about the command-line parameters. Information
from param_flistp is used to populate the PIN_FLD_APPLICATION_INFO substruct in the
application's global flist.

Chapter 41
MTA Callback and Helper Functions

41-23

Tip:

Removing elements from param_flistp as they are processed may help to recognize
unexpected command-line options and to set the usage flag, if necessary.

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_exit
This function shuts down the application.

This function is called when the application is about to exit. It is a hook for implementing
functions that are required (such as validation) and logging.

Syntax

void
pin_mta_exit(
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_get_decimal_from_pinconf
This function loads decimal fields from the pin.conf file and sets them to the
PIN_FLD_APPLICATION_INFO substruct in the global flist.

Note:

This function is not multithread safe and can be used only in pin_mta_config.

Syntax

void
pin_mta_get_decimal_from_pinconf(
 pin_flist_t *app_info_flistp,
 char *pinconf_name,
 int32 field,
 int32 optional,
 pin_errbuf_t *ebufp);

Chapter 41
MTA Callback and Helper Functions

41-24

Parameters

app_info_flistp
A pointer to the PIN_FLD_APPLICATION_INFO substruct in the global flist.

pinconf_name
A pointer to the pin.conf file.

field
The name of the field in the pin.conf file.

optional
Specifies whether the field is optional or mandatory. If it is mandatory and does not exist in the
pin.conf file, the error buffer is set.

ebufp
A pointer to the error buffer.

pin_mta_get_int_from_pinconf
This function loads integer fields from the pin.conf file and sets them to the value in the
PIN_FLD_APPLICATION_INFO substruct in the global flist.

Note:

This function is multithread unsafe and cannot be used with pin_mta_worker thread
functions.

Syntax

void
pin_mta_get_int_from_pinconf(
 pin_flist_t *app_info_flistp,
 char *pinconf_name,
 int32 field,
 int32 flag,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

app_info_flistp
A pointer to the PIN_FLD_APPLICATION_INFO substruct in the global flist.

pinconf_name
A pointer to the pin.conf file.

field
The name of the field in the pin.conf file.

flag
The PIN_FLD_FLAGS value in the PIN_FLD_APPLICATION_INFO substruct is set to this
value. For a list of predefined MTA flags, see pin_mta.h.

Chapter 41
MTA Callback and Helper Functions

41-25

optional
Specifies whether the field is optional or mandatory. If it is mandatory and does not exist in the
pin.conf file, the error buffer is set.

ebufp
A pointer to the error buffer.

pin_mta_get_str_from_pinconf
This function loads string fields from the pin.conf file and sets them to the
PIN_FLD_APPLICATION_INFO substruct in the global flist.

Note:

This function is multithread unsafe and cannot be used with pin_mta_worker thread
functions.

Syntax

void
pin_mta_get_str_from_pinconf(
 pin_flist_t *app_info_flistp,
 char *pinconf_name,
 int32 field,
 int32 optional,
 pin_errbuf_t *ebufp);

Parameters

app_info_flistp
A pointer to the PIN_FLD_APPLICATION_INFO substruct in the global flist.

pinconf_name
A pointer to the pin.conf file.

field
The name of the field in the pin.conf file.

optional
Specifies whether the field is optional or mandatory. If it is mandatory and does not exist in the
pin.conf file, the error buffer is set.

ebufp
A pointer to the error buffer.

pin_mta_global_flist_node_get_no_lock
This function gets the global flist field and does not lock the field.

Chapter 41
MTA Callback and Helper Functions

41-26

Note:

This function is multithread unsafe and cannot be used with pin_mta_worker thread
functions.

Syntax

pin_flist_t*
pin_mta_global_flist_node_get_no_lock(
 pin_fld_num_t field,
 pin_errbuf_t *ebufp);

Parameters

field
The global flist field; for example, PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_global_flist_node_get_with_lock
This function gets the global flist field and sets the lock to prevent access to the field. Used
together with pin_mta_global_flist_node_release.

Syntax

pin_flist_t*
pin_mta_global_flist_node_get_with_lock(
 pin_fld_num_t field,
 pin_errbuf_t *ebufp);

Parameters

field
The global flist field; for example, PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_global_flist_node_put
This function puts the global flist field with the specified flist.

Syntax

void
pin_mta_global_flist_node_put(
 pin_flist_t *in_flistp,
 pin_fld_num_t field,
 pin_errbuf_t *ebufp);

Chapter 41
MTA Callback and Helper Functions

41-27

Parameters

in_flistp
A pointer to the flist to set in the global flist.

field
The global flist field to set; for example, PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_global_flist_node_release
This function releases the lock from the global flist field. Used together with
pin_mta_global_flist_node_get_with_lock.

Note:

Do not use this function to release locks unless the locks were set using
pin_mta_global_flist_node_get_with_lock.

Syntax

void
pin_mta_global_flist_node_release(
 pin_fld_num_t field,
 pin_errbuf_t *ebufp);

Parameters

field
The global flist field; for example, PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_global_flist_node_set
This function sets the global flist field with the specified flist.

Syntax

void
pin_mta_global_flist_node_set(
 pin_flist_t *in_flistp,
 pin_fld_num_t field,
 pin_errbuf_t *ebufp);

Parameters

in_flistp
A pointer to the flist to set in the global flist.

Chapter 41
MTA Callback and Helper Functions

41-28

field
The global flist field to set; for example, PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_init_app
This function, called at application initialization, is a hook to implementing functionality that is
required before the main search execution.

Syntax

void
pin_mta_init_app(
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_init_search
This function prepares the search flist.

This function is called at search initialization. It prepares the search flist that is passed as the
input flist to the search opcodes. The search flist is prepared according to the search opcode
input flist specification. This function can also be used to update the search flist for subsequent
searches.

Note:

The select query should be designed to fetch a new set of records each time it is run,
otherwise pin_mta_search will return the same records each time, causing your
MTA application to stop responding.

One way to accomplish this is to update the objects in the database during processing by the
worker threads so that these objects are not returned by the select query when it is run again.
For example, suppose a billing application uses the following select query to process accounts
that have not been billed:

select bill_obj_id0 from account_t where actg_next_t <= current_time

The application updates the account by setting actg_next_t to the next cycle after the account
is processed. When pin_mta_search is run again, the select query returns a new set of
accounts that have not been billed. Accounts that have already been processed do not meet
the search criteria, therefore they are not returned in the result set.

Chapter 41
MTA Callback and Helper Functions

41-29

Another way to ensure that new records are fetched each time would be to use order by in
your select query so that the returned results are ordered. For example:

select bill_obj_id0 from account_t where actg_next_t <= current_time order by poid_id0

When you run the query again, start from the previous search maximum poid_id. For example:

select bill_obj_id0 from account_t where actg_next_t <= current_time and poid_id >
previous_maximum_poid_id order by poid_id0

This method does not require a database update as does the previous example; however,
depending on the number of records being ordered, there might be a performance impact.

Syntax

void
pin_mta_init_search(
 pin_flist_t *app_flistp,
 pin_flist_t **search_flistpp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information from the global flist substruct
PIN_FLD_APPLICATION_INFO.

search_flistpp
A pointer to a pointer to a search flist.

Note:

The search flist allocated in this function is set to the PIN_FLD_SEARCH_FLIST
substruct in the global flist.

ebufp
A pointer to the error buffer.

pin_mta_job_done
This function performs functions required at application job completion.

This function is called after all worker threads have finished processing the jobs assigned to
them. It is a hook for implementing functionality that is required, such as validation and logging.

Syntax

void
pin_mta_job_done(
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Chapter 41
MTA Callback and Helper Functions

41-30

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_main_thread_pcm_context_get
This function gets the main thread context. This context can be reused by the main thread
callback functions only.

Note:

This function is multithread unsafe and cannot be used with pin_mta_worker thread
functions.

Syntax

pcm_context_t *
pin_mta_main_thread_pcm_context_get(
 pin_errbuf_t *ebufp);

Parameters

ebufp
A pointer to the error buffer.

pin_mta_post_config
This function performs post-configuration functions.

This function is called after application configuration. It is a hook to implement custom
functions that are required after configuration, such as validation, providing results from the
configuration policy opcode hook, and logging.

Syntax

void
pin_mta_post_config(
 pin_flist_t *param_flistp,
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

param_flistp
A pointer to the flist containing information about the command-line parameters.

Chapter 41
MTA Callback and Helper Functions

41-31

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_post_exit
This function performs functions required before the application shuts down.

This is the last function called when the application is about to exit. It is a hook for
implementing functions that are required, such as validation of results from the application exit
policy opcode hook and logging.

Syntax

void
pin_mta_post_exit(
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_post_init_app
This function performs post-application initialization functions.

This function is a hook for implementing functionality that is required after initialization, such as
validation of results from the initialization policy opcode hook and logging.

Syntax

void
pin_mta_post_init_app(
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_post_init_search
This function performs post-search flist preparation functions.

Chapter 41
MTA Callback and Helper Functions

41-32

This function is a hook for implementing functionality that is required after the search flist is
prepared, such as validation of results from the search initialization policy opcode hook and
logging.

Syntax

void
pin_mta_post_init_search(
 pin_flist_t *app_flistp,
 pin_flist_t *search_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

search_flistp
A pointer to the flist containing the search flist from global flist substruct
PIN_FLD_SEARCH_FLIST.

ebufp
A pointer to the error buffer.

pin_mta_post_job_done
This function performs post-application job-completion functions.

This function is called after all worker threads have finished processing the jobs assigned to
them. It is a hook for implementing functionality that is required, such as validation of results
from the application job-completion policy opcode hook and logging.

Syntax

void
pin_mta_post_job_done(
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_post_tune
This function performs post-search functions for preprocessing search results.

This function is a hook for implementing functions that are required after the search results
have been preprocessed, such as validation of the results from search results tuning policy
opcode hook and logging.

Chapter 41
MTA Callback and Helper Functions

41-33

Syntax

void
pin_mta_post_tune(
 pin_flist_t *app_flistp,
 pin_flist_t *srch_res_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

srch_res_flistp
A pointer to the flist containing the search results flist received from the global flist substruct
PIN_FLD_SEARCH_RESULTS.

ebufp
A pointer to the error buffer.

pin_mta_post_usage
This function displays the help text prepared by pin_mta_usage and the usage policy opcode
hook.

Syntax

void
pin_mta_post_usage(
 pin_flist_t *param_flistp,
 pin_flist_t *app_flistp,
 pin_errbuf_t *ebufp);

Parameters

param_flistp
A pointer to the flist containing information about the command-line parameters.

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

ebufp
A pointer to the error buffer.

pin_mta_post_worker_exit
This function exits all worker threads.

This function is called when the application is about to exit and all worker threads must exit.
This function is a hook for implementing functions that are required, such as logging.

Syntax

void
pin_mta_post_worker_exit(
 pcm_context_t *ctxp,

Chapter 41
MTA Callback and Helper Functions

41-34

 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_post_worker_init
This function performs post-worker thread initialization functions.

This function is called for each thread at thread startup. It is a hook for implementing functions
that are required after worker thread initialization, such as validation of results from the worker
thread initialization policy opcode hook and logging.

Syntax

void
pin_mta_post_worker_init(
 pcm_context_t *ctxp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_post_worker_job
This function performs post-worker thread job preparation functions.

This function is a hook for implementing functions that are required, such as validation of
results from the worker thread policy opcode hook and logging.

Syntax

void
pin_mta_post_worker_job(
 pcm_context_t *ctxp,
 pin_flist_t *srch_res_flistp,
 pin_flist_t *op_in_flistp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Chapter 41
MTA Callback and Helper Functions

41-35

Parameters

ctxp
A pointer to the PCM context.

srch_res_flistp
A pointer to the flist containing a subset of the global search results assigned to a worker
thread.

op_in_flistp
A pointer to the flist containing the main opcode input flist.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_post_worker_job_done
This function performs post-worker job completion functions.

This function is a hook for implementing functions that are required, such as validation or
processing of results from the worker thread policy opcode hook.

Syntax

void
pin_mta_post_worker_job_done(
 pcm_context_t *ctxp,
 pin_flist_t *srch_res_flistp,
 pin_flist_t *op_in_flistp,
 pin_flist_t *op_out_flistp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

srch_res_flistp
A pointer to the flist containing a subset of the global search results assigned to a worker
thread.

op_in_flistp
A pointer to the flist containing the main opcode input flist.

op_out_flistp
A pointer to the flist containing the main opcode output flist.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

Chapter 41
MTA Callback and Helper Functions

41-36

pin_mta_tune
This function preprocesses search results.

This function is called after the main search execution for preprocessing the search results.
The search results can be modified before the results are distributed to the worker threads.

Syntax

void
pin_mta_tune(
 pin_flist_t *app_flistp,
 pin_flist_t *srch_res_flistp,
 pin_errbuf_t *ebufp);

Parameters

app_flistp
A pointer to the flist containing application information received from the global flist substruct
PIN_FLD_APPLICATION_INFO.

srch_res_flistp
A pointer to the flist containing the search results flist received from the global flist substruct
PIN_FLD_SEARCH_RESULTS.

ebufp
A pointer to the error buffer.

pin_mta_usage
This function creates a help text message.

This function is called when the user requests help using the -help parameter or when an error
occurs during application configuration. This function is a hook to prepare help text messages.

Note:

You must set the PIN_FLD_DESCR field in PIN_FLD_EXTENDED_INFO substruct in
the global flist to the help text so that it can be accessed by the usage policy opcode
for customization and by pin_mta_post_usage for displaying the message.

Syntax

void
pin_mta_usage(
 char * prog);

Parameters

prog
The application name.

Chapter 41
MTA Callback and Helper Functions

41-37

pin_mta_worker_exit
This function exits all worker threads.

This function is called when the application is about to exit and all worker threads must exit.
This function is a hook for implementing functions that are required, such as logging.

Syntax

void
pin_mta_worker_exit(
 pcm_context_t *ctxp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_worker_init
This function performs thread initialization.

This function is called for each worker thread at thread startup. It is a hook for implementing
functions that are required at worker thread initialization.

Syntax

void
pin_mta_worker_init(
 pcm_context_t *ctxp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_worker_job
This function performs functions required at worker thread job preparation.

Chapter 41
MTA Callback and Helper Functions

41-38

This function is called every time a worker thread receives work for any preprocessing of the
search results before the results are passed to the main opcode to be processed.

Tip:

This function provides the same functionality as pin_mta_tune. Because of parallel
processing, preprocessing search results in the worker threads is more efficient when
BRM is installed on a multiple-CPU host machine.

Syntax

void
pin_mta_worker_job(
 pcm_context_t *ctxp,
 pin_flist_t *srch_res_flistp,
 pin_flist_t **op_in_flistpp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

srch_res_flistp
A pointer to the flist containing a subset of the global search results assigned to a worker
thread.

op_in_flistpp
A pointer to a pointer to the main opcode input flist.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_worker_job_done
This function performs functions that are required after the main opcode has processed the
batch of search results.

This function is a hook to implementing functions that are required, such as the validation of
main opcode results.

Syntax

void
pin_mta_worker_job_done(
 pcm_context_t *ctxp,
 pin_flist_t *srch_res_flistp,
 pin_flist_t *op_in_flistp,
 pin_flist_t *op_out_flistp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Chapter 41
MTA Callback and Helper Functions

41-39

Parameters

ctxp
A pointer to the PCM context.

srch_res_flistp
A pointer to the flist containing a subset of the global search results assigned to a worker
thread.

op_in_flistp
A pointer to the flist containing the main opcode input flist.

op_out_flistp
A pointer to the flist containing the main opcode output flist.

ti_flistp
A pointer to the flist containing thread information.

ebufp
A pointer to the error buffer.

pin_mta_worker_opcode
This function runs the main opcode.

This function is called by the worker threads to run the main opcode to process the search
results. Worker threads call this function for every batch of work they receive.

Syntax

void
pin_mta_worker_opcode(
 pcm_context_t *ctxp,
 pin_flist_t *srch_res_flistp,
 pin_flist_t *op_in_flistp,
 pin_flist_t **op_out_flistpp,
 pin_flist_t *ti_flistp,
 pin_errbuf_t *ebufp);

Parameters

ctxp
A pointer to the PCM context.

srch_res_flistp
A pointer to the flist containing a subset of the global search results assigned to a worker
thread.

op_in_flistp
A pointer to the flist containing the main opcode input flist.

op_out_flistpp
A pointer to a pointer to the flist containing the main opcode output flist.

ti_flistp
A pointer to the flist containing thread information.

Chapter 41
MTA Callback and Helper Functions

41-40

ebufp
A pointer to the error buffer.

Chapter 41
MTA Callback and Helper Functions

41-41

42
Creating Client Applications by Using Java
PCM

Learn how to create Java client applications that communicate with Oracle Communications
Billing and Revenue Management (BRM) by using the Java Portal Communication Module
(Java PCM) Application Programming Interface (API).

Topics in this document:

• About Using the Java PCM API

• Using the Java PCM API

• About Creating Client Applications by Using the Java PCM API

• Specifying a Timeout Value for Requests

• Using the Asynchronous PCP Mode in Java PCM Client Libraries

• Setting Global Options

• Running the jnap Utility

• About the Sample Program

See also:

• About Customizing BRM

• Understanding the PCM API

About Using the Java PCM API
You use the classes and their methods in the Java PCM API to write Java client APIs, see
Java PCM API.

To use the Java PCM package, you must have the following skills and experience:

• Experience in developing Java applications

• A good understanding of the BRM architecture and the following concepts:

– PCM opcodes

– Portal Information Network (PIN) libraries

– flists (field lists)

– Context (PortalContext)

– Buffers (Buffer, FileBuffer, ByteBuffer)

– Fields (Fields)

– Portal object IDs (POIDs)

For information on BRM architecture and concepts, see the following topics:

• BRM System Architecture

42-1

• Understanding the PCM API

• Understanding the BRM Data Types

• Understanding Flists

Software Requirements
Use the Java PCM API on a supported version of the Java Development Kit (JDK). See BRM
Compatibility Matrix.

About the Java PCM API and the C API
The Java PCM API consists of a set of Java classes that represent the BRM C data structures,
such as flists, fields, context, and POIDs, that are defined in the pcm.h file.

For information on BRM data types, see "Understanding the BRM Data Types ".

For information on flists, see "Understanding Flists".

The Java API differs from the C API in the following ways:

• Timestamps and strings are represented by the Date and String Java classes. There is a
separate array class for flist arrays (SparseArray).

• The information stored in the C error buffer is part of EbufException in the Java PCM
package.

• In the Java PCM package, opcodes are constants in the PortalOp class and are named
without the PCM_OP prefix. For example, PCM_OP_READ_FIELD in the C API is
PortalOp.READ_FIELD in the Java PCM package.

• For type safety, field names are provided as classes.

Field names follow the Java class-naming conventions and use mixed case without the
underscores. The Java field classes in the Java PCM package use the C #define name
without the PIN_ prefix. For example, PIN_FLD_NAME_INFO in C becomes FldNameInfo
in Java.

• Field instances are shared to improve performance; therefore, you pass a field to a method
by using the following syntax:

obj.method(FldNameInfo.getInst());

where obj is the object that calls the method method.

Using the Java PCM API
Follow these steps when using the Java PCM API:

• Make sure that the pcm.jar and pcmext.jar files are in your CLASSPATH.

• Include the following import statements in the Java files that use PCM classes:

– import com.portal.pcm.*;

– import com.portal.pcm.fields.*;

• When you run a Java program that communicates with BRM, make sure the
Infranet.properties files and the custom .CLASS files are in the CLASSPATH.

Chapter 42
Using the Java PCM API

42-2

About Creating Client Applications by Using the Java PCM API
When you create client applications that use the Java PCM API, you can use either the
synchronous mode or the asynchronous mode of handling requests.

About Synchronous and Asynchronous Modes
In BRM, when you create a client application to process requests in synchronous mode, the
application sends a request and waits for a response from the Connection Manager (CM)
before it sends the next request. If there is an error on the server side in processing the
request, the client application may have to wait indefinitely. To address this, you can set a
timeout value for the request your client application sends to the CM. If the CM does not
respond within the time specified in the request, the PCP connection layer returns an error
message to the client application and closes the connection. See "Specifying a Timeout Value
for Requests".

Alternately, when you create a client application to process requests in asynchronous mode, it
sends a request to BRM and then, instead of waiting for a response to the request, the client
application continues to perform other operations. Throughput is improved in this mode
because client applications can make multiple requests. When the response for a request
becomes available, the client application retrieves the response and proceeds further with its
processing of that request. See "Using the Asynchronous PCP Mode in Java PCM Client
Libraries".

Actions Performed by BRM Java Client Applications
A BRM Java client application does the following:

1. Opens a connection.

2. Clears the error buffer.

3. Performs PCM operations.

4. Checks for errors.

5. Closes the connection.

For more information, see "Creating a Client Application in C".

When you call an opcode, you need to create an flist and pass it as an input. See the input flist
specification in the opcode descriptions for information on the structure of the flist.

For information on how to create an flist, see "Flist Creation Samples".

Opening a PCM connection
You open a connection to BRM by using the Java PCM API, all communication is performed
through the PortalContext class. You can use one of the following methods to open a
connection:

• Call the open() method on the context class with all the login information needed, including
the host name and the port number.

• Use the connect() method, if you want your program to log in automatically to BRM. You
must store all the necessary login information in the Infranet.properties file and make
sure that file is in the CLASSPATH.

Chapter 42
About Creating Client Applications by Using the Java PCM API

42-3

For information on creating an Infranet.properties file, see "Setting Global Options".

Note:

Use the Infranet.properties file for configuring Java applications instead of the
pin.conf file used by C applications.

If your custom application supports multiple database schemas, you must use the database
number returned by the PCM_CONNECT() or PCM_CONTEXT_OPEN() opcodes for all
transactions within the context you open. The open() and connect() methods call these
opcodes to open a connection to BRM.

To open a transaction on a specific database schema, use the opcode method within the
PortalContext class to run the opcode PCM_OP_TRANS_OPCODE with the schema POID
specified in the input flist. For more information, see PCM_OP_TRANS_OPEN.

Using Custom Fields in Java Applications
You use Storable Class Editor to create custom fields and to generate Java source files that
you compile into classes. See "Creating, Editing, and Deleting Fields and Storable Classes".

You can use custom fields in flists in your Java code in the same manner as BRM fields.
Before class names are created from the fields, the prefix PIN_ is removed from the BRM
fields and custom field names are used as they are for class names.

To create and use custom fields in the Java PCM package:

1. Start Storable Class Editor and create your storable classes and fields.

2. From the File menu, choose Generate Custom Fields Source to create source files for
your custom fields.

Storable Class Editor creates a C header file called cust_flds.h, a Java properties file
called InfranetPropertiesAdditions.properties, and a Java source file for each custom
field.

3. For each Java application that will use these fields, copy the contents of the
InfranetPropertiesAdditions.properties file and paste it into each application's
Infranet.properties file.

4. In the directory where Storable Class Editor created the Java source files, compile the
source files:

javac -d . *.java
5. Package the class files created in step 4 into a JAR file:

jar cvf filename.jar *.class
6. In the CLASSPATH, add the location of the JAR file.

Creating Custom Storable Classes
You use Storable Class Editor to create custom storable classes. See "Creating, Editing, and
Deleting Fields and Storable Classes" for instructions. After you commit the storable classes in
Storable Class Editor, create the object in Java:

Poid aPoid = new Poid(database, -1, "/customClass");
inFlist.set(FldPoid.getInst(), aPoid);

Chapter 42
About Creating Client Applications by Using the Java PCM API

42-4

/*... set other fields*/
FList outFList = ctx.opcode(PortalOp.CREATE_OBJ, inFlist);

Calling Custom Opcodes
To call custom opcodes:

1. Write and define your custom opcodes on the server:

#define custom_opcode1 10001
2. Call the appropriate method of the PortalContext class in Java. The method you call

depends on the opcode processing mode:

• Synchronous mode: Use the opcode method. See "Using Synchronous Mode for
Opcode Processing".

• Asynchronous mode: Use the opcodeSend method. See "How Asynchronous Mode
for Opcode Processing Works".

For more information on creating custom opcodes, see "Defining New Opcodes".

For maintainability, you can create a class with all your opcodes, as shown in the following
example:

class CustomOpcode{
 public static final int OPCODE1 = 10001;
 public static final int OPCODE2 = 10002;
 /*more custom opcodes here*/
}

Using Synchronous Mode for Opcode Processing
To create client applications that use the synchronous mode of opcode processing, call the
opcode method of the PortalContext class. For example, the following syntax would be used
to call the custom opcode, OPCODE1:

ctx.opcode(CustomOpcode.OPCODE1, inFlist);

Internally, the opcode method sends the information on the custom opcode (OPCODE1) to the
BRM server and waits for a response. Your client application is blocked during this time interval
and can resume further action only after the output is received from the execution of
OPCODE1.

Getting a Text Format of an Flist
When debugging a client application, it is often useful to read a text representation of an flist.
The flist API provides the following methods:

• toString() method for general purposes

• dump() method to display on standard output

Handling Exceptions
Any call that causes a PCM-related error throws an EbufException exception. If partial
information was available in an flist from an opcode call, you can retrieve it from the
EbufException exception in the Java package.

Chapter 42
About Creating Client Applications by Using the Java PCM API

42-5

Tip:

For efficiency, catch exceptions at the highest possible level.

For help on the available options and usage, type ? at the prompt.

Note:

All the information available in the C error buffer is available in the Java
EbufException exception when that exception is caught.

Logging Errors and Messages
The ErrorLog class contains the API for logging status, errors, and other messages to a file or
buffer. You can access the default log through the PortalContext class. Always use the log to
ensure that you get the expected output.

Even when the error log function is used from an applet in a Web browser, where the Security
Manager denies access to the file system, a log is generated in a buffer. You must access and
display the log from the applet.

Infranet.properties has several options for controlling debugging, including automatic logging
of all EbufException exceptions. For more information on the options, see "Setting Global
Options".

The Java log function does not have an indefinite list of arguments. You must use string
concatenation to form a simple string message. For example:

errorlog.log(ErrorLog.Error, "Here's the error and flist:\n" + error.toString() + "\n" +
flist.toString());

Specifying a Timeout Value for Requests
You can specify a timeout value for each request to the CM in your client application. For more
information on implementing timeout values, see "Implementing Timeout for Requests in Your
Application".

To specify a timeout value in milliseconds for a connection, pass the
PIN_FLD_TIMEOUT_IN_MS field in the input flist to the PortalContext class constructor or
the open() or connect() methods of the PortalContext class. The
PIN_FLD_TIMEOUT_IN_MS value is applicable after the client connects to the server. Before
the connection occurs, this setting is not effective. It does not report a timeout if the client
cannot connect to the server at all.

For more information on the PortalContext class, see BRM PCM Java API Reference.

The timeout value you specify applies to all the opcodes called during that open session and
overrides the value in the client properties file. You must ensure that your client application
handles the timeout, closes its connection to the CM by calling PCM_CONTEXT_CLOSE, and
cleans up the transaction context.

Chapter 42
Specifying a Timeout Value for Requests

42-6

Note:

When the timeout occurs, the CM does not provide any feedback about the success
or failure of the request it received. When the CM detects the closed connection, it
rolls back the ongoing transaction and shuts down.

Using the Asynchronous PCP Mode in Java PCM Client Libraries
When a Java client application uses the Java PCM library and calls a BRM opcode, the PCP
connectors forward the request and wait for the responses from BRM. Asynchronous mode of
processing enables client applications to handle multiple requests and improve the throughput
of opcode calls.

When you create a client application that uses asynchronous mode processing, you can call
the opcodeSend method for as many opcode processing requests as required. As the
responses from the execution of these opcode operations become available, your client
application can call the opcodeReceive method to receive the responses and act upon them.

Asynchronous mode processing can be used for base opcodes and custom opcodes.

The following classes in the Java PCM client libraries enable you to create client applications
that make use of the asynchronous mode:

• PCPSelector, the PCP connection's socket channel selector. See "About PCPSelector".

• PortalContextListener, the abstract listener. See "About PortalContextListener".

About PCPSelector
PCPSelector is the PCP connection's socket channel selector that uses Java NIO mechanism
during the asynchronous mode. (NIO stands for New I/O, a set of nonblocking APIs for Java
programming language that offer features for intensive Input/Output operations.)

This Java class provides a Java method named process and also internally calls other
interfaces responsible for:

• Registering the socket channels with the selector.

• Changing the socket channel's interest to READ (data available) operation after the
opcode is sent.

• Sending the notification to PortalContextListener once the data has arrived.

The client application that you create must extend the PCPSelector class and implement its
Runnable interface. To take full advantage of the multithreaded selector capabilities of the
PCPSelector class, you must call the process method in your implementation's run method,
as shown in the following example:

public class SDPPCPSelector extends PCPSelector implements Runnable {

 private static SDPPCPSelector instance = null;
 private SDPPCPSelector() throws IOException {
 super();
 }

 public static synchronized SDPPCPSelector getInstance() throws IOException
 {
 if (instance == null) {

Chapter 42
Using the Asynchronous PCP Mode in Java PCM Client Libraries

42-7

 instance = new SDPPCPSelector();
 }
 return instance;
 }

 public void run(){
 System.out.println("inside Run of SDP PCPSelector");
 process();
 }
}

Below, an instance of the SDPPCPSelector class is created. It can be used to spawn multiple
threads.

PCPSelector pcpSelector = SDPPCPSelector.getInstance();
Thread t = new Thread((Runnable) pcpSelector);
t.start();

For more information on PCPSelector, see PCM Java API Reference.

About PortalContextListener
PortalContextListener is an abstract listener. It forces the client application to implement the
notification-handling interface that is used when opcode operations are performed in an
asynchronous mode. The handlePortalContextEvent method of PortalContextListener
supplies the PortalContext object with the related event that has occurred recently.

The PCM library supports notifications for the following:

• EVENT_READ_DATA_AVAILABLE

• EVENT_CHANNEL_CLOSED

Client applications can extend PortalContextListener and use the child class to register their
interest in these two events by calling the addListener method of PCPSelector.

For example:

public class ClientListener extends PortalContextListener {
ClientListener () {
 pcpSelector = SDPPCPSelector.getInstance();
 pcpSelector.addListener(this,EventType.EVENT_READ_DATA_AVAILABLE);
 pcpSelector.addListener(this,EventType.EVENT_CHANNEL_CLOSED);
 }
 public void handlePortalContextEvent(PortalContext portalContext,EventType
eventType) {
// use another thread mechanism to call actual opcodeReceive()
 ...
 }

}

For more information on PortalContextListener, see PCM Java API Reference.

How Asynchronous Mode for Opcode Processing Works
The asynchronous mode for opcode processing works in the following manner:

1. Your client application calls the opcodeSend method of the PortalContext class. For
example code:

ctx.opcodeSend(CustomOpcode.OPCODE1, inFlist);

Chapter 42
Using the Asynchronous PCP Mode in Java PCM Client Libraries

42-8

Internally, the opcodeSend method of the PortalContext class sends the information on
the opcode (OPCODE1) to the BRM server, but it does not wait for the response from the
opcode operation. Immediately after calling opcodeSend, the client application can
perform other tasks.

The BRM framework takes care of monitoring the sockets to check if the PortalContext
data (that is, the response from the opcode operation) is available. When this data is
available, the handlePortalContextEvent method of the PortalContextListener object in
your client application is called automatically.

2. When your client application receives the notification through the
handlePortalContextEvent method, it invokes the opcodeReceive method to receive the
response of the opcode operation from BRM.

Note:

For better performance, Oracle recommends that you use a separate thread to
call the opcodeReceive method rather than calling the opcodeReceive method
directly from the handlePortalContextEvent method.

For information on PortalContext, see BRM PCM Java API Reference.

Creating Client Applications for Asynchronous Mode of Opcode Processing
For the client application to use the asynchronous opcode processing feature in BRM:

• Set up your client applications so that they have multiple threads of the PCPSelector
object. To ensure asynchronous opcode processing, pass the PCPSelector object when
you create the PortalContext object. For example:

PortalContext portalContext = new PortalContext(pcpSelector);
• Register the client application's interest for specific events by calling the addListener

method of the PCPSelector object.

• Set up the client application to have multiple PortalContextListener objects, if necessary.
Each PortalContextListener object provides a notification mechanism through its
handlePortalContextEvent method.

• If the client application uses multiple PortalContextListener objects, make the readable
PortalContext object available to any one or all of the PortalContextListener objects.

To make the readable PortalContext object available to a specific PortalContextListener,
use the registerContextToListener method, as shown in this example:

PortalContextListener pListener = new CustomPortalContextListener();
PortalContextListener qListener = new CustomPortalContextListener();
PortalContext portalContext = new PortalContext(pcpSelector);
pListener.registerContextToListener(portalContext);

When this sample code runs, one specific PortalContextListener object (pListener) is
registered with the PortalContext object. When data becomes available on the
PortalContext object and that object is ready to call the opcodeReceive method, a
notification is sent to that specific PortalContextListener object (pListener).

To make the readable PortalContext object available to all PortalContextListener
objects, omit the registerContextToListener method, as in this example:

Chapter 42
Using the Asynchronous PCP Mode in Java PCM Client Libraries

42-9

PortalContextListener pListener = new CustomPortalContextListener();
PortalContextListener qListener = new CustomPortalContextListener();
PortalContext portalContext = new PortalContext(pcpSelector);

None of the PortContextListener objects is registered with the PortalContext object
(because the registerContextToListener method was not called for any
PortContextListener object). As a result, when data becomes available on the
PortalContext object and that object is ready to call the opcodeReceive method, the
notification is sent to all the PortalContextListener objects.

• You can set up your client application for multiple opcode processing. For example, the
following example issues a second opcodeSend request without waiting for the actual
response from the first opcode operation:

PortalContext portalContext1 = new PortalContext(pcpSelector);
portalContext1.open(login_params_flist);
portalContext1.opcodeSend(opcode_name, input_flist);

PortalContext portalContext2 = new PortalContext(pcpSelector);
portalContext2.open(login_params_flist);
portalContext2.opcodeSend(opcode_name, input_flist);

• PortalContext provides different APIs that your client application can use to check the
status of the socket channel.

For more information on the PortalContext class, see PCM Java API Reference.

Setting Global Options
Infranet.properties is an optional configuration file that contains entries to control all
connections from Java applications to BRM. Java PCM looks in the Infranet.properties file for
information not provided in the login flist. You must include the Infranet.properties file in the
CLASSPATH.

The content of the Infranet.properties file conforms to the Java properties file conventions.
Options are key-value pairs separated by the equal sign (=). For example, host=ip://
test2:11960 and log.file=mylog.log.

Note:

You must include an entry of the form type = 1 in the Infranet.properties file if that
entry is not in the login flist.

Default Entries in the Infranet.properties File
Table 42-1 lists the predefined entries and their types:

Chapter 42
Setting Global Options

42-10

Table 42-1 Entries in Infranet.Properties

Entry Value Notes

Infranet.login.type 0 or 1 Specifies the type of login. A type 1 login
requires the application to provide a user
name and password. A type 0 login is a
trusted login that comes through a CM
Proxy, for example, and does not require
a user name and password in the
properties file.

Infranet.connection For a type 1 login:
pcp://username:password@hostname:port/

service:1

For a type 0 login:
pcp:/hostname:port/database_no/service:1

Where:

• username is the login name to use for connecting
to BRM.

• Note: username cannot contain the characters :
and @. The / character is allowed.

• password is the password for the specified user
name.

• Note: password cannot contain the characters :
and @. The / character is allowed.

• hostname is the name or IP address of the
computer running the CM or CMMP.

• port is the TCP port number of the CM or CMMP
on the host computer. The port number must
match the corresponding cm_ports entry in the
CM or CMMP configuration file.

• service is the service type. The trailing 1 is the
POID of the service.

• database_no is the number assigned to your
BRM database when the Oracle Data Manager
was installed.

Specifies the full URL to the BRM
service.

For a type 1 login, the URL must include
a user name and password. You must
specify the service name and service
POID ("1"), but the CM determines the
database number.

A type 0 login requires a full POID,
including the database number.

Infranet.failover.nn pcp://hostname:port Specifies the alternative CM hosts that
the application can use to connect to
BRM if the main host (specified in the
connection entry) is unavailable.

The user name, password, and service
for these alternative hosts are the same
as for the main host and is not specified
in the failover entries. Failover entries
are numbered sequentially, starting with
1.

Optional Entries in the Infranet.properties File
The Infranet.properties file can contain other entries. Some of these are based on keys in the
Java PCM API, and others are written specifically for an application or tool.

Table 42-2 shows entries from the Java PCM API.

Chapter 42
Setting Global Options

42-11

Table 42-2 Optional Entries in Infrant.properties

Entry Description

Infranet.log.file The file path. The default is javapcm.log.

Infranet.log.logallebuf Boolean. If true, forces all EbufException exceptions to be logged
automatically.

Infranet.log.level Specifies how much information the application should log:

• 0: No logging
• 1: Log ERROR messages
• 2: Log ERROR and WARNING messages
• 3: Log ERROR, WARNING, and DEBUG messages

Infranet.pcp.debug.enabled Boolean. If true, enables debug mode.

Infranet.pcp.debug.flags Specifies what to log:

• 0: Log nothing
• 1: Log errors only
• 0x1fff: Log all messages

Infranet.log.opcodes.enabled Boolean. If true, enables a log that records the input and output flist for every
opcode called by all client applications that support this feature.

Infranet.log.opcodes.file The file path.

Table 42-3 shows entries used for NamedLogs. The log_name variable specifies the
NamedLog name, such as the application doing the logging.

Table 42-3 Named Log Entries

Entry Description

Infranet.log.log_name.file Full path to the log file for the application.

The log file shows errors, warnings, and debugging messages associated with
the application, as specified by the Infranet.log.log_name.level entry.

Infranet.log.log_name.style Specifies the logging control style.

The value for this entry can be:

• priority: Logs messages according to their priority level, specified by the
Infranet.log.log_name.level entry.

• flag. Logs messages according to their type, specified by the
Infranet.log.log_name.level entry.

Infranet.log.log_name.level Specifies how much information the application should log.

Possible values depend on the log control style specified by the
Infranet.log.log_name.style entry.

For priority style, set the level as a decimal value. All messages with a priority
level lower than this level are logged. (Low number = high priority)

For flag style, set the level to one of these values:

• 0: no logging
• 1: log ERROR messages
• 2: log ERROR and WARNING messages and
• 3: log ERROR, WARNING, and DEBUG messages

Infranet.log.log_name.logallebuf Boolean. If true, forces all EbufException exceptions to be logged
automatically.

Infranet.log.log_name.name Specifies the name of the log where all messages of a specific type are written
to.

Chapter 42
Setting Global Options

42-12

Table 42-3 (Cont.) Named Log Entries

Entry Description

Infranet.log.log_name.enabled Enables or disables NamedLog logging.

To disable logging, set to f, n, or 0.

Table 42-4 shows an entry that you can use to display a list of hosts:

Table 42-4 Entries used to List Hosts

Entry Description

Infranet.application_name.host.nn A list of hosts, (for example, host.1, host.2), and so on, displayed when a user
opens the application.

The user can select to connect to any host in the list.

Host entries, each consisting of a pair of values for hostname and port, are
numbered sequentially, starting with 1. Other connection information, such as
service, comes from the standard Infranet.connection entry.

Example Infranet.properties File
infranet.connection=pcp://sommachine:11960/service/admin_client 1
infranet.login.type=1
infranet.log.file=fullOutput.log
infranet.log.logallebuf=true
infranet.log.level=3
infranet.pcp.debug.flags=0x3FFFFFFF
infranet.pcp.debug.enabled=true

Controlling Opcode Logging from a Client Application
An opcode log contains the input and output flist for every opcode called by the following
applications:

• Payment Center

• Permissioning Center

• Revenue Assurance Center

• Suspense Management Center

• Zone Mapper

You can dynamically turn opcode logging on and off for an individual application from the
application itself, independent of the global opcode logging settings in the Infranet.properties
file and without having to restart the application.

Note:

If you do not define an Infranet.log.opcodes.file entry in the Infranet.properties file
and turn logging on using this procedure, the default is opcodes.log.

Chapter 42
Setting Global Options

42-13

To turn opcode logging on or off:

1. In the application, click Help then About, and then click System Information.

2. In the System Information dialog box, press CTRL+SHIFT and click three times on the
label above the table to open the Opcode Logging dialog box.

3. Select or clear the Log Opcodes check box for an application to turn logging on or off.

Running the jnap Utility
The Java package includes the jnap test utility. You use jnap to test the database connection,
load flists from files, use the flists as input when calling opcodes on the server, and display
output flists.

The jnap utility is similar to and provides a subset of the functionality of testnap, the utility
used for testing applications written using the BRM C API. You can use many of the same
commands in jnap that you use in testnap. Unlike testnap, however, jnap uses Java PCM to
communicate with BRM.

When you start jnap, you must include the Infranet.properties, pcm.jar, and pcmext.jar files
in the CLASSPATH. In Windows, for example, if the Infranet.properties file is in the current
directory and the pcm.jar and pcmext.jar files are in C:\Portal\jars, you would enter:

java -classpath .;c:\Portal\jars\pcm.jar;c:\Portal\jars\pcmext.jar com.portal.pcm.jnap

If you plan to use jnap frequently, you can also set CLASSPATH as an environment variable.

Getting Help with jnap
You can get command-line help for jnap by entering help at the prompt. You see a list of valid
commands and variables:

jnap> help
jnap command set::
r <file> <bufnum> - read flist from file into buffer
i <bufnum> - insert flist from STDIN into buf
d <flist> - displays flist
w <buf> <file> - save buf to file
l - list buf nums used
login - login using values in Infranet.properties
login <flist> - login using specified flist
logout - logout and close context
xop <op> <flags> <flist> - execute op and set 'incoming' buf
q - quit
loop <flist> - stream out/in flist
pcpdebug <dbgflags> - set pcp debug flags
h or ? or help - displays this help

where
<flist> :: <file> | <buf>
<op> :: <num> | <opname>
<opname>:: READ_OBJ | commit_customer | TRANS_OPEN ...
<buf> :: <bufnum> | incoming
<flags> :: <number> | <flags>'+'<flag>
<flag> :: calc|meta|rev|count|add|poid|rdres|nores|ro|rw|lock
<dbgflags> :: <number> | <dbgflags>'+'<dbgflag>
<dbgflag> :: none|errors|flist_req|flist_resp|read|write|
 read_wh|write_wh|read_dump|
 write_dump|open|connect|trans|op|all

Chapter 42
Running the jnap Utility

42-14

Example of Using jnap
This section includes an example of using jnap. In this example, you create an flist and then
use it as input to the PCM_OP_ACT_TEST_LOOPBACK opcode. This opcode tests the
database connection and returns the same flist as output.

1. Use a text editor to create a simple flist and save it as flist1.

0 PIN_FLD_PROGRAM_NAME STR [0] "Example"
0 PIN_FLD_POID POID [0] 0.0.0.1 -1 0
0 PIN_FLD_NAME STR [0] "Test"

2. Read flist1 into buffer 1.

jnap> r flist1 1
3. To ensure that the flist was saved, display the contents of buffer 1.

jnap> d 1
4. Log in to the database.

jnap> login
5. Run the PCM_OP_ACT_TEST_LOOPBACK opcode with the xop command. Include the

opcode without the PCM_OP_ACT prefix, 0 for the opcode flag, and 1 for the buffer you
will use for the input flist.

xop TEST_LOOPBACK 0 1

The output of the opcode is displayed. In this case, the output is the same as the input.

6. Log out.

jnap> logout
7. Quit jnap.

jnap> q

About the Sample Program
For a sample program for creating a client application, see SampleApp.java.

This program creates a customer account by performing these steps:

• Opening a database channel

• Retrieving a package list

• Adding customer information to the account

• Creating the customer account

• Closing the database channel

To run SampleApp.java, first edit the Infranet.properties file to change the entry your server
to the host name of the computer where BRM is installed. Then include the file in your
CLASSPATH. For an example of the Infranet.properties file, see "Example Infranet.properties
File".

Chapter 42
About the Sample Program

42-15

43
Creating Client Applications by Using Perl
PCM

Learn about the Perl extension to the Oracle Communications Billing and Revenue
Management (BRM) Portal Communications Module (PCM) library.

Topics in this document:

• About the Perl API

• Differences between the Perl API and the C API

• Guidelines for Using the Pcmif Module

• Performing PCM Operations

See also:

• About Customizing BRM

• Understanding the PCM API

About the Perl API
The Perl extension to the PCM library, pcmif, allows you to use Perl scripts to perform the
following PCM operations:

• Connect to PCM.

• Perform PCM opcode operations, such as creating an object, searching for objects,
deleting an object.

• Convert flists (field lists) between text and binary formats.

• Generate error reports.

For more information, see the following documents:

• For a description of the Application Programming Interface (API), see "Perl Extensions to
the PCM Libraries" in BRM Developer's Reference.

• For sample scripts, see "Example Perl Scripts" in BRM Developer's Reference.

• For the latest information on the Perl extension, see pod2text (text format) or pod2html
(HTML format) in the BRM_SDK_home/lib/pcmif.pm.

Differences between the Perl API and the C API
The API functions in pcmif are wrappers for a subset of the underlying C functions. You can
use the Perl API functions to perform any BRM PCM opcode operation.

The pcmif API functions use the following naming conventions:

• If the C function and its corresponding Perl function use exactly the same arguments, they
have the same name.

43-1

• If the arguments are different, the Perl equivalent to the C function pin_function() is
named pin_perl_function() to differentiate them.

Guidelines for Using the Pcmif Module
To perform PCM operations by using Perl scripts, follow these guidelines:

• Make sure your scripts include the following information:

The path to the Perl binaries in the first line:

#!/BRM_SDK_home/perl/bin/perl;

The Perl module to use:

use pcmif;

• Use Perl 5.0004, included with BRM.

If you use a different version of Perl, make sure you specify the path to the pcmif files in
the Perl command line or by including the use lib <path> line in the beginning of your Perl
scripts.

• Add the class prefix pcmif:: to the functions, which specifies that these functions are from
the pcmif package. For example:

pcmif::pcm_perl_new_ebuf();

• Make sure you use the PerlScriptName.bat instead of the PerlScriptName.pl.

Performing PCM Operations
To write Perl scripts that perform BRM operations, follow these guidelines:

• Connect to PCM by opening a PCM connection and a PCM context to the BRM.

See "Connection Functions" in BRM Developer's Reference for a description of the API.

If your custom application supports multiple database schemas, you must use the
database number returned by PCM_CONNECT() or PCM_CONTEXT_OPEN() for all
transactions within the context you open.

• Check for errors after each action.

See "Error-Handling Functions" in BRM Developer's Reference for a description of the API.

• Convert flists between text and binary formats:

– Convert strings that you create in your Perl script to flist format before performing PCM
operations.

For example, if you use a "here" document to assign an flist string to a variable in your
Perl scripts, convert the variable to flist format before searching for an object by using
PCM_OP_SEARCH.

– Convert flists to string format before using them in Perl functions. For example, to pass
an flist as input to Perl functions such as string matching, first convert the flist to a
string.

See "Flist Conversion Functions" in BRM Developer's Reference for a description of
the flist conversion functions.

Chapter 43
Guidelines for Using the Pcmif Module

43-2

– Perform the PCM operations.

See "Error-Handling Functions" in BRM Developer's Reference for a description of the
API.

• Delete the flists and error buffers you no longer need.

See "Error-Handling Functions" and "Flist Conversion Functions" in BRM Developer's
Reference for a description of the functions to use.

• Disconnect from PCM by closing the PCM context.

See "Connection Functions" in BRM Developer's Reference for a description of the API.

Chapter 43
Performing PCM Operations

43-3

44
Creating Client Applications by Using PCM C+
+

Learn how to create C++ client applications that communicate with an Oracle Communications
Billing and Revenue Management (BRM) system by using the Portal Communication Module
(PCM) C++ Application Programming Interface (API).

Topics in this document:

• About PCM C++

• Understanding PCM C++ Concepts

• Using the PCM C++ API

• Debugging PCM C++ Programs

• Troubleshooting

Note:

Before using PCM C++, read "Comparison of the PCM C++ and PCM C APIs".

About PCM C++
Use the classes and their member functions in the PCM C++ API to write C++ client
applications that communicate with BRM. PCM C++ is a set of wrappers around the PCM C
client library. The C++ classes represent the BRM C data structures. These structures,
including flists, fields, context, and POIDs, are defined in the pcm.h file.

However, C++ provides several advantages over C: improved runtime memory, type checking,
compile time, and reliability. C++ provides hooks for assertions in debugging. If programmed
properly, smart pointers can make memory management easier for programmers. In addition,
C++ allows object oriented programming, a more powerful approach than is possible in C.
PCM C++ allows you to take advantage of these C++ capabilities.

For information on BRM data types, see "Understanding the BRM Data Types ".

For information on flists, see "Understanding Flists".

Skills Required
To use the PCM C++ package, you must have the following skills and experience:

• Experience in developing C++ applications and an understanding of smart pointers.

For information on PCM C++, see "Using the PCM C++ API".

• A good understanding of BRM architecture and the following concepts:

– PCM opcodes

44-1

– Portal Information Network (PIN) libraries

– Flists (field lists)

– Context (PortalContext)

– Buffers (Buffer)

– Fields (Fields)

– Portal object IDs (POIDs)

For detailed information on BRM architecture and concepts, see:

– BRM System Architecture

– Understanding the PCM API

– Understanding the BRM Data Types

– Understanding Flists

Installation
PCM C++ is installed automatically as part of the BRM SDK. For installation and configuration
information, including software requirements, see "About BRM SDK".

Note:

PCM C++ is sometimes be referred to as PCM CPP.

Comparison of the PCM C++ and PCM C APIs
Table 44-1 compares the functionality available in the PCM C++ and PCM C APIs:

Table 44-1 Comparison of C++ and C APIs in PCM

PCM C API PCM C++ API

PCM_CONNECT PinContextOwner PinContext::create();

PCM_CONTEXT_OPEN PinContextOwner PinContext::create(PinFlistBase & inFlist);

PCM_CONTEXT_CLOSE void PinContext::close();

PCM_OP N/A

PIN_FLIST_CONCAT N/A

PIN_FLIST_COPY PinFlistOwner PinFlist::clone() const;

PIN_FLIST_COUNT N/A

pin_flist_sort void PinFlist::sort(PinFlistBase &sortlist, int32 descending=0, int32 sortDefault=0);

pin_flist_recursive_sort void PinFlist::sortRecursively(PinFlistBase &sortlist, int32 descending=0, int32
sortDefault=0);

PIN_FLIST_FLD_DROP void PinFlist::drop(const PinXXXTypeField &fld);

// For field types, where XXX is

// Int, Uint, Num, Enum, Tstamp, Str, Binstr, Poid, BigDecimal

Chapter 44
About PCM C++

44-2

Table 44-1 (Cont.) Comparison of C++ and C APIs in PCM

PCM C API PCM C++ API

PIN_FLIST_FLD_GET PinXXXObserver

PinFlist::get(const PinXXXTypeField &fld, PinBool optional=false);

//Where XXX is

//Int, Uint, Num, Enum, Tstamp, Str, Binstr, Poid, BigDecimal, Sub

PIN_FLIST_FLD_PUT void PinFlist::set(const PinXXXTypeField &fld, PinXXXOwner &val);

// For field types, where XXX is

// Int, Uint, Num, Enum, Tstamp, Str, Binstr, Poid, BigDecimal, Sub

PIN_FLIST_FLD_SET void PinFlist::set(const PinXXXTypeField &fld, PinXXX val);

// Value based setter for simple field types, where XXX is

// Int, Uint, Num, Enum, Tstamp, Str, Binstr

void PinFlist::set(const PinXXXTypeField &fld, PinXXXBase &val);

// For field types, where XXX is

// Int, Uint, Num, Enum, Tstamp, Str, Binstr, Poid, BigDecimal, Sub

PIN_FLIST_FLD_TAKE PinXXXOwner PinFlist::take(const PinXXXTypeField &fld, PinBool optional=false);

// For field types, where XXX is

// Int, Uint, Num, Enum, Tstamp, Str, Binstr, Poid, BigDecimal, Sub

PIN_FLIST_ELEM_ADD PinFlistObserver PinFlist::add(const PinArrayTypeField &fld, PinRecId id)

PIN_FLIST_ELEM_COUNT int PinFlist::count(const PinArrayTypeField& fld);

PIN_FLIST_ELEM_DROP void PinFlist::drop(const PinArrayTypeField& fld, PinRecId id);

PIN_FLIST_ELEM_GET PinFlistObserver

PinFlist::get(const PinArrayTypeField& fld, PinRecId id, PinBool optional =
PIN_BOOLEAN_FALSE);

PIN_FLIST_ELEM_GET_NEXT PinElemObservingIterator::next();

PIN_FLIST_ELEM_PUT void PinFlist::put(const PinArrayTypeField& fld, PinFlistOwner&, PinRecId id);

PIN_FLIST_ELEM_SET void PinFlist::set(const PinArrayTypeField& fld, PinFlistBase&, PinRecId id);

PIN_FLIST_ELEM_TAKE PinFlistOwner

PinFlist::take(const PinArrayTypeField &fld, PinRecId id, PinBool optional =
PIN_BOOLEAN_FALSE);

PIN_FLIST_ELEM_TAKE_NEXT PinElemObservingIterator::next();

PIN_FLIST_SUBSTR_ADD N/A

PIN_FLIST_SUBSTR_DROP N/A

PIN_FLIST_SUBSTR_GET N/A

PIN_FLIST_SUBSTR_PUT N/A

PIN_FLIST_SUBSTR_SET N/A

PIN_FLIST_SUBSTR_TAKE N/A

PIN_FLIST_TO_STR // String toString();

PinBool PinFlist::isNull() const;pin_flist_t*

PinFlist::get();pin_flist_t* PinFlist::release();

Chapter 44
About PCM C++

44-3

Table 44-1 (Cont.) Comparison of C++ and C APIs in PCM

PCM C API PCM C++ API

PIN_POID_COMPARE int PinPoid::compare(const PinPoidBase &poid, int checkRev=0) const;

//isEqual() returns a boolean

//unlike compare() which acts like //strcmp();PinBool PinPoid::isEqual(const
PinPoidBase &poid, int checkRev=0) const;

PIN_POID_COPY PinPoidOwner

PinPoid::clone() const;

PIN_POID_CREATE static PinPoidOwner

PinPoid::create(PinPoidDb db, PinPoidType type, PinPoidId id);

N/A static PinPoidObserver

PinPoid::createAsObserved(poid_t *pdp);

static PinPoidOwner

PinPoid::createAsOwned(poid_t *pdp);

PIN_POID_DESTROY static void PinPoid::destroy(PinPoid *obj);

PIN_POID_GET_DB PinPoidDb PinPoid::getDb() const;

PIN_POID_GET_ID PinPoidId PinPoid::getId() const;

PIN_POID_GET_TYPE PinPoidType PinPoid::getType() const;

PIN_POID_GET_REV PinPoidRev PinPoid::getRev() const;

PIN_POID_IS_NULL PinBool PinPoid::isNull() const;

PIN_POID_IS_TYPE_ONLY PinBool PinPoid::isTypeOnly() const;

PIN_POID_TO_STR void PinPoid::toString(char buf[], int bufsize, int skiprev=0) const;

pbo_decimal_abs PinBigDecimal::abs() const;

pbo_decimal_abs_assign N/A

pbo_decimal_add PinBigDecimal::operator+(const PinBigDecimal& val);

PinBigDecimal::operator+=(const PinBigDecimal& val);

pbo_decimal_add_assign N/A

pbo_decimal_compare int PinBigDecimal::compare(const PinBigDecimal& val) const;

PinBool PinBigDecimal::isZero() const;PinBool

PinBigDecimal::isLessThanZero() const;PinBool

PinBigDecimal::isGreaterThanZero() const;

pbo_decimal_copy N/A

pbo_decimal_divide PinBigDecimal::operator/(const PinBigDecimal& val);

PinBigDecimal::operator/=(const PinBigDecimal& val);

//same result:

PinBigDecimal::divide(const PinBigDecimal& val, int decimalPlaces, int mode =
DEF_ROUNDING_MODE);

pbo_decimal_divide_assign N/A

pbo_decimal_from_double PinBigDecimal::setDouble(double val, int decimalPlaces, int mode =
DEF_ROUNDING_MODE);

pbo_decimal_from_str N/A

pbo_decimal_is_null PinBool PinBigDecimal::isNull() const;

pbo_decimal_is_zero See pbo_decimal_compare

Chapter 44
About PCM C++

44-4

Table 44-1 (Cont.) Comparison of C++ and C APIs in PCM

PCM C API PCM C++ API

pbo_decimal_multiply PinBigDecimal::operator*(const PinBigDecimal& val);

PinBigDecimal::operator*=(const PinBigDecimal& val);

//same result:

PinBigDecimal::multiply(const PinBigDecimal& val, int decimalPlaces,int mode =
DEF_ROUNDING_MODE);

pbo_decimal_multiply_assign N/A

pbo_decimal_negate PinBigDecimal::negate() const;

pbo_decimal_negate_assign N/A

pbo_decimal_round N/A

pbo_decimal_round_assign N/A

pbo_decimal_signum int PinBigDecimal::sigNum()

pbo_decimal_subtract PinBigDecimal::operator-(const PinBigDecimal& val);

PinBigDecimal::operator-=(const PinBigDecimal& val);

pbo_decimal_subtract_assign N/A

pbo_decimal_to_double PinBigDecimal::getDouble() const;

pbo_decimal_to_str char* PinBigDecimal::toString(char* pbuf, int bufSize, int decimalPlaces = -1) const;

Understanding PCM C++ Concepts
While there are several similarities between the PCM C and PCM C++ APIs, there are also
some key differences. This section explains these differences in detail and explains how to
approach some specific programming functions. Understanding this information allows you to
take advantage of PCM C++ capabilities and should make coding easier in areas such as
memory management.

Passing Arguments
Using the C++ wrappers, you can minimize the need to handle untyped void pointers and
explicit casting. In addition, PCM C++ includes methods that accept typed arguments. These
two contrasting examples illustrate this point:

Using pointers in C:

time_t *endp = NULL;
time_t end_time;

endp = (time_t *) PIN_FLIST_FLD_GET(inflistp, PIN_FLDT_END_T, 1, ebufp);
end_time = (endp) ? *endp : pin_virtual_time(NULL);

PIN_FLIST_FLD_SET(outflistp, PIN_FLD_END_T, &end_time, ebufp);

Passing arguments in C++ :

PinTstampObserver endt = inFlist->get(tsf_PIN_FLD_END_T, PIN_BOOLEAN_TRUE);

PinTstamp endTime = endt->isNull() ? pin_virtual_time(NULL):: endt->value();

Chapter 44
Understanding PCM C++ Concepts

44-5

outFlist->set(tsf_PIN_FLD_END_T, endTime);

In the C++ example:

• When retrieving END_T from the flist, no explicit casting is needed to convert from "void*"
to "time_t*".

• When setting the value of END_T in the flist, you pass a typed argument (value) instead of
an untyped pointer (pointer to the value).

Using Arrays
To walk through elements of an array in an flist, PCM C exposes a cookie-based interface,
where it is the responsibility of the caller to initialize the cookie and pass it to a series of calls to
retrieve the members of the array:

//Example in C initializting and passing a cookie
pin_cookie_t cookie = NULL;
while ((elemp = PIN_FLIST_ELEM_GET_NEXT
 (flistp, PIN_FLD_BALANCES, &elemid, 1, &cookie, ebufp)) != NULL) {
 ...
}

In contrast, PCM C++ uses iterator objects, which eliminate some common programming
mistakes and also introduce commonly used patterns. A sample of iterator objects in C++:

//Example in C++ using iterator objects
PinElemObservingIterator iter;
for (iter = flist->getElements(tsf_PIN_FLD_BALANCES);
 iter.hasMore();) {

 PinFlistObserver aResource = iter.next();
 cout << "Resource id: " << iter.getRecId();
 ...
}

Using Smart Pointers to Manage Memory
C++ wrappers use constructs, generically called smart pointers, which are similar to the
auto_ptr in the standard C++ library. Smart pointers are objects designed to look and act like
built-in pointers, but offer greater functionality: smart pointers overload the operator -> (and
sometimes the operator *).

PCM C++ uses smart pointers to eliminate the need for careful and explicit memory
management that is required in PCM C. Because the smart pointer objects used to manipulate
flists, POIDs, and connections are eliminated when the object is deleted or goes out of scope,
the underlying resource, such as the flist, Portal object ID (POID), or connection, is freed.

Note:

Though it is common for smart pointers to be implemented using C++ templates, the
PCM C++ implementation of smart pointers does not use them. This ensures
consistent behavior on all BRM platforms.

Chapter 44
Understanding PCM C++ Concepts

44-6

Construction and Destruction
All flist, POID, and connection manipulations in PCM C++ are accomplished by using smart
pointers. Smart pointers delete the object they point to when the last smart pointer pointing to
that object is destroyed. This nearly eliminates resource leaks.

This example shows how a smart pointer is used to create an input flist:

void

function1()
{
 // Create input flist
 PinFlistOwner input = PinFlist::create();

 // Note that at the end of this block, the destructor
 // for "input" will get invoked. The destructor will
 // automatically destroy the underlying flist.
}

The smart pointer implementations in PCM C++ do not allow multiple smart pointer references
to the same underlying object. Some of the reasons are:

• The underlying C implementation of flist does not allow reference counting, which adds
overhead.

• A typical flist usage pattern requires a single pointer to an flist.

• Even done correctly, multiple pointers to the same flist can result in errors that are difficult
to debug.

Copying and Assignment
In PCM C++, object ownership is transferred when the copy constructor or the assignment
operator is invoked on a smart pointer. This is similar to the auto_ptr that is a standard C++
template library object. To copy the underlying data, use clone(). Because object ownership is
transferred when the copy constructor is called, passing these smart pointers by value is not
recommended.

The correct usage is to pass smart pointers using references, as shown below:

void function1()
{
 // Connect to Portal
 PinContextOwner context = PinContext::create();

 // Get the package list
 // (Note that the context smart pointer is passed by reference, not by value.
 // If it were passed by value, the underlying connection would have been destroyed
 // when function2() finishes and also "context" would be pointing to
 // a freed connection!!)
 function2(context);
}

void function2(
 PinContextBase &context)
{
 ...
}

Chapter 44
Understanding PCM C++ Concepts

44-7

Using Field Value Ownership
Manipulating flists is done differently in PCM C++ than in PCM C. The PCM C API provides
different sets of functions to manipulate flists.

• PIN_FLIST_FLD_GET(), PIN_FLIST_SUBSTR_GET(), and PIN_FLIST_ELEM_GET() are
used to access to the contents of the flist using pointers. This is like peeking inside the flist.
The underlying flist retains ownership of the memory.

• With PIN_FLIST_XXX_TAKE(), the underlying flist relinquishes ownership of the pointed to
block of memory and returns a pointer to the caller. The caller is now responsible for
freeing the contents.

• PIN_FLIST_XXX_SET() is used to add new fields into an flist. The flist makes a copy of the
passed in memory block and owns the copied block.

• PIN_FLIST_XXX_PUT() transfers ownership of field values to the flist.

PCM C++ provides overloaded methods in the PinFlist class to handle these four methods:
get(), take(), set(), put(). Correct memory management is enforced by defining two types of
smart pointers: observers and owners as shown in Figure 44-1.

• Observers do not delete the wrapped BRM data structure (object) pointed to when they are
destroyed.

• Owners delete the object pointed to when they are destroyed, unless they are assigned or
passed to a copy constructor.

Figure 44-1 Owner and Observer Memory Management

The PinFlist::get() method returns an observer. The take() method returns an owner style
smart pointer. Similarly, the put() method accepts only an owner. The set() method accepts
either an observer or an owner. Relying on method signatures to do clean memory
management is preferable to manual and careful programming. The following example shows
the proper usage:

PinIntObserver flags = input->get(tsf_PIN_FLD_FLAGS);
// The following put() call will not compile because
// you cannot transfer ownership of something that you
// do not own!!
// output->put(tsf_PIN_FLD_FLAGS, flags);

// The set() will work fine...because a copy is made.
output->set(tsf_PIN_FLD_FLAGS, flags);

Chapter 44
Understanding PCM C++ Concepts

44-8

Using PinBigDecimal
The PCM C++ PinBigDecimal class can be used with many standard C++ programming
features. However, there are some differences which are documented in this section.

For a sample program illustrating PinBigDecimal, see sample_PinBD.cpp located in
BRM_SDK_home/source/samples/apps/C++.

Field Value Ownership
The PCM C++ class PinBigDecimal does not formally support the owner/observer model used
by other PCM C++ classes. This alternative approach allows you to directly create and
manipulate a PinBigDecimal, which makes it much easier to use in arithmetic expressions.

PinBigDecimal creates a base object, which is destroyed automatically when it goes out of
scope. This concept is described in "Using Smart Pointers to Manage Memory".

This sample shows how to use PinBigDecimal. As noted above, PCM C++ creates a
PinBigDecimal object that is destroyed automatically when it goes out of scope (in this
example, when the function is exited).

{
 PinBigDecimal num1("22.57");
 ...
}

Using PinBigDecimal with Flists
PCM C+ uses a different approach than PCM C to setting (or getting) a PinBigDecimal value
into (or from) an flist. In PCM C, you must carefully program using low-level functions: the
PIN_FLIST_FLD_SET macro with the PinBigDecimal.get() method to retrieve the pointer to
the actual big decimal number in pin_decimal_t*. This is shown below:

PinBigDecimal sum = num3 + num4;

PinErrorBuf ebuf;
pin_flist_t* flistp = PIN_FLIST_CREATE(&ebuf);
PIN_FLIST_FLD_SET(flistp, PIN_FLD_DUE, sum.get(), &ebuf);
::printFlist("The Flist I just created with C API...", flistp);
PinBigDecimal due((pin_decimal_t*) PIN_FLIST_FLD_GET(flistp, PIN_FLD_DUE, 1, &ebuf));
PIN_FLIST_DESTROY(flistp, 0);
due.toString(buf, sizeof(buf), due.getNumDecimalPlaces());
::printf("The value pulled from the Flist for PIN_FLD_DUE is: %s\n\n", buf);

In PCM C++, this low-level approach is unnecessary. Because C++ is object oriented and type
safe, you can set() a PinBigDecimal object to the flist, which is shown below:

PinBigDecimal num3(22.578979, 5);
PinBigDecimal num4(double_val, 2, ROUND_HALF_DOWN);
PinBigDecimal sum = num3 + num4;

PinFlistOwner cpp_flist = PinFlist::create();
cpp_flist->set(tsf_PIN_FLD_DUE, sum);
::printFlist("The Flist I just created with the C++ API...", cpp_flist->get());
due = cpp_flist->get(tsf_PIN_FLD_DUE)->get();
due.toString(buf, sizeof(buf), due.getNumDecimalPlaces());
::printf("The value pulled from the Flist for PIN_FLD_DUE is: %s\n\n", buf);

Chapter 44
Understanding PCM C++ Concepts

44-9

Using the toString() Method
To use PinBigDecimal with toString(), you must pass a parameter containing the number of
decimal places to be set in the returned string. To do this, call
PinBigDecimal::getNumDecimalPlaces().

Note:

In some implementations, this is unnecessary because there is a default value for the
number of decimal places. This is not yet implemented in PCM C++.

The following sample shows one method of converting a PinBigDecimal to a string by passing
the necessary parameters.

char buf[100];
PinBigDecimal num1("22.57");
PinBigDecimal num2("99");
PinBigDecimal sum = num1 + num2;

PinErrorBuf ebuf;
pin_flist_t* flistp = PIN_FLIST_CREATE(&ebuf);
PIN_FLIST_FLD_SET(flistp, PIN_FLD_DUE, sum.get(), &ebuf);
::printFlist("The Flist I just created with C API...", flistp);

PinBigDecimal due((pin_decimal_t*) PIN_FLIST_FLD_GET(flistp, PIN_FLD_DUE, 1, &ebuf));
PIN_FLIST_DESTROY(flistp, 0);
due.toString(buf, sizeof(buf), due.getNumDecimalPlaces());
::printf("The value pulled from the Flist for PIN_FLD_DUE is: %s\n\n", buf);

Using the Divide Method
Because the decimal result can be infinite (for example 1/3=.333333...), the divide method of
PinBigDecimal requires you to define the number of decimal places in the result. (The number
of decimal places is called the scale.) Limiting the scale of the result introduces a rounding
question, which is answered by defining the rounding method to be used. Defaults for both the
scale and rounding method are defined in the PinBigDecimal.h file: the default scale is 10
[DEF_DIV_DECIMAL_PLACES (10)] and the default rounding method is "half up"
[DEF_ROUNDING_MODE (ROUND_HALF_UP)].

This sample shows the divide method of PinBigDecimal using the default scale:

char buf[100];
char buf1[100];
char buf2[100];

PinBigDecimal num1 = "18.4328";
PinBigDecimal num2 = "3.4937";

PinBigDecimal num3 = num1 / num2;

num1.toString(buf, sizeof(buf), num1.getNumDecimalPlaces());
num2.toString(buf1, sizeof(buf1), num2.getNumDecimalPlaces());
num3.toString(buf2, sizeof(buf2), num3.getNumDecimalPlaces());

 cout << buf << " / " << buf1 << " is: " << buf2 << endl;

Chapter 44
Understanding PCM C++ Concepts

44-10

To programmatically specify the number of decimal places and/or the rounding mode, you must
call the divide method, as shown in this example:

// The above statement "num3 = num1 / num2" will NOT be the same as the following call
// to the divide method.

PinBigDecimal num4 = num1;
num4.divide(num2, 9, ROUND_HALF_UP);
num4.toString(buf2, sizeof(buf2), num4.getNumDecimalPlaces());

 cout << buf << " divided by " << buf1 << " is: " << buf2 << endl;

To programmatically specify the number of decimal places and/or the rounding mode, you must
call the divide method.

Using a Null Pointer
You can use a special null pointer as a value to indicate that a feature is unused. For example,
if a customer chooses not to enroll in an optional stock purchase plan, you can pass an flist
with a null pointer for this option to the database to indicate that the customer is not
participating.

Performing an arithmetic function on a PinBigDecimal variable containing a null pointer
causes the class PinBigDecimal to throw an exception. However, you can use a null pointer
successfully with the try and catch commands. This sample code illustrates this:

char* pnull = 0;
PinBigDecimal null_val = PinBigDecimal(pnull);
try
{
 PinBigDecimal bad_idea; // The default constructor will set the value to zero.
 bad_idea += null_val;
 ::printf("The program should NEVER get here...\n\n");
}
catch (const PinEbufExc& /*cExcptn*/)
{
 null_val.toString(buf, sizeof(buf), 2);
 ::printf("The string value of a null PinBigDecimal is: %s\n\n", buf);
}

Note:

PinEbufExc is the specific error thrown under these circumstances.

Handling Exceptions
PCM C is macro-based and uses series-style ebuf-based error checking. Since the same
structure is used by all the function calls, all calls return immediately without any action after
the first error is recorded in the ebuf. This style avoids an explicit error check after every line
and allows you to group error handling logic toward the end of the function. The disadvantage
is that almost every line following the error-inducing statement has the potential to be run.

In PCM C++, exceptions are used instead, which takes advantage of the support provided by
the language run-time. The error handling in PCM C++ primarily uses an exception class,

Chapter 44
Understanding PCM C++ Concepts

44-11

PinEbufExc, which is a wrapper for the underlying C data structure (pin_errbuf_t). Use the
class, PinErrorBuf, to access pin_errbuf_t.

There is one important difference: in the C API, when returning errors from a function using
ebuf, you can return other values, such as output flists, by using output parameters. However,
in C++, when an exception is thrown, the normal path of return is not available. To
accommodate passing error flists back, the PinEbufExc class has a data member,
PinFlistOwner.

This example shows error handling in PCM C++ using this method:

ostream&
operator<<(
ostream &os,
PinEbufExc &exc)
{
 os << "Pin Exception";
 os << exc.getFlistRef() << endl;
 PIN_LOG(exc, PIN_ERR_LEVEL_ERROR, "");
 return os;
};

This example shows error handling in PCM C++ using the exception buffer:

try {
 // Connect to Portal
 PinContextOwner context = PinContext::create();

} catch (const PinEbufExc &exc) {
 // Handle the error.
 PIN_LOG(exc, PIN_ERR_LEVEL_ERR, "Connect failed");
}

See Pin_Log for more information.

If an error occurs while processing an flist, the returned flist contains the error message. The
following three code excerpts show how to print the flist to various devices.

This example shows the special overridden operator used to print out an flist:

ostream&
operator<<(ostream &os, PinFlistBase &flist)
{
 char *strp = NULL;
 PinErrorBuf ebuf;
 int32 len = 0;

 pin_flist_t *fp = NULL;
 if (! flist.isNullWrapperPtr()) {
 fp = flist->get();
 }
 // convert to string
 PIN_FLIST_TO_STR(fp, &strp, &len, &ebuf);
 // print out to current stream
 os << strp;

 if (strp != NULL) {
 pin_free(strp);
 }

 return os;

Chapter 44
Understanding PCM C++ Concepts

44-12

};

To print the flist to the console:

// Print output flist
cout<<"outFlist:"<<endl<<outFlist<<endl;

The PinEbufExc object contains the PinErrorBuf object, which is inherited from the PCM C
structure, pin_errbuf. This buffer contains all the information about the error.

In PCM C++, define your own operator <<:

ostream&
operator<<(ostream &os, PinEbufExc &exc)
{
 os << "Pin Exception";
 os << exc.getFlistRef() << endl;
 PIN_LOG(exc, PIN_ERR_LEVEL_ERROR, "");
 return os;
};

and then use it to print PinEbufExc to the console and write information

to PinLog:

} catch (PinEbufExc &exc) {
 cout << exc << endl;
}

Logging to pinlog
The PinLog class is a minimalist class. It only provides type-safe wrappers that accept the
PCM C++ class instances as arguments to the overloaded log() method.

Two macros, PIN_LOG and PIN_MSG, use the PinLog class. They allow you to pick up the
current file and line number. Three examples of logging are:

PIN_LOG(flist, PIN_ERR_LEVEL_DEBUG, "Input to XXX");

PIN_LOG(ebufException, PIN_ERR_LEVEL_ERROR, "Create Account:");

PIN_MSG(PIN_ERR_LEVEL_WARNING, "Exceeding Cache Size");

For more information, see Pin_Log and Pin_Msg.

Accessing Configuration Values by Using pin.conf
The PinConf class provides static methods to get configuration values from a pin.conf file.
Since the underlying pin_conf() PCM C library function returns an allocated memory block, the
PinConf class type safe methods return owner-style smart pointers.

This example uses PinConf to access configuration values in a pin.conf file:

PinIntOwner dbg = PinConf::getInt("ldap_ds", "debug", 1);
int32 pinLdapDebug = (dbg->isNull() ? 0 : dbg->value());

Chapter 44
Understanding PCM C++ Concepts

44-13

Using PCM C++ with PCM C
There are many situations where you might want to mix the PCM C and PCM C++ APIs.

• Although PCM C++ provides useful abstractions, it is not complete. For example, it does
not support buffer data types.

• New functionality based on PCM C++ might be developed and has to coexist with legacy
code written in PCM C API. Also, this approach allows you to experiment and become
familiar with PCM C++ without having to rewrite entire applications.

• Some PCM C API code is needed in rare situations, for example, invoking the
PCM_OP_SEARCH opcode. PCM C++ enables the coexistence and mixing of the two
APIs within the same application as follows:

PinFlistObserver flist = PinFlist::create();
// Get the underlying C flist data structure
pin_flist_t *flistp = flist->get();
// Pass the C data structure to some C function
PIN_FLIST_PRINT(flistp, 0, ebufp);

• This allows access to the underlying PCM C API objects that PCM C++ manages. For
example, the PinFlist class can access the PCM C flist it holds. Obviously, doing
destructive things to the underlying C object will make the C++ object inconsistent.

Factory methods of the various PCM C++ classes take in pointers to PCM C API data
structures, in addition to default factory methods that can create the PCM C API data
structure automatically. Also, depending on the model of interfacing with the PCM C API,
you can control the lifetime of the C data structures by creating observer or owner smart
pointers, as in this example:

main() {
 pcm_context_t *ctxp = (pcm_context_t*) NULL;
 int64 dbno = 0;
 PCM_CONNECT(&ctxp, &dbno, ebufp);
 ...
}
PinContextObserver context = PinContext::createAsObserved(ctxp);

Using the PCM C++ API
The basic structure of a BRM PCM C++ client application is similar to other BRM client
applications:

1. Open a connection using PinContext.

2. Create an flist.

3. Perform PCM operations.

4. Check for errors.

5. Close the connection.

Opening a PCM Connection
The PinContext class is a wrapper around the pcm_context data structure in the PCM C API.
The data structure represents a connection from a BRM client to the server--a Connection
Manager (CM).

Chapter 44
Using the PCM C++ API

44-14

Use the factory method create() to initiate a connection to the CM. This method uses the
connection parameters from either an flist or as specified in the pin.conf file of the client
application. Use either of these methods to open a connection:

• Call the create() factory method in the PinContext class. Using parameters contained in
an flist, provide all the login information needed, including the host name and the port
number. A program to be used by CSRs can use this method to force authentication.

For a C++ sample, look for the create_context.cpp sample file in BRM_home/source/
samples/context/C++ directory, where BRM_home is the directory in which the BRM
server software is installed. For more information, see PCM_CONTEXT_OPEN.

• If you want your program to automatically log in to BRM, use the create() method without
parameters. You must store all the necessary login information in the cm_ptr and the
userid connection parameters in your application's pin.conf file. Use one pin.conf file to
configure C++ and C applications. A billing application run from a cron job would use this
method.

For more information on the pin.conf file, see "Adding or Changing Login Options".

For more information, see PCM_CONTEXT_OPEN and PCM_CONNECT.

Note:

In your application, when you open a context and connect to the BRM server,
perform all the PCM operations before closing the context. Connections add a
significant overhead to the system which affects performance. Therefore, to
improve performance, perform all the operations within an open context instead
of opening and closing contexts frequently. Use CM proxy for applications that
cannot maintain an open context for a long time. For more information, see
"Using CM Proxy to Allow Unauthenticated Log on" in BRM System
Administrator's Guide.

Like the other PCM C++ classes, PinContext class instances are manipulated by using
smart pointer classes: PinContextOwner and PinContextObserver.

This example shows a connection that gets the logon parameters from the application's
pin.conf file:

try {
 // Connect to Portal. Get the connection info from the pin.conf file of the
 // client application.
 PinContextOwner context = PinContext::create();

 // The connection is terminated automatically and the PinContext
 // object managed by the PinContextOwner is destroyed automatically.

} catch (PinEbufException &exc) {
 // Fix the error.
 PIN_LOG(exc, PIN_ERR_LEVEL_ERR, "Connect failed");
}

When you create a context using either method (PinContextOwner or
PinContextObserver), a pcm_context_t data structure is created automatically in C. A
pointer to the data structure is automatically returned (access it by using call Get()). You
can create additional context objects by using this pointer. Use this to pass a data structure
to another application.

Chapter 44
Using the PCM C++ API

44-15

Closing a PCM Connection
Close a connection to BRM by using PCM C++ with one of the following methods:

• A context can be closed automatically by going out of scope. This occurs when smart
pointers have been used. The context is automatically closed when the function ends.

• To close the connection context (opened as an Observer) with the server (and the data
structure in pcm_context_t) before the function ends, use this method:

void close(int how=n)

• To close the connection context (opened as an Owner) with the server and to destroy a
PinContext object before the function ends, use this method:

static void destroy(PinContext *obj)

Note:

If the context was opened as Owner, destroy also closes the connection context.

The parameters shown above are described in PCM_Context class.

For more information on PinContext functions, see PinContext.

Creating Custom Fields
To create custom fields using PCM C++:

1. In the customfld.h file, create your #define manually. For example, assume that a custom
int field called CUSTOM_FLD_AGE is defined as follows:

#define CUSTOM_FLD_AGE 10001
...
#DEFINE CUSTOM_FLD_AGE PIN_MAKE_FLD(PIN_FLDT_INT, 10001)

Table 44-2 lists the field ID ranges for Oracle-only use and customer use.

Table 44-2 BRM Field ID Restrictions

Field ID Range Reserved For

0 through 9999 Oracle use only

10,000 through 999,999 Customer use

1,000,000 through 9,999,999 Oracle use only

Over 10,000,000 Customer use

2. Instantiate a new C++ object:

const PinIntTypeField tsf_CUSTOM_FLD_AGE(CUSTOM_FLD_AGE);

Chapter 44
Using the PCM C++ API

44-16

Note:

By convention, the prefix tsf_ is used for the C++ version of the field. tsf is an
acronym for type-safe field.

3. Include customfld.h in your application.

4. Use the custom field with the PinFlist class:

flist->set(tsf_CUSTOM_FLD_AGE, 22);

Creating an Flist
To create and use flists in PCM C++, use the flist factory method.

1. Create the input flist using PinFlist::create().

2. set the values into the flist using the methods available in the PinFlist class. The
suggested convention is to preface the variable name with "tsf_" (type safe field).

Several sample programs are available that illustrate:

• Simple flists.

• Flists with arrays.

• Flists with substructs.

For more information on the PCM C++ sample files, see "About Using the PCM C++ Sample
Programs" in BRM Developer's Reference.

Getting an Flist in Text Format
When debugging, it is often useful to read a text representation of an flist. The FList API
provides the toString() method for general purposes. See "Using the toString() Method".

Debugging PCM C++ Programs
Write a sample C++ program to test connections, load flists from files, use the flists as input
when calling opcodes on the server, and to display the returned flist.

For more information on error handling, see "Handling Exceptions".

This sample uses overloaded << operators to print information about lists and POIDs to the
console. This is helpful in debugging.

ostream&
operator<<(ostream &os, PinPoidBase &poid)
{
 char str[512];
 poid->toString(str, sizeof(str));
 os<<str;
 return os;
};

Chapter 44
Debugging PCM C++ Programs

44-17

Troubleshooting
In PCM C++, object ownership is transferred when the copy constructor or the assignment
operator is invoked on a smart pointer. This behavior can cause errors that are difficult to
debug, as shown below:

class function1
{
 PinPoidOwner m_AcctPoid
 ...
};

...

function1::process()
{
 ;process()
 {
 PinPoidOwner t=m_AcctPoid;
 // The assignment owner took the memory. When the block ends, t goes
 // out of scope, the destructor is called, and the memory is freed.
 // An error might occur because m_AcctPoid now points to freed memory.
 ...
 }
 ...

// The following will crash because memory was freed when t went out of scope.

Print(m_AcctPoid);

Chapter 44
Troubleshooting

44-18

Part VI
Customizing Customer Center and Self-Care
Manager

This part describes how to customize Oracle Communications Billing and Revenue
Management Customer Center and Self-Care Manager. It contains the following chapters:

• Using Customer Center SDK

• Customizing the Self-Care Manager Interface

• Customizing the Customer Center Interface

• Using Configurator to Configure Customer Center

• Adding Custom Fields to Customer Center

• Setting Up JBuilder to Customize the Customer Center Interface

• Creating a New Customer Center Service Panel

• Creating a New Customer Center Profile Panel

• Sample Customer Center Customizations

45
Using Customer Center SDK

Learn how to use the Oracle Communications Billing and Revenue Management (BRM)
Customer Center Software Development Kit (SDK) to customize the Customer Center and
Self-Care Manager client applications. While Customer Center and Self-Care Manager share
many of the controllers for communicating with BRM, their client interfaces differ.

Topics in this document:

• About Customer Center SDK

• Contents of Customer Center SDK

• Coding Your Customizations

• About Compiling and Packaging Your Customizations

• Syntax for the buildAll Script

• Testing Your Customizations for Customer Center

• Understanding the BRM Business Application SDK Framework

• Source Code Examples

About Customer Center SDK
Customer Center SDK provides the framework and toolkit you need to customize and
configure the default implementations of Customer Center and Self-Care Manager. To install
Customer Center SDK, see BRM Installation Guide.

About Using Customer Center SDK to Customize Customer Center
Customer Center SDK allows you to modify the appearance and behavior of Customer Center
to meet your business needs. You make these changes by using the customization APIs
available for each screen of Customer Center.

Customer Center SDK includes a client application called Configurator that provides a
graphical user interface for making modifications and additions to the default Customer Center
properties and resources. Configurator enables you to do the following:

• Change Customer Center tab order or tab contents

• Remove certain Customer Center fields

• Change Customer Center behavior

• Change the fields displayed in account search results

For information on using Configurator to make these changes to Customer Center, see
"Customizing the Customer Center Interface".

45-1

Note:

Because of interdependencies between fields that reside on multiple panels, certain
fields cannot be removed from the Customer Center interface. Additionally, existing
fields cannot be rearranged.

The SDK also includes scripts, customized properties files, source code examples, and a utility
for exploring and copying field definitions that you can use for extending or customizing
Customer Center functionality.

For customizing or modifying Customer Center Help, the SDK provides the online help in a
compressed file. Scripts are provided for unpacking the file and creating a new custom help file
for deployment from your Customer Center deployment servers.

For information on deploying Customer Center changes you make using Customer Center
SDK, see "About Compiling and Packaging Your Customizations".

About Using Customer Center SDK to Customize Self-Care Manager
Self-Care Manager allows your customers to log into their accounts and view their account and
product information by using a Web browser. Customer Center SDK allows you to modify the
appearance and behavior of Self-Care Manager to meet your business needs.

Customer Center SDK includes the following components for customizing Self-Care Manager:

• HTML code you can edit to change the appearance of the web pages.

• Java Server pages (JSPs) for changing the layout of the Self-Care Manager interface,
removing elements included in the default JSPs, or using a different set of components.

• Examples of modified JSPs and custom controllers for extending Self-Care Manager
functionality.

• Scripts that build and package a custom Self-Care Manager Web Application Archive
(WAR) file for deploying your customized files. See "Modifying the Self-Care Manager
WAR File" in BRM Managing Customers for information about deploying an updated WAR
file.

Contents of Customer Center SDK
Customer Center SDK includes these components.

For modifying Customer Center and Self-Care Manager:

• buildall, a batch file for building your customized Customer Center and Self-Care Manager
code. See "About Compiling and Packaging Your Customizations".

• "Customer Care API Reference", a set of JavaDocs describing the Customer Center SDK
classes.

For modifying Customer Center only:

• Configurator, a graphical utility for implementing many common GUI modifications

• Scripts, for testing your code.

Chapter 45
Contents of Customer Center SDK

45-2

Customer Care API Reference
See Customer Care API reference for JavaDocs describing Customer Care classes.

Customer Care API reference is also available in your
CCSDK_home\CustomerCareSDK\docs directory. To view the documentation, use a Web
browser to open the index.html file in this directory.

Coding Your Customizations
To design and code your customizations, see "Customizing the Customer Center Interface" or
"Customizing the Self-Care Manager Interface".

About Compiling and Packaging Your Customizations
You compile your customizations to Customer Center and Self-Care Manager by using the
buildall script in the CCSDK_home\CustomerCareSDK directory, where CCSDK_home is the
directory in which the Customer Center SDK components are installed. This script calls other
scripts to accomplish the following tasks:

• For Customer Center:

– Compiles any Java source code files encountered in the
CCSDK_home\CustomerCareSDK\CustCntr\custom directory.

– Repackages the newly compiled class files and the WizardCustomizations and
Customized properties files into a
CCSDK_home\CustomerCareSDK\CustCntr\custom\ccCustom.jar file.

– Signs the new ccCustom.jar file with a Java Security Certificate.

• For Self-Care Manager:

– Compiles any Java source code files encountered in the subdirectories under the
CCSDK_home\CustomerCareSDK\WebKit\custom directory.

– Repackages the newly compiled class files into a webkit_en.war file.

– Builds a new CCSDK_home\CustomerCareSDK\WebKit\custom\webkit_en.war file.

Figure 45-1 and Figure 45-2 show the relationships between the buildall script and the scripts
it calls to accomplish these tasks:

• For building a ccCustom.jar file for Customer Center:

Chapter 45
Coding Your Customizations

45-3

Figure 45-1 Building Customer Center

• For building a webkit_en.war file for Self-Care Manager:

Figure 45-2 Building Self-Care Manager

This script calls the following scripts to process your files:

• custom compiles any .java files found in the CustCntr\custom or WebKit\custom
directories.

• signjar (Customer Center only) signs the new ccCustom.jar distribution file with a security
certificate, either a valid one obtained from an authorized provider or a self-signed
certificate created with the makecertificate script. Before running the buildAll script, be
sure to edit signjar to add values to the KEYPASSWORD and STOREPASSWORD
entries.

• common compiles any.java files for controllers used by both Customer Center and Self-
Care Manager found in the common_files directory.

Note:

Do not run the custom, signjar, or common scripts directly. They are designed
to be called by buildAll only.

Chapter 45
About Compiling and Packaging Your Customizations

45-4

Coding, Building, and Deploying Customizations
To code, build, and deploy your customizations, see:

• For Customer Center, "Building Your Customer Center Customizations".

• For Self-Care Manager, "Building the Self-Care Manager Components".

Syntax for the buildAll Script
The buildAll script is used to build the customized jar files for your Customer Center and Self-
Care Manager customizations.

This section describes the syntax for the buildAll script. For general information on how to use
the buildAll script for the client applications, see:

• For Customer Center, "Building Your Customer Center Customizations"

• For Self-Care Manager, "Building the Self-Care Manager Components"

Syntax
buildAll CustCntr|WebKit [clean]

File Location
CCSDK_home\CustomerCareSDK

Parameters
Table 45-1 lists the parameters for the buildAll script.

Table 45-1 buildAll Script Parameters

Parameter Description

CustCntr Use this parameter to compile any new source code you put in the
CCSDK_home\CustomerCareSDK\common_files and CustCntr\custom
directories.

The ccCustoml.jar file is created and signed.

WebKit Use this parameter to compile any new source code you put in the
CCSDK_home\CustomerCareSDK\common_files and WebKit\custom
directories.

The webkit_en.war file is created.

clean Use the clean parameter with the CustCntr or WebKit parameters to verify that
class files left from a previous build are removed before running buildAll again to
rebuild the custom jar or war file.

You must specify the CustCntr or WebKit parameters, not both, when you use the
clean parameter.

Testing Your Customizations for Customer Center
To test the customizations you made to Customer Center:

Chapter 45
Syntax for the buildAll Script

45-5

1. Run the runCustomerCenter script, in the
CCSDK_home\CustomerCareSDK\CustCntr\bin directory.

2. When the Login dialog box appears, enter your login information, and then click OK.

A local version of the Customer Center application starts. Any customizations you made are
represented in this local version of Customer Center.

Understanding the BRM Business Application SDK Framework
Customer Center and Self-Care Manager use the Business Application SDK (BAS) framework.
The BAS framework supports the construction of a set of distributed objects and mutually
independent Portal Infranet-aware (PIA) components.

The Model-View-Controller Architecture
The BRM business applications framework is based on the model-view-controller (MVC)
paradigm. In this paradigm, a component's control logic is separated from its display:

• The model component is the data. BRM data and BRM data types exist only in the
controllers.

• The view component is the display of the data in the user interface. The view component
handles only the Java data.

• The controller component is the logic on the server that determines the behavior of the
data and how the data is displayed. The controllers convert the BRM data into Java data
such as Vector, int, Date, and String.

In Customer Center and Self-Care Manager, the controller and view components are
combined.

Figure 45-3 shows the Customer Care architecture:

Figure 45-3 Customer Care Architecture

Chapter 45
Understanding the BRM Business Application SDK Framework

45-6

How the Controllers Work
This section describes the basic controller process:

1. When users interact with a component, the component calls setModelHandle, which sets
the appropriate property for the field and sends the model handle to the controller.

2. The component calls the controller's update method.

3. The controller communicates with BRM by calling the necessary opcodes.

4. The opcodes get the fields specified in the field specification or they get data after
performing calculations or other functions, depending on the component.

Example Data Flow between a Simple Field and BRM
This example shows the data flow between the view component of a simple text field in the
Account Maintenance panel, its controller, and BRM:

1. An external action, such as selecting an account in the Search Results panel, initiates a
call to setModelHandle on a text field.

2. The text field view component calls its controller to get the data that corresponds to its
displayFieldDescription.

3. The controller communicates with BRM by calling opcodes or reading objects.

4. The controller reads the /account object in the database and gets the fields specified by
the display field specification.

5. The controller computes a new value and saves it in a property, for example, mField=val.

6. The view component calls a get method, for example, getField(), to get the previous
property, and then sets this value in its display with setText(getField()).

About Field Components
Field components have model handles and the Customer Center SDK components contain
references to field subclasses in the BRM database. These components have several
properties, for example:

• Model field description

Specifies the data that a field contains. For example, the first name field has this
specification for model field: FldNameInfo[1].FldFirstName.

• Display field description

Specifies the data to display. For example, the read-only field of an account object might
have this specification for the display field:
FldNameInfo[1].FldFirstName,FldNameInfo[1].FldLastName, FldAccountNo.

• Display field format

Specifies the display format for the data specified in the display field. An /account object
might have this specification for the display field format: {0}{1} - {2} to display the account
information in the "First name Last name - Account number" format or {1}{0} - {2} to
display "Last name First name - Account number" format. The field numbers, such as {0},
{1}, correspond to the order in which they are specified in the display field specification.

Every field component must have a specification for its modelFieldDescription, its
displayFieldDescription, or both. The properties of the field depend on the type of the field.

Chapter 45
Understanding the BRM Business Application SDK Framework

45-7

For example, a read-only field does not have a modelFieldDescription property, but it does
have displayFieldDescription and displayFieldFormat properties.

Note:

Field component names follow the Java class-naming conventions and use mixed
case without the underscores. The Java field classes in the Java Portal
Communication Module (PCM) package included in Customer Center SDK use the C
#define name without the PIN_ prefix. For example, PIN_FLD_NAME_INFO in C
becomes FldNameInfo in Java. See "Creating Client Applications by Using Java
PCM" for information about Java PCM. See Customer Care API reference for the
com.portal.pcm.fields package for information about the supported field
subclasses.

Displaying Versus Saving Data in Fields
You use fields in a panel to display data as well as to allow users to change data. When users
change data, their changes must be saved in the database. To implement reading from and
writing to the object field in the database, you need to understand the read and write functions
in BRM.

For information on BRM read and write fields functions, see "Base Opcodes".

For most fields that you create, you use the modelFieldDescription property to display and
save changes to the data. For example, to display as well as save changes to the first name in
the FldNameinfo field for the billing contact, you can use the following property for both
modelFieldDescription and displayFieldDescription:

FldNameinfo[1].FldFirstName

However, not all fields have the same string for their model and display field descriptors.

In cases where reading the data is different from writing the data, such as the FldPayinfo data:

• For reading the data, set the description in displayFieldDescription.

• For writing the data, set the description in modelFieldDescription.

For example, use the following displayFieldDescription to read the credit card number field:

FldPayinfoObj.FldccInfo[0].FldDebitNum

And use the following modelFieldDescription to write the credit card number field:

FldPayinfo[1].FldInheritedInfo[0].FldccInfo[0].FldDebitNum

See Customer Care API reference for PCreditCardPanel.java for examples of setting the
description in this manner.

Portal Infranet-aware (PIA) components:

• Are Swing compatible.

• Have references to specific storable class fields.

• Contain APIs that allow you to map them to specific fields in BRM storable classes, such
as /account.

Chapter 45
Understanding the BRM Business Application SDK Framework

45-8

• Have both client and server implementations, which allow individual components to
encapsulate data retrieval and user interface (UI) display.

Display Fields and Controllers
You can use properties, such as a modelFieldDescription and a displayFieldDescription,
when there is a one-to-one correspondence between the fields in the Customer Center
interface and the fields in the BRM object. For example, fields such as first name and last
name have fields of type String in the /account object that map exactly to the display.
Therefore, you can specify their data by specifying values for the modelFieldDescription and
displayFieldDescription properties in a graphical IDE, such as JBuilder.

To display fields that do not have one-to-one mapping in the object, you need to extend an
existing controller or create a new one. For example, the currency field is an integer type in
the /account object. To display it as a string such as "US Dollar" in the user interface, you
need to write a controller that:

• Takes the integer.

• Looks it up in the balance element ID (BEID) table.

• Gets the appropriate string description or name of the currency represented by the integer.

You can write controllers that perform any number of functions. For example, a controller can:

• Perform simple tasks, such as simple translations. For example, you can map an integer
type to a string description and send it to the view component.

• Call opcodes and process information.

– For example, to display the available payment methods, you can write a controller that
calls the appropriate opcode, retrieves the data in a vector, and sends the vector to the
view component.

– You can initialize data (flists) for payment information.

Note:

* If you create a new Infranet-aware field, you must create a controller for
the field.

* (Self-Care Manager only) If you add a field component to a JSP that has
a controller, you might need to add code to the JSP controller for any
special processing of the new field. This code is necessary, for example,
when you add custom fields to BRM and use Self-Care Manager to
access them. For example,
com.portal.app.comp.PIAPhoneTableBeanImpl handles the special
processing for the phone fields for account creation. If you create a new
Infranet-aware field, you need to create a controller for the field.

About PModelHandle
A PModelHandle is an object that passes a reference to a BRM data object. Because the view
code does not have access to the PCM library, the BAS API creates this object for client
applications to use.

Chapter 45
Understanding the BRM Business Application SDK Framework

45-9

The data referenced by aPModelHandle is converted from its specified
modelFieldDescription to an flist or a storable class, such as /account, for the BRM opcodes
to use.

When data is returned from BRM, the BAS API converts it into the format specified by the
displayFieldDescription for that object and the results are displayed in the associated
Customer Center field.

About Lightweight Components (Self-Care Manager Only)
Lightweight components such as text field components are only view components. They are
used for storing and displaying data. They do not contain control logic. The encapsulating
parent component or the page controller handles the lightweight components. They do not
each need a controller.

Use lightweight components to map a UI field to a specific field in a BRM storable class, such
as /account. The lightweight component used in Self-Care Manager is
PLightComponentHelper. It is a wrapper for a field component (PFieldBean), which allows
data to be retrieved from and passed to BRM.

For example, the credit card number UI field does not have a controller because it does not
need information from the database; the "Choose service" UI field needs a controller to call the
opcode to retrieve the list of available plans. So the credit card number is created as a
lightweight component, but "Choose service" is not.

Source Code Examples
Customer Center SDK provides scripts and applications for customizing Customer Center and
Self-Care Manager. When you use Configurator or make entries or changes to the editable
properties files, the buildAll script creates a new custom distribution file you copy to the
appropriate directory to deploy your changes in a production environment. For Customer
Center, the script creates a new jar file signed with a digital certificate. For Self-Care Manager,
the script creates a new war file.

Source code examples are provided with Customer Center SDK to show how to use some of
the more useful public API available to you.

For more information, see "Customer Center Customization Examples" and "Self-Care
Manager Customization Examples".

Chapter 45
Source Code Examples

45-10

46
Customizing the Self-Care Manager Interface

Learn how to customize the Self-Care Manager interface.

Topics in this document:

• About Customizing Self-Care Manager

• Understanding Self-Care Manager Components

• Extending the Functionality of Self-Care Manager

• Self-Care Manager Customization Examples

See also:

• About Customizing BRM

• Understanding the PCM API

About Customizing Self-Care Manager
You can customize Self-Care Manager:

• By editing the JSPs to use a different set of components or by adding new JSPs.

• By creating new components and modifying existing components to extend the
functionality of Self-Care Manager.

See "Extending the Functionality of Self-Care Manager".

Note:

Self-Care Manager files must be used for reference only. When you customize Self-
Care Manager, you must implement security that prevents unauthorized access to
the BRM system.

Hardware and Software
You require the following hardware and software to develop and test components for Self-Care
Manager:

• Customer Center SDK

For information on installing Customer Center SDK, see BRM Installation Guide.

• Java Development Kit.

• An application server that supports Servlet API and JSP.

Understanding Self-Care Manager Components
Self-Care Manager consists of:

46-1

• JSPs and servlets, which act as view components.

• Business logic (BAS) beans that act as controller components.

• The BAS framework, which handles connections to BRM and caches BRM data accessed
by multiple components. See "Understanding the BRM Business Application SDK
Framework".

About PInfranetServlet
PInfranetServlet is the main servlet which initializes BAS. It is a generic servlet that loads
WebKit.properties and sets PPooledConnectionClientServices as the BAS client service.
The BAS Connection Pooling Service tracks the connections in the pool. (These connections
are shared by all Self-Care Manager users.) It also sets the start directories and the start page
based on its configuration with the servlet engine.

PInfranetServlet servlet:

• Sets up a new connection to Connection Manager (CM) for new sessions by performing an
explicit login on the BAS client service based on the properties defined in the
WebKit.properties file. The connection is saved and used throughout the session and is
only removed when the session is invalidated.

Most components that the user interacts with use this connection. The exceptions are
CreateFormPage1.jsp and CreateFormPage2.jsp. These components set up their own
connections.

Note:

The CreateFormPage1.jsp and CreateFormPage2.jsp. These jsps are used to
create an account and account creation is not supported in this release. It continues
to be supported in the previous releases.

• Handles the user login component, validates the user, and saves this user's account model
handle.

Using PInfranetServlet to Process Requests
To process requests using PInfranetServlet, you might need to specify the following in the
HTML/JSP pages:

1. Specify "page=<page_to_be_loaded_next>" to forward the request to the page after
creating the controller.

2. Specify Component=<Class> to:

• Call BAS to create the controller.

• Call the setters to set input data.

• Call the public methods with either HttpSession or PModelHandle and
ResourceBundle as arguments.

Chapter 46
Understanding Self-Care Manager Components

46-2

Note:

The ResourceBundle is a deprecated parameter and should not be used in
the business logic of the controller.

3. (Optional) Specify sessionstate=start to create a new session:

• It creates a data structure to be passed to BAS with the character set and package list
information. The character set is based on the browser and is used to display invoices.
The package list is specified in WebKit.properties.

• It calls registerApp with the program name, locale, and the data structure created in
the earlier step.

4. (Optional) Specify sessionState=end to invalidate the session.

Note:

You can use either sessionState=start or sessionState=end.

5. (Optional) Specify validateBean=<Class> to create the class and call the setters and the
validate method for validation before calling the controller. If the validation fails, a
RemoteException is thrown; otherwise, it sets the input data of the controller and calls the
public methods. For example, specify the following in invoice_selection.jsp to use
DateValidator to validate the user entered dates:

<INPUT Type="hidden" Name="validateBean"
Value="com.portal.web.fmt.DateValidator">

Example Data Flow Designs
This section describes three example designs for communication between the servlet and
controller that you can implement in your Self-Care Manager customizations. Information on
how to choose the appropriate design from the samples is described in "Designing a
Component".

Note:

These designs are examples. You can implement other designs according to your
business needs.

Figure 46-1 summarizes the three example design architectures:

Chapter 46
Understanding Self-Care Manager Components

46-3

Figure 46-1 Example Design Architectures Summary

1. When a client requests information, an HTTP request is sent to the application server and
is processed by a servlet engine.

2. The servlet engine sends a request to the appropriate JSP servlet as specified in the
request.

For example, this request is sent to the change_acct_form JSP servlet:

<FORM Action="change_acct_form.jsp" Method="post">

This request is sent to PInfranetServlet:

response.encodeURL ("PInfranetServlet?
page=change_status_form&Component=com.portal.web.comp.PServicesBeanImpl&loadBean=yes"
)

Note:

Do not include the servlet path in the request.

The HTTP request arrives at the application server and is dispatched to the appropriate
servlet. Then one of three possible designs is followed:

Design 1
In Design 1, communication between the servlet and the controller occurs using introspection:

1. The request is received by the main servlet, PInfranetServlet.

This is a generic servlet that performs some common Self-Care Manager tasks.

2. PInfranetServlet collects all the input data and creates the BAS controller beans specified
in the "component" hidden variable.

3. The servlet uses introspection to call all the setters to set the input data properties for this
bean (if any) and to call all public methods.

4. The JSP servlet then forwards this bean instance to the JSP specified in the page hidden
variable.

Chapter 46
Understanding Self-Care Manager Components

46-4

5. The JSP servlet loads the data from the bean and returns the HTML output to the browser.

In some cases, this bean is saved in the session for use in later requests.

This Design 1 example UML sequence diagram in Figure 46-2 shows the data flow for
displaying the packages available for purchase:

Figure 46-2 Design 1 Example

Design 2
In Design 2, communication between the servlet and the controller occurs by calling methods
directly:

1. The request is received by a specific JSP servlet.

• If the controller bean associated with this JSP servlet does not exist, one is created to
perform the necessary operation(s).

• If the bean exists, the servlet uses the bean saved in session.

2. The servlet:

a. Collects all the input data.

b. Uses the bean saved in the session to set the input data properties of this bean.

c. Calls the methods directly to perform the necessary operation for data.

d. Returns the HTML output to the browser.

This Design 2 example UML sequence diagram in Figure 46-3 shows the data flow for
purchasing the package that the user selected:

Chapter 46
Understanding Self-Care Manager Components

46-5

Figure 46-3 Design 2 Example

Design 3
In Design 3, communication between the servlet and the controller occurs through
PIAComponentCollection:

1. The request is received by a specific JSP servlet.

In this design, the bean is not the controller, but is a component collection bean, that is, an
instance of PIAComponentCollection.

2. The createController() method is called on the component collection bean to specify the
controller bean that should be delegated to perform the necessary operation.

3. The lightweight components are added to the collection to specify the fields that should be
retrieved from the database.

For more information on lightweight components, see "About Lightweight Components
(Self-Care Manager Only)".

4. It calls setModelHandle() on the component collection bean instance to retrieve the data
of the model from the database.

Data can be displayed using the getLightData() method.

5. This JSP servlet collects any data needed and calls the setLightData() method on each of
the lightweight components to set the input data properties.

6. To save data to the database, the servlet calls the methods of the controller bean directly
to perform the necessary operation and then returns the HTML output to the browser.

This Design 3 example UML sequence diagram in Figure 46-4 shows the data flow for
displaying account information. It is an example of a customizable JSP, where you can add or
remove new account fields to be displayed to the user:

Chapter 46
Understanding Self-Care Manager Components

46-6

Figure 46-4 Design 3 Example

Extending the Functionality of Self-Care Manager
All Self-Care Manager components follow the model view controller (MVC) paradigm. A
component in Self-Care Manager includes the controller, which contains the logic of the
component, and the view, which handles the display of data on the UI. The view in Self-Care
Manager is HTML/JSP. When you create a component for a Customer Care application by
using the SDK, you need to create the view of the data and the controller that determines the
behavior and display of the data.

Self-Care Manager includes a set of components that provide the basic functionality for
customer self-care. All the properties that the default beans support are included in the JSPs.

You can extend the functionality of Self-Care Manager to collect additional information from
customer accounts or to provide customers with additional options. For more information, see:

• Adding Fields

• Removing Fields

• Creating a New Component

Chapter 46
Extending the Functionality of Self-Care Manager

46-7

Note:

The controllers used in Self-Care Manager have getters and setters; that is, they
are true beans.

Adding Fields
You add fields by adding to the component collection using the
ServletUtil.addComponent(…), which is a wrapper for the BAS API to add a lightweight
component to the collection. In addition to the collection bean object, this method requires the
name of this lightweight component, the model field description, and the display field
description for updating and retrieving the data to and from BRM.

The name of the lightweight component is the same as specified for the UI field; that is, for
firstname if the UI field specification is:

<INPUT Name="firstname" Value="<%=fname%>" Size="21" Tabindex="2">

Then the name passed to addComponent is the value of NAME, that is, firstname.

The model field description is FldNameinfo[1].FldFirstName. In this case, the display field
description is the same "FldNameinfo[1].FldFirstName". However, for the credit card
number, the model field description is
FldPayinfo[1].FldInheritedInfo[0].FldCcInfo[0].FldDebitNum and the display field
description is FldPayinfoObj.FldCcInfo[0].FldDebitNum.

Note:

When the collection is saved in the session, you can retrieve the lightweight
components from the collection by using getChild().

1. Retrieve the lightweight component data by using getLightData().

2. When a customer enters data, ServletUtil.gatherFormInput() retrieves the user data. It
then calls setLightData() of PLightComponentHelper to update the data of the
component.

Note:

ServletUtil.setLightDataForAll() is a wrapper function that calls
PLightComponentHelper.setLightData() for every input field that has a
lightweight component in the collection. However, if the input data needs
massaging or there is no mapping between the UI field and the lightweight
component, then you need to explicitly call setLightData().

3. The return flists are parsed by calling ServletUtil.parseErrorData, which identifies
lightweight components that are in error. You can mark the lightweight components that are
in error by checking if the field is in the error flist. To check the error flist, call
ServletUtil.checkError(…).

Chapter 46
Extending the Functionality of Self-Care Manager

46-8

Removing Fields
To remove a field that is not required, for example, the middle name field, you remove all
references to it.

Note:

Before you remove a field, make sure that no opcode requires it by checking opcode
input flist specifications.

1. Remove the ServletUtil.addComponent(…) of that field so it is no longer added to the
collection.

For example, to remove the middle name field, delete:

ServletUtil.addComponent(<BEAN>, MIDDLENAME,
"FldNameinfo[1].FldMiddleName"); and <BEAN>.
getChild(MIDDLENAME).

2. Remove the calls to checkError and getLightData().

For the middle name field, remove the following:

<% if (ServletUtil.checkError(errorMap, cbMname)) { %>
 <TH Align="right" Class="optional">__MiddleName__*</TH>
<% } else { %>
 <TH Align="right" Class="optional">__MiddleName__</TH>
<% } %>
 <TD Colspan="3" Align="left"><INPUT Name="middlename"
Value="<%=cbMname.getLightData()%>" Size="21" Tabindex="3"></TD>2.

3. If setLightData() is called explicitly on this lightweight component, remove that line.

Creating a New Component
When adding a component to Self-Care Manager, you create the view component of the data,
and if necessary, the controller component that determines the behavior of the data.

1. Create a link in the existing JSPs or HTML pages for loading the next or new JSPs.

See "Creating a Link for the JSP Pages for a Get Request".

2. Create the component.

For a view component, subclass either an existing controller from app/ccare/comp or
web/comp, or design a new one.

See "Designing a Component".

3. Develop the customizable component.

See "Developing the Customizable Component".

4. Develop the noncustomizable component.

See "Developing a Noncustomizable Component".

Chapter 46
Extending the Functionality of Self-Care Manager

46-9

Creating a Link for the JSP Pages for a Get Request
If you are using PInfranetServlet and the HTTP request is a get request, add the
page_to_load_next and component_to_be_created values in the response.encodeURL
parameter entry in the appropriate JSP:

A HREF="<%=response.encodeURL("PInfranetServlet?page=
 page_to_load_next&Component=component_to_be_created")%>"

For example:

A HREF="<%=response.encodeURL("PInfranetServlet?page=
 change_login_form&Component=com.portal.web.comp.PServicesBeanImpl")%>"

Creating a Link for the JSP Pages for a Post Request
If you are using PInfranetServlet and the HTTP request is a post request, add the following
entry, specify the page to load next, the Component to be created and a submit button:

<FORM Action="PInfranetServlet"
 Method="post"><INPUT Type="hidden" Name="page"
 Value=page_to_load_next>
 <INPUT Type="hidden" Name="Component" Value=Component_to_be created>

For example:

<FORM Action="PInfranetServlet"
 Method="post"><INPUT Type="hidden" Name="page" Value="view_invoice"><INPUT
 Type="hidden" Name="Component" Value="com.portal.web.comp.PInvoiceBeanImpl">

If you are not using PInfranetServlet, use the same link you would for HTML pages.

Designing a Component
To design a component:

1. Plan the UI and functionality.

2. Determine if the component UI involves updating and displaying data.

a. If the UI displays the data, then Design 1 or Design 3 is appropriate. See Choosing
Design 3 to determine if you need to use it; if not, use Design 1.

b. If the UI displays and updates data, use one of the following:

- A combination of Design 1 to retrieve data and Design 2 to update it.

- Design 3. To determine if you need to use Design 3, see Choosing Design 3; if you
do not, use a combination of Design 1 and Design 2.

3. Determine the design that the data flow of your component resembles:

a. See Choosing Design 3, to determine if you need to use it to build a customizable
component.

b. Choose Design 1 if you want most of the work to be done by PInfranetServlet;
otherwise, choose Design 2.

c. To share the same controller bean instance between multiple HTTP requests, choose
the combination of Design 1 to retrieve data and Design 2 to update data.

Chapter 46
Extending the Functionality of Self-Care Manager

46-10

Choosing Design 1 and Design 2

You can use Design 1 and Design 2 to display data and update it on user interaction. For
example, you can display all the packages available for purchase. When the user selects a
package, the controller bean updates the user information. Use Design 1 to display all the
packages. The bean is saved in session. When the user selects a package, the same bean
that has the model handle to the data is called with the index of the package. When the save
method is called, the flist of the package at the selected index is retrieved from the model.

Choosing Design 3

Use Design 3 when you have a one-to-one correspondence between the fields in the view and
fields in the object. Each of these fields can be a lightweight component. For example, fields
such as First Name and Last Name in the View Balance page have object fields that map
exactly to the display, so you have a light component for first name and last name. To display
FldBalances, there is a specific controller that you specify by using the createController()
method in PIAComponentCollection. This allows you to override the update method, which
takes an integer reason code and object as parameters to do special processing, such as
retrieving the balance information.

Note:

When you override an update you have to call super.update() so that any
FieldBeans that are part of the collection also get updated; that is, their update
method is called, so the opcode to retrieve data is run.

Developing the Customizable Component
This component has a view component and one or more controllers. For example,
CreateFormPage2.jsp servlet has a few controllers.

Note:

To extend Self-Care Manager functionality, you must subclass the controllers
provided in Customer Center SDK.

Developing the View Component
The view component displays the data and provides user interaction with the system.

To develop the view component, create a new HTML page and then follow these steps to edit it
to build the JSP.

1. Add a page directive that sets the value for errorPage to error.jsp:

<%@ page errorPage="error.jsp" %>

This redirects all exception handling to the defined page. For information about handling
exceptions, see "Error Handling".

2. Add a jsp:useBean statement, with the following values shown for scope and class:

Chapter 46
Extending the Functionality of Self-Care Manager

46-11

<jsp:useBean id="myBeanInstanceName" type="InterfaceName" class="concrete
Implementation of the interface" scope="request"/>

Note:

You are saving the collection bean instance in session, not the data.

3. Follow the steps in Account creation or Account maintenance:

• If you're adding functionality that is independent of an individual user logging in, such
as account creation, follow the steps in Account creation.

• If you're building functionality that is dependent on the user logging in, for example,
account maintenance, follow the steps in Account maintenance.

Note:

Account creation and maintenance is not supported in this release. It
continues to be supported in the previous releases.

Account Creation

Note:

This is an example for developing a customizable component. Account creation is not
supported in this release.

Follow these steps for account creation:

1. If a client service exists for the session, retrieve it:

PPooledConnectionClientServices pCS = (PPooledConnectionClient)session.getAttribute
(CREATE_CONNECTION);

2. For a first-time access, that is, the collection bean was just created and the controller was
not set:

a. Create a new instance of PPooledConnectionClientServices:

pCS = new PPooledConnectionClientServices((PClientServices)
application.getAttribute(ServletUtil.PARENT_SERVICE));
>

b. Call setServices with the new instance of PPooledConnectionClientServices on the
collection bean:

accountCreationBean.setServices(pCS);
>

c. Create a ConnectionListener and save it in the session:

ConnectionListener listener = new
ConnectionListener(session.getCreationTime(), pCS);

Chapter 46
Extending the Functionality of Self-Care Manager

46-12

d. Call ServletUtil.saveLocaleInfo and registerApp.

e. Specify the controller associated with this component.

f. Create the lightweight components. See "Creating a New Component".

3. If the collection bean was created by a previous HTTP request, retrieve the lightweight
components in the collection by calling getChild on the collection bean saved in the
session.

4. Call getLightData on the lightweight component to display the data.

5. If the data can be updated by the user, use a POST request to handle the update. In the
JSP code, check for POST requests, as follows:

a. Call ServletUtil.gatherFormInput.

b. To set data, call ServletUtil.setLightDataForAll.

This function loops through the components. If there is a mapping between the
component and user input, setLightDataForAll calls setLightData on the component.

c. For user input for which where there is no mapping, such as a billing address, you can
explicitly call setLightData on the component.

d. After setting the user input values on all the components in the collection, collect the
data for storing:

accountInfoBean.startSingleModelDataCollection
 (PCollectDataEvent.FOR_STORING, <model>);

The value for model is either null or the model handle previously created with some
data. In the case of payment method, for example, create an untyped model but
modify it with the payment info flist.

6. Call session.invalidate to release the connection.

Account Maintenance

Note:

This is an example for developing a customizable component. Account maintenance
is not supported in this release.

Follow these steps for account maintenance:

1. Retrieve the model handle.

PModelHandle mH = ServletUtil.getModelFromSession(session);
2. Use ServletUtil.CONNECTION as the key to retrieve the

PPooledConnectionClientServices instance from the session.

Chapter 46
Extending the Functionality of Self-Care Manager

46-13

Note:

A PPooledConnectionClientServices instance is created and saved in a
session using ServletUtil.CONNECTION when a user logs in. Additional
functionality provided for the user, such as account maintenance, can use
ServletUtil.CONNECTION to retrieve the PPooledConnectionClientServices
instance from the session.

3. Call setServices with the retrieved instance on the collection bean:

accountInfoBean.setServices(pCS);
4. If this is a first-time access; that is, the collection bean was just created and the controller

was not set:

a. Specify the controller associated with this component.

b. Create the lightweight components. See "Creating a New Component".

c. Call setModelHandle to retrieve data from the database.

5. If the collection bean was created in a previous HTTP request, you can retrieve the
lightweight components in the collection by calling getChild on the collection bean saved
in the session.

6. Call getLightData on the lightweight component to display the data.

7. If data can be updated by the user, use a POST request to handle the update. In the JSP
code, check for POST requests:

a. Call ServletUtil.gatherFormInput.

b. To set data, call ServletUtil.setLightDataForAll.

This function loops through the components. If there is a mapping between the
component and user input, it calls setLightData on the component.

c. For user input where there is no mapping, such as a billing address, you can explicitly
call setLightData on the component.

d. After setting the user input values on all the components in the collection, collect the
data for storing:

accountInfoBean.startSingleModelDataCollection
 (PCollectDataEvent.FOR_STORING, <model>);

The value for model is either null or the model handle previously created with some
data. In the case of payment method, for example, create an untyped model but
modify it with the payment info flist.

Developing the Controller Component
You must create a controller for each view element. The controller component performs the
functions, for example, reading fields from the database.

To create the component controller:

1. Declare the controller's API in the interface:

a. Declare all the setters to set input data.

b. Declare all the getters to retrieve the output data.

c. Declare all the public methods.

Chapter 46
Extending the Functionality of Self-Care Manager

46-14

2. Define a class derived from com.portal.bas.comp.PIAComponentCollectionBean,
which implements the interface.

Implement all the public methods, setters and getters.

Developing a Noncustomizable Component
This component has a view component and one controller.

Developing a View Component

The view component displays the data and provides user interaction with the system.

To develop the view component, create the HTML page and then build the JSP as follows:

1. Add the page declarative which has the errorpage set to error.jsp.

This redirects all exception handling to this page.

2. Add the jsp:useBean statement whose type is the controller interface and scope is
request or session.

If the bean was already created through the main servlet and placed in the request object,
you can load the bean using the jsp:useBean clause and use the getters to get the data.

3. Call the getters to get any data.

4. If data can be updated by the user, it requires special handling. Use a POST request to
handle the update. So in the JSP code, check if POST.

a. Gets the model from the session, if it exists.

b. Calls ServletUtil.gatherFormInput.

c. Calls the setters of the light components to update them with user inputs.

d. Calls the method to save the data into the database.

For information about error handling, see "Error Handling".

Developing the Controller Component

You must create a controller for each view element. The controller component performs the
functions, for example, reading fields from the database.

To create the component controller:

1. Declare the controller's API in the interface, for example, in PCAAccountInfoBean:

a. Declare all the setters to set input data.

b. Declare all the getters to retrieve the output data.

c. Declare all the public methods.

2. Define a class derived from com.portal.bas.PControllerImpl, which implements the
interface defined in the previous step. Note these rules:

• Implement all the public methods, setters and getters.

• Use the connection pool to connect to BRM.

• For error handling, see "Error Handling".

Chapter 46
Extending the Functionality of Self-Care Manager

46-15

Using the Connection Pool
When developing a noncustomizable component, you must use connections from the
connection pool to connect to BRM.

For more information on connection pooling, see "About PInfranetServlet".

Note:

The Self-Care Manager Connection pool implementation is expected to change in a
future release of BRM.

When using the connection pool, note these rules:

• Use getConnection to get a connection from the connection pool.

• Use releaseConnection to release the connection back to the connection pool.

Note:

– You must use releaseConnection to release connections.

– You must pair a getConnection with a releaseConnection.

• Adjust the values of the infranet.bas.connectionpool.size and
infranet.bas.connectionpool.timeout parameters in the Self-Care_Manager_install_dir/
WebKit.properties file.

Tip:

If you add noncustomizable components to your Self-Care Manager
implementation, Self-Care Manager performance may improve if you increase
the value for the infranet.bas.connectionpool.size parameter from the default
value 4.

For more information on these parameters, see "Optimizing Self-Care Manager
Connection Pool Performance" in BRM Managing Customers.

Error Handling
The controller handles exceptions and errors shown in Table 46-1:

Table 46-1 Exceptions, Errors, and Responses

Exception/Error Response

EbufException Calls PControllerImpl.createClientException() in the BAS API

Other exception Throws RemoteException with the resource string

Chapter 46
Extending the Functionality of Self-Care Manager

46-16

Table 46-1 (Cont.) Exceptions, Errors, and Responses

Exception/Error Response

Error returned in flist Returns CustomerValErrorData

If the exception is received in PInfranetServlet, it redirects to error.jsp

If the exception is received by a JSP Servlet with the error attribute in <page > directive, set to
error.jsp, which redirects the exception to error.jsp.

If you return CustomerValErrorData, call ServletUtil.parseErrorData(...) to gather the
lightweight components in error, and call ServletUtil.checkError(...) to mark any data in error.

Formatting Your Data
You can customize the display format of your data by using one of these methods:

• Method 1: Add Java Code to Your JSP Pages

• Method 2: Use a Formatting Bean that Contains the Presentation Logic for the Data.

Method 1: Add Java Code to Your JSP Pages
You can specify the date in month-day-year format by using the following Java code in a JSP
page:

<%Date lastBill = accountBean.getLastBillT();%>
<%=lastBill.getMonth()%>/<%=lastBill.getDate()%>/ <%=lastBill.getYear()%>

See the view_balance.jsp file included with Customer Center SDK in CCSDK_home/
CustomerCareSDK/WebKit/htmliu_en.

You can edit the entry to change the format to day-month-year by changing the order:

<%Date lastBill = accountBean.getLastBillT();%>
<%=lastBill.getDate()%>/<%=lastBill.getMonth()%>/ <%=lastBill.getYear()%>

Method 2: Use a Formatting Bean that Contains the Presentation Logic for the Data.
The JSP calls the formatting bean to obtain the instructions on how to display the data. By
using a formatting bean, you reduce the amount of Java code in the JSP.

To use a bean to format data:

1. Create a Java class with setters and getters to set the data and get the formatted data.

2. Compile the file and save the class file in a directory included in the CLASSPATH.

3. Add entries in your JSP page to do the following:

• Point to the formatting bean.

• Set the property of the data.

• Get the property of the formatted data from the formatting bean.

This example shows the entries for formatting the date in the view_balance.jsp.

1. Define a class, such as PSampleFmt, with a setDate() and getFormattedDate() method.
The getFormattedDate() method retrieves the date set and returns the formatted date.

Chapter 46
Extending the Functionality of Self-Care Manager

46-17

2. In the view_balance.jsp file, replace the Java code for formatting the date with these
lines:

<jsp:useBean id="fmtBean"class="com.portal.web.fmt.PSampleFmt"
scope="request"/>
<jsp:setProperty name="fmtBean" property="date"
value=<%=accountBean.getLastBillT()%>
</jsp:useBean>
<jsp:getProperty name="fmtBean" property="formattedDate"/>

You can use PPartialListFmt (in com/portal/web/fmt) to break down the display of events list
into multiple pages with a NEXT button.

Building the Self-Care Manager Components
To build or rebuild the webkit_en.war file for Self-Care Manager, follow these steps:

1. If you created custom source to extend Self-Care Manager, copy it to the CCSDK_home/
CustomerCareSDK/WebKit/custom directory.

2. Copy any HTML or JSP pages you modified for the HTML version of Self-Care Manager to
CCSDK_home/CustomerCareSDK/WebKit/htmlui_en.

3. Make the appropriate entries in the WebKit.properties file as required to accompany your
source.

4. Open a command shell and enter the buildAll command with the appropriate syntax for
the application you're customizing. See "Syntax for the buildAll Script".

For example, to clean and rebuild the webkit_en.war file for Self-Care Manager, enter the
following:

buildAll WebKit clean
buildAll WebKit

Note:

For more information on the buildAll script, see "About Compiling and Packaging
Your Customizations".

Self-Care Manager Customization Examples
Customer Center SDK includes Self-Care Manager customization example code in
CCSDK_home/CustomerCareSDK/WebKitExamples.

When you install Customer Center SDK, source and support files provide examples for
extending Self-Care Manager. Many of the example folders include Readme.txt files that
explain the purpose of each example.

You can run many of the examples in place by using the testExamples.bat script.

Table 46-2 describes the Self-Care Manager extension examples in the SDK_home/
CustomerCenterSDK/WebKitExamples directory. Read the readme.txt files and the
comments in the source files of each example for further information on their functionality and
how to use them for creating your own customizations.

Chapter 46
Self-Care Manager Customization Examples

46-18

Table 46-2 Self-Care Manager Extension Examples

Directory Under SDK_home/
CustomerCareSDK/WebKitExamples

Contents

Controllers PIAWKCreateAccountBeanImpl.java, an example of subclassing
PIACreateAccountBeanImpl to override its validatePage and validate
methods.

Currency CreateFormPage1.java and CreateFormPage2.javaand examples that
demonstrate how to include the currency field as input for account creation.

Note: Account creation is not supported in this release.

Profile CreateFormPage1.jsp and CreateFormPage2.jsp, examples that
demonstrate how to add support for a profile object to Self-Care Manager.
The profile object used for this example is /profile/customertype.

Chapter 46
Self-Care Manager Customization Examples

46-19

47
Customizing the Customer Center Interface

Learn how to customize the Oracle Communications Billing and Revenue Management (BRM)
Customer Center interface.

Topics in this document:

• Customizing and Configuring Customer Center

• Modifying the Customer Center Properties Files

• Using Customer Center SDK Scripts for Customer Center

• Adding New Pages to the Customer Center Interface

• Advanced Customer Center Concepts

• Building Your Customer Center Customizations

• Deploying Your Customer Center Customizations

• About the Customer Center Properties Files

• Customer Center Customization Examples

For information about Java classes used in Customer Center SDK, see the Customer Care API
Reference.

Note:

Customer Center Software Development Kit (SDK) uses the Portal Communication
Module (PCM) Java Application Programming Interface (API) to communicate with
BRM database objects. While the PCM API uses the format PIN_FLD_SUBCLASS to
represent an flist field to BRM, the PCM Java API uses the format FldSubClass to
represent an flist to BRM. See the API Reference for PCM Java for information about
the Java equivalents for the PCM API field subclasses.

Related documentation:

• To customize Self-Care Manager, see "Customizing the Self-Care Manager Interface".

• To use the Java PCM API to create Java client applications that interface with BRM, see
"Creating Client Applications by Using Java PCM".

• To customize localized versions of Customer Center using Customer Center SDK and the
Localization SDK, see "Modifying Localized Versions of Customer Center".

Customizing and Configuring Customer Center
This section describes the "Tools and Techniques for Customizing Customer Center" and a
"Customization Procedure Overview" describing which tools and techniques to use for various
types of customizations.

47-1

Tools and Techniques for Customizing Customer Center
To customize and configure the Customer Center interface, perform the following tasks:

1. Code your customizations by:

• Using the graphical Configurator application to configure the most commonly modified
interface features. See "Using Configurator to Configure Customer Center".

• Modifying Customer Center customized properties files. See "Modifying the Customer
Center Properties Files".

• Creating custom fields and panels with PIA (Portal Infranet Aware) widgets by using an
IDE tool such as JBuilder. See "Setting Up JBuilder to Customize the Customer Center
Interface".

• Using scripts, such as the one that starts a local version of Customer Center, for
testing your customizations. See "Using Customer Center SDK Scripts for Customer
Center".

2. Build and test your customizations by using scripts such as:

• buildAll to build your jar files. See "Building Your Customer Center Customizations".

• runCustomerCenter to launch a local version of Customer Center to test your
customizations before deployment. See "Testing Your Customizations".

3. Deploy your customizations. See "Deploying Your Customer Center Customizations".

Customization Procedure Overview
This section describes which "Tools and Techniques for Customizing Customer Center" to use
for various types of customizations.

Coding Your Customizations
• If you are making basic changes to the Customer Center interface, such as changing page

field attributes, page order, or search fields, you use Configurator.

For a complete description of the customizations you can make with Configurator and how
to make them, see "Using Configurator to Configure Customer Center".

• If you are making minor customizations not handled by Configurator, such as changing the
list of services available in the search panel, edit the Customer Center customized
properties files.

See "Modifying the Customer Center Properties Files".

• If you are adding new fields to Customer Center, use:

– Developer Center

– JBuilder

– Configurator

See "Setting Up JBuilder to Customize the Customer Center Interface" and "Adding
Custom Fields to Customer Center".

• If you are adding a new profile or service panel, you use JBuilder and Configurator. See:

– Setting Up JBuilder to Customize the Customer Center Interface

– Adding New Pages to the Customer Center Interface

Chapter 47
Customizing and Configuring Customer Center

47-2

– Creating a New Customer Center Profile Panel

– Creating a New Customer Center Service Panel

– The sample profile and service panel code in the /Profile and /Service directories in
the CCSDK_home/CustomerCareSDK/CustCntrExamples directory.

• If you are adding new account maintenance tabs or pages to the new accounts wizard, see
"Adding New Pages to the Customer Center Interface".

See also sample code in the CCSDK_home/CustomerCareSDK/CustCntrExamples
directory.

• If you are doing advanced customizations, see "Understanding the BRM Business
Application SDK Framework" and "Advanced Customer Center Concepts".

Building and Deploying Your Customizations
All customizations are built and deployed using the same procedures no matter which tools
and techniques are used to do the customizations. See "Building Your Customer Center
Customizations" and "Deploying Your Customer Center Customizations".

Modifying the Customer Center Properties Files
This section describes the properties files used to define Customer Center behavior and how
to modify those behaviors.

About the Default Customer Center properties Files
Default Customer Center settings are defined with parameter-value pairs in the following files
in the CCSDK_home/CustomerCareSDK/CustCntr/Settings directory:

• CustomerCenter.properties

• CustomerCenterResources.properties

Caution:

Do not delete or modify the default properties files.

For information on the parameters in the default properties files, see the comments in the files.

Modifying Behaviors Defined by the Default Properties Files
To change the behaviors in the default properties files:

• Add or modify parameters in the Customized.properties and
CustomizedResources.properties files, which are located in the CCSDK_home/
CustomerCareSDK/CustCntr/custom directory. Parameters and values specified in the
Customized*.properties files take precedence over values for identical parameters in the
respective default properties files.

For examples of changing Customer Center behavior by modifying the
Customized.properties file, see:

– Displaying Event Timestamps with Seconds Precision

– Adding Inactive Product Status Indicators

Chapter 47
Modifying the Customer Center Properties Files

47-3

– Changing the List of Services Available in the Search Panel

– Improving Account Search Performance

– Changing Number Searches for GSM Services

– Modifying the Shortcut Key Sequences

– Specifying the Number of Bills Displayed in the Balances Tab

– Suppressing the "Missing Login/ID" Message for Custom Service Panels

– Changing the Maximum Number of Security Code Characters

– Updating Notes Before Saving

– Reminding CSRs to Customize Deals Before Completing a Purchase

– Identifying Services by Device ID Rather than Login ID

– Adding a Tax Exemption Type

– Customizing Event Searches

– Customizing Balance Group Searches

– Customizing Product/Discount Searches

– Customizing Service Searches

– Hiding the Password Fields in Customer Center

– Disabling the Child Amounts Check Box

• Add or modify parameters in the WizardCustomizations.properties and
WizardCustomizationsResources.properties files, which are located in the
CCSDK_home/CustomerCareSDK/CustCntr/bin directory. Parameters and values
specified in the WizardCustomizations*.properties files:

– Supersede values for identical parameters in the respective default properties files.

– Are superseded by values for identical parameters in the respective
Customized*.properties files.

Note:

Values in the WizardCustomizations*.properties files are also modified by
the Configurator utility.

To modify one of these properties files:

1. Open the file with a text editor.

2. Add appropriate parameter-value pairs.

3. Save the file.

After you modify the properties files and make any other customizations, see "Building Your
Customer Center Customizations" and "Deploying Your Customer Center Customizations".

Displaying Event Timestamps with Seconds Precision
By default, Customer Center displays event timestamps with hours and minutes precision,
such as, 4:30 p.m. You can configure Customer Center to display event timestamps with

Chapter 47
Modifying the Customer Center Properties Files

47-4

seconds precision, such as 4:30:55 p.m., by enabling the
customercenter.datetime.showseconds entry in the Customized.properties file.

To display event timestamps with seconds precision:

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor.

2. Add the following line after the comment statements:

customercenter.datetime.showseconds=true
3. Save and close the file.

4. Restart Customer Center.

Adding Inactive Product Status Indicators
To add inactive product status indicators:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. After the comment statements, add the following lines:

product.details.status.flags.waiting=Waiting for installation
product.details.status.flags.network=Network configured
product.details.status.flags.maintenance=Maintenance

3. Save your changes.

Changing the List of Services Available in the Search Panel
To change the list of services available in the Search panel:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. Add the following line after the comment statements, changing the value to match the total
number of service types to display in the Search panel:

searchpanel.service.num=3
3. Add entries for each service type to display, for example:

searchpanel.service.type.0=admin_client
searchpanel.service.type.1=broadband
searchpanel.service.type.2=email

Note:

If you add a new service type to BRM, add a searchpanel.service.type entry for
it in the Customized.properties file and be sure to increment the value for
searchpanel.service.num accordingly.

4. Save your changes.

Improving Account Search Performance
You can improve Customer Center account search performance by reducing the maximum
number of search results displayed. The default is 1000.

To reduce the maximum number of search results displayed:

Chapter 47
Modifying the Customer Center Properties Files

47-5

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. Add the following line after the comment statements:

search.accountsresults.displaylimit=<new value>
3. Save your changes.

Changing Number Searches for GSM Services
You search for telephone numbers when assigning numbers for a GSM service in Customer
Center. Numbers are assigned when customizing services in the New Account or Purchase
wizards or when changing the number for an existing service.

One of the search criteria on the Search Number dialog box is Status. By default, the Status
list has these options-<Not Specified>, New, and Unassigned. If you choose <Not
Specified>, Customer Center searches for numbers with a status of either New or
Unassigned. It does not search for numbers with a status of Assigned or Quarantined.

If you have customized the list to include other status options, <Not Specified> also searches
for the custom options.

You can change this default so that Customer Center adds Assigned and Quarantined to the
Status list and searches numbers with Assigned or Quarantined status when you choose
<Not Specified>:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. After the comment statements, add the following line:

device.num.search.entry.panel.status.availability=false

3. Save the file.

By default, device.num.search.entry.panel.status.availability is set to true. When you set
this property to false, the following takes place:

• The default Status list will also display Assigned and Quarantined.

• When you choose <Not Specified>, Customer Center searches for numbers of any status.

Modifying the Shortcut Key Sequences
Customer Center provides shortcut key sequences for many of the actions in the UI. You can
customize the mnemonics by adding an updated property statement for each custom shortcut
in the Customized.properties file.

Note:

Make sure you do not assign the same mnemonic to different shortcuts.

To customize the shortcut key sequences:

1. Open the CustomerCenter.properties file in the CCSDK_home/CustCntr/Settings
directory.

2. Copy the line containing the mnemonic property you want to change. For example:

search.startsearch.mnemonic=S

Chapter 47
Modifying the Customer Center Properties Files

47-6

3. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

4. Paste in the line you copied.

5. Change the value assigned to the property, for example:

search.startsearch.mnemonic=x
6. Save your changes.

Specifying the Number of Bills Displayed in the Balances Tab
In Customer Center, you can view detailed information about the bills associated with an
account in the Bills section of the Balances tab. By default, the Balances tab displays a
maximum of six bills for each account. You can customize the maximum number of bills
displayed by adding a property to the Customized.properties file.

To customize the maximum number of bills Customer Center displays on the Balances tab:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. After the comment statements, add the following line:

balance.default.bills.count =Count

Replace Count with the number of bills you want Customer Center to display for each
account on the Balances tab.

3. Save your changes.

Suppressing the "Missing Login/ID" Message for Custom Service Panels
You can create custom service panels that do not request users to enter their login IDs and
passwords. However, when users exit the custom service panel, Customer Center generates a
"Missing Login/ID. Do you want to fix the error now?" message.

To suppress the login error message in custom service panels, perform the following tasks:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. Set the extended.ServiceType.required entry to false:

extended.ServiceType.required=false
3. Save and close the file.

Changing the Maximum Number of Security Code Characters
When you create an account in Customer Center, you can enter security codes on the General
tab of the Account Creation wizard.

You can also modify security codes in the Account Summary section of the Summary tab.

The BRM database is set up to store a maximum of 30 characters for a security code. You can
change the number of allowed characters by modifying the database and adding a property to
the Customized.properties file.

To change the maximum number of security code characters:

1. In the Storable Class Editor, change the length of the PIN_FLD_ACCESS_CODE1 and
PIN_FLD_ACCESS_CODE2 fields in the /account storable class.

2. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

Chapter 47
Modifying the Customer Center Properties Files

47-7

3. After the comment statements, add the following line:

summary.securitycode.length=length

Replace length with the number of characters you want to allow. The number cannot
exceed the size of the PIN_FLD_ACCESS_CODE1 and PIN_FLD_ACCESS_CODE2
fields in the ACCOUNT_T database table.

4. Save the file.

Updating Notes Before Saving
By default, when you open an account in Customer Center, existing notes are cached. If two or
more users have an account open at the same time and add notes, only one user's notes will
be saved.

To prevent this from happening, you can add a property that directs Customer Center to
refresh notes from the database before saving an account. This can slow the performance, but
it ensures that notes entered by different users to the same account are not overwritten.

To have Customer Center refresh notes from the database:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. After the comment statements, add the following line:

notes.management.option=refresh
3. Save the file.

Reminding CSRs to Customize Deals Before Completing a Purchase
If you create deals with a Deal Customization setting of Required, you will probably want to
ensure that CSRs go to the Customer Center Customize Product page to offer your
customizations. Customer Center automatically reminds CSRs to customize deals with a
Required deal customization setting when they first select the deal for purchase. You can also
remind CSRs to visit the Customize Product page before completing the sale by using the
customize.deal.enforce setting.

You turn this option on and off by changing the customize.deal.enforce setting in the
Customized.properties file.

This example turns this option on:

customize.deal.enforce = true

The default is false.

Identifying Services by Device ID Rather than Login ID
By default, Customer Center identifies a service owned by an account by using the service
login ID, allowing you to find email or IP services owned by the account. You can configure
Customer Center to identify services by using device IDs rather than login IDs by using a
Customized.properties entry. You might do this, for example, if you offer mostly telco
services.

To configure Customer Center to identify services by using device IDs rather than login IDs:

1. Open the Customized.properties file in the CCSDK_home/CustCntr/custom directory.

2. After the comment statements, add the following line:

Chapter 47
Modifying the Customer Center Properties Files

47-8

service.alias.display=true
3. Save and close the file.

Adding a Tax Exemption Type
If a tax exemption type does not exist, you can include it by overriding an existing property in
the WizardCustomizationsResources.Properties file:

1. Make a copy of the WizardCustomizationsResources.Properties file.

2. Add the following property:

exemptionType.format={0,choice,0#Federal|1#State|2#County|3#City|
4#Secondary County|5#Secondary City|8#District}

3. Place the customized file in the directory where you start Customer Center.

Customizing Event Searches
Customer Center has the following criteria for event searches for wholesale customers.
Customer Center allows you to:

• Narrow your filters for event searches by providing search criteria in the Event Search
dialog box. For more information, see Customer Center Help.

• Customize the case sensitivity of the searches for events. See "Customizing the Case
Sensitivity of Event Searches".

• Customize event searches by adding custom settings for the following search components:

– Service types. See "Customizing the Selections for Service Type in Event Searches".

– Service status. See "Customizing the Selections for Service Status in Event
Searches".

– Device types. See "Customizing the Selections for Device Type in Event Searches".

Customizing the Case Sensitivity of Event Searches
The Match case check box in the Event Search dialog box is selected, indicating that, by
default, event searches are case-sensitive in Customer Center.

To change the default case sensitivity of event searches:

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor,
where CCSDK_home is the directory in which the Customer Center software development
kit (CCSDK) is installed.

2. Add the following entry:

par.eventsearch.default.matchcase=false
3. Save the file.

4. Build the custom .jar file and deploy this customization.

When you deploy this customization, event searches are not case-sensitive, by default. The
Match case check box in the Event Search dialog box is not selected.

Chapter 47
Modifying the Customer Center Properties Files

47-9

Customizing the Selections for Service Type in Event Searches
The Service Type field in the Event Search dialog box displays the possible selections for
service types that can be used in event searches.

To customize the selection for service types in event searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the par.eventsearch.servicetypes.format entry. For example:

par.eventsearch.servicetypes.format={0,choice,1#/service/ip|2#/service/email|3#/
service/fax|1,default,2}

In this example,

• The service types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default service type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 2; that is, /service/email.

Note:

The default setting for the Service Type field is defined by the following
statement. (The default service type is /Not Specified.)

par.eventsearch.servicetypes.format={0,choice, 0#(Not Specified)|1#/
service|2#/service/ip|3#/service/email|4#/service/telco|5#/service/
telco/gsm|6#/service/telco/gsm/sms|7#/service/telco/gsm/telephony|
1,default,0}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Service Status in Event Searches
The Service Status field in the Event Search dialog box displays the possible selections for
service status that can be used in event searches.

To customize the selection for service status in event searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the par.eventsearch.servicestatus.format entry. For example:

par.eventsearch.servicestatus.format={0,choice,0#All|10100#Active|10102#Inactive|
1,default,0}

In this example,

• The service status entries you wish to include are numbered 0# 10100# and so on,
delimited by |.

• The default service status that is displayed when you access the dialog box is
specified as 1,default,n. In this example, the default is 0; that is, All.

Chapter 47
Modifying the Customer Center Properties Files

47-10

Note:

The default setting for the Service Status field is defined by the following
statement. (The default service status is All.)

par.eventsearch.servicestatus.format={0,choice,0#All|10100#Active|
10102#Inactive|10103#Closed|1,default,0}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Device Type in Event Searches
The Device Type field in the Event Search dialog box displays the possible selections for
device types that can be used in event searches.

To customize the selection for device types in event searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the eventsearch.devicetypes.format entry. For example:

par.eventsearch.devicetypes.format={0,choice,1#/device/num|2#/device/sim|1,default,1}

In this example,

• The device types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default device type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 1; that is, /device/num.

Note:

The default setting for the Device Type field is defined by the following
statement. (The default device type is Not Specified.)

par.eventsearch.devicetypes.format={0,choice,0#(Not Specified)|1#/
device|2#/device/num|3#/device/sim|1,default,0}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing Balance Group Searches
Customer Center has the following criteria to balance group searches for wholesale customers.
Customer Center allows you to:

• Set the threshold for the number of available balance groups to display in Customer
Center. For more information, see Customer Center Help.

• Customize the case sensitivity of searches for balance groups. See "Customizing the Case
Sensitivity of Balance Group Searches".

Chapter 47
Modifying the Customer Center Properties Files

47-11

• Customize searches for balance groups by adding custom settings for the following search
components:

– Service types. See "Customizing the Selections for Service Type in Balance Group
Searches".

– Service status. See "Customizing the Selections for Service Status in Balance Group
Searches".

– Device types. See "Customizing the Selections for Device Type in Balance Group
Searches".

Customizing the Case Sensitivity of Balance Group Searches
The Match case check box in the Balance Group Search dialog box is selected, indicating
that, by default, balance group searches are case-sensitive in Customer Center.

To change the default case sensitivity of balance group searches:

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor,
where CCSDK_home is the directory in which the Customer Center software development
kit (CCSDK) is installed.

2. Add the following entry:

balancegroupsearch.default.matchcase=false
3. Save the file.

4. Build the custom .jar file and deploy this customization.

When you deploy this customization, balance group searches are not case-sensitive, by
default. The Match case check box in the Balance Group Search dialog box is not selected.

Customizing the Selections for Service Type in Balance Group Searches
The Service Type field in the Balance Group Search dialog box displays the possible
selections for service types that can be used in balance group searches.

To customize the selection for service types in balance group searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the balancegroupsearch.servicetypes.format entry. For
example:

balancegroupsearch.servicetypes.format={0,choice,1#/service/ip|2#/service/email|3#/
service/fax|1,default,2}

In this example,

• The service types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default service type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 2; that is, /service/email.

Chapter 47
Modifying the Customer Center Properties Files

47-12

Note:

The default setting for the Service Type field is defined by the following
statement. (The default service type is /service.)

balancegroupsearch.servicetypes.format={0,choice, 0#(Not Specified)|1#/
service|2#/service/ip|3#/service/email|4#/service/telco|5#/service/
telco/gsm|6#/service/telco/gsm/sms|7#/service/telco/gsm/telephony|
1,default,1}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Service Status in Balance Group Searches
The Service Status field in the Balance Group Search dialog box displays the possible
selections for service status that can be used in balance group searches.

To customize the selection for service status in balance group searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the balancegroupsearch.servicestatus.format entry. For
example:

balancegroupsearch.servicestatus.format={0,choice,0#All|10100#Active|10102#Inactive|
1,default,0}

In this example,

• The service status entries you wish to include are numbered 0# 10100# and so on,
delimited by |.

• The default service status that is displayed when you access the dialog box is
specified as 1,default,n. In this example, the default is 0; that is, All.

Note:

The default setting for the Service Status field is defined by the following
statement. (The default service status is Active.)

balancegroupsearch.servicestatus.format={0,choice,0#All|10100#Active|
10102#Inactive|10103#Closed|1,default,10100}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Device Type in Balance Group Searches
The Device Type field in the Balance Group Search dialog box displays the possible selections
for device types that can be used in balance group searches.

To customize the selection for device types in balance group searches:

Chapter 47
Modifying the Customer Center Properties Files

47-13

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the balancegroupsearch.devicetypes.format entry. For
example:

balancegroupsearch.devicetypes.format={0,choice,1#/device/num|2#/device/sim|
1,default,1}

In this example,

• The device types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default device type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 1; that is, /device/num.

Note:

The default setting for the Device Type field is defined by the following
statement. (The default device type is Not Specified.)

balancegroupsearch.devicetypes.format={0,choice,0#(Not Specified)|1#/
device|2#/device/num|3#/device/sim|1,default,0}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing Product/Discount Searches
Customer Center has the following criteria to product/discount searches for wholesale
customers. Customer Center allows you to:

• Set the number of available products/discounts to display in Customer Center. For more
information, see Customer Center Help.

• Customize the case sensitivity of searches for products/discounts. See "Customizing the
Case Sensitivity of Product/Discount Searches".

• Customize searches for products/discounts by adding custom settings for the following
search components:

– Service types. See "Customizing the Selections for Service Type in Product/Discount
Searches".

– Service status. See "Customizing the Selections for Service Status in Product/Discount
Searches".

– Device types. See "Customizing the Selections for Device Type in Product/Discount
Searches".

Customizing the Case Sensitivity of Product/Discount Searches
The Match case check box in the Product/Discount Search dialog box is selected, indicating
that, by default, product/discount searches are case-sensitive in Customer Center.

To change the default case sensitivity of product/discount searches:

Chapter 47
Modifying the Customer Center Properties Files

47-14

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor,
where CCSDK_home is the directory in which the Customer Center software development
kit (CCSDK) is installed.

2. Add the following entry:

proddiscsearch.default.matchcase=false
3. Save the file.

4. Build the custom .jar file and deploy this customization.

When you deploy this customization, product/discount searches are not case-sensitive, by
default. The Match case check box in the Product/Discount Search dialog box is not selected.

Customizing the Selections for Service Type in Product/Discount Searches
The Service Type field in the Product/Discount Search dialog box displays the possible
selections for service types that can be used in product/discount searches.

To customize the selection for service types in product/discount searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the proddiscsearch.servicetypes.format entry. For example:

proddiscsearch.servicetypes.format={0,choice,1#/service/ip|2#/service/email|3#/
service/fax|1,default,2}

In this example,

• The service types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default service type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 2; that is, /service/email.

Note:

The default setting for the Service Type field is defined by the following
statement. (The default service type is /service.)

proddiscsearch.servicetypes.format={0,choice,1#/account|2#/service|3#/
service/ip|4#/service/email|5#/service/telco|6#/service/telco/gsm|7#/
service/telco/gsm/sms|8#/service/telco/gsm/telephony|1,default,2}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Service Status in Product/Discount Searches
The Service Status field in the Product/Discount Search dialog box displays the possible
selections for service status that can be used in product/discount searches.

To customize the selection for service status in product/discount searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the proddiscsearch.servicestatus.format entry. For example:

Chapter 47
Modifying the Customer Center Properties Files

47-15

proddiscsearch.servicestatus.format={0,choice,0#All|10100#Active|10102#Inactive|
1,default,0}

In this example,

• The service status entries you wish to include are numbered 0# 10100# and so on,
delimited by |.

• The default service status that is displayed when you access the dialog box is
specified as 1,default,n. In this example, the default is 0; that is, All.

Note:

The default setting for the Service Status field is defined by the following
statement. (The default service status is Active.)

proddiscsearch.servicestatus.format={0,choice,0#All|10100#Active|
10102#Inactive|10103#Closed|1,default,10100}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Device Type in Product/Discount Searches
The Device Type field in the Product/Discount Search dialog box displays the possible
selections for device types that can be used in product/discount searches.

To customize the selection for device types in product/discount searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the proddiscsearch.devicetypes.format entry. For example:

proddiscsearch.devicetypes.format={0,choice,1#/device/num|2#/device/sim|1,default,1}

In this example,

• The device types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default device type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 1; that is, /device/num.

Note:

The default setting for the Device Type field is defined by the following
statement. (The default device type is Not Specified.)

proddiscsearch.devicetypes.format={0,choice,0#(Not Specified)|1#/device|
2#/device/num|3#/device/sim|1,default,0}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Chapter 47
Modifying the Customer Center Properties Files

47-16

Customizing Service Searches
Customer Center has the following criteria for service searches. Customer Center allows you
to:

• Set the threshold for the number of available services to display in Customer Center. For
more information, see Customer Center Help.

• Customize the case sensitivity of searches for services. See "Customizing the Case
Sensitivity of Service Searches".

• Set the step size for the searches. See "Customizing the Step Search Size".

• Customize service searches by adding custom settings for the following search
components:

– Service types. See "Customizing the Selections for Service Type in Service Searches".

– Service status. See "Customizing the Selections for Service Status in Service
Searches".

– Device types. See "Customizing the Selections for Device Type in Service Searches".

Customizing the Case Sensitivity of Service Searches
The Match case check box in the Service Search dialog box is selected, indicating that, by
default, service searches are case-sensitive in Customer Center.

To change the default case sensitivity of service searches:

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor,
where CCSDK_home is the directory in which the Customer Center software development
kit (CCSDK) is installed.

2. Add the following entry:

servicesearch.default.matchcase=false
3. Save the file.

4. Build the custom .jar file and deploy this customization.

When you deploy this customization, service searches are not case-sensitive, by default. The
Match case check box in the Service Search dialog box is not selected.

Customizing the Step Search Size
You can customize the step search size for retrieving services.

To customize the step search size:

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor,
where CCSDK_home is the directory in which the Customer Center software development
kit (CCSDK) is installed.

2. Set the servicesearch.stepsize entry to the appropriate value for your server (memory)
configuration. The default is 100.

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Chapter 47
Modifying the Customer Center Properties Files

47-17

Customizing the Selections for Service Type in Service Searches
The Service Type field in the Service Search dialog box displays the possible selections for
service types that can be used in service searches.

To customize the selection for service types in service searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the servicesearch.servicetypes.format entry. For example:

servicesearch.servicetypes.format={0,choice,1#/service/ip|2#/service/email|3#/
service/fax|1,default,2}

In this example,

• The service types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default service type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 2; that is, /service/email.

Note:

The default setting for the Service Type field is defined by the following
statement. (The default service type is /service.)

proddiscsearch.servicetypes.format={0,choice,1#/service|2#/service/ip|
3#/service/email|4#/service/telco|5#/service/telco/gsm|6#/service/
telco/gsm/sms|7#/service/telco/gsm/telephony|1,default,1}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Service Status in Service Searches
The Service Status field in the Service Search dialog box displays the possible selections for
service status that can be used in service searches.

To customize the selection for service status in service searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the servicesearch.servicestatus.format entry. For example:

servicesearch.servicestatus.format={0,choice,0#All|10100#Active|10102#Inactive|
1,default,0}

In this example,

• The service status entries you wish to include are numbered 0# 10100# and so on,
delimited by |.

• The default service status that is displayed when you access the dialog box is
specified as 1,default,n. In this example, the default is 0; that is, All.

Chapter 47
Modifying the Customer Center Properties Files

47-18

Note:

The default setting for the Service Status field is defined by the following
statement. (The default service status is Active.)

servicesearch.servicestatus.format={0,choice,0#All|10100#Active|
10102#Inactive|10103#Closed|1,default,10100}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Customizing the Selections for Device Type in Service Searches
The Device Type field in the Service Search dialog box displays the possible selections for
device types that can be used in service searches.

To customize the selection for device types in service searches:

1. Open the CCSDK_home/CustCntr/custom/CustomizedResources.properties file in a
text editor.

2. Add the custom setting for the servicesearch.devicetypes.format entry. For example:

servicesearch.devicetypes.format={0,choice,1#/device/num|2#/device/sim|1,default,1}

In this example,

• The device types you wish to include are numbered 1# 2# and so on, delimited by |.

• The default device type that is displayed when you access the dialog box is specified
as 1,default,n. In this example, the default is 1; that is, /device/num.

Note:

The default setting for the Device Type field is defined by the following
statement. (The default device type is Not Specified.)

servicesearch.devicetypes.format={0,choice,0#(Not Specified)|1#/device|
2#/device/num|3#/device/sim|1,default,0}

3. Save the file.

4. Build the custom .jar file and deploy this customization.

Hiding the Password Fields in Customer Center
Hiding the password fields for services in Customer Center (in the Customize Services page
and the Services tab) enhances security. When the password fields are hidden, the BRM
server generates the password for services. You cannot hide the password fields for the /
service/admin_client and /service/pcm_client service types.

To hide the password fields for services in Customer Center:

1. Open the CCSDK_home/CustCntr/custom/Customized.properties file in a text editor.

2. Add the following line after the comment statements:

Chapter 47
Modifying the Customer Center Properties Files

47-19

nonCSRservices.hide.passwordfields=value

where value is:

• true to hide the password fields for service types other than /service/admin_client
and /service/pcm_client.

• false to display the password fields. This is the default.

3. Save and close the file.

4. Build the custom .jar file, and deploy this customization.

5. Restart Customer Center.

Disabling the Child Amounts Check Box
To disable the include Child Amounts check box in Customer Center:

1. Open the Customized.properties file in the CCSDK_Home/CustCntr/custom directory.

2. After the comment statements, add the following line:

Customized.ReadOnlyIncludeChild=true
3. Save and close the file.

Adding a Custom Service as a Login to Customer Center
As an alternative to /service/admin_client, you can add a custom service as a login.

To add a custom service as a login to Customer Center:

1. Open the CCSDK_Home/CustCntr/custom/Customized.properties file in a text editor.

Alternatively, you can add the line to WizardCustomizations.properties.

2. Add the following line after the comment statements:

 customercenter.loginType=/service/CustomService
3. Save and close the file.

4. Build the custom .jar file and deploy this customization.

5. Restart Customer Center.

Using Customer Center SDK Scripts for Customer Center
Table 47-1 contains the scripts provided with Customer Center SDK to automate many of the
processes for preparing and building your customizations:

Table 47-1 Customer Center SDK Scripts

Script Purpose

runConfigurator Runs the Configurator client.

See "Using Configurator".

Chapter 47
Using Customer Center SDK Scripts for Customer Center

47-20

Table 47-1 (Cont.) Customer Center SDK Scripts

Script Purpose

runFldSpecWidget Runs a read-only Storable Class Editor widget for reading BRM field
definitions to copy and use for modelFieldDescription,
displayFieldDescription, and displayFieldFormat entries for new fields.
You can use these field definitions when you write code to add
functionality to the Customer Center and Self-Care Manager applications.

makecertificate Creates a self-signed certificate for deploying your customizations.

See "Creating a Self-Signed Java Security Certificate".

runCustomerCenter Runs a standalone version of Customer Center for local testing of your
customizations. This script requires a connection to a CM, but doesn't
require a Web server.

See "Testing Your Customizations".

compile Recompiles the example source files in all subdirectories under the /
CustCntrExamples directory.

Use this script before you run the example source files.

Tip: To see how the buildAll script compiles, packages, and signs custom
source code, copy Customized.properties and
CustomizedResources.properties files from the example's folder to the
CCSDK_home/CustomerCareSDK/CustCntr/custom directory.

testExample Tests the compiled Customer Center examples in the following directories
under the /CustCntrExamples directory:

• AccountCreation
• General
• Notes
• Service
• Summary
• Profile
• Events

unpackHelp Unpacks the Customer Center Help file, Customer_Center_Help_en.jar.

buildHelp Builds the ccCustomHelp_en.jar file for distributing your customized
online help.

Adding New Pages to the Customer Center Interface
This section describes the concepts and components you need to add pages for account
maintenance or for the New account wizard.

To add new pages to Customer Center, you need:

• Experience with a Java graphical user interface (GUI) builder, such as JBuilder

• Experience in building Java applications

• Familiarity with "Understanding the BRM Business Application SDK Framework" and
"Advanced Customer Center Concepts"

This section includes these topics:

• About Portal Infranet Aware Widgets

• Adding Account Maintenance Pages

• Adding New Account Wizard Pages

Chapter 47
Adding New Pages to the Customer Center Interface

47-21

About Portal Infranet Aware Widgets
Custom Center uses the Portal Infranet Aware (PIA) widget set when building a custom page.
These widgets include extra APIs that know about BRM; they are capable of automatically
toggling currency data, some are capable of exporting their data to HTML, and others contain
bug fixes that you need when using the normal Swing widgets. These widgets are in the
com.portal.bas.comp Java package in basacAll.jar. The most important mappings from PIA
widgets to Swing widgets include:

• PIACustomizablePanel == JPanel

• PIAScrollPane == JScrollPane

• PIATextField == JTextField

• PIAReadOnlyField == JLabel

• PIASpecSpreadSheet == JTable

When constructing a custom page, always try to use the PIA widget set for the reasons
described above.

For more information on PIA widgets, see:

• Components Used in Customer Center

• Advanced Customer Center Concepts

• Customer Care API reference

Adding Account Maintenance Pages
This section provides information and implementation tips on adding account maintenance
pages.

• Overview of Account Maintenance Components

• Saving Changes

• Refreshing Data in the UI

• Currency Toggling

• Drill-Down Links

• Advanced Drill-Down Techniques

• Modifying the Customer Center Permissions

• Adding Your Page to the Customer Center Toolbar

Overview of Account Maintenance Components
When working with an existing account, the Customer Center framework uses the
PCustomerCenterContext class. This class contains APIs for accessing the current account
and for accessing global data managers. Each open account contains a further set of APIs
encapsulated in the PAccountViewContext class. This class contains APIs for implementing
drill-downs and accessing the refresh manager for the account.

Every page in the account maintenance view, including tabs and drill-down panels, must
implement the PAccountViewPage interface. This interface contains methods required by the
Customer Center framework to interact with the various pages in the tabbed pane. If you are
creating a new page from scratch, it is highly recommended that you start with

Chapter 47
Adding New Pages to the Customer Center Interface

47-22

PMaintenancePage. This base class implements the PAccountViewPage interface and
provides a basic implementation in many of the methods.

If you choose to override a particular method in PMaintenancePage, simply call the
superclass method first to take advantage of the default implementation.

If you start with PMaintenancePage, you should be aware of these methods:

• save(): Saves data on a page. Provide code in this method to save the data in your page.

This method is called automatically by the framework.

• hasUnsavedChanges(): This method is called automatically by the framework to
determine if your page needs to be saved.

• getLabel() – If your page contains links allowing the user to drill down within your custom
tab, you provide a string in this method that describes your page. This string appear as the
initial tag in the breadcrumb trail.

• refresh(): This method is called when the user clicks the Refresh toolbar button. You
should refresh the data on your page in this method, going to BRM as required.

• recycle(): Pages in the tabbed pane are reused between accounts. In this method, clear
out all data you set manually so data from one account doesn't accidentally appear when
displaying the next account.

If you are using the BAS PIA widgets on your screen, you might want to use the collectData()
method when gathering data for saving. For example:

PModelHandle modl = PClientContext.getServices().
 createNewModel(PModelHandle.UNTYPED);
PCollectDataEvent evt = new PCollectDataEvent(
 this, PCollectDataEvent.FOR_DIRTY, modl);
collectData(evt);

After this code is invoked, the modl variable represents data that was modified on your page.
You can now convert this data from a PModelHandle into an flist and pass it off to your
appropriate opcode. The conversion is performed as shown in this example:

PCachedContext conn = (PCachedContext)
 CCCompatibilityUtility.getConnection();

//This is how you turn a PModelHandle into an FList
 FList flist = (FList)conn.lookupModel(modl);

Saving Changes
When a user leaves a Customer Center page, the page saves its own data.

Note:

Customer Center users leave a page by changing tabs, drilling down to another
page, or using the Back button.

The act of leaving a page invokes code that gathers the data and calls the opcode used for
saving the data. Each page formats the appropriate input flist and calls the correct opcode. If a
data entry error occurs, a page can use the global PSaveManager methods to notify the user
of the error and locate the field causing the error. The global SaveManager contains

Chapter 47
Adding New Pages to the Customer Center Interface

47-23

convenience methods that the pages can use for alerting the user and locating the UI field
causing the error.

To save changed data from a page, the framework calls the hasUnsavedChanges() method
on the PAccountViewPage interface. If the class returns true, the save() method is called on
the page. If the page signals a save failure, a PSaveException is returned.

Customer Center uses wrapper opcodes to group editable data together so that all changes
can be saved with a single opcode call. For example, the CUST_UPDATE_CUSTOMER
opcode is a wrapper opcode that calls CUST_MODIFY_PROFILE. This feature allows you to
embed a panel for a /profile object into a panel that displays regular account data, such as
contact or payment data, and save any changes using a single opcode call. Profile panels do
not have to be contained within separate tabs.

Note:

Avoid calling multiple opcodes when saving page data. If you call more than one
opcode, you might need to roll back a set of changes if a subsequent page save
attempt fails.

If your page is constructed using the BAS Portal Infranet-aware (PIA) widgets, you probably do
not need to override this method.

The base implementation in PMaintenancePage returns the appropriate value. However, if
you are using standard Swing widgets in your page, you probably need to determine if your
page must be saved or not:

• If your page requires saving, return true.

• If your page doesn't require saving, return false. The method is not be called.

If you are subclassing (directly or indirectly) a PIACustomizablePanel in your custom page,
call the setInputTracking(true) method after constructing the UI for your page. This is
especially important if you are using collectData() to gather the data for saving. Input tracking
tells the system that every PIA widget should track changes made by a user. (This feature
displays the colored widgets when a user makes a change). When collectData() is called, it
asks each widget if it has been modified. If it has been modified, it retrieves the modified data.

Note:

If input tracking is turned off, the widgets won't know that they have been changed.

Refreshing Data in the UI
When components use one of the PRefreshManager listener methods to register for event
notification, they are notified whenever a data type of interest changes.

PRefreshManager tracks the following types of data changes:

• Balance impacts

• Contact information

• Changes to credit limits

Chapter 47
Adding New Pages to the Customer Center Interface

47-24

• Deferred actions

• Hierarchy changes

• Holdings changes (product and deal purchases and cancellations)

• Payment type changes

• Service changes (login, status, password, and deferred action count)

• Status changes

There is a separate refresh manager instance created for each open account in Customer
Center so that changes in one account do not accidentally impact an unrelated account. The
PRefreshManager instance associated with an open account can be retrieved from the
account's view context by using the getRefreshManager() method in PAccountViewContext.

Each PAccountViewPage instance also contains a refresh() method that is called when the
user clicks the Refresh toolbar button. The refresh() method is invoked for a page if the page
is currently active. Each page should update its data when this method is invoked.

Use the PRefreshManager component's refresh mechanism if you are:

• Adding a page that displays data found in other pages.

• Adding a page that displays data that is directly impacted by changes elsewhere in the
interface.

If you change a data type, call one of the PRefreshManager process methods so that
other registered components are also updated as required. See for PRefreshManager for
details about the various listener and process methods supported by the default
implementation.

You can implement the refresh() method by resetting the PModelHandle on the page as
follows:

setModelHandle(getModelHandle());

Currency Toggling
If you use multiple currencies in an account, you can implement currency toggling. When you
implement currency toggling on your panel, use the Portal Infranet-aware (PIA) widget set
when building a new page. The PIA widget set is part of the com.portal.bas.comp package.

The PIA widgets are wrappers for common Swing widgets. When setting the data for any PIA
widget, use the setLightData API instead of the standard Swing methods such as setText.
For example, if you have a screen that displays balance information, such as Balance: $15.99,
you could make the Balance widget a JLabel and the $15.99 widget a PIAReadOnlyField.

Note:

If you are specifying displayFieldDescription for your widgets, this happens
automatically.

Call setCurrencyDisplay(true) on each widget displaying currency data.

Chapter 47
Adding New Pages to the Customer Center Interface

47-25

Note:

This API is available for the PIA widgets that are capable of displaying currency data.
For more information, see Customer Care API Reference.

Drill-Down Links
The Customer Center interface allows users to drill down from one page to another. The
PCCLink class provides the drill down functionality, including the visual element to display your
link. You create a new PCCLink as follows:

new PCCLink("text", pageClass, "trailTag", null|"parent");

Table 47-2 describes the input parameters for a new PCCLink:

Table 47-2 Input Parameters for PCCLink

Input Parameter Description

text The text you want to appear in the link widget itself. Include the quotes.

pageClass A quoted string that contains the name of the class you want the link to drill
down to.

trailTag The text label, in quotes, that you want to appear in the bread crumb trail above
the tabbed panel.

parent The name of the destination tab. This tag is the same tag specified in
CustomerCenter.properties. Leave the value as null if you do not want to drill
down to a different page. Include quotes if the value is not null.

Use this parameter to drill down from one page tab to another.

Drill-down example 1

To create a PCCLink that drills down from the Summary page to the status change screen,
include the following link on the Summary page:

new PCCLink("Status", com.portal.app.cc.PChangeStatusPage, "Change Status", null);

The PCCLink automatically calls the framework API required for drilling down a link selected
by the user. You do not need to call any APIs or hook up event handlers.

Drill-down example 2

To make a drill down that appears as if a user had drilled down directly from the Service tab,
include the following link on the Summary page:

new PCCLink("Status", com.portal.app.cc.PChangeStatusPage, "Change Status","service");

When this link is selected, the Service tab moves to the front and the bread crumb trail on the
displayed page reads Service -> Change Status.

See the DrillDownTest.java sample code in CCSDK_home/CustomerCareSDK/
CustCntrExamples for a detailed example.

Invoking the drill-down API directly

You can gain further control over drill-down behavior by invoking the drill-down API directly
rather that using the PCCLink class.

Chapter 47
Adding New Pages to the Customer Center Interface

47-26

To invoke drill downs directly:

1. Retrieve the context for the current account view. The context is a reference to the tabbed
pane for the currently active account.

You can access the PAccountViewContext through the PCustomerCenterContext:

CCCompatibilityUtility.getCustomerCenterContext().getAccountViewContext();
2. From the PAccountViewContext, call one of the four switchToPage API variants.

You can either pass in a pre-existing PAccountViewPage instance or a reference to the
Class instance of the page. If a reference is passed, the framework first attempts to find an
instance of this class within the current view. If one is found, it is reused and a handle to
the existing PAccountViewPage is returned. If no instance is found, a new one is created
and a handle to the new PAccountViewPage instance is returned.

Tip:

If possible, use the switchToPage method that takes a Class instance. If you pass a
Class instance, the framework tracks the page instance for you. If you do need to call
any specific API on the page you are drilling down to, an instance is returned to you
from the switchToPage method to enable the drill-down. For more information, see
Customer Care API Reference for information on this version of the switchToPage
method.

Drill-down simulation

You can simulate two types of drill downs:

• You can drill down within the current tab.

• You can switch to a different tab and simulate a drill down from the top-level page in that
tab.

Two of the switchToPage() methods take three parameters that allow you to drill down within
the current tab or switch to a different tab and simulate a drill down from the new top-level tab.
Pass in the tag reference for the tab you wish to drill down to, and the framework automatically
switches the active tab before performing the drill down.

Note:

The tag reference for each tab is the same tag specified in the custinfo.tabs
property in CustomerCenter.properties.

For more information on using the switchToPage(), see "Advanced Drill-Down Techniques".

Drill-down implementation procedure

To implement a drill down:

1. Pass in the following:

• The label to display in the breadcrumb trail for the new top-level tab.

Chapter 47
Adding New Pages to the Customer Center Interface

47-27

• The Class name of the parent page to display as a drill-down. If an instance of that
class exists, it becomes the current drill-down. Otherwise, the class is instantiated and
added as a drill-down.

• A String with the name of the parent component to drill down from.

The framework automatically switches the active tab before performing a drill-down. The
label text used for each tab is the same as specified in the custinfo.tabs property in
CustomerCenter.properties.

2. Provide a graphical element to invoke the switchToPage method. Normally you would use
the Link widget and hook up an ActionListener to it. Within the ActionListener callback
method, actionPerformed, retrieve the context for the current account and invoke the
switchToPage method.

To embed a link within a table cell, use the framework API but create a renderer for your table
column instead of using the PCCLink or Link widgets directly. Instead, use PLinkRenderer.
For an example, see the DrillDownTest.java sample code in the General directory under
CCSDK_home/CustomerCareSDK/CustCntrExamples.

Advanced Drill-Down Techniques
To gain more control over drill downs, you can invoke the drill down API yourself instead of
using PCCLink().

1. Retrieve the context for the current account view.

The context is a reference to the tabbed pane for the currently active account. You can
access the PAccountViewContext through the CustomerCenterContext:

CCCompatibilityUtility.getCustomerCenterContext().getAccountViewContext();
2. From the PAccountViewContext, call one of the four variants of the switchToPage() API.

You can either pass in a pre-existing PAccountViewPage instance or a reference to the
class instance of the page.

If you pass in a class instance, the framework first attempts to find an instance of this class
within the current view. If one is found, the framework re-uses it and return a handle to it. If no
instance is found, a new one is created and a handle is returned.

Tip:

If you use the switchToPage() method that takes a class instance, the framework
keeps track of the page instance for you. Also, if you do need to call any specific API
on the page you are drilling down to, an instance is returned to you from the
switchToPage() method to accomplish this.

You must provide a graphical element to invoke the switchToPage() method. You typically use
the com.portal.ctrl.Link widget, and hook up an ActionListener to it. Within the
ActionListener callback method (actionPerformed), retrieve the context for the current
account and invoke the switchToPage() method.

To embed a link within a table cell, you use the framework API above. However, instead of
using a PCCLink or Link widget directly, you create a renderer for your table column. You can
use the com.portal.app.comp.PLinkRenderer for this purpose. There is a sample of how to use
this renderer in the SDK examples directory.

Chapter 47
Adding New Pages to the Customer Center Interface

47-28

Modifying the Customer Center Permissions
Customer Center SDK includes the PRestriction class that defines server-side permissions for
the user or the client application to perform certain functions.

Adding Your Page to the Customer Center Toolbar
You can add your page to the account maintenance toolbar button instead of as a separate
tab. This section includes information on how to present your data in a floating dialog box, such
as for notes, that the user can keep up at all times.

Write your toolbar button code as you do when writing tab code. You can extend
PMaintenancePage, but that is not required, and you can start with any base class. However,
if you plan on using BAS PIA widgets you must start with a PIACustomizablePanel. Once you
have your page, you create an action class for the toolbar. Your class should extend the BAS
action class as follows:

public class WorkFlowAction extends PBASAction {
 public WorkFlowAction(PClientComponent comp) {
 super(comp, "workflow");
}

Note the workflow tag highlighted above. This is a mapping into the property file indicating
attributes of your toolbar button such as label, icon, and so forth. Override the
actionPerformed() method and display your dialog when this method is invoked:

public void actionPerformed(ActionEvent ae) {
}

To add your custom toolbar button to Customer Center, modify Customized.properties and
CustomizedResources.properties. For example, if you identify your additional button by the
workflow tag, your property file changes is as follows:

Customized.properties

customercenter.toolbar=back home SEP VSEP save refresh SEP VSEP SEP newaccounts SEP VSEP
 search notes workflow
customercenter.tb.class.workflow=WorkFlowAction

CustomizedResources.properties

customercenter.workflow.label=
customercenter.workflow.icon=myWorkFlow.gif
customercenter.workflow.desc=Launches the workflow dialog
customercenter.workflow.accel=
customercenter.workflow.mnemonic=

Tip:

You can optionally fill in values for parameters that have none. For example, if you fill
in the label property, a label appears next to your toolbar button.

Adding New Account Wizard Pages
This section includes concepts and guidelines for adding pages to the new accounts wizard:

Chapter 47
Adding New Pages to the Customer Center Interface

47-29

• Understanding the New Accounts Wizard

• Base Storable Classes for Account Creation Pages

• Methods Used in New Account Creation Pages

Understanding the New Accounts Wizard
This section describes how the new account wizard works.

PWizardPage

Every page in the new account wizard must implement the PWizardPage interface. This
interface contains methods required by the wizard framework. For more information on the
PWizardPage interface, see the Customer Care API Reference.

Tip:

If you add a new account wizard page to using Configurator, all entries are written out
for you automatically.

Data sharing

The new account wizard in Customer Center uses shared data. Shared data allows one page
to access data from another page, or for one page to broadcast data changes to other pages
by using data registration.

Pages in the wizard can use the shared data in a request-based or broadcast-based manner:

• Request-based shared data. When a user switches to a page, the page can retrieve the
shared data.

• broadcast-based data sharing. If a page must be notified when a piece of data (such as
the primary and secondary currency) changes, it can register for notification with the
shared data manager.

Each wizard has a context that can be retrieved from the main CustomerCenterContext. Only
one wizard can be active at any given time so the getWizardContext() method can be used to
access the active wizard. If it is null, a wizard is not currently active. From the wizard context,
you can access the SharedDataManager. Use this class if you are interested in registering for
notification of data changes, or simply to access the shared data object itself.

You do not need to write a page if you want to tap into the shared data mechanism. See the
AcctCreationTapNonGUI.java example in the CCSDK_home/CustomerCareSDK/
CustCntrExamples/AccountCreation directory. This example demonstrates how to retrieve
shared data when starting the wizard.

Partial validation

The New Account wizard performs partial validation on all pages contained within it. Data is
sent to BRM on a per-page basis as the user moves between pages. This mechanism catches
CSR data entry errors. Each page within the wizard validates its own data and identifies any
errors encountered while validating and saving the data in BRM.

When the user attempts to leave a page, the page's validateWizardPage() method is called.
This signals the page to gather its data and send it to BRM for validation. A number of
convenience methods that assist in performing validation are available in the
WizardValidationManager.

Chapter 47
Adding New Pages to the Customer Center Interface

47-30

Note:

The WizardValidationManager is available through the wizard context.

For example, if a page doesn't have any special validation needs of its own, it can immediately
call the validatePage API on the WizardValidationManager. This method performs default
data collection on the wizard page, invokes the CUST_VALIDATE_CUSTOMER opcode in
BRM, and performs default error handling when if validation fails. Alternatively, the page can
collect its own data and, perhaps after examining it, call the convenience method
validateModel on the WizardValidationManager. This method invokes the
CUST_VALIDATE_CUSTOMER opcode and, if validation failed, hands an error data structure
back to the page. The page can then pass the error information to an API in the SaveManager
that attempts to identify the field(s) that caused the error.

Pages can be coded to perform data validation and any error determination itself without using
the WizardValidationManager, the SaveManager, or even without calling an opcode.

If an error results when the user clicks Finish to create a new account based upon the entered
data, the wizard can call the handleWizardCommitError method on each wizard page
successively until a page reports back that it wants to handle the error. That page is then made
visible. To handle the error, the page could then:

• Call a convenience method on the WizardValidationManager to get the default commit-
time error handling behavior.

• Use the SaveManager method mentioned above to try and identify any fields that were
responsible for the error.

• Perform its own analysis of the error data.

Base Storable Classes for Account Creation Pages
You can start with any base class you wish when creating your account creation page.

Tip:

Customer Center SDK does not include a base class for adding account creation
pages. However, you can optionally use PMaintenancePage class described in
"Adding Account Maintenance Pages", especially if you want to use the same page
as a tab during account maintenance.

Methods Used in New Account Creation Pages
These methods are used for account creation panels:

• getWizardHelpID(): Use this method to add custom help to your page. Include the empty
string ("") if you are not including customized help.

• recycle(): Pages in the new accounts wizard are reused between accounts. In this
method, clear out all data you set manually so data from one account doesn't accidentally
appear when displaying the next account.

• validateWizardPage(): This method is called as the user leaves your page in the New
Account wizard. It includes a hook to validate any data the user has entered. Since your

Chapter 47
Adding New Pages to the Customer Center Interface

47-31

page is custom, determine if BRM can validate your page or if you must validate it
manually.

If you have modified BRM policy code to validate your page, the following code may be
useful:

CustomerCenterContext ctx = CCCompatibilityUtility.getCustomerCenterContext();
if (ctx.getWizardContext() instanceofPAccountCreationWizardContext) {
 PAccountCreationWizardContext wizContext =
 PAccountCreationWizardContext) ctx.getWizardContext();
 WizardValidationManager wizValidation =
 wizContext.getWizardValidationManager();
 wizValidation.validatePage();
}

This code utilizes the convenience class WizardValidationManager to handle validation.
However, your page must use the BAS PIA widget set to take full advantage of this
mechanism.

• handleWizardCommitError(): This method is called when the user attempts to create the
account and an error occurs. A data structure is passed in containing a description of the
error. Return true if the error actually occurs on your page. If the error is not yours, return
false. When you return true, the wizard framework automatically takes the user to your
page.

Tip:

Visually indicate to the user which field is causing the error. If you are using the
BAS PIA widgets, the following code might be useful:

public boolean handleWizardCommitError(CustomerError error) {
 CustomerCenterContext ctx = CCCompatibilityUtility.getCustomerCenterContext();
 if (ctx.getWizardContext() instanceofPAccountCreationWizardContext) {
 PAccountCreationWizardContext wizContext = (PAccountCreationWizardContext)
 ctx.getWizardContext();
 WizardValidationManager wizValidation = wizContext.getWizardValidationManager();
 return wizValidation.handleCommitError(error, this);
 } else {
 return false;
 }
}

Removing a Payment Method from Customer Center
Removing a payment method prevents it from appearing in the Account Creation wizard, the
Payments section, the Hierarchy section, the Purchase wizard, and dialog boxes.

Note:

Testing and maintaining customized code is your responsibility.

To remove a payment method from Customer Center:

1. Open the CCSDK_Home/CustCntr/custom/Customized.properties file in a text editor.

2. Add the following after the comment statements:

Chapter 47
Adding New Pages to the Customer Center Interface

47-32

3. custinfo.payment.class=com.portal.custom.PCustomPaymentPage
Customized.hierarchyMoveDlg.class=com.portal.custom.PCustomHierarchyMoveDlg
com.portal.app.ccare.comp.PPaymentPanelBeanImpl.subclass=com.portal.custom.PCustomPay
mentPanelBeanImpl
Customized.BillUnitHierarchyPage.class=com.portal.custom.PCustomBillUnitHierpage.

4. Create a com.portal.custom.PCustomPaymentPage that contains the following:

package com.portal.custom;
.
import com.portal.app.cc.PPaymentPage;
import java.util.Vector;
.
public class PCustomPaymentPage extends PPaymentPage{
 public PCustomPaymentPage(){
 super();
 }
 public Vector getPayMethods () {
 Vector vec = super.getPayMethods();

 //Remove the entry for bad payment method from the vector and return

 return vec;
 }
}

5. Create a com.portal.custom.CustomHierarchyMoveDlg page that contains the
following:

package com.portal.custom;
.
import com.portal.app.cc.PHierarchyMoveConfirmDlg
import java.util.Vector;
.
import javax.swing.JFrame;
.
public class PCustomHierarchyMoveDlg extends PHierarchyMoveConfirmDlg {
.
 public PCustomHierarchyMoveDlg(JFrame frame, String title, boolean modal)
{
 super(frame, title, modal);
 // TODO Auto-generated constructor stub
 }
.
 public Vector getPayMethods() {
 Vector vec = super.getPayMethods();
 //Remove the entry for the bad payment method from the vector
 //and return
 return vec;
 }
}

6. Create a com.portal.custom.PCustomPaymentPanelBeanImpl page that contains the
following:

package com.portal.custom;
.
import com.portal.app.cc.BalanceGroupTreeTable;
import com.portal.app.cc.PPayType;
import com.portal.app.ccare.comp.PPaymentPanelBeanImpl;
import java.util.Iterator;
import java.util.Vector;
.
public class PCustomPaymentPanelBeanImpl extends PPaymentPanelBeanImpl {

Chapter 47
Adding New Pages to the Customer Center Interface

47-33

.
 public PCustomPaymentPanelBeanImpl() {
 super();
 }
.
 public void refreshPaymentMethodModel(BalanceGroupTreeTable
balanceTreeTable) {
 super.refreshPaymentMethodModel(balanceTreeTable);
 Vector payMethod = getPayMethod();
 //Remove the entry for the bad payment method from the vector
 //and return
.
 setPayMethod(payMethod);
.
 }
.
 public Vector getPayTypes() {
 Vector list = super.getPayTypes();
 int i = 0;
 int index = -1;
 //Remove the entry for the bad payment method from the vector
 //and return
.
 for (Iterator iterator = list.iterator(); iterator.hasNext();) {
 PPayType str = (PPayType) iterator.next();
 if (str.getPayTypeName().equals("BadPaymentMethod")) {
 index = i;
 }
 i++;
 }
 if (index != -1) {
 list.remove(index);
 }
 return list;
 }
}

7. Build the custom .jar file and deploy this customization.

8. Restart Customer Center.

Advanced Customer Center Concepts
This section describes these Customer Center concepts:

• Components Used in Customer Center

• About the BAS Data Flow with a Swing-Compatible UI

• About Field Specifications

• About Controller Processing

• Creating a Self-Signed Java Security Certificate

For information on the Business Application SDK (BAS) framework used by Customer Center
and Self-Care Manager, see "Understanding the BRM Business Application SDK Framework".

Chapter 47
Advanced Customer Center Concepts

47-34

Components Used in Customer Center
This section describes the main Portal Infranet-aware (PIA) components used in Customer
Center, including "Graphical Components", "Nongraphical Components", and "Data Manager
Components".

Portal Infranet-Aware Components
The Customer Center framework includes Portal Infranet-aware (PIA) components. These
components, or widgets, are extensions to their corresponding Swing components and have
references to specific storable class fields. They contain APIs that allow you to map them to
specific fields in BRM storable classes, such as /account. PIA components have
implementations that allow individual components to encapsulate data retrieval and user
interface (UI) display.

Note:

Customer Center SDK also includes basic components, such as links, headers, and
dates that are useful in accounting and billing applications.

Customer Center consists of panels that display PIA components. These components can be
made aware of specific BRM storable class fields. They can perform all the tasks required to
retrieve, display, and save BRM data; so when you add a field or change the properties of a
panel, you do not have to implement server functionality to communicate with BRM.

The Customer Center framework includes classes for graphical and nongraphical components
as well as classes for managing changes made to the components during a login session.

The following sections describe the main components in the framework. For detailed
information about the methods and API used, see Customer Care API Reference.

Graphical Components
The Java classes in Table 47-3 comprise the main Customer Center graphical components:

Table 47-3 Customer Center Graphical Components

Component Description

PAccountNavigator A columnar component that displays a list of open accounts. As the CSR opens
accounts, they are added to this graphical list with the most recently opened account
at the top. This component also provides the capability of closing accounts and
removing them from view in Customer Center.

PBreadCrumbs Displays a visual history of the various data screens the CSR has visited within a
single tab. The history is presented as selectable links.

Note: Each account is displayed in a tabbed pane component, and each tab can
have any number of virtual screens. This means it is possible to stay within the same
visual tab and view many different screens.

Chapter 47
Advanced Customer Center Concepts

47-35

Table 47-3 (Cont.) Customer Center Graphical Components

Component Description

PPageTemplate The main component found on each tab in the account view. It contains the
PBreadCrumbs component along the top, and a Business Application SDK (BAS)
PIAPanelGroup component below that. The PIAPanelGroup enables the virtual
tabs feature of the client by providing a mechanism for embedding a number of
screens on top of each other while displaying only a single screen at any one time.
The PPageTemplate hooks the PBreadCrumbs and PIAPanelGroup components
together. This allows the PBreadCrumbs component to determine which screen is
displayed in the PIAPanelGroup. The PMaintenancePage subclass you create
exists within the PPageTemplate on a given tab.

PAccountView Provides the concrete implementation of PAccountViewContext in Customer
Center. This is implemented as a tabbed pane component, with each tab containing
a PPageTemplate component.

PActiveAccountManager Responsible for managing the components that display account data. Like the
PPageTemplate component, it uses a PIAPanelGroup to manage the display of
PAccountView components. Each time a new account is opened in Customer
Center, PActiveAccountManager delivers a PAccountView component that can be
used to display the account's data. As the user switches between open accounts, the
PActiveAccountManager tracks those changes and displays the appropriate
PAccountView. As accounts are closed in the client, the associated PAccountView
component is removed from the panel group.

Essentially, this component manages a stack of tabbed panes with only the active
one visible. It takes up all the space to the right of the PAccountNavigator.

Figure 47-1 shows the areas of the interface that some graphical components control:

Chapter 47
Advanced Customer Center Concepts

47-36

Figure 47-1 Customer Center Graphical Components

Nongraphical Components
The Java classes in Table 47-4 comprise the main Customer Center nongraphical
components:

Chapter 47
Advanced Customer Center Concepts

47-37

Table 47-4 Nongraphical Components

Component Description

PCustomerCenterContext Provides a context for standalone Javabean components within Customer Center.

Components can use this context to:

• Open and close accounts
• Register for notification when accounts are opened or closed
• Access the global data managers: PBrandManager, PCurrencyManager,

PSaveManager, and PrintManager
• Retrieve a model handle to the currently active account or its context. Each

open account contains a further set of API encapsulated in
PAccountViewContext.

PAccountViewContext A context which abstracts the mechanism used to display existing account data.

This context encapsulates the API for enabling drill-downs in the client and
accessing the account's PRefreshManager.

By default, Customer Center uses a tabbed pane component. You can implement
the PAccountViewContext API to use a different type of component.

PMaintenancePage A concrete implementation of the base page interfaces used for account
maintenance.

This component implements PAccountViewPage which extends PCCPage. If you
are building a new page, you should subclass PMaintenancePage.

PAccountInfo A data class instance that exists for every open account in Customer Center. The
data can be retrieved from the PCustomerCenterContext. This data class contains
information about an account. When an account is opened, this data is retrieved and
made available for all components. It can be marked for refresh if data contained in
the class has been modified and then refreshed from BRM using an API call.

Data Manager Components
The Java classes in Table 47-5 comprise the main Customer Center data manager
components:

Table 47-5 Data Manager Components

Component Description

PBrandManager Encapsulates the management of and access to the current BRM scope. Used to
determine what the current scope is or when the scope changes.

This class also contains an API for determining account scope.

PCurrencyManager Encapsulates management and notification for currency changes. This is useful if
the accounts in the system use multiple currencies. Most pages do not need to use
this class. If you follow the suggestions for currency toggling described in "Currency
Toggling", the framework handles currency toggling automatically.

PSaveManager Encapsulates functionality for saving data and identifying errors in a page. It also
contains the logic for determining whether the CSR should be prompted before data
is saved.

Chapter 47
Advanced Customer Center Concepts

47-38

Table 47-5 (Cont.) Data Manager Components

Component Description

PRefreshManager Encapsulates data synchronization across an account view. Use this class to
register for notification of data changes or to broadcast data changes to other
registered pages.

Note: Each account view is recycled when it is closed and a new refresh manager is
created each time an account is opened. This means that a page must register or
unregister with the refresh manager each time. See the RefreshTest.java example
and look specifically at the addNotify() and removeNotify() methods.

About the BAS Data Flow with a Swing-Compatible UI
PModelHandle is a client-side representation of an flist. Because UI code typically does not
directly access the PCM library, BAS creates this object for client use. PModelHandle is turned
into a real flist on the server for use in opcodes. A PModelHandle, like an flist, can also
represent storable classes. So it is possible to have a PModelHandle that represents an
account or an event.

Every BAS widget (the PIA widgets) has a setModelHandle method. This is how data is
passed in to the component. For the container PIA widgets (panel, scroll pane, and tabbed
pane) the setModelHandle method automatically propagates the PModelHandle to all child
components. For example, if you have a PIACustomizablePanel with ten PIATextField
components on the panel, one call to setModelHandle on the panel is enough to set the
PModelHandle for all ten PIATextField components.

To get data out of the PIA widgets, BAS uses the collectData method. Essentially, you create
an UNTYPED PModelHandle from scratch and hand that to a new PCollectDataEvent. This
event is passed into collectData, which is available on every PIA widget.

Regardless of the type of data collection (you can create many different types of
PCollectDataEvent), each PIA widget properly updates the PModelHandle passed in with the
event. For example, to gather all data modified by a user you could issue a
PCollectDataEvent of type FOR_DIRTY. Only the modified PIA widgets would append their
data to the PModelHandle that is passed in. This would happen automatically by calling
collectData on the encompassing panel.

About Field Specifications
Each PIA widget contains two methods that bind the widget to a specific field in BRM. These
widgets enable the setModelHandle and collectData methods to work.

• setDisplayFieldDescription: This method is a read data mechanism. When
setModelHandle is called on a widget, the widget internally attempts to extract the BRM
field identified by the setDisplayFieldDescription specification from the associated
PModelHandle.

For example, if a widget is passed a PModelHandle that represents an account object and
a text field has a display field description of FldNameinfo[1].FldLastName, the text field
can automatically extract the value of FldLastName from the PModelHandle and display
it.

• setModelFieldDescription: This method is a write data mechanism. It performs the
reverse function provided by setDisplayFieldDescription. This specification indicates how
to write a particular piece of data to BRM. It is a String representation of what the input flist
to an opcode looks like.

Chapter 47
Advanced Customer Center Concepts

47-39

In the last name example above, the model field description for storing the last name is
identical to the display field description. However, that is a rare case, since most fields in
BRM are read from an flist in one format, but passed in an input flist to an opcode in a
different format.

About Controller Processing
The previous sections describe how data goes into a panel, and how it is extracted from that
panel. If you need to perform additional data processing before your panel receives the data,
use the controller for the panel. Each PIA widget contains the method
getControllerClassName. This identifies the class name of the server-side component
(controller) for your panel.

When setModelHandle is called on the panel, the update method is invoked remotely on the
controller. This happens before any widget contained in the panel receives the data. If any type
of conversion, lookup, or translation of data needs to occur before passing the data along, this
is how to do it.

Building Your Customer Center Customizations
To build your Customer Center customizations, follow these steps:

1. Creating a Self-Signed Java Security Certificate

2. Building Your Customization Files

3. Testing Your Customizations

Creating a Self-Signed Java Security Certificate
If you do not have an authenticated security certificate or do not want to use it for testing your
customizations, use the makecertificate script to create a self-signed certificate.

Note:

The certificate created by the makecertificate script is not a validated, secure
certificate. It is not an appropriate certificate to copy to the Web server you use to
deploy Customer Center to your CSRs. Its use is limited to internal testing
environments.

1. Run the makecertificate script, located in the CCSDK_home/CustCntr/bin directory.

2. Answer the following prompts as they appear, or press ENTER to accept the default
entries displayed in brackets:

Enter keystore password: yourPassword
What is your first and last name?
 [Unknown]: yourFirstName yourLastName
What is the name of your organizational unit?
 [Unknown]: yourUnitName
What is the name of your organization?
 [Unknown]: yourOrganizationName
What is the name of your City or Locality?
 [Unknown]: yourCity_or_Locality
What is the name of your State or Province?

Chapter 47
Building Your Customer Center Customizations

47-40

 [Unknown]: yourState_or_Province
What is the two-letter country code for this unit?
 [Unknown]: yourCountryCode

3. When prompted to verify whether the entries you made are correct, type yes or press
ENTER to verify or change the entries you made after the keystore password.

If you accept the default answer, no, the script redisplays each of the prompts with your
answers listed as the default entry in brackets. You can enter a new value or press ENTER
to keep the current values.

4. After you verify that your entries are correct, the script composes a certificate and then
prompts you to enter a key password for the test certificate's alias, customcert. Enter a
different password or press ENTER to reuse the keystore's password.

5. The certificate is stored in a keystore file named certificate_keystore in the
CCSDK_home/bin directory.

Modifying the signjar Script
Before running the buildAll script to build and sign the ccCustom.jar file for Customer Center,
first edit the CCSDK_home/CustomerCareSDK/CustCntr/custom/signjar script to add your
entries for the following values:

• set KEYPASSWORD=yourPassword

• set STOREPASSWORD=yourPassword

If you created a self-signed certificate with the makecertificate script, use the password
values you entered to create that certificate.

If you have an authentic Java Security Certificate, use the password values associated with
that certificate. Copy your certificate keystore file to the custom directory.

Building Your Customization Files
You use the buildAll script in the CCSDK_home/CustomerCareSDK directory to build your
customized files.

Requirements
Before using the buildAll script, verify that:

• The appropriate entries are in the *.properties files. See:

– Using Configurator

– Modifying the Customer Center Properties Files

• If you created custom source files to extend Customer Center, the source files are in the
CCSDK_home/CustomerCareSDK/CustCntr/custom directory.

• Your certificate_keystore file is in the CCSDK_home/CustomerCareSDK/CustCntr/
custom directory.

See "Creating a Self-Signed Java Security Certificate".

Using the buildAll Script
To build the ccCustom.jar file for Customer Center:

1. Open a command shell and go to CCSDK_home/CustomerCareSDK/lib.

Chapter 47
Building Your Customer Center Customizations

47-41

2. Run the buildAll script:

a. To remove class files from any previous custom builds:

buildAll CustCntr clean
b. To build a new copy of the ccCustom.jar file:

buildAll CustCntr

Note:

For more information on the buildAll script, see "About Compiling and
Packaging Your Customizations" and "Syntax for the buildAll Script".

When the buildAll script finishes, you can deploy your Customer Center customizations. See
"Deploying Your Customer Center Customizations".

Testing Your Customizations
You can test your customizations before you deploy them by running your local version of
Customer Center (the runCustomerCenter batch file) in the CCSDK_home/
CustomerCareSDK/CustCntr/bin directory.

Note:

The local version of Customer Center does not require access to the Customer
Center Web Start server, but it does require access to a CM.

1. If you are adding custom fields, add ccCustomFields.jar to the CLASSPATH as in this
example:

set CLASSPATH=f:/CCSDK_home/CustCntr/custom/ccCustomFields.jar;%CLASSPATH%
2. Go to the CCSDK_home/CustomerCareSDK/CustCntr/bin directory.

3. Double-click the runCustomerCenter batch file.

Your local version of Customer Center starts.

4. Log in to Customer Center when prompted.

Note:

You must specify the host and port of a working BRM system when logging in.

5. Verify that your customizations appear and work properly in the Customer Center.

6. Close Customer Center.

Chapter 47
Building Your Customer Center Customizations

47-42

Note:

In the "Building Your Customization Files" procedure, you can use
runCustomerCenter to test your customizations without building jar files if:

• You are making customizations with Configurator or by editing the
customizes properties files, and

• You are not adding new fields, panels, or customized help.

Deploying Your Customer Center Customizations
This section describes how to deploy your Customer Center customizations.

Deploying Customer Center Customizations on Linux
This section describes how to deploy your customizations to the Web Start server.

1. Create a new subdirectory named custom in the directory where you installed Customer
Center on your Web server.

2. Make a backup copy of the CustomerCenter_en.jnlp file on your Web server.

3. Edit the CustomerCenter_en.jnlp file in the directory where you installed Customer
Center and remove the comments around the following line if they are present:

<!-- <extension name="Customized" href="custom/custom.jnlp"/> -->
4. Copy the custom.jnlp and, if present, ccCustomFields.jar files from the CCSDK_home/

custom directory to the directory where you installed Customer Center on your Web
server.

5. Copy the ccCustom.jar and, if present, the ccCustomHelp.jar files from the
CCSDK_home/custom directory to the custom directory where you installed Customer
Center on your Web server.

The next time a CSR accesses the link that opens the CustomerCenter_en.jnlp file from your
Web server, Web Start installs the updated application to their system.

For installing Java Web Start and Customer Center, see BRM Installation Guide.

About the Customer Center Properties Files
Customer Center SDK includes three sets of properties files that define the Customer Center
interface:

• Default Properties Files

• Configurator Properties Files

• Customized Properties Files

Parameters in the Configurator properties files take precedence over like parameters in the
default properties files. Parameters in the customized properties files take precedence over like
parameters in the default and Configurator properties files.

Chapter 47
Deploying Your Customer Center Customizations

47-43

Default Properties Files
The CCSDK_home/CustomerCareSDK/CustCntr/Settings directory contains copies of
properties files shipped with Customer Center. The two files that define the default interface
are:

• CustomerCenter.properties defines several non-text features of the Customer Center UI,
for example:

– The order of panes in the New Account wizard

– The Account Maintenance view

– Which threshold settings to use

– The home page to use when no accounts are open

– The search entry page to use

– The color and font used by the fields

– The number and sequence of panels in a window or wizard

• CustomerCenterResources.properties contains the names of images and the localizable
text for the panels, fields, and messages that appear in the UI.

These properties files are shipped in signed jar files that are installed with Customer Center
and can't be directly modified.

Note:

Do not modify these or any other properties files under the CustCntr/Settings
directory. Customer Center uses these in jar files that are signed with an authentic
security certificate from BRM. If you directly modify these files and attempt to include
them in a custom jar file signed with a different certificate, Web Start returns an error.
To change a property or string, copy it to the Customized.properties or
CustomizedResources.properties files.

Configurator Properties Files
When you save changes you make in Configurator, the parameters are saved in the
WizardCustomizations.properties and WizardCustomizationsResources.properties
properties files in the BRM_home/CustomerCareSDK/CustCntr/bin directory, where
BRM_home is the directory in which the BRM server software is installed.

Parameters in the Configurator properties files take precedence over like parameters in the
default properties files.

Note:

Do not directly modify or add entries to the WizardCustomizations files. These files
are rewritten every time you save Configurator changes.

Chapter 47
About the Customer Center Properties Files

47-44

Customized Properties Files
The CCSDK_home/CustomerCareSDK/CustCntr/custom directory contains the following
files for overriding the default properties defined in the installed Customer Center properties
files:

• Customized.properties modifies the appearance of the UI components in Customer
Center.

• CustomizedResources.properties modifies the names of images and localizable text that
appear in Customer Center.

Use these properties files to make global changes that affect the whole application or several
related fields in an application.

The parameter values in the customized properties files take precedence over like parameter
values in the default and Configurator properties files.

For examples of customizations you can make by modifying the customized properties files,
see "Modifying the Customer Center Properties Files".

For more information on the properties files parameters, see the comments in the "Default
Properties Files".

Tip:

You can copy and paste default parameters from the "Default Properties Files" into
their "Customized Properties Files" counterparts and change the parameter values as
required.

Other Properties Files
Customer Center SDK includes these additional properties files in the CCSDK_home/
CustomerCareSDK/CustCntr/Settings directory:

• CCViewResources.properties contains additional strings used in Customer Center, such
as warning messages.

• GSMManagerResources.properties contains the names of images and the localizable
text for GSM Manager panels that display extended service information. This property file
is only valid when the GSM Manager Customer Center Extension is installed.

Note:

Do not change entries directly in these resource files. Instead, copy the entry to
the CustomizedResources.properties file and change the parameter as
required. Parameters found in the CustomizedResources.properties file takes
precedence over the value in the same parameter in the
CCViewResources.properties and GSMManagerResources.properties files.

The CCSDK_home/CustomerCareSDK/CustCntr/bin/Infranet.properties file provides
specific server settings for starting the Configurator application or for using the
runCustomerCenter script to start a standalone Customer Center session.

Chapter 47
About the Customer Center Properties Files

47-45

Deploying Customer Center Customizations on Windows
This section describes how to deploy your customizations to the TomCat server.

1. Copy the certificate keystore file (by default at CCSDK_home/CustomerCareSDK/
CustCntr/bin) to C:\Program Files\Apache Group\Tomcat
4.1\webapps\ROOT\customercenter.

2. Copy the signjar.bat file from CCSDK_home/CustomerCareSDK/CustCntr/custom to
C:\Program Files\Apache Group\Tomcat 4.1\webapps\ROOT\customercenter\lib.

3. Edit the signjar.bat file and enter the password:

set KEYPASSWORD= password
set STOREPASSWORD= password
where password refers to the keystore password

4. Go to C:\Program Files\Apache Group\Tomcat
4.1\webapps\ROOT\customercenter\lib.

5. Using an application such as WinZip, open all the .jar files and remove the
ORACLE_C.RSA and ORACLE_C.SF files from the archive.

6. Copy the ccCustomjar file from CCSDK_home \CustomerCareSDK\lib to C:\Program
Files\Apache Group\Tomcat 4.1\Webapps\ROOT\customercenter\lib.

7. Go to C:\Program Files\Apache Group\Tomcat
4.1\webapps\ROOT\customercenter\lib.

8. Run the following command, which signs all the JAR files:

signjarbat jarFileName
9. Open the CCSDK_home/CustCntr/custom/CustomerCenter_en.jnlp file and add the

path to the ccCustomjar file in the Resources area. Replace <-NEWJAR-/> with the
following:

<jar href="lib/ccCustomjar.jar"/>

Customer Center Customization Examples
When you install Customer Center SDK, separate folders with the appropriate source and
support files provide examples for extending Customer Center and Self-Care Manager. Many
of the example folders include brief README files to explain the purpose of each example.

You can run many of the examples in place by using the testExamples.bat script.

Table 47-6 describes the Customer Center extension examples in the CCSDK_home/
CustomerCenterSDK/CustCntrExcamples directory. Read the readme.txt files and the
comments in the source files of each example for further information on their functionality and
how to use them for creating your own customizations.

Chapter 47
Customer Center Customization Examples

47-46

Table 47-6 Customer Center Extension Examples

Directory Contents

AccountCreation AcctCreationTapNonGUI.java, an example that demonstrates how you might use the New
Account wizard without adding a panel to the UI.

CredScoreProfile.java is an example of tapping into the New Account wizard with a custom
page. A panel for a new profile subclass is added, which simulates the retrieval of a credit
score that determines which plans are available for purchase.

CreditScoreProfile.sce, a BRM storable class definition file, which defines a sample object
used by the examples in this directory. To see the contents of this file, use Storable Class
Editor.

Customized.properties, a collection of properties required for implementing these examples
in the Customer Center UI. To implement customizations, you copy and paste these entries into
the Customized.properties file in CCSDK_home/CustomerCareSDK/CustCntr/custom
directory.

CustomizedResources.properties, a collection of resource properties required for
implementing these examples in the Customer Center UI. To implement customizations, you
copy and paste these entries into the CustomizedResources.properties file in
CCSDK_home/CustomerCareSDK/CustCntr/custom directory.

DepositSimulator.java provides a simulated deposit requirement, represented as a set of
checkboxes for a CSR to select.

ManageFinishButton.java, an example that demonstrates how you can control the Finish
button in the New Account wizard.

Controllers ControllerTest.java, an example of invoking methods on your controller. The controller for this
class contains two methods that retrieve the number of service objects and profile objects
associated with the current account.

ControllerTestBeanImpl, an example of a controller that can be used in Customer Center.

General Customized.properties, a collection of properties required for implementing these examples
in the Customer Center UI. To implement customizations, you copy and paste these entries into
the Customized.properties file in CCSDK_home/CustomerCareSDK/CustCntr/custom
directory.

CustomizedResources.properties, a collection of resource properties required for
implementing these examples in the Customer Center UI. To implement customizations, you
copy and paste these entries into the CustomizedResources.properties file in
CCSDK_home/CustomerCareSDK/CustCntr/custom directory.

DrillDownTest.java contains a number of examples demonstrating how to perform drill downs
using the Customer Center framework.

PermissionTest.java contains examples of how to retrieve CSR permissions.

RefreshTest.java contains examples of registering for refresh events.

SaveTest.java contains an example of saving data to BRM. It also demonstrates how to use
the PIA widget API and invoke a controller other than the default controller created for this
panel.

HomePage CustomHomePage, an example of a branded Customer Center home page.

Customized.properties, a collection of properties required for implementing this example in
the Customer Center UI. To implement customizations, you copy and paste these entries into
the Customized.properties file in CCSDK_home/CustomerCareSDK/CustCntr/custom
directory.

LaunchBrowserPage, a sample home page that demonstrates using the JNLP API to invoke
the system browser.

Chapter 47
Customer Center Customization Examples

47-47

Table 47-6 (Cont.) Customer Center Extension Examples

Directory Contents

Notes Customized.properties, a collection of properties required for implementing this example in
the Customer Center UI. You copy and paste these entries into the Customized.properties file
in CCSDK_home/CustomerCareSDK/CustCntr/custom directory before running the buildAll
script.

HTMLNotes.java is an example of an alternate notes display.

Profile CDProf.java, a profile panel example that can be used during account creation and account
maintenance. A very simple example that captures the birthday and gender of the account
holder.

CDProf.sce, a BRM storable class definition file, which defines a sample object. This sample
object is used by the CDprof example in this directory. To see the contents of this file, use
Storable Class Editor.

CombinedProfPage.java, an example of profile panels for multiple /profile subclasses that are
incorporated into one UI panel.

CSProf.java, a profile panel example that can be used during account creation and account
maintenance. This example captures the credit score.

CSProf.sce, a BRM storable class definition file, which defines a sample object. This sample
object is used by the CSProf example in this directory. To see the contents of this file, use
Storable Class Editor.

ProfileTemplate.txt, a template for an empty Profile panel. Use this template as a starting
point for creating a profile panel for use with the New Account wizard and for account
maintenance.

Events An example event displayer. You can use this generic code to retrieve and display most BRM
events. This code also demonstrates how to export the displayed date to HTML.

Service Customized.properties, a collection of properties required for implementing this example in
the Customer Center UI. You copy and paste these entries into the Customized.properties file
in the CCSDK_home/CustomerCareSDK/CustCntr/custom directory before running the
buildAll script.

PEmailPanel.java, an example of a service panel. The service object used for this example is /
service/email.

ServiceTemplate.txt, a template for an empty extended-service panel. Use this template as a
starting point for creating a panel for an extended service.

The PGPRSPanel, PGSMPanel, PMSExchangeOrgPanel, and PMSExchangeUserPanel
classes are additional examples of extended service panels.

Summary AddToSummaryPage.java, an example of embedding panels directly into the summary page.

Customized.properties, a collection of properties required for implementing these examples
in the Customer Center UI. You copy and paste these entries into the Customized.properties
file in the CCSDK_home/CustomerCareSDK/CustCntr/custom directory before running the
buildAll script.

CustomizedResources.properties, a collection of resource properties required for
implementing these examples in the Customer Center UI. You copy and paste these entries
into the CustomizedResources.properties file in the CCSDK_home/CustomerCareSDK/
CustCntr/custom directory before running the buildAll script.

WrappedSummaryPage.java is an example of wrapping the existing Customer Center
summary page with additional information or fields at the bottom of the page.

Chapter 47
Customer Center Customization Examples

47-48

48
Using Configurator to Configure Customer
Center

Learn about the Oracle Communications Billing and Revenue Management (BRM)
Configurator application included with Customer Center Software Development Kit (SDK).

Topics in this document:

• About Configurator

• Using Configurator

• Configuring Customer Center Account Maintenance Pages

• Configuring the Customer Center New Accounts Wizard

• Using the Configurator Resource String Editor

• Additional Configured Profile Panel Examples

About Configurator
You use Configurator to configure the most commonly modified features of Customer Center.
The Configurator interface mimics the tab organization of the Customer Center interface, so
you can easily locate the features you want to modify.

When you choose File - Save in Configurator, Configurator saves the changes to the
WizardCustomizations.properties and WizardCustomizationsResources.properties
configuration files in the BRM_home/CustomerCareSDK/CustCntr/bin directory, where
BRM_home is the directory in which the BRM server software is installed.

For an overview of all Customer Center properties files, see "Modifying the Customer Center
Properties Files".

Using Configurator
To use Configurator to configure Customer Center:

1. Go to the CCSDK_home/CustomerCareSDK/CustCntr/bin directory.

2. Double-click the runConfigurator executable script.

The Login dialog box appears.

3. Enter your login and password.

4. Click the Connection Info button to display and, if needed, change the values for Host
and Port. These entries are automatically filled in with the values you provided when you
installed Customer Center SDK.

48-1

Note:

You can enter values that point to a different BRM server or database after
installing Customer Center SDK.

5. Click OK.

The Configurator application opens with the Summary Configurator tab on top.

6. Make your configurations:

• To configure Customer Center panels that handle changes to existing accounts, see
"Configuring Customer Center Account Maintenance Pages".

• To configure Customer Center panels in the New accounts wizard, see "Configuring
the Customer Center New Accounts Wizard".

Figure 48-1 shows where to find these options in the initial Configurator panel:

Figure 48-1 Customer Center Configurator Panel

7. Save your changes.

What's Next?
Continue coding your configurations using other methods described in "Customizing and
Configuring Customer Center", or proceed to "Building Your Customer Center Customizations".

Configuring Customer Center Account Maintenance Pages
This section describes how to configure fields and pages used in Customer Center to display
information about existing accounts.

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-2

Using the Account Maintenance Configurator Tabs
The tabs and toolbar selections in Configurator mirror the ones found in Customer Center.

Table 48-1 lists the Configurator tab selection options for configuring the corresponding
account maintenance items in Customer Center.

Table 48-1 Configurator Account Maintenance Configurator Tab Selections

Configurator Account Maintenance
Tab

Tab Description

Summary Configurator Configures options in the Customer Center Summary tab

Contacts Configurator Configures options in the Customer Center Contacts drill-down
area of the Summary tab

Balance Configurator Configures options in the Customer Center Balance tab

Payment Configurator Configures options in the Customer Center Payment tab

Plan Configurator Configures options in the Customer Center Plans tab

Service Configurator Configures options in the Customer Center Services tab

Hierarchy Configurator Configures options in the Customer Center Hierarchy tab

Sponsorship Configurator Configures options in the Customer Center Sponsorship tab

Sharing Configurator Configures options in the Customer Center Sharing tab

Other Settings Handles configuration options that are not specific to a particular
account maintenance tab

Table 48-2 shows the Configurator toolbar selection options for configuring the corresponding
account maintenance items in Customer Center.

Table 48-2 Configurator Account Maintenance Toolbar Selections

Account Maintenance Toolbar
Selection

Tab Description

Account Search Results Configurator Configures the Customer Center account Search panel

Tab Options Configures the Customer Center tabbed pages

Summary Configurator
Click the Summary tab to configure the fields and choices displayed on the Customer Center
Summary page.

The Drill Downs menu on this tab displays two choices:

• Summary

• Contacts

Choose Summary to open the Summary Configurator, which displays the choices listed in
Table 48-3:

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-3

Table 48-3 Summary Tab Items

Item Summary Page Action Default

Security code 1 Select an option to set permissions for the first
Security code field.

• Editable
• Not editable
• Do not display field

Editable

Security code 2 Select an option to set permissions for the second
Security code field.

• Editable
• Not editable
• Do not display field

Editable

Deferred actions Select or clear the option to display the Deferred
actions field.

Displayed

Language (locale) Select or clear the option to display the Language
field.

Displayed

Dispute Select or clear the option to display these dispute
options:

• Unresolved Dispute link on the Summary and
Balance pages

• Dispute option in the Type drop-down list in the
Search dialog box on the A/R Actions On All Bills
page

• Open Dispute and Settle Dispute options on the
Bill Details page

• Open Dispute and Settle Dispute options on the
Item Changes Action menu

Displayed

Balance summary section Select or clear the option to display:

• The Currency Balance Summary pane on the
Summary page

• The Balance Summary pane on the Balance page.

Displayed

Payment type Select or clear the option to display the Billing Payment
Method section of the Payments tab.

Note: This option only affects the Payment page. It
does not affect the Summary page.

Displayed

Show service in change
status list

Select or clear the option to display or hide the
services in the Account/service drop-down list in the
Change Account/Service Status panel in the Summary
tab.

Displayed

Modify Customer Type Click Modify Customer Type to change the list of
customer type options. See "Modifying the Customer
Type List".

Default list:
• Bronze
• Silver
• Gold
• Platinum

Modifying the Customer Type List
The Summary tab in Customer Center Configurator includes a Modify Customer Type button
that allows you to modify the customer type pull-down list.

Adding a customer type

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-4

To add a customer type to the selector pull-down list:

1. In the Summary tab, click Modify Customer Type.

The Modify Customer Type window appears.

2. Type a BRM value in the Map the Infranet value field.

3. Type a string to associate with the BRM value in the To the string field.

Note:

The text in the To the string field will appear in the Customer Type selector
pull-down list.

4. Click Add.

Deleting a customer type

1. In the Summary tab, click Modify Customer Type.

2. Click the customer type you want to delete.

3. Click Delete.

Contacts Configurator
Choose Contacts from the Drill Downs menu to open the Contacts Configurator.

The Contacts Configurator options shown in the following table affect the text entry fields
displayed in the Contact Information drill down on the Summary page. If you remove a field
from the display, the fields that follow it are moved up on the displayed pages.

To change only the fields displayed in the New Account wizard, click the New account toolbar
button and access the Contact Configurator for the "Configuring the Customer Center New
Accounts Wizard". Set the values for the items listed in Table 48-4.

Note:

The Last name, Address, and Phone fields cannot be removed.

Table 48-4 Contacts Configurator Items

Item Action Default

Company Select or clear the option to display the Company field. Displayed

Job Title Select or clear the option to display the Job title field. Displayed

Salutation Select or clear the option to display the Salutation field. Displayed

First Name Select or clear the option to display the First name field. Displayed

Middle Name Select or clear the option to display the Middle name field. Displayed

City Select or clear the option to display the City field. Displayed

State Select or clear the option to display the State/Province field. Displayed

Zip Select or clear the option to display the ZIP/Postal field. Displayed

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-5

Table 48-4 (Cont.) Contacts Configurator Items

Item Action Default

Country Select or clear the option to display the Country field. Displayed

E-mail Select or clear the option to display the Email field. Displayed

Balance Configurator
Click the Balance tab to open the Balance Configurator. Use the Balance Configurator to
configure the options (shown in Table 48-5) in the Balance tab of Customer Center:

Table 48-5 Balance Configurator

Item Balance Panel Action Default

Event browser Select or clear the option to display the Event Browser
menu choice on the Edit menu.

Note: This choice doesn't affect the Event
Adjustment action.

Displayed

Refund Select or clear the option to display all of the following:

• Refund Account item on the A/R menu.
• Refund Bill item on the Bills - Action menu.

Displayed

Dispute Select or clear the option to display all of the following:

• Unresolved Disputes link on the Summary and
Balance pages.

• Dispute choice in the Type drop-down list in the
Search – A/R Actions dialog box on the A/R
Actions On All Bills page.

• Open Dispute and Settle Dispute Action menu
selections in the Item Charges panel on the Bill
Details drill-down page.

Displayed

Write-off Select or clear the option to display the of the following:

• Write Off Account menu option on the A/R menu.
• Write Off Bill item in the Bills section on the

Balance page.
• Write Off Bill item in the Item Charges - Action

menu on the Bill Details drill-down page.

Displayed

Make "Include Child Amount"
checkbox read only

Click the checkbox to enable or disable changing the
selection of the Include Child Accounts checkbox.

The Include Child Accounts
checkbox choice can be
modified.

Balance summary section Select or clear the option to display the Balance
Summary pane on the Balance page and the Currency
Balance Summary pane on the Summary page.

Displayed

Noncurrency section Select or clear the option to display the Noncurrency
panel.

Displayed

Account adjustment Select or clear the option to display the Account
Adjustment link on the Balance and Bill Details pages.

Displayed

Item adjustment Select or clear the option to display the Item
Adjustment choice in the Action menu in the Item
Charges panel on the Bill Details drill-down page.

Displayed

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-6

Table 48-5 (Cont.) Balance Configurator

Item Balance Panel Action Default

Event adjustment Select or clear the option to display the Event
Adjustment choice in the Action menu in the
following:

• Bills panel on the Balance page
• Item Charges panel on the Bill Details page

Displayed

Disable View Invoice Button in
Bill Details page

Select or clear the option to disable the View Invoice
button in the Bills panel of the Balance tab.

By default, this option is not selected.

Enabled

Tax treatment Select the option to control whether the customer
center representative (CSR) can choose the Tax
treatment on the adjustment, dispute, and settlement
dialog boxes:

• Include tax: Always perform a tax reversal for the
adjustment, dispute, or settlement. If you select
this option, the Customer Center dialog boxes do
not include tax treatment checkboxes.

• Exclude tax: Never perform a tax reversal for the
adjustment, dispute, or settlement. If you select
this option, the Customer Center dialog boxes do
not include tax treatment check boxes.

• None: Allow the CSR to choose whether to
include taxes. If you select this option, the
Customer Center dialog boxes include tax
treatment check boxes.

• This is the default setting for Customer Center.
While it provides flexibility by letting the CSR make
decisions based on the circumstances surrounding
the adjustment, dispute, or settlement, it can result
in inconsistent application of tax reversals for
disputes and settlements.

For more information on tax treatment, see
"Configuring the Default Tax Treatment for Customer
Center " in BRM Calculating Taxes.

None

Payment Configurator
Click the Payments tab to open the Payment Configurator. Use the Payment Configurator to
configure the options (shown in Table 48-6) in the Payment tab of Customer Center:

Table 48-6 Payment Configurator Items

Item Payments Panel Action Default

Payment section Select or clear the option to display the Payment Setup
panel.

Displayed

Tax setup section Select or clear the option to display the Tax Setup
panel.

Displayed

Credit Card Number -
maximum digits allowed

Enter an integer to indicate the maximum number of
digits allowed for the Credit Card Number field.

16

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-7

Table 48-6 (Cont.) Payment Configurator Items

Item Payments Panel Action Default

CVV2 Number - maximum
digits allowed

Enter an integer to indicate the maximum number of
digits allowed for the CVV2 field.

Important: If you change the default value, you must
also customize the
PCM_OP_CUST_POL_VALID_PAYINFO policy
opcode to validate the number of CVV2 digits entered.
See "Specifying the Maximum Number of Digits
Allowed for CVV2 Verification" in BRM Configuring and
Collecting Payments.

3

Account Number - maximum
digits allowed

Enter an integer to indicate the maximum number of
digits allowed for the Account Number field for direct
debit accounts.

26

Bank Number - maximum
digits allowed

Enter an integer to indicate the maximum number of
digits allowed for the Bank Number field for direct
debit accounts.

26

Custom billing cycle/tax setup
class

Enter the custom PBillingCycleAndTaxSetupPage
class name.

For more information, see "Configuring Values in the
Billing Day of Month Combo Box".

Not customized

Plan Configurator
Click the Plans tab to open the Plan Configurator. Use Plan Configurator to configure the
options (listed in Table 48-7) in the Plans tab of Customer Center:

Table 48-7 Plan Configurator Items

Item Plan Panel Action Default

Product History Select or clear the option to display the Product
History option in the Actions menu on the Plans
page.

Displayed

Deal History Select or clear the option to display the Deal History
option in the Actions menu on the Plans page.

Displayed

Service History Select or clear the option to display the Service
History option in the Actions menu on the Plans
page.

Displayed

Product status Globally modifies all Customer Center user
permissions for altering Product Status settings.

Note: To modify a specific user's permissions for
altering Product Status settings, see the permission
strings displayed when you click Additional note
under the field. The permission string is entered in the
Customer Center Permission dialog box.

Read and write permissions

Service Configurator
Click the Service tab to open the Service Configurator.

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-8

The Drill Downs menu on this tab displays two choices:

• Service

• Deferred Actions

Choose Drill Downs - Service to open the Service Configurator. Use Service Configurator to
configure the options (shown in Table 48-8) on the Services tab of Customer Center:

Table 48-8 Service Configurator

Item Service Panel Action Default

Allow purchase products Select or clear the option to display the Purchase
option.

Displayed

Service History Select or clear the option to display the Service
History option.

Displayed

Status column Select an option to set permissions for entries in the
Status column:

• Editable
• Not editable
• Do not display field

Editable

Defer action column Select an option to set permissions for entries in the
Defer Action column:

• Editable
• Not editable
• Do not display field

Editable

Custom SIM Panel Class Enter the subclass of the SIMPanel.java class that you
created for charging for Subscriber Identity Module
(SIM) changes.

For more information, see "Adding Charges for SIM
and MSISDN Changes".

Not customized

Custom Number Panel Class Enter the subclass of the NUMPanel.java that you
created for charging for MSISDN changes.

For more information, see "Adding Charges for SIM
and MSISDN Changes".

Not customized

Disable change in MSISDN
number

Select or clear the option to disable changes to the
Mobile Station International Subscriber Directory
Number (MSISDN) number.

Enabled

Choose Drill Downs - Deferred Actions to open the Deferred Actions Configurator. Set the
items shown in Table 48-9.

Table 48-9 Deferred Actions Configurator

Item Action Default

Delete deferred actions Select or clear the option to display the Delete button. Displayed

Execute deferred actions Select or clear the option to display the Execute Now
button.

Displayed

Hierarchy Configurator
Click the Hierarchy tab to open the Hierarchy Configurator. Use Hierarchy Configurator to
configure the options (shown in Table 48-10) on the Hierarchy tab in Customer Center:

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-9

Table 48-10 Hierarchy Configurator

Item Hierarchy Panel Action Default

Allow accounts to be moved Select or clear the option to display the Move button. Displayed

Allow moves to be deferred Select or clear the option to display the Defer the
action until field in the Move – Options dialog box.

Displayed

Custom Hierarchy Move Page
Class

Enter the name of your extended
com.portal.app.cc.PHierarchyMovePage.java class
for your custom search dialog box.

For more information, see "Creating Customized
Search Dialogs and Disabling the To Field".

Not customized

Allow accounts to be removed Select or clear the option to display the Actions –
 Remove from Hierarchy option.

Displayed

Allow removal to be deferred Select or clear the option to display the Action –
 Remove from Hierarchy – Effective Move Date
option.

Displayed

Allow the bill in progress to
be transferred or carried
along

Select or clear the option to display the:

• Transfer the current bill in progress to this
account option in the Actions – Remove from
Hierarchy – Bill in Progress Options menu

• Transfer the bill in progress to the new parent
option in the Move – Options – Bill in Progress
Options menu

Click the option under Default to set Transfer the
(current) bill in progress as the default choice for
both menus.

Allowed

Allow the bill in progress to
be billed immediately

Select or clear the option to display the Bill now option
in the:

• Actions – Remove from Hierarchy – Bill in
Progress Options menu

• Move – Options – Bill in Progress Options
menu

Click the option under Default to set Bill now as the
default choice for both menus.

Not allowed

The confirmation dialog's
default button is

Select one of these options as the default confirmation
button:

• Yes
• No

Yes
Note: A CSR can still click the
Cancel button.

Custom NoHierarchy Page
Class

Enter your custom NoHierarchy page class.

For more information, see "Adding a Custom
NoHierarchy Page".

Not customized

Double click account opens
the account

Select or clear the option to enable opening any
account in a hierarchy by double-clicking it.

Note: If this feature is disabled, double clicking an
account expands or collapses it.

Enabled

Show expand/collapse control Select or clear to display the expand and collapse
controls (+ and - icons) in an account hierarchy.

Not shown

Expand entire hierarchy by
default

If the Show expand/collapse control option is
selected, select or clear to specify whether the default
tree display mode is expanded or collapsed.

Not expanded

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-10

Table 48-10 (Cont.) Hierarchy Configurator

Item Hierarchy Panel Action Default

Expand by default only when
total number of accounts are
less than

If the Expand entire hierarchy by default, enter the
threshold number of accounts above which the default
display is collapsed.

To show the entire hierarchy for any size tree, set the
field to 0.

Important: Customer Center performance might be
affected if this field is set to 0 or a high number.

If the number of accounts in the hierarchy is more than
the expansion threshold, the account hierarchy is
displayed as a collapsed tree and a message window
indicates the complete hierarchy cannot be shown.

Not specified (a default value
of 25 is assumed)

Sponsorship Configurator
Click the Sponsorship tab to open the Sponsorship Configurator. Click the Include
sponsorship functionality checkbox to display or hide sponsorship information from all areas
of Customer Center. The default behavior is to display sponsorship information.

Sharing Configurator
Click the Sharing tab to open the Sharing Configurator. Use Sharing Configurator to control
how Customer Center adds members to sharing groups and to configure the options (shown in
Table 48-11) on the Sharing tab in Customer Center:

Table 48-11 Sharing Configurator

Item Sharing Panel Action Default

Automatically participate in
the membership

Select the option to control whether members can
automatically participate in group sharing:

• Accept
• Decline
Selecting Accept lets members benefit from sharing groups
without having to explicitly join the group by clicking
Participate in Membership. BRM automatically adds ordered
balance groups to the database for all members selected on
the Add Members dialog box.

For more information, see "Creating or Modifying Multiple
Ordered Balance Groups Simultaneously " in BRM Managing
Customers.

Decline

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-11

Table 48-11 (Cont.) Sharing Configurator

Item Sharing Panel Action Default

Accepting the membership as Select the option to determine whether new sharing groups
are added at the beginning or end of the ordered balance
group list for participating services:

• First Priority
• Last Priority
This setting controls the sequence in which BRM applies
discount and charge sharing for a service. This setting also
controls how the sharing groups for a service are arranged on
the Sharing tab and Participate in Membership dialog box.

For information on ordered balance groups, see "About
Ordered Balance Groups" in BRM Managing Customers.

Last Priority

Bill unit for group owner Select the option to display or hide Bill to put charges in and
Payment method fields:

• Show it
• Hide it
The Bill to put charges in field appears on the Charge
Sharing Group and Discount Sharing Group dialog boxes. The
Payment method field appears only on the Charge Sharing
Group dialog box.

Show it

Ordering the Sharing combo
box

Change the order of the sharing groups in the View drop-
down on the Sharing tab. To do so, select a group and click:

• Raise Order
• Lower Order
The list of groups always include PDiscount and PCharge. It
also includes any new sharing group types you create and
add to Customer Center.

For information on adding new panels to Customer Center,
see "Customizing the Customer Center Interface". For
information on adding new sharing types to the View drop-
down on the Sharing tab, see "Customizing Fields in the
Sharing Tab".

Discount sharing
(PDiscount) is first

Other Settings
Click the Other tab to configure default behavior for the items in Table 48-12:

Table 48-12 Other Items

Item Other Action Default

Display the connection info in
the login dialog

Select or clear the option to display the Connection
Info button in the Login dialog box.

Displayed
Tip: If you are working in a
single BRM environment, hide
the Connection Info button.

Background image in home
page

Enter the package path and name for an alternate
image to display in the Customer Center home page.

com/portal/app/cc/homebg.jpg

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-12

Table 48-12 (Cont.) Other Items

Item Other Action Default

Allow an account to have only
one plan

Select or clear this option to restrict accounts to have
only one plan.

When this option is selected, a CSR doesn't have the
standard set of options in the Purchase Options field
in the Plans - Purchase window. Instead, the CSR can
only select the Upgrade from option to transfer the
account to a new plan.

Not restricted (accounts can
have two or more plans)

Enable plan options page
when using plans with only
optional deals

Enable or disable the Plan Options tab in the Account
purchase wizard when the plan being purchased has
no required deals.

Not enabled

Class name for loading the
Custom Properties

Enter the class name that implements the
LoadCustomProperties interface.

Important: You must define the fully qualified class
name, for example, com.helloworld.MyInterface.

For more information, see "Configuring Dynamic Drop-
Down Lists".

Not customized

Maximum number of contacts
allowed for an account

Enter the maximum number of contacts allowed for an
account.

-1 (No limit to the number of
contacts in an account)

Enforce deal customization Select or clear this option.

When selected, Customer Center automatically
reminds CSRs to visit the Customize Products page
if they select a deal with required customization.

Not selected

Account Search Results Configurator
The Account Search Configurator wizard in the Customer Center SDK Configurator includes a
Search Criteria section. You use this area to add, change, and delete custom search fields that
CSRs use to search for accounts in Customer Center.

Note:

The Customer Center SDK includes sample configurations.

To change Customer Search criteria field options in Customer Center by using the Account
Search Configurator, follow these steps:

1. Starting Account Search Configurator

2. Adding a New Search Criteria field

3. Modifying a Search Criteria Field

4. Deleting a Custom Search Criteria Field

Starting Account Search Configurator
1. Start Configurator.

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-13

2. Click the Search toolbar button to open the Account Search Configurator dialog box. Use
this dialog box to:

• View and modify the list of fields available in the Customer Center Search dialog by
default.

• Add more fields.

Adding a New Search Criteria field
To add a new search criteria field:

1. In the Search Criteria section of the Account Search Configurator Wizard, click Add New.

2. In the Attributes window, type the values for the basic attributes fields:

a. Property file identifier: Type a keyword that is unique to the field.

Tip:

For easy identification, use a value that resembles the label name. For
example, if you use Payment type for the label, you could use
Payment_type for the Property file identifier.

This key is stored in the Customized.properties file when you exit Configurator.

b. Label: The label that appears in the Search dialog box for this field.

c. (Optional) Mnemonic: A single letter that allows the customer service representative
(CSR) to access this field quickly.

For example, if you specify t as the mnemonic for the Payment Type field, the CSR
can access this field by typing Ctrl+t.

3. (Optional) To require CSRs to select from a set of specific values for the field:

a. Click the Define values for field option.

b. Type a selectable value in the Define value field.

c. Click Add.

d. Repeat steps 3b and 3c until all predefined options are added.

e. (Optional) To specify a default value for the field, select the button to the left of the
field.

f. To delete a field value option, select its row and click Delete.

Figure 48-2 shows the Month field added with selectable values:

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-14

Figure 48-2 Month Field Attribute Configuration

When a CSR searches on the Month field, the drop-down list of months is presented (as
shown in Figure 48-3):

Figure 48-3 Customer Center Month Pull-Down List

Note:

If no default value is specified and the CSR selects it (the Not specified option)
the search ignores the field.

4. (Optional) To require CSRs to select from a set of predefined values that map to BRM
values:

a. Click the Map Infranet values to text option.

b. Type value pairs for the Mapped the Infranet value and To the string fields.

c. Click Add.

d. Repeat steps 4b and 4c until all options are added.

e. (Optional) To specify a default value for the field, select the button to the left of the
String field value.

f. To delete a field value option, select its row and click Delete.

Figure 48-4 shows how to add a Payment Type field with selectable values:

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-15

Figure 48-4 Adding a Payment Type in Configurator

When a CSR searches on the Payment Type field, the pull-down list of payment methods
is presented as shown in Figure 48-5:

Figure 48-5 Customer Center Payment Type Pull-Down List

5. Click Next.

The Select field window displays storable classes and their fields in tree format.

6. Select a field from the appropriate storable class.

7. Click Finish. The new field appears at the bottom of the list in the Search Criteria section
of the main Account Search Configurator window.

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-16

Modifying a Search Criteria Field
To modify an existing Search Criteria field:

1. In the Search Criteria area of the Account Search Configurator window, click the field to
modify.

2. Click Modify.

3. In the Modify wizard, change the displayed attributes of the search field.

Note:

The Modify wizard is similar to the Add wizard. See "Adding a New Search
Criteria field". The Modify wizard doesn't include a Property file identifier field in
the Attributes window. You can't change the Property file identifier for a field
after you add the field.

Deleting a Custom Search Criteria Field
To delete a custom Search Criteria field:

1. In the Search Criteria area of the Account Search Configurator window, select the custom
field to delete.

2. Click Delete.

Note:

You cannot delete a default Search Criteria field. However, you can prevent it
from displaying in Customer Center by clearing the check box next to the field.
You can disable the display of custom Search Criteria in the same way.

Tab Options
This section describes how to reorder, modify, or add a page to the Customer Center account
maintenance interface.

1. Start Configurator.

2. Click the Tab options button.

The Configure Page Maintenance wizard appears.

3. Make your configurations. See:

• Reordering Pages

• Modifying Attributes of an Existing Page

• Hiding an Existing Page

• Adding a New Page

• Removing a Custom Page

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-17

Reordering Pages
To reorder pages, highlight the page's name in the list and click one of the arrows to move its
position on the page.

Modifying Attributes of an Existing Page
1. Highlight an existing page in the list.

2. Click Modify.

3. Modify the page's name, the tool tip text, or the name of the Java class that creates the
page, as required.

Hiding an Existing Page
To hide an existing page, clear its checkbox in the list.

Note:

You cannot delete the default pages included with Customer Center. However, you
can prevent their display.

Adding a New Page
To add a new page, click the Add New button and enter information listed in Table 48-13:

Note:

To add a new page, first create the new page with an IDE tool such as JBuilder. See
"Setting Up JBuilder to Customize the Customer Center Interface".

Table 48-13 New Page Information

Field Description

Property file identifier The property file key to attach your class values to.

Name The tab text to display for your new page's name.

Tool tip The tool tip text to display when the mouse hovers over the tab name.

Java class name The name of the source file for your new page, in the format
com.yourpackage.YourClassName.

Removing a Custom Page
To remove a custom page, highlight the page and click the Delete button.

Chapter 48
Configuring Customer Center Account Maintenance Pages

48-18

Note:

You cannot delete the default pages included with Customer Center, however, you
can prevent their display.

Configuring the Customer Center New Accounts Wizard
To configure fields and panels used in the Customer Center new accounts wizard:

1. Click the New account toolbar button in Configurator.

The new accounts configurator wizard appears.

2. Modify the configurator options as required.

Note:

The selections on each tab in this configuration wizard only affect the fields and
options displayed in the New Account wizard. They do not impact the Contact
Information drill-down on the account maintenance Summary page.

Table 48-14 describes the main new account configuration pages:

Table 48-14 Contents of the New Account Configuration Page

New Account Wizard Panels Panel Description

Contacts Panel Configures options in the Customer Center New account
Contacts panel

General Panel Configures options in the Customer Center New account
General panel

Payment Panel Configures options in the Customer Center New account
Payments panel

Billing Panel Configures options in the Customer Center New account
Billing panel

To reorder, hide, or add New Account wizard panels, see "New Account Page Options".

Contacts Panel
Select Contacts in the navigation bar to open the Contacts Configurator. Use Contacts
Configurator to configure the options (shown in Table 48-15) in the New accounts - Contacts
tab in Customer Center.

Chapter 48
Configuring the Customer Center New Accounts Wizard

48-19

Note:

• If you clear a checkbox to hide a field, the fields that follow it are moved up in the
display.

• The Last name, Address, and Phone fields cannot be removed.

Table 48-15 Contacts Configurator Panel

Item New Account - Contacts Panel
Action

Default

Company Select or clear the option to
display the Company field.

Displayed (business accounts
only)

Job Title Select or clear the option to
display the Job title field.

Displayed (business accounts
only)

Salutation Select or clear the option to
display the Salutation field.

Displayed

First Name Select or clear the option to
display the First name field.

Displayed

Middle Name Select or clear the option to
display the Middle name field.

Displayed

City Select or clear the option to
display the City field.

Displayed

State Select or clear the option to
display the State/Province field.

Displayed

Zip Select or clear the option to
display the ZIP/Postal field.

Displayed

Country Select or clear the option to
display the Country field.

Displayed

E-mail Select or clear the option to
display The E-mail field.

Displayed

Contact Type Enter the default value for the
Customer Center Contact Type
field.

Note: The default value appears
during account creation and
account maintenance operations.

Account holder

General Panel
Click the Next button or select General in the navigation bar to open the General Configurator.
Use General Configurator to configure the options (shown in Table 48-16) in the New
accounts - General tab in Customer Center:

Chapter 48
Configuring the Customer Center New Accounts Wizard

48-20

Table 48-16 Items in General Panel for New Account

Item New Account-General Panel Action Default

Security Code 1 Select an option to set permissions for the first
Security code field.

• Editable
• Not editable
• Do not display field

Editable

Security Code 2 Select an option to set permissions for the second
Security code field.

• Editable
• Not editable
• Do not display field

Editable

Language (locale) field Select an option to set permissions for the Language
field.

• Editable
• Not editable
• Do not display field
Note: If either the Read only or Hide options are
selected, the user is given a choice at runtime to select
the default locale to use.

Editable

Currency field Select an option to set permissions for the Primary
currency and Secondary currency:

• Editable
• Not editable
• Do not display field
Select a default entry to use for the Primary currency
field.

Select a default entry to use for the Secondary
currency field.

Note: The Secondary currency is valid only if the
Primary currency is Euro.

Editable
Note: The default currencies
appropriate for the application's
locale are displayed.

Hierarchy support Select or clear the option to display the Hierarchy
Setup panel.

Displayed

Hierarchy appears initially
expanded

Select or clear the option to display the hierarchies in
expanded format.

Displayed

Sponsorship support Select or clear the option to display the Sponsorship
Setup panel.

Displayed

Sponsorship appears initially
expanded

Select or clear the option to display the sponsorship in
expanded format.

Displayed

Payment Panel
Click the Next button or select Payment in the navigation bar to open the Payment
Configurator. Use Payment Configurator to configure the options (shown in Table 48-17) in the
New accounts - Configurator tab in Customer Center:

Chapter 48
Configuring the Customer Center New Accounts Wizard

48-21

Table 48-17 Payment Panel Settings

Item New Account Wizard - Payment Panel Action Default

Default payment type -
consumer

Select a default payment method from the drop-down
menu.

Invoice

Default payment type -
business

Select a default payment method from the drop-down
menu.

Invoice

Billing Panel
Click the Next button or select Billing in the navigation bar to open the Billing Configurator.
Use Billing Configurator to configure the options (shown in Table 48-18) in the New accounts -
Billing tab in Customer Center:

Table 48-18 Billing Panel

Item New Account Wizard – Billing Panel Action Default

Accounting type field Select one of these options to specify access to
accounting type:

• Editable
• Not Editable
• Do not display field

Editable

Accounting type Select one of these options to specify access to
accounting type:

• Balance forward
• Open Item

Balance forward

New Account Page Options
This section describes how to reorder, modify, or add a page, or add a profile panel to the
Customer Center New Account wizard interface.

1. Start Configurator.

2. From any New account panel, select the Page Options button at the bottom of the panel.

3. Select either Consumer account or Business account depending on the account type
you want to configure.

4. Make your configurations. See:

• Reordering New Account Pages

• Modifying an Existing Page

• Hiding an Existing Page

• Adding a New Page

• Removing a Custom Page

Reordering New Account Pages
To reorder pages, highlight the page's name in the list and click one of the arrows to change its
position on the page.

Chapter 48
Configuring the Customer Center New Accounts Wizard

48-22

Modifying an Existing Page
1. Highlight an existing page in the list.

2. Click Modify.

3. Modify the page's name, or the Java class that creates the page, as required.

Hiding an Existing Page
To hide an existing page, clear its checkbox in the list.

Note:

You cannot delete the default pages included with Customer Center. However, you
can prevent their display.

Adding a New Page
To add a new page, click the Add New button and enter information in the fields shown in
Table 48-19:

Note:

To add a new page, first create the new page with an IDE tool such as JBuilder. See
"Setting Up JBuilder to Customize the Customer Center Interface".

Table 48-19 Information Required for a New Page

Field Description

Property file identifier The property file key to attach your class values to.

Name The tab text to display for your new page's name.

Java class name The name of the source file for your new page, in the format
com.yourpackage.YourClassName.

Removing a Custom Page
To remove a custom page, highlight the page and click the Delete button.

Note:

You cannot delete the default pages included with Customer Center, however, you
can prevent their display.

Chapter 48
Configuring the Customer Center New Accounts Wizard

48-23

Using the Configurator Resource String Editor
Configurator includes a Resource String Editor. You use this feature to replace Customer
Center field labels with your custom text values.

To use the Resource String Editor, follow these steps:

1. Starting the Resource String Editor

2. Searching for Labels to Replace

3. Replacing Labels with New Strings

4. Undoing Label Changes

Starting the Resource String Editor
To start the Resource String Editor, choose Tools - Resource String Editor from the
Configurator main menu. The Resource String Editor appears.

Searching for Labels to Replace
To locate Customer Center field labels whose text you want to replace, type the label text you
want to locate in the Change text from field and click Search. Any labels that contain
matching text will appear in the results area.

Resource String Editor String Search Rules
• Search matching is case sensitive.

• Search matching is performed against the whole value of the field. For example, if you
search for the string Balance, the results include screen labels that consist of only the word
Balance.

• You can use the use the wildcard symbol (*) at the end or beginning of your search string
to return all labels that start or end with the search string, respectively.

– Example 1

If you search for the string Balance*, you get the same matches as you do if you
search for Balance plus longer labels that start with Balance, such as Balance
summary and Balance forward.

– Example 2

If you search for *forward, two items called Balance forward are returned.

Replacing Labels with New Strings
To replace label text with new text:

1. Click one or more matching fields whose label text you want to replace.

2. In the Change text to field, type the replacement text.

Chapter 48
Using the Configurator Resource String Editor

48-24

Note:

The entire label string of the selected labels is replaced with the replacement text
in the Change text to field, not just the string you searched for.

3. Click Apply.

Undoing Label Changes
To undo the last string replace operation during the current Configurator session:

1. If it is not already running, start Resource String Editor.

2. Click Undo.

3. When prompted to confirm, click Yes. Your changes are reversed.

Additional Configured Profile Panel Examples
For more complete examples, see the code in CCSDK_home/CustomerCareSDK/
CustCntrExamples/Profile:

• CSProf.java demonstrates how to extend this example to manipulate the list of plans
available for sale.

• CDProf.java is an example similar to the one discussed above, but uses a different /
profile object and different BAS widgets.

Chapter 48
Additional Configured Profile Panel Examples

48-25

49
Adding Custom Fields to Customer Center

Learn how to add custom fields to your Oracle Communications Billing and Revenue
Management (BRM) Customer Center implementation.

Topics in this document:

• Coding and Deploying Custom Fields for Customer Center

• Adding Custom Fields to Infranet.properties

• Generating Your Custom Field Java Source Code

• Compiling and Signing Your Custom Fields Java Source Code

• Configuring JBuilder to Add Custom Fields to Customer Center

• Building and Deploying Your New Profile Panel

You should have a working knowledge of JBuilder.

Coding and Deploying Custom Fields for Customer Center
To code and deploy custom fields for Customer Center, perform these tasks in this order:

1. Adding Custom Fields to Infranet.properties

2. Generating Your Custom Field Java Source Code

3. Compiling and Signing Your Custom Fields Java Source Code

4. Building and Deploying Your New Profile Panel

Adding Custom Fields to Infranet.properties
As with all BRM Java clients, the field numbers for Customer Center custom fields must be
added to Infranet.properties. If you add custom fields to Customer Center:

1. Add your custom field numbers to the Infranet.properties file.

2. Before creating your jar file, copy the modified Infranet.properties file to the top level of
the directory structure along with your other compiled source files.

Note:

When Customer Center is deployed by using Web Start, an Infranet.properties
file is normally not required since the BRM host and port information is read from
the Web Start .jnlp file. However, if the Infranet.properties file exists in the
CLASSPATH, it is recognized by Customer Center, or, more specifically, Portal
Communication Module (PCM).

For example, if you are adding a custom credit score field and a custom panel for displaying
that field, the file and directory structure might look like this:

49-1

• ./Infranet.properties

• ./com/

• ./com/mycompany/

• ./com/mycompany/CustomPanel.class

• ./customfields/

• ./customfields/CreditScore.class

Note that the Infranet.properties file is at the top level of this directory structure.

This jar command:

jar cvf ccCustomFields.jar .

Generates a jar file containing:

• 0 Mon Dec 10 09:03:40 PST 2002 META-INF/MANIFEST.MF

• 0 Mon Dec 10 08:58:28 PST 2002 Infranet.properties

• 0 Mon Dec 10 09:01:14 PST 2002 com/

• 0 Mon Dec 10 08:58:54 PST 2002 com/mycompany/

• 0 Mon Dec 10 08:58:54 PST 2002 com/mycompany/CustomPanel.class

• 0 Mon Dec 10 09:01:36 PST 2002 customfields/

• 0 Mon Dec 10 09:01:36 PST 2002 customfields/CreditScore.class

Note:

– Be sure to include the "." at the end of the jar command. This specifies the
current directory.

– This example assumes that you have only one Infranet.properties file
packaged in a jar file per Customer Center deployment. The jar file is
recognized and picked up when Customer Center is run.

For detailed custom field development procedures, see "Adding Custom Fields to Customer
Center".

Generating Your Custom Field Java Source Code
This section describes how to select the custom fields profile object that you want to add to
Customer Center.

Note:

This procedure uses the sample profile object /profile/customfieldsprof. Replace
this object name with the one you create in Developer Center.

1. Start Storable Class Editor in Developer Center.

2. Create your custom fields in a profile object.

Chapter 49
Generating Your Custom Field Java Source Code

49-2

For information, see the Storable Class Editor Help.

3. Create a directory in the CustCntr/custom directory for your custom field Java code, as in
this example:

mkdir CustCntr\custom\custom_fields
4. Choose File – Generate Custom Fields Source.

5. Click Browse and select the CustCntr/custom/custom_fields directory.

Note:

If you are deploying only in Java, you can deselect the option to export C code.

6. Click OK.

The source Java code for your custom fields is generated in CustCntr/custom/
custom_fields. In this example, these files are:

• InfranetPropertiesAdditions.properties

• XCreditScore.java

• XLicenseNum.java

7. Click OK in the confirmation dialog box.

Compiling and Signing Your Custom Fields Java Source Code
This section describes how to compile and sign the profile object that you created by using the
Storable Class Editor.

1. Go to the CustCntr/custom/custom_fields directory.

2. Copy the contents of the custom fields file (CCSDK_home/CustomerCareSDK/CustCntr/
custom/custom_fields) to the end of the CCSDK_home/CustomerCareSDK/
CustCntr/bin/Infranet.properties file by using a text editor.

Note:

The InfranetPropertiesAdditions.properties file contains information required
when running code that references your custom fields.

3. Rename the CCSDK_home/CustomerCareSDK/CustCntr/custom/custom_fields/
InfranetPropertiesAdditions.properties file to Infranet.properties.

You use this file for deploying your custom fields with WebStart. This file is similar to the
one you created in step 2 except it doesn't contain the connection and login parameters.

4. If you have more than one set of custom fields, merge all associated
InfranetPropertiesAdditions.properties files.

Chapter 49
Compiling and Signing Your Custom Fields Java Source Code

49-3

Note:

If you are deploying multiple sets of custom fields (you used Developer Center to
generate multiple custom source files), you have several copies of the
InfranetPropertiesAdditions.properties file. You must merge all of these files
into the CCSDK_home/CustomerCareSDK/CustCntr/bin/Infranet.properties
file.

5. Compile your custom fields.

a. Go to your custom field directory (CCSDK_home/CustomerCareSDK/CustCntr/
custom/custom_fields).

b. Compile your source code:

javac -classpath ../../../lib/pcm.jar -d . *.java

A directory matching the Java package name of your custom fields (in this example,
customfields) is created.

6. Package the compiled code and the revised Infranet.properties file, as in this example:

jar cf ../ccCustomFields.jar customfields Infranet.properties

The jar file is placed up one level in the CCSDK_home/CustomerCareSDK/CustCntr/
custom directory.

7. If you are deploying the jar file using Web Start, sign the jar file.

a. Go to CCSDK_home/CustomerCareSDK/CustCntr/custom directory and find your
jar file.

b. Sign your jar file by using the signjar script, as in this example:

signjar.bat ccCustomFields.jar
c. Verify that the signing process is completed properly by using the jarsigner utility

provided in the JDK:

jarsigner -verify ccCustomFields.jar

The expected output is:

jar verified.

What's Next
See "Configuring JBuilder to Add Custom Fields to Customer Center".

Configuring JBuilder to Add Custom Fields to Customer Center
This section describes how to configure your custom fields in JBuilder. This enables you to use
the fields later when building a new panel or other customization.

Before you use JBuilder to configure your custom fields, set up a JBuilder project. See "Setting
Up JBuilder to Customize the Customer Center Interface".

1. Start JBuilder.

2. Open your BRM project. See "Creating a JBuilder Project for Customer Center SDK".

Chapter 49
Configuring JBuilder to Add Custom Fields to Customer Center

49-4

3. Chose Project – Project Properties.

4. Click the Required Libraries tab.

You should see a single library named CCSDK.

5. Select the CCSDK library and then click Edit.

6. In the Configure Libraries dialog box, click Add.

7. Go to your CCSDK install directory, select your custom fields jar file, and then click OK.

8. Click OK in each of the open dialog boxes.

9. Go to the CCSDK_home/CustomerCareSDK/CustCntrExamples/Profile directory.

10. Copy ProfileTemplate.txt to your custom fields file (CustomFieldsProfile.java in this
example).

11. Choose File - Open File and open the CustomFieldsProfile.java file.

12. Replace the two instances of XXX with your Java Class name (CustomFieldsProfile in
this case).

13. In CustomFieldsProfile.java, find this line:

setProfileType();

And specify the customfieldsprof subclass:

setProfileType(customfieldsprof);

This maps to the profile object created in Developer Center. This example shown in
Figure 49-1 references the /profile/customfieldsprof profile object.

Chapter 49
Configuring JBuilder to Add Custom Fields to Customer Center

49-5

Figure 49-1 CustomFieldsProfile Example

14. Click the Design tab at the bottom of the JBuilder window.

15. Verify that you can launch the Business Application SDK (BAS) widget Configurator and
that it displays your custom profile object and custom fields.

a. In the widget palette at the top of the JBuilder window, click the CCSDK Components
tab.

b. In the lower left pane, click the PIATextfield widget. This is typically the first widget in
the list.

c. Drag the widget into your panel.

d. Right-click the widget instance on the left side of the window and click Configurator.

e. If prompted, log in to BRM.

f. Expand the node containing your custom field and select your profile object.

If your profile object is visible in the configurator, you have successfully made JBuilder
aware of your custom fields. You can continue constructing your panel. If it is not visible
verify that:

• Your JBuilder library path is correct.

Chapter 49
Configuring JBuilder to Add Custom Fields to Customer Center

49-6

• There are no errors in the Infranet.properties file you modified in CustCntr/bin when
you combined the existing file with the InfranetPropertiesAdditions.properties file
that was generated by Developer Center.

• Your CustCntr/bin/Infranet.properties file contains the entries for your custom fields.
Choose Project – Project Properties in JBuilder, click the Required libraries tab
select CCSDKlib in the list, and click Edit. Verify that CustCntr/bin and
ccCustomFields.jar are in the list.

16. When you have completed your panel layout, save your changes.

What's Next
See "Building and Deploying Your New Profile Panel".

Building and Deploying Your New Profile Panel
This section describes how to build and deploy your custom fields in your custom profile panel:

1. Run Configurator to add your profile panel to Customer Center, and save your changes:

• If you are adding your new panel to a Customer Center account maintenance page,
see "Tab Options".

• If you are adding your new panel to a Customer Center new accounts wizard page,
see "New Account Page Options".

2. Run the build script (CCSDK_home/CustomerCareSDK/buildAll.bat). This script
compiles and packages your new panel into the CCSDK_home/CustomerCareSDK/
CustCntr/custom/ccCustom.jar file.

3. Add ccCustomFields.jar to the CLASSPATH in the CCSDK_home/CustomerCareSDK/
CustCntr/bin/runCustomerCenter:

set CLASSPATH=f:/7.2sdk/CustCntr/custom/ccCustomFields.jar;%CLASSPATH%

4. Test your customizations. See "Testing Your Customizations".

5. To deploy your customizations with Customer Center WebStart:

a. Open the CCSDK_home/CustomerCareSDK/CustCntr/custom/custom.jnlp file with
a text editor.

b. Add this entry for ccCustomFields.jar:

<jar href="custom/ccCustomFields.jar"/>
c. Continue with the standard deployment procedure. See "Deploying Your Customer

Center Customizations".

Chapter 49
Building and Deploying Your New Profile Panel

49-7

50
Setting Up JBuilder to Customize the
Customer Center Interface

Learn how to set up JBuilder to customize Oracle Communications Billing and Revenue
Management (BRM) Customer Center functionality.

Topics in this document:

• About Using JBuilder to Customize the Customer Center Interface

• Adding PIA Widgets to the JBuilder Palette

• Creating a JBuilder Project for Customer Center SDK

About Using JBuilder to Customize the Customer Center
Interface

To set up your JBuilder development environment for customizing Customer Center:

1. Make sure you have installed the following on your system:

• JDK

• JBuilder

For more compatibility information, see BRM Compatibility Matrix.

2. Install Customer Center SDK. See BRM Installation Guide.

3. Add PIA widgets to the JBuilder palette. See "Adding PIA Widgets to the JBuilder Palette".

4. Create a JBuilder project. See "Creating a JBuilder Project for Customer Center SDK".

Adding PIA Widgets to the JBuilder Palette
Customer Center SDK includes a JBuilder plug-in of Privacy Impact Assessment (PIA)
widgets. You can use these widgets to add components to existing Customer Center panels or
to custom panels you create by subclassing the controllers provided with the SDK.

To add PIA widgets to the JBuilder palette, copy the Customer Center SDK plug-in file
(CCSDK_home/CustomerCenterSDK/CustCntr/bin/
oracle.communications.brm.uicomponents_1.0.0.jar) to your JBuilder directory.

Creating a JBuilder Project for Customer Center SDK
To create a JBuilder project for Customer Center SDK:

1. Start JBuilder.

2. Choose File – New – Java Project.

The New Java Project wizard starts.

50-1

3. In the Project Name field, enter a name for your project.

4. Select the appropriate JRE.

5. Set the remaining fields according to your system configuration.

6. Click Next.

The Java Settings pane appears.

7. Click the Libraries tab and then click Add Library.

The Add Library dialog box appears.

8. In the Add Library pane, select User Library and then click Next.

The User Library pane appears.

9. Click User Libraries.

The Preferences (Filtered) dialog box appears.

10. In the User Libraries pane, click Import.

The Import User Libraries dialog box appears.

11. In the File location field, enter the path to the Customer Center SDK library file
(CCSDK_home/CustomerCenterSDK/CustCntr/bin/CCSDK_lib.userlibraries).

12. Click OK.

The User Library dialog box appears.

13. Make sure CCSDK_lib appears in the User libraries list.

Note:

If CCSDK_lib is not in the User libraries list, the CCSDK_lib.userlibraries file
is not in a folder that JBuilder can access. See "Adding PIA Widgets to the
JBuilder Palette" for information on where to copy the file.

14. Select CCSDK_lib and then click Finish.

Your project is now ready for adding Java source files.

Chapter 50
Creating a JBuilder Project for Customer Center SDK

50-2

51
Creating a New Customer Center Service
Panel

Learn how to create a new Oracle Communications Billing and Revenue Management (BRM)
Customer Center service panel using JBuilder.

Topics in this document:

• Creating a New Service Panel

Note:

These instructions assume you have already set up JBuilder and have a working
knowledge of JBuilder.

Creating a New Service Panel
Service panels are extensions to the PIAExtendServiceBase class. They are used to add
data entry or display fields to the account maintenance service tab. The fields displayed are
dependent on the type of service selected.

Note:

You mostly work with the widgets in the CCSDK Components widget palette since
they are BRM aware. Additional widgets are included under the PFC Components
tab, but they are not BRM aware. They provide functionality beyond the normal Java
widget set, such as links, section headers, and drop-down menus.

As an example, these instructions create a panel for the email service. This panel includes
three fields:

• Maximum message size

• Mailbox path

• Service status

Note:

Customer Center displays status information elsewhere in the UI. The service
status field is added here as an example only.

Follow these steps to create a new service panel:

51-1

1. Go to the CCSDK_home/CustomerCenterSDK/CustCntrExamples/Service directory.

2. Copy ServiceTemplate.txt to CustomService.java. You can give the file any name.

3. Edit CustomProfile.java by changing all instances of XXX to CustomService (or
whatever you have named your file) and move this file to the CCSDK_home/
CustomerCenterSDK/CustCntr/custom directory.

Note:

Always develop your deployment code in the CCSDK_home/
CustomerCenterSDK/CustCntr/custom directory.

4. Start JBuilder and load the project you previously created.

The example project is called MyCustomizations.

5. Choose File – Open to open the CustomProfile.java file.

6. (Optional) Include code to inform the base class that you are handling the login and
password data entry elsewhere.

You might want full control over how the login and password data are entered. For
example, some services store non-traditional information in the login and password fields,
such as phone numbers and URLs. In these situations, you should change the UI field
labels accordingly. If you fill in these fields automatically, you may also not want to display
these fields at all.

To instruct the base class that you are handling login and password data entry elsewhere:

a. In JBuilder, click the Source tab.

b. Add the following code towards the bottom of your source file:

public boolean supportsLoginAndPassword() {
return true;
}

c. Save the file.

Note:

• Your UI must accommodate these fields with fields you add to the UI and
label yourself or by passing the appropriate data directly to the input flist.

• This example assumes that login and password entry is done in the
traditional sense. In this situation, you do not need to add these fields to
your UI.

7. Click the Design tab.

8. Select the gray panel in the center of the screen and make sure the layout is set to
GridBagLayout.

If not, choose GridBagLayout from the drop-down menu associated with the layout
property.

9. From the Swing widget palette, select the Label widget.

10. Drag one label in the gray work area in the center of the screen.

Chapter 51
Creating a New Service Panel

51-2

11. Select the label widget again and drag it below the first one.

12. Select the first label, click the name attribute and change it to maxSizeLabel.

13. Click the text attribute and change it to Max size:.

14. Select the second label, click the name attribute and change it to pathLavel.

15. Click the text attribute and change it to Path: as shown in Figure 51-1.

This represents the mailbox path value.

Figure 51-1 Changing the Text Attribute

16. From the CCSDK Components widget palette, select the PIAIntegerTextField widget and
drag it to the right of the Max size label widget as shown in Figure 51-2.

This configures the widget to capture the max size data in an integer-only text entry widget.

Chapter 51
Creating a New Service Panel

51-3

Figure 51-2 Adding a PIAIntegerTextField Widget

17. Select the PIAIntegerField widget and select the columns attribute.

18. Change the columns attribute to 10.

This causes the widget width to expand.

19. Right-click the widget and from the menu and set its fill to Horizontal.

20. Select the PIATextField widget and drag it to the right of the Path widget as shown in
Figure 51-3.

Figure 51-3 Adding a PIATextField Widget

21. Change the widget columns attribute to 10 and set its fill to Horizontal.

Chapter 51
Creating a New Service Panel

51-4

22. Select the existing text and delete it.

This clears the text attribute so it no longer reads pIATextField.

23. Click the PIAReadOnly widget from the CCSDK Components palette and drag it below the
Path: label as shown in Figure 51-4.

Figure 51-4 Adding a PIATextReadOnly Widget

24. Map the widgets to BRM fields:

a. Click the PIAIntegerTextField representing "Max size" and bring up the Infranet-aware
customizer.

b. Select the variable instance for this widget and right click to popup the action menu.

c. Select Customizer as shown in Figure 51-5.

Chapter 51
Creating a New Service Panel

51-5

Figure 51-5 Selecting Customizer

Note:

Before the customizer appears, you must log in to BRM. Log in as you
normally would.

d. From within the customizer, locate the /service/email node in the tree and Click the
PIN_FLD_MAX_MSG_SIZE field on the right.

e. Select Apply, and then OK.

You have now mapped that widget to a field in BRM.

f. Follow the same procedure to map the Path textfield widget to PIN_FLD_PATH.

25. Map the read-only widget to a BRM field:

a. Launch the read-only widget customizer.

b. Select that class and select PIN_FLD_STATUS.

Chapter 51
Creating a New Service Panel

51-6

Tip:

Since the widget is read-only and its value cannot change, you do not need
to work with the ModelFieldDescription. (ModelFieldDescription is what the
Business Application SDK (BAS) turns into the input flist when it saves data).
You can delete this value.

Note:

The field is not in the /service/email class but instead in the base /service
storable class.

26. Click Display Field Format.

The Display Field Format editor appears.

Tip:

You change the display field format feature to make BRM values easier for the
user to read.

27. Enter the BRM data value and the string you want displayed in the UI.

28. When you are finished, click Done.

This updates the BAS widget property with the correct mapping format.

29. (Optional) Add the leading text Status - to the front of the display field format.

30. Save your file.

Your basic service panel is now complete.

31. Compile your panel using the buildAll script in the top-level SDK directory.

See "Building Your Customer Center Customizations".

32. Add this entry to the CC_SDK/CustomerCareSDK/CustCntr/custom/
Customized.properties file:

extended.service.email=CustomService

Replace CustomService with the name of your Java Class.

This entry makes Customer Center aware of the new service panel.

33. From the CC_SDK/CustomerCareSDK/CustCntr/bin directory, start your local copy of
Customer Center (run CustomerCenter.bat).

34. Locate an account containing an email service.

35. Switch to the Services tab and select the email service in the table.

Your panel and the default widget set appear.

If the fields on your service panel need alignment, see "Correcting Field Alignment".

Chapter 51
Creating a New Service Panel

51-7

Correcting Field Alignment
If your panel has alignment problems, you might need to work with the Java layout to correct
them.

This section describes how to add a blank widget in your panel to fix alignment problems. The
widget is invisible but takes up the extra space within the panel. (By default, widgets in a
GridBagLayout tend to move towards the center.)

1. Exit Customer Center.

2. Open JBuilder and click the Design tab.

3. From the Swing widget palette, select the 'label' widget and drop it below your status read-
only widget as seen in Figure 51-6.

Figure 51-6 Adding a Label Widget

4. Click the constraints attribute.

5. Select the … button to launch the editor.

6. Set the Grid Position Width to 2; set the Weight X and Y parameters to 1; set the Fill
parameter to BOTH as seen in Figure 51-7.

Chapter 51
Creating a New Service Panel

51-8

Figure 51-7 GridBagConstraints Editor

The first 3 rows of widgets should move toward the top of the panel.

You have just told the label in the fourth row to take up two columns of space, and all
remaining space on the bottom.

7. Delete the value in this widget's 'text' attribute so it no longer reads 'label'. Select the 'text'
attribute on the right side of JBuilder and delete the text.

8. Save your changes, compile, and re-launch Customer Center. When you revisit your
service panel the layout should be improved.

What's Next
If you have no further Customer Center customizations to code, see "Building Your Customer
Center Customizations".

Chapter 51
Creating a New Service Panel

51-9

52
Creating a New Customer Center Profile Panel

Learn how to create a new Oracle Communications Billing and Revenue Management (BRM)
Customer Center profile panel using JBuilder.

Topics in this document:

• Creating a New Profile Panel

Note:

These instructions assume you have already set up JBuilder and have a working
knowledge of JBuilder.

Creating a New Profile Panel
Profile panels are extensions to the PIACAProfilePanel class. You use them to add data entry
or display fields to the Customer Center Account Maintenance and New Accounts pages.

Note:

You mostly work with the widgets in the CCSDK Components widget palette since
they are BRM aware. Additional widgets are included under the PFC Components
tab, but they are not BRM aware. They provide functionality beyond the normal Java
widget set, such as links, section headers, and drop-down menus.

To create a new profile panel:

1. Be sure the /profile/creditscore profile object has been created in BRM.

Figure 52-1 shows a sample window from Developer Center. The CreditScoreProfile.sce
file is open.

52-1

Figure 52-1 Developer Center View of /profile/creditscore Object

2. Go to the CCSDK_home/CustomerCenterSDK/CustCntrExamples/Profile directory.

3. Copy ProfileTemplate.txt to CustomProfile.java. You can give the file any name.

4. Edit CustomProfile.java by changing all instances of XXX to CustomProfile (or whatever
you have named your file) and move this file to the CCSDK_home/CustomerCenterSDK/
CustCntr/custom directory.

Note:

Always develop your deployment code in the CCSDK_home/
CustomerCenterSDK/CustCntr/custom directory.

5. Find the following line of code:

setProfileType();

and modify this line to call out your profile subclass. For this example, change the line to:

setProfileType("creditscore");

Note:

Be sure to omit the /profile.

6. Start JBuilder and load the project you previously created.

Chapter 52
Creating a New Profile Panel

52-2

The example project is called MyCustomizations.

7. Choose File – Open to open the CustomProfile.java file, and then click the Design tab.

8. Select the gray panel in the center of the screen and make sure the layout is set to
GridBagLayout.

If not, choose GridBagLayout from the drop-down menu associated with the layout
property as shown in Figure 52-2.

Figure 52-2 Setting GridBagLayout

9. From the Swing widget palette, select the Label widget as shown in Figure 52-3.

Figure 52-3 Selecting the Swing Label Widget

10. Drag a label widget in the gray work area in the center of the screen.

11. Select the label widget again and drag it below the first one as shown in Figure 52-4.

Chapter 52
Creating a New Profile Panel

52-3

Figure 52-4 Adding a Second Label Widget

12. From the widget palette on the CCSDK Components tab, drag the PIATextField widget
next to the first label widget as shown in Figure 52-5.

Figure 52-5 Adding a CCSDK PIATextField Widget

Chapter 52
Creating a New Profile Panel

52-4

13. Drag a PIAReadOnlyField widget next to the second label widget.

In Figure 52-6, the first field is editable and the second is read-only:

Figure 52-6 Adding a PIAReadOnly Widget

14. Select the first label, click the text widget property, and enter the text Drivers License as
shown in Figure 52-7:

Chapter 52
Creating a New Profile Panel

52-5

Figure 52-7 Adding Text to a PIATextField

15. Click the second label and enter Credit Score: as its text property.

16. Click the first textfield widget (the PIATextField).

In this example, you map this widget to the /profile/creditscore field that stores the drivers
license data. With the widget selected, right-click the pIATextField1 instance variable on
the left panel and choose Customizer.

17. To connect to BRM, enter the login and password.

Note:

You might need to expand the Connection info section and enter the host and
port.

18. In the Customizer dialog box, scroll down, expand the profile section of the tree, and
select the /profile/creditscore storable class. This is the profile object you created in
Developer Center.

19. Select PIN_FLD_DN in the right pane.

The information at the bottom of the Customizer is filled in. This is the mapping of BRM
fields to Java field names, which maps your widget to a BRM field. The customizer
automatically fills in the necessary information to enable BAS to read and write the data to
and from BRM.

Chapter 52
Creating a New Profile Panel

52-6

In this example, you can leave the DisplayFieldFormat as is, it is used only when you are
working with a BRM field that contains data that does not make sense to a person, such as
the int values that represent an account's status. See the SDK documentation for more
information on this field.

20. Click the Apply button, and then click OK.

The values are copied automatically from the Customizer to the appropriate widget
properties.

21. Select the pIAReadOnlyField widget and display its customizer.

You are already connected to BRM, so you do not need to log in again.

22. Select PIN_FLD_INT_VAL, click Apply, and then click OK.

23. Save your changes in JBuilder.

At this point, you are done. However, you can modify the layout by adding space between
the widgets and renaming the widgets more appropriately. For example, to rename the
textfield widget, select its name property and change it to driversLicenseTextField.

24. If required, modify the initial widget values.

For example, select the textfield widget, select the columns property on the right side, and
enter a value of 10 as shown in Figure 52-8.

Figure 52-8 Editing the Columns Property

25. Select the textfield widget and on the right side of the JBuilder work area, click the text
property. By default, it contains pIATextField. Delete the entire string.

26. If required, modify the read-only widget.

a. Right-click the widget and set its fill to Horizontal.

b. Select its text property value and delete it.

Tip:

You can switch back to the source code window to see the generated
JBuilder code.

27. Save your code.

Chapter 52
Creating a New Profile Panel

52-7

28. Use Configurator to integrate your profile panel to Customer Center:

• If you are adding the profile panel to the account maintenance interface, see "Tab
Options".

• If you are adding the profile panel to the new account interface, see "New Account
Page Options".

What's Next
If you have no further Customer Center customizations to code, see "Building Your Customer
Center Customizations".

Chapter 52
Creating a New Profile Panel

52-8

53
Sample Customer Center Customizations

Learn how you can customize various fields and behaviors in several Oracle Communications
Billing and Revenue Management (BRM) Customer Center tabs and in the Search feature.

Topics in this document:

• Building and Deploying Customizations

• Customizing Contact Fields

• Customizing Fields in the Balance Tab

• Customizing Fields in the Payments Tab

• Customizing Fields in the Services Tab

• Customizing Fields in the Hierarchy Tab

• Customizing Fields in the Sharing Tab

• Configuring Dynamic Drop-Down Lists

See also "Using Customer Center SDK" and "Customizing the Customer Center Interface".

Building and Deploying Customizations
To build and deploy the customizations described in this chapter, see "Building Your Customer
Center Customizations" and "Deploying Your Customer Center Customizations".

Customizing Contact Fields
This section describes how you can customize the Customer Center contact fields. The contact
fields appear in the Contact page of the New Account wizard and in the Summary tab.

Note:

For simplicity, this section uses Contact page to refer to both the Contact page in the
New Account wizard and the contact fields in the summary tab.

Customizing Contact Fields
This section describes how to customize some default contact fields within a contact record.
For information on modifying contact field behavior when there is more than one contact, see
"Modifying Multiple Contact Behavior". For information on replacing address and contact
panels with your own custom panels, see "Using Custom Address Panel and Contact Page".

Adding Drop-Down Lists to the Contact Type and Salutation Fields
To replace the Contact type and Salutation text fields with drop-down lists:

53-1

1. Extend the com.portal.app.cc. PContactPage class.

2. Call the following methods from the extended class:

• For the Salutation drop-down list:

protected final void setValidSalutations(String salutations[],String
defaultSalutation)
super.customizeNow();

• For the Contact type drop-down list:

protected final void setValidContactTypes(String contactTypes[],String
defaultContactType)

where:

• The first parameter contains the list of values displayed in the drop-down list.

• The second parameter specifies the default value for the field.

Example method call:

protected final void setValidSalutations(String
salutations["Mr.","Ms.","Mrs."],String "Mr.")
super.customizeNow();

See also "Disabling Changes to the Contact Type for the First Contact".

Populating Drop-Down List Values from a Properties File
To populate drop-down list values from a properties file:

1. Add the following line to the CCSDK_home/CustomerCareSDK/CustCntr/custom/
CustomizedResources.properties file:

mycontactpage.contacttype=Billing,Mailing,Shipping
2. Add a method to your customized class, such as the one extended from PContactPage,

that reads the drop-down list values from the properties file, as in this example for the
Contact type field:

private String[] getValidContactTypes() {
 try {
 final String delimeter = ",";
 Sring contacttypestring = getResourceBundle().getString("mycontactpage.contac
ttype");
 return contacttypestring.split(delimeter);
 catch(MissingResourceException e){
 //
A customized error message can be added here to informing the end user of the error
 String[] retval = {""};
 return retval;

When the list of valid data is read, you can set it by calling the base class method:

setValidContactTypes(getValidContactTypes(),"Billing");

Adding Drop-Down Lists to Address Panel Fields
To replace the City, State/Province, ZIP/Postal, and Country text fields in the Contact page
with a drop-down list:

1. Extend the com.portal.app.cc.PAddressPanel class.

2. Call the following methods:

Chapter 53
Customizing Contact Fields

53-2

• For the City drop-down list:

protected final void setValidCities(String[] cities,String defaultCity)
• For the State/Province drop-down list:

protected final void setValidStates(String[] states,String defaultState)
• For the ZIP/Postal drop-down list:

protected final void setValidZips(String[] zips,String defaultZip)
• For the Country drop-down list:

protected final void setValidCountries(String[] countries,String defaultCountry)
where:

• The first parameter is the list of values displayed in the drop-down list.

• The second parameter specifies the default value for the field.

Populating drop-down list values from a properties file

To populate the drop-down list values from a properties file:

1. Add the myaddresspanel parameters to the CCSDK_home/CustomerCareSDK/
CustCntr/custom/CustomizedResources.properties file, as in this example for
countries:

myaddresspanel.countries=US,UK,India

Note:

• This entry is for the country field. Follow the same procedure for the City,
State/Province, and ZIP/Postal fields.

• The list drop-down list values will be displayed in the order placed in the
parameter.

2. Add a method to your customized class, such as the one extended from PAddressPanel,
that reads the drop-down list values from the properties file, as in this example:

private String[] getValidCountries() {
 try {
 final String delimeter = ",";
 String countrystring = "A,B,C,D";
 return countrystring.split(delimeter);
 } catch (MissingResourceException e) {
 String[] retval = { "" };
 return retval;
 }
 }

Once you have the list of valid data then you can set it by calling the base class method:

String defaultCountry = "US";
setValidCountries(getValidCountries(),defaultCountry);

Adding and Removing Item Listeners to Address Field Drop-Down Lists
You can add and remove item listeners to the Address drop-down fields that trigger actions
depending on which value the CSR selects. For example, you can use listeners to dynamically

Chapter 53
Customizing Contact Fields

53-3

populate drop-down list values for the State/Province field depending on the country that the
customer service representative (CSR) selects for the Country field.

To add and remove item listeners to the address fields, use these methods:

• For the Country drop-down list:

protected final void addCountryListener(ItemListener l)
protected final void removeCountryListener(ItemListener l)

• For the State/Province drop-down list:

protected final void addStateListener(ItemListener l)
protected final void removeStateListener(ItemListener l)

• For the City drop-down list:

protected final void addCityListener(ItemListener l)
protected final void removeCityListener(ItemListener l)

• For the ZIP/Postal drop-down list:

protected final void addZipListener(ItemListener l)
protected final void removeZipListener(ItemListener l)

Modifying Multiple Contact Behavior
This section describes how to customize Contact page fields and behavior for accounts with
more than one contact.

Specifying the Contact Type for Each Consecutive Contact
You can specify custom contact types by adding the following parameters to the
Customized.properties file in the CCSDK_home/CustomerCareSDK/CustCntr/custom
directory:

• For the first (mandatory) contact panel, use this parameter:

custinfo.panel.billingcontact.1=<customcontacttype>
• For the second and consecutive panels, use this property:

custinfo.panel.newcontact.index=<customcontacttype>

where index is 2 for the second panel and increments by 1 for each subsequent panel. If a
new contact has no corresponding type set, for example if you add a fourth contact and
custinfo.panel.newcontact indexes are only available for contacts 1, 2, and 3, the
contact type defaults to a blank field.

Disabling Changes to the Contact Type for the First Contact
You can disable the custom Contact type drop-down list for the first contact and restrict the
field value to a certain value, such as Billing.

To set a static Contact type value for the first contact, call the following method with the
parameter true from the contact type subclass:

protected final void setDisableBillingContactType(boolean b)

Chapter 53
Customizing Contact Fields

53-4

Configuring Duplicate Checking for the Contact Type Field
You can configure duplicate checking for the Contact type field by calling the following method
with the parameter true:

protected final void setContactDuplicateCheckOn(boolean b)

By default, duplicate checking is turned off.

Configuring the Contact Type Validation Error Messages

You can customize the error messages that Customer Center displays when contact type
uniqueness validation is enabled. (That is, when setContactDuplicateCheckOn is set to
true).

Customer Center displays contact type error messages:

• When the contact type has already been specified for a previous contact and the CSR
specifies a contact type for a secondary contact.

By default, the error message displayed is Contact type duplicate check is on, cannot
be duplicated. To change this message, add the following line to the CCSDK_home/
CustomerCareSDK/CustCntr/custom/CustomizedResources.properties file:

custinfo.validate.duplicatecontacttypes=Error_Message

where Error_Message is the error message string.

Note:

Do not put the string in quotes.

• When the CSR attempts to add a new contact without selecting a valid contact type.

By default, the error message displayed is Contact type duplicate check is on,
inadequate contact types. To change this message, add the following line to the
CCSDK_home/CustomerCareSDK/CustCntr/custom/
CustomizedResources.properties file:

custinfo.validate.inadequatecontacttypes=Error_Message

where Error_Message is the error message string.

Note:

Do not put the string in quotes.

Using Custom Address Panel and Contact Page
This section describes how to replace the default Address panel and Contact page with your
customized versions.

Chapter 53
Customizing Contact Fields

53-5

Replacing the Address Panel with a Custom Panel

Note:

This procedure only customizes the City, State/Province, ZIP/Postal, and Country
fields. The Address field is not customized with this procedure.

To replace the Address panel of the Contact page with a custom Address panel:

1. Extend the com.portal.app.cc.PAddressPanel class.

2. Copy the Java source file of the custom class to the CCSDK_home/CustomerCareSDK/
CustCntr/custom directory.

3. Open the customized properties file (CCSDK_home/CustomerCareSDK/CustCntr/
custom/Customized.properties) and add this line after the comment statements:

com.portal.app.cc.PAddressPanel.subclass=MyAddressPanel

where MyAddressPanel is the name of your extended class.

4. Save the file.

Replacing the Contact Page with a Custom Page
To replace the Contact page with a custom Contact page:

1. Extend the com.portal.app.cc.PContactPage class.

2. Copy the Java source file of the custom class to the CCSDK_home/CustomerCareSDK/
CustCntr/custom directory.

3. Open the customized properties file (CCSDK_home/CustomerCareSDK/CustCntr/
custom/Customized.properties) and add these lines after the comment statements:

com.portal.app.cc.PContactPage.subclass=MyContactPage
contactspage.class=MyContactPage
helpid.acwizard.contactpage=MyContactPage

where MyContactPage is the name of your extended class.

4. Save the file.

Customizing Fields in the Balance Tab
This section describes how to customize the Action drop-down list in the Balance tab.

Setting the Correct JRadioButtonMenuItem Button
To indicate the balance page state, you can add JRadioButtonMenuItem to the Action drop-
down list on the Bills panel of the Balance tab:

1. Extend PARBalancePage class and create a JRadioButtonMenuItem object.

2. Add the object by calling the addRadioMenuToAction(JRadioButtonMenuItem) method.

Chapter 53
Customizing Fields in the Balance Tab

53-6

Customizing Fields in the Payments Tab
This section describes how to customize various fields in the Payments tab.

Disabling the Billing Cycle & Tax Setup Link in the Payments tab
You can enable or disable the Billing Cycle & Tax Setup link in the Payments tab and enable
or disable the fields in the Tax Setup panel.

• To enable or disable the Billing Cycle & Tax Setup link in the Payments tab, call the
methods in Table 53-1:

Table 53-1 Payments Tab Methods

PPaymentPage methods Description

disableBillingCycleAndTaxSetupLink () Disables the BillingCycleAndTaxSetup link

enableBillingCycleAndTaxSetupLink () Enables the BillingCycleAndTaxSetup link

• To enable or disable the fields in the Tax Setup panel, use the new
setTaxSetupEnabled(boolean) flag. Call this method from the extended
PbillingCycleAndTaxSetupPage class. This method is provided in
PbillingCycleAndTaxSetupPage. The default is enable.

Configuring Values in the Billing Day of Month Combo Box
You can configure the list of available values in the Billing day of month spinner field in the
Payments - Billing Cycle & Tax Setup panel. For example, you might want to offer a different
billing day of month for each brand.

To configure the available values of the Billing day of month spinner field:

1. Extend the PbillingCycleAndTaxSetupPage class.

2. Create a custom controlled day of month widget by creating a PIASpinnerField object.

3. Assign a custom range of values to the object.

4. Call either the setCustomDomFld(PIASpinnerField sf) or the
setCustomDomComponent(Component sf) method, where sf is the name of the custom
widget.

Note:

• The setCustomDomFld(PIASpinnerField) method replaces the Billing Day
of Month field (PIASpinnerField) with another custom PIASpinnerField.

• The setCustomDomComponent(Component) method replaces the Billing
Day of Month field (PIASpinnerField) with another custom Component.

5. In the Custom billing cycle/tax setup class field in the Configurator Payments tab, specify
the custom PbillingCycleAndTaxSetupPage class name. See "Payment Configurator".

Chapter 53
Customizing Fields in the Payments Tab

53-7

Setting the Next Billing Cycle Field to Visible or Not Visible
You can specify whether the Next billing cycle read-only field is displayed in the Payment tab
- Billing Cycle & Tax Setup - Billing Cycle panel by using the
showNextBillingCycle(boolean) method in an extended PbillingCycleAndTaxSetupPage
class.

The showNextBillingCycle(boolean) method is included in
PbillingCycleAndTaxSetupPage. This method can be used in the extended payment page to
set the Next billing cycle field to visible or not visible.

To set the next billing cycle field to visible or not visible:

1. Extend the com.portal.app.cc.PPaymentPage class.

2. Call the showNextBillingCycle(boolean) method. Pass in true (default) for visible and
false for not visible.

Customizing the Expiration Date Fields in the Credit Card Panel
You can replace the Expiration date field in the Credit Card panel of the Payment Options
dialog box with a custom spinner field. To do so:

1. Open the customized properties file (CCSDK_home/CustomerCareSDK/CustCntr/
custom/CustomizedResources.properties).

2. After the comment statements, add this line:

paymentsetup.creditcard.expirationdate.usespinnerfields=true
3. (Optional) Set the year limits for the spinner field by adding these lines:

paymentsetup.creditcard.expirationdate.spinnerfield.yearmax=Max_Limit
paymentsetup.creditcard.expirationdate.spinnerfield.yearmin=Min_Limit

where Max_Limit and Min_Limit are the upper and lower bounds for the year value.

Note:

• Max_Limit must be greater than or equal to the Min_Limit. By default range
for the year spinner field is 00 to 99.

• If Min_Limit is not in the range of 00 to 99, the system uses 00 for yearmin.

• If Max_Limit is not in the range of 00 and 99, the system uses 99 for
yearmax.

• The month spinner field is hard-coded with the range 00 to 12. If the CSR
selects the default 00, an error is thrown and the CSR is prompted to select a
correct month value.

4. Save the file.

Chapter 53
Customizing Fields in the Payments Tab

53-8

Creating a Custom Payment Method
You can add a custom payment method to the New Payment Method drop-down list. This list
appears on the Payment Options dialog box, which you can access from the Payments tab
and the Account Creation wizard.

Note:

To implement custom payment methods, you must also add them to the BRM system
so that your custom methods can be saved and retrieved. See "Adding a Custom
Payment Method" in BRM Opcode Guide.

To create a custom payment method:

1. Create a custom panel that extends the BRM class
com.portal.app.cc.comp.PIAPaymentTypePanel.

The following sample code uses the name NewPayPanel for the custom panel:

public class NewPayPanel extends com.portal.app.cc.comp.PIAPaymentTypePanel {

//used while acct creation
public void shareInData() { }

//used while acct maintenance
public void shareInData(PModelHandle model) { }

}

2. Create an interface that extends
com.portal.app.ccare.comp.PIAPaymentTypePanelBean.

The following sample code uses the name NewPayBean for the interface:

public interface NewPayBean extends PIAPaymentTypePanelBean {
// NewPayBean is a blank interface
//PIAPaymentTypePanelBean interface abstract methods are getting implemented in the
controller class
}

3. Create a controller class that extends PIAComponentCollectionBean and implements
the interface you created in the previous step.

The abstract methods in the NewPayBean interface need to be implemented in the new
controller class for the custom payment method to work.

In the following sample code, NewPayBeanImpl is the name of the new controller class:

public class NewPayBeanImpl extends PIAComponentCollectionBean
 implements NewPayBean {

//Appends additional create-time information onto the model passed in
public void defaultsForStoring(PModelHandle model)
 throws RemoteException { }

//Appends additional update-time information onto the model passed in
public boolean defaultsForUpdate(PModelHandle model)
 throws RemoteException { }

Chapter 53
Customizing Fields in the Payments Tab

53-9

//Appends additional validate-time information onto the model passed in
public boolean defaultsForValidation(PModelHandle model)
 throws RemoteException { }

//Gets the contact Name and Address Info current account model
public NameAddressData getNameAddressData(PModelHandle modelHandle
 throws RemoteException { }

}

4. Add the following lines to the CCSDK_home/CustomerCareSDK/CustCntr/custom/
Customized.properties file:

consumerpayment.options=invoice creditcard ddebit new_pay
businesspayment.options=invoice creditcard ddebit new_pay
maintenance.options=invoice creditcard ddebit new_pay
new_pay.selector=id
id.class=NewPayPanel

where:

• new_pay is a text string that identifies your custom payment method internally. It is not
the text that will be displayed in Customer Center.

• id is the ID for the new payment method. The ID must be a 5-digit number starting with
100. 10000 to 10016 are already used in the default version of Customer Center. Do
not use the same number for more than one payment method.

• NewPayPanel is the name of the customized panel class for the new payment method.

Note:

The invoice, creditcard, and ddebit strings represent the default payment
methods.

5. Save and close Customized.properties.

6. Add the following line to the CCSDK_home/CustomerCareSDK/CustCntr/custom/
CustomizedResources.properties file:

payType.format={0,choice,0#Unknown|10000#Prepaid|10001#Invoice|10002#Debit|
10003#Credit Card|10004#Direct Debit (Fr)|10005#Direct Debit|10006#Smart Card|
10007#Nonpaying child|10008#Unknown|10009#Undefined|10010#Guest|10011#Cash|
10012#Check|10013#Wire-Transer|10014#Inter Bank Payment order|10015#Postal order|
10016#Voucher|id#New_Pay_Label}
methodofpayment.id=New_Pay_Label

where:

• id is the 5-digit number you entered in Customized.properties.

• New_Pay_Label is the name displayed in Customer Center for the new payment
method.

7. Save and close CustomizedResources.properties.

Customizing Fields in the Services Tab
This section describes how to customize various fields in the Services tab.

Chapter 53
Customizing Fields in the Services Tab

53-10

Adding Charges for SIM and MSISDN Changes
To charge for Subscriber Identity Module (SIM) changes and Mobile Station International
Subscriber Directory Number (MSISDN) changes:

1. Do one or both of the following:

• To charge for SIM changes, subclass the SIMPanel.java class.

• To charge for MSISDN changes, subclass NUMPanel.java.

2. Create a customized panel with the necessary fields and pass them to the
setCustomData(PIACustomizablePanel) method as an argument.

The new panel appears at the end of the existing SIM or Number panels in the Services
tab.

3. In the Configurator Service tab, specify the custom class names in the Custom SIM Panel
Class and Custom Number Panel Class fields. See "Service Configurator".

Adding a Secondary MSISDN for Supplementary Services
To add a secondary MSISDN for supplementary services:

1. Create a custom PPurchaseOfferingAction class by extending it.

2. Specify the class path and key in the customized.properties file, as in this example:

customized.PurchaseOfferingAction.class=<com.portal.app.cc.TestOfferingAction>
3. Create a custom PPurchaseOfferingWizard class by extending it.

4. Specify the class path and key in the customized.properties file, as in this example:

customized.PurchaseOfferingWizard.class=<com.portal.app.cc.TestOfferingWizard>
5. Create a custom search entry panel class (PTelcoNumberEntryPanel) by extending it.

6. Specify the class path and key in the customized.properties file, as in this example:

device.num.search.entry.panel.class=<com.portal.app.cc.tcf.TestNumberEntryPanel >
7. Create a custom search results panel class (PTelcoNumberResultPanel) by extending it.

8. Specify the class path and key in the customized.properties file, as in this example:

device.num.search.results.panel.class=<com.portal.app.cc.tcf.TestNumberResultsPanel>
9. Create a custom purchase offering wizard by extending the PPurchaseOfferingWizard

class.

10. In the extended class, override the protected Object commitData(PModelHandle
model) throws RemoteException method.

11. (Optional) Create a search popup dialog box for the secondary MSISDN number based on
the services that are purchased in the current MdelHandle.

To call the custom opcode in commitData, call your own method. If you do not want to call the
custom opcode, call super.commitData(model).

To retrieve the default value in the Number Category combo field, use the public void
setDefaultToNumCategory(String defaultStr) method in the PTelcoNumberEntryPanel
class. This can be called with a string (the default value) as a parameter for setting default
values in that field.

Chapter 53
Customizing Fields in the Services Tab

53-11

Customizing Fields in the Hierarchy Tab
This section describes how to customize various fields in the Hierarchy tab.

Adding a Custom Popup Component to the No Hierarchy Page
You can use the addAdditionalActions(AbstractAction[] actions) method in
PAcctNoHierarchyPage to add a custom popup component to the title panel. When this
method is called from the PAcctNoHierarchyPage subclass, a new action drop-down is
displayed the first time the method is called. If the method has been previously called, the
action is added to the existing drop-down list.

To set a label for the action:

1. Define the public String getMenuLabel() method with a return string as the label value.

2. Implement the action event by defining the public void actionPerformed(ActionEvent)
method.

This sample code describes a PAcctNoHierarchyPage subclass:

public class MyHierarchyPage extends PAcctNoHierarchyPage {
 public MyHierarchyPage() {
 PAddOnAction[] actions = new PAddOnAction[1];
 actions[0] = new MyActionA();
 addAdditionalActions(actions);
 }
}
class MyActionA extends PAddOnAction {
 public MyActionA() {
 }
 public String getMenuLabel() {
 return "Action A";
 }
public void actionPerformed(ActionEvent e){
 //Custom Action
 //JOptionPane.showMessageDialog(null,"My Action A");
 }
}

Adding a Custom NoHierarchy Page
To replace the default NoHierarchy page with a custom NoHierarchy page by using
Configurator:

1. Create a custom NoHierarchy page class.

2. Start Configurator.

3. Go to the Custom NoHierarchy Page Class field on the Configurator Hierarchy tab. See
"Hierarchy Configurator".

4. Type the full path of your customized page class name in this field to replace the default
No-Hierarchy-Page, as in this example:

com.myComp.app.CustomNoHierarchyPage

Chapter 53
Customizing Fields in the Hierarchy Tab

53-12

Creating Customized Search Dialogs and Disabling the To Field
You can create your own search dialog box and disable the To field in the Move account
panel in the Hierarchy tab.

1. Extend the com.portal.app.cc.PhierarchyMovePage.java class and override the
search_actionPerformed(ActionEvent e) method to launch a custom action to call a
custom Search dialog box.

Tip:

See the sample code MyHierarchyMovePage.java.

2. Disable or enable the To field in the Move account panel by setting the
setEnabledToField(boolean) boolean method.

3. In the Custom Hierarchy Move Page Class field in the Configurator Payments tab, specify
the custom payment setup class name. See "Hierarchy Configurator".

Adding Custom Options to the Actions Drop-Down Lists
The Customer Center SDK includes the methods in Table 53-2 for adding custom options to
Action drop-down lists in a hierarchy page:

Table 53-2 Custom Options Methods

Method Description

public void
treeValueChanged(TreeSelectionEvent)

Triggers events when items are selected in a
hierarchy tree.

public void
addAdditionalActions(AbstractAction[])

Accepts the PBASAction and PAddOnAction
arrays as arguments.

To add custom options to the Action drop-down lists:

1. Create a custom action class by extending the PAddOnAction class and overriding these
methods:

• public String getMenuLabel()

• public void actionPerformed(ActionEvent e)

• public void treeValueChanged(TreeSelectionEvent e)

Note:

Override this method to generate an event whenever a new item is selected
in the hierarchy.

2. Write a custom Account Hierarchy page by extending the PAcctHierarchyPage class and
using the addAdditionalActions method to add your action to the Action drop-down
menu.

See the sample code in MyHierarchyPage.java.

Chapter 53
Customizing Fields in the Hierarchy Tab

53-13

Customizing Fields in the Sharing Tab
This section describes how to customize fields in the Sharing tab.

Adding a New Sharing Type to the View Drop-Down List
You can create your own sharing types and create supporting dialog boxes. To create a
sharing type, you must define the sharing type, its Sharing panel and all other dialog boxes, its
controller class, a unique ID, and a unique label. See "Customizing the Customer Center
Interface".

You then add the new sharing type to the View drop-down on the Sharing tab. To do this, you
modify the Customized.properties file to add the new Sharing panel class, controller, and
option name used internally. You also modify the CustomizedResources.properties file to
add the label you want displayed in the drop-down. You then package these files in the
ccCustom.jar file, which should be added to the file you use to run customer center
(runCC.bat, for example).

To modify the Customized.properties file and CustomizedResources.properties files:

Note:

These files are located in the CustomerCareSDK_home/CustomerCareSDK/
CustCntr/custom directory.

1. Open the Customized.properties file in a text editor and add these lines for each new
sharing type:

customercenter.sharing.NewSharingType.class = ClassName
customercenter.sharing.NewSharingType.controller = ControllerName

Note:

Be sure to use fully qualified class and controller names. If there are multiple
sharing options in the last line, delimit them with commas.

2. Add the following line:

customercenter.sharing.options = PCharge, PDiscount,NewSharingType

This line appears only once in the Customized.properties file and should include the
option names of the standard BRM sharing types (PCharge and PDiscount) as well as the
option name of each new sharing type you include in the file. The order of the list
determines the order of the options in the View box on the Customer Center Sharing tab.

3. Save the file.

4. Open the CustomizedResources.properties file in a text editor and add this line:

customercenter.sharing.NewSharingType.label = StringName

The string name is the sharing type name you want to appear in the View drop-down.

Chapter 53
Customizing Fields in the Sharing Tab

53-14

5. Save the file.

6. (Optional) On the Customer Center SDK Sharing tab, select the new group on the Order
the Sharing combo box list and click Raise Order or Lower Order to rearrange the drop-
down list.

For information on the Customer Center SDK Sharing tab, see "Sharing Configurator".

The following samples show a customization that adds a new sharing group for free
Megabytes:

Customized.properties file

customercenter.sharing.PMbyte.class = com.portal.app.cc.sharing.PMbyteSharingPanel
customercenter.sharing.PMbyte.controller =
com.portal.app.cc.sharing.PMbyteSharingController

customercenter.sharing.options = PCharge, PDiscount, PMbyte

CustomizedResources.properties file

customercenter.sharing.PMbytes.label = Megabyte Sharing

Configuring Dynamic Drop-Down Lists
To configure a dynamic drop-down list whose labels and values are based on data stored in
BRM:

1. Create a custom properties object by creating a new class that implements the new
LoadCustomProperties interface and providing the implementation for the public
Properties loadCustomProperties() method. You must override this method with your
custom code that accumulates properties (name/value pairs).

2. In the Class name for loading the Custom Properties field in the Other tab in Configurator,
specify the class name that implements the LoadCustomProperties interface. See "Other
Settings".

Note:

You must define the fully qualified class name, for example,
com.helloworld.MyInterface.

See the sample code in the TestInterface.java file.

Chapter 53
Configuring Dynamic Drop-Down Lists

53-15

Part VII
Localizing BRM

This part describes how to localize Oracle Communications Billing and Revenue Management
(BRM). It contains the following chapters:

• Using BRM in International Markets

• BRM Internationalization and Localization

• Creating a Localized Version of BRM

• Handling Non-ASCII Code on the BRM Server

54
Using BRM in International Markets

Learn how Oracle Communications Billing and Revenue Management (BRM) supports
customer management and billing for international markets.

Topics in this document:

• Supporting Multiple Currencies

• Accepting Credit Card Payments in Multiple Currencies

• Supporting Multiple Languages

• Using Localized Client Applications

• Localizing BRM

See also "BRM Internationalization and Localization" and "Creating a Localized Version of
BRM".

Supporting Multiple Currencies
If you have customers in more than one country, there are two currency issues that you might
need to work with:

• Customers who use a currency different from the currency you use in your business. For
example, if your business is in the United States, you run your business with US dollars.
However, your Canadian customers pay their bills with Canadian dollars. To handle
multiple currencies, BRM uses a system currency for your business, and account
currencies for your customers. See "Managing System and Account Currencies" in BRM
Managing Customers.

• Customers in EMU countries who recently joined the EMU, and are still in the currency
crossover period. They can still pay their bills in euros or in their native EMU country
currency. BRM allows you to use both EMU currencies and the euro. See "Supporting
EMU Currencies and the Euro" in BRM Managing Customers.

Note:

For countries that joined the EMU before February, 2002, the euro is the only
legal currency.

Accepting Credit Card Payments in Multiple Currencies
The ability to accept credit card payments in multiple currencies depends on your credit card
processor. For information, see "Paymentech and International Transactions" in BRM
Configuring and Collecting Payments.

54-1

Supporting Multiple Languages
You need to handle the following situations when you have customers that use multiple
languages:

• Your customers need to receive messages and invoices from you in their language. To do
so, you specify the customer's language when creating the account.

• Your customers might need to access Web pages in their native languages. You can
create multiple sets of Web pages, each in a localized language. When a customer logs in,
the customer's language setting automatically opens the Web page in the correct
language.

• Your BRM system, including your BRM database, needs to handle multiple types of
characters, for example, Japanese and Chinese characters and characters with accent
marks.

Using Localized Client Applications
Localized versions of BRM client applications are available in the following languages:

• Brazilian

• Chinese Simplified

• Chinese Traditional

• French

• Italian

• Japanese

• Korean

• Portuguese

• Russian

• Spanish

You can use localized versions of many BRM client applications:

• All language versions of the Java applications use Unicode characters.

All BRM client applications are internationalized and handle most locale formats for time, date,
number, and so on by using the Windows Regional Settings. To keep currency symbols
constant whatever the locale, they are not handled by Windows Regional Settings.

See your sales representative for the latest information on available localizations. For client
platforms supported, see "BRM Software Compatibility" in BRM Compatibility Matrix.

Localizing BRM
You can localize BRM in these ways:

• If a localized version of a BRM application does not already exist, you can create localized
versions in additional languages using the Localization SDK.

• You can localize some system files, such as reason codes, by using the Localization SDK.

• You can create localized versions of your custom client applications.

Chapter 54
Supporting Multiple Languages

54-2

The Localization SDK supports localization into any language that is both noncomplex text and
single-direction (left-to-right), including languages written with the Roman alphabet and multi-
byte or East Asian languages.

BRM does not support localization into complex text languages, including Thai, Indic
languages, and languages that use bi-directional writing systems, such as Arabic and Hebrew.

Chapter 54
Localizing BRM

54-3

55
BRM Internationalization and Localization

Learn about internationalization and localization issues for Oracle Communications Billing and
Revenue Management (BRM) developers.

Topics in this document:

• About Localizing and Internationalizing

• About Internationalization of BRM Client Applications

• Writing Localized MFC Client Applications

• About Internationalized Development on BRM

About Localizing and Internationalizing
Localization and internationalization are related but not identical:

• Localization (L10N) is adapting a software product for a specific market (locale). This
requires the following procedures:

– Translating the product interface and help files into the locale language

– Supporting the date, time, number, currency formats, and collation order of the locale

– Supporting the input methods of the language

– Possibly changing the content of the application, depending on the product and market

• Internationalization (I18N) is a process of developing software products that are
independent from cultural, language, or other specific attributes of a market and can be
easily localized.

This includes designing user interfaces to handle languages that need more space, placing
text strings in a resource file instead of hard-coding them, and using icons that have
meaning across cultures.

About Internationalization of BRM Client Applications
BRM client applications are internationalized to work with languages using text that is both
noncomplex and single-direction (left-to-right), including most languages of Western European
and East Asian origin.

For European languages, the client applications support any Windows Regional setting locale
that uses code page 1252. These are languages of Western European origin or languages that
use a very similar alphabet including Afrikaans, Basque, Catalan, Dutch (standard), and Dutch
(Belgian).

For East Asian multibyte locales, the client applications support Japanese (code page 932)
Korean (949), Simplified Chinese (936), and Traditional Chinese (950).

55-1

Writing Localized MFC Client Applications
To use the Windows Regional Settings for a locale, you must follow the Microsoft Developer
Network standards. Some of the most important APIs are those for:

• String manipulation

• Locale-related APIs, such as GetLocaleInfo and enum, and LC_* types for currency,
date, and so on

• Code pages

About Internationalized Development on BRM
For international development, text strings must be isolated from other parts of the software.
For information about:

• Using the proper conventions for storing text strings, see "String Manipulation Functions" in
BRM Developer's Reference.

• Storing non-ASCII text, see "Handling Non-ASCII Code on the BRM Server".

• Loading your strings into the database, see "load_localized_strings".

Chapter 55
Writing Localized MFC Client Applications

55-2

56
Creating a Localized Version of BRM

Learn how to use the Oracle Communications Billing and Revenue Management (BRM)
Localization Software Developers Kit (SDK) to create localized versions of BRM client
applications and Self-Care Manager.

Topics in this document:

• About the Localization SDK

• System Requirements for the Localization SDK

• Building the Clients

• Packaging Your BRM Client Localizations

• Modifying Localized Versions of Customer Center

• Localizing Self-Care Manager

• Localizing and Customizing Strings

• Localizing BRM Reports

• About Customizing Server Software

• Locale Names

About the Localization SDK
The Localization SDK is for:

• Localization agencies who make the localized versions of BRM.

• Customers who develop localized versions of BRM client applications for languages that
are not supported by BRM.

You can use the SDK to:

• Translate menus, dialog boxes, and online Help for BRM clients, including those written
using Microsoft Foundation Class (MFC) and those written in Java.

• Make minor customizations of Customer Center that do not involve translation. For
example, you can change text in the user interface or replace a bitmap image. See
"Modifying Localized Versions of Customer Center" for more information.

The Localization SDK is available in the same language versions as BRM client
applications, so you can make these types of customizations to Customer Center in all
available languages. For a list of supported languages, see "Localizations Supported".

56-1

Note:

You cannot translate the installation screens for an application. When you create
an application with the SDK, the application's installation screens use the same
language as the version of the SDK you used.

For example, if you use the English SDK to translate an application into another
language, the installation for the translated application is in English. If you use
the French SDK to modify a French version of an application, the installation is in
French.

Localization SDK Contents
This section describes localization SDK contents.

Java Client Applications
The Localization SDK contains all the Java properties files, Help files, and installation files that
need to be translated for the following BRM applications:

• Business Configuration Center, which includes Field Validation Editor

• Customer Center, which includes Event Browser

• GSM Customer Center Extension

• Number Administration Center

• Payment Center

• Permissioning Center

• Pricing Center, which includes Resource Editor and Zone Mapper

• Revenue Assurance Center

• SIM Administration Center

• Suspense Management Center

• Voucher Administration Center

Self-Care Manager Server Application
The Localization SDK contains all the Java properties files, Java server pages, and installation
files that need to be translated for Self-Care Manager, the browser-based self-care application.

For information about localizing Self-Care Manager, see "Localizing Self-Care Manager".

BRM Server Files
The Localization SDK also contains these BRM server files:

• Other server files containing text used by client applications. See "Localizing and
Customizing Strings".

Chapter 56
About the Localization SDK

56-2

Localizations Supported
BRM supports localization into any language that is both non-complex text and single-direction
(left-to-right), including:

• Languages written with the Roman alphabet, including Western European languages.

• Other European languages, including Russian and Greek.

• Multi-byte or East Asian languages, such as Korean, Japanese, Traditional Chinese, and
Simplified Chinese.

Note:

Creating localized tools can represent a significant customization effort,
especially for certain languages, including Norwegian, Danish, Russian, and
Greek.

BRM does not support localization into complex text languages, including:

• Complex text languages that use bi-directional writing systems, such as Arabic and
Hebrew.

• Other complex text languages, such as Thai and Indic languages.

System Requirements for the Localization SDK
To use the SDK, you need the following minimum requirements:

• System hardware:

– 256 MB RAM

– 500 MB of disk space for your build tree and zip files, preferably on one dedicated
drive

• The client application you want to localize.

• Tools

You need some or all of these tools, depending on the files you are localizing. For many of
these tools, you can find the version compatible with the current BRM release in BRM
Compatibility Matrix.

– Microsoft Visual C++ plus the special files for your locale

– Microsoft HTML Help Workshop or a Help authoring tool compatible with Microsoft
HTML Help

– Java 2 SDK, Standard Edition, international version

– Java Runtime Environment (JRE), international version

– MKS Toolkit

– Command-line version of the zip file utility PKZIP

Chapter 56
System Requirements for the Localization SDK

56-3

Note:

Before using the SDK, install all the applications listed in their default
locations on the local drive of the source build machine.

To test your translated applications, you also need to run them on Windows in the target locale.
That computer also needs to have, or have network access to, a machine with a complete
BRM installation.

Building the Clients
This section describes how to create localized versions of BRM Java client applications. For
information on localizing the Self-Care Manager server application, see "Localizing Self-Care
Manager".

Building Java Applications
These sections describe the required steps for building Java applications.

Building Properties Files
You can create all the JAR files with the same command or create them individually.

To create a JAR file of your translated properties files:

1. At a Windows command prompt, go to the JAVA_PROJECTS directory.

2. Set up an environment variable:

set CLIENTS_DEST=W:\Client_dest
3. Go to W:\SDK_locale\JAVA_PROJECTS and run makecertificate.bat.

Where SDK_locale is the Windows locale for the version of the Localization SDK you
installed.

You can do this from the command line or through Windows Explorer.

When you run makecertificate.bat, you create a keystore password and a key password.

4. Enter the passwords you created when running makecertificate.bat into the signjar.bat
file, located in the same folder:

• Enter the keystore password for STOREPASSWORD.

• Enter the key password for KEYPASSWORD.

5. Run the makeResourceJars command:

W:\SDK_locale\JAVA_PROJECTS> makeResourceJars Java_locale [app_name]

where

• Java_locale is the two-letter ISO 639 language code.

• app_name is the abbreviated name of an application; for example, ebrowser. Specify
this only if you are building a JAR file for a single application.

If a filename is not specified, this command builds a locale-specific JAR file for each
application and puts the JAR files in the Client_dest directory.

Chapter 56
Building the Clients

56-4

If a filename is specified, the command builds a single locale-specific JAR file and places it
in the Client_dest directory.

For example, to create a JAR file for a French localization of Event Browser, enter the
following command:

W:\SDK_locale\JAVA_PROJECTS> makeResourceJars fr ebrowser

Tip:

Enter makeResourceJars with no arguments to see its syntax.

Application Names for makeResourceJars Command
To create a JAR file for a single application with the makeResourceJars command, you
specify the application with its abbreviated name. Table 56-1 shows the names of JAR files for
applications.

Table 56-1 Names of JAR Files for Applications

Application Name for makeResourceJars

Event Browser ebrowser

Invoice Viewer invoice

Pricing Center price

Customer Center custcent

Config Center bmf

Field Validation Editor (Config Center) fve

Resource Editor (Config Center) re

Bulk Accounts (Config Center IPT) bat

Zone Mapper (Config Center) zmp

WebKit webkit

GSM Manager Client (Customer Center Add-on) gsm

SIM Administrator sim

Number Administrator num

Preparing Customer Center
Customer Center requires a few additional steps before packaging.

1. Copy the CustomerCenter_en.html file to CustomerCenter_Java_locale.html, where
Java_locale is the Java name for the new locale. For example, if creating a French version,
copy the file to CustomerCenter_fr.html.

2. Translate the localizable strings in CustomerCenter_Java_locale.html.

3. Change all instances of _en in the file to _Java_locale. For example, for a French version,
change _en to _fr.

4. Save and close CustomerCenter_Java_locale.html.

Chapter 56
Building the Clients

56-5

5. Copy CustomerCenter_en.jnlp to CustomerCenter_Java_locale.jnlp; for example,
CustomerCenter_fr.jnlp.

6. Repeat earlier step 2 and 3 for CustomerCenter_Java_locale.jnlp to translate the
localizable strings and change _en to _Java_locale.

7. Save and close CustomerCenter_Java_locale.jnlp.

Packaging Your BRM Client Localizations
To add the localized client files to a BRM client application:

1. Verify that you have the W drive mapped to C:\Program Files\Portal
Software\Localization SDK.

2. Create the W:\SDK_locale\zips directory.

3. Download the zip file for the BRM application.

4. In a command window, go to the W:\SDK_locale\bin directory.

5. Enter the following command, replacing the variables with the actual package name and
local names.

W:\SDK_locale\bin> package_name Java_locale Windows_locale

For example, to package a German version of Pricing Center, enter:

W:\SDK_locale\bin> Package_PricingCenter.bat de deu

This creates a zip file in the zips directory. This zip file has the same name as the original
application zip file, but with the Java locale added.

See "Locale Names" for a list of Java and Windows locales.

The following BRM packages are available.

• Package_ConfigurationCenter.bat packages Field Validation Editor and
Configuration Center.

• Package_CustomerCenter.bat packages Customer Center and Event Browser.

• Package_GSMMgrClient.bat packages the GSM Customer Center Extension.

• Package_NumAdmin.bat packages Number Administration Center.

• Package_PaymentCenter.bat packages Payment Center.

• Package_PermissionCenter.bat packages Permissioning Center.

• Package_PricingCenter.bat packages Pricing Center, Resource Editor, and Zone
Mapper.

• Package_SIMAdmin.bat packages SIM Administration Center.

• Package_RevenueAssurance.bat packages Revenue Assurance Center.

• Package_SuspenseManagement.bat packages Suspense Management Center.

• Package_VoucherAdministration.bat packages Voucher Administration Center.

• Package_WebKit.bat packages Self-Care Manager (see "Localizing Self-Care
Manager" for details on Self-Care Manager).

Chapter 56
Packaging Your BRM Client Localizations

56-6

Note:

These packages assume you are using the English Localization SDK. If you
are using a different version of the SDK, you need to edit these .bat files to
add the correct Windows locale to the name of the zip files. For example, if
you are using the French SDK, change 7.5_PaymentTool.zip to
7.5_PaymentTool_FRA.zip.

Modifying Localized Versions of Customer Center
This section explains how to use the BRM Localization SDK or the Customer Center SDK to
customize localized versions of Customer Center.

About Simple Customization
The Localization SDK is available in the same language versions as BRM client applications. If
you use a language version of Customer Center that BRM supports and want to make minor
modifications, such as changing the original localized translation or changing the date format,
use the Localization SDK in that language. See "Simple Customization for Localized Versions
of Customer Center".

The Customer Center SDK is a superset of the Localization SDK so you can also use the
Customer Center SDK to make these minor changes, but it is recommended that you use the
Localization SDK in your language for this purpose.

Note:

The Customer Center SDK is available only in English.

About Advanced Customization
If you want to make extensive modifications to Customer Center, such as adding or removing a
localized string or tab, you must use the Customer Center SDK. To use the Customer Center
SDK to make extensive modifications to Customer Center, see "Advanced Customization for
Localized Versions of Customer Center".

You may need to use both the Customer Center SDK and the Localization SDK for advanced
customization. See "When to Use the Localization SDK for Advanced Customization".

Before You Begin
Before you customize the localized versions of Customer Center, you should be familiar with
the following topics:

• Using Customer Center SDK

• Customizing the Customer Center Interface

Chapter 56
Modifying Localized Versions of Customer Center

56-7

Note:

The property files for BRM Java applications are in Unicode.

Simple Customization for Localized Versions of Customer Center
Use this procedure to make simple customizations to localized versions of Customer Center,
such as modifying an original translation or changing the date format, by using the Localization
SDK. For more information, see "About Simple Customization".

If you want to remove or add strings or tabs in Customer Center, see "About Advanced
Customization" and "Advanced Customization for Localized Versions of Customer Center".

1. Install Customer Center for the language you will customize. See BRM Installation Guide.

2. Install the Localization SDK in the language you will customize.

See the following:

• System Requirements for the Localization SDK

• Installing the Localization SDK on Windows in BRM Installation Guide.

3. Convert the property file from Unicode to the encoding that supports your locale.

4. Find what you want to change, such as the original translation or date format, in the
Localization SDK.

5. Change it.

6. Convert the property file back to Unicode.

7. Run the makeResourceJars batch file to generate a signed
CustomerCenter_Java_locale.jar file.

For more information, see the readme.txt file in the Localization SDK installation.

8. Deploy your custom CustomerCenter_Java_locale.jar file.

See "Deploying a Simple Customization of Customer Center".

Deploying a Simple Customization of Customer Center
If you are using a WebStart installation of Customer Center, use this procedure to deploy your
custom localized CustomerCenter_Java_locale.jar file.

1. Go to the directory where you installed Customer Center on your Web server,
Customer_Center_home.

2. Create a new folder named custom in Customer_Center_home.

3. Copy the signed CustomerCenter_Java_locale.jar file that you generated using the
Localization SDK to the Customer_Center_home\custom folder.

4. Copy and paste the following text into the file
Customer_Center_home\custom\custom.jnlp:

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for Custom jar files -->
<jnlp
 spec="1.0+"
 codebase="http://your_server"
 href="custom/custom.jnlp">

Chapter 56
Modifying Localized Versions of Customer Center

56-8

 <information>
 <title>Custom</title>
 <vendor>XYZ, Inc.</vendor>
 </information>

 <security>
 <!-- <all-permissions/> -->
 </security>

 <resources>
 <j2se version="1.4*"/>
 <jar href="custom/CustomerCenter_Java_locale.jar"/>

 </resources>

 <component-desc/>

</jnlp>

5. Uncomment the following line in the CustomerCenter_Java_locale.jnlp file by removing
the <!-- and --> characters shown here:

<!-- <extension name="Customized" href="custom/custom.jnlp"/> -->
6. In the same file, remove the reference to the original CustomerCenter_Java_locale.jar, by

making it an HTML comment:

<!-- <jar href="lib/CustomerCenter_Java_locale.jar"/> -->
7. Save the custom.jnlp file.

8. Restart Customer Center.

Advanced Customization for Localized Versions of Customer Center
Use this procedure to customize a non-English version of Customer Center extensively, such
as renaming or removing fields or adding entirely new fields, by using the Customer Center
SDK. For more information, see "About Advanced Customization".

In some cases, you may also need to use the Localization SDK. See "When to Use the
Localization SDK for Advanced Customization".

Tip:

If you use a language that BRM supports and want to make minor modifications to
Customer Center, such as changing some translations, see "About Simple
Customization" and "Simple Customization for Localized Versions of Customer
Center".

1. Install Customer Center for the language you will customize. See "Installing Customer
Center" in BRM Installation Guide.

2. Install the Customer Center SDK. See "Installing BRM Thick Clients" in BRM Installation
Guide.

Chapter 56
Modifying Localized Versions of Customer Center

56-9

Note:

The Customer Center SDK is available only in English.

3. Go to the Customer Center SDK install directory (CCSDK_home).

4. Find the resources used in Customer Center in this file:

ccsdkinstall\CustCntr\Settings\CustomerCenterResources.properties

5. Copy the key for the string you want to modify. These string entries use this syntax:

custinfo.service.label=value
6. Go to the CCSDK_home\CustCntr\custom directory.

7. Paste the key you copied into the properties file CustomizedResources.properties, and
add your custom value next to the key, separated by an equal sign (=).

For example:

custinfo.service.label=customized label value
8. To add new key-value pairs or to enter new values for existing keys in Customer Center,

repeat steps 5 through 7 for copying the key, going to the
CCSDK_home\CustCntr\custom directory, pasting the key into the properties file and
adding your custom value.

9. When you finish editing this file, run the CCSDK_home\buildAll.bat script with the
CustCntr parameter.

This builds the ccCustom.jar file that contains CustomizedResources.properties and
any other customizations. This script also signs the ccCustom.jar JAR file with your own
certificate and copies the results to the CCSDK_home\lib directory.

Note:

If you generate both a ccCustom.jar file using the Customer Center SDK and a
CustomerCenter_Java_locale.jar file using the Localization SDK, you must use
the same certificate to sign both JAR files.

10. Create a new folder called custom under the directory where you installed Customer
Center on your Web server, Customer_Center_home.

11. Copy the ccCustom.jar file from CCSDK_home\lib to the
Customer_Center_home\custom folder.

12. Deploy your custom localized JAR files.

See "Deploying an Advanced Customization of Customer Center".

Deploying an Advanced Customization of Customer Center
If you are using a WebStart installation of Customer Center, use this procedure to deploy your
custom localized JAR files, such as ccCustom.jar, CustomerCenter_Java_locale.jar, or both.

1. Go to the directory where you installed Customer Center on your Web server (your
WebStart installation directory), Customer_Center_home.

2. Create a new folder named custom in Customer_Center_home.

Chapter 56
Modifying Localized Versions of Customer Center

56-10

3. Copy any modified JAR files to Customer_Center_home\custom.

4. Copy the custom.jnlp file from the CCSDK_home\CustCntr\custom folder to the
Customer_Center_home\custom folder.

5. Uncomment the following line in the
Customer_Center_home\CustomerCenter_Java_locale.jnlp file by removing the <!-- and
--> characters shown here:

<!-- <extension name="Customized" href="custom/custom.jnlp"/> -->

If you used the Localization SDK to create a custom version of
CustomerCenter_Java_locale.jar, do the following also:

a. Add this line:

<jar href="custom/CustomerCenter_Java_locale.jar"/>

To the file Customer_Center_home\custom\custom.jnlp as shown here:

<resources>
 <j2se version="1.4*"/>
 <jar href="custom/ccCustom.jar"/>
 <jar href="custom/CustomerCenter_Java_locale.jar"/>

b. Remove the reference to the original CustomerCenter_Java_locale.jar file in
Customer_Center_home\CustomerCenter_Java_locale.jnlp by making it an HTML
comment:

<!-- <jar href="lib/CustomerCenter_Java_locale.jar"/> -->
6. Restart Customer Center.

When to Use the Localization SDK for Advanced Customization
You might need to use the Localization SDK for these reasons:

• A few property files are not available in the Customer Center SDK; they are available only
in the Localization SDK. If you need to change strings in these property files, you need the
Localization SDK.

• Because the Customer Center SDK is in English, you may need to use the Localization
SDK to identify the key name for the string you want to modify.

Finding key-value pairs to customize in the properties files

Several resource files are used to build the CustomerCenter_Java_locale.jar file.

When customizing Customer Center, you may not be able to find a key-value pair you need to
modify for your localization in the properties files. To find keys for text in the user interface or
for error messages, browse the following resource files:

• These resource files contain text that appears in the Customer Center UI:

– com/portal/app/comp/AppViewResources_1.properties

– com/portal/app/cc/CustomerCenterResources_1.properties

– com/portal/app/cc/comp/CCViewResources_1.properties

• These resource files contain error messages that may appear in Customer Center error
dialogs:

– com/portal/bas/comp/IAViewResources_1.properties

– com/portal/bas/IACoreResources_1.properties

Chapter 56
Modifying Localized Versions of Customer Center

56-11

• You can also find key-value pairs for the Event Browser in these resource files:

– com/portal/browse/BrowserResources_1.properties

– com/portal/browse/EventTemplates_1.properties

– com/portal/search/SearchResources_1.properties

Localizing Self-Care Manager
To run your localized version of Self-Care Manager, you need a Web server and a servlet
engine. For more information, see BRM Installation Guide.

To localize Self-Care Manager:

1. Verify that you have the W drive mapped to C:\Program Files\Portal
Software\Localization SDK.

2. Download the English version of Self-Care Manager. Save the zip file to any temporary
directory.

3. Install English Self-Care Manager. You do not need to install a Web server or servlet
engine at this point. You need to install Self-Care Manager just to get access to its files, not
to actually run it.

For information, see installing BRM client applications in BRM Installation Guide.

4. Copy the file webkit_en.war from Self-Care_Manager_install_dir\WebKit to
W:\SDK_locale\zips.

If you installed Self-Care Manager in the default location, Self-Care_Manager_install_dir is
C:\Program Files\Portal Software\WebKit.

Note:

Create the zips directory if it does not already exist. The directory is not created
by default.

5. Copy the Self-Care Manager zip file you downloaded from the temporary directory to
W:\SDK_locale\zips.

6. Localize the file web.xml in W:\SDK_locale\JAVA_PROJECTS\WebKit, as follows:

a. Change each instance of htmlui_en to htmlui_Java_locale.

b. In this line:

<display-name>WebKit</display-name>

Change WebKit to something else, to distinguish it from the English version.

c. Save the file as web_Java_locale.xml in the same directory.

7. Go to W:\SDK_locale\JAVA_PROJECTS\WebKit\webkit_ui and take these steps for the
HTML version of Self-Care Manager:

a. Copy webkit_L10N_en.txt to webkit_L10N_Java_locale.txt. For Java_locale, use the
Java locale. For a list, see "Locale Names".

For example, if you are localizing into French, copy this file to webkit_L10N_fr.txt.

Chapter 56
Localizing Self-Care Manager

56-12

b. Translate the strings in webkit_L10N_Java_locale.txt. This file contains the strings
that need to be localized in Self-Care Manager files. For more information, see
"Translating the Self-Care Manager Localized Strings File".

8. Go to the JAVA_PROJECTS directory.

9. Set up the CLIENTS_DEST environment variable if you have not already set it:

set CLIENTS_DEST=W:\Client_dest
10. Enter this command to make the Self-Care Manager JAR file:

W:\SDK_locale\JAVA_PROJECTS> makeResourceJars locale webkit
11. Go to W:\SDK_locale\bin.

12. Enter this command to package the localized version of Self-Care Manager:

W:\SDK_locale\bin> Package_WebKit.bat locale

The localized Self-Care Manager package is created in the W:\SDK_locale\zips directory.

13. To install and run the localized version of Self-Care Manager, follow the installation
instructions in installing Self-Care Manager in BRM Installation Guide.

Translating the Self-Care Manager Localized Strings File
Notes about localizing the webkit_L10N_en.txt file:

• This file should contain only UTF8 characters.

• The first set of variables are global variables that will be changed in each localized file. All
localized files are listed in this file.

• Some file names are followed by a set of variables specific to that file. Other file names
have no variables listed. Those files use only the global variables.

• Precede each line of comments with a # character.

Creating a Localized Self-Care Manager Installation for Linux
After you have completed localizing Self-Care Manager for Windows, you can package Self-
Care Manager to run on Linux.

Note:

These steps do not apply to Windows.

1. On the Linux computer, create a directory for the English installation of Self-Care Manager.

system% mkdir tarfile_dir
2. Download the Self-Care Manager Linux English version.

3. Go to the directory:

system% cd tarfile_dir
4. Extract the Self-Care Manager tar file. For example:

system% tar xvf SelfCareMgr_linux.tar

Chapter 56
Localizing Self-Care Manager

56-13

5. On your Windows system, unzip the localized 7.3.1_SelfCareMgr_Java_locale.zip file you
created for Windows to get the webkit_Java_locale.war file.

6. Use ftp to transfer webkit_Java_locale.war from your Windows system to your Linux
system. Use binary transfer mode:

ftp webkit_Java_locale.war Self-Care_Manager_dir/fg
7. Go to Self-Care_Manager_dir on the Linux system. This is the directory where you

extracted the English tar file for the Linux version of Self-Care Manager.

8. Remove the English Self-Care Manager WAR file:

system% rm Self-Care_Manager_dir/fg/WebKit/webkit_en.war
9. Make a tar file from the directory:

system% tar cvf WebKit_Java_locale.tar Self-Care_Manager_dir

Localizing and Customizing Strings
Table 56-2 lists the files that you can customize to support your business model. For example,
you can add new reasons to the reasons.locale file or new payment channels to the
payment_channel.locale file. These files are all located in BRM_home/sys/msgs.

Table 56-2 Files Associated with Localization and String Customization

File in BRM_home/sys/msgs/ Contains

active_mediation/active_mediation.en_US List of subscriber preferences used for active
mediation.

businessprofiles/business_profile_descr.en_US List of business profile descriptions to display in a
third-party CRM application.

devicestates/device_states.en_US List of names you use for device states in the Device
Management framework.

eradescr/era_descr.en_US Descriptions of promotions for GSM Customer Center
Extension.

errorcodes/errors.en_US Server error messages.

featuresandprofilestates/features_and_profiles_states.en_US Service provisioning states for GSM Customer Center
Extension.

lifecycle_states/lifecycle_states.en_US List of life cycle states used for subscriber life cycle
management.

localedescr/locale_descr.en_US Descriptions of the locales that BRM supports, used
by Customer Center.

newsfeed/newsfeed.en_US List of localized strings for News Feed.

note/note.en_US List of types and permissible statuses of a /note
object.

numcategories/num_categories.en_US Number attributes for Number Administration Center.

numdevicestates/num_device_states.en_US List of status settings for a number in Number
Administration Center and Customer Center.

numvanities/num_vanities.en_US List of vanity numbers in Number Administration
Center.

ordersimstatus/order_sim_status.en_US List of status settings for an order in SIM
Administration Center.

Chapter 56
Localizing and Customizing Strings

56-14

Table 56-2 (Cont.) Files Associated with Localization and String Customization

File in BRM_home/sys/msgs/ Contains

paymentchannel/payment_channel.en_US List of payment channel IDs that can be included in
payments received by BRM.

reasoncodes/reasons.en_US List of reasons for account changes (such as charges
and credits) in Customer Center.

revenueassurance/ra_alert_message.en_US List of alert messages that BRM uses when notifying
analysts that a revenue assurance threshold has been
exceeded.

simcardtypes/sim_card_types.en_US List of SIM card types for SIM Administration Center.

simdevicestates/sim_device_states.en_US List of status settings for SIM devices in SIM
Administration Center.

suspense_reason_code/suspense_reason_code.en_US List of reasons for call failures in Suspense
Management Center.

system_filter_set/system_filterset_edr_field_values.en_US List of EDR fields and values that Pipeline Manager
uses as filtering criteria for system products and
discounts.

telcofeaturesandprofilestates/
telco_features_and_profiles_states.en_US

Service provisioning states for GSM Customer Center
Extension. These states are specific to telco.

voucher_devicestates/device_state_voucher.en_US List of status settings for voucher devices in Voucher
Administration Center.

voucher_orderstates/order_state_voucher.en_US List of order statuses to display in Voucher
Administration Center.

Creating New Strings and Customizing Existing Strings
To create new strings or customize existing strings:

1. Open the appropriate file.

2. Locate and edit any existing strings you want to customize.

3. Add any new strings using the standard format.

4. Save the file.

5. Load the strings using the load_localized_strings utility. See "Loading Localized or
Customized Strings".

Note:

Use the appropriate file suffix for the locale. For example, to load SIM card
formats in the German language, use the file named sim_card_types.de. See
"Locale Names".

Chapter 56
Localizing and Customizing Strings

56-15

Localizing Existing Strings

Note:

If you are only localizing the strings:

• Do not edit the ID, DOMAIN, or VERSION strings in these files.

• Be sure to preserve the double quotes (") and semicolon (;) around any strings
that you change.

• There must be a space before a semicolon (;).

To localize any of these files:

1. Make a copy of the file and open it.

2. Change the LOCALE to the BRM name for the new locale.

For BRM locale names, see "Locale Names".

3. Translate the text strings for STRING and HELPSTR.

4. Rename the file by changing the suffix from .en_US to the BRM locale name for your
locale. For example, a Traditional Chinese version of errors.en_US is named
errors.zh_TW.

5. Convert the file to UTF8 encoding.

Loading Localized or Customized Strings
You use the load_localized_strings utility to load the contents of a string file into a /strings
object in the BRM database.

Caution:

When loading reason codes from the reasons.locale file, load_localized_strings
also loads information from this file into the /config/map_glid object. If customized to
specify service types and event types for event-level adjustments, the utility also
loads information into the /config/reason_code_scope object. Though the utility
does not overwrite existing strings in the /strings object unless you direct it to, it does
overwrite the /config/reason_code_scope and /config/map_glid objects.

Note:

• The load_localized_strings utility needs a configuration file in the directory from
which you run the utility. See the discussion about creating configuration files for
BRM utilities in BRM System Administrator's Guide.

1. Use the following command to run the load_localized_strings utility:

Chapter 56
Localizing and Customizing Strings

56-16

load_localized_strings string_file_name.locale

For example:

load_localized_strings sim_device_states.en_US
2. Look in the load_localized_strings.log file to find any errors. The log file is either in the

directory from which the utility was started or in a directory specified in the configuration
file.

3. Verify that the strings were loaded by displaying the /strings objects using the Object
Browser or the robj command with the testnap utility. See "Reading an Object and Writing
Its Contents to a File" for information on how to use Object Browser. See "Using the
testnap Utility to Test BRM" for general instructions on using testnap.

Note:

For the reasons.locale file, you should also use one of these methods to check
the /config/map_glid and /config/reason_code_scope objects.

4. Stop and restart the Connection Manager (CM). For more information, see Starting and
Stopping the BRM System in BRM System Administrator's Guide.

5. If the strings are displayed in a GUI application, stop and restart the application to display
the strings.

Localizing BRM Reports
To create localized versions of BRM report templates, use their conversion routines. For more
information, see "Localizing BRM Reports".

About Customizing Server Software
This section provides an introduction to customizing server software.

Setting the Default Language for Customer Accounts
The /account object contains the PIN_FLD_LOCALE field. During BRM account creation, the
CSR can set the value of this field using the BRM locale list in Customer Center. By default in
Customer Center, the PIN_FLD_LOCALE field is set to the locale of the CSR's system.

The PIN_FLD_LOCALE field is set by the PCM_OP_CUST_SET_LOCALE opcode. This
opcode reads the PCM_OP_CUST_POL_PREP_LOCALE and
PCM_OP_CUST_POL_VALID_LOCALE policy opcodes. When you develop a Web page for
creating customer accounts, you need to set this field.

Customizing Canonicalization
To customize canonicalization, use the PCM_OP_CUST_POL_CANONICALIZE opcode.

This opcode is called by PCM_OP_CUST_COMMIT_CUSTOMER,
PCM_OP_CUST_SET_NAMEINFO, and the Customer Center search screen.
PCM_OP_CUST_POL_CANONICALIZE searches for localized (non-English) customer input
string fields.

Chapter 56
Localizing BRM Reports

56-17

The default implementation of the PCM_OP_CUST_POL_CANONICALIZE opcode is the
en_US locale. Canonicalization handles Latin-based characters only. You must customize this
opcode for other languages.

Exporting Data to an LDAP Server
For languages other than English, the data exported to the directory structure using
Lightweight Directory Access Protocol (LDAP) is in UTF8 format. If you need native encodings,
you must write conversion applications that operate on the data in the directory server to
convert it in place.

Locale Names
Following is a list of locales for which BRM supports canonicalization. You can also use this list
to get common BRM, Linux, and Java locale names. For information on canonicalization, see
"About Localizing and Internationalizing".

In naming localized files, use the more general two-letter locale names when possible, but in
some cases the more specific four-letter locale names are needed. For example:

• Use zh_TW for Traditional Chinese.

• Use en_US for English files.

• Use pt_BR for Brazilian Portuguese.

Table 56-3 lists many common locale names. You can get complete locale name lists on the
Web.

Table 56-3 Common Locale Names

Language (ISO-639) Country (ISO-3166) Linux, Java, and BRM Locale Windows Locale

Chinese (Simplified) People's Republic of China zh_CN CHS

Chinese (Traditional) Republic of China (Taiwan) zh_TW CHT

Danish Denmark da_DK DAN

Dutch Netherlands nl_NL NLD

Dutch Belgium nl_BE NLB

English Australia en_AU ENA

English Canada en_CA ENC

English Ireland en_IE ENI

English New Zealand en_NZ ENZ

English South Africa en_ZA ENS

English United Kingdom en_UK (BRM)

en_GB (Java and Linux)

ENG

English United States en_US ENU

Finnish Finland fi_FI FIN

French France fr _FR FRA

French Belgium fr_BE FRB

French Canada fr_CA FRC

French Luxembourg fr_LU FRL

Chapter 56
Locale Names

56-18

Table 56-3 (Cont.) Common Locale Names

Language (ISO-639) Country (ISO-3166) Linux, Java, and BRM Locale Windows Locale

French Switzerland fr_CH FRS

German Germany de_DE DEU

German Austria de_AT DEA

German Luxembourg de_LU DEL

German Switzerland de_CH DES

Japanese Japan ja_JP JPN

Korean Korea ko_KR KOR

Italian Italy it_IT ITA

Italian Switzerland it_CH ITS

Norwegian (Bokmal) Norway no_NO NOR

Norwegian (Nynorsk) Norway no_NY (BRM and Linux)

no_NO_NY (Java)

NON

Portuguese Portugal pt_PT PTG

Portuguese Brazil pt_BR PTB

Spanish Spain es_ES ESP

Spanish Argentina es_AR ESS

Spanish Bolivia es_BO ESB

Spanish Chile es_CL ESL

Spanish Colombia es_CO ESO

Spanish Costa Rica es_CR ESC

Spanish Dominican Republic es_DO ESD

Spanish Ecuador es_EC ESF

Spanish El Salvador es_SV ESE

Spanish Guatemala es_GT ESG

Spanish Mexico es_MX ESM

Spanish Nicaragua es_NI ESI

Spanish Panama es_PA ESA

Spanish Paraguay es_PY ESZ

Spanish Peru es_PE ESR

Spanish Puerto Rico es_PR ESU

Spanish Uruguay es_UY ESY

Spanish Venezuela es_VE ESV

Swedish Sweden sv_SE SVE

Chapter 56
Locale Names

56-19

57
Handling Non-ASCII Code on the BRM Server

Learn how to use character-encoding conversion-layer macros with languages other than
English (that is, any non-ASCII character encoding) in your Oracle Communications Billing and
Revenue Management (BRM) system.

Topics in this document:

• About Character-Encoding Conversion

• About Converting Multibyte or Unicode to and from UTF8

• Direct Conversion Macros

• Supporting Functions and Macros

• Universal Macros

• Conversion Code Example

About Character-Encoding Conversion
To work with different languages, BRM applications must use a character encoding that
supports them. To support any Western European language or East Asian language, the
macros described in this document are required. You must use the conversion macros with any
BRM client, server, or Web application localization that is not written in Java. Without these
macros, only the 7-bit ASCII encoding works.

Note:

These macros are not required for English language applications, but using the
macros facilitates later translations.

BRM supports localizations using Latin 1 and some of the East Asian encodings for Japanese,
Korean, Traditional Chinese, and Simplified Chinese only.

About Converting Multibyte or Unicode to and from UTF8
Figure 57-1 shows the relationships between the BRM applications and the character-encoding
conversion layer:

57-1

Figure 57-1 BRM Applications and the Character-Encoding Conversion Layer

If you are developing a command-line application or a third-party integration, use the macros
that convert either Unicode or multibyte input strings to UTF8 and from UTF8:

• PIN_CONVERT_STR_TO_UTF8

• PIN_CONVERT_UTF8_TO_STR

The macros check the defined preprocessor directive (_MBCS and _UNICODE) to call the
direct conversion macros and call the supporting function and macro.

If you are developing a BRM client application or working with multibyte or Unicode only, use
the direct conversion macros to change the character encoding. See "About Converting
Multibyte or Unicode to and from UTF8":

• PIN_CONVERT_MBCS_TO_UTF8

• PIN_CONVERT_UTF8_TO_UNICODE

• PIN_CONVERT_UNICODE_TO_UTF8

• PIN_CONVERT_UTF8_TO_MBCS

The macros are located in the Portal Communication Module (PCM) library. The header file is
in pcm.h.

Direct Conversion Macros
Table 57-1 lists the functions available in the direct conversion macros.

Table 57-1 Direct Conversion Macros

Function Description

PIN_CONVERT_MBCS_TO_UTF8 Converts a multibyte character string to UTF8.

PIN_CONVERT_UNICODE_TO_UTF8 Converts Unicode characters to UTF8.

PIN_CONVERT_UTF8_TO_MBCS Converts UTF8 characters to multibyte.

PIN_CONVERT_UTF8_TO_UNICODE Converts a UTF8 character string to a Unicode string.

Chapter 57
Direct Conversion Macros

57-2

Supporting Functions and Macros
Table 57-2 lists the supporting functions and macros.

Table 57-2 Supporting Functions and Macros

Function Description

pin_IsValidUtf8 Determines whether a specified string is using UTF8
encoding.

PIN_MBSLEN Determines the length of the multibyte string.

PIN_SETLOCALE Sets, changes, or queries some or all of the current
program locale, specified by locale and category.

Universal Macros
Table 57-3 lists the universal macros.

Table 57-3 Universal Macros

Function Description

PIN_CONVERT_STR_TO_UTF8 Converts translatable database data to UTF8.

PIN_CONVERT_UTF8_TO_STR Calls PIN_CONVERT_UTF8_TO_MBCS when
_MBCS is defined, and calls
PIN_CONVERT_UTF8_TO_UNICODE when
_UNICODE is defined. This macro is called whenever
translatable data is retrieved from the database.

PIN_CONVERT_MBCS_TO_UTF8
This macro converts a multibyte character string to UTF8.

Note:

You need to use setlocale before calling this macro.

Syntax

int32
PIN_CONVERT_MBCS_TO_UTF8(
 char *pLocaleStr,
 char *pMultiByteStr,
 int32 nMultiByteLen,
 unsigned char *pUTF8Str,
 int32 nUTF8size,
 pin_errbuf_t *ebufp);

Chapter 57
Supporting Functions and Macros

57-3

Parameters

pLocaleStr
Indicates the locale of the multibyte string input. The locale string argument can have following
values:

• en_US - US-English locale

• "" - System default locale

• NULL - Where LC_CTYPE is set to the appropriate locale before calling the macro

pMultiByteStr
Points to the character string to be converted.

nMultiByteLen
Specifies the number of characters to be converted in the string pointed to by pMultiByteStr. If
this value is 1, the string is assumed to be NULL-terminated and the length is calculated
automatically.

pUTF8Str
Points to the buffer that receives the converted UTF8 string.

nUTF8size
Specifies the size of the buffer pointed to by pUTF8Str.

ebufp
A pointer to the error buffer. If this macro is successful, the error buffer is NULL; otherwise, it
indicates the cause of the error.

Return Values

Table 57-4 lists the values returned by PIN_CONVERT_MBCS_TO_UTF8.

Table 57-4 PIN_CONVERT_MBCS_TO_UTF8 Return Values

SourceString
pMultiByteStr

Number of Characters
to Convert in Input
String nMultiByteLen

Buffer pUTF8Str Buffer Size in Bytes
nUTF8size

Return Value

Null terminated Any number pMultiByteStr =
pUTF8Str

Any size 0 (ERR)

NULL Any number Any Any size 0 (ERR)

Any < -1 Any Any size 0 (ERR)

Any 0 Any Any size 0 (ERR)

Null terminated -1 or > 0 NULL !=0 0 (ERR)

Not null terminated >0 NULL !=0 0 (ERR)

Any Any number !=NULL <=0 0 (ERR)

Not null terminated Any number pMultiByteStr =
pUTF8Str

Any size 0 (ERR)

Null terminated -1 or > 0 !=NULL >0 Converted characters

Not null terminated > 0 !=NULL >0 Converted characters

Null terminated -1 or > 0 !=NULL >0 Converted characters

Null terminated -1 or > 0 NULL 0 Required buffer size

Chapter 57
Universal Macros

57-4

Table 57-4 (Cont.) PIN_CONVERT_MBCS_TO_UTF8 Return Values

SourceString
pMultiByteStr

Number of Characters
to Convert in Input
String nMultiByteLen

Buffer pUTF8Str Buffer Size in Bytes
nUTF8size

Return Value

Not null terminated -1 or > 0 NULL 0 Required buffer size

Null terminated -1 or > 0 NULL 0 Required buffer size

Error Handling

If pMultiByteStr and pUTF8Str are the same, the macro fails and the error buffer returns
PIN_ERR_BAD_ARG. If the macro encounters an invalid character in the source string, the
macro fails; it sets the return value to 0 and the error buffer to the respective error code as
shown in Table 57-5:

Table 57-5 Error Codes

Returned Error Code Value Reserved Bit in ebuf Error Description

PIN_ERR_BAD_ARG 4 0 Bad argument

PIN_ERR_BAD_LOCALE 71 0 Invalid locale string

PIN_ERR_CONV_MULTIBYTE 72 0 Error in multibyte to UTF8
conversion

PIN_ERR_NULL_PTR 39 0 Empty string passed

PIN_CONVERT_STR_TO_UTF8
This macro converts translatable database data to UTF8.

Syntax

int32
PIN_CONVERT_STR_TO_UTF8(
 char *pLocaleStr,
 char *pSourceStr,
 int32 nSourceLen,
 unsigned char *pUTF8Str,
 int32 nUTF8size,
 pin_errbuf_t *ebufp);

PIN_CONVERT_UNICODE_TO_UTF8
This macro converts Unicode characters to UTF8.

Note:

You need to use setlocale before calling this macro.

Chapter 57
Universal Macros

57-5

Syntax

int32
PIN_CONVERT_UNICODE_TO_UTF8(
 wchar_t *pUnicodeStr,
 int nUnicodeLen,
 unsigned char *pUTF8Str,
 int nUTF8,
 pin_errbuf_t *ebufp);

Parameters

pUnicodeStr
Points to the character string to be converted.

nUnicode
Specifies the number of characters to be translated in the string pointed to by pUnicodeStr.

pUTF8Str
Points to a buffer that receives the translated UTF8 string.

nUTF8
Specifies the size of the buffer pointed to by pUTF8Str.

Return Values

Returns NULL in the error buffer if the macro is successful. Returns the cause of the error if
the macro fails.

Error Handling

If pUnicodeStr and pUTF8Str are the same, the macro fails, and the error buffer returns
PIN_ERR_BAD_ARG. If the macro encounters an invalid character in the source string, the
macro fails; it sets nUTF8 to 0 and sets the error buffer to the respective error code as shown
in Table 57-6:

Table 57-6 Error Handling Codes

Returned Error Code Value Reserved Bit in ebuf Error Description

PIN_ERR_BAD_ARG 4 0 Bad argument

PIN_ERR_CONV_UNICODE 73 1 Error in UTF8 to Unicode
conversion

PIN_ERR_BAD_UTF8 75 0 Invalid UTF8 characters

PIN_ERR_NULL_PTR 39 0 Empty string passed

PIN_CONVERT_UTF8_TO_MBCS
This macro converts UTF8 characters to multibyte.

Note:

You need to use setlocale before calling this macro.

Chapter 57
Universal Macros

57-6

Syntax

int32
PIN_CONVERT_UTF8_TO_MBCS(
 char *pLocaleStr,
 unsigned char *pUTF8Str,
 int nUTF8Len,
 char *pMultiByteStr,
 int nMultiByte,
 pin_errbuf_t *ebufp);

Parameters

pLocaleStr
Indicates the locale of the multibyte string input. The locale string argument can have following
values:

• en_US - US-English locale

• "" - System default locale

• NULL - Where LC_CTYPE is set to the appropriate locale before calling the macro

pUTF8Str
Points to the character string to be converted.

nUTF8Len
Specifies the number of bytes to be converted in the string pointed to by pUTF8Str.

pMultiByteStr
Points to the buffer that receives the converted multibyte string.

nMultiByte
Specifies the size of the buffer pointed to by pMultiByteStr.

ebufp
A pointer to the error buffer. If this macro is successful, the error buffer is NULL; otherwise, it
indicates the cause of the error.

Return Values

Table 57-7 lists the values returned by PIN_CONVERT_UTF8_TO_MBCS.

Table 57-7 Values Returned by PIN_CONVERT_UTF8_TO_MBCS

Source String
pUTF8Str

Number of Characters
to be Converted in
Input String
nUTF8Len

Buffer pMultibyteStr Buffer Size in Bytes
nMultibyte

Returned Value

Null terminated Any number pMultibyteStr =
pUTF8Str

Any size 0 (ERR)

NULL Any number Any Any size 0 (ERR)

Any < -1 Any Any size 0 (ERR)

Any 0 Any Any size 0 (ERR)

Null terminated -1 or > 0 NULL !=0 0 (ERR)

Not null terminated >0 NULL !=0 0 (ERR)

Chapter 57
Universal Macros

57-7

Table 57-7 (Cont.) Values Returned by PIN_CONVERT_UTF8_TO_MBCS

Source String
pUTF8Str

Number of Characters
to be Converted in
Input String
nUTF8Len

Buffer pMultibyteStr Buffer Size in Bytes
nMultibyte

Returned Value

Any Any number !=NULL <=0 0 (ERR)

Not null terminated Any number pMultibyteStr =
pUTF8Str

Any size 0 (ERR)

Null terminated -1 or > 0 !=NULL >0 Converted characters

Not null terminated > 0 !=NULL >0 Converted characters

Null terminated -1 or > 0 !=NULL >0 Converted characters

Null terminated -1 or > 0 NULL 0 Required buffer size

Not null terminated -1 or > 0 NULL 0 Required buffer size

Null terminated -1 or > 0 NULL 0 Required buffer size

Error Handling

If pMultiByteStr and pUTF8Str are the same, the macro fails and the error buffer returns
PIN_ERR_BAD_ARG. If the macro encounters an invalid character in the source string, the
macro fails; it sets the return value to 0 and the error buffer to PIN_ERR_BAD_UTF8 as shown
in Table 57-8:

Table 57-8 Error Handling Codes

Returned Error Code Value Reserved Bit in ebuf Error Description

PIN_ERR_BAD_ARG 4 0 Bad argument

PIN_ERR_BAD_LOCALE 71 0 Invalid locale string

PIN_ERR_CONV_MULTIBYTE 72 1 Error in UTF8 to multibyte
conversion

PIN_ERR_BAD_UTF8 75 0 Invalid UTF8 characters

PIN_ERR_NULL_PTR 39 0 Empty string passed

PIN_ERR_NO_MEM 1 1 Can't allocate enough
memory for conversion

PIN_CONVERT_UTF8_TO_STR
This macro calls "PIN_CONVERT_UTF8_TO_MBCS " when _MBCS is defined and calls
"PIN_CONVERT_UTF8_TO_UNICODE " when _UNICODE is defined. This macro is called
whenever translatable data is retrieved from the database.

Syntax

int32
PIN_CONVERT_UTF8_TO_STR(
 char *pLocaleStr,
 char *pUTF8Str,
 int32 nUTF8Len,
 unsigned char *pBuffer,

Chapter 57
Universal Macros

57-8

 int32 nBuffersize,
 pin_errbuf_t *ebufp);

PIN_CONVERT_UTF8_TO_UNICODE
This macro converts a UTF8 character string to a Unicode string.

Syntax

Note:

You need to use setlocale before calling this macro.

int32
PIN_CONVERT_UTF8_TO_UNICODE(
 unsigned char *pUTF8Str,
 int nUTF8,
 wchar_t *pUnicodeStr,
 int nUnicode,
 pin_errbuf_t *ebufp);

Parameters

pUTF8Str
Points to the character string to be converted.

nUTF8
Specifies the number of bytes to be converted in the string pointed to by pUTF8Str.

pUnicodeStr
Points to a buffer that receives the converted Unicode string.

nUnicode
Specifies the size of the buffer pointed to by pUnicodeStr.

ebufp
A pointer to the error buffer. If this macro is successful, the error buffer is NULL; otherwise, it
indicates the cause of the error.

Return Values

Table 57-9 lists the return values for PIN_CONVERT_UTF8_TO_UNICODE.

Table 57-9 Values Returned by PIN_CONVERT_UTF8_TO_UNICODE

Source String
pUTF8str

Number of Bytes to
Convert in Input
String nUTF8

Buffer pUnicodeSrt Buffer Size in Bytes
nUnicode

Returned Value

Null terminated Any number pUTF8str =
pUnicodeSrt

Any size 0 (ERR)

NULL Any number Any Any size 0 (ERR)

Any < -1 Any Any size 0 (ERR)

Any 0 Any Any size 0 (ERR)

Chapter 57
Universal Macros

57-9

Table 57-9 (Cont.) Values Returned by PIN_CONVERT_UTF8_TO_UNICODE

Source String
pUTF8str

Number of Bytes to
Convert in Input
String nUTF8

Buffer pUnicodeSrt Buffer Size in Bytes
nUnicode

Returned Value

Null terminated -1 or > 0 NULL !=0 0 (ERR)

Not null terminated >0 NULL !=0 0 (ERR)

Any Any number !=NULL <=0 0 (ERR)

Not null terminated Any number pUTF8str =
pUnicodeSrt

Any size 0 (ERR)

Null terminated -1 or > 0 !=NULL >0 Converted characters

Not null terminated > 0 !=NULL >0 Converted characters

Null terminated -1 or > 0 !=NULL >0 Converted characters

Null terminated -1 or > 0 NULL 0 Required buffer size

Not null terminated -1 or > 0 NULL 0 Required buffer size

Null terminated -1 or > 0 NULL 0 Required buffer size

Error Handling

If pUnicodeStr and pUTF8Str are the same, the macro fails and the error buffer returns
PIN_ERR_BAD_ARG. If the macro encounters an invalid character in the source string, the
macro fails; it sets the return value to 0 and the error buffer to PIN_ERR_BAD_UTF8 as shown
in Table 57-10:

Table 57-10 Error Handling Codes

Returned Error Code Value Reserved Bit in ebuf Error Description

PIN_ERR_BAD_ARG 4 0 Bad argument

PIN_ERR_CONV_UNICODE 73 1 Error in UTF8 to Unicode
conversion

PIN_ERR_BAD_UTF8 75 0 Invalid UTF8 characters

pin_IsValidUtf8
This function determines whether a specified string is using UTF8 encoding.

Syntax

int32
pin_IsValidUTF8(
 unsigned char *pUTF8Str,
 int32 nUTF8Len,
 pin_errbuf_t *ebufp);

Parameters

pUTF8Str
Points to the character string to be checked for UTF8 encoding.

Chapter 57
Universal Macros

57-10

nUTF8Len
Specifies the number of bytes to be checked in the string pointed to by pUTF8Str.

ebufp
A pointer to the error buffer. If this macro is successful, the error buffer is NULL; otherwise, it
indicates the cause of the error.

Return Values

Returns a positive value if pUTF8Str is a valid UTF8 string.

Error Handling

This macro returns 0 if pUTF8Str is not a valid UTF8 string or if any errors occur. Table 57-11
lists the error codes.

Table 57-11 Error Handling Codes

Returned Error Code Value Reserved Bit in ebuf Error Description

PIN_ERR_NULL_PTR 39 0 Empty string passed

PIN_ERR_BAD_UTF8 75 0 Invalid UTF8 characters

PIN_MBSLEN
This macro determines the length of the multibyte string.

Syntax

int32
PIN_MBSLEN(
 char *pLocaleStr,
 char *pMultiByteStr,
 pin_errbuf_t *ebufp);

Parameters

pLocaleStr
Indicates the locale information of the input multibyte string. The locale string argument can
have the following values:

• en_US - US-English locale

• "" - System default locale

• NULL - Where LC_CTYPE is set to the appropriate locale before calling the macro

pMultiByteStr
Points to the multibyte character string.

ebufp
A pointer to the error buffer. If this macro is successful, the error buffer is NULL; otherwise, it
indicates the cause of the error.

Return Values

Returns the length of the multibyte string.

Chapter 57
Universal Macros

57-11

Error Handling

This macro returns 0 if any errors occur.

PIN_SETLOCALE
This macro sets, changes, or queries some or all of the current program locale, specified by
locale and category. Locale-dependent categories include date and currency formats.

Syntax

char*
PIN_SETLOCALE(
 const int n_category,
 char *locale_p,
 pin_errbuf_t *ebufp);

*int32
PIN_MBSLEN(
 const int ncategory,
 char *locale_p,
 pin_errbuf_t *ebufp);

Parameters

n_category
The parts of a program's locale that are affected. The macros used for category and the parts
of the program they affect are:

• LC_ALL – All categories, as listed below.

• LC_COLLATE – The strcoll, _stricoll, wcscoll, _wcsicoll, and strxfrm macros.

• LC_CTYPE – The character-handling functions (except isdigit, isxdigit, mbstowcs, and
mbtowc, which are unaffected).

• LC_MONETARY – Monetary format information returned by the localeconv function.

• LC_NUMERIC – Decimal-point character for the formatted output routines (such as
printf), for the data-conversion routines, and for the noncurrency formatting information
returned by localeconv.

• LC_TIME – The strftime and wcsftime functions.

locale_p
Indicates the locale.

ebufp
A pointer to the error buffer. If this macro is successful, the error buffer is NULL; otherwise, it
indicates the cause of the error.
The null pointer is a special directive that tells PIN_SETLOCALE to query rather than set the
international environment.

Return Values

Returns a pointer to the string associated with the specified locale and category.

Error Handling

If the locale or category is invalid, the macro returns a null pointer and sets the error buffer to
PIN_ERR_BAD_LOCALE as shown in Table 57-12:

Chapter 57
Universal Macros

57-12

Table 57-12 Error Handling Code

Returned Error Code Value Reserved Bit in ebuf Error Description

PIN_ERR_BAD_LOCALE 71 0 Invalid locale string

Conversion Code Example
The following code sample shows how to get the locale from the account information and
convert the locale from BRM locale to platform locale:

vp = PIN_FLIST_FLD_GET(tmp_acctinfo_flistp, PIN_FLD_LOCALE,
 1, ebufp);
 if (vp == NULL) { /* Set default locale */
 strcpy(infranet_locale, "en_US");
 } else {
 strcpy(infranet_locale, (char *)vp);
 }
 locale = PIN_MAP_INFRANET_TO_PLATFORM_LOCALE(infranet_locale,
 ebufp);

The following function shows how to convert a UTF8 string to an MBCS string:

static char *
fm_inv_pol_convert_utf8_to_str(
 char *orig_str,
 char *locale,
 pin_errbuf_t *ebufp)
{
 int orig_size = 0;
 int dest_size = 0;
 char *strbuf = NULL;

 orig_size = strlen((char *)orig_str) + 1;

 /* First round, get the required buffer size for output string */
 dest_size = PIN_CONVERT_UTF8_TO_MBCS(locale,
 (unsigned char *)orig_str,
 orig_size, NULL, 0, ebufp);

 if (dest_size == 0) {
 if(PIN_ERR_IS_ERR(ebufp)) {
 PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_DEBUG,
 "PIN_CONVERT_UTF8_TO_MBCS Failed",
 ebufp);
 PIN_ERR_CLEAR_ERR(ebufp);
 }
 return NULL;
 }

 strbuf = (char *)pin_malloc(sizeof(char)*(dest_size + 1));
 if (strbuf == NULL) {
 pin_set_err(ebufp, PIN_ERRLOC_FM,
 PIN_ERRCLASS_SYSTEM_DETERMINATE,
 PIN_ERR_NO_MEM, 0, 0, 0);
 PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_DEBUG,
 "PIN_CONVERT_UTF8_TO_MBCS Failed",
 ebufp);
 PIN_ERR_CLEAR_ERR(ebufp);

Chapter 57
Conversion Code Example

57-13

 return NULL;
 }

 /* Second round, do the string conversion */
 dest_size = PIN_CONVERT_UTF8_TO_MBCS(locale,
 (unsigned char *)orig_str,
 orig_size, strbuf, dest_size + 1, ebufp);

 if (dest_size == 0) {
 if(PIN_ERR_IS_ERR(ebufp)) {
 PIN_ERR_LOG_EBUF(PIN_ERR_LEVEL_DEBUG,
 "PIN_CONVERT_UTF8_TO_MBCS Failed",
 ebufp);
 PIN_ERR_CLEAR_ERR(ebufp);
 }
 pin_free(strbuf);
 return NULL;
 }

 return strbuf;
}

Chapter 57
Conversion Code Example

57-14

Part VIII
Programming Utilities

This part provides reference information about Oracle Communications Billing and Revenue
Management (BRM) developer utilities. It contains the following chapter:

• Developer Utilities

58
Developer Utilities

Learn about the Oracle Communications Billing and Revenue Management (BRM) developer
utilities.

Topics in this document:

• load_config

• load_config_provisioning_tags

• load_localized_strings

• load_pin_config_business_type

• load_pin_device_permit_map

• load_pin_device_state

• load_pin_excluded_logins

• load_pin_order_state

• parse_custom_ops_fields

• pin_adu_validate

• pin_bus_params

• pin_cfg_bpdump

• pin_crypt_app

• pin_deploy

• pin_uei_deploy

• pin_virtual_time

• testnap

• pin_config_editor

load_config
Use this utility to load the contents of XML configuration files into configuration (/config/*)
objects in the BRM database.

Note:

To connect to the BRM database, this utility needs a configuration (pin.conf) file in
the directory from which it is run. For information about creating configuration files for
BRM utilities, see "Connecting BRM Utilities" in BRM System Administrator's Guide.

Before loading the contents of a file, the utility validates the contents against the file's XML
schema definition (XSD). To do this, the utility needs the pin.conf entries in Table 58-1.

58-1

Table 58-1 load_config pin.conf Entries Required for XML Validation

XML File to Validate Required pin.conf Entry

config_lifecycle_states.xml - load_config validation_module libLoadValidSLM LoadValidSLM_init

config_service_state_map.xml - load_config validation_module libLoadValidSLM LoadValidSLM_init

config_subscriber_preferences_
map.xml

- load_config validation_module libLoadValidTCFAAA LoadValidTelcoAAA_init

config_collections_scenario_par
ams.xml

- load_config validation_module libLoadValidCollections
LoadValidCollections_init

The location of the XSD must be specified in the XML file. If the contents do not conform to the
XSD, the load operation fails.

After validating the XML contents against the XSD, the utility converts the XML file into one or
more configuration objects, depending on the structure of the XML file.

If any syntax errors occur, the load operation fails.

Location

BRM_home/apps/load_config

Syntax

load_config [-d] [-h] [-l] [-n] [-r class] [-t] [-T] [-v] [-w] [class] [config_file]

Parameters

-d
Creates a log file for debugging purposes. Use this parameter for debugging when the utility
appears to have run with no errors but the configuration objects have not been loaded into the
database.

-h
Displays syntax and parameters for the utility.

-l
Lists all validated configuration objects in the BRM database that are associated with
config_file.

-n
Creates a configuration object when a validation library is not loaded. Use this parameter to
skip the validation and to load the contents of the XML file into the database schema when the
corresponding validation library is not loaded. When the library is loaded, validation happens
irrespective of whether this parameter is passed or not.
In the absence of the validation library and this parameter, the utility returns an error and exits.

-r class
Deletes all instances of the specified storable class from the BRM database.
To specify the class, do not include /config/. For example, to specify the /config/
lifecycle_states storable class, enter lifecycle_states.

Chapter 58
load_config

58-2

-t
Runs the utility in test mode to validate the XML file against its XML schema definition. This
parameter does not load data into a configuration object or overwrite any existing data in the
objects.

Tip:

To avoid load errors based on XML content problems, run the utility with this option
before loading data into the object.

-T
Validates configuration objects in the BRM database that are associated with config_file.

-v
Displays information about successful or failed processing as the utility runs.

-w class
Writes information from all objects of the specified storable class in the database to config_file.
To specify the class, do not include /config/. For example, to specify the /config/
lifecycle_states storable class, enter lifecycle_states.
This parameter can be used to copy configuration data from one system to another. The
generated XML does not conform to a particular XSD. Before loading the contents of
config_file into another database schema, you must associate it with an XSD that defines the
appropriate format.

config_file
The XML file for which the utility performs one of the following actions:

• Loads the file's contents into the database schema

• Loads information from objects in the database schema into the file

This must be the last parameter listed on the command line.
If the XML file is in the same directory from which you run the utility, specify only the file name.
If it is in a different directory, include the entire path for the file.

Results

If the utility does not notify you that it was successful, look in the default.pinlog file to find any
errors. This log file is either in the directory from which the utility was run or in a directory
specified in the utility's configuration file.

To verify that the configuration information was loaded, display the configuration objects by
using one of the following features:

• Object Browser

• testnap utility's robj command

See "Reading an Object and Writing Its Contents to a File" for more information.

Note:

You must stop and restart the Connection Manager (CM) to make new service life
cycle and service state mapping data available.

Chapter 58
load_config

58-3

load_config_provisioning_tags
Use the load_config_provisioning_tags utility to load provisioning tags into the /config/
provisioning_tag object in the BRM database. You define provisioning tags in the
pin_config_provisioning_tags.xml file in BRM_home/sys/data/config.

Use this utility when you create provisioning tags using the provisioning tag framework.

For information about creating provisioning tags, see "Creating Provisioning Tags" in BRM
Provisioning Services.

For information about the syntax of the XML file, see "Configuring Provisioning Tags" in BRM
Provisioning Services.

Caution:

The load_config_provisioning_tags utility overwrites existing instances of the /
config/provisioning_tag object. If you are updating provisioning tags, you cannot
load new or changed tags only. You must load the complete set of provisioning tags
each time you run the load_config_provisioning_tags utility.

When you run this utility, the pin_config_provisioning_tags.xml and
business_configuration.xsd files must be in the same directory. By default, both files are in
BRM_home/sys/data/config.

Note:

To connect to the BRM database, the load_config_provisioning_tags utility needs
a configuration file in the directory from which you run the utility. See "Connecting
BRM Utilities" in BRM System Administrator's Guide.

Location

BRM_home/bin

Syntax

load_config_provisioning_tags [-d] [-v] [-t] [-h] pin_config_provisioning_tags_file

Parameters

-d
Creates a log file for debugging purposes. Use this parameter for debugging when the utility
appears to have run with no errors, but the data has not been loaded into the database.

-v
Displays information about successful or failed processing as the utility runs.
load_pin_config_provisioning_tags any_other_parameter –v > filename.log

Chapter 58
load_config_provisioning_tags

58-4

-t
Runs the utility in test mode to validate the XML file. This parameter does not create, modify,
or delete any entries in the /config/provisioning_tag object.

Tip:

To avoid load errors based on XML content problems, run the utility with this option
before loading data into the database.

-h
Displays help information for using this utility.

pin_config_provisioning_tags_file
The name and location of the file that defines provisioning tags. The default
pin_config_provisioning_tags.xml file is in BRM_home/sys/data/config. The utility can
take any XML file name as a parameter if the file's contents conform to the appropriate
schema definition.

Note:

The file must be in the same directory as the business_configuration.xsd file.

If you do not run the utility from the directory in which the file is located, you must include the
complete path to the file, for example:

load_config_provisioning_tags BRM_home/sys/data/config/pin_config_provisioning_tags.xml

Validity Checks

The utility validates the XML file against rules defined in the business_configuration.xsd file.
This file resides in the BRM_home/sys/data/config directory.

The utility validates the following:

• The service name length is from 1 to 1,023 characters.

• The service names listed in the file are unique.

Results

If load_config_provisioning_tags doesn't notify you that it was successful, look in the log file
(normally default.pinlog) for error messages. The log file is located in the directory from which
the utility was started or in a directory specified in the pin.conf configuration file.

Note:

You must restart the Connection Manager (CM) to make new provisioning tags
available.

Chapter 58
load_config_provisioning_tags

58-5

load_localized_strings

Note:

Currently, localization is not supported in BRM.

Use this utility to load localized strings into the BRM database. This utility reads localized
strings from various customizable files and stores them as /strings objects in the BRM
database. These files include error code files, locale description files, reason code files, and a
variety of other files.

Note:

Use only one locale for each type of file.

For information on modifying and loading localized string files, see "Localizing and Customizing
Strings".

Caution:

When loading reason codes from the reasons.locale file, load_localized_strings
also loads information from this file into the /config/map_glid object. If customized to
specify services and event types for event-level adjustments, the utility also loads
information into the /config/reason_code_scope object. While the utility doesn't
overwrite existing strings in the /strings object unless you direct it to, it does
overwrite the /config/reason_code_scope and /config/map_glid objects.

Note:

To connect to the BRM database, the load_localized_strings utility needs a
configuration file in the directory from which you run the utility. See "Connecting BRM
Utilities" in BRM System Administrator's Guide.

Location

BRM_home/data/config

Syntax

load_localized_strings [-v] [-f] [-h] filename.locale

Chapter 58
load_localized_strings

58-6

Parameters

-v
Displays information about successful or failed processing as the utility runs.
load_localized_strings any_other_parameter –v > filename.log

-f
Forces strings to be stored in the BRM database, overwriting localized strings with the same
IDs. If you do not use -f, string objects are not stored when localized strings with the same IDs
already exist.

Note:

This parameter has no effect on either the /config/reason_code_scope or /config/
map_glid object. These objects are always completely overwritten by the utility.

-h
Displays help about using the load_localized_strings utility.

filename.locale
The name and location of the file that contains the localized strings.

• For sample BRM files errors, locale_desc, and reasons, see "Sample Files".

• locale is the BRM locale, based on ISO-639 and ISO-3166 standards.

Tip:

If you copy the filename.locale file to the same directory from which you run the
load_localized_strings utility, you do not have to specify the path or the file
name.

Results

If the load_localized_strings utility doesn't notify you that it was successful, look in the
load_localized_strings.log file to find any errors. The log file is either in the directory from
which the utility was started, or in a directory specified in the configuration file.

Sample Files

Use the following American English files as examples of how to set up localized or customized
error message, locale description, and reason code files. The following files are loaded into the
BRM database when you install BRM:

• errors.en_US in BRM_home/sys/msgs/errorcodes

• locale_descr.en_US in BRM_home/sys/msgs/localedescr

• reasons.en_US in BRM_home/sys/msgs/reasoncodes

load_pin_config_business_type
Self-Care Manager uses business type definitions to display the appropriate entry fields for an
account.

Chapter 58
load_pin_config_business_type

58-7

Using the load_pin_config_business_type Utility

Use this utility to load updates to the business types defined in the BRM_home/data/config/
pin_config_business_type file into the/config/business_type object in the BRM database.
When you load new business type definitions, you overwrite the old /config/business_type
object.

You must restart the Connection Manager (CM) after running this utility.

Note:

If /config/business_type isn't loaded, the value for PIN_FLD_BUSINESS_TYPE
included in the/account object at account creation must either be zero or not
included in the input flist. Otherwise, PCM_OP_CUST_POL_VALID_BILLINFO
returns a validation error.

Examples of Business Type Definitions

You can append your own business type definitions to the end of the list of definitions provided
in pin_config_business_type, or create a new definition file. The file must include a
0 "Unknown business type" entry. Keep the current entries of 1 "Consumer" and
2 "Business" in place and append your new entry after them.

The format for each entry is an integer value plus an associated quoted string with a semicolon
at the end of the statement. The length of the string is limited to 1024 characters. Multi-line
string entries are valid as long as there is a closing quote before the carriage return and an
opening quote on the following line, for example:

0 "Unknown business type";
1 "Consumer";
2 "Business";
3 "This is a valid quoted string entry "
 "that spans more than one line";

There can be only one quoted string associated with each integer. The string description is not
used for validation, but provides a way to record the meaning of each integer value.

To add a business type definition, use a text editor to open the pin_config_business_type file
and follow the guidelines provided in the comment section to add your new value to the end of
the existing definitions. For example, for an employee account, you might want the Account
Creation wizard to display a field for the CSR to enter an employee ID number. To add the new
value to the/config/business_type object for an employee business type, add it to the end of
the existing definitions in the pin_config_business_type file:

0 "Unknown business type";
1 "Consumer";
2 "Business";
3 "Employee";

Location

BRM_home/data/config

Syntax

load_pin_config_business_type [-d] [-v] [-?] filename

Chapter 58
load_pin_config_business_type

58-8

Parameters

-d
Writes error information for debugging purposes to the utility log file. By default, the file is
located in the same directory as the utility and is called default.pinlog. You can specify a
different name and location in the Infranet.properties file.

-v
Displays information about successful or failed processing as the utility runs.

-?
Displays the syntax and parameters for this utility.

filename
The file containing the business type definitions, typically, BRM_home/data/config/
pin_config_business_type.

Results

Table 58-2 lists the possible completion values this utility returns. The returned value is saved
in the default.pinlog file:

Table 58-2 load_pin_config_business_type Returned Values

Value Description

0 success

1 bad flag

2 error parsing input file (default is pin_config_business_type)

3 error opening PCM connection

4 error opening transaction

5 error deleting old /config/business_type object

6 error creating new /config/business_type object

7 error committing transaction

load_pin_device_permit_map
Use this utility to load device-to-service mapping information into the BRM database.

You use a mapping file to define which service types can be associated with a particular device
type. A sample file is provided as BRM_home/sys/data/config/pin_device_permit_map.

After defining device-to-service mappings, you use the load_pin_device_permit_map utility to
load the mapping data into a /config/device_permit_map object.

Note:

You must load the mapping data into the database and restart the CM before you can
use device management features. Because device management configuration data is
always customized, it is not loaded during BRM installation.

Chapter 58
load_pin_device_permit_map

58-9

The load_pin_device_permit_map utility shares a configuration file with the
load_pin_device_state utility. This file is generated during installation and is located in
BRM_home/apps/device_management/Infranet.properties.

See "Connecting BRM Utilities" in BRM System Administrator's Guide for more information
about configuration files.

Location

BRM_home/bin

Syntax

load_pin_device_permit_map [-v] [-d] map_file

Parameters

-v
Displays information about successful or failed processing as the utility runs.

-d
Writes error information for debugging purposes to the utility log file. By default, the file is
located in the same directory as the utility and is called default.pinlog. You can specify a
different name and location in the Infranet.properties file.

map_file
The name and location of the file that contains the device-to-service mapping data. A sample
file is supplied as BRM_home/sys/data/config/pin_device_permit_map. You can modify this
file or create a new one.
The file includes lines specifying the device type (such as /device/number) and the service
types (such as /service/telco/gsm/telephony) that can be associated with it. In this example,
four service types can be associated with /device/number.

/device/number :/service/telco/gsm/telephony
 :/service/telco/gsm/sms
 :/service/telco/gsm/fax
 :/service/telco/gsm/data

The sample file includes additional information about the correct syntax for entries.

Results

If the load_pin_device_permit_map utility doesn't notify you that it was successful, look in the
log file (normally default.pinlog) for error messages. The log file is located in the directory
from which the utility was started, or in a directory specified in the Infranet.properties
configuration file.

load_pin_device_state
Use this utility to load state-change definitions for devices into the BRM database.

You use a state change definition file to define, which state changes are valid and which policy
opcodes to call for each state change. A sample file is provided as BRM_home/sys/data/
config/pin_device_state.

After defining the state changes, you run the load_pin_device_state utility to load the
definitions into the database as a /config/device_state object.

Chapter 58
load_pin_device_state

58-10

Note:

You must load the state change definitions into the database and restart the
Connection Manager before you can use device management features. Because
device management configuration data is always customized, it is not loaded during
BRM installation.

You create a single /config/device_state object for that device type by using the root login.

The load_pin_device_state utility shares a configuration file with the
load_pin_device_permit_map utility. This file is generated during installation and is located in
BRM_home/apps/device_management/Infranet.properties.

When you enter state change information into the state change definition file, you must refer to
the localized text strings that describe the valid states for a particular device type. You must
define these text strings and load them into the database by using the load_localized_strings
utility. A sample localized strings file for device states is located in BRM_home/sys/msgs/
device_states/device_states.en-US.

Location

BRM_home/bin

Syntax

load_pin_device_state [-v] [-d] state_change_file

Parameters

-v
Displays information about successful or failed processing as the utility runs.

-d
Writes error information for debugging purposes to the utility log file. By default, the file is
located in the same directory as the utility and is called default.pinlog. You can specify a
different name and location in the Infranet.properties file.

state_change_file
The name and location of the state change definitions file, where device represents the device
type. For example, the default file for Number Management is pin_device_state_num. Each
device type must have its own file.
A sample state change definition file is provided in BRM_home/sys/data/config/
pin_device_state.
Use this syntax for entries:

object_type

device_type

state_id: state_type: strid_id: string_ver:opcode_num:flags
next_id1: opcode_num1:flags1
next_id2: opcode_num2:flags2

• object_type

A subclass of /config/device_state, for example /config/device_state/sim. The object
type must be the first non-comment line in the file. Only one object type can be specified.

Chapter 58
load_pin_device_state

58-11

• device_type

The device type, for example /device/sim. The device type must be the second non-
comment line in the file. Only one device type can be specified.

• state_id

An integer state ID, such as 0, 1, 2, and so on. State IDs can be freely assigned, except for
0, which is reserved for the Raw state.

• state_type

An integer representing the state type to which state_id belongs. The state type
determines the valid behaviors of states of that type. There are four possible values:

– 0 (RAW): Includes the state that marks the beginning of the device life cycle. Only one
state can be of this type. States of type RAW can transition only to states of type INIT.
Device objects cannot be saved in the Raw state.

– 1 (INIT): Includes all the states in which the device can be saved immediately after its
creation. States of type INIT can transition to states of type INIT, NORMAL, or END.

– 2 (NORMAL): Includes all the working states between INIT and END. States of type
NORMAL can transition to INIT states, other NORMAL states, and END states.

– 3 (END): Includes all the terminal states of the life cycle. Devices cannot be
transitioned from states of this type.

• str_id

ID of the state's localized text string in /string. You must load these text strings into the
database by using a text file and the load_localized_strings utility.

• str_version

Version number of the state's localized text string in /string.

• opcode_num

The opcode number of the first policy opcode to be called during a transition from state_id.
Device opcode numbers are specified in the device.h file. This file is located in
BRM_home/include/ops directory.

• flags

Flags to be used when calling the opcode specified by opcode_num. Flags are listed in
the pin_device.h file and explained in the opcode documentation.

• next_idx

An integer state ID that specifies a device state to which state_id can transition. Any
integer value is allowed except 0, which is reserved for the Raw state.

• opcode_numx

Specifies the policy opcode called just after the state change to next_idx is complete.
Device opcode numbers are specified in the device.h file. This file is located in
BRM_home/include/ops directory.

• flagsx

Flags to be used when calling the opcode specified by the matching opcode_numx. Flags
are listed in the pin_device.h file and explained in the opcode documentation.

The sample state change definitions file includes additional information about the correct
syntax for entries. Its location is BRM_home/sys/data/config/pin_device_state.

Chapter 58
load_pin_device_state

58-12

Results

If the load_pin_device_state utility doesn't notify you that it was successful, look in the log file
(normally default.pinlog) for error messages. The log file is located in the directory from which
the utility was started, or in a directory specified in the Infranet.properties configuration file.

The utility fails if it detects duplicate state IDs in the state change definitions file. It also fails if
the file contains more than one object or device type entry.

load_pin_excluded_logins
Use this utility to load a list of service types that identify users through alias names rather than
service logins.

You specify which service types identify users through alias names in the BRM_home/sys/
data/config/pin_excluded_logins.xml file. You then load the file into the /config/
login_exclusion object in the BRM database.

When you run the utility, the pin_excluded_logins.xml and business_configuration.xsd files
must be in the same directory. By default, both files are in BRM_home/sys/data/config.

After running this utility, you must stop and restart the Connection Manager (CM).

Note:

To connect to the BRM database, the load_pin_excluded_logins utility needs a
configuration file in the directory from which it is run. See "Connecting BRM Utilities"
in BRM System Administrator's Guide.

Location

BRM_home/bin

Syntax

load_pin_excluded_logins [-v] [-d] [-t] [-h] xml_file

Parameters

-v
Displays information about successful or failed processing as the utility runs.

-d
Creates a log file for debugging purposes. Use this parameter for debugging when the utility
seemed to run without error but the data was not loaded into the database.

-t
Runs the utility in test mode to validate the XML file. This parameter does not create, modify,
or delete any entries in the /config/login_exclusion object.

Chapter 58
load_pin_excluded_logins

58-13

Tip:

To avoid load errors based on XML content problems, run the utility with this option
before loading data into the database.

-h
Displays help information for using this utility.

xml_file
The name and location of the XML file. The default XML file is BRM_home/sys/data/config/
pin_excluded_logins.xml, but the utility can take any XML file name as a parameter as long
as the file's contents conform to the appropriate schema definition.
If you copy the file to the same directory from which you run the load utility, specify only the file
name. If you run the command in a different directory from where the file is located, you must
include the entire path for the file.

Note:

The file must be in the same directory as the business_configuration.xsd and
pin_excluded_logins.xml files.

Validity Checks

The utility validates the XML file against rules defined in the pin_excluded_logins.xsd file.
This file resides in the BRM_home/sys/data/config directory, and you must point to it through
a business_configuration.xsd file in the directory that contains your working XML file.

The utility validates the following:

• The service name length is from 1 to 1,023 characters.

• The service names listed in the file are unique.

Results

If the load_pin_excluded_logins utility doesn't notify you that it was successful, look in the log
file (normally default.pinlog) for error messages. The log file is located in the directory from
which the utility was started or in a directory specified in the pin.conf configuration file.

load_pin_order_state
Use this utility to load state-change definitions for orders into the BRM database.

You define which state changes are valid and which policy opcodes to call for each state
change in a state change definition file. A sample file is provided as BRM_home/sys/data/
config/pin_order_state.

After defining the state changes, you use the load_pin_order_state utility to load the
definitions into the database as a /config/order_state object.

Chapter 58
load_pin_order_state

58-14

Note:

You must load the state change definitions into the database and restart the CM
before you can use order management features. Because order management
configuration data is always customized, it is not loaded during BRM installation.

You create a single /config/order_state object for that order type by using the root login.

When you enter state change information into the state change definition file, you must refer to
the localized text strings that describe the valid states for a particular order type. You must
define these text strings and load them into the database by using the load_localized_strings
utility. A sample localized strings file for order states is located in BRM_home/sys/msgs/
order_states/order_states.en-US.

Location

BRM_home/bin

Syntax

load_pin_order_state [-v] [-d] state_file_order

Parameters

-v
Displays information about successful or failed processing as the utility runs.

-d
Writes error information for debugging purposes to the utility log file. By default, the file is
located in the same directory as the utility and is called default.pinlog. You can specify a
different name and location in the Infranet.properties file.

state_file_order
The name and location of the state change definitions file, where order represents the order
type. For example, for Number Management, the file could be pin_order_state_num. Each
order type must have its own file.
A sample state change definition file is provided in BRM_home/sys/data/config/
pin_order_state.
Use this syntax for entries:

object_type

order_type

state_id: state_type: strid_id: string_ver
 : next_id1
 : next_id2

• object_type

A subclass of /config/order_state, for example /config/order_state/sim. The object type
must be the first non-comment line in the file. Only one object type can be specified.

• order_type

The order type, for example /order/sim. The order type must be the second non-comment
line in the file. Only one order type can be specified.

Chapter 58
load_pin_order_state

58-15

• state_id

An integer state ID, such as 0, 1, 2, and so on. State IDs can be freely assigned, except for
0, which is reserved for the Raw state.

• state_type

An integer representing the state type to which state_id belongs. The state type
determines the valid behaviors of states of that type. There are four possible values:

– 0 (RAW): Includes the state that marks the beginning of the order life cycle. Only one
state can be of this type. States of type RAW can transition only to states of type INIT.
Order objects cannot be saved in raw state.

– 1 (INIT): Includes all the states in which the order can be saved immediately after its
creation. States of type INIT can transition to states of type INIT, NORMAL, or END.

– 2 (NORMAL): Includes all the working states between INIT and END. States of type
NORMAL can transition to INIT states, other NORMAL states, and END states.

– 3 (END): Includes all the terminal states of the life cycle. Orders cannot be transitioned
from states of this type.

• str_id

ID of the state's localized text string in /string. You must load these text strings into the
database via a text file and the load_localized_strings utility.

• str_version

Version number of the state's localized text string in /string.

• next_idx

An integer state ID that specifies a order state to which state_id can transition. Any integer
value is allowed except 0, which is reserved for Raw state.

The sample state change definitions file includes additional information about the correct
syntax for entries. Its location is BRM_home/sys/data/config/pin_order_state.

Results

If the load_pin_order_state utility doesn't notify you that it was successful, look in the log file
(normally default.pinlog) for error messages. The log file is located in the directory from which
the utility was started, or in a directory specified in the Infranet.properties configuration file.

The utility fails if it detects duplicate state IDs in the state change definitions file. It also fails if
the file contains more than one object or order type entry.

parse_custom_ops_fields
Use this BRM Perl script to parse include files for custom fields and opcodes and to generate
memory-mappable files that extend the opcode and field name-to-number mapping tables.
This allows you to use custom fields and opcodes by using their name or number in
applications.

Note:

You can define opcodes and fields without including them in the mapping tables;
however, you cannot use them in client applications or testnap by using their
symbolic names instead of numbers.

Chapter 58
parse_custom_ops_fields

58-16

The parse_custom_ops_fields script reads the specifications of opcodes and fields from the
input header file and creates corresponding entries in the output memory-mapped file or
header file.

The script also generates a Java class for each field. You must compile each class with
JavaPCM.jar in the CLASSPATH. You can either include the CLASS files in a JAR file, or
build them in a base directory and leave them there. Then you must add the JAR file or the
base directory to the CLASSPATH.

If you build the class files in the base directory, make sure the base directory matches the
package name. For example, if the java_package is com.portal.classFiles, then the base
directory must be /com/portal/classFiles.

For custom fields, the script creates a properties file in the java_package directory, named
InfranetPropertiesAdditions.properties. You must append this file to your
Infranet.properties file.

Location

BRM_home/bin

Syntax

parse_custom_ops_fields -L language -I input -O output -P java_package

Parameters

language
The BRM API used. It can be pcmc (for PCM C), or pcmjava (for Java PCM).

Note:

perlpcmif is a wrapper API for PCM C. If you run the script with the pcmc option,
you can call custom opcodes in your Perl PCM-based client applications.

input
The header file you create for your custom opcodes and fields.

output
The memory-mapped file or directory for the output of the script. If language is pcmjava, then
output must be a directory having some correspondence with the Java package. For example,
if the java_package is in com.portal.classFiles, then output must be f:/mysource/com/
portal/classFiles.

java_package
The Java package, where you want to put the generated classes.

pin_adu_validate
Use this utility to dump and validate information for one or more accounts from the BRM
database.

For more information on using pin_adu_validate utility, see "Validating Account Data" in BRM
Managing Customers.

Chapter 58
pin_adu_validate

58-17

Note:

To connect to the BRM database, this utility needs a configuration file in the directory
from which you run it. The pin.conf file for this utility is in BRM_home/sys/
diagnostics/pin_adu_validate. See "Connecting BRM Utilities" in BRM System
Administrator's Guide.

Location

BRM_home/sys/diagnostics/pin_adu_validate

Syntax

pin_adu_validate [-dump [-validate]] [-report]

Parameters

-dump
Uses the account search flist in the input file configured in the pin_adu_validate configuration
file (pin.conf) to search for objects associated with the accounts in the BRM database and
dumps the object data into an output file.

-validate
Performs the predefined validations enabled in the pin_adu_validate configuration file
(pin.conf) file and any custom validations defined in the PCM_OP_ADU_POL_VALIDATE
policy opcode.

Note:

To perform validation, you must specify both the -dump and -validate options at the
same time.

-report
Searches for account information in the BRM database using the account search flist in the
input file configured in the pin_adu_validate configuration file (pin.conf) file and provides
statistical data about the accounts, such as the number of object instances found for each
object specified in the pin.conf file. The statistical data is written to the Connection Manager
(CM) log file.

Note:

pin_adu_validate uses the date ranges configured in the pin.conf file to provide
statistics for most commonly updated objects. See "Limiting Dump Information by
Specifying a Date Range" in BRM Managing Customers.

Sample output:

Number of /account object instances found for the account [82828]: 1
Number of /service/email object instances found for the account [82828]: 1
Number of /service/ip object instances found for the account [82828]: 1
Number of /payinfo/cc object instances found for the account [82828]: 1

Chapter 58
pin_adu_validate

58-18

pin_bus_params
Use the pin_bus_params utility to retrieve and load configurable business parameters for the /
config/business_params objects in the BRM database. These parameters enable optional
BRM features or control things like the tracking level for write-off reversals, whether to validate
exclusions for discounts, and so forth.

You use this utility to perform two tasks:

• Retrieve the contents of a /config/business_params object and convert its contents into
XML for easy modification.

• Load a modified XML file containing a parameter class and its associated parameters into
the appropriate /config/business_params object in the BRM database.

The utility retrieves the /config/business_params objects, converts them to XML, and writes
them into the BRM_home/sys/data/config/pin_bus_params_ParameterClassName.xml.out
file. The utility also loads the objects into BRM from this file, converting them back into the
format required by the object. You can optionally place the file in a different location, but if you
do, you must also copy the bus_params_conf.xsd file from the BRM_home/xsd directory to
the new location and modify the file to include the correct relative paths to the
bus_params_ParameterClassName. xsd files.

You can use another utility, pin_cfg_bpdump, to dump the contents of all business
parameters in XML format. You can direct the XML output to a file or to a utility or application.
See "Dumping Business Parameters in XML Format" in BRM System Administrator's Guide.

Caution:

When loading business parameters, the pin_bus_params utility overwrites the /
config/business_params object for the parameter class that appears in the XML
file. If you are updating some of the parameters in the class, you cannot load the new
parameters only. You must load a complete set of parameters for the class.

The pin_bus_params utility is a perl script. To run the utility, you must set path to perl in your
environment.

Note:

To connect to the BRM database, the pin_bus_params utility needs a configuration
file in the directory from which you run the utility. See "Connecting BRM Utilities" in
BRM System Administrator's Guide.

Location

BRM_home/bin

Syntax

For retrieving a /config/business_params object for a parameter class:

Chapter 58
pin_bus_params

58-19

pin_bus_params [-h] -r ParameterClassTag bus_params_ParameterClassName.xml

For loading a /config/business_params object from a specified file:

pin_bus_params [-h] bus_params_ParameterClassName.xml

Parameters

-r
Retrieves the contents of a /config/business_params object and converts it to XML for
editing.

-h
Displays the syntax and parameters for this utility.

ParameterClassTag
Specifies the parameter class tag for the parameter class you are retrieving. This parameter is
case sensitive and uses the following naming convention:
BusParamsObjectClassName
Where ObjectClassName is the name of the class in the /config/business_params object.
For example, the object class name for the /config/business_params object that contains the
business parameters that control billing is billing, so the parameter class tag is
BusParamsBilling. This parameter is case sensitive.

bus_params_ParameterClassName.xml
If you use the - r parameter, this parameter specifies the name and location of the XML output
file created by the utility. This file contains the business parameters for the class identified in
the ParameterClassName part of the file name.
If you do not use the - r parameter, this parameter specifies the name and location of the XML
input file that you are loading into the /config/business_params object. This file contains the
business parameters for the class identified in the ParameterClassName part of the file name.
BRM overwrites the /config/business_params object that class.
To specify a different directory, include the full path and file name, as in the following example
that loads XML file contents into the /config/business_params object for the billing business
parameters:

pin_bus_params C:\param_conf\bus_params_billing.xml

Note:

If you are loading parameters from a directory other than BRM_home/sys/data/
config, the directory you are using must contain a business_configuration.xsd
file. The utility uses the bus_params_ParameterClassName.xsd file to validate the
XML file.

Validity Checks

The utility checks XML validity against rules defined in the
bus_params_ParameterClassName.xsd file. This file resides in the BRM_home/sys/data/
config directory, and you must point to it through a bus_params_config.xsd file in the
directory that contains your working XML file.

The validity check ensures that the XML meets these standards:

• The parameter class name in the file is unique.

• The parameter class contains at least one parameter.

Chapter 58
pin_bus_params

58-20

Results

The pin_bus_params utility notifies you when it successfully creates or modifies the /config/
business_params object. Otherwise, look in the default.pinlog file for errors. This file is
either in the directory from which the utility was started, or in a directory specified in the utility
configuration file.

If you use the utility to load a /config/business_params object, you can display the object by
using the Object Browser, or use the robj command with the testnap utility. See "Reading an
Object and Writing Its Contents to a File". This example shows an element in the /config/
business_params object:

0 PIN_FLD_POID POID [0] 0.0.0.1 /config/business_params 10830 0
0 PIN_FLD_CREATED_T TSTAMP [0] (1083892760) Thu May 06 18:19:20 2004
0 PIN_FLD_MOD_T TSTAMP [0] (1083892760) Thu May 06 18:19:20 2004
0 PIN_FLD_READ_ACCESS STR [0] "G"
0 PIN_FLD_WRITE_ACCESS STR [0] "S"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /account 1 0
0 PIN_FLD_DESCR STR [0] "Business logic parameters for AR"
0 PIN_FLD_HOSTNAME STR [0] "-"
0 PIN_FLD_NAME STR [0] "ar"
0 PIN_FLD_PROGRAM_NAME STR [0] "-"
0 PIN_FLD_VALUE STR [0] ""
0 PIN_FLD_VERSION STR [0] ""

...

0 PIN_FLD_PARAMS ARRAY [2] allocated 4, used 4
1 PIN_FLD_DESCR STR [0] "Enable/Disable payment suspense management.
 The parameter values can be 0 (disabled),
 1 (enabled). Default is 0 (disabled)."
1 PIN_FLD_PARAM_NAME STR [0] "payment_suspense_enable"
1 PIN_FLD_PARAM_TYPE INT [0] 1
1 PIN_FLD_PARAM_VALUE STR [0] "1"

Note:

To connect to the BRM database, you must restart the Connection Manager (CM) to
activate new business parameters.

pin_cfg_bpdump
Use the pin_cfg_bpdump utility to dump BRM business parameters in XML format. You can
direct the output to a file or to another utility or application, such as a diagnostic application.

For more information, see "Dumping Business Parameters in XML Format" in BRM System
Administrator's Guide.

Note:

To connect to the BRM database, the pin_cfg_bpdump utility needs a configuration
file in the directory from which you run the utility. See "Connecting BRM Utilities" in
BRM System Administrator's Guide.

Chapter 58
pin_cfg_bpdump

58-21

Location

BRM_home/diagnostics/pin_cfg_bpdump

Syntax

pin_cfg_bpdump

Parameters

This utility has no parameters.

Results

The pin_cfg_bpdump utility outputs in XML format the contents of all /config/
business_params objects.

The pin_cfg_bpdump utility does not produce pinlog notifications of success or failure. If
there is an error, the utility produces no output. You can refer to the CM and DM logs for
information about the problem.

pin_crypt_app
Use this utility to encrypt files and plaintext passwords, generate encryption keys, load keys
into memory, store root keys in Oracle wallets, and automatically modify the Oracle Data
Manager (DM) pin.conf file. This utility supports both the OZT and AES encryption methods.

For more information, see:

• Encrypting Data

• About AES Encryption

• About Encrypting Passwords

Location

BRM_home/bin

Syntax

To encrypt files and plaintext passwords in AES:

pin_crypt_app -enc [-f Filename]

To generate an encrypted AES key:

pin_crypt_app -genkey [-key Key]

To generate a 256-bit encrypted key from an AES key:

pin_crypt_app -genkey [-key AES_key]

To store configuration data in the wallet:

pin_crypt_app -setconf -wallet clientWalletLocation -program programName -parameter
configEntry -value value

To retrieve configuration data from the client wallet:

Chapter 58
pin_crypt_app

58-22

pin_crypt_app -getconf -wallet clientWalletLocation -program programName -parameter
configEntry

To generate or modify a root key:

pin_crypt_app -genrootkey

To encrypt files and plaintext using the Oracle ZT PKI algorithm:

pin_crypt_app -useZT -enc [-f Filename]

Parameters

-enc [-f Filename]
Encrypts files, plaintext, and plaintext passwords in AES format. When -enc is used alone, the
utility prompts you for the password or plaintext to encrypt.
Include the -f Filename option to encrypt the specified file.

-genkey
Generates a 256-bit encrypted AES key. BRM generates a random AES key internally to
generate the encrypted AES key. Use one or both of these options with the parameter:

• -key: The utility generates a 256-bit encrypted AES key. Key is the 256-bit key in
hexadecimal notation (64 hexadecimal characters).

• -update_dm_conf: The utility adds the new key to the BRM_home/sys/dm_oracle/
pin.conf file.

If this is the first time that an AES key has been created, stop and restart the DM when
prompted by the utility.

-key AES_key
Generates a 256-bit encrypted key from the specified AES key. Use this parameter if you
already have an AES key and do not want BRM to generate one internally.

-genrootkey
Generates or modifies a root key and stores it in a root key wallet. The root key is used for
encryption using the Oracle ZT PKI–approved encryption algorithm.
For more information on the Oracle ZT PKI encryption algorithm, see "Configuring the Data
Manager for Oracle ZT PKI Encryption".

-useZT
Uses the Oracle ZT PKI algorithm to encrypt files and plaintext and to generate a key. Use the
following options with this parameter:

• -enc -f Filename: The utility uses the Oracle ZT PKI encryption algorithm to encrypt the
specified file. Filename is the name of the file to encrypt.

• -enc: After prompting the user for the plaintext, the utility uses the Oracle ZT PKI
encryption algorithm to encrypt the specified text.

• -genkey -key Key: The utility uses the Oracle ZT PKI encryption algorithm to generate a
256-bit encrypted key. Key is the 256-bit key in hexadecimal notation (64 hexadecimal
characters).

-wallet clientWalletLocation
Specifies the path to the Oracle wallet for setting or getting the configuration values.

-parameter ConfigEntry
Specifies the configuration entry in the wallet that you want to set or get the values for.

Chapter 58
pin_crypt_app

58-23

-value value
Specifies the value that must be set in the Oracle wallet.

-program
Specifies the name of the program that is storing the configuration entry, such as dm.

-help
Displays the syntax and parameters for this utility.

Results

The pin_crypt_app utility returns the output when the operation is successful. It does not
return errors.

pin_deploy
Transport definitions for storable classes and fields from one BRM server to another. This utility
reads storable class and field definitions from a Portal Object Definition Language (PODL) file
and loads them into the BRM data dictionary. This utility also exports storable class and field
definitions from the BRM data dictionary to a PODL file.

Note:

Before attempting to create new storable classes, verify that enough space is
available in the BRM database. This utility can not test for available space. If the
available space is exhausted before deployment is complete, new storable classes
might be in an inconsistent state.

See "Deploying Custom Fields and Storable Class Definitions".

Location

BRM_home/bin

Commands

There are five commands for pin_deploy:

• Verify

• Create

• Replace

• Class

• Field

To print the syntax and parameters for this utility, type -h or -help.

Verify

Connect to BRM server, determine changes to be made, and report any conflicts. May
alternatively accept PODL from stdin.

pin_deploy verify [file_one file_two ... file_N]

Example:

Chapter 58
pin_deploy

58-24

pin_deploy verify myobj.podl

Connects to the default database schema specified in the pin.conf file, determines the
changes required for creating the storable class and field definitions contained in the PODL
file, and reports conflicts.

Verify for dm_invoice

If your BRM installation includes a separate dm_invoice database, you can use two
parameters with the verify command:

• Use the -d switch to connect to a dm_invoice database for a BRM installation that initially
used a dm_oracle database schema to store /invoice objects. If you use the -d switch,
specify the target database schema by database number. Omit the -d switch and database
number to connect to the default database schema.

• Use the -e switch to print debugging information to the log file.

pin_deploy verify [-de] [target_db] [file_one file_two ... file_N]
Example:

pin_deploy verify -de 0.0.6.1 myobj.podl

Connects to the dm_invoice database 0.0.6.1, determines the changes required for creating
the storable class and field definitions contained in the PODL file, reports conflicts, and prints
debugging information to the log file.

Create

Load storable class and field definitions into the data dictionary. Succeeds only if there are no
conflicts. If there are conflicts, they are reported and no action occurs. May alternatively accept
PODL from stdin.

pin_deploy create [file_one file_two ... file_N]

Example:

pin_deploy create myobj.podl

Connects to the default database schema specified in the pin.conf file, creates the storable
class and field definitions contained in the PODL file, and prints debugging information to the
log file. If conflicts are encountered, the operation fails without taking any action.

Create for dm_invoice

If your BRM installation includes a separate dm_invoice database, you can use two
parameters with the create command:

• Use the -d switch to connect to a dm_invoice database for a BRM installation that initially
used a dm_oracle database schema to store /invoice objects. If you use the -d switch,
specify the target database schema by database number. Omit the -d switch and database
number to connect to the default database schema.

• Use the -e switch to print debugging information to the log file.

pin_deploy create [-de] [target_db] [file_one file_two ... file_N]
Example:

pin_deploy create -de 0.0.6.1 myobj.podl

Chapter 58
pin_deploy

58-25

Connects to the dm_invoice database 0.0.6.1, creates the storable class and field definitions
contained in the file, and prints debugging information to the log file. If conflicts are
encountered, the operation fails without taking any action.

Replace

Load storable class and field definitions into the data dictionary. Overwrites storable class and
field definitions even if conflicts exist. The SQL table and column names for storable classes
can not be overwritten. When loading field definitions, only the field description attribute is
overwritten. May alternatively accept PODL from stdin.

pin_deploy replace [file_one file_two ... file_N]

Example:

pin_deploy replace myobj.podl

Connects to the default database schema specified in the pin.conf file, creates the storable
class and field definitions contained in the PODL file, and prints debugging information to the
log file. If conflicts occur, existing definitions are overwritten.

Replace for dm_invoice

If your BRM installation includes a separate dm_invoice database, you can use two
parameters with the replace command:

• Use the -d switch to connect to a dm_invoice database for a BRM installation that initially
used a dm_oracle database schema to store /invoice objects. If you use the -d switch,
specify the target database schema by database number. Omit the -d switch and database
number to connect to the default database schema.

• Use the -e switch to print debugging information to the log file.

pin_deploy replace [-de] [target_db] [file_one file_two...file_N]
Example:

pin_deploy replace -de 0.0.6.1 myobj.podl

Connects to the dm_invoice database 0.0.6.1, creates the storable class and field definitions
contained in the PODL file, and prints debugging information to the log file. If conflicts occur,
existing definitions are overwritten.

Class

Export storable class definitions from a BRM server in PODL format. Can specify any number
of storable classes on command line. If no storable classes are specified, then all storable
classes are exported.

pin_deploy class [-mnscp] [class_one class_two ... class_N]

[-m] Export storable class implementation.

[-n] Export storable class interface.

[-s] Include all subclasses of specified storable class.

[-c] Include field definitions for all customer-defined fields within storable classes.

[-p] Include field definitions for all BRM-defined fields within storable classes.

Examples:

Chapter 58
pin_deploy

58-26

pin_deploy class -mn /account /bill

Export definitions for the /account and /bill storable classes from a BRM server in PODL
format. Includes both implementations and interfaces.

pin_deploy class -s /event

Export the /event storable class interface along with all of its subclasses.

Field

Export field definitions from a BRM server in PODL format. May specify any number of fields
by name. If no fields are specified, then all fields will be exported unless the -c or -p
parameters are used.

pin_deploy field [-cp] [field_one field_two ... field_N]

[-c] Include field definitions for all customer-defined fields.

[-p] Include field definitions for all BRM-defined fields.

Examples:

pin_deploy field PIN_FLD_PRODUCTS PIN_FLD_NAMEINFO

Export definitions for the PIN_FLD_PRODUCTS and PIN_FLD_NAMEINFO fields from a BRM
server in PODL format.

pin_deploy field -cp

Export definitions for all customer and BRM-defined fields from a BRM server in PODL format.

pin_uei_deploy
Use this utility to migrate event import templates from one BRM database schema to another.
You use event import templates to load data from log files into BRM as billable events. For
more information, see "Migrating Event Import Templates from One BRM Database to Another"
in BRM Loading Events.

Note:

To connect to the BRM database, the pin_uei_deploy utility needs a configuration
file in the directory from which you run the utility. See "Connecting BRM Utilities" in
BRM System Administrator's Guide.

Location

BRM_home/bin

Syntax

pin_uei_deploy -l|-c|-m|-d|-r|-v
 -t template name -i input_file -o output_file [-h]

Chapter 58
pin_uei_deploy

58-27

Parameters

-t template_name
The name of the template. This parameter is followed by the name of the event import
template that you read, create, delete, or modify (depending on the command).

-i input_file
The input file (event import template) to load into the database schema.

-o output_file
The output file to save on the local system.

-h
Displays the syntax and parameters for this utility.

Commands

• List

• Create

• Modify

• Delete

• Read

• Verbose

List

Lists all event import templates stored in the database schema.

pin_uei_deploy -l

There are no parameters for this command.

Create

Creates the specified event import template.

pin_uei_deploy -t template_name -c -i output_file

Example:

Create an event import template named CDR3 and load it into the database schema:

pin_uei_deploy -t CDR3 -c -i CDRoutput

Note:

If an event import template with the same name exists in the database schema, the
operation fails and pin_uei_deploy logs an error. Delete the existing event import
template first, or overwrite it by using the modify operation.

Modify

Modifies the specified event import template.

Chapter 58
pin_uei_deploy

58-28

pin_uei_deploy -t template_name -m -i output_file

Example:

Load into the database schema an event import template called CDR3 and overwrite the
existing template with the same name:

pin_uei_deploy -t CDR3 -m -i CDRoutput

Delete

Deletes the specified event import template.

pin_uei_deploy -t template_name -d

Example:

Delete the event import template named CDR3:

pin_uei_deploy -t CDR3 -d

Read

Reads the specified event import template from the database schema.

pin_uei_deploy -t template_name -r -o output_file

Example:

Read the event import template named CDR3, and save it to an output file on the local system
named CDRoutput:

pin_uei_deploy -t CDR3 -r -o CDRoutput

Verbose

Displays information about successful or failed processing as the utility runs.

pin_uei_deploy –v any_other_parameter

pin_virtual_time
Use this utility to adjust or display BRM's current time and date, without affecting the operating
system time and date. This utility is useful for testing billing and other time-sensitive functions
in BRM.

For information about using the pin_virtual_time utility, see "Testing Your Price List" in BRM
Configuring Pipeline Rating and Discounting.

Caution:

Use pin_virtual_time only with a test database. You should not change the BRM
system time on a production BRM database.

Chapter 58
pin_virtual_time

58-29

Note:

To test custom client applications that are connected to the CM, you can use
PCM_OP_GET_PIN_VIRTUAL_TIME to get the virtual time that is set by
pin_virtual_time.

Operation

To run BRM with pin_virtual_time enabled:

1. Make sure all BRM components are stopped.

2. Configure all BRM components, via their pin.conf files, to use pin_virtual_time. A file
containing time and date information for the pin_virtual_time utility is created the first time
that pin_virtual_time is run. BRM recommends you designate BRM_home/lib/
pin_virtual_time_file with the -f parameter.

3. Type pin_virtual_time with the -m option to set the mode and value of the time.

Note:

If there are multiple BRM machines, run pin_virtual_time on all of them.

4. Start all BRM components.

5. Perform testing as desired.

6. Between testing stages, adjust the time with pin_virtual_time. You can change modes.

7. After completing testing, stop all BRM components

8. Remove or comment out (with #) the pin_virtual_time entry in the pin.conf files.

9. Perform database cleanup if needed.

Dependencies

All BRM server component pin.conf files must contain the following line to use
pin_virtual_time to set BRM's time:

- - pin_virtual_time BRM_home/lib/pin_virtual_time_file

The pin_virtual_time_file file contains the information that BRM requires to determine the time/
date mode and how to set it.

The pin_virtual_time_file file is mapped into memory by pin_virtual_time when each BRM
component starts up. If different BRM components are running on different machines (for
example, the Connection Manager on one machine and the Data Manager on another), then
pin_virtual_time must be enabled in the pin.conf files on both machines, and whenever
pin_virtual_time is set on one machine it must be set correspondingly on the other
machine(s). Failure to do so may cause BRM to operate incorrectly.

See "Using Configuration Files" in BRM System Administrator's Guide for information on
setting up pin.conf files.

Chapter 58
pin_virtual_time

58-30

Note:

Make sure installation is complete before you put a pin_virtual_time line in the
pin.conf file for your DM.

Syntax

pin_virtual_time [-i interval] [-m mode [time_value] [-y]]
 [-f filename] [-h | -H | -?]

Parameters

By default (without the -m option), pin_virtual_time prints the current pin_virtual_time to
stdout once and then exits.

-i interval
Print the current BRM time every interval seconds to stdout (until interrupted by CTRL C).

-m mode [time_value] [-y]
Set BRM according to mode and time_value:

mode
0 = Use operating system time (normal mode). BRM uses operating system time with no
adjustments.
1 = Use time_value as a constant time (freeze mode). Time is frozen at the specified time until
the pin_virtual_time command is used again to change the time or mode. Use only when
absolutely necessary, because BRM expects time to be moving.
2 = Use time_value as the new time, and keep the clock running (offset mode). Time is
adjusted to the time specified, and then advances one second every second. This is the mode
that should be used for testing.

time_value
Use the format MMDDHHMM[CC]YY[.SS].

-y
Accept backwards movement. Allow the specified time to be before the current
pin_virtual_time (time can be moved backwards).

Caution:

Move time backwards only when rebuilding BRM from scratch. Otherwise, moving
time backwards can cause severe data corruption.

-f filename
Store the pin_virtual_time structure in the designated file and location. BRM recommends
BRM_home/lib/filename. This path and file name must match the path and file name specified
in the pin_virtual_time line in the pin.conf files for each BRM component.

-h, -H, -?
Displays the syntax and parameters for this utility.

Chapter 58
pin_virtual_time

58-31

Results

If the utility doesn't notify you that it was successful, look in the utility log file (default.pinlog) to
find any errors. The log file is either in the directory from which the utility was started, or in a
directory specified in the configuration file.

Examples

Print the current pin_virtual_time setting and mode:

% pin_virtual_time
mode 2 940102477 Sat Oct 16 12:34:37 1999

Print current pin_virtual_time every four seconds:

% pin_virtual_time -i 4
mode 2 940102527 Sat Oct 16 12:35:27 1999
mode 2 940102531 Sat Oct 16 12:35:31 1999
mode 2 940102535 Sat Oct 16 12:35:35 1999
mode 2 940102539 Sat Oct 16 12:35:39 1999
^C
%

Set pin_virtual_time to offset mode 12/31/98 11:30:43:

% pin_virtual_time -m 2 123111301998.43
filename BRM_home/lib/pin_virtual_time_file, mode 2, time: Thu Dec 31 11:30:43 1998

Set pin_virtual_time to normal mode:

% pin_virtual_time -m 0
filename BRM_home/lib/pin_virtual_time_file, mode 0

testnap
The testnap utility enables a developer to manually interact with the BRM server by
establishing a PCM connection with the Connection Manager (CM) and then executing PCM
operations by using that connection. See "Using the testnap Utility to Test BRM".

Dependencies

The testnap utility requires a pin.conf configuration file to connect to your BRM system. You
can either use the CM's pin.conf file, or run testnap from a directory that contains a suitable
pin.conf file, such as BRM_home/sys/test.

The testnap utility relies on POID logins and types to identify the specific account or storable
class to modify. A POID database number is required as a placeholder only.

The correct path to the shared libraries must also be configured. The library path is configured
by default to point to the standard libraries in BRM_home/lib. If the libraries are not in
BRM_home/lib, then you must set the library path environment appropriately.

Syntax

testnap
command [args]

Chapter 58
testnap

58-32

About Buffer Numbers

The testnap utility allocates numerous internal buffers, which are used to store object or flist
fields. Buffers are referenced by integers of the user's choice. Every time a new buffer is
referenced, testnap allocates that new buffer.

• If you do not specify a buffer number for a command that expects one, you will be
prompted for a buffer number.

• The meta keyword causes testnap to display the size of external buffer fields. By default,
the contents of external buffer fields are displayed.

Testnap Commands

• r {<<token [file]} [buf]

Read an flist or object from a file and put it in a testnap buffer. The <<token operator
causes testnap to read from stdin until the token string is read.

• r+ {<<token [file]} [buf]

Read and append flist to existing buf. The <<token operator causes testnap to read from
stdin until the token string is read.

• w [buf] [file]

Write contents of testnap buffer to a file.

• w+ [buf] [file]

Append contents of a testnap buffer to the same file.

• l

List the testnap buffers that are currently in use.

• d [buf]

Display a testnap buffer.

• ! cmds [args]

Run a shell command (for Linux systems only).

• s [buf]

Save an flist or object from the input buffer to a testnap buffer.

• < [file]

Run cmd script.

• p [<property> <value>]

Display or set properties.

• q

Quit this program.

• h, help,?

Print usage help message.

• create {[buf] | [poid]}

Create an object. Run PCM_OP_CREATE_OBJ and print the return flist to stdout. The
poid keyword causes the poid id of the object that is created to be the poid id specified in
the input flist.

Chapter 58
testnap

58-33

• delete {[buf] | [- <db> <type> <id>]}

Delete an object. Run PCM_OP_DELETE_OBJ and print the return flist to stdout. The
poid of the object to be deleted can be specified on the command line.

• robj {[buf] | [- <db> <type> <id>]} [meta]

Read an object. Run PCM_OP_READ_OBJ using either the poid in the flist in buf, or the
poid specified on the command line. Prints the return flist (the contents of the object) to
stdout.

• rflds buf [meta]

Read fields. Run PCM_OP_READ_FLDS using the flist in buf, and print the return flist to
stdout. Each field (or row) in the field list must be in a valid flist format. The values for the
last field are arbitrary, but must be valid for their type. For example, you have to include ""
for STR fields and (some number) for a TSTAMP field. If either of these fields are blank, an
error is returned.

• wflds [buf]

Write fields. Run PCM_OP_WRITE_FLDS and print the return flist to stdout.

• dflds [buf]

Delete fields. Run PCM_OP_DELETE_FLDS and print the return flist to stdout.

• search buf [meta] [count]

Search. Run PCM_OP_SEARCH and print the return flist to stdout. The count operator
sets the PCM_OPFLG_COUNT_ONLY flag, which causes search to return only the
number of matches found by the search. The count is returned as the ELEM_ID of the
RESULTS array on the output flist.

• ssrch buf [meta]

Step-search. Run PCM_OP_STEP_SEARCH and print the return flist to stdout.

• snext buf [meta]

Step-search next. Run PCM_OP_STEP_NEXT to get the next object in a step search, and
print the return flist to stdout.

• send buf

End step-search. Run PCM_OP_STEP_END and print the return flist to stdout.

• gdd {[buf] | [- <db> <type> <id>]}

Get data dictionary. Run PCM_OP_GET_DD and print the return flist to stdout. The poid
can be specified on the command line.

• sdd < flags> [buf]

Set data dictionary. Run PCM_OP_SET_DD and print the return flist to stdout.

• sort buf sort_buf [descending_flag]

Read contents of buf, sort it non-recursively using the template in sort_buf, and print the
sorted flist to stdout. Available on Linux only. The descending flag is optional, with 0 (the
default) indicating ascending order, and any non-zero integer indicating descending order.

Sorting is not implemented for the following:

– POID

– BINSTRS

– BUFFERs

Chapter 58
testnap

58-34

– ERRBUFS

The number of ARRAY elements in the sort specification is ignored. Use 0. Sort
specifications just need valid numbers. The numbers are not necessarily valid or desired
values for the current sort; they are basically required place-holders.

• rsort buf sort_buf [descending_flag]

Recursive sort. Read contents of buf, sort it recursively using the template in sort_buf,
and print the sorted flist to stdout. Available on Linux only. The descending flag is optional,
with 0 (the default) indicating ascending order, and any non-zero integer indicating
descending order.

• open [ro|rw|lock {[buf] | [- <db> <type> <id>]}]

Open transaction. Run PCM_OP_TRANS_OPEN and print the return flist to stdout.

• commit

Commit the current transaction. Run PCM_OP_TRANS_COMMIT and print the return flist
to stdout.

• abort

Cancel the current transaction. Run PCM_OP_TRANS_ABORT and print the return flist to
stdout.

• inc [buf]

Increment one or more fields of an object. Run PCM_OP_INC_FLDS and print the return
flist to stdout.

• noop [buf]

Run non-operational opcode. Run PCM_OP_TEST_LOOPBACK on that database schema
and print the return flist to stdout.

• pass [buf]

Run a pass_thru op to server. Run PCM_OP_PASS_THRU, an extension op that just
sends an flist to a DM that supports it.

• xop op flag buf

Run opcode op with flags set to flag, the contents of buf as the input flist, and print the
sorted flist to stdout.

• id

Print user and session ID.

• echo string

Echo a string.

Error Handling

If an error occurs, the contents of the error buffer (ebuf) which corresponds to the error are
written to stderr.

Error Example 1

Delete attempt with the - argument missing:
pin@demo5-668> testnap
===> database 0.0.0.1 from pin.conf "userid"

delete 0.0.0.1 /account 1

Chapter 58
testnap

58-35

ERROR: bad number "0.0.0.1"
no object to use for delete

Error Example 2

Attempt to read a non-existent object:

robj - 0.0.0.1 /account 11988

PCM_OP_READ_OBJ failed: err 3:PIN_ERR_NOT_FOUND, field 0/16:PIN_FLD_POID,
 loc 4:PIN_ERRLOC_DM, errclass 4:PIN_ERRCLASS_APPLICATION, rec_id 0, resvd 30001

For more information on the error buffer, see "Finding Errors in Your Code".

Examples

For an extensive set of examples, refer to the Examples section of "Using the testnap Utility to
Test BRM".

pin_config_editor
Use the pin_config_editor utility to set or get configuration entries for JAVA PCM client
applications from the client wallet.

Location

BRM_home/bin

Syntax

To store a value in the wallet:

pin_config_editor -setconf -wallet clientWalletLocation -parameter configEntry -value
value

To store a password in the wallet:

pin_config_editor -setconf -wallet clientWalletLocation -parameter configEntry [-pwd]

To retrieve configuration data from the client wallet:

pin_config_editor -getconf -wallet clientWalletLocation -parameter configEntry

To view configuration entries in the client wallet:

pin_config_editor -list -wallet clientWalletLocation

To display the syntax and parameters for this utility:

pin_config_editor [-help]

Parameters

-setconf
Adds or modifies values.

-getconf
Gets values.

Chapter 58
pin_config_editor

58-36

-wallet clientWalletLocation
Specifies the path to the Oracle wallet for setting or getting the configuration values.

-parameter ConfigEntry
Specifies the configuration entry in the wallet that you want to set or get the values for.

-value value
Specifies the value that must be set in the Oracle wallet.

-pwd
Prompts you for the password to be stored in the client wallet. The password that you enter
does not appear on the screen. If you want to store the encrypted password, enter the
encrypted password at the command prompt.

-list
Displays all configuration entries in the wallet.

-help
Displays the syntax and parameters for this utility.

Results

The pin_config_editor utility sets the specified configuration entry and lets users retrieve
configuration values from the client wallet.

Chapter 58
pin_config_editor

58-37

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I Introduction to Customizing BRM
	1 About Customizing BRM
	About Customizing BRM
	Planning Your Customization
	Guidelines for Customizing BRM
	About the BRM Client Access Libraries
	BRM Programming Tools

	2 Implementation Defaults
	Defaults for Offering Packages and Bundles to Customers
	Defaults for Creating Customer Accounts
	Defaults for Login Names and Passwords
	Defaults for Validating Customer Account Creation Information
	Defaults for Validating Payment Information
	Defaults for Displaying and Sending Introductory Messages
	Defaults for Billing
	Defaults for Tax Calculation
	Defaults for Payments and A/R
	Defaults for Maintaining an Audit Trail of BRM Activity

	3 Understanding Flists
	About Flists
	Opcode Input and Output Specifications
	About Creating and Using an Flist
	Adding Information to Flists
	Removing Data (Pointers) from an Flist
	Copying Data from an Flist
	Destroying Flists
	Flist Creation Samples
	Using Compile-Time Flags to Avoid Errors in Flists (Release 15.0.1 or later)

	Flist Management Rules
	Flist Field Memory Management Guidelines
	Handling Errors

	4 Understanding Storable Classes
	About Storable Classes and Objects
	Storable Class Naming and Formatting Conventions
	Subclassing
	About Defining Storable Classes
	Fields Common to All Storable Classes
	Defining New Fields for Storable Classes

	Reading Objects
	Locking Objects when Reading them
	Reading an Entire Object
	Reading Fields in an Object

	Creating Objects
	PCM_OP_CREATE_OBJ Opcode Flags

	Writing Fields in Objects
	PCM_OP_WRITE_FLDS Opcode Flags

	Incrementing Fields in Objects
	Updating Decimal Data Types
	Updating Integer Data Types
	PCM_OP_INC_FLDS Opcode Flags

	Deleting Objects
	Deleting Fields in Objects
	Managing a Large Number of Objects
	Creating a Large Number of Objects
	Editing a Large Number of Objects
	Deleting a Large Number of Objects
	Locking Objects when Editing or Deleting a Large Number of Objects

	Improving Performance when Working with Objects
	Locking Specific Objects
	Disabling Granular Object Locking

	5 Understanding the PCM API
	About the PCM API
	Context Management Opcodes
	Base Opcodes
	Search and Global Search Opcodes

	FM Opcodes
	About the PREP and VALID Opcodes
	Validating Fields by Using Field Validation Editor

	Header Files
	About Opcode Usage
	About Transaction Usage
	Transaction Handling: Required
	Transaction Handling: Requires New
	Transaction Handling: Supports

	Calling PCM Opcodes
	Manipulating Objects in Custom Applications
	Supporting an Older Version of BRM

	6 Accessing Configuration Files and Objects in Custom Code
	Accessing pin.conf Files in Custom Code
	Using /config/business_params Objects
	Adding and Loading New Parameters
	Adding and Loading New Parameter Classes
	Examples of Accessing Business Parameters in Custom Code
	Calling Business Parameters from PCM_OP_PYMT_POL_VALIDATE_PAYMENT
	Calling Business Parameters from PCM_OP_BILL_POL_REVERSE_PAYMENT

	7 Understanding the BRM Data Types
	About the BRM Data Types
	Simple Data Types
	Portal Object ID (POID)
	Decimal Data Type
	Arrays
	Substructure
	Buffer Data
	Setting Buffer Data Fields in an Flist
	Getting Buffer Fields From an Flist
	Specifying Buffer Data Fields in Flist Converted to Strings

	Error Buffer

	8 Using BRM SDK
	About BRM SDK
	About PCM SDK

	BRM SDK Directory Contents
	Deploying New and Customized Components
	Deploying Applications
	Deploying FMs
	Deploying DMs

	Compiling CMs for Purify

	9 Finding Errors in Your Code
	Detecting Errors in Your Code
	Individual-Style ebuf
	Series-Style ebuf

	Error Handling Flow
	Logging Errors and Messages
	Diagnosing Application Problems
	Detecting CM and DM Errors

	10 Testing Custom Applications
	Testing New or Customized Components
	Testing Custom Applications
	Testing New or Customized Policy FMs
	Testing New or Customized DMs

	Changing the Virtual System Time to Test BRM

	11 Using the testnap Utility to Test BRM
	About testnap
	About Buffer Numbers

	Executing Opcodes
	Reading an Object and Fields
	Reading Fields in an Object
	Reading an Object and Writing Its Contents to a File

	Retrieving Objects
	Retrieving the Contents of the First Object Found
	Retrieving the POID Field of the Objects Found
	Creating a New Search Object
	Retrieving Objects One at a Time
	Retrieving a Specific Number of Objects at a Time

	Creating Objects
	Using a Text File to Create an Object
	Using a Here Document to Create an Object

	Manipulating External Buffer Fields
	Reading Data in a Buffer to a File
	Using Buffers to Concatenate Flists
	Setting up Buffers and Displaying the List of Buffers
	Creating and Displaying the Contents of a Buffer

	Sorting an Flist
	Invoking Shell Commands
	Troubleshooting testnap
	Error 27: Connection Error
	Error 4: Login Failure
	Incorrect Database Number
	Error 26: DM Not Running
	Invalid Buffer Index
	Error 56: Failed to Connect

	Part II Customizing BRM Server Components
	12 About System and Policy Opcodes
	Understanding System and Policy Facilities Modules
	System FM Functions
	Policy FM Functions
	Policy Opcodes

	Using the Policy Opcode Source Files
	Using the Default Implementation with Your Custom Implementation

	Adding a New Policy FM

	13 Writing a Custom Facilities Module
	About Implementing Custom FMs
	Creating a New FM
	Defining New Opcodes
	Defining Input and Output Flist Specifications
	Defining New Storable Class and Field Definitions
	Writing a Function to Implement a New Opcode
	Using the fm_post_init Function to Call Nonbase Opcodes at CM Initialization
	Creating an Opcode-to-Function Mapping File
	Creating a Shared Library for a New FM

	About Configuring a New FM into a CM
	Adding a New FM Module to the CM Configuration File
	Initializing Objects for Multiple Processes

	Handling Transactions in Custom FMs
	Managing Memory in Custom FMs
	Opening a New Context in an FM
	Compiling and Linking a Custom FM
	Configuring Your New Policy FM
	Debugging FMs

	14 Writing a Custom Data Manager
	About Adding a Custom Data Manager
	About Mapping Objects to Alternate Storage Mechanisms
	About Adding Interfaces to Legacy Systems

	Understanding the Data Manager Interface
	Calling Conventions
	Data Manager Memory Model
	Function Entry Points
	Argument Descriptions

	Creating a Custom Data Manager
	Creating a New Data Manager
	Writing, Compiling, and Linking a Custom DM
	Configuring Your Custom DM
	Starting and Stopping Your Custom DM

	Managing Memory
	Handling Errors
	Configuring Your CM to Use the Custom DM
	Editing Your Custom Opcodes to Access the Custom DM

	15 Creating Custom Fields and Storable Classes
	Creating, Editing, and Deleting Fields and Storable Classes
	Modifying the pin.conf File to Enable Changes
	Increasing the Size of the CM Cache for the Data Dictionary
	Using DDL when Updating the Data Dictionary Tables

	Creating Custom Fields
	Creating Custom Storable Classes
	Making Custom Fields Available to Your Applications

	About BRM SDK Opcodes
	Using BRM SDK Opcodes to Manage Storable Classes
	Creating and Modifying Storable Classes
	Retrieving Storable Class Specifications
	Deleting Storable Class Specifications

	Using BRM SDK Opcodes to Manage Field Specifications
	Creating and Modifying Field Specifications
	Retrieving Field Specifications
	Deleting Field Specifications

	Converting Storable Class Files from Previous Versions
	Deploying Custom Fields and Storable Class Definitions
	Extracting Field and Storable Class Definitions with pin_deploy
	Importing Storable Class Definitions with pin_deploy

	Adding Fields to /config Objects
	Using Developer Center to Modify /config Objects
	Using testnap to Modify /config Objects

	16 Storing Customer Profile Information
	About Storing Customer Profile Information
	Using Profile Objects to Collect Customer Profiles
	Defining a Profile Subclass
	Creating a Profile Object
	Modifying a Profile Object
	Deleting a Profile Object
	Validating Profile Objects

	17 Auditing Customer Data
	Audit Trail Architecture
	About Shadow Objects
	Fields Marked for Auditing by Default
	Enabling Auditing for a Field
	Accessing Audit Trail Information
	Using testnap to Retrieve Shadow Objects

	Purging Archived Audit Data

	18 Encrypting Data
	About Encrypting Data
	About AES Encryption
	About Masking Data in Log Files
	Encrypting Fields
	Defining Masked Fields
	About Encrypting Passwords
	About the encryptpassword.pl Script
	Encrypting Passwords Automatically for BRM Base Components
	Encrypting Passwords Manually with OZT
	Encrypting Passwords Manually with AES

	Configuring the Data Manager for AES Encryption
	Configuring the Data Manager for Oracle ZT PKI Encryption
	Generating a Root Encryption Key
	Modifying a Root Encryption Key

	19 Searching for Objects in the BRM Database
	About Searching for Objects
	About the Search Input Flist
	Search POID
	Argument List
	Results Array
	Search Query
	Flags

	Search Query Syntax
	About Searching for Objects by Their POID Subcomponent
	Searching for Objects by the POID Database Number
	Searching for Objects by the POID Type
	Searching for Objects by the POID Object ID
	Searching for Objects by the POID Revision Number

	Search Query Syntax for Count-Only Searches
	Search Query Syntax for Calculate-Only Searches
	Using the PIN_FLD_PARAMETERS Field
	Limiting Search Results by Using Row Numbers
	Using the "in" Operator

	Searching Subclasses
	Returning Specific Storable Classes
	Returning Entire Arrays
	Search Template Examples
	Using a Predefined Template
	Defining the Search Template at Runtime

	About Single-Schema Searches
	Performing a Search on a Single Schema
	Performing a Step Search on a Single Schema
	Getting the Next Set of Search Results from a Step Search
	Ending a Step Search
	Simple Search Example
	Step Search Example

	Performing Exact Searches
	Using "like" with Exact Searches
	Exact Search Limitations

	Complex Searches
	Complex Search Example

	About Performing Distinct Searches with Ordering and Pagination
	Creating Storable Classes and Database Views for Distinct Searches
	Performing Distinct Searches with Ordering and Pagination
	Modifying Storable Classes for Distinct Searches

	Search without POID
	About Multischema (Global) Searches
	Performing a Global Search
	Performing a Global Step Search
	Getting the Next Set of Search Results from a Global Step Search
	Ending a Global Step Search
	Global Search Example
	Building the POID for the Input Flist
	Building POID for the Input Flist in C
	Building POID for the Input Flist in Java

	The Impact of Searches on Shared Memory Allocation
	Improving Search Performance
	Removing Redundant Distinct Searches
	Step Search Limits
	Transaction Caching

	20 Adding Support for a New Service
	About Adding Support for a New Service
	About BRM Services
	About Supporting a New Service

	Creating Service and Event Storable Classes
	Setting Up Rating for a New Service
	Setting Up Pricing Data for Online Rating
	Mapping Event Types to a New Service Storable Class
	Defining RUMs for New Service Usage Events
	Setting Up Provisioning Tags for a New Service
	Defining Impact Categories for a New Service
	Defining Custom Balance Elements for a New Service
	Specifying How to Round Balance Impacts for New Service Usage Events
	Adding a New Service to Your Product Offerings
	Configuring Sub-Balances to Track Specific Types of Usage for a New Service

	Adding Database Partitions for New Service Usage Events
	Loading Rated Events for a New Service into the Database

	Setting Up Billing for a New Service
	Setting Up Account Creation for a New Service
	Setting Up Business Profiles for a New Service

	Optional Support for a New Service
	Synchronizing Data for a New Service with External Applications
	Mapping Devices to a New Service
	Providing Access to a New Service on the Web
	Generating Usage Reports for a New Service

	21 Using BRM Messaging Services
	About the UMS Framework
	Enabling Messaging
	Creating and Loading Message Templates
	Generating Messages in the Producer Application
	Retrieving Message Templates
	Retrieving Message Templates from /strings Objects
	Creating Message Objects

	Retrieving Message Objects in the Consumer Application

	22 Using BRM with Oracle Application Integration Architecture
	About Oracle Application Integration Architecture
	Installing and Configuring the Required BRM Components
	Integrating BRM Features with External CRM Applications
	Integrating Collections with External CRM Applications
	Integrating Friends and Family Promotions with External CRM Applications
	Displaying Siebel CRM Promotion Names on Invoices

	Integrating BRM Features with External CRM Applications in a Multischema System
	Integrating Account Migrations with External Applications in a Multischema System
	Integrating Collections with External Applications in a Multischema System

	Creating Charge Offers and Discount Offers for an External CRM
	Creating Charge Offers with Different Prices for Multiple Price Lists
	Validating Customer Contact Information

	23 Using Event Notification
	About Event Notification
	About the Event Notification List

	Implementing Event Notification
	Merging Event Notification Lists
	Editing the Event Notification List
	Triggering Multiple Opcodes with One Event

	Triggering Custom Operations
	Loading the Event Notification List

	About Notification Events

	24 Writing Custom Batch Handlers
	About Batch Handlers
	Configuration Parameters
	Batch Handler Work Flow

	25 Managing Devices with BRM
	About the Device Management Framework
	Implementing Device Management
	Creating Devices
	Managing the Device Life Cycle
	Managing Device Attributes
	Associating Devices and Services
	Deleting Devices
	Tracking Device History

	Device Management and Multischema Environments
	Configuring Event Notification for Device Management
	Defining the Device Life Cycle
	Localizing Device State Names
	Customizing Device State Changes

	Defining Device-to-Service Associations
	Creating Custom Device Management Systems

	26 Managing Orders
	About Order Manager
	Implementing Order Manager
	Creating Orders
	Processing Order Response Files
	Managing the Order Life Cycle
	Associating or Disassociating Orders with Master Orders
	Managing Order Attributes
	Deleting Orders
	Tracking Order History
	Managing the Order History Log

	Installing Order Manager
	Uninstalling Order Manager

	Order Management and Multischema Environments
	About Defining the Order Life Cycle
	Creating Custom Order Management Systems
	About the Order Management Opcodes
	Creating /order Objects
	Customizing Order Creation

	Processing Order Response Files
	Customizing Order Processing

	Associating and Disassociating /order Objects
	Customize How to Validate Association and Disassociation

	Updating /order Objects
	Setting the State in /order Objects
	Changing /order Object Attributes

	Deleting /order Objects
	Customizing How to Delete Orders

	Part III Integrating BRM with Enterprise Applications
	27 About Enterprise Application Integration (EAI) Manager
	About Integrating BRM with Enterprise Applications

	28 Installing EAI Manager
	About Installing EAI Manager
	Software Requirements
	Installing EAI Manager
	Increasing Heap Size to Avoid "Out of Memory" Error Messages

	Configuring Event Notification for EAI Manager

	29 Payload Configuration File Syntax
	About the Payload Configuration File Syntax
	Publisher Definitions
	Event Definitions
	Element Definitions
	Syntax of Elements and Attributes
	Source
	Tag
	StartEvent
	EndEvent
	DataFrom
	UseOnlyElement
	UseElementId
	Attribute
	DTD
	PinFld
	Field
	ExtendedInfo
	Search
	SubElement

	Event Flist, Event Definition, and XML Output Example

	30 Filtering which Business Events Are Published
	Filtering which Business Events Are Published
	About the Condition Attribute
	About the Condition Definition

	31 Building a Connector Application
	Building a Connector Application

	32 Configuring EAI Manager
	Configuring the Connection Manager for EAI
	Configuring the EAI DM
	Configuring the Payload Generator EM
	Specifying the Date and Time Format for Business Events
	Defining Infinite Start Date and End Date Values
	Configuring EAI Manager to Publish to an HTTP Port

	33 Configuring Business Events
	About BRM Business Events
	About Publishing Additional Business Events
	Setting Up Multiple Publishers and Events
	Defining Business Events
	Removing Events That You Do Not Want to Publish
	Returning Identifiers from Enterprise Applications
	Changing the Format of Published Events
	Validating Your Changes to the Payload Configuration File

	34 EAI DM Functions
	AbortTransaction
	CommitTransaction
	FreeGlobalContext
	GetGlobalContext
	Initialize
	OpenTransaction
	PrepareCommit
	PublishEvent
	SetIdentifier
	Shutdown

	Part IV Integrating BRM with an Apache Kafka Server
	35 About Integrating BRM with an Apache Kafka Server
	About Integrating BRM with Kafka Servers
	About the EAI Framework for the Kafka DM
	About the CM and Notification Events
	About the Kafka DM

	36 Configuring BRM to Publish Notifications to Kafka Servers
	Overview of BRM Configuration Tasks for Kafka Servers
	Installing the BRM Kafka DM
	Configuring Thread Pooling for the Kafka DM
	Enabling SSL between Kafka DM and Kafka Server
	Configuring Event Notification for Kafka Servers
	Defining Business Events for Your Kafka Server
	Mapping Business Events to Kafka Topics
	About Setting Topic and Payload Keys
	Adding Headers to Messages
	Adding Separate Payload Settings
	Mapping Flist Fields to Payload Tags
	Editing the dm_kafka_config.xml File

	Configuring the Dynamic Key Value
	Configuring Where to Record Failed Events
	Customizing Notification Enrichment

	Part V Creating and Customizing Client Applications
	37 Adding New Client Applications
	About Adding New Client Applications
	Using Existing System Opcodes
	Using Custom Opcodes
	Using a Custom Data Manager (DM)

	Implementing Timeout for Requests in Your Application
	Configuring Your Custom Application
	Creating a Client Application in C
	Compiling and Linking Your Programs
	Guidelines for Developing Applications in C on Linux Platforms

	Using the Sample Applications
	Sample Applications
	Policy FM Source Files

	About Adding Virtual Column Support to Your Applications

	38 Using Transactions in Your Client Application
	Using Transactions
	Types of Transactions
	Read-Only Transactions
	Read-Write Transactions
	Transaction with a Locked Objects
	Transaction with a Locked Default Balance Group

	About Committing Transactions
	About Cancelling Transactions
	About the Transaction Base Opcodes
	Customizing How to Open Transactions
	Customizing the Verification Process for Committing a Transaction Opcode
	Customizing How to Commit a Transaction
	Customizing How to Cancel Transactions

	39 Adding or Changing Login Options
	About Customizing the Login Account for Your Application
	Creating an Account for Your Application
	Providing Login and Password to Your Custom Application
	Configuring System Passwords

	Creating Several admin_client Services with Different Permissions

	40 Creating Applications that Run on Multischema Systems
	About Working with Multiple Schemas
	Creating Accounts in a Multischema System
	Maintaining Transactional Integrity
	Searching for Accounts across Database Schemas
	Finding How Many Database Schemas You Have
	Bill Numbering

	41 Creating BRM Client Applications by Using the MTA Framework
	About the BRM MTA Framework
	BRM MTA Framework Layers
	MTA Stages
	MTA_CONFIG Execution Stage
	MTA_INIT_APP Execution Stage
	MTA_INIT_SEARCH Execution Stage
	Search Execution
	MTA_TUNE Execution Stage
	Job Distribution
	MTA_JOB_DONE Execution Stage
	MTA_EXIT Execution Stage
	MTA_WORKER_INIT Execution Stage
	MTA_WORKER_JOB Execution Stage
	Worker Thread Job Execution
	MTA_WORKER_JOB_DONE Execution Stage
	MTA_WORKER_EXIT Execution Stage

	MTA Global Flist Structure

	Using the BRM MTA Framework
	MTA Callback Functions
	MTA Helper Functions
	MTA Policy Opcode Hooks

	Creating a Multithreaded BRM Client Application
	Searching Different Data Sources
	Displaying Application Help Information
	Error Notifications

	Customizing BRM Multithreaded Client Applications
	Implementing the MTA Policy Opcodes
	Configuring the MTA Policy Opcodes

	Configuring your Multithreaded Application
	Applying Configuration Entries to Specific Utilities

	Using Multithreaded Applications with Multiple Database Schemas
	MTA Policy Opcode Hooks
	MTA_CONFIG
	MTA_ERROR
	MTA_EXIT
	MTA_INIT_APP
	MTA_INIT_SEARCH
	MTA_JOB_DONE
	MTA_TUNE
	MTA_USAGE
	MTA_WORKER_EXIT
	MTA_WORKER_INIT
	MTA_WORKER_JOB
	MTA_WORKER_JOB_DONE

	MTA Callback and Helper Functions
	pin_mta_config
	pin_mta_exit
	pin_mta_get_decimal_from_pinconf
	pin_mta_get_int_from_pinconf
	pin_mta_get_str_from_pinconf
	pin_mta_global_flist_node_get_no_lock
	pin_mta_global_flist_node_get_with_lock
	pin_mta_global_flist_node_put
	pin_mta_global_flist_node_release
	pin_mta_global_flist_node_set
	pin_mta_init_app
	pin_mta_init_search
	pin_mta_job_done
	pin_mta_main_thread_pcm_context_get
	pin_mta_post_config
	pin_mta_post_exit
	pin_mta_post_init_app
	pin_mta_post_init_search
	pin_mta_post_job_done
	pin_mta_post_tune
	pin_mta_post_usage
	pin_mta_post_worker_exit
	pin_mta_post_worker_init
	pin_mta_post_worker_job
	pin_mta_post_worker_job_done
	pin_mta_tune
	pin_mta_usage
	pin_mta_worker_exit
	pin_mta_worker_init
	pin_mta_worker_job
	pin_mta_worker_job_done
	pin_mta_worker_opcode

	42 Creating Client Applications by Using Java PCM
	About Using the Java PCM API
	Software Requirements
	About the Java PCM API and the C API

	Using the Java PCM API
	About Creating Client Applications by Using the Java PCM API
	About Synchronous and Asynchronous Modes
	Actions Performed by BRM Java Client Applications
	Opening a PCM connection
	Using Custom Fields in Java Applications
	Creating Custom Storable Classes
	Calling Custom Opcodes
	Using Synchronous Mode for Opcode Processing

	Getting a Text Format of an Flist
	Handling Exceptions
	Logging Errors and Messages

	Specifying a Timeout Value for Requests
	Using the Asynchronous PCP Mode in Java PCM Client Libraries
	About PCPSelector
	About PortalContextListener
	How Asynchronous Mode for Opcode Processing Works
	Creating Client Applications for Asynchronous Mode of Opcode Processing

	Setting Global Options
	Default Entries in the Infranet.properties File
	Optional Entries in the Infranet.properties File
	Example Infranet.properties File
	Controlling Opcode Logging from a Client Application

	Running the jnap Utility
	Getting Help with jnap
	Example of Using jnap

	About the Sample Program

	43 Creating Client Applications by Using Perl PCM
	About the Perl API
	Differences between the Perl API and the C API
	Guidelines for Using the Pcmif Module
	Performing PCM Operations

	44 Creating Client Applications by Using PCM C++
	About PCM C++
	Skills Required
	Installation
	Comparison of the PCM C++ and PCM C APIs

	Understanding PCM C++ Concepts
	Passing Arguments
	Using Arrays
	Using Smart Pointers to Manage Memory
	Construction and Destruction
	Copying and Assignment
	Using Field Value Ownership

	Using PinBigDecimal
	Field Value Ownership
	Using PinBigDecimal with Flists
	Using the toString() Method
	Using the Divide Method
	Using a Null Pointer

	Handling Exceptions
	Logging to pinlog
	Accessing Configuration Values by Using pin.conf
	Using PCM C++ with PCM C

	Using the PCM C++ API
	Opening a PCM Connection
	Closing a PCM Connection
	Creating Custom Fields
	Creating an Flist
	Getting an Flist in Text Format

	Debugging PCM C++ Programs
	Troubleshooting

	Part VI Customizing Customer Center and Self-Care Manager
	45 Using Customer Center SDK
	About Customer Center SDK
	About Using Customer Center SDK to Customize Customer Center
	About Using Customer Center SDK to Customize Self-Care Manager

	Contents of Customer Center SDK
	Customer Care API Reference

	Coding Your Customizations
	About Compiling and Packaging Your Customizations
	Coding, Building, and Deploying Customizations

	Syntax for the buildAll Script
	Syntax
	File Location
	Parameters

	Testing Your Customizations for Customer Center
	Understanding the BRM Business Application SDK Framework
	The Model-View-Controller Architecture
	How the Controllers Work
	Example Data Flow between a Simple Field and BRM

	About Field Components
	Displaying Versus Saving Data in Fields
	Display Fields and Controllers

	About PModelHandle
	About Lightweight Components (Self-Care Manager Only)

	Source Code Examples

	46 Customizing the Self-Care Manager Interface
	About Customizing Self-Care Manager
	Hardware and Software

	Understanding Self-Care Manager Components
	About PInfranetServlet
	Using PInfranetServlet to Process Requests
	Example Data Flow Designs
	Design 1
	Design 2
	Design 3

	Extending the Functionality of Self-Care Manager
	Adding Fields
	Removing Fields
	Creating a New Component
	Creating a Link for the JSP Pages for a Get Request
	Creating a Link for the JSP Pages for a Post Request
	Designing a Component
	Developing the Customizable Component
	Developing the View Component
	Account Creation
	Account Maintenance
	Developing the Controller Component

	Developing a Noncustomizable Component
	Using the Connection Pool

	Error Handling

	Formatting Your Data
	Method 1: Add Java Code to Your JSP Pages
	Method 2: Use a Formatting Bean that Contains the Presentation Logic for the Data.

	Building the Self-Care Manager Components

	Self-Care Manager Customization Examples

	47 Customizing the Customer Center Interface
	Customizing and Configuring Customer Center
	Tools and Techniques for Customizing Customer Center
	Customization Procedure Overview
	Coding Your Customizations
	Building and Deploying Your Customizations

	Modifying the Customer Center Properties Files
	About the Default Customer Center properties Files
	Modifying Behaviors Defined by the Default Properties Files
	Displaying Event Timestamps with Seconds Precision
	Adding Inactive Product Status Indicators
	Changing the List of Services Available in the Search Panel
	Improving Account Search Performance
	Changing Number Searches for GSM Services
	Modifying the Shortcut Key Sequences
	Specifying the Number of Bills Displayed in the Balances Tab
	Suppressing the "Missing Login/ID" Message for Custom Service Panels
	Changing the Maximum Number of Security Code Characters
	Updating Notes Before Saving
	Reminding CSRs to Customize Deals Before Completing a Purchase
	Identifying Services by Device ID Rather than Login ID
	Adding a Tax Exemption Type
	Customizing Event Searches
	Customizing the Case Sensitivity of Event Searches
	Customizing the Selections for Service Type in Event Searches
	Customizing the Selections for Service Status in Event Searches
	Customizing the Selections for Device Type in Event Searches

	Customizing Balance Group Searches
	Customizing the Case Sensitivity of Balance Group Searches
	Customizing the Selections for Service Type in Balance Group Searches
	Customizing the Selections for Service Status in Balance Group Searches
	Customizing the Selections for Device Type in Balance Group Searches

	Customizing Product/Discount Searches
	Customizing the Case Sensitivity of Product/Discount Searches
	Customizing the Selections for Service Type in Product/Discount Searches
	Customizing the Selections for Service Status in Product/Discount Searches
	Customizing the Selections for Device Type in Product/Discount Searches

	Customizing Service Searches
	Customizing the Case Sensitivity of Service Searches
	Customizing the Step Search Size
	Customizing the Selections for Service Type in Service Searches
	Customizing the Selections for Service Status in Service Searches
	Customizing the Selections for Device Type in Service Searches

	Hiding the Password Fields in Customer Center
	Disabling the Child Amounts Check Box
	Adding a Custom Service as a Login to Customer Center

	Using Customer Center SDK Scripts for Customer Center
	Adding New Pages to the Customer Center Interface
	About Portal Infranet Aware Widgets
	Adding Account Maintenance Pages
	Overview of Account Maintenance Components
	Saving Changes
	Refreshing Data in the UI
	Currency Toggling
	Drill-Down Links
	Advanced Drill-Down Techniques
	Modifying the Customer Center Permissions
	Adding Your Page to the Customer Center Toolbar

	Adding New Account Wizard Pages
	Understanding the New Accounts Wizard
	Base Storable Classes for Account Creation Pages
	Methods Used in New Account Creation Pages

	Removing a Payment Method from Customer Center

	Advanced Customer Center Concepts
	Components Used in Customer Center
	Portal Infranet-Aware Components
	Graphical Components
	Nongraphical Components
	Data Manager Components

	About the BAS Data Flow with a Swing-Compatible UI
	About Field Specifications
	About Controller Processing

	Building Your Customer Center Customizations
	Creating a Self-Signed Java Security Certificate
	Modifying the signjar Script

	Building Your Customization Files
	Requirements
	Using the buildAll Script

	Testing Your Customizations

	Deploying Your Customer Center Customizations
	Deploying Customer Center Customizations on Linux

	About the Customer Center Properties Files
	Default Properties Files
	Configurator Properties Files
	Customized Properties Files
	Other Properties Files
	Deploying Customer Center Customizations on Windows

	Customer Center Customization Examples

	48 Using Configurator to Configure Customer Center
	About Configurator
	Using Configurator
	What's Next?

	Configuring Customer Center Account Maintenance Pages
	Using the Account Maintenance Configurator Tabs
	Summary Configurator
	Modifying the Customer Type List

	Contacts Configurator
	Balance Configurator
	Payment Configurator

	Plan Configurator
	Service Configurator
	Hierarchy Configurator
	Sponsorship Configurator
	Sharing Configurator
	Other Settings
	Account Search Results Configurator
	Starting Account Search Configurator
	Adding a New Search Criteria field
	Modifying a Search Criteria Field
	Deleting a Custom Search Criteria Field

	Tab Options
	Reordering Pages
	Modifying Attributes of an Existing Page
	Hiding an Existing Page
	Adding a New Page
	Removing a Custom Page

	Configuring the Customer Center New Accounts Wizard
	Contacts Panel
	General Panel
	Payment Panel
	Billing Panel
	New Account Page Options
	Reordering New Account Pages
	Modifying an Existing Page
	Hiding an Existing Page
	Adding a New Page
	Removing a Custom Page

	Using the Configurator Resource String Editor
	Starting the Resource String Editor
	Searching for Labels to Replace
	Resource String Editor String Search Rules

	Replacing Labels with New Strings
	Undoing Label Changes

	Additional Configured Profile Panel Examples

	49 Adding Custom Fields to Customer Center
	Coding and Deploying Custom Fields for Customer Center
	Adding Custom Fields to Infranet.properties
	Generating Your Custom Field Java Source Code
	Compiling and Signing Your Custom Fields Java Source Code
	What's Next

	Configuring JBuilder to Add Custom Fields to Customer Center
	What's Next

	Building and Deploying Your New Profile Panel

	50 Setting Up JBuilder to Customize the Customer Center Interface
	About Using JBuilder to Customize the Customer Center Interface
	Adding PIA Widgets to the JBuilder Palette
	Creating a JBuilder Project for Customer Center SDK

	51 Creating a New Customer Center Service Panel
	Creating a New Service Panel
	Correcting Field Alignment
	What's Next

	52 Creating a New Customer Center Profile Panel
	Creating a New Profile Panel
	What's Next

	53 Sample Customer Center Customizations
	Building and Deploying Customizations
	Customizing Contact Fields
	Customizing Contact Fields
	Adding Drop-Down Lists to the Contact Type and Salutation Fields
	Populating Drop-Down List Values from a Properties File
	Adding Drop-Down Lists to Address Panel Fields
	Adding and Removing Item Listeners to Address Field Drop-Down Lists

	Modifying Multiple Contact Behavior
	Specifying the Contact Type for Each Consecutive Contact
	Disabling Changes to the Contact Type for the First Contact
	Configuring Duplicate Checking for the Contact Type Field

	Using Custom Address Panel and Contact Page
	Replacing the Address Panel with a Custom Panel
	Replacing the Contact Page with a Custom Page

	Customizing Fields in the Balance Tab
	Setting the Correct JRadioButtonMenuItem Button

	Customizing Fields in the Payments Tab
	Disabling the Billing Cycle & Tax Setup Link in the Payments tab
	Configuring Values in the Billing Day of Month Combo Box
	Setting the Next Billing Cycle Field to Visible or Not Visible
	Customizing the Expiration Date Fields in the Credit Card Panel
	Creating a Custom Payment Method

	Customizing Fields in the Services Tab
	Adding Charges for SIM and MSISDN Changes
	Adding a Secondary MSISDN for Supplementary Services

	Customizing Fields in the Hierarchy Tab
	Adding a Custom Popup Component to the No Hierarchy Page
	Adding a Custom NoHierarchy Page
	Creating Customized Search Dialogs and Disabling the To Field
	Adding Custom Options to the Actions Drop-Down Lists

	Customizing Fields in the Sharing Tab
	Adding a New Sharing Type to the View Drop-Down List

	Configuring Dynamic Drop-Down Lists

	Part VII Localizing BRM
	54 Using BRM in International Markets
	Supporting Multiple Currencies
	Accepting Credit Card Payments in Multiple Currencies
	Supporting Multiple Languages
	Using Localized Client Applications
	Localizing BRM

	55 BRM Internationalization and Localization
	About Localizing and Internationalizing
	About Internationalization of BRM Client Applications
	Writing Localized MFC Client Applications
	About Internationalized Development on BRM

	56 Creating a Localized Version of BRM
	About the Localization SDK
	Localization SDK Contents
	Java Client Applications
	Self-Care Manager Server Application
	BRM Server Files

	Localizations Supported

	System Requirements for the Localization SDK
	Building the Clients
	Building Java Applications
	Building Properties Files
	Application Names for makeResourceJars Command

	Preparing Customer Center

	Packaging Your BRM Client Localizations
	Modifying Localized Versions of Customer Center
	About Simple Customization
	About Advanced Customization
	Before You Begin
	Simple Customization for Localized Versions of Customer Center
	Deploying a Simple Customization of Customer Center

	Advanced Customization for Localized Versions of Customer Center
	Deploying an Advanced Customization of Customer Center
	When to Use the Localization SDK for Advanced Customization

	Localizing Self-Care Manager
	Translating the Self-Care Manager Localized Strings File
	Creating a Localized Self-Care Manager Installation for Linux

	Localizing and Customizing Strings
	Creating New Strings and Customizing Existing Strings
	Localizing Existing Strings
	Loading Localized or Customized Strings

	Localizing BRM Reports
	About Customizing Server Software
	Setting the Default Language for Customer Accounts
	Customizing Canonicalization
	Exporting Data to an LDAP Server

	Locale Names

	57 Handling Non-ASCII Code on the BRM Server
	About Character-Encoding Conversion
	About Converting Multibyte or Unicode to and from UTF8
	Direct Conversion Macros
	Supporting Functions and Macros
	Universal Macros
	PIN_CONVERT_MBCS_TO_UTF8
	PIN_CONVERT_STR_TO_UTF8
	PIN_CONVERT_UNICODE_TO_UTF8
	PIN_CONVERT_UTF8_TO_MBCS
	PIN_CONVERT_UTF8_TO_STR
	PIN_CONVERT_UTF8_TO_UNICODE
	pin_IsValidUtf8
	PIN_MBSLEN
	PIN_SETLOCALE

	Conversion Code Example

	Part VIII Programming Utilities
	58 Developer Utilities
	load_config
	load_config_provisioning_tags
	load_localized_strings
	load_pin_config_business_type
	load_pin_device_permit_map
	load_pin_device_state
	load_pin_excluded_logins
	load_pin_order_state
	parse_custom_ops_fields
	pin_adu_validate
	pin_bus_params
	pin_cfg_bpdump
	pin_crypt_app
	pin_deploy
	pin_uei_deploy
	pin_virtual_time
	testnap
	pin_config_editor

