
Oracle® Communications Billing and
Revenue Management
LDAP Manager

Release 15.0
F86235-01
December 2023

Oracle Communications Billing and Revenue Management LDAP Manager, Release 15.0

F86235-01

Copyright © 2017, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

1 About LDAP Manager

How LDAP Manager Works 1-1

About Setting Up Your LDAP Integration 1-2

2 Mapping Data between LDAP Data Manager and Your Directory Server

About the LDAP Data Manager 2-1

LDAP Data Manager API and Mapping Files 2-1

LDAP Data Manager Data Types 2-1

LDAP Data Manager Mapping Files 2-2

Sample Mapping File 2-4

LDAP Data Manager Class and Subclass Mapping Restrictions 2-5

LDAP Data Manager Supported Operations 2-5

LDAP Data Manager Unsupported Operations 2-6

LDAP Data Manager Predefined Mapping Schemes 2-6

Understanding the BRM Object Model 2-6

Replicatable User Objects (/r_user) 2-6

Replica User Objects 2-6

Understanding the Channel Framework 2-7

About Channels and Data Propagation 2-8

Channel Object Composition 2-9

Channel Event Composition 2-9

About Channel Families 2-9

About Channel Order 2-10

About Channel Publishing Mode 2-11

About Defining Channels 2-12

Example channel_config.xml File 2-14

iii

How Channel Events are Published 2-16

Configuring How Channels are Published 2-16

Example of Publishing a Channel Family 2-17

About Setting Replicatable Objects as Consumers 2-19

Tracking New Account Creation 2-19

Tracking modifications to accounts 2-19

Tracking service creation 2-20

Tracking modifications to services 2-20

Understanding the Replication Policy Push Operation 2-20

Understanding the Replication Module 2-21

Replication Policy Default Implementation 2-22

Defining the User Mapping Scheme 2-23

Related /account and /service Opcodes 2-28

Determining the /r_user Object Class Attributes 2-28

Creating the /r_user Object Class in the Directory Server 2-30

Defining the One-to-One Mapping Scheme 2-30

One-to-One Mapping File Example 2-32

Changing the Replication Policy for the One-to-One Mapping Scheme 2-33

3 Managing the Directory Server Organization

About Managing Directory Server Entries 3-1

Semantics for the LDAP Modify Operation 3-1

Distinguished Name Field and the DN Flags Field 3-2

The Location Field 3-2

Creating Directory Server Entries 3-2

Distinguished Name Control Logic for PCM_OP_CREATE_OBJ 3-3

Pre-Existing Distinguished Names 3-4

Supplying Distinguished Names 3-4

Not Supplying Distinguished Names 3-4

Understanding Matching Rules for Distinguished Names 3-4

Using Static Controls for DNs 3-5

Using Dynamic Controls for DNs 3-5

Deleting Directory Server Entries 3-5

Changing Directory Server Entries 3-6

Adding Attributes to an Existing Directory Server Entry 3-6

Deleting Attributes from an Existing Directory Server Entry 3-7

Renaming Directory Server Entries 3-8

Creating Subclass Objects in the Directory Server 3-9

Creating Related Entries Under One Node 3-10

Specifying Directory Tree Entries 3-13

iv

Using a Complete Distinguished Name 3-13

Using a Prefixed Distinguished Name 3-13

Using a Parent Distinguished Name (Create Operation Only) 3-14

Overriding the Base Dn Location 3-14

Reading and Searching for Directory Server Entries 3-15

Reading Objects from the Directory Server 3-15

Object Read examples 3-16

Reading Attributes from the Directory Server Entry 3-16

Attribute Read Examples 3-16

Searching the Directory Server for Entries 3-17

Setting the Search Scope 3-18

Specifying the Base DN 3-19

Searching from Different Locations 3-19

Example Service Storable Class Tree and Search 3-19

Using the Sample LDAP Search Filters 3-20

LDAP Search Limitations 3-21

Testing Directory Server Connections 3-21

BRM LDAP Profile Object 3-21

4 Installing LDAP Manager

Installing LDAP Manager 4-1

Uninstalling LDAP Manager 4-2

5 Configuring LDAP Manager

Configuring the LDAP Data Manager 5-1

Setting Up the Mapping File 5-1

Setting Up the Directory Server 5-1

Editing the LDAP Data Manager Configuration File 5-1

Configuring the Connection Manager for LDAP Manager 5-3

Configuring the LDAP Data Manager for Multiple Schemas 5-3

Configuring the LDAP Data Manager with Different LDAP Data Manager Pointers 5-4

Configuring Event Notification for LDAP Manager 5-4

Loading the LDAP Price List into Pricing Center 5-4

Configuring the Channel Framework 5-4

Configuring the pin_channel_export Utility 5-5

Configuring Channel Definitions 5-6

Loading Channel Definitions into the BRM Database 5-6

Saving Channel Definitions to a File 5-7

v

6 Customizing Your BRM LDAP Environment

Exporting Additional Data to the Directory Server 6-1

Exporting Additional Fields from Objects 6-1

Tracking Additional Changes to /account or /service Objects 6-2

Exporting New Service Types 6-3

7 Troubleshooting Your BRM LDAP Environment

Checking for Event Errors and Recovering from Failure 7-1

Verifying Event Creation by Running testnap 7-2

Status Values for Channel Events 7-3

Verifying the Mapping Between Object Classes and Entries 7-3

Mismatches between the Mapping File and Directory Server Entries 7-3

Entry Class Type Definition Contains a Typo 7-4

Case or Spelling Mismatches in Attribute Names 7-4

Object Classes or Attributes are Missing in the Directory Server 7-4

Object Class Attributes Undefined in the Directory Server 7-4

Attribute Used in Mapping File is Undefined in the Directory Server 7-4

Directory Server Object Class is Created without Its Required Attributes 7-5

No Such Object Errors 7-5

8 LDAP Manager Utilities

load_channel_config 8-1

pin_channel_export 8-2

vi

Preface

This guide describes how to integrate Oracle Communications Billing and Revenue
Management (BRM) LDAP Manager with your LDAP directory server.

Audience
This guide is intended for developers and system administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About LDAP Manager

This chapter provides an overview of integrating Oracle Communications Billing and Revenue
Management (BRM) LDAP Manager with your LDAP directory server.

See also:

• About LDAP Manager

• Mapping Data between LDAP Data Manager and Your Directory Server

• Managing the Directory Server Organization

• Installing LDAP Manager

• Configuring LDAP Manager

• Customizing Your BRM LDAP Environment

• Troubleshooting Your BRM LDAP Environment

How LDAP Manager Works
Use LDAP Manager to integrate your LDAP directory server with BRM. The LDAP Manager
replicates account and service data in the BRM database to the LDAP database. Changes
made to the LDAP database are not replicated in the BRM database.

To send data to the LDAP directory server, LDAP Manager uses the following components:

• The replication opcode determines which BRM data is sent to the LDAP directory, and
how it is structured. For more information on the replication module, see "Understanding
the Replication Module".

• The channel framework sends data to the LDAP directory server either serially or in
parallel, depending on your configuration. In addition, you use the channel framework to
handle directory server downtime and to satisfy auditing requirements. For more
information on the channel framework, see "Understanding the Channel Framework".

• The LDAP Data Manager translates data to the LDAP database format, and provides a
connection between BRM and the LDAP database. For more information on the LDAP
Data Manager, see "About the LDAP Data Manager".

• The export application (pin_channel_export) propagates changes from BRM to the
directory server. It synchronizes data in the BRM channel with the data in the external
directory server. It includes a report and error utility, pin_channel_report and
pin_channel_clear_errors. For more information on the export utility, see "Configuring
the pin_channel_export Utility".

Figure 1-1 shows how changes to data in the BRM database are sent to the LDAP directory
server:

1-1

Figure 1-1 BRM Database Updates to LDAP Directory Server

About Setting Up Your LDAP Integration
To set up an LDAP integration, you perform these tasks:

• Install and configure BRM and your LDAP directory server.

• Install and configure LDAP Manager. For example, you need to configure the
connections between the CM and the LDAP Data Manager. See "Installing LDAP
Manager".

• Define the mapping between BRM data and LDAP data. For example, you need to
specify how an account object in BRM is stored in the LDAP database. See
"Mapping Data between LDAP Data Manager and Your Directory Server".

• Set up your directory server. To set up your directory server with attributes that
BRM can understand, such as Portal Object ID (POID), names, addresses,
currency, login, and service information, you must create a BRM object-type
definition called the replicate user or r_user object class in your directory server.
See "Managing the Directory Server Organization".

Chapter 1
About Setting Up Your LDAP Integration

1-2

2
Mapping Data between LDAP Data Manager
and Your Directory Server

This chapter describes Oracle Communications Billing and Revenue Management (BRM)
LDAP Data Manager, its API and mapping files, its predefined mapping schemes, the BRM
LDAP object model, the channel framework, and the replication module.

See also:

• About LDAP Manager

• Managing the Directory Server Organization

About the LDAP Data Manager
The LDAP Data Manager translates the BRM object model to the directory server object
model. It implements a subset of the standard BRM object API.

You can think of the mapping task between BRM and your directory server in these terms:

• At the lowest level, you map BRM fields to directory server attributes.

• At the next level, you map BRM classes to directory server objects.

• At the highest level, you determine the mapping scheme to use for your directory server,
for example, the user mapping scheme or the one-to-one mapping scheme.

LDAP Data Manager API and Mapping Files
The next sections describe the LDAP Data Manager API, in particular, the data types, the
LDAP mapping files, class and subclass mapping restrictions, required fields, base class
attributes, and LDAP Manager supported and unsupported operations.

LDAP Data Manager Data Types
BRM accesses all attribute values as UTF8 strings in the directory server. You can encode
the following BRM field values as strings:

• PIN_FLDT_INT, PIN_FLDT_ENUM, and PIN_FLD_DECIMAL are encoded as the
decimal representation of their values, with each decimal digit represented by its
character equivalent. For example, the number 1234 is represented by the character
string 1234.

• PIN_FLDT_POID and PIN_FLDT_STR are encoded as is.

• PIN_FLDT_TSTAMP is encoded as the string representation of the UTC time value. By
default, time stamps are encoded in their decimal format.

2-1

Note:

You can also represent time stamps as printable strings in a more
readable format. For more information, see "Configuring the Connection
Manager for LDAP Manager".

• PIN_FLDT_ARRAY fields are mapped to multivalue attributes.

Note:

The array elements must each have only one field and the element-id is
not significant. Arbitrary BRM arrays are not supported.

• PIN_FLDT_BINSTR fields are encoded using base-64 encoding and stored as
binary values.

• PIN_FLDT_SUBSTRUCT, PIN_FLDT_BUF, PIN_FLDT_OBJ, and
PIN_FLDT_ERR type fields are not supported.

LDAP Data Manager Mapping Files
The LDAP Data Manager mapping file specifies the BRM data elements to replicate in
your directory server. The mapping file maps:

• BRM classes to directory server classes.

• BRM objects to directory server entries.

• BRM fields to directory server attributes.

Figure 2-1 shows snippets of the BRM LDAP flist, the mapping file, and the directory
schema and how the components correspond to each other:

Figure 2-1 BRM LDAP Flist, Mapping File, and Directory Server Entries

Chapter 2
LDAP Data Manager API and Mapping Files

2-2

When you install LDAP Manager, a sample mapping file (BRM_home/sys/ldap.idl) and the
LDAP Data Manager configuration file (BRM_home/sys/dm_ldap/pin.conf) are included with
your installation. You use the ldap.idl mapping file to define your BRM LDAP mapping
configuration.

The mapping file must match your directory server implementation. The mapping file
specifies the following information for each object type:

• Mapping from BRM fields to LDAP attributes, permission for attributes (mandatory/
optional/system), and modify permissions (readable/writable).

• Absolute distinguished name (DN) suffix, which determines the location of the entry for
replication purposes.

For more information on how BRM composes the DN when it creates objects, see "About
Managing Directory Server Entries".

In some cases, after you set up your mapping file, you might want to override the location
value in the mapping file by using BRM LDAP DN qualifiers or location parameters. For
more information, see "Specifying Directory Tree Entries".

• BRM field for the relative distinguished name (RDN) of the entry. The LDAP Data
Manager uses the RDN when you do not specify a DN during creation of the entry.

Note:

BRM does not support RDNs composed of multiple attributes within the entry.
Only one top-level, nonarray field in the base class can be tagged as an RDN
component.

• ObjectClass of the entry that corresponds to the object type.

• Ordered list of LDAP attributes with explicit values that are passed along when you
create the entry. This is useful in LDAP environments that use inherited object classes.
For example, in a Netscape environment with /r_user class implementation, the object
class attribute is predefined with the following values:

– person

– inetOrgPerson

– Other values used during entry creation

In addition to the mapping file you create, you must configure the following directory server
information in the LDAP Data Manager pin.conf file:

• Directory server port and location

• Directory server bind information

• Directory server password information

• Queue-based daemon parameters

The LDAP Data Manager authenticates itself by using a clear password (simple
authentication). BRM binds to the User ID and password that you set up for your directory
server. For more information on configuring BRM and LDAP components to communicate
with each other, see "Installing LDAP Manager".

Chapter 2
LDAP Data Manager API and Mapping Files

2-3

Sample Mapping File
The LDAP Data Manager uses the interface description language (idl) format to map
BRM classes, subclasses, and fields to directory server entries.

The LDAP Data Manager parses the mapping file when it starts. BRM determines the
location of directory server entries from the mapping file for replication purposes.

Figure 2-2 shows parts of the class definitions you can create and their corresponding
implementation values:

Figure 2-2 Class Definitions and Corresponding Implementation Values

Chapter 2
LDAP Data Manager API and Mapping Files

2-4

This has two sections:

• Class definitions specify the required and optional fields, the permissions for fields
(read/write), and the length for string fields.

• Implementation definitions specify directory server object classes, base location in the
directory tree, attribute names for fields, and how to compose a Distinguished Name
(directory's object id).

LDAP Data Manager Class and Subclass Mapping Restrictions
The following restrictions apply to the classes and subclasses you define in the mapping file:

• Only one nonarray required field in the base class can be tagged as RDN_PIECE.

• Only a field within an array can be tagged MULTIVALUED.

• Required fields in the base class:

– PIN_FLD_POID

– PIN_FLD_MOD_T

– PIN_FLD_CREATED_T

• Attributes that apply only to the base class:

– ENTRY_TYPE

– ATTRVAL

LDAP Data Manager Supported Operations
The LDAP Data Manager uses LDAP-specific inputs and outputs to opcodes that perform
operations on a base BRM system. Therefore, if you have experience customizing BRM,
calling the LDAP Data Manager opcodes is similar to calling the Oracle Data Manager
(dm_oracle) opcode.

Use the BRM and LDAP Data Manager API opcodes to perform the following data
propagation tasks:

• Create entries in the directory server.

• Modify entries in the directory server.

• Delete entries in the directory server.

• Delete attributes from the directory server entry.

• Read entries from the directory server.

• Read attributes from an entry in the directory server.

• Search for entries in the directory server.

• Verify that the LDAP Data Manager and the directory server daemon/service processes
are up and running and communicating with each other.

For more detailed information on these operations, including their inputs and outputs, see
"LDAP Base Opcodes" in BRM Opcode Guide.

For more information on working with directory server entries, see "Managing the Directory
Server Organization".

Chapter 2
LDAP Data Manager API and Mapping Files

2-5

LDAP Data Manager Unsupported Operations
LDAP Data Manager does not support transaction operations (PCM_OP_TRANS_*).

LDAP Data Manager Predefined Mapping Schemes
The purpose of the mapping scheme is to replicate BRM data to your directory server.
The LDAP Data Manager provides you with the following predefined mapping
schemes:

• user mapping scheme - Maps BRM /account and /service objects to one entry
in the directory server.

• one-to-one mapping scheme - Maps BRM /account and /service objects to
separate entries in the directory server.

For a procedure overview of how to use the user mapping scheme, see "Defining the
User Mapping Scheme". For a procedure overview of how to use the one-to-one
mapping scheme, see "Defining the One-to-One Mapping Scheme".

Understanding the BRM Object Model
Before you map BRM objects to directory server entries, you need to understand the
BRM object model. The next sections describe the BRM object model and how BRM
translates its data elements to directory server entries.

Replicatable User Objects (/r_user)
Both the user mapping scheme and one-to-one mapping scheme use a replicatable
user object (/r_user) class to propagate BRM information to the directory server. The /
r_user object is not an actual BRM object, but rather, an object type definition that
allows the LDAP Data Manager to translate directory server information into a format
that BRM can understand.

BRM objects that are replicated to the directory server are called replicatable objects.
These can be virtual objects defined just for replication; these objects do not
necessarily exist in the BRM database.

The only requirements for these replicatable objects are that they have a unique Portal
object ID (POID) and that they are replicated intact to external sites. Reasons for the
whole replication are:

• To preserve the object interface

• To simplify mapping to and from external implementations

For more information on BRM data types and the POID, see "Understanding the BRM
Data Types" in BRM Developer's Guide.

Replica User Objects
A replica object is a subset of the corresponding BRM /account and /service objects
that you define. By default, the /r_user replica object includes a number of the fields
that make up the /account and /service objects as defined in the ldap.idl mapping
file.

Chapter 2
Understanding the BRM Object Model

2-6

The replica contains enough information to point to the corresponding replicatable object, but
with object IDs that are different from those of the replicatable objects. The object types must
be the same.

BRM maps replicas to entries in the directory server, and these entries have a pinpoid
directory attribute that holds the replica object ID.

Because you cannot represent the entire /account object in the directory server, it cannot
serve as a replicatable object. To locate the /account object easily, BRM creates a
replicatable object with the same POID as the /account object, but with a different type.

For example, if you use the one-to-one mapping scheme for translation purposes, the POID
of the replicatable object, such as 0.0.0.1 /r_account 455, is used to create a replica with the
object id 0.0.5.X /r_account 455, where the first part of the POID is the LDAP Data Manager
database number and X is the number of the Oracle database.

Figure 2-3 shows the BRM replication scenario for both the user scheme and the one-to-one
mapping scheme.

Figure 2-3 BRM Replication Scenarios

Understanding the Channel Framework
By default, BRM propagates changes to the directory server by using the channel framework.
You can configure BRM to export data serially or in parallel. The default is serially.

Figure 2-4 shows the BRM channel framework data flow:

Chapter 2
Understanding the Channel Framework

2-7

Figure 2-4 BRM Channel Framework Data Flow

As changes, such as the creation of an account or the modification of a service, take
place in BRM through client (driver) applications such as Billing Care, or various
custom applications, transactions occur in BRM and are captured as events. After you
commit the changes to the BRM database, BRM pushes the changes to the specified
LDAP Data Manager in near real time.

About Channels and Data Propagation
BRM uses the /channel object to store configuration information for BRM channel
events. A channel determines how a set of events gets published to an LDAP directory
server. Channels also organize what data is transferred between the BRM database
and the LDAP database by defining suppliers and consumers:

• Suppliers (PIN_FLD_SUPPLIER_OBJ) contain information about the BRM object
that triggered the creation of the /channel_event object. A channel definition can
contain any number of suppliers.

Suppliers include the BRM database number in which the event occurred and the
BRM object name. For example:

0.0.0.1 /account

When an event occurs in the BRM database, the PCM_OP_CHANNEL_PUSH
opcode searches for all suppliers and returns a list of the channels that contain
them. For each channel retrieved, it creates one /channel_event object in the
BRM database. This handles the case in which the same supplier is associated
with multiple channels.

• Consumers (PIN_FLD_CONSUMER_OBJ) accept change information from
suppliers, translate the change information, and call the LDAP Data Manager to
propagate the changes to the directory server.

Consumers include the LDAP Data Manager (DM) to which the Connection
Manager (CM) connects and the destination object name. For example:

0.0.5.1 /r_account -1

Each consumer is coupled with a reference to an opcode
(PIN_FLD_PUSH_OPCODE field) that publishes the object data to the directory

Chapter 2
Understanding the Channel Framework

2-8

server. For example, 745 is the opcode reference to the PCM_OP_REPL_POL_PUSH
policy opcode, which is the default push opcode.

Channels act as reliable message queues and provide retry capabilities.

Channel Object Composition
The /channel object contains the following information:

• Channel ID

• Description

• Channel family

• Channel order

• List of suppliers

• List of consumers and a per-consumer push opcode

For an example channel definition, see "Example channel_config.xml File".

Channel Event Composition
BRM uses /channel_event objects to track changes to a specific consumer. For example,
BRM creates a channel_event entry to indicate that an accounting type change was made.

The /channel_event object contains the following information:

• Channel ID

• Channel event ID

• Source ID

• Supplier ID

• Status

Each /channel_event represents a unit of work that needs to be propagated. It contains a
pointer to the object that generates the change (SOURCE_OBJ).

About Channel Families
A channel family is a channel attribute that enables you to create independent groups of
channels that get handled separately by the channel framework. You define a family by
setting the PIN_FLD_FAMILY_ID value in the /channel object.

To retrieve channel events for a channel family, run the pin_channel_export utility with the -f
parameter and specify the family ID. When the pin_channel_export utility runs, it retrieves
the channels containing that ID and then determines how to process the channel events
based on their channel definitions.

Note:

A channel definition can have only one channel family value. Within that family, all
channels are published according to the channel priority, if defined. For more
information, see "About Channel Order".

Chapter 2
Understanding the Channel Framework

2-9

For more information on assigning a channel family, see "Configuring Channel
Definitions".

For information on how the pin_channel_export utility works, see "How Channel
Events are Published".

About Channel Order
The channel order defines the sequence in which channels with the same family ID
are processed. The publishing order is ascending, with 1 being the highest priority. You
define the channel order by setting the PIN_FLD_CHANNEL_ORDER value in the /
channel object.

When the "pin_channel_export" utility runs, it reads the channel definitions in that
family and prioritizes them based on their channel order. For example, consider the
channel IDs 10, 20, 30, and 40 in family 100 shown in Figure 2-5:

Figure 2-5 Example Channel IDs for Family ID 100

Because channel 30 is an account creation channel event, its order is set to 1 so it will
be created in the LDAP database before any modification events associated with the
account are published. Channel 10, which contains account modification suppliers, is
published next. Channel 20, the service creation channel, is ordered after the account
creation channel but is published before the service modification channel 40 as
depicted in Figure 2-6:

Figure 2-6 Example Publishing Order for Family ID 100

Chapter 2
Understanding the Channel Framework

2-10

When the pin_channel_export utility runs, it first retrieves batches of /channel_event
objects belonging to channel 30 and publishes them, then it does the same for channels 10,
20, and 40, in that order.

Note:

You can also set the publishing priority to 0, which is the default. In such cases, the
channels are published in increasing order of their channel IDs.

For information on assigning a channel order, see "Configuring Channel Definitions".

For more information on how channel events are published, see "How Channel Events are
Published".

About Channel Publishing Mode
You can define whether channel events are published to an LDAP server serially (0, the
default) or in parallel by setting the PIN_FLD_MULTI_THREADED value of the /channel
object. When you set the value to 1, all channel events with that channel ID are published
concurrently.

For example, say channel ID 30 has a PIN_FLD_MULTI_THREADED value of 1 and channel
ID 20 has a PIN_FLD_MULTI_THREADED value of 0. When the pin_channel_export utility
runs, it processes the channel events for channel ID 30 in parallel because the publishing
mode is set to multithreaded (1) as shown in Figure 2-7:

Figure 2-7 Multithreaded Publishing Example for Family ID 100

It processes channel events for channel ID 20 one after another because the publishing
mode is set to serial (0) as shown in Figure 2-8:

Chapter 2
Understanding the Channel Framework

2-11

Figure 2-8 Serial Publishing Example for Family ID 100

For information on assigning a publishing order, see "Configuring Channel Definitions".

For more information on how channel events are published, see "How Channel Events
are Published".

About Defining Channels
By default, you define channels in the BRM_home/sys/data/config/
channel_config.xml file. This configuration file contains one or more channel
definitions that get stored in the /channel object. Each channel definition is defined in
the file as a Channel child element of the ChannelConfig parent element.

Table 2-1 describes the elements and attributes in the Channel child element and
shows their corresponding fields in the /channel object.

Table 2-1 Channel Elements and Attributes with Corresponding Fields in the /channel Object

XML Field /channel Object Field Description Possible Values

FldChannelId PIN_FLD_POID A number that identifies the /
channel object in the BRM
database.

Any positive integer less than
1000.

Channel IDs 100-103 are pre-
defined but can be customized.

FldName PIN_FLD_NAME An optional character string
that provides a descriptive
name for the channel.

The name must be unique
within your BRM system.

Minimum length is 1 character;
maximum length is 255.

FldFamilyId PIN_FLD_FAMILY_ID A number that identifies the
family ID. Channels with the
same family ID are processed
as an independent group.

Any positive integer.

0 - Disables the family
functionality.

FldOrder PIN_FLD_CHANNEL_OR
DER

The publishing order of the
channel in a family, in
ascending order.

If two channels in the same
family have the same channel
order, the behavior is
considered undefined.

Any positive integer.

1 - The highest priority.

0 - The default, which sets the
order as undefined. Channels
are published in increasing
order of their channel IDs.

Chapter 2
Understanding the Channel Framework

2-12

Table 2-1 (Cont.) Channel Elements and Attributes with Corresponding Fields in the /channel
Object

XML Field /channel Object Field Description Possible Values

FldMultithread PIN_FLD_MULTI_THREA
DED

Specifies if the channel should
be published serially or in
parallel.

0 - Publish channels serially.

1 - Publish channels in parallel.

FldSupplierObj PIN_FLD_SUPPLIERS An array that holds information
about the suppliers.

The array element ID must be
1.

FldDatabase PIN_FLD_SUPPLIER_OB
J

The BRM database number. The BRM database number
(FldDatabase) and the supplier
event name
(FldSupplierName).

The format is
database_number/
object_name.

FldSupplierName PIN_FLD_SUPPLIER_OB
J

The name of the supplier
object.

The BRM database number
(FldDatabase) and the supplier
event name
(FldSupplierName).

The format is
database_number/
object_name.

FldConsumerObj PIN_FLD_CONSUMERS An array that holds information
about the consumers.

The array element ID is not
significant.

FldDatabase PIN_FLD_CONSUMER_O
BJ

The LDAP database number. The LDAP database number
(FldDatabase) and the
consumer name
(FldConsumerName).

The format is
database_number/
object_name.

FldConsumerName PIN_FLD_CONSUMER_O
BJ

The name of the replicatable
object in the LDAP database.

The consumer object is
comprised of the LDAP
database number
(FldDatabase) and the
consumer name
(FldConsumerName).

The format is
database_number/object
_name.

FldPushOpcode PIN_FLD_PUSH_OPCOD
E

The number of the opcode that
is used to publish information
to the LDAP database. By
default, this points to the
PCM_OP_REPL_POL_PUSH
policy opcode.

Any positive integer.

After editing the contents of the XML file, you use the "load_channel_config" utility to load the
contents of the file into the /channel object in the database. Before loading the contents of
the file, the utility validates the contents against the file's schema definition. If the contents do
not conform to the schema definition, the load operation fails.

Chapter 2
Understanding the Channel Framework

2-13

By default, the schema definition is located in the BRM_home/xsd/
channel_config.xsd file.

Note:

The channel_config.xml file must follow all standard XML formatting rules.

Example channel_config.xml File
The following example shows a typical channel_config.xml file. It defines two
channel families, 100 and 200, and eight channels: 10, 20, 30, 40 in family 100, and
50, 60, 70, 80 in family 200.

<?xml version="1.0" encoding="UTF-8"?>
<ChannelConfig xmlns="http://www.portal.com/schemas/BusinessConfig" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.portal.com/schemas/
BusinessConfig channel_config.xsd">

 <Channel FldChannelId="30" FldFamilyId="100" FldOrder="1" FldMultithread="1" FldName="Account
Creation Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_account" </FldConsumerObj>
 <FldPushOpcode> 745 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/account" </FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="10" FldFamilyId="100" FldOrder="2" FldMultithread="1" FldName="Account
Modification Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_account" </FldConsumerObj>
 <FldPushOpcode> 745 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/event/customer/nameinfo" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/product_status" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/status" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/billinfo"</FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="20" FldFamilyId="100" FldOrder="3" FldMultithread="0" FldName="Service
Creation Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_service" </FldConsumerObj>
 <FldPushOpcode> 745 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/service" </FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="40" FldFamilyId="100" FldOrder="4" FldMultithread="1" FldName="Service
Modification Channel">
 <ConsumersArray>

Chapter 2
Understanding the Channel Framework

2-14

 <FldConsumerObj> "/r_service" </FldConsumerObj>
 <FldPushOpcode> 745 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/event/customer/login" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/password" </FldSupplierObj>
 <FldSupplierObj> "/event/notification/service" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/status" </FldSupplierObj>
 <FldSupplierObj> "/event/billing/product" </FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="50" FldFamilyId="200" FldOrder="1" FldMultithread="1" FldName="Account
Creation Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_account" </FldConsumerObj>
 <FldPushOpcode> 746 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/account" </FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="70" FldFamilyId="200" FldOrder="2" FldMultithread="0" FldName="Account
Modification Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_account" </FldConsumerObj>
 <FldPushOpcode> 746 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/event/customer/nameinfo" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/status" </FldSupplierObj>
 <FldSupplierObj> "/event/customer/billinfo" </FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="60" FldFamilyId="200" FldOrder="3" FldMultithread="1" FldName="Broadband
Creation Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_service" </FldConsumerObj>
 <FldPushOpcode> 746 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/service/broadband" </FldSupplierObj>
 </SuppliersArray>
 </Channel>

 <Channel FldChannelId="80" FldFamilyId="200" FldOrder="4" FldMultithread="1" FldName="Broadband
Usage Channel">
 <ConsumersArray>
 <FldConsumerObj> "/r_service" </FldConsumerObj>
 <FldPushOpcode> 746 </FldPushOpcode>
 </ConsumersArray>
 <SuppliersArray>
 <FldSupplierObj> "/event/broadband" </FldSupplierObj>
 <FldSupplierObj> "/event/broadband/usage" </FldSupplierObj>
 </SuppliersArray>
 </Channel>
</ChannelConfig>

Chapter 2
Understanding the Channel Framework

2-15

How Channel Events are Published
The "pin_channel_export" utility publishes channel events to an LDAP database
according to their channel ID (PIN_FLD_POID) and family ID (PIN_FLD_FAMILY_ID),
if specified.

Note:

You must have one instance of the pin_channel_export utility running for
each family ID in your system.

Each pin_channel_export instance does the following:

1. If specified, uses the family ID value in the -f parameter to retrieve a batch of
channels with that family ID. The channels are retrieved in increasing order of the
channel IDs.

2. Reads the channel configurations that were retrieved and processes channel
events by:

• Prioritizing the channels based on the PIN_FLD_CHANNEL_ORDER value.

• Determining whether channels should be published serially or in parallel based
on the PIN_FLD_MULTI_THREADED value.

• Reading the PIN_FLD_CONSUMER_OBJ value to determine which LDAP DM
to send the results to.

3. Calls the PCM_OP_REPL_POL_PUSH policy opcode to publish the channel
events to respective LDAP databases.

After the "pin_channel_export" utility has cycled through all necessary channels, it
sleeps for the period specified in its pin.conf file and then starts the publishing cycle
again.

For information on the channel configuration values, see "About Defining Channels".

Configuring How Channels are Published
You can define any number of LDAP directory servers to which you publish data.
Before publishing data, make certain you:

• Configure the CM pin.conf file, including the following entries:

– Set the -ldap_db entry for each LDAP database in your system.

– Set the -dm_pointer entry for each LDAP DM in your system.

See "Configuring the Connection Manager for LDAP Manager".

• Configure each /channel object to contain the LDAP database number in the
PIN_FLD_CONSUMER_OBJ field. The PCM_OP_REPL_POL_PUSH policy
opcode retrieves this value when publishing data. See "Configuring Channel
Definitions".

• Set up one instance of the pin_channel_export utility for each family ID in your
system and make sure they both point to the same CM.

Chapter 2
Understanding the Channel Framework

2-16

For example, Figure 2-9 shows two instances of the pin_channel_export utility (one for
family 100 and one for family 200) which publish channels to the BRM database and two
LDAP databases. Each database is connected to its own DM:

Figure 2-9 Double pin_channel_export Instance Publishing

The channel IDs and channel family IDs must be unique across each LDAP database. This is
a requirement for multidatabase publishing. For example, say you have the configuration
described in Table 2-2 defined in your system:

Table 2-2 Example Channel ID and Family Configuration

Database Family ID Channel ID Validity Description

0.0.5.1 100 10,20,30,40 Valid These are the first unique family ID and channel IDs
defined in the system.

Table 2-3 lists the scenarios that are either invalid or valid, depending on the database
number, the family ID, and the channel IDs defined:

Table 2-3 Validity

Database Family ID Channel ID Validity Description

0.0.6.1 200 50,60,70,80 Valid The family ID and channel IDs are unique across the
databases.

0.0.6.1 100 10,20,30,40 Invalid The family ID and channel IDs are already defined in
database 0.0.5.1.

0.0.6.1 100 50,60,70,80 Invalid The family ID is already defined in database 0.0.5.1.

0.0.6.1 200 10,20,30,40 Invalid The channel IDs are already defined in database
0.0.5.1.

Example of Publishing a Channel Family
This example shows how the family ID is used to publish channels to an LDAP database.
Channel IDs 10, 20, 30, and 40 have a family ID value of 100. In addition, they all have the
same PIN_FLD_CONSUMER_OBJ value of 0.0.5.1, which means they are all published to
the same LDAP database.

Chapter 2
Understanding the Channel Framework

2-17

When you run the pin_channel_export utility with the -f parameter value set to 100,
the channels for that family ID are first prioritized by order, and, for each channel, the
pin_channel_export utility does the following:

• Searches for /channel_event objects in the BRM database.

• Calls the PCM_OP_REPL_POL_PUSH policy opcode (defined in the
PIN_FLD_PUSH_OPCODE field) to read the LDAP database number from the
PIN_FLD_CONSUMER_OBJ field.

• Reads the CM pin.conf file to determine the LDAP DM for the LDAP database
retrieved.

• Reads the channel's PIN_FLD_MULTI_THREADED value to determine whether to
publish the channel events serially or in parallel.

The result is that all channel events for channel IDs 10, 20, 30, and 40 are pushed to
LDAP DM 0.0.5.1 using three threads as shown in Figure 2-10:

Figure 2-10 Example of Publishing a Channel Family

Chapter 2
Understanding the Channel Framework

2-18

Note:

To connect to the BRM database, the load_channel_config utility needs a
configuration file in the directory from which you run the utility. See "Creating
Configuration Files for BRM Utilities" in BRM System Administrator's Guide.

About Setting Replicatable Objects as Consumers
When you set up replicatable objects as consumers, BRM uses the supplier/consumer/
channel paradigm. BRM predefines several /channel configuration objects in the
BRM_home/sys/dd/data/init_objects.source file.

Each channel object contains two array fields:

• Consumer array (PIN_FLD_CONSUMERS)

• Supplier array (PIN_FLD_SUPPLIERS)

You can register a list of suppliers for a particular /channel object by adding new array
elements to the PIN_FLD_SUPPLIERS array. The consumers for each of the /channel
objects are the replicated objects that the replication module and the LDAP Manager Data
Manager create.

The next sections describe the BRM LDAP channel configuration objects and the logical data
that these objects track.

Tracking New Account Creation
The /channel 100 channel object tracks new account creation.

Table 2-4 /channel 100 Channel Object

Consumer Array Supplier Array

$DB_NO /r_account -1

PCM_OP_REPL_POL_PUSH

$DB_NO /account -1

Tracking modifications to accounts
The /channel 101 channel object tracks changes to /account objects. In particular, it tracks
modifications to customer billing information, name information, and whether the charge offer
status is active or closed or whether a credit card is valid or invalid.

Table 2-5 /channel 101 Channel Object

Consumer Array Supplier Array

$DB_NO /r_account -1

PCM_OP_REPL_POL_PUSH

$DB_NO /event/customer/billinfo -1

$DB_NO /event/customer/nameinfo -1

$DB_NO /event/customer/product_status -1

$DB_NO /event/customer/status -1

Chapter 2
Understanding the Channel Framework

2-19

Tracking service creation
The /channel 102 object tracks changes to /service objects.

Table 2-6 /channel 102 Channel Object

Consumer Array Supplier Array

$DB_NO /r_service -1

PCM_OP_REPL_POL_PUSH

$DB_NO /service -1

Tracking modifications to services
The /channel 103 object propagates changes to /service objects.

Table 2-7 /channel 103 Channel Object

Consumer Array Supplier Array

$DB_NO /r_service -1

PCM_OP_REPL_POL_PUSH

$DB_NO /event/customer/login -1

$DB_NO /event/customer/password -1

$DB_NO /event/notification/service -1

$DB_NO /event/customer/status -1

Understanding the Replication Policy Push Operation
The channel framework uses the PCM_OP_REPL_POL_PUSH opcode to implement
the push operation.

This opcode implements the translation logic for /account and /service objects.

This policy opcode performs one of the following mapping functions. The mapping
function for PCM_OP_REPL_POL_PUSH is determined by the Connection Manager
(CM) pin.conf user_scheme entry.

• If user_scheme is 0, the opcode maps the /account and /service objects one-to-
one to /r_account and /r_service objects respectively. There will be one entry in
the directory for every object in BRM.

• If user_scheme is 1, the opcode merges the /account and /service object fields
to form the /r_user object.

By default, the Connection Manager user_scheme pin.conf entry is set to 1, and the
LDAP Data Manager implements a single-entry mapping operation.

If the PIN_FLD_POID field in the input flist indicates that the consumer is /r_account
-1, this opcode does the following operations:

• If the supplier is /account -1, it searches for all accounts created within the time
range passed to this opcode by the input fields PIN_FLD_INVOKE_T and
PIN_FLD_LAST_INVOKE_T. For each account, it reads a subset of the account
fields and forms a replicated object /r_user. It then invokes the
PCM_OP_CREATE_OBJ operation on dm_ldap to create the directory entry,
which serves as the replica of this /r_user object.

Chapter 2
Understanding the Channel Framework

2-20

• For all other suppliers, it searches for all events created within the time range. For the
account associated with each event, it reads the same subset of the account fields from
the previous step, and invokes the PCM_OP_WRITE_FLDS operation on dm_ldap to
modify the directory entry.

If the PIN_FLD_POID field in the input flist indicates that the consumer is /r_service -1, this
opcode does the following operations:

• If the supplier is /service -1, it searches for all services created within the time range
passed to this opcode by the input fields PIN_FLD_INVOKE_T and
PIN_FLD_LAST_INVOKE_T. For each service, it reads a subset of the service fields and
invokes the PCM_OP_WRITE_FLDS operation on dm_ldap, and modifies the directory
entry that corresponds to the /r_user object. The modified directory entry relates to the /
account object to which the service belongs.

• For all other suppliers, this opcode searches for services modified within the time range.
For each service, it reads the same subset of the service fields as in the previous step,
and invokes the PCM_OP_WRITE_FLDS operation on dm_ldap to modify the directory
entry.

The default implementation for push operations is as follows:

1. BRM searches for all events listed in the supplier list and retrieves a list of the changed /
account objects (sources).

2. For each /account object, BRM calls PCM_OP_REPL_POL_PUSH operations with the
corresponding replicatable object PID ID.

3. BRM sends the result of the push operation to the LDAP Data Manager based on the
LDAP database specified in the PIN_FLD_CONSUMER_OBJ value and the family ID
(PIN_FLD_FAMILY_ID), if specified. See "How Channel Events are Published".

Understanding the Replication Module
The module that controls what BRM data gets pushed and how it is structured in the directory
server is the replication module. BRM calls the replication module from the channel
framework synchronization operation for each channel event object in the channel event
table.

Figure 2-11 shows the replication module data flow:

Chapter 2
Understanding the Replication Module

2-21

Figure 2-11 Replication Module Data Flow

The replication module implements the translation logic for /account and /service
objects, handling account and service creation and modification. By default, the
replication module merges fields from /account and /service objects during the
translation. For more information, see "Defining the User Mapping Scheme".

Replication Policy Default Implementation
The replication policy, PCM_OP_REPL_POL_PUSH pushes data about the object
whose POID is supplied in the input flist. It locates the account supplied in the input
flist and performs the operations shown in Figure 2-12:

Chapter 2
Understanding the Replication Module

2-22

Figure 2-12 Replication Policy Default Implementation

1. Reads a subset of the account fields, such as bill_type and currency.

LDAP Data Manager derives this information from the field list in the mapping file.

2. Forms the replicatable /r_user object (assuming user scheme).

3. Calls the create object opcode, PCM_OP_CREATE_OBJ on dm_ldap to create the
directory entry, which serves as the replica of this /r_user object.

4. Iteratively reads the same subset of account fields for all other suppliers (assuming
events) and calls the PCM_OP_WRITE_FLDS operation on dm_ldap to modify the
directory entry.

The opcode searches for the object whose POID was supplied in the input flist. For that
service, it reads a subset of the service fields and calls the PCM_OP_WRITE_FLDS
operation on dm_ldap to modify the directory entry that corresponds to the /r_user object.

Defining the User Mapping Scheme
The user mapping scheme maps BRM /account and /service objects to one entry in the
directory server, and it is deemed acceptable in a single-logon environment.

Chapter 2
Understanding the Replication Module

2-23

The parameter that controls whether BRM uses this scheme is the Connection
Manager user_scheme entry in the Connection Manager (CM) pin.conf file. If the
user_scheme is set to 1, the LDAP Data Manager uses the user mapping scheme.

Figure 2-13 shows how BRM maps the /account and /service objects to the ruser
entry in the directory server:

Figure 2-13 /account and /service Object Mapping to ruser Entry

The replication policy uses fields from the /account and /service objects to form an /
r_user object. The LDAP Data Manager uses the data in the /r_user object and
pushes it to the directory server. The replication policy determines whether to use this
merge /r_user object by reading the user_scheme entry of the CM pin.conf file.

For more information on the Connection Manager pin.conf file, see "Configuring the
Connection Manager for LDAP Manager".

The /r_user object uses fields from the BRM /account and /service objects. You map
attributes in the mapping file to BRM fields. Some of these attributes are predefined for
LDAP directory servers; however, the BRM-specific attributes cannot be created
automatically. For more information on defining the ruser object class in the directory
server, "Determining the /r_user Object Class Attributes".

In the user scheme, it is possible for the field name spaces to collide. Fields such as
the status field in /account and /service objects have different field and attribute
names in the /r_user object (for example, PIN_FLD_ACCOUNT_STATUS and
PIN_FLD_SERVICE_IP_STATUS).

Note:

With the user scheme, it is difficult for an account to have multiple services of
a given type. BRM usually allows this.

The following example shows default mapping file for the LDAP Data Manager
(ldap.idl) for the user scheme:

Chapter 2
Understanding the Replication Module

2-24

Class Definitions:
All attributes need to be defined in the directory server
All the entry_type objectclasses and attrval objectclasses need to be
defined in the directory server.
#
STORABLE CLASS /r_user {
POID PIN_FLD_POID {
CREATE = System;
MODIFY = System;
}
TIMESTAMP PIN_FLD_CREATED_T {
CREATE = System;
MODIFY = System;
}
TIMESTAMP PIN_FLD_MOD_T {
CREATE = System;
MODIFY = System;
}
STRING PIN_FLD_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
POID PIN_FLD_ACCOUNT_OBJ {
CREATE = Required;
MODIFY = Writeable;
}
STRING PIN_FLD_ACCOUNT_NO {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_FIRST_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_LAST_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_ACCOUNT_STATUS {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_BILL_TYPE_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_ADDRESS {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_CURRENCY_NAME {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_LOGIN {
CREATE = Required;
MODIFY = Writeable;
}
STRING PIN_FLD_PASSWD {
CREATE = Optional;
MODIFY = Writeable;

Chapter 2
Understanding the Replication Module

2-25

}
STRING PIN_FLD_EMAIL_LOGIN {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_EMAIL_STATUS {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_IP_LOGIN {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_IP_STATUS {
CREATE = Optional;
MODIFY = Writeable;
}
INT PIN_FLD_MAX_MBOX_SIZE {
CREATE = Optional;
MODIFY = Writeable;
}
INT PIN_FLD_MAX_MSG_CNT {
 CREATE = Optional;
 MODIFY = Writeable;
}
INT PIN_FLD_MAX_MSG_SIZE {
 CREATE = Optional;
 MODIFY = Writeable;
}
 ARRAY PIN_FLD_ARGS {
 STRING PIN_FLD_ARG {
 CREATE = Optional;
 MODIFY = Writeable;
 }
 }
}

STORABLE CLASS /r_user IMPLEMENTATION LDAPV3 {
ATTRVAL = "objectClass : top";
ATTRVAL = "objectClass : person";
ATTRVAL = "objectClass : inetOrgPerson";

ENTRY_TYPE = "ruser";

LOCATION = "o=portal.com";

POID PIN_FLD_POID {
ATTRIBUTE = "pinpoid";
}
TIMESTAMP PIN_FLD_CREATED_T {
ATTRIBUTE = "pincreatedt";
}
TIMESTAMP PIN_FLD_MOD_T {
ATTRIBUTE = "pinmodt";
}
STRING PIN_FLD_NAME {
ATTRIBUTE = "cn";
}
POID PIN_FLD_ACCOUNT_OBJ {
ATTRIBUTE = "billingid";
}

Chapter 2
Understanding the Replication Module

2-26

STRING PIN_FLD_ACCOUNT_NO {
ATTRIBUTE = "accountno";
}
STRING PIN_FLD_FIRST_NAME {
ATTRIBUTE = "givenname";
}
STRING PIN_FLD_LAST_NAME {
ATTRIBUTE = "sn";
}
STRING PIN_FLD_ACCOUNT_STATUS {
ATTRIBUTE = "billingstatus";
}
STRING PIN_FLD_BILL_TYPE_NAME {
ATTRIBUTE = "billingtype";
}
STRING PIN_FLD_ADDRESS {
ATTRIBUTE = "billingaddress";
}
STRING PIN_FLD_CURRENCY_NAME {
ATTRIBUTE = "currency";
}
STRING PIN_FLD_LOGIN {
ATTRIBUTE = "uid";
RDN_PIECE = 1;
}
STRING PIN_FLD_PASSWD {
ATTRIBUTE = "userpassword";
}
STRING PIN_FLD_EMAIL_LOGIN {
ATTRIBUTE = "mail";
}
STRING PIN_FLD_EMAIL_STATUS {
ATTRIBUTE = "mailstatus";
}
STRING PIN_FLD_IP_LOGIN {
ATTRIBUTE = "iplogin";
}
STRING PIN_FLD_IP_STATUS {
ATTRIBUTE = "ipstatus";
}
INT PIN_FLD_MAX_MBOX_SIZE {
ATTRIBUTE = "mailquota";
}
INT PIN_FLD_MAX_MSG_CNT {
ATTRIBUTE = "mailmaxmsgcount";
}
INT PIN_FLD_MAX_MSG_SIZE {
ATTRIBUTE = "mailmaxmsgsize";
}
 ARRAY PIN_FLD_ARGS {
 STRING PIN_FLD_ARG {
 ATTRIBUTE = "ipargs";
 MULTIVALUED = 1;
 }
 }
}

Chapter 2
Understanding the Replication Module

2-27

Related /account and /service Opcodes
Table 2-8 summarizes the opcodes that capture changes made to /account and /
service objects (so that fields in these objects can then be pushed to the directory
server:

Table 2-8 Related /account and /service Opcodes

Opcode(s) Action

PCM_OP_CUST_COMMIT_CUSTOMER

PCM_OP_CUST_PREP_CUSTOMER

Accepts the DNs for the /account object in the form of an
optional /profile/ldap object.

PCM_OP_ACT_POL_EVENT_NOTIFY Calls CM_OP_CHANNEL_PUSH to create an entry in the
channel_event table to track changes.

PCM_OP_CUST_POL_ENCRYPT_PASSWD Disables or enables encryption of the /service/ldap password.

PCM_OP_CUST_CREATE_ACCT Calls PCM_OP_CHANNEL_PUSH to create an entry in the
channel_event table to track creation of accounts.

PCM_OP_CUST_CREATE_SERVICE Calls PCM_OP_CHANNEL_PUSH to create an entry in the
channel_event table to track creation of services.

PCM_OP_TRANS_POL_COMMIT Defers PCM_OP_CHANNEL_SYNC automatically.

Determining the /r_user Object Class Attributes
BRM cannot automatically create directory server entries. Therefore, you must
manually define the BRM data elements that you are interested in capturing with your
own directory server tools.

For example, BRM-specific information such as the POID must map to a pinpoid
attribute, which is not predefined the directory server. For this reason, you must create
a replicatable user object for BRM to use in the directory server. BRM can then modify
the schema of a particular entry based on how it is configured.

The next table describes the BRM /r_user object and how it is composed of BRM
fields in the /service and /account objects as well as its corresponding directory
attributes, and whether they are predefined in the LDAP directory server.

Refer to Table 2-9 when you create the ruser directory server entry and its
corresponding BRM attributes for replication purposes. This table also lists the fields
that BRM pushes to the directory server by default.

Note:

• Case is significant for the directory server attributes. For example, you
must enter givenName, not givenname. If you do not enter these
attributes exactly as shown, you will encounter object class violations
when you map BRM fields to directory server attributes.

• Make sure that the object class name in the directory server matches the
entry type name in the ldap.idl mapping file.

Chapter 2
Understanding the Replication Module

2-28

Table 2-9 Default Directory Server Fields

/r_user Field Object Components and Comments Directory
Attribute

Predefined in
LDAP

PIN_FLD_POID /account. ldap_db db_no + POID ID pinpoid N

PIN_FLD_CREATED_T Created time set by dm_ldap pincreatedt N

PIN_MOD_T Modified time set by dm_ldap pinmodt N

PIN_FLD_NAME /account. Composed by concatenating the
first_name, middle_name, and last_name
fields. PIN_FLD_BILLINFO
[PIN_NAMEINFO_BILLING]

cn - LDAP Y

PIN_FLD_ACCOUNT_OBJ /account.PIN_FLD_POID billingid N

PIN_FLD_ACCOUNT_NO /account.PIN_FLD_ACCOUNT_NO accountno N

PIN_FLD_FIRST_NAME See PIN_FLD_NAME givenName Y

PIN_FLD_LAST_NAME See PIN_FLD_NAME sn Y

PIN_FLD_ACCOUNT_STATUS /account.PIN_FLD_STATUS
Values: Active, Inactive, and Closed

billingstatus N

PIN_FLD_BILL_TYPE_NAME /account.PIN_FLD_BILL_TYPE
Values: Prepaid, Invoice, Debit, Credit
Card, Direct Debit, Smart Card,
Subordinate (nonpaying), Internal,
Guest, Cash, Check, Wire Transfer,
Inter-Bank Payment Order, Postal Order,
Unknown

billingtype N

PIN_FLD_ADDRESS /
account.PIN_FLD_NAMEINFO[PIN_NAM
EINFO_BILLING]:
Street, city, state, ZIP code, and country
concatenated using comma separators

billingaddress N

PIN_FLD_CURRENCY_NAME /account.PIN_FLD_CURRENCY.

(String BEID name such as US Dollar
from /config/beid_balances)

currency Y

PIN_FLD_LOGIN Login associated with /service/ldap for
LDAP Manager

uid [RDN
component] for
LDAP Manager

Y

PIN_FLD_PASSWD Cleartext password associated with

/service/ldap for LDAP Manager

userPassword Y

PIN_FLD_EMAIL_LOGIN /service/email. Login mail Y

PIN_FLD_EMAIL_STATUS /service/email. PIN_FLD_STATUS
Values: Active, Inactive, and Closed

mailstatus N

PIN_FLD_IP_LOGIN /service/ip. Login iplugin Y

PIN_FLD_IP_STATUS /service/ip.PIN_FLD_STATUS
Values: Active, Inactive, and Closed

ipstatus N

PIN_FLD_MAX_MBOX_SIZE /service/
email.PIN_FLD_SERVICE_EMAIL.PIN_F
LD_MAX_MBOX_SIZE

mailboxQuota Y

Chapter 2
Understanding the Replication Module

2-29

Table 2-9 (Cont.) Default Directory Server Fields

/r_user Field Object Components and Comments Directory
Attribute

Predefined in
LDAP

PIN_FLD_MAX_MSG_CNT /service/
email.PIN_FLD_SERVICE_EMAIL
PIN_FLD_MAX_MSG_CNT

mailmaxmsgcnt N

PIN_FLD_MAX_MSG_SIZE /service/emailad mailmaxmsgsiz
e

N

PIN_FLD_PATH /service/
email.PIN_FLD_SERVICE_EMAIL.PIN_FL
D_PATH

mailmessagesto
re

Y

PIN_FLD_ARGS[].PIN_FLD_ARG /service/ip.PIN_FLD_ARGS. The

PIN_FLD_NAME and PIN_FLD_VALUE
are concatenated (using "=" separators)

ipargs N

Creating the /r_user Object Class in the Directory Server
To replicate data from BRM to your directory server, you must set up the ruser object
class in your directory server using your own LDAP directory server tools:

1. Start your Netscape directory server tools.

2. Define the ruser object class in the LDAP directory server or Membership
directory.

3. Use the /r_user mapping table described in the previous section to define all the
required BRM-specific attributes that you want to replicate to the list of allowable
attributes in the ruser objectClass.

4. Save the object class in the directory server.

5. Change the value of the LOCATION key in the implementation section of the /
r_user object definition in the ldap.idl mapping file.

Defining the One-to-One Mapping Scheme
The one-to-one mapping scheme maps one BRM object to one LDAP directory entry.
Figure 2-14 shows how BRM maps the /account and /service objects to the raccount
and rservice entries in the directory server.

Chapter 2
Understanding the Replication Module

2-30

Figure 2-14 BRM /raccount and rservice Object Mapping in Directory Server

To use the one-to-one mapping scheme, you must modify the replication policy C source
code file. After you define the LDAP schema, you modify the replication policy
(PCM_OP_REPL_POL_PUSH) to perform multiple pushes; one for the account and one for
each service.

Note:

The default implementation for the one-to-one mapping scheme in the replication
module exports only /service/email and /service/ip objects.

To use the one-to-one mapping scheme:

1. Set the user_scheme entry of the Connection Manager (CM) pin.conf file to 0. See
"Configuring the Connection Manager for LDAP Manager".

2. Map the following classes in the LDAP Data Manager mapping file (ldap.idl). You can
find the mapping file in BRM_home/sys/dm_ldap.

• /r_account

• /r_service

• /r_service/ip

• /r_service/email

See "One-to-One Mapping File Example" for the details.

Tip:

You can define the mappings in a new file and point to it from the LDAP Data
Manager pin.conf file.

Chapter 2
Understanding the Replication Module

2-31

3. Define raccount and rservice object classes in the directory server.

4. For each of the /r_account and /r_service, /r_service/ip and /r_service/email
fields you want to export, define a corresponding attribute and add to the list of
allowed attributes of the raccount or rservice object classes.

5. Set up the rservice object class to allow all attributes mapped to /r_service and
its subtypes (/r_service/email and /r_service/ip).

Note:

The LDAP Data Manager mapping scheme requires you to map to one
ENTRY_TYPE per class and its subtypes.

6. Modify the replication policy C source code file, fm_repl_pol_translate.c.

This file implements the replication policy PCM_OP_REPL_POL_PUSH. See
"Changing the Replication Policy for the One-to-One Mapping Scheme" for details.

One-to-One Mapping File Example
This example shows a subset of the mapping file (the implementation section) as an
example for the one-to-one mapping scheme.

##
/r_account (to represent Portal /account storable class)
##
STORABLE CLASS /r_account {
list all the /r_account fields (similar to the /r_user fields in the user
scheme
without the service related fields like PIN_FLD_EMAIL_LOGIN, etc.

#PIN_FLD_POID
#PIN_FLD_CREATED_T
#PIN_FLD_MOD_T
#PIN_FLD_NAME
#PIN_FLD_ACCOUNT_OBJ
#PIN_FLD_ACCOUNT_NO
#PIN_FLD_FIRST_NAME
#PIN_FLD_LAST_NAME
#PIN_FLD_ACCOUNT_STATUS
#PIN_FLD_BILL_TYPE_NAME
#PIN_FLD_ADDRESS
#PIN_FLD_CURRENCY_NAME
#PIN_FLD_GUID
#PIN_FLD_LOGIN
#PIN_FLD_PASSWD
}

#
STORABLE CLASS /r_account IMPLEMENTATION LDAPV3 {

ENTRY_TYPE = "raccount";
LOCATION = "o=xyz, c=US";

provide mapping for /r_account fields
}

Chapter 2
Understanding the Replication Module

2-32

##
/r_service (to represent Portal /service storable class)
##
STORABLE CLASS /r_service {
list all the /r_service fields
PIN_FLD_POID
PIN_FLD_CREATED_T
PIN_FLD_MOD_T
PIN_FLD_ACCOUNT_OBJ
PIN_FLD_LOGIN
PIN_FLD_PASSWD
PIN_FLD_STATUS
}

/r_service/ip (to represent Portal /service/ip storable class)
STORABLE CLASS /r_service/ip {
list all the /r_service/ip related fields
PIN_FLD_ARGS
#PIN_FLD_ARG
}
/r_service/email (to represent Portal /service/email storable class)
STORABLE CLASS /r_service/email {
list all the /r_service/email related fields
PIN_FLD_EMAIL_INFO
#PIN_FLD_MBOX_SIZE
#PIN_FLD_MAX_MSG_CNT
#PIN_FLD_MAX_MSG_SIZE
}

#
STORABLE CLASS /r_service IMPLEMENTATION LDAPV3 {

ENTRY_TYPE = "rservice";
LOCATION = "ou=services, o=xyz, c=US";

provide mapping for /r_service fields
MAKE PIN_FLD_POID as the RDN_PIECE.
}

#
STORABLE CLASS /r_service/ip IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/ip fields
}

#
STORABLE CLASS /r_service/email IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/email fields
}

Changing the Replication Policy for the One-to-One Mapping Scheme
Use this section to guide you in modifying the PCM_OP_REPL_POL_PUSH replication
policy. You make all changes to the C source code file fm_repl_pol_translate.c, which is
located as follows:

BRM_home/source/sys/fm_repl_pol

1. Save a copy of fm_repl_pol_translate.c.

Chapter 2
Understanding the Replication Module

2-33

2. Package the input flist to LDAP Data Manager to match the mapping information
you specified in the mapping file (ldap.idl) file associated with dm_ldap as
described in "LDAP Data Manager Mapping Files".

3. In the fm_repl_pol_prep_service_flds() function, drop the PIN_FLD_STATUS
and PIN_FLD_LOGIN associated with /service/ldap only if you are using the
user_scheme.

4. In the fm_repl_pol_prep_service_email_flds() function, move the information in
the PIN_FLD_SERVICE_EMAIL substruct to the PIN_FLD_EMAIL_INFO array
field as shown here:

e_flistp = PIN_FLIST_SUBSTR_TAKE(rep_flistp,
 PIN_FLD_SERVICE_EMAIL, 0, ebufp);
if (user_scheme) {
 PIN_FLIST_CONCAT(rep_flistp, e_flistp, ebufp);
 PIN_FLIST_DESTROY(e_flistp, NULL);
} else {
 PIN_FLIST_ELEM_PUT(rep_flistp, e_flistp,
 PIN_FLD_EMAIL_INFO, 0, ebufp);
}

Chapter 2
Understanding the Replication Module

2-34

3
Managing the Directory Server Organization

This chapter describes how to use the Oracle Communications Billing and Revenue
Management (BRM) LDAP API to manage and manipulate the directory tree organization.

See also:

• About LDAP Manager

• Mapping Data between LDAP Data Manager and Your Directory Server

About Managing Directory Server Entries
You can create, delete, read, and write directory server entries and attributes in any part of a
directory tree.

BRM uses Distinguished Names (DNs) for these operations in one of two ways:

• From the location value in the mapping file

• From the location in the input flist based on:

– The location value and Relative Distinguished Name (RDN) piece

– The DN field and DN qualifiers (complete and prefixed) used in the create operation.
The create operation can also use the parent DN qualifier.

For more information, see "Specifying Directory Tree Entries".

The BRM LDAP Data Manager makes the following assumptions during create, delete, read,
and write operations with the DN you supply at run time:

• The directory server entry is an instance of the object defined in the mapping file.

• The location value matches the location you specified in the mapping file.

Semantics for the LDAP Modify Operation
You use the LDAP modify operation to manage directory server entries. This operation is
used by the following opcodes:

• PCM_OP_DELETE_FLDS

• PCM_OP_DELETE_OBJ

• PCM_OP_WRITE_FLDS

• PCM_OP_CREATE_OBJ

The LDAP modify operation accepts a list of modifications to be performed, and performs the
modifications in the order listed as a single atomic operation. The value that may be taken on
by the operation field in each modification construct can have the following semantics:

• Add - Adds specified values to the given attribute and creates the attribute if necessary.

3-1

• Delete - Deletes specified values from the given attribute. Removes the entire
attribute if no values are specified or if all existing values of the attribute are listed
for deletion.

• Replace - Replaces all existing values of the given attribute with the specified
values, and creates the attribute if it does not already exist. Using replace with no
specified values deletes the entire attribute.

Distinguished Name Field and the DN Flags Field
Use the Distinguished Name field, PIN_FLD_DN, and the Distinguished Name flags
field, PIN_FLD_DN_FLAGS with one of its values to specify the locations in the
directory tree shown in Table 3-1:

Table 3-1 PIN_FLD_DN Settings

Value Meaning

0 Complete DN.

To specify a complete DN, pass the complete DN of the entry in the
PIN_FLD_DN field. You can optionally set PIN_FLD_DN_FLAGS to 0.

For more detailed information and an example, see "Using a Complete
Distinguished Name".

1 Prefixed DN.

To specify a prefixed DN, pass the prefixed DN of the entry in the PIN_FLD_DN
field and set the PIN_FLD_DN_FLAGS to 1.

A prefixed DN is the case when the module that calls the LDAP Data Manager
(typically, PCM_OP_REPL_POL_PUSH) passes in the RDN as a prefix.

For more detailed information and an example, see "Using a Prefixed
Distinguished Name".

2 Parent DN.

You cannot use the parent value as a flag to the following opcodes:

• PCM_OP_DELETE_FLDS
• PCM_OP_DELETE_OBJ
• PCM_OP_WRITE_FLDS
You can only use the parent value with PCM_OP_CREATE_OBJ.

To specify a parent DN, pass the parent DN of the entry in the PIN_FLD_DN
field, and set the PIN_FLD_DN_FLAGS to 2.

For more detailed information and an example, see "Using a Parent
Distinguished Name (Create Operation Only)".

The Location Field
You can use the location field, PIN_FLD_LOCATION to override the base LOCATION
value specified in the mapping file. The override is a one shot override for that
particular operation only. This lets you specify a different tree root location (base DN)
for the directory server entry. For more detailed information and an example, see
"Overriding the Base Dn Location".

Creating Directory Server Entries
This section describes the default control logic of the LDAP create operation.

Chapter 3
Creating Directory Server Entries

3-2

For information on specifying directory tree entries, see "Specifying Directory Tree Entries".

To create new directory server entries or reuse entries in the directory server for replication
purposes, use the LDAP PCM_OP_CREATE_OBJ base opcode.

The LDAP PCM_OP_CREATE_OBJ base opcode performs the following operations:

• Makes entries compatible with BRM by adding these BRM fields:

– Portal object ID (POID)

– PIN_FLD_POID

– CREATED_T

– MOD_T

• Composes the Distinguished Name (DN).

• Accepts the Distinguished Name (DN) of the entry as an input.

PCM_OP_CREATE_OBJ requires the following inputs:

• PIN_FLD_POID. Use the replica POID for this field.

• PCM_OP_USE_POID_GIVEN opflag.

• Other fields depending on the object you create.

Note:

When writing array elements, this opcode does not use the element ID.

If you specify a Distinguished Name for the PIN_FLD_DN field in the input flist, the LDAP
Data Manager creates a directory entry with the DN that you provide. If the entry already
exists, this opcode ignores the error and performs a modify directory operation instead of an
add directory operation.

Note:

The modify directory operation updates all attributes in an entry.

For more information see "Semantics for the LDAP Modify Operation".

Distinguished Name Control Logic for PCM_OP_CREATE_OBJ
You can specify the location in the directory tree by using the PIN_FLD_DN,
PIN_FLD_DN_FLAGS as well as the PIN_FLD_LOCATION fields:

• If you use the PIN_FLD_DN in the input flist, the create opcode creates an entry with the
value of the DN you provide.

• If you do not supply a DN for the PIN_FLD_DN field, the LDAP Data Manager uses the
RDN_PIECE in the mapping file to compose the Relative Distinguished Name (RDN).

Chapter 3
Creating Directory Server Entries

3-3

• If you use the PIN_FLD_DN field without the PIN_FLD_DN_FLAGS in the input
flist, then the create opcode assumes you want to pass in a complete DN. This
sets the PIN_FLD_DN_FLAGS field to 0.

• If you use the PIN_FLD_DN field with the PIN_FLD_DN_FLAGS field set to 1,
then the create opcode appends the LOCATION value to construct the DN. This is
the prefixed DN.

• If you use the PIN_FLD_DN field with the PIN_FLD_DN_FLAGS field set to 2,
then the create opcode appends the LOCATION to PIN_FLD_DN. It then appends
this to the value specified for the attribute that is tagged as the RDN_PIECE in the
mapping file. This is the parent DN case.

Note:

You can specify only a parent DN for the create opcode.

If you use the PIN_FLD_LOCATION field in the input flist, the create opcode overrides
the location value that you specified in the mapping file for this operation. If you do not
use this field in the input flist, the create opcode assumes that you want to use the
location value you specified in the mapping file.

Pre-Existing Distinguished Names
If you supply a DN in the input flist for PCM_OP_CREATE_OBJ, and an entry with the
same DN exists in the directory server, BRM adds the information to the existing entry
based on the information that you provide.

LDAP Data Manager does not treat pre-existing entries as errors.

Supplying Distinguished Names
If you supply a DN to the LDAP Data Manager for the PCM_OP_CREATE_OBJ
operation, BRM uses it to create a directory server entry. This lets you use existing
LDAP customer entries and also gives you flexibility in assigning DNs.

Not Supplying Distinguished Names
If you do not supply a DN to the LDAP Data Manager for the PCM_OP_CREATE_OBJ
operation, BRM uses the attribute tagged with the key RDN_PIECE in the mapping file
as the RDN.

For example, the LOCATION "o=portal.com" is appended to the value specified for
the attribute cn (tagged as RDN_PIECE) in the mapping file to compose the REAL DN,
"cn=john,o=portal.com".

Understanding Matching Rules for Distinguished Names
You control the location of directory tree entries by using a combination of values in the
mapping file and by using DN qualifiers, or location parameters at run time as inputs to
the BRM LDAP create, delete, read, and write operations.

Chapter 3
Creating Directory Server Entries

3-4

LDAP Data Manager uses static and dynamic matching rules for DNs to determine the
location for directory server entries in the directory tree.

Using Static Controls for DNs
The LDAP Data Manager lets you specify the location of directory server entries statically for
each object type by using the LOCATION key in the mapping file. You specify different
LOCATION values for different object types as follows:

STORABLE CLASS /info1 IMPLEMENTATION LDAPV3 {
LOCATION = "ou=portal,c=US";
}
STORABLE CLASS /info2 IMPLEMENTATION LDAPV3 {
LOCATION = "ou=abc,o=xyz,c=US";
}

Using Dynamic Controls for DNs
LDAP Data Manager lets you manipulate the static controls in the mapping file by using the
control field for DNs, the PIN_FLD_DN field and a flag for the DN, PIN_FLD_FLAGS.

Rule matching for the given DN with the LOCATION field allows entries to be at arbitrary
depths relative to the location instead of limiting entries to one location. For example:

If

LOCATION = "o=portal.com"

Then the following locations are accepted:

PIN_FLD_DN = "cn=john, ou=dev, ou=engg, o=portal.com"

Deleting Directory Server Entries
To delete directory server entries, use the LDAP PCM_OP_DELETE_OBJ base opcode to
perform the delete object operation. This opcode invokes the delete entry semantics of the
LDAP modify operation in the directory server.

To delete an entry from an existing directory server, create the PCM_OP_DELETE_OBJ input
flist. Specify the complete POID or the DN of the entry in the flist.

• If you specify the DN, make sure that the POID is a type-only POID, for example:

POID [0] 0.0.5.1 /r_user -1

• By default, the delete entry operation expects a complete DN. You can optionally supply a
prefixed DN.

– To set up a complete DN, see "Using a Complete Distinguished Name".

– To set up a prefixed DN, see "Using a Prefixed Distinguished Name".

PCM_OP_DELETE_OBJ performs the following operations:

• Invokes the delete entry semantics of the LDAP modify operation in the directory server.

• If the pinpoid attribute does not form the Relative Distinguished Name (RDN), this opcode
locates the directory server entry first using a search operation and then deletes the
object.

Chapter 3
Deleting Directory Server Entries

3-5

You must supply the PIN_FLD_POID (replica POID ID) and the POID of the object that
you want to delete in the input flist.

For more information see "Semantics for the LDAP Modify Operation".

Changing Directory Server Entries
You can manage changes to directory server entries by performing the following
operations:

• Adding Attributes to an Existing Directory Server Entry

• Deleting Attributes from an Existing Directory Server Entry

• Renaming Directory Server Entries

• Creating Subclass Objects in the Directory Server

• Creating Related Entries Under One Node

The next sections describe how to accomplish these tasks.

For information on specifying directory tree entries, see "Specifying Directory Tree
Entries".

Adding Attributes to an Existing Directory Server Entry
You can add an attribute that already exists in the directory server schema to an
instance of an object defined in the mapping file. This lets you access and modify the
schema of the directory server entry by using the BRM API.

Follow these rules when you add an attribute to the directory server:

• If an attribute belongs to an auxiliary class, specify the attribute's auxiliary class in
the mapping file.

• An attribute can belong to only one auxiliary class.

• Attribute names must be unique across object classes.

• Attributes being added must already exist in the directory schema.

If you add an attribute that belongs to an auxiliary class to an existing directory server
entry, the auxiliary class is automatically added to the entry.

To update or rename an entry, use the LDAP PCM_OP_WRITE_FLDS base opcode.

This opcodes performs the following operations:

• Updates attributes by using the LDAP modify operation

• Uses the replace semantics of the LDAP modify operation

• Renames directory server entries

When you specify an array field, the entire array is replaced. The
PCM_OPFLG_ADD_ENTRY opflag is used to invoke the add semantics, thereby
adding new values to an existing entry.

You must supply the PIN_FLD_POID (replica POID ID) and at least one field that you
want to write in the input flist. For rename operations, you can only specify the RDN
piece as it is specified in the mapping file. You must also set the deleteOldRdn entry in
the LDAP Data Manager pin.conf file to 1.

Chapter 3
Changing Directory Server Entries

3-6

For more information see "Semantics for the LDAP Modify Operation".

For the procedure on renaming a directory server entries, see "Renaming Directory Server
Entries".

To add an attribute to an existing directory server entry:

1. Create the PCM_OP_WRITE_FLDS input flist:

a. Add the complete POID or DN of the entry.

If you specify the DN, make sure that the POID is a type-only POID, for example,
POID [0] 0.0.5.1 /r_user -1.

b. (Optional) Specify whether the DN is a complete or prefixed DN.

By default, the write fields operation expects a complete DN. You can optionally
supply a prefixed DN.

To set up a complete DN, see "Using a Complete Distinguished Name".

To set up a prefixed DN, see "Using a Prefixed Distinguished Name".

2. In the mapping file, define all possible attributes including the auxiliary class that the
directory server entry might contain.

3. For the attribute you are adding:

a. Set the CREATE string to Optional.

b. Specify the auxiliary class that the attribute belongs to.

In this sample, PIN_FLD_HTTP_URL corresponds to the attribute labeleduri for an
auxiliary class called labeleduriobject.

STORABLE CLASS /r_user {
...
STRING PIN_FLD_HTTP_URL {
CREATE = Optional;
MODIFY = Writeable;
}
STRING PIN_FLD_TYPE_STR {
CREATE = Optional;
MODIFY = Writeable;
}
...
}
STORABLE CLASS /r_user IMPLEMENTATION LDAPV3 {
...
STRING PIN_FLD_HTTP_URL {
ATTRIBUTE = "labeleduri";
OBJECTCLASS = "labeleduriobject";
}
STRING PIN_FLD_TYPE_STR {
ATTRIBUTE = "memberurl";
OBJECTCLASS = "mylabeleduriobject";
}
.......
}

Deleting Attributes from an Existing Directory Server Entry
To delete an attribute from an existing directory server entry, follow these rules:

Chapter 3
Changing Directory Server Entries

3-7

• Delete only those attributes that you have defined in the mapping file and are
tagged as optional.

• Do not delete fields that you have used for the RDN or any fields tagged as
required. You can delete an entire array by using PIN_ELEM_ID_ANY.

Note:

Before you delete an attribute, make sure that doing so does not violate
the schema constraints of the directory server entry. If you attempt to
violate schema constraints, the LDAP Data Manager reports an object
violation error.

For more information see "Semantics for the LDAP Modify Operation".

To delete values and attributes in an entry, use the LDAP PCM_OP_DELETE_FLDS
base opcode. This opcode performs the delete operation by using the LDAP modify
operation, which imposes delete semantics.

To delete an attribute from an existing directory server entry, create the
PCM_OP_DELETE_FLDS input flist.

1. Specify the complete POID or DN of the entry.

You must supply the PIN_FLD_POID (replica POID) and at least one field that you
want to delete in the input flist.

If you specify the DN, make sure that the POID is a type-only POID, for example:

POID [0] 0.0.5.1 /r_user -1

2. (Optional) Specify whether the DN is a complete or prefixed DN.

3. By default, the delete fields operation expects you to supply a complete DN. You
can optionally supply a prefixed DN.

• To set up a complete DN, see "Using a Complete Distinguished Name".

• To set up a prefixed DN, see "Using a Prefixed Distinguished Name".

4. Provide the names of the fields that you want to delete.

0 PIN_FLD_<field to be deleted>
...
...

The LDAP Data Manager deletes the attribute and the auxiliary object class if it is
the last attribute belonging to that auxiliary class.

Renaming Directory Server Entries
You can rename a directory server entry in BRM. This is useful when the customer
names or login names (RDN piece) of the directory server entry changes. For
example, you can rename an entry for Jane Doe by changing her name to Jane Smith.
In this case, this directory entry:

cn=Jane Doe; o=portal.com; c=US

Chapter 3
Changing Directory Server Entries

3-8

Changes to this directory entry:

cn=Jane Smith; o=portal.com; c=US

Follow these rules when to rename directory server entries:

• Do not rename the entry such that it moves to a different part of the directory tree.

• Do not specify any field other than the field tagged by the RDN_PIECE in the mapping
file in the input flist on this operation.

• Rename only the left-most value in the DN entry. In the example above, this is the cn
value.

Note:

When you use the write fields operation to rename entries, the input flist should
not contain other fields.

LDAP Data Manager uses the PCM_OP_WRITE_FLDS opcode to rename entries. For more
information on the inputs and outputs of this opcode, see PCM_OP_WRITE_FLDS.
Additionally, it uses an entry in the LDAP Data Manager configuration file BRM_home/sys/
dm_ldap/pin.conf to determine if the old RDN value should be removed from the entry.

For more information see "Semantics for the LDAP Modify Operation".

To propagate a name change from BRM to the directory server entry:

1. Create the PCM_OP_WRITE_FLDS input flist by adding the POID or complete DN of the
old entry and the new name of the entry:

0 PIN_FLD_POID POID [0]
0.0.5.1 /r_user <account_number>
0 PIN_FLD_LOGIN STR [0] "Jane Smith"

2. In the pin.conf file, uncomment the following entry and set the delete value to 1.

- ldap_ds deleteOldRdn 1

Note:

When you set the delete value to 1, LDAP Data Manager deletes the old RDN
(Jane Doe). To keep the old RDN, set the delete value to 0.

BRM reads the new value of the attribute tagged as the RDN_PIECE in the mapping file
from the input flist and uses it to rename the entry.

Creating Subclass Objects in the Directory Server
You can extend, or subclass, an existing object class to add attributes to it. In this case, you
use the create opcode to create subclass objects in any location in the directory server. You
can create entries for a given BRM subclass object type in a particular part of the directory

Chapter 3
Changing Directory Server Entries

3-9

information tree independent of the location of objects belonging to the parent class.
For example, /service objects can be located in the following location:

ou=Services, o=portal.com, c=US

The /service/email subclass object can be located in a different location:

ou=ServiceEmail, o=portal.com, c=US

To create a subclass object in the directory server independent of its parent's location:

1. Using your directory server tools, create the organizational unit (ou) for the
subclass object in the directory server.

2. Create the corresponding subclass mapping for this attribute by specifying the
LOCATION key in the implementation definition section of the mapping file.

3. Start LDAP Data Manager and make sure that the dm_ldap.pinlog file reports no
errors.

4. Create the input flist that contains the complete POID or DN of the object that you
want to create.

Creating Related Entries Under One Node
You can group any set of related entries under one node in the directory tree. To set up
your BRM LDAP environment to replicate data in this type of structure, you use the link
object attribute to define the related node entries in the mapping file.

For example, you can create all services associated with a particular account under
the account entry in the directory tree.

If the creation of linked objects requires containers, this feature will not create the
container objects automatically. You must create the containers for these objects with
your directory server tools manually, as Figure 3-1 shows:

Figure 3-1 Manually Created Containers Example

Chapter 3
Changing Directory Server Entries

3-10

In each top-level service, you must use a link attribute that has the POID of the account that
the service is linked to.

To group all services under an account:

Note:

This procedure assumes that your related services are linked.

1. In the mapping file, configure the link object for each class and link attribute for each top-
level class as in this example:

Note:

The link attribute must be a POID. Specify the types and link attributes for all
classes.

STORABLE CLASS /r_user {
...
}
##
/r_service (to represent Portal /service storable class)
##
STORABLE CLASS /r_service {
list all the /r_service fields

...
 POID PIN_FLD_PARENT {
 CREATE = Optional;
 MODIFY = Writeable;
}
....
}

/r_service/ip (to represent Portal /service/ip storable class)
STORABLE CLASS /r_service/ip {
list all the /r_service/ip related fields

...
 POID PIN_FLD_PARENT {
 CREATE = Optional;
 MODIFY = Writeable;
}
....
}
/r_service/email (to represent Portal /service/email storable class)
STORABLE CLASS /r_service/email {
list all the /r_service/email related fields

...
 POID PIN_FLD_PARENT {
 CREATE = Optional;
 MODIFY = Writeable;
}

Chapter 3
Changing Directory Server Entries

3-11

....
}

STORABLE CLASS /r_user IMPLEMENTATION LDAPV3 {
 ATTRVAL = "objectClass: top";
 ATTRVAL = "objectClass: person";
 ATTRVAL = "objectClass: inetOrgPerson";

 ENTRY_TYPE = "ruser";

 LOCATION = "o=portal.com";
...
}
 # For LDAP Manager

STORABLE CLASS /r_service IMPLEMENTATION LDAPV3 {
 ATTRVAL = "objectClass: top";
 ENTRY_TYPE = "rservice";
 LINK_OBJECT = "/r_user";
...
 POID PIN_FLD_PARENT {
 ATTRIBUTE = "parent";
 LINK_ATTRIBUTE = 1;
}
...
}
#
STORABLE CLASS /r_service/ip IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/ip fields
LINK_OBJECT = "/r_user";
Provide mapping for /r_service fields.
The link attribute is inherited from the parent.
...
 POID PIN_FLD_PARENT {
 ATTRIBUTE = "parent";
 LINK_ATTRIBUTE = 1;
}
...
}
#STORABLE CLASS /r_service/email IMPLEMENTATION LDAPV3 {
Provide mapping for /r_service/email fields
The link attribute is inherited from the parent.
 LINK_OBJECT = "/r_user";
...
 POID PIN_FLD_PARENT {
 ATTRIBUTE = "parent";
 LINK_ATTRIBUTE = 1;
}
...
}

Note:

To locate the parent /r_user object, the LDAP Data Manager uses the
LOCATION attribute of the /r_user class as the base DN.

2. Specify one of the flexible DN assignment rules to dynamically manipulate the
static behavior defined in the mapping file.

Chapter 3
Changing Directory Server Entries

3-12

• If the DN flag indicates that the DN is a complete DN, the DN supplied is used to
create the /r_service entry.

• If the DN flag indicates that the DN is a prefix, the DN of the located.

• /r_user entry is appended to the DNs supplied to compose the DN of the /r_service
entry.

• If the DN flag indicates that the DN is a parent, the /r_service DN supplied is
appended to the value of the attribute tagged as the RDN piece. The DN of the
located /r_user entry is appended to this string.

• If you do not supply a DN, then the value of the DN of the /r_user entry will be
appended to the RDN of /r_service.

Specifying Directory Tree Entries
You specify directory server entries by using the DN field, the DN qualifier field flags, and the
location parameter. The DN field and the DN qualifiers let you manipulate location of entries
for your directory tree, while the location parameter lets you override the mapping file
location.

This section describes the controls you can use as inputs to the create, delete, read, and
write operations either to manipulate directory entries or to override the base location value.

• Using a Complete Distinguished Name

• Using a Prefixed Distinguished Name

• Using a Parent Distinguished Name (Create Operation Only)

• Overriding the Base Dn Location

Using a Complete Distinguished Name
A complete DN is the absolute root in the directory tree for the directory server entry. To
specify a complete DN, pass the complete DN of the entry in the PIN_FLD_DN field. You can
optionally set PIN_FLD_DN_FLAGS to 0.

This example shows how to specify a complete DN in the input flist to the create, delete,
read, and write operations at run time:

LOCATION = "o=portal.com"
PIN_FLD_DN = "cn=john, ou=dev, ou=engg, o=portal.com"
PIN_FLD_DN_FLAGS=0

REAL DN = "cn=john, ou=dev, ou=engg, o=portal.com"

For a complete DN, PIN_FLD_DN must match the LOCATION. For example, if the
LOCATION is "o=portal.com", then the last element of PIN_FLD_DN must be
"o=portal.com". The PIN_FLD_DN is the REAL DN in this case.

Using a Prefixed Distinguished Name
The prefixed DN is the RDN location in the directory tree for the directory server entry. To
specify a prefixed DN, pass the prefixed DN of the entry in the PIN_FLD_DN field and set the
PIN_FLD_DN_FLAGS to 1.

Chapter 3
Specifying Directory Tree Entries

3-13

This example shows how to specify a prefixed DN in the input flist to the create,
delete, read, and write input flists at run time:

LOCATION = "o=portal.com"
PIN_FLD_DN = "cn=john, ou=dev, ou=engg"
PIN_FLD_DN_FLAGS=1

REAL DN = "cn=john, ou=dev, ou=engg, o=portal.com"

The LOCATION "o=portal.com" is appended to PIN_FLD_DN "cn=john, ou=dev,
ou=engg" to compose the REAL DN "cn=john, ou=dev, ou=engg, o=portal.com".

Using a Parent Distinguished Name (Create Operation Only)
A parent DN is the location of the parent of the entry in the directory tree. You can
pass a parent DN only in the create operation (PCM_OP_CREATE_OBJ).

To specify a parent DN, pass the parent DN of the entry in the PIN_FLD_DN field, and
set the PIN_FLD_DN_FLAGS to 2.

This example shows how to specify a parent DN in the input flist to
PCM_OP_CREATE_OBJ at run time:

LOCATION = "o=portal.com"
PIN_FLD_DN = "ou=dev, ou=engg"
PIN_FLD_DN_FLAGS=2

REAL DN = "cn=john, ou=dev, ou=engg, o=portal.com"

The LDAP Data Manager appends the LOCATION "o=portal.com" to PIN_FLD_DN
"ou=dev, ou=engg" and appends the value "ou=dev, ou=engg, o=portal.com" to
the value "john" (cn) tagged as RDN_PIECE in the mapping file to compose the REAL
DN "cn=john, ou=dev, ou=engg, o=portal.com".

Overriding the Base Dn Location
A base DN is the root location in the directory tree for the directory server entry. You
can use the location field, PIN_FLD_LOCATION to dynamically override the
LOCATION value specified in the mapping file for the create, delete, delete field, and
write field operations. Overrides affect the immediate operation only.

For example, if you defined this location in the mapping file (ldap.idl):

ou=engg, o=portal, dc=US

To create this entry:

mail=login1@example.com.us, ou=engg, o=portal, dc=US

And you want to create another entry in a different location such as:

ou=techdocs, o=mycompany, dc=US

Chapter 3
Specifying Directory Tree Entries

3-14

You can override the value specified for the location in the mapping file to create the following
entry:

mail=login2@example.com.us, ou=techdocs, o=mycompany, dc=US

To do this, you override the mapping file location by using the PIN_FLD_LOCATION field as
an input to the create operation. This lets you create accounts in a different tree without
LDAP Data Manager checking the LOCATION value in the mapping file.

To specify a new base location for a directory server entry, enter the new base location in the
input flist:

0 PIN_FLD_LOCATION STR[0] = "mail=login2@example.com.us, ou=techdocs, o=mycompany,
dc=US"

When subsequent operations are performed on this entry, you should override the mapping
file location by using the PIN_FLD_LOCATION field as an input.

Reading and Searching for Directory Server Entries
You can do these operations on directory server entries:

• Reading Objects from the Directory Server

• Reading Attributes from the Directory Server Entry

• Searching the Directory Server for Entries

Reading Objects from the Directory Server
You can read objects from the directory server and return an flist containing fields and values
for each attribute in the directory server entry.

To read fields in a directory server entry, use the LDAP PCM_OP_READ_FLDS base opcode.
This opcode reads attributes from a directory server entry from the database using the LDAP
search operation.

The LDAP Data Manager parses the mapping file (ldap.idl). After this file is parsed, the
LDAP Data Manager creates a mapping class that contains a mapping of the /r_user class
attributes to BRM fields.

The read fields opcode accepts the POID of the object that you want to read. If the POID is a
type-only POID, and you provide a DN, the LDAP Data Manager uses the DN to locate the
object in the directory server.

You supply the list of the fields that you want to read from the object. These fields correspond
the attributes of the directory server object. For each entry that you provide in the input flist,
the LDAP Data Manager queries the mapping class for the corresponding attribute name to
generate the list of attributes names.

Note:

You can read only those objects that you have defined in the mapping file.

Chapter 3
Reading and Searching for Directory Server Entries

3-15

To read an object:

1. Create the PCM_OP_READ_OBJ input flist.

2. Specify the complete POID or DN of the directory server entry.

Note:

If you supply a DN then you must also supply a type-only POID. A type-
only POID is a POID with a value set to -1.

Object Read examples
These examples explain how to read objects using a complete POID and a DN:

Read Object Using a Complete POID

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user 71131 0
0 PIN_FLD_LOCATION STR [0] "o=example.com"

Read Object Using a DN

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user -1
0 PIN_FLD_LOCATION STR [0] "o=example.com"
0 PIN_FLD_DN STR [0] "uid=link51, o=example.com"
0 PIN_FLD_DN_FLAGS INT [0] 0

Reading Attributes from the Directory Server Entry
The steps to read attributes from the directory server are similar to reading objects.
However, you need to pass the fields corresponding to the attributes of the directory
server object that you want to read in the input flist to PCM_OP_READ_FLDS as
opposed to the objects.

To read attributes from the directory server entry:

1. Create the PCM_OP_READ_FLDS input flist.

2. Specify the complete POID or DN of the entry.

Note:

If you supply a DN then you must also supply a type-only POID. A type-
only POID is a POID with a value set to -1.

3. Pass the fields of the attributes that you want to read in the input flist.

Attribute Read Examples
These examples show how to read attributes by using a complete POID and a DN:

Chapter 3
Reading and Searching for Directory Server Entries

3-16

Read Attributes Using a Complete POID

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user 71148
0 PIN_FLD_LOCATION STR [0] "o=example.com"
0 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1 /r_account 71145 13"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /r_account 71145
0 PIN_FLD_ACCOUNT_STATUS STR [0] "Active"
0 PIN_FLD_LOGIN STR [0] "link45"
0 PIN_FLD_NAME STR [0] "link45"
0 PIN_FLD_FIRST_NAME STR [0] "link45"
0 PIN_FLD_LAST_NAME STR [0] "link45"

Read Attributes Using a DN

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_user -1
0 PIN_FLD_LOCATION STR [0] "o=example.com"
0 PIN_FLD_DN STR [0] "uid=link45, o=example.com"
0 PIN_FLD_DN_FLAGS INT [0] 0
0 PIN_FLD_ACCOUNT_NO STR [0] "0.0.0.1 /r_account 71145 13"
0 PIN_FLD_ACCOUNT_OBJ POID [0] 0.0.0.1 /r_account 71145
0 PIN_FLD_ACCOUNT_STATUS STR [0] "Active"
0 PIN_FLD_LOGIN STR [0] "link45"
0 PIN_FLD_NAME STR [0] "link45"
0 PIN_FLD_ADDRESS STR [0] "sdsdfs, sfsdfsd, CA 12345, USA"

Searching the Directory Server for Entries
You can search the directory server for entries that match a specified search filter. For
example, you can search for an entry that has a login attribute. You can search all entries
with the login attribute within a tree or sub tree.

Note:

Only those objects and attributes that you define in the mapping file can be returned
by the LDAP Data Manager in the output flist.

To find LDAP objects, use the LDAP PCM_OP_SEARCH base opcode. This opcode
searches the directory server based on a specified search criteria that you supply as a
template in the input flist.

Note:

Only those objects and attributes that you define in the mapping file can be returned
by the LDAP Data Manager in the output flist.

The LDAP Data Manager parses the mapping file (ldap.idl). After this file is parsed, the
LDAP Data Manager creates a mapping class that contains a mapping of the /r_user class
attributes to BRM fields.

Chapter 3
Searching the Directory Server for Entries

3-17

You must supply the POID of the object for the search operation. The search opcode
uses the base Distinguished Name (DN) of the POID type as a base for the search
operation. You supply a search filter to this opcode as a template in
PIN_FLD_TEMPLATE. The template is the filter expression with attribute names and
literal values.

For each entry that matches the given search criteria, the search call returns the value
of the attributes in the attribute list, if they exist in the directory entry. For multi-valued
attributes an array of values is returned. This call does not return an error if it is
queried for an attribute that does not exist in the directory entry.

For each attribute value or values, the class map is queried for the BRM field name
corresponding to the attribute name and an entry is added to the output flist with the
corresponding value for each attribute. For array attributes that are multi-valued, an
array entry is created for each value.

1. Select a search filter. See "Using the Sample LDAP Search Filters".

2. Create the PCM_OP_SEARCH input flist.

a. Add the POID for the PIN_FLD_POID field.

b. Select the search filter to use as a template for the PIN_FLD_TEMPLATE
field.

c. Set PIN_FLD_ARGS to specify the arguments and value of arguments to be
substituted in the search filter.

d. Set the search scope. See "Setting the Search Scope".

3. Call the opcode to perform the search.

The search opcode replaces the search template criterion with attribute names
(An) and values (Vn). Attribute names and values are specified in pin_fld_args[n].
In the example below, the filter translates into this search:

(&(cn-*link*)(ipstatus r=Aktivee))

Setting the Search Scope
You can set the search scope on the directory by using the PIN_FLD_SCOPE field.
The PIN_FLD_SCOPE field can have the values listed in Table 3-2:

Table 3-2 PIN_FLD_SCOPE Settings

Value Meaning

LDAP_SCOPE_SUBTREE Default value. Searches the entire directory tree.

LDAP_SCOPE_ONELEVEL Searches one level down the directory tree.

The search opcode returns each attribute value or values as a result in the output flist.

Figure 3-2 shows a sample directory tree:

Chapter 3
Searching the Directory Server for Entries

3-18

Figure 3-2 Sample Directory Tree

If the search scope is 0 PIN_FLD_SCOPE ENUM [0] 2, entries in all branches beneath the
location are searched. In this example, the searched entries include cn=scott, cn=tim, and
all entries in branches under ou=research. If the search scope is 0 PIN_FLD_SCOPE ENUM
[0] 1, only entries immediately below the location are searched. In this example, these include
only cn=scott and cn=tim.

Specifying the Base DN
The object type (/r_user) determines the base DN of a search. The value specified for the
location for /r_user in the IDL file is used as the base DN. You can override this by specifying
the value for PIN_FLD_LOCATION in the input flist. The results of the search are mapped to
this object class.

Searching from Different Locations
If all base class and subclass entries are under the same location, you can perform a single
search from that location to find entries that are instances of the base class and subclasses
that satisfy the search criteria. If the entries are under different locations, you must perform a
separate search under each location to find the instances.

Example Service Storable Class Tree and Search
This is a sample service storable class definition from an.IDL file:

STORABLE CLASS /r_service IMPLEMENTATION LDAPV3 {
ATTRVAL = "objectClass: top";
ENTRY_TYPE = "rservice";
LOCATION = "ou=services, o=example.com";
.....}

STORABLE CLASS /r_service/ip IMPLEMENTATION LDAPV3 {
provide mapping for /r_service/ip fields
LOCATION = "ou=ipservices, o=example.com";

Chapter 3
Searching the Directory Server for Entries

3-19

.....}

Figure 3-3 shows the directory tree:

Figure 3-3 Directory Tree

To locate base class and subclass entries, you must perform a search in each of the
locations:

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_service -1
0 PIN_FLD_TEMPLATE STR [0] "(A1 = V1)"
0 PIN_FLD_SCOPE ENUM [0] 2
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_LOGIN STR [0] "*john*"
Summary of Portal LDAP API operations

0 PIN_FLD_POID POID [0] 0.0.5.1 /r_serviceip -1
0 PIN_FLD_TEMPLATE STR [0] "(A1 = V1)"
0 PIN_FLD_SCOPE ENUM [0] 2
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_LOGIN STR [0] "*john*"
Summary of Portal LDAP API operations

Using the Sample LDAP Search Filters
Table 3-3 shows sample search filters that you use as templates to search the
directory server entries. For information on how to search the directory server entries,
see "Searching the Directory Server for Entries".

Table 3-3 LDAP Search Filters

Filter Example Arguments Modified Filter Matches

(F1=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_NAME STR [0] "*bert*"

(cn=*bert*) All entries with the
string "bert"
somewhere in the
name.

Chapter 3
Searching the Directory Server for Entries

3-20

Table 3-3 (Cont.) LDAP Search Filters

Filter Example Arguments Modified Filter Matches

(F1>=Fred) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_NAME STR [0] "Fred"

(cn>=Fred) All entries with a
common name that is
lexico-graphically
greater than "Fred".

(&(objectclass=person)
(F1=V1))

0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_EMAIL_LOGIN STR [1]
"*"

(&(objectclass=person)
(maillogin=*))

All people with an
email address.

(F1~=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_LAST_NAME STR [0]
"Jensin"

(sn~=Jensin) All entries with a
surname
approximately equal to
Jensin.

(! (F1=V1)) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_EMAIL_LOGIN STR [0]
"*"

(! (mail=*)) Entries without a mail
attribute.

(F1=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_POID_STR [0] "0.0.6.1 /
r_user 9999 0"

(pinpoid=0.0.6.1 /r_user
9999 0)

Entries that have a
pinpoid equal to the
value specified.

(F1=V1) 0 PIN_FLD_ARGS ARRAY [1]
allocated 10, used 1

1 PIN_FLD_DN [0] "cn=joe,
ou=People, o=microsoft"

(dn= cn=joe,
ou=People,
o=microsoft)

Entries that have a DN
equal to the value
specified.

LDAP Search Limitations
The search does not return objects that are not defined in the mapping file. LDAP Data
Manager treats directory server objects that are not defined in the mapping file as an error
condition.

Testing Directory Server Connections
To test directory server connections, use the LDAP PCM_OP_TEST_LOOPBACK base
opcode. This opcode verifies that the LDAP Data Manager and the directory server daemon/
service processes are running and communicating with each other.

BRM LDAP Profile Object
For convenience, the /profile/ldap object holds the DN of the directory server entries
corresponding to the /account objects. This lets you pass in a DN when you create the BRM
account. BRM uses the PCM_OP_CUST_COMMIT_CUSTOMER opcode to do this.

This is useful when you create BRM accounts based on customer information already in the
directory server. For example, when a new entry is created for a customer in the directory
server, the DN of the entry is passed to BRM while creating the corresponding /account.

Chapter 3
Testing Directory Server Connections

3-21

To avoid empty /profile objects, the /profile object is created only if it is passed in
during account creation.

Example of how input is passed in when you use a profile object:

/profile
 PIN_FLD_POID MS POID profile POID
 PIN_FLD_ACCOUNT_OBJ_POID MR POID Owning Account
 PIN_FLD_NAME MR STR[255] Name("LDAP
Information")
 /profile/ldap
 PIN_FLD_LDAP_INFO MR SUBST
 PIN_FLD_DN MR TR[1024] DN of the Event Object

Chapter 3
BRM LDAP Profile Object

3-22

4
Installing LDAP Manager

This chapter explains how to install the Oracle Communications Billing and Revenue
Management (BRM) LDAP Manager software.

See also:

• About LDAP Manager

• Configuring LDAP Manager

• Customizing Your BRM LDAP Environment

• Troubleshooting Your BRM LDAP Environment

Installing LDAP Manager

Note:

If you already installed the product, you must uninstall its features before reinstalling
them.

To install LDAP Manager:

1. If you have a previous release of LDAP Manager installed, back up the existing
BRM_home/sys/dm_ldap/pin.conf configuration file. If you have made changes to the
BRM_home/sys/ldap.idl sample mapping file, back up this file also.

Caution:

The installation overwrites any pre-existing LDAP Manager pin.conf and
ldap.idl files. If you do not back up the original files, you must manually
recreate the settings in the new files to restore your original configuration.

2. Install LDAP Manager. For instructions, see "Installing Individual BRM Components" in
BRM Installation Guide.

3. If you backed up the original BRM_home/sys/dm_ldap/pin.conf file, merge the contents
of the backup copy into the new pin.conf file.

4. If you backed up the original BRM_home/sys/ldap.idl sample mapping file, replace the
newly installed file with your backup file.

Your LDAP Manager installation is now complete.

4-1

Uninstalling LDAP Manager
To uninstall LDAP Manager, see "Uninstalling Optional Components" in BRM
Installation Guide.

Chapter 4
Uninstalling LDAP Manager

4-2

5
Configuring LDAP Manager

This chapter explains how to configure the Oracle Communications Billing and Revenue
Management (BRM) LDAP Manager.

See also:

• About LDAP Manager

• Installing LDAP Manager

• Customizing Your BRM LDAP Environment

• Troubleshooting Your BRM LDAP Environment

Configuring the LDAP Data Manager
To configure the LDAP DM:

• Set up the ldap.idl mapping file.

• Set up the directory server to use a replicatable user object (/r_user) for BRM.

• Edit the LDAP DM pin.conf file.

Setting Up the Mapping File
When you install the LDAP Manager, a default interface language definition (.idl) mapping file
is created for you. Use the ldap.idl mapping file.

You can find the mapping file in the BRM_home/sys/dm_ldap directory.

The mapping file needs to match your directory server implementation. For more information
on how to set up this file, see "LDAP Data Manager Mapping Files".

Setting Up the Directory Server
To set up your directory server with attributes that BRM can understand, such as Portal
Object ID (POID), names, addresses, currency, login, and appropriate service information
(email and other IP network services), you must create a BRM object-type definition called
the replicate user (/r_user) object class in your directory server. For more information on
setting up this object class in the directory server, see "Determining the /r_user Object Class
Attributes".

Editing the LDAP Data Manager Configuration File
1. Open the LDAP DM configuration file (BRM_home/sys/dm_ldap/pin.conf).

2. Edit the standard memory, connection, debugging, and log file entries. See "Using
Configuration Files to Connect and Configure Components" in BRM System
Administrator's Guide.

5-1

The hostname and port entries identify the machine when the LDAP directory
server runs:

- ldap_ds hostname my_company.com
- ldap_ds port port_number

3. To specify the mapping file, set the mapping_file entry to ldap.idl:

- ldap_ds mapping_file ldap.idl

4. To set the Bind Distinguished Name (DN) for authenticating BRM to the directory
server, set the bind entry to the Distinguished Name (DN) of the entry you want to
use for binding to the directory server.

For example:

- ldap_ds bind uid=admin,ou=Administrators,ou=TopologyManagement,
o=NetscapeRoot

Note:

You can check the directory bind DN by using your directory server tools
or you can ask your directory server system administrator for this
information.

5. Set the bind password for your LDAP directory server host:

- ldap_ds password password

6. To specify how the LDAP Manager outputs timestamps, edit the
encodeTimestamp entry.

• Use UTCTIMESTRING to specify a readable format; for example,
20021207135225 (yyyymmddhhmmss).

• Use UTCTIMEVALUE to specify a decimal format; for example, 962246667.
This is the default.

- ldap_ds encodeTimestamp UTCTIMESTRING

7. Use the appendZToTimestamp entry to append a Z to the end of the time stamp.
The default (0) does not append a Z.

- ldap_ds appendZToTimestamp 1

8. Use the deleteOldRdn entry to specify whether to rename distinguished names.
See "Renaming Directory Server Entries". By default, the old name is deleted.

- ldap_ds deleteOldRdn 1

9. Use the ops_fields_extension_file entry to specify the file that contains the
definitions of custom field lists.

Chapter 5
Configuring the LDAP Data Manager

5-2

Note:

Include this entry in your LDAP Data Manager pin.conf file only when you
create custom fields for your directory server implementation.

- dm_ldap ops_fields_extension_file my_ldap_implementation

For information on how to create custom fields, see "Creating Custom Fields" in BRM
Developer's Guide.

Configuring the Connection Manager for LDAP Manager
Make sure the LDAP entries have been added to your CM configuration file and edit them as
necessary (the fm_module entries are preconfigured, but you must uncomment them if they
are commented out).

1. Open the Connection Manager configuration file (BRM_home/sys/dm_ldap/pin.conf)
from the CM directory.

2. Set the dm_pointer entry to point to your LDAP Data Manager.

The default database number for the dm_pointer entry is 0.0.5.x, where x is the number
of the BRM database.

- cm dm_pointer 0.0.5.X dm_ldap_host dm_ldap_port

3. Do one of the following:

• For the user mapping scheme, leave the mapping scheme entry (user_scheme) set
to 1. This is the default.

• For the one-to-one mapping scheme, set user_scheme to 0.

- fm_repl_pol user_scheme 1

Configuring the LDAP Data Manager for Multiple Schemas
You can configure a BRM system to use multiple database schemas as well as multiple
LDAP Data Managers. For example:

- cm dm_pointer 0.0.0.1 ip 156.151.1.13 56971 # Oracle
- cm dm_pointer 0.0.0.2 ip 156.151.1.13 56972 # Oracle
- cm dm_pointer 0.0.0.3 ip 156.151.1.13 56973 # Oracle
- cm dm_pointer 0.0.5.1 ip 156.151.1.13 56981 # DM LDAP
- cm dm_pointer 0.0.5.2 ip 156.151.1.13 56982 # DM LDAP
- cm dm_pointer 0.0.5.3 ip 156.151.1.13 56983 # DM LDAP

In addition to setting these entries, you must define the LDAP DM's database number in the
PIN_FLD_CONSUMER_OBJ field in the /channel object. The PCM_OP_REPL_POL_PUSH
policy opcode retrieves this database number and sends the data to that LDAP DM. For more
information, see "About Channels and Data Propagation".

Chapter 5
Configuring the Connection Manager for LDAP Manager

5-3

Configuring the LDAP Data Manager with Different LDAP Data
Manager Pointers

You can set different LDAP Data Manager pointers to reference the same host/port
combination. For example:

- cm dm_pointer 0.0.5.1 ip 156.151.1.13 56981 # DM LDAP
- cm dm_pointer 0.0.5.2 ip 156.151.1.13 56981 # DM LDAP
- cm dm_pointer 0.0.5.3 ip 156.151.1.13 56981 # DM LDAP

Configuring Event Notification for LDAP Manager
To trigger updates to the LDAP database, BRM uses event notification.

Before you can use LDAP Manager, you must configure the event notification feature
as follows:

1. If your system has multiple configuration files for event notification, merge them.
See "Merging Event Notification Lists" in BRM Developer's Guide.

2. Ensure that the merged file includes the entire event notification list in the
BRM_home/sys/data/config/pin_notify.ldap file.

3. (Optional) If necessary to accommodate your business needs, add, modify, or
delete entries in your final event notification list. See "Editing the Event Notification
List" in BRM Developer's Guide.

4. (Optional) If necessary to accommodate your business needs, create custom code
for event notification to trigger. See "Triggering Custom Operations" in BRM
Developer's Guide.

5. Load your final event notification list into the BRM database. See "Loading the
Event Notification List" in BRM Developer's Guide.

For more information, see "Using Event Notification" in BRM Developer's Guide.

Loading the LDAP Price List into Pricing Center
LDAP Manager includes a price list that includes a plan that uses the LDAP service.
Use Pricing Center to add the LDAP plans to your price list, or use the loadpricelist
utility in BRM Setting Up Pricing and Rating as shown below:

loadpricelist -v -cf BRM_home/setup/scripts/LdapPlan.xml

Configuring the Channel Framework
This section includes the following channel framework configuration tasks:

• Configuring the pin_channel_export Utility

• Configuring Channel Definitions

• Loading Channel Definitions into the BRM Database

Chapter 5
Configuring Event Notification for LDAP Manager

5-4

Configuring the pin_channel_export Utility
The "pin_channel_export" utility publishes changes from the BRM database to the directory
server by synchronizing data in the channel with the data in the external Since the
loadpricelist utility will not be included in Matterhorn, may we delete the preceding
sectiondirectory server. This utility runs as a process under Linux; once you start it, it runs
continuously in the background until you end the process or until the BRM connection goes
down. To keep the pin_channel_export utility running even when BRM goes down,
configure the mta_retry_srch entry in the utility's pin.conf file.

You can edit the pin_channel_export configuration file in BRM_home/apps/pinapps/
exportapps to configure the following options:

• To specify whether to delete channel events that have been pushed, set the
delete_channel_entry entry. The default is 1, which deletes the objects. A value of 0
keeps them.

• To specify the interval time running the utility, set the sleep_interval entry. By default, the
pin_channel_export utility publishes data every 60 seconds.

• To specify the number of worker threads spawned to perform the specified work, set the
children entry. The default is 5.

• To specify the number of channel events processed by each worker thread in batch
mode, set the per_batch entry. The default is 5000.

• To specify the number of channel events returned by each search step in the BRM
database, set the per_step entry. The default is 500.

• To specify the number of channel events received from the BRM database in a block and
cached in system memory for processing, set the fetch_size entry. The default is 1000.

• To specify the number of times the MTA framework retries a search after the CM goes
down, set the retry_mta_search entry. The framework retries the search the specified
number of times with a sleep interval of 30 seconds. The default is 0.

For more information, see "Configuring Your Multithreaded Application" in BRM
Developer's Guide.

To specify a channel family, run the pin_channel_export utility with the -f parameter and
specify the channel family ID. For example:

pin_channel_export -f 100

Note:

• To publish channel events for different channel families, you need a separate
pin_channel_export instance for each family ID. The channel events are
published to their respective LDAP servers by the
PCM_OP_REPL_POL_PUSH policy opcode based on the
PIN_FLD_CONSUMER_OBJ value in the /channel object.

• When channel events are not deleted from the channel_event_table, the table
can grow rapidly and reduce performance.

For more information on publishing channels, see "How Channel Events are Published".

Chapter 5
Configuring the Channel Framework

5-5

Configuring Channel Definitions
This procedure describes how to set the following attributes of a channel, which
determine how channel events are published to the LDAP server(s):

• The channel family.

• The publishing order.

• The publishing method: serially or in parallel.

In addition to setting these attributes, you must set the general channel attribute
values, including the channel name, consumer array information, and supplier array
information. For more information on all channel attributes, see "About Defining
Channels".

1. Open the sample channel_config.xml file in the BRM_home/sys/data/config
directory with an XML editor or text editor.

2. Do the following for each channel definition in the file:

• Set the FldChannelId value to assign a channel ID.

Note:

Channel IDs must be less than 1000.

• Set the FldFamilyId value to assign a channel family. For more information,
see "About Channel Families".

• Set the FldOrder value to define a publishing order for a channel inside a
family. For more information, see "About Channel Order".

• Set the FldMultithread value to set whether the channel is published serially
or in parallel:

0 = serially

1 = in parallel

For more information, see "About Channel Publishing Mode".

3. Save the channel_config.xml file. You can save this configuration file with any
name and in any location.

4. Load the channel definitions into the BRM database. See "Loading Channel
Definitions into the BRM Database".

Loading Channel Definitions into the BRM Database
To load channel definitions, edit the sample channel_config.xml file, then run the
"load_channel_config" utility to load the contents into the /channel object in the BRM
database:

Chapter 5
Configuring the Channel Framework

5-6

Note:

To connect to the BRM database, the load_channel_config utility needs a
configuration file in the directory from which you run the utility. See "Creating
Configuration Files for BRM Utilities" in BRM System Administrator's Guide.

Caution:

When you run the load_channel_config utility, it overwrites the existing channel
definitions in the /channel object in the BRM database. If a channel definition exists
but is not included in the channel_config.xml file, the database definition is not
overwritten.

1. Define the channels for your database in the channel configuration XML file and save the
file. For more information, see "About Defining Channels".

2. Use the following command to load the channel_config file:

load_channel_config channel_config.xml

where channel_config is the name of the channel configuration file.

If the channel configuration XML file is not in your working directory, use the full path to
the file. For example:

load_channel_config BRM_home/sys/data/config/channel_config.xml

3. Stop and restart the pin_channel_export utility.

To verify that the channel_config.xml file was loaded, you can display the /channel object
by using the Object Browser, or use the robj command with the testnap utility. See "Reading
an Object and Writing Its Contents to a File" in BRM Developer's Guide.

Saving Channel Definitions to a File
To save channel definitions stored in your BRM database to an XML file, run the
load_channel_config utility with the -r parameter:

Note:

To connect to the BRM database, the load_channel_config utility needs a
configuration file in the directory from which you run the utility. See "Creating
Configuration Files for BRM Utilities" in BRM System Administrator's Guide.

load_channel_config -r channel_config.xml

To export the channel definitions to an XML file not in your working directory, use the full path
for the file:

Chapter 5
Configuring the Channel Framework

5-7

load_channel_config -r BRM_home/data/config/channel_config.xml

For more information on the channel_config.xml file, see "About Defining Channels".

When creating a new supplier for a channel, the
PCM_OP_ACT_POL_EVENT_NOTIFY policy opcode formerly checked if the input
event type was of a particular sub-type and, if so, set the PIN_FLD_SUPPLIER_OBJ
field to the event POID and sent it to PCM_OP_CHANNEL_PUSH. Now, it sets the
PIN_FLD_SUPPLIER_OBJ field to the subtype value of the supplier. For details, see
step 4 in "Tracking Additional Changes to /account or /service Objects".

Your LDAP Manager configuration is now complete.

Chapter 5
Configuring the Channel Framework

5-8

6
Customizing Your BRM LDAP Environment

This chapter discusses how to extend and modify the list of objects that Oracle
Communications Billing and Revenue Management (BRM) LDAP Manager exports. For the
default list of objects, see "Determining the /r_user Object Class Attributes".

This document also describes sample filters you can use in the directory server with input
templates search opcodes in LDAP Manager.

See also:

• About LDAP Manager

• Mapping Data between LDAP Data Manager and Your Directory Server

• Managing the Directory Server Organization

Exporting Additional Data to the Directory Server
You can export more data to your LDAP directory server than the data exported by default by
LDAP Manager. However, you must make sure that the LDAP Data Manager can update data
in the directory server after the data is created.

Exporting Additional Fields from Objects
This section explains how to export additional fields from /account, /service/ip, or /service/
email objects to the directory server. For the list of fields that are pushed to the directory
server by default, see "Determining the /r_user Object Class Attributes".

Assume that you want to push some accounting information, specifically the accounting cycle
day of the month (PIN_FLD_ACTG_DOM) field from the bill unit (/billinfo object). Whenever
you modify this field in the /billinfo object (via PCM_OP_CUST_SET_BILLINFO), an /event/
customer/billinfo event is generated.

You must perform the following steps in the PCM_OP_REPL_POL_PUSH opcode:

1. Read PIN_FLD_ACTG_CYCLE_DOM from the /billinfo object in addition to other fields
that are already being read in the function.

fm_repl_pol_get_account_flds() is located in the file fm_repl_pol_translate.c as
follows:

PIN_FLIST_FLD_SET(read_flistp, PIN_FLD_ACTG_CYCLE_DOM, NULL, ebufp);

2. Recompile the policy and restart the CM.

3. Define an attribute with integer syntax in the directory server. Make sure the objectClass
of the entry that holds the account /service information in the directory server allows this
attribute. For example, you could define the attribute actgdom by editing the ruser object
class using the directory server manager and add actgdom to the list of allowed
attributes.

6-1

4. Add the accounting day of the month field in the LDAP Data Manager mapping file
(ldap.idl):

5. Add the following code to the /r_user class definition of the mapping file:

INT PIN_FLD_ACTG_CYCLE_DOM {
 CREATE = Optional;
 MODIFY = Writeable;
}

6. Add the following code to the /r_user class implementation section of the mapping
file to define the new attribute:

INT PIN_FLD_ACTG_CYCLE_DOM {
 ATTRIBUTE = "actgdom";
}

Tracking Additional Changes to /account or /service Objects
The /account object information is pushed to the directory server when any of the
following events are generated (as listed in the PIN_FLD_SUPPLIERS array of /
channel 101):

• /event/customer/nameinfo

• /event/customer/product_status

• /event/customer/status

• /event/customer/billinfo

You can track additional changes to the /account and /service objects. This section
provides an example of how to track an additional change in the /account object so
that it can be pushed to the directory server.

Pushing the /account object information to the directory server when you update
account information creates and /event/customer/billinfo event:

1. Add /event/customer/billinfo to the PIN_FLD_SUPPLIERS array in /channel
100. You can do this by running the PCM_OP_WRITE_FLDS opcode from
testnap.

For example assume the following flist is stored in a file called add.flist:

0 PIN_FLD_POID POID [0] $DB_NO /channel 101
0 PIN_FLD_SUPPLIERS ARRAY [5]
1 PIN_FLD_SUPPLIER_OBJ POID [0] $DB_NO
/event/customer/billinfo -1

2. Run testnap and use this flist as input to the write fields operation:

sh> testnap
testnap> r add.flist 1
testnap> wflds 1
testnap> q

3. To trigger BRM to call the policy opcode PCM_OP_ACT_POL_EVENT_NOTIFY
(opcode number 301) whenever an /event/customer/billinfo event is generated,
add the following line to your system's event notification list:

Chapter 6
Exporting Additional Data to the Directory Server

6-2

301 0 /event/customer/billinfo

See "Implementing Event Notification" in BRM Developer's Guide.

4. Set up the account modification channel to be updated when an /event/customer/
billinfo event is generated by adding the following to the
fm_act_pol_event_notify_ldap function in the PCM_OP_ACT_POL_EVENT_NOTIFY
policy opcode:

if (fm_utils_is_subtype(e_pdp,PIN_OBJ_TYPE_EVENT_CREATE_BILLINFO) == 1){
 type = PIN_OBJ_TYPE_EVENT_CREATE_BILLINFO;
 push_account_modify = 1;

if (push_account_modify || push_service_modify) {
 flistp = PIN_FLIST_CREATE(ebufp);
 PIN_FLIST_FLD_PUT(flistp, PIN_FLD_POID, (void *)ch_pdp, ebufp);
 db_id = PIN_POID_GET_DB(e_pdp);
 id = PIN_POID_GET_ID(e_pdp);
 e_pdp1 = PIN_POID_CREATE(db_id, type, id, ebufp);
 PIN_FLIST_FLD_PUT(flistp, PIN_FLD_SUPPLIER_OBJ,
(void*)e_pdp1, ebufp);
}

Note:

This policy opcode is implemented in the BRM_home/source/sys/fm_act_pol/
fm_act_pol_event_notify.c file.

The PCM_OP_REPL_POL_PUSH policy opcode searches for all channels that have /
event/customer/billinfo as one of its PIN_FLD_SUPPLIER_OBJ values and create /
channel_event objects for each of those channels.

5. Recompile the policy and restart the CM.

Exporting New Service Types
Assume that you want to export the information from a custom service object called /service/
web. BRM updates the service creation and service modification channel objects (/channel
102 and /channel 103) when the /service/web objects are created or modified. If you use the
user scheme (where service and account object information are made available from a single
entry in the directory server), you do the following:

1. Define the attributes that correspond to this service object in the LDAP directory server.
For example, web-login, web-password, and web-size-limit.

2. Add the attributes that correspond to the ruser service object to the list of allowed
attributes in the objectclass.

3. Define the mapping for these attributes in the LDAP Data Manager mapping file
(ldap.idl).

For example:

PIN_FLD_WEB_LOGIN maps to web-login

PIN_FLD_WEB_PASSWORD maps to web-password

Chapter 6
Exporting New Service Types

6-3

PIN_FLD_WEB_LIMIT maps to web-size-limit

4. Enhance the replication policy PCM_OP_REPL_POL_PUSH to handle /service/
web. Since each creation and modification is individually tracked, the newly
created service or service modification is automatically picked up.

Tip:

See the code in policy file fm_repl_pol_translate.c, which implements
the part that reads from the service object and pushes it to dm_ldap.
You can handle the /service/web object fields just like the fields in /
service/email.

Chapter 6
Exporting New Service Types

6-4

7
Troubleshooting Your BRM LDAP
Environment

This chapter describes how to fix common Oracle Communications Billing and Revenue
Management (BRM) LDAP environment problems.

See also:

• About LDAP Manager

• Installing LDAP Manager

• Configuring LDAP Manager

Checking for Event Errors and Recovering from Failure
Periodically check for and correct event errors:

1. Run pin_channel_report to print a list of objects whose changes could not be exported.

2. Check the dm_ldap.pinlog for errors that prevent events from being pushed.

3. Correct each of the errors in the dm_ldap.pin.log file.

Note:

Errors are unique to specific configurations.

4. After the errors are corrected, clear them by running:

pin_channel_clear_error type poid

where:

• type is one of the following values:

-a Clears the status of all the channel_event objects with errors.

-i Clears the status of a particular channel_event object.

• poid is the particular channel_event object containing an error.

5. To verify that the errors are cleared, run pin_channel_report. This returns an empty list if
all the errors have been cleared.

6. After the errors are cleared, push the changes to the directory server by using
pin_channel_export.

If the pin_channel_report utility does not return any errors and the changes are still not
exported, the problem must be elsewhere. Run testnap to find the problem.

7-1

Verifying Event Creation by Running testnap
You can verify that channel event objects were created by running the testnap utility:

1. Create and name a test file. For example, stest.

2. Enter the following flist into the test file:

r stest

1 nap(13860)> d 1
number of field entries allocated 20, used 6
0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_FLAGS INT [0] 256
0 PIN_FLD_TEMPLATE STR [0] "select X from /channel_event where F1 = V1
or F2 = V2 "
0 PIN_FLD_ARGS ARRAY [1] allocated 20, used 1
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_ARGS ARRAY [2] allocated 20, used 1
1 PIN_FLD_STATUS ENUM [0] 4
0 PIN_FLD_RESULTS ARRAY [0] allocated 20, used 5
1 PIN_FLD_POID POID [0] NULL poid pointer
1 PIN_FLD_OBJECT POID [0] NULL poid pointer
1 PIN_FLD_CHANNEL_OBJ POID [0] NULL poid pointer
1 PIN_FLD_SUPPLIER_OBJ POID [0] NULL poid pointer
1 PIN_FLD_STATUS ENUM [0] 0

3. Run testnap and read the test file into a buffer:

testnap

by typing:

r file_name buffer_number

4. Search for the list entries by typing:

search buffer_number

A list is returned, similar to this sample:

number of field entries allocated 5, used 5
0 PIN_FLD_POID POID [0] 0.0.0.1 /search/pin 0 0
0 PIN_FLD_RESULTS ARRAY [0] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 8645 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 100 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /account -1 0
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_RESULTS ARRAY [1] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 9669 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 102 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /service -1 0
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_RESULTS ARRAY [2] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 10693 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 102 0
1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /service -1 0
1 PIN_FLD_STATUS ENUM [0] 0
0 PIN_FLD_RESULTS ARRAY [3] allocated 4, used 4
1 PIN_FLD_POID POID [0] 0.0.0.1 /channel_event 11717 0
1 PIN_FLD_CHANNEL_OBJ POID [0] 0.0.0.1 /channel 102 0

Chapter 7
Verifying Event Creation by Running testnap

7-2

1 PIN_FLD_SUPPLIER_OBJ POID [0] 0.0.0.1 /service -1 0
1 PIN_FLD_STATUS ENUM [0] 0

Status Values for Channel Events
The pin_channel_export utility initiates synchronization every 60 seconds by default. All /
channel_events ready to be pushed (those with a status of 0 or 4) are exported to the
Connection Manager. The pin_channel_export utility calls PCM_OP_REPL_POL_PUSH to
export the data.

Table 7-1 shows the status values that appear in the channel_event_table:

Table 7-1 Status Entries in channel_event_table

Numeric Value Value Description

0 PIN_STATUS_NOT_PUSHED Needs to be pushed.

2 PIN_STATUS_PUSHED Channel event has been pushed.

By default, pushed /channel_events
are deleted from the channel event
table.

To save a record of a pushed /
channel_event, set
delete_channel_events to 0 in the
Connection Manager pin.conf file.

3 PIN_STATUS_ERROR Requires user intervention to fix. These
errors usually occur during
configuration and are less likely to
occur in a stable, operating
environment.

4 PIN_STATUS_LINK_ERROR The directory service is down. Does not
require user intervention, since errors
are resolved automatically.

Verifying the Mapping Between Object Classes and Entries
You can avoid object class violation problems in the BRM LDAP environment by making sure
that BRM object class type definitions map to directory server schema entries correctly.

The next sections describe three common object class violations and how to fix them.

Mismatches between the Mapping File and Directory Server Entries
There are two common mismatches between the mapping file and directory server entries:

• The object class type definition in the mapping file does not match the corresponding
directory server name.

• The attribute name in the mapping file does not match the corresponding directory server
attribute name.

Chapter 7
Verifying the Mapping Between Object Classes and Entries

7-3

Entry Class Type Definition Contains a Typo
Problem: The name in the mapping file (BRM_home/sys/ldap.idl) does not match the
name of the entry in the directory server. For example, the directory server entry is
named ruesr (a typo) while the mapping file has an object type of ruser.

Solution: Verify that the object class name matches the entry type name.

Case or Spelling Mismatches in Attribute Names
Problem: There is a mismatch between the attribute name in the directory server and
the name supplied in the mapping file. Sometimes, the mismatch is due to a difference
in case or spelling. The most common errors are with these attributes shown in
Table 7-2:

Table 7-2 Common Errors with Attribute

Attribute Name in the Directory Server Attribute Name in the Mapping File

userpassword userPassword

maxmsgcount maxmsgcnt

Solution: Verify that the attributes names match (check for case).

Object Classes or Attributes are Missing in the Directory Server
BRM cannot create directory server schema elements. Therefore, you must manually
define the BRM data elements that you are interested in capturing with your own
directory server tools. If you do not define these object classes and attributes in the
directory server, you will encounter BRM object class errors. For example, to capture
BRM account object data, you must create a directory entry called r_user with an
attribute called pin-poid-id, which is relevant only to BRM.

Object Class Attributes Undefined in the Directory Server
Problem: None of the attributes belonging to the object class were created in the
directory server, added to the object class, or both. For example, the /r_user object
class must be modeled correctly, that is, it must contain all of the required BRM
attributes to push data to the directory server.

Solution: Verify that the attributes were created and added to the object class.

For more information on the /r_user directory server attributes, see "Determining the /
r_user Object Class Attributes".

Attribute Used in Mapping File is Undefined in the Directory Server
Problem: An attribute used in the mapping file was not defined in the directory server,
nor was it added to the object class in the directory server. For example,
userPassword was never defined in the directory server, but it was used in the
mapping file. Any attempt to add or modify this attribute to the directory server entry
will fail.

Chapter 7
Verifying the Mapping Between Object Classes and Entries

7-4

Note:

This error is reported as "Undefined Attribute Type" in some directory servers.

Solution: Verify that an attribute with this name exists in the directory server. If it does not,
create it, and add it to the object class. Make sure that the case matches, too.

Directory Server Object Class is Created without Its Required Attributes
Problem: The object class is created without all the required attributes for the class. A
common problem is that all attributes of the class are marked as required and only a subset
is supplied during object creation.

LDAP Data Manager verifies that all the attributes marked as required in the mapping file are
supplied during object creation. However, if an attribute is marked as optional in the directory
server and required in the mapping file it is your responsibility to make sure that the object
class definition in the directory server and mapping file are in sync.

Solution: Verify that only required attributes are marked as required for the class and the
object class definition in the directory server and mapping file are in sync.

No Such Object Errors
Table 7-3 shows the most common no such object errors.

Table 7-3 No Such Object Errors

Problem Solution

You get a "no such object error". The location specified in the mapping file does not exist in the
directory server. For example, the location in the mapping file
was o=portal, and the directory server had a tree rooted at
o=portal.com.

Verify that the tree with the correct root exits in the directory. You
should also check for typos.

The ou specified in the PIN_FLD_DN or in the
Location in the mapping file does not exist. For
example, if the PIN_FLD_DN has uid=user1,
ou=ipservices, o=portal.com, but the directory
server has ou=serviceip, any attempt to create
or modify the entry will return this error.

Some directory servers return a constraint violation if this error
is present along with a duplicate RDN_PIECE. For example, if
you have the same DN and user1 already exists in the directory
server, you receive a constraint violation. After you fix that
problem, you will see the "No such object error".

Verify that the ou specified exists in the directory server. You
should also check for typos.

Already Exists. The value of the RDN_PIECE already exists in the DS. Check
for duplicates.

Not all attributes in the DS entry are returned
when an entry is read or searched from the DS.

The mapping file (ldap.idl) does not specify a mapping for all
attributes in the directory server entry.

Specify a mapping for all the fields that you are interested in
reading from the entry.

Chapter 7
Verifying the Mapping Between Object Classes and Entries

7-5

Table 7-3 (Cont.) No Such Object Errors

Problem Solution

Not all DS entries are returned when the DS is
searched using a search filter.

The scope of the search might be limiting the entries returned.
For example, LDAP_SCOPE_ONELEVEL (1) limits the scope of
the search to one level from the starting point of the search.
Whereas, LDAP_SCOPE_SUBTREE (2) will search the entire
sub tree.

Specify the correct scope depending on what you are looking
for.

When a complete DN is specified, you get the
error "Given DN cannot reside in location Ö."

The DN's location suffix does not match the value specified in
the BRM_home/sys/ldap.idl file. For example, if ldap.idl
specified a location o=portal.com and the complete DN
specified uid=user1, o=portal.

Verify that the location suffix o=portal and the value specified
for location o=portal.com match.

Chapter 7
Verifying the Mapping Between Object Classes and Entries

7-6

8
LDAP Manager Utilities

This chapter provides reference information for Oracle Communications Billing and Revenue
Management (BRM) LDAP Manager utilities.

Topics in this document:

• load_channel_config

• pin_channel_export

load_channel_config
Use this utility to load channel definitions into the /channel object in the Oracle
Communications Billing and Revenue Management (BRM) database and to export existing
channels to an XML file. Define the channel definitions in the BRM_home/sys/data/config/
channel_config.xml file or another file that uses the same format. The format of the XML file
is specified in the channel_config.xsd schema file in the BRM_home/xsd directory.

Caution:

When you run the load_channel_config utility, it overwrites the existing channel
definitions in the /channel object in the BRM database. If a channel definition exists
in the BRM database, but isn't included in the channel_config.xml file, the
database definition won't be overwritten.

When you run the utility, the channel_config.xml and channel_config.xsd files must be in
the same directory. If you do not run the utility from the directory in which
channel_config.xml is located, include the complete path to the file. For example:

load_channel_config BRM_home/sys/data/config/channel_config.xml

For information on the contents and format of the channel_config.xml file, see "About
Defining Channels".

Note:

To connect to the BRM database, the load_channel_config utility needs a
configuration file in the directory from which you run the utility. See "Creating
Configuration Files for BRM Utilities" in BRM System Administrator's Guide.

Location

BRM_home/sys/data/config

8-1

Syntax

load_channel_config [-d] [-v] [-t] [-r] [-h] channel_config.xml

Parameters

-d
Displays detailed information on status and error messages as the utility loads data.

-v
Writes error information for debugging purposes to the utility log file. By default, the
file is located in the same directory as the utility and is called default.pinlog. You can
specify a different name and location in the Infranet.properties file.

-t
Checks the validity of the config_channel.xml file without creating the /channel
object.

-r
Retrieves the contents of the /channel object and writes it to the XML file specified.

-h
Displays the syntax and parameters for this utility.

channel_config.xml
The XML file containing the channel definitions. A sample file (BRM_home/sys/data/
config/channel_config.xml) is included, which you can edit to meet your business
needs.
If you copy the channel_config.xml file to the same directory from which you run the
load_channel_config utility, you don't have to specify either the path or the file name.
If you run the command in a different directory from where the load_channel_config
pin.conf file is located, you must include the entire path for the file.

pin_channel_export
The Oracle Communications Billing and Revenue Management (BRM) LDAP Manager
uses the pin_channel_export utility to collect channel events accumulated in the
BRM database since the last run of this utility. After collecting all necessary information
and translating the BRM object model to the directory server object model, the utility
pushes the data to the LDAP directory servers.

Note:

To connect to the BRM database, the pin_channel_export utility needs a
configuration file in the directory from which you run the utility. See "Creating
Configuration Files for BRM Utilities" in BRM System Administrator's Guide.

Chapter 8
pin_channel_export

8-2

Note:

To specify the time interval after which the utility runs and to specify whether to
delete channel events from the Informant database after they are pushed to the
LDAP directory server, edit the pin_channel_export utility's configuration file. See
"Installing LDAP Manager".

For more information, see "About Channels and Data Propagation".

Location

BRM_home/apps/pinapps/exportapps

Syntax

pin_channel_export [-f family_ID]

Parameters

-f family_ID
Publishes channels with the specified family ID to the LDAP directory server specified in the
channel definition. There must be one pin_channel_export instance running per family ID.
For example, the following command publishes channels with the family ID 100:

pin_channel_export -f 100

Chapter 8
pin_channel_export

8-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	1 About LDAP Manager
	How LDAP Manager Works
	About Setting Up Your LDAP Integration

	2 Mapping Data between LDAP Data Manager and Your Directory Server
	About the LDAP Data Manager
	LDAP Data Manager API and Mapping Files
	LDAP Data Manager Data Types
	LDAP Data Manager Mapping Files
	Sample Mapping File
	LDAP Data Manager Class and Subclass Mapping Restrictions
	LDAP Data Manager Supported Operations
	LDAP Data Manager Unsupported Operations
	LDAP Data Manager Predefined Mapping Schemes

	Understanding the BRM Object Model
	Replicatable User Objects (/r_user)
	Replica User Objects

	Understanding the Channel Framework
	About Channels and Data Propagation
	Channel Object Composition
	Channel Event Composition
	About Channel Families
	About Channel Order
	About Channel Publishing Mode
	About Defining Channels
	Example channel_config.xml File
	How Channel Events are Published

	Configuring How Channels are Published
	Example of Publishing a Channel Family

	About Setting Replicatable Objects as Consumers
	Tracking New Account Creation
	Tracking modifications to accounts
	Tracking service creation
	Tracking modifications to services
	Understanding the Replication Policy Push Operation

	Understanding the Replication Module
	Replication Policy Default Implementation
	Defining the User Mapping Scheme
	Related /account and /service Opcodes
	Determining the /r_user Object Class Attributes
	Creating the /r_user Object Class in the Directory Server
	Defining the One-to-One Mapping Scheme
	One-to-One Mapping File Example
	Changing the Replication Policy for the One-to-One Mapping Scheme

	3 Managing the Directory Server Organization
	About Managing Directory Server Entries
	Semantics for the LDAP Modify Operation
	Distinguished Name Field and the DN Flags Field
	The Location Field

	Creating Directory Server Entries
	Distinguished Name Control Logic for PCM_OP_CREATE_OBJ
	Pre-Existing Distinguished Names
	Supplying Distinguished Names
	Not Supplying Distinguished Names
	Understanding Matching Rules for Distinguished Names
	Using Static Controls for DNs
	Using Dynamic Controls for DNs

	Deleting Directory Server Entries
	Changing Directory Server Entries
	Adding Attributes to an Existing Directory Server Entry
	Deleting Attributes from an Existing Directory Server Entry
	Renaming Directory Server Entries
	Creating Subclass Objects in the Directory Server
	Creating Related Entries Under One Node

	Specifying Directory Tree Entries
	Using a Complete Distinguished Name
	Using a Prefixed Distinguished Name
	Using a Parent Distinguished Name (Create Operation Only)
	Overriding the Base Dn Location

	Reading and Searching for Directory Server Entries
	Reading Objects from the Directory Server
	Object Read examples

	Reading Attributes from the Directory Server Entry
	Attribute Read Examples

	Searching the Directory Server for Entries
	Setting the Search Scope
	Specifying the Base DN
	Searching from Different Locations
	Example Service Storable Class Tree and Search

	Using the Sample LDAP Search Filters
	LDAP Search Limitations

	Testing Directory Server Connections
	BRM LDAP Profile Object

	4 Installing LDAP Manager
	Installing LDAP Manager
	Uninstalling LDAP Manager

	5 Configuring LDAP Manager
	Configuring the LDAP Data Manager
	Setting Up the Mapping File
	Setting Up the Directory Server
	Editing the LDAP Data Manager Configuration File

	Configuring the Connection Manager for LDAP Manager
	Configuring the LDAP Data Manager for Multiple Schemas
	Configuring the LDAP Data Manager with Different LDAP Data Manager Pointers

	Configuring Event Notification for LDAP Manager
	Loading the LDAP Price List into Pricing Center
	Configuring the Channel Framework
	Configuring the pin_channel_export Utility
	Configuring Channel Definitions
	Loading Channel Definitions into the BRM Database
	Saving Channel Definitions to a File

	6 Customizing Your BRM LDAP Environment
	Exporting Additional Data to the Directory Server
	Exporting Additional Fields from Objects
	Tracking Additional Changes to /account or /service Objects

	Exporting New Service Types

	7 Troubleshooting Your BRM LDAP Environment
	Checking for Event Errors and Recovering from Failure
	Verifying Event Creation by Running testnap
	Status Values for Channel Events

	Verifying the Mapping Between Object Classes and Entries
	Mismatches between the Mapping File and Directory Server Entries
	Entry Class Type Definition Contains a Typo
	Case or Spelling Mismatches in Attribute Names

	Object Classes or Attributes are Missing in the Directory Server
	Object Class Attributes Undefined in the Directory Server
	Attribute Used in Mapping File is Undefined in the Directory Server
	Directory Server Object Class is Created without Its Required Attributes
	No Such Object Errors

	8 LDAP Manager Utilities
	load_channel_config
	pin_channel_export

